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Résumé
Cette thèse est motivée par l’établissement de méthodes de calibrage efficaces tant du point
de vue du temps de calcul qu’en termes de précision dans la réplication des données observées
dans un contexte assurantiel. En effet, les polices d’assurance-vie lient assureurs et assurés à
moyen et long termes par des rémunérations dépendantes du rendement des investissements
réalisés par l’assureur et potentiellement garanties pour les souscripteurs en contrepartie du
versement d’une prime initiale par ceux-ci. Ces contrats contiennent également un certain
nombre d’options que les assurés peuvent déclencher. La valorisation adéquate des mécan-
ismes proposés dans les produits d’assurance-vie repose sur des méthodes de simulations aléa-
toires permettant d’explorer au mieux l’ensemble des comportements possibles des assurés sous
divers environnements économiques. La réglementation européenne requiert que les trajectoires
simulées le soient en univers Risque-Neutre. De plus, afin d’assurer la cohérence avec les con-
ditions actuelles, les modèles utilisés pour générer ces trajectoires se doivent d’être calibrés
aux prix de dérivés observés sur les marchés financiers à date: c’est la market consistency. Le
Chapitre 1 présente le contexte opérationnel dans lequel s’incrit cette thèse avec une attention
particulière accordée aux exigences réglementaires.

Historiquement utilisés par les fournisseurs de scénarios économiques aux assureurs, le mod-
èle de marché LIBOR (LIBOR Market Model, ou LMM) et ses variantes dédiés à la modélisation
des taux d’intérêt sont devenus populaires parmi les assureurs, notamment en raison de leurs
capacités à satisfaire les exigences en termes de market consistency. En pratique, l’obtention
de formules analytiques représentant les prix des marchés à répliquer est nécessaire pour rendre
ces modèles opérationnels. Á ce titre, un certain nombre d’approximations est nécessaire dont
la principale est la technique dite de figement («freezing») qui consiste à supprimer une part
de l’aléa simplifiant ainsi le modèle. Nous discutons de la validité de cette approximation dans
différents cadres et de sa possible amélioration Chapitre 2. Nous montrons que le modèle ainsi
approché conserve une richesse suffisante pour permettre une réplication suffisamment précise
des données de marchés dans les conditions économiques actuelles.

Nous étudions ensuite plus précisément les modèles LMM intégrant un facteur de volatil-
ité stochastique. Un modèle très populaire parmi les assureurs assimile cette volatilité à un
processus Cox-Ingersoll-Ross (CIR). Nous proposons une modélisation alternative dans laquelle
des méthodes numériques efficaces fondées sur des expansions polynomiales de type Gram-
Charlier peuvent être implémentées avec la garantie d’une précision suffisante. Le Chapitre 3
est l’occasion d’une revue historique de ces expansions polynomiales. Le modèle proposé et la
méthode de calibrage associée sont ensuite étudiés Chapitre 4 : il repose sur l’utilisation d’un
processus Jacobi afin de représenter la volatilité stochastique et dont le caractère borné est
crucial pour la convergence de l’expansion Gram-Charlier. Ce processus peut être vu comme
une extension du CIR au sens où sa variance instantanée est quadratique (et non affine dans
le cas général). Il appartient à la classe des processus polynomiaux dont les moments peuvent
être calculés par formules fermées. Nous montrons que le processus Jacobi converge vers le
processus CIR au sens fort et établissons des vitesses de convergences utiles pour mesurer la
distance entre ces deux modèles.

L’optimisation numérique sur laquelle repose le calibrage peut être accélérée grâce à l’informa-
tion locale que comporte le gradient de la fonction représentant les prix dans les modèle étudiés.
Nous établissons la formulation exacte du gradient dans le modèle d’intérêt (avec volatilité CIR)
et discutons de son impact sur l’accélération du calibrage des modèles Chapitre 5. Une discus-
sion sur l’accélération du calibrage dans le cadre du modèle polynomial (avec volatilité Jacobi)
est également menée.
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Abstract
This thesis is motivated by the establishment of efficient calibration methods from both com-
putational time and accuracy points of view in insurance framework. Indeed, life insurance
policies bind insurers and policyholders on through medium and long terms payments that de-
pend on the returns of the investments realized by the company. Policies may also include some
guaranteed payments or a number of options that their contract holder can activate. To pur-
chase such policies, customer must pay an initial insurance premium. The convenient pricing
of the mechanisms included in those life insurance contracts is based on simulation methods to
best explore the possible behaviours of the policyholders under various economic environments.
European regulation imposes that the generated paths should be simulated in Risk-Neutral uni-
verse. Moreover, to ensured the consistency with current economic conditions, models used to
generated those paths are asked to be calibrated to market prices of derivatives: this is the so-
called market-consistency. In Chapter 1, we present in more details the operational framework
from which this thesis originates with a special attention dedicated to regulatory requirements.

Originally used by providers of economic scenarios, the LIBOR Market Model (LMM) and
its different versions dedicated to the modelling of interest rates have become quite popular
among insurers, in particular due to its ability to comply with market consistency criteria. In
practice, obtention of analytical formulas to represent market prices to be replicated is key to
calibrate the models in a reasonable time. To this end, a number of approximations are usually
made. The first one is the so-called freezing technique that amounts to remove some randomness
of the model to simplify it. We discuss its validity in various pricing frameworks and its possible
improvement in Chapter 2. We will see that the model approximated this way keeps enough
tractability to replicate market data with good accuracy in late market conditions.

Then we take a closer look to versions of the LMM with stochastic volatility. A very
popular model among insurers in this class of models represents the volatility factor by a Cox-
Ingersoll-Ross (CIR) process. We propose in this thesis an alternative approach in which efficient
numerical methods of derivatives pricing, based on Gram-Charlier polynomial expansions, can
be implemented with high precision. On this occasion, we provide in Chapter 3 an historical
review of these polynomial expansions techniques. The proposed model and its calibration
method is then studied in Chapter 4: it is based on the representation of the volatility factor
by a Jacobi process; its bounded property allows to ensure the convergence of the mentioned
polynomial expansions. This process can be viewed as an extension of the CIR one in the sense
that its instantaneous variance is quadratic (and non affine a priori). It belongs to the class of
polynomial processes whose moments can be calculated by closed-form formulas. We show that
the Jacobi process strongly converges towards the CIR one and derive some rates of convergence
useful when assessing the distance between the two models.

The numerical optimization on which the calibration is based can be speeded up thanks
to the local information carried out by the gradient of pricing function in the studied models.
We establish the analytical formulation of the gradient of the price in the standard modelling
framework of interest (with CIR volatility process) and discuss its impact on computation time
in Chapter 5. We will also assess the impact of the gradient in the polynomial model we
proposed (with Jacobi volatility).

Keywords: Modelling, Insurance, Interest rates, Swaptions pricing, LIBOR Market Model
with Displaced Diffusion, Stochastic volatility, Affine processes, Polynomial processes, Jacobi
process, Gram-Charlier expansions, Optimization.
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Introduction (en Français)

Les polices d’assurance-vie lient assureurs et assurés à moyen et long termes par des rémunéra-
tions garanties en contrepartie du versement d’une prime initiale par les souscripteurs. Ces
contrats contiennent également un certain nombre d’options que les assurés peuvent déclencher
jusqu’au terme du contrat. La valorisation adéquate des mécanismes proposés dans les pro-
duits d’assurance-vie repose sur des méthodes de simulations aléatoires permettant d’explorer
au mieux l’activation des garanties et l’ensemble des comportements possibles des assurés sous
divers environnements économiques. Les Générateurs de Scénarios Economiques (GSE) sont
des outils numériques, devenus incontournables pour les compagnies d’assurance ou réassurance
au cours de la décennie écoulée, dédiés à la génération de simulations aléatoires des principaux
facteurs de risques financiers permettant de rendre compte de l’état d’une économie. Sur ces tra-
jectoires simulées, les assureurs/réassureurs effectuent un certain nombre de traitements/calculs
motivés par différents objectifs dont les principaux sont :

• Calcul des provisions techniques : ceux-ci sont définis comme étant la «meilleure estima-
tion» des engagements de l’assureur augmentée d’une marge conservatrice («marge pour
risque»). En vue de calculer la prime d’assurance versée par les souscripteurs de certains
contrats complexes, comportant notamment un certain nombre d’options ou de garanties
financières, qui est la contrepartie du versement d’une rente par l’assureur, la projection
des contrats en question sous différentes conditions économiques est réalisée à l’aide des
simulations fournies par les GSE.

• Calcul de montants de capitaux réglementaires : dans le cadre de la réglementation eu-
ropéenne Solvabilité II initiée suite à la crise financière de 2008, les compagnies d’assurance
ou de réassurance se doivent d’immobiliser une certaine quantité de capitaux afin d’être
en mesure de faire face à des mouvements de marché extrêmes. Le calcul de ce montant
est réalisé en valorisant financièrement le passif de la compagnie d’assurance. Pour ce
faire, le comportement dudit passif est projeté, depuis son état en date de calcul, sous
les différentes conditions de marché simulées par le GSE ; les situations les plus adverses
permettent de calculer le montant de capital à immobiliser.

• Rééquilibrage de portefeuilles d’actifs et stratégie de couverture : afin de garantir le verse-
ment de rentes garanties dans les polices d’assurances, les assureurs/réassureurs adossent
leurs passifs à des produits financiers – possiblement dérivés, constituant ainsi une part
de leur actif. Le choix de ces produits financiers, de leurs pondérations ou encore de leurs
durées de détention peuvent être déterminés à l’aide des trajectoires simulées par les GSE.

• Gestion des risques : le profil de risque de la compagnie peut être évalué de manière
prospective grâce aux simulations fournies par les GSE. En effet, des perturbations dans
les conditions économiques actuelles – servant de point de départ aux simulations des
GSE - peuvent être réalisées afin de simuler une économie stressée ; des anticipations des
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niveaux des quantités financières (niveaux d’inflation ou de taux d’intérêt par exemple)
peuvent être intégrées aux GSE et donc répercutées sur les trajectoires simulées.

Davantage d’informations sont données sur l’utilisation pratique des GSE au Chapitre 1.

0.1 Les GSE et Solvabilité II
Les procédures dédiées aux calculs réglementaires sous Solvabilité II constituent un cas d’utilisation
particulier mais central quant à la conception des GSE. La législation établit une procédure pré-
cise pour le calcul des fonds propres réglementaires qui repose notamment sur la construction
d’une courbe de taux «sans risque» conçue comme un ajustement d’une courbe de marché.
Celle-ci est structurante pour les trajectoires simulées car détermine le niveau moyen des taux
d’intérêts simulés par les GSE. Les comportements des agents, reflétés notamment par leurs
investissements, au sein d’une économie résultent d’abord du niveau des taux d’intérêts (nom-
inaux et réels), et il est naturel d’anticiper que les montants réglementaires associés au risque
financier dépendent au premier ordre des niveaux de taux. Cette courbe sans risque est fournie
mensuellement par le régulateur européen du marché de l’assurance: l’Autorité européenne des
assurances et des pensions professionnelles ou European Insurance and Occupational Pensions
Authority (EIOPA). Le Chapitre 1 décrit brièvement les exigences associées à Solvabilité II avec
une description détaillée de la construction de la courbe sans risque — dite «courbe EIOPA».

Les modèles composant les GSE sont choisis par les assureurs selon les risques financiers qu’ils
souhaitent prendre en compte lors de la projection de leur passif. Sur le marché européen, ils
peuvent inclure jusqu’à six facteurs de risques à modéliser : taux d’intérêt –nominaux et réels–,
indices boursiers, indices immobiliers, défauts des contreparties ou taux de change (pour les GSE
modélisant plusieurs économies, encore assez peu répandus à date). Les polices d’assurances
étant des contrats comportant un certain nombre d’options activables par les assurés ainsi que
des garanties de prestations, les trajectoires simulées par les GSE doivent nécessairement être
stochastiques afin de rendre compte de la variété des comportements possibles des assurés sous
différentes trajectoires économiques. De plus, les polices d’assurances étant généralement des
contrats de long termes, la modélisation des taux d’intérêt est au centre des préoccupations des
assureurs.

La réglementation Solvabilité II demande aux assureurs de valoriser le passif de leur com-
pagnie dans l’hypothèse où celui-ci peut être assimilé à un produit échangeable sur les marchés
financiers. Les calculs sont alors réalisés sous l’hypothèse d’Absence d’Opportunité d’Arbitrage,
c’est-à-dire en univers Risque-Neutre. De plus, et afin que la valorisation obtenue soit en co-
hérence avec l’environnement financier à la date de sa réalisation, les modèles se doivent de
répliquer des prix de produits dérivés observés sur les marchés. Cette exigence est connue sous
la dénomination de «market consistency». Il est alors requis de chaque modèle une réplication
d’un nombre important de prix (possiblement plus de 300) de dérivés dont les caractéristiques
variées nécessitent des modèles spécifiques.

Dans ce contexte, les modèles issus de l’industrie financière (banque, gestionnaire d’actifs,
etc.) ont naturellement été utilisés par les assureurs. Bien que ceux-ci ne soient pas initiale-
ment développés pour les calculs assurantiels, leur intégration progressive au sein des différents
outils complexes des compagnies et les ressources qui y ont été dédiées les rendent à présent
inévitables et massivement utilisés. Parmi ces modèles, et en cohérence avec les commentaires
précédents, ceux dédiés à la modélisation des taux d’intérêt occupent l’essentiel des ressources
opérationnelles. Notamment, ce sont les modèles dont il est généralement requis la reproduction
du plus grand nombre de prix de dérivés. Afin de satisfaire les exigences en market consis-
tency, des modèles spécifiques peuvent être choisis – notamment, les modèles dits «à volatilité
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stochastique» – qui permettent une réplication précise des données de marché en contrepartie
d’un temps de calcul conséquent. Les modèles les plus populaires (au sein des assureurs) ap-
partenant à cette catégorie sont des variantes du modèle de Brace, Gatarek et Musiela – aussi
couramment dénommé LIBOR Market Model (LMM) – qui permettent de générer des taux
négatifs. Cette dernière capacité est devenue indispensable dans les conditions économiques
actuelles. Intégrant un facteur de volatilité stochastique modélisé par un processus de Cox-
Ingersoll-Ross (CIR) et un coefficient de déplacement permettant de générer des taux négatifs,
le modèle qui s’est peu à peu distingué parmi les modèles de référence est désigné comme étant
le Displaced Diffusion with Stochastic Volatility LIBOR Market Model (DDSVLMM).

Le «calibrage» des modèles désigne le processus au cours duquel les paramètres permet-
tant la meilleure réplication des données de marché sont identifiés. Il repose sur deux étapes :
l’établissement de formules analytiques pour les prix induits par le modèle (qui sont donc fonc-
tion des paramètres de ce dernier) lorsque cela est possible ce qui est primordial dans l’objectif
de réaliser un calibrage en un temps raisonnable puis l’optimisation numérique au cours de
laquelle la distance entre ces prix modèles et les prix de marché est minimisée. Il s’avère que la
formulation des prix obtenus dans le DDSVLMM est relativement complexe à mettre en oeuvre
numériquement ce qui induit un temps de calibrage lui aussi important. Cette thèse est motivée
par l’établissement de méthodes de calibrages alternatives permettant de réduire le temps de
calcul dédié tout en contrôlant la market consistency. Pour ce faire, nous discutons d’abord
des approximations standard de freezing de modèles (Chapitre 2). Nous proposons ensuite une
modélisation alternative qui intègre le processus Jacobi en lieu et place du CIR et établissons
des méthodes de calibrage reposant sur des expansions polynomiales (Chapitre 3) dont nous
étudions l’efficacité et la précision (Chapitre 4). Enfin, nous développons un calcul analytique
du gradient de la fonction de prix pour la réduction des temps de calibrage (Chapitre 5).

0.2 Contributions de la thèse
0.2.1 Analyse de la technique de figement (freezing)
L’obtention de formules «fermées» est donc essentielle pour calibrer les modèles. Les différentes
variantes du LIBOR Market Model reposent toutes sur l’approximation initiale qui consiste à
faire l’hypothèse d’une faible variabilité de certaines quantités aléatoires au cours du temps.
Celles-ci peuvent alors être remplacées par leurs valeurs initiales : c’est la méthode dite de
«figement» (freezing). Les calculs de prix à mener sont alors considérablement simplifiés.

Contributions de la thèse
Nous analysons dans le Chapitre 2 les différentes approches possibles pour ce figement et dis-
cutons de sa validité dans les conditions économiques actuelles. En particulier, nous vérifions
que les hypothèses sur lesquelles elles reposent sont fondées et n’induisent pas une rigidité trop
importante du modèle. Des études similaires ont été menées au milieu des années 2000 sur la
pertinence de ce type d’approximation dans le cadre des modèles de taux considérés. Les taux
d’intérêt étaient alors positifs et l’utilisation de la formule de Black était donc la norme. Nous
proposons ici de mettre à jour ces études grâce à des données récentes et de l’étendre au cas de
l’utilisation de la formule de Bachelier et ce pour des périodes de temps plus longues.

Plus concrètement, la trajectoire (Sm,nt )t≤Tm du taux swap de maturité Tm et de ténor Tn
est modélisée par la dynamique générique suivante :

dSm,nt =

n−1∑
k=m

ωk
(
t,
(
Fj(t)

)
j=m,...,k

)
Fk(t)dWt, t ≤ Tm, (1)
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où (Wt)t≥0 est un mouvement Brownien sous la probabilité PS , (Fk(t))t≤Tk,k=m,...,n−1 sont les
trajectoires des taux forward de maturités respectives Tm, . . . , Tn−1 et dont la valeur du taux
swap dépend et

(
ωk
(
t, (Fj)j=m,...,k

))
t≤Tm,k=m,...,n−1

sont des quantités stochastiques fonctions
du temps ainsi que des taux forward. En raison de la complexité de l’expression qui lie ces
coefficients ωk aux taux forward, la dynamique (1) est elle-même difficilement exploitable pour
le calcul des prix d’options d’achat sur swap (swaptions) proportionnels à la quantité ES

[
(Sm,nTm

−
K)+

]
(où K désigne le prix d’exercice – aussi appelé strike – de l’option). L’idée de la technique

de figement est d’approcher le modèle (1) en supprimant l’aléa des fonctions ωk de sorte à ce
que le calcul de l’espérance précédente puisse être réalisé par formulation explicite. Toujours
en écrivant de manière générique, on remplacera le modèle (1) par le suivant :

dSm,nt =
n−1∑
k=m

ω̃k
(
t
)
Fk(t)dWt, t ≤ Tm, (2)

où l’on a introduit ω̃k(t) = ωk
(
t, (Fj(0))k=m,...,k

)
. Pour définir ces nouveaux coefficients déter-

ministes ω̃k, deux approches sont répandues : nous les discutons et comparons leurs efficacités
dans le Chapitre 2. Sous ces approximations, le calcul de ES

[
(Sm,nTm

−K)+
]

peut alors être réalisé
efficacement et le modèle (2) peut alors être calibré en un temps acceptable. Deux questions
se posent alors auxquelles nous nous efforçons de répondre : l’approximation (2) du modèle de
(1) est-elle toujours suffisamment riche pour permettre une réplication précise des données de
marchés ? Les prix induits par le modèle approché (2) sont-ils suffisamment proches des prix
induits par le modèle exact (1) ?

0.2.2 Volatilité Jacobi et expansions polynomiales
Le modèle le plus communément utilisé par les assureurs pour répliquer de l’optionalité est un
modèle à volatilité stochastique semblable au modèle de Heston pour la modélisation des indices
actions. Il offre une représentation semi-analytique des prix au moyen d’une transformation
de Fourier de la fonction caractéristique associée au modèle en exploitant les propriétés des
processus affines. Bien que permettant une réplication précise des données conforme aux critères
de market consistency, le calibrage de ce modèle est relativement lent.

Le calcul des prix dans le modèle que nous proposons stipule que le facteur de volatilité est
représenté par un processus Jacobi permettant ainsi l’utilisation des expansions polynomiales
de type Gram-Charlier pour le calcul des prix induits par le modèle. Ces méthodes d’expansions
assez anciennes ont été originellement introduites pour approcher des densités de probabilités
inconnues. Une revue des propriétés du processus Jacobi et du développement historique des
expansions polynomiales de densités est l’objet du Chapitre 3. Afin d’assurer la précision des
calculs menés, la convergence de ces expansions est nécessaire. Le caractère borné du processus
de Jacobi permet de s’en assurer théoriquement, contrairement au modèle de référence construit
avec le processus CIR. Une de nos préoccupations sera alors de mesurer la «distance» entre le
modèle proposé et le modèle de référence. Les travaux présentés dans le Chapitre 4 de cette
thèse constituent une version augmentée de l’article [AMLB20] (soumis et en cours de révision).

Contributions de la thèse
Essentiellement, nous proposons d’utiliser le processus de Jacobi comme une approximation
du processus Cox-Ingersoll-Ross pour la modélisation de la volatilité stochastique. La distance
entre ces deux processus peut être évaluée selon différentes métriques. La distance entre les taux
swap associés à chacune de ces volatilité peut alors être déduite ainsi que l’impact du modèle
sur la valorisation des contrats dérivés.
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En équations, la version du DDSVLMM utilisée pour les taux swap est similaire à (1) dans
lequel un facteur de volatilité stochastique a été ajouté. En appliquant la technique de figement
précédemment décrite, le modèle proposé s’écrit comme suit :{

dSm,nt =
√
Vt
∑n−1

k=m ω̃k
(
t
)
Fk(t)dWt,

dVt = κ(θ − Vt)dt+ ϵ
√
VtdBt,

t ≤ Tm, (3)

où (Bt)t≥0 est un mouvement Brownien dont la loi jointe avecW est caractérisée par le coefficient
ρ tel que d 〈W., B.〉t = ρdt et κ, θ, ϵ sont les paramètres définissant la dynamique de Cox-
Ingersoll-Ross qui représente le processus de volatilité V . Sous cette évolution stochastique,
les prix d’options d’achat sur Sm,nTm

peuvent être calculés grâce à la transformée de Fourier
de la fonction caractéristique de Sm,nTm

. Celle-ci s’exprime au moyen d’équations de Riccati
conséquences de la propriété affine du modèle (3). Cependant, le calcul de ces transformées est
opéré par des méthodes de quadrature relativement lourdes numériquement.

C’est ainsi que nous proposons d’adopter le processus de Jacobi V J pour modéliser la volatil-
ité stochastique. Celui-ci est solution de l’équation différentielle stochastique suivante :

dV J
t = κ(θ − V J

t )dt+ ϵ
√
Q(V J

t )dBt, t ≤ Tm, (4)

où l’on a introduit la fonction polynomiale Q(x) = (x−vmin)(vmax−x)
(
√
vmax−

√
vmin)2

avec 0 ≤ vmin < vmax ≤
+∞. Celle-ci permet de garantir le caractère borné du processus de Jacobi dans le temps :
P(∀t ≥ 0 : V J

t ∈ [vmin, vmax]) = 1 dès lors que V J
0 ∈ [vmin, vmax]. Une propriété remarquable

du processus Jacobi est la suivante :

lim
(vmin,vmax)→(0,+∞)

V J
t = Vt,

où la convergence est à comprendre au sens fort. Nous établissons dans cette thèse des vitesses
de convergences fortes et faibles, notamment dans le théorème suivant.

Théorème. Soit T > 0. Il existe des constantes positives C̃ et C ′ telles que

sup
0≤t≤T

ES
[∣∣V J

t − Vt
∣∣] ≤ C̃/ log

(
vmax/v0

)
et

ES
[

sup
0≤t≤T

∣∣V J
t − Vt

∣∣] ≤ C ′
/√

log
(
vmax/v0

)
.

Notons à présent Sm,n,J le taux swap décrit par une dynamique similaire à (3) dans laquelle
V a été remplacé par V J . À vmin et vmax fixés, la modélisation du taux swap associé à la
dynamique (4) peut être vue comme une approximation de la modélisation de référence (3)
puisque des vitesses de convergences de Sm,n,J vers Sm,n peuvent à leur tour être établies.
Nous l’avons évoqué précemment, travailler avec V J permet de calculer les prix de swaptions
plus efficacement grâce aux expansions polynomiales de type Gram-Charlier tout en garantissant
la convergence des expansions dans ce cadre. Ces prix s’écrivent alors comme des combinaisons
linéaires des moments du taux swap :

ES
[
(Sm,n,JTm

−K)+
]
= c0 + c1ES

[
Sm,n,JTm

]
+ c2ES

[
(Sm,n,JTm

)2
]
+ c3ES

[
(Sm,n,JTm

)3
]
+ . . . (5)

où les coefficients (ci)i∈N ne dépendent pas de la loi du taux swap (ils dépendent notamment
de K et de la fonction payoff φ(x) = (x − K)+). Reste alors à être en mesure de calculer
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efficacement la séquence de moments
(
ES
[(
Sm,n,JTm

)k])
k∈N

, ce qui est réalisé grâce au caractère
polynomial de la dynamique (4).

Pour pouvoir écrire l’identité (5), il est nécessaire d’assurer la convergence du terme de
droite. Elle est conséquence du caractère borné de la volatilité : pour une borne supérieure
vmax raisonnable, cette convergence est établie théoriquement et nous prouverons que le résul-
tat persiste dans le cas particulier où vmin = 0. Une telle représentation des prix n’est donc a
priori pas permise dans le modèle standard (3) pour lequel vmax = +∞. Nous avons d’ailleurs
pu démontrer que la condition classiquement imposée aux densités de variables aléatoires ap-
prochées pour assurer la convergence de l’expansion n’est pas satisfaite pour les modèles à
volatilité stochastique classiques (i.e. dans lesquels la volatilité n’est pas bornée).

Théorème. Lorsqu’un modèle à volatilité stochastique non bornée est utilisé pour représenter
Sm,n, la convergence de l’expansion Gram-Charlier de la densité du taux swap n’est pas assurée.

Apparaît alors le dilemme suivant : d’une part, et en accord avec l’avant-dernier théorème
énoncé, nous souhaitons choisir le paramètre vmax aussi élevé que possible pour approcher
précisément le DDSVLMM de référence (3) ; d’autre part, l’identité (5) ne s’écrit que pour des
vmax suffisamment faibles.

Cela étant dit, la question de l’erreur commise en bornant la volatilité – en remplaçant V
par V J , dit rapidement – sur le calcul des prix se pose. Nous prouverons le résultat suivant (cf.
Section 4.4.1.4 pour une formulation précise).

Théorème. Soient vmin > 0 et β > 1. Soit f une fonction gain bornée deux fois continûment
dérivable à dérivées bornées et telle que les fonctions x 7→ xf ′(x) et x 7→ x2f ′′(x) sont bornées.
Sous certaines conditions sur les paramètres de volatilité, il existe deux constantes positives
Cvmin , c1 et c2 telles que∣∣∣ES[f(Sm,nTm

)
]
− ES

[
f(Sm,n,JTm

)
]∣∣∣ ≤ Cvmin

( c1
vmax

+ c2

)
pour tout vmax ≥ βvmin.

En pratique la série (5) doit être tronquée ce qui induit une seconde source d’erreur, l’erreur
de troncation. Nous donnons des estimations de celle-ci. Notamment, lorsque vmin > 0 et
sous certaines conditions supplémentaires sur les paramètres du modèle, le résultat suivant est
démontré.

Théorème. Soit N ∈ N l’ordre de troncation et soit εN l’erreur de troncation. Il existe des
constantes q̃ ∈ (0, 1) et (C,C ′) ∈

(
R∗
+

)2 telles que, dans le cas où K = Sm,n0 ,

εN ≤ C
q̃N+1

N1/4
,

et dans le cas où K 6= Sm,n0 ,

εN ≤ C
q̃N+1

1− q̃
.

Les illustrations numériques fournies permettent d’appuyer les résultats théoriques et d’établir
certaines conjectures. Concernant le temps de calcul du calibrage des modèles, la méthodologie
proposée permet de réduire celui-ci d’environ 50% par rapport au calibrage du DDSVLMM de
référence.
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0.2.3 Calcul du gradient analytique pour le calibrage
Le second temps des calibrages des modèles consiste en la minimisation numérique de la distance
entre prix modèles et prix observés au moyen d’un algorithme d’optimisation. La littérature
relative à l’optimisation numérique est abondante, aussi une classe particulière d’algorithmes
tire avantage de l’information contenue dans le gradient de la fonction cible. Nous explicitons
celui-ci dans le cadre du modèle DDSVLMM référence (fondé sur l’utilisation du processus Cox-
Ingersoll-Ross). Nous discutons également de l’apport de cette information pour le calibrage du
modèle intégrant le processus Jacobi avec approximation du gradient.
Nous nous concentrons sur des algorithmes communément utilisés et implémentés dans les
librairies classiques du langage R. Ceux-ci intègrent des algorithmes ne nécessitant aucune
hypothèse de régularité de la fonction cible, des algorithmes à descente de gradient ou des
algorithmes stochastiques. Ces derniers ne seront pas considérés étant donné qu’en pratique
il est apprécié que la fonction liant les données à reproduire aux paramètres optimaux soit
déterministe. Les travaux présentés dans ce chapitre constituent une version augmentée de
l’article [AAB+20] (soumis à publication).

Contributions de la thèse
Avec le modèle (3), nous avons précisé que les prix de swaptions s’exprime en terme de transfor-
mée de Fourier de la fonction caractéristique du taux swap. Cette expression analytique peut
alors être dérivée par rapport à chacun des paramètres du modèle. Si Θ représente l’ensemble
des paramètres du modèles, le gradient

∇ΘES
[(
Sm,nTm

−K
)
+

]
est lui aussi explicite. Intégré aux algorithmes d’optimisation, nous discutons de son apport
en terme de temps de calcul et précision du calibrage par une étude comparative. Celle-ci est
également réalisée dans le cadre du modèle polynomial construit avec (4). Selon les paramètrages
choisis, la réduction du temps de calibrage par rapport à un calibrage standard sans utilisation
du gradient peut être de près de 85%.
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Chapter 1

Introduction to Economic Scenario
Generators and Solvency II

We present in this chapter the operational environment in which this thesis has been drafted
and the underlying applied problems that have motivated this work.

1.1 Motivations of the thesis in a nutshell
Economic scenario generators have quite lately become indispensable numerical tools for in-
surers and reinsurers. They are used on multiple occasions and possibly several times a year
throughout heavy computational processes of various natures. Those computations are required
to allow undertakings to pursue their activity that basically consists in managing risks. Among
financial risks, interest rates one is essential for insurance activity due to the relative long-term
commitments associated with insurance policies. Models dedicated to their modelling have
reached significant complexity and are asked to replicate a relatively large number of market
data. Efficient calibration methods for interest rates models are thus sought. This thesis is
dedicated to the establishment of accurate and efficient calibration methods for interest rates
models used in insurance context.

The calibration process designates the whole process starting with the input of market data
and resulting in the derivation of associated model quantities. This process can be decomposed
stepwise as: (i) extraction of market data; (ii) choice of the appropriate model to replicate them;
(iii) numerical optimization procedure allowing to identify the optimal parameters defining the
model; (iv) computation of model prices. In this thesis, we discuss all this point and our main
theoretical contributions relate to steps (ii) and (iii). Point (ii) is discussed in Chapter 2: models
used by insurers are quite complex to use as such and require to be beforehand approximated
somehow. Two strategies have been identified related to item (iii). The first one consists in
finding alternative prices representations. Following the work of [LDB20] who proposed to use
expansions techniques to obtain quite easy to implement prices formulas leading to an important
reduction of calibration time. However, some questions on the accuracy of the proposed method
raised. [AFP17] studied similar expansion techniques in equity type context. We discuss this
alternative in Chapter 4. The second one relates to the optimization algorithm: there are
numerous algorithms allowing to minimize (maximize) some target function, and those based
on the gradient of the objective function are much used. We use it in our interest rates context.
It is discussed in Chapter 5.

20



1.2 ESGs: definitions and usages
Insurance business is an old activity that fundamentally consists in managing the different
kinds of risks the economic agents or private individuals are exposed to. Insurance policies are
designed to protect either individuals or estates and are at the centre of modern economies.
The high technicality of economies of economically developed countries require the insurers
to be able to face a large variety of risks. In particular, those economies are mainly driven
by macroeconomic aggregates and financial quantities which explains that the financial risk
arose as key for companies activity. Moreover, the backing of life-insurance contracts is realized
thanks to financial derivatives traded on financial markets.

For risk management, strategic guidance, regulatory compliance, sensitivities computations
or valuations of policies, the Economic Scenario Generators (ESGs) recently emerged as a
must-have tool for insurers. Following [PCC+16], an ESG can be defined as «a computer-based
model of an economic environment that is used to produce simulations of the joint behaviour
of financial market values and economic variables.» An ESG is composed of several interacting
models, each one being dedicated to the modelling of economic quantities that reflect different
kind of risks. Current ESGs can account for interest rates risk, equity risk, credit risk, real
estate risk and foreign exchange risk. Note that the very nature of insurance policies embedding
optional guarantees of relative long life enlightens why movement in interest rates curve has
predominant impact on the whole activity of insurers. Moreover, major part of the financial
instruments used for backing life-insurance contracts comprises bonds (Sovereign or Corporate),
possibly Zero-Coupon and other interest rates derivatives.

The following non-exhaustive list provides more common uses of ESGs in practice:

• Computations of the technical provisions: those are the ”best estimate” of the commit-
ments written in insurance policies to which a ”risk margin” is added (see [dcpedr20] and
below);

• Various regulatory computations: capital requirements (described below in Section 1.3 in
more details) to pursue activity, valuation of balance sheet according to proper accounting
standards (see [Par14] or [BRS12] notably);

• Assets and Liabilities Managements (ALM) (see [ACA20b] or [BKKR06] for instance);
• Risk management from forward-looking point of view;
• Pricing and hedging of some relatively complex insurance policies comprising optionality

(e.g., variable annuities);
• New worldwide accounting standard named IFRS 17 (see [AZ20] who gave some insights

on the topic with a focus on the building of the relevant risk-free curve);
• Market valuation works within a merger and acquisition transaction.

In practice, ESGs are incorporated in the process dedicated to one of the previous compu-
tation or externalised (and may be handled by an ESG provider). Following the motivation
of the calculation that is made, insurer may want to employ either Risk-Neutral or Real-World
ESGs. First ones are related to computations in which market data replication is required while
second ones are associated to more prospective approaches.

Risk-Neutral ESG In most of the previously mentioned computations, replication of market
data (prices of derivatives or volatilities) is required in order to ensure the consistency with
current economic conditions. The translation of this notion for the regulatory requirements is
named the market consistency (discussed in [VEKLP17] or [BMV19] and references therein).
Furthermore, an important feature of insurance policies is that they embed optional guarantees.
Consequently, the simulated paths obtained from ESGs should be stochastic to take into account
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the value of this optionality coming from the variety of possible behaviours of policyholders.
These two points mainly explain why, historically, insurers have been led to consider models
coming from bank industry to perform the aforementioned calculations. Even though they
were not designed for long-term projections and were mainly motivated by establishment of
hedging strategy associated with high frequency1 of portfolio rebalancing, they offer the ability
to repliacte market data quite accurately based on well established methods and to generate
stochastic paths. Notably, the literature relative to their calibration or simulation is significant.
Now, such models are widely used and well integrated in the companies processes and though
their limitations are more understood, the inertia of market practices make those models quite
inescapable.

Real-World ESG For investment planning or risk management, forward-looking scenarios
could be helpful for insurers. For such considerations, it is no longer the replication of market
prices that is desired but that of some properties of empirical distributions. For instance, it
can be required that the historical returns of the some (equity) index should be recovered
in simulated scenarios. In addition to historical targets, some targets can be motivated by
economic forecasts. For instance, anticipations on average level of inflation rates may be taken
into account. Models for real-world scenarios are essentially composed of statistical models of
time series. Calibrations methods are thus based on statistical techniques that involve large
historical data set.

Real-World ESGs are also central for regulatory computations in Solvency II. Indeed when
computing the Solvency Capital Requirement (SCR) (Pillar I, see further) or when projecting
it on future date (Pillar II further), it is necessary to simulate the state of the economy under
the Real-World measure and thus generate paths reproducing some stylized facts. Based on
those historical paths, Risk-Neutral computations are performed in a second phase to value the
liability side of the undertaking from a Risk-Neutral point of view and eventually derive the
projected values of the Best Estimates (BEs). Real-World modelling is thus pivotal also for
regulatory compliance.

ESG for regulatory compliance For solvency requirements, the Solvency II legislation pro-
posed to value the balance sheet of the insurance (and reinsurance) companies from a financial
perspective. Relevant ESG for such computations are thus Risk-Neutral. To be used for such
regulatory calculations, ESGs should have few properties that can be found in [Eio15] in accor-
dance with [Par14] and summarized in [dcpedr20] for the Euro zone or in [PCC+16] for broader
point of view. Note that the following requirements are not specific to regulatory computations
as they may be also wanted for other applications. To respect these requirements, ESGs users
must set up monitoring measures; some are quite common, other can be specific to a company.
Be that as it may, companies have to report and justify to the authorities the methodological
choices and underlying assumptions made when setting out their ESG.

ESGs are asked to replicate the regulatory risk-free yield curve at date when the compu-
tation is performed. This is motivated by fact the whole methodology to value the balance
sheet is based on risk-free discounts of cash-flows. The derivation of the regulatory risk-free
term structure is not straightforward as market rates illustrate equilibrium on financial market
resulting from considerations of financial agents whose concerns differ from that of insurance
companies. The methodology followed by the european regulator, the European Insurance and
Occupational Pensions Authority (EIOPA), to build the regulatory curve is described in details
below in Section 1.4.1. The ability of replicating the initial term-structure motivates the choice
of the interest rates model.

1Compared to time periods involved in insurance.
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Models are also asked to satisfy the Non-Arbitrage Opportunity (NAO) assumption. Arbitrage
opportunities are considered as rare events on market and thus not desirable in ESGs that
aim to simulate economies. In this perspective, ESGs first have to accurately replicate market
prices: this is the so-called market consistency. According to [uni09], «the calculation of tech-
nical provisions shall make use of and be consistent with information provided by the financial
markets and generally available data on underwriting risks (market consistency)». This notion
and its consequences are discussed in [VEKLP17]. ESGs have to be accurately calibrated to
market prices and thus rely on appropriate calibration methods. Secondly, once calibrated,
models have to be simulated consistantly with the NAO assumption. It requires accurate simu-
lation methods. On simulated paths, some martingale tests are performed: empirical means are
computed and compared to theoretical expectations of some martingales quantities. The test
pass when the two are close enough (a tolerance threshold is given based on statistical sampling
error).
More generally, several metric are usually employed to assess the accuracy of the market con-
sistency criterion, at different stage of the uses of ESGs: distance between market and model
prices obtained as outputs of the calibration, distance between market and Monte-Carlo prices,
and distance between model and Monte-Carlo prices.

An important aspect of ESGs is their ability to jointly simulate economic drivers. The
correlation between simulated paths is of interest for insurers. Correlations targets should
beforehand be estimated in a model-free approach. Once the models are chosen, those correla-
tions are translated in terms of correlations between risk drivers (Brownian motions). It is then
checked that empirical and target correlations are close enough.

All those tests are though as ensuring the quality of the simulated paths that will be used for
computing the Solvency Capital Requirements (SCR; see below). Note that some of these are
Monte-Carlo tests, in the sense that they are based on empirical estimations justified by the law
of large numbers and Central Limit Theorem. It is thus required to simulate a sufficient number
of paths to ensure the convergence of empirical quantities and thus an accurate computation of
the SCR. [dcpedr20] discussed the fact that a number of 1000 paths is a minimum2. If some
tests still fail, some «reprocessing» may be performed either on input data or on simulated
paths (cap, floor, removal of atypical data, etc.) but it should remained exceptional and have
to be fully justified. Regarding the data used to calibrate the model, they must be chosen
accordingly with the risk profile of the company as much as possible. It is quite straightforward
for companies to chose which indices must be replicated. However, for interest rates risk, it is
sometimes hard to determine what data should be used (we discuss it below). All in all, a large
number (several hundreds) of market data should be replicated explaining why calibration is
challenging: not only it has to be precise but also computationally efficient. It is all the more
important as those regulatory computations are performed several times a year.

1.3 Introduction to Solvency II regulation
ESGs have multiple uses. Some computations listed above are specific to each insurers but the
regulatory ones that are quite standardized and prescribed by the regulators. Present section
is dedicated to the description of he legislation and its consequences on ESGs designs.

2This number of scenarios may seem as too small to ensure accurate explorations of the possible state of
the world. However, due to complexity of the models used by insurers to compute the sequence of cash-flows
associated with the insurance policies they have issued, operational constraints impose that the number of paths
should be at most a few thousands.
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1.3.1 General considerations
Motivated by the financial crisis of 2008, the Solvency II regulation came into effect on 2016,
January 1st : it introduces new prudential governing rules of insurance and reinsurance under-
takings and harmonizes them at a European level. While former legislation Solvency I proposed
to set management rules thanks to an accounting valuation of the insurance companies, Solvency
II is based on an economic valuation of the balance sheets. The risk profile of each company is
now determined taking into account the economic environment through a more granular anal-
ysis of their portfolios. Transparency rules are also harmonized and strengthened. Measures
contained in the Solvency II regulation are generally gathered in three pillars relative to:

1. Capital requirements: computations of regulatory capital - Solvency Capital Requirement
(SCR) and Minimal Capital Requirement (MCR) - adapted to the risk profile of the
company;

2. Risk management: related to governance and asset-liabilities management (ALM) ; im-
plementation of measures to evaluate their consistency through time in a forward-looking
approach via the Own Risk And Solvency Assessment (ORSA);

3. Disclosure rules: described requirements in terms of communication and reporting.

The studies driven in this thesis mainly relate to pillar 1 (and marginally to pillar 2).

1.3.2 Pillar I: Quantitative Requirements
Solvency II requires insurers and reinsurers to immobilize some of their available cash (also
named «Own Funds» in accounting terms) in accordance with their risk profile in order for
the company to be able to face, with a probability of 99.5%, a major crisis that could lead
the insurer to the incapacity of honouring its financial commitments. To do so, the EIOPA
(European regulator) proposed in [Dir09] to value the undertakings from an economic point
of view: «assets shall be valued at the amount for which they could be exchanged between
knowledgeable willing parties in an arm’s length transaction; liabilities shall be valued at the
amount for which they could be transferred, or settled, between knowledgeable willing parties in
an arm’s length transaction.». The aim of Solvency II is thus to better estimate the amount of
cash the insurer will get if he is led to sell a significant part of its assets or to transfer some of
its liabilities during a limited period of time to increase its available liquidity by estimating the
exchange value of the company’s balance sheet.

In Solvency II, the value of the assets registered in the balance sheet is their market value.
This quantity is either directly taken from the quoted value on financial market when they are
deep, liquid and transparent (mark-to-market approach) or computed using mathematical mod-
els (coming from bank industry) otherwise (mark-to-model approach). Mark-to-model approach
requires the prior calibration to market data of some mathematical models to take into account
late market conditions. On the liability side, we can distinguish two main types of debts: the
one due to policyholder, named the Technical Provisions (TP) and the one due to shareholder,
named the Net Asset Value (NAV).

The Technical Provisions Technical provisions (TPs) represent the economic value of the
commitments of the insurer. Due to the variety of risks faced by insurers and their imbrications,
this quantity is hard to determine. Risks associated to contracts that may be perfectly replicated
by a portfolio composed of financial instruments could be valued using the value of this portfolio
and in that case, TPs equal the market value of the replicating portfolio. However, most of
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Figure 1.1: Balance sheet under Solvency II legislation.

the insurance contracts can not be perfectly replicated and the assessment of the associated
economic value of the liabilities is a complex task. Such liabilities are valued using a Best
Estimate (BE) approach (see the dedicated paragraph below). On top of that, a Risk Margin
(RM) is added to the BE as a prudential stock accounting for the non-replicability of some
insurance risks:

Technical Provisions = Best Estimate + Risk Margin.

The Best Estimate: it is defined in [Dir09] as «the probability-weighted average of future
cash-flows, taking into account of the time value of money (expected present value of future
cash-flows), using the relevant risk-free interest rate term structure. The calculation of the
best estimate shall be based upon up-to-date and credible information and realistic assumptions
and be performed using adequate, applicable and relevant actuarial and statistical methods».
Mentioned cash-flows originate from all kinds of risks faced by insurers. They can be split
in two categories: financial risks that can be replicated and non-financial ones that are non-
hedgeable. In formulas, the BE (also sometimes referred to as BEL standing for Best Estimate
of Liabilities) expresses as

BE = EP⊗Q

∑
n≥1

D(0, n)CFn

 (1.1)

where (D(0, n))n≥1 are discounting factors defined in (1.20) associated to risk-free term struc-
ture, Q is the standard Risk-Neutral probability measure associated to financial risks, P is
the historical probability measure used for other risks (behaviour of policyholders, mortality,
longevity, etc.) and CFn is the cash-flow delivered at time n ≥ 1 for the n-th period. In practice,
the BE is estimated through a Monte-Carlo approach using simulations of future cash-flows:

BE = lim
L→∞

1

L

L∑
l=1

N∑
n=1

D(l)(0, n)CF(l)
n .

For a given simulation l, the sequence (CF(l)
n )1≤n≤N comprises cash-in and and out-flows so

that they can be decomposed as CF(l)
n = CF(l),out

n − CF(l),in
n at any time n ≥ 1. Practitioners
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use Assets Liability Management (ALM) models to compute sequences of cash-flows: those are
complex models that take as inputs simulated paths of the state of the world and appreciate
the interactions between assets and liabilities of the company through the optional guarantees
carried out in the insurance policies issued by the company. The paths on which the computation
of cash-flows is based are either built from historical data (mortality or longevity tables) or
generated by mathematical models gathered in ESGs. Among them, those dedicated to market
risk are coming from bank industry: they are calibrated to market data so that the BE depends
on late economic condition. Note also that the computation of the BE allows to integrate
national politics scheme as those models integrate operative accounting rules in each country.

Interest rates play a particular role in the computation of Best Estimate. It can be directly
seen in the definition (1.1) as the sequence of discount factors only depends on interest rates.
The joint distribution of interest rates and other risk factors that intervene in the computation of
cash-flows is key to compute the BE. Moreover, among the risk factors themselves the interest
rates are prominent as noted in [BGK17] and [Eio14] since 72.1% of the assets portfolio are
composed of bonds (31.6% of sovereign and 40.5% of corporate) for the representative portfolio
of the Euro zone and 72.3% (29.1% sovereign and 43.2% of corporate) for France3.

Risk Margin: the RM adds up to the BE to take into account the non replicability of most
of insurer’s liabilities; «[it] shall be such as to ensure that the value of the technical provisions
is equivalent to the amount that insurance and reinsurance undertakings would be expected to
require in order to take over and meet the insurance and reinsurance obligations.» following
[Dir09]. Alternatively, it can be interpreted as the amount the shareholders will have to invest
in the company during the years to come to allow the company to pursue its activity in respect
of the legislation. Following [uni09] or [CN+14], «risk margin shall be calculated by determining
the cost of providing an amount of eligible own funds equal to the Solvency Capital Requirement
necessary to support the insurance and reinsurance obligations over the lifetime thereof.».

In formulas,
RM = rCoC

∑
t≥1

P (0, t)SCRt (1.2)

where rCoC is the Cost-of-Capital rate, SCRt is the Solvency Capital Requirement at time t
whose definition will be detailed below and P (0, t) is the Zero-Coupon bond price introduced
in Paragraph 1.5.1.2 and valued using risk-free rate curve. Note that computation of SCRt

following its description below is only permit for t = 1 since for t > 1, the exhaustive process
would be too heavy computationally speaking. In practice, a number of approximations are
made to obtain value of risk margin. The rate rCoC stands for the cost a company would
endure for holding an eligible amount of own funds: it is determined by EIOPA and currently
set to 6% per year in the statutes.

The Net Asset Value
The Net Asset Value (NAV) represents the available wealth of the company, at the evaluation
date, that has been accumulated by the company since the start of its exercise. The NAV
corresponds to the shareholder’s equity. It can be defined as being the difference between the
market value of the assets and the Technical Provisions:

NAV = Market Value of Assets− (BE + RM). (1.3)

The NAV comprises the regulatory capital requirements –described below– which is the
3Data can be found in Excel file following www.eiopa.europa.eu/content/eiopa-updates-representative-

portfolios-calculate-volatility-adjustments-solvency-ii-risk_en.
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amount the insurance/reinsurance undertaking must hold during the lifetime of their contracts
to exercise their activity, and a Free Surplus (FS) which is the theoretical amount of cash the
shareholders could (theoretically) retrieve without impacting the business of the company.

Capital Requirements
The Solvency II legislation requires the insurer to hold a certain quantity of cash during the
lifetime of the insurer’s commitment. This quantity is the Solvency Capital Ratio (SCR). It
is part of the available cash of the company. The whole amount of available cash forms what
is named the Own Funds (OF) of the company and is classified according to the degree of
availability of the cash (keep in mind that the final aim of the legislation is to avoid lack of
liquidity). The part of Own Funds that is the «more available» (roughly speaking), named
EOF (Eligible Own Funds) is used to compute the solvency ratio EOF/SCR. This ratio is an
economic indicator useful to deem the solvency of the undertaking: when it is greater than one,
the company is considered as being solvable at one year, i.e. being able to fulfil its commitments
in the year to come in 99.5% of states of the world. The Minimum Capital Requirement (MCR)
is the minimum value the NAV can take without intervention of the supervisory authorities and
is such that MCR ≤ SCR.

Practically, a company endures an economic ruin when its NAV becomes non-positive. The
SCR is defined as being the minimum amount the insurance/reinsurance must hold at the date
of evaluation so that the probability for the company to endure an economic ruin during the
next year is smaller than a 0.5% threshold:

SCR = inf{x ∈ R : P(NAV1 ≤ 0|NAV0 = x) ≤ 0.005}, (1.4)

where NAV0 is the value of the NAV at evaluation date and NAV1 is the random variable
representing the available cash one year later. As the NAV depends on the value of the SCR
(see Figure 1.1), the definition (1.4) is implicit. In practice, the SCR is generally computed as
a quantile on the one-year loss distribution through a Value-at-Risk (VaR). The one-year loss
evaluated at time t = 0 is the random quantity defined by L = NAV0−D(0, 1)NAV1. The SCR
may alternatively be defined as the 99.5%-quantile of L:

SCR = inf
x∈R

{
P
(
L ≤ x

)
≥ 0.995

}
= inf

x∈R

{
P
(
D(0, 1)NAV1 + (x−NAV0) ≤ 0

)
≤ 0.005

}
= NAV0 + inf

x∈R

{
P
(
D(0, 1)NAV1 + x ≤ 0

)
≤ 0.005

}
= NAV0 + VaR0.5%

(
D(0, 1)NAV1

)
= NAV0 − q0.5%

(
D(0, 1)NAV1

)
.

(1.5)

where the VaR associated to the random variable X at level λ ∈ [0, 1] is defined as VaRλ(X) =

infm∈R

{
P(X+m ≤ 0) ≤ λ

}
and is linked to the quantile function q via VaRλ(X) = − supm′∈R

{
P(X <

m′) ≤ λ
}
=: −qλ(X).

To compute SCR under Solvency II, insurers can chose either to apply the Standard Formula
or to develop an Internal Modelling approach.
The standard formula is a formula prescribed by the regulator. The underlying idea is to
decompose the whole risk faced by the company into elementary risks for which the associated
SCR is easier to compute. In a second step, those «sub-SCRs» are aggregated to obtain the
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total SCR through what is often named the square-root formula4. The decomposition, following
a bottom-up approach, is common to all insurers and is examined in more details below.
Alternatively, the internal modelling approach leaves free to the company the choice of the
methodology to compute the quantile of the one-year available capital, in line with definition
(1.4). It allows for the undertaking to better take into account the specificities of its own risk
profile. However, the whole process to compute the value of the SCR with internal models must
be approved by the regulator: such an approach requires significant human resources and is
thus more suited for large companies.

Standard Formula
The computation of the SCR using the standard formula is built following the bottom-up ag-
gregating approach described in Figure 1.2. Elementary risks (interest rates, mortality, equity,
etc.) are gathered in different modulus: market, health, life, non-life, default. The modu-
lus «Intangible» accounts for the risks associated to intangible assets (comprising intellectual
properties, licenses, etc.).

Figure 1.2: Structure of the Standard Formula in Solvency II.

For each elementary risk (interest rates, equity, natural disasters, etc.), an economic capital
is computed: it represents the sensitivity of the balance sheet (illustrated in Figure 1.1) with
respect to a marginal variation in the risk factor associated to the considered elementary risk.
Note that as defined in Solvency II, those marginal variations are coherent with historical
shocks of each risk factor occurring once every 200 years (99.5% of probability of occurrence
under historical measure probability). For instance, the economic capital associated to interest
rates is a valuation of the risk resulting from a sudden movement in the yield curve. Economic
capital is defined as being the difference between the central value of the NAV - obtained using

4The aggregation formula is obtained by assuming the ellipticity of the joint distribution of elementary losses
and that of joint distribution of sub-SCRs.
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current state of risk factors - and the shocked value of the NAV - obtained when shocking the
associated risk factor:

ECx = NAVCentral
x −NAVShocked

x

for x ∈ {interest rates, equity,mortality, · · · }. Sub-SCRs associated to each modulus are defined
by a first aggregation formula

SCRm =

√ ∑
(i,j)∈R2

m

ρmi,jECiECj ,

where Rm is the set of elementary risks in the modulus m and ρmi,j is the correlation between
elementary risks within modulus m. The correlation matrix (ρmi,j)(i,j)∈R2

m
is given by the regula-

tor. Secondly, the aggregation of the sub-SCRs is done in a similar fashion to get the so-called
Base SCR (BSCR):

BSCR =

√ ∑
(m,n)∈M2

ρMm,nSCRmSCRn,

where M is the set of all risks modulus and (ρMm,n)(m,n)∈M2 is the correlation matrix between
risks modulus, also published by the regulator. The BSCR defined this way does not take into
account or the operational risks (human errors, system breakdown, etc.) nor the ability for
the insurer to absorb a part of the loss by differing some taxes or by reducing the technical
provisions. The operational SCR, denoted by SCRop , and an adjustment are added to the
BSCR so that both phenomena are actually integrated in the final SCR:

SCR = BSCR + SCRop + Adj. (1.6)

Internal Model
Before going further we give a few insights on the Internal Modelling approach. The previous
standard formula is prescribed by the regulator, and thus does not take into account the speci-
ficities of the insurers portfolios. To compute their solvency requirements, undertakings can
alternatively establish their own methodology. Each step of the proposed methodology should
be submitted and justified to the regulatory authority, which makes its validation a very long
process and requires important human and operational resources.

The so-called ’nested simulations’ approach that underlies Internal Models (although not
widespread in practice) consists in (see [BRS12]) first simulating under Real-World measure the
considered risk drivers over 1 year. At the end of it, calibrations of Risk-Neutral are performed
on those projected economic environments. Simulations under Risk-Neutral measure can then
be achieved over the lifetime of the liabilities of the company (several decades). The obtained
Risk-Neutral paths are used to derive the distribution of the NAV and compute the SCR as
previously stated. Again, this process is really cumbersome from computational point of view
and a number of approximations is necessary. Other forms of Internal Models can be found
that rely on the calibration of a response function based on a sample of points underlying the
full distribution, see [FLCM16]. Either way, intensive recalibrations of Risk-Neutral models are
generally considered.

1.3.3 Pillar II: ORSA
The second pillar of the Solvency II directive aims at assessing, in a continuous and prospective
way, the adequacy between followed strategic directions and the risk profile of the company. An
Overall Solvency Need is assessed upon which Enterprise Risk Management direction rely on. Its

29



practical implementation mainly consists in projecting the SCR through time up to a relevant
time horizon. The procedure depicted above to assess the one-year SCR is computationally
heavy and its generalization to a multi-period framework is thus an issue.

Following [VD12], the solvency constraint on a multi-period setting can write

P

(
T⋂
t=1

(NAVt ≥ 0)

)
≥ η ⇔ P

(
min
t∈J1,T K NAVt ≥ 0

)
≥ η

where NAVt denotes the time-t value of the NAV and η is a given threshold in ]0, 1[. The insurer
needs to simulate its balance sheet on multiple dates up to a given time horizon. The Net Asset
Value is defined in (1.3) as being the difference between market value of the assets and the Best
Estimate. The time-t computation of the Net Asset Value requires thus to compute the time-t
market value of the assets and the time-t value of the BE:

BEt = EP⊗Q

∑
s≥t

D(t, s)CFs
∣∣Ft
 .

The projection of the BE in the future is a complex task. Recall that market value of assets
is either directly taken from financial market or derived using mathematical models. For both
approach, the market value of the balance sheet thus depends on economic conditions: directly
in the first case and through the calibration procedure in the second one. Furthermore, the
BE is a function of the interest rates term structure at date of evaluation. Computing value
of BE at time t ≥ 1 requires thus prior simulations of economic market conditions at this
date. Those primary simulations should be realistic and consistent with historic trends: they
are performed under the Real-World measure (sometimes also called Historical measure, even
though they do not rigorously coincide). Once «historical» scenarios have been generated, the
financial valuation of the balance sheet can be performed for each state of the world thanks to
Risk-Neutral models. These are calibrated on primary paths so that calibration is repeatedly
executed. Hence the need of efficient calibration methods to lower the computational cost of
the whole process. However, this procedure can not be followed to the letter as the number
of scenarios to ensure a satisfactory estimation of the BE through time would be too massive.
In practice, the projection of the ORSA is completed based on proper approximations made
around deterministic projections of the balance sheet. A recent work on the derivation of efficient
projection method through time of the BE based on multi-level Monte-Carlo techniques is made
in [ACA20a].

Note that, theoretically, the methodology presented here for computations in ORSA, to
project the BE over 1 year, is very similar to the one presented above for internal models.
However in practice, computations done for ORSA compliance are very different to that related
to internal models because of the aforementioned necessary approximations.

1.4 Economic scenario generators step by step
1.4.1 Building the regulatory initial yield curve
We have seen in the preceding paragraphs that the interest rates and, in particular, the risk-
free term structure at each valuation date is of importance for the insurance to discount the
future cash-flows. The risk-free yield curve used for Solvency II compliance is published monthly
by the regulator and can be found following: www.eiopa.europa.eu/tools-and-data/risk-
free-interest-rate-term-structures_en. We now discuss how this risk-free curve is built.
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The risk-free curve is built from instruments quoted on markets that carry various types of
market risks (credit, liquidity, etc.). To (ideally) obtain a risk-free curve adapted to insurance
specificities, some adjustments should be performed on these market quantities. Before detailing
those adjustments, we first discuss what kind of instruments are allowed to be extracted to build
the regulatory curve in Solvency II.

1.4.1.1 Choice of the market yield curve

Ideally, those rates should:

1. not carry credit risk;
2. be realistic, meaning that one can actually earn this rate using a «common» investment

strategy and without taking tremendous risks;
3. be determined in a reliable and robust way –in particular, the methodology to obtain the

rates has to be transparent, justified and permanent over time;
4. be quoted on Deep, Liquid and Transparent (DLT) markets –more details below;
5. be free of any technical bias. Examples of such bias are given by the International Actuarial

Association (IAA) in p. 46 of [Mea09]. Distortions of market prices that can arise at some
particular dates (for instance at the end of the year, some unusual market movements can
be observed due to upcoming end of the financial year) or due to political decisions are
mentioned. Indeed government bond prices can be affected by governments decisions to
issue govies or to promulgate legislation that enhance national financial institutions to
buy national governments bonds.

This leads to consider largest market rates: swaps or bonds market (as specified in Article
44 of [Reg14]). However swap rates bear credit risk that should be suppressed to fulfil the
first aforementioned requirement; conversely, governments bonds (also named govies) can suffer
from technical bias as discussed above. In the Euro zone, there exists no institutional bond5

and it is swap rate6 whose floating leg is the 6-month EURIBOR which is chosen as basic
instrument to derive the relevant risk-free curve. EURIBOR is the rate at which banks in the
Euro zone grant loans between themselves (IBOR) for a given duration. This duration for the
most exchanged rates goes from 1 day (1D) to 1 year (1Y): we will denote EURIBOR-6M the
6-month EURIBOR. The extracted curve is composed of a finite number of points associated
to different maturities.

Fourth requirement needs the selected rates to be traded on DLT markets. A market is said
to be Deep, Liquid and Transparent or to pass the DLT assessment if the market participants
(i) can trade a substantial notional without significantly impacting the quoted prices, (ii) have
immediate access to information on quoted prices and ongoing transactions and (iii) the two
previous conditions are permanent. The chosen market curve should be analysed from this
point of view: do all the maturities in this curve satisfy the DLT assessment? The criterion set
by the regulator for a market to be considered as DLT in the Euro zone is the following: at
least 10 daily trades per month and 50 000 000 EUR of notional daily traded per month (see
[Tec19]). The last DLT revision was performed on end of the year 2020 and the results were
the following for the Euro zone: maturities from 1Y to 12Y are all considered as DLT as well
as 15Y and 20Y (see [Tec]).

5Sometimes anticipated to be named «Eurobond».
6See dedicated Section 1.5.1.4 for a precise definition of swap rates.
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1.4.1.2 The Credit Risk Adjustment

The basic risk-free interest rate curve is derived from quoted swap rates: consequently, they
carry credit risk and thus do not fulfil the first requirement. The Credit Risk Adjustment (CRA)
aims at removing the credit risk from the yield curve. CRA is a time-independent coefficient
defined to be one half of the average spread over one year between the floating leg of the chosen
quoted swaps and the Overnight Indexed Swap (OIS) of the same tenor. For instance, the risk-
free initial term structure for Swiss is derived using swaps whose floating leg refer to the six
month IBOR based on the Swiss franc (CHF). Consequently, the 6-month Swiss franc OIS rate
is used to compute the CRA. There is an exception to this rule: for the Euro zone, the floating
leg of the basic swap rate relates to the EURIBOR-6M, as discussed in the previous paragraph
but the CRA is computed using is the spread between the 3-month EURIBOR (EURIBOR-3M)
and the Euro OIS rate –named EONIA for Euro OverNight Index Average. OIS rates are IBOR
with maturity 1D: it is the rate at which banks grant loans for 1 day between themselves. Those
are the rates with the shortest maturity that can be found on markets; consequently, they are
generally assumed to be free of credit risk7. Furthermore, the CRA is imposed to lie in between
10 basis points (bps ; 1bp = 0.01%) and 35 bps. It is applied as a parallel downward shift on
all the considered market swap curve. It is computed once and for all, there is no schedule for
periodic update. The value of the CRA currently (legislation in effect since January 1st , 2016)
prevailing in the Euro zone is of 10bps = 0.1%.
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Figure 1.3: Eonia rates between 01/02/2008 and 12/31/2020. Sources: www.emmi-benchmarks.
eu.

In formulas, if (sMkt
tn )n=1,...,N denotes the extracted swap rates, the CRA is uniformly applied

7This is not rigorously true: every transaction is submitted to credit risk however the shortness of the maturity
leads to neglect the credit risk.
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Figure 1.4: 6-month (orange) and 3-month (black) Euribor rates between 01/02/2008 and
12/31/2020. Source: www.emmi-benchmarks.eu.

to obtain the new term-structure (stn)n=1,...,N that will be used in the following:

sCRA
tn = sMkt

tn − CRA, n = 1, . . . , N. (1.7)

1.4.1.3 The Volatility Adjustment

Once the credit risk is removed, Solvency II aims at removing the other types of risks carried
by the market rates. Market quantities (rates or prices) result from continuous rebalancing
of portfolios of financial industries, in particular market participants operating on swap rates
derivatives. However, those financial industries and participants are exposed to the liquidity
risk. To illustrate how liquidity risk can arise, let us consider a market participant P who wants
to sell some of its asset(s). In some cases, market players can consider that the assets proposed
by P are worthless. Then P may not find a counterpart he could deal with8. Furthermore, he
may have other engagements with other counterpart(s) and may not have enough liquidity to
honour them as long as he has not sell the mentioned assets.
Under Solvency II, it is considered that insurers are not fully exposed to this risk since they
keep their assets up to their maturing dates (if they are not compelled to sell it prematurely to
honour their commitments). Insurance policies engage insurers on several years: to respect their
commitments towards the policyholders, companies will invest in financial assets and hold them
up to the expiry of the contract. By introducing the Volatility Adjustment (VA), European
legislator aims at adjusting the market yield curve so that liquidity risk is suppressed. The
VA is still discussed as it is not applied by all insurance legislators (e.g., the Swiss regulator,
FINMA, does not take into account this adjustment). Indeed, some events can force insurers to
sell their assets to meet their short-term commitments despite mean- and long-term liabilities.

8This does not necessarily means that the asset price is close to zero: such event occurs
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For instance, if an insurer promises to a policyholder a return rate of 2.9% over 10 years and
if he can buy and keep a bond paying a coupon rate of 3% over 10 years, then the insurer can
hedge himself and earn the spread. This is the ideal situation that is barely met in practice
since most of insurance policies comprise a buyout clause meaning that the life duration of
insurance contract is unknown. During a crisis, an insurer can thus be led to sell its 3%-paying
bonds. Optionality embedded in issued contracts are generally such that companies can not
perfectly hedge their positions at the date when contracts are issued: this is why some argue
that insurers actually are exposed to liquidity risk.

In the remaining of this section dedicated to the computation of the VA, risk-free rates will
refer to the rates from which the CRA has been removed. The VA is computed (i) at currency
area level (e.g., Euro zone) and (ii) and a national level. For each point of view, a reference
portfolio representing the insurance/reinsurance market of the considered economic area (cur-
rency zone or country) is used. The reference portfolios are composed of govies (bonds issued
by countries) and corporate bonds (corporates, loans, securities, etc.). The spread between the
return rate of the assets composing the reference portfolio and the risk-free rate can be decom-
posed into two components: the credit risk (default risk) and an illiquidity premium. The latter
defines the VA. In other words, the VA includes a spread component, which is the difference
between return rate of the reference portfolio and the risk-free rate and a Risk Correction –also
named fundamental spread– that accounts for the credit/downgrade risk part carried by the
spread component.

VA computation
VA computation relies on representative portfolios at national and currency levels. They provide
a global overview of the composition of the portfolios of insurers (i) located in a given country
(and thus submitted to a common national legislation) and (ii) dealing with the same currency.
The composition of these portfolios is published9 by the regulator and is based on data gathered
on insurance markets via regulatory reporting (that is the subject of the third pillar of the
Solvency 2 regulation). Those portfolios are split into two parts: bonds (govies and corporates)
and other types of financial assets. We provide in Table 1.1 the composition in bonds of
some representative portfolios at national and currencies levels. It should be understood in the
following sense: the representative part of portfolios of insurers dealing with the Great Britain
Pound that is related to bonds is composed of 1% of French bonds, 1% of German bonds and
98% of British bonds; that of insurers located in Hungary comprises 1% of Bulgarian bonds,
1% of Italian and 98% of Hungarian bonds.

Representative portfolio accounting for the currency area (resp. country) of interest is
composed of a part P gov,crrncy (resp. P gov,cntry) of govies and a part P corp,crrncy (resp. P corp,cntry)
of corporate bonds/loans. For x ∈ {gov, corp} and y ∈ {crrncy, cntry}, spread associated to
P x,y, denoted Sx,y, is defined as the difference between two distinct Internal Effective Rates
(IER) –see below for more explanations of the IERs and their computations:

Sx,y = IERPx,y−IERrisk-free,

where IERPx,y stands for interest rate that can be earned from cash-flows in the reference
portfolio P x,y and IERrisk-free is the risk-free rate associated to the same portfolio. The Risk
Correction (RC) of P x,y is computed as

RCx,y = IERPx,y−IERcorrected
9www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures-0_en.
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Currency National
EUR 4% Austria, 9% Belgium, 22% Italy, France 3% Austria, 5% Belgium,

1% Finland, 32% France, 9% Spain, 72% France, 3% Germany,
14% Germany, 2% Ireland, 1% Poland, 1% Ireland, 7% Italy,

1% Luxembourg, 3% Netherlands, 1% Netherlands, 1% Portugal,
1% Portugal, 1% Slovakia. 6% Spain, 1% US.

GBP 1% France, 1% Germany, UK 1% Belgium, 3% France,
98% UK. 4% Germany, 1% Netherlands,

77% UK, 10% US, 1% Japan,
1% Australia, 2% Canada.

HUF 100% Hungary. Hungary 1% Bulgaria, 98% Hungary,
1% Italy.

Table 1.1: Weights of the classes of assets composing the reference portfolios.

where IERcorrected is the corrected interest rate generated by the cash-flows of P x,y. Computa-
tion of the two VA components is done as follows: for y ∈ {crrncy, cntry}

VAy = 0.65× (Sy −RCy), (1.8)

with  Sy = wgov
y max

(
Sgov,y, 0

)
+ wcorp

y max
(
Scorp,y, 0

)
,

RCy = wgov
y max

(
RCgov,y, 0

)
+ wcorp

y max
(
RCcorp,y, 0

)
,

where wgov
y (resp. wcorp

y ) denotes the portion of govies (resp. corporate bonds) in the considered
reference portfolio. The coefficient 65% in the definition of the VA (1.8) is statutory (see
[Tec19]). Representative portfolios are mainly composed of bonds but not uniquely as they
comprise other types of financial assets which explains that wgov

y + wcorp
y < 1. These weights

are published by the regulator; their values on December 2020 are given in Table 1.2 to fix the
ideas.

Euro zone (Currency) France (Country)
wgov

crrncy 31.6% wgov
cntry 29.1%

wcorp
crrncy 40.5% wcorp

cntry 43.2%

Table 1.2: Weights of the classes of assets composing the reference portfolios.

Finally, the total VA coefficient is given by:

VA =

{
0.65

(
SRCcrrncy + max(SRCcntry − 2SRCcrrncy, 0)

)
, if SRCcrrncy ≥ 1%

0.65SRCcrncy, if SRCcrrncy < 1%,

where SRCy = Sy −RCy for y ∈ {crrncy, cntry}.
We now describe how the Internal Effective Rates are computed. We assume that the

cashflows delivered by the bonds can be approximated by a single cash-flow. This assumption
is acceptable when return rates of each bond are relatively small and flat as justified thereafter.

Namely, we assume that having one bond of duration TD delivering K cash-flows (ck)k=1,...,K

is equivalent to have one Zero-Coupon (ZC) bond of maturity TD whose final payment is∑
k≤K ck. On the one hand, consider the spot value of a bond delivering (ck)k=1,...,K cash-flows

on dates (tk)k=1,...,K discounted with the rate r (time-independent since it has been assumed to
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be flat) which satisfies, by definition,

V0 =
∑
k≤K

ck
(1 + r)tk

.

On the other hand, consider the spot value of the ZC bond delivering
∑

k≤K ck at time TD =∑
k≤K tk

ck

(1+r)tk∑
j≤K

cj

(1+r)
tj

–that is the duration of the above considered bond– which is given by

Ṽ0 =

K∑
k=1

ck
(1 + r)TD

.

The difference of value writes thus as V0−Ṽ0 =
∑K

k=1 ck

(
1

(1+r)tk
− 1

(1+r)TD

)
≈ r

∑K
k=1 ck (TD − tk).

Assuming rates are small (r << 1), e−rtk ≈ 1 and the formula giving the duration yields that

V0 − Ṽ0 ≈ 0.

The reference portfolio composed of multiple bonds of different maturities is thus assimilated to
a portfolio composed of ZC bonds each delivering one unique cash-flow at different dates. Denote
by V pf

0 the value of the reference portfolio (either composed of govies or corporate bonds) and
by ωn = P (0, Tn)/V

pf
0 the portion of Tn-ZC bonds in the equivalent portfolio. The associated

cash-flow at time Tn is equal to its proportion in the portfolio capitalized with the return rates
associated with the bonds composing the reference portfolio: denote by CF1, . . . ,CFn the cash-
flows delivered on dates T1, . . . , Tn capitalized with rates (yi)i=1,...,n so that CFi = ωi(1 + yi)

ti ,
for i = 1, . . . , n. The IER of the equivalent portfolio is defined to be the unique rate satisfying

V pf
0 =

n∑
i=1

CFi
(1 + IER)ti

.

By inverting this relationship, one is able to derive the value of the different IERs. They depend
on the way to capitalize the cash-flows:

i. if the i-th cash-flow is valued using the return rate of the Ti-bond, i.e. yi = ri, the output
IER is that of the reference portfolio: IERPx,y is obtained;

ii. if the i-th cash-flow is valued using the risk-free rate, i.e. yi ≡ r, the IERrisk-free is obtained;
iii. if the i-th cash-flow is valued using the return rate of the Ti-bond corrected of the de-

fault/downgrade rate, i.e. yi = rci , the IERCorrected is obtained; to subtract the default/-
downgrade risk in the return rate, the following procedure is applied:

• if dealing with govies portfolio, the corrected rate is rci = ri−0.30×max(LTASgov, 0)
where LTASgov is the Long-Term Average Spread over the risk-free rate of assets of
the same duration, same credit quality and asset class;

• if dealing with corporate portfolio, the corrected rate is rci = ri − max(0.35 ×
LTAScorp,PDi + CoDi) where LTAScorp is the Long-Term Average Spread over the
risk-free rate of assets of the same duration, same credit quality and asset class;
PDi is the credit spread corresponding to the probability of default on the i-th risky
assets and CoDi is the cost of downgrade that is the expected loss subsequent to a
downgrading of the i-th risky asset (when considering a buy and replace strategy).

The proportions 30% and 35% applied to the LTA spread are fixed by the regulator.
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We conclude this section on the VA computation by saying a word on the computation of the
LTA spread, PD and CoD appearing in previous third bullet point.

• The Long Term Average spread is an arithmetic mean of daily quoted spreads over the
last 30 years. When dealing with govies, the missing data are replaced by the flat average
obtained with available data; when dealing with corporate bonds, a linear interpolation
(with step time equals a 10th of a year) is performed between available maturities and
extrapolated flat before the first available maturity.

• PDi and CoDi are rates that should be added to risk-free rate to take into account fact
that corporate bonds can either default or downgrade (upgrades or stays are not considered
as risks). They are determined using historical one-year transition matrix and risk-free
term structure. They are defined to be implicit rate so that the discount factor over the
whole period of time projection (typically, 30 years) equals the risk-free discount factor
over the same period from which the successive discounted costs of downgrade/default has
been subtracted. These costs are defined to be the difference between the market values
of the risky bonds before and after the downgrade/default event while considering a buy
and replace strategy. Both probabilities of defaults and cost of downgrades are published
by the regulator for each class of assets.

The value of VA in December 2020 is of 7 bps. Previously, we have discussed how to obtain
the curve composed of swap rates integrating sCRA –see (1.7). Assume for a moment we have a
continuous swap rates curve. Those are translated into ZC rates, denoted (rCRA

t )t≤T , to which
the VA is applied as a parallel upward shift:

rVA
t = rCRA

t + VA, t ≤ T.

For some regulatory computations (notably, the Risk-Margin), a curve without VA is also
supplied by the regulator:

rt = rCRA
t , t ≤ T.

The interested reader can refer to the EIOPA’s documentation [Tec19]. The following section
is dedicated to the derivation of a continuous ZC rates curve.

1.4.1.4 Interpolation/extrapolation of market data

The purpose of this section is to describe how discrete curves are transformed into continuous
term structures through an interpolation/extrapolation method. This interpolation/extrapo-
lation process should be performed consistently with the regulatory constraints listed in the
beginning of Section 1.4.1.1. The term structure obtained as output of this process is the
regulatory curve. In practice, EIOPA publishes10 on a monthly basis the regulatory curve.

Ultimate Forward Rate (UFR) and Last Liquid Point (LLP)
Maturities encountered in insurance policies are much longer than those implied in inter banks
contracts: the extracted market curve has to be extrapolated to very long-term maturities that
are not quoted on the market (usually, up to 120 or 150 years). In addition, most of the used
interest rates models generates continuous yield curves. To consolidate calibration of the interest
rates model, a replication of the initial term structure using a high number of maturities would
be helpful; hence the necessity of interpolating market curve.

The interpolation/extrapolation process requires a prior assessment of firstly a point (i.e. a
maturity) disassociating the interpolation from the extrapolation and secondly a value toward

10Also following www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures_en.
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which the extrapolated one-year forward curve should converge. These quantities are respectively
named the Last Liquid Point (LLP) and the Ultimate Forward Rate (UFR). We stress that the
UFR concerns the asymptotic value of one-year forward rates whereas extracted market data
are a priori not forward rates. The UFR is thus applied to forward rates deduced from market
data and not directly on them.

Legislation defines a precise criterion for the determination of the LLP which is the largest
maturity among those satisfying the DLT assessment and beyond which the market can no
longer be considered as DLT. It is the so-called residual volume criterion and states that the
cumulated volume of bonds with maturities greater than or equal to the relevant maturity should
be smaller than a given portion of the total volume of traded bonds. The legislation currently
sets this threshold to 6% (see [Tec19]). A similar residual volume criterion is applied to traded
swaps for the Euro zone only and results in a LLP set to 20 years. For other currencies, the
LLP is taken being equal to the last quoted maturity satisfying the DLT assessment.

The Ultimate Forward Rate plays a crucial role in the legislation as it determines the level
of the second part of the regulatory curve. The UFR is defined as being the sum of two terms:
the expected real rates that is the same for all currencies, and the expected inflation rate based
on the inflation target of central banks and is thus currency-dependent. First term is defined as
a basic average of past real rates observed since 1961 across Belgium, Germany, France, Italy,
Netherlands, UK and US. The second term takes values in {1%, 2%, 3%, 4%}. The inflation
target for the Euro zone is set to 2%11 by the European Central Bank (ECB). Written in
the end of 2000 decade, Solvency II legislation initially set the UFR equals to 4.20% for Euro
(also valid for British pound and US dollar whereas a value of 3.2% is set for Japanese yen).
Through the 2010 decade, interest rates markets have considerably vary (downward) and UFR
value has been repeatedly updated: in 2017, new theoretical UFR is obtained to be equal to
3.65%; in 2020, new assessment provides the value of 3.55%. However, following the legislation
requirement, annual change in UFR are limited to 15 bps: on January 1st 2020, the effective
UFR value was of 3.75%; as of January 1st 2021, the effective UFR value is of 3.60%.

