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Preface 
 

This PhD is part of a CIFRE (Conventions Industrielles de Formation par la Recherche) program 

between the company ROQUETTE FRERE (Lestrem, France) AgroParisTech (Paris, France), the 

Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) and 

funded by the Association Nationale de la Recherche et de la Technologie (ANRT-Ministry of Higher 

Education and Research, ANRT-CIFRE 2017/0815). The AgroParisTech/INRAe partner laboratory of 

this project is the SayFood Joint Research Unit (Paris-Saclay Food and Bioproduct Engineering). 

 

Founded in 1933, Roquette Frères is a French agro-industrial group with an international scope in the 

starch industry (roquette.com). It has 21 production sites in 13 countries and 8,000 employees. Roquette 

is a supplier to a large number of customers such as Nestlé, Danone and Wrigley. In 2016, its turnover 

amounted to 2 billion Euros. Roquette transforms 5 renewable resources (maize, wheat, potatoes, peas 

and microalgae) to develop a range of more than 700 derived products including polyols, sugars and 

proteins. These products are used in pharmacy, cosmetology, bio-industry, paper and cardboard 

industry, but also in animal nutrition and human nutrition. One of their challenges for the next few years 

is the development of a functional and sensory pleasant pea protein fraction for the development of a 

new range of products or the improvement of the existing range. 

 

The SayFood Joint Research Unit (Grignon, France) is a joint research unit in co-supervision with 

AgroParisTech and INRAE. AgroParisTech, is a higher education teaching and research institute in the 

fields of agronomic sciences and techniques, the agri-food sector, forestry, management of spaces and 

natural resources, land management and development. Its mission is to train high level students and to 

advance scientific knowledge, in close association with public and private research centres 

(agroparistech.fr). INRAE is Europe’s top agricultural research institute and the world’s number two 

centre for the agricultural sciences (institut.inrae.fr). Its scientists are working towards solutions for 

society’s major challenges linked to four main domains, food, nutrition, agriculture and the environment.  

The SayFood Unit is interested in the control of the physical and biological processes that govern food 

transformations with a view to delivering knowledge and tools to assist in the development of quality 

products. In particular, this unit is interested in the mechanisms of degradation of the food in the mouth 

(buccal and pharyngeal phases) and the modelling of the release kinetics of the associated target 

compounds (nutrients or stimuli responsible for perceptions). It combines an experimental 

multidisciplinary approach including modelling, in order to better understand the roles of the food (its 

composition and its structure) and of the individual (oral physiology) on the kinetics of release of the 

target molecules and perception. For several years now, it has been presenting an expertise on pea 

protein and its flavour thanks to its involvement in research projects around pulses and plant proteins. 

 

In addition, research works were produced in collaboration with INRAE scientific platforms: the 

polyphenol platform (Montpellier, France) and the Plateforme d'Analyse Protéomique de Paris Sud-

Ouest (PAPPSO, Jouy, France).  

 

Because of the structural diversity, characterisation of phenolic compounds in plants and plant based 

food and non-food products, requires an integrated analytical approach. In this context, the polyphenol 

platform offers analytical, methodological and technical help, as well as expertise in mass spectrometry, 

nuclear magnetic resonance and chemometrics for structural characterisation, quantification, high 

throughput analysis of large series of samples. Within the framework of this PhD project, this platform 

has helped to set up a method for the characterization of phytochemical compounds in pea protein 

isolates and the identification of these compounds. 

 

The Plateforme d'Analyse Protéomique de Paris Sud-Ouest (PAPPSO facility) provides research teams 

with equipment, skills and expertise in the field of proteomics, to allow them to respond to the most 

simple questions (identification of proteins from an organism the genome of which is entirely 

sequenced) as well as to complex questions (protein quantification in complex samples, dynamics of 
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post-translational modifications,…) in the framework of collaborative projects and contracts. PAPPSO 

is specialized in high throughput proteomics (quantitative analysis of large cohorts of samples) and in 

the analysis of highly complex samples (metaproteomics). The platform develops bioinformatics tools 

that allow the processing of these experiments and provides assistance to users for data interpretation. 

The PAPPSO platform (http://pappso.inra.fr) is supported by INRAE (http://www.inrae.fr); the Ile-de-

France regional council (https://www.iledefrance.fr/education-recherche); IBiSA 

(https://www.ibisa.net); and CNRS (http://www.cnrs.fr). Within the framework of this PhD project, this 

platform has helped to identified peptides from pea protein isolate samples. 

 

In addition, the following manuscript is built on "articles". Each of the result parts constitute either a 

published article or a draft article that will be submitted. These parts can therefore be read independently. 

They have a classical structure: introduction, materials and methods, results and discussion, conclusion 

and perspectives. Besides, an overall “materials and methods” part is presented before the results part. 

Its purpose is not to be redundant with the “materials and methods” of each part of the results, but to 

give some complements of the methods used during this PhD.  
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General introduction 
 
Food is one of the main levers for optimizing human health and the sustainability of food systems 

(Willett et al., 2019). Proteins are essential nutrients in our diet, with a role in protein synthesis for the 

body. On a global scale, an increase in protein demand caused by population growth (projected at 10 

billion people by 2050) is observed. Today, the majority of proteins available for human consumption 

come from cereals (40%), meat (18%), milk (10%), plant and pulses (10%) and aquatic animals (7%) 

(FAOSTAT, 2019). In Western countries, animal protein consumption has not stopped increasing since 

the beginning of the 19th century and during the 20th, representing today about 60 to 70% of protein 

intake in France (Anses, 2017). In emerging countries (Asia, South America and Africa), a significant 

increase in demand for animal products is expected to possibly conduct to a doubling of meat 

consumption in the world within 15 years (Guillevic et al., 2017). 

 

However, there is a growing awareness of the environmental impacts of animal farming and the health 

consequences of high consumption of meat products. This awareness has led to a quest for more plant-

based diets and more sustainable agriculture and processing. Many prospective studies, focusing on the 

challenge of demographic growth show that a transition towards food system by 2050 will require 

significant changes in sustainable diets. They highlight the need to change the relative part of animal 

and plant products in diets. For instance, the Agrimonde 2050 prospective proposes a "healthy" scenario 

including the partial substitution of meat by pulse proteins in diets, which would allow the improvement 

of nutritional quality (Le Mouël and Mora, 2019). In occidental countries, a decrease in meat 

consumption is already observed, for health as for ethical reasons. In France, it is recommended to have 

a diet rich in plant products and to limit animal food products (PNNS, 2019). This transition to healthy 

diets will have to be addressed by increasing and diversifying the food supply of plant-based foods, 

particularly pulse-based foods. 

 

A direct consequence of these dietary trends is the increase of plant protein production with a global 

increase in the pulse harvest area (from 4.1 Mha in 2006 to 5.7 Mha in 2018, FAOSTAT, June 2020) 

and pulse production (from 3,200 kt in 2006 to 4,300 kt in 2018, FAOSTAT, June 2020). Pulses are 

protein-rich seeds with an indispensable amino acid profile complementary to cereals. Cereals are 

deficient in lysine and rich in sulphur amino acids, while pulses are deficient in sulphur amino acids and 

rich in lysine. Mixing the two raw materials within a diet can thus improve their protein quality for both 

animal and human consumption. Moreover, pulse crops have strong agronomic interest when they are 

inserted between other crops within crop rotations, or when they are grown in association with cereals. 

Indeed, they reduce the amount of nitrogen needed by crops by fixing atmospheric nitrogen, as well as 

the use of pesticides by creating a physical barrier to the spread of pests (Siddique et al., 2012). Among 

pulses, yellow field pea (Pisum Sativum L.) has received much attention. In France, yellow field pea is 

the most widely produced grain pulse: 154,200 ha were cultivated in 2019, mainly in the northern part 

of France, compared to 137,200 ha in 2014 (CAP 2019). 

 

Another consequence of these dietary trends is the modification of the plant industrial sector. At the end 

of 2016, the "Protéines France" collective have undertaken to implement a strategic development 

program in terms of research, investment and support for the industry in order to make France a world 

leader in proteins. The design of new foods enriched with plant proteins has also been targeted by 

companies. Many industrials are investing massively worldwide to develop sites capable of producing 

plant proteins in large quantities. This is notably the case of Roquette Frère, which opened in 2020 the 

world's largest pea protein plant in Manitoba, Canada; or of Cargill which, first implemented in the 

Americas, is now expanding its portfolio of pea protein ingredients in Europe and in Asia. But also 

Nestlé, which has invested massively in China in plant substitutes; or Unilever, which has built a large 

food innovation centre at the University of Wageningen in the Netherlands in particular to support 

research on plant ingredients and meat substitutes. 

 

In France, peas are commonly used in animal feed, representing 10% of feed for poultry and 20% of 

feed for growing pigs, but they are also increasingly used for human food. The increase interest of pea 



GENERAL INTRODUCTION                                                                                                                    A. COSSON 

 

 27 

protein-based ingredients is also due to their low allergenicity, high nutritional value and restauration in 

the amino acid balance of cereal-based diets. Their proteins also have functional properties useful in 

food formulation: they promote emulsification, foaming, gelling and whipping properties (Adebiyi & 

Aluko, 2011; Gharsallaoui et al., 2009). These valuable properties also explain why these products are 

used in the formulation of many foods. For example, they are used in sports nutrition and to replace 

casein and whey protein in fermented and unfermented dairy products (Akin & Ozcan, 2017). They can 

be used as substitutes for egg protein (Hoang, 2012); they can help to enrich protein levels in baked 

foods, cereals and snacks (Philipp et al., 2017). They can also improve cooking efficiency, water/fat 

bonding and slicing ability of processed meat or fish (Baugreet et al., 2016). They are also emerging as 

an alternative ingredient in specialty foods, such as gluten-free products (Mariotti et al., 2009) and infant 

formula (Le Roux et al., 2020). Within these products their concentrations vary widely (from 1% to 

50%, with a median of 5%, Open Food Facts, 2019). 

 

However, pulses are still struggling to expand in human diet due to lack of appeal and convenience for 

consumption. In particular, they are still strongly constrained by sensory off-notes (Roland et al., 2017). 

Described as unpleasant or undesirable odours and tastes, they have often been reported in many plant 

products, particularly in pea proteins based-products (Trikusuma et al., 2020; Bi et al., 2020; Gläser et 

al., 2020; Murat et al., 2013; Humiski et aluko., 2007). Three main types of off-notes are associated 

with plant proteins: beaniness, bitterness and astringency. They are either intrinsic to the seed, or 

generated during the various stages of fractionation of raw materials (Murat et al., 2013) or during the 

final processing of the product. However, each of these notes has been studied separately leading clearly 

to a lack of knowledge to understand mechanisms at the origin of these perceptions in plant protein 

isolates. The main research works were focused mainly on the role of volatile aroma compounds in 

creating sensations of beaniness. Some phytochemical compounds have also been identified to 

contribute to astringency but literature concerns seeds or flour but not protein isolates. No studies used 

a more global approach to examine how the complex perception of pea protein isolates arises from both 

volatile and non-volatile compounds and their potential interactions. A lack of knowledge is clearly 

identified. In addition, if in the literature, works exist on the sensory and physico-chemical interactions 

that can modulate the perceptions of bitterness and astringency, the kinetics and dynamics of perceptions 

remain little studied in the case of products based on plant proteins, making it difficult to predict the 

dynamics of perceptions of pea proteins-based products. Thus, these off-notes constitute one of the main 

limits for the development of products enriched in plant proteins. 

 

Therefore, the research question of this doctoral project falls within this context: “What are the main 

physical, chemical and sensory mechanisms that explain the sensory notes of pea protein isolates?” 

More precisely, the objective of the PhD is to acquire knowledge on perception of pea protein isolates 

(beany, bitter, astringent) in relationship with their composition as well as dynamic perceptions when 

consuming formulated products enriched with pea protein isolates. Pea protein isolates have been chosen 

as a "model" plant protein on the basis of its sensory off-notes very often highlighted in the literature, 

and for the growing interest of food industry in this protein. In order to meet these doctoral objectives, 

this work proposes to combine knowledge from three main disciplines that have been applied to this 

product: sensory analysis, chemical analysis and statistical analysis. 

 

The first chapter of this manuscript is devoted to the state of the art of current knowledge on the 

mechanisms behind the sensory perceptions of pea protein isolates. These sensory perceptions resulting 

from consumption, as well as the methods used to study them, are detailed in the first part. Then, the 

main compounds at the origin of these perceptions are presented along with the methods used to study 

them. The third part of the state of the art deals with the experimental and statistical approaches used to 

study sensory mechanisms by linking sensory and instrumental data sets. Finally, the proposed approach 

to answering the research question is given in the final section. 

 

The second chapter of the manuscript details the materials and methods used during the different phases 

of this PhD project. Although the result section of this manuscript summarizes the specific materials and 

methods used, this chapter outlines in particular the methodological choices. It is organized by themes, 

such as products, sensory methods, instrumental methods and statistical methods.  
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The third chapter of the manuscript presents the results. It is composed of four sections including results 

presented as papers (already published or to be submitted). 

 

The distinct and persistent flavour of pea proteins calls into question their sensory evaluation and 

requires the adaptation of classical sensory methods. In addition, the apparent complexity of 

mechanisms at the origin of off-flavours in pea protein isolates calls for the establishment of an adapted 

strategy. Thus, the purpose of the first section of results is to present the adaptations of sensory profiling 

which have been made to describe the sensory perceptions of pea protein isolates; and the experimental 

strategy based on an experimental design which have been developed to create a “controlled diversity” 

of products. 