Before moving onto the details of the extrapolation method, two quantities still must be cho-
sen: the Convergence Point (CP) and the tolerance threshold. Namely, the convergence point
is the date at which the UFR is reached within the prescribed tolerance threshold. The conver-
gence point is set to max(LLP+40, 60) years, so that the convergence period is max(60−LLP, 40)
and the tolerance is of 1 bp. The parameter monitoring the convergence speed in the extrapo-
lation method (denoted by α in the regulator documentation) is chosen to be the lowest value
allowing to reach the tolerance level of the UFR by the convergence point.

Extrapolation/interpolation: the Smith-Wilson approach
The Smith-Wilson methodology enables to interpolate a given discrete curve while taking into
account some long-term constraints in the extrapolation part. In particular, it allows to ensure
a convergence to a given target. In addition, the smoothness of the obtained curve can be
parametrized. Definition (1.27) of the instantaneous forward rate at time 0 of maturity u ≥ 0
and denoted f(0, u) directly implies that spot ZC price of maturity T ≥ 0 can be written as

P (0, T ) = exp
(
−
∫ T

0
f(0, u)du

)
:= P (T ).

11See www.ecb.europa.eu/mopo/html/index.en.html.
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We define the yield intensity function T 7→ y(T ) as being the flat rate over the period [0, T ]
giving the same value to the spot bond:

P (0, T ) = exp (−Ty(T ))⇐⇒ y(T ) =
1

T

∫ T

0
f(0, u)du.

The Smith-Wilson approach, as described in [SW01] and adapted to the present context, pro-
poses a model for the discount factor function T 7→ P (0, T ) from which the yield intensity
function and forward rates are deduced. To describe the Smith-Wilson method in a more gen-
eral context, let us denote by T 7→ P (T ) the present value of a basket composed of N fixed
income instruments whose values are known initially; so is the value of the basket. Smith and
Wilson proposed to model the present value of the basket as

P (T ) = e−ωT +
N∑
j=1

ζj

(
J∑
k=1

cj,kWα(T, uk)

)
, T ≥ 0, (1.9)

where the (uj)j=1,...,N are the tenors of the N involved financial instruments, cj,k is k-th cashflow
of the j-th financial instrument, ω = log(1 + UFR) is such that the first term in the preceding
equation corresponds to a simply discounting with the UFR, (u, v) 7→ Wα(u, v) is the Wilson
function defined by W (u, v) = e−ω(u+v)

(
αmin(u, v)−exp

(
−αmax(u, v)

)
×sinh

(
αmin(u, v)

))
,

α is the parameter monitoring the convergence speed as discussed in the end of the preceding
paragraph and (ζj)j=1,...,N are coefficients to be determined during calibration procedure. The
Wilson function is thus at the core of the method: we illustrate it in Figure 1.5 for different
values of α. Observe that it is a symmetric function: Wα(u, v) = Wα(v, u). As mentioned, the
parameter α controls the speed of convergence of the interpolated/extrapolated curve that is
built. The implicit assumption is that the Wilson function is a converging function, which is
also observed (and could be theoretically proved).
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Figure 1.5: Wilson function v 7→Wα(u, v) for different values of α where u ≡ 5 has been set.
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Let us now move onto the details of the Smith-Wilson method. Let us denote by ζ =
t(ζ1, . . . , ζN ) the parameter vector and u = t(u1, . . . , uN ) the vector composed of the tenors of
selected interest rates derivatives (where tx represents the transpose vector of x). Let C be
the N × J matrix of the cash-flows delivered by the considered financial instruments: the j-th
row of this matrix is composed of the N cash-flows associated to the j-th financial instrument.
Let d = t(e−ωu1 , . . . , e−ωuN ) and defined by D⋆ the unique diagonal matrix of size N such that
D⋆ ·1 = d where 1 is the vector whose components are all equal to 1. Let us denote by pMkt =
t(p1, . . . , pN ) the vector of observed market prices of the N financial instruments composing the
basket and pMod = t(P (u1), . . . , P (uN )) the vector composed of model prices coming from (1.9).
The purpose of the calibration is to select the set of parameters ζ ensuring that pMkt and pMod

are close enough. We will denote by Wα(v, u) = t
(
Wα(v, u1), . . . ,Wα(v, uN )

)
and by Wα =

Wα(u, u) the matrix of coefficients Wα(u, u)i,j = Wα(ui, uj). We define the matrix Hα as
the representation matrix of the function Hα:

(
Hα

)
i,j

= αmin(ui, uj)− exp
(
−αmax(ui, uj)

)
×

sinh
(
αmin(ui, uj)

)
=: Hα(ui, uj); observe that Wα = D⋆HαD

⋆.
Rewriting the parametric shape (1.9) with the introduced quantities provides

P (t) = e−ωt +Wα(t,u)Cζ = e−ωt
(
1 +Hα(t,u)D

⋆Cζ
)
. (1.10)

This relationship has to hold true for all t ∈ u1, . . . , uN so that we can write in matrix form:

pMod
α = d+WαCζ. (1.11)

Furthermore, the market value of a fixed income instruments delivering cash payments equals
the sum of its discounted cash-flows. Thus the i-th market price pMkt

i should be such that

pMkt
i =

J∑
j=1

ci,jP (uj),

where P is the theoretical parametrized present value shape of Smith-Wilson (1.9). It can be
written in matrix form as tCpMod

α = pMkt. With (1.11), it yields tCpMod
α = tCd+ tCWαCζ =

tCd+ tQHαQζ where we have introduced Q = D⋆C. Since we have imposed tCpMod
α = pMkt,

we can identify the optimal parameter vector as

ζ∗α =
(
tQHαQ

)−1
(pMkt − tCd).

The optimal ζ∗α depends on the value of the convergence speed parameter α. So far, its value
has not been determined: α is considered as a meta-parameter of the model. To calibrate it
we plug the optimal vector ζ∗α into (1.10) for any time t > 0. The instantaneous forward rate
implied by the optimal vector of parameters writes

f(0, t) = −∂ logP (T )
∂T

∣∣T=t = ω − Gα(t,u)Qζ∗α
1 +Hα(t,u)Qζ∗α

,

where Gα is the matrix representation of the function Gα defined as the derivative of Hα:

Gα(u, v) =
dHα(u, v)

dv =

{
α
(
1− e−αu cosh(αv)

)
, v ≤ u,

αe−αv sinh(αu), u ≤ v.

Following the same notation as above we have, for v ≥ max(u1, . . . , uN ), Hα(u, v) = αu−e−αv sinh(αu)
and Gα(u, v) = αe−αv sinh(αu) where the hyperbolic sinus function is applied component-wise
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to the vector αu. It follows that f(0, t) = ω + α
1−κeαt where κ = 1+αtuQζ∗

α
sinh(αtu)Qζ∗

α
only depends on

α and ω. The convergence at point U ≥ max(u1, . . . , uN ) can be measured by the function gap
as

g(U) := |f(0, U)− ω| = α

|1− κeαU |
.

For the asymptotic value of the extrapolated shape to be within 1 bp interval around the target
as of the convergence point CP, α should be such that

g(CP) ≤ 0.0001,

where CP is the convergence point. The determination problem for α can be tricky as the
behvaior of gap function g depends on the inputs, as observed in ([LL16]). Indeed, |1−κeαU | =
0⇔ 1 +

(
αtu− e−αU sinh(αtu)

)
Qζ∗α = 0. Furthermore, (1.10) can alternatively be written as

P (U) = e−ωU
(
1 + (αtu− e−αU sinh(αtu))Qζ∗α

)
.

Thus the gap function has singularities if and only if model prices reach zero which can happen
depending on the input prices.

In practice, to determine α one solves the following minimization problem:

minα
under constraints (i) α ≥ 0.05 (ii) g(CP) ≤ K,

for some upper boundary K = 0.0001 set in the legislation.
Let us now sum up how the VA is integrated in practice for building the Euro curve (this

approach may be different for other currencies): the discrete curve (rtn)n=1,...,N (where tN is the
maturity of the LLP –see preceding paragraph for details on the Last Liquid Point) integrating
the CRA coefficient (see Section 1.4.1.2), is interpolated/extrapolated to get a smooth curve of
ZC rates (rt)t≥0 without VA applying the Smith-Wilson method. On this obtained curve, the
VA is applied as a parallel upward shift on maturities before that of the LLP (i.e. tN ) to get

rVA
t = rt + VA, t ≤ tN ,

and the Smith-Wilson extrapolation method is applied to that upward shifted curve to get
(rVA
t )t≥0 also converging to the UFR. While the VA is a non time-dependent coefficient, a

continuous term structure of it is sometimes defined as the spread between these two curves:

VAt = rVA
t −rt, t ≤ 0.

Consequently, VAt = VA for t ≤ tN and limt→+∞ VAt = 0 since both curve are extrapolated
towards the UFR.

In Figure 1.6, regulatory curves with and without VA on December 2020 are plotted: the
small value of the VA is such that the two curves almost coincides. In Figure 1.6, the market
curve is compared to the EIOPA one (without VA) for maturities between 1 to 50. The impact
of the UFR is significant beyond 20 years. In particular, the market curve remains under 0.0%
for all term structure. Solvency II aims at better estimating the risk profile of undertaking by
taking into account the economic environment. However in view of Figure 1.7, the question of
the appropriateness of the financial value of the balance sheet derived using regulatory curve
rises.

Finally, it is important mentioning that discussions are currently led by EIOPA to update

41



0 50 100 150

0
1

2
3

R
at

es
 in

 %

No VA

With VA

Figure 1.6: Regulatory risk-free rates curves as of December 2020. UFR = 3.60%, convergence
parameter in Smith-Wilson method α = 0.136091, LLP = 20, convergence period is 40 years,
VA = 7 bps and CRA = 10 bps.

methodologies notably regarding the setting of the VA and the interpolation/extrapolation
method. Regarding the definition of the VA issues have been identified in the way the representa-
tive portfolios are aggregated. Suggestions have been brought in order to rectify it and ”to reflect
undertakings’ specificities in the VA”. Several issues are also discussed regarding the interpola-
tion/extrapolation method, notably the underestimation of technical provisions it induces and
an alternative one has been proposed. Details can be found following www.eiopa.europa.eu/
sites/default/files/solvency_ii/eiopa-bos-20-749-opinion-2020-review-solvency-ii.
pdf and
www.eiopa.europa.eu/content/consultation-paper-opinion-2020-review-of-solvency-
ii_en.

Remark 1. To overcome the illiquidity of large maturities rates derivatives and thus the lack of
information provided by financial markets, building of yield curve comprising very large (even
infinite) maturities has been proposed in [EKMH14] based on Ramsey rule.

1.4.2 Choosing the models
The choice of the models to be integrated in ESGs depend on multiple criterion. First, the
insurers select models only for the risks that are aimed at being modelled; since interest rates
and equity risks are major for the companies, they are systematically modelled. Regarding
other kind of risks, there is no imperative for the companies to model all of them (real interest
rates, real estates, inflation, credit and foreign exchange). Secondly, for the considered risks,
the choice of the model depends on the (i) stylized facts observed on historical series that are
wanted to be reproduced by the model in Real-World ESGs or (ii) the market data to replicate
for Risk-Neutral ESGs.
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Figure 1.7: Regulatory (without VA) and market term structure (composed of ZC rates) as of
December 31st, 2020. Maturities 31 to 39 and 41 to 49 are not quoted and have been built using
a linear interpolation method.

We give some examples related to the first case: interest rates model have lately been
required to be able to generate negative rates; they are asked to generate non-perfect correlation
between rates of different maturities; models for rates or indices can be asked to reproduce
empirical standard deviations. In a forward-looking approach, some models may be designed
in order to reach preassigned targets: for instance, real rates models may be thought to reach
expected inflation levels. Moreover, the ease of use, the efficiency of the calibration procedure,
the work necessary for updating the model or the interpretability of the model parameters are
the main concerns driving the choice of the undertakings for their models.

In second case, the accuracy with which the market data are replicated, the computational
time dedicated to the calibration process are central when choosing Risk-Neutral models. For
instance, some models are not able to replicate Away-From-the-Money (AFM) derivatives prices.
The efficiency of the calibration process mainly relies on the ability to derive closed-form ex-
pressions of prices of derivatives in the considered model. The ease of use, the efficiency of the
calibration procedure, the work necessary for updating the model or the interpretability of the
model parameters are still of importance in Risk-Neutral universe.

1.4.3 Calibration on market data
We focus again on nominal interest rates models. In addition to the initial term structure,
one needs prices of derivatives to calibrate the interest rates models. We now discuss how
these instruments can be chosen by insurers in practice though the rigorous justification of the
selected products is not always possible in view of the variety of the composition of insurers’
portfolios.
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1.4.3.1 Calibration instruments

We start by discussing what kind of interest rates derivatives should be considered to calibrate
the associated models.

Types of financial derivatives
The final choice of the calibration instruments is left to the discretion of the undertaking. It
turns out that a wide majority of insurers (if not all) chose to replicate swaptions prices. Several
reasons justify this choice:

• swaptions are simple and liquid options on interest rates;
• swaption market offers a wide range of instruments (long maturities, various strikes): there

are more quoted swaptions than quoted caps/floors;
• swaptions are deemed able to capture the joint distribution of forward rates (in particu-

lar, the terminal correlation between them should be accessible, as discussed in [BM07],
Section 6.6).

This last point is motivated by fact that companies (generally) invest in bonds of different
maturities when issuing one insurance contract. Insurers aims thus at capturing the correlation
between forward rates of distinct expiries.

In practice, calibration procedures are generally based on volatilities of ATM swaptions
giving the right to enter a swap whose fixed leg is EURIBOR-6M (semi-annual payments) of
maturities M ∈ {1, . . . , 10, 15, 20, 25, 30}, tenors T ∈ {1, . . . , 10, 15, 20, 25, 30} and OTM swap-
tions of same maturities, tenor T = 10 and relative strikes k ∈ ±{0.25%, 0.5%, 1%, 1.5%, 2%}.

Choice of maturities and strikes
Ideally, insurers choose the maturities/tenors and strikes to be replicated consistently with the
characteristics of their liabilities (duration, optionality levels, ...). However, contrary to financial
industries, there is no clear hedging strategy for insurers. First because insurers are exposed
to non hedgeable risks, as previously discussed. Secondly, one issue concerns the nature of the
involved products: insurance policies –found in the liability side– are of different nature from
that of financial derivatives that are selected to calibrate the models. An analogy between
insurance policies and financial instruments can be made to motivate the selection. We retake
the example found in [BC16] of a Euro contract with a minimum guaranteed rate and a profit
sharing clause. Let us denote by rg the continuously compounded minimum guaranteed rate, by
rshare the profit sharing rate, by rfees the rate associated to fees, rd is the effectively delivered
rate to the policyholder, r is the risk-free short rate (with or without VA, no matter here) and
MP(t) is the mathematical provision of the policyholder: it is the time-t capitalization of the
contract valued with the delivered rate. To ensure the delivery of coupons to the policyholder,
the insurer invests policyholder’s deposit in a financial asset whose time-t value is denoted by
A(t) associated with a return rate rret(t) = ln

( A(t)
A(t−1)

)
. The successive return rates are assumed

to be independent. The delivered rate is the maximum rate between the guaranteed rate and
the net return rate of the asset: erd(t) − 1 = max

(
erg − 1, rshare(e

rret(t) − 1) − (erfees − 1)
)

.
Differently written, we obtain that

erd(t) = erg + rshare max
(
erret(t) − rshare + erfees + erg − 2

rshare
, 0
)
.
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By definition, the mathematical provision satisfies MP(t) = MP(0)
∏
i:ti≤t e

rd(ti) so that the
time-t market value of the liability associated to the considered contract writes:

Lt = EQ
[
e−

∫ t
0 rvdvMP(t)

]
= MP(0)EQ

e− ∫ t
0 rvdv

∏
i:ti≤t

{
erg + rshare max

(
erret(ti) − rshare + erfees + erg − 2

PB
, 0
)}

= MP(0)
∏
i:ti≤t

EQ
[
erg−

∫ t
0 rvdv + rsharee

−
∫ t
0 rsds max

(
erret(ti) − rshare + erfees + erg − 2

rshare
, 0
)]

= MP(0)
∏
i:ti≤t

{
EQ
[
erg−

∫ t
0 rvdv

]
+ rshareCall(ti−1, ti,

rshare + erfees + erg − 2

rshare
)

}
,

where Call(t, s, k) is a call option price at time t of maturity s, of strike k and whose underlying
takes the value erret(s) at maturity date. In that simple case, the insurer is led to replicate call
options of maturities (ti)i that are the dates at which the revaluations of the contract are done.
In practice, it may be not possible to do such an analogy with all insurance contracts issued
by the company and the determination of the considered financial securities is done on expert
judgement. Moreover, though such an analogy is possible, a precise link between optionality of
the assets (that may be similar to optionality of various financial instruments) and derivatives
to be used for calibration is not easy to establish.

Alternative strategy consists in attributing weights to each swaption included in the cali-
bration process: a null weight means that the associated swaption is not considered while other
swaptions could be overweighted to be accurately replicated. We mention two methodologies to
derive the mentioned weights: (i) first method computes the impact of a movement in swaptions
volatilities in actuarial quantities -notably, on the NAV; it amounts to compute the vega of the
NAV; (ii) second one consists in regressing the cash-flows delivered in the ALM model with the
cash-flows delivered by financial instruments and, from regression coefficients, deduce weights
to monitor the cash-flows replication error. Simpler approach that consists in attributing a null
weight to undesired swaptions and a weight equals to 1 to others is also sometimes implemented.

1.4.3.2 Pricing conventions

In the two paragraphs that follow, we pre-empt some notions defined in more detail in Sec-
tion 1.5. In particular, notations introduced further in Sections 1.5.1.4 and 1.5.1.5 are reused
here. We will see in those sections that there exists a unique rate making the value of a swap
contract fair at each time prior to the beginning of the exchanges definind the swap contract: it
is the swap rate. Depending on the value of this swap rate at the maturity of the swaption, its
owner will exercise its option or not. Namely, price of a swaption writes as a call option with
underlying the swap rate. We justify it below: from the discounted payoff of the swaption in
(1.32), we deduce the price of a payer swaption of maturity Tm, tenor Tn−Tm and strike K, at
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time t ≤ Tm as

PS(t) = E∗

[
D(t, Tm)

( n∑
k=m+1

P (Tm, Ti)(Ti − Ti−1) (F (Tm, Ti−1, Ti)−K)
)
+

∣∣∣Ft]

= E∗

[
B(t)

B(Tm)

(
P (Tm, Tm)− P (Tm, Tn)−K

n∑
k=m+1

P (Tm, Ti)(Ti − Ti−1)
)
+

∣∣∣Ft]

⇐⇒ PS(t)

B(t)
= E∗

[
1

B(Tm)
BS(Tm)

(
S(Tm, Tm, Tn)−K

)
+

∣∣∣Ft]

where B represents a risk free asset (see Paragraph 1.5.1.1) and the expectation is defined with
Risk-Neutral measure. It is convenient to work under the probability measure PS often named
forward swap measure following the terminology of [Jam97] and associated to the numéraire

BS(t) =

n∑
k=m+1

P (t, Ti)(Ti − Ti−1) (1.12)

called the annuity of the swap. According to the change of numéraire pricing equation (A.18),
we finally get that

PS(t) = BS(t)× ES
[(
S(Tm, Tm, Tn)−K

)
+

∣∣∣Ft] . (1.13)

On markets, swaptions are quoted in terms of implied volatilities. Swaptions prices can then be
recovered by injecting the extracted implied volatility into a standard pricing formula. There
are two pricing conventions, well known by practitioners: Bachelier and Black formulas we
present in more details.

Bachelier convention
The Bachelier (or normal) pricing formula is based on the famous equation introduced in [Bac00].
The swaption price is obtained by assuming the swap rate follows a normal type dynamics under
the forward swap measure. Namely, for t ≥ 0, the swap rate is assumed to evolve following

dSm,nt = σNm,ndWS
t , (1.14)

where (WS
t )t≥0 is a Brownian motion under PS and where σN

m,n > 0 is the volatility of the swap
rate. Under this dynamics, the swaption price at time 0 writes:

PSBach(0,K, σNm,n) = BS(0)σNm,n
√
Tm

(
ξdϕ(ξd) + φ(ξd)

)
(1.15)

where ξ = 1 in case of a payer swaption (ξ = −1 for receiver), d = (Sm,n0 −K)/(σNm,n
√
Tm), ϕ

is the cumulative distribution function of the standard normal distribution and φ is its density
function (in particular, ϕ′ = φ). The implied volatility parameter σ̂N

m,n (observed on markets)
is defined as the (unique) parameter so that

PSMkt = PSBach(0,K, σ̂N
m,n).

Black convention
The Black pricing formula follows from the well-known Black-Scholes formula introduced in
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different context (essentially for equity modelling, see [Bla76] or [Mar78]). The swaption price
is obtained by assuming the swap rate follows a log-normal type dynamics under the forward
swap measure. Namely, for t ≤ 0, the swap rate is assumed to evolve following

dSm,nt = σLNm,nS
m,n
t dWS

t , (1.16)

where (WS
t )t≥0 is a Brownian motion under PS and where σLN

m,n > 0 is the volatility of the
log-swap rate. Under this dynamics, the swaption price at time 0 writes:

PSBlack(0,K, σLNm,n) = BS(0)
(
Sm,n0 ξϕ(ξd1)−Kξϕ(ξd2)

)
(1.17)

where ξ = 1 in case of a payer swaption (ξ = −1 otherwise), d1 =
(

ln(Sm,n0 /K)+Tm(σ
LN
m,n)

2/2
)
/

(σLNm,n
√
Tm) and d2 = d1 − σLNm,n

√
Tm. The implied volatility parameter σ̂LN

m,n is defined as the
(unique) parameter so that

PSMkt = PSBlack(0,K, σ̂LN
m,n).

The choice between these two conventions is mainly determined by the level of interest rates.
In the current low –possibly negative– rates environment, the use of the Black formula is not
suited. To give some ideas about this point, first place ourselves in case when rates of maturities
between Tm and Tn are negative; it amounts to say that the term-structure T 7→ P (0, T ) is
increasing over [Tm, Tn]. Following formula (1.15), the ATM spot price writes

PSBlack, ATM(0) =
(
P (0, Tm)− P (0, Tn)

)(
2ϕ
(σLNm,n√Tm

2

)
− 1
)

and is thus a negative quantity which is not admissible since we are dealing with deriva-
tives whose payoffs are positive. In case when rates are positive but close to zero, some
instabilities already happen. In that second case, the term structure is almost flat and the
swaption price is close to zero proportionally to the quantity

(
P (0, Tm)−P (0, Tn)

)
. The ratio

PSBlack,ATM (0)/
(
P (0, Tm)−P (0, Tn)

)
is then not necessarily bounded. The implied volatility

for ATM swaptions in Black environment writes

σLNm,n =
2√
Tm

ϕ−1

(
1

2

(
1 +

PSBlack, ATM(0)

P (0, Tm)− P (0, Tn)

))
.

Yet the inverse function ϕ−1 is not defined over the full real lines and its explosion near the
boundaries of its domains explains that Black volatilities may be not quoted for short maturities
when interest rates are low. On the contrary, in the Bachelier framework, one can show that

σNm,n =

√
2π

Tm

PSBlack, ATM(0)

BS(0)

which does not suffer from non-definiteness.

1.4.3.3 Difficulties induced by the regulation

We have discussed how Solvency II requires insurers and reinsurers to replicate market data
through the market consistency criterion. Common pricing models express those market prices
that have to be replicated as functions of implied volatility and market interest rates curve:

Market prices = f(Term-structure, Implied volatilities).
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Nevertheless, legislation also imposes to use the risk-free regulatory term structure of which
we have detailed its derivation in Section 1.4.1. If one wants to replicate market prices, it is
thus necessary to prior adjust the implied volatilities: they are denominated pseudo-volatilities.
Conversely, if one wants to replicate quoted implied volatilities, an adjustment on prices should
be made: we talk of pseudo-prices.

1.4.3.3.1 Regulatory recommendations In paragraph 2 of Article 10 of [Par14] it is
stated that: «As the default valuation method insurance and reinsurance undertakings shall
value assets and liabilities using the quoted market prices in active markets for the same as-
sets or liabilities». Article 22 in paragraph 3 of the same document claims that «(...) where
insurance and reinsurance undertakings use a model to produce projections of future financial
market parameters, it shall comply with all the following requirements: (a) it generates asset
prices that are consistent with asset prices observed in financial markets; (b) it assumes no
arbitrage opportunity (...).». On the basis of the comments made above, in particular about the
impossibility to replicate both payer and receiver swaptions prices, it turns out that using prices
as invariant quantity does not allow to account for the no arbitrage opportunity. Official texts
leave the way open to both volatilities or prices as invariant when talking about «inputs other
than quoted prices that are observable for the asset or liability, including (...) implied volatility
(...)». Indeed, most of financial data provider directly quote implied volatility parameter rather
than prices. Replicating implied volatility during the calibration process instead of the prices
of derivatives seems to be a good way to conciliate the official guidelines.

1.4.3.3.2 Prices invariance and pseudo-volatilities When market prices are replicated,
pseudo-volatilities parameters have to be defined. We illustrate our statements by examining
the case of swaption pricing in a Bachelier framework. Swap rate is a function of ZC bond
prices that are linked to yearly-compounded (Y (0, T ))T≤T ∗ rates, as we will see in relationship
(1.23), through

P (0, T ) =
1

(1 + Y (0, T ))T
.

Annually-compounded rates depend on the short rate process (rt)t≥0 defined in (1.19).
Market swaptions prices are functions of the market curve (rMkt

t )t≥0. They are usually
quoted in terms of relative strikes defined as km,n,K = K−Sm,n0 , where K is the absolute strike
of the considered swaption and Sm,n0 is the spot value of the swap rate. Consequently, relative
strike is function of term-structure since Sm,n0 is depending on spot prices of ZC bonds (see
swap rate definition in (1.29)). Regulatory constraints ask us to replicate market swaptions
prices using the regulatory curve (rReg

t )t≥0 obtained in Section 1.4.1. Denote by σm,n,K the
implied volatility parameter quoted on market for the Tm × Tn swaption of absolute strike K.
The pseudo-volatility parameter σ̂m,n,K is defined to be the parameter satisfying

PSMkt︸ ︷︷ ︸
Market data

= PSBach
(
0, Sm,n,Reg

0 + kReg
m,n,K , σ̂m,n,K , (r

Reg
t )t≥0

)
︸ ︷︷ ︸

Bachelier prices using regulatory yield curve

.

In a classical use, one would input (rMkt
t )t≥0, Sm,n,Mkt

0 , kMkt
m,n,K and the observed implied volatility

σm,n,K in the right hand side above. For ATM derivatives, k = 0 and PSBach
(
0, Sm,n,Mkt

0 +

kMkt
m,n,K , σm,n,K , (r

Mktt)t≥0

)
=

BS,Mkt(0)σm,n,K

√
Tm√

2π
where we recall that BS,Mkt(0) =

∑n−1
j=m∆Tj

PMkt(0, Tj+1) the annuity induced by market curve. Denoting by BS,Reg(0) is the annuity
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induced by regulatory curve, the price invariance yields

σ̂m,n,K =
BS,Mkt(0)

BS,Reg(0)
σm,n,K .

For AFM options same comments apply even though no analytical formulation of the pseudo-
volatilities exist and a numerical procedure is required.

Limitations The well known Call-Put parity (see for instance [Sto69]) writes in present rates
context as a link between payer and receiver swaption prices. In equation, it writes

PS(0)−RS(0) = BS(0)
(
ES
[
(Sm,nTm

−K)+
]
− ES

[
(K − Sm,nTm

)+
])

= BS(0)
(
Sm,n0 −K

) (1.18)

after the price formula (1.13). Recall that both quantities BS(0) and Sm,n0 depend on the initial
term-structure curve. When using the regulatory curve to calibrate the interest rates model, the
previous identity (1.18) becomes then PSReg(0)−RSReg(0) = BS,Reg(0)(Sm,n,Reg

0 −K). However
quoted prices are such that PSMkt(0)−RSMkt(0) = BS,Mkt(0)(Sm,n,Mkt

0 −K). Consequently, the
use of regulatory curve when considering prices as invariant induces some inconsistencies with
market data as in particular it does not allow to reproduce both payer and receiver swaption
prices.

1.4.3.3.3 Volatilities invariance and pseudo-prices Alternatively, one can replicate im-
plied volatilities and define pseudo-prices. Namely, the market implied volatility is plugged into
pricing formulas; depending on the choice of the interest rates term structure (market or regu-
latory), one recovers market prices or obtained different pseudo-prices. In formulas, using the
Bachelier pricing convention, one has

PSMkt = PSBach
(
0, Sm,n,Mkt

0 + kMkt
m,n,K , σm,n,K , (r

Mkt
t )t≥0

)
PSPseudo = PSBach

(
0, Sm,n,Reg

0 + kReg
m,n,K , σm,n,K , (r

Reg
t )t≥0

)
.

The pseudo-price is obtained by the Bachelier (1.15) or Black (1.17) pricing formula depending
on the choice of the user. Observe that pseudo-prices allow to reproduce both payer and
receiver swaption prices in regulatory environment through (for instance) the Call-Put parity
since PSPseudo −RSPseudo = BS,Reg(0)

(
Sm,n,Reg
0 −K

)
.

1.4.4 Simulations and validations
Once calibrated, models are simulated to produce the economic scenarios paths. The number
of simulations should be sufficient to ensure the convergence of the Monte-Carlo computations
made on these paths. Numerical approximations for simulations are standard: most common
are discretization schemes (such as the famous Euler-Maruyama one, see for instance [KP92]
on the topic) and weak simulations methods. The choice is made for each model depending on
which method offers the best trade-off between the computational time (related to the simplicity
of numerical methods) and accuracy of the numerical method.

The paths should be generated with high accuracy. In particular, empirical means of mar-
tingale quantities should be close to their initial values: this constitutes the martingale tests
that should pass to validate the simulated paths. Moreover, the empirical correlation structure
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between different financial drivers should match the input one. Those tests are required by the
regulator and to pass them, some models can be simulated with a step time of one year without
loss of precision but for some complex models (such as stochastic volatility dynamics) a smaller
time increments is necessary.

That being said, and as already mentioned, generated paths should allow to appreciate all
possible activations of options in different economic conditions. As for the calibration process,
the simulation one should be made consistently with the risk profile of the company (see www.
eiopa.europa.eu/content/guidelines-valuation-technical-provisions_en and notably
guideline 55).

1.5 Interest rates modelling
We propose to give in this section an overview of the main models chosen by insurers in their
ESGs to handle the interest rates risk along with their main interesting properties from an
insurer point of view. We focus on most popular market models and briefly discuss short
rates models for which more details are given in Appendix A with some technical regarding
the pricing of derivatives of interest rates derivatives. The interested reader can refer to the
authoritative and complementary books of Damiano Brigo and Fabio Mercurio [BM07] and
Tomas Björk [Bjö09] for a fuller picture of the interest rates modelling. The following listing is
non exhaustive and partly inspired from some parts of [BM07].

1.5.1 Some preliminaries
Beforehand, we introduce some definitions and notations on interest rates and their derivatives
as the terminology employed in interest rates modelling is rich.

1.5.1.1 Bank account

We first introduce the money-market account (or bank account) that is the risk-free asset: we
denote by B(t) the time-t value of the money-market account. We assume that there exists a
process (rt)t≥0 such that the process B evolves according to the following dynamics

dB(t) = rtB(t)dt, (1.19)

starting from B(0) = 1. Equivalently

B(t) = exp
(∫ t

0
rsds

)
.

The value of B(t) is assumed to be known at time t. Over the infinitesimal time interval
[t, t+ δ], a first order approximation yields that the value of the money-market account changes
as B(t + δ) = (1 + rtδ)B(t). The process r, generally named short rate, is interpreted as
the instantaneous interest rates delivered by the bank account. As being associated with the
risk-free asset, r is alternatively referred to as the risk-free rate.

The risk-free asset accounts for the time value of money and establish an equivalence between
amounts paid at different times. From the definition of the bank account value, we deduce that
investing 1 unit of currency at time t = 0 delivers an amount B(T ) at time T . Similarly, investing
1/B(T ) at initial date –in a deterministic case, for simplicity– provides 1 unit of currency at
final date. More generally, for t < T , the discount factor D(t, T ) provides the time-t amount of
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currency that is equivalent to a payment of 1 at time T . Arbitrage-free reasoning yields that

D(t, T ) :=
B(t)

B(T )
. (1.20)

The money account is key in financial modelling as it allows to compare amounts of cash
delivered at different dates. In this thesis if (Xt)t≥0 represents some financial process, its
discounted version is defined as X̃t = Xt/B(t). In particular case when (Xt)t≥0 reduces to a
time independent quantity, multiply it by the discount factor deflines its discounted equivalent
: if X denotes some financial quantity delivered at time T , it can be convenient to consider its
equivalent amount at time t ≤ T that is the discounted cash-flow X̃ := D(t, T )X.

1.5.1.2 Zero-Coupon bonds and spot interest rates

The fundamental interest rate derivative to introduce –already mentioned several times in this
thesis– is the Zero-Coupon bond (denoted ZC bond for short). Let us consider the following
contract: at a future fixed date T , named the maturity, the contract delivers 1 unit of currency
to the policyholder, with no intermediate payment. Time t = 0 corresponds to the date when
the ZC bond is issued. The time-t value of this contract is denoted by P (t, T ) and is the amount
of money to pay at time t to get 1 at time T . It is straight to get that P (T, T ) = 1. As a price
of a contract, it is natural to require P to be non-negative, P (t, T ) ≥ 0 for all (t, T ), and to be
known at any time t, P (t, T ) is Ft-measurable.

Zero-Coupon bond is a contract linking payments of cash-flows at different dates. It is
somehow linked with the discount factor discussed earlier. Recall D(t, T ) is an equivalent
amount to a future amount of money, and thus depends on the path of the short rate process
between t and T while P is known at time t. If the risk-free rate is deterministic, P (t, T ) =
D(t, T ) for any pair (t, T ). However, in case when (rt)t≥0 is stochastic, D(t, T ) is also a stochastic
quantity at any time while P (t, T ) is deterministic from the time t and thus the two quantities
differ.

Continuously-compounded spot interest rate
Place ourselves at time t and assume that an investor holds an amount of money P (t, T ). Is
there a constant rate at which he could continuously invest his money so that he recovers 1 unit
of currency at time T? This rate exists and is the continuously-compounded spot interest rate,
denoted by R(t, T ) and defined as

R(t, T ) := − 1

(T − t)
lnP (t, T )⇐⇒ P (t, T ) = e−(T−t)R(t,T ). (1.21)

In the particular deterministic case when the short rate process is constant, the continuously-
compounded interest rate equals the short rate.

Simply-compounded spot interest rate
Now, rather than continuous accruing of invested money up to the maturity time T , we consider
accruing proportional to the time-to-maturity T − t. Starting from an amount P (t, T ), we are
looking for a constant rate prevailing over the time period [t, T ] at which one could invest its
money to obtain 1 unit at maturity date T . This rate is the simply-compounded spot interest
rate, denoted by L(t, T ) and defined as

L(t, T ) :=
1− P (t, T )

(T − t)P (t, T )
⇐⇒ P (t, T ) =

1

1 + (T − t)L(t, T )
. (1.22)
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The notation L(t, T ) for simply-compounded rates comes from the LIBOR market on which
simply-compounded rates are quoted.

Annually-compounded spot interest rate
In this paragraph, an annual reinvestment strategy is considered. Starting from an amount
P (t, T ), we are looking for a constant rate over the time period [t, T ] at which one could invest
its money once a year to obtain 1 unit at ending date T . This rate is the annually-compounded
spot interest, denoted by Y (t, T ) and defined as

Y (t, T ) :=
1

P (t, T )1/(T−t)
− 1⇐⇒ P (t, T ) =

1

(1 + Y (t, T ))(T−t)
. (1.23)

Note that Y is often named ZC rate.
Observe that, in our definition of the ZC bond, it is implicitly assumed that the final

payment of 1 unit of currency is guaranteed12. The spot interest rates introduced just above
are all defined using the contract price P (t, T ). When defining them over infinitesimal time
intervals, the three compounding convention are equivalent and amounts to consider the short
rate as in (1.19).

Proposition 1.1. For any time t,

lim
T→t+

R(t, T ) = lim
T→t+

L(t, T ) = lim
T→t+

Y (t, T ) = rt.

Proof. Place ourselves over the infinitesimal time interval [t, t + δ] and assume that short rate
process is such that rt+δ is Ft-measurable. An amount of money B(t + δ)P (t, t + δ) invested
at time t allows to obtain B(t+ δ) units of currency at time t+ δ. Furthermore, investing B(t)
at time t delivers also B(t + δ) in t + δ. Arbitrage-free assumption implies that P (t, t + δ) =
B(t)/B(t + δ). A first order approximation gives then P (t, t + δ) = 1 − rtδ. Observe that all
compounding convention (1.21)-(1.22)-(1.23) coincide at first order: P (t, t+ δ) = 1− δR(t, t+
δ) = 1 − δL(t, t + δ) = 1 − δY (t, t + δ) (for the third convention, it is additionally used that
ln(1 + x) ' x for |x| << 1). Hence the result.

Term-structure of interest rates
The term-structure of interest rates, or the yield curve (or zero-coupon curve), is the graph of
the function

T 7→
{
L(t, T ), t < T ≤ t+ 1,
Y (t, T ), T > t+ 1,

depicting the dependence of interest rates quoted at time t with respect to their maturities.
This graph at time t = 0 is the initial yield curve. Alternatively, depending on the context, one
may be interested in the yield curve

T 7→ R(t, T ).

Finally, the zero-coupon bond curve is the graph, at any time t, of the function

T 7→ P (t, T ), T > t.

12The risk-free asset introduced in Section 1.5.1.1 is theoretical as in practice none asset is totally free of
counterpart risk.
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1.5.1.3 Forward rates

Forward rates are interest rates determined today for an investment over a future time consis-
tently with known market information. They are simply-compounded interest rates as in (1.22)
but seen at time prior to the period over which they prevail. It can be understood using the
second fundamental interest rates derivative: the Forward Rate Agreement (FRA for short).
The FRA is an exchange contract associated to a future period [T, S] in which two counterparts
A and B agree on a nominal value N and a fixed rate K. The working of the contract is the
following: at expiry date S > T , B pays to A the agreed rate K for the period [T, S], that
is an amount of N × (S − T ) × K; in return, A pays to B a sum of N × (T − S) × L(T, S),
depending on the floating rate L(T, S) that is unknown prior to T . The spot rate L(T, S) has
been introduced in (1.22): it is known at time T , is of maturity S and depends on the market
condition between T and S. At a time t ≤ T , we are looking for the fixed rate K∗ on which A
and B should agree to make this contract fair; namely, the value of this contract should be the
same for A and B. Since the positions of A and B are opposite, the rate we are looking for K∗

is making the contract value zero at time t.
ForA, the variation of wealth writes at time S, using the definition of the simply-compounded

rate (1.22) as

(S − T )N (K − L(T, S)) = N

(
(S − T )K − 1

P (T, S)
+ 1

)
and vice versa for B’s wealth variation. We want to convey this quantity to its equivalent in time
t. Since holding P (T, S) at time T is equivalent to have 1 in S, holding 1 at time T is equivalent
to have 1/P (T, S) in S. Moreover, 1 unit of currency at time T is equivalent to P (t, T ) at time
t. Eventually, having 1/P (T, S) in S is equivalent to have P (t, T ) at time t. Furthermore, it is
clear that the amount (S−T )K+1 at time S is equivalent to P (t, S)(S−T )K+P (t, S) in time
t. Thus, rewriting the profit and loss of A at time t ≤ T yields the value of the FRA contract:

FRA(t, T, S,N,K) := Nξ [(S − T )KP (t, S)− P (t, T ) + P (t, S)] (1.24)

where ξ = 1. For B, the profit and loss writes similarly with ξ = −1. The FRA is said receiver
from A’s point of view and payer from B’s. There exists a unique rate making this contract fair
(i.e. that does not depend on ξ) and known at time t: it is named simply-compounded forward
rate –or forward rate for short, denoted by F (t;T, S) and defined for t ≤ T by

F (t, T, S) :=
1

S − T

(
P (t, T )

P (t, S)
− 1

)
. (1.25)

Similarly to spot interest rates, we can define an instantaneous forward rate. These can
be defined as a limiting case of the definition (1.25) when period [T, S] becomes infinitesimal.
Indeed, observe first that for any time t ≤ T ,

lim
S→T+

F (t, T, S) = lim
S→T+

1

P (t, S)

P (t, T )− P (t, S)
S − T

= −∂ lnP (t, T )
∂T

, (1.26)

which allows to define the instantaneous forward rate as

f(t, T ) := lim
S→T+

F (t;T, S) = −∂ lnP (t, T )
∂T

. (1.27)
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Consequently, the ZC bond price writes in term of instantaneous forward rate as

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
.

Remark 2. In practice, instantaneous forward rates are little used. Observe that definition of
the instantaneous forward rates requires to assume the map T 7→ P (t, T ) to be differentiable.

1.5.1.4 Forward swap rates

We have just seen that FRA is a contract on a single future investment. It is naturally gen-
eralized in a multiple successive investments contract, called the Interest Rates Swap (IRS).
This contract allows the two counterparts for exchanging a fixed leg against a floating one on
a settled schedule starting in the future. Namely, at each date Ti ∈ T := {Tm, . . . , Tn−1}, the
payer of the fixed leg disburses

N(Ti+1 − Ti)K,

for the period [Ti, Ti+1] while the floating leg pays out13

N(Ti+1 − Ti)L(Ti, Ti+1),

where L(Ti, Ti+1) is the spot rate introduced in (1.22). Observe that the amount paid by the
floating leg at time Ti for the period [Ti, Ti+1] is known at time Ti, m ≤ i ≤ n − 1. The
discounted payoff of an IRS writes

n−1∑
i=m

ND(Ti, Ti+1)(Ti+1 − Ti)ξ ×
(
K − L(Ti, Ti+1)

)
where ξ = 1 for a receiver IRS and ξ = −1 for a payer IRS14. Observe that owning a Receiver
IRS is like having a portfolio of FRA according to the preceding discussion. The valuation
formula (1.24) provides the value of the mentioned portfolio as

IRS(t, Tm, Tn,T ,K,N) =

n−1∑
i=m

ξFRA(t, Ti, Ti+1, N,K)

= Nξ

(
n−1∑
i=m

K(Ti+1 − Ti)P (t, Ti+1) + P (t, Tn)− P (t, Tm)

)
.

(1.28)

The value of the IRS for the Payer counterpart satisfies PIRS(t, Tm, Tn,T ,K,N) = −RIRS(t, Tm, Tn,
T ,K,N) where RIRS is the price of a receiver swap. Again, there exists a unique fixed rate K∗

known at time t < Tm making the Interest Rates Swap fair at time t that is PIRS(t, Tm, Tn,T ,
K∗, N) = RIRS(t, Tm, Tn,T ,K∗, N) = 0. This rate is named forward swap rate and is defined
by

S(t, Tm, Tn,T ) :=
P (t, Tm)− P (t, Tn)∑n−1

i=m(Ti+1 − Ti)P (t, Ti+1)
. (1.29)

This rate is often simply named swap rate even though one should keep in mind that it is a rate
prevailing over a future period of time. If there is no ambiguity, we shall equally denote this

13Our framework is similar to that of [WZ06] but a little different from that of [BM07] in which authors consider
that payments of the fixed and the floating legs do not coincide in time.

14Similary to FRA, the convention is that an IRS is said to be a Payer IRS if the fixed leg is paid and the
floating leg is received; oppositely, the swap contract is a Receiver IRS.
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swap rate by Sm,nt for brevity. A swap contract is said to be issued at par when its spot price
coincides with the underlying nominal, i.e. Sm,n0 = N .

It should be stressed that the swap rate process is a function of forward rates implied during
the period over which the swap rate prevails. Dividing both the numerator and the denominator
in (1.29) by P (t, Tm) and using (1.25), we get

P (t, Ti)

P (t, Tm)
=

i−1∏
k=m

P (t, Tk+1)

P (t, Tk)
=

i−1∏
k=m

1

1 + (Tk+1 − Tk)F (t, Tk, Tk+1)
,

which finally leads to

S(t, Tm, Tn,T ) =
1−

∏n−1
k=m

[
1 + (Tk+1 − Tk)F (t, Tk, Tk+1)

]−1∑n−1
i=m(Ti+1 − Ti)

∏i
k=m

[
1 + (Tk+1 − Tk)F (t, Tk, Tk+1)

]−1 . (1.30)

By defining weights αi(t) = (Ti+1−Ti)P (t,Ti+1)∑n−1
k=m(Tk+1−Tk)P (t,Tk+1)

that are stochastic quantities, the swap rate
expresses alternatively

S(t, Tm, Tn,T ) =
n−1∑
k=m

αk(t)F (t, Tk, Tk+1). (1.31)

In this representation, note that the weights αk are also dependent on the forward rates.

1.5.1.5 Caplet/floorlet and swaption

We now turn to the description of derivatives on previously introduced rates. The caplet is a
contract agreed at a date t prior to T that delivers in T the positive difference between the rate
prevailing over the period [T, S] and a fixed rate named strike denoted by K. In formulas, the
discounted payoff of this product is

D(t, T )(S − T )
(
F (t, T, S)−K

)
+
, t ≤ T.

Caplet is a contract allowing to hedge against a rise of the interest rates. A cap is a sequence
of caplets settled on a schedule {Tm, . . . , Tn}: the discounted price of a cap writes

n−1∑
i=m

D(t, Ti)(Ti+1 − Ti)
(
F (t, Ti, Ti+1)−K

)
+
, t ≤ Tm.

A cap can be viewed as a payer IRS contract in which the successive payments are made only
if they have a positive value.

Similarly, a floorlet is a product allowing to protect against a fall on the interest rates and
works oppositely compare to caplet. Its discounted payoff writes

D(t, T )(S − T )
(
K − F (t, T, S)

)
+
, t ≤ T.

A floor is a sequence of floorlets whose discounted payoff is:

n−1∑
i=m

D(t, Ti)(Ti+1 − Ti)
(
K − F (t, Ti, Ti+1)

)
+
, t ≤ Tm.

A floor can be viewed as a receiver IRS contract in which the successive payments are made
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only if they have a positive value.
Third basic instrument we will be particularly interested in later on: the options on swap

rate or more commonly, swaptions. These are options giving the right to their owner to enter
into an Interest Rates Swap at a future date Tm, named the maturity of the swaption. The
length of the period over which possible payments occur, Tn − Tm, is called the tenor of the
swaption. The set of dates T = {Tm, . . . , Tn} is sometimes called the tenor structure. The fixed
leg of the underlying swap is composed of payments of fixed rate K named the strike of the
swaption. The time-t value of an IRS is given by (1.28) in which we use the definition (1.25):

IRS(t, Tm, Tn,T ,K,N) = Nξ
n−1∑
k=m

P (t, Ti+1)(Ti+1 − Ti) (F (t, Ti, Ti+1)−K) , t ≤ Tm.

At time Tm, the swaption’s owner decides whether or not to enter the swap contract: the option
is exercised if it has a positive value so that the discounted payoff of the swaption of maturity
Tm is given by:

ND(t, Tm)

(
n−1∑
k=m

P (Tm, Ti+1)(Ti+1 − Ti)ξ (F (Tm, Ti, Ti+1)−K)

)
+

, t ≤ Tm. (1.32)

For ξ = 1 (the case ξ = −1 is similar) we obtain thanks to (1.25) that the discounted payoff
writes also

ND(t, Tm)
n−1∑
k=m

P (Tm, Ti+1)(Ti+1 − Ti)×
(
S(Tm, Tm, Tn,T )−K

)
+

, t ≤ Tm.

A swaption is said to be At-The-Money (ATM) if K = S(0, Tm, Tn,T ), In-The-Money (ITM)
if K < S(0, Tm, Tn,T ) and Out-Of-Money (OTM) if K > S(0, Tm, Tn,T ). In this thesis, we
will refer to both OTM and ITM swaptions by Away-From-the-Money (AFM) options. On
market, AFM swaptions are quoted in terms of relative strikes denoted by km,n,K and defined
by km,n,K := K − Sm,n0 .
Remark 1. For simplicity, the nominal N is generally not denoted in pricing formulas. It
amounts to consider N = 1 which does not impact generality of statements.

1.5.2 Short rates models
Short rates models focus on the modelling of the evolution of the short rate process. They offer a
good flexibility as one is free to choose the dynamics representing this time evolution. The most
common short rates models met among insurers practices are the Hull & White, the G2++,
the two-factor Hull & White and the CIR2++ models. They all provide an exact replication of
the initial yield curve and the ability of generate non-positive rates. The Hull & White model
is described by a one dimensional dynamics inducing perfect correlation on interest rates of
different tenors; however, it is (thus) a quite simple Gaussian model making it highly tractable.
The two-dimensional extension of it constitutes the two-factor Hull & White model and fixes
the mentioned limitation; it is very similar to the G2++ model. Finally, the CIR2++ is a non
Gaussian model a little harder to manipulate. More details can be found in Appendix A.

1.5.3 Market models
Market models usually referred to as LIBOR Market Model (LMM) have been introduced in
[BGaM97]. They have became very popular for two main reasons: first because they focus on
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the modelling of directly observable quantities on markets (hence their denomination) namely
the forward rates (1.25) and swap rates (1.29); second because they model each mentioned rates
through a log-normal distribution allowing the use of the practical and popular Black’s formula.

Before going into the specification of the LMM, we specify the dynamics of the Zero-Coupon
bond prices under general condition. To do so, two key general assumptions are made:
(A.1) there exists a d-dimensional Brownian motion (Wt)0≤t≤T ⋆ that generates the market
filtration: Ft := σ

(
Wu, u ≤ t

)
, 0 ≤ t ≤ T ⋆;

(A.2) there exists a probability measure P⋆ (Risk-Neutral measure), equivalent to the historical
one P, under which all discounted prices processes of Zero-Coupon bonds are Ft-martingales;
that is, for all 0 ≤ u ≤ T ⋆,

(
P̃ (t, u)

)
t≤u are Ft-martingales. Those assumptions are enough

to get that ZC bonds prices express as exponential martingales. Proposition 6.1.3 in [LL11]
demonstrates this result.

Proposition 1.2 ([LL11]). For each maturity T ≤ T ⋆ there exists a multidimensional adapted
process (σ(t, T ))t≤T so that, under Risk-Neutral measure, the dynamics of ZC bonds price writes

dP (t, T )
P (t, T )

= rtdt+ σ(t, T ) · dW ⋆
t , t ≤ T, (1.33)

where (rt)t≤T ⋆ is the short risk-free rate associated to the Risk-Neutral measure P⋆ and (W ⋆
t )0≤t≤T ⋆

is a Brownian motion under this probability measure.

1.5.3.1 The LIBOR Market Model

The acronym « LMM » can refer to different models. Indeed, since the original work of
[BGaM97], numerous works have extend their frameworks in several ways (see for instance
[AA00], [Sch00], [WZ06], [Jam97], [Jam99], [HL08]). Since the financial crisis of 2008, new ex-
tension of the LMM have emerged in order to account for the remarkable increase of the spread
between LIBOR rates and OIS ones. On this topic, we refer to [GPSS15]. Lately, an extension
allowing jumps and occurrence of negative rates in a multiple curve setting has been proposed
in [EGG20].

The Log-normal Forward-LIBOR Model (LFM)
We first focus on the modelling of forward rates as defined in (1.25): those are functions of
zero-coupon bonds and are thus observable quantities.

Let be given a time horizon T ⋆ and a tenor structure T = {T1, . . . , TN}, T1 ≤ . . . TN ≤ T ⋆

and let us denote by ∆Tk = Tk+1 − Tk. The ZC bonds dynamics (1.33) is valid for all bonds of
maturity Tk ∈ T and we denote by σk(t) = σ(t, Tk). Let us denote by Fk(t) = F (t, Tk, Tk+1)
the forward rate prevailing over [Tk, Tk+1]. As originally introduced, the LIBOR market model
framework consists in assuming, for each k ∈ J1, N−1K, the existence of deterministic, bounded
and piecewise continuous multidimensional function of time t ∈ [0, Tk] 7→ γk(t) such that

dFk(t) = (. . . )dt+ Fk(t)γk(t) · dWt, t ≤ Tk, (1.34)

where (Wt)t≤Tk is a multidimensional Brownian motion. Note that the γk functions convey
some information on volatility structure of forward rates but also on the correlation structure
between them since, for j 6= k,

d 〈Fj(.), Fk(.)〉t = Fj(t)Fk(t)γj(t) · γk(t)dt.
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According to their definition (1.25), forward rates are functions of ZC bonds and Itô’s lemma can
be applied with (1.33). To ensure consistency between the induced dynamics and the proposed
one (1.34), no arbitrage requirement links the volatility structure of ZC bonds to that of forward
rates through

1 + ∆TkFk(t)

∆TkFk(t)

(
σk+1(t)− σk(t)

)
= γk(t),

which conversely allows to define the volatility structure of ZC bonds as

σk(t) = −
k−1∑
j=1

∆TjFj(t)

1 + ∆TjFj(t)
γj(t),

since σ1 can be set to 0 as discussed in [BGaM97].
From the change of numéraire technique discussed in Section A.2.2, we note that dividing

a price process by a numéraire process allows to make it a martingale under the appropriate
measure. Here, it is common to study the k-th forward rate under the probability measure PTk+1

associated to the numéraire
(
P (t, Tk+1)

)
t≤Tk+1

and often named Tk+1-forward neutral measure,
introduced in a more general setting in (A.19). By doing so, the k-th forward rate writes

Fk(t) = Fk(0) exp
(∫ t

0
γk(s) · dW k

s −
1

2

∫ t

0
‖γk(s)‖2ds

)
(1.35)

where (W k+1
t )t≤Tk is a PTk+1-Brownian motion. We recall that

Fk(0) =
(
P (0, Tk) − P (0, Tk+1)

)
/
(
(Tk+1 − Tk)P (0, Tk+1)

)
and is thus an observable quantity

that is inherently reproduced by the LMM. Note also that the representation (1.35) is well
defined since t 7→ ‖γk(t)‖ has been assumed to be bounded. This formulation is particularly
suited for caplet/floorlet pricing as it allows the use of Black’s formula.

Proposition 1.3. Prices of caplet and floorlet at time t ≤ Tk given by LFM are given by

Cpl(t, Tk, Tk+1,K) = P (t, Tk)
(
Fk(t)Φ(d1)−KΦ(d2)

)
and

Flr(t, Tk, Tk+1,K) = P (t, Tk)
(
KΦ(−d2)− Fk(t)Φ(−d1)

)
,

where we denoted by Φ the cumulative function of the standard distribution, d1 =
(

ln(Fk(t)/K)+

vk(t)
2/2
)
/vk(t), d2 = d1 − vk(t) and vk(t) =

√
Tk − tṽk(t) and ṽ2k(t) =

∫ Tk
t ‖γk(s)‖

2ds/(Tk − t).

Proof. From the pricing formula (A.20), we get:

Cpl(t, Tk, Tk+1,K) = E∗
[
B(t)

B(Tk)

(
F (Tk, Tk, Tk+1)−K

)
+

∣∣Ft]
= P (t, Tk)ETk

[
(Fk(Tk)−K)+

∣∣Ft]
= P (t, Tk)

(
Fk(t)Φ(d1)−KΦ(d2)

)
.

To obtain the last identity, we use (1.35) to get that

Fk(Tk)
d
=Fk(t) exp

(√∫ Tk
t ‖γk(s)‖2ds×G−

1
2

∫ Tk
t ‖γk(s)‖

2ds
)

where G is a centered/reduced
Gaussian random variable.

Remark 3. We work here in a discrete tenor setup which is more convenient for practical uses.
The problem of the existence of a solution to (1.34) in a continuous tenor setup as in [BGaM97]
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is more tricky.

The Risk-Neutral and spot-LIBOR measures in LFM
We have already defined the Risk-Neutral probability measure as being the measure associated
with the bank account asset (1.19). However, the bank account is not a natural asset in the
LIBOR market model framework with discrete preassigned tenor structure since bank account
represents the value of a continuously reinvested notional at risk-free rate. In the LMM frame-
work we work in, no such rate exist and building a strategy coinciding with such an investment
is not possible in a discrete tenor structure. Note that in [BGaM97] the definition of a bank
account process is possible as the authors worked with continuous tenor structure.

From the change-of-numéraire toolkit in Section 2.3 of [BM07], one obtains that the dynam-
ics of the k-th forward rate under the Risk-Neutral probability measure writes

dFk(t) = −Fk(t)σlnP (.,Tk)(t) · γk(t)dt+ Fk(t)γk(t) · dWt, t ≤ Tk, (1.36)

where σlnP (.,Tk) is the diffusion coefficient of the log-price process of Tk-ZC bonds. We introduce
the index function of the next expiring forward rate in the tenor structure as m(t) = inf{j ≥
1 : t ≤ Tj} and we observe that

P (t, Tk) = P (t, Tm(t))
k−1∏

j=m(t)

1

1 + ∆TjFj(t)
.

σlnP (.,Tk) is thus the diffusion coefficient of lnP (t, Tm(t))−
∑k−1

j=m(t) ln
(
1+∆TjFj(t)

)
. Moreover,

using the definition of instantaneous forward rate (1.27), we have lnP (t, Tk) = −
∫ Tk
t f(t, u)du

and thus the diffusion coefficient of log-price of ZC bond is the integrated coefficient diffusion
of instantaneous forward rate.

In the following, σf is such that df(t, T ) = (· · · )dt+σf (t, T ) · dWt and we use the notation
u(t) ·

( ∫ S
s v(u)du

)
=
∑n

i=1 u
(i)(t)

∫ S
s v(i)(u)du, where n is the length of the vector functions u

and v and u(k)(t) is the k-th component of vector function u.

Proposition 1.4 ([BM07]). The drift coefficient in (1.36) writes, for all t ≤ Tk:

−σlnP (.,Tk)(t) · γk(t) =
k−1∑

j=m(t)

∆TjFj(t)

1 + ∆TjFj(t)
γj(t) · γk(t) + γk(t) ·

(∫ Tm(t)

t
σf (t, u)du

)
. (1.37)

Proof. See Proposition 6.3.2 in [BM07].

This dynamics is hard to handle in practice. To circumvent this difficulty, the LMM is
generally studied under an alternative probability measure that is often assimilated to the Risk-
Neutral measure but that actually does not coincide a priori. Consider the quantity

Bd(t) =
P
(
t, Tm(t)

)∏m(t)−1
k=1 P (Tk, Tk+1)

= P
(
t, Tm(t)

)m(t)−1∏
k=1

(1 + ∆kFk(Tk)).

It corresponds to an investment of one unit of currency successively reinvested in zero-coupon
bonds of successive maturities of the tenor structure (see p.219 in [BM07] for the detailed
reasoning). The probability measure Pd associated with the numéraire Bd is usually called the
spot LIBOR measure, and the Pd-dynamics of forward rates are simpler.
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Proposition 1.5 ([BM07]). Under spot LIBOR measure, k-th forward rate dynamics writes

dFk(t) = Fk(t)

k∑
j=m(t)

∆TjFj(t)

1 + ∆TjFj(t)
γj(t) · γk(t)dt+ Fk(t)γk(t) · dW d

t , t ≤ Tk, (1.38)

with
(
W d

t

)
t≤T ⋆

a Pd-Brownian motion.

Proof. Proposition 6.3.3 in [BM07].

Observe that dynamics coming from (1.37) and (1.38) match if σf (t, u) = 0 for all u ∈
[t, Tm(t)]. Using the link with HJM framework, i.e. fact that σ expresses as the opposite
of the integral of σf (see Chapter 5 in [BM07]), this requirement means that at any time
t the volatility of the next expiring zero-coupon bond is zero: σ(t, Tm(t)) = 0. This is the
condition generally required to ensure spot-LIBOR measure coincide with Risk-Neutral one
(see for instance [BGaM97] or [Sch02]).

The Log-normal Forward-Swap Model (LSM)
Log-normal forward swap model focus on the modelling of the forward swap rate process. We
consider a tenor structure T ′ = {Tm, . . . , Tn} and denote by Sm,nt = S(t, Tm, Tn,T ′) the swap
rate defined in (1.29). We place ourselves under the forward-swap measure PS introduced
in (A.22) and associated to the numéraire BS defined in (A.21). Similarly to the LFM, the
modelling framework of LSM consists in assuming a log-normal dynamics for the swap rate
process

dSm,nt = Sm,nt σm,n(t) · dWm,n
t , t ≤ Tm, (1.39)

with (Wm,n
t )t≤Tm a Brownian motion under PS . This time evolution is convenient for pricing of

swaptions (payer or receiver) as the Black’s formula can be employed again. We provide below
simply the formula for valuing payer swaptions.

Proposition 1.6. Price at time t ≤ Tm of a payer swaption writes

PS(t, Tm, Tn,T ′,K) = BS(t)
(
Sm,nt Φ(d1)−KΦ(d2)

)
where we denoted by Φ the cumulative function of the standard distribution, d1 =

(
ln(Sm,nt /K)+

vm,n(t)
2/2
)
/vm,n(t), d2 = d1 − vm,n(t) and vm,n(t) =

√
Tm − tṽm,n(t) and

ṽ2m,n(t) =
∫ Tm
t ‖σm,n(s)‖2ds/(Tm − t).

Proof. Similarly to Proposition 1.3, we have:

PS(t, Tm, Tn,T ′,K) = E∗
[
B(t)

B(T )

(
Sm,nTm

−K
)
+

∣∣Ft]
= BS(t)ES

[(
Sm,nTm

−K
)
+

∣∣Ft]
and the result follows from similar computations to that of Black formula for caplet pricing in
Proposition 1.3.

Forward swap rate express as a function of forward rates as depicted in formulas (1.30) and
(1.31). One can naturally wonder if swaption prices obtained using Proposition 1.6 or those
induced by the dynamics of forward rates (1.36) are the same. In other words, are the LFM and
LSM frameworks consistent? Not surprisingly, the answer is no. Indeed, deriving the dynamics
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of forward rates under PS leads to a complicated set of equations in which forward rates are
not log-normally distributed a priori. Conversely, dynamics of swap rate can be derived under
a particular forward neutral measure PTk and again there is no reason for the swap rate to be
log-normal. However, this incompatibility is rather theoretical. In practice, the error induced
by considering that both swap rates and forward rates are log-normal is low. This point is
studied in [BDB01] and we will come on it back later on. The interested reader can refer to
Section 6.8 of [BM07] for more details on the inconsistencies between the two models.

1.5.4 Replication of the smile
Solvency II legislation asks insurers models to be market consistent, that is being calibrate to
market prices of derivatives. As explained in Section 1.4.3, those can comprise AFM options and
in particular AFM swaptions. It is well known that original models such as the Black-Scholes
models for equity modelling are not parametrized enough to be able to replicate multiple AFM
options prices. The introduction of «smiled models» has been crucial to do so. The probably
most popular model allowing the replication of a full smile15 is the Heston model introduced in
[Hes97] and which lies in the family of stochastic volatility model. It extends the Black-Scholes
model [BS73] by adding a stochastic volatility factor whose time evolution is depicted by a Cox-
Ingersoll-Ross process. Local stochastic volatility (LSV) models are another common class of
smiled models: the dependency of the implied volatility with respect to the strike is represented
through a leverage function of the time and the current value of the underlying. Those models
were introduced for equity modelling, but similar developments have naturally been introduced
in market models. The most common market models used by insurers are described below.

1.5.4.1 Local stochastic volatility models

1.5.4.1.1 Displaced Diffusion LMM This model, usually referred to as the DD-LMM by
practitioners, lies in the family of market models as described in Section 1.5.3.1.

Forward rates To take into account non-positive forward rates observed on market data, a
displacement coefficient δ ≥ 0, often named shift, is introduced. We retake the tenor structure
of Section 1.5.3.1. The DD-LMM focus on the modelling of time evolution of shifted forward
rates F̃k := Fk + δ, k ∈ {1, . . . , N}. Let Nf ∈ N. In the DD-LMM, shifted forward rates are
assumed to be represented by the dynamics (1.34): the existence of a Nf -dimensional function
t 7→ γk(t) is assumed such that the shifted forward rates evolve as

dF̃k(t) = (· · · )dt+ F̃k(t)γk(t) · dW k+1
t , t ≤ Tk, (1.40)

with F̃k(0) = Fk(0)+δ. The volatility structure is assumed to be represented by a humped shape
with piecewise constant time dependency and parametrized as γk(t) ≡ γk(Ti) = f(Ti)× g(Tk −
Ti)βk−i+1 for all t ∈ [Ti, Ti+1[, i ≤ k − 1, where g(t) = (a+ bt)e−ct + d with (a, b, c, d) ∈ (R+)

4

and f(t) = θ + (1 − θ)e−κt with (θ, κ) ∈ (R+)
2 and where βi is a unitary vector of size Nf for

any i ≤ N . Those vectors stand for the correlation structure between forward rates since, for
15We refer here to the smile as being the graph of the function linking the strike of an option to its price/implied

volatility.
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t ∈ [Ti, Ti+1[, i ≤ min(j − 1, k − 1),

〈Fk(.), Fj(.)〉t =
i−1∑
p=0

∆Tpf(Tp)
2g(Tk − Tp)g(Tj − Tp)βk−p+1 · βj−p+1

+
(
t− Ti

)
f(Ti)

2g(Tk − Ti)g(Tj − Ti)βk−i+1 · βj−i+1.

In practice, those vectors can be determined using a Principal Component Analysis on historical
time series of log-shifted forward rates. In this work, we will consider them as meta-parameters
determined once and for all and we will not detail their obtention. To price caplets/floorlets
as in Proposition 1.3, one has to compute the integrated variance process. For spot prices, one
will be interested in the following quantity:∫ Tk

0
‖γk(s)‖2ds =

k−1∑
i=1

∆Tig(Tk − Ti)2f(Ti)2.

Swap rates In the DD-LMM, shifted swap rates dynamics are derived using (1.31):

Sm,nt + δ =
1−

∏n−1
j=m

(
1 + ∆Tj(F̃j(t)− δ)

)−1∑n−1
j=m∆Tj

∏j
l=m

(
1 + ∆Tl(F̃l(t)− δ)

)−1 + δ

=: ψ
(
F̃m(t), . . . , F̃n−1(t)

)
+ δ

where it is important to observe that the function ψ linking forward rates to the swap rates
does depend on the shift coefficient explaining why this parameter is structuring in this the
DD-LMM.

Under the forward swap measure PS , the swap rate is a martingale and the Itô’s formula
yields

dS̃m,nt =
n−1∑
j=m

∂jψ(t)dF̃j(t)

=
n−1∑
j=m

(
Fj(t) + δ

)
∂jψ(t)γj(t) · dW S

t

(1.41)

where
(
W S

t )t≤Tm is a Brownian motion under PS and we set ∂jψ(t) = ∂ψ
∂xj

(
F̃m(t), . . . , F̃n−1(t)

)
, j ∈

{m, . . . , n−1}. Spot value is prescribed by observed data S̃m,n0 = P (0,Tm)−P (0,Tn)
BS(0)

+δ. The partial
derivative ∂jψ can be derived in closed form formula as (see for instance in [WZ06]):

∂jψ(t) = αj(t) +
∆Tj

1 + ∆Tj
(
F̃j(t)− δ

) j−1∑
l=m

αl(t)
(
F̃l(t)− S̃m,nt

)
,

where the weights (αk)k∈Jm,...,n−1K have been introduced in (1.31). The obtained dynamics
(1.41) is too complex to be fully handled as it stands: in particular, computations of swaption
prices require uses of Monte-Carlo methods and closed form expressions can not be obtained
a priori. In practice, this dynamics is approximated using the freezing technique that will be
studied in more details in the dedicated Chapter 2. As of now, illustrate this technique by what
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we will call the Hull & White approximation. It consists in assuming that the ratios

∂kψ(t)
(
Fk(t) + δ

)
Sm,nt + δ

, k = m, . . . , n− 1,

are of low variability through time and can thus be approximated by their initial values. The
approximated dynamics writes

dSm,nt =
(
Sm,nt + δ

) n−1∑
k=m

γ̃k(t) ·W S
t , t ≤ Tm, (1.42)

where γ̃k(t) :=
∂kψ(0)(Fk(0)+δ)

Sm,n
0 +δ

γk(t). Thus, under the approximated dynamics (1.42) the shifted
swap rate is log-normal and, similarly to Proposition 1.6, a Black formula in which the under-
lying is the shifted swap rate can be employed to value swaptions.

To illustrate the impact of the shift coefficient, we provide some illustrations in Figure 1.8
on the dependency of terminal distributions of some forward rates regarding the shift. Namely,
the 5-year and the 30-year forward rates terminal densities are displayed for different values
of the shift, all other parameters being fixed. As expected, the variance of the forward rates
increases with the shift. Note that the illustrations are empirical densities (50000 simulations).

(a) Terminal density of 10-year forward rates. (b) Terminal density of 30-year forward rates.

Figure 1.8: Impact of the shift coefficient on terminal densities of forward rates.

Smile in the DD-LMM When δ > 0, the DD-LMM allows to introduce some dependency
in the implied volatility with respect to the strike. First, recall that the implied volatility
is defined as being the volatility parameter to input in the standard Black formula (see for
instance Proposition 1.6) in which δ ≡ 0 is set. When computing swaptions prices under
(1.42) with δ > 0 and then inverting it with the standard Black formula, the implied volatility
parameter obtained turns out to be strike dependent. We can appreciate this dependency using
estimates formulas. Approximations of implied volatilities for vanilla pricing when underlying is
modelled through a dynamics whose drift is null have been derived in [HW99a]. Following their
methodology based on singular perturbation of vanilla prices, they obtained that the equivalent
Black implied volatility for a swaption of maturity Tm and strike K writes under dynamics
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(1.42) as:

σBlack
imp = Σ(Tm)

Sm,n0 +K + 2δ

Sm,n0 +K

{
1 +

(Sm,n0 −K)2

12S2
av

(
1− 1

(1 + δ/Sav)2

)
+

Σ(Tm)
2Tmδ

24Sav

(
2 +

δ

Sav

)
+ · · ·

}
,

(1.43)

where we set Σ(Tm)
2 = 1

Tm

∫ Tm
0 ‖γk(s)‖2ds and Sav =

1
2(S

m,n
0 +K).

Observe that in case when δ = 0, the implied volatility parameter does not depend on K and
we recover the well known fact that σBlack

imp = Σ(Tm).
To end this paragraph, we provide some illustrations on the impact of the shift coefficient

on the DD-LMM and in particular on the induced smile. In Figure 1.9, we provide an example
of the replication of a smile provided by the DD-LMM: the latter is calibrated to market data
(the shift is fixed to δ = 10% during the calibration procedure here) and model volatilities
induced by the model are compared to the market ones. It turns out that it does not allow
a good fit of market data as the model smile roughly linear with respect to the moneyness.
In Figure 1.10, the set of parameters of the DD-LMM is set fixed but the shift coefficient and
we analyse the dependency of the smile on swaptions volatilities of different maturities with
respect to it; the tenor is fixed to 10 years for all experiments. Quite intuitively, the greater the
shift, the riskier the swaptions are. We still observe that the smile induced by the DD-LMM is
almost linear which only permits a poor replication of market data. Finally, we illustrate how
the shift impact the whole structure of the DD-LMM. Namely, the parameters of the model
are calibrated by fixing the shift coefficient to different values. The results are condensed in
Table 1.3. Observe that shifts between 10% and 15% account for the best fit of market data
(the objective function is computed as the normalized sum of the squared relative distances
between market and model volatilities). On our experiment, the parameters a and d turn out
to be the most volatile parameters with respect to the value of the shift, followed b and θ.
Recall that in present setting, parameters d –resp. a and θ– are proportional to the global
level of short-term –resp. long-term– instantaneous volatilities of log-ratios of shifted forward
rates (i.e. log

(
F̃k(t + ∆t)

)
− log

(
F̃k(t)

)
); their impact is particularly material on densities of

forward rate with large maturities. In Figure 1.11, we provide spot and terminal densities of the
forward rates induced by the different parametrization of the Table 1.3. The shift has greater
impact on rates with large maturities, both on initial and terminal densities. Initial density of
10-year rates (Figure 1.11a) is quite stable with respect to the shift values; it is not the case of
its terminal density (Figure 1.11c). 30-year rates densities have significant dependencies with
respect to the shift (Figures 1.11b and 1.11d). In Figure 1.11c, 1.11b and 1.11d, the thickest
tails of the distributions are obtained for δ = 20%: overall, the higher the shift, the thicker are
the tails. This is quite intuitive though in Figure 1.11b the dependency with respect to δ is
hard to interpret.
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Figure 1.9: Smile induced by the DDLMM calibrated to 12/31/2020 Euro swaptions prices (on
the particular 10× 10 swaption).

δ
a

b c
d

κ
θ

Objective
(%) (×10−2) (×10−2) (×10−2) func. (×10−3)
5 3.07 · 10−6 3.08 9.58 4.22 · 10−3 3.99 1.52 · 10−1 6.85
7 4.03 · 10−3 2.09 8.86 1.09 · 10−5 4.25 3.04 · 10−1 6.00
10 2.43 · 10−3 1.40 8.55 4.24 · 10−4 2.43 1.18 · 10−7 5.78
12 3.19 · 10−3 1.12 8.29 8.95 · 10−6 2.19 1.25 · 10−1 5.88
15 3.11 · 10−4 0.903 8.38 1.51 · 10−3 2.21 2.13 · 10−1 5.96
20 1.84 · 10−10 0.493 7.22 5.82 · 10−3 4.18 4.38 · 10−1 7.76

Table 1.3: Calibrated parameters of the DD-LMM; shift δ is fixed to different values.

1.5.4.1.2 Constant-Elasticity-of-Variance LMM
The CEV version of the LMM has been introduced in [AP07]. In a similar framework to

that of the DD-LMM, the dynamics of the k-th forward rates under the Tk+1-forward neutral
probability measure Pk+1 is assumed to be

dFk(t) =
(
Fk(t)

)α
γk(t) · dW k+1

t , t ≤ Tk, (1.44)

where γk is an Nf -dimensional deterministic time dependent vector and α ≥ 0. Prices for
caplet/floorlet can be obtained in closed form as proved in Theorem 3 of [AA00].

Similarly as for the DD-LMM, application of the Itô’s formula yields the dynamics for the
swap rate process. Again, the obtained time evolution is too hard to be handled as is states and
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(a) Swaptions prices of maturity 1 year.
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(b) Swaptions prices of maturity 5 years.
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(c) Swaptions prices of maturity 10 years.
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(d) Swaptions prices of maturity 30 years.

Figure 1.10: Impact of the shift coefficient on the smile in the DD-LMM all other parameters
being fixed. The smile is computed using theoretical formulas obtained in the DD-LMM.

an approximation based on freezing technique is usually made to obtain the following dynamics,
written under PS :

dSm,nt =
(
Sm,nt

)α n−1∑
k=m

γ̃k(t) · dW S
t , t ≤ Tm, (1.45)

where (W S
t )t≤Tm is a Brownian motion and γ̃k(t) := ∂kψ(0)

(
Fk(0)/S

m,n
0

)α
γk(t). In this mod-

elling framework, approximated swaption prices can be derived. The result is proved in [AA00].

Proposition 1.7 ([AA00]). Denote by a = K2(1−α)(1 − α)−2/(Tm − t)ṽ2m(t), b = (1 − α)−1,
c = (Sm,nt )2(1−α)(1 − α)−2/(Tm − t)ṽ2m(t), ṽ2m(t) =

∫ Tm
t ‖

∑n−1
k=m γ̃k(u)‖2du/(Tm − t) and x± =(

ln(Sm,nt /K)± (Tm − t)ṽ2m(t)/2
)
/
√

(Tm − t)ṽ2m(t). Then, the swaption price writes

PS(t, Tm, Tn,T ′,K) =


BS(t)

(
Sm,nt

[
1− χ2(a, b+ 2, c)

]
−Kχ2(c, b, a)

)
, 0 < α < 1,

BS(t)
(
Sm,nt Φ(x+)−KΦ(x−)

)
, α = 1,

BS(t)
(
Sm,nt

[
1− χ2(c,−b, a)

]
−Kχ2(a, 2− b, c)

)
, 1 < α,

where Φ is the distribution function of the Gaussian law and x 7→ χ2(x, k, λ) is that of the non
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(a) Initial densities of 10-year forward rates.
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(b) Initial densities of 30-year forward rates.
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(c) Terminal densities of 10-year forward rates.
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(d) Terminal densities of 30-year forward rates.

Figure 1.11: Initial and terminal densities of forward rates induced by the DD-LMM calibrated
with different shifts. Empirical densities estimated on 50000 paths.

central chi-squared distribution with k degree of freedom and non centrality parameter λ.
Remark 4. As detailed in [HW99a], this modelling framework allows to replicate market smiles
for α 6= 1.
Remark 5. This modelling framework can be enriched by considering that the shifted forward
rate process F̃k(·) = Fk(·) + δ satisfies (1.44).

1.5.4.2 Displaced Diffusion with Stochastic Volatility LMM

In stochastic volatility models, the instantaneous volatility process is represented by as a stochas-
tic process in order to be able to replicate swaptions prices over a grid of various strikes. The
issue is to model this additional risk factor while preserving the tractability of the whole model.