 

The recent development of analytical technologies (modern mass spectrometry and bioinformatics) 

makes it possible a more precise identification of chemical compounds of pea protein isolates. Thus, the 

purpose of the second section of results is to determine the chemical characteristics of pea proteins 

solutions and to identify first links between these compounds and pea perceptions. Volatile compounds, 

peptides, and phytochemical compounds were studied. 

 

The aim of the third section of results is to go further in understanding the complex and combined role 

of volatile and non-volatile compounds (peptides, phytochemicals) on overall perceptions of pea protein 

isolates. It concerns the construction of a statistical model taking into account all the different chemicals 

and the identification of their relative contribution to perceptions. 

 

Beyond the chemical composition of the food, its structure and texture could also influence the dynamics 

of perception. Thus, as a final point, the purpose of the fourth section of results is to determine how the 

sensory perceptions of pea protein isolates are affected by the formulation as well as the consumption 

of a whole product. Among the different pea applications, pea beverages were studied, varying in their 

level of salt, fat, thickeners and type of proteins. 

 

The fourth chapter provides a synthesis and discussion of the main findings of this PhD work, in 

particular on the knowledge sharing between solutions and beverages and the impact of inter-individual 

variability on perceptions. Finally this manuscript ends with general conclusions which bring 

recommendations to reduce pea protein-based products off-notes, and possible perspectives to deepen 

the knowledge acquired on the sensory mechanisms at the origin of these off-notes. 
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State of the art 
 

Introduction 

Pea protein isolates are promising food ingredients for the development of new products, more 

sustainable and more appreciate than animal protein based ingredients. Pea protein isolates are a powder 

obtained from yellow field pea seed (Pisum Sativum L), after selective extraction of protein fraction. 

Pea seed are constituted of starch (30-50% w/w of dry matter), proteins (20-25%), fibres (10-15%) and 

lipids (2%). Proteins are found in the endosperm as well as in the cotyledons. These proteins have 

different function in the seed: structural proteins, biologically active proteins and reserve proteins. Pea 

proteins are characterized by a high lysine content and a relative deficiency of sulphur amino acids and 

threonine in relation to food requirements. Like all legume proteins, they are made up of three classes 

of proteins: globulins, albumins and glutelins, so-called 'insoluble' proteins (Crevieu-Gabriel, 1999). 

The first two fractions were initially characterized by their solubility in water and in saline medium 

respectively. Globulins represent 50 to 65% of total proteins. They are the main reserve proteins of the 

seed. Albumins represent 20 to 25% of total proteins. They are rich in lysine and sulphur amino acids, 

particularly methionine. Numerous factors as the pea variety, the farming practices, the soil, the climate 

or the dates of harvest can influence the protein content of the pea seed. For example, a study on 59 

different varieties of peas showed that the protein composition on a dry basis ranged from 13.7 to 30.7% 

(Tzitzikas et al., 2006). 

 

Pea proteins can then be prepared in three forms: pea flour (about 20% of proteins), pea protein 

concentrate (38% - 65% of proteins), and pea protein isolate (80% - 90 % of proteins). Pea flour is 

produced by dry milling of dehulled peas. Pea protein concentrate can be produced through the acid 

leaching procedure traditionally used to produce soy protein concentrates, or through dry separation 

methods which are more economical (Owusu-Ansah & McCurdy, 1991). The dry process, or air-

classification, consists in a grinding and then a turbo separation. It allows obtaining a protein extract 

composed of 38% to 65% of proteins and allows a good separation of the starches and the proteins 

(Pelgrom et al., 2015). The wet process consist on two main steps (Schutyser et al., 2015). The objective 

of the first step is to recover proteins. It consists in solubilizing the proteins and separating them by 

centrifugation from the carbohydrates. In the second step, the proteins are concentrated and purified 

from the other constituents, which can be done in two ways. Either the soluble non-protein molecules 

of low molecular weight are separated from the proteins by ultrafiltration, or the proteins are precipitated 

by lowering the pH of the mixture to their isoelectric point. Water washing, centrifugation, neutralization 

and drying steps are then carried out to purify the proteins of the last undesirable constituents. These 

steps make it possible to obtain isolates with 80% - 90 % of proteins. During these processes, glutelins 

are eliminated. It results a composition of pea protein isolates with mainly globulins and some albumins 

left. Pea protein isolates also still contains some lipids, carbohydrates, minerals, and other small 

compounds (e.g., phenolics), which are the products of seed metabolism. Figure 1. presents the pea 

protein isolates extraction process of Roquette commercial pea protein isolates (Murat et al., 2013). 

 
Figure 1.: Schematic description of the pea protein extraction process adapted from Murat et al., 

2013. 
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Pea protein isolates are used in numerous industrial recipes for human consumption. They offer high 

nutritional and technological functions for many types of foods, from dietary supplements, bakery to 

meat alternative. This wide variety of products leads to a wide range of sensory properties. The latter 

are known to be key factors in determining consumer acceptability and preferences. A challenge 

remains: pea-protein-based products are usually described as having strong sensory off-notes notes, 

which makes them less desirable to consumers and limit their use. Three main types of off-notes are 

associated with pea proteins: beaniness, bitterness and astringency. 

 

Thus, the objective of the first part of this literature review is to identify the shared sensory perceptions 

of pea protein-based products. Pea off-notes being multimodal, we will first describe the physiological 

mechanisms at the origin of aromatic, sapid and somesthesic perceptions and describe these perceptions 

in pea protein-based products. Then the different sensory methods used in the literature for this type of 

product and their relevance will be discussed. Finally, the impact of the oral process and of the 

interactions on these perceptions will be presented. 

 

The second objective of this state of the art is to identify the main chemical compounds present in pea 

protein isolates. We have chosen to focus on volatile compounds, protein and peptides, on 

phytochemical compounds. We will particularly detail their characteristics in pea protein isolates, the 

analytical methods and associated bioinformatics tools used to study them as well as their roles on pea 

protein perceptions. In addition, the role of other compounds (e.g. minerals and carbohydrates) on 

perception will be discussed. 

 

The third objective of this state of the art is to understand the strategies used in the literature to lead to 

a better understanding of the mechanisms behind perceptions. An overview of the different strategic 

approaches used to link chemical and sensory datasets will be presented. Experimental and statistical 

approaches will be discussed. 

 

Finally, the objectives of PhD project will be presented in a last part. 
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1.1. Perceptions generated by pea-based products 

 
Human perceptions are the results of complex sensory and interpretation processes. When a food product 

is consumed, its properties of texture, aroma, taste and its trigeminal properties generate stimuli that will 

determine its perception, its acceptability to consumers and contribute to the development of their 

preferences.  