[WZ06] proposed to model the volatility factor using the popular Cox-Ingersoll-Ross dynam-
ics; adding a shift parameter accounting for non-positive interest rates yields the Displaced Dif-
fusion and Stochastic Volatility version of the LMM. It is usually referred to as the DDSVLMM
or LMM+ by practitioners and is a very popular model among insurers who aim at replicating
market smile.
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The modelling framework is very similar to that of the DD-LMM. The volatility structure
of the k-th shifted forward rate is now assumed to be given by

ζk(t) :=
√
Vtγk(t),

where (Vt)t≤T ⋆ lies in the family of Feller processes and γk is a deterministic time-dependent
vector. Under the spot-LIBOR measure, the volatility process is represented by the dynamics

dVt = κ(θ − Vt)dt+ ϵ
√
VtdWt, t ≤ Tm, (1.46)

where κ, θ, ϵ are non-negative parameters and (Wt)t≤T ⋆ is a Brownian motion. Imposing in
addition the so-called Feller’s condition 2κθ ≥ ϵ2 allows to ensure the positivity of the volatility
factor through time as long as V0 > 0. [WZ06] allows for correlation between the forward rates
process and the volatility process. First, let us recall that the Brownian motion driving the k-th
forward rate is denoted by

(
W k+1

t

)
t≥0

. We introduce the time dependent vector ϑk whose j-th
component is such that

d
〈
W k+1,(j)

. ,W.

〉
t
= ϑ

(j)
k (t)dt,

where W k+1,(j) stands for the j-th component of the multidimensional vector W k+1. The
correlation structure between the two processes is captured by the coefficient ρk defined as

d
〈

γk(.)

‖γk(.)‖
·W k+1

. ,W.

〉
t

=
γk(t)

‖γk(t)‖
· ϑ(j)

k (t)dt =: ρk(t)dt. (1.47)

Under the forward swap measure PS , the dynamics of the swap rate process follows from
the Itô’s formula as, for t ≤ Tm,

dSm,nt =
√
Vt

n−1∑
k=m

∂kψ(t)
(
Fk(t) + δ

)
γk(t) · dW S

t ,

dVt = κ
(
θ − ξ(t)Vt

)
dt+ ϵ

√
VtdWS

t ,

(1.48)

where W S is a multidimensional Brownian motion, WS is Brownian motion and we set ξ(t) =
1+ ϵ

κ

∑n−1
j=m αj(t)

∑j
k=1

∆Tk(Fk(t)+δ)
1+∆TkFk(t)

ρk(t)‖γk(t)‖. The obtained dynamics is here again too com-
plex for allowing the obtention of swaption prices by closed form formula.

Black framework Still using the freezing approximation method, the previous dynamics can
be approximated by a log-normal type dynamics that writes as

dSm,nt =
√
Vt
(
Sm,nt + δ

) n−1∑
k=m

γ̃k(t) · dW S
t ,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
VtdWS

t ,

t ≤ Tm (1.49)

where γ̃k(t) :=
∂kψ(0)(Fk(0)+δ)

Sm,n
0 +δ

γk(t) and ξ0(t) = 1+ ϵ
κ

∑n−1
j=m αj(0)

∑j
k=1

∆Tk(Fk(0)+δ)
1+∆TkFk(0)

ρk(t)‖γk(t)‖.
The deterministic deformation of the volatility structure (γk)k∈{m,...,n−1} is assumed to be

piecewise constant on the grid [Tj , Tj+1[, j = 1, . . . ,m. In this parametrization, the log-process
of (1.49) belongs to the class of affine process for which analytical knowledge of the moment
generating function is known, through resolution of some Riccati equations. The details of the
computation can be found in [WZ06] or [LDB20]. Semi-analytical swaptions prices can then
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be derived based on the integration of the characteristic function of the log-shifted swap rate.
Note that these semi-analytical prices are simply approximation prices since they are obtained
after freezing of (1.48).

In the following, the moment generating function of the log-swap rate process is defined over
its definition domain D ⊂ C as

Ψ(x; t, Sm,nt , Vt) = ES
[

exp
(
x ln

(
Sm,nTm

+ δ

Sm,n0 + δ

))∣∣∣∣Ft
]
, x ∈ D.

Proposition 1.8 (Log-normal swaption pricing under DDSVLMM). In the DDSVLMM,
swaption prices (1.13) express as

PS(t, Tm, Tn,T ′,K) = BS(0)
(
(Sm,n0 + δ)P1 − (K + δ)P2

)
,

where
P1 =

1

2
+

1

π

∫ +∞

0

1

u
Im
(
e−iuK

∗
Ψ(1 + iu; 0, sm,n0 , v0)

)
du,

P2 =
1

2
+

1

π

∫ +∞

0

1

u
Im
(
e−iuK

∗
Ψ(iu; 0, sm,n0 , v0)

)
du,

and where we set K∗ = ln K+δ
Sm,n
0 +δ

.

Proof. The proof of this formula can be found in [DPS00] or in [GP51].

Bachelier framework The definitions of the functions t 7→ γ̃k(t) are based on the assump-
tion of low variability through time of the coefficients ∂kψ(0)(Fk(0) + δ)/(Sm,n0 + δ. Based on
alternative assumption, those coefficients can be defined as

γ̃k(t) := ∂kψ(0)(Fk(0) + δ)γk(t)

which yields a normal type dynamics for the swap rate process

dSm,nt =
√
Vt

n−1∑
k=m

γ̃k(t) · dW S
t ,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
VtdWS

t ,

t ≤ Tm. (1.50)

[DPS00] provided (semi-) analytical formulas for a number of prices of securities. We detail the
derivation of the swaption price under (1.50) and following their work.

In the following, the moment generating function of the swap rate process is defined over its
definition domain D ⊂ C as

Ψ(x; t, Sm,nt , Vt) = ES
[
exS

m,n
Tm

∣∣Ft], x ∈ D.
Proposition 1.9 (Normal swaption pricing under DDSVLMM). In the DDSVLMM,
swaption prices (1.13) express as

PS(t, Tm, Tn,T ′,K) = BS(0)
(
P1 −KP2

)
,
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where
P1 =

1

2
Sm,n0 − 1

π

∫ +∞

0
Im
(
Ψ′(−iu; 0, sm,n0 , v0)e

iuK

u

)
du,

P2 =
1

2
+

1

π

∫ +∞

0
Im
(
e−iuKΨ(iu; 0, sm,n0 , v0)

u

)
du.

Proof. We follow the proof in [GP51]. First, we write the classical decomposition
PS(t, Tm, Tn,T ′,K) = BS(0)

(
ES
[
Sm,nTm

1{
Sm,n
Tm

≥K
}] − KES

[
1{

Sm,n
Tm

≥K
}]). Let us denote by

ϕ(z) := E
[
ezS

m,n
Tm

]
= Ψ(z; 0, sm,n0 , v0) the characteristic function of Sm,nTm

defined for u ∈ D and
by µ the density function of the random variable Sm,nTm

with respect to the Lebesgue measure.
First, let us consider (η,A) ∈ (R+)

2, η ≤ A. Observe that∫ A

η
Im
(
ϕ′(−ix)eixK

x

)
dx =

∫ A

η

∫
R
y
eix(K−y) − e−ix(K−y)

2ix
µ(y)dydx

=

∫
R
yµ(y)

∫ A

η

sin
(
x(K − y)

)
x

dxdy

where the Fubini theorem is licit since, for all x ∈ [η,A], any K ∈ R,∣∣∣∣∣sin
(
x(K − y)

)
x

∣∣∣∣∣ < 1

η
.

As in [GP51], consider the sign function sgn(x) = 1x>0 − 1x<0 and note that

sgn(K − y) = 2

π

∫ ∞

0

sin(x(K − y))
x

dx

holds for any K ∈ R. Furthermore, note that (η,A) 7→
∫ A
η

sin
(
x(K−y)

)
x dx is continuous and

simultaneously bounded in both of its argument. We finally get that∫ ∞

0
Im
(
ϕ′(−ix)eixK

x

)
dx = lim

(η,A)→(0,∞)

∫ A

η
Im
(
ϕ′(−ix)eixK

x

)
dx

=

∫
R
yµ(y) lim

(η,A)→(0,∞)

∫ A

η

sin
(
x(K − y)

)
x

dxdy

=
π

2

∫
R

sgn(K − y)yµ(y)dy

=
π

2

(∫ K

−∞
yµ(y)dy −

∫ ∞

K
yµ(y)dy

)
=
π

2

(
E
[
Sm,nTm

]
− 2E

[
Sm,nTm

1{
Sm,n
Tm

≥K
}])

=
π

2

(
Sm,n0 − 2E

[
Sm,nTm

1{
Sm,n
Tm

≥K
}])

Similar expression for P
(
Sm,nTm

≥ K
)

can be derived to prove the claim.

Let us finally mention that an alternative method for computing integrals of Fourier trans-
forms of characteristic functions associated with stochastic volatility models such as Heston
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one in terms of cosine expansions (that are related to Chebyshev series) has been proposed in
[Fan10].
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Chapter 2

Freezing approximations for the
calibration of the Displaced
Diffusion LIBOR Market Model

In present chapter, we discuss in more details the freezing techniques used to make the different
versions of the LIBOR Market Model tractable. It consists in approximating some relevant
stochastic quantities by their initial values to obtain dynamics whose coefficients are therefore
deterministic functions of time. Two common techniques are discussed and compare: the so-
called Rebonato and Hull & White approximations.

2.1 Introduction
In the previous chapter, a number of interest rates models derived in the LIBOR Market Model
were too complex to be calibrated in their primary forms as a number of stochastic processes
are involved in the drift and diffusion coefficients of dynamics defining the models. Yet it is
possible to simulate those models thanks to discretization schemes and compute prices using
Monte-Carlo methods. However such approaches are time and computationally consuming. To
overcome this difficulty approximations can be made to get tractable models –in the sense that
they allow the derivation of closed-form formula: this is the so-called freezing technique. Based
on a low variability assumption of well chosen quantities -allowing to replace some random
quantities by their initial values-, some approximating prices can be obtained by closed-form
formula. The problem of the induced error arises then. In this section, we provide details on
the approximation technique, analyse its relevance and propose some alternative methods.

2.2 Standard freezing method
We retake the notations used in Sections 1.5.3.1 and 1.5.4.1 introducing the Displaced Diffusion
Libor Market Model (DDLMM). The objective is to compute swaptions prices in the standard
DDLMM. Those are quantities proportional to ES [(Sm,nT −K)+]. To compute it, Monte-Carlo
simulations are necessary as the drift and the diffusion coefficients of the SDE (see the exact
modelling dynamics of swap rate (1.41)) defining the DDLMM are state dependent. The use of
such method is not practicable. Researchers/practitioners have proposed to somehow approxi-
mate the stochastic processes involved in the DDLMM in the hope to be able to easier compute
security prices. Those are thus approximating prices that are wanted to be as close as possible
of the exact prices. In the following, we focus on swaptions prices.
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Beforehand, recall some key fact about the swap rate process. It expresses as a non linear
transformation of the forward rates as

Sm,nt + δ =
n−1∑
j=m

αj(t)
(
Fj(t) + δ

)
(2.1)

where the stochastic weights are αj(t) =
∆TjP (t,Tj+1)∑n−1

k=m ∆TkP (t,Tk+1)
and δ ≥ 0 is the displacement

coefficient. It is stressed that these stochastic weights also depend on the forward rates according
to

αj(t) = fj(Fm(t), · · · , Fn−1(t)) =
∆Tj

∏j
k=m

1
1+∆TkFk(t)∑n−1

k=m∆Tk
∏k
l=m

1
1+∆TlFl(t)

. (2.2)

The dynamics describing the evolution of the swap rate process in the DDLMM under forward
swap measure (making the swap rate a martingale) can be derived using Itô’s formula:

d
(
Sm,nt + δ

)
= dSm,nt =

n−1∑
j=m

∂jψ(t)
(
Fj(t) + δ

)
γj(t) · dW S

t , t ≤ Tm, (2.3)

where we set (see for instance [WZ06] for the details of the computations)

∂jψ(t) = αj(t) +
∆Tj

1 + ∆TjFj(t)

j−1∑
l=m

αl(t)
(
Fl(t)− Sm,nt

)
. (2.4)

2.2.1 Rebonato
The first approximation is due to Riccardo Rebonato since he was the first to approximate swap
rate as linear combination of forward rates in [Reb98]. The basic assumption in this approach
is to consider the weights αj are of low variability through time. The freezing method proposed
thus to write swap rate as linear combination of forward rates:

Sm,nt + δ ≈
n−1∑
j=m

αj(0)
(
Fj(t) + δ

)
.

Recalling that LMM assigns a log-normal volatility structure to the forward rates, the swap rate
dynamics under the forward swap measure can thus be written as dSm,nt ≈

∑n−1
j=m αj(0)Fj(t)γj(t)·

dW S
t . Further assumption of low variability through time of the forward rates yields the Re-

bonato freezing approximation of (2.3) as

dSm,nt =

n−1∑
j=m

αj(0)
(
Fj(0) + δ

)
γj(t) · dW S

t t ≤ Tm. (2.5)

The obtained approximated swap rate process is a Bachelier type dynamics with time dependent
coefficient. In this setting, Bachelier formula can be employed to price swaptions. In particular,
recalling that correlation structure between forward rates is given by d 〈Fk(.) + δ, Fj(.) + δ〉t =
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(
Fk(t) + δ

)(
Fj(t) + δ

)
γk(t) · γj(t)dt, the implied volatility parameter under (2.5) writes

(
σReb
m,n

)2
=

1

Tm

n−1∑
k,j=m

αj(0)αk(0)
(
Fj(0) + δ

)(
Fk(0) + δ

) ∫ Tm

0
γj(t) · γk(t)dt. (2.6)

Remark 6. For Black pricing convention, an alternative freezing approximation can be done.
Based on the assumption of low variability of the ratios Fj(t)/Sm,nt , (2.6) rewrites as

(
σReb
m,n

)2
=

1

Tm

n−1∑
k,j=m

αj(0)αk(0)
(
Fj(0) + δ

)(
Fk(0) + δ

)(
Sm,n0 + δ

)2 ∫ Tm

0
γj(t) · γk(t)dt. (2.7)

2.2.2 Hull & White
In [HW99b], authors proposed to approximate directly the dynamics (2.3) derived using Itô’s
lemma. The method is based on the assumption that the coefficients ∂kψ(t)Fk(t) are of low
variability. The approximating dynamics writes then

dSm,nt =

n−1∑
j=m

∂kψ(0)
(
Fj(0) + δ

)
γj(t) · dW S

t t ≤ Tm. (2.8)

Observe that ∂jψ(0) = αj(0)+
∑n−1

k=m Fk(0)
∂αk(0)
∂Fj

and with (2.2), one can recover the expression
of ∂jψ(0) as given in (2.4). Again, the obtained dynamics is a Bachelier type one and implied
volatility parameter associated to swaption price can be derived as

(
σHW
m,n

)2
=

1

Tm

n−1∑
k,j=m

∂jψ(0)∂kψ(0)
(
Fj(0) + δ

)(
Fk(0) + δ

) ∫ Tm

0
γj(t) · γk(t)dt. (2.9)

Remark 7. For Black pricing convention, an alternative freezing approximation can be done.
Based on the assumption of low variability of the ratios Fj(t)/Sm,nt , (2.9) rewrites as

(
σHW
m,n

)2
=

1

Tm

n−1∑
k,j=m

∂jψ(0)∂kψ(0)
(
Fj(0) + δ

)(
Fk(0) + δ

)(
Sm,n0 + δ

)2 ∫ Tm

0
γj(t) · γk(t)dt. (2.10)

Before going into the technical details of the numerical analysis, we clarify the quantities we
will manipulate.

1. Implied volatilities: they refer to market data. As discussed in Chapter 1 Section 1.4.3.2,
market data often correspond to implied volatilities, that is volatility parameter that
should be plugged into a pricing formula to recover the price of the derivative. Follow-
ing the choice of the pricing formula, we speak of Bachelier or Black volatilities. This
information is given by data providers and reflect the current best practices.

2. Exact volatilities: those can alternatively referred to as Monte-Carlo volatilities. Under
a given set of parameters, primary models can be simulated thanks to discretization
scheme; Monte-Carlo methods allow then to compute swaptions prices. Inverting the
obtained prices using one of the two mentioned pricing formula allows to recover simulated
implied volatilities: we will refer to them as exact volatilities in contrast with volatilities
obtained thanks to the studied frozen approximations. Strictly speaking, they are not
exact volatilities as they embed discretization error.
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3. Theoretical volatilities: those are obtained once the freezing approximation has been
made. Namely, the refer to the formula (2.6) or (2.9) (or their Black counterparts given
in Remarks 6 and 7).

2.2.3 Historical estimations
We propose to first check on historical time series how behave the different frozen quantities.
The computations below are performed on Euro data between 12/31/1999 and 12/31/2020 and
illustrated below in Figure 2.1.

First in Figure 2.1a, we plot the historical time series of the stochastic weights recalled in
(2.1) for different maturities and tenors. Namely, (α1, α4) (respectively (α5, α9), (α10, α19) and
(α20, α39)) are associated to 1× 5 (respectively 5× 5, 10× 10, 20× 20) swaption. We observe
that the low variability assumption of these coefficients over time is admissible on empirical
data. The standard deviations of each time series support this assumption. Observe that the
gap between each pair of weights goes to zero on late market data: it is a consequence of the
late shape of the market curve in which the level of long-term maturities are below mid-term
ones.
In Figure 2.1b are plotted the weights induced by the Itô’s lemma when deriving the dynamics
of the swap rate and defined in (2.4). (∂2, ∂4) (respectively (∂6, ∂9), (∂11, ∂19)) are associated
with 1 × 5 (respectively 5 × 5, 10 × 10) swaption. Again the low variability assumption can
deemed receivable: the standard deviations of each time series are similar to that obtained in
Figure 2.1a. Observe also that the gap between weights of different maturities also goes to zero
as time passes.
Forward rates of maturity 1 (resp. 5, 10, 20, 30) year are depicted in Figure 2.1c: standard
deviations on historical data are larger than those obtained on the weights but still quite low.
The low variability assumption under Bachelier framework as in (2.5) or in (2.8) is more ques-
tionable in that case but can be deemed acceptable.
In Figure 2.1d are plotted the ratios F1/S

1,5 (resp. F4/S
1,5, F5/S

5,5, F9/S
5,5, F10/S

10,10,
F19/S

10,10, F20/S
20,20, F39/S

20,20). Regarding the low variability assumption of quantities
under Black framework, appearing in (2.7) or (2.10), we observe in Figure 2.1d that the ap-
proximation can be accepted on ancient market data (before 2015, roughly speaking). But, in
late market condition with low and even non-positive rates it is clear that this assumption is no
longer valid. This empirical observation contributes to explain why the Bachelier framework is
more suited to current low rates environment.

2.2.4 Pricing error
We now turn into the analyze of the error induced by each freezing approximation in term of
swaptions pricing and thus in term of error induced on terminal distribution of swap rates. In
particular, we estimate the distance between two models in some sense.

2.2.4.1 Bachelier convention

We first propose to numerically justify the previous assumptions from the pricing error point
of view. [BM07] and [BDB01] already studied the relevance of the Rebonato and Hull & White
freezing approximations. Under a given set of parameters, they compare the exact volatilities to
the theoretical ones given in (2.7) and (2.10) (the use of Bachelier convention was not standard
at that time). Both volatilities they obtained were close resulting in close prices that validates
the freezing approximations. However, their studies relied on the Black (log-normal) pricing
convention and was led on derivatives of relatively short maturities. For insurance needs, we
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(a) Historical time series of stochastic weights
(αj(0))j∈{1,4,5,9,10,19,20,29}. Standard deviations of
time series range in between 0.0066 and 0.0097.
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(b) Historical time series of stochastic weights
(∂jψ(0))j∈{2,4,6,9,11,19}. Standard deviations of
time series range in between 0.0035 and 0.012.
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(c) Historical time series of 1-year forward rates
(Fj(0))j∈{1,5,10,20,30}. Standard deviations of time
series range in between 0.018 and 0.019.
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Figure 2.1: Empirical check of the different low variability assumptions made in Rebonato and
Hull & White methods.

propose to extend their analysis of the freezing technique when using the Bachelier pricing
formula and in particular for swaptions of long maturities.

The methodology we propose is the following: we calibrate the dynamics (2.3) using the
afore mentioned freezing approximations (2.5) or (2.8) on market data. An accurate replication
–measured by the distance between frozen and market volatilities– of them would mean that the
proposed approximations are flexible enough to fit market data. In a second time, we simulate
the exact dynamics (2.3) without any freezing approximation to compute Monte-Carlo prices.
Inversion of the Bachelier formula allows to compare the exact volatilities to both theoretical
and implied ones: the distance between, on one hand, exact and theoretical volatilities –we will
refer to as the freezing error– and on the other hand, exact and market volatilities –referred to
as calibration error– allows to appreciate the relevance of the freezing approximations through
multiple perspectives.
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Calibration using frozen approximations
For the purpose of this section, we do not calibrate the displacement factor δ which was set to
0.02. Calibration consists in the best replication of 336 swaptions volatilities quoted on June
30th, 2020 in Euro market. Those are composed of both At-The-Money (ATM) and Away-
From-the-Money (AFM) data. Maturities and tenors range into {1, . . . , 10, 15, 20, 25, 30} years
(in the plots below, those are labelled as {1, 2, . . . , 13, 14}). For AFM volatilities, we consider
the same range of maturities but we focus on a 10-year reference tenor. The residual strikes1

(in bps) range into ±{25, 50, 100, 150, 200}. The target function used to calibrate the model
is the normalized sum of the square of relative differences between market and model prices.
Table 2.1 depicted the root mean squared relative error2 (RMSE) obtained as outputs of the
calibration.

Freezing method RMSE-ATM RMSE-AFM
Rebonato 0.07039 0.12

Hull & White 0.06996 0.1192

Table 2.1: Comparison of freezing techniques for calibration in Bachelier environment.

It turns out that both freezing approaches offer similar and accurate replications of market
data on ATM data illustrating that the model is parametrized enough to reproduce market
data. Not surprisingly, the model poorly perform on AFM data as the model does not induce
smile on volatilities.

Simulations of exact quantities
The exact volatilities displayed here were computed on 105 paths. On ATM volatilities, the
Hull & White assumption turns out to be the most robust as both the freezing and calibration
errors are smaller than those induced by the Rebonato’s approximation. The improvement is
particularly material concerning for the freezing error though it is also appreciable on calibration
error.

Freezing method Error between M.C. vol. and .. ATM AFM

Rebonato Theoretical vol. 0.05292 0.3211
Market vol. 0.08543 0.3046

Hull & White Theoretical vol. 0.02636 0.3225
Market vol. 0.07503 0.3062

Table 2.2: Distance between exact volatilities and theoretical/market ones.

In Figure 2.2 the relative freezing error for both Rebonato and Hull & White assumptions
is depicted. On ATM data, the errors between frozen volatilities and exact ones appear to
be increasing functions of the maturity and tenor which seems intuitive. This monotonicity
is particularly pronounced for the Rebonato approach. About AFM volatilities, we observe a
strong dependency towards the level of moneyness for both approaches: the major part of the
AFM error given in Table 2.2 comes from the most extreme strikes which was expected. In

1Recall that residual strike of a swaption whose underlying spot value is Sm,n
0 and of strike K is defined as

k := K − Sm,n
0 .

2If (σMod
i )i∈{1,...,N} stands for the set of closed-form volatilities and (σMkt

i )i∈{1,...,N} represents the set of

market ones, we define RMSE =

√
1
N

∑N
k=1

(
σMkt
k

−σMod
k

σMkt
k

)2

. The target function used for calibration writes as
the square of the RMSE.
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Table B.1, we specify the freezing error for some chosen volatilities: the simulated quantities
along with bounds of confidence intervals are compared to the theoretical volatilities. Eventually
those results demonstrate that the error induced by the freezing of some random quantities on
prices/volatilities is quite weak.

(a) Freezing error on ATM using Rebonato assump-
tion.

(b) Freezing error on AFM using Rebonato assump-
tion.

(c) Freezing error on ATM using Hull & White as-
sumption.

(d) Freezing error on AFM using Hull & White as-
sumption.

Figure 2.2: Relative freezing error for both approximation methods.

78



Comparison under a fixed set of parameters
Finally, we compare each approximation under a fixed set of parameters. We select a set of
parameters obtained as outputs of a calibration procedure. The Hull & White approximation is
again the most accurate one in particular on ATM data, as presented in Table 2.3. From results
presented below in Table B.2 and Figures 2.3, we observe again that the difference between
the two methods is material for long tenors. Those results demonstrate that the Hull & White
method appears as the most accurate to approximate exact quantities.

Freezing method RMSE-ATM RMSE-AFM
Rebonato 0.05293 0.3211

Hull & White 0.025384636 0.3214

Table 2.3: Freezing error under a fixed set of parameters.

(a) Relative error between Rebonato and exact
volatilities on ATM data.

(b) Relative error between Hull & White and exact
volatilities on ATM data.

Figure 2.3: Freezing error under a fixed set of parameters.

2.2.4.2 Log-normal convention

The same study is led in the Black-Scholes framework. Log-normal framework allows to induce
some strike dependency and reproduce smile in volatilities. The final conclusion is the same as
the one for the Bachelier environment: the Hull & White approximation turns out to be a bit
more accurate than the Rebonato one under multiple criterion.

Beforehand, we clarify a point that can seem counter-intuitive: it is quite possible to resort on
Black pricing convention while using normal quoted volatilities. Indeed, such volatilities can be
converted into Black ones following the scheme: (i) computation of market prices via Bachelier
pricing formula using normal quoted volatilities; (ii) computation of log-normal volatilities by
inverting the Black formula with market prices as inputs. Conversely, one can use a Bachelier
pricing convention while calibrating its model on log-normal prices following a similar procedure.
In practice, to circumvent this difficulty and to ensure the consistency the target function
to optimize should involve prices. Note that, since market data we use here are Bachelier
volatilities, we convert the model volatilities into normal ones for computing the RMSEs.
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Calibration using freezing approximations
Calibration is performed similarly on the same dataset as previously. The displacement coeffi-
cient δ is set to 5% now. Table 2.4 gathers the replication error between theoretical volatilities
and market ones. Again both approximation provide similar data replication. Yet contrary to
the Bachelier environment, the Rebonato assumption here leads to a slightly better replication
of the market data notably for ATM.

Freezing method RMSE-ATM RMSE-AFM
Rebonato 0.04822 0.1149

Hull & White 0.04979 0.1143

Table 2.4: Comparison of freezing techniques for calibration in Black environment.
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Simulations of exact quantities
Simulations of log-normal volatilities rely on the Black formula. Table 2.5 gathers the distance
of Monte-Carlo Black volatilities to market ones and to frozen ones, obtained for each set of
parameters as output of the previously calibration process.
In Black environment, Hull & White convention leads to a significant reduction of distances
on ATM volatilities; errors on AFM ones are slightly larger. The reduction of freezing error is
remarkable when relying on this assumption. Regarding the calibration error, Hull & White
also provides a slightly better ATM data replication. In Figure 2.4, we provide the relative
freezing error induced by each method and on each type of data. On ATM data a strong
dependency with respect to the tenor and maturity is still observed. Regarding the AFM data
now, there is no longer such a strong dependency on the level of moneyness –since the conversion
of log-normal towards normal volatilities induced some smile– but rather on the maturity.

Freezing method Error between ATM AFMMonte-Carlo vol. and ..

Rebonato Theoretical vol. 0.03821 0.05520
Market vol. 0.05965 0.1308

Hull & White Theoretical vol. 0.006913 0.07158
Market vol. 0.05120 0.1368

Table 2.5: Distance between exact volatilities and theoretical/market ones.

Comparison under a fixed set of parameters
The accuracy of each approximating method on a given set of parameters is summarized in
Table 2.6: Hull & White approximation yields a much lower freezing error on ATM data and a
bit higher one on AFM volatilities. For ATM data (Fig. 2.5a and 2.5b), freezing error induced
by Rebonato approach turns out to have a stronger dependency with respect to tenor/maturity.

Freezing method RMSE-ATM RMSE-AFM
Rebonato 0.03821 0.05520

Hull & White 0.006859 0.06669

Table 2.6: Freezing error under a fixed set of parameters.

81



(a) Freezing error on ATM using Rebonato assump-
tion.

(b) Freezing error on AFM using Rebonato assump-
tion.

(c) Freezing error on ATM using Hull & White as-
sumption.

(d) Freezing error on AFM using Hull & White as-
sumption.

Figure 2.4: Relative freezing error for both approximation methods.
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(a) Freezing error on ATM using Rebonato assump-
tion.

(b) Freezing error on ATM using Hull & White as-
sumption.

Figure 2.5: Relative freezing error for both approximation methods under a fixed set of param-
eters.
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2.3 Proposed alternative
We first introduce the problem in a very general setting. Let us place ourselves in a probability
space (Ω,F ,P), let X := (Xt)t≤T ∈ L2(dt, dP) be a given measurable stochastic process of
dimension q whose initial value X0 = x0 is assumed to be known and such that t 7→ E[Xt] is
piecewise continuous. Consider Y := (Yt)t≤T a stochastic process of dimension n characterized
by

dYt = b(Yt,Xt)dt+ σ(Yt,Xt)dWt, (2.11)

with Y0
a.s.
= y0 ∈ Rn, b : Rn × Rq −→ Rn and σ : Rn × Rq −→ Rn×n two measurable functions

and (Wt)t≤T a n-dimensional Brownian motion. Computation of p = E[f(YT )], where f is a
Lipschitz function making this expectation well defined, is assumed to be not possible in closed
form formula. p is then approximated by p̃ = E[f(Y ν

T )] where Y ν is an approximation process,
characterized by

dY ν
t = b(Y ν

t ,νt)dt+ σ(Y ν
t ,νt)dWt, (2.12)

with Y ⋆
0
a.s.
= y0 and (νt)t≤T is an alternative process q-dimensional such that ν0 = X0 making

the computation of p̃ analytically doable. The problem can be formulated as follows:

inf
ν∈U

(p− p̃)2 (2.13)

where U is the set of admissible approximation process. Of course, if the set of admissible
approximation process U is composed of all progressively measurable process, the problem
(2.13) admits a trivial solution ν∗

t = Xt. In the following, we will thus restrict ourselves to
deterministic (piecewise) continuous functions:

U =
{
g : t ∈ [0, T ] −→ gt ∈ Rq deterministic: g0 = x0,

∫ T

0
‖gs‖2ds <∞

}
.

A priori estimates
Let ν ∈ U be given. Since f is a Lipschitz, we have

(p− p̃)2 ≤ CLip(f)E[‖YT − Y ν
T ‖2].

Roughly speaking, we expect that the closest the processes X and ν are (in some sense), the
better the approximation p̃ ≈ p is. This intuition is illustrated below.

Theorem 2.1. Assume that the functions b and σ are Lipschitz. Then, there exists some
positive constant K > 0 such that

E[‖YT − Y ν
T ‖2] ≤ K

∫ T

0
E[‖Xs − νs‖2]ds. (2.14)

Proof. From triangle and Jensen’s inequality, we have

‖YT − Y ν
T ‖ ≤

∫ T

0
‖b(Ys,Xs)− b(Y ν

s ,νs)‖ds+
∥∥∥∥∫ T

0

(
σ(Ys,Xs)− σ(Y ν

s ,νs)
)
dWs

∥∥∥∥ ,
and with Jensen’s inequality again

‖YT − Y ν
T ‖2 ≤ 2T

∫ T

0
‖b(Ys,Xs)− b(Y ν

s ,νs)‖2ds+ 2

∥∥∥∥∫ T

0

(
σ(Ys,Xs)− σ(Y ν

s ,νs)
)
dWs

∥∥∥∥2 .
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Taking the expectation, using the Fubini theorem, the Lipschitz property of the coefficients and
the Burkholder-Davis-Gundy inequality, we get:

E[‖YT − Y ν
T ‖2] ≤ 2C2

Lip(b)T

∫ T

0
E
[
‖(Ys,Xs)− (Y ν

s ,νs)‖2
]
ds

+ 2E

[
sup
t≤T

∥∥∥∥∫ t

0

(
σ(Ys,Xs)− σ(Y ν

s ,νs)
)
dWs

∥∥∥∥2
]

≤ 2C2
Lip(b)T

∫ T

0
E
[
‖(Ys,Xs)− (Y ν

s ,νs)‖2
]
ds

+ 2CBDG

∫ T

0
E
[
‖σ(Ys,Xs)− σ(Y ν

s ,νs)‖2
]

ds

≤ C
(∫ T

0
E
[
‖Ys − Y ν

s ‖2
]
ds+

∫ T

0
E
[
‖Xs − νs‖2

]
ds
)

where we set C = 2max
(
C2

Lip(b)T,CBDGC
2
Lip(σ)

)
for the last inequality. The Gronwall’s lemma

gives the result.

We can look in more detail the auxiliary problem

inf
ν∈U

J(ν), (2.15)

where we set the functional J(ν) :=
∫ T
0 E[‖Xs−νs‖2]ds. We resort on the theory of variational

calculus: the Lagrangian function (t,ν) ∈ [0, T ]×U 7→ L(t,ν) := E[‖Xt−ν‖2] = E[‖Xt‖2]−2ν ·
E[Xt]+‖ν‖2 is continuous, partially differentiable and convex with respect to its second variable.
According to Proposition 1.4.3 of [Kie18], any local minimizer of J is a global minimizer. Still
according to [Kie18], Proposition 1.9.1, any local minimizer must satisfy the Euler-Lagrange
equation that is

∂

∂ν
L(t,ν) = 0, t ∈ [0, T ], (2.16)

Consider ν ∈ U and a small perturbation of it δν such that ν + δν ∈ U . Straightforward
computations show that

∀t ∈ [0, T ], L(t,ν + δν) = L(t,ν) + 2δν · (ν − E[Xt]) + ‖δν‖2.

Combined with (2.16) we obtain a minimizer ν∗ of J

∀t ∈ [0, T ],ν∗
t = E[Xt].

It is a rather intuitive result: approximation of the process X by its expectation is a relevant
candidate for our approximation problem (2.13). This is not fully satisfying for our initial
problem since

inf
ν∈U

(p− p̃)2 ≤ inf
ν∈U

J(ν).

However it allows to propose an alternative to the common usages presented above.

Mean approximation on forward rates
We applied to proposed alternative in present rates context by replacing the forward rates by
their covariation process to obtain closed-form formulas similar to (2.6) and (2.9). Note that
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the present proposed alternative aims at reducing the freezing error; regarding other types of
errors there is no reason a priori to believe they would be reduced.

2.3.1 Rebonato-like
We propose to approximate the Rebonato implied volatility as

(
σReb
m,n

)2
=

1

Tm

n−1∑
k,j=m

αj(0)αk(0)

∫ Tm

0
E
[(
Fk(t) + δ

)(
Fj(t) + δ

)]
γj(t) · γk(t)dt. (2.17)

The expectation appearing in the integral above can be taken under any equivalent to the
Risk-Neutral one probability measure since we rely on the covariation process to compute
it. This process starting at 0 is uniquely determined up to indistinguishability. By defini-
tion, the process

((
Fk(t) + δ

)(
Fj(t) + δ

)
− 〈Fk(.) + δ, Fj(.) + δ〉t

)
t≤0

is a (local) martingale and
thus E

[(
Fk(t) + δ

)(
Fj(t) + δ

)]
= E

[
〈Fk(.) + δ, Fj(.) + δ〉t

]
+
(
Fk(0) + δ

)(
Fj(0) + δ

)
. With

〈Fk(.) + δ, Fj(.) + δ〉t =
∫ t
0

(
Fk(s) + δ

)(
Fj(s) + δ

)
γk(s) · γj(s)ds, we use Fubini theorem and

solve a first degree ordinary differential equation satisfied by t 7→ E
[(
Fk(t) + δ

)(
Fj(t) + δ

)]
to

get E
[(
Fk(t) + δ

)(
Fj(t) + δ

)]
=
(
Fk(0)+ δ

)(
Fj(0)+ δ

)
exp

(∫ t
0 γk(s) · γj(s)ds

)
. Together with

(2.17) gives

(
σReb
m,n

)2
=

1

Tm

n−1∑
k,j=m

αj(0)αk(0)
(
Fk(0) + δ

)(
Fj(0) + δ

)(
exp

(∫ Tm

0
γk(s) · γj(s)ds

)
− 1

)
.

(2.18)

2.3.2 Hull & White-like
The formula (2.9) can be similarly adapted so that the approximated implied volatility writes

(
σHW
m,n

)2
=

1

Tm

n−1∑
k,j=m

∂jψ(0)∂kψ(0)
(
Fk(0) + δ

)(
Fj(0) + δ

)(
exp

(∫ Tm

0
γk(s) · γj(s)ds

)
− 1

)
.

(2.19)

Note that when the integrated variance of the forward rates is small, a Taylor series expan-
sion shows that the proposed versions of the alternative freezing coincides with the standard
initial value freezing. Namely, when

∫ Tm
0 γk(s) · γj(s)ds << 1, exp

(∫ Tm
0 γk(s) · γj(s)ds

)
− 1 ≈∫ Tm

0 γk(s) · γj(s)ds.
Note also that the obtention of log-normal type formulas can be easily obtained by simply

dividing the theoretical volatilities in (2.18) and (2.19) by Sm,n0 + δ (still based on the low
variability assumption of the ratios αk(t)/

(
Sm,nt + δ

)
or ∂kψ(t)/

(
Sm,nt + δ

)
).

2.3.3 Numerical results
We simply provide results relative to Bachelier pricing convention here.
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Calibration using freezing proposal
In Table 2.7 we give the distance between theoretical volatilities and market ones. The dis-
tinction between the two approaches is not really significant. Note that the proposed approach
somewhat degrades the calibration process when compared to the standard initial value freezing
method.

Freezing method RMSE-ATM RMSE-AFM
Rebonato 0.08536 0.1273

Hull & White 0.08361 0.1273

Table 2.7: Proposed freezing method for calibration in Bachelier environment.

Simulation of exact quantities
Table 2.8 gathers freezing and calibration errors induced by our proposal. As previously, the
Hull & White approximation turns out to be a bit more accurate on ATM data and a bit less
on AFM ones. Contrary to what could have been expected, the proposal is not satisfying as the
induced freezing error is substantially greater with the proposed freezing than the one displayed
in Table 2.2 regarding ATM data. On AFM ones, the proposal is slightly more accurate.

Freezing method Error between M.C. vol. and .. RMSE-ATM RMSE-AFM

Rebonato Theoretical vol. 0.1136 0.3121
Market vol. 0.1043 0.2963

Hull & White Theoretical vol. 0.09738 0.3142
Market vol. 0.09380 0.2981

Table 2.8: Distance between exact volatilities and theoretical/market ones.

Appendix B provides some detailed results on the comparison between both methods from
the freezing error point of view.
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Chapter 3

On the Jacobi process and
polynomial expansions

This chapter comprises a survey on the Jacobi process and on polynomial expansions techniques
for probability density functions. The first is a bounded stochastic process with the mean
reversion property and having a number of interesting properties. Second one is particularly
adapted to distributions satisfying the moment problem, such as that of the Jacobi process.
These two concepts will be at the core of Chapter 4.

Notations The following notations are valid until the end of present thesis.
We consider a probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 satisfying usual

conditions. In a financial context, P can be viewed as the historical probability measure whereas
the filtration will represent market information (quoted prices, observed smile, etc.). The latter
is assumed to be generated by a multivariate Brownian motion. For two (local) martingales
(Xt)t≥0 and (Yt)t≥0, 〈X·, Y·〉t will denote their quadratic covariation at time t. Z d

=Z ′ means
that distributions of Z and Z ′ are in fact the same whereas Z a.s.

= Z ′ stands for almost sure
equality. σ(Z) is the sigma-algebra generated by the random variable Z. E[·] is the expectation
associated to P, Ex[XT ] is the conditional expectation of XT given the starting point X0 = x.
We will denote with bold font u the vectors; the canonical scalar product between two vectors
will be denoted u · v. Unless otherwise stated, ‖u‖ will represent the (L2-) norm induced by
the scalar product i.e. ‖u‖ =

√
u · u.

For (a, b) ∈ R2, a < b, [a, b] (resp. (a, b)) stands for the set
{
x ∈ R : a ≤ x ≤ b

}
(resp.{

x ∈ R : a < x < b
}

). (a, b] and [a, b) are defined similarly.
Considering E a subset of Rd, α = (α1, . . . , αd) ∈ Nd and a smooth function f defined over

E, we will denote by ∂αf the following differentiation operator

x = (x1 . . . , xd) ∈ E 7→ ∂αf(x) = ∂α1
x1 . . . ∂

α1
xd
f(x).

We also introduce the following functional space

C∞pol(E) =
{
f : E → R : f ∈ C∞, ∀α ∈ Nd, ∃Cα > 0, eα ∈ N∗, ∀x ∈ E, |∂αf(x)| ≤ Cα(1 + ‖x‖eα)

}
.

Some «special» functions will be needed in this work. We will denote the Gamma function
by z ∈ {z ∈ C : Re(z) > 0} 7→ Γ(z) =

∫∞
0 uz−1e−udu. The beta function is then defined as

B(x, y) = Γ(x)Γ(y)
Γ(x+y) .
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Name Parameters Density
Normal or Gaussian N (µ, σ2) (µ, σ) ∈ R× R∗

+
1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
Gamma Γ(k, θ) (k, θ) ∈ (R∗

+)
2 θk

Γ(k)x
k−1e−θx1x>0

Beta β(a, b) (a, b) ∈ (R∗
+)

2 Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1
10<x<1

Chi-squared with d degree χ2(d) d ∈ N∗ xd/2−1e−x/2

2d/2Γ(d/2)
1x>0

Exponential E(λ) λ > 0 λe−λx1{x>0}

Table 3.1: Common continuous probability distributions.

3.1 Jacobi process: an overview
3.1.1 Introduction
Stochastic processes taking values in finite domain have been originally introduced by biologists
to model gene frequencies. To give some insights on their motivations, let us consider a pop-
ulation in which two types of alleles {A,B} of a given gene exist. Sewall Wright and Ronald
Fisher first studied a discrete time evolution model to describe the spread of alleles among the
population (the interested reader could refer to [Wri31] and references therein) in which the
number of individuals owning a given allele is distributed following a binomial distribution.
Namely, denote by Xn the number of individuals in the population of size N with allele type A
at time n. The sequence (Xn)n∈N is modelled by a Markov chain with transition probabilities
given by

P(Xn+1 = k|Xn = i) =

(
N

k

)(
i

N

)k (
1− i

N

)N−k
.

for (k, i) ∈ {1, 2, . . . , N}2. It turns out that this discrete time model can be extended to
a continuous diffusion setup. The limit process is employed as a continuous in time gene
frequencies model. It can be shown (see [KT81]) that the limit process satisfy a stochastic
differential equation of the form

dXt = (a− kXt)dt+ σ
√
Xt(1−Xt)dWt,

where W is a Brownian motion and non negative parameters a, k allows to model mutations
and selection in the alleles evolutions. The process (Xt)t≥0 defined this way is usually referred
to as the Wright-Fisher process. When 0 ≤ a ≤ k and σ ∈ R, it can be shown that this process
is well defined and remains in the interval [0, 1] almost surely (see Theorem 3.1 below) allowing
then to interpret X as a frequency. Translation of the defined process (Xt)t≥0 allows to consider
more general diffusion processes living in any bounded interval. In particular, the process taking
values in [−1, 1] has been named Jacobi process due to its connection with Jacobi polynomials
(named after Carl Gustav Jacob Jacobi; see dedicated Section 3.1.3 below for details on the
mentioned connection). Thereafter, Jacobi process will more generally refer to any [x∗, x

⋆]-
valued (with −∞ ≤ x∗ < x⋆ ≤ +∞) process with Wright-Fisher type dynamics.

In finance modelling, Jacobi process has also been employed with multiple objectives. Mod-
elling of stochastic correlation can be done using Jacobi process lying in [−1, 1]. In [Ma09], the
author worked with one equity dynamics for domestic economy and one for foreign economy;
those assets are correlated with a stochastic correlation factor which dynamics is given by a
[−1, 1]-valued Jacobi process. Semi analytical option prices were obtained in this framework.
In a similar –but not equivalent– modelling context, [VV12] used a Jacobi process to model
stochastic leverage. In an interest rates context, [DS02] proposed the Jacobi dynamics for mod-
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elling the evolution of the short rate; they derived semi analytical formula for bond prices that
is barely tractable. In his thesis, [Kap10] proposed a survey and an extension of the work of
[DS02] –along with a discrete time interest rate modelling based on the Ehrenfest model (see for
instance [KM65] on the topic). [DJDW01] and more recently [LS07], used a Jacobi dynamics
for modelling the logarithm of the exchange rate between currencies in a specific zone. Even
more recently, [AFP17] employed to Jacobi dynamics in a stochastic volatility type model to
represent the evolution of the volatility factor.

Based on the last mentioned article, the Jacobi process will be central in Chapter 4 of present
work. In this section, we propose to give a brief overview about the Jacobi process summarizing
its main theoretical properties and some of the related extensions that can be found in the
literature on the topic.

3.1.2 Definition and existence
Let us consider two (extended) real numbers x∗, x⋆ satisfying −∞ ≤ x∗ < x⋆ ≤ +∞ and define
the bounding function

Q(x) = (x⋆ − x)(x− x∗). (3.1)

Observe that (x⋆−x∗)2
4 ≥ Q(x) ≥ 0 for all x lying in [x∗, x

⋆]. Consider then the following
stochastic differential equation

Xx0
t = x0 +

∫ t

0
(a− kXx0

s ) ds+ ϵ

∫ t

0

√
Q(Xx0

s )dBs, t ≥ 0, (3.2)

where x0 ∈ [x∗, x
⋆], (a, k) ∈ R2 that are such that kx∗ ≤ a ≤ kx⋆, ϵ ∈ R+and (Bt)t≥0 is a

one-dimensional Brownian motion.

Theorem 3.1. There exists a unique strong solution satisfying (3.2).

In our terminology, the «[x∗, x⋆]-valued» Jacobi process refers to this unique solution of
(3.2).

Proof. Let us fix x0 ∈ [x∗, x
⋆] and define the following functions:

f : x ∈ R 7→ a− ktr(x), g : x ∈ R 7→ ϵ
√
Q(tr(x)), and tr : x ∈ R 7→ min(max(x, x∗), x⋆). (3.3)

Consider then the stochastic differential equation

X̃x0
t = x0 +

∫ t

0
f(X̃x0

s )ds+
∫ t

0
g(X̃x0

s )dBs. (3.4)

Continuity and boundedness of maps f and g implies weak existence of a solution to the SDE
(3.4) following, for instance, [KS91], Theorem 5.4.22, p. 323. As a polynomial function, Q is
locally Lipschitz; it is in particular over [x∗, x

⋆]. It is also straightforward to check that the
truncating function x 7→ tr(x) is Lipschitz. Using in addition the 1/2-Hölder regularity of the
square-root function, we eventually get that for some constant C > 0, for all (x, y) ∈ R2,

|g(x)− g(y)|2 ≤ ϵ2|Q(tr(x))−Q(tr(y))| ≤ ϵ2C|x− y|.

The pathwise uniqueness of solution to (3.4) follows thanks to Yamada-Watanabe theorem (see
[YW+71], Theorem 1). Strong existence of solution to (3.4) is deduced from weak existence and
pathwise uniqueness using Corollary 5.3.23 in [KS91] or Corollary 1 in [YW+71].
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The remaining of the proof is dedicated to justification that solution X̃x0 of (3.4) remains in
the interval [x∗, x⋆] almost surely when x0 ∈ [x∗, x

⋆]. In such a case, the truncating function tr
could be «removed» from the function f and g meaning that X̃x0 actually satisfies (3.2). We
could proceed using Yamada functions to prove that the processes Xx0

1,t := X̃x0
t −x∗ and Xx0

2,t :=

x⋆ − X̃x0
t remains non-negative almost surely, as in Theorem 6.1.1 of [Alf15]. Alternatively,

we propose here to use comparison theorems. The constant process t 7→ x∗ satisfies (3.4) with
a = kx∗ and x0 = x∗; now, for a given a ≥ kx∗, observe that a − kx ≥ k(x∗ − x), x ∈ R.
Theorem 5.2.18 in [KS91] (p. 293) gives that P(X̃x0

t ≥ x∗; ∀t ≥ 0) = 1. A similar reasoning
is done for the upper bound, observing that t 7→ x⋆ satisfies (3.4) with x0 = x⋆ and a = kx⋆.
Finally, P(x∗ ≤ X̃x0

t ≤ x⋆; ∀t ≥ 0) = 1 and then X̃x0 satisfies (3.4) without truncating function
in f and g: that is, X̃x0 satisfies (3.2).

Remark 8. In [AFP17], the authors get weak existence of [x∗, x⋆]-valued solution to (3.2) using
an affine transformation of the unit interval [0, 1] and weak existence of [0, 1]-valued solution
as result of Theorem 2.1, [LP17]. Apart from that, our justification of strong existence and
uniqueness is similar to theirs.
Remark 9. It is worth mentioning the particular cases when a = kx⋆ and x0 = x⋆ or when
x∗ = x⋆ that make the process time independent: ∀t ≥ 0, Xx0

t
a.s.
= x0.
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(a) x⋆ = −x∗ = 0.5, x0 = 0.0, a = 0.2, k = 0.7 and
ϵ = 0.4.
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(b) x⋆ = 5, x∗ = −3, x0 = 0.0, a = 2, k = 1.5 and
ϵ = 0.4.
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(c) x⋆ = 2, x∗ = 0, x0 = 0.5, a = 0.9, k = 0.9 and
ϵ = 1.2.
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(d) x⋆ = 2, x∗ = 0, x0 = 1.7, a = 1.4, k = 0.9 and
ϵ = 1.2.

Figure 3.1: Illustration of Jacobi paths for various parametrizations.
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3.1.3 Distributional properties
Density function Before the development of stochastic integration with respect to Brownian
motion by Kiyoshi Itô, diffusions were essentially studied through their transition semi-groups.
For common diffusion process it amounts to study their infinitesimal generator. In this regard,
it is particularly interesting to know the spectral composition of these functional operators as
it is the case of infinitesimal generator associated to Jacobi diffusion. Indeed, the spectral
representation is particularly suited for compact valued process as described in Section V.8 of
[BW09] (p. 408 and p. 504). [Ma09] and [Alf15] applied this methodology to [−1, 1]-valued
Jacobi process while [DS02] focused on [0, 1]-valued process to derive the transition density
function. We propose here to follow the same approach for a generic domain [x∗, x

⋆].
We will see that the marginal density functions of the Jacobi process express in term of

(extended) Jacobi polynomials. Jacobi polynomials polynomial functions are orthogonal in
the space of square integral functions over [−1, 1] with respect to a proper weighting function.
Composed with translations, they define extended Jacobi polynomials that can alternatively be
referred to as modified Jacobi polynomials following the terminology of [Kap10].

In the following, we will denote by z the translation defined by z : x ∈ [x∗, x
⋆] 7→ 2

(x⋆−x∗)(x−
x∗)−1 ∈ [−1, 1]. The infinitesimal generator of diffusion (3.2) A applied to a twice differentiable
function f ∈ C2([x∗, x⋆]) writes

Af(x) = (a− kx)f ′(x) + ϵ2

2
(x− x∗)(x⋆ − x)f ′′(x). (3.5)

Let us denote by (P
(a,b)
n )n∈N the Jacobi polynomials parametrized by (a, b) ∈ R2. They can

be defined as the orthonormal basis of the Hilbert space L2w =
{
f : R → R measurable :∫

R f(x)
2w(x)dx < ∞

}
with w(x) = (1 − x)a(1 + x)b1{−1≤x≤1} equipped with scalar product

〈·, ·〉L2
w

(see below Section 3.4 and Equation 3.53). The interested reader can refer to [AS64] for
a survey of the properties of the these polynomials.

Definition 1. The n-th modified Jacobi polynomials is defined as

Q(ã,b̃)
n : x ∈ [x∗, x

⋆] 7→ P (ã,b̃)
n (z(x)).

Basic properties of the modified Jacobi polynomials derive directly from that of standard
ones.

Lemma 3.2. Modified Jacobi polynomials
(
Q

(ã,b̃)
n

)
n∈N form an orthogonal basis of L2π with

π(x) =
(

2
x⋆−x∗

)ã+b̃
(x⋆ − x)ã(x − x∗)b̃1{x∗≤x≤x⋆} with b̃ = 2(a−kx∗)

ϵ2(x⋆−x∗) − 1 and ã = 2(kx⋆−a)
ϵ2(x⋆−x∗) − 1.

Moreover, for each n ∈ N, Q(ã,b̃)
n is an eigenvector of the operator A associated with eigenvalue

λn = −kn− n(n− 1) ϵ
2(x⋆−x∗)

4 :
AQ(ã,b̃)

n = λnQ
(ã,b̃)
n .

Proof. Let us first prove the second claim, it is straightforward to get

dQ(ã,b̃)
n

dx (x) =
2

x⋆ − x∗
dP (ã,b̃)

n

dz (z) and d2Q
(ã,b̃)
n

dx2 (x) =

(
2

x⋆ − x∗

)2 d2P
(ã,b̃)
n

dz2 (z)
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with z = z(x) ∈ [−1, 1]. We thus obtain

AQ(ã,b̃)
n (x) =

ϵ2

2

{
(1− z2)d2P

(ã,b̃)
n

dz2 (z) +
[4a− 2k(x⋆ + x∗)

ϵ2(x⋆ − x∗)
− 2k

ϵ2
z
]dP (ã,b̃)

n

dz (z)

}
.

The result is a consequence of the differential equation satisfied by the standard Jacobi poly-
nomials P a,bn is (1− x2)f ′′ + (b− a− (a+ b+ 2)x)f ′ + n(n+ a+ b+ 1)f = 0 (see [AS64]).

Now, observe that the family
(
Q

(ã,b̃)
n

)
n∈N forms an orthogonal system. Indeed, since λn 6= λm

for n 6= m, we have by definition of the scalar product associated to π:〈
Q(ã,b̃)
n , Q(ã,b̃)

m

〉
π
=

∫ x⋆

x∗

Q(ã,b̃)
n (x)Q(ã,b̃)

m (x)π(x)dx

=
1

λn

∫ x⋆

x∗

AQ(ã,b̃)
n (x)Q(ã,b̃)

m (x)π(x)dx =
1

λn

〈
AQ(ã,b̃)

n , Q(ã,b̃)
m

〉
π
.

Similarly, we get
〈
Q

(ã,b̃)
n , Q

(ã,b̃)
m

〉
π
= 1

λm

〈
Q

(ã,b̃)
n ,AQ(ã,b̃)

m

〉
π
. However, from [BW09] (section V.8),

we know that
〈
Q

(ã,b̃)
n ,AQ(ã,b̃)

m

〉
π
=
〈
AQ(ã,b̃)

n , Q
(ã,b̃)
m

〉
π
. We deduce then that

〈
Q

(ã,b̃)
n , Q

(ã,b̃)
m

〉
π
=

0. Moreover, using again the properties of standard Jacobi polynomials, we have that∫ x⋆

x∗

Q(ã,b̃)
n (x)Q(ã,b̃)

m (x)(x⋆ − x)ã(x− x∗)b̃dx

=

(
x⋆ − x∗

2

)ã+b̃+1 ∫ 1

−1
P (ã,b̃)
n (u)P (ã,b̃)

m (u)(1− u)ã(1 + u)b̃du

=
(x⋆ − x∗)ã+b̃+1

2n+ ã+ b̃+ 1

Γ(n+ ã+ 1)Γ(n+ b̃+ 1)

n!Γ(n+ ã+ b̃+ 1)
1m=n,

whence the result.

Those properties are useful to derive the transition density for the process (Xx0
t )t≥0 using a

spectral decomposition of it.

Proposition 3.3. Retake the parameters ã, b̃, the eigenvalues (λn)n∈N and the weighting func-
tion π introduced in the previous Lemma (3.2). The transition probability density of the process
defined in (3.2) is given by

pXx0 (t;x0, y) = π(y)
∞∑
n=0

1

cn
Q(ã,b̃)
n (x0)Q

(ã,b̃)
n (y)eλnt, t > 0, y ∈ [x∗, x

⋆], (3.6)

where the scaling coefficients (cn)n∈N are given by

cn =
1

n!

2ã+b̃(x⋆ − x∗)
2n+ ã+ b̃+ 1

Γ(n+ ã+ 1)Γ(n+ b̃+ 1)

Γ(n+ ã+ b̃+ 1)
.

In particular, the stationary distribution of Xx0 obtained when sending t → ∞ in (3.6) is the

93



non-standard beta1 distribution over [x∗, x
⋆] with parameters ã+ 1 and b̃+ 1:

p∞(y) =
π(y)

c0
=

1

(x⋆ − x∗)ã+b̃+1

(x⋆ − x)ã(x− x∗)b̃

B(ã+ 1, b̃+ 1)

with B the Beta function.

Proof. According to [BW09] (see theoretical complements of section V.8 starting on p.504), the
density of transition probability can be expanded using the orthonormal family

(
Q

(ã,b̃)
n

)
n∈N as

pXx(t;x, y) = π(y)

∞∑
n=0

1

cn
Q(ã,b̃)
n (x)Q(ã,b̃)

n (y)eλnt, t > 0, x, y ∈]x∗, x⋆[. (3.7)

Stationary density is simply deduced from the obtained one by sending t→∞. For any n > 0,
1
cn
Q

(ã,b̃)
n (x0)Q

(ã,b̃)
n (y)eλnt −−−−→

t→+∞
0; furthermore, the convergence of the series in (3.7) is uniform

in t over any interval of the form (a,+∞) for any a > 0. We thus get that limt→∞ pXx0 (t;x0, y) =
1
c0
π(y) which gives the result.

Hitting properties In Figures 3.1c and 3.1d, we observe that the simulated Jacobi processes
attain its lower, respectively upper, boundaries. This behaviour depends on the values of
parameters defining (3.2). We take a closer look at this property here.

To prove the existence of the process Xx0 defined as solution of the diffusion (3.2), we
used that P(∀t ≥ 0;Xx0

t ∈ [x∗, x
⋆]) = 1. A common question that arises for modelling purposes,

especially for financial applications, is to determine whether the process will attain the boundary
{x∗, x⋆} or not. Feller’s tests for explosions allows to handle this question, and we refer to the
Section 5.5.C in [KS91] for more details.

We introduce the stopping times corresponding to the first moment when the process reaches
boundaries of its living domain. Denote by τx∗ = inf{t ≥ 0 : Xx0

t = x∗}, τx⋆ = inf{t ≥ 0 :
Xx0
t = x⋆} and by τex = τx∗ ∧ τx⋆ the first exit time of the process Xx0 .

Proposition 3.4. Assume that x0 ∈]x∗, x⋆[ and

ϵ2(x⋆ − x∗) ≤ 2min(a− kx∗, kx⋆ − a) (3.8)

Then the process Xx0 defined in (3.2) never reaches the boundaries of its domain:

P(τex =∞) = 1.

The following proof is a direct application of the general results of [KS91]. It is often found
in the literature to prove that the CIR process never reaches 0 under Feller’s condition. Due to
its shortness, we recall it in our framework.

Proof. Denote by b(x) = a − kx and σ(x) = ϵ
√
Q(x) the drift and diffusion functions of

the process (3.2). Observe first that ∀x ∈]x∗, x⋆[, σ(x)2 > 0; then that for any x ∈]x∗, x⋆[
there is an η > 0 such that

∫ x+η
x−η

1+|b(u)|
σ2(u)

du < ∞. This second assertion comes from fact that
σ2(x∗) = 0 ⇐⇒ x∗ ∈ {x∗, x⋆}, thus for any x ∈]x∗, x⋆[, we can find a η > 0 such that
[x− η, x+ η] ⊂]x∗, x⋆[; the continuous function u 7→ 1+|b(u)|

σ2(u)
is thus integrable over the compact

[x− η, x+ η].
1The beta distribution over [0, 1] in sometimes named the standard beta distribution in contrast with non-

standard beta distribution defined over arbitrary interval.
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Now, fix a c ∈ R \ {x∗, x⋆}, c /∈ and define the scale function

s(x) =

∫ x

c
exp

(
−2
∫ y

c

b(s)

σ2(s)
ds
)

dy =:

∫ x

c
f(y)dy.

Straightforward computations show that, for any x ∈ R, for a given y ∈ [c, x],

f(y) = exp
(
−2
∫ y

c

b(s)

σ2(s)
ds
)

=

(
y − x∗
c− x∗

)−2(a−kx∗)
ϵ2(x⋆−x∗)

(
x⋆ − y
x⋆ − c

) 2(a−kx⋆)

ϵ2(x⋆−x∗)
.

Condition (3.8) writes ϵ2(x⋆−x∗) ≤ min(a−kx∗, kx⋆−a) that is equivalent max
(−2(a−kx∗)
ϵ2(x⋆−x∗) ,

2(a−kx⋆)
ϵ2(x⋆−x∗)

)
≤

−1. Then the function f is neither integrable at x+∗ nor at x⋆ −:

s(x) −−−→
x↗x⋆

∞ and s(x) −−−→
x↘x∗

∞.

The conclusion follows from Proposition 5.5.29, p.345, in [KS91].

In the following, we will refer to condition (3.8) as the Feller condition. When it is not
satisfied, the hitting probability can be explicitly computed (still following Section 5.5.C of
[KS91]). Indeed if P(Tex <∞) = 1, the probabilities of hitting x∗ and x⋆ are now given by:

P
(

lim
t↗τex

Xx0
t = x⋆

)
= 1− P

(
lim
t↗τex

Xx0
t = x∗

)
=

s(x⋆ −)− x0
s(x⋆ −)− s(x+∗ )

.

3.1.4 Study of the moments
Random variable characterized by their moments are of particular interest for the work led
in this thesis; we have discussed about such variables in dedicated Section 3.2. We will see
below that Jacobi process is always characterized by its moments regardless the choice of the
boundaries {x∗, x⋆}. Positive and negative moments (i.e. moments with negative exponents)
of the Jacobi process are studied below in the five following cases: (i) −∞ < x∗ < x⋆ < ∞,
(ii) 0 = x∗ < x⋆ < ∞, (iii) −∞ < x∗ < x⋆ = +∞, (iv) −∞ = x∗ < x⋆ < ∞ and finally (v)
x∗ = −∞ and x⋆ = +∞. Note that when considering infinite bounds, a rescaling is necessary.
Cases (i) and (ii) will be treated using polynomial property while cases (iii), (iv) and (v) are
exploited using their affine property to derive their characteristic function.

Remark 10. Jacobi process usually refers to a bounded stochastic process (i.e. max
(
|x∗|, |x⋆|

)
<

∞). Yet, unbounded processes can be seen as particular Jacobi process with infinite bounds. Two
processes are well known in the literature: set (x∗, x⋆) = (0,+∞) yields the Cox-Ingersoll-Ross
process and (x∗, x

⋆) = (−∞,+∞) defines the Ornstein-Uhlenbeck. In both cases, some rescaling
should be done as we will see below.

3.1.4.1 Moments computations

3.1.4.1.1 −∞ < x∗ < x⋆ < +∞ As a bounded process, it is straightforward to get that all
positive marginal moments of Xx0 are finite: for all t ≥ 0,

Xx0
t ∈

⋂
p∈N

Lp.

It is well known that distributions with bounded supports are determined by their moments
(see Section 3.2), and so is the Jacobi process. To compute its moments in this case, the theory
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of polynomial processes elaborated in Section 3.1.9 can be employed. Indeed straightforward
computations show that if A denotes the infinitesimal generator of diffusion (3.2), the set of
polynomial functions of a given degree is invariant by A: if P (x) =

∑k
i=0 cix

i ∈ Pk(R) for some
k ∈ N, then

AP (x) = −
k∑
i=0

i
(
k +

ϵ2

2
(i− 1)

)
cix

i +

k∑
i=0

i
(
a+

ϵ2

2
(i− 1)(x∗ + x⋆)

)
cix

i−1

− ϵ2x∗x
⋆

2

k∑
i=0

i(i− 1)cix
i−2 ∈ Pk(R),

where Pk(R) is the set of polynomial function defined over R of degree k ∈ N. Consequently the
Jacobi process is polynomial. The detail of the computation of marginal expectation of Xx0 is
given below as illustration. In the basis {1, x} of P1(R), the action of A can be represented by
the R2×2 matrix

A(1) =

(
0 a
0 −k

)
.

The upper triangular form of A(1) eases the computation of its exponential. Indeed observe
that

A(1) =

(
1 −a/k
0 1

)(
0 0
0 −k

)(
1 a/k
0 1

)
and that the left sided matrix is the inverse of the right sided one. Then for t ≥ 0

exp
(
tA(1)

)
=

(
1 a

k

(
1− e−kt

)
0 e−kt

)
and thus using property of polynomial processes (see Equation 3.33 below)

E [Xx0
t ] = (1, x0) · exp

(
tA(1)

)
(0, 1)T = x0e

−kt +
a

k

(
1− e−kt

)
.

Note that the expectation does not depend on x∗ and x⋆ and is equal to the expectation of a
CIR process or of an Ornstein-Uhlenbeck one.

In the particular sub-case when x∗ > 0, we can study the negative moments of Xx0 : for any
α ∈ R+, at any time t ≥ 0, 1

(X
x0
t )α

≤ 1
xα∗

hence the finiteness of all negative moments of the
Jacobi process. Their computation is more complicated. First we use a particular representation
of the hypergeometric Euler function 2F1 (see for instance [AS64] for more details) to write, for
s, t ≥ 0 ∫ x⋆

x∗

(x⋆ − u)s(u− x∗)tu−αdu

=
(x⋆ − x∗)s+t+1

xα∗

∫ 1

0
xt(1− x)s

(
1− x∗ − x⋆

x∗
x

)−α
dx

=
(x⋆ − x∗)s

′−1

xα∗

∫ 1

0
xt

′−1(1− x)s′−t′−1

(
1− x∗ − x⋆

x∗
x

)−α
dx

=
(x⋆ − x∗)s

′−1

xα∗
B(t′, s′ − t′)2F1

(
α, t′, s′;

x∗ − x⋆

x∗

)
(3.9)

where we introduced t′ = t+ 1 and s′ = s+ t′ + 1 and recall that B is the beta function. Note
that this representation is valid for s′ > t′ > 0 and x∗−x⋆

x∗
< 1. This second constraint is always
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satisfy for x⋆ > 0. We then use the explicit expression of the transition density obtained in
(3.6). Let t ≥ 0 and α ∈ R+.

E
[

1

(Xx0
t )α

]
=

∫ x⋆

x∗

1

yα
π(y)

∞∑
n=0

1

cn
Q(ã,b̃)
n (x0)Q

(ã,b̃)
n (y)eλntdy

=

∞∑
n=0

eλnt

cn
Q(ã,b̃)
n (x0)

∫ x⋆

x∗

1

yα
π(y)Q(ã,b̃)

n (y)dy

=

∞∑
n=0

2ã+b̃

cn

eλntQ
(ã,b̃)
n (x0)

(x⋆ − x∗)ã+b̃+n

n∑
k=0

(−1)k
(
n+ ã

n− k

)(
n+ b̃

k

)

×
∫ x⋆

x∗

(x⋆ − y)ã+k(y − x∗)b̃+n−ky−αdy

=
∞∑
n=0

2ã+b̃

cn

(x⋆ − x∗)2

xp∗
eλntQ(ã,b̃)

n (x0)

n∑
k=0

(−1)k
(
n+ ã

n− k

)(
n+ b̃

k

)
×
∫ 1

0
(1− y)ã+kyb̃+n−k (1− zy)−α dy

where we set z = x∗−x⋆
x∗

and the permutation between sum and integral has been made possible
since for all n ∈ N, [x∗, x⋆] 3 y 7→ π(y)Q

(ã,b̃)
n (y)/yα can be uniformly bounded by 1

xα∗
‖πQ(ã,b̃)

n ‖∞
so that the series

∑
n≥0 c

−1
n Q

(ã,b̃)
n (x0)‖πQ(ã,b̃)

n ‖∞eλntx−p∗ <∞. Hence using (3.9), we get that

E
[

1

(Xx0
t )α

]
= 2ã+b̃

(x⋆ − x∗)2

xα∗

∞∑
n=0

eλntQ
(ã,b̃)
n (x0)

cn
×

n∑
k=0

(−1)k
(
n+ ã

n− k

)(
n+ b̃

k

)
B(b̃+ n− k + 1, ã+ k + 1)2F1

(
α, b̃+ n− k + 1, ã+ b̃+ n+ 2; z

)
.

(3.10)

3.1.4.1.2 0 = x∗ < x⋆ < ∞ The study of positive moments remains as in the previous
case. Computations coming from the theory of polynomial processes can be adapted by setting
x∗ = 0.

However, negative moments are not necessarily finite anymore. In this particular case,

π(y) =

(
2

x⋆

)ã+b̃
× (x⋆ − y)ãyb̃,

Q(ã,b̃)
n (y) =

1

(x⋆)n

n∑
k=0

(
n+ ã

n− k

)(
n+ b̃

k

)
(y − x⋆)kyn−k.
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Hence the expression:

E
[

1

(Xx0
t )α

]
=

∫ x⋆

0

1

yα
π(y)

∞∑
n=0

1

cn
Q(ã,b̃)
n (x0)Q

(ã,b̃)
n (y)eλntdy

= 2ã+b̃
∞∑
n=0

eλntQ
(ã,b̃)
n (x0)

cn(x⋆)ã+b̃+n

n∑
k=0

(−1)k
(
n+ ã

n− k

)(
n+ b̃

k

)∫ x⋆

0
yb̃+n−k−α(x⋆ − y)ã+kdy

=
2ã+b̃

(x⋆)1−α

∞∑
n=0

eλntQ
(ã,b̃)
n (x0)

cn

n∑
k=0

(−1)k
(
n+ ã

n− k

)(
n+ b̃

k

)
B(b̃− α+ 1 + n− k, ã+ k + 1),

that is well defined for α < b̃+ 1 that can equivalently be written as

αϵ2x⋆ < 2a.

For α = 1, this last constraint is in particular implied by the Feller condition (3.8) when x∗ = 0.
This result will be proved in another way later in this thesis.

3.1.4.2 Characteristic function

As defined in (3.2), the Jacobi process naturally lives in the compact [x∗, x
⋆]. By rescaling

the diffusion coefficient, one can study the limiting cases x∗ = −∞ and x⋆ = +∞. In these
particular cases, the theory of affine processes can be employed: beside being polynomial, the
process (Xx0

t )t≥0 is also affine.
Affine processes have been well studied in the literature, notably with applications to

interest-rates and credit risk modelling. We refer the interested reader to [Alf06] for a thorough
work on this topic. The characteristic function of Xx0 is explicitly known and the moments can
be derived by differentiation.

3.1.4.2.1 x∗ ∈ R and x⋆ = +∞ Let ϵ̃ ≥ 0 and set ϵ = ϵ̃√
x⋆

in (3.2). Since ϵ̃
√

Q(x)
x⋆ −−−−−→x⋆→+∞

ϵ̃
√
x− x∗, we consider in this paragraph the stochastic process defined by

Xx0
t = x0 +

∫ t

0
(a− kXx0

s ) ds+ ϵ̃

∫ t

0

√
Xx0
s − x∗dBs, (3.11)

where (Bt)t≥0 is a Brownian motion. The infinitesimal generator associated to the process
(3.11) writes

Af(x) = (a− kx)f ′(x) + ϵ̃2

2
(x− x∗)f ′′(x)

when applied to a twice differentiable function.

Proposition 3.5. Let T > 0. The characteristic function of Xx0
T is well-defined over the

domain
D =

{
z ∈ C : Re(z) > − 2k

ϵ̃2(1− e−kT )

}
and is given by

E
[
e−zX

x0
T

]
=

(
ϵ̃2z

2k
(1− e−kT ) + 1

)− 2a
ϵ̃2

exp
(

ze−kT

1 + ϵ̃2z
2k (1− e−kT )

(x∗ − x0)

)
. (3.12)
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Proof. We can adapt the proof of [Alf15], Proposition 1.2.4. Fix z ∈ R+, such that the function
F (t,Xx0

T ; z) = E
[
e−zX

x0
T |Ft

]
is well defined. First assume the existence of two smooth functions

A(t, z) and B(t, z) such that F can be written as

F (t,Xx0 ; z)
a.s.
= eA(T−t,z)+B(T−t,z)Xx0

t . (3.13)

The process
(
F (t,Xx0

T ; z)
)
0≤t≤T is a martingale, and Itô’s formula indicates that F is necessary

solution of the partial differential equation (PDE):{
∂F
∂t + (a− kx)∂F∂x + ϵ̃2

2 (x− x∗)
∂2F
∂x2

= 0,
F (T, x; z) = e−zx.

It results in the following system of ordinary differential equations (ODEs) satisfied by functions
A and B, {

∂A
∂t = aB − ϵ̃2x∗

2 B2,
∂B
∂t = ϵ̃2

2 B
2 − kB,

associated with initial conditions A(0, z) = 0 and B(0, z) = −z. This is a Riccati system of
differential equations. C = 1/B satisfies the ODE ∂tC−κC+ ϵ̃2

2 = 0 coupled with C(0) = −1/z
that is solved to get that B(t, z) = −ze−kt

1+ ϵ̃2z
2k

(1−e−kt)
. Using this expression in the differential

equation satisfied by A yields

A(t, z) = −2a

ϵ̃2
log
(
ϵ̃2z

2k
(1− e−kt) + 1

)
+

zx∗e
−kt

1 + ϵ̃2z
2k (1− e−kt)

.

Hence eventually the expression of the characteristic function

E
[
e−zX

x0
T

]
= F (0, x0; z)

=

(
ϵ̃2z

2k
(1− e−kT ) + 1

)− 2a
ϵ̃2

exp
(

ze−kTx∗

1 + ϵ̃2z
2k (1− e−kT )

− ze−kTx0

1 + ϵ̃2z
2k (1− e−kT )

)
.

To prove that the assumed form (3.13) allows to uniquely identified F , we use a Feynman-
Kac type argument. Based on dynamics of Jacobi process (3.11) and thanks to Itô’s for-
mula applied to the process F (t,X; z) provides F (T,Xx0 ; z) = F (0, Xx0 ; z) + ϵ̃

∫ T
0 B(T −

s, z)F (s,Xx0 ; z)
√
Xx0
s − x∗dBs that is

e−zX
x0
T = eA(T,z)+B(T,z)x0 + ϵ̃

∫ T

0
B(T − s, z)F (s,Xx0 ; z)

√
Xx0
s − x∗dBs. (3.14)

For z ∈ R+ and any 0 ≤ t ≤ T , B(T − t, z) ≤ 0 and A(T − t, z) ≤ 2kx∗
ϵ̃2(ek(T−t)−1)

so that

F (s,Xx0 ; z) ≤ e
2kx∗

ϵ̃2(ek(T−s)−1) for all 0 ≤ s ≤ T . Consequently, Itô’s integral in (3.14) has zero
expectation. Hence E

[
e−zX

x0
T

]
= eA(T,z)+B(T,z)x0 which allows to identify F over R+.

It remains to determine the set of convergence of the characteristic function. The definition
domain D contains the set of positive real numbers since Xx0

T ≥ x∗. The right-hand side of
(3.12) is an analytic function for z > − 2k

ϵ̃2(1−e−kT )
. Since characteristic functions are analytic in

the interior of their domain of convergence (see for instance [Fil09], Lemma 10.8), both sides of
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(3.12) must coincide over (− 2k
ϵ̃2(1−e−kT )

,∞). Using the right-hand side expression in (3.12) and
fact that 2a

ϵ̃2
≥ 0, we have using monotone convergence theorem that

E
[
exp

(
2k

ϵ̃2(1− e−kT )
Xx0
T

)]
→∞

as z ↘ − 2k
ϵ̃2(1−e−kT )

. Now for z ∈ C, E
[
|e−zX

x0
T |
]
= E

[
exp

(
−Re(z)Xx0

T

)]
< ∞ if and only if

Re(z) > − 2k
ϵ̃2(1−e−kT )

. Both sides of (3.12) are analytic over (− 2k
ϵ̃2(1−e−kT )

,∞[, we deduce that
the identity (3.12) extends to the whole domain{

z ∈ C : Re(z) > − 2k

ϵ̃2(1− e−kT )

}
.

Remark 11. Setting x∗ = 0 in (3.11) corresponds to the Cox-Ingersoll-Ross process. It has been
well studied in the literature, notably in [Alf15]: Proposition 1.2.4 (p.7) provides the expression
of the characteristic function of the CIR process and its domain of definition. They can be
recovered by setting x∗ = 0 in Proposition 3.5.

As discussed previously it is straight to check the determination of the distribution of Xx0

by its moments when max(|x∗|, |x⋆|) <∞. Yet, the property still hold in present case.

Proposition 3.6. Set x∗ ∈ R and x⋆ = +∞. The process Xx0 defined by (3.11) is determined
by its moments.

Proof. See proof of Lemma 4.1 of [FL16].

3.1.4.2.2 x∗ = −∞ and x⋆ ∈ R Let ϵ̃ ≥ 0 and set ϵ = ϵ̃√
−x∗

with x∗ ≤ 0 in (3.2). Since

ϵ̃
√

Q(x)
−x∗ −−−−−→x∗→−∞

ϵ̃
√
x⋆ − x, we consider in this paragraph the stochastic process defined by

Xx0
t = x0 +

∫ t

0
(a− kXx0

s ) ds+ ϵ̃

∫ t

0

√
x⋆ −Xx0

s dBs, (3.15)

where (Bt)t≥0 is a Brownian motion. The computations of case (iii) can be adapted.

3.1.4.2.3 x∗ = −∞ and x⋆ = +∞ We now take ϵ̃ ≥ 0 and set ϵ = ϵ̃√
−x∗x⋆

with x∗ ∈ R−

and x⋆ ∈ R+. Since ϵ̃
√

Q(x)
−x∗x⋆ → 1 as (x∗, x

⋆)→ (−∞,+∞), we consider in this paragraph the
stochastic process defined by

Xx0
t = x0 +

∫ t

0
(a− kXx0

s ) ds+ ϵ̃Bt, (3.16)

where (Bt)t≥0 is a Brownian motion. The study reduces then to the that of an Ornstein-
Uhlenbeck process introduced in [UO30]. (3.16) can be solved explicitly for k > 0:

Xx0
t = x0e

−kt +
a

k
(1− e−kt) + ϵ̃

∫ t

0
e−k(t−s)dBs, t ≥ 0.
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By definition of the Wiener integral, Xx0 is a Gaussian process and is thus determined by its
first two moments. It is straightforward to get that

Xx0
t ∼ N

(
x0e

−kt +
a

k
(1− e−kt), ϵ̃

2

2k
(1− e−2kt)

)
,

and deduce that

E
[
e−zX

x0
t

]
= exp

(
−z
(
x0e

−kt +
a

k

(
1− e−kt

))
+
ϵ̃2z2

4k

(
1− e−2kt

))
, z ∈ C.

3.1.5 Link with Cox-Ingersoll-Ross process
We recall here the connection between the [0, 1]-valued Jacobi and the Cox-Ingersoll-Ross pro-
cesses derived notably in Section 6.1.3 (p. 191) of [Alf15]. This connection can be seen as an
extension to continuous time framework the following well-known identity connecting gamma
and beta distributions.

Lemma 3.7. If X1 ∼ Γ(k1, θ) and X2 ∼ Γ(k2, θ), then X1
X1+X2

∼ β(k1, k2) and is independent
of X1 +X2.

Proof. Set Y = X1 + X2, Z = X1/Y and let h : R2 → R be bounded and measurable such
that E

[
|h(Y, Z)|

]
<∞. Computing E

[
h(Y, Z)

]
by a change of variable allows to determine the

density f of the couple (Y, Z) as

f(y, z) =
θk1+k2

Γ(k1)Γ(k2)
e−θyyk1+k2−1zk1−1(1− z)k2−1

1{y>0}1{0<z<1}.

Here comes the counterpart claim result on stochastic processes.

Proposition 3.8 ([Alf15]). Let
(
(W i

t )t≥0

)
i=1,2

be two independent Brownian motions. Let be
two CIR processes defined as

Y i
t = yi + ait+ ϵ

∫ t

0

√
Y i
s dW i

s , i = 1, 2,

where a1, a2, y1, y2, ϵ are non-negative parameters satisfying ϵ2 ≤ 2(a1 + a2) and y1 + y2 > 0.
Then, Y = Y 1 + Y 2 is a CIR process starting from y1 + y2, with parameters a = a1 + a2, k = 0
and ϵ, that never reaches zero. Define then

Xx0
t =

Y 1
t

Y 1
t + Y 2

t

and τ(t) =
∫ t

0

1

Ys
ds. (3.17)

for t ≥ 0. τ : R+ → R+ is a bijective function and by denoting T = τ−1, the process
(
Xx0

T (t)

)
t≥0

is a [0, 1]-valued Jacobi process starting from x0 = y1
y1+y2

and with parameters k = a1 + a2,
a = k1, ϵ and that is independent of (Yt)t≥0.

This allows to deduce an alternative representation of the density function of the Jacobi
process. To do so we resort on the definition of the noncentral beta distribution introduced in
[Seb63].
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Proposition 3.9. Let t ≥ 0. Let us denote by c1t = 4a1
ϵ2(1−e−a1t)

, d1t = c1t e
−a1t, ct = 4(a1+a2)

ϵ2(1−e−(a1+a2)t)

and dt = cte
−(a1+a2)t. Conditionally on {τ(t)},

c1T (t)

cT (t)
Xx0

T (t) has a non central beta distribution

β′
(
a1
ϵ2
, a1+a2

ϵ2
, d1T (t)y1, dT (t)(y1 + y2)

)
.

Proof. c1tY 1
t is distributed following a non central chi-square distribution (see for instance Propo-

sition 1.2.11 in [Alf15]) with 2a1
ϵ2

degrees of freedom and non-centrality parameter d1t y1. The
same stands for ctYt with respective parameters 2(a1+a2)

ϵ2
and dt(y1 + y2). The claim follows

directly from the definition of the non-central beta distribution β′.

Let us now consider the time-changed process X̃x0
T (t) :=

c1T (t)

cT (t)
Xx0

T (t). Properties of the non-
central beta distribution can be employed to obtain that, roughly speaking, the marginal dis-
tribution of X̃x0

T (·) can write as a beta distribution whose parameters are Poisson variates.

Proposition 3.10. Let t ≥ 0 and (N1, N2) be a couple of independent Poisson random variables

of respective parameters
(
d1T (t)

y1

2 ,
dT (t)(y1+y2)

2

)
. Then, for any bounded measurable function f ,

we have

E
[
f
(
X̃x0

T (t)

)]
= E

[
Γ
(
a1
ϵ2

+N1 +
a1+a2
ϵ2

+N2

)
Γ
(
a1
ϵ2

+N1

)
Γ
(
a1+a2
ϵ2

+N2

) ∫ 1

0
f(x)x

a1
ϵ2

+N1(1− x)
a1+a2

ϵ2
+N2dx

]
.

Proof. Let (N1, N2) be a couple of independent Poisson random as above. From representation
(3.17), we know that X̃x0 writes as a ratio of random variables distributed following non-central
chi-square distributions. Furthermore, such distributions can be conveniently represented using
independent Poisson and standard chi-square variables. Indeed, the density of the non-central
chi-square distribution with k degrees of freedom and non-centrality parameter λ writes:

fX(x; k, λ) =

+∞∑
n=0

e−λ/2(λ/2)n

n!

x
k
2
+n−1e−x/2

2k/2+nΓ
(
k+2n

2

) .
Furthermore considering N ∼ P(λ/2) and Z a variate following a chi-square distribution with
k + 2n degrees of freedom conditional on {N = n}; then Z is chi-square distributed with k
degrees of freedom and non-centrality parameter λ. The claimed result is a consequence of
Lemma 3.7.

In particular, the density function of the distribution of Xx0
T (t) conditional on {τ(t)} writes

as

fX̃x0
T (t)

(x) = e
−(y1d1T (t)

+(y1+y2)dT (t))/2 ×

+∞∑
i,j=0

(
d1T (t)y1/2

)i (
dT (t)(y1 + y2)/2

)j
i!j!

x
a1
ϵ2

+i−1(1− x)
a1+a2

ϵ2
+j−1

B
(
a1
ϵ2

+ i, a1+a2
ϵ2

+ j
) 10≤x≤1.

The inverse time deformation T = τ−1 can be obtained using the generalized inverse function:

T (t) = inf{s : τ(s) > t}. (3.18)

Remark 12. For a given ω ∈ Ω, T is a strictly increasing and continuous function. For
such functions, generalized inverse function as defined in (3.18) and standard inverse function
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(when it exists) coincide. The interested reader can refer to [EH13] and references therein for
a discussion on the topic.

For the sake of completeness, we provide some details on the time deformation τ . As
previously discussed, Y is a CIR process starting from y1 + y2 whose parameters are a = k1,
k = a1 + a1 and ϵ. Since ϵ2 ≤ 2(a1 + a2), Y does not reach zero in finite time which allows
to define the inverse process 1/Y , starting from 1/(y1 + y2). Itô’s formula provides that 1/Y
satisfies the following SDE

dXt =
(
k − (a− ϵ2)Xt

)
Xtdt− ϵX3/2

t dWt (3.19)

where (Wt)t≥0 is a Brownian motion. The process defined by (3.19) is usually referred to as the
3/2 process in the literature. In [AG99] the authors proposed to use this dynamics for short rate
modelling and derive some closed-form formula for Zero-Coupon bond prices. [CS07] studied
stochastic volatility dynamics in interest rates context and studied variance swap derivatives;
in their work, the variance process is modelled using the previous 3/2 dynamics. Authors have
been able to derive explicit expression for the joint characteristic function of the log-driver
and the integrated variance processes. Authors actually extended the works of [Hes97] and
[Lew] in order to get semi-analytical formulas for prices of derivatives on realized variance.
In [GV19], authors worked in equity environment and employed similar modelling where the
variance process follows a 3/2 dynamics; the model they considered is sometimes named the
«3/2 Heston model». They adapted the analytical expressions of [CS07] and [AG99] to get
closed-form formulas for stock derivatives. We also mention the survey [KN12] that gathers
several results on the 3/2 Heston model.

In present context, we are looking for the distribution of the integrated 3/2 process(∫ t
0

1
Ys

ds
)
t≥0

. The results of [CS07] are of particular interest then. The following assertion
specifies the density function of the process (3.19) using the inversion formula (Fourier trans-
form) often used for pricing of derivatives. The expression of the characteristic function of the
3/2 process is thus required: Proposition 1 in [AG99] (p.742) gives the Laplace transform of
the 3/2 dynamics; Theorem 3 in [CS07] additionally provides the characteristic function of the
integrated 3/2 model. Both obtained their results using the PDEs solved by the Laplace/char-
acteristic functions.
In the following, the confluent hypergeometric function (or Kummer’s function, named af-
ter Ernst Kummer) will be needed. It is defined for all (a, z) ∈ C2 and b ∈ C\

{
Z− ∪ {0}

}
(b 6= 0,−1,−2, . . . ) as

M(a, b, z) =
+∞∑
i=0

(a)n
(b)n

zn

n!

where (a)n = a(a+1)(a+2)×· · ·× (a+n−1) is the standard Pochhammer symbol (introduced
by Leo Pochhammer). We denote the characteristic function of the integrated 3/2 process by

ϕ

(
u;

∫ t

0
Xsds

)
= E

[
exp

(
iu

∫ t

0
Xsds

)]
(3.20)

defined for u ∈ R and where i is the imaginary unit satisfying i2 = −1.
The following result is nothing else than an application of the inversion formula for identify-

ing density function based on the explicit knowledge of the characteristic function. It is a very
common technique for derivatives pricing in mathematical finance to resort on what is actually
a Fourier transform applied to the characteristic function of some integrated process. In case
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of the 3/2 process, the mentioned characteristic function can be expressed as

ϕ

(
u;

∫ t

0
Xsds

)
=

Γ(β − α))
Γ(β)

x(0, t)αM (α, β,−x(0, t)) , u ∈ R, (3.21)

where

x(0, T ) =
2kY0

ϵ2(ekT − 1)
, α = −

(
1

2
+
a− ϵ2

ϵ2

)
+

√(
1

2
+
a− ϵ2
ϵ2

)2

− 2iu

ϵ2
,

and β = 2α+ 2

(
1 +

a− ϵ2

ϵ2

)
= 1 + 2

√(
1

2
+
a− ϵ2
ϵ2

)2

− 2iu

ϵ2

have been introduced. The interested reader can refer to [AG99], [CS07] or [KN12] for a justi-
fication of this analytical expression.

3.1.6 Integrated Jacobi process
In some modelling applications, the integrated Jacobi process may be useful:

It =

∫ t

0
Xx0
s ds

where (Xx0
t )t≥0 is defined in Equation (3.2). The Laplace function ϕ(z; It) = E [exp (−zIt)] of

I is evaluated in z = 1 in [DS02] and derived in a semi-analytical way. Following the technique
of [Duf01], we can extend the expression to any z ≥ 0 taking advantage of the formula obtained
by [DS02].

Let us denote by Y y0
t = zXx0

t for some z ≥ 0. We have

Y y0
t = y0 +

∫ t

0
(ā− kY y0

u )du+ ϵ

∫ t

0

√
(Y y0
u − x̄∗)(x̄⋆ − Y y0

u )dWu

with y0 = zx0, ā = za, x̄∗ = zx∗ and x̄⋆ = zx⋆. In the following expression, we will need the
quantities:

A =
2

ϵ2
ā− kx̄∗
x̄⋆ − x̄∗

=
2

ϵ2
a− kx∗
x⋆ − x∗

, B =
2

ϵ2
kx̄⋆ − ā
x̄⋆ − x̄∗

=
2

ϵ2
kx⋆ − a
x⋆ − x∗

and for n ∈ N,

Λn = kn+
ϵ2

2
n(n− 1), Kn =

(A+B + 2n− 1)Γ(A+ n)Γ(A+B + n− 1)

n!Γ(A)2Γ(B + n)
,

(x)k =
Γ(x+ k)

Γ(x)
and ψn(x) =

n∑
k=0

(−1)k
(
n

k

)
(A+B + n− 1)k

(A)k
xk.

Proposition 3.11. The Laplace function of the integrated process writes, for z ≥ 0:

E
[

exp (−zIt)
]
= E

[
exp

(
−
∫ t

0
Y y0
u du

)]
= e−zx∗t

(
1 +

∑
n≥1

zn(x⋆ − x∗)n ×
∑

(vn,...,v1)∈Vn

ψvn

(
x0 − x∗
x⋆ − x∗

) 1∏
j=n

Kvjq(vj , vj−1)S
⊗n
t (Λvn , . . . ,Λv1)

)
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where

Vn = {(vn, . . . , v1) ∈ Nn : |vj − vj−1| ≤ 1, 1 ≤ j ≤ n, v0 = 0} ,

S⊗n
t (λn, . . . , λ1) =

∫ t

0

∫ t

sn

· · ·
∫ t

s2

exp

− 1∑
j=n

λj(sj − sj+1)

ds1 . . . dsn,

q(vj , vj−1) =


(
2v(A+B+v−1)+A(A+B−2)

)
Γ(A)2v!Γ(B+v)

(A+B+2v)(A+B+2v−1)(A+B+2v−2)Γ(A+v)Γ(A+B+v−1) if vj = vj−1,
v!Γ(A)2Γ(B+v)

(A+B+2v−1)(A+B+2v−2)(A+B+2v−3)Γ(A+v−1)Γ(A+B+v−2) otherwise,

with v = max (vj , vj−1).

Proof. Application of Theorem 3.1 in [DS02].

Remark 13. The obtained formula is hard to use in practice. Section 5 in [DS02] is dedicated
to the derivation of relevant numerical approximations of it for practical uses.

3.1.7 Simulation of the Jacobi process
We briefly discuss in present paragraph how the Jacobi process can be simulated in practice
focusing on two common methods: discretization scheme for simulating solution of (3.2) and
weak approximations designed for evaluating marginal distributions of Xx0

t .

3.1.7.1 Discretization schemes

We begin with presentation of some relevant discretization schemes for simulation of Jacobi
process paths. The present study is very linked to that of the simulation of the Cox-Ingersoll-
Ross process (a common reference on the subject is also [Alf15] and references therein). It has
constituted an active research field in numerical methods for stochastic processes due to the
presence of the square root function in diffusion coefficient of (3.2) making standard numerical
schemes found in the literature irrelevant here.

The Euler-Maruyama scheme is probably the most common discretization scheme in the
literature. For discretization of SDE with smooth enough coefficients (i.e. with linear growth
and Lipschitz regularity in the space variable), the Euler scheme is known to well perform with
a strong convergence rate of O(N−1/2) (see for instance [K+88]) and weak convergence rate
of O(N−1) for very irregular function (see [TT90]), by denoting the grid time step as 1/N .
Numerous studies have been lead in order to extend these results to a wider class of coefficients:
[HMS02] provided some results on strong convergence with simply locally Lipschitz coefficient
and polynomial drifts; [GR11] studied the case of Hölder regularity; [Y+02] studied irregular
coefficients and focused on the weak convergence of the scheme.

In [LKD10] the authors proposed to truncate the Euler scheme for ensuring the proper
definition of the scheme applied to the simulation of the CIR and proved the strong convergence
of this scheme. Following their work, we first introduce a scheme we will refer to as ”Full
Truncation Euler” scheme (FTE). We want to simulate the Jacobi process (3.2) up to a time
horizon T . On a fixed time grid tk = kT

N , the proposed FTE scheme writes, for k ∈ {1, . . . , N−1},

(FTE): XN
tk+1

= XN
tk

+ (a− ktr(XN
tk
))(tk+1 − tk) + ϵ

√
Q(tr(XN

tk
))(Wtk+1

−Wtk),

where we reuse the truncating function tr(x) = min (max (x, x∗) , x⋆) defined in (3.3). To analyze
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this scheme, it is convenient to introduce its continuous in time version

X̄N
t = x0 +

∫ t

0

(
a− ktr(X̄N

τs )
)

ds+ ϵ

∫ t

0

√
Q
(
tr(X̄N

τs )
)
dWs, (3.22)

where τt denotes the last time in the grid before t: for all t ∈ [tk, tk+1[, τt = tk. Note that X̄N

satisfying (3.22) is well defined.

Pathwise convergence
The fact that the Jacobi process remains bounded over time can be used to get a strong pathwise
convergence rate of order «almost» 1/2.

Proposition 3.12 ([Gyö98]). Assume that the Feller condition (3.8) holds. Then, for every
T ≥ 0 and η > 0, there exists some finite positive random variable U such that the following
holds almost surely:

N1/2−ϵ sup
t≤T
|Xx0

t − X̄N
t | ≤ U.

Proof. Under the Feller condition (3.8), the state space of the considered Jacobi process is
D = ]x∗, x

⋆[. Consider the compact sets defined by Dk = [x∗ + 1/k, x⋆ − 1/k] for k ∈ N∗ such
that D = ∪k∈N∗Dk. As a composition of Lipschitz functions, x ∈ D 7→ (a − ktr(x)) is also
Lipschitz, in particular locally Lipschitz; the diffusion function x ∈ D 7→

√
Q(tr(x)) is also a

locally Lipschitz function as its derivative is locally bounded. A straightforward application of
Theorem 2.4 of [Gyö98] gives that, as N goes to infinity, the approximating diffusion (3.22)
converges almost surely uniformly in time over bounded intervals toward a process (X̄x0)t≥0

solution of
X̄x0
t = x0 +

∫ t

0

(
a− ktr(X̄x0

s )
)

ds+ ϵ

∫ t

0

√
Q
(
tr(X̄x0

s )
)
dWs.

As discussed for the existence of the Jacobi process (see proof of Proposition 3.1), the truncating
function can be omitted in the above stochastic differential equation. The claim is then proved.

Remark 14. As pointed out in [DNS12], this result holds also true for simulation of the CIR
process using the symmetrized Euler scheme proposed in [BD04], the partial truncated scheme
of [DD+98] or the scheme introduced in [HM05].

Remark 15. Jacobi paths illustrated in Figure 3.1 were obtained following (3.22) discretization
scheme.

Lp convergence
Better convergence rates can be obtained in Lp spaces. The result presented in this section is
obtained by considering a drift implicit Euler scheme also often named backward Euler scheme.
Such implicit schemes are studied in general setting in [Alf12] and [NS14]. This technique allows
to ensure that the numerical scheme is well defined under rather general assumptions.

For simplicity, we focus in this paragraph on [0, 1]-valued Jacobi process (Y y0
t )0≤t≤T . The

results presentend in this section can apply to any [x∗, x
⋆]-valued Jacobi process which is easily

seen when considering the translated process
(
X

(x⋆−x∗)y0+x∗
t = (x⋆ − x∗)Y y0

t + x∗
)
0≤t≤T .

The following proposition is proved in [NS14]. Let us consider the transformed stochastic process
defined by Zz0t

a.s.
= 2 arcsin(

√
Y y0
t ) for any time t ≥ 0. Itô’s formula provides that

dZz0t = f(Zz0t )dt+ ϵdWt. (3.23)
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where f is the function defined over ]0, π[ by

f(x) =
(
a− ϵ2

2

)
cot
(x
2

)
−
(
k − a− ϵ2

4

)
tan

(x
2

)
,

where x 7→ tan(x) is the tangent function and cot = 1/ tan is the cotangent function. Let us
consider the drift implicit Euler scheme (Z̄tk)k=1,...,N defined by

Z̄Ntk+1
= Z̄Ntk + f(Z̄Ntk+1

)(tk+1 − tk) + ϵ(Wtk+1
−Wtk), k = 1, . . . , N − 1

for approximating solution of (3.23).

Proposition 3.13 ([NS14]). Assume that ϵ−2 min{a, (k−a)} > 1 and let 1 ≤ p < 4
3ϵ

−2 min{a, (k−
a)}. Then

E

[
sup

0≤t≤T

∣∣Y y0
t − sin2

(
Z̄Nt /2

)∣∣p] ≤ Cp
Np

.

Proof. A straightforward adaptation of the computations made in Section 3.5 of [SN14] allows
to check the required conditions to apply Proposition 3 of [Alf12]. The result follows.

Remark 16. Under the relaxed condition 2a > ϵ2, a strong convergence of order 1/2 has been
shown in [NS14] for the simulation of the CIR process.

Remark 17. The presented rate is actually the best known convergence rate for the CIR process
under quite general assumptions.

3.1.7.2 Weak approximation

The interested reader to Section 6.1.5 (p.197) in [Alf15] and references therein for a fuller
discussion on weak approximation schemes with square-root like diffusive functions.

For some practical purposes there is no systematic needs to strongly approximate the paths
of the Jacobi process and it may be enough to accurately approximate quantities writing as
E
[
f(Xx0

T )
]

for proper function f . In this section, we present a second order weak scheme for
approximating a [−1, 1]-Jacobi valued process (Y y0)0≤t≤T ; as previously mentioned, we can get
back to a [x∗, x

⋆]-Jacobi process by settingXx0
t = 2

x⋆−x∗ (Y
y0
t −x∗)−1 and x0 = 2

x⋆−x∗ (y0−x∗)−1.
The infinitesimal generator of (Y y0)0≤t≤T applied to a twice differentiable function f writes

Af(x) = (a− kx)f ′(x) + ϵ2

2
(1− x)(x− 1)f ′′(x).

It is decomposed in two sub-infinitesimal generators Af = A1f +A2f with
A1f(x) =

(
a− (k − ϵ2

2 )x
)
f ′(x) and A2f(x) = − ϵ2

2 xf
′(x) + ϵ2

2 (x− x∗)(x
⋆ − x)f ′′(x). Ordinary

differential equation associated to A1 is a linear first order differential equation which is solved

by f1(x, t) = xe−(k− ϵ2

2
)t + a1−e−(k− ϵ2

2 )t

(k− ϵ2

2
)

if (k − ϵ2

2 ) 6= 0, f1(x, t) = xe−(k− ϵ2

2
)t + at otherwise.

Observe that f1(x, t) ∈ [−1, 1] for any 0 ≤ t ≤ T if and only if a − (k − ϵ2/2) ≤ 0 and
a + (k − ϵ2/2) ≤ 0. This is in particular the case when Feller condition (3.8) is satisfied.
Regarding the second generator A2, it is associated with the stochastic differential equation

dXt = −
ϵ2

2
dt+ ϵ

√
1−X2

t dWt.
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Its solution is given by Xx0
t = sin (x̃0 + ϵWt) with x̃0 satisfying sin(x̃0) = x0. The Ninomiya-

Victoir scheme introduced in [NV08] writes in present context as
Ȳt = f1(sin

(
arcsin

(
f1(x, t/2)

)
+ ϵWt

)
, t/2) and turns out to have a weak error of order 2.

Proposition 3.14. For f ∈ C∞pol([−1, 1]), there exists a real number C > 0 and an integer
n0 ∈ N such that

∀n ≥ n0, |E
[
f(Ȳtn)

]
− E

[
f(Y y0

T )
]
| ≤ C/n2.

Proof. See section 6.1.5 in [Alf15]. Numerical schemes when the Feller condition (3.8) is not
satisfied are also discussed.

3.1.8 Extensions
3.1.8.1 Time-dependent coefficients

To get a richer parametrization of the Jacobi process, one can consider the following time-
dependent stochastic differential equation

Xx0
t = x0 +

∫ t

0

(
a(s)− k(s)Xx0

s

)
ds+

∫ t

0
ϵ(s)

√
Q(Xx0

s )dBs, (3.24)

where now a : R+ −→ R, k : R+ −→ R+ and ϵ : R+ −→ R+. Assuming that a, k and
ϵ are measurable, bounded and that those bounds satisfy some inequalities is enough to get
the existence and uniqueness of the process defined in (3.24) (we can proceed as in non-time
dependent case). In particular, we introduce the respective lower and upper bounds of the
functions a, k and ϵ: for any t ≥ 0, a ≤ a(t) ≤ ā, k ≤ k(t) ≤ k̄ and 0 < ϵ ≤ ϵ(t) ≤ ϵ̄. The
mentioned inequalities write: a ≥ k̄x∗ and ā ≤ kx⋆.

The following condition is a continuous in time version of the Feller condition (3.8). It
ensures the process (3.24) to remain bounded over time.

Proposition 3.15. Assume that x0 ∈ (x∗, x
⋆) and

x⋆ − x∗ ≤ 2min
(
kx⋆ − ā
ϵ2

,
a− k̄x∗
ϵ̄2

)
. (3.25)

Then Xx0 defined in (3.24) never reaches its boundaries:

P
(
∀t ∈ [0, T ] : x∗ < Xx0

t < x⋆
)
= 1.

The following proof uses standard argument: to get rid of the time dependency in the Itô
integral, a time change is made; comparison theorem for SDEs allows to get the result since
coefficients are bounded. This procedure is for instance applied in [BGM10] for the study of
time-dependent CIR process.

Proof. Let the time change function t 7→ ϕt be defined by

t =

∫ ϕt

0
ϵ(s)2ds.

Since ϵ > 0, ϕ is a strictly increasing time change; moreover, it is continuous by definition and
so is its inverse ϕ−1. Let us consider now the process

B̃t =

∫ ϕt

0
ϵ(s)dBs.
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Proposition 5.1.5 of [RY13] (p.170) provides that
〈
B̃.
〉
t
=
∫ ϕt
0 ϵ(s)2ds = t and that (B̃t)0≤t≤ϕ−1

T
is

a continuous local martingale. From Lévy’s characterization theorem we deduce that (B̃t)0≤t≤ϕ−1
T

is a Brownian motion.
Now, for t ∈ [0, ϕ−1

T ], we set X̃x0
t = X̃x0

ϕt
and according to Propositions 5.1.4 and 5.1.5 in

[RY13], we write

X̃x0
t = x0 +

∫ t

0

1

ϵ(ϕs)2
(
a(ϕs)− k(ϕs)X̃x0

s

)
ds+

∫ t

0

√
Q(X̃x0

s )dB̃s.

To study X̃x0 we priori introduce the two stochastic processes defined by time-independent
SDEs:

X1
t = x0 +

∫ t

0

(
ϵ̄−2
(
a− k̄X1

s

))
ds+

∫ t

0

√
Q(X1

s )dBs, (3.26)

X2
t = x0 +

∫ t

0

(
ϵ−2
(
ā− kX2

s

))
ds+

∫ t

0

√
Q(X2

s )dBs. (3.27)

Feller condition (3.8) that P
(
∀t ∈ [0, ϕ−1

T ] : X1
t > x∗

)
= 1 and P

(
∀t ∈ [0, ϕ−1

T ] : X2
t < x⋆

)
= 1.

Now, since for any (x, t) ∈ [x∗, x
⋆]×R+,

(
1/ϵ2

)(
ā−kx

)
≥ ϵ(t)−2

(
a(t)−k(t)x

)
≥
(
1/ϵ̄2

)(
a− k̄x

)
we can use twice comparison theorem (see for instance Theorem 5.2.18 in [KS91] p.293) to get
that P

(
∀t ∈ [0, ϕ−1

T ] : x⋆ > X2
t ≥ X̃

x0
t

)
= 1 and P

(
∀t ∈ [0, ϕ−1

T ] : X̃x0
t ≥ X1

t > x∗

)
= 1. Hence

P
(
∀t ∈ [0, ϕ−1

T ] : x⋆ > X̃x0
t > x∗

)
= 1 which proves the claim.

The Jacobi process lies in the family of polynomial processes introduced in [EP11] or
[CKRT12]: moments of such processes can be analytically computed and account for an exten-
sion of the affine processes. Time inhomogeneous polynomial processes have been introduced
in [dCAH18] as extension of the previous works. Below in Section 3.1.9, we present them in
general framework requiring less regularity than in [dCAH18].

3.1.8.2 Rough Jacobi process

Fractional Brownian motion (fBM for short) is a popular example of non Markovian Gaussian
process offering a rather good tractability. Its regularity is monitored by the Hurst index
usually denoted H ∈]0, 1[: the case H = 1/2 allows to recover the standard Brownian motion.
H > 1/2 produces paths that move «slower» than the standard Brownian motion; rather, the
case H < 1/2 produces rough paths that move «faster» than standard Brownian motion. Some
key modelling properties of the fractional Brownian motion (fBM) have been established in
[MVN68]. This process can be differently represented as integrals of some kernels with respect
to the standard Brownian motion (sometimes named Volterra-Itô integrals): an overview of
commonly used kernels can be found in [She14]. Quite a few properties of standard Itô’s calculus
can be extended to the stochastic calculus based on fractional Brownian motion and non semi-
martingales. [D+99] proposed an extension of Itô’s formula, Itô-Clark-Ocone representation and
Girsanov theorem in particular case when H > 1/2. [DHPD00] defined integrals with respect
to fBM analogously to Itô and Stratanovitch integrals using Wick product and derived some
Itô type formula. [R+02] also provide a number of theoretical results on stochastic differential
equations driven by fBM in case H > 1/2. Note that to establish the fractional stochastic
calculus, the key tool of the mentioned works is the Malliavin calculus.

In financial modelling, a fractional Black-Scholes model has been introduced in [EVDH03]
and [HØ03]. Following a similar approach, they both derived a Black-Sholes type formula for
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options prices whose underlying is modelled using a geometric fBM. However, using such process
to model underlying is not consistent with usual arbitrage free assumption that is closely linked
to Itô’s calculus. In a fractional environment the classical arbitrage free requirement should be
conveniently modified to ensure the consistence of the pricing method; however, the practical
economic notion of arbitrage in practice is very linked to the standard Itô’s calculus (since it
involves self-financing strategies). This point has been discussed and illustrated in [BH05]. We
also refer to [SV03] for a discussion on this topic.

The theory of rough paths (H < 1/2) for financial modelling has recently gained in popular-
ity to account for a number of stylized facts. The modelling of stochastic volatility using rough
paths has lately spread among practitioners endorsed by strong empirical studies. The work
of [GJR18] is key for motivating the use such models. Authors notably argued for modelling
based on fBM with Hurst index around 10% to simulate volatility factor. The counterpart of
the standard Heston model has became popular: this is the so-called rough Heston model. It
was introduced in [EER19], in which authors derived an analytical formula for the characteristic
function of the log-price process. The authors also address the question of hedging using this
model in [EER+18]. [AJEE19] proposed an approximation of rough Heston model well-suited
for numerical implementations that is based on Markovian approximating structure. A rather
general theoretical framework is used in [JLP+19] defining rough stochastic process as solution
of convolution type Volterra equations. Authors take advantage of this representation to deduce
a number of properties on the considered processes.

An alternative approach has been chosen by [D+14], who introduced the [0, 1]-valued frac-
tional Jacobi process for H > 1/2 and [MYT18], who introduced the fractional Cox-Ingersoll-
Ross process (H ∈ (0, 1)). Both defined the mentioned processes as solutions of stochastic
differential equations driven by fractional Brownian motions with time independent diffusive
terms which eases the study. In this section, we briefly present the methodology of [D+14] to
give insights on the fractional Jacobi process in case when H > 1/2.

Let us consider a fBM (BH
t )t≥0 with Hurst index H ∈ (1/2, 1). Let us consider the following

equation

Xx0,H
t = x0 +

∫ t

0
(a− kXx0,H

s )ds+
∫ t

0
ϵ

√
Xx0,H
s (1−Xx0,H

s )dBH
s (3.28)

where x0 ∈ [0, 1].

Proposition 3.16 ([D+14]). For 0 < a < k, there exists a unique solution satisfying (3.28)
taking its values in (0, 1) almost surely for any time t > 0. Moreover, if x0 ∈ (0, 1), there exists
η > 0 such that the solution of (3.28) takes its values in [η, 1 − η] almost surely for any time
t > 0.

Proof. We sketch the proof of Proposition 2.1 and Lemma 2.1 in [D+14]. The author worked
on the following stochastic differential equation

Y y0,H
t = y0 +

∫ t

0

2a− k(1 + sin(Y y0
s ))

cos(Y y0,H
s )

ds+ ϵBH
t (3.29)

where y0 ∈ [−π/2, π/2], which admits a solution when 0 < a < k over [0, τ [ where τ is the
first hitting time of {−π/2, π/2}. The proof takes advantage of the regularity of the drift
function f(x) = 2a−k(1+sin(x))

cos(x) over ] − π/2, π/2[ and of the β-Hölder regularity of the fBM for
β < H to show that τ = ∞ almost surely. The unicity comes from fact that diffusive term in
(3.29) is constant and that f is decreasing over ] − π/2, π/2[. Existence of η′ > 0 such that
Y y0,H ∈ [−π/2 + η′, π/2− η′] almost surely follows from continuity of the path. Finally, those
results transpose to Xx0,H defined in (3.28) by the change of variable Xx0,H = 1

2(sin(Y y0,H)+1)
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using for instance Itô’s formula in [DHPD00] (Theorem 4.5).

For volatility modelling, it can be interesting to consider a rough Jacobi process, that is
a stochastic process driven by a fBM of Hurst index H ∈]0, 1/2[. Following the framework of
[EER19] and [JLP+19], we can consider the following Volterra equation

Xx0,H
t = x0 +

∫ t

0

(t− s)α−1

Γ(α)
(a− kXx0,H

s )ds+ ϵ

∫ t

0

(t− s)α−1

Γ(α)

√
Q
(
tr(Xx0,H

s )
)
dBs (3.30)

where x0 ∈ [x∗, x
⋆], α = H + 1/2 ∈]1/2, 1[, Q is the bounding function defined in (3.1), x 7→

tr(x) = min (max (x, x∗) , x⋆) is the truncating function introduced in the proof of Theorem 3.1
and (Bt)t≥0 is a standard Brownian motion.

Proposition 3.17 ([JLP+19]). (3.30) admits a continuous weak solution for any x0 ∈ [x∗, x
⋆].

Proof. Direct application of Theorem 3.4 of [JLP+19] since (i) x 7→ a−kx and x 7→
√
Q
(
tr(x)

)
are continuous with linear growth and (ii) the suitable kernel K(t) = tα−1

Γ(α) admits a resolvent of
the first kind (see [JLP+19] for the details).
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(a) x∗ = 0, x⋆ = 1, x0 = 0.7, a = 0.5, k = 0.6,
ϵ = 0.8 and H = 3/4.
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(b) x∗ = 0, x⋆ = 1, x0 = 0.5, a = 0.5, k = 0.6,
ϵ = 0.4 and H = 1/4.

Figure 3.2: Illustration of fractional Jacobi paths for various parametrizations.

3.1.8.3 Matrix valued process

A natural extension of the considered framework so far is to consider the multi-dimensional
process, namely the matrix Jacobi process. The curious reader about random matrices and
stochastic processes can refer to [Dou05] and references therein. According to this thesis, the
origin of the study of matrix-valued stochastic processes comes from statistical considerations of
John Wishart back in the 1930’s and from physics matters of Eugene Wigner in the 1950’s. Both
were led to wonder how can the distributions of the eigenvalues of a matrix whose components
are random variables be described.

In financial modelling, matrix processes has naturally appeared when considering multi-
dimensional quantities or correlated drivers. For instance, [GS04] proposed a multidimensional
assets models extending the standard Heston model. In their settings, log-prices processes are
driven by a matrix volatility process that is a Wishart process. [GJ06] studied the multidi-
mensional Jacobi process and discussed its use to represent dynamics of a discrete probability
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distribution. [DFGT07] also proposed a multi-dimensional equity model but here the variance-
covariance matrix describing the asset vector is assumed to evolves stochastically. In a similar
framework, [Pal15] studied an Ornstein-Uhlenbeck variance-covariance process. [Ben10] worked
on one dimensional asset process driven by a stochastic volatility matrix.

In this paragraph, we briefly present some of the results of [Dou05] on matrix Jacobi process
(Chapter 9). Let us introduce some notations: Mm,n is the set of m × n real matrices, MT

denotes the transpose of M , Sn is the set of real symmetric matrices of size n ∈ N, SOn
represents the special orthogonal group (set of orthogonal matrices with determinant 1), Sn
be the set of skew-symmetric matrices2, Õm ∈ Mm,m is the matrix which components are all
equal to zero, Idm is the identity matrix of size m, Πm,p = {M ∈ Mm,p|MTM ≤ Idm} where
inequality is understood componentwise, Ŝm = {M ∈ Sm|Õm < M < Idm}, S̄m = {M ∈
Sm|Õm ≤ M ≤ Idm}, Ŝ′m (resp. S̄′m) is the subset of Ŝm (resp. S̄m) which eigenvalues are all
distinct, and denote by πm,p the mapping M ∈ SOn 7→ πm,p(M) ∈ Mm,n which preserved the
upper left corner of M (m first lines and p first columns).

The two following results allow to well define the multidimensional Jacobi process.

Proposition 3.18 ([Dou05]). Let B be a Brownian motion on SOn. X = πm,p(B) is a
diffusion on Πm,p whose infinitesimal generator is 1

2∆n,m,p where

∆n,m,pF =
∑

1≤i,i′≤m
1≤j,j′≤p

(
1{i=i′,j=j′} −Xi,j′Xi′,j

) ∂2F

∂Xi,j∂Xi′,j′
− (n− 1)

∑
1≤i≤m
1≤j≤p

Xi,j
∂F

∂Xi,j

for regular enough function F .

Theorem 3.19 ([Dou05]). Let X be the diffusion governed by generator 1
2∆n,m,p as defined in

Proposition 3.18 and define J = XXT . Then J is a diffusion on S̄m. If p ≥ m+ 1, q ≥ m+ 1
and J0 ∈ Ŝm, then J satisfies the following stochastic differential equation

dJ =
√
JdB

√
Idm − J +

√
Idm − JdBT

√
J + (pIdm − (p+ q)J) dt

with B a Brownian motion on Mm,m and q = n− p. J is called Jacobi process of dimensions
(p, q).

This allows to defined matrix Jacobi process with integer dimensions. The extension to the
case of arbitrary (p, q) can be done according to the following theorem.

Theorem 3.20 ([Dou05]). Let X be in S̄m and consider the following SDE:

dJ =
√
JdB

√
Idm − J +

√
Idm − JdBT

√
J + (pIdm − (p+ q)J) dt, J0 = X, (3.31)

where (p, q) ∈ R2, J ∈ S̄m and B a Brownian motion on Mm,m.

i. If min(p, q) ≥ m+ 1 and X ∈ Ŝm, (3.31) has a unique strong solution in Ŝm.

ii. If min(p, q) > m− 1 and X ∈ S̄′m, (3.31) has a unique solution in law in S̄m.

iii. If the eigenvalues of J are initially distinct they remain so at any time and can be ordered
λ1 > · · · > λm. They satisfy the following differential equation:

dλi(t) = 2
√
λi(t)(1− λi(t))dbi(t)+

{
p−(p+q)λi(t)+

∑
j ̸=i

λi(t)(1− λj(t)) + λj(t)(1− λi(t))
λi(t)− λj(t)

}
dt,

2A square matrix M which satisfies MT = −M is said to be skew-symmetric
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for any 1 ≤ i ≤ m and where b1, . . . , bm are independent real Brownian motions.

A number of properties on the matrix Jacobi process can be found in [Dou05] and references
therein: dynamics of determinant of J , study of boundaries hitting times and local times,
derivation of the invariant measure, Girsanov relation or extension to Hermitian matrices.

3.1.9 Time inhomogeneous polynomial diffusions
In the following of this thesis, we will rely on the polynomial property of some stochastic
processes to perform Gram-Charlier expansions of their densities. The class of polynomial
processes comprises that of affine processes. Indeed for the later one is able to know the
characteristic function via the resolution of so-called Ricatti equations while the polynomial
property simply offers the ability to compute the moment through matrix exponentiation.

[EP11] introduced the concept of polynomial jump-diffusions as solutions of SDEs with
possible jumps whose coefficients are of linear growth over the state-space R. Such diffusions
are particularly tractable as they allow to readily compute their moments which is necessary
in a number of numerical methods; for instance, [EP11] exploited this property to price some
double barriers options based on method of moments. [CKRT12] introduced the corresponding
polynomial processes that are Markov processes by directly characterizing their semi-groups.
They provide the same tractability regarding the computation of moments. As solutions of SDEs
are non-necessarily Markov, [FL16] proposed to work on polynomial diffusions using simply the
Itô’s formula to establish the main properties of this class of diffusions. They extended the
concept of polynomial diffusions of [EP11] to more general state-spaces while [FL20] provided
a similar extension of the notion of polynomial jump-diffusions. To characterize the polynomial
property, all these works are based on a common idea: the sets of polynomial functions of a given
degree are left invariant by the semi-group or infinitesimal generator of the studied processes.

All the mentioned works are set in time-homogeneous frameworks. [dCAH18] extended
the framework of [CKRT12] to time-inhomogeneous Markov processes essentially requiring ad-
ditional continuously differentiable assumptions. In this thesis, we will work with stochastic
processes defined as solutions of SDEs whose coefficients are time-varying. This time depen-
dency may be non-regular. Typically, some coefficients will be set piecewise constant. We
propose in this section an adaptation of the frameworks of [dCAH18] and [FL16] to account
for the time inhomogeneity –possibly non regular– of SDEs. However, our extension is quite
straight as we will work in full state-space. While discontinuous processes are quite used in
financial modelling (see the standard work [Tan03] on this topic), we will focus in this thesis on
continuous diffusions as jumping polynomial processes are little used in practice to this day to
our knowledge.

Let (d, d′) ∈ (N∗)2, T > 0 be a finite time horizon, b and σ be two multi-dimensional
measurable functions defined over [0, T ] × Rd and respectively taking values in Rd and Rd×d′ .
Let (Wt)0≤t≤T be a d′-dimensional Brownian motion and Y be a squared integrable random
variable of Rd: E[‖Y ‖2d] <∞. We consider the following d-dimensional SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ≤ T,X0
a.s.
= Y. (3.32)

The regularity in time of coefficients b and σ does not impact the existence/uniqueness of
solutions to (3.32) as illustrated in the following result proved in Theorem 5.2.1 of [Øks03]. In
the following, we consider a matrix norm |||·|||.

Theorem 3.21 ([Øks03]). Assume that b and σ are of linear growth and Lipschitz in the space

113



variable that is: for any 0 ≤ t ≤ T , (x, y) ∈ (Rd)2,

‖b(t, x)‖+ |||σ(t, x)||| ≤ C(1 + ‖x‖)
‖b(t, x)− b(t, y)‖+ |||σ(t, x)− σ(t, y)||| ≤ C‖x− y‖

for some positive constant C. Additionally assume that Y is independent of the sigma-algebra
generated by the Brownian motion (Wt)0≤t≤T . Then (3.32) admits a unique solution whose
paths are almost-surely continuous, that is adapted to the sigma-algebra generated by Y and W ,
σ(Y, (Ws)0≤s≤t), and squared integrable:

E
[∫ T

0
‖Xs‖2ds

]
<∞.

The polynomial property we want to characterize is an extension of what [FL16] proposed
in a time homogeneous framework. Let us consider the time-dependent infinitesimal generator
associated to (3.32): for a regular enough function f : Rd 7→ R,

Atf(x) = b(t, x) · ∇f(x) + 1

2
tr
(
(σ(t, x)∇f(x))(σ(t, x)∇f(x))T

)
, x ∈ Rd, t ∈ [0, T ].

Let us denote by Pn(Rd) the set of polynomial of degree at most n defined over Rd.

Lemma 3.22. Consider a family of operators G :=
(
Gt
)
t∈[0,T ] of the form Gt = b̄(t, x) ·∇f(x)+

1
2tr
(
(σ̄(t, x)∇f(x))(σ̄(t, x)∇f(x))T

)
. The following are equivalent:

(i) G maps Pn(Rd) to itself for any n ∈ N: ∀t ∈ [0, T ], Gt(Pn(Rd)) ⊂ Pn(Rd);

(ii) for any t ∈ [0, T ], x 7→ b̄(t, x) ∈ P1(Rd) and x 7→ σ̄(t, x)σ̄(t, x)T ∈ P2(Rd).

Proof. Implication (ii) =⇒ (i) is straight. The reverse implication follows by applying the family
G to monomials of degrees one and two respectively.

Definition 2. A solution to (3.32) is said to be a time-inhomogeneous polynomial diffusion if
it is associated with an infinitesimal generator that maps Pn(Rd) to itself for any n ∈ N.

The main property associated with polynomial diffusions is the matrix exponential repre-
sentation of their moments. We present it in a time inhomogeneous setting. Fix n ∈ N, let N
denote the dimension of Pn(Rd) and BN = (1, b1(x), · · · , bN (x)) be a basis of Pn(Rd). For a
polynomial function p ∈ Pn(Rd), there exists a unique vector −→p such that p(x) = BN (x) ·−→p . At
every date t ∈ [0, T ], the operator At is linear and its action on the basis BN can thus be repre-
sented as a unique matrix in R(N+1)×(N+1) denoted by At that is such that for any p ∈ Pn(Rd),
Atp(x) = BN (x) · At−→p . Coefficients of At are regular functions of the diffusion coefficients b
and σ. In particular, the time regularity of t 7→ At is that of t 7→ b(t, ·) and t 7→ σ(t, ·). We
assume that b and σ are regular enough so that for any x ∈ Rd,

∫ T
0

(∥∥b(s, x)∥∥ + |||σ(s, x)|||)ds
exists and is finite. The set of real matrices being a Lie algebra, the notion of commutator of
two matrices will be of interest: for (M,N) ∈

(
R(N+1)×(N+1)

)2, we define their commutator as
[M,N ] = MN − NM and consider the operator adM : R(N+1)×(N+1) → R(N+1)×(N+1), N 7→
[M,N ]. We can now state the moment representation result.

Remark 18. The right superscript T for a matrix denotes its transpose: transpose(M) =MT .
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Theorem 3.23. We assume that (i) E[‖Y ‖2n] < ∞ and (ii)
∫ t
s |||As|||ds < π for any 0 ≤ s ≤

t ≤ T . Then for any p ∈ Pn(Rd) associated with vector representation −→p , we have

E[p(Xt)|Fs] = BN (Xs) · exp
(
MAT

(s, t)
)T −→p , (3.33)

for any 0 ≤ s ≤ t ≤ T , with M(s, t) being a matrix that can be expressed as the sum of an
absolutely convergent power series

MAT
(s, t) =

+∞∑
k=1

MAT

k (s, t),

whose coefficients depend on s, t and (Au)u∈[0,T ]. For any time dependent matrix (Nt)0≤t≤T ,
the matrices MN

k can be recursively expressed as

MN
1 (s, t) =

∫ t

s
Nudu,

MN
k (s, t) =

k−1∑
j=1

Bj
j!

∑
k1+···+kj=n−1
k1≥1,...,kj≥1

∫ t

s
adMN

k1
(s,u) ◦ · · · ◦ adMN

kj
(s,u)(Nu)du, k ≥ 2,

where (Bn)n∈N are the Bernoulli numbers.

The proof relies on the use of Itô’s formula as depicted in [FL16] in a time-independent
framework. We adapt their proof for taken into account time dependency that involves Magnus
series (exponential of matrix integrals) as explained in [dCAH18].

Proof. The polynomial property allows to show a well-known results for diffusion with Lipschitz
coefficients.

Lemma 3.24. Let (Xt)0≤t≤T be a time-inhomogeneous polynomial diffusion associated with
family of infinitesimal generators (Gt)0≤t≤T and starting from X0

a.s.
= Y . Then, for any k ∈ N

such that E[‖Y ‖2k] <∞, there exists a finite constant C > 0 such that

E[1 + ‖Xt‖2k] ≤ (1 + E[‖Y ‖2k])eCt, t ≥ 0.

Proof of lemma. Let τm be the first exit time of the ball of radius m: τm = inf{t ≥ 0 : ‖Xt‖ ≥
m} for m ≥ 0. The polynomial property of (Xt)t≤T implies that for f(x) = 1+‖x‖2k ∈ Pn(Rd),
there exists a positive constant C such that |Gtf(x)| ≤ Cf(x) for any time t. Furthermore, Itô’s
lemma gives that

E[f(Xt∧τm)] = E[f(Y )] + E
[∫ t∧τm

0
Gsf(Xs)ds+

∫ t∧τm

0
∇f(Xs) ·

(
σ(s,Xs)dWs

)]
By locating the process in the ball {x ∈ Rd : ‖x‖ ≤ m}, we ensure that the Itô’s term is of
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expectation zero. Then, with the previous bounding we pursue the computations to get that:

E[f(Xt∧τm)] = E[f(Y )] + E
[∫ t∧τm

0
Asf(Xs)ds

]
≤ E[f(Y )] + CE

[∫ t∧τm

0
f(Xs)ds

]
≤ E[f(Y )] + CE

[∫ t

0
f(Xs∧τm)ds

]
.

Gronwall’s lemma provides that E[f(Xt∧τm)] ≤ E[f(Y )]eCt where the right hand side does not
depend on m: sending it to infinity yields the result.

We come back to the proof of the Theorem. Itô’s formula yields

p(Xt) = p(Xs) +

∫ t

s
Aup(Xu)du+

∫ t

s
∇p(Xu) ·

(
σ(u,Xu)dWu

)
. (3.34)

The quadratic variation of the Itô’s integral satisfies
∫ t
s

(
∇p(Xu)

(
σ(u,Xu)

)(
∇p(Xu)

(
σ(u,Xu)

)Tdu ≤
C
∫ t
s (1 + ‖Xu‖2n)du for some positive constant C. Previous lemma proves that it has finite ex-

pectation and thus Itô’s integral in (3.34) is of expectation zero. Vector representation −→p of p
in the basis BN and matrix one As of As, Fubini’s theorem and the linearity of the expectation
yield

E[BN (Xt)|Fs] · −→p = E[BN (Xs)|Fs] · −→p +

∫ t

s
E
[
BN (Xu) ·

(
Au
−→p
)
|Fs
]

du

= BN (Xs) · −→p +

∫ t

s
E [BN (Xu)|Fs] ·

(
Au
−→p
)
du

= BN (Xs) · −→p +

∫ t

s
ATuE [BN (Xu)|Fs] du · −→p .

The vector function F (u) = E[BN (Xu)|Fs] satisfies thus a linear system of equations whose
coefficients are time dependent. Its unique solution is given by (see Theorem 9 in [BCOR09]
for instance):

F (u) = exp
(
MAT

(s, u)
)
BN (Xs).

Then,
E[p(Xt)|Fs] = E[BN (Xt)|Fs]·−→p = exp

(
MAT

(s, u)
)
BN (Xs)·−→p = BN (Xs)·exp

(
MAT

(s, u)
)T−→p .

Remark 19. Observe that in the previous theorem, the integrability condition (ii) is used in
the Theorem 9 of [BCOR09] to ensure the convergence of matrix exponential series. Note that
it is a sufficient condition for convergence.

Remark 20. The required regularity conditions with respect to time of the coefficients are mild.

Remark 21. The previous theorem is hardly exploitable for practical uses. Some particular
cases should be mentioned.

• If the family of generator is commuting meaning that for any couples of dates (s, t) ∈
[0, T ]2, AsAt = AtAs, then [At, As] = 0d and all the terms of the Magnus series are zero
but the first. Combined with the fact that transpose of an exponential of matrix is the
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exponential of the transpose matrix, the Equation (3.33) writes now, for any 0 ≤ s ≤ t ≤ T :

E[p(Xt)|Fs] = BN (Xs) · exp
(∫ t

s
ATudu

)T
−→p = BN (Xs) · exp

(∫ t

s
Audu

)
−→p .

• In the time homogeneous framework As ≡ A and we recover the expression in Theorem
3.1 of [FL16]:

E[p(Xt)|Fs] = BN (Xs) · exp
(
(t− s)AT

)T −→p = BN (Xs) · exp ((t− s)A)−→p .

Note that is such setting, there is no need of an integrability condition to ensure the
convergence of the matrix exponential.

• In a piecewise constant setting (also discussed in [BCOR09]), an equivalent representation
but more understandable can be proposed. It has been demonstrated in more details in
Proposition 1 of [AMLB20] using successive conditionings. We briefly recall it. Let us
consider a time structure 0 ≤ t1 ≤ · · · ≤ tn ≤ T such that the infinitesimal generator is
piecewise constant on this grid: Atf(x) = Atkf(x) for all t ∈ [tk, tk+1), for k = 0, . . . , n,
with t0 = 0 and tn+1. In addition for 0 ≤ t ≤ T , define k̄(t) := max{k : tk ≤ t} and
k(t) := min{k : tk ≥ t}. The alternative polynomial moments formula yields for any
0 ≤ s ≤ t ≤ T :

E
[
p(Xt)

∣∣Fs] = BN (Xs) · e
(tk(s)−s)Atk(s)−1

k̄(t)−1∏
k=k(s)

e(tk+1−tk)Atk

 e
(t−tk̄(t))Atk̄(t)−→p , (3.35)

where we emphasize that the order in the matrix product matters as matrices (Atk)k=1,...,n

do not commute in general. We stress that this representation is equivalent to the one
proposed here in Theorem 3.23: to prove it, the Baker–Campbell–Hausdorff formula (see
for instance [Hal15]) can be employed. Again, the convergence of the matrix exponential
is obtained without additional constraint on each time interval.

We end this section with some illustrative examples partly drawn from [dCAH18].

Brownian motion with drift
The process

Xt =

∫ t

0
b(u)du+Wt, t ≤ T,

where b is a (piecewise) continuous function is a time-inhomogeneous polynomial diffusion. It
is straight to get that the family of its infinitesimal generators commutes and some further
computations are made in [dCAH18].

Time-dependent CIR
The time dependent Cox-Ingersoll-Ross process

Xx
t = x+

∫ t

0
κ
(
θ(s)− ξ(s)Xx

s

)
ds+

∫ t

0
ϵ(s)

√
Xx
s dWs, t ≤ T,
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as defined in [BGM10] forms a time-inhomogeneous polynomial diffusion. Its infinitesimal
generator at time t is given by

Atf(x) = κ(θ(t)− ξ(t)x)df
dx +

1

2
ϵ2(t)x

d2f

dx2 .

Taking in particular f(x) = x, for any (s, t) we get:

At
(
Asf(x)

)
= κ

(
θ(t)− κξ(t)(θ(s)− ξ(s)x)

)
As
(
Atf(x)

)
= κ

(
θ(s)− κξ(s)(θ(t)− ξ(t)x)

)
showing that the associated family of matrices will not commute.

3.2 The problem of moments
In this thesis, we are particularly interested in characterizing distributions based on their mo-
ments. It is well known that different distributions can share the same sequence of moments.
The problem of identifying a distribution using the sequence of its moments is known in math-
ematics as the «moment problem». This question dates back to 1894-1895 and the work [Sti94]
in which Thomas Joannes Stieltjes introduced3 «le problème des moments». The context is the
following: let I ⊂ R be associated with a σ-algebra σ(I) and consider a given sequence of real
numbers (λn)n∈N ∈ IN. The problem corresponds to the finding of conditions ensuring existence
and/or uniqueness of a measure µ defined over σ(I) being such that∫

I
xnµ(dx) = λn, n ∈ N.

When focusing on probability measures (i.e. distributions), one must additionally require λ0 =
1. If uniqueness is ensured, the moments problem is said to be determined: knowing the
moments or knowing the measure is equivalent. Differently said: a measure determinate by
its moments is the only one having such moments. Conversely, when the moments problem
is not determined or undetermined, at least two distinct measures have the same sequence of
moments (as long as existence is provided). Different conditions and solutions have been derived
depending on the set I. In the literature, the problem of moments is said to be (i) of Hausdorff
if I = [0, 1] –or more generally, if I is a compact interval– named after Felix Hausdorff (see
[Hau23]); (ii) of Hamburger if I = R named after Hans Hamburger (see for instance [Ham20]
or [Ham44]); (iii) of Stieltjes if I = R+ named after Thomas Joannes Stieltjes (as originally
introduced in [Sti94]).
Note that the moments problem is well known and studied in the literature in one-dimensional
space as illustrated by the above quoted works. The multiple dimensional case has been later
on studied and some questions are still open (see [BL12] and references therein).

We refer the interested reader to [Sch17] for a late thorough survey on the moment problem.
[ST43] and references therein can also be consulted. We also refer to Section 11 of [Sto13] for
instructive examples –some are presented below– on the topic. We present now some of the
main results on the one-dimensional moments problem.

Determinacy problem The first result we provide is a well known sufficient condition for
the determinacy of moment problem proved in [Pat95] (Theorem 30.1).

3To our knowledge, he was the first to formulate the problem in those terms.
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Theorem 3.25 ([Pat95]). Let X be a random variable taking values in R and whose probability
measure is µ is of finite moments of any order: ∀n ∈ N,

mn = E [Xn] =

∫
R
xnµ(dx) < +∞.

If the power series (of Laplace) ∑
n≥0

mn

n!
zn

has a positive radius of convergence, then µ is determined by its moments.

This result is quite intuitive since the involved power series is nothing more than the series
expansion of the moment generating function of the random variable X: E

[
ezX

]
=
∑

n≥0
mn
n! z

n

whenever this expression is well defined. The sequence (mn)n≥0 characterizes thus the moment
generating function of X. However, it is well known (see for instance [Fel], Theorem 1 in Chapter
XIII) that the moment generating function characterizes a probability distribution.

Remark 22. Let X be a random variable taking values over a bounded interval of R: X ∼ µ(dx)
where µ is defined over σ

(
(a, b)

)
where −∞ < a < b < ∞. Then |mn| ≤ max(|a|n, |b|n) for

all n ∈ N and thus the Laplace series has a positive radius of convergence: a random variable
with bounded support is always determined by its moments. In other words, the Hausdorff
formulation is always determined.

Example 1.

i. Let X ∼ N (0, σ2) with σ > 0. Then
∑

n≥0
E[Xn]
n! zn =

∑
n≥0

σ2nz2n

n! = eσ
2z2/2 has an

infinite radius of convergence: the Gaussian distribution is determined by its moments.

ii. Let X ∼ Γ(a, k) with (a, k) ∈ (R∗
+)

2. Then E
[
ezX

]
=
(
1− z

k

)−a for 0 < z < k: the
gamma distribution is determined by its moments.

iii. Let Y ∼ N (0, 1) and set Y = X3. Then, the density function of Y writes f(x) =
1

3
√
2π
|x|−2/3 exp

(
−1

2 |x|
2/3
)

and thus the Laplace series has a null convergence radius: we
can not conclude on the determinacy of Y by its moments.

As long as the moments are known, the following result provides a famous practical criterion,
often named Carleman’s condition after the work of Torsten Carleman in [Car]. A proof can be
found in [Akh20] or in [ST43].

Theorem 3.26 ([Car]). Denote the moment of the studied measure µ by mn =
∫
R x

nµ(dx) for
all n ∈ N. Assume that for all n ∈ N, mn <∞.

i. (Hamburger) Suppose that µ is defined over σ(R). If∑
n≥1

m
−1/2n
2n = +∞,

then µ is determined by its moments.

ii. (Stieltjes) Suppose that µ is defined over σ(R+). If∑
n≥1

m−1/2n
n = +∞,

then µ is determined by its moments.
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We now focus on case of measures having Radon–Nikodym densities with respect to the
Lebesgue measure. The following result is a consequence of previous Theorem 3.26 and shows
in particular that measures having exponential moments are determined by their moments. It
can be viewed as an extension of Theorem 3.25. A proof can be found in [ST43].

Corollary 1 ([ST43]). Let be µ a measure whose density with respect to Lebesgue measure is
m: µ(dx) = m(x)dx.

i. (Hamburger) If there exists p ≥ 1 and η > 0 such that∫
R
m(x)peη|x|dx < +∞,

then µ is determined by its moments.

ii. (Stieltjes) If there exists p ≥ 1 and η > 0 such that∫
R+

m(x)peη
√

|x|dx < +∞,

then µ is determined by its moments.

Finally, we provide some determinacy conditions of the moments problem when considering
positive measure. Whether some integrability condition is satisfied by the logarithm of the
density function –named Krein’s condition after the work of Mark Grigorievich Krein [Kre44]–
or not, the determinacy of the problem can be addressed. For the following statements, we refer
to [S+00] and [Ped98] and references therein for more details.

Theorem 3.27. Let µ be a measure having a positive density m with respect to the Lebesgue
measure: µ(dx) = m(x)dx, and m(x) > 0 for all x ≥ 0.

i. (Hamburger) If ∫
R
−

ln
(
m(u)

)
1 + u2

du < +∞,

then µ is not determined by its moments.

ii. (Hamburger) If ∫
R
−

ln
(
m(u)

)
1 + u2

du = +∞,

and if in addition, m is: symmetric, differentiable and for some x0 > 0 and x ≥ x0,
−xm′(x)

m(x) ↗ +∞ as x→ +∞, then µ is determined by its moments.

iii. (Stieltjes) If ∫
R+

−
ln
(
m(u2)

)
1 + u2

du < +∞,

then µ is not determined by its moments.

iv. (Stieltjes) If ∫
R+

−
ln
(
m(u2)

)
1 + u2

du = +∞,

and if in addition, m is differentiable and for some x0 > 0 and x ≥ x0, −xm′(x)
m(x) ↗ +∞

as x→ +∞, then µ is determined by its moments.
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Example 2. The log-normal distribution is not determined by its moments. Let Y ∼ N (0, 1)

so that X = eY is log-normally distributed. Denote by m(x) = e− ln(x)2/2

x
√
2π

(
1+ sin

(
π ln(x)

))
: one

can check that µ(dx) = m(x)dx is a probability measure and that if X̃ is distributed according
to this distribution, then for any n ∈ N, E

[
Xn
]
= E

[
X̃n
]
. Yet P

(
X ∈ [1, e]

)
− P

(
X̃ ∈ [1, e]

)
=

1√
2π

∫ e
1
e− ln(x)2/2

x sin
(
π ln(x)

)
dx ≥ 1√

2π

∫ e
1 sin

(
π ln(x)

)
dx = (1+e)π

(1+π2)
√
2π
> 0 so that X and X̃ do

not have the same law.

Existence problem While the determinacy of Hausdorff’s formulation is straight to obtain
(see proof of Theorem 3.25), the existence result is «a deep and powerful result» according to
William Feller (p.226 in [Fel]). The corresponding theorem is due to F. Hausdorff and a proof
can be found in [Fel] pp.255-227.

Theorem 3.28. Let (mn)n∈N be a completely monotone sequence4 of real numbers such that
m0 = 1. Then there exists a unique probability measure µ defined over σ([0, 1]) with moments
(mn)n∈N.

Regarding the Hamburger and Stieltjes formulations we provide the following result which
proof can be found in [RS75].

Theorem 3.29. Let (mn)n∈N be a sequence of real numbers.

1. (Hamburger) There exists a non-negative measure µ defined over σ(R) whose moments
are (mn)n∈N if and only if, for all n ∈ N, all (z0, . . . , zn) ∈ Cn+1,

n∑
p,k=0

zkz̄pmk+p ≥ 0.

2. (Stieltjes) There exists a non-negative measure µ defined over σ(R+) whose moments are
(mn)n∈N if and only if, for all n ∈ N, all (z0, . . . , zn) ∈ Cn+1,

n∑
p,k=0

zkz̄pmk+p ≥ 0 and
n∑

p,k=0

zkz̄pmk+p+1 ≥ 0.

In this manuscript, we will approximate unknown probability measures using polynomial
expansions whose coefficients write as linear combinations of the moments of the approximated
distribution. When approximating a density function that is not determined by its moments,
the mentioned expansions may diverge at best or approximate an improper density function at
worst. Those polynomial expansions are presented and illustrated in next section.

3.3 Series expansion and orthogonal polynomials: a statistical
point of view

The polynomial expansions we will consider involve the Gaussian distribution. In the early of
the 18th, Abraham De Moivre was the first to deal with the normal density without genuinely
knowing it. His book [DM56] is one of the oldest work on games of chance. By modelling

4Let a = (an)n∈N be a sequence of real numbers and define the difference operator recursively as δ(0)(a) = a,
δ(a) = (an+1 − an)n∈N and δ(p+1)(a) = δ

(
δ(p)(a)

)
for p ∈ N∗. The sequence a is said to be completely monotone

if ∀(k, p) ∈ N2 (−1)pδ(p)(a)k ≥ 0.
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gamble games, he was led to study the binomial distribution. He observed that increasing the
number of Bernoulli realizations results in the convergence of the binomial distribution towards
a symmetric and continuous one with thin tailed. In that respect De Moivre was the first to
establish a particular form of the Central Limit Theorem (CLT) which general statement was
provided later by Pierre-Simon de Laplace in [Lap10]. The asymptotic distribution was later
rigorously introduced as the normal density independently by Robert Adrain in [Adr14] and
Carl Friedrich Gauss in [Gau09]. They both worked on the Least Square Method (introduced in
1805 by Adrien-Marie Legendre in [Leg05]) and were led to somehow describe the distribution of
the residues: that is the birth of the normal distribution –also often referred to as the Gaussian
distribution.

The expansion series we are interested in precisely are the Gram-Charlier and the Edgeworth
expansions. They are highly related to the normal distribution since they are designed to
approximate density functions that are close (in some sense) to the density function of the normal
distribution ϕ. Both approximating series can be introduced in a unified framework, as it has
historically been the case. In the next subsection we roughly recap the history of Gram-Charlier
and Edgeworth approximating series following the authoritative work of [Hal00]. According to
[Hal00], polynomials series approximations appear independently in three different research
fields: first one is relative to the generalization of the CLT; second one is about the fitting of
polynomial regressions using least square method; third one relates to the establishment of new
distributions defined as perturbations the normal one.
Let us also mention the authoritative work of Harald Cramér often quoted on the history of
approximating polynomial series (see in particular [Cra28], [Cra46] or [Cra04]). Expansions
series have been atfirst severely criticised by mathematicians because of their lack of rigorous
theoretical justifications: as pointed out by Cramér in [Cra28] (p. 22), the «mathematical
foundations hitherto laid down seem to be rather weak». It has become progressively accepted
by academics during the first half of the 19th after numerous works of mathematicians (including
that of H. Cramér and other) to establish a rigorous and precise framework. In Subsections 3.3.2
and 3.3.3, we go into technical details of the building of such approximating series.

3.3.1 History and general idea
This paragraph is widely inspired by [Hal00].

3.3.1.1 Around the extension of the Central Limit Theorem

The CLT claims that the normalized empirical sum of any independent identically distributed
(i.i.d.) square integrable random variables converges towards a Gaussian distribution as the
number of realizations increases. It additionally stipulates that the distribution convergence
occurs with a speed rate proportional to the square root of the number of events. The mentioned
extension of the CLT concerns this last point. The characteristic function of a sum of i.i.d.
variates writes as the product of characteristic functions of the variables appearing in the sum.
When sending the number of term to the infinity, the leading term of the product converges
towards the characteristic function of the Gaussian distribution as the number of terms in the
sum goes to infinity. Yet, additional terms in the Taylor expansion of the product characteristic
function can be taken into account to specify the behaviour of the remainder. One can then
apply the Fourier transform to the obtained Taylor series to recover an approximation of the
density function of the distribution of the normalized sum of the variates. It turns out that
the later expresses as the density function of the standard normal distribution plus additional
corrective terms. The development of this approach took place through successive works in the
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first half of the 19th century led by Pierre-Simon de Laplace, Siméon Denis Poisson, Irénée-Jules
Bienaymé or also Friedrich Wilhelm Bessel.

Let us briefly give some insights on the described extension, before giving more details in
Section 3.3.3. Note that the central idea here is that of P.-S. Laplace in its proof of the Central
Limit Theorem. Let (Xi)1≤i≤n be i.i.d. random variables with mean µ and standard deviation
σ. Let us consider the standardized sum Sn = 1√

nσ

(∑n
i=1Xi − nµ

)
= 1√

n

∑n
i=1 Yi where we

set Yi = (Xi − µ)/σ. With ψY1 and ψSn being the respective characteristic functions of the
identically distributed variates (Yi)1≤i≤n and Sn, it is straightforward to get:

ψSn(t) = ψY1

(
t/
√
n
)n
. (3.36)

Let now (κn)n∈N∗ be the sequence of the cumulants of the (Yi)1≤i≤n. They are defined as the
coefficient appearing in the series expression of the log-characteristic function of Y1:

lnψY1(t) =
+∞∑
n=1

κn(it)
n

n!
. (3.37)

Y1 being standardized, κ1 = 0 and κ2 = 1. Combining then (3.36) and exponential form of
(3.37), we get

ψSn(t) = exp
(
− t

2

2

)
exp

(
− iκ3t

3

6
√
n

+
κ4t

4

24n
+

iκ5t
5

120n3/2
+ . . .

)
.

A Taylor expansion of the exponential function as n goes to infinity along with the application
of an inversion theorem allows to identify the density function of Sn as

fSn(x) =
ϕ(x)√
n

(
1 +

κ3H3(x)

3!
√
n

+
κ4H4(x)

4!n
+
κ5H5(x)

5!n3/2
+

1

6!

(
κ6
n2

+ 10
κ23
n

)
H6(x) + . . .

)
.

(3.38)

where the
(
x 7→ Hn(x)

)
n∈N are polynomial functions known as the Hermite polynomials (see

Section 3.3.2). This is the Gram-Charlier expansion of fSn . When alternatively ordering the
terms with respect to increasing powers of 1/n one obtains the so-called Edgeworth expansion
of fSn .

We refer the interested reader to [Cra46] or in [Hal13] and references therein for more
details on the topic. [Cra46] provides a thorough survey of mathematical background used
in probability and pays thus a special attention to the normal distribution and its extension;
[Hal13] works from a statistical point of view to introduce the Edgeworth expansion.

3.3.1.2 Around the least square polynomial fitting

We now move onto the second point of view indicated in [Hal00]: polynomial fitting via least
square method. The development of this approach is essentially due to Augustin Louis Cauchy
(between 1835 and 1853; see [Hal98] for a survey on the work of Cauchy) who work on the
polynomial regression as extension of the linear model and, independently, to Pafnuty Tcheby-
chev (1855 and beyond, see for instance [Che58]) who apply the least square approach to the
polynomial fitting. Let n + 1 observations f(x0), . . . , f(xn) be given. Tchebychev proposed to
model this data by fitting a polynomial of degree m < n:

f(xi) = a0h0(xi) + a1h1(xi) + · · ·+ anhm(xi) + ϵi, i = 1, . . . , n
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where (ϵi)1≤i≤n is a sequence of random variables (white noise) and (hi)0≤i≤n is a sequence of
appropriate polynomials with hj being of degree j (deg(hj) = j). Let us denote by ω(xi) the
inverse of the variance associated to the observation f(xi). In Tchebychev’s paper [Che58] on
the continued fractions, he get the existence of a set of orthogonal polynomials (h̃i)0≤i≤n with
deg(h̃j) = j, satisfying

∑n
i=0 h̃k(xi)h̃m(xi)ω(xi) = 0, k = 1, . . . ,m − 1, h0 ≡ 1 and so that the

solution of least square approximation can write as:

fm(x) =
m∑
k=0

akhk(x),

where the coefficients express as

ak =

∑n
i=0 f(xi)hk(xi)ω(xi)∑n
i=0

∑n
i=0 h

2
k(xi)ω(xi)

.

Later in [Che59], Tchebychev extends these results to the continuous case and replaced, formally
speaking, all sums by integrals. The choice of the weighting function R 3 x 7→ ω(x) is key. All
the standard series representation commonly used in analysis (Fourier, Legendre, Laguerre,
Hermite or MacLaurin-Taylor) can be recovered for an appropriate choice of the weighting
function. When representing the distribution of the errors on measure by a Gaussian one, i.e.
choosing ω = ϕ, it yields Gram-Charlier (and Edgeworth) series expansions (see for instance
[Che59]). For a function f satisfying some integrable conditions, Tchebychev writes

f(x) =
+∞∑
n=0

1

n!
Hn(x)

∫
R
Hn(u)ϕ(u)f(u)du.

where the (Hn)n∈N are the Hermite polynomials previously mentioned. For a probability mea-
sure whose density function writes as a product g(x) = ϕ(x)f(x), one eventually gets

g(x) = ϕ(x)

( +∞∑
n=0

1

n!
E [Hn(X)]Hn(x)

)
(3.39)

where X is a random variable distributed according to g(x)dx. The series (3.39) is the Gram-
Charlier expansion of g. Note that according to A. Hald, Tchebychev did not notice that the
expression he gets coincides with Gram-Charlier expansion at first.

3.3.1.3 As a disturbed probability distribution

The normal distribution is a «central» one, adjective first employed by George Polya in [Pól20]
that motivates the name still currently given to Laplace’s theorem. When it comes to approxi-
mate an unknown distribution function of some variate, as it is done when fitting some observed
data, the normal distribution is a natural choice. Yet obviously the Gaussian distribution does
not allow to fit every observed data distributions (economic, demographic, etc.). According to
[Hal00], Ludvig Henrik Ferdinand Oppermann first had the idea to fit data using a perturbation
of the normal density by multiplying it by a polynomial function and to determine the coeffi-
cients of the polynomial using the classic method of moments. He did not publish on the topic
himself but its colleagues Jørgen Pedersen Gram and notably Thorvald Nicolai Thiele did.
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In [Thi73], Thiele writes the density he proposed to model n given observations writes

g(x) = ϕ(x) + c1ϕ
′(x) + · · ·+ cnϕ

(n) + · · · = ϕ(x)

+∞∑
n=0

ck
k!
Hk(x).

with the (Hk)k∈N still denoting the Hermite polynomials. His work essentially consists in
expressing the coefficients cn in terms of the moments of the variable of which realization
have been observed.

To this end, Thiele introduced the standardized variable x−µn
σn

with µn and σn the respective
empirical mean and empirical standard deviation of the data set of size n . If (gi)1≤i≤n denotes
the n observations, Thiele’s model consists in representing those data as

gi ≈ g
(
xi − µn
σn

)
= ϕ

(
xi − µn
σn

) +∞∑
k=0

ck
k!
Hk

(
xi − µn
σn

)
.

Using the least square method, he estimated the coefficients of the series as cm =
∑

1≤i≤n

Hm

(
xi−µn
σn

)
gi ≈

∫
Hm(

x−µn
σn

)g(x−µnσn
)dx = E

[
Hm

(
X−µ
σ

)]
. Using then the closed-form ex-

pression of the Hermite polynomials Hn and the relationship linking cumulants and moments,
he finally derived in [Thi89] the first simple recurrence formula for the computation of the
coefficients of the Gram-Charlier series as:

ck + (k − 1)ck−2 =
k−1∑
j=0

(
k − 1

j

)
ck−1−jκj+1, k ∈ N∗

where the (κi)i∈N are the cumulants of the observations that express in term of the moments
(and vice-versa).

3.3.2 Gram-Charlier type A expansions
Let us now define quantities and concepts more precisely beginning with the Gram-Charlier
expansion named after the mathematician J. P. Gram and the astronomer Carl Charlier. It is
an expansion method designed for approximating density functions that are somehow close to
the standard normal density. The approach considered in this paragraph is sometimes referred
to as the Gram-Charlier type A expansion to discriminate from the little known type B series
Charlier did also consider (see comments p. 23 in [Cra28]). In this manuscript, we only consider
type A expansion and we will not systematically mention it.

In the following, f will denote an unknown density function that is aim at being approximate
through expansion method; X will be a random variable whose density function (with respect
to the Lebesgue measure) is f : for all x ∈ R, we have P(X ≤ x) =

∫ x
−∞ f(u)du. Recall that ϕ

denotes the standard normal density function and that Φ is the associated cumulative function:
ϕ(x) = e−x2/2

√
2π

and Φ′ = ϕ. Let us introduce more precisely the Hermite polynomials. Those are
polynomial functions named after the mathematician Charles Hermite and well studied by the P.
Tchebychev explaining why they are sometimes also named Tchebychev-Hermite polynomials5.
Let us denote them by (Hn)n∈N: the n-th Hermite polynomial is of degree n. They can be

5According to [Mol30] and [Usp37], it is actually Laplace who was the first to operate on these polynomials.
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defined using the Rodrigues6 formulation as satisfying

dn
dxn e

−x2/2 = (−1)nHn(x)e
−x2/2, x ∈ R, n ∈ N∗, H0 ≡ 1. (3.40)

The coefficient (−1)n is sometimes included in the definition of the Hermite polynomials. Defi-
nition (3.40) shows that the Hermite polynomials are closely linked to the Gaussian distribution.
For practical purposes, their explicit expressions are often used:

Hn(x) =

⌊n/2⌋∑
k=0

(−1)kn!
2kk!(n− 2k)!

xn−2k. (3.41)

Various properties of these polynomials are gathered in [AS64], Chapter 22. The Gram-Charlier
expansion of f is based on these polynomial functions.

Definition 3. Let the sequence of coefficients cn be defined as: c0 = 1,

cn =
1

n!

∫
R
Hn(x)f(x)dx =

1

n!
E
[
Hn(X)

]
, n ∈ N∗.

The Gram-Charlier series expansion f̃ of the approximated density f is defined as

f̃(x) = ϕ(x)
∞∑
n=0

cnHn(x), x ∈ R. (3.42)

For practical uses such as pricing of financial derivatives, the quantity of interest can be the
cumulative distribution function rather than the density one. The Gram-Charlier expansion
can be defined on the cumulative distribution function of f by integrating (3.42). Using that
cnHn(x) = ϕ(n)(x), the expansion writes

P(X ≤ x) = Φ(x) + ϕ(x)

∞∑
n=1

cnHn−1(x), x ∈ R. (3.43)

Note that the coefficients cn are linear combinations of the moments of X. Although the
density f is unknown, one needs to be able to compute the moments of X to perform such an
expansion in practice. Keep in mind that the polynomials Hn are explicitly known so that cn
are also fully known once the moments X are determined. Moreover, since the series in (3.42)
is characterized by the sequence of its coefficients (cn)n∈N, all density functions having the
same sequence of moments

(∫
R x

nf(x)dx
)
n∈N would have the same Gram-Charlier expansion.

Consequently, Gram-Charlier approximation method is not appropriate for distributions for
which the moments problem is not determined. The question of the convergence of (3.42) arises.
In the particular case of distribution not determined by their moments, the series is likely to
diverge. To ensure the convergence of (3.42) and thus guarantee a consistent approximation
method, f should satisfy some conditions. The notion of functions of bounded variations will
be of interest.