 

Food consumption is also a multi-modal and dynamic experience for consumers. In the case of  pea 

protein based-products, their perceptions are often described with "beany" notes, but also with bitter and 

astringent notes (Bott & Chambers, 2006; Humiski & Aluko, 2007). This three sensations are the subject 

of this first part of the state of art, which is followed by a presentation of the main sensory methods used 

in the literature to characterise this type of plant product and their relevance are discussed. Finally, a 

synthesis of the works about the role of the food oral processing on the dynamic of perceptions are 

presented. 

 

1.1.1. Aroma, sapid and somesthesic perceptions of pea based-products 

 
1.1.1.1. Physiology of aroma perceptions 

Aroma perception results to the activation of olfactory receptors present in the olfactory epithelium in 

the nasal cavity of humans by volatile compounds. These last can generate olfactory nerve stimulus and 

signal transmission via the olfactory bulb to the brain (Figure 1.1.1.). Volatile compounds are either 

inhaled through the nose and interact with the olfactory system directly, then we are talking about the 

orthonasal way, or they initiate the sensory process of odour recognition in mouth, flowing from the 

mouth through the back of the throat reaching the nasal cavity through the pharynx, via the retronasal 

way (Bojanowski & Hummel, 2012). Olfactory perception originates from the interaction between the 

volatile chemical compounds and the olfactory neurons located in the olfactory epithelium. Odorant 

compounds generally have a fairly marked hydrophobic character and their transport to the olfactory 

receptors must take place through the olfactory mucus that covers the epithelium and in which odorants 

are very poorly soluble. 

  

Olfactory receptors are carried in the cilia of dendritic end of each olfactory neuron. About 350 of 

receptor types (G-protein coupled receptors) are active in humans. They receive the chemical signal 

outside the cell and transfer it inside by activating the associated G protein. The latter then initiates the 

production of secondary chemical messengers, notably cyclic MPA, whose action triggers the opening 

of the cell's ion channels. The resulting flow of ions causes a change in the polarization state of the 

membrane. And so the transmission of nerve impulses. Olfactory neurons converge to the mitral cells. 

The clusters of these synaptic connections are the glomeruli. The axons of the mitral cells will then 

ensure the connections with the olfactory cortex (Buck et Axel, 1991).  

 

It has been established that a given olfactory neuron expresses only one type of receptor, that each type 

of receptor has more or less strong affinity for several odorants and that, correlatively, an odorant 

compound can activate several receptors. Consequently, different odorants activate distinct sets of 

olfactory receptors more or less intensely, which may nevertheless partially overlap.  Odour recognition 

is therefore similar to pattern recognition and we can speak of an olfactory image projected within the 

olfactory bulb. The high number of types of olfactory receptors, the combinatorial nature of the 

information and the "pattern recognition" aspect make it possible to understand that we are able to 

distinguish the smell from an incredibly high number of different compounds. It has been speculated 

that the humans can discriminate more than 1 trillion olfactory stimuli (Bushdid et al., 2014). Natural 

olfactory stimuli are almost always mixtures of large numbers of diverse volatile compounds at different 

concentrations. The characteristic aroma of a wine, for example, is produced by a mixture of more than 

100 compounds, although typically only a small number of compounds contribute to the perceived 

flavour (Francis & Newton 2005). In order to make these stimuli explicit, sensory attributes are 

commonly used by individuals. 
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Figure 1.1.1.: Anatomy of the olfactory system (adapted from Buck et Axel, 1991). 

 

In addition, the perception of volatile compounds varies between individuals. For example, in a study 

in Germany, among 1312 participants, 3.6 % were found functionally anosmic (decrease or complete 

loss of sense of smell) and 18% had olfactory dysfunction (Vennemann et al., 2008). The most common 

anosmia is musky odour. It affects about 10% of the population (Triller et al., 2008). These differences 

can be due to genetic factors or to smell dysfunction (aging, sinunasal disease, head trauma, smoking…). 

 

1.1.1.2. Physiology of bitter perceptions 

Bitter perception can cause the rejection of certain foods and therefore has often been considered as a 

defence mechanism against the ingestion of toxic substances (Drewnowski & Gomez-Carneros, 2000). 

It is often considered to be the most complex taste due in particular to the multiplicity of receptors and 

compounds involved in this perception (Behrens et al., 2004). Indeed, thousands of structurally diverse 

compounds with different chemical structures can activate the bitter receptors: amino acids, peptides, 

salts, organic ions, polyphenols, alkaloid compounds like caffeine or quinine, etc. Rodgers et al.(2005), 

identified 93 specific structures associated with the perception of bitterness. These structures include in 

particular amino acids, peptides and phenolics (Figure 1.1.2.).  
 
 

 
 

Figure 1.1.2.: Main bitter structural groups identified by Rodgers et al., 2005. 

 
Bitterness is one of the key sensations perceived by the gustatory system. The gustation and its taste 

signals are originated from the taste buds that are stimulated by the soluble compounds when they come 

into contact with the tips of the apical cells of these taste buds as shown on the Figure 1.1.3. (Brondel 

et al., 2013). 
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Figure 1.1.3.: Anatomy of the gustatory system (adapted from Muchlinski et al., 2011). 

 

Inside the taste buds, these bitter chemical compounds can activated the TAS2Rs receptors. These family 

receptors are constituted of 25 receptors positioned at the apical membranes of the receptor cells of taste 

(Briand & Salles, 2016; Maehashi et al., 2009; Meyerhof et al., 2010). Signal transduction of bitter 

stimuli is accomplished via a G protein. This protein may activate a taste phosphodiesterase and 

decreases cyclic nucleotide levels. Then it mediates taste by activating IP3 (inositol triphosphate) and 

DAG (diglyceride). These second messengers may open gated ion channels and may cause release of 

internal calcium and then cause neurotransmitters release (Figure 1.1.4.) (Moyes & Schulte, 2008).  
 

  
 

Figure 1.1.4.: Signal transduction in taste receptor cells (adapted from Moyes & Schulte, 2008). 

 

Unlike receptors of other taste, TAS2Rs have a very strong ligand-receptor identity. Most TAS2Rs show 

an intermediate degree of specificity for bitter compounds that means they respond to several bitter 

compounds. But some TAS2Rs receptors show a strong specified and two receptors even seem to be 

specific to a single chemical compound (Meyerhof et al., 2010). For example, at least 6 receptors 

respond to amino acids and peptides stimuli (Kohl et al., 2013). The response of the receptors depends 

on the signal amplitude and the concentration of bitter compounds (Meyerhof et al., 2010). Humans can 
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therefore detect many bitter compounds with a very small number of general receptors and a small 

number of compounds with specialized receptors (Bufe et al., 2002). The sensitivity of TAS2R to 

different bitter compounds raises the question of how receptors interact with their ligands. Do they have 

multiple binding sites or do they have unique binding sites, each of which can accommodate several 

chemically different compounds? A study by Brockhoff et al. (2010) on the TAS2R43, TAS2R44 and 

TAS2R46 receptors strongly suggest that TAS2Rs possess only a single binding pocket, accommodating 

the different ligands via amino acid residues. 