Definition 4. Let f being a complex valued function defined over an interval I ⊂ R. Let P
be the set of all partition σ = {x0, . . . , xn} of I satisfying xi ≤ xi+1, i ∈ J1, nK. For a given
σ ∈ P, the associated variation V (f, σ) of f is the quantity V (f, σ) :=

∑n−1
i=0 |f(xi+1)− f(xi)|.

6Such formulas has been introduced by Olinde Rodrigues in [Rod15].
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f is then said to be of bounded variation over I if its total variation is finite:

VT (f) = sup
σ
V (f, σ) <∞.

We have already said that Gram-Charlier expansion is particularly designed for density
functions close to the normal one. The next key result due to Cramér that can be found in
[Cra28] for instance clarifies this claim.

Theorem 3.30 ([Cra28]). Assume that the unknown density function f is of bounded variation
over any subinterval of R and is such that∫

R
ex

2/4f(x)ds <∞. (3.44)

Then, for any x ∈ R, the Gram-Charlier expansion f̃ of f defined in (3.42) satisfies

f̃(x) =
1

2

(
f(x+) + f(x−)

)
.

In particular, the Gram-Charlier expansion (3.42) is exact in every continuity point f . Moreover,
the convergence is uniform over every finite interval of continuity.

Example 3. A continuously differentiable function over R with bounded derivative is of bounded
variation over any subinterval of R so that under integrability condition (3.44), f̃(x) = f(x) for
all x ∈ R.

The sufficient condition (3.44) is a very restrictive one: f must decrease asymptotically
faster than a quadratic exponential function. Most of the common probability distributions
do not satisfy it (in particular log-normal, exponential, gamma or chi-squared distributions);
some non standard Gaussian distributions N (µ, σ2) do satisfy it. Indeed, it is straightforward
to check that the density 1√

2πσ2
exp

(
−(x− µ)2/(2σ2)

)
met (3.44) when σ2 < 2.

Note furthermore that thanks to Corollary 1 of Section 3.2, Cramér’s condition also ensures
that one is dealing with distributions determined by their moments. In other words, (3.42) do
converge toward the relevant distribution as the number of term increases.

In practice, the series f̃ is approximated by a sum of N ∈ N terms and the question of the
truncation error naturally arises. There exist few results about it: the following result proved
in [Mil29] is generally mentioned. Let us denote the N -th order approximating density by

f̃N (x) = ϕ(x)
N∑
n=0

cnHn(x), x ∈ R. (3.45)

Theorem 3.31 ([Mil29]). Assume that the unknown density f is k times differentiable, has a
continuous k-th derivative of bounded variation and that the following functions

x 7→ xex
2/4f (k)(x), x 7→ x2ex

2/4f (k−1)(x), . . . , x 7→ xk+1ex
2/4f(x),

are of bounded variation over R. Then there exists some constant Ck ∈ R∗
+ such that for all

N ∈ N, all x ∈ R, ∣∣f(x)− f̃N (x)∣∣ ≤ Ck
Nk/2

(1 + x2)1/6e−x
2/4.

In the literature, Gram-Charlier expansions are usually performed on variates which has
been centred and reduced beforehand. Denote by X̄ = X−E[X]√

E[X2]−E[X]2
the standardized variate in
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present context. On one hand, by doing so we get that the first two moments of the standardized
variate are the same of a standard Gaussian variable: E[X̄] = 0 and Var(X̄) = 1. On the other
hand, successive integrations by part show that if G ∼ N (η, 1) for some η ∈ R, E[Hn(G)] = ηn.
Consequently, the coefficients c1 and c2 appearing in the Gram-Charlier expansion of the density
of X̄ are zero. More generally, if X̄ and G have common moments up to order p ∈ N it results
in fact that c1 = c2 = · · · = cp = 0. It will be discussed in a different setting in Section 3.4.

In next paragraph, we take a look at a forgotten (at least in recent works) polynomial expan-
sion series similar to the Gram-Charlier approach but requires much less restrictive condition
to ensure convergence.

A word on the Uspensky’s framework
The question of the convergence of the Gram-Charlier series has been studied by several authors.
We mentioned Cramér but many other could be quoted. Cramér himself quoted in [Cra28] the
works of [Hil26], [Sze26] and [Usp37]. The first one worked on Hermitian series and provided
associated convergence results; the second one studied Laguerre series. We take a closer look
at the work of James Victor Uspensky [Usp37] less quoted in recent works. He obtained a
convergence of a Gram-Charlier type series under much less restrictive conditions than (3.44).

Uspensky worked with so-called «physicists’» Hermite polynomials (H̃n)n∈N defined through
the Rodrigues formulation as

dn
dxn e

−x2 = (−1)nH̃n(x)e
−x2 , H̃0 ≡ 1.

Those new polynomials relate to the density measure g(x)dx = e−x2

√
π

dx. Note that they can be
linked to the previously introduced «probabilists’» Hermite polynomial in (3.40) via H̃n(x) =
2n/2Hn(

√
2x). He then considered the polynomial functions

Ĥn(x) =
1√

2nn!
√
π
H̃n(x),

that are normalized polynomials in the sense that
∫
R e

−x2(Ĥn(x))
2dx = 1. He then considered

the «Fourier coefficients» of f with respect to these orthonormal basis of polynomials defined
as αn =

∫
R e

−x2f(x)Ĥn(x)dx, n ∈ N. Uspensky considered and studied the following series

+∞∑
n=0

αnĤn(x), x ∈ R, (3.46)

and obtained the following result.

Theorem 3.32 ([Usp37]). Assume that f is absolutely integrable over any finite interval of R,
is of bounded variation over a certain interval [x−m,x+m] for some x ∈ R and m > 0, and
is such that the following holds for some A ∈ R:

max
(∫ −A

−∞
e−u

2
f(u)2du,

∫ +∞

A
e−u

2
f(u)2du

)
<∞.

Then,
1

2

(
f(x+) + f(x−)

)
=

+∞∑
n=0

αnĤn(x).

In particular, the expansion is exact at every continuity point of f .
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While Theorem 3.30 a is very restrictive result, Theorem 3.32 is much more global. Yet in
Gram-Charlier’s framework is widely more used in practice essentially for the following reason.
Indeed, coefficients cn in standard Gram-Charlier series (3.42) express as linear combinations of
the moments of X. In Uspensky’s framework, those coefficients are more complex. They express
as linear combinations of E[e−X2

Xn] and it turns out that the class of stochastic variable offering
closed-form formulas for such quantities is (much) smaller than those offering analytical formulas
for moments. Moreover and contrary to Theorem 3.30, Theorem 3.32 does not provided any
detail on the mode of convergence of the series (3.46).

Remark 23. The Uspensky’s approach is also referred to as a Gauss-Hermite expansion.
[BM98] and references therein provide alternative convergence results of the expansion (3.46).
All provided sufficient conditions that are still much less restrictive than (3.44). For instance,
it is enough for the approximated unknown density f to be such that x3f(x) −−−→

x→∞
0 along with

finiteness and continuity of f ′′ to get the convergence of (3.46).

Illustrations
We now provide some examples and illustraions of the presented series expansions.

Gaussian distributions As already mentioned, Gram-Charlier expansion are designed for
density close enough to the Gaussian one. It is natural to first check if the method applied thus
to non-standard Gaussian distributions. We retake the previous examples of centred Gaussian
distribution: if G ∼ N (0, σ2) then (3.44) is satisfied if (and only if) σ2 < 2. The distinct
behaviour of the Gram-Charlier series regarding the value of the variance parameter is depicted
in Figure 3.3. Namely in Figure 3.3a, σ2 < 2 but we observe that the convergence is quite slow:
at order 100, the approximating density and the target one can still be clearly distinguished.
Approximating densities are indeed pseudo-densities since taking negative values. In Figure 3.3b
σ2 > 2 and the divergence of the successive approximating series appears quickly. Observe that
the successive approximating densities (f̃N )N∈N always integrate to one but are non necessarily
non-negative: they are sometimes classified as pseudo-densities.

Instructive examples Later in this thesis, Gram-Charlier expansions will be performed to
approximate density of stochastic volatility type diffusions. To anticipate our future discussions,
we examine now one of the simplest –if not the simplest– stochastic volatility type model: it is a
static model without dynamics. Let G be a normally distributed random variable N (0, σ2) and
S be a chi-squared distributed variate with 4 degrees of freedom χ2(4). S and G are supposed to
be independent. Consider the variable X =

√
S×G: its density function f will be approximated

by Gram-Charlier expansions. We first check the possibility to perform such an expansion on it:
does f satisfies (3.44)? To answer it we first derive a semi-analytical expression for the function
f . To do so consider h a measurable function defined over R so that E

[
|h(X)|

]
<∞. We obtain

E[h(X)] =

∫
R∗
+×R

h(
√
sg)

se−s/2

4

e−g
2/(2σ2)

√
2πσ2

dsdg

=

∫
R
h(z)

(∫
R∗
+

√
te−t/2

4

e−z
2/(2tσ2)

√
2πσ2

dt
)

dz,
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(a) G.-C. series expansion of a centred Gaussian
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order 100.
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Figure 3.3: Gram-Charlier expansions performed on centred Gaussian distributions.

where we applied the Fubini theorem and used the change of variables R∗
+ × R 3 (s, g) 7→

(
√
sg, s). We are able to identify f as

f(x) =

∫
R∗
+

√
te−t/2

4

e−x
2/(2tσ2)

√
2πσ2

dt, x ∈ R.

Let now η > 0 and write

E[eηX
2
] =

∫
R
eηx

2

∫
R∗
+

√
te−t/2

4

e−x
2/(2tσ2)

√
2πσ2

dtdx.

A sufficient condition for this expectation to be finite is that for any t ≥ 0, the function
R 3 x 7→

√
te−t/2

4
e−x2(1/(2tσ2)−η)

√
2πσ2

is integrable. This can not be ensured and thus E[eηX2
] = ∞.

Consequently, the sufficient condition (3.44) ensuring the convergence of the Gram-Charlier
expansion of f is not guaranteed. Though it is not rigorously equivalent, we have not empirically
observe example of density not satisfying (3.44) but whose Gram-Charlier series still converge.
We illustrate it below in Figure 3.4. Note that to perform the expansion, the moments of X
have been derived in closed-form formula: for all n ∈ N,

• E[X2n+1] = E[Sn+1/2]E[G2n+1] = 0;

• E[X2n] = E[Sn]E[G2n] = 2n(n+ 1)!× (2n)!
2nn! σ

2n = (n+ 1)σ2n(2n)!.

To approximate the density of X anyway and overcome the observed divergence, the follow-
ing strategy is implemented: approximate X and its density using an auxiliary variate X(m)

parametrized by m ∈ R+ and whose distribution density has tails thin enough to ensure the
Gram-Charlier series to converge. The approximating random variable X(m) should be chosen
so that the distance between X and X(m) can be assessed and minimized somehow. The series
expansion is then performed on the density fm of the approximating variable X(m) hopefully
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Figure 3.4: G.-C. series expansion of the density of X =
√
SG up to order 10. As expected, the

expansion diverges. Variance parameter: σ2 = 0.25.

close to f .
Let m ∈ R+ and consider the approximating variable X(m) =

√
S ∧mG: m allows to truncate

the density of S so that tails of the density of X are reduced. We first assess the L2 distance
between X and X(m):

E
[
(X −X(m))2

]
= E

[
(
√
S −
√
S ∧m)2

]
E
[
G2
]

= E
[
(
√
S −
√
m)21S≥m

]
E
[
G2
]

≤ E [|S −m|1S≥m]σ2,

(3.47)

using that |
√
x − √y| ≤

√
|x− y| for (x, y) ∈ (R+)

2. Furthermore, we can easily check that
(3.44) is satisfy for X(m) when m is not too large: for m < 2/σ2,

E
[
e(X

(m))2/4
]
≤ E

[
emG

2/4
]
<∞.

and (3.44) is satisfied. Note that a trade-off should be made here on the truncating parameter
m: on the one hand, to better approximate the density f , m should be taken as large as possible
but on the other hand, the convergence condition requires m < 2/σ2.
Closed-form formula for density and the moments of X(m) can be derived. The density fm is
identified following the previous method. For a measurable function h such that E

[
|h(X(m))|

]
<
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∞, we write

E[h(X(m))] =

∫
R∗
+×R

h(
√
s ∧mg)se

−s/2

4

e−g
2/(2σ2)

√
2πσ2

dsdg

=

∫
]0,m]×R

h(z)

√
te−t/2

4

e−z
2/(2tσ2)

√
2πσ2

dtdz +
∫
]m,∞[×R

h(z)
te−t/2

4
√
m

e−z
2/(2mσ2)

√
2πσ2

dtdz

=

∫
R
h(z)

(∫
]0,m]

√
te−t/2

4

e−z
2/(2tσ2)

√
2πσ2

dt+
∫
]m,∞[

te−t/2

4
√
m

e−z
2/(2mσ2)

√
2πσ2

dt
)

dz.

so that fm(x) =
∫
R+

(√
te−t/2

4
e−x2/(2tσ2)

√
2πσ2

1t∈(0,m]+
te−t/2

4
√
m

e−x2/(2mσ2)
√
2πσ2

1t∈(m,∞)

)
dt. Before performing

Gram-Charlier expansion on the density X(m), we illustrate the distance between X(m) and X.
In Figure 3.5a we provide the densities f (referred as the target density) and fm for different
values of m. Following (3.47) we display in Figure 3.5b the quantity E

[
|S − m|1S≥m

]
as a

function of m. In the following experiment, we fix m = 4 which corresponds to a reasonable
error made when substituting f for fm.
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Figure 3.5: Gram-Charlier expansions performed on centred Gaussian distributions.

Before performing Gram-Charlier expansions on fm, let us take a look at the moments of
X(m) that express as: for any n ∈ N,

• E
[
(X(m))2n+1

]
= E

[
(
√
S ∧m)2n+1

]
× E

[
G2n+1

]
= 0;

• E
[
(X(m))2n

]
= E

[
(S ∧m)n

]
E
[
G2n

]
=
(
E
[
Sn1s≤m

]
+mnP(S ≥ m)

) (2n)!
2nn! σ

2n.

We specify this last expression: P(S ≥ m) = 1−FS(m) where FS is the cumulative distribution
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function of the χ2(4) distribution and writes FS(x) =
∫ x
0
se−s/2

4 ds and

E[Sn1s≤m] =
∫ m

0
sn
se−s/2

4
ds

=
n+ 1

2

∫ m

0
sne−s/2ds− 1

2
mn+1em/2 (Int. by part)

= . . . (Successive integrations by part)

=
1

2

(
2n+1(1− e−m/2)(n+ 1)!− e−m/2

n∑
k=1

2k
(n+ 1)!

(n− k)!
mn−k+1 −mn+1em/2

)
.

We are thus able to perform the Gram-Charlier expansion on the density fm of X(m) with a
guaranteed convergence. Successive approximating densities of fm are displayed in Figure 3.6:
the convergence is clear now.
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Figure 3.6: G.-C. series expansion of the density of X(m) =
√
S ∧mG up to order 30. Parame-

ters: σ2 = 0.25 and m = 4.

Pathologic examples Let us now take a look at distributions whose supports are strict sub-
sets of R. They are associated with densities functions that write as a given expression multiply
by the indicator function of the support. In view of the expression of truncated Gram-Charlier
series (3.45), it is clear that the approximating series can not accurately approximate the target
density function at least around the discontinuity points. Moreover, beyond boundaries of the
target density support, truncated approximating density can not be zero. It would result in the
existence of an infinity of zeros of the polynomial function x 7→

∑
0≤n≤N cnHn(x). It is not pos-
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sible except if all coefficients cn are zero. That being said, distributions with bounded supports
always satisfy (3.44). In practice, it is thus always worthy to try to perform Gram-Charlier
expansions on such densities: it may locally result in quite good approximations.

We illustrate our comments below in Figure 3.7. First, a Gram-Charlier expansion is per-
formed on a Gamma distribution Γ(2, 2) whose support is R+. It should be observed that the
Gamma density does not satisfy the sufficient condition (3.44). The 5-th order expansion al-
lows for a rough but reasonable approximation of the Gamma distribution around its mean 1.
Expansion orders beyond 5 are not provided since a clear divergence is noticed.
In Figure 3.8 we perfom a Gram-Charlier expansion of the beta distribution β(2, 2) whose sup-
port is [0, 1]. The beta distribution does thus satisfy (3.44). We observe a very good fitting over
[0, 1] as the truncation order increases. Contrary to the previous Gamma distribution case, we
are able to go to quite high orders –here up to 100– with good stability in the expansion.
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Figure 3.8: G.-C. series expansion of the beta
distribution β(2, 2) up to order 100.

Figure 3.9: Gram-Charlier expansions of distributions of (semi-)bounded supports.

Uspensky framework We illustrate now the framework of [Usp37] resulting notably in
(3.46). We apply its methodology to the standard Laplace distribution Laplace(0, 1). As dis-
cussed above, the difficulty here is to compute the sequence of coefficients (αn)n∈N: in this par-
ticular experiment, we can take advantage of semi-analytical formulas to compute it. Recall that
they are defined in present example as αn = E

[
e−X

2
Xn
]

for n ∈ N, where X ∼ Laplace(0, 1).
The following identity is admitted and will be employed in numerical experiments:∫

R
xne−x

2 e−|x|

2
dx =

n!

2n+2

(
1

2
U
(
1 +

n

2
,
3

2
;
1

4

)
+ (−1)nU

(n+ 1

2
,
1

2
;
1

4

))

where U(α, β, z) is the hypergeometric function of the second kind (introduced in [Tri47]; see
also Chapter 13 in [AS64]).
Figure 3.10a displays Uspensky approximations up to order 100: we observe that the higher
the expansion order is, the better the approximation despite the singularity at the origin. The
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tails of the distribution are also better approximated however order 100 is not enough to get a
reasonable approximation over the whole selected interval (here [−4, 4]). Again, the truncating
densities are simply pseudo-densities. For comparison, a standard Gram-Charlier expansion is
performed and the first orders of it are provided in Figure 3.10b: the divergence of the expansion
is clear.
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(a) Uspensky expansion of the standard Laplace
distribution up to order 100.
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Figure 3.10: Approximation of Laplace density function thanks to various expansions ap-
proaches.

3.3.3 Edgeworth series
We provide in this section more details on the Edgeworth expansion introduced in first paragraph
of Section 3.3.1 and following the presentation of Peter Hall in [Hal13]. Recall that Edgeworth
and Gram-Charlier expansions are very similar as they are only distinguished by the order in
which terms are ordered. Consequently, both expansion methods only differ from a practical
point of view. We recall that the Edgeworth expansion has been introduced while attempting
to specify further terms in the Central Limit Theorem. Below we describe in more details how
this expansion is performed.

Let us retake the notations of Paragraph 3.3.1.1: let us consider a sequence of i.i.d. random
variables (Xi)i∈N with mean µ and variance σ2 and their standardized counterparts (Yi)i∈N. Let
n ∈ N be given and denote the standardized sum by Sn = 1√

nσ2
(X1 + · · · +Xn − nµ). Let us

denote by ψY1 the common characteristic function of the standardized variables Yk = (Xk−µ)/σ
and F their common cumulative distribution function. Let ψSn be the characteristic function of
Sn. We recall that it is expressed as the power of the characteristic function ψY1 as provided in
(3.36). Under square integrability assumptions of the variates Yi, the Central Limit Theorem
state that ψSn(u) −−−−−→n→+∞

ψ(u) = e−u
2/2, for all u ∈ R. We now specify how additional terms

can be obtained to specify this convergence.
The (common) sequence of cumulants of variates (Yi)1≤i≤n denoted (κj)j∈N is defined as satis-
fying (3.37). Using the series representation of the characteristic function, one can alternatively

135



write: for all u ∈ R,

logψY1(u) = log

1 +
∑
j≥1

(iu)j

j!
E

[(
X1 − µ
σ

)j]
=
∑
p≥1

(−1)p+1

p

∑
j≥1

(iu)j

j!
E

[(
Xn − µ
σ

)j]p

=
∑
p≥1

κp
p!

(iu)p.

Cumulants can thus be expressed as linear combinations of the moments of Y1. In particular case
of standardized variables as in present case one can proves that κ1 = 0 and κ2 = 1. Combining
the latter identity and (3.36) yields

ψSn(u) = exp

∑
p≥2

κp
p!

(iu)p

np/2−1

 .

Since
∣∣ψSn(u)

∣∣ <∞ implies the absolute convergence of all involved series, we obtain using the
representation of the exponential function

ψSn(u) = e−u
2/2 exp

2
∑
p≥2

κp
p!

(iu)p−2

np/2−1


= e−u

2/2
∑
q≥0

1

q!

(∑
p≥1

κp
p!

(iu)p

np/2−1

)q

= e−u
2/2
∑
p≥0

rp(iu)

np/2

(3.48)

where we introduced the sequence of polynomial functions (rp)p≥0. For each p ∈ N, rp is
defined as being the polynomial function of argument iu in factor of n−p/2: it is of degree 3p
(in particular r0 ≡ 1) and its coefficients depend on the cumulants κ3, . . . , κp+2 but not on
n. Assuming in addition that ψSn is integrable over R and applying the Fourier transform
technique to it allows to recover the density function fSn of Sn:

fSn(x) =

∫
R
e−iuxψSn(u)du =

∫
R
e−iux−u

2/2
∑
p≥0

rp(iu)

np/2
du. (3.49)

Since the rj are polynomial functions, they can be written in term of Hermite polynomi-
als: fix p ∈ N and let us introduce the sequence of coefficients (βpk)k≤3p such that rp(iu) =∑

k≤3p β
p
ki
kHk(x). Examining (3.48) we deduce that the coefficients βk are linear combinations

of the cumulants of Y1 and a fortiori of the moments of Y1.
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Before going further, we recall that by definition of the Hermite polynomials, we also have

e−t
2/2 = (−it)−1

∫
R
eituϕ(u)du

= . . . (Successive integrations by part)

= (−it)−p
∫
R
eituHp(u)ϕ(u)du.

(3.50)

Combining (3.49) and (3.50) finally allows to recover the density function of Sn written as a
series of increasing exponents of 1/n.

Definition 5. The Edgeworth expansion of the density function of Sn denoted by f̂Sn is defined
as

f̂Sn(x) = ϕ(x)

∞∑
p=0

1

np/2

∑
k≤3p

βpkx
k, x ∈ R. (3.51)

As for the Gram-Charlier approach in (3.43), an expansion of the cumulated distribution
function is sometimes used by integrating (3.51). Formally it writes

P(Sn ≤ x) = Φ(x) +
∑
j≥1

Pj(x)

nj/2
, x ∈ R,

where Pj a polynomial of degree 3j − 1 for each j ∈ N∗.
The truncated Edgeworth expansion (named after the economist and philosopher Francis

Ysidro Edgeworth) can be defined similarly as in (3.45): for N ∈ N,

f̂NSn
(x) = ϕ(x)

N∑
p=0

1

np/2

∑
k≤3p

βpkx
k, x ∈ R. (3.52)

In practice, f̂NSn
is often expressed in term of Hermite polynomials. Some comments should be

made at this stage. To our knowledge, there exists no simple analytical formulas for polynomial
function (rj)j∈N nor recurrence relationship. However, [BM98] proposed a quite simple algo-
rithm to implement for performing high order Edgeworth expansions. Secondly and contrary
to the truncated Gram-Charlier series defined in (3.45), truncated Edgeworth expansion (3.52)
does not necessarily integrate to one. Third, in practice the variate that is approximated usually
reduces to one term: S1 = (X−µ)/σ. This amounts to set n = 1 in all previous formulas. Then
observe that for a given truncation order N ∈ N, f̂N comprises an additional term compared
to f̃N . For instance for N = 4,

f̂4Sn
(x) = ϕ(x)

(
1 +

κ3H3(x)√
n

+
1

n

(κ4
24
H4(x) +

κ23
72
H6(x)

)
+
ϵ(n, x)

n

)
where the term ϵ(n, x) −−−→

n→∞
0 for all x. The term κ23

72H6(x) is an additional one when com-
pared to f̃4Sn

. When convergence is ensured, this additional term is expected to provide a better
approximation. We illustrate the correction brought in by the Edgeworth expansion in Fig-
ure 3.11. In this example, we approximate the skew Normal distribution: it exhibits a strong
asymmetric shape monitored by one parameter. Density of the skew Normal distribution writes
as f(x) = 2

vϕ
(x−µ

v

)
Φ
(
αx−µv

)
where we recall that ϕ(x) = e−x

2/2/
√
2π and Φ′(x) = ϕ(x), α ∈ R

controls the shape of the distribution, µ ∈ R is the position parameter and v > 0 is the scale
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parameter. To visualize the impact of the extra term in the Edgeworth expansion, a fourth or-
der Gram-Charlier expansion is performed and compared to a fourth order Edgeworth one. We
observe that the asymmetry of the approximating Edgeworth density is quite pronounced and
closer to that of the target density function than the one provided by Gram-Charlier density.
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Figure 3.11: Gram-Charlier and Edgeworth expansions approximating a skew normal distribu-
tion with α = 6, µ = v = 1.

We conclude present section by discussing the convergence of the Edgeworth expansion.
Two types of convergence should be discussed here: with respect to the truncation order N
similar to the Gram-Charlier approach, and with respect to the number of variates n involved
in the definition of Sn. Regarding the convergence of f̂NSn

towards the approximated density
f , first recall that expansions (3.42) and (3.51) coincide up to the order in which terms are
ordered. Second, Theorem 3.30 provides that the convergence of Gram-Charlier series in (3.42)
is uniform over any bounded interval of continuity of the target density f . Consequently, under
(3.44) one can reorder the terms and obtain the Edgeworth expansion. The following result
due to Cramér is about the behaviour of Edgeworth approximation as n goes to infinity. Here
after we denote by FSn the cumulative distribution function associated to approximated density
function fSn and by µk =

∫
R |x|

kfSn(x)dx.

Theorem 3.33 ([Cra28]). Assume that fSn has finite moments up to order 2. Then,

FSn(x) −−−−−→n→+∞
Φ(x), ∀x ∈ R (Central Limit Theorem).

If in addition fSn has a finite third absolute moment µ3 <∞, then

|FSn(x)− Φ(x)| ≤ 3
µ3

µ
3/2
2

log(n)√
n

.

Cramér extended this result to get the magnitude of the neglected terms when truncating
the expansion of the cumulative distribution at arbitrary order and provide this way a result
on simultaneous behaviour as min(N,n)→∞.

Theorem 3.34. Assume that fSn has a finite moment µN+2 for some N ∈ N∗ and that
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lim|t|→+∞ sup |ψX(t)| < 17. Then

FSn(x) = Φ(x) + ϕ(x)
N∑
k=1

Pk(x)

nk/2
+RN,n(x),

where the remainder term is that such there exists a constant M only depending on F and N
and not on (x, n) satisfying |RN,n(x)| ≤Mn−(n+1)/2.

Remark 24. Assuming that variables (Xj)1≤j≤n have finite absolute moments of order k ∈ N,
that is E

[
|Xj |k

]
<∞, j = 1, . . . , n is enough to ensure that µk is finite.

3.4 Density approximations in Hilbert space
Previous approaches are pointwise converging. We now turn into approximations of density
functions in appropriate Lebesgue space of square-integrable densities. The idea is to apply
the general theory of such spaces to expand a likelihood ratio within proper functional space
along an orthonormal basis. We follow the presentation in Section 2 of [FMS13] to present the
approach. note that contrary to preceding approaches we now place ourselves now in general
multi-dimensional spaces.

Let E be a topological space associated with a σ-algebra Σ. Let µ be a measure defined
over Σ and L2(µ) be the space of square integrable functions with respect to µ: L2(µ) =

{
f :

E → E measurable:
∫
E f(x)

2µ(dx) < +∞
}

. We focus on the particular case when E ⊂ Rn,
n ∈ N∗, Σ is composed of Borel sets and µ has a density w with respect to the Lebesgue measure:
µ(dx) = w(x)dx. We denote in this particular case L2(µ) = L2w the Lebesgue space of square
integrable functions also called weighted space with weighting function w. For (f, g) ∈

(
L2w
)2,

we define the scalar product 〈f, g〉L2
w

by

〈f, g〉L2
w
=

∫
Rn

f(x)g(x)w(x)dx, (3.53)

and the induced L2w-norm by ‖f‖w =
√
〈f, f〉L2

w
.

We still denote by f the unknown density function that one wants to approximate. The only
information available about f is the knowledge of its moments∫

Rn

xαf(x)dx

that are assumed to exist and are well defined for any multi-index8 α ∈ Nn. Let us choose
a reference density function w –thus, explicitly known. The key property here is that L2w
equipped with the scalar product 〈·, ·〉L2

w
is a Hilbert space. being in a such space, the present

technique consists in expanding the likelihood ratio f/w along an orthonormal basis composed
of polynomial functions associated to the weighting function w. To do so, it should preliminarily
be checked that the mentioned ratio does lie in L2w and that there exists such an orthonormal
basis. The following results provide sufficient conditions for these requirements and are proved
in [FMS13].

7This condition is often called the Cramér condition.
8For x ∈ Rn and α ∈ Nn, xα = xα1

1 × · · · × xαn
n .
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The first requirement is equivalent to∫
Rn

f(x)2/w(x)dx <∞ (3.54)

but an alternative sufficient condition is given in the following lemma.

Lemma 3.35 ([FMS13]). Suppose that f is bounded and admits exponential moments that is∫
Rn

eη∥u∥f(u)du < +∞,

for some η > 0. In addition, if w is such that

sup
x∈Rn

e−η∥x∥

w(x)
< +∞,

then f/w ∈ L2w.

Remark 25. Observe that in an expansion in the L2r space associated with a Gaussian density,
the condition (3.54) is quite similar to that ensuring pointwise convergence (3.44).

Below is given a sufficient condition for the existence of an orthonormal basis composed of
polynomial functions.

Lemma 3.36 ([FMS13]). Suppose that w admits an exponential moments that is∫
Rn

eη∥u∥w(u)du < +∞,

for some η > 0. Then, {p polynomials defined over Rn} is dense in L2w and there exists an
orthonormal basis of L2w composed of polynomials functions.

From now on, we assume that f/g ∈ L2w and that there exists an orthonormal basis of L2w
composed of polynomials {Pj , j ∈ Nn | deg(Pj) = |j|}9. Note that the sequence of polynomials
(Pj)j∈N depends on the weighting function w. Truncated density functions can be defined as
f (N)(x) = w(x)

(
1 +

∑N
|α|=1 cαPα(x)

)
in a similar fashion as in (3.45) or (3.52), where the

coefficients cα are defined by
cα =

〈
f

w
, Pα

〉
L2
w

.

They express thus as linear combination of the moments of f with coefficients being that of the
polynomials Pα. Expanding f/w along this basis in L2w yields the following theorem.

Theorem 3.37 ([FMS13]). Pseudo-density functions integrate to 1 and approximate f in the
following sense: limN→+∞ f (N)/w = f/w in L2w meaning that

lim
N→+∞

∫
Rn

1

w(u)

∣∣∣f (N)(u)− f(u)
∣∣∣2 du = 0.

Remark 26. In the following of this thesis, by abuse of language, we will also speak of Gram-
Charlier expansions for Hilbert expansions built around Gaussian density.

9For j ∈ Nn, |j| =
∑n

i=1 ji.
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Parseval-Bessel equality yields∥∥∥∥ fw
∥∥∥∥
L2
w

= 1 +
∑
|α|≥1

c2α and
∥∥∥∥∥f (N)

w

∥∥∥∥∥
L2
w

= 1 +
N∑

|α|=1

c2α,

so that the L2w-norm of these (pseudo-)likelihood ratios is always greater than 1. In the particular
case when f = w, it is clear that ‖f/w‖L2

w
= 1 meaning that all coefficients cα = 0. Roughly

speaking, the more f and w are close in some sense, the more there are null coefficients. The
following result justifies this property: in L2w, f and w can be deemed «close» by comparing
their moments.

Lemma 3.38 ([FMS13]). Suppose that for some p ∈ N,∫
Rn

xαf(x)dx =

∫
Rn

xαw(x)dx

for all α ∈ Nn such that |α| ≤ p. Then, cα = 0 for 1 ≤ |α| ≤ p.

This echoes the comments we have made above following Theorem 3.31. On another note,
observe that the above Parseval-Bessel identity shows that cα −−−−−→

α→+∞
0.

Illustrations We end present section by giving some classical choices of reference density w
along with the associated orthonormal basis when working over R coming from [AGL16]. These
imply different families of orthogonal polynomials and for more properties on it, we refer to the
standard book of [Sze39].

1. Normal distribution N (0, 1): the density w(x)dx = e−x2/2
√
2π

dx is associated with normal-
ized Hermite polynomials (Pα)α∈N defined by Pα = 1

∥Hα∥L2
w

Hα where Hα is given by
(3.41). It should be observed that this framework is close to the above introduced Gram-
Charlier expansion. Rigorously, they are not exactly the same since (i) Gram-Charlier
type A expansion (3.42) does not involve normalized Hermite polynomials and (ii) Hilbert
approximation of Theorem 3.37 does no allow to recover the cumulative distribution func-
tion.

2. Gamma distribution Γ(k, 1/θ): the density w(x)dx = e−x/θxk−1

θkΓ(k)
1x≥0dx is associated with

generalized Laguerre polynomials (Lα)α∈N defined by Lα(x) = (−1)α
(
Γ(n+1)Γ(r)

Γ(n+r)

)1/2
×∑α

i=0

(
α+k−1
α−i

) (−x/θ)i
i!

10.

3. Log-normal distribution LN (µ, σ2): the density w(x)dx = e−(ln(x)−µ)2/(2σ2)

x
√
2πσ2

1x≥0dx is asso-
ciated with following orthonormal polynomials
Pα(x) =

e−α2σ2/2√
[e−σ2 ,e−σ2 ]α

∑α
j=0(−1)α+je−jµ−j

2µ2/2eα−j

(
1, . . . , e(α−1)σ2

)
xj where ei(x1, . . . ,

xn) =
∑

1≤j1<···<ji≤n xj1 . . . xjn if i ≤ n, 0 otherwise and where [x, y]n =
∏n−1
k=0(1− xyk).

10For z ∈ C, we may extend the binomial coefficient as
(
z
n

)
= (z)n

n!
= (z)(z−1)...(z−n+1)

n!
.
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Chapter 4

Jacobi Stochastic Volatility factor
for the Libor Market Model

This chapter comprises augmented version of [ABLM20].

4.1 Introduction
We now present the modelling framework we propose to efficiently price swap rates derivatives.
In this chapter, we develop a method based on Gram-Charlier expansions introduced earlier to
efficiently price swap rates derivatives under the Displaced Diffusion with Stochastic Volatility
LIBOR Market Model (see Chapter 1).

Designed using the freezing technique (Chapter 2), the so-called DDSVLMM lies in the
family of Heston like models. For those the Fast Fourier Transform (FTT) method described
in [CM99] is generally employed to price derivatives over a grid of strikes. However, integrating
the Heston characteristic function in the complex field can cause numerical issues as pointed out
and solved by [AMST07]. Recent interest has been dedicated to the significant computational
time cost of numerical integration the FTT requires in our context and the use of alternative
more efficient pricing techniques. In particular, approximations based on Gram-Charlier and
Edgeworth expansion techniques have been proposed. In [DABB17], the authors developed a
4-th order Gram-Charlier and Edgeworth expansions for pricing swap rates derivatives which
proves to be competitive. They proposed an adjustment of a reference Gaussian distribution
(Bachelier model) taking into account skewness and kurtosis and as a by-product derived a
smile formula linking the volatility to the moneyness with interpretable parameters. These
pricing formulas involve moments up to order four and are provided in analytical form by taking
advantage of the explicit knowledge of the characteristic function in DDSVLMM. This technique
is particularly interesting due to the tractability and the interpretability of the Bachelier model.

Variants of Gram-Charlier expansions have been proposed for Heston-type models: as
pointed out in [FMS13], a bilateral Gamma density can be used as reference density in the
Heston model at the price of computational difficulties relating to the orthonormal basis of
polynomials, see for instance [AGL16]. Nevertheless, proving the convergence of Gram-Charlier
series in the case of such affine dynamics is not fully solved. While [AFP17] justified the use
of Gram-Charlier expansion in an equity context under the assumption of a bounded volatility,
in this chapter we will see that the classical sufficient condition presented in [FMS13] used
to establish the convergence of the expansion technique is not satisfied for most unbounded
stochastic volatility models including the classical Heston model. Note also that the technique
consisting in writing derivatives prices obtained under some complex models in terms of prices
induced by simpler models (usually, Black-Scholes or Bachelier ones) plus additional corrective
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terms has been used in various frameworks using PDEs techniques (see for instance [BGM10],
[Bom13] or [GKT16]).

To provide a setup in which convergence of Gram-Charlier series is guaranteed, we will use
a Jacobi dynamics (see Chapter 3). for modelling the volatility factor following [AFP17]. It is
a bounded process by definition initially introduced in biology to study gene frequencies (see
for instance [KT81]). Applications to mathematical finance have been studied more recently:
[DS02] worked with an interest-rate model based on a Jacobi dynamics whereas [Ma09] studied a
stochastic correlation adjustment modelled by a Jacobi process. In this work, Jacobi dynamics
is viewed as a numerical tool to approximate the Cox-Ingersoll-Ross one. Computation of
its moments is still tractable thanks to the polynomial property of this process. Polynomial
processes have been introduced in [EP11] and [CKRT12] with further applications to financial
modelling in [FL16] or in [Cuc19].

The new approximation of the DDSVLMM we propose - and referred to as the Jacobi version
of the DDSVLMM - is built using the works of [AFP17] and [DABB17]. As in [AFP17], we
will prove that the proposed model converges to the original Heston-like approximation of the
DDSVLMM when volatility bounds vanish. Our approximating model has thus the advantages
of allowing robust pricing based on Gram-Charlier expansion while being an approximation
of the standard DDSVLMM. The proposed model should be viewed as an numerical efficient
method for swaptions pricing. Note that we work with time-dependent coefficients (piecewise
constant) which somewhat extends the previously mentioned works.

The quality of the approximation we propose can be measured through different means.
We will be interested in by both strong and weak convergence of the Jacobi version of the
DDSVLMM towards the reference approximated DDSVLMM as the upper volatility bound
goes to infinity. [AFP17] proved the weak convergence of the Jacobi-based modelling towards
the CIR-based one. In this work, we quantify it by obtaining a weak speed of convergence.
Moreover, we have been able to get a strong convergence rate for the Jacobi approximation of
the DDSVLMM in the L1 space. By exploiting it, we derive an estimation of the pricing error
made when computing prices of swap derivatives when replacing the standard CIR stochastic
volatility factor by a Jacobi one.

Swap rate model
We briefly recap the standard setting of the Displaced Diffusion LIBOR Market Model with
Stochastic Volatility (DDSVLMM) we employ to price swaptions as described in Chapter 1.
[JR03] proposed a twofold extension of the standard LMM: a stochastic volatility factor has
been added to reproduce the observed implied smile of volatility while a displacement coefficient
(also called shift) allows to generate negative interest-rates, which has became necessary in view
of late market conditions. [WZ06] proposed a tractable version - without displacement factor
- of the model by adding to the forward rates a stochastic volatility factor that is modelled by
a Feller process (Cox-Ingersoll-Ross dynamics). Since the resulting dynamics of the swap rate
process is complex, [WZ06] proposed to apply the so-called freezing approximation yielding a
Heston-type dynamics for the swap rate process as introduced below.

Under the probability measure PS (the forward swap measure named after [Jam97]) associ-
ated to the numéraire BS defined in (A.21), the swap rate is a martingale. Its dynamics writes
is given, for t ≤ Tm:

dSm,nt =
√
Vt

(
ρ(t)‖λm,n(t)‖dWt +

√
1− ρ(t)2λm,n(t) · dW S,∗

t

)
,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
VtdWt,

(4.1)
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where (W S,∗
t )0≤t≤Tm and (Wt)0≤t≤Tm are respectively d-dimensional and 1-dimensional Brow-

nian motions under PS . Components of W S,∗ are all independent one another and of W . The
coefficients κ, θ, and ϵ are non-negative parameters. Under Feller condition 2κθ ≥ ϵ2 the process
V remains non-negative almost surely as long as V0 > 0. The time-dependent coefficients are all
assumed to be bounded. In particular, ξ0 is positive and bounded: 1 ≤ ξ0min ≤ ξ0(t) ≤ ξ0max. All
time dependent quantities are assumed to be piecewise constant on time intervals [Ti, Ti+1[, 1 ≤
i ≤ m− 1. The function ρ accounts for the correlation between the swap rate and its instanta-
neous volatility; d-dimensional vector function λm,n distorts the volatility structure over time;
ξ0 is a deterministic adjustment in the drift term of the instantaneous volatility due to the
correlation structure between swap rate and instantaneous volatility. Detailed parametrization
of the time-varying functions involved in (4.1) is given in Section 4.5.2. For more details on the
derivation of the approximating dynamics (4.1), the interested reader is referred to [WZ06]. We
also refer to [BGM10] for the treatment of the Heston model with time-dependent parameters.

Observe that (4.1) corresponds to a (logarithmic) Heston-type process. As an affine dynam-
ics, (4.1) offers the ability of explicitly knowing the moment generating function of Sm,n through
Riccati equations. This has been developed and solved in [DABB17] or in [WZ06] for the swap-
tions pricing. Exploiting the analytical knowledge of the moment generating function allows to
derive closed-form formulas for prices of swap rate derivatives (especially, for swaptions). In
our work, we aim at pricing such derivatives using Gram-Charlier expansions.

4.2 Density approximation for stochastic volatility models
In present section, we prove a short result that is central for the motivation of our work. It
demonstrates that density function generated by common stochastic volatility type models can
not be accurately approximated by Gram-Charlier expansion technique. Said in other words,
the sufficient condition (3.54) (or (3.44)) is not satisfied for most of stochastic volatility models.
We retake the framework introduced in Section 3.4 of expansion series in Hilbert space. The
reference distribution used to build the Hilbert space we will work in is a Gaussian one of mean
µr ∈ R and variance σ2r > 0. We denote its density function by

gr(x) = e−(x−µr)2/(2σ2
r)/
√

2πσ2r (4.2)

and define the L2r Hilbert space as

L2r =
{
h : R→ R measurable such that ‖h‖2r :=

∫
R
h(u)2gr(u)du <∞

}
.

We denote by (Ȟn)n∈N the orthonormal basis of L2r . They express in term of standard Hermite
polynomials defined in (3.41) as

Ȟn(x) =
1√
n!
Hn

(x− µr
σr

)
. (4.3)

We recall that, by abuse of language, we will still speak of Gram-Charlier expansions in this
Hilbert space while it rigorously refers to pointwise expansions based on standard Hermite
polynomials (see discussions Section 3.3).

The result proved below in Theorem 4.1 does not restrict to the particular case of swap rates
models; this is why, we beforehand introduce some general modelling notations for the purpose
of the present section. Let us fix a time horizon T . Under some probability measure P∗, gT
will denote the density of ST that is the risk factor we are modelling. Its evolution over [0, T ]
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is given by

dSt = µ(t, Vt)dt+ u(Vt)
(
ρ(t)‖λ(t)‖dWt +

√
1− ρ(t)2λ(t) · dW ∗

t

)
,

dVt = b(t, Vt)dt+ h(t, Vt)dWt,
(4.4)

where µ : R+ × R −→ R is a regular function with linear growth, λ is a bounded vector
function modelling the time dependent deformation of the volatility structure such that 0 <
λmin ≤ ‖λ(t)‖ ≤ λmax < ∞ for any time t ∈ [0, T ], u : R+ −→ R+, b : R+ × R+ −→ R and
h : R+ × R+ −→ R are assumed to be regular enough to ensure existence and uniqueness of a
solution to (4.4), ρ is such that sup0≤t≤T ρ(t)

2 < 1 and accounts for the instantaneous correlation
between S and V , (Wt)t≤T is a Brownian motion and (W ∗

t )t≤T is a multidimensional Brownian
motion whose components are all independent one another and independent from W .

Theorem 4.1. Assume that the cumulated variance
∫ T
0 u(Vs)ds is positive almost-surely and

unbounded in the sense that, for all M > 0,

P∗
(∫ T

0
u(Vs)ds ≥M

)
> 0 and P∗

(∫ T

0
u(Vs)ds = 0

)
= 0. (4.5)

Then, the likelihood ratio gT /gr does not lie in L2r that is∫
R
gT (u)

2e
(u−µr)

2

2σ2
r du =∞.

An immediate consequence is that gT /gr can not be conveniently approximated by a Gram-
Charlier expansion series in L2r .

Proof. We first derive an analytical expression of the density gT (the method to derive the
expression of gT is employed on multiple occasions in this thesis this is why a fuller discussion
is made in Appendix C). From the dynamics (4.4), we directly get that

ST
a.s.
= S0 +

∫ T

0
µ(t, Vt)dt+

∫ T

0
u(Vt)ρ(t)‖λ(t)‖dWt +

∫ T

0
u(Vt)

√
1− ρ(t)2λ(t) · dW ∗

t .

Then conditionally to FWT = σ(Wt, t ≤ T ), ST is normally distributed with mean S̃T :=

S0 +
∫ T
0 µ(t, Vt)dt +

∫ T
0 u(Vt)ρ(t)‖λ(t)‖dWt and variance C2

T :=
∫ T
0

(
1 − ρ(t)2

)
u(Vt)

2‖λ(t)‖2dt.
By application of Jensen’s inequality:

C2
T ≥ λ2min

T

(
1− supt≤T ρ(t)2

) (∫ T
0 u(Vs)ds

)2
a.s., (4.6)

and thus with Assumption (4.5), we deduce P
(
C2
T = 0

)
= 0 (recall that we have assumed

1 − sup0≤t≤T ρ(t)
2 > 0). For any measurable function f such that E

[
|f(ST )|

]
< ∞, Fubini

theorem yields

E∗[f(ST )] = E∗[E∗[f(ST )|FWT ]
]
=

∫
R
f(x)E∗

[(
2πC2

T

)−1/2
e
− (x−S̃T )2

2C2
T

]
dx

which allows to identify the density of ST as gT (x) = E∗[GT (x)] where GT (x) := (2πC2
T )

−1/2 ×

e
− (x−S̃T )2

2C2
T for all x ∈ R. Equation (4.6) along with Assumption (4.5) shows that P∗ (C2

T > 2σ2r
)
>
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0 for all σr > 0 and thus YT := −
(

1
2C2

T
− 1

4σ2
r

)
> 0 with positive probability. Now, we have

∫
R

g2T (x)

gr(x)
dx =

√
2πσ2r

∫
R
E∗[GT (x)]

2e(x−µr)
2/(2σ2

r)dx

≥
√

2πσ2r

∫ a

−a
E∗
[
1C2

T>2σ2
r
×GT (x)e(x−µr)

2/(4σ2
r)

]2
dx

≥
√
2πσ2r
2a

(∫ a

−a
E∗[

1C2
T>2σ2

r
×GT (x)e(x−µr)

2/(4σ2
r)
]
dx
)2

(Jensen inequality)

=
σr
2a

E∗
[
1C2

T>2σ2
r

CT

∫ a

−a
e
− (x−S̃T )2

2C2
T

+
(x−µr)

2

4σ2
r dx

]2
(Fubini theorem)

=
σr
2a

E∗
[
1YT>0

CT
exp

(
µ2r
4σ2
−

S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)∫ a

−a
e

(
√
YT x+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

))2

dx
]2

=
σr
2
E∗
[
1YT>0√
YTCT

exp
(
µ2r
4σ2
−

S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)1

a

∫ √
YT a+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

)
−
√
YT a+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

) ey2dy
]2
.

By Fatou’s lemma

lim
a+∞

E∗
[
1YT>0√
YTCT

exp
(
µ2r
4σ2
−

S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)
× 1

a

∫ √
YT a+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

)
−
√
YT a+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

) ey2dy
]

≥ E∗
[
1YT>0√
YTCT

exp
(
µ2r
4σ2
−

S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)
lim
a+∞

1

a

∫ √
YT a+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

)
−
√
YT a+

1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

) ey2dy
]
.

Finally, the lower bound can be proved to be infinite since for any λ > 0 and µ ∈ R,

1

a

∫ λa+µ

−λa+µ
ey

2dy ≥ 1

a

∫ λa+µ

λa+µ
2

ey
2dy ≥ λa+ µ

2a
e

(λa+µ)2

4 ,

so that lima+∞
1
a

∫ λa+µ
−λa+µ e

y2dy =∞. This concludes the proof.

The standard DDSVLMM as introduced in (4.1) does satisfy the assumptions of Theorem 4.1
which motivates the approach we have followed to approximate swaptions prices.

4.3 Swaption pricing with Gram-Charlier expansion
4.3.1 Jacobi process in the DDSVLMM
We introduce the Jacobi version of the DDSVLMM which is an approximation of the model
(4.1). In the proposed setting, the volatility factor is modelled by a [vmin, vmax]-valued Jacobi
process. The swap rate modelled in our proposal is denoted by Sm,n,J and is described over
[0, Tm] by

dSm,n,Jt =
√
Q(Vt)ρ(t)‖λm,n(t)‖dWt +

√
Vt − ρ(t)2Q(Vt)λ

m,n(t) · dW S,∗
t ,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
Q(Vt)dWt,

(4.7)
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λm,n, ξ0 and ρ are the same as in (4.1), Q is a bounding function defined byQ(v) = (vmax−v)(v−vmin)
(
√
vmax−

√
vmin)2

,
where 0 ≤ vmin < vmax ≤ ∞. Observe that Q(v) ≤ v for any v ∈ R and that Q(v) ≥ 0 for
v ∈ [vmin, vmax]. We recall that all components of W S,∗ are independent and are also all inde-
pendent from W . The volatility factor (Vt)t≥0 follows a Jacobi dynamics with additional time
dependency in the drift. To be well defined, θ should lie in [vmin, vmax]. Some properties of this
process are given in Section 3.1. For this dynamics, the Feller condition writes:

ϵ2(vmax − vmin)
(
√
vmax −

√
vmin)2

≤ 2κmin
(
ξ0minvmax − θ, θ − ξ0maxvmin

)
. (4.8)

It ensures the process V in (4.7) to remain bounded at any date: P
(
∀t ∈ [0, Tm] : Vt ∈

(vmin, vmax)
)
= 1. In this setting, the coefficient ρ(t) (precisely set below in (4.60)) is in-

terpreted in dynamics (4.7) as a scaling factor of the instantaneous correlation between the
swap rate and its volatility since the following holds:

d
〈
V·, S

m,n,J
·

〉
t√

d 〈V·, V·〉t
√

d
〈
Sm,n,J· , Sm,n,J·

〉
t

= ρ(t)

√
Q(Vt)

Vt
.

Since 0 ≤ Q(v) ≤ v for v ∈ [vmin, vmax], the instantaneous correlation is smaller than ρ(t)
at each time. The time-dependent infinitesimal generator of the diffusion (4.7) applied to a
function [vmin, vmax]× R 3 (v, s) 7−→ f(v, s) is given by

Atf(v, s) = κ
(
θ − ξ0(t)v

)∂f
∂v

(v, s) +
ϵ2

2
Q(v)

∂2f

∂v2
(v, s) +

v

2
‖λm,n(t)‖2∂

2f

∂s2
f(v, s)

+ ϵQ(v)ρ(t)‖λm,n(t)‖ ∂
2f

∂s∂v
f(v, s), f ∈ Dom(At), t ≤ Tm.

(4.9)

Note that for all k ∈ N, at all date t ∈ [0, T ], At(Pk(R2)) ⊂ Pk(R2). Then, the dynamics (4.7)
is a polynomial diffusion in the terminology of [FL16]; in addition it is a Markov process and
thus (4.7) is a also 2-dimensional polynomial model in the terminology of [CKRT12]. Marginal
moments of Sm,n,J solution of (4.7) can thus be computed by matrix exponentials following
method presented in Section 3.1.9.

Setting vmin = 0 and vmax =∞ in (4.7), which amounts to set Q(v) = v, allows to recover
the reference approximation of the DDSVLMM (4.1). The proposed process (4.7) converges
towards the standard one (4.1) in the path space of processes as vmin → 0 and vmax → ∞,
explaining why (4.7) can be viewed as an approximation of the reference model (4.1). This
result is proved in [AFP17], Theorem 2.3. In Section 4.4.1 below, we will be able to further
prove a L1 convergence in Theorem 4.5 coming along with a convergence rate.

4.3.2 Gram-Charlier expansion
We now present results showing that the Gram-Charlier expansion can be performed under
Jacobi-based dynamics (4.7) and extend the previous results of [AFP17]. Let T ≤ Tm be a fixed
time horizon. The Gram-Charlier expansion technique performed on the density function fT of
Sm,n,JT is justified now. We assume that the two following conditions hold:

Assumption 1. 4κθ > ϵ2,

Assumption 2. supt∈[0,T ] |ρ(t)| < 1.
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Note that when vmin = 0, Feller condition (4.8) implies that 4κθ > ϵ2 meaning that As-
sumption 1 is stronger than (4.8).

4.3.2.1 Convergence result

Each coordinate of the d−dimensional function t ∈ [0, T ] 7−→ λm,n(t) is piecewise constant and
so is its norm t ∈ [0, T ] 7−→ ‖λm,n(t)‖. We recall that its bounds are denoted by λmin and λmax
and satisfy 0 < λmin ≤ ‖λm,n(t)‖ ≤ λmin <∞. We define the cumulated volatility process

Ξt :=

∫ t

0
‖λm,n(s)‖2

(
Vs − ρ(s)2Q(Vs)

)
ds, t ≤ T. (4.10)

Following the notations of Section 4.2, fT will be approximated using a reference Gaussian
density denoted by gr. In some numerical experiments presented in Section 4.5, gr will be
chosen as a Gaussian mixture which will allow for matching the moments of fT . Both choices
allow to build a Hilbert space L2r having an orthonormal basis composed of polynomial functions
(see Lemma 3.36).

Theorem 4.2. We suppose that Assumption 1 and Assumption 2 hold, vmin ≥ 0 and vmax <∞.
Consider now a centered Gaussian density gr of variance σ2r satisfying

σ2r >
Tvmax

2
λ2max. (4.11)

Then, a Gram-Charlier expansion can be performed on the density fT of (4.7) using gr the
reference density. In particular, the sufficient condition to the L2r−convergence of the family of
approximating densities is satisfied; that is∫

R

fT (u)
2

gr(u)
du <∞.

Remark 27. [AFP17] proved similar claims as those in Theorem 4.2 in a time-independent
framework by assuming that ρ2 < 1 and vmin > 0. Here we still constrain the correlation
coefficient but Assumption 1 which is stronger than the Feller condition in some sense allows
to prove the statement also in the case vmin = 0.

Remark 28. When using a non-centered Gaussian density gr with mean µr ∈ R, a slight
modification of the proof of Theorem 4.2 using Jensen’s inequality shows that the convergence
of the Gram-Charlier expansion is still ensured for σ2r > vmaxλ

2
maxT .

Proof. As for Theorem 4.1, we will prove the claim in a more general framework to account for
general option pricing models. We retake the notations introduced for the dynamics (4.4) and
we indicate the differences below. Under appropriate probability measure P∗, fT will denote
the density of ST whose evolution over [0, T ] is given by the following dynamics

dSt = µ(t, Vt)dt+
√
Q(Vt)ρ(t)‖λ(t)‖dWt +

√
Vt − ρ(t)2Q(Vt)λ(t) · dW ∗

t ,

dVt = κ
(
θ − ξ(t)Vt

)
dt+ ϵ

√
Q(Vt)dWt,

(4.12)

where we recall that µ : R+ × R −→ R is a regular function such that |µ(t, x)| ≤ c(1 + |x|) for
some positive constant c, [0, T ] 3 t 7→ ρ(t) ∈ [−1, 1] accounts for a scaling factor of the instan-
taneous correlation between S and V , Q is the bounding function defined in Section 4.3.1, ξ is
a bounded function, κ > 0, θ ∈ [ξmaxvmin, ξminvmax], ϵ > 0. The cumulated variance process
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(Ξt)0≤t≤T is defined as in (4.10) by replacing λm,n with a d-dimensional function λ.

The proof of the theorem relies on the following lemma.

Lemma 4.3. For η < 1/(2Tvmaxλ
2
max), fT is such that∫

R
eηu

2
fT (u)du <∞.

In addition, if

E∗
[
Ξ
−1/2
T

]
<∞ (4.13)

holds, then then u 7−→ fT (u) and u 7−→ eηu
2
fT (u) are uniformly bounded over R.

Proof of Lemma 4.3. The proof is an an adaptation of Theorem 3.1 in [AFP17] and an extension
of it in the sense that it accounts for time dependent coefficient. Let us denote by S̃T :=
S0 +

∫ T
0 µ(u, Vu)du + 1

ϵ

∫ T
0 ρ(u)‖λ(u)‖dVu − κ

ϵ

∫ T
0 ρ(u)‖λ(u)‖

(
θ − ξ(u)Vu

)
du. We have from

Equation (4.12) the distributional equality

ST
a.s.
= S̃T +

∫ T

0

√
Vu − ρ(u)2Q(Vu)λ(u) · dW ∗

u .

Since W ∗ and V are independent, ST is a Gaussian variable of mean S̃T and variance ΞT
conditionally to σ(Vt, t ≤ T ). Since λmin > 0 and supt∈[0,T ] |ρ(t)|2 < 1, note that ΞT > 0 almost
surely. The conditional density of ST writes

FT (u) =
1√

2πΞT
exp

(
−(u− S̃T )2

2ΞT

)
.

Fubini’s theorem allows to identify fT (u) = E∗ [FT (u)] . Hence, fT is uniformly bounded as long
as E∗

[
1√
ΞT

]
<∞. The maps [0, T ] 3 t 7−→ ‖λ(t)‖ and [0, T ] 3 t 7−→ ρ(t) are piecewise constant,

so their derivatives are almost everywhere zero. They also have a finite number of disconti-
nuities over [0, T ] occurring at times (Ti)1≤i≤n(T ) where n(T ) = max{i : Ti ≤ T}. Integrating
with respect to the volatility process V over interval [0, T ] gives S̃T

a.s.
= S0 +

∫ T
0 µ(u, Vu)du +

1
ϵ

∑
i≤n(T ) ρ(Ti)‖λ(Ti)‖

(
VTi+1 − VTi

)
− κ

ϵ

∫ T
0 ρ(u)‖λ(u)‖

(
θ − ξ(u)Vu

)
du. As a consequence, we

have almost surely: |S̃T | ≤ S0 + cT (1+ vmax)+
2Tvmax

ϵ λmax+
Tκ
ϵ λmax

(
θ+ sup

0≤u≤T
|ξ(u)|vmax

)
=:

Λ <∞. Moreover, since |ΞT | ≤ Tvmaxλ2max, we set

ν := 1− 2ηTvmaxλ
2
max ≤ 1− 2ηΞT ,

where ν > 0 since we assumed η < 1/(2Tvmaxλ
2
max). Furthermore, one can obtained by

completing the squares

eηu
2
FT (u) =

1√
2πΞT

exp
(
−1− 2ηΞT

2ΞT

(
u− S̃T

1− 2ηΞT

)2
+

ηS̃2
T

1− 2ηΞT

)
. (4.14)

Integration of (4.14) gives
∫
R e

ηu2FT (u)du = 1√
1−2ηΞT

exp
(

ηS̃2
T

1−2ηΞT

)
≤ eηΛ

2/ν
√
ν

< ∞ almost

surely. In addition, taking expectation in (4.14) leads to eηu
2
fT (u) = E∗

[
eηu

2
FT (u)

]
≤
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E∗
[

1√
ΞT

]
eηΛ

2/ν
√
2π

. Thus, eηu2fT (u) is uniformly bounded as soon as (4.13) holds and the Lemma
is proved.

We can now prove Theorem 4.2. We proceed in two steps. First, we show that (4.13) holds
under Assumption 1 and Assumption 2, for any 0 ≤ vmin and vmax <∞; secondly, we explain
why (4.13) implies (3.54) when (4.11) is satisfied.

The treatment of the case vmin > 0 is done in [AFP17]. We focus here on case when
vmin = 0. Almost surely, the following stands

λ2min

∫ T

0

(
Vs − ρ(s)2Q(Vs)

)
ds ≤ ΞT ≤ λ2max

∫ T

0

(
Vs − ρ(s)2Q(Vs)

)
ds.

Since R∗
+ 3 x 7−→ 1√

x
is convex, Jensen inequality implies

1√
1
T

∫ T
0 ‖λ(s)‖2 (Vs − ρ(s)2Q(Vs)) ds

≤ 1

Tλmin

∫ T

0

ds√
Vs − ρ(s)2Q(Vs)

a.s..

Taking expectation and applying Fubini theorem lead to

E∗
[
Ξ
−1/2
T

]
≤ 1

λminT 3/2

∫ T

0
E∗

[
1√

Vs − ρ(s)2Q(Vs)

]
ds

with possibly infinite values. SinceQ(v) ≤ v, for any t ≥ 0,
√
Vs(1− ρ(t)2) ≤

√
Vs − ρ(t)2Q(Vs) a.s.

and thus

E∗
[
Ξ
−1/2
T

]
≤ (1− sup

t∈[0,T ]
ρ(t)2)−1/2T−3/2λ−1

min

∫ T

0
E∗
[

1√
Vs

]
ds. (4.15)

In order to exhibit a control of the right hand side in (4.15), we consider the stopped process
Xτn
t :=

√
Vt∧τn where τn, n ∈ N∗, is the first time when the volatility process goes below the

threshold 1/n: τn = inf{t ≥ 0 : Vt ≤ 1
n}. Itô’s lemma applied to the stopped process gives

Xτn
T

a.s.
=
√
V0 +

(
κθ

2
− ϵ2

8

)∫ T∧τn

0

du√
Vu

+

∫ T∧τn

0

(
ϵ2

8vmax
− κξ(s)

2

)√
Vudu

+
ϵ

2

∫ T∧τn

0

√
1− Vu

vmax
dWu,

(4.16)

where we used that Q(v) = v − v2

vmax
when vmin = 0. Itô’s integral is a martingale since

1− v
vmax

≤ 1 for v ∈ [0, vmax] and thus vanishes when taking the expectation in (4.16):

E∗
[√

VT∧τn −
√
V0

]
− E∗

[∫ T∧τn

0

(
ϵ2

8vmax
− κξ(s)

2

)√
Vsds

]
=

(
κθ

2
− ϵ2

8

)
E∗
[∫ T∧τn

0

ds√
Vs

]
.

(4.17)

First recall that V0 ∈ [0, vmax] (almost surely) and thus E
[√
V0
]
< ∞. Now, we aim at taking

the limit as n goes to∞ in the previous equality to show that the right-hand side is finite. Since
τn

a.s.−−−→
n→∞

τ0
a.s.
= ∞ where τ0 is the first time when the volatility process hits 0, T ∧ τn

a.s.−−−→
n→∞

T .
√
Vt ≤

√
vmax for any t ≥ 0, and thus E∗ [√VT∧τn] ≤ √vmax for all n ∈ N. Lebesgue’s

dominated convergence theorem provides that E∗ [√VT ] = limn E∗ [√VT∧τn] ≤ √vmax. Then,
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we recall that ξ is bounded on [0, T ] which gives∣∣∣E∗
[ ∫ T∧τn

0

(
ϵ2

8vmax
− κξ(s)

2

)√
Vsds

]∣∣∣ ≤ ( ϵ2

8vmax
+
κ supt≤T |ξ(t)|

2

)
√
vmaxT =: K1 < +∞.

Using monotone convergence theorem, we have that∫ T∧τn

0

√
Vudu a.s.−−−→

n→∞

∫ T

0

√
Vudu and

∫ T∧τn

0
ξ(u)

√
Vudu a.s.−−−→

n→∞

∫ T

0
ξ(u)

√
Vudu.

This combined with dominated convergence theorem gives

E∗
[∫ T

0

(
ϵ2

8vmax
− κξ(s)

2

)√
Vsds

]
= lim

n→∞
E∗
[∫ T∧τn

0

(
ϵ2

8vmax
− κξ(s)

2

)√
Vsds

]
≤ K1 <∞.

Observe that Assumption 1 implies
(
κθ
2 −

ϵ2

8

)
> 0. Together with (4.17) gives the existence of

a constant C <∞ such that
lim
n→∞

E∗
[∫ T∧τn

0

du√
Vu

]
≤ C.

Fatou’s lemma provides

E∗
[∫ T

0

du√
Vu

]
≤ lim

n→∞
E∗
[∫ T∧τn

0

du√
Vu

]
<∞,

which allows to deduce the claimed result

E∗
[
Ξ
−1/2
T

]
<∞.

Now, following Lemma 4.3, as long as (4.13) holds, x ∈ R 7−→ eηx
2
fT (x) is uniformly bounded

and integrable for η < 1/(2Tvmaxλ
2
max): eηx

2
fT (x) ≤ C ′ < ∞ and

∫
R e

ηx2fT (x)dx < ∞. We
apply this result with η = 1/(4σ2r ) < 1/(2Tvmaxλ

2
max) ⇐⇒ σ2r > vmaxλ

2
maxT/2:∫

R

fT (x)
2

gr(x)
dx =

√
2πσ2r

∫
R

(
e

x2

4σ2
r fT (x)

)2

dx ≤ C ′√2πσ2r

∫
R
e

x2

4σ2
r fT (x)dx <∞.

The claim is proved.

4.3.2.2 Application to pricing of swap rate derivatives

The convergence of approximating densities built with Gram-Charlier method is ensured in L2r
when (4.11) holds. An application of the Cauchy-Schwarz inequality shows that the convergence
of approximating prices can be deduced for square-integrable payoffs. Let us consider a (dis-
counted) payoff φ ∈ L2r and fT the density function of Sm,n,JT that is modelled with dynamics
(4.7). The spot price of a European derivative PT (φ) expiring at time T > 0 associated to the
considered payoff can be computed thanks to the likelihood ratio f̄T = fT /gr:

PT (φ) =

∫
R
φ(x)fT (x)dx =

〈
φ, f̄T

〉
L2
r
=
∑
p≥0

hpφp, (4.18)
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where the (φp)p∈N are coefficients (Fourier coefficients in L2r) of φ given by

φp =
〈
φ, Ȟp

〉
L2
r
,

and the Hermite moments (hp)p∈N are defined by

hp =
〈
f̄T , Ȟp

〉
L2
r
=

∫
R
Ȟp(x)fT (x)dx = ES

[
Ȟp

(
Sm,n,JT

)]
.

The
(
Ȟp

)
p∈N denotes the Hermite polynomials defined in (4.3). The coefficients hp are linear

combinations of the moments of fT . Since the polynomial functions Hp are analytically known
(see 3.41), the only matter here is to be able to compute the moments of fT . This can be
achieved using the polynomial property of (4.7) discussed in Section 4.3.1. Once the Gram-
Charlier convergence is ensured, approximating price can be built as

PNT (φ) =

N∑
p=0

hpφp (4.19)

and is so that PNT (φ) −−−−→
N→∞

PT (φ). Numerically, we have to truncate (4.18) at a given order
N ∈ N. The estimation of the speed of convergence of the series as N increases is discussed
below in Section 4.4.2; note that [AFP17] provided a numerical estimation of the truncation
error.

4.4 Rates of convergence
Dynamics (4.7) is use in our point of view as an approximating dynamics of (4.1). Derivatives
prices induced by this dynamics are computed through Gram-Charlier expansion as explained
above. In practice, one has to truncation the Gram-Charlier series. This way of proceeding
induces two types of errors: the one coming from to the introduction of the Jacobi process
instead of the CIR one, or in other words, the error due to the bounding of the volatility factor
and the one due to the truncation of the Gram-Charlier series.

Let us consider the problem of pricing a swap rates derivatives of maturity T ≤ Tm and
of payoff function φ. The price under (4.1) is assumed to be exactly known so that the global
error induced by our methodology can be decomposed as

ε =
∣∣ES [φ(Sm,nT )

]
− PNT (φ)

∣∣
≤
∣∣∣ES [φ(Sm,nT )

]
− ES

[
φ(Sm,n,JT )

]∣∣∣+ ∣∣∣ES [φ(Sm,n,JT )
]
− PNT (φ)

∣∣∣
=: ε1 + ε2.

(4.20)

The purpose of the next sections will be to give some insights on the estimations of both errors.

4.4.1 Bounding error

We consider a sequence of bounds parameters (v(p)min, v
(p)
max)p∈N ∈ (R∗

+×R∗
+)

N such that v(p)min −−−→p→∞

0 and v
(p)
max −−−→

p→∞
+∞. We recall that Q(v) → v as (v

(p)
min, v

(p)
max) → (0,∞). We will denote by

v
(p)
min ≡ 0 the particular case when for all p ∈ N, v(p)min = 0 which yields that Q(v) = v − v2

v
(p)
max

;

and by v
(p)
max ≡ +∞ the case when for all p ∈ N, v(p)max = +∞ which corresponds to Q(v) =
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v − v
(p)
min. (Sm,n,reft , V C

t )0≤t≤T represents the solution of the reference dynamics (4.1) start-
ing from (Sm,n,ref0 , V C

0 ) = (sm,n0 , v0) ∈ R × R∗
+. In particular, (V C

t )0≤t≤T is a CIR process.
For each p ∈ N, let us denote by (S

m,n,J(p)
t , V

J(p)
t )0≤t≤T the solution of (4.7) associated to

the bound parameters (v
(p)
min, v

(p)
max) and starting from (Sm,n,J(p), V

J(p)
0 ) = (sm,n0 , v0). We re-

quire maxp∈N v(p)min ≤ v0 ≤ infp∈N v(p)max so that (Sm,n,J(p), V J(p)) is well defined for any p ∈ N.
The following result shows that the marginal moments of the Jacobi process can be bounded
independently from the parameters v(p)max.

Lemma 4.4. Assume either v(p)min ≡ 0 or v(p)max ≡ +∞. Then for any k ∈ N,

sup
p∈N

sup
0≤t≤T

ES
[(
V
J(p)
t

)k]
≤ Ck.

Proof. First consider case when v
(p)
min ≡ 0. Fix a p ∈ N. We first observe that for any time

t ≥ 0, ES [V J(p)
t ] = ES [V C

t ] does not depend on v
(p)
max since the deterministic drifts in dynamics

of (V J(p)
t )t≤T and (V C

t )t≤T are the same. The claim is clear for k = 1. Take k = 2. Applying
Itô’s formula to the squared process

(
(V

J(p)
t )2

)
t≤T and taking the expectation lead to

ES
[(
V
J(p)
t

)2]
= v20 +

∫ t

0

{
2κθES

[
V C
s

]
− 2κξ(s)ES

[(
V J(p)
s

)2]
+ ϵ2

(
ES
[
V C
s

]
− ES

[(
V J(p)
s

)2]/
v(p)max

)}
ds

≤ v20 +
∫ t

0

{
(2κθ + ϵ2)ES

[
V C
s

]
− 2κξ(s)ES

[(
V J(p)
s

)2]}ds.

Gronwall’s lemma gives

ES
[
(V

J(p)
t )2

]
≤
{
v20 +

∫ t

0
(2κθ + ϵ2)ES [V C

s ]ds
}

exp
(
− 2κ

∫ t

0
ξ(s)ds

)
and the claim is true for the constant C2 =

(
v20 +

∫ T
0 (2κθ+ ϵ2)ES [V C

s ]ds
)

exp
(
2κ‖ξ‖∞T

)
that

does not depend on v
(p)
max nor on t ≤ T . Now assume that

∀p ∈ N, ∀t ≤ T, ES
[
(V

J(p)
t )k−1

]
≤ Ck−1

holds for a given k ∈ N \ {0, 1}. Applying Itô’s lemma again to
(
(V

J(p)
t )k

)
t≥0

and taking
expectation lead to, for t ≤ T ,

ES [(V J(p)
t )k] = vk0 +

∫ t

0

{(
2kκθ + k(k − 1)

ϵ2

2

)
ES
[(
V J(p)
s

)k−1
]

−

(
2κξ(s) +

ϵ2k(k − 1)

2v
(p)
max

)
ES
[(
V J(p)
s

)k]}ds

≤ vk0 +

∫ t

0

{(
2kκθ + k(k − 1)

ϵ2

2

)
ES
[(
V J(p)
s

)k−1
]
− 2κξ(s)ES

[(
V J(p)
s

)k]}ds.

Gronwall’s lemma again shows that

ES [(V J(p)
t )k] ≤

[
(v0)

k + t
(
2kκθ + k(k − 1)

ϵ2

2

)
Ck−1

]
exp

(
−
∫ t

0
2κξ(s)ds

)
.
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The result holds then for k-th order moment of the Jacobi process with bound Ck =
(
vk0 +

T
(
2kκθ + k(k − 1) ϵ

2

2

)
Ck−1

)
exp

(
2κ‖ξ‖∞T

)
. The proof in case v(p)max ≡ +∞ is similar.

This result is useful to get a rate of convergence in the L1 space and in a weak sense of the
Jacobi process towards the CIR one.

4.4.1.1 Strong convergence for the Jacobi process

We stress that the same Brownian motion (Wt)0≤t≤T is used to define the Cox-Ingersoll-Ross
process in Equation (4.1) and Jacobi process in Equation (4.7). In this perfect coupling, we can
now prove our result on the strong convergence of the Jacobi process towards the CIR one and
derive a convergence rate.

Theorem 4.5. In case when v
(p)
min ≡ 0, there exists finite constants C ′, C ′′ ∈ R∗

+ such that for
any p ∈ N,

sup
0≤t≤T

ES
[
|V J(p)
t − V C

t |
]
≤ C ′/ log

(
v(p)max/v0

)
,

and
ES
[

sup
0≤t≤T

|V J(p)
t − V C

t |
]
≤ C ′′

/√
log
(
v
(p)
max/v0

)
.

In case when v
(p)
max ≡ +∞, there exists finite constants C∗, C∗∗ ∈ R∗

+ such that for any p ∈ N,

sup
0≤t≤T

ES
[
|V J(p)
t − V C

t |
]
≤ C∗/ log

(
v0
/
v
(p)
min

)
,

and
ES
[

sup
0≤t≤T

|V J(p)
t − V C

t |
]
≤ C∗∗

/√
log
(
v0/v

(p)
min

)
.

Proof. In this proof, we draw from A. Alfonsi in [Alf06], Section 4.3, who studied discretization
scheme for CIR process and proved strong convergence.

First consider the case v(p)min ≡ 0. Let us consider the family of Yamada functions, ψη,m,
parametrized by two positive numbers η and m. Observe that for any m ≥ 1,

∫ η
ηe−ϵ2m

1
ϵ2u

du = m.
Then, we can find a continuous function ρη,m, with compact support included in ]ηe−ϵ

2m, η[,
and such that ρη,m(x) ≤ 2

ϵ2xm
1
x∈]ηe−ϵ2m,η[

and
∫ η
ηe−ϵ2m

ρη,m(u)du = 1. Then, ψη,m is defined as

ψη,m(x) =

∫ |x|

0

∫ y

0
ρη,m(u)dudy,

so that these functions satisfy

|x| − η ≤ ψη,m(x) ≤ |x|, |ψ′
η,m(x)| ≤ 1, 0 ≤ ψ′′

η,m(x) = ρη,m(|x|) ≤
2

ϵ2|x|m
.

ψη,m is a nice smooth (twice differentiable) and even function approximating the absolute value
function. Take p ∈ N. Since

|V J(p)
t − V C

t | ≤ η + ψη,m(V
J(p)
t − V C

t ), (4.21)
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we apply Itô’s formula to the right-hand side to get

ψη,m(V
J(p)
t − V C

t )
a.s.
= − κ

∫ t

0
(V J(p)
s − V C

s )ξ(s)ψ′
η,m(V

J(p)
s − V C

s )ds

+
ϵ2

2

∫ t

0

(√
Q
(
V
J(p)
s

)
−
√
V C
s

)2
ψ′′
η,m(V

J(p)
s − V C

s )ds

+ ϵ

∫ t

0

(√
Q
(
V
J(p)
s

)
−
√
V C
s

)
ψ′
η,m(V

J(p)
s − V C

s )dWs.

(4.22)

Using that sups≥0 E∗[V C
s ] < ∞, |

√
x − √y| ≤

√
|x− y| (due to 1

2 -Hölder regularity of the
square-root) and |ψ′

η,m(x)| ≤ 1 lead to(√
Q
(
V
J(p)
s

)
−
√
V C
s

)2
ψ′
η,m(V

J(p)
s − V C

s ) ≤
∣∣Q(V J(p)

s )− V C
s

∣∣ ≤ v(p)max + V C
s a.s.

which allows to deduce that the expectation of the Itô integral in (4.22) is zero. Using again
1
2 -Hölder regularity of the square-root, the second term in the right-hand side of (4.22) can be
decomposed in the following way∫ t

0

(√
Q
(
V
J(p)
s

)
−
√
V C
s

)2

ψ′′
η,m

(
V J(p)
s − V C

s

)
ds

≤
∫ t

0

∣∣∣Q(V J(p)
s

)
− V C

s

∣∣∣ψ′′
η,m

(
V J(p)
s − V C

s

)
ds

≤
∫ t

0

{
|Q
(
V J(p)
s

)
− V J(p)

s |+ |V J(p)
s − V C

s |
}
ψ′′
η,m

(
V J(p)
s − V C

s

)
ds.

(4.23)

The first term in this integral is handled using that ‖ψ′′
η,m‖∞ ≤ 2eϵ

2m

ϵ2ηm
and

|Q(v)− v| ≤ v2
/
v(p)max. (4.24)

The second term is bounded with |x|ψ′′
η,m(x) ≤ 2

ϵ2m
. This leads to the almost sure inequality

∫ t

0

(√
Q
(
V
J(p)
s

)
−
√
V C
s

)2
ψ′′
η,m

(
V J(p)
s − V C

s

)
ds ≤

∫ t

0

{(
V
J(p)
s

)2
v
(p)
max

2eϵ
2m

ϵ2ηm
+

2

ϵ2m

}
ds.

Finally, for the first integral in (4.22), we use that ‖ψ′
η,m‖∞ ≤ 1 and thus∣∣∣− κ ∫ t

0
ξ(s)(V J(p)

s − V C
s )ψ′

η,m(V
J(p)
s − V C

s )ds
∣∣∣ ≤ κ

∫ t

0
|V J(p)
s − V C

s |‖ξ‖∞ds a.s..