 
In addition, the perception of bitter compounds varies widely between individuals. Hansen et al. worked 

on the bitterness intensity for different bitter solutions (PROP, octa-acetate sucrose, quinine, caffeine). 

They showed that three sets of distinct genes were responsible for sensitivity to these compounds and 

that genetic factors may explain variations in perceptions of bitterness (Hansen et al., 2006). 

Environmental factors (age, pathology, medication, etc.) can also affect the perception of bitterness 

(Mennella et al., 2010) as well as eating habits and salivary composition (Dsamou, 2012). 

 
1.1.1.3. Physiology of astringent perceptions 

Astringency has been defined as “the complex of sensations due to shrinking, drawing or puckering of 

the epithelium as a result of exposure to substances such as alums or tannins” by the American Society 

for Testing Materials. It may be a combination of taste and oral tactile mechanisms (Bajec & Pickering, 

2008). For this reason, astringency has also been described as a tactile sensation in the mouth producing 

an impression of dryness and tightness of the mucous membranes. As the sense of touch, it is a 

somesthetic sensations which take place in the oral cavity of tasting and are activated by different stimuli 

(Brondel et al., 2013). As bitterness, it could also be generally referred to a negative contributor to the 

liking of various foods (Breslin et al., 1993).  

 

Astringency is little studied in food product except in the case of wine and tea products. So the molecular 

and physiological mechanisms underlying astringency are still poorly understood. Gibbins and 

Carpenter (2013) as well as Ma et al. (2014) summarized in their respective reviews the different 

activation pathways of astringency as shown in Figure 1.1.5. A feeling of friction can occur by the 

presence of aggregates and the loss of the lubrication power of saliva. These aggregates can come from 

the binding and the precipitation of proteins of the saliva (salivary amylase, mucin, esterase...) with 

polyphenols. Charlton et al. (2002), pointed out that tannin-protein interactions are based on three 

phases. First, hydrophobic associations occur between the flat surfaces of the aromatic rings of tannins 

and the hydrophobic sites of proteins. At the same time, the hydrogen bonding effects stabilize the 

complexes formed. Then, tannin-protein complexes can self-associate via new hydrogen bonds thus 

generating larger soluble tannin-protein complexes and then aggregates. Finally, these aggregates have 

a sufficient size to form insoluble sediments. In parallel, the aggregates of tannin-proteins (possibly also 

free) polyphenols, can cause a breakage of the salivary layer leading to a loss of lubrication (Charlton 

et al., 2002; Ma et al., 2014). In addition, phenolics can be adsorbed at the surface of the oral mucosa : 

several studies showed that the mucin-rich mucous was also involved in the mechanism of perception 

of astringency. In addition, a direct activation pathway through chemical receptors were identified for 

galloylated polyphenols (Schobel et al., 2014).  

 

 
 
Figure 1.1.5.: Schematic representation of possible astringency mechanisms: A 3-stage model of the 

interaction between stimuli and proteins (adapted from Ma et al., 2014). 
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1.1.1.4. Perceptions in the case of pea protein-based products 

The beany aroma seems to be one of the key characteristics of pea protein perceptions. It is described as 

being a multidimensional and complex descriptor. According to Bott and Chambers, beany flavour is 

an aromatic sensation including musty/earthy, musty/dusty, sour aromatics, starchy, powdery feel, green 

pea, nutty, brown notes (Bott & Chambers, 2006). Different references can be used to explain the 

descriptors associated with beany flavour as shown on Table 1.1.1. (Cherdchu et al., 2013; Vara-Ubol 

et al., 2004). Nevertheless depending on the type of pulses (soybean, lupine, pea...), the type of studied 

food or depending to the research work, beany note definition may vary. For example, for lupin flour,  

beany/green, mushroom/soil, floral, meaty, nutty, woody/green, sweet, and baked attributes were used 

to describe beany sensation (Kaczmarska et al., 2018), whereas beany, green, fresh, and grassy attributes 

are commonly used to describe the sensations in pea and soybean (Troszyńska et al., 2007).  

 

Table 1.1.1.: References used to explain the descriptors associated with beany flavour (adapted from 

Cherdchu et al., 2013; Vara-Ubol et al., 2004). Intensities were scores from 1 (just recognizable) to 

15 (extremely intense). 

 
Attribute Descriptor Reference and intensity (/15) 

Green, pea 

pod 
Aromatics notes associated with fresh, green pea pods 

Food Club Lima Beans (frozen) = 8.0 

(flavour) 

Musty/dusty Dry, dirt-like aromatics associated with dry, brown soil. 

Potato peel (dry) = 5.0 (aroma) 

Kroger Pinto Beans (cooked dried) = 3.0 

(flavour) 

Musty/earthy 
Humus-like aromatics that may or may not include damp 

soil, decaying vegetation, or cellar-like characteristics. 

Raw white potato = 3.0 (aroma) 

Kroger Butter Beans (canned) = 5.5 

(flavour) 

Starchy 
Aromatics associated with starch and starch based 

ingredients. 

2% Argo corn starch in water = 7.5 

(flavour) 

Kroger Pinto Beans (cooked dried) = 7.5 

(flavour) 

Nutty 
A light, brown, slightly musty aromatic associated with 

nuts, wheat germ, and certain whole grains. 

Arrowhead Mills Soy Beans (cooked 

dried) =4.0 (flavour) 

Kretschner Wheat Germ = 10.0 (flavour) 

Powdery feel 

 

The feeling of undissolved starch in vegetable products 

such as potatoes 
Kroger Northen Beans (canned) = 6.5 

Sour 

aromatics 

Sharp, pungent aromatics that suggest a product would 

taste sour. 

Food Club Lima Beans (frozen) = 3.0 

(flavour) 

Brown 

Full, round, aromatic impression always characterized as 

some degree of darkness, generally associated with other 

attributes (i.e. toasted, nutty, sweet, etc.). 