Taking the expectation in (4.21) using the inequalities that have just been derived and using
the fact that the moments of the Jacobi process are uniformly bounded with respect to v(p)max

(cf. Lemma 4.4), we get that

ES
[
|V J(p)
t − V C

t |
]
≤ η + κ‖ξ‖∞

∫ t

0
ES [|V J(p)

s − V C
s |]ds+

C ′Teϵ
2m

v
(p)
maxηm

+
T

m
.
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for some positive constant C ′. Gronwall’s lemma again shows that

ES
[
|V J(p)
t − V C

t |
]
≤ eκ∥ξ∥∞T

(
η +

C ′Teϵ
2m

v
(p)
maxηm

+
T

m

)
.

Setting η = 1

log(v(p)max/v0)
and m = log(v(p)max/v0)

2ϵ2
, we get the existence of a constant C̃ ∈ R+

satisfying

sup
0≤t≤T

ES
[
|V J(p)
t − V C

t |
]
≤ C̃

/
log
(
v(p)max/v0

)
. (4.25)

The Itô’s integral in the right-hand side of (4.22) can be more accurately handled. We have

ES
[

sup
0≤t≤T

∫ t

0

(√
Q(V

J(p)
s )−

√
V C
s

)
ψ′
η,m(V

J(p)
s − V C

s )dWs

]

≤ CBDGES
(∫ T

0

(√
Q(V

J(p)
s )−

√
V C
s

)2

‖ψ′
η,m‖2∞ds

)1/2


≤ CBDG

√∫ T

0

(
ES
[∣∣Q(V

J(p)
s )− V J(p)

s

∣∣]+ ES
[∣∣V J(p)

s − V C
s

∣∣] )ds

≤ CBDG

√√√√( C2

v
(p)
max/v0

+
C̃

log(v(p)max/v0)

)
T (4.26)

where we used successively: Burkholder-Davis-Gundy inequality, ‖ψ′
η,m‖∞ ≤ 1, Jensen’s one,

1
2 -Hölder regularity of the square-root and triangle inequality. This allows to deduce (4.26) after
using inequality (4.24) combined with Lemma 4.4 for the first term in the square-root and the
previous result (4.25) for the second term. Combining this with previous inequalities used in
this proof leads to the existence of a constant C ′ ∈ R such that

ES
[

sup
0≤t≤T

|V J(p)
t − V C

t |

]
≤ C ′

/√
log
(
v
(p)
max/v0

)
.

In a second time, consider that v(p)max ≡ +∞. The reasoning is similar but needs to be
adapted. In (4.23), one obtains now that∫ t

0

(√
Q
(
V
J(p)
s

)
−
√
V C
s

)2

ψ′′
η,m

(
V J(p)
s − V C

s

)
ds

≤
∫ t

0

{
v
(p)
min +

∣∣∣V J(p)
s − V C

s

∣∣∣ }ψ′′
η,m

(
V J(p)
s − V C

s

)
ds,

which eventually leads to, for some positive constant C̃ and at any time 0 ≤ t ≤ T :

ES
[
|V J(p)
t − V C

t |
]
≤ C̃eκ∥ξ∥∞T

(
η +

eϵ
2m

ηm
v
(p)
min +

1

m

)
.

Setting now the parameters of the Yamada function as η = 1

log(v0/v(p)min)
and m =

log
(
v0/v

(p)
min

)
αϵ2

156



for some α > 1. Using that (v(p)min)
1−1/α+ 1

log
(
v0/v

(p)
min

) ∼
v
(p)
min→0+

1

log
(
v0/v

(p)
min

) we get that for some

positive constant C∗:

sup
0≤t≤T

ES
[
|V J(p)
t − V C

t |
]
≤ C∗/ log

(
v0/v

(p)
min

)
.

Regarding the second inequality, the use of Burkholder-Davis-Gundy inequality yields now

ES
[

sup
0≤t≤T

∫ t

0

(√
Q(V

J(p)
s )−

√
V C
s

)
ψ′
η,m(V

J(p)
s − V C

s )dWs

]

≤ CBDG
√(

v
(p)
min + C∗

/
log
(
v0/v

(p)
min

))
T

and the claim

ES
[

sup
0≤t≤T

|V J(p)
t − V C

t |

]
≤ C∗∗/√log

(
v0/v

(p)
min

)
follows using that 1

log
(
v0/v

(p)
min

) + 1√
log
(
v0/v

(p)
min

) ∼
v
(p)
min→0+

1√
log
(
v0/v

(p)
min

) .

4.4.1.2 Weak convergence for the Jacobi process

In present subsection, we assume that ξ0(t) ≡ ξ0 is constant through time. We first recall some
useful notations. Considering E a subset of Rd. We will denote for α = (α1, . . . , αd) ∈ Nd and
for a smooth function f defined over E by ∂αf the differentiation operator

x = (x1 . . . , xd) ∈ E 7→ ∂αf(x) = ∂α1
x1 . . . ∂

αd
xd
f(x).

We then introduce the set of functions with derivatives of polynomial growth:

C∞pol(E) =
{
f :E → R : f ∈ C∞, ∀α ∈ Nd, ∃Cα > 0, eα ∈ N∗, ∀x ∈ E, |∂αf(x)| ≤ Cα(1 + ‖x‖eα)

}
.

The following result is key for deriving the weak convergence rate of the Jacobi process towards
the CIR one. This result is stated in Proposition 3.3.1 of [Alf15].

Proposition 4.6. Assume that f ∈ C∞pol(R). The function uC(t, x) = E[f(V C
T−t)|V C

0 = x] is
well defined over [0, T ]×R+, is C∞([0, T ]×R+) and satisfies the following backward Kolmogorov
equation

(P ) :

{
∀t ∈ [0, T ], ∀x ∈ R+, ∂tu

C + κ(θ − ξ0x) ∂xuC + ϵ2

2 x ∂
2
xu

C = 0,
uC(T, x) = f(x).

Furthermore,

∀(l,m) ∈ N2, ∃(Cl,m, el,m) ∈ (R∗
+)

2, ∀x ∈ R+,∀t ∈ [0, T ],

|∂lt∂mx uC(t, x)| ≤ Cl,m(1 + xel,m).

Remark 29. Proposition 4.6 above is conjectured to hold for piecewise constant parameters
ξ0, θ and ϵ by applying a similar reasonning over each time period on which they take constant
values.
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We can now derive our weak convergence result.

Theorem 4.7. Let us consider f ∈ C∞pol(R). Then there exists a constant K > 0 such that for
any p ∈ N,

|E[f(V C
T )]− E[f(V J(n)

T )]| ≤ K

v
(p)
max

.

Proof. Consider uC as defined in Proposition 4.6; in particular, uC(T, x) = f(x) for all x ∈ R+.
We have

E[f(V C
T )]− E[f(V J(p)

T )] = E[uC(T, V C
T )]− E[uC(T, V J(p)

T )].

Thanks to Proposition 4.6, we have uC(0, v0) = E
[
uC(T, V C

T )
]

and thus

E[f(V C
T )]− E[f(V J(p)

T )] = −
(
E[uC(T, V J(p)

T )− uC(0, v0)]
)
.

Itô’s formula gives:

uC(T, V
J(p)
T )− uC(0, v0)

a.s.
=

∫ T

0

{
∂tu

C(s, V J(p)
s ) + κ(θ − ξ0V J(p)

s ) ∂xu
C(s, V J(p)

s )

+
ϵ2Q(V

J(p)
s )

2
∂2xu

C(s, V J(p)
s )

}
ds+ ϵ

∫ T

0

√
Q(V

J(p)
s ) ∂xu

C(s, V J(p)
s )dWs.

Using Proposition 4.6 and fact that moments of the Jacobi process are all finite, we deduce that
the Itô’s integral above is of null expectation. With Fubini’s theorem, we get

E
[
uC(T, V

J(p)
T )− uC(0, v0)

]
=

∫ T

0

{
∂tu

C(s, V J(p)
s ) + κ(θ − ξ0V J(p)

s ) ∂xu
C(s, V J(p)

s )

+
ϵ2Q(V

J(p)
s )

2
∂2xu

C(s, V J(p)
s )

}
ds

=

∫ T

0
E
[
gC(s, V J(p)

s )
]
ds

where gC(t, x) = ∂tu
C(t, x) + κ(θ − ξ0x) ∂xuC(t, x) + ϵ2Q(x)

2 ∂2xu
C(t, x) is defined for every t ∈

[0, T ] and x ∈ R+. Since uC is solution of (P ) of Proposition 4.6, we obtain that for all t ≥ 0,

gC(t, V
J(p)
t ) =

ϵ2

2

(
Q(V

J(p)
t )− V J(p)

t

)
∂2xu

C(t, V
J(p)
t ) = − ϵ2

2v
(p)
max

(
V
J(p)
t

)2
∂2xu

C(t, V
J(p)
t ),

where the bounding function Q is defined by Q(x) = x − x2

v
(p)
max

when v
(p)
min ≡ 0. Using the

estimates on the growth of uC from Proposition 4.6, we get that E
[
gC(s, V

J(p)
s )

]
≤ C′

v
(p)
max

for
some C ′ > 0 and finally

E[f(V C
T )]− E[f(V J(p)

T )] ≤ C

v
(p)
max

.

Remark 30. Numerical investigations suggest that this rate of convergence in weak sense can
be extended to strong convergence. As discussed in the numerical analysis Section 4.5.4, we
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conjecture that a constant C ′′ (independent of
(
v
(p)
max

)
p≥0

) can be found such that

ES
[

sup
0≤t≤T

∣∣V J(p)
t − V C

t

∣∣] ≤ C ′′/v(p)max.

4.4.1.3 Strong convergence of the swap rate process

We are ready to state our estimation on the bounding error ε1. It corresponds to the error
made on prices of swap rates derivates when using Jacobi dynamics in place of the CIR one.
The following proposition outlines the result for exotic options whose payoff depends on a
path of the swap rate process. We consider a payoff φ that is Lipschitz in the following sense:
given two continuous processes (x(t))t∈[0,T ] and (y(t))t∈[0,T ], there exists a constant Cφ > 0 such
that

∣∣∣φ((x(t))t∈[0,T ])− φ((y(t))t∈[0,T ])∣∣∣ ≤ Cφ sup0≤t≤T |x(t)− y(t)|. Recall that the bounding
error we aim at estimating here is defined for any p ∈ N as

ε1(p) :=

∣∣∣∣ES [φ((Sm,n,reft

)
t≤T

)]
− ES

[
φ

((
S
m,n,J(p)
t

)
t≤T

)]∣∣∣∣ .
Lipschitz property implies directly that

ε1(p) ≤ CφES
[

sup
0≤t≤T

|Sm,n,reft − Sm,n,Jt |

]

and the derivation of the following result is obtained by bounding the right-hand side in the
previous inequality; hence the strong convergence property.

Proposition 4.8. Assume that v(p)min ≡ 0: there exists some constants K1 ∈ R∗
+ and K2 ∈ R∗

+

such that for any p ∈ N

ε1(p) ≤
√

K1

log
(
v
(p)
max/v0

) + K2

v
(p)
max/v0

.

Assume then that v(p)max ≡ ∞: there exists some constants K ′
1 ∈ R∗

+ and K ′
2 ∈ R∗

+ such that for
any p ∈ N

ε1(p) ≤
√

K ′
1

log
(
v0/v

(p)
min

) +K ′
2v

(p)
min.

Proof. We again prove the result in a more general framework by considering a non null drift
function in the swap dynamics, as done in preceding proofs. We additionally assume that
this drift function is Lipschitz in the space variable: |µ(t, x) − µ(t, y)| ≤ Cµ|x − y|. Let us
first place in case when v

(p)
min ≡ 0. Similarly to the previous proof, we will successively use

triangle inequality, the Burkholder-Davis-Gundy inequality, 1
2 -Hölder regularity of the square-

root function (|
√
x − √y| ≤

√
|x− y|, for x, y ≥ 0), the fact that for all t ≤ T , ρ(t)2Q(v) ≤

159



ρ(t)2v ≤ v since ρ(t)2 ≤ 1 and that the square-root function is concave to get the following:

ε1(p) ≤ CφES
[

sup
0≤t≤T

|Sm,n,reft − Sm,n,Jt |

]

= CφES
[

sup
0≤t≤T

∣∣∣ ∫ t

0

(
µ(s, V C

s )− µ(s, V J
s )
)
ds+

∫ t

0
ρ(s)

(√
V C
s −

√
Q(V J

s )
)
‖λm,n(s)‖dWs

+

∫ t

0

(√
V C
s − ρ(s)2V C

s −
√
V J
s − ρ(s)2Q(V J

s )
)
λm,n(s) · dW S,∗

s

∣∣∣]

≤ CφCµES
[∫ T

0
|V C
s − V J

s |ds
]
+ CLipCBDGλmax

(
ES
[√∫ T

0
ρ(s)2|V C

s −Q(V J
s )|ds

]

+ ES
[√∫ T

0
|V C
s − V J

s + ρ(s)2
(
Q(V J

s )− V C
s

)
|ds
])

≤ C

(∫ T

0
ES
[
|V C
s − V J

s |
]
ds+

√∫ T

0
ρ(s)2ES [|V C

s −Q(V J
s )|] ds

+

√∫ T

0
ES
[
|V C
s − V J

s + ρ(s)2
(
Q(V J

s )− V C
s

)
|
]

ds
)

=: C(I1 + I2 + I3)

where C is a positive number. I1 can be bounded using Theorem 4.5: I1 ≤ TC̃
/

log
(
vmax/v0

)
.

Furthermore, observing that

I2 =

(∫ T

0
ρ(s)2ES

[
|V C
s − V J

s + V J
s −Q(V J

s )|
]
ds
)1/2

≤
(∫ T

0

(
ES
[
|V C
s − V J

s |
]
+ ES

[
|V J
s −Q(V J

s )|
])

ds
)1/2

and that

I3 =

(∫ T

0
ES
[
|V C
s − V J

s + ρ(s)2
(
Q(V J

s )− V C
s

)
|
]
ds
)1/2

≤
(∫ T

0

(
(1 + ρ(s)2)ES

[
|V C
s − V J

s |
]
+ ρ(s)2ES

[
|Q(V J

s )− V J
s |
])

ds
)1/2

≤
(∫ T

0

(
2ES

[
|V C
s − V J

s |
]
+ ES

[
|Q(V J

s )− V J
s |
])

ds
)1/2

,

we are led to study the quantities ES
[
|V C
s −V J

s |
]

and ES
[
|Q(V J

s )−V J
s |
]
. Recall that v−Q(v) =

v2

vmax
for vmin = 0. Regarding the results of Lemma 4.4 and Theorem 4.5, we can find some

positive constants c1, c2 such that

I2 ≤
√
T

√
c1

log(v(p)max/v0)
+

c2

v
(p)
max/v0

and I3 ≤
√
T

√
2c1

log(v(p)max/v0)
+

c2

v
(p)
max/v0

.
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Finally, for some positive constants K0, K1 and K2,

ε1(p) ≤ C ′

(
K0

log(v(p)max/v0)
+

√
K1

log(v(p)max/v0)
+

K2

v
(p)
max/v0

)

where C ′ ≥ 0. In the statement of Theorem 4.8, K0 = 0 as there is no drift in the dynamics
(4.7).

Regarding the case v(p)max ≡ +∞, the bounding of each term can be adapted so that: I1 ≤
TC̃
/

log
(
v0/v

(p)
min

)
; I2 ≤

(
C∗T

log
(
v0/v

(p)
min

) + Tv
(p)
min

)1/2
and I3 ≤

(
2C∗T

log
(
v0/v

(p)
min

) + Tv
(p)
min

)1/2
. Hence

the claim.

Remark 31. As already mentioned, the proof relies on the derivation of the strong convergence
of
(
S
m,n,J(p)
t

)
0≤t≤T towards

(
Sm,n,reft

)
0≤t≤T which extends the result of Theorem 4.5 to swap

rate processes. Observe also that if the conjecture phrased above in Remark 30 is proved to hold
true, the result in Proposition 4.8 would be improved accordingly to get that

ε1(p) ≤ K ′/√v(p)max/v0

for some positive constant K ′.

4.4.1.4 Weak convergence of the swap rate process

As polynomial processes are always defined by their moments, it is interesting to know how fast
moments of swap rate process defined in (4.1) will converge to that of (4.7).

Proposition 4.9. Let us fix k ∈ N. In the case when v(p)min ≡ 0, there exists some finite positive
constant C such that: ∣∣∣E [(Sm,nT )k

]
− E

[
(Sm,n,JT )k

]∣∣∣ ≤ C

v
(p)
max

.

In the case when v
(p)
max ≡ +∞, there exists some finite positive constant C ′ such that:∣∣∣E [(Sm,nT )k

]
− E

[
(Sm,n,JT )k

]∣∣∣ ≤ C ′v
(p)
min.

Proof. From the matrix representation of polynomial processes, we get that

E
[
(Sm,nT )k

]
= Bk(S

m,n
0 , V0) · texp

(
T tA(k)

)−→pk = BN (S
m,n
0 , V0) · exp

(
TA(k)

)−→pk,
where Bk(x, v) is a basis of Pk(R2), −→pk is the vector representing the monomial xk in the basis
Bk(x, v) and A(k) ∈ RN×N is the matrix representation of the action of the generator associated
to the diffusion (4.1) on this basis. The same stands for the moments of Sm,n,J with adjusted
notations:

E
[
(Sm,n,JT )k

]
= Bk(S

m,n
0 , V0) · texp

(
T tA(k),J

)−→pk = BN (S
m,n
0 , V0) · exp

(
TA(k),J

)−→pk,
where A(k),J ∈ RN×N is the matrix representation of the action of the generator associated to
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the diffusion (4.7). If |||·||| is a matrix norm induced by a vector norm ‖ · ‖, we have that∣∣E[(Sm,nT )k
]
− E

[
(Sm,n,JT )k

]∣∣ = ∣∣∣BN (Sm,n0 , V0) ·
(

exp
(
TA(k)

)
− exp

(
TA(k),J

))−→pk∣∣∣
≤ ‖BN (Sm,n0 , V0)‖

∥∥∥( exp
(
TA(k)

)
− exp

(
TA(k),J

))−→pk∥∥∥
≤ ‖BN (Sm,n0 , V0)‖ ×

∣∣∣∣∣∣∣∣∣exp
(
TA(k)

)
− exp

(
TA(k),J

)∣∣∣∣∣∣∣∣∣‖−→pk‖
≤ T‖BN (Sm,n0 , V0)‖‖−→pk‖ ×

∣∣∣∣∣∣∣∣∣A(k) −A(k),J
∣∣∣∣∣∣∣∣∣e|||A(k)|||e|||A(k),J |||.

All matrix norms are equivalent in finite dimension and in the following we will focus on the
infinite matrix norm: for M ∈ RN×N , |||M ||| = max1≤i≤N |Mi,j |. The infinitesimal generator
of the diffusion (4.1) applied on a twice continuously differentiable bivariate function writes
Af(v, s) = κ(θ− ξv)∂vf(v, s) + ϵ2

2 v∂
2
vf(v, s) +

v
2‖λ

m,n‖2∂2sf(v, s) + ρϵ‖λm,n‖v∂2vsf thus applied
on monomials of the form f(v, s) = vlsq for (q, l) ∈ N2 yields

Atf(v, s) = κl(θ − ξv)sqvl−1 + l(l − 1)
ϵ2

2
vsqvl−2 +

v

2
‖λm,n‖2q(q − 1)sq−2vl + lqρϵ‖λm,n‖sq−1vl

= κlθsqvl−1 − κlξsqvl + ϵ2
l(l − 1)

2
sqvl−1 +

q(q − 1)

2
‖λm,n‖2sq−2vl+1 + lqρϵ‖λm,n‖sq−1vl.

Now f evaluated through AJ where AJ is defined in (4.9) gives

AJt f(v, s) = κl(θ − ξv)sqvl−1 + l(l − 1)
ϵ2

2
Q(v)sqvl−2 +

v

2
‖λm,n‖2q(q − 1)sq−2vl

+ lqρϵ‖λm,n‖Q(v)sq−1vl−1

= κlθsqvl−1 − κlξsqvl

+ ϵ2
l(l − 1)

2

sq

(
√
vmax −

√
vmin)2

(
(vmax + vmin)v

l−1 − vl − vminvmaxvl−2
)

+ lqρϵ‖λm,n‖sq−1 (vmax + vmin)v
l − vl+1 − vminvmaxvl−1

(
√
vmax −

√
vmin)2

.

Without lack of generality, we can consider that Bk is the standard basis of Pk(R2) composed
of monomial functions:

(
(v, s) 7→ vlsq

)
l+q≤k. Given an enumeration Λ : Ek → N of the set of

exponents Ek =
{
(l, q) ∈ N2 : l + q ≤ k

}
, the non-zero elements of the matrix A(k),J representing
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the action of AJ on Pk(R2) are given by:

A
(k),J
Λ(l,q),Λ(p,q) = −

(
l(l − 1)ϵ2

2(
√
vmax −

√
vmin)2

+ lκξ0(t)

)
,

A
(k),J
Λ(l−1,q),Λ(l,q) = κlθ +

l(l − 1)ϵ2(vmin + vmax)

2(
√
vmax −

√
vmin)2

,

A
(k),J
Λ(l−2,q),Λ(l,q) = −

l(l − 1)ϵ2vminvmax
2(
√
vmax −

√
vmin)2

,

A
(k),J
Λ(l+1,q−2),Λ(l,q) =

q(q − 1)‖λm,n(t)‖2

2
,

A
(k),J
Λ(l+1,q−1),Λ(l,q) = −

lqϵρ(t)‖λm,n(t)‖
(
√
vmax −

√
vmin)2

,

A
(k),J
Λ(l−1,q−1),Λ(l,q) = −

lqϵvminvmaxρ(t)‖λm,n(t)‖
(
√
vmax −

√
vmin)2

,

A
(k),J
Λ(l,q−1),Λ(l,q) =

lqϵρ(t)‖λm,n(t)‖(vmin + vmax)

(
√
vmax −

√
vmin)2

.

The entries of the matrix A(k) representing the action of A on Pk(R2) are obtained by setting
vmin = 0 and vmax = +∞ in previous equations. In particular, A(k)

Λ(l−2,q),Λ(l,q) = A
(k)
Λ(l+1,q−1),Λ(l,q) =

A
(k)
Λ(l−1,q−1),Λ(l,q) = 0.

Consider now the previously introduced sequences of bounds
(
v
(p)
min, v

(p)
max

)
p∈N respectively

converging towards 0 and +∞. First in case when v
(p)
min ≡ 0, we have that∣∣∣∣∣∣∣∣∣A(k),J −A(k)

∣∣∣∣∣∣∣∣∣ = max
i,j

∣∣A(k),J
i,j −A(k)

i,j

∣∣
= max

l+q≤k

{∣∣A(k),J
Λ(l,q),Λ(l,q) −A

(k)
Λ(l,q),Λ(l,q)

∣∣, ∣∣A(k),J
Λ(l+1,q−1),Λ(l,q) −A

(k)
Λ(l+1,q−1),Λ(l,q)

∣∣}
= max

l+q≤k

{ l(l − 1)ϵ2

2v
(p)
max

,
lqϵρ‖λm,n‖

v
(p)
max

}
≤ C

v
(p)
max

,

for some finite positive constant C that can be written as C = ck2 for some c > 0. Conversely,
in the case when v

(p)
max ≡ +∞, we get∣∣∣∣∣∣∣∣∣A(k),J −A(k)

∣∣∣∣∣∣∣∣∣ = max
i,j

∣∣A(k),J
i,j −A(k)

i,j

∣∣
= max

l+q≤k

{∣∣A(k),J
Λ(l−2,q),Λ(l,q) −A

(k)
Λ(l−2,q),Λ(l,q)

∣∣, ∣∣A(k),J
Λ(l−1,q−1),Λ(l,q) −A

(k)
Λ(l−1,q−1),Λ(l,q)

∣∣}
= max

l+q≤k

{v(p)minl(l − 1)ϵ2

2
, lqϵρ‖λm,n‖v(p)min

}
≤ C ′v

(p)
min,

for some constant C ′ that can be written as C ′ = c′k2 for some c′ > 0. Hence the result.

Since dealing with processes characterized by their moments, it is quite natural to anticipate
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that Proposition (4.9) can be expressed in terms of distribution convergence. In the following
theorem, ϕJ(z) = ES

[
ezS

m,n,J
T

]
(respectively ϕ(z) = ES

[
ezS

m,n
T

]
) denotes the moment generating

function associated with dynamics (4.7) (resp. (4.1)). They are defined over an open disk centred
at the origin and we denote by r > 0 its radius denoted by D(0, r).

Theorem 4.10. Let z ∈ D(0, r). Then

|ϕJ(z)− ϕ(z)| ≤ C
(
|z|2 + |z|

)
e|z|

vmax

for some positive constant C.

Proof. We rely on Proposition 4.9 and its proof. Below, the notation C represent generic positive
number that may change from line to line.

|ϕJ(z)− ϕ(z)| =
∣∣∣ +∞∑
k=0

zk

k!

(
ES [(Sm,n,JT )k]− ES [(Sm,nT )k]

)∣∣∣
≤ C

vmax

+∞∑
k=0

k2|z|k

k!

≤ C

vmax

+∞∑
k=0

k(k − 1) + k

k!
|z|k

≤ C (|z|2 + |z|)e|z|

vmax
.

We again restrict ourselves to the case of time homogeneous diffusions for (4.1) and (4.7).
We state a similar result to that of Proposition 4.7 for the swap rate process giving thus an
estimate on the error made when replacing Cox-Ingersoll-Ross process by Jacobi one.

Theorem 4.11. Let us fix vmin > 0 and a real number β > 1. Let f ∈ C2(R) be a bounded
payoff function such that the functions R 3 x 7→ (1 + x)f ′(x) and R 3 x 7→ (1 + x2)f ′′(x) are
bounded. Assume that the parameters of the model satisfy the relationship

4κθξ0 > 5ϵ2. (4.27)

Then, there exists positive constants Cvmin , c1 and c2 such that∣∣ES[f(Sm,nT )
]
− ES

[
f(Sm,n,JT )

]∣∣ ≤ Cvmin

( c1
vmax

+ c2

)
for all vmax > βvmin.

Remark 32. This result is rather theoretical than practical. Indeed in present result, the
constant Cvmin appearing in the statement of Theorem 4.11 explodes as vmin → 0 due to the
fact that, for any α > 0,

∫ T
0 ES

[
1

(V 0
t )α

]
dt = +∞ where V 0 is the CIR process starting at zero.

The estimate on the pricing error provided in the statement simply allows to get some intuition
on the convergence as vmax → +∞ for a fixed vmin > 0. We conjecture that a similar result
holds in the particular case when vmin = 0.
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Remark 33. Theorem 4.11 provides a pricing error when comparing dynamics (4.1) and (4.7)
for smooth payoff functions. We guess that a comparable result may be obtained for less regular
payoff comprising standard ones that mainly writes as linear combination of indicator functions.

Proof. We are interested in this proof in the characterization of distributions of Sm,n and
Sm,n,J . For simplicity we consider one dimensional SDE for modelling their respective dynamics.
Namely, we focus on

dSm,nt =
√
Vt

(
ρ‖λm,n‖dWt +

√
1− ρ2‖λm,n‖dWS,∗

t

)
, (4.28)

where (WS,∗
t )0≤t≤T is a one dimensional Brownian motion –that replaces the multidimensional

one in (4.1)– and where (Vt)0≤t≤T is a CIR process. Choosing V as a Jacobi process in right-hand
side of (4.28) yields the one dimensional counterpart of (4.7) and allows to define (Sm,n,Jt )0≤t≤T .
For simplicity, we will denote in this proof X = Sm,n and XJ = Sm,n,J .

Throughout the proof of the Theorem 4.11 we will use several times the three following
properties of the Cox-Ingersoll-Ross process presented in the Lemmas 4.12, 4.13 and 4.14 below.
The first key property is about the regularity through time of the (negative) moments of the
Cox-Ingersoll-Ross starting at zero.

Lemma 4.12. Let T > 0 and let us consider the Cox-Ingersoll-Ross process starting at x > 0:

V x
t = x+

∫ t

0
κ(θ − ξ0V x

u )du+ ϵ

∫ t

0

√
V x
u dBu, 0 ≤ t ≤ T, (4.29)

where (Bt)0≤t≤T is a Brownian motion. Then there exists some constant C ′ > 0 such that

∀t ∈ [0, T ], E
[

1

(V x
t )

α

]
≤ C ′

xα

for any 0 < α < 2κξ0θ
ϵ2

.

Proof of lemma 4.12. First observe that

V x
t
a.s.
= x+

∫ t

0
κ̃
( θ
ξ0
− V x

u

)
du+

∫ t

0
ϵ
√
V x
u dBu

where κ̃ = κξ0. Now, since

1

(V x
t )

α

a.s.
=

1

Γ(α)

∫ +∞

0
yα−1e−yV

x
t dy

which follows from the definition of the Γ function. Using Fubini theorem and following Propo-
sition 1.2.4 in [Alf15], we finally get that

E
[

1

(V x
t )

α

]
=

1

Γ(α)

∫ +∞

0

yα−1(
1 + ϵ2

2 yξκ̃(t)
)2κ̃θ/ϵ2 exp

(
− ye−κ̃t

1 + ϵ2

2 yξκ̃(t)
x

)
dy

=:
1

Γ(α)

∫ +∞

0
g(t, y)dy

(4.30)

where we set ξκ̃(t) = 1−e−κ̃t

κ̃ . In identity (4.30), let us apply the change of variable z = yξκ̃(t)
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and set u(t) = e−κ̃t/ξκ̃(t) so that:

E
[

1

(V x
t )

α

]
=

1

ξκ̃(t)αΓ(α)

∫ +∞

0

zα−1(
1 + ϵ2

2 z
)2κ̃θ/ϵ2 exp

(
− xzu(t)

1 + ϵ2

2 z

)
dz

=:
1

ξκ̃(t)αΓ(α)
F
(
u(t)

)
.

(4.31)

Let us split the integral defining F into two integrals over (0, 1) and (1,∞) and study both of
them. First, observe that∫ 1

0

zα−1(
1 + ϵ2

2 z
)2κ̃θ/ϵ2 exp

(
− xzu(t)

1 + ϵ2

2 z

)
dz ≤

∫ 1

0

zα−1(
1 + ϵ2

2 z
)2κ̃θ/ϵ2 exp

(
− xzu(t)

1 + ϵ2

2

)
dz

≤
∫ 1

0
zα−1 exp

(
− xzu(t)

1 + ϵ2

2

)
dz

≤
(1 + ϵ2/2

xu(t)

)α ∫ xu(t)

1+ϵ2/2

0
vα−1e−vdv

≤
(1 + ϵ2/2

xu(t)

)α ∫ +∞

0
vα−1e−vdv

=
(1 + ϵ2/2

xu(t)

)α
Γ(α)

(4.32)

where we set v = xu(t)
1+ϵ2/2

z in third inequality and used that 0 ≤ z ≤ 1⇔ 1 ≤ 1+ ϵ2

2 z ≤ 1+ ϵ2

2 ⇔
−xzu(t) ≤ − xzu(t)

1+ ϵ2

2
z
≤ −xzu(t)

1+ ϵ2

2

since xu(t) ≥ 0. Second, the integral over (1,∞) is handled as
follows:∫ ∞

1

zα−1(
1 + ϵ2

2 z
)2κ̃θ/ϵ2 exp

(
− xzu(t)

1 + ϵ2

2 z

)
dz =

∫ ∞

1

zα−1(
1 + ϵ2

2 z
)2κ̃θ/ϵ2 exp

(
− xu(t)

1/z + ϵ2

2

)
dz

≤ exp
(
− xu(t)

1 + ϵ2

2

)∫ ∞

1

zα−1(
1 + ϵ2

2 z
)2κ̃θ/ϵ2 dz

= C exp
(
− xu(t)

1 + ϵ2

2

)
(4.33)

where C < ∞ for α < 2κ̃θ/ϵ2 and we used that 1 ≤ z ⇔ 1
z +

ϵ2

2 ≤ 1 + ϵ2

2 ⇔ −
xu(t)
1
z
+ ϵ2

2

≤ − xu(t)

1+ ϵ2

2

.
We employ then (4.32) and (4.33) to get the following estimates in which the constant C ′ > 0
is only depending on α and the parameters of (4.29) but not on t; it may change from line to
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line below. It is such that for all t ∈ [0, T ]:

E
[

1

(V x
t )

α

]
≤ C ′

ξκ̃(t)α

(
1(

xu(t)
)α + exp

(
− xu(t)

1 + ϵ2

2

))
≤ C ′

(
1

xαe−ακ̃t
+

1

ξκ̃(t)α
exp

(
− xe−κ̃t/ξκ̃(t)

1 + ϵ2

2

))
≤ C ′

(
1

xα
+

1

ξκ̃(t)α
exp

(
− xe−κ̃t/ξκ̃(t)

1 + ϵ2

2

))
.

(4.34)

Since ξκ̃(t) −−→
t→0

0, (4.34) is studied below independently for large times t and small ones.
Set T ≥ τ > 0. For all t ∈ [τ, T ], set y = x/ξκ̃(t) and we have

E
[

1

(V x
t )

α

]
≤ C ′

(
1

xα
+
yα

xα
exp

(
− ye−κ̃T

1 + ϵ2

2

))
≤ C ′

xα

(
1 + sup

y≥0
yα exp

(
− ye−κ̃T

1 + ϵ2

2

))
≤ C ′

xα
.

Previous estimate holds for all τ > 0. Using for small t, that ξκ̃(t) ∼ t and that supt≥0
1
tα

exp
(
− x/t

1+ ϵ2

2

)
= sups≥0

sα

xα exp
(
− s

1+ ϵ2

2

)
= C̃

xα in (4.34), we finally get the following bounding
for t small enough:

E
[

1

(V 0
t )

α

]
≤ C ′

xα
. (4.35)

The claim is proved.

Note that under assumption of Theorem 4.11, the exponent α ∈ R of Lemma 4.12 could be
chosen in (−∞, 5/2].

The second important property is about the almost sure monotonicity of the Cox-Ingersoll-
Ross process with respect to its initial value.

Lemma 4.13. Denoting by (V v
t )0≤t≤T the Cox-Ingersoll-Ross process starting at v ∈ R∗

+, then
for any time t ∈ [0, T ] the map R+ 3 v 7→ V v

t is increasing almost surely. In particular, for any
0 < v ≤ w,

P
(
∀t > 0 :

1

V w
t

≤ 1

V v
t

<∞
)

= 1.

Proof of lemma 4.13. The first part of the claim is simply a consequence of the comparison
theorem for solutions of stochastic differential equations: see for instance Proposition 2.18,
Section 5.2.C in [KS91]. Consequently, R∗

+ 3 v 7→ 1/V v
t is decreasing almost surely for any

t ∈ [0, T ] and thus
∀t ∈ [0, T ], for any w ≥ v > 0,

1

V w
t

≤ 1

V v
t

.

Theorem 2.4 in [Duf01] provides that E
[(
V v
t

)γ]
<∞ whenever γ > −2κθξ0/ϵ2. Consequently,

as soon as 2κθξ0 > ϵ2, ES [(V w
t )−1] < ∞ for all t ∈ [0, T ]. As being a positive random variable

of finite expectation, (V w
t )−1 is necessarily finite almost surely for any t ∈ [0, T ]. Hence the

result.

167



Third property we need is about the regularity of the square-root of the Cox-Ingersoll-Ross
process with respect to its initial value. We denote by Vw =

√
V v and w =

√
v; observe that

by Itô’s lemma we get

Vwt
a.s.
= w +

∫ t

0

(
(
κθ

2
− ϵ2

8
)(Vws )−1 − κξ0

2
Vws
)

ds+ ϵ

2
Wt, t ≤ T. (4.36)

We denote by (∂Vwt )0≤t≤T the first variation process of (Vwt )0≤t≤T ; it can be defined as the
almost sure solution of the following ordinary differential equation

∂Vwt = 1−
∫ t

0

((κθ
2
− ϵ2

8

)(
Vwu
)−2

+
κξ0

2

)
∂Vwu du, t ∈ [0, T ]. (4.37)

Remark 34. The definition of ∂Vw can be formally obtained by simply deriving (4.36) with
respect to w. In the literature, this is done and justified for SDEs with smooth coefficients; we
refer to [Stu04] for more details. We extend those results in Lemma 4.14 to the particular case
of the non bounded drift function of (4.36).

Lemma 4.14. Assume that κθ > ϵ2. Let us denote by

Ww
t := Vwt −

∫ w

0
∂Vyt dy

for all t ∈ [0, T ]. Then, the first variation process defined in (4.37) is such that, at any time
t ∈ [0, T ], Ww

t does not depend on w:

Ww
t =Ww′

t .

for any w > 0, w′ > 0.

Proof of lemma 4.14. First, observe that the differential equation (4.37) satisfied by (Ww
t )0≤t≤T

can be explicitly solved to obtain

∂Vwt
a.s.
= exp

(
−
∫ t

0

((κθ
2
− ϵ2

8

)(
Vwu
)−2 − κξ0

2

)
du
)
, 0 ≤ t ≤ T, (4.38)

proving the existence of (∂Vwt )0≤t≤T . Let us fix w > 0 and set w′ ≥ w.

Ww
t −Ww′

t = w − w′ +

∫ t

0

((κθ
2
− ϵ2

8

)( 1

Vwu
− 1

Vw′
u

)
− κξ0

2

(
Vwu − Vw

′
u

))
du

+

∫ w′

w

(
1−

∫ t

0

((κθ
2
− ϵ2

8

) 1(
Vyu
)2 +

κξ0

2

)
∂Vyudu

)
dy

=

∫ t

0

((κθ
2
− ϵ2

8

)( 1

Vwu
− 1

Vw′
u

−
∫ w′

w

∂Vyu
(Vyu)2

dy
)
− κξ0

2

(
Vwu − Vw

′
u +

∫ w′

w
∂Vyudy

))
du

=

∫ t

0

((κθ
2
− ϵ2

8

)(Vw′
u − Vwu
Vwu Vw

′
u

−
∫ w′

w

∂Vyu
(Vyu)2

dy
)
− κξ0

2

(
Ww
u −Ww′

u

))
du

≤
∫ t

0

1

(Vwu )2
(
−
(κθ
2
− ϵ2

8

)
− κξ0

2

)(
Ww
u −Ww′

u

)
du

where we used the monotonicity result of Proposition 4.13 to obtain the last inequality. Jensen’s
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inequality then implies for all t ≥ 0,

|Ww
t −Ww′

t | ≤
((κθ

2
+
ϵ2

8

)
+
κξ0

2

)∫ t

0

1

V w
u

|Ww
u −Ww′

u |du.

Gronwall’s lemma applied almost surely provides then

PS
(
Ww
t =Ww′

t

)
= 1.

The result follows as w and w′ were set arbitrarily.

We are now ready to prove the statement of Theorem 4.11. Let us consider f ∈ C2(R)
as in the statement of the theorem. Let us define u(t, x, v) = E

[
f(XT−t)|(X0, V0) = (x, v)

]
and ũ(t, x, v) = u(T − t, x, v). Proposition 3.2 in [ET10] (see Appendix D for the sake of
completeness) justifies that u ∈ C1,2,2

(
[0, T )× R× R∗

+

)
. Note in addition that u(T, x, v) = f(x)

for all (x, v) ∈ R× R∗
+. The Feynman-Kac formula implies (see for instance [KS91]):

∂tu+ κ(θ − ξ0v)∂vu+
ϵ2

2
v∂2vu+ ρϵv∂2xvu+

v

2
∂2xu = 0, (x, v) ∈ R× R∗

+, t ∈ [0, T ]. (4.39)

Observe now that

ES [f(XJ
T )]− ES [f(XT )] = ES

[
u
(
T,XJ

T , V
J
T

)]
− ES [u(T,XT , VT )]

= ES
[
u
(
T,XJ

T , V
J
T

)
− u(0, x, v)

]
= ES

[∫ T

0
g(s,XJ

s , V
J
s )ds

] (4.40)

where we set g(t, x, v) = ∂tu+κ(θ−ξ0v)∂vu+ ϵ2

2 Q(v)∂2vu+ρϵQ(v)∂2xvu+
v
2∂

2
xu. Equation (4.39)

yields that

g(t, x, v) =
ϵ2

2
(Q(v)− v)∂2vu(t, x, v) + ρϵ(Q(v)− v)∂2xvu(t, x, v).

Let vmin > 0 be given. By definition, we have v −Q(v) = v2/γ + vminvmax
γ −

(
vmax+vmin

γ − 1
)
v

where γ = (
√
vmax −

√
vmin)

2. Observe that it is enough to study v −Q(v) for v ∈ [vmin, vmax]
following (4.40). First note that over [vmin, vmax], v−Q(v) ≥ 0. Secondly, since γ ≤ vmax+vmin,
we have v−Q(v) ≤ v2/γ + vminvmax

γ . Third, pick β > 1 so that for vmin ≤ vmax
β we have on the

one hand vmaxvmin
γ ≤ Cvmin and on the other hand v2

γ ≤ C ′ v2

vmax
for some positive constants

C,C ′. Finally, there is some c̃ > 0 so that for all v ∈ [vmin, vmax], we get

|v −Q(v)| = v −Q(v) ≤ c̃
( v2

vmax
+ vmin

)
. (4.41)

Using thus (4.41) and (4.40), it remains to show that
max

(
ES
[∫ T

0

(
(V J
s )2 + 1

)∣∣∂2xvu(s,XJ
s , V

J
s )
∣∣ds] ,ES [∫ T0 ((V J

s )2 + 1
)∣∣∂2vu(s,XJ

s , V
J
s )
∣∣ds] ) < ∞

to obtain the wanted result. To do so, we will bound ES
[(
(V J
t )2 + 1

)∣∣∂2xvu(t,XJ
t , V

J
t )
∣∣] and

ES
[(
(V J
t )2 + 1

)∣∣∂2vu(t,XJ
t , V

J
t )
∣∣] independently of t. In the sequel, we will rather work with

the square-root of the volatility process defined in (4.36) by observing that ∂vũ(t, x, v) =
1
2w∂wũ(t, x, w) where w =

√
v.
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Study of ∂2wu. We first study the second derivative of u with respect to its third argument:

∂2vu(t, x, v) = ∂2v
(
ES [f(XT−t)|(X0, V0) = (x, v)]

)
= ∂2v ũ(T − t, x, v).

Based on the above relationship, we will alternatively study the quantity ∂wũ. As mentioned,
we will rather consider the square-root of the CIR process in this proof; moreover, since we
are studying the dependency with respect to initial condition, we emphasize it by denoting
(Xx,w, V w) the process defined in (4.28) associated with CIR process such that Xx,w

0 = Sm,n0 = x
and V w

0 = V0 = w2, similarly to the definition of the square-root process (4.36). With the
definition (4.14), we can define the first variation process (with respect to w) of Xx,w as

∂wX
x,w
t = ρ‖λm,n‖

∫ t

0
∂Vwu dWu +

√
1− ρ2‖λm,n‖

∫ t

0
∂Vwu dWS,∗

u , 0 ≤ t ≤ T. (4.42)

For any time t ∈ [0, T ], one can show that the quantity Xx,w
t −

∫ w
0 ∂wX

x,y
t dy does not depend

on w using Fubini’s theorem for interchanging order between Lebesgue and Itô’s integrals and
Lemma 4.14.

From the hypothesis made on the payoff function f , we have at any time t ∈ [0, T ],∣∣∂wf(Xx,w
t )

∣∣ = ∣∣f ′(Xx,w
t )∂wX

x,w
t

∣∣
≤ ‖f ′‖∞

∣∣∂wXx,w
t

∣∣. (4.43)

We aim at bounding last term in (4.43) independently of (x,w) by an integrable random variable.
By doing so, we could apply Lebesgue’s theorem to get

∂wũ(t, x, w) = ESx,w
[
f ′(Xt)∂wX

x,w
t

]
. (4.44)

An integration by part in (4.42) yields

∂wX
x,w
t

a.s.
= ‖λm,n‖

∫ t

0
∂Vwu

(
ρdWu +

√
1− ρ2dWS,∗

u

)
= ‖λm,n‖

{
∂Vwt

(
ρWt +

√
1− ρ2WS,∗

t

)
+

∫ t

0

(
ρWt +

√
1− ρ2WS,∗

t

)[(κθ
2
− ϵ2

8

) ∂Vwu
(Vwu )2

− κξ0

2
∂Vwu

]
du
}
.

(4.45)

Using now Jensen’s inequalities, fact that for any time t ≤ T , |∂Vwt | ≤ 1 almost surely,
Lemma 4.13 and that |ρ| ≤ 1, we get almost surely:∣∣∂wXx,w

t

∣∣ ≤ 3‖λm,n‖
{∣∣Wt +WS,∗

t

∣∣
+
∣∣∣ ∫ t

0

(
ρWu +

√
1− ρ2WS,∗

u

)[(κθ
2
− ϵ2

8

) ∂Vwu
(Vwu )2

− κξ0

2
∂Vwu

]
du
∣∣∣}

≤ 3‖λm,n‖
{∣∣Wt

∣∣+ ∣∣WS,∗
t

∣∣
+

∫ t

0

(
|Wu

∣∣+ ∣∣WS,∗
u

∣∣)[(κθ
2

+
ϵ2

8

)(
1

V vmin
u

)
+
κξ0

2

]
du
}

=: Z1,t

(4.46)

where Z1,t does not depend on (w, x). We now justify its integrability. First note that
ES
[∣∣Wt

∣∣] = ES
[∣∣WS,∗

t

∣∣] =√2t
π . Fubini theorem, Cauchy-Schwarz inequality, fact that ES

[(
Wu

)2
] =
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ES
[(
WS,∗
u

)2
] = u for all time u ∈ [0, T ] and Lemma 4.12 imply that

ES
[ ∫ t

0

(
|Wu

∣∣+ ∣∣WS,∗
u

∣∣)[(κθ
2

+
ϵ2

8

)(
1

V vmin
u

)
+
κξ0

2

]
du
]

≤
∫ t

0
ES
[(
|Wu

∣∣+ ∣∣WS,∗
u

∣∣)2]1/2ES[(κθ
2

+
ϵ2

8

)2(
1

V vmin
u

)2

+
κξ0

4

]1/2
du

≤ Ct3/2
(
v−2
min + 1

)
<∞

(4.47)

for some C > 0 depending on the volatility parameters κ, θ, ϵ. We finally get that ES [Z1,t] ≤
C ′(t1/2 + t3/2

)
≤ C ′(T 1/2 + T 3/2

)
. This justifies (4.44). Observe also that for all (t, x, w):

|∂wũ(t, x, w)| ≤ ‖f ′‖∞C ′T 1/2
(
1 + T

)
(4.48)

where C ′ depends on vmin but not on vmax.
Let us move onto the second partial derivative with respect to initial variance value. From

the hypothesis made on the payoff function again, we have∣∣∂2wf(Xx,w
t )

∣∣ = ∣∣f ′′(Xx,w
t )

(
∂wX

x,w
t

)2
+ f ′(Xx,w

t )∂2wX
x,w
t

∣∣
≤
(
‖f ′′‖∞

(
∂wX

x,w
t

)2
+ ‖f ′‖∞

∣∣∂2wXx,w
t

∣∣) (4.49)

We are thus led to study
(
∂wX

x,w
t

)2 and
∣∣∂2wXx,w

t

∣∣: as previously, we want to bound both of
them by integrable random variables that do not depend on (w, x). Starting with (4.45), we
follow a similar approach as in (4.46) to get:(

∂wX
x,w
t

)2
= ‖λm,n‖2

{
∂Vwt

(
ρWt +

√
1− ρ2WS,∗

t

)
+

∫ t

0

(
ρWt +

√
1− ρ2WS,∗

t

)[(κθ
2
− ϵ2

8

) ∂Vwu
(Vwu )2

− κξ0

2
∂Vwu

]
du
}2

≤ 3‖λm,n‖2
{
W 2
t +

(
WS,∗
t

)2
+ 4t

∫ t

0

(
|Wu

∣∣2 + ∣∣WS,∗
u

∣∣2)[(κθ
2
− ϵ2

8

)2(
1

V vmin
u

)2

+
κ2
(
ξ0
)2

4

]
du
}

=: Z2,t

(4.50)

where Z2,t does not depend on (x,w). Let us discuss its integrability. First, ES
[
(Wt)

2
]
=

ES
[(
WS,∗
t

)2]
= t. Furthermore, Hölder’s inequality implies that for any p > 1 and any time

t > 0, ES
[∣∣Wt

∣∣2(V vmin
t )−2

]
≤ ES

[∣∣Wt

∣∣2p] 1pES[(V vmin
t )−2q

] 1
q were q = p

p−1 . For all t ≥ 0,
ES
[∣∣Wt

∣∣2p] < ∞ and [0, T ] 3 t 7→ ES
[∣∣Wt

∣∣2p] is continuous thus it can be bounded in-
dependently of time t (moments of the absolute value of Brownian motions can be explic-
itly computed). Let us now fix α > 0 so that 1 + α < κθξ0/ϵ2 (exists following assump-
tion (4.27)) and chose p > 1 large enough so that q ≤ 1 + α; Hölder’s inequality again im-
plies ES

[
(V vmin
t )−2q

]
≤ ES

[
(V vmin
t )−2(1+α)

] q
1+α ≤ C

v2qmin

following Lemma 4.12. Consequently,

ES
[∣∣Wt

∣∣2(V vmin
t )−2

]
can be bounded independently of time t. A similar discussion applies to

ES
[∣∣WS,∗

t

∣∣2(V vmin
t )−2

]
. The finiteness of the expectation of Z2,t is deduced since

ES [Z2,t] ≤ C ′(t+ t2) ≤ C ′(T + T 2) (4.51)
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where C ′ depends on vmin but not on vmax.
Let us now study ∂2wXx,w

. . Using (4.38), we introduce the second derivative process defined
at any time t ≥ 0 by ∂2Vwt = 2

(
κθ
2 −

ϵ2

8

)
(∂Vw

t )2

(Vw
t )3

. Following Lemma 4.13, we obtain the almost
sure estimate ∣∣∂2Vwt ∣∣ ≤ 2

(
κθ

2
− ϵ2

8

)
1

(Vwt )3
≤
(
κθ − ϵ2

4

)
1(

V
√
vmin

t

)3 . (4.52)

The right-hand side can be proved to be finite almost surely as a a positive random variable of
finite expectation once 4

3κθ > ϵ2 (Theorem 2.4 in [Duf01]). This is ensured under (4.27) that is
a more restrictive condition. We can define then

∂2wX
x,w
t

a.s.
= ρ‖λm,n‖

∫ t

0
∂2Vwu dWu +

√
1− ρ2‖λm,n‖

∫ t

0
∂2Vwu dWS,∗

u , 0 ≤ t ≤ T,

and perform an integration by part to get for any t ∈ [0, T ]:

∂2wX
x,w
t

a.s.
= ‖λm,n‖

∫ t

0
∂2Vwu

(
ρdWu +

√
1− ρ2dWS,∗

u

)
= ‖λm,n‖

{
∂2Vwt

(
ρWt +

√
1− ρ2WS,∗

t

)
−
∫ t

0

(
ρWu +

√
1− ρ2WS,∗

u

)((κθ
2
− ϵ2

8

)(
2
(∂Vwu )2

(Vwu )3
− ∂2Vwu

(Vwu )2

)
+
κξ0

2
∂2Vwu

)
du
}
.

Previous estimate (4.52), Jensen’s inequality and fact that |ρ| ≤ 1, provide almost surely, for
t ∈ [0, T ],

∣∣∂2wXx,w
t

∣∣ ≤ ‖λm,n‖

{∣∣∂2Vwt ∣∣∣∣∣ρWt +
√

1− ρ2WS,∗
t

∣∣∣
+

∣∣∣∣ ∫ t

0

(
ρWu +

√
1− ρ2WS,∗

u

)((κθ
2
− ϵ2

8

)(
2
(
∂Vwu

)2
(Vwu )3

− ∂2Vwu(
Vwu
)2
)

+
κξ0

2
∂2Vwu

)
du
∣∣∣∣
}

≤ ‖λm,n‖

{(
κθ − ϵ2

4

) ∣∣Wt

∣∣+ ∣∣WS,∗
t

∣∣
(V

√
vmin

t )3

+

∫ t

0

(∣∣Wu

∣∣+ ∣∣WS,∗
u

∣∣)((κθ
2
− ϵ2

8

)
2 + κξ0

(V
√
vmin

u )3
+

1

2

(
κθ − ϵ2/4

)2
(V

√
vmin

u )5

)
du
}

=: Z̃t

where Z̃t does not depend on (w, x). To prove the integrability of Z̃t, we first observe that for
all t ∈ [0, T ], there is some C ′ > 0 such that

ES
[ ∣∣Wt

∣∣
(V

√
vmin

t )3

]
≤ ES

[
1

(V
√
vmin

t )3q

]1/q
ES
[∣∣Wt

∣∣p]1/p (4.53)

for all (p, q) ∈ [1,∞)2 such that 1/p+1/q = 1. For ally choice of p ≥ 1, [0, T ] 3 t 7→ ES
[∣∣Wt

∣∣p] is
continuous and thus bounded independently of t. As previously, we pick some α′ > 0 such that
1+α′ < 4κξ0θ

3ϵ2
which is possible thanks to (4.27); secondly, we select p large enough so that q =
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p
p−1 ≤ 1+α′. Hölder’s inequality implies ES

[
(V

√
vmin

t )−3q
]
≤ ES

[
(V

√
vmin

t )−3(1+α′)
] q

1+α′
≤ C′′

v
3q/2
min

following Lemma 4.12. This way, ES
[∣∣Wt

∣∣(V√vmin

t )−3
]

is proved to be bounded independently

of t. Similar study can be led on ES
[∣∣WS,∗

t

∣∣(V√vmin

t )−3
]
. Now, Fubini theorem, Hölder’s

inequality with again convenient choice of conjugates p, q, Lemma 4.12 again and the condition
on volatility parameters 2κθ > 5

2ϵ
2 yield that for all t ∈ [0, T ],

ES
[ ∫ t

0

(∣∣Wu

∣∣+ ∣∣WS,∗
u

∣∣)((κθ
2
− ϵ2

8

)
2 + κξ0

(V
√
vmin

u )3
+

1

2

(
κθ − ϵ2/4

)2
(V

√
vmin

u )5

)
du
]
≤ C <∞

for some C > 0 that does not depend on (t, x, w) and ES
[
Z̃t
]
≤ C ′′ < ∞ is deduced for some

C ′′ > 0. With (4.51), note also that∣∣∂2wũ(t, x, w)∣∣ = ∣∣ES [∂2wf(Xx,w
t )

]∣∣ = ∣∣∣ES [f ′′(Xx,w
t )

(
∂wX

x,w
t

)2
+ f ′(Xx,w

t )∂2wX
x,w
t

]∣∣∣
≤ ‖f ′′‖∞ES

[(
∂wX

x,w
t

)2]
+ ‖f ′‖∞ES

[
∂2wX

x,w
t

]
≤ ‖f ′′‖∞ES

[
Z2,t

]
+ ‖f ′‖∞ES

[
Z̃t
]

≤ ‖f ′′‖∞C ′(T + T 2) + ‖f ′‖∞C ′′.

(4.54)

Combining now (4.48) and (4.54) we eventually obtain, for all time t ∈ [0, T ]:∣∣ES [((V J
t )2 + 1

)
∂2v ũ(t,X

J
t , V

J
t )
] ∣∣

=

∣∣∣∣ES[−
√
V J
t + 1/(V J

t )3/2

4
∂wũ(t,X

J
t , V

J
t ) +

(
(V J
t )2 + 1

)
∂2wũ(t,X

J
t , V

J
t )

]∣∣∣∣
≤ C

(
ES
[(
V J
t

)1/2
+
(
V J
t

)−3/2
]
+ ES

[
(V J
t )2 + 1

])
≤ C

(
ES
[(
V J
t

)1/2]
+
(
vmin

)−3/2
+ ES

[
(V J
t )2

]
+ 1

)
≤ C <∞

where C is some positive constant that changed from a line to another: it does depend on vmin
but not on (t, w, x) nor on vmax thanks to Lemma 4.4.

Study of ∂2wxũ. We start again with (4.44). The justification that

∂2xwũ(t, x, w) = ES
[
f ′′(Xx,w

t )∂xX
x,w
t ∂wX

x,w
t + f ′(Xx,w

t )∂xwX
x,w
t

]
is a straightforward consequence of what precedes since the first variation processes with respect
to x are defined as ∂xXx,w

t
a.s.
= 1 and ∂x

(
∂wX

x,w
t

) a.s.
= 0. Note also that the regularity of ũ implies

∂2xwũ = ∂2wxũ. It follows∣∣∂2xwũ(t, x, w)∣∣ = ∣∣∣ES [f ′′(Xx,w
t )∂xX

x,w
t ∂wX

x,w
t + f ′(Xx,w

t )∂xwX
x,w
t

] ∣∣∣
≤ ‖f ′′‖∞ES

[∣∣∂wXx,w
t

∣∣] (4.55)
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It follows that, for all t ∈ [0, T ]

∣∣ES [((V J
t )2 + 1

)
∂2xvũ(t,X

J
t , V

J
t )
] ∣∣ = ∣∣∣ES[(V J

t

)3/2
+ 1/

√
V J
t

2
∂2xwũ(t,X

J
t , V

J
t )
]∣∣∣

≤ C̃ES
[(
V J
t

)3/2
+
(
V J
t

)−1/2
]

≤ C̃
(
ES
[(
V J
t

)3/2]
+ v

−1/2
min

)
≤ C̃ <∞

where C̃ is a finite positive constant changing from line to line that does not depend on (t, w, x)
nor on vmax (still using Lemma 4.4) but does depend on vmin.

This conclude the proof.

4.4.1.5 On the upper bound parameter

Before illustrating our results, we discuss how the upper bound parameter vmax can be set
in practice. The numerical efficiency of swaptions pricing is due to the use of Gram-Charlier
expansion. In order to guarantee its robustness, the upper bound parameter vmax should be
chosen relatively small so that (4.11) holds.
The upper bound parameter vmax can be considered as a meta-parameter whose value is set
beforehand. To do so, one can rely on the different convergence results derived in this section
and on the numerical analysis made below. Indeed, one could use the above-mentioned Propo-
sition 4.8 to chose an appropriate pair (vmax, v0) so that the pricing error ε1 is smaller than a
prescribed threshold. Alternatively, one can resort on the numerical experiments of Section 4.5
below and the associated conjecture of Remark 30 that seem to indicate a faster rate of conver-
gence. As already pointed in [AFP17], the approximating process (4.7) behaves very closely to
the original one (4.1) even for quite small vmax.

Another choice would be to include this coefficient vmax in the set of parameters to calibrate
as illustrated in Table 4.4. Of course, this increases the computational time of the calibration
but still provide satisfactory results in terms of market consistency.

4.4.2 Truncation error
We aim now at estimating ε2 and if possible derive its dependency with respect to N . We rely
on the series representation of Equation (4.19). We first examine the asymptotic behaviour of
the sequence of Hermite moments (hn)n∈N which does not depend on the payoff function φ of
the option we aim at pricing.

4.4.2.1 Some examples of Hermite moments

We first recall that for any p ∈ N, hp = ES [Ȟp(S
m,n,J
T )] where Ȟp is the normalized Hermite

polynomials.

Theorem 4.15. Assume that σ2r > λ2maxvmaxT . If vmin > 0 and Assumption 2 holds, there
exists some real number q ∈ (0, 1) and some positive number C such that for all p ∈ N,

h2p ≤ Cqp.

If vmin = 0 and Feller condition (4.8) holds, there exists some random variable Q ∈ (0, 1) almost
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surely and some positive number C ′ such that for all p ∈ N,

h2p ≤ C ′ES [Qp].

Proof. For the first case when vmin > 0 and Assumption 2 hold, we refer to [AFP17] in which
the proof is found.

We place ourselves in the case when vmin = 0 and we adapt the proof of [AFP17]. Denote
by fT the density of Sm,n,JT under PS . We recall that, under PS , the distribution of the swap
rate can be decomposed as

Sm,n,JT
a.s.
= S̃T +

∫ T

0

√
Vu − ρ(u)2Q(Vu)λ(u) · dW ∗

u ,

where S̃T := S0+
∫ T
0 µ(u, Vu)du+ 1

ϵ

∫ T
0 ρ(u)‖λ(u)‖dVu− κ

ϵ

∫ T
0 ρ(u)‖λ(u)‖

(
θ−ξ(u)Vu

)
du and we

recall the expression of the cumulated volatility process Ξt =
∫ t
0 ‖λ

m,n(s)‖2
(
Vs−ρ(s)2Q(Vs)

)
ds, t ≤

T (cf. (4.10)). We refer to the proof of Lemma 4.3 for the justification of the fact that S̃T can
be bounded by a finite constant Λ ∈ R+: S̃T ≤ Λ <∞ almost surely.

First observe that the definition of the Hermite moments implies that

hp =

∫
R
Ȟp(x)fT (x)dx

=
1√
2πn!

∫
R
Hp

(
x− µr
σr

)
ES
[

exp
(
−(x− S̃T )2

2Ξ2
T

)/√
Ξ2
T

]
dx

= ES
 1√

2πn!Ξ2
T

∫
R
Hp

(
x− µr
σr

)
exp

(
−(x− S̃T )2

2Ξ2
T

)
dx

 =: ES [h̃p].

The quantity inside the last expectation can rewrite as

h̃p
a.s.
=

1√
2πp!

∫
R
Hp

(
x− µr
σr

) exp
(
− (x−S̃T )2

2Ξ2
T

)
√
Ξ2
T

ds

=
1√
p!

∫
R
Hp (Σx+M)

exp
(
−x2/2

)
√
2π

dx =:
1√
p!
ĥp,

in which the random variables Σ = 1
σr

√
Ξ2
T and M = 1

σr
(S̃T − µr) have been set. Properties

of the Hermite polynomials can be exploited now: for p ≥ 1, H ′
p(x) = pHp−1(x) along with

Hp(x) = xHp−1(x)−H ′
p−1(x) imply that for p ≥ 2,

ĥp
a.s.
= Mĥp−1 − (p− 1)(1− Σ2)ĥp−2.

This relationship can be solved as

ĥp
a.s.
= p!

⌊p/2⌋∑
k=0

(Σ2 − 1)kMp−2k

2kk!(p− 2k)!
(4.56)

with in particular ĥ0 = 1 and ĥ1 = M . Furthermore λ2min
∫ T
0 (Vs −Q(Vs)) ds ≤ Ξ2

T ≤
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λ2max
∫ T
0 Vsds ≤ λ2maxTvmax since |ρ| ≤ 1 which yields almost surely

q := 1− λ2max
σ2r

Tvmax ≤ 1− Σ2 ≤ 1− λ2min
σ2r

∫ T

0

V 2
s

vmax
ds =: Q,

where q is checked to belong to (0, 1) and the random variable Q is similarly checked to belong
almost surely tp (0, 1) under the Feller condition. Reltionship (4.56) can be expressed in terms
of Hermite polynomials through

ĥp
a.s.
= p!(1− Σ2)p/2

⌊p/2⌋∑
k=0

(−1)k

k!(p− 2k)!

(
(1− Σ2)−1/2M

)p−2k

2k
= (1− Σ2)p/2Hp

(
(1− Σ2)−1/2M

)
so that

hp =
1√
p!
ES
[
(1− Σ2)p/2Ĥp((1− Σ2)−1/2M)

]
.

We bring the so-called Cramér’s inequality (see [EMOT55] or [AS64] for details): there exists
some positive constant K ′ such that for any x ∈ R, 1√

p!
e−x

2/4|Hp(x)| ≤ K ′. This inequality
along with the Cauchy-Schwarz’s one lead to

h2p ≤ ES
[
(1− Σ2)p

]
ES
[
1

p!
Ĥp

(
(1− Σ2)−1/2M

)2]
≤ K ′2ES

[
(1− Σ2)p

]
ES
[
exp

(
M2

2(1− Σ2)

)]
≤ K ′2ES

[
exp

(
m2/(2q1)

)]
× ES [Qp]

where we have denoted by m = Λ+µr
σr
∈ R+.

4.4.3 Expression of Fourier coefficients
In order to derive some truncation error, the asymptotic behavior of Fourier coefficients (φn)n∈N
is necessary. We derive their exact expressions for two payoff functions in this paragraph.

Call option We first examine the particular case of call option for which φ(x) = (x −K)+
with K the strike.

Proposition 4.16. For any n ≥ 2, the Fourier coefficients express as

φn =
σr√
n!
Hn−2

(
K − µr
σr

)
e−(K−µr)2/(2σ2

r)

√
2π

.

In addition, we have φ0 = σr

(
1√
2π

exp
(
− (K−µr)2

2σ2
r

)
− K−µr

σr
Φ
(µr−K

σr

))
and φ1 = σrΦ

(µr−K
σr

)
.

Proof. The computations exploit the key property of the Hermite polynomials:

dn
dxn e

−x2/2 = Ĥn(x)e
−x2/2.
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Let n ≥ 2.〈
φ, Ȟn

〉
L2
r
=

1√
n!

∫
R
φ(x)Hn(x)ϕr(x)dx

=
1√
n!

∫ +∞

K
(x−K)Hn

(
x− µr
σr

)
e−(x−µr)2/2σ2

r√
2πσ2r

dx

=
1

σr
√
n!

∫ +∞

K−µr
σr

(σru+ µr −K)Hn (u)
e−u

2/2

√
2π

σrdu

=
1

σr
√
n!

{
σ2r

∫ +∞

K−µr
σr

uHn (u)
e−u

2/2

√
2π

du+ σr(µr −K)

∫ +∞

K−µr
σr

Hn (u)
e−u

2/2

√
2π

du
}

=
1

σr
√
n!

{
σ2r

[
− uHn−1(u)

e−u
2/2

√
2π

]+∞
K−µr

σr

+ σr

∫ +∞

K−µr
σr

Hn−1 (u)
e−u

2/2

√
2π

σrdu

+ (µr −K)σr

∫ +∞

K−µr
σr

Hn (u)
e−u

2/2

√
2π

du
}

=
σr√
n!
Hn−2(K

∗)
e−(K∗)2/2

√
2π

.

where we set K∗ = K−µr
σr

. Similar computations gives the result for n = 0 and n = 1.

As noted in [DABB17] and [AFP17], it is important to note that the first term, φ0 corre-
sponds to an adjusted (through the parameters (µr, σr)) Bachelier price. Further terms in the
expansions are thus adjustments for the stochastic volatility components.

Asset-or-Nothing options We also provide the example of a digital option of payoff φ(x) =
x1[k,∞)(x), for some prescribed threshold k ∈ R.

Proposition 4.17. For n ≥ 2, the Fourier coefficients express as

φn =
σre

−k2/2
√
2πn!

(
(σrk + µr)Hn−1(k) + σrHn−2(k)

)
.

In addition, we have φ0 = σr
(
σr

e−k2/2
√
2π

+ µrΦ(−k)
)

and φ1 = σr(σrk + µr)
e−k2/2
√
2π

+ σ2rΦ(−k).

Proof. Similar computations as in proof of Proposition 4.16.

4.4.4 Truncation error
We now move onto the analyze of the truncation error. We recall it expresses as

ε2 =
∣∣ES [φ(Sm,n,JT )]− PNT (φ)

∣∣
=
∣∣PT (φ)− PNT (φ)

∣∣
=

∣∣∣∣ +∞∑
p=N+1

hpφp

∣∣∣∣.
Our purpose here is to derive the behavior of ε2 fpr N large enough. To do so, we will

exploit the previous results, notably Theorem 4.15. Beforehand, let us recall the well known
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Stirling’s formula which will be repeatedly employed hereafter:

p! ∼
p→∞

√
2π
√
pe−ppp.

Call option Let us first examine a particular case of centered Gram-Charlier expansion i.e.
set µr = ES [Sm,nT ] = Sm,n0 . Let φ still be the payoff function of a swaption of strike K:
φ(x) = (x − K)+ whose T maturity date is T . The following theorem is based on the result
derived in Theorem 4.15 therefore we will place ourselves under similar assumptions.

Theorem 4.18. Suppose that σ2r > λ2maxvmaxT .
i. Let us first consider case when vmin > 0 and Assumption 2 holds; we denote by q ∈ (0, 1)

the real number appearing in Theorem 4.15 and set q̃ =
√
q. In case when K = Sm,n0

(ATM options), the truncation error can be bounded as

ε2 ≤ C
q̃N+1

N1/4

for some positive constant C.
In case when K 6= Sm,n0 (AFM options), the truncation error can be bounded as

ε2 ≤
C ′

1− q̃
q̃N+1.

for some positive constant C ′.
ii. Consider now case when vmin = 0 and Feller condition (4.8) holds; we denote by Q ∈ (0, 1)

the random variable appearing in Theorem 4.15. In case when K = Sm,n0 (ATM options),
the truncation error can be bounded as

ε2 ≤ C
√
ES [QN+1]

N1/4

for some positive constant C.
In case when K 6= Sm,n0 (AFM options), the truncation error can be bounded as

ε2 ≤ C ′

√
ES
[
QN+1

1−Q

]
.

for some positive constant C ′.

Proof. Throughout this proof, we denote by C a generic positive real number that may change
from line to line. We begin with the first case when vmin > 0 and Assumption 2 holds. Let us first
examine the particular case of At-The-Money swaptions for which K = Sm,n0 = ES [Sm,nT ] = µr.
In that particular case, φp = σr√

2πp!
Hp−2(0) for p ≥ 2. The explicit expression of Hermite
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polynomials yields Ȟp(0) = (−1)p/2 1√
p!

p!
2p/2(p/2)!

for even p, Hp(0) = 0 for odd p. For p ∈ N,

∣∣φphp∣∣ = ∣∣∣∣ σr√2π (−1)(p−2)/2

√
p!

(p− 2)!

2(p−2)/2((p− 2)/2)!
hp1{p even}

∣∣∣∣
≤ C√

p!

(p− 2)!
√
qp

2(p−2)/2((p− 2)/2)!

∼
p→+∞

C
√
2π
√
p− 2e−(p−2)(p− 2)p−2√qp

2(p−2)/2
√√

2πp1/4e−p/2pp/2
√
2π
√

p−2
2 e−(p−2)/2(p−2

2 )(p−2)/2

=
C(p− 2)(p−2)/2√qp

pp/2+1/4

∼
p→+∞

C

√
qp

p5/4
−−−−→
p→+∞

0.

Furthermore, observe that the sign of the sequence (H2p(0))p∈N alternates. Consequently

ε2 ≤
σr√
2π

( ∣∣HN−1 (0)ES
[
HN+1(S

m,n
T )

]∣∣1{N odd}

+
∣∣HN (0)ES

[
HN+2(S

m,n
T )

]∣∣1{N even}

)
≤ C

( √
(N − 1)!

2(N−1)/2
(
N−1
2

)
!
q̃N+1

1{N odd} +

√
N !

2N/2
(
N
2

)
!
q̃N+2

1{N even}

)
.

(4.57)

With the Stirling’s formula we get that
√
n!

2n/2(n/2)!
∼

n→∞
C
n1/4 which prove the first claim.

Let us now turn to the case of Away-from-The-Money options. We can associated the
Cramèr’s inequality (see the end of the proof of Theorem 4.15) with the expression of the
Fourier coefficients associated with call option obtained in Proposition (4.17) to get that for
any p ∈ N,

φp ≤
σrK

′√
2πp(p− 1)

e−(K∗/σr)2/4 ≤ C

p
.

It implies

ε2 ≤
+∞∑

p=N+1

∣∣φphp∣∣ ≤ C +∞∑
p=N+1

q̃p

p
≤ C

+∞∑
p=N+1

q̃p =
C

1− q̃
q̃N+1. (4.58)

Regarding the case when vmin = 0, preceding arguments can be adapted. First in case of
ATM options and still using results of Theorem 4.15, we get the existence a random variable
Q ∈ (0, 1) almost surely such that for all p ∈ N,

∣∣φphp∣∣ ≤ C√ES [Qp]
p5/4

−−−−→
p→+∞

0,

for some positive constant C. In that case, the truncation error can be bounded as in (4.57) to
get

ε2 ≤ C

( √
(N − 1)!

2(N−1)/2
(
N−1
2

)
!

√
ES [QN+1]1{N odd} +

√
N !

2N/2
(
N
2

)
!

√
ES [QN+2]1{N even}

)

≤ C
√

ES [QN+1]

N1/4
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For AFM options, the linearity of the expectation and Cauchy-Schwarz inequality yield similarly
as in (4.58):

ε2 ≤ C ′ES
[
QN+1

1−Q

]1/2
.

This concludes the proof.

4.5 Numerical analysis
The following numerical experiments were performed using a single 2.80 GHz 64 bits CPU and
the R programming language.

4.5.1 Matrix exponential computation
To perform Gram-Charlier type expansion at an arbitrary order k ∈ N, we need to represent the
action of the infinitesimal generator through a matrix before taking its exponential. Consider
the standard basis of Pk(R2) composed of monomial functions:

(
(v, s) 7→ vpsq

)
p+q≤k. Given an

enumeration Λ : Ek → N of the set of exponents Ek =
{
(p, q) ∈ N2 : p+ q ≤ k

}
, the non-zero

elements of the matrix A(k) representing the action of At on Pk(R2) are given by:

A
(k)
Λ(p,q),Λ(p,q) = −

(
p(p− 1)ϵ2

2(
√
vmax −

√
vmin)2

+ pκξ0(t)

)
,

A
(k)
Λ(p−1,q),Λ(p,q) = κpθ +

p(p− 1)ϵ2(vmin + vmax)

2(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p−2,q),Λ(p,q) = −

p(p− 1)ϵ2vminvmax
2(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p+1,q−2),Λ(p,q) =

q(q − 1)‖λm,n(t)‖2

2
,

A
(k)
Λ(p+1,q−1),Λ(p,q) = −

pqϵρ(t)‖λm,n(t)‖
(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p−1,q−1),Λ(p,q) = −

pqϵvminvmaxρ(t)‖λm,n(t)‖
(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p,q−1),Λ(p,q) =

pqϵρ(t)‖λm,n(t)‖(vmin + vmax)

(
√
vmax −

√
vmin)2

.

4.5.2 Parametrization of the DDSVLMM and its Jacobi version
In our settings, the vectors and multi-dimensional Brownian motions are of length 2. We
consider a piecewise constant parametrization of the time dependency. This set-up corresponds
to a frozen approximation of the Libor Market Model as motivated in [BGaM97], [BM07] or
[WZ06]. The coefficients appearing in dynamics (4.1) and (4.7) are defined as:

ξ0(t) = 1 +
ϵ

κ

n−1∑
j=m

αj(0)ξ
0
j (t), ξ0j (t) =

j∑
k=1

∆Tk
(
Fk(0) + δ

)
1 + ∆TkFk(0)

ρk(t)‖γk(t)‖, (4.59)

and

λm,n(t) =
n−1∑
j=m

ωj(0)γj(t), ρ(t) =
1

‖λm,n(t)‖

n−1∑
j=m

ωj(0) ‖γj(t)‖ ρj(t). (4.60)

180



The quantities (Fj(0))j=m,...,n are forward rates quoted on markets and the coefficients ωj
defined for m ≤ j ≤ n− 1, by

ωj(0) :=
∆TjP (0, Tj+1)

BS(0)

(
1 +

∆Tj
1 + ∆TjFj(0)

j−1∑
l=m

(
Fl(0)− Sm,n0

))
(Fj(0) + δ),

δ ∈ R is a parameter often named shift. The volatility vectors are specified as γj(Ti) =
g(Tj − Ti)βj−i+1 over the interval [Ti, Ti+1[. Parameters are set annually piecewise constant:
Ti+1 − Ti = 1. The βk are 2−dimensional vectors with unitary Euclidian norm, while g(u) =
(bu+ a)e−cu + d, where a, b, c and d are non-negative constants. Finally, the coefficients ρj are
parametrized thanks to a coefficient ρ ∈ [−1, 1] as

ρj(t) =
ρ√
2

γ
(1)
j (t) + γ

(2)
j (t)

‖γj(t)‖
.

Theoretical assumptions for Gram-Charlier convergence
We rewrite the theoretical assumptions made in Section 4.3. First about Assumption 2: we
assume that ρ2 < 1. In view of the form of the correlation coefficients ρk, we have that

ρ(t) =
ρ√

2‖λm,n(t)‖

n−1∑
j=m

ωj(0)
(
γ
(1)
j (t) + γ

(2)
j (t)

)
.

Observe that for any time t,

1

ρ(t)2
=

2‖λm,n(t)‖2

ρ2
(∑n−1

j=m ωj(0)
(
γ
(1)
j (t) + γ

(2)
j (t)

))2

=
2

ρ2

(∑n−1
j=m ωj(0)γ

(1)
j (t)

)2

+

(∑n−1
j=m ωj(0)γ

(2)
j (t)

)2

(∑n−1
j=m ωj(0)γ

(1)
j (t) +

∑n−1
j=m ωj(0)γ

(2)
j (t)

)2 ≥ 1

ρ2
,

and thus Assumption 2 is satisfied. Assumption 1, that is 4κθ > ϵ2, is straightforward to
check. Besides Assumption 1 and Assumption 2, the following has to hold in order to ensure
the convergence of the Gram-Charlier expansion (see Theorem 4.2 and assumption in Equation
(4.11)):

σ2r >
Tvmax

2
λ2max ⇔

2σ2r
Tvmax

> λ2max

where we recall that T is the maturity of the priced derivative and λ2max = max
{
t ≥ 0 :

‖λm,n(t)‖2 =
(∑n−1

j=m ωj(0)γ
(1)
j (t)

)2
+
(∑n−1

j=m ωj(0)γ
(2)
j (t)

)2 }
. This constraint can be numer-

ically checked.