Bush's Pinto Beans (canned) = 3.0 

(flavour) 

 
A synthesis issued from 23 different studies (Table 1.1.2.) permits to describe beany note in pea based 

products with a total of 79 different terms. Among them, 41 terms involved aromatic perceptions.  The 

main ones were pea, beans/beany, nut/nutty, grass/grassy, green, yeast/yeasty, corn, flour, grain, off-

flavour, rancid and wheaty. As a result, the use of beany as a descriptor is sometimes avoided ( Lawrence 

et al., 2016,  Malcolmson et al., 2014). In addition, recent publications propose also to consider beany 

flavour not only as an odour but also as a sapid perception (Meinlschmidt et al., 2016). Bitter and 

astringent perception are also perceived in a consensual manner and described with significant 

persistence in the mouth with pea protein-based products (Table 1.1.2.). Bitterness and astringency 

constitute an inherent part of the global and complex perception of plant-based products. The hedonic 

tests presented were conducted in order to compare pea protein-based products with products based on 

other proteins: milk protein concentrate and pea protein isolates (Mazinani et al., 2020); spaghetti with 

various concentration of pea flour (Padalino et al., 2014); wheat flour, pea starch, pea flour and pea fiber 

(Pietrasik & Janz, 2010); pea protein isolate and rice protein isolate (Shoaib et al., 2018); pea rice blend 

(Ravindran et al., 2011); yellow pea flour and wheat flour (Dabija et al., 2017); pea pastes samples 

(Xing et al., 2018); yellow pea flour, wheat flour and flour blend (Bouasla et al., 2016); maiza, pea and 

barley flour (Fikiru et al., 2017); pea pod flour and broan bean pod flour (Belghith-Fendri et al., 2016).  
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Table 1.1.2.: Sensory studies carried out on pea protein-based products with the characteristics of the 

panel, the type of product, the used palate-cleaning, the used sensory attributes and the references.  

 

Products Attributes 
Palate-

cleansing 
Methods Panel References 

Enzymatic pea 

protein hydrolysates 
bitter 

Water and 

unsalted 

cracker 

Static 

descriptive 

profiling 

 

Trained 

 

Humiski & 

Aluko, 2007 

Fermented pea 

protein-based product 

global intensity, sour, bitter, astringent, 

tangy, sparkling, green flavour/vegetal, 

leguminous plant, citrus fruit, nut, 

beer/yeast, sourdough, cultured apple 

cider) 

Water and 

crackers 

El Youssef et 

al., 2020 

Pea flour pea, bitter, astringent, metallic 

Not specified 

Price et al.,, 

1985 

Pea milk 

odour vinegar, odour earth, odour 

vegetable, Texture creamy, Sensation 

astringent, taste sweet, taste bitter, taste 

acid, aroma smoked, aroma dairy, 

aroma pea 

Yousseef et 

al., 2016 

Pea noodle 

firmness, chewiness, stickiness, 

springiness, surface roughness, ‘floury’ 

texture, and overall flavour 

Water and one 

minute 

Wee et al., 

2019 

Pea protein beverages 
beany, cooked green beans, saw dust, 

pasta, potato, cardboard and oxidized 
Not specified 

Trikusuma et 

al., 2020 

Pea protein-fortified 

extruded rice snacks 

appearance (lightness, surface 

uniformity, shape uniformity), flavour 

(rice flavour, pea flavour), texture 

(hardness, crispness, crunchiness, 

adhesiveness, moisture absorption) 

Slice of 

carrot and 

water 

Philipp et al., 

2017 

Pea snacks 

Odour (total odour intensity, corn, peas, 

grain/flour, old stuffy), taste (sour, 

sweet, salty, bitter, umami), flavour 

(corn, hay/grass, pea, grain/flour, 

roasted, nutty, old stuffy, cloying), 

texture (hardness, chewiness, crispness, 

juiciness, granularity, pungent) 

Warm and 

cold water, 

unsalted 

crackers 

Saldanha do 

Carmo et al., 

2019 

Pea sprouts 

Odour (beany, rancid, grassy), taste 

(beany, green, fresh, rancid, bitter, 

astringent, pungent, grassy), texture 

(juiciness, fibrousness), overall quality 

Room 

temperature 

water 

Troszyńska et 

al., 2007 

Pea-based bread 

aroma (wheaty, sweet, nutty, yeasty, 

and pea), flavour/taste (wheaty, sweet, 

nutty, yeasty, and pea), texture 

(firmness, initial mouth dryness, 

cohesiveness of mass, and adhesiveness 

to teeth),  appearance (yellow colour) 

Water 
Hedonic-

scaling 

and Static 

descriptive 

profiling 

Trained 
Fahim et al., 

2019 

Pea cheese 
texture, flavour, colour, appearance, and 

overall acceptability 
Not specified Untrained 

Omrani 

Khiabanian et 

al., 2020 

Pea pasta No attribute used 

Not specified 

Hedonic 

scaling 

 

Trained 

Padalino et al., 

2014 

Pea protein-cheese 
flavour, texture, appearance, overall 

acceptance 

Mazinani et 

al., 2020 

Bologna enriched 

with pea protein 

appearance, flavour, moistness, 

firmness, and overall acceptability 

Room 

temperature 

water and 

unsalted 

crackers 
Untrained 

Pietrasik & 

Janz, 2010 

Chicken nuggets 

enriched with pea 

protein 

firmness, colour, flavour and overall 

acceptability Not specified 

 

Shoaib et al., 

2018 

Extruded pea–rice 

blends 

flavour, texture, colour and overall 

acceptability 

Ravindran et 

al., 2011 
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Products Attributes 
Palate-

cleansing 
Methods Panel References 

Pea cake No attribute used 

Not specified 
Hedonic 

scaling 
Untrained 

Belghith-

Fendri et al., 

2016 

Pea complementary 

food blended 

colour, texture, flavour, odour, and 

overall acceptability 

Fikiru et al., 

2017 

Pea pasta No attribute used 
Bouasla et al., 

2016 

Pea pastes 
colour, texture, mouthfeel, smell, taste, 

and metallic off‐flavour 

Xing et al., 

2018 

Pea-based bread No attribute used 
Dabija et al., 

2017 

Protein-based systems 

flavoured with cocoa 

chocolate flavour, sweetness, off-

flavour and thickness 
Water Ranking Trained 

Tarrega et al., 

2012 

Fermented pea 

protein-based gels 
Long list of odour attributes (41) Not specified CATA Untrained 

Ben-Harb et 

al., 2020 

 
1.1.2. Methodologies used to characterize sensory properties of pea protein based-foods 

 

1.1.2.1. Overall sensory methodology 

The sensory analysis of food is an interdisciplinary scientific discipline used to establish lawful and 

specific relationships between product characteristics and human perception. More specifically, sensory 

tests may be divided into three groups based on the type of information that they provide. The three 

types are discrimination, descriptive, and affective. First, discrimination tests aim to determine if some 

products are different or not. Second, description tests permit to quantify the perceived intensities of the 

sensory characteristics of products (Murray et al., 2001).  Then, hedonic assessment emphasises the 

subjective impression, such as the preference for a product. It regroups different affective tests which 

explores consumer likings or preference levels of the products. In the case of pea protein-based products, 

the literature review shows that they are mainly characterized with hedonic assessment (12/23) and static 

descriptive profiling (11/23) (Table 1.1.2). Half of these studies used a trained panel (13/23). To our 

knowledge, no study takes the temporality of perceptions into account. 