4.5.3 Why bounding the volatility factor?
We discuss in present paragraph the underlying assumption to the dynamics (4.7): the volatility
factor is bounded. Even if we are interested in modelling and pricing issues, we first take a look
at historical market data to check if this assumption is reasonable on past beliefs of economic
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agents. Secondly, we will calibrate the standard dynamics (4.1) on those past data and we
study the distribution induced by the calibrated parameters of the volatility factor. To do so
we recall that distribution of the Cox-Ingersoll-Ross process as a function of its parameters is
well known (see Proposition 1.2.11 in [Alf15]).

4.5.3.1 From an historical point of view

To check the boundedness assumption, the difficulty comes from the fact that the stochastic
volatility factor is not a directly observable quantity. As pointed out in [AFP17] (Theorem
3.6), the implied volatility when using the Jacobi dynamics for the volatility factor is bounded.
In the following Figure 4.1, the empirical density of implied volatilities (Bachelier convention)
associated with swaptions of various settings (various maturities/tenors, strikes) observed on
Euro market between August 14th, 2012 and January 25th, 2021. On this historical density, the
following estimates are obtained: 0.54% of the observed points are greater than 100bps, 0.16%
are greater than 120bps, 0.04% greater than 150bps, 0.01% greater than 180bps and 0.004%
greater than 200bps. Empirical density of the implied volatilities thus indicates that assuming
the stochastic volatility factor to be bounded is acceptable.

Implied volatilities (in bps)
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Figure 4.1: Empirical densities of implied volatilities on swaptions in the Euro market (in bps).

4.5.3.2 From a modelling point of view

We now take a modelling point of view. We have calibrated the standard DDSVLMM (4.1)
on the end of year 2017, 2018, 2019 and 2020. Since the density of the CIR process is analyti-
cally known as a function of the CIR parameters, we have been able to compute the following
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probabilities through analytical formulas. In Table 4.1, T is referred to as ”Maturity” and M
is the ”threshold”. Note that the initial value of the volatility process V0 has been fixed to 1
in those experiments. It is observed that for quite small values of the ratio M/V0 (from 1.5),
probabilities for the CIR for going beyond the threshold M are quite low (at most around 5%).
Calibrated parameters induces thus very thin tails on the densities of the CIR process illustrat-
ing that from a modelling point of view, replacing it by a bounded process has little impact on
densities.