 

1.1.2.2. Key methodology difficulties related to the beany perceptions 

The multidimensional nature of beaniness of plant based products and the persistence of beaniness can 

be a difficulty to be described and quantified by panellists. It is therefore difficult to find adequate 

vocabulary and then to quantify it. Moreover, in the case where attributes are selected, it is difficult to 

cross-check all the dimensions of the beany. As a result, there is an increased probability of omitting a 

sensory dimension (Torres-Penaranda & Reitmeier, 2001). Therefore, to describe the beany perception, 

a classic profile-type approach is suitable but difficult to implement because of persistence and attributes 

that are difficult for judges to learn. Faster sensory methods may also be of interest depending on the 

objective of the study, its context and on the type of product (see Delarue & Lawlor, 2014). 

 

To cope with complex food and to limit the probability of omitting a dimension, some protocols allow 

each panellist to add descriptors to a pre-established list of attributes as with the Mixed profiling 

(Coulon-Leroy et al., 2017). As food presentation schemes can impact how memory is activated, other 

researchers have recommended adapting how samples are presented (monadically, comparatively, or 

accompanied by a reference) (Mazzucchelli & Guinard, 1999; Saint-Eve et al., 2006). Using a stable 

and known reference for product evaluation could also be and interesting proposition. For example, 

Polarized Sensory Positioning proposes to compare and indirectly describe a set of products to three 

known reference products (Teillet et al., 2010). The use of references is also used by the method of Pivot 

Profile (Thuillier et al., 2015), which is based on a free expression of the difference between a tested 

product and an identified pivot product. For both methods, the choice of the reference product is critical 

to produce meaningful descriptions. As a summary, the main methods used in sensory sciences with 

their advantages and their limits are presented on (Table 1.1.3.). Theses specific methods reflect various 

sensory philosophies and approaches. However, with the exception of CATA and classical profiling, 

these methods seem to be little used in the case of pea protein based-products. $ 
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Table 1.1.3.: Examples of different sensory methods with their advantages and limits. 

 
Methods 

family 
Methods Principle Advantages Limits References 

Methods 

based 

on verbal 

description 

Classical 

profiling 

Rating of products on 

an intensity scale, 

based on common 

attributes. 

Intensities. 

Common attributes. 

Long and difficult 

method. 

Varela & Ares, 

2012 

Profil Flash 

Rating of products on 

a scale of intensity, 

based on individual 

attributes. 

Intensities. Allow to 

work with expert. 

Complex data 

analysis. 

No consensus on 

vocabulary. 

Dairou & 

Sieffermann, 2002 

Check-All-

That-Apply 

(CATA) 

Selection of the 

attributes that best 

describe the product 

from a list of terms. 

Fast method. Easy 

to use. 

Reductionist in term 

of descriptors. 

Dichotomous data 

(0/1): could mask 

differences between 

products (intensity). 

Dooley et al., 2010 

Methods 

based 

on similarity 

and 

difference 

measurement 

Free 

sorting 

Classification of 

products according to 

their similarities. 

Fast method. 

Holistic non-verbal 

approach. 

No intensity data. 

Difficulty in 

interpreting 

vocabulary. 

Requires a specific 

number of products 

(often 6 to 12). 

Delarue & Lawlor, 

2014 

Projective 

mapping or 

Napping© 

Positioning of 

products in a space 

defined (sheet of 

paper) according to 

their similarities. 

Very easy to realize 

for the panellists. 

No intensity data. 

Difficulty in 

interpreting 

vocabulary. 

Risvik et al., 2005 

Methods 

based on 

reference 

Profil 

Pivot© 

Free description of 

the differences 

between a product 

and a reference 

(called pivot). 

Useful for specific 

products that are 

difficult to test 

simultaneously 

Choice of the pivot 

is decisive. Tasting 

over several 

sessions implies that 

the pivot is 

sensorially stable 

over time. 

Thuillier et al., 

2015 

Polarized 

sensory 

positioning 

(PSP) 

Positioning of 

products in relation to 

3 poles or reference 

products. 

Holistic non-verbal 

approach. No limit 

in terms of number 

of products. 

Choice of the poles 

is decisive. Tasting 

over several 

sessions implies that 

the poles are 

sensorially stable 

over time. 

Teillet et al., 2010 

 

1.1.2.3. Key methodology difficulties related to the bitter and astringent perceptions 

If consumers are aware of the concept of astringency (Childs & Drake, 2010), they have often difficulties 

to identify and objectively quantify astringency or to differentiate astringency from other basic tastes 

such as sour or bitter (Carter et al., 2020).  In sensory evaluation, as bitterness and astringency are often 

confused they request a special training (Peleg et al., 1999). In addition, the prolonged persistence of 

bitter and astringent notes can lead to physiological adaptation and sensory fatigue (Kallithraka et al., 

1997) These same difficulties occur when pea proteins are part of food matrices, where composition, 

texture, and structure play an essential role in shaping sensory properties (Guichard, 2002; Kühn et al., 

2009).  

 

To limit persistence and potential bias in sensory profiling, several articles (9/23) propose to use a 

specific palate cleansing protocol: to rinse their mouth with water, or with the addition of a food product 

(either crackers, carrot) and/or with a waiting time between each sample. But it involved very long 

sensory tests which could induce possibly loss of stimulus memory for panellists (Colonna et al., 2004; 

Lee & Vickers, 2010). Some articles proposed also to limit the number of samples to test in a session. 
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For this type of products, to evaluate persistence presents a real interest. For that, time intensity method 

was widely used (Colonna et al., 2004; Courregelongue et al., 1999). For example, time-intensity 

method was used to evaluate persistence of bitterness and astringency of Gallic acid, Tannic acid, 

Catechin and Epicatechin solution (Robichaud & Noble, 1990).  
 

In addition, as the perception of bitter compounds varies widely between individuals, this attribute is 

often difficult to assess. To take into account the sensitivity of panellists, the 6-n-Propylthiouracil 

(PROP) test can be used (Figure 1.1.6.). Past work has found that PROP status could be a proxy for 

overall oral responsiveness, which means that high PROP tasters could potentially display greater 

overall sensitivity to sensory properties (Carney et al., 2018). Dinehart and colleagues found that people 

with greater PROP sensitivity gave higher bitterness scores to vegetables (Dinehart et al., 2006).  
 

 
 

Figure 1.1.6.: Chemical structure of 6-n-propylthiouracil (PROP). 

 
To conclude, it seems necessary to carry out a proper description and quantification to better understand 

the off-notes. 

 

1.1.3. Consideration of the food oral processing and interactions for the understanding of these 

perceptions 

 

1.1.3.1. Food oral processing: a dynamic process at the origin of perceptions 

Food oral processing is a dynamic process involving in perception. In general, food product will go 

through several steps in order to be consumed. First, during the pre-oral phase, the product is cut or 

mixed and then taken by licking, drinking, crunching or grasping it to put it in the mouth. The second 

step is the oral process: food is progressively transformed into a bolus suitable for swallowing through 

different stages, occurring successively or simultaneously (Chen, 2009). The third and last step is the 

swallow, which allows the food to be transported into the stomach and digested.  