P
(
VT ≥M

)
for various pairs (T,M).

`````````````̀Threshold
Maturity 1 5 10 20

2017
0.8 0.7957 0.4821 0.3459 0.2152
1 0.4032 0.2921 0.2199 0.1390

1.5 0.005775 0.05292 0.05777 0.04313
2 4.327e-06 0.005884 0.01225 0.01231

2018
0.8 0.7601 0.4538 0.3224 0.1980
1 0.3988 0.2834 0.2097 0.1296

1.5 0.01053 0.06118 0.06122 0.04259
2 2.728e-05 0.009035 0.01517 0.01319

2019
0.8 0.8124 0.4035 0.2312 0.09753
1 0.3523 0.1986 0.1163 0.04775

1.5 0.001057 0.01661 0.01500 0.006994
2 4.508e-08 0.0006627 0.0013801 0.0008922

2020
0.8 0.8543 0.4438 0.2614 0.1149
1 0.3585 0.2089 0.1265 0.05459

1.5 0.0003614 0.01275 0.01335 0.007027
2 1.559e-09 0.0002974 0.0009026 0.0007471

Table 4.1: Right tails distributions of Cox-Ingersoll-Ross processes.

4.5.4 Convergence illustrations
4.5.4.1 Convergence of the Jacobi process towards the CIR process

We start by providing some illustrations regarding convergence results on the volatility processes
in case when vmin = 0 and vmax → +∞.

Strong error The L1 convergence of the Jacobi process towards the CIR has been theoreti-
cally discussed in Section 4.4.1. It is illustrated here. Beforehand, we describe the discretization
schemes used to simulate volatility process. We chose to adapt the scheme presented in [LKD10]
as follows:

Vti+1 = Vti + κ
(
θ − ξ0(ti)

(
(Vti)+ ∧ vmax

))
(ti+1 − ti) + ϵ

√
Q
(
(Vti)+ ∧ vmax

)
(Wti+1 −Wti),

(4.61)
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with x+ = max(x, 0) and x ∧ y = min(x, y). CIR process is simulated by setting vmax = ∞
(and thus Q(v) = v and x ∧ vmax = x) in this scheme.

In the following, all the expectations we are interested in are estimated using 105 Monte-
Carlo samples, unless otherwise stated. When no confidence intervals are plotted it means that
those could not be distinguished from the estimated curves in the plots. All our numerical
results are obtained by setting vmin = 0 as theoretical properties are of particular interest for
us in this case. The basic parametrization for the simulations below is the following: time
horizon is fixed to T = 5 years, the volatility process parameters are κ = 1, θ = 0.3, ϵ = 0.6,
V C
0 = V J,vmax

0 = v0 = 0.2 and we set ξ0(t) ≡ 1 for simplicity; the discretization time step is
constant: ∀i, ti+1−ti = ∆t = 0.05. Those parameters values may change for sensitivity analysis.
Regarding the dependency towards to the upper bound parameter of the Jacobi process vmax,
it will take values in

{0.5, 0.7, 1.0, 1.2, 1.5, 1.8, 2, 3, 4, 5, 10, 102, 103, 104, 105} (4.62)

in our study.
We recall that Theorem 4.5 provides the following bounds: sup0≤t≤T ES

[
|V J(p)
t − V C

t |
]
≤

C/ log
(
v
(p)
max
v0

)
and ES

[
sup0≤t≤T |V

J(p)
t − V C

t |
]
≤ C ′/

√
log
(
v
(p)
max
v0

)
. In Figure 4.2, we plot

the product
√

log
(
v
(p)
max
v0

)
× ES

[
sup0≤t≤T |V

J(p)
t − V C

t |
]

as a function of log
(
v
(p)
max

/
v0
)

and
for different parametrizations. In particular, we study the impact of the vol-of-vol parame-
ter ϵ ∈ {0.6, 0.15, 2.4} and the impact of the discretization time step ∆t ∈ {0.05, 0.005, 1}. It
turns out that the products remain bounded and converge towards zero as vmax increases in all
cases. The case ϵ = 2.4 is particular as the product first increases before going to zero. Observe
that in this particular case the Feller condition does not hold. Regarding the impact of the
discretization time step, it appears to be marginal. We also have investigated the impact of
the discretization scheme. Alternatively, the Jacobi/CIR processes has been simulated using
scheme from [DD+98]

Vti+1 = Vti + κ
(
θ − ξ0(ti)Vti

))
(ti+1 − ti) + ϵ

√
Q
(
(Vti)+ ∧ vmax

)
(Wti+1 −Wti), (4.63)

and using a scheme adapted from [BBD08]

Vti+1 = min
(∣∣Vti + κ

(
θ − ξ0(ti)Vti

))
(ti+1 − ti) + ϵ

√
Q
(
Vti
)
(Wti+1 −Wti)

∣∣, vmax). (4.64)

These schemes produce results that are really close to those obtained with (4.61): we observed
a maximum relative difference of 1.17% for vmax = 104 between schemes (4.63) and (4.61) and
of 1.153% for vmax = 105 between schemes (4.64) and (4.61). Consequently, we do not provide
plots using these schemes as the curves almost coincide. More elaborated numerical schemes
may be adapted from those found in [Alf15] for the CIR process.

In Figure 4.3, we depict log
(
v
(p)
max/v0

)
× ES

[
|V J(p)
T − V C

T |
]

for maturities T = 1, 10 as a

function of log
(
v
(p)
max/v0

)
. Similarly, we test different parametrizations. Here again, the products

remain well bounded as vmax increases. As already observed in [AFP17], Jacobi process behaves
very closely to CIR even for relatively small values of vmax (and of the ratio vmax/v0).

Investigations on a better convergence rate We now discuss the optimality of the conver-
gence rate coming from Theorem 4.5. In left panel of Figure 4.4 the logarithms of previous esti-
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ferent values of the vol-of-vol parameter and of the time step of the discretization scheme.
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Figure 4.3: log
(
v
(p)
max/v0

)
ES [|V J(p)

T − V C
T |], T = 1, 10 with respect to log

(
v
(p)
max/v0

)
for different

values of the vol-of-vol parameter and of the step time of the discretization scheme as vmax →
+∞.

mates are plotted, that is log
(
ES [sup0≤s≤5 |V

J(p)
s −V C

s |]
)

and log
(
ES [|V J(p)

T −V C
T |]
)
, T = 1, 10

with respect to log
(

log(v(p)max/v0)
)

for the same parametrizations as above. The value of the
vol-of-vol parameter has a significant impact of the global level of the errors but not on their
behaviour as vmax increases, except for ϵ = 2.4 for which Feller condition is not satisfied. The
impact of the value of the step time appears as negligible for both the overall behavior and the
level. The results indicate that the convergence rates estimated in Theorem 4.5 are not optimal,
as the plots are clearly non linear.
We examine thus if the optimal convergence rate can be assimilated to a (negative) power of
vmax. By analyzing the dependency of the logarithms of the empirical errors with respect to
log
(
vmax

/
v0
)

in Figure 4.5, we observe now an almost perfect linear behaviours, except again
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for ϵ = 2.4. Performing linear regressions indicate slopes of around −1.0 for all considered errors
with very high accuracy for each (R2 ≥ 0.999) which allows to conjecture that, whenever the
Feller condition holds, the optimal rate would be such that Error ∝ 1

vmax/v0
.
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log
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We now provide similar results in case when vmax =∞ and vmin → 0. As the step time of
discretization scheme has not great impact, we focus in this on sensitivities with respect to other
parameters of the model. In Figure 4.6 we illustrate Theorem 4.5. Again, numerical results
reinforce theoretical ones. Graphs in Figure 4.7 also suggest that a better convergence can be
found when Feller condition holds.
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Figure 4.6: Strong convergence as vmin → 0.

Weak convergence Results relative to weak approximation of (4.1) by (4.7) are illustrated
in Figure 4.8. First, some illustrations of the weak convergence of the Jacobi process towards
the Cox-Ingersoll-Ross one (see Theorem 4.7). We test the convergence of ES [f(V J

T )] towards
ES [f(VT )] for different functions f . The theoretical convergence rate proportional to 1/vmax
obtained in of Theorem 4.7 seems to be acceptable for a wider class of functions than the one set
in the statement of the theorem: in Fig. 4.8b, the payoff function is not of polynomial growth,
in Fig. 4.8c the payoff function is not continuous and in Fig. 4.8d the payoff function explodes
near zero. The case f(x) = 1/x displayed in Figure 4.8a is remarkable as the confidence interval
is too wide to conclude on the empirical convergence.

4.5.4.2 Convergence of the swap rate processes

Let us now move onto the case of the convergence on swap rates. The volatility scheme has been
introduced above in Equation (4.61); the numerical scheme we used for the swap rate writes

Sm,nti+1
= Sm,nti

+

√
Q
(

min
(
(Vti)+, vmax

))
ρ(ti)‖λm,n(ti)‖(Wti+1 −Wti)

+

√
min

(
(Vti)+, vmax

)
− ρ(ti)2Q

(
min

(
(Vti)+, vmax

))
λm,n(ti) · (W S,∗

ti+1
−W S,∗

ti
).

Strong convergence In Theorem 4.8, we derive a strong convergence rate on the swap rate
process itself to deduce a pricing error. We illustrate strong convergence in Figure 4.9. In
Figure 4.9, the logarithms of ES

[
|Sm,n,JT −Sm,nT |

]
and ES

[
supu≤T ′ |Sm,n,Ju −Sm,nu |

]
are displayed

for different parametrizations (given below) and values of vmax taken in (4.62). In particular,
we assess the impact of the volatility on the convergence. For this example we took constant
parameters as:

(‖λm,n‖, ρ, κ, θ, ϵ, v0, s0) ≡ (0.15, 0.5, 1, 0.3, 0.6, 0.2, 0.01) (in black below),
(‖λm,n‖, ρ, κ, θ, ϵ, v0, s0) ≡ (0.60, 0.5, 1, 0.3, 2.4, 0.2, 0.01) (in red below),
(‖λm,n‖, ρ, κ, θ, ϵ, v0, s0) ≡ (0.05, 0.5, 1, 0.3, 0.15, 0.2, 0.01) (in blue below).
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Figure 4.7: Convergence rates as vmin → 0.

Conclusions are similar to those of the strong convergence of the volatility processes: numerical
experiments suggst that a better convergence rate than the one derived in Theorem 4.8 such
that Error ∝ 1/vmax as vmax → +∞ in case when Feller condition holds.

Weak convergence We first depict the convergence of moments of Sm,n,J towards those of
Sm,n as stated in Proposition 4.9. In Figure 4.10, we display the logarithm of

∣∣∣ES[(Sm,n,J1

)p]−
ES
[(
Sm,n1

)p]∣∣∣ as a function of vmax (logarithm scale on x-axis) and for different values of
p. Those results suggest that the theoretical rate is optimal. Observe that in Figure 4.10b,
parameters are the same as in Figure 4.10a but the vol-of-vol parameter ϵ: it is such that
for small values of vmax, the Feller condition (3.8) is not satisfied. For small vmax, it is then
observed that the distance between moments of each process does not decrease. However, as
vmax goes to infinity the error eventually behaves as expected. Interestingly, performing a linear
regression of the whole curve still provide consistent results.

Let us now discuss main result on pricing error stated in Theorem 4.11 illustrated in Fig-
ure 4.11. The payoff functions we chose do not satisfy all the restrictions of the statements.
Indeed, the parametrization we chose is so that major part of empirical distribution of the
swap rate used to obtain visuals of Figure 4.11 is on negative line close to zero. In particular,
denominator of the payoff function associated with Figure 4.11c is «often» close to zero. Even
though the payoff functions in Figures 4.11a, 4.11b and 4.11c we chose are smooth, they do
not necessarily satisfy the restricted polynomial growth condition required in Theorem 4.11.
Conversely, Figure 4.11d is associated with a function whose asymptotic growth do satisfy the
hypothesis of theorem but that is not smooth enough.
We now provide some convergence illustrations on prices of swap rates derivatives in Figure 4.11.
For all considered payoff functions, the Jacobi induced prices are out of the confidence interval
built around the reference price obtained in (4.1) for small values of vmax but reach it very
quickly. The regularity of the payoff function seems to have few impact on this behaviour.
Though, even for small upper bounds parameters, vmax is quite close from the confidence in-
terval. It is in line with comments made in this thesis but also in also in [AFP17]: distribution

188



1e−01 1e+01 1e+03 1e+05

−
1

5
−

1
0

−
5

0
5

1
0

vmax

W
e

a
k 

e
rr

o
r 

o
n

 v
o

la
til

ity
 fa

ct
o

r

Distance between expectations

95% confidence interval

Target

(a) f(x) = 1
x

1e−01 1e+01 1e+03 1e+05

−
0

.0
2

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

vmax

W
e

a
k 

e
rr

o
r 

o
n

 v
o

la
til

ity
 fa

ct
o

r

Distance between expectations

95% confidence interval

Target

(b) f(x) = e10x

1e−01 1e+01 1e+03 1e+05

−
0

.0
0

1
0

.0
0

0
0

.0
0

1
0

.0
0

2
0

.0
0

3
0

.0
0

4
0

.0
0

5
0

.0
0

6

vmax

W
e

a
k 

e
rr

o
r 

o
n

 v
o

la
til

ity
 fa

ct
o

r

Distance between expectations

95% confidence interval

Target

(c) φ(x) = x1x≥0.05
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(d) φ(x) = log(|x|)

Figure 4.8:
∣∣ES[f(V1)] − ES

[
f(V J

1 )
]∣∣ for different payoff functions f as a function of vmax

(logarithmic scale on x-axis). Estimations made on 105 Monte-Carlo paths.

of Sm,n,J is surprisingly very closely to that Sm,n even for small values of vmax. Note that in
present experiment, we took v0 = 0.1 and vmax took values in{

0.105, 0.12, 0.15, 0.2, 0.35, 0.5, 0.7, 1, 1.2, 1.5, 1.8, 2, 3, 4, 5, 10, 102, 103, 104, 105
}
,

so that the first values taken by the ratio v0/vmax is close to one; reducing this ratio leads to
an even quicker convergence of the distributions. Finally, we underline that those experiments
were obtained by setting vmin = 0 : though we have not been able to set vmin = 0 in the
statement of the Theorem 4.11, those illustrations pledge in favour of an extension of the result
to that particular case.

4.5.5 Pricing with Gram-Charlier series
We now turn to the illustrations of the Gram-Charlier pricing of swaptions.
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Figure 4.9: logES
[

supt≤10 |S
m,n,J(p)
t − Sm,nt |

]
and logES

[
|Sm,n,J(p)T − Sm,nT |

]
, T = 1, 10, as

functions of log(v(p)max/v0) for different parametrizations. 105 paths for Monte-Carlo estimations.

4.5.5.1 Convergence of the expansion series

We illustrate the pricing of swaptions with the Gram-Charlier expansion under model (4.7).
We recall that a swaption is a call option on the swap rate: its discounted payoff writes φ(x) =
BS(0) × (x − K)+ where K denotes the strike of the swaption (recall that BS is annuity of
the swap appearing in the denominator of Equation (A.21)). Prices obtained with Gram-
Charlier expansions are compared to reference prices that are computed thanks to Monte-Carlo
simulations. Except for Figure 4.13b in which a narrow confidence interval was required, Monte-
Carlo prices were computed using 105 paths with a time-step being now set to 0.001. Monte-
Carlo prices will be considered as reference (or target) quantities. In the following, parameters
of the model (4.7) change from plot to plot.

The choice of auxiliary density gr used to build the space L2r is central when pricing using
Gram-Charlier expansion. As discussed in [FMS13], [AFP17] or [AF18], the parameters of the
auxiliary density should be chosen so that a maximum number of moments of this auxiliary
density match those of the unknown one. Namely, setting µr = ES [Sm,nT ] and σ2r = VarS(Sm,nT )
allows to match the first two moments of the unknown density and by doing so, the convergence
rate (with respect to the truncation order of the series) of the Gram-Charlier series could be
significantly improved. However, such a choice is realistic due to the number of constraints
imposed to the model parameters, and notably on the variance parameter since it is generally
conflicting with condition (4.11) that guarantees the convergence of the Gram-Charlier approx-
imation. This point is also discussed in [AFP17]. Following the work of [AF18], gr can be
alternatively chosen as a Gaussian mixture (i.e. a linear combination of Gaussian densities).
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Figure 4.10: log
∣∣∣ES[(Sm,n,J1

)p]− ES
[(
Sm,n1

)p]∣∣∣ as a function of vmax for different p. Moments
are computed thanks to matrix representation.

The value of σ2r is indicated for each experiment and whether it matches VarS(Sm,nT ) or not.
The parameter µr is always chosen so that µr = ES [Sm,nT ] = Sm,n0 .

Example 1
We first illustrate that the condition (4.11) is sharp and how the variance of the auxiliary density
monitors the behavior of the Gram-Charlier series. In Figure 4.12 we gather several experiments
to illustrate it. First, in Figure 4.12a, vmax <∞ and we take σ2r = VarS(Sm,nT ) but parameters
are so that (4.11) is not satisfied. The divergence is clear in the left panel; in the right on
(that is a zoom of the left one) we observe some typical oscillations relatively close to the target
price (Monte-Carlo) before diverging. In Figure 4.12b we still take σ2r = VarS(Sm,nT ) but with
vmax = ∞: we observe again oscillations around the target value before a clear divergence;
however, the divergence appears earlier in the expansion in that case. In a third experiment
we arbitrarily fix σr = 0.0085; the divergence becomes material now around the 8-th order
expansion.

Example 2
We now select finite vmax and consider parametrizations so that (4.11) holds. In Figure 4.13a
the parameter σr is chosen close to the empirical variance but in such a way that the sufficient
condition (4.11) is satisfied: we take σr =

√
VarS(Sm,nT ) + 10−4. The Gram-Charlier expansion

is now stable and converge towards the Monte-Carlo price, in line with results of [AFP17].
When moving to a parametrization allowing to match the first two moments of the density
of Sm,nT , we observe a remarkable accuracy and stability of the Gram-Charlier prices. Indeed
in Figure 4.13b it is observed that from the very first truncating orders, Gram-Charlier prices
are very close to the reference one as they are in the confidence interval - obtained with 106

simulations - of Monte-Carlo price and remain in it as the truncation order increases. The same
observation can be made for Figure 4.13d in which we price a relatively deep In-The-Money
option of rather long maturity.

On the contrary, the more the parameter σr is chosen ”far” from VarS(Sm,nT ), the more the
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Figure 4.11: ES
[
f(Sm,n,J1 )

]
(in red) and ES

[
f(Sm,n1 )

]
(black lines) for different payoff functions

f as a function of vmax (logarithm scale on x-axis). Estimations made on 105 Monte-Carlo
paths; v0 = 0.1.

Gram-Charlier prices converge slowly (and sometimes may diverge due to numerical instabili-
ties). In Figure 4.13c, we set σr =

√
VarS(Sm,nT ) + 0.002 - corresponding to 0.002√

VarS(Sm,n
T )

≈ 0.63

in that case. The Gram-Charlier prices do not reach the confidence interval by the expansion
order N = 20.

4.5.5.2 Truncation error analysis

In this paragraph, we analyze the error made when truncating the Gram-Charlier series as
a function of the truncating order N . Illustrations of this paragraph are related to results of
Section 4.4.2. Below we test several parametrizations to plot the error between successive Gram-
Charlier prices and limiting one defined as being Gram-Charlier price of order N = 50. The
truncation error is depicted for At-The-Money, In-The-Money and Out-of-the-Money swaptions.
All the numerical results are in lines with Theorem 4.18. In Figure 4.14 it is remarkable that the
parameter whose impact is bigger on the convergence is the shift parameter δ: when δ is large,
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all derivatives behave as the ATM ones. More surprisingly, it turns out that the truncation
error is not a monotonic function of the truncation order in case of AFM options.

Theorem 4.18 relies on Theorem 4.15 describing the behaviour of Hermite coefficients. For
the sake of completeness, we provide in Figure 4.15 the logarithm of the coefficients (h2n)n∈N as
a function of n computed under the same parametrization as in Figure 4.14 but enriched with
other couples of maturity and tenor. We set vmin = 0 so that we are in the second case of the
statement. In that particular case, the decreasing of the Hermite coefficients is slower than in
the first case. It is actually observed in Figure 4.15 that the decreasing of Hermite coefficients
is quite slow. Observe also that interestingly, as the order increases, the impact of the maturity
and tenor (i.e. the couple (Tm, Tn)) is less pronounced.

4.5.5.3 Benchmark

To assess the impact of the approximation of (4.1) by the Jacobi-based dynamics (4.7), we price
swaptions under a fixed set of parameters. We set:

(a, b, c, d, κ, θ, ϵ, ρ, δ) = (0.06, 0.03, 0.08, 0.02, 0.70, 0.03, 0.16, 0.7, 0.1);

v0 = 0.1 in both dynamics (4.1) and (4.7); vmax = 9 × v0 = 0.9 for (4.7). Various pricing
methods are compared:

◦ the Heston’s standard approach based on integration of the characteristic function of (4.1)
as in [WZ06] (integrals are numerically computed using a Laguerre quadrature with 180
points) - referred to as Heston (for vmax =∞);

◦ a Gram-Charlier expansion of the density of (4.1) as in [DABB17] but generalized1 to
higher truncation orders - referred to as GC-CIR (for vmax =∞);

◦ a Gram-Charlier expansion of the density of (4.7) as introduced in Section 4.3.2.2 for
which we consider two alternatives in the way we chose the auxiliary density gr:

– as a Gaussian density of mean µr = Sm,n0 and variance σr =
√

Tvmaxλ2max
2 + 0.0001 -

referred to as GC-Jacobi (for vmax <∞);
– as a mixture of Gaussian densities (following [AF18]) whose first two moments are

the same of Sm,nT - referred to as GC-Mixture (for vmax <∞).

We stress that Heston, GC-CIR and Monte-Carlo methods are employed to price under
dynamics (4.1) while GC-Jacobi and GC-Mixture allow to get approximating prices associated
to approximating dynamics (4.7). We still consider that the true swaption prices come from
Monte-Carlo simulations based on 105 paths of (4.1) using the aforementioned discretization
schemes with time step 10−3.

Before going into the details of the results, we describe quickly the method GC-Mixture.
The reference density is chosen as a linear combination of Gaussian densities:

gr(x) =
M∑
m=1

cmgm(x) =
M∑
m=1

cm
e−(x−µm)2/2σ2

m√
2πσ2m

for a chosen M ∈ N∗, with 0 ≤ cm ≤ 1 for all m ∈ {1, . . . ,M},
∑M

m=1 cm = 1 and (µm, σ
2
m) ∈

(R,R∗
+) for all m ∈ {1, . . . ,M}. [AF18] showed that convergence of Gram-Charlier expansion

1The generalization is done using the formulas introduced in Section 4.3.2.2 in which we set vmax = ∞.
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(4.18) is guaranteed as long as (4.11) is imposed for at least one σm. In our experiments, we
have set M = 2 and c1 = 0.99 and constraint (4.11) is imposed on σ2; σ1 is determined so
that c1 × σ21 + (1 − c1) × σ22 = ES [(Sm,nT )2]; we also set µ1 = µ2 = Sm,n0 . As argued in [AF18],
the reason behind these choices is that we want to approximate the unknown density mainly
through g1 whose variance is expected to be closer to that of the target density which is the
case in our experiments.

Table 4.5 we find prices obtained with (4.1): as expected, all Gram-Charlier expansions even-
tually diverge after observing some oscillations around the reference prices. Those fluctuations
are characteristic of the divergence of the expansion series as illustrated in Figure 4.12. The
chosen reference density has the same variance as the swap rate, and thus the Gram-Charlier
prices for small truncation orders are relatively close to the target one as already shown in
[DABB17]. Recall that this behaviour is very dependent on the choice of the auxiliary density
as discussed for Figure 4.12.

In Table 4.6 we find the approximating swaption prices obtained under (4.7) and recall
the target prices (i.e. Monte-Carlo prices) under (4.1). First, we observe that bounding the
volatility process does not substantially impact the pricing of swaptions. All approximating
prices of the method GC-Jacobi do converge to the targets, expressing the robustness of the
method. However, the convergence can be quite slow as most of the expansions do not reach the
confidence intervals. This is due to the choice of the variance parameter of the reference density:
σ2r is chosen so that (4.11) is satisfied which degrades the speed of convergence (as illustrated
in Figure 4.13). The Gaussian mixture method GC-Mixture allows to get rid of this difficulty
by choosing a reference density that shares a number of moments with the unknown density to
speed the convergence up. The improvement is significant since from the very first truncation
orders, the Gram-Charlier prices are close to the Monte-Carlo ones and that they remain so
through the expansion. Interestingly for some swaptions the GC-Mixture better replicates the
reference price than Heston pricing do, e.g. 5 × 30 OTM swaption of relative strike 100bps.
We also observe a remarkable stability of the approximating prices that makes this pricing
method very attractive: it is satisfactory to rely on a 4-th order expansion using a Gaussian
mixture to obtain an accurate price approximation. However this approach may also suffer from
numerical instabilities as already noted in [AF18]. For instance, the ATM swaption 1 × 30 is
badly approximated at high orders by the GC-Mixture approach.

4.5.5.4 Computational time discussion

For practical applications in which intensive pricing must be performed (e.g. for calibration),
the computational time of the different proposed approach is of interest. Relying on the matrix
exponentiation can be cumbersome since it is a costly operation. We discuss it below.

Cost of matrix exponentiation
Whereas [AFP17] worked in a time independent framework, our study allows for time depen-
dency of coefficients driving the evolution of our processes of interest. We have detailed our
piecewise constant parametrization in Section 4.5.2. The computation of moments of swap
rate process is based on the matrix exponentiation common to all polynomial processes - see
Section 3.1.9, notably Theorem 3.33. In present piecewise constant time dependency, this
computation is easier as discussed in Remark 21, Equation 3.35. Yet, computation of matrix
exponential is numerically costly, as discussed above.

In the expression of Gram-Charlier prices (4.18), the Hermite moments hp = ES [Hp(S
m,n
T )]

are linear combinations of marginal moments of swap rate process at terminal date T . Namely,
for a given p ∈ N, hp requires the computation of moments of Sm,nT up to p-th order. In
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standard parametrization, we consider that time dependent functions are annually piecewise
constant (see Section 4.5.2). We now split the successive intervals [Ti, Ti+1] (of length one in our
parametrization) into L ∈ N sub-intervals of length 1/L. Coefficients are set piecewise constant
according to this new grid. In Figure 4.16, we provide the time computation of the p-tuple
Up :=

(
ES [(Sm,nT )], . . . ,ES [(Sm,nT )p]

)
as a function of (p, L) for T = 2 (meaning that we split both

[0, 1] and [1, 2] into L sub-intervals). We took (p, L) ∈ {3, 5, 10, 15, 20, 30, 40} × {1, 3, 5, 10, 20};
computations were performed using the expm function of R language. We observe a quasi
exponential growth of the computational time (recall that Figure 4.16 is displayed with log-
scale) meaning that repeated computations of Hermite moments using matrix exponentiation
of Sm,n is not doable in a reasonable time even for relatively small orders. Indeed, for L = 10
computing a single 30-th order Gram-Charlier price takes around 1sec which is quite slow; a
similar computational cost would be required for a 30-th order price with L = 1 and maturity
T = 20.

Cost of various pricing approaches
We now compare the cost of various pricing methods introduced in the previous section:

• Heston, based on a Laguerre’s quadrature;

• a 4-th order expansion in the Jacobi-based dynamics with moments computed thanks to
matrix exponentiation: it is the GC-4 method;

• a 20-th order expansion in the GC-20 method;

• a 4-th order expansion in the Jacobi-based dynamics with moments represented by inte-
grals: it is GC-Integral method.

Indeed, to overcome the computational cost associated to the matrix exponentiation, we propose
to rely on an alternative moments representation for the third method. We propose to compute
them based on alternative closed-form formulas involving some integrals (see Chapter 5, Sec-
tion 5.4 for more details) which significantly reduces the computational cost. In practice, this
can be done for computation of relatively small order moments but can hardly be generalized to
high orders. The following Table 4.2 gives the time for a call to the pricing function associated
to each method: those are average durations obtained on 1000 calls (100 for GC-Matrix). As
the computational time depends mainly on the maturity of the swaptions, we do not detail its
dependency regarding tenor and strike.

As expected from the durations displayed in Figure 4.16, the GC-Matrix pricing method for
a relatively high truncation order is quite slow, and much slower than the GC-Integral approach.
Note also that only the latter allows to reduce the call compared to that associated with the
standard Heston-like pricing approach for all maturities. Efficient calibration methods should
thus be based on integral representation of moments.

Average call time (in sec., ×10−2)

Maturity GC-20 GC-4 Heston GC-Integral
1 0.13 0.056 0.050 0.019
5 0.64 0.22 0.16 0.043
10 1.37 0.43 0.22 0.056
20 2.24 0.91 0.42 0.11

Table 4.2: Average time of a call to the pricing function.
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4.5.5.5 Calibration experiments

We propose some calibrations experiments to compare the results obtain when using the Jacobi-
based dynamics (4.1) or the reference one (4.1). For the latter, we will still use Fourier-based
pricing methods. It will be compared to two different settings to calibrate the proposed dynamics
(4.1) using Gram-Charlier expansion:

◦ gr is a Gaussian density whose variance parameter is chosen as σr = 1.5
√

Var(Sm,nT ) –we
will refer to this setting as the ”Adjusted GC” approach;

◦ gr is a Gaussian density whose variance parameter is set to σr =
√

1
2Tvmaxλ

2
max + 10−5

–we will refer to this setting as the ”Converging GC” approach;

In any case, we take µr = Sm,n0 = ES [Sm,nT ] and we set vmax = 0.9 = 9× v0 and still vmin = 0.
Note that the coefficients 1.5 in the first method is chosen based on empirical observations
of the ratio Var(Sm,nT )/

√
vmaxTλ2max

2 . The reference approach we will compare those methods
to is the well-known Fourier based approach (see formulas in Proposition 1.9) associated with
the dynamics (4.1)–this is what we will call the «Heston» approach. In the latter, integrals
were computed using quadratures with 180 points. The results below are obtained thanks to
Nelder-Mead optimisation algorithm (3 sequences of 500 maximum iterations are performed in
a row –see Chapter 5 for more details). The optimisation consists in the minimization of the
squared relative distance between market and model volatilities2. Those are extracted from
Euro market on the December 30th, 2020. They are associated with swaptions of maturities
and tenors in {1, 2, . . . , 5, 7, 10, 15, 20, 25, 30} years for At-The-Money data; regarding Away-
From-The-Money options residual strikes ranged in ±{0, 25, 50, 100, 150, 200} bps, maturities
as previously in {1, 2, . . . , 5, 7, 10, 15, 20, 25, 30}, except for the relative strike of −200 bps for
which maturities 1, 2, 3, 20, 25, 30 are missing; for those away-from-the-money options, tenor is
fixed to 10 years. In total, 269 market volatilities are to be replicated. The reported times
account for the 3 sequences of Nelder-Mead runs.

Not surprinsingly, the Heston approach accounts for the better replication of market data.
However, Gram-Charlier methods provide very satisfactory data replication in less than the half
of the Heston time.

Calibrating the upper bound parameter To conclude this chapter, we propose to use
(4.7) as a model on its own and calibrate vmax. We use a 4-th order Gram-Charlier expansion
using a reference density of standard deviation σr =

√
λ2maxTmvmax

2 +10−5 (which thus depends
on the parameter of the model) for a derivative of maturity Tm. Calibrations are performed
on December 31st of last 4 years. The replication error in the last line is computed as the
normalized sum of squared relative differences between market and model volatilities. Results
are given in Table 4.4. Note that v0 = 0.1 in all calibration experiments. It is observed that
this additional parameter does not perturbed the calibration process and provide satisfactory
results in term of data replication. They are better than those presented in Table 4.3, which
was expected since the present setting is more parametrized. It is worth noting the vmax takes
quite small values around 0.45.

2If (σMkt
i )i=1,...,N are market swaptions prices and (σModel

i )i=1,...,N are models ones depending on the set of
parameters Θ, the target function is f(Θ) = 1

N

∑N
i=1

(σMod
i −σMkt

i

σMkt
i

)2.
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Calibrating the DDSVLMM
Method Heston Adjusted GC Converging GC

a 2.86 ·10−5 0.03621 0.04767
b 0.02392 0.003590 0.01013
c 0.1314 0.07334 0.06824
d 0.01538 0.04724 0.02405
κ 0.4331 0.4694 0.2385
θ 0.2030 0.3104 0.2021
ϵ 0.4129 0.4672 0.2480
ρ 0.3405 0.4615 0.4442
δ 0.1724 0.1417 0.1212

Target fun. 0.01350 0.03458 0.08080
Time (in sec.) 1065.0 426.6 570.6

Table 4.3: Proposed methodologies for calibration compared to standard one.

Calibrating the upper bound on volatility
Date 2020 2019 2018 2017
a 0.03866 0.04299 0.09908 0.05083
b 0.01860 0.01400 0.03320 0.01783
c 0.08890 0.09010 0.11420 0.10540
d 0.004850 0.02876 0.00968 0.02942
κ 0.3622 0.27649 0.32454 0.21358
θ 0.2692 0.16236 0.13561 0.10788
ϵ 0.2982 0.22900 0.19022 0.17104
ρ 0.5117 0.46931 0.53643 0.48931
δ 0.1264 0.14806 0.10583 0.16063

vmax 0.4494 0.41838 0.51168 0.51804
Target fun. 0.03744 0.03163 0.02670 0.02948

Table 4.4: Calibrating vmax among other parameters.

Numerical experiments associated with benchmark analysis of Paragraph 4.5.5.3
In the following tables: (i) maturities (”Mat.”) and tenors (”Ten.”) are expressed in years; (ii)
for OTM derivatives, the column ”Strike” actually refers to residual strikes: for a swaption
of strike K whose underlying is a swap rate starting at Sm,n0 , the residual strike is defined as
k := K−Sm,n0 ; (iii) in the column containing Monte-Carlo prices, the numbers in brackets relate
to the half-width of the 95% confidence interval (expressed in percent); (iv) for the columns
associated to Gram-Charlier expansions, the sub-columns N indicate the truncation order in
the Gram-Charlier price expansion (4.19); (v) for each swaption, initial values of swap rate Sm,n0

and of annuity BS(0) –defined in (A.21)– are extracted from the Euro market on June 30th,
2020.
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ATM swaptions prices (in %)
Mat. Ten. Monte-Carlo Heston GC - CIR

N = 4 N = 6 N = 8 N = 10 N = 20 N = 30

1
5 0.7002 (0.006940) 0.6906 0.6965 0.7034 0.6992 0.7044 0.6644 4.4864
10 1.6405 (0.01600) 1.6310 1.6328 1.6421 1.6366 1.6422 1.6213 2.5517
30 4.6268 (0.04452) 4.6367 4.6543 4.6707 4.6607 4.6694 4.6499 5.1194

5
5 1.4564 (0.01502) 1.5446 1.5503 1.5723 1.5477 1.5847 -0.9482 2970.52
10 3.1950 (0.03217) 3.3075 3.3064 3.3531 3.3007 3.3794 -2.0222 6335.111
30 8.0585 (0.07943) 7.8981 7.9933 8.0823 7.9816 8.1231 0.9332 8078.586

10
5 2.0861 (0.02072) 2.1998 2.1896 2.2083 2.1896 2.2142 1.2091 822.3816
10 4.2375 (0.04185) 4.3843 4.3934 4.4121 4.3980 4.4123 4.2713 34.5032
30 9.7160 (0.09498) 9.5697 9.5292 9.6056 9.5277 9.6293 5.2439 3975.008

20
5 2.9465 (0.02856) 2.9815 2.9734 2.9864 2.9767 2.9866 2.8880 23.9651
10 5.7149 (0.05481) 5.6405 5.6257 5.6496 5.6317 5.6499 5.4694 44.1814
30 11.1824 (0.1076) 10.7078 10.6129 10.6979 10.6113 10.7244 5.8403 4427.085

OTM swaptions prices (in %)
(Mat., Strike Monte-Carlo Heston GC - CIR
Ten.) (in bps) N = 4 N = 6 N = 8 N = 10 N = 20 N = 30

(5, 30)

-100 28.65237 (0.12036) 28.82812 28.6733 28.6471 28.7101 28.6098 25.2996 4478.3490
-50 16.72938 (0.10512) 16.67944 16.7130 16.7877 16.7131 16.7571 22.7759 -7.6910
50 3.20459 (0.05151) 3.26834 3.1732 3.1179 3.2228 3.0760 11.1263 -4723.8150
100 1.06831 (0.02966) 1.18024 1.1110 1.0272 1.0868 1.0630 -5.0592 713.33970

(10, 5)

-100 5.50335 (0.02930) 5.58216 5.5795 5.5871 5.5836 5.5759 6.4377 -185.7491
-50 3.55659 (0.02560) 3.66747 3.6595 3.6809 3.6572 3.6810 3.5445 -351.0481
50 1.11335 (0.01559) 1.20400 1.1998 1.1985 1.2080 1.1954 2.0900 -844.7266
100 0.54746 (0.01105) 0.60535 0.6112 0.5930 0.6172 0.5895 0.8453 435.6163

(10, 10)

-100 11.00521 (0.05915) 11.12600 11.1472 11.1552 11.1506 11.1469 11.2711 2.6359
-50 7.16137 (0.05161) 7.30679 7.3328 7.3546 7.3344 7.3496 7.3161 -4.4963
50 2.28681 (0.03158) 2.40144 2.3921 2.3905 2.4000 2.3914 2.5263 -29.8883
100 1.13646 (0.02241) 1.20324 1.1917 1.1730 1.1931 1.1763 1.2102 18.7957

(10, 30)

-100 27.54480 (0.13794) 27.52106 27.5144 27.5244 27.5402 27.4778 29.5721 1734.475
-50 17.35986 (0.11982) 17.26971 17.2397 17.3222 17.2344 17.3129 18.2796 -2999.649
50 4.81972 (0.06864) 4.66882 4.6597 4.6377 4.6953 4.6194 9.2027 -4100.454
100 2.14114 (0.04586) 2.02785 2.0630 1.9797 2.0712 1.9799 0.41024 3399.006

(20, 10)

-100 11.27873 (0.07188) 11.21118 11.2028 11.2253 11.2055 11.2159 11.3135 -26.4230
-50 8.21365 (0.06387) 8.13932 8.1257 8.1554 8.1283 8.1515 8.0025 22.8451
50 3.79619 (0.04542) 3.72652 3.7168 3.7235 3.7265 3.7246 3.8034 -21.5172
100 2.40971 (0.03641) 2.34795 2.3481 2.3352 2.3566 2.3369 2.5359 -27.1140

Table 4.5: Swaption prices using dynamics (4.1) (vmax =∞).
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(a) σ2
r = VarS(Sm,n

T ), sm,n
0 = K = 0, v0 = 0.025, vmax = 0.5, a = b = c = 0, d = κ = 1, θ = 0.25, ϵ = 0.6,

ρ = δ = 0.0 σr = 1.27305 · 10−2. Maturity and tenor of the swaption: T = Tm = 5 and Tn − Tm = 5. Number of
simulations: 105.
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(b) σ2
r = VarS(Sm,n

T ), sm,n
0 = K = 0, v0 = 0.025,

vmax = ∞, a = b = c = 0, d = κ = 1, θ = 0.25, ϵ = 0.6,
ρ = δ = 0.0 σr = 1.27305 · 10−2. Maturity and tenor of
the swaption: T = Tm = 5 and Tn − Tm = 5. Number
of simulations: 105.
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(c) σ2
r ̸= VarS(Sm,n

T ), sm,n
0 = K = 0, v0 = 0.025,

vmax = ∞, a = b = c = 0, d = κ = 1, θ = 0.25, ϵ = 0.6,
ρ = δ = 0.0 σr = 8.5 · 10−3. Maturity and tenor of the
swaption: T = Tm = 5 and Tn − Tm = 5. Number of
simulations: 105.

Figure 4.12: Diverging Gram-Charlier prices series.
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(a) σ2
r ̸= VarS(Sm,n

T ), sm,n
0 = 0, v0 = 0.025, vmax =

0.25, a = b = c = 0, d = κ = 1, θ = 0.12, ϵ = 0.4,
ρ = δ = 0.0 σr = 3.203183 · 10−4, K = 0. Maturity and
tenor of the swaption: T = Tm = 1 and Tn − Tm = 1.
Number of simulations: 105.
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(b) σ2
r = VarS(Sm,n

T ), sm,n
0 = 0, v0 = 0.025, vmax =

0.089, a = b = c = 0, d = 1, κ = 2, θ = 0.06, ϵ = 0.1,
ρ = δ = 0.0, σr = 1.906037 ·10−4, K = 0. Maturity and
tenor of the swaption: T = Tm = 1 and Tn − Tm = 1.
Number of simulations: 106.
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(c) σ2
r ̸= VarS(Sm,n

T ). sm,n
0 = 0.008982445, v0 = 0.025,

vmax = 0.089, a = 10−4, b = 10−1, c = 2.5, d = 10−1,
κ = 1.5, θ = 0.06, ϵ = 0.13, ρ = 0.4, and δ = 0.1.
σr = 0.005183955. K = sm,n

0 . Maturity and tenor of
the swaption: T = Tm = 2 and Tn − Tm = 8. Number
of simulations: 105.
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(d) σ2
r = VarS(Sm,n

T ). sm,n
0 = 0.002307454, v0 = 0.015,
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Figure 4.13: Converging Gram-Charlier pricing series.
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Figure 4.15: Hermite coefficients h2n as function of n. Log-scale on y-axis.
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ATM swaptions prices (in %)
Mat. Ten. Monte-Carlo GC-Jacobi GC-Mixture

N = 4 N = 6 N = 8 N = 10 N = 20 N = 30 N = 2 N = 4 N = 6 N = 8 N = 10 N = 30

1
5 0.7002 (0.006940) 0.9189 0.8387 0.7950 0.7682 0.7189 0.7076 0.7011 0.6994 0.7053 0.7012 0.7051 0.70172
10 1.6405 (0.01600) 1.9777 1.8397 1.7681 1.7264 1.6577 1.6453 1.6381 1.6382 1.6460 1.6402 1.6445 1.63469
30 4.6268 (0.04452) 5.6326 5.2391 5.0348 4.9158 4.7192 4.6831 4.6612 4.6679 4.6813 4.6697 4.6761 2.08387

5
5 1.45643 (0.01502) 2.3170 2.0713 1.9313 1.8418 1.6587 1.6054 1.5456 1.5572 1.5825 1.5519 1.5925 1.6288
10 3.19498 (0.03217) 4.83331 4.3358 4.0540 3.8750 3.5141 3.4117 3.3047 3.3249 3.3693 3.3160 3.3823 3.6979
30 8.05853 (0.07943) 11.3839 10.2535 9.6179 9.2169 8.4216 8.2029 7.9995 8.0243 8.1235 8.0035 8.1512 8.8896

10
5 2.08612 (0.02072) 3.4591 3.0660 2.8388 2.6917 2.3815 2.2855 2.1524 2.1985 2.2240 2.1931 2.2293 2.5756
10 4.23755 (0.04185) 6.5617 5.7564 5.2837 4.9729 4.2939 4.0687 4.1835 4.3736 4.4388 4.3600 4.4600 5.1794
30 9.71601 (0.09498) 14.9916 13.2946 12.3148 11.6806 10.3464 9.9348 9.3687 9.5661 9.6718 9.5419 9.6937 10.4277

20
5 2.94648 (0.02858) 5.0916 4.4667 4.0999 3.8587 3.3319 3.1572 2.8629 2.9874 3.0098 2.9831 3.0059 2.9876
10 5.71492 (0.05481) 9.7187 8.5178 7.8119 7.3470 6.3283 5.9880 5.4073 5.6523 5.6949 5.6437 5.6875 6.5303
30 11.18240 (0.10759) 19.2066 16.7650 15.3213 14.3649 12.2382 11.5069 10.7889 10.7614 10.7974 10.7390 10.7734 12.4307

OTM swaptions prices (in %)
(Mat., Strike Monte-Carlo GC-Jacobi GC-Mixture
Ten.) (in bps) N = 4 N = 6 N = 8 N = 10 N = 20 N = 30 N = 2 N = 4 N = 6 N = 8 N = 10 N = 30

(5, 30)

-100 28.65237 (0.12036) 29.5814 28.9283 28.6504 28.5263 28.4836 28.5619 28.8411 28.6988 28.6563 28.7271 28.6240 29.7973
-50 16.72938 (0.10512) 19.4613 18.4547 17.9122 17.5834 16.9851 16.8441 16.9134 16.7409 16.8244 16.7458 16.7795 17.8866
50 3.20459 (0.05151) 5.4611 4.4787 3.9622 3.6597 3.1763 3.1142 2.8944 3.2096 3.1175 3.2348 3.0642 3.4971
100 1.06831 (0.02966) 1.5783 0.9677 0.7334 0.6509 0.7612 0.9125 0.8032 1.1145 1.0095 1.0583 1.0574 1.0807

(10, 5)

-100 5.50335 (0.02930) 6.4633 6.1289 5.9478 5.8380 5.6413 5.5993 5.6147 5.5873 5.5954 5.5942 5.5765 5.4864
-50 3.55659 (0.02560) 4.8483 4.4696 4.2536 4.1154 3.8312 3.7464 3.6685 3.6654 6973 3.6622 3.6952 4.0310
50 1.11335 (0.01559) 2.2996 1.9237 1.7108 1.5758 1.3081 1.2371 1.1178 1.2146 1.2037 1.2169 1.1921 1.1202
100 0.54746 (0.01105) 1.3658 1.0366 0.8615 0.7578 0.5900 0.5704 0.5132 0.6261 0.5896 0.6228 0.5816 0.8945

(10, 10)

-100 11.00521 (0.05915) 12.5747 11.8972 11.5274 11.3017 10.8966 10.8149 11.1162 11.1286 11.1471 11.1516 11.0984 10.7787
-50 7.16137 (0.05161) 9.3364 8.5632 8.1163 7.8268 7.2158 7.0255 7.2140 7.2949 7.3749 7.2898 7.3759 7.9791
50 2.28681 (0.03158) 4.2593 3.4893 3.0460 2.7604 2.1702 1.9991 2.1346 2.4209 2.3938 2.4291 2.3607 2.3798
100 1.13646 (0.02241) 2.4204 1.7489 1.3860 1.1676 0.7989 0.7479 0.9576 1.2530 1.1637 1.2483 1.1408 1.8347

(10, 30)

-100 27.54480 (0.13794) 30.6997 29.3516 28.6457 28.2332 27.5701 27.4769 27.6674 27.5508 27.5467 27.5841 27.4702 28.3477
-50 17.35986 (0.11982) 22.1742 20.5646 19.6529 19.0736 17.9024 17.5649 17.2942 17.2652 17.3859 17.2584 17.3617 18.2517
50 4.81972 (0.06864) 9.1856 7.5892 6.6925 6.1290 5.0358 4.7631 4.2957 4.7246 4.6526 4.7353 4.5952 5.1662
100 2.14114 (0.04586) 4.7217 3.3987 2.7205 2.3365 1.8044 1.8067 1.6704 2.1175 1.9624 2.0812 1.9591 2.1803

(20, 10)

-100 11.27873 (0.07188) 14.7645 13.6335 12.9839 12.5659 11.6982 11.4378 11.1446 11.2191 11.2642 11.2241 11.2388 0.12142175
-50 8.21365 (0.06387) 12.1150 10.9311 10.2387 9.7849 8.8002 8.4762 7.9853 8.1423 8.2049 8.1382 8.1938 9.0687
50 3.79619 (0.04542) 7.5772 6.3960 5.7067 5.2563 4.2899 3.9833 3.4456 3.7587 3.7510 3.7496 3.7350 4.5494
100 2.40971 (0.03641) 5.6889 4.5631 3.9197 3.5083 2.6756 2.4472 2.0652 2.4005 2.3428 2.3851 2.3249 3.0961

Table 4.6: Swaption prices using dynamics (4.7) (vmax <∞).
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Chapter 5

Fast calibration of the LIBOR
Market Model with Stochastic
Volatility based on analytical
gradient

Present chapter presents augmented version of [AAB+20].

5.1 Introduction
To speed up the calibration procedure of the DDSVLMM, two main strategies can be considered.
First, reduce the computational time required for numerical calculation of one (or multiple)
swaption price. In [WZ06], pricing under the SVLMM is performed based on both the classical
[Hes93] numerical integration method and the famous Fast Fourier Transform (FFT) approach of
[CM99], which has become a standard for option valuation for models with known characteristic
function, as it is particularly the case for affine diffusion processes. As an alternative to moment
generating function calculation, [LDB20] have shown the efficiency of using Edgeworth and
Gram-Charlier expansions in the calibration of the DDSVLMM. Further work on this type
of strategies that reduce the computational cost of the objective function is provided in a
companion paper, see [ABLM20].
Note that a typical number of parameters to be specified during a DDSVLMM calibration is 8
or 9, depending on whether the displacement parameter is included in the calibration process
or not, whereas a standard Heston model calibration involves 5 parameters. In such calibration
problem, the regularity of the objective function is complex to determine. This latter issue
can be tackled using optimization algorithms unconcerned about the regularity of the target
function; it has been done in [LDB20] in which authors used the Nelder-Mead method.

In this chapter, we develop a second strategy which consists in decreasing the number of
objective function calls required by the optimization algorithm. In this context, the use of
gradient-based algorithms is of interest. This can be done by relying on either numerical or
analytical gradient computation, the latter being particularly efficient in terms of accuracy and
computational cost. A central reference for the present chapter is [CdBRG17], that developed
the analytical gradient for fast calibration of the Heston model, based on an alternative formula-
tion of the Heston moment generating function proposed by [dBRFCU10]. Alternatives focusing
on «learning» the gradient, without analytical calculation, have been proposed by [LBGO19]
based on Artificial Neural Networks. Apart from the Heston model, analytical gradient-based
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methods have also been developed by [GV19] for the calibration of the so-called 3/2 model.
By adapting the approach of [CdBRG17], the present chapter provides a numerically stable

representation of analytical gradient for the DDSVLMM and uses it in gradient-based optimiza-
tion routines. Note that the work of [CdBRG17] focused on the Heston model, did not make
use of real market data and focused on the Levenberg-Marquardt optimization algorithm. We
specify the methodology in the context of DDSVLMM and we demonstrate the efficiency of our
approach by inputting the analytical gradient into both the Levenberg-Marquardt algorithm
(denoted by LM in the following, see [Mar63]) and the Broyden–Fletcher–Goldfarb–Shanno
algorithm (denoted by BFGS, see [BLNZ95]) using real market swaption data.

In some experiments, we will require Feller’s condition to be satisfied by using an alterna-
tive version of the Levenberg-Marquardt algorithm including constraints; note that although
the Feller condition is not targeted in [CdBRG17], in our context this condition is of interest
for further uses as it preserves the stability of some numerical discretization schemes. As an
example, such Feller condition ensures strong convergence of order 1/2 of discretization schemes
as discussed in [Alf15] (Chapter 3) and references therein.

It is worth mentioning that in our experiment, the computation of the objective function
based on the moment generating function representation proposed by [AMST07] is in average
slightly faster compared to that of [dBRFCU10]. This leads us to consider an ’optimal’ opti-
mization routine made of 1) the analytical gradient as an input of the gradient-based method
(LM or BFGS), coming from the differentiation of the moment generating function as provided
in [dBRFCU10] and 2) objective function calls during the optimization procedure that rely on
the numerical evaluation of the moment generating function representation of [AMST07].

Finally, the efficiency of our approach is compared to the following methods: the classical
Heston-type pricing method [Hes93] or the Edgeworth expansion of swaptions prices as devel-
oped in [LDB20], both combined with the Nelder-Mead algorithm as well as the Levenberg-
Marquart algorithm with numerical gradient. As a main result, this chapter shows that the
analytical gradient method is highly competitive both from a computational standpoint and
calibration accuracy, as it achieves to significantly limit the number of steps in the optimiza-
tion algorithm while still offering accurate data replication. Our calibration experiments on
real data also show that expansion methodologies that reduce the computational cost of an
objective function call (see for instance [LDB20] and [ABLM20]) is a complementary efficient
alternative; the combination of the two strategies (expansion approach and computation of the
related analytical gradient) appears as a promising direction which is left for further research.

Section 5.2 presents the alternative representation of the moment generating function we
propose along with the analytical gradient calculation of the objective function it implies; the
optimization algorithm used is also detailed. Section 5.3 illustrates the efficiency of the proposed
calibration method and compares it to the classical alternative methods listed above. Section 5.4
is dedicated to the study of the calibration of Jacobi based dynamics (4.7) introduced in previous
Chapter.

5.2 Analytical gradient calculation and optimization routines
5.2.1 Swaptions pricing
We retake the notations of Chapter 1: Sm,n represents the swap rate associated with contract
of maturity Tm and tenor Tn. Spot swaption price expresses as a call options on the swap rate

PS(0,K) = BS(Tm)ES
[
(Sm,nTm

−K)+
]

206



K is the strike of the option. When modelling the swap rate using a frozen approximation of
the standard DDSVLMM defined in (1.48) with piecewise constants parameters, this swaption
price can be expressed in terms of integrals in the complex field of the characteristic function of
Sm,nTm

since it is a Heston-like model. This characteristic function is itself analytically expressed
in terms of the parameters Θ defining the dynamics (1.48) via Riccati equations as given in
Proposition 1.8. To underline the dependency of the swaption prices with respect to these
parameters, we will rather denote swaptions prices below PS(Θ; 0,K).

Before going any further, we recall the expression of the moment generating function involved
in (log-normal) swaption prices of Proposition 1.8 defined over D ⊂ C as

Ψ(x; t, Sm,nt , Vt) = ES
[

exp
(
x ln

(
Sm,nTm

+ δ

Sm,n0 + δ

))∣∣∣∣Ft
]
, x ∈ D.

Beforehand, we recall some quantities defined in Chapter 4:

ξ(t) := ξ̃S0 (t), λ(t) :=

∥∥∥∥∥∥
n−1∑
j=m

ωj(0)γj(t)

∥∥∥∥∥∥ , ρ̃(t) :=
1

λ(t)

n−1∑
j=m

ωj(0)‖γj(t)‖ρj(t).

Then, for x in the domain of definition of the moment generating function, the moment gener-
ating function can be expressed as

Ψ(x; t, s, v;Θ) = eA(τ,x)+B(τ,x)v+sx (5.1)

where τ = Tm − t and the deterministic functions A and B (whose dependency with respect to
Θ is omitted for the sake of simplicity) are recursively computed on the grid (τj , τj+1] where
τj = Tm − Tm−j , j = 0, · · · ,m− 1: for each j ∈ {0, 1, . . . ,m− 1}, for each τ in (τj , τj+1],

A(τ, z) = A(τj , z) +
κθ

ϵ2

[
(µ+ ν)(τ − τj)− 2 ln 1− gjeν(τ−τj)

1− gj

]
,

B(τ, z) = B(τj , z) +
(µ+ ν − ϵ2B(τj , z))(1− eν(τ−τj))

ϵ2(1− gjeν(τ−τj))
,

with initial condition A(0, z) = B(0, z) = 0 and

µ = κξ(τj)− ρ̃(τj)ϵλ(τj)z, ν =
√
µ2 − λ2(τj)ϵ2(z2 − z), gj =

µ+ ν − ϵ2B(τj , z)

µ− ν − ϵ2B(τj , z)
.

For the sake of simplicity, we omitted the time dependency of µ, ν and gj .

5.2.2 Analytic characteristic function gradient
As pointed out by [AMST07], the representation of the characteristic function by [Hes93] suffers
from numerical discontinuities for long maturities. To overcome this difficulty, they proposed
an equivalent representation that is continuous. Another alternative formulation of the Heston
moment generating function has been developed by [dBRFCU10] that is also continuous. This
alternative formulation is easier to differentiate and thus well suited for gradient calculation, as
derived by [CdBRG17] in the context of the Heston model.

For our purpose, we rely on the following modifications of the functions A and B: for
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τj ≤ τ < τj+1, j = 0, 1, . . . ,m− 1,
A(τ, z) = A(τj , z)−

κθρ̃λz(τ − τj)
ϵ

+
2κθ

ϵ2
Dj(τ),

B(τ, z) = B(τj , z)−
Aj(τ)

V0
,

(5.2)

where we have set

Ej(τ) = ν + µ− ϵ2B(τj , z) + (ν − µ+ ϵ2B(τj , z))e
−ν(τ−τj),

Dj(τ) = ln ν

V0
+
κξ − ν

2
(τ − τj)− ln Ej(τ)

2V0
,

A1
j (τ) =

[
B(τj , z)(2µ− ϵ2B(τj , z)) + λ2(z − z2)

]
tanh ν(τ − τj)

2
,

A2
j (τ) =

ν

V0
+
µ− ϵ2B(τj , z)

V0
tanh ν(τ − τj)

2
,

Aj(τ) =
A1
j (τ)

A2
j (τ)

.

These formulas have been adapted from [CdBRG17] by using hyperbolic tangent functions in
order to avoid numerical instabilities.

The following result is key for present chapter and is based on an equivalent pricing formula
of Proposition 1.8.

Proposition 5.1. The gradient of the swaption price under the approximate Heston dynamics
(1.49) is given by:

∇PS(Θ; 0,K) = BS(0) ((Sm,n0 + δ)∇P1(Θ; 0,K)− (K + δ)∇P2(Θ; 0,K))

with

∇P1(Θ; 0,K) =
1

π

∫ +∞

0
Re

e−iu ln K+δ

S
m,n
0 +δ∇Ψ(u− i; 0, sm,n0 , v0;Θ)

iu

 du,

∇P2(Θ; 0,K) =
1

π

∫ +∞

0
Re

e−iu ln K+δ

S
m,n
0 +δ∇Ψ(u; 0, sm,n0 , v0;Θ)

iu

 du,

and
∇Ψ(Θ;u) = Ψ(u; 0, sm,n0 , v0;Θ)χ(Θ;u),

where Ψ is given by (5.1) and χ(Θ;u) is the gradient vector whose components are the partial
derivatives of the characteristic function with respect to each parameter. It is given in details
in Appendix C.

Remark 35. The particular form of the analytical gradient allows one to compute Ψ(Θ;u) only
once.

5.2.3 Formulation of the calibration
The calibration problem corresponds to the finding of model parameters that allow to best
replicate market data. In this chapter, we choose to calibrate on market swaptions prices rather
than on implied volatilities since we derived the analytical gradient of the swaptions prices.
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Let us consider the following standard parametrizations for the maps γj and ρj introduced
in (1.48): for t ∈ [Tk, Tk+1),

γj(t) ≡ γj(Tk) = g(Tj − Tk)βj−k+1,

ρj(t) ≡ ρj(Tk) =
ρ√
Nf

1

‖γj(Tk)‖

Nf∑
p=1

γ
(p)
j (Tk),

where g(u) = (a+ bu)e−cu+ d with a, b, c and d non-negative parameters to calibrate, βj−k+1

is a Nf -dimensional unit vector representing the inter-forward correlation structure and ρ is
a correlation parameter to calibrate in (−1, 1). Given this parametrization, one can compute
the derivatives of g (which is the norm of γj by construction) with respect to a, b, c and d as
follows, for u ≥ 0:

∂g(u)

∂a
= e−cu,

∂g(u)

∂b
= u

∂g(u)

∂a
,

∂g(u)

∂c
= −(a+ bu)

∂g(u)

∂b
,

∂g(u)

∂d
= 1.

(5.3)

Finally, the set of parameters to be calibrated writes � = (a, b, c, d, κ, θ, ϵ, ρ).
Assume that we have a set

(
PSmktm,n (0,Kj)

)
j∈J,m∈M,n∈N of market swaptions prices of dif-

ferent strikes, maturities and tenors. For the same set of strikes, maturities and tenors, we
denote the model prices computed as in Proposition 1.8 by (PSm,n(0,Kj))j∈J,m∈M,n∈N . We
formulate the calibration problem as an inverse least squares minimization problem with bound
constraints and with the Feller condition as an inequality constraint in the following way:

argminΘ

1

2W

∑
(j,m,n)∈J×M×N

wj,m,n

(
PSm,n(Θ; 0,Kj)− PSmktm,n (0,Kj)

PSmktm,n (0,Kj)

)2

such that 2κθ ≥ ϵ2

(a, b, c, d, κ, θ, ϵ, ρ) ∈ (R+)
4 × (R∗

+)
3 × (−1; 1)

(5.4)

where wj,m,n are fixed positive weights associated to each swaption and
W =

∑
(j,m,n)∈J×M×N

wj,m,n. In the following, F stands for the objective function in the previous

optimization problem and f stands for the vector of residuals defined by

f(Θ) =

[√
wj,m,n
W

PSm,n(Θ; 0,Kj)− PSmktm,n (0,Kj)

PSmktm,n (0,Kj)

]
j,m,n

and so that F (Θ) = 1
2‖f(Θ)‖2. As mentioned in [GV19], a regularization term of the form

1
2‖ΓΘ‖

2 can be added to F to promote some solution. As an example, a classical choice is to
take Γ = Id to prevent the norm of Θ of becoming too large.

Such an optimization problem can be solved numerically using general optimization methods
like the Nelder-Mead algorithm. It is a direct search method, i.e. it does not require any
information about the gradient of the objective function. Instead, it relies on the concept of
simplex that is a special polytope of n+1 vertices in a n-dimensional space. The algorithm starts
by evaluating the objective function on each vertex of the simplex. The vertex with the highest
value is replaced by a new point where the objective function is lower. The simplex is updated
in this manner until the sample standard deviation of the function values on the current simplex
falls below some preassigned tolerance. More details on the Nelder-Mead method can be found
in [Nas79]. Note that with this algorithm, one can enforce bound and inequality constraints in
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(5.4) by modifying the objective function in the following way:

F̃ (Θ) =

{
F (Θ), if Θ ∈ (R+)

4 × (R∗
+)

3×]− 1; 1[ and 2κθ ≥ ϵ2,
+∞ otherwise.

(5.5)

Although the Nelder-Mead method has proven to be efficient in some contexts, we observed
that it turns out to be very time-consuming in our framework. As a matter of fact, this
method requires a lot of evaluations of the objective function and the computation of the
swaptions prices is very expensive due to the calculation of integrals in the complex field and
the recursive definition of the characteristic function. This has already been pointed out by
[LDB20]. Consequently, an optimization algorithm that does not require numerous calls to the
objective function is preferred in order to achieve a fast calibration. Since we have been able to
derive an analytical formula for the gradient of model swaption price, we study gradient-based
optimization algorithms. We present two of such methods in the next section.

5.2.4 Calibration using gradient-based algorithms
In this section, we quickly remind the main ideas behind gradient-based algorithms before
presenting more specifically two of these algorithms, namely the BFGS and the LM algorithms.

Gradient-based algorithms are iterative methods that start from a given point and proceed
by successive adjustments. Each improvement is obtained by moving from the current point
along a conveniently chosen descent direction in such a manner that the value of the objective
function decreases. We describe in Algorithm 1 the general algorithmic scheme of gradient-based
algorithms. More details on gradient-based algorithms can be found in [NW06].

Algorithm 1: Gradient-based algorithms in pseudo code
Input: Initial guess Θ0, objective function F , objective function gradient ∇F ,

tolerance ϵtol and maximum number of iterations kmax
1 begin
2 k ← 0
3 while k ≤ kmax do
4 Compute ∇F (Θk)
5 if ∇F (Θk) ≤ ϵtol then
6 break
7 end
8 Compute a descent direction dk, generally by using ∇F (Θk)
9 Find αk such that F (Θk + αkdk) is reasonably lower than F (Θk) (line search)

10 Θk+1 ← Θk + αkdk
11 end
12 end

Output: Last computed Θk

We now take a closer look at the BFGS and LM algorithms. The BFGS algorithm is a
quasi-Newton method, which means that it uses an approximation of the inverse of the Hessian
matrix instead of the exact inverse used in Newton’s method. It is designed for solving all kinds
of unconstrained non-linear optimization problems. The descent direction dk is given by

dk = −Hk∇F (Θk),

where Hk is an approximation of the inverse of the Hessian matrix that is defined recursively
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by,

Hk+1 = Hk −
HkykyTk Hk

yTk Hkyk
+

sksTk
yTk sk

with initial value H0 = I (I is the identity matrix), sk = Θk+1 −Θk and yk = ∇F (Θk+1) −
∇F (Θk). The gradient of the objective function F writes as a function of the gradient of the
swaption price ∇PSm,n:

∇F (Θ) =
1

W

∑
(i,m,n)∈I×M×N

wj,m,n∇PSm,n(Θ; 0,Kj)
PSm,n(Θ; 0,Kj)− PSmktm,n (0,Kj)

PSmktm,n (0,Kj)2
.

The calibration problem (5.4) is a constrained optimization problem and thus, the BFGS al-
gorithm can not be used. We therefore rely on an extension of the classical BFGS algorithm,
known as L-BFGS-B, that has been developed to handle bound constraints [BLNZ95]. However,
inequality constraints can not be easily enforced. Consequently, we relax the Feller condition
when using this method.

Furthermore, the Levenberg-Marquardt algorithm is specifically designed for solving non-
linear least squares problems, which is exactly the type of problem we are coping with. This
algorithm has the particularity of behaving like the steepest descent method when the current
point is far (in some sense) of a (the) solution and of behaving like the Gauss-Newton method
when the current point is near of a (the) solution. This is achieved by introducing a damping
parameter µk in the expression of the descent direction, as follows

dk = −(JTk Jk + µkI)−1gk

where Jk is the Jacobian matrix of f in Θk, gk = JTk f(Θk) is the gradient of F in Θk. For
large values of µk (compared to coefficients of JTk Jk), we have dk ' − 1

µk
gk which corresponds

to the descent direction in the steepest descent method. For small values of µk, we have
dk ' −(JTk Jk)−1gk which corresponds to the descent direction in the Gauss-Newton method.
The updating strategy of µk is described in Algorithm 2 in Appendix E. There are a plenty of
different updating strategies leading to several versions of the Levenberg-Marquardt algorithm.
More details on this algorithm can be found in [MNT99].

Adding bound constraints to the LM algorithm
As for the BFGS algorithm, the classic LM algorithm does not handle bound and inequality
constraints. However, it can be extended to do so. Bound constraints can be ensured by using a
projection of Θk onto the feasible set. We detail the modifications in Algorithm 3 in Appendix E.
Handling linear inequality constraints requires many modifications so we will not detail them
here but the interested reader can find a discussion on this topic in [NW06] (Chapter 15).
Observe that the Feller condition is not linear in the parameters of the DDSVLMM. However
it can be easily linearized using the following change of variables:

κ̃ = lnκ, θ̃ = ln θ, ϵ̃ = ln ϵ.

The Feller condition writes in term of the new volatility parameters as:

κ̃+ θ̃ + ln 2 ≥ 2ϵ̃.

To account for this change of variables, the gradient of the swaption price has to be modified
by replacing the partial derivatives with respect to κ, θ and ϵ by the corresponding derivatives
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with respect to κ̃, θ̃ and ϵ̃:

∂PS

∂κ̃
(Θ; 0,Kj) = κ

∂PS

∂κ
(Θ; 0,Kj),

∂PS

∂θ̃
(Θ; 0,Kj) = θ

∂PS

∂θ
(Θ; 0,Kj),

∂PS

∂ϵ̃
(Θ; 0,Kj) = ϵ

∂PS

∂ϵ
(Θ; 0,Kj).

5.3 Calibration results
In this section, we present our experimental results for the calibration of the DDSVLMM (1.49)
using the BFGS and LM algorithms. We first detail the market data to be replicated and discuss
some implementation aspects. Then, we compare the BFGS and LM routines with existing
calibration methods with regards to the objective function value and to the computational
time.

For the calibration, we used a set of 280 market EURO swaptions volatilities. During the
numerical procedure, these volatilities are converted into prices using the Bachelier formula
based on a rate curve as used under the Solvency II regulation1 (see Chapter 1). The ATM
swaptions maturities and tenors considered range into {1, . . . , 10, 15, 20, 25, 30}. For away-from-
the-money swaptions, we consider the same range for maturities and focus on a 10-year reference
tenor; the strikes (in bps) range into +/ − {25, 50, 100}. As mentioned previously, the shift δ
is objectified otherwise: we take δ = 0.1. The inter-forward correlation structure, captured by
the βk parameters, is assessed by an PCA technique we do not detail here. The number Nf of
risk factors is set to 2.

We implemented the pricing and gradient functions in C++. We used the R base function
optim for the Nelder-Mead and BFGS algorithms and we used the C++ LEVMAR package [L+05]
for the Levenberg-Marquardt algorithm. This choice is particularly motivated by the fact that
the LEVMAR package implements the extended version of the Levenberg-Marquardt algorithm
allowing to handle bound constraints and the extended version allowing to handle both bound
and linear inequality constraints. As for the computation of the numerical integral required in
the pricing and the gradient functions, we resorted to the Gauss-Laguerre quadrature with 90
nodes.

5.3.1 Methods accuracy
We compare the BFGS and Levenberg-Marquardt algorithms with existing calibration methods
based on the criteria of the objective function value. First, let us introduce the three reference
calibration methods used for the purpose of comparison.

The first one is the classical Heston method in which the price is computed through the
formula of Proposition 1.8 and the optimization is performed via the Nelder-Mead algorithm.
We set the maximum number of iterations to 500 and we repeat the optimization 3 times in
order to achieve a better convergence.

The second calibration method relies on Edgeworth approximations: it consists in using an
approximate swaption price obtained using an Edgeworth expansion of the unknown density
of the swap rate R (see [LDB20] for a thorough description of the method). The associated
optimization method is the Nelder-Mead algorithm. We use the same parametrization for the
Nelder-Mead method as for the classical Heston method.

1Available at www.eiopa.europa.eu
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The last method is based on the LM algorithm but associated with a numerical gradient
estimation instead of using the derived analytical gradient. The price is still computed with
pricing formula of Proposition 1.8. We use the central difference scheme in order to approximate
the gradient as:

∇PS(Θ; 0,Kj) '
PS(Θ+ h; 0,Kj , Tm, Tn)− PS(Θ− h; 0,Kj)

2h

where h := he with e a vector whose components are 1 and h a small quantity. We take
h = 10−8 and a maximal number of 15 iterations.

Let us also present the different parametrizations studied for the BFGS and Levenberg-
Marquardt algorithms relying on the analytical gradient as derived in this chapter. For the
BFGS algorithm, we test one configuration in which the maximum number of iterations is
set to 30. For the Levenberg-Marquardt algorithm, we test two configurations having the same
tolerance levels ϵ1, ϵ2 and ϵ3 that are set to 10−10 (see Appendix E.2.1). The two configurations,
respectively denoted by LM-BC-15 and LM-BC-30, use the version of the LM algorithm allowing
to handle bound constraints only with a maximum number of iterations of 15 and 30 respectively.

We summarize the studied methods and their main characteristics in Table 5.1.

Method name Optimization
method

Maximum number
of iterations

Ensures Feller
condition Features

Heston Nelder-Mead 500 Yes Repeated 3 times

Edgeworth Nelder-Mead 500 Yes Repeated 3 times. Uses a different
swaption pricing formula.

LM-NUM Levenberg-Marquardt 15 No Uses the numerical gradient
BFGS L-BFGS-B 30 No Uses the analytical gradient

LM-BC-30 Levenberg-Marquardt 30 No Uses the analytical gradient
LM-BC-15 Levenberg-Marquardt 15 No Uses the analytical gradient

Table 5.1: Summary of studied methods.

Before going further, we precise the bounds, particularly the lower bounds, for the 8 param-
eters of the DDSVLMM to calibrate. Indeed, we experienced numerical instabilities when some
parameters equal zero or are very close to zero. For instance if the speed reversion parameter κ or
the volatility of volatility ϵ become almost zero, the behavior of the model is pathologic. There-
fore, we give the following lower (LB) and upper (UB) bounds for Θ = (a, b, c, d, κ, θ, ϵ, ρ):

LB := (10−5, 10−5, 10−5, 10−5, 10−5, 10−5, 10−5,−0.999),
UB := (+∞,+∞,+∞,+∞,+∞,+∞,+∞, 0.999).

The procedure that has been led in order to compare the various calibration methods is the
following: for each set of data, we draw randomly 100 initial parameter starting values between
LB and UB that satisfy the Feller condition and we perform the calibration for each described
method starting from each of these initial guess. From this procedure, we retrieve the boxplots
of Figure 5.1 using EURO data, which provide statistics on the objective function value over
the 100 calibrations.

Note first that the variance (induced by the randomness in the initial guesses) of replication
errors when using Nelder-Mead and BFGS algorithms are comparable and significantly lower
to that obtained when using Levenberg-Marquardt routines. To this extent, Nelder-Mead and
BFGS seem less dependent to initial guess. However, median errors reached by the Levenberg-
Marquardt are lower: this can be explained by the fact that this algorithm is particularly suited
for least-squares problems.

Concerning the Levenberg-Marquardt approach more specifically, we first note that increas-
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Figure 5.1: Boxplots of our selected benchmark of calibration methods.

ing the number of iterations yields a better calibration (in average and in variance), which is
an expected behaviour. Using the Levenberg-Marquardt technique coupled with a numerical
approximation of the gradient of the target function leads to a rather wide range of objective
function values, which illustrates the benefit of using an analytical gradient in comparison. In
addition, the median value for this approach is higher to the one obtained when using Levenberg-
Marquardt optimization with analytical gradient. Therefore, the information conveyed by the
analytical Hessian matrix turns out to be valuable in order to stabilize the calibration process
and reduce the dependency on the starting point.

Moreover, it is worth mentioning that those results suggest that the target function is not
convex; otherwise we could have reasonably expect less dependency of the algorithms with
respect to the starting points.

So far we did not impose the Feller’s condition to be satisfied by the outputs of the calibration
procedures. The percentages of obtained parameters (over 100 calibrations) that do not satisfy
it are given in Table 5.2. The number of unsatisfied Feller conditions is rather significant
especially for the LM algorithm. Note that such condition is always ensured for Nelder-Mead
based calibrations as the Feller condition has been imposed as depicted in (5.5).

Method Percentage of unsatisfied
Feller condition

Heston 0 %
Edgeworth 0 %
LM-NUM 34 %

BFGS 13 %
LM-BC-30 33 %
LM-BC-15 32 %

Table 5.2: Percentages of unsatisfied Feller condition for each method.

Numerical results with bound constraints
In view of the previous results, we propose to study two other configurations of the Levenberg-
Marquardt algorithm. The first one, denoted by LM-BLEIC, uses the version of the Levenberg-
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Marquardt algorithm allowing to handle both bound constraints and linear inequality con-
straints. The maximum number of iterations is set to 50. The second one, denoted by LM-
BLEIC-NM, uses the same algorithm as the LM-BLEIC configuration but here 200 iterations of
the Nelder-Mead method are peformed at the end of the Levenberg-Marquardt algorithm when
the latter converged towards a point whose objective function value is greater than a given
threshold set to 0.3. We present the boxplots for the LM-BLEIC and LM-BLEIC-NM meth-
ods in Figure 5.2 using EURO data. We observe that for some initial guesses, the LM-BLEIC

Figure 5.2: Boxplots for LM-BLEIC and LM-BLEIC-NM (log-scale).

method converges towards points at which the objective function takes extremely high values.
This is actually due to the fact that the implementation of the Levenberg-Marquardt algorithm
handling linear inequality constraints can not ensure that the points stay in the feasible set. As
a consequence, some parameters may take negative values leading to numeric precision errors
forcing the algorithm to stop prematurely. This is the reason why we introduced the LM-
BLEIC-NM. When the objective function value at the exit of the LM-BLEIC method exceeds a
given threshold, we perform some Nelder-Mead iterations in order to achieve a better optimum.
This method gives us quite satisfying results compared to LM-BLEIC, as far as it allows to
get rid of the extreme points. Using the Nelder-Mead allows thus to reduce the variance of the
outputs of the calibration procedures but does not significantly reduce the median value of the
replication errors which remain close.

5.3.2 Time efficiency
Following the same procedure as the one presented in the previous section, we compute the
average CPU time, the average number of calls to the objective function and the average duration
of a call. For gradient-based methods, we also compute the average number of calls to the
gradient and the average duration of a call. The computations were performed on a computer
with a 2.6 gigahertz Intel Core i7 processor and 8 gigabytes of RAM. The results are presented in
Table 5.3. Note that when using the Levenberg-Marquardt algorithm, we compute the average
call time to the residual function f and its gradient ∇f instead of the objective function F and
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its gradient ∇F because the LEVMAR implementation takes as inputs the functions f and ∇f , see
Section 5.2.3. This explains why there is a difference between BFGS and Levenberg-Marquardt
methods in terms of average call time to the gradient. Note also that calling the objective
function in the Heston method appears to take in average less time than in gradient-based
methods since F is actually replaced by F̃ defined in (5.5) for Nelder-Mead methods, which
simply returns a large value in all cases where the Feller condition is not satisfied.

Method Average CPU time Average number of
calls to F/f

Average call time to
F/f

Average number of
calls to ∇F/∇f

Average call time to
∇F/∇f

Heston 159.45 s 1489.20 0.11 s 0 0 s
Edgeworth 8.47 s 1469.46 5.55 ×10−3 s 0 0 s
LM-NUM 40.06 s 277.36 0.14 s 0 0 s

BFGS 36.40 s 39.34 0.14 s 39.34 0.78 s
LM-BC-30 33.89 s 104.80 0.14 s 30.00 0.63 s
LM-BC-15 14.94 s 38.93 0.14 s 15.00 0.63 s
LM-BLEIC 44.29 s 95.76 0.14 s 48.34 0.63 s

LM-BLEIC-NM 45.51 s 102.29 0.14 s 48.34 0.63 s

Table 5.3: Computational times.

The gradient-based algorithms (including those using numerical gradient) appear to be much
faster than the classical Heston calibration method using the Nelder-Mead algorithm, since they
provide reductions in computational time ranging from 71 % (LM-BLEIC-NM) to 91 % (LM-
BC-15). This gain in time results directly from the massive reduction of the number of calls
to the objective function and thus, to the characteristic function. However, these methods are
still not as fast as the Edgeworth method which uses a large number of function calls but for
which each call is very fast, which was the purpose of the method at its origin, see [LDB20].
However one needs to keep in mind that the reduction in computational time achieved by the
Edgeworth expansion comes at the cost of a lower fitting accuracy to market data, as pointed
out in [LDB20].

As a main conclusion, the use of the analytical gradient rather than the numerical gradient
allows to reduce the calibration duration by a factor of 2.7 when looking at LM-BC-15.

Finally, let us observe that the LM algorithm using analytical gradient and including bound
constraints only (LM-BC) is faster than the BFGS algorithm. This can be explained by the
fact that the Levenberg-Marquardt algorithm takes advantage from the particular shape of the
calibration problem, i.e. a least squares optimization problem.

To conclude this section, we justify numerically why we use the characteristic function by
[AMST07] instead of that of [dBRFCU10] in the computation of the swaption price. We com-
pared the average call time of both characteristic function representations over 1000 randomly
chosen parameters and observed an average call time to Albrecher’s representation 5% lower
than the average call time to Cui’s representation. The time difference between these two
representations of the characteristic function is essentially due to the fact that the coefficients
A and B in Albrecher’s representation can be easily written as function of a few quantities
(see e.g. Appendix 5.3 of [LDB20]) which allows to perform less computations than for Cui’s
representation.

5.4 Extension of gradient-based approach to polynomial model
We integrate now an approximated gradient in the calibration of the Jacobi-based LIBOR Mar-
ket Model defined in (4.7) (and thus in a Bachelier framework). We have seen in Chapter 4 that
a 4-th order Gram-Charlier expansion provide satisfactory results in terms of data replication
and computational time. In this section, we propose to integrate the gradient of swaptions
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prices expessed under the proposed model (4.7). Those will be expressed thanks to Gram-
Charlier expansions based on Gaussian density gr as auxiliary one whose mean is still set equal
to ES [Sm,nT ]. From (4.18), we approximate swaption prices by

PS(Θ; 0,K) = BS(0)

(
φ0 + φ1ES

[
H1

(Sm,nT −K
σr

)]
+ φ2ES

[
H2

(Sm,nT −K
σr

)]
+ φ3ES

[
H3

(Sm,nT −K
σr

)]
+ φ4ES

[
H4

(Sm,nT −K
σr

)])
.

The partial derivative with respect to any parameter of the model can be deduced: for any
x ∈ {a, b, c, d, κ, θ, ϵ, ρ},

∂xPS(Θ; 0,K) = BS(0)
{
∂xφ0 + ∂x

(
φ1ES

[
H1

(Sm,nT −K
σr

)])
+ ∂x

(
φ2ES

[
H2

(Sm,nT −K
σr

)])

+ ∂x

(
φ3ES

[
H3

(Sm,nT −K
σr

)])
+ ∂x

(
φ4ES

[
H4

(Sm,nT −K
σr

)])}
.

To go further in the calculations, we thus have to compute the gradient of the moments of
swap rate process. This could be done using the matrix exponential representation of them as
in [AF18]. We propose here an alternative method for computing moments possible for small
order ones.

Integral representation of swap rates moments
As a polynomial process, moments of the swap rate defined by (4.7) can be expressed in terms
of integrals of deterministic quantities, as mentioned in Section 4.5 of Chapter 4.

Proposition 5.2. Let T ≤ Tm and set vmin = 0. We have:

• ES [S2
T ] = S2

0 +
∫ T
0 ‖λ

m,n(s)‖2ES [Vs]ds;

• ES [(Sm,nT )3] = (Sm,n0 )3 + 3
∫ T
0 ‖λ

m,n(s)‖2
(
Sm,n0 V0 + ϵ

∫ s
0 ρ(u)‖λ

m,n(u)‖
(
ES [Vu] − 1

vmax
×

ES [V 2
u ]
)
du
)

ds;

• ES [(Sm,nt )4] = (Sm,n0 )4+6(Sm,n0 )2V0
∫ T
0 ‖λ

m,n(u)‖2du+12ϵ
∫ T
0 ‖λ

m,n(u)‖
∫ u
0 ρ(t)‖λ

m,n(t)‖(
Sm,n0 V0+ϵ

∫ t
0 ρ(s)‖λ

m,n(s)‖
(
ES [Vs]− 1

vmax
ES [V 2

s ]
)
ds− 1

vmax

{
Sm,n0 V 2

0 +2ϵ
∫ t
0 ρ(s)‖λ

m,n(s)‖(
ES [V 2

s ]− 1
vmax

ES [V 3
s ]
)
ds
})

dtdu,

where the moments of the Jacobi process are expressed as:

• ES [Vt] = exp
(
−κ
∫ t
0 ξ

0(s)ds
)(

v0 + κθ
∫ t
0 exp

(
κ
∫ s
0 ξ

0(u)du
)
ds
)

;

• ES [V 2
t ] = exp

(
−
∫ t
0 (2κξ

0(u) + ϵ2/vmax)du
)(

V 2
0 +(2κθ+ ϵ2)

∫ t
0 E

S [Vu] exp
( ∫ u

0 (2κξ
0(s)+

ϵ2/vmax)ds
)
du
)

;

• ES [V 3
t ] = exp

(
−3
∫ t
0 (κξ

0(u) + ϵ2/vmax)du
)(

V 3
0 +3(κθ+ ϵ2)

∫ t
0 E

S [V 2
u ] exp

(
3
∫ u
0 (κξ

0(s)+

ϵ2/vmax)ds
)
du
)

,

for all t ≥ 0.
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Proof. From (4.7), we express the Jacobi process as the sum of a Lebesgue’s and an Ito’s
integral and from Lemma 4.4 we get that ES [Vt] = v0 +

∫ t
0 κ
(
θ − ξ0(s)ES [Vs]

)
ds. It is an

ordinary differential equation that is uniquely solved by: ES [Vt] = exp
(
−κ
∫ t
0 ξ

0(s)ds
)(

v0 +

κθ
∫ t
0 exp

(
κ
∫ s
0 ξ

0(u)du
)
ds
)

. Squared Jacobi process evolves following dV 2
t =

(
2κθ− (2κξ0(t)+

ϵ2)Vt−ϵ2V 2
t /vmax

)
dt+2ϵ

√
Q(Vt)dWt according to Ito’s formula. Hence the ordinary differential

equation satisfied by the second order moment of the Jacobi process writes ES
[
V 2
t

]
= V 2

0 +∫ t
0

(
2κθ−(2κξ0(s)+ϵ2)ES [Vs]−ϵ2ES [V 2

s ]/vmax
)
ds. Solving it yields ES

[
V 2
t

]
= exp

(
−
∫ t
0 (2κξ

0(u)

+ϵ2/vmax)du
)(
V 2
0 +(2κθ+ϵ2)

∫ t
0 E

S [Vu] exp
( ∫ u

0 (2κξ
0(s)+ϵ2/vmax)ds

)
du
)

which is fully known
since we have previously determined the expression of the mean of the Jacobi process. Third
order moment of the Jacobi process can be determined analogously.

We are now ready to compute small orders moments of the swap rate process. We di-
rectly get from (4.7) that ES [Sm,nT ] = Sm,n0 . Using Ito’s isometry, we have ES [S2

T ] = S2
0 +∫ T

0 ‖λ
m,n(s)‖2ES [Vs]ds in which the expression of mean of the Jacobi process can be injected.

Concerning the third order moment, we resort again on the Ito’s formula to get that dS̃m,nt =

3(Sm,nt )2
(
ρ(t)‖λm,n(t)‖

√
Q(Vt)dWt +

√
Vt − ρ(t)2Q(Vt)λ

m,n(t) · dW S,∗
t

)
+ 3‖λm,n(t)‖2StVtdt

where S̃m,nt := (Sm,nt )3. Hence ES [(Sm,nt )3] = (Sm,n0 )3 + 3
∫ t
0 ‖λ

m,n(s)‖2ES [Sm,ns Vs]ds. By
definition of the quadratic covariation, the process

(
Sm,nt Vt −

〈
Sm,n. , V.

〉
t

)
t≥0

is a martingale

and thus ES [Sm,nt Vt] = Sm,n0 V0 + ES [〈Sm,n. , V.〉t]. Combined with the fact that 〈Sm,n. , V.〉t =
ϵ
∫ t
0 ρ(u)‖λ

m,n(u)‖Q(Vu)du, we get ES [Sm,nt Vt] = Sm,n0 V0+ϵ
∫ t
0 ρ(u)‖λ

m,n(u)‖ES [Q(Vu)]du which
is fully known since ES [Q(Vt)] = ES [Vt]−ES [(Vt)2]/vmax. The computation of the fourth order
moment of the swap rate process is done similarly using the quadratic covariation between the
processes

(
(Sm,nt )2

)
t≥0

and
(
Vt
)
t≥0

.

5.4.1 Numerical results
In all presented experiments, we have set vmin = 0 and vmax = 9v0 = 0.9. We now set
the following bounds similarly to the previous one, but with an additional restriction on the
parameter θ ensuring the proper definition of the Jacobi process:

LB = (10−5, 10−5, 10−5, 10−5, 10−5, 10−5, 10−5,−0.999),
UB = (+∞,+∞,+∞,+∞,+∞, vmax,+∞, 0.999).

We worked with the nls.lm function of R (package minpack.lm). On 100 different starting
points still randomly generated but satisfying all constraints required under Jacobi-based model,
namely

2κmin(ξ0minvmax − θ, θ) ≥ ϵ2 (Feller condition) and 4κθ > ϵ2 (Assumption 1). (5.6)

In all the experiments we present below, we have worked with the numerical gradient of
the objective function, approximated by forward difference scheme with step size of 10−8. In-
deed, several integrated functions that are involved in the analytical expressions of the gradient
(based on the formulas obtained in Proposition 5.2) are of exponential behavior for large time.
Consequently, to calculate the gradient with enough precision (using trapezoidal rule or other
schemes2), a tiny step size has to be chosen in numerical schemes; numerous calls to the in-

2Note however that the functions we are dealing with are simply continuous and not differentiable.
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tegrated functions would then be necessary. The computational time required to calibrate
Jacobi-based model using analytical gradient is thus significant (several hours) making this
method out of the operational scope of the present study.

We discuss different methodologies under the Jacobi-based dynamics. In all Gram-Charlier
based approaches, we will set µr = ES [Sm,nTm

] and σr =
√

vmaxT
2 λ2max + 10−5. First one is the

standard Nelder-Mead optimization performed 3 times in a row with a maximum number of
iterations set to 500 for each sequence. It is associated with the (truncated) price representa-
tion (4.18); it is referred simply as ”Nelder-Mead”. Second one is Levenberg-Marquardt based
optimization with a maximum number of iteration set to 30; it is the ”Levenberg-Marquardt”
(or ”LM”) approach (with a maximum number of iterations set to 30). A number of pathologic
calibrations (not plotted below) are obtained using such method, and this why we propose to
combine it with a run of 200 iterations maximum of Nelder-Nead algorithm when the objective
function is above 0.1 at the end of Levenberg-Marquardt algorithm: this is the ”Combination”
method. To handle parameters constraints, we project the parameters obtained as outputs
of the Levenberg-Marquardt approach on the acceptable set before running Nelder-Mead al-
gorithm. Fourth method we propose also aims at handling constraints on parameters. We
propose to integrate them directly in the objective function as follows: with the notation above,
the objective function F is modified as

F̃ (Θ) =
1

2
‖f(Θ)‖2 + 1

2
‖c(Θ)‖2

where we set c(Θ) =
(

max(0, ϵ2 − 2κmin(ξ0minvmax − θ, θ)),max(0, ϵ2 − 4κθ)
)
. One advantage

of this technique is that it modifies the objective function in a smooth way since c is differen-
tiable once. This modified objective function will be minimized using the Levenberg-Marquardt
algorithm (still with 30 iterations max.): this is the ”LM with constraints” approach. These
four methods are compared to the standard Fourier based approach of Proposition 1.9 associ-
ated with the reference dynamics (1.50). Note that for the latter, the relaxed Feller condition
2κθ ≥ ϵ2 is imposed. The optimization is performed using 3 runs of 500 iterations maximum of
the Nelder-Mead algorithm. It is referred to as ”Fourier based”.

The distribution of the replication error under each parametrization are given in Box-
plots (5.3). As previously, the Fourier based methodology provides the best replication errors,
followed by the Nelder-Mead approach. The Levenberg-Marquardt approach provides satisfac-
tory results close to the Nelder-Mead approach in average. However, the latter induced bigger
variance than the previous methods, illustrating again its sensitivity towards starting points.
The combination method allows to correct some pathologic calibrations of the LM one but not
all of them. It also induces a larger variance explained by the additional constraints taken
into account during Nelder-Mead runs. In Boxplots 5.4, we compare the Levenberg-Marquardt
associated with the objective function F and the Levenberg-Marquardt associated with F̃ . Not
surprisingly, the second one is a little less accurate than the unconstrained one but still provides
very satisfactory results. However, it turns out that only methods using Nelder-Mead algorithm
or the ”Combination” method properly handle the constraints (5.6) on parameters, as shown
in Table 5.5. Adding constraints in the standard Levenberg-Marquardt –as done for defining
F̃ above– is not satisfactory from this point of view. This can be explained by the (a priori)
non qualification of the constraints in that particular case (see [Gil03] notably Section 4.4 for a
deeper discussion on the topic).

Regarding computational times, we gather the average calibration and call times in Ta-
bles (5.4). Gradient-based approaches (in which we include the Combination method) allows
for significant reduction of the computational time compared to the Fourier-based method (up
to almost 93.8% reduction).
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Figure 5.3: Boxplots of our selected benchmark of calibration methods for Jacobi-based model.
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Figure 5.4: Boxplots of our selected benchmark of calibration methods for Jacobi-based model.

As main conclusion, the combination of gradient-based runs followed by a Nelder-Mead
algorithm proved to be competitive both in computational time and replication accuracy in
present Jacobi-based DDSVLMM.
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Method Average CPU
time

Fourier based 829.50
Nelder-Mead 311.00

LM 51.48
Combination 82.60

LM with constraints 61.36

Table 5.4: Computational times (in sec.).

Method Percentage of unsatisfied
constraints

LM 53 %
Combination 1 %

LM with constraints 60 %

Table 5.5: Percentages of unsatisfied parameters constraints for each method.
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Appendix A

Short rates models in insurance and
pricing of interest rates derivatives

A.1 Short rates models in insurance
A.1.1 Hull-White model
This model has been introduced in [HW90] as an extension of the Vasicek and CIR models.
In the Vasicek model, the short rate dynamics is given by an Ornstein-Uhlenbeck dynamics.
The CIR model uses the square-root process. The Hull-White model generalized the mentioned
models by allowing the parameters to be time dependent. Its dynamics writes

drt = κ(t)
(
θ(t)− rt

)
dt+ σ(t)rαt dWt,

where κ, θ, σ are deterministic functions of time, α ≥ 0 and (Wt)t≥0 is a standard Brownian
motion. To avoid some over parametrization, it is generally set κ(t) ≡ κ, σ(t) ≡ σ and α = 0
so that the Hull-White model generally refers to the following dynamics:

drt = κ
(
θ(t)− rt

)
dt+ σdWt. (A.1)

The Hull-White model is particularly convenient as it provides a number of analytical expression
easy to implement. First, the short rate can be obtain using Itô’s formula as

rt = e−κtr0 + κ

∫ t

0
e−κ(t−s)θ(s)ds+ σe−κt

∫ t

0
eκsdWs.

This expression justifies that the short rate process (rt)t≥0 is a Gaussian process and thus so is
the integrated process

(∫ t
0 rsds

)
t≥0

.

Negative rates Finally, we take a look at the ability of the model to generate non-positive
rates. As a Gaussian process, the short rate defined by (A.1) can take negative values. Mean and
variance processes, respectively (M(t))t≥0 and (Σ(t))t≥0, allow to characterize the distribution
of (rt)t≥0; they respectively write:

M(t) = e−κtr0 + κ

∫ t

0
e−κ(t−s)θ(s)ds,

Σ(t) =
σ2

2κ
(1− e−2κt).
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We then obtain, for any x ∈ R,

P(rt ≤ x) = P
(
M(t) +

√
Σ(t)G ≤ x

)
= Φ

(
x−M(t)√

Σ(t)

)
> 0, (A.2)

where G ∼ N (0, 1) and Φ is the cumulative distribution function of the standard normal
distribution.

Pricing of ZC bonds and derivatives Since dealing with Gaussian process, computing the
ZC bond price reduces to the computation of the moment generating function of the integrated
short rate process according to the pricing formula (A.17): it can thus be done through closed-
form formula here. Since, for κ > 0,

E
[∫ T

t
rudu

∣∣Ft] = rt
1− e−κ(T−t)

κ
+

∫ T

t
θ(s)

(
1− e−κ(T−s)

)
ds,

Var
(∫ T

t
rudu

∣∣Ft) =
σ2

κ2

∫ T

t
(1− e−κ(T−s))2ds

=
σ2

κ2

(
(T − t)− 2

κ

(
1− e−κ(T−t)

)
+

1

2κ
(1− e−2κ(T−t))

)
,

and using fact that if G ∼ N (m, s2), then E[e−G] = e−m+s2/2 we finally get:

P (t, T ) = exp
(
−rt

1− e−κ(T−t)

κ
−
∫ T

t

(
1− e−κ(T−s)

)
θ(s)ds+ σ2

2κ2

∫ T

t
(1− e−κ(T−s))2ds

)
.

(A.3)

An important consequence: forward rates and swap rates can also be analytically express in
this model. Forward rates in (1.25) express as

F (t, T, S) =
1

S − T

(
exp

(
− rt
κ

(
e−κ(S−t) − e−κ(T−t)

)
+

∫ S

t

(
1− e−κ(S−u)

)
θ(u)du

−
∫ T

t

(
1− e−κ(T−u)

)
θ(u)du+

σ2

2κ2

{∫ T

t

(
1− e−κ(T−u)

)2du− ∫ S

t

(
1− e−κ(S−u)

)2du})− 1

)
.

From equation (A.2), one can also derive analytical expression for option on ZC bonds. For
instance consider a call option of maturity T on a ZC bond of maturity S > T and of strike K.
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The spot price of the option writes

π0 = E∗
[
exp

(
−
∫ T

0
rudu

)
(P (T, S)−K)+

]
= E∗

[
exp

(
−
∫ T

0
rudu

)
P (T, S)1P (T,S)≥K

]
−KE∗

[
exp

(
−
∫ T

0
rudu

)
1P (T,S)≥K

]
= E∗

[
exp

(
−
∫ T

0
rudu

)
E∗
[
e−

∫ S
T rudu

∣∣∣FT ]1P (T,S)≥K

]
−KP (0, T )ET

[
1P (T,S)≥K

]
= E∗

[
exp

(
−
∫ S

0
rudu

)
1P (T,S)≥K

]
−KP (0, T )ET

[
1P (T,S)≥K

]
= P (0, S)ES

[
1P (T,S)≥K

]
−KP (0, T )ET

[
1P (T,S)≥K

]
,

where we used that exp
(
−
∫ T
0 rudu

)
1P (T,S)≥K is FT -measurable and the forward pricing rela-

tion (A.20) to obtain last equality. We first inspect the event in the indicator functions:

P (T, S) ≥ K ⇐⇒ lnP (T, S) ≥ lnK
⇐⇒ rT ≤ r∗

where r∗ = −κ
1−e−κ(S−T )

(
lnK +

∫ S
T

(
1− e−κ(S−u)

)
θ(u)du− σ2

2κ2

∫ S
T

(
1− e−κ(S−u)

)2du). We are
thus led to study the distribution of the short rate under forward measure PS and PT . Girsanov’s
theorem provides that, under PT , the short rate process expresses as

rt = e−κtr0 + κ

∫ t

0
e−κ(t−s)θ(s)ds− σ2

κ

∫ t

0

(
1− e−κ(T−s)

)
e−κ(t−s)ds+ σe−κt

∫ t

0
eκsdWs.

It is still a Gaussian process characterized by its mean processMT (t) = e−κtr0+κ
∫ t
0 e

−κ(t−s)θ(s)ds−
σ2

κ

∫ t
0 (1 − e

−κ(T−s))e−κ(t−s)ds and variance process that remains unchanged by the change of
probability ΣT (t) = Σ(t). Under PS , we similarly get that the only mean process is modified as
MS(t) = e−κtr0 + κ

∫ t
0 e

−κ(t−u)θ(u)du− σ2

κ

∫ t
0 (1− e

−κ(S−u)e−κ(t−u)du. The option price is

π0 = P (0, S)Φ
(r∗ −MS(T )√

Σ(T )

)
−KP (0, T )Φ

(r∗ −MT (T )√
Σ(T )

)
.

Fitting the initial term-structure The function θ is used to fit the initial term-structure
of ZC bonds t 7→ PMkt(0, t) observed on the market. We assume that this map is twice
differentiable. We denote by ∂f(PMkt(0,t))

∂T the derivative evaluated in t of the function t 7→
f(PMkt(0, t)) for some smooth function f .

Proposition A.1. Setting for all t ≤ T ,

θ(t) = −1

κ

∂2 lnPMkt(0, t)

∂T 2
− ∂ lnPMkt(0, t)

∂T
+

σ2

2κ2
(1− e−2κt)

allows to perfectly reproduce the initial zero-coupon bond graph:

P (0, t) = PMkt(0, t), t ≤ T.
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Proof. To replicate the market prices, one should impose, for all t ≤ T ,

lnPMkt(0, t) = lnP (0, t)

= −r0
e−κt − 1

k
−
∫ t

0
(1− e−κ(t−u))θ(u)du+

σ2

2κ2

∫ t

0
(1− e−κ(t−u))2du.

(A.4)

Using that ∂t
( ∫ t

0 (1− e
−κ(t−u))θ(u)du

)
= κe−κt

∫ t
0 e

κuθ(u)du, ∂t
( ∫ t

0 (1− e
−κ(t−u))2du

)
= (1−

e−κt)2 and ∂t
(
κe−κt

∫ t
0 e

κuθ(u)du
)
= −κ2e−κt

∫ t
0 e

κuθ(u)du+ κθ(t) allows to differentiate twice
(A.4), which gives the result.

Limitations So far, the market hazard is modelled by one-dimensional Brownian motions.
Consequently, the correlation between rates of different maturities is perfect: it can be viewed
in the expression (A.3) that randomness ZC bonds prices is only due to the short rate process
which does to depend on the maturity of the considered ZC bonds. This behaviour is not
observed on market as illustrated in Figure A.1.

Figure A.1: ZC bond prices of maturity 1 year (black) and 25 years (red) between 12/01/1999
and 12/31/2020. Estimated correlation between the two series: ρ̂ = 0.865; 95% confidence
interval: ρ̂ ∈ [0.830, 0.893].

Such a framework is thus not suited to reproduce some empirical observations and to insur-
ers needs. As insurance policies are generally associated with long-term guarantees, the joint
distribution of interest rates of different maturities impact their investment strategy. Multidi-
mensional models are appropriated to overcome this difficulty.
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A.1.2 G2++
The G2++ model describes the short rate dynamics as being the sum of two Gaussian processes
adjusted by a deterministic function to replicate the spot term-structure, in a similar fashion
as described above.

Namely, under the risk-neutral measure P∗, the short-rate is assumed to be given by

rt = xt + yt + φ(t), r0 = r0

where stochastic processes (xt)t≥0 and (yt)t≥0 are determined by the equations

dxt = −axtdt+ σdZ1
t ,

dyt = −bytdt+ ηdZ2
t ,

(A.5)

with (x0, y0) = (0, 0) and where Z1, Z2 are two Brownian motions whose joint distribution is
characterized by the quadratic variation

〈
Z1
. , Z

2
.

〉
t
= ρt for some ρ ∈ [−1, 1], r0, a, b, σ, η are

positive constants and φ is deterministic function defined over a finite time lapse [0, T̄ ]; in
particular, φ(0) = r0. Integration of (A.5) can also be done such that for each t ≤ T̄ ,

rt = φ(t) + σ

∫ t

0
e−a(t−u)dZ1

u + η

∫ t

0
e−b(t−u)dZ2

u. (A.6)

The short rate is thus also a Gaussian process in the G2++ specification.

Negative rates By modelling the short rate through a Gaussian process, the G2++ allows
to generate non-positive values. From (A.6), one deduces that under P∗, rt is distributed as a
Gaussian variable of mean φ(t) and variance v(t) := σ2

2a (1−e
−2at)+ η2

2b (1−e
−2bt)+2 ησρa+b(1−e

(a+b)t)
and one gets

P∗(rt ≤ x) = Φ

(
x− φ(t)√

v(t)

)
> 0, ∀x ∈ R.

Pricing of ZC bonds and derivatives As in the previous section, ZC pricing is based on
the study of the integrated process

∫ .
0 rudu; computations are similar so we do not provide

them here and simply bring in the results. The interested reader is referred to [BM07] in which
computations can be found in detail.

As a Lebesgue integral of a Gaussian process,
∫ .
0 rudu is still a Gaussian process. As for the

Hull & White model, it is enough to determine mean and variance processes.

Proposition A.2 ([BM07]). For t ≤ T , conditionally to the sigma-field generated by the pair
(Z1

· , Z
2
· ) up to time t, the random variable

∫ T
t rudu is a Gaussian variable of mean

Mt,T =
1− e−a(T−t)

a
xt +

1− e−b(T−t)

b
yt,
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and of variance

Σt,T =
σ2

a2

(
(T − t)− 2

a

(
1− e−a(T−t)

)
+

1

2a
(1− e−2a(T−t))

)
+
η2

b2

(
(T − t)− 2

b

(
1− e−b(T−t)

)
+

1

2b
(1− e−2b(T−t))

)
+ 2ρ

ση

ab

(
T − t+ e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

)
.

This is useful to derive a ZC price formula: as a direct application of fact that E[e−G] =
e−m+s2/2 when G ∼ N (m, s2) combined with Proposition A.2 we get that, in the G2++ speci-
fication, the ZC bond price expresses as

P (t, T ) = exp
(
−
∫ T

t
φ(s)ds− 1− e−a(T−t)

a
xt −

1− e−b(T−t)

b
yt +

1

2
Σt,T

)
. (A.7)

The expression of forward rates follows, for t ≤ T < S,

F (t, T, S) =
1

S − T

[
exp

(∫ S

T
φ(u)du+

e−a(T−t) − e−a(S−t)

a
xt +

e−b(T−t) − e−b(S−t)

b
yt

+
1

2
(Σt,T − Σt,S)

)
− 1

]

Fitting the initial term-structure The deterministic function φ is used to exactly repro-
duce the initial ZC bond curve.

Proposition A.3. Setting, for all t ≤ T ,

φ(t) = −∂ lnP (0, t)
∂T

+
σ2

2a2
(1− e−at)2 + η2

2b2
(1− e−bt)2 − ρση

ab
(1− e−at)(1− e−bt)

allows to reproduce the market price of ZC bonds, that is:

P (0, t) = PMkt(0, t), t ≤ T.

Proof. Using (A.7) and imposing lnP (0, t) = lnPMkt(0, t) yields the result.

A.1.3 Two-factor Hull-White model
The two-factor Hull-White model introduces an additional source of risk in the short rate
through its mean-reversion level; the assumed dynamics for the short rate under the risk-neutral
measure writes {

drt = k (θ(t) +mt − rt) dt+ σ1dZ1
t ,

dmt = −b′mtdt+ σ2dZ2
t ,

(A.8)

with (r0,m0) = (r0, 0) and where (Z1, Z2) is a two-dimensional Brownian motion such that
their quadratic variation writes

〈
Z1
. , Z

2
.

〉
t
= ρ′t for some −1 ≤ ρ′ ≤ 1 and k, σ1, b, σ2, r

0 are
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positive constants. An application of the Itô’s formula allows to integrate (A.8) to get

rt = r0e
−kt + k

∫ t

0
θ(u)e−k(t−u)du+ k

∫ t

0
mue

−k(t−u)du+ σ1

∫ t

0
e−k(t−u)dZ1

u,

mt = σ2

∫ t

0
e−b

′(t−u)dZ2
u.

(A.9)

Injecting the expression of the mean-reversion level m into the second integral in the expression
of the short rate and an integration by part yield, for k 6= b′,

rt = r0e
−kt + k

∫ t

0
θ(u)e−k(t−u)du+ σ1

∫ t

0
e−k(t−u)dZ1

u +
σ2k

k − b′

∫ t

0

(
e−b

′(t−u) − e−k(t−u)
)

dZ2
u.

(A.10)

Analogy with the G2++ framework The previous expression (A.10) can be related to
(A.6): in case where k > b′, we can write

rt = r0e
−kt +

∫ t

0
θ(u)e−k(t−u)du+ σ3

∫ t

0
e−k(t−u)dZ3

u + σ4

∫ t

0
e−b

′(t−u)dZ2
u, (A.11)

where we introduced the parameters σ3 =
√
σ21 +

σ2
2k

2

(k−b′)2 + 2ρ′ σ1σ2kb′−k , σ4 =
σ2k
k−b′ and defined the

Brownian motion Z3
t = 1

σ3

(
σ1Z

1
t − σ2k

k−b′Z
2
t

)
. The case k < b′ can be treated similarly. Writing

the short rate in this form allows to display the link between (A.6) and (A.11). Indeed, by
choosing k = a, b′ = b, σ1 =

√
σ2 + η2 + 2ρησ, σ2 = 1

k (k − b′)η, ρ′ = σρ+η√
σ2η2+σηρ

, θ(t) =

1
k

dφ(t)
dt + φ(t) in (A.11), one can write

rt = φ(t) + σ

∫ t

0
e−k(t−u)dZ3

u + η

∫ t

0
e−b

′(t−u)dZ2
u,

which is exactly (A.6) with the proper correlation structure between the two risks factors. Con-
versely, setting a = k, b = b′, σ = σ3, η = σ4, ρ = σ1ρ′−σ4

σ3
and φ(t) = r0e

−kt+
∫ t
0 θ(u)e

−k(t−u)du
in (A.6) and one recovers (A.11). Properties of the two-factor Hull-White model are thus
deduced from that of the G2++.

A.1.4 CIR2++
Another two-factor model encountered among insurers is the CIR2++: it models the short rate
process as the sum of two independent square-root processes (also named Cox-Ingersoll-Ross
processes) adjusted by a deterministic level.

Namely, under the risk-neutral measure, the short rate writes

rt = φ(t) + xt + yt, t ≤ T, (A.12)

where
dxt = k1(θ1 − xt)dt+ ϵ1

√
xtdZ1

t ,

dyt = k2(θ2 − yt)dt+ ϵ2
√
ytdZ2

t ,

where Z1 and Z2 are two independent Brownian motions, k1, k2, θ1, θ2, ϵ1, ϵ2 are positive con-
stants satisfying the Feller’s condition, that is 2kiθi ≥ ϵ2i for i = 1, 2 and φ is a deterministic
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function built to replicate initial ZC bonds curve.

Negative rates The two square-processes are positive under the Feller’s condition, and always
non-negative. The ability of (A.12) to produce non-negative rates depends on the shape of the
deterministic function φ. Indeed,

P∗(rt ≤ 0) = P∗
(
xt + yt ≤ −φ(t)

)
,

which is a positive quantity as long as φ(t) ≤ 0.

ZC bonds pricing The Laplace function of integrated processes
∫ .
0 xsds and

∫ .
0 ysds can

be derived in closed-form formula using Itô’s lemma to deduce a PDE satisfied of which it
is solution: we refer to Exercise 1.2.7 in [Alf15]. (xt)t≤T and (yt)t≤T being independent, the
Laplace function of the integrated process

∫ .
0(xu + yu)du writes as the product of the Laplace

function of the respective integrated processes
∫ .
0 xsds and

∫ .
0 ysds. The ZC price under (A.12)

can be obtained in closed-form formula as

P (t, T ) = exp
(
−
∫ T

t
φ(s)ds

)
×A1(t, T )e

−B1(t,T )xt ×A2(t, T )e
−B2(t,T )yt , (A.13)

where for i = 1, 2,

Ai(t, T ) =

(
2hi exp

(
(T − t)(ki + hi)/2

)
2hi + (ki + hi)[exp

(
(T − t)hi

)
− 1]

)2kiθi/ϵ
2
i

,

Bi(t, T ) =
2[exp

(
(T − t)hi

)
− 1]

2hi + (ki + hi)[exp
(
(T − t)hi

)
− 1]

,

hi =
√
k2i + 2ϵ2i .

Fitting the initial term-structure Similarly as for the previous models, the CIR2++ allows
to exactly replicate the initial term-structure of ZC bonds: the deterministic function φ is built
to that extent.

Proposition A.4. Setting, for t ≤ T ,

φ(t) = −∂ lnPMkt(0, t)

∂T
− x0

∂B1(0, t)

∂T
− y0

∂B2(0, t)

∂T
+
∂ lnA1(0, t)

∂T
+
∂ lnA2(0, t)

∂T
,

allows to replicate the spot market prices, that is:

P (0, t) = PMkt(0, t), t ≤ T.

Proof. Using (A.13) and imposing lnP (0, t) = lnPMkt(0, t) yields the result.

A.2 Pricing of interest rates derivatives
A.2.1 Pricing measures and hedging
In the previous section, all the introduced basic interest-rates derive from the fundamental
assets that are the Zero-Coupon bonds. In this paragraph, to set some ideas, we are interested
in the problem of hedging and pricing in a market rates in which risky assets are ZC bonds

230



of different maturities. The setup is the following: consider a finite time horizon T > 0 and a
probability space (Ω,F ,P) equipped with a right-continuous filtration (Ft)0≤t≤T . The market
we are modelling is composed of risk-free asset B whose time-t value is

B(t) = exp
(∫ t

0
rsds

)
,

in accordance with (1.19). N ∈ N∗ Zero-Coupon bonds (risky assets) of different maturities are
(continuously) traded on the market. Their prices are represented by adapted semi-martingales
and are denoted by

((
P (t, Tk)

)
t≤T

)
k∈{1,...,N}

. The discounted prices are denoted by P̃ (t, Tk) :=
P (t, Tk)/B(t) for all t ∈ [0, Tk] and all k ∈ {1, . . . , N}. We first wonder how can the No-
Arbitrage Assumption (NAA) be characterized in this market.
Theorem A.5 ([Bjö09]). NAA holds if, and only if, there exists a probability measure P∗,
equivalent to P, such that all discounted ZC prices are martingales, i.e. for all k ∈
{1, . . . , N},

(
P̃ (t, Tk)

)
0≤t≤T

is a P∗-martingale.

Proof. This a particular case of a the general Theorem 10.14 stated in [Bjö09].

This result that is common to all arbitrage free market, whether or not complete, means
that there exists a market price of risk that is common to all risky assets.
As a positive semi-martingale, the dynamics of the discounted ZC bond prices can be written
in the following form, for all k ∈ {1, . . . , N},

dP̃ (t, Tk) = P̃ (t, Tk)
((
b(t, Tk)− rt

)
dt+ σ(t, Tk) · dWt

)
,

for some multidimensional Brownian motion
(
Wt

)
0≤t≤T under P, and some adapted measurable

processes
(
b(t, Tk)

)
0≤t≤T and

(
σ(t, Tk)

)
0≤t≤T . Girsanov’s theorem yields first that the Radon-

Nikodym derivative Lt := dP∗

dP |Ft
can be written as a stochastic exponential: Lt = exp

( ∫ t
0 λ(s) ·

dWs − 1
2

∫ t
0 ‖λ(s)‖

2ds
)

for some multidimensional adapted process
(
λ(t)

)
0≤t≤T ; secondly, the

theorem states that for any k ∈ {1, . . . , N}, the dynamics under P∗ of discounted ZC bond of
maturity Tk writes

dP̃ (t, Tk) = P̃ (t, Tk)
(
(b(t, Tk)− rt − σ(t, Tk) · λ(t))dt+ σ(t, Tk) · dW ∗

t

)
.

with
(
Wt

)
0≤t≤T a multidimensional Brownian motion under P∗. The process

(
λ(t)

)
0≤t≤T is the

mentioned market price of risk, also referred to as the risk premium process and should satisfy,
according to Theorem A.5, for all k ∈ {1, . . . , N} and all t ≤ Tk:

b(t, Tk)− rt = σ(t, Tk) · λ(t). (A.14)

The fact that the process λ is defined up to the time horizon T and does not depend on the
maturities (Tk)k∈{1,...,N} is fundamental: it accounts for the consistency between market ZC
prices of different maturities allowing to satisfy the arbitrage-free requirement.
Remark 36. Fact that λ does not depend on Tk ∈ {1, . . . , N} can be recovered using the term
structure equation, as depicted in Section 23.2 of [Bjö09].

We are now able to derive the price of derivatives traded on the market. Let us consider a
contract delivering a payoff H at maturity time T . H is assumed to be an attainable contingent
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claim in the sense that the existence of an admissible1 trading strategy whose value at time
T is H is assumed. Let us consider such a strategy and denote by (Vt(H))t≤T the time-t
value of the associated portfolio. It is built using the available assets on the market, that
are the ZC bonds

(
P (t, Tk)

)
t≤T,k∈{1,...,N}

along with the risk-free asset B so that Vt(H) =

ϕ0tB(t) +
∑N

k=1 ϕ
k
tP (t, Tk) where the processes (ϕ0t , ϕ

k
t )t≤T,k∈{1,...,N} represent the position of

the considered strategy in each asset. First, as an admissible strategy, we get that Vt(H) ≥ 0
at any date t and that the strategy is self-financing meaning

dVt(H) = ϕ0tdB(t) +
N∑
k=1

ϕkt dP (t, Tk).

It is common to work with the discounted value of the portfolio that should satisfy under P∗:

dṼt(H) =
N∑
k=1

ϕkt dP̃ (t, Tk) =
N∑
k=1

ϕkt P̃ (t, Tk)σ(t, Tk) · dW ∗
t . (A.15)

Under technical assumptions, we claim that (A.15) is a P∗-martingale, whose final value is
H̃ = H/B(T ). Thus, at any time t ≤ T , we get

Ṽt(H) = E∗
[
ṼT (H)|Ft

]
= E∗

[
H̃|Ft

]
,

meaning that all discounted price processes are P∗-martingales. Since the bank account
process B(t) is an Ft-measurable process, we finally get

Vt(H) = E∗ [D(t, T )H|Ft] . (A.16)

The price of the derivative of final payoff H is given by (A.16): it is the price one should disburse
at time t to obtain the final wealth H at T . When H = 1, we obtain the price of a Zero-Coupon
bond of maturity T :

P (t, T ) = E∗ [D(t, T )
∣∣Ft] = E∗

[
exp

(
−
∫ T

t
rsds

) ∣∣∣Ft] . (A.17)

A non trivial application of the martingale representation theorem allows to get the existence
of a process (Mt)0≤t≤T such that

∫ T
0 ‖Ms‖2ds <∞ almost surely and

Ṽt(H) = Ṽ0(H) +

∫ T

0
Ms · dW ∗

s .

A possible hedging strategy consists then in choosing the weights ϕk so that

M i
t =

N∑
k=1

ϕkt P̃ (t, Tk)σ
i(t, Tk), t ≤ T, 1 ≤ i ≤ d, and ϕ0t = E∗ [D(t, T )H|Ft]−

N∑
k=1

ϕkt P̃ (t, Tk).

To ensure the existence of an admissible strategy, observe that d ≤ N is required.
Remark 37. It is common to use a multidimensional Brownian motion (W ∗

t )0≤t≤T to model
1An admissible strategy is a self-financing strategy associated with a portfolio whose value is always non-

negative. Some technical requirements are sometimes added to the definition, see for instance Definition 4.3.1 in
[LL11].
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the market hazard in interest rates market to account for the different time horizon involved, as
we will discuss it in the next Section 1.5.2.

Remark 38. All vector processes
(
λ(t)

)
0≤t≤T satisfying (A.14) allow to define a risk-neutral

probability measure as dPλ = LTdP. All these probability measures can be used for pricing of
ZC bonds derivatives.

A.2.2 Change of numéraire
When the short rate is stochastic, so is the discount factor and pricing of interest-rates deriva-
tives requires to be able to derive the distribution of the pair (rt,H) according to the pricing
formula (A.16). To get ride of this difficulty, it is useful to work under alternative probability
measure equivalent to risk-neutral one P∗.

A numéraire is defined to be any positive and non-dividend-paying asset; it is used to
normalize all other assets. Under the risk-neutral measure, we work with discounted assets: the
numéraire naturally used here is the bank account B. Let us consider an alternative numéraire
whose value at time t is denoted by U(t). We can consider the probability measure PU whose
Radon-Nikodym density with respect to P∗ over Ft is given by

dPU
dP∗

∣∣Ft

=
U(t)B(0)

U(0)B(t)
.

U being a price process, the discounted price process
(
U(t)/B(t)

)
t≤T

is a P∗-martingale and it

is straightforward to check that U(t)B(0)
U(0)B(t) is non-negative and that E∗

[
U(t)B(0)
U(0)B(t)

]
= 1. Let πt be

the price process of a tradable asset. From the martingale property of discounted prices under
the risk-neutral measure, we know that

πt
B(t)

= E∗
[
πT
B(T )

∣∣∣Ft] .
This is equivalent to say that

πt
U(t)

= E∗
[
B(t)U(T )

B(T )U(t)
× πT
U(T )

∣∣∣Ft]
=

1

E∗
[
U(T )B(0)
B(T )U(0)

∣∣Ft]E∗
[
U(T )B(0)

B(T )U(0)
× πT
U(T )

∣∣∣Ft]

= EU
[
πT
U(T )

∣∣∣Ft] .
(A.18)

It is an important property: the price process of any asset divided by a given numéraire
is a martingale under the probability measure associated with this numéraire. This
is crucial for some pricing purpose.

Particular choices of numéraire
We introduced in (1.25) the spot forward rate. Following the preceding discussion, it is natural
to consider the probability measure under which the forward rate is a martingale. Let θ ≤ T
be a maturity date. The θ-forward probability measure is associated to the numéraire
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(P (t, θ))t≤θ and is defined by the Radon-Nikodym derivative with respect to P∗:

dPθ
dP∗

∣∣Ft

=
P (t, θ)B(0)

P (0, θ)B(t)
=

P (t, θ)

P (0, θ)B(t)
, t ≤ θ. (A.19)

Combining (A.18) and (A.16) yields, for any price process (πt)t≤θ,

πt = P (t, θ)Eθ
[
πT
∣∣Ft] (A.20)

since P (θ, θ) = 1. Main advantage of this formula is that it only requires to know the distribution
of the price process (πt)t≤θ under the forward measure whereas pricing formula under P∗ requires
to know the joint distribution of (

∫ ·
0 rtdt, π·).

A second probability measure key for us comes from the forward swap rates (1.29). We
can take as numéraire the value of the portfolio composed of zero-coupon bonds of different
maturities that writes

n−1∑
i=m

(Ti+1 − Ti)P (t, Ti+1) =: BS(t). (A.21)

BS is usually named the annuity of the associated swap contract. The probability measure PS
associated to this numéraire is often called forward-swap measure and is such that

dPS
dP∗

∣∣Ft

=
BS(t)B(0)

BS(0)B(t)
, t ≤ Tm. (A.22)
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Appendix B

Detailed results on Monte-Carlo
frozen volatilities

Table B.1 gathers freezing errors for both Rebonato and Hull & White approximations with
parameters respectively obtained as outputs of calibration process. It is associated to Fig-
ure 2.2. Table B.2 presents results obtained under a fixed set of parameters and is associated
to Figure 2.3. Tables B.3 and B.4 present similar quantities in Black environment.

B.1 Bachelier environment

ATM swaptions volatilities (in %) - Rebonato freezing
Maturity Tenor Monte-Carlo M.-C. inf. M.-C. sup. Closed-form

5
5 0.5264 0.5199 0.5330 0.5350
10 0.5862 0.5794 0.5931 0.6024
20 0.5654 0.5597 0.5710 0.6024

15
5 0.4292 0.4246 0.4337 0.4454
10 0.5039 0.4991 0.5086 0.5328
20 0.4852 0.4813 0.4891 0.5425

25
5 0.5642 0.5596 0.5687 0.5796
10 0.5276 0.5236 0.5316 0.5445
20 0.4397 0.4366 0.4427 0.4612

ATM swaptions volatilities (in %) - Hull & White freezing
Maturity Tenor Monte-Carlo M.-C. inf. M.-C. sup. Closed-form

5
5 0.5231 0.5166 0.5295 0.5304
10 0.5913 0.5844 0.5982 0.6043
20 0.5917 0.5858 0.5976 0.6089

15
5 0.4303 0.4257 0.4348 0.4460
10 0.5118 0.5070 0.5166 0.5291
20 0.5066 0.5026 0.5106 0.5272

25
5 0.5676 0.5632 0.5721 0.5818
10 0.5346 0.5306 0.5385 0.5477
20 0.4535 0.4505 0.4566 0.4672

Table B.1: Details on the freezing error for both approximations.
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ATM swaptions volatilities (in %)
Maturity Tenor Monte-Carlo M.-C. inf. M.-C. sup. Rebonato Hull & White

5
5 0.5264 0.5199 0.5330 0.5350 0.5339
10 0.5862 0.5794 0.5931 0.6024 0.5988
20 0.5654 0.5597 0.5710 0.6024 0.5810

15
5 0.4292 0.4246 0.4337 0.4454 0.4442
10 0.5039 0.4991 0.5086 0.5328 0.5200
20 0.4852 0.4813 0.4891 0.5425 0.5039

25
5 0.5642 0.5596 0.5687 0.5796 0.5780
10 0.5276 0.5236 0.5316 0.5445 0.5401
20 0.4397 0.4366 0.4427 0.4612 0.4525

Table B.2: Freezing error under a fixed set of parameters.

B.2 Black environment

ATM swaptions volatilities (in %) - Rebonato freezing
Maturity Tenor Monte-Carlo M.-C. inf. M.-C. sup. Closed-form

5
5 0.5274 0.5223 0.5326 0.5255
10 0.5937 0.5881 0.5993 0.5952
20 0.5835 0.5785 0.5886 0.6067

15
5 0.5060 0.5015 0.5104 0.5083
10 0.5399 0.5355 0.5443 0.5549
20 0.5035 0.4998 0.5071 0.5473

25
5 0.5552 0.5511 0.5592 0.5597
10 0.5310 0.5273 0.5347 0.5392
20 0.4596 0.4566 0.4625 0.4752

ATM swaptions volatilities (in %) - Hull & White freezing
Maturity Tenor Monte-Carlo M.-C. inf. M.-C. sup. Closed-form

5
5 0.5243 0.5192 0.5295 0.5213
10 0.5999 0.5942 0.6056 0.5979
20 0.6120 0.6067 0.6172 0.6135

15
5 0.5106 0.5061 0.5151 0.5119
10 0.5515 0.5470 0.5560 0.5538
20 0.5280 0.5242 0.5318 0.5349

25
5 0.5592 0.5552 0.5631 0.5623
10 0.5379 0.5343 0.5414 0.5418
20 0.4730 0.4701 0.4760 0.4801

Table B.3: Details on the freezing error for both approximations.
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ATM swaptions volatilities (in %)
Maturity Tenor Monte-Carlo M.-C. inf. M.-C. sup. Rebonato Hull & White

5
5 0.5274 0.5223 0.5326 0.5255 0.5076
10 0.5937 0.5881 0.5993 0.5952 0.5826
20 0.5835 0.5785 0.5886 0.6067 0.6057

15
5 0.5060 0.5015 0.5104 0.5083 0.4868
10 0.5399 0.5355 0.5443 0.5549 0.5299
20 0.5035 0.4998 0.5071 0.5473 0.5195

25
5 0.5552 0.5511 0.5592 0.5597 0.5618
10 0.5310 0.5273 0.5347 0.5392 0.5491
20 0.4596 0.4566 0.4625 0.4752 0.4969

Table B.4: Freezing error under a fixed set of parameters.
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Appendix C

About density function of Itô’s
integrals

Lemma C.1. Let (Bt)t≥0 be a Brownian motion. Let us denote by FBt = σ(Bs, s ≤ t) the
filtration associated with B. Let φ := (φt)t≥0 be a stochastic process adapted to Fφ := (Fφt )t≥0,
independent of FBT and such as E

[ ∫ T
0 φ2

sds
]
<∞. Let x0 ∈ R. Let

X := x0 +

∫ T

0
φsdBs

and consider f a continuous bounded function. Then

E[f(X)|FBT ] =

∫
R
f(x)E

[ 1√
2πΣ(T )2

exp
(
− (x− x0)2

2Σ(T )2

)]
dx

where Σ(T )2 :=
∫ T
0 φ2

sds.

Proof. Consider first the case when P(Σ(T )2 > 0) = 1. Since φ ∈ H2 = L2
(
Prog([0, T ]×Ω), dt×

dP
)
, there exists a sequence of elementary processes (φn)n∈N belonging to (H2)N such that

lim
n→∞

E
[ ∫ T

0
(φns − φs)2ds

]
= 0.

By definition, for each n ∈ N, there exists pn ∈ N, 0 = t0 < t1 < · · · < tpn ≤ T and (φni )0≤i≤pn
that are square integrable, independent of FB and being such that

∀t ∈ [0, T ], φnt =

pn−1∑
i=0

φni 1]ti,ti+1](t).

where φni is Fφti -measurable for each i. For each n ∈ N,

∫ T

0
φnsdBs =

pn−1∑
i=0

φni (Bti+1 −Bti)

writes as the sum of products of independent random variables. Consequently,

E
[
f
(
x0 +

∫ T

0
φnsdBs

)
|Fφ

]
= ψ

(
φn0 , . . . , φ

n
pn−1

)
, almost surely,
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for all n ∈ N where we set ψ(y0, . . . , ypn−1) = E
[
f
(
x0+

√∑pn−1
i=0 y2i ×G

)]
with G a standardized

Gaussian variate independent of Fφ. And thus

E
[
f
(
x0 +

∫ T

0
φnsdBs

)
|Fφ

]
a.s.
=

∫
R
f(x)

e−(x−x0)2/2Σ(T,n)2√
2πΣ(T, n)2

dx (C.1)

where Σ(T, n)2 =
∑pn−1

i=0 (φni )
2 =

∫ T
0 (φns )

2ds. Furthermore, recall that the sequence of processes
(φn)n∈N converges in the Hilbert space H2; in particular,

‖φn − φ‖2H2 = E
∫ T

0
(φns − φs)2ds −−−−−→n→+∞

0.

Cauchy-Schwarz inequality twice and Minkowski one then imply

E
[ ∫ T

0

(
(φns )

2 − φ2
s

)
ds
]
≤ ‖φn − φ‖H2‖φn + φ‖H2 ≤ ‖φn − φ‖H2

(
‖φn‖H2 + ‖φ‖H2

)
hence the L1 convergence of the sequence of integrated processes

(∫ T
0 (φns )

2ds
)
n∈N

. One can

extract a subsequence
(∫ T

0 (φnk
s )2ds

)
k∈N

converging almost surely. In particular,

Σ(T, nk)
2 :=

∫ T

0
(φnk

s )2ds a.s.−−−→
k→∞

∫ T

0
φ2
sds = Σ(T )2.

Yet, since we have assumed the almost sure positivity of Σ(T ), we can assumed that for k large
enough, Σ(T, nk) is also almost surely positive: there exists K ∈ N such that for all k ≥ K,
P
(
Σ(T, nk)

2 > 0
)
= 1. For such k, a change of variable in the right hand side of (C.1) is possible

and yields

E
[
f
(
x0 +

∫ T

0
φnsdBs

)
|Fφ

]
a.s.
=

∫
R
f
(
x0 +Σ(T, nk)u

)e−u2/2√
2π

du.

On the one hand, f being continuous, f
(
x0 + Σ(T, nk)u

)
e−u2/2
√
2π

a.s.−−−→
k→∞

f(x0 + Σ(T )u) e
−u2/2
√
2π

for

all u ∈ R; on the other hand, f being bounded one has for all u ∈ R, |f
(
x0+Σ(T, nk)u

)
e−u2/2
√
2π
| ≤

‖f‖∞ e−u2/2
√
2π

and Lebesgue convergence theorem implies

∫
R
f
(
x0 +Σ(T, nk)u

)e−u2/2√
2π

du a.s.−−−→
k→∞

∫
R
f
(
x0 +Σ(T )u

)e−u2/2√
2π

du.

Moreover, the extracted subsequence
(∫ T

0 (φnk
s )2ds

)
k∈N

also converges in L2
(
Prog([0, T ] ×

Ω), dt× dP
)
. Itô’s isometry implies

E
[( ∫ T

0
φnk
s dBs −

∫ T

0
φsdBs

)2]
= E

[ ∫ T

0
(φnk

s − φs)2ds
]
−−−−→
k→+∞

0

and one can again extract a subsequence (φnk,p)p∈N such that the following almost sure conver-
gence holds: ∫ T

0
φ
nn,p
s dBs

a.s.−−−→
p→∞

∫ T

0
φsdBs.
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Then, thanks to the continuity of f , one has

f
(
x0 +

∫ T

0
φ
nn,p
s dBs

)
a.s.−−−→
p→∞

f
(
x0 +

∫ T

0
φsdBs

)
.

Lebesgue convergence theorem applied to the left hand side in (C.1) provides that

E
[
f

(
x0 +

∫ T

0
φ
nn,p
s dBs

)
|Fφ

]
−−−→
p→E

[
f

(
x0 +

∫ T

0
φsdBs

)
|Fφ

]
.

The claim is proved by unicity of the limit.
The case when P

(
Σ(T )2 = 0

)
= 1 is more direct. In that case, P (for almost every t ≥ 0 : φt = 0) =

1 implying that X a.s.
= x0 and X is constant equal x0 (almost surely). The formula given in the

statement of the lemma holds in this case by considering the following convergence understood
in term of distributions

e−(x−x∗)2/(2σ2)

√
2πσ2

−−−→
σ→0

δx∗(x)

where δx∗ is the Dirac measure of atom x∗.
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Appendix D

Regularity of the price function in
Heston model

For the sake of completeness, we provide here an adaptation of the proof of the regularity of
the price function used in Theorem 4.11 given in [ET10] in the particular case of the standard
Heston model.

Let (Ω,F ,P) be a probability space equipped with the filtration (Ft)t≥0. Consider the stock
price (or other financial quantity) process X whose spot value is X0 = x and dynamics is
modelled by

dXt = σ
√
VtdWt (D.1)

where the volatility process is defined as the solution of

dVt = κ(θ − Vt)dt+ ϵ
√
VtdBt, V0 = v. (D.2)

The processes W. and B. are two Brownian motions under the measure P with constant corre-
lation: d 〈W., B.〉t = ρdt for some ρ ∈ [−1, 1]. In particular, for all t > 0,

Xt
a.s.
= σ

∫ t

0

√
VudWu. (D.3)

Let T > 0 be a finite time horizon and let φ be a payoff function such that E[φ(XT )] <∞. The
time-t price of the European option delivering φ(XT ) in T is given by u(t,Xt, Vt) = E[φ(XT )

∣∣Ft]
where u(t, x, v) = E[φ(XT )|(Xt, Vt) = (x, v)]. The associated partial differential equation is

∂tf + Lf = 0 (D.4)

where we set
Lf =

1

2
v
∂2

∂x2
f + κ(θ − v) ∂

∂v
f +

1

2
ϵ2v

∂2

∂v2
f + ρϵxv

∂2

∂x∂v
f.

Assumption: The payoff function φ is bounded, twice differentiable on R+ and is such that
× 7→ xφ′(x) and x 7→ x2φ′′(x) are bounded. The purpose is to show that the price function u
satisfies the equation (D.4).

Proposition D.1. (t, x, v) 7→ u(t, x, v) is continuous over [0, T ]×
(
R+

)2.
Proof. Let (t, x, v) ∈ [0, T ]×

(
R+

)2. Let (τn, xn, vn) be a sequence converging towards (τ, x, v)
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where τ = T − t. Define the sequences of approximating processes as

dXn
t = σ

√
V n
t dWt

dV n
t = κ(θ − V n

t )dt+ ϵ
√
V n
t dBt,

starting from (x, v) for all n ∈ N. Following [BMO98], one has

E
[

sup
0≤t≤τ+γ

(Xn
t −Xt)

2
]
−−−−−→
n→+∞

0

where γ > 0 is such that τn ≤ τ +γ. Consequently, with Jensen’s inequality, Burkholder-Davis-
Gundy’s one and Hölder regularity of the square-root function, we get(

E
[ ∫ τn

0

√
V n
t dWt

]
− E

[ ∫ τ

0

√
VtdWt

])2

≤ 2

(
E
[ ∫ τn

0

(√
V n
t −

√
Vt
)
dWt

]2
+ E

[ ∫ τ

τn

√
VtdWt

]2)
≤ 2

(∫ τn

0
E
[∣∣V n

t − Vt
∣∣]dt+ ∫ τ

τn

E
[
Vt
]
dt
])
−−−−−→
n→+∞

0.

Using (D.3), it follows that (Xn
τn)n∈N converges towards XT in probability. Thus,

E
[
φ(Xτn)|

(
Xn

0 , V
n
0

)
= (xn, vn)

]
−−−→
n→∞

E
[
φ(Xτ )|

(
X0, V0

)
= (x, v)

]
with Lebesgue’s theorem

since φ is bounded. The result follows from fact that the point (x, v, τ) is arbitrary.

Proposition D.2. The option price u is C1,2,2
(
[0, T ) × R∗

+ × R∗
+

)
and satisfies ∂tu + Lu = 0

at all points (t, x, v) ∈ [0, T )× R∗
+ × R∗

+.

Proof. Let (t, x, v) ∈ [0, T )×R∗
+×R∗

+ and let D = (0, T )× (x1, x2)× (v1, v2) be a rectangle such
that (t, x, v) ∈ D. Since u is continuous thanks to the previous Proposition D.1, there exists a
unique solution ũ to the boundary value problem

∂tũ+ Lũ = 0 for (t, x, v) ∈ D,
ũ = u for (t, x, v) ∈ ∂0D

where ∂0D = ∂D \ {0} × (x1, x2)× (v1, v2). Thanks to Itô’s formula, one gets that the process
Yt = ũ(t,Xt, Vt) is martingale over [s, τD) where

τD = inf
{
t ≥ s : (t,Xt, Vt) 3 D

}
.

Thus,
ũ(t, x, v) = Yt = E

[
YT∧τD |(Xt, Vt) = (x, v)

]
= E

[
u
(
T ∧ τD, XT∧τD , VT∧τD

)
|(Xt, Vt) = (x, v)

]
= ũ(t, x, v)

by the strong Markov property. Finally, u = ũ over D and thus u ∈ C1,2,2
(
[0, T ) × R∗

+ × R∗
+

)
and satisfies ∂tu+ Lu = 0 on D. Since it true for any (t, x, v), the claim is proved.

242



Appendix E

Gradient vector of swaptions prices
in DD-SV-LMM and optimization
routines

The vector χ in Proposition 5.1 writes:

χ(Θ; z) := [χa(z), χb(z), χc(z), χd(z), χκ(z), χθ(z), χϵ(z), χρ(z)]
T

where χy denotes the partial derivative of φ with respect to the parameter y. Using that
χy(x) =

∂
∂xΨ(x; t, Sm,n0 , V0;Θ) and since Ψ(x; t, Sm,n0 , V0;Θ) is defined recursively with terminal

value Ψ(Θ;Xm,n(0), V0, Tm; z), one needs to compute ∂Ψ(x;t,Sm,n
0 ,V0;Θ)
∂x on each interval (τj , τj+1].

We will rather give the partial derivatives of Ψ at any time.

E.1 Partial derivatives of characteristic function
E.1.1 Partial derivative of Ψ with respect to θ

Since Aj(τ) and consequently also B(τ, z) are independant from θ for all t, the partial derivative
of Ψ with respect to θ writes:

∂Ψ(Xm,n(t), V (t), t; z)

∂θ
=
∂A(τ, z)

∂θ
Ψ(Xm,n(t), V (t), t; z).

The partial derivative of A(τ, z) is given by:

∂A(τ, z)

∂θ
=
∂A(τj , z)

∂θ
− κρ̃λz(τ − τj)

ϵ
+

2κ

ϵ2
Dj(τ)

since Dj(τ) is independant from θ.

E.1.2 Partial derivative of Ψ with respect to κ

The partial derivative of Ψ with respect to κ writes:

∂Ψ(Xm,n(t), V (t), t; z)

∂κ
=

[
∂A(τ, z)

∂κ
+ V0

∂B(τ, z)

∂κ

]
Ψ(Xm,n(t), V (t), t; z)
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with
∂A(τ, z)

∂κ
=
∂A(τj , z)

∂κ
− θρ̃λz(τ − τj)

ϵ
+

2θ

ϵ2
Dj(τ) +

2κθ

ϵ2
∂Dj(τ)

∂κ
,

∂B(τ, z)

∂κ
=
∂B(τj , z)

∂κ
− 1

V0

∂Aj(τ)

∂κ
,

where we set

∂Dj(τ)

∂κ
=

µ

ν2
+

1

2

(
1− µ

ν

)
(τ − τj)−

1

Ej(τ)

∂Ej(τ)

∂κ
,

1

Ej(τ)

∂Ej(τ)

∂κ
=

1

νV0A2
j (τ)

[
µ+ ν

(
1− ϵ2∂B(τj , z)

∂κ

)
tanh ν(τ − τj)

2

]
,

− 1

Ej(τ)
(ν − µ+ ϵ2B(τj , z))

µ

ν
(τ − τj)e−ν(τ−τj),

∂Aj(τ)

∂κ
=

1

Ã2
j (τ)

∂Ã1
j (τ)

∂κ
− Aj(τ)

Ã2
j (τ)

∂Ã2
j (τ)

∂κ
,

1

Ã2
j (τ)

∂Ã1
j (τ)

∂κ
=

1

A2
j (τ)

[
2 tanh ν(τ − τj)

2

(
µ
∂B(τj , z)

∂κ
− ϵ2B(τj , z))

∂B(τj , z)

∂κ
+B(τj , z)

)
+
µ(τ − τj)

2ν

(
B(τj , z)(2µ− ϵ2B(τj , z)) + λ2(z − z2)

) ]
,

1

Ã2
j (τ)

∂Ã2
j (τ)

∂κ
=

1

V0A2
j (τ)

[(
1 +

µ(τ − τj)
2

− ϵ2∂B(τj , z)

∂κ

)
tanh ν(τ − τj)

2

+
µ

ν

(
τ − τj

2
(µ− ϵ2B(τj , z)) + 1

)]
.

Note that in order to make the calculation of the partial derivative of Aj easier, we write Aj as
the ratio of Ã1

j and Ã2
j instead of A1

j and A2
j , where Ã1

j and Ã2
j are defined as:

Ã1
j (τ) = A1

j (τ) cosh ν(τ − τj)
2

,

Ã2
j (τ) = A2

j (τ) cosh ν(τ − τj)
2

.

This trick will be re-employed for other derivatives.

E.1.3 Partial derivative of Ψ with respect to ϵ

The partial derivative of Ψ with respect to ϵ writes:

∂Ψ(Xm,n(t), V (t), t; z)

∂ϵ
=

[
∂A(τ, z)

∂ϵ
+ V0

∂B(τ, z)

∂ϵ

]
Ψ(Xm,n(t), V (t), t; z)

with
∂A(τ, z)

∂ϵ
=
∂A(τj , z)

∂ϵ
+
κθρ̃λz(τ − τj)

ϵ2
− 4κθ

ϵ3
Dj(τ) +

2κθ

ϵ2
∂Dj(τ)

∂ϵ
,

∂B(τ, z)

∂ϵ
=
B(τj , z)

ϵ
− 1

V0

∂Aj(τ)

∂ϵ
,
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where

∂ξ

∂ϵ
=
ξ − 1

ϵ
,

∂µ

∂ϵ
=
µ− κ
ϵ

,
∂ν

∂ϵ
=
ν2 − κµ
ϵν

,

∂Dj(τ)

∂ϵ
=

1

ν

∂ν

∂ϵ
+

1

2

(
κ
∂ξ

∂ϵ
− ∂ν

∂ϵ

)
(τ − τj)−

1

Ej(τ)

∂Ej(τ)

∂ϵ
,

1

Ej(τ)

∂Ej(τ)

∂ϵ
=

1

V0A2
j (τ)

[
∂ν

∂ϵ
+

(
∂µ

∂ϵ
− 2ϵB(τj , z)− ϵ2

∂B(τj , z)

∂ϵ

)
tanh ν(τ − τj)

2

]
− 1

Ej(τ)
(ν − µ+ ϵ2B(τj , z))

∂ν

∂ϵ
(τ − τj)e−ν(τ−τj),

∂Aj(τ)

∂ϵ
=

1

Ã2
j (τ)

∂Ã1
j (τ)

∂ϵ
− Aj(τ)

Ã2
j (τ)

∂Ã2
j (τ)

∂ϵ
,

1

Ã2
j (τ)

∂Ã1
j (τ)

∂ϵ
=

1

A2
j (τ)

[
2 tanh ν(τ − τj)

2

(
µ
∂B(τj , z)

∂ϵ
− ϵ2B(τj , z)

∂B(τj , z)

∂ϵ
+
∂µ

∂ϵ
B(τj , z)

− ϵ(B(τj , z))
2

)
+
∂ν

∂ϵ

τ − τj
2

(
B(τj , z)(2µ− ϵ2B(τj , z)) + λ2(z − z2)

) ]
,

1

Ã2
j

∂Ã2
j

∂ϵ
=

1

V0A2
j

[
∂ν

∂ϵ

(
1 + (µ− ϵ2B(τj , z))

τ − τj
2

)
+ tanh

(ν(τ − τj)
2

)(
ν
∂ν

∂ϵ

τ − τj
2

+
∂µ

∂ϵ
− 2ϵB(τj , z)− ϵ2

∂B(τj , z)

∂ϵ

)]
.

E.1.4 Partial derivative of Ψ with respect to ρ

The partial derivative of Ψ with respect to ρ writes:

∂Ψ(Xm,n(t), V (t), t; z)

∂ρ
=

[
∂A(τ, z)

∂ρ
+ V0

∂B(τ, z)

∂ρ

]
Ψ(Xm,n(t), V (t), t; z)

with
∂A(τ, z)

∂ρ
=
∂A(τj , z)

∂ρ
− κθλρ̃z(τ − τj)

ϵρ
+

2κθ

ϵ2
∂Dj(τ)

∂ρ
,

∂B(τ, z)

∂ρ
=
∂B(τj , z)

∂ρ
− 1

V0

∂Aj(τ)

∂ρ
,
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where

∂µ

∂ρ
=
µ− κ
ρ

,
∂ν

∂ρ
=
µ

ν

∂µ

∂ρ
,

∂Dj(τ)

∂ρ
=

1

ν

∂ν

∂ρ
+

1

2

(
κ
ξ − 1

ρ
− ∂ν

∂ρ

)
(τ − τj)−

1

Ej(τ)

∂Ej(τ)

∂ρ
,

1

Ej(τ)

∂Ej(τ)

∂ρ
=

1

V0A2
j (τ)

[
∂ν

∂ρ
+

(
∂µ

∂ρ
− ϵ2∂B(τj , z)

∂ρ

)
tanh ν(τ − τj)

2

]
− 1

Ej(τ)

∂ν

∂ρ
(τ − τj)(ν − µ+ ϵ2B(τj , z))e

−ν(τ−τj),

∂Aj(τ)

∂ρ
=

1

Ã2
j (τ)

∂Ã1
j (τ)

∂ρ
− Aj(τ)

Ã2
j (τ)

∂Ã2
j (τ)

∂ρ
,

1

Ã2
j (τ)

∂Ã1
j (τ)

∂ρ
=

1

A2
j (τ)

[
2 tanh ν(τ − τj)

2

(
µ
∂B(τj , z)

∂ρ
− ϵ2B(τj , z)

∂B(τj , z)

∂ρ
+B(τj , z)

∂µ

∂ρ

)
+
∂ν

∂ρ

τ − τj
2

(
B(τj , z)(2µ− ϵ2B(τj , z)) + λ2(z − z2)

) ]
,

1

Ã2
j (τ)

∂Ã2
j (τ)

∂ρ
=

1

V0A2
j (τ)

[(
1 + (µ− ϵ2B(τj , z))

τ − τj
2

)∂ν
∂ρ

+
(
ν
∂ν

∂ρ

t− Tj
2

+
∂µ

∂ρ
− ϵ2∂B(τj , z)

∂ρ

)
tanh ν(τ − τj)

2

]
.

E.1.5 Partial derivatives of Ψ with respect to a, b, c and d

One can observe that only γk(τ) depends on the parameters a, b, c et d, which means that the
derivatives of the characteristic function with respect to these parameters are close from each
other. Consequently, we group the four partial derivatives in this section. Let x ∈ {a, b, c, d},
the partial derivative of Ψ with respect to x writes

∂Ψ(Xm,n(t), V (t), t; z)

∂x
=

[
∂A(τ, z)

∂x
+ V0

∂B(τ, z)

∂x

]
Ψ(Xm,n(t), V (t), t; z)

with
∂A(τ, z)

∂x
=
∂A(τj , z)

∂x
− κθz(τ − τj)

ϵ

∂(ρ̃λ)

∂x
+

2κθ

ϵ2
∂Dj(τ)

∂x
,

∂B(τ, z)

∂x
=
∂B(τj , z)

∂x
− 1

V0

∂Aj(τ)

∂x
,
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where

∂(ρ̃λ)

∂x
=

n−1∑
k=m

wk(0)
∂‖γk(τ)‖

∂x
ρk(τ),

∂ξ

∂x
=
ϵ

κ

n−1∑
k=m

αk(0)
k∑

l=m(τ)

∆Tl(Fl(0) + δ)ρl(τ)
∂‖γl(τ)‖
∂x

1 + ∆TlFl(0)
,

∂µ

∂x
= κ

∂ξ

∂x
− ϵz ∂(ρ̃λ)

∂x
,

∂λ2

∂x
= 2

〈
n−1∑
k=m

wk(0)
∂γk(τ)

∂x
,

n−1∑
k=m

wk(0)γk(τ)

〉
,

∂ν

∂x
=

1

ν

(
∂µ

∂x
µ+

1

2

∂λ2

∂x
ϵ2(z − z2)

)
,

∂Dj(τ)

∂x
=

1

ν

∂ν

∂x
+

1

2

(
κ
∂ξ

∂x
− ∂ν

∂x

)
(τ − τj)−

1

Ej(τ)

∂Ej(τ)

∂x
,

1

Ej(τ)

∂Ej(τ)

∂x
=

1

V0A2
j (τ)

[
∂ν

∂x
+

(
∂µ

∂x
− ϵ2∂B(τj , z)

∂x

)
tanh ν(τ − τj)

2

]
− 1

Ej(τ)

∂ν

∂x
(τ − τj)(ν − µ+ ϵ2B(τj , z))e

−ν(τ−τj),

∂Aj(τ)

∂x
=

1

Ã2
j (τ)

∂Ã1
j (τ)

∂x
− Aj(τ)

Ã2
j (τ)

∂Ã2
j (τ)

∂x
,

1

Ã2
j (τ)

∂Ã1
j (τ)

∂x
=

1

A2
j (τ)

[
2 tanh ν(τ − τj)

2

(
µ
∂B(τj , z)

∂x
− ϵ2B(τj , z)

∂B(τj , z)

∂x
+B(τj , z)

∂µ

∂x

+
1

2

∂λ2

∂x
(z − z2)

)
+
∂ν

∂x

τ − τj
2

(
B(τj , z)(2µ− ϵ2B(τj , z)) + λ2(z − z2)

) ]
,

1

Ã2
j (τ)

∂Ã2
j (τ)

∂x
=

1

V0A2
j (τ)

[(
1 + (µ− ϵ2B(τj , z))

τ − τj
2

)
∂ν

∂x

+

(
ν
∂ν

∂x

τ − τj
2

+
∂µ

∂x
− ϵ2∂B(τj , z)

∂x

)
tanh ν(τ − τj)

2

]
.

E.2 On the Levenberg-Marquardt algorithm
In this section, we detail the classic Levenberg-Marquardt algorithm and the extended version
handling bound constraints.

E.2.1 Standard Levenberg-Marquardt algorithm
In Algorithm 2, the function L corresponds to the value of the objective function F in Θk+1

when the residuals are approximated by a first order Taylor expansion. Mathematically, we
have:

F (Θk + d) ' L(d) = 1

2
‖f(Θk) + J(Θk)d‖2 .

Hence, L(0) − L(d) can be interpreted as the gain predicted by a linear model. It is easy to
check that this quantity is always positive.
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Algorithm 2: Levenberg-Marquardt algorithm
Input: Θ0, F , f , J , L, ϵ1, ϵ2, ϵ3, kmax, τ

1 begin
2 k ← 0; ν ← 2
3 A← J(Θ0)

TJ(Θ0); g ← J(Θ0)
Tf(Θ0)

4 found ← (F (Θk) ≤ ϵ1 or ‖g‖∞ ≤ ϵ2); µ← τ maxi{aii}
5 while !(found) and k < kmax do
6 Solve (A + µI)d = −g
7 if ‖d‖2 ≤ ϵ23 ‖Θk‖2 then
8 found ← true
9 end

10 else
11 Θk+1 ← Θk + d
12 if F (Θk)− F (Θk+1) > 0 and L(0)− L(d) > 0 then
13 η ← (F (Θk)− F (Θk+1))/(L(0)− L(d))
14 A← J(Θk+1)

TJ(Θk+1); g ← J(Θk+1)
Tf(Θk+1)

15 found ← (F (Θk+1) ≤ ϵ1 ou ‖g‖∞ ≤ ϵ2)
16 µ← µmax{13 , 1− (2η − 1)3}; ν ← 2

17 end
18 else
19 µ← µν; ν ← 2ν
20 end
21 end
22 k ← k + 1

23 end
24 end

The quantity η (appearing first in line 13 of the routine above) allows to measure how good
the approximation of F (Θk + d) by L(d) is. A large value of η indicates that L(d) is a good
approximation of F (Θk+d), whereas a small value of η indicates the contrary. In the first case,
µ is decreased in order to imitate the Gauss-Newton algorithm behaviour; in the second case,
µ is increased in order to imitate the behaviour of the steepest descent method.

As regards the updating strategy of the damped parameter, we use the one introduced in
[N+99].

E.2.2 Extended Levenberg-Marquardt algorithm handling bound constraints
We present an extension of the classic Levenberg-Marquardt algorithm which can handle bound
constraints. This extension was first proposed by [KFY02].

Let us denote by PX the projection onto the feasible set X (which in the framework of the
DDSVLMM is equal to (R+)

4 × (R∗
+)

3×] − 1; 1[). With respect to the Algorithm 2, only the
lines from 11 to 20 must be modified. They must be replaced by the following ones.

The parameters γ, β and σ are empirically fixed parameters in (0, 1).
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Algorithm 3: Extended Levenberg-Marquardt algorithm
1 Θk+1 ← PX(Θk + d); d← Θk+1 −Θk

2 if F (PX(Θk+1)) ≤ γF (Θk) then
3 if F (Θk)− F (Θk+1) > 0 and L(0)− L(d) > 0 then
4 η ← (F (Θk)− F (Θk+1))/(L(0)− L(d))
5 A← J(Θk+1)

TJ(Θk+1); g ← J(Θk+1)
Tf(Θk+1)

6 found ← (F (Θk+1) ≤ ϵ1 ou ‖g‖∞ ≤ ϵ2)
7 µ← µmax{13 , 1− (2η − 1)3}; ν ← 2

8 end
9 else

10 µ← µν; ν ← 2ν
11 end
12 end
13 else if ∇F (Θk+1)

Td ≤ 0 then
14 Perform a line search, i.e. look for α such that F (PX(Θk + αd)) is reasonably lower

than F (Θk)
15 end
16 else
17 Apply a projected gradient step, i.e. compute t = maxl∈N βl such that

F (PX(Θk − tg)) ≤ F (Θk) + σ∇gT (PX(Θk − tg)−Θk)
18 end
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