 

Considering the second step of dynamic oral process, food and beverages can undergo many 

modifications (Figure 1.1.7.), depending of human physiology characteristics. They can be mechanically 

deformed by mastication and movements between the tongue and the palate (Stokes et al., 2013). Their 

produced particle can be hydrated and lubricated by saliva to form a bolus (Mishellany et al., 2006). 

They can be enzymatically degraded by salivary enzymes (Buettner, 2002; Pagès-Hélary et al., 2014). 

These modifications depend of both the food structure and the individual physiology parameters. For 

example, while solids need to be fragmented and mixed with saliva to form a cohesive bolus, in the case 

of beverages, products can be swallowed in a shorter period of time after being diluted by saliva and 

warmed to body temperature (Engelen, 2003). As regards individual physiology parameters, food 

processing depend in particular on masticatory capacity, volume of the mouth and saliva flow. 
 

 
 

Figure 1.1.7.: Depiction of 6 key stages of the oral processing (adapted from Stokes et al., 2013). 
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To capture the temporal dimension of the perceptions that arise during food intake, temporal sensory 

profiling methods are usually used. They allowed to obtain a complementary picture of the sensory 

experiences elicited by food products. Among the diversity of temporal methodologies, one widely 

adopted approach is the temporal dominance of sensations (TDS) method. It yields information on the 

sequence and duration of dominant sensations (Pineau et al., 2009), which could be described as the 

sensations which attract the most attention from consumers (Schlich, 2017). The TDS method has been 

used in tandem with static sensory profiling to evaluate different types of products, making it possible 

to identify sensory characteristics that are not picked up by one method alone (Figure 1.1.8.). For 

example, this combined approach has proven to be useful for studying interactions between texture and 

aroma in model candies (Saint-Eve et al., 2011); solid foods with contrasting textural layers (i.e., fish 

sticks (Albert et al., 2012); interactions between olive oil composition and pureed beans and tomatoes 

(Dinnella et al., 2012); the influence of aroma on taste and texture in an apple matrix (Charles et al., 

2017); and the key flavours perceived in strawberries (Oliver et al., 2018).  

 

Another widely used method is the TCATA. In this method, panelists are presented with a list of terms 

and are asked to select all the terms they consider applicable to describe the sensations they perceive at 

each moment of the product evaluation (Castura et al., 2016). A key difference between the two methods 

is the concept of dominance, which is fundamental to the TDS. By focusing exclusively on the dominant 

attribute, the other sensory characteristics that are perceived simultaneously during the consumption of 

a product are not captured by the TDS. TCATA may be a better methodological choice when a detailed 

description of the evolution of product sensory characteristics over time is required. And TDS may be 

the most appropriate choice when the research question requires the identification of attributes that 

attract the attention of panelists at each point in the evaluation. 

 

 
 

Figure 1.1.8.: Schematic representation of static profiling and temporal dominance of sensations 

profiling (TDS). 
 

Another point to be noted is that static or TDS profiling method are usually applied to a single instance 

of food intake (i.e., one bite of a solid food or one sip of a beverage). However, in real life, food intake 

involves a series of instances. Several studies have shown that repeated intake of a product can change 

the perception of product attributes due to sensory adaptation and/or perception persistence (Lawless & 

Heymann, 2010). The multi-intake TDS method can provide a sensory profile for a full portion of food. 

It has recently proven its utility in studies evaluating the influence of wine on cheese perception 

(Galmarini et al., 2017) and in studies characterizing the sensory properties of an oral nutritional 

supplement (Thomas et al., 2016), fat-free strawberry yogurts (Lesme et al., 2020), and yogurts with 

granola (van Bommel et al., 2019). But to our knowledge, no TDS study was performed on plant based 

products. 

 
1.1.3.2. The specific role of saliva on perceptions 

Many physiological parameters are involved in the dynamics of perception (saliva, air flow, volume, 

masticatory capacity). In this state of the art we focused on the impact of saliva as it may have a strong 

impact on the bitter and astringent perceptions of plant proteins. The incorporation of saliva into the 

food bolus contributes greatly to the modification of the food and so of the perceptions. In addition to 
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dilute and hydrate food products, saliva also occurs in the perception of taste by acting either directly 

on the sapid compounds or on the taste receptors (Mese & Matsuo, 2007). More precisely, saliva 

provides protection and maturation of taste buds (Henkin et al., 1999) and plays a protective role against 

apoptosis (Leinonen et al., 2001). Saliva compounds can also stimulate taste receptors and thus change 

their sensitivity to sapid compounds. For example, the detection threshold of NaCl or glutamate depends 

on basal concentrations in saliva (Mese & Matsuo, 2007). Saliva also ensures the dilution and transport 

of compounds to their receptors (Spielman, 1990). Knowing that this dilution depends on the physical 

properties of the food in which they are present, it will be even faster than the medium is liquid. Table 

1.1.4. summarizes the different impacts of saliva on sensory perceptions. The production of saliva by 

the different salivary glands changes during the day and can be stimulated by different factors such as 

chewing or acidity. Salivary flow and saliva composition varies significantly between individuals. Each 

individual is therefore characterized by a unique oral physiology.  

 

 

Level 
Saliva 

modifications 
Impact on sensory perceptions References 

Structural 

Surface coating, 

wetting and 

particle clustering 

- Facilitate deformation and breakdown of food 

structures, bolus formation and swallowing 

- Dissolution and transport of taste compounds 

Chen et al. 2009 

Molecular 

Colloidal 

destabilization 

- Impact on rheological properties and 

mouthfeel sensations 
Silletti et al., 2008 

Enzymatic 

breakdown 

- (Partial) hydrolysis of macromolecules 

- Conversion of flavour compounds 

- Impact on texture and flavour perception 

- Possible contribution to oil/fat sensations 

Engelen et al., 

2003 

Complexation 

- Impact on lubrication and friction of saliva 

- Rise of astringency and friction-related 

sensations 

Canon et al., 2018 

Binding of aroma 

compounds 

- Impact on aroma release and flavour 

perception 

Pagès-Hélary et 

al., 2014 

 

Saliva, in addition to participate in the mechanisms that cause astringency, can also impact other pea 

off-notes. It can modify the dissolution and transport of the compounds responsible for bitterness. It can 

also modify the release of the volatile compounds responsible for beany perceptions or converts these 

compounds.   

 

1.1.3.3. Modulation of perceptions through interactions between perceptions 

To understand the mechanism of perceptions, it is necessary to include two main types of interactions : 

cognitive interactions and physiological interactions (Figure 1.1.9.) (Keast & Breslin, 2003). 

Physiological interactions are due to a compound that interferes with another at the receptor cells (Keast 

& Breslin, 2003). Cognitive interactions are neurophysiological interactions that occur at the level of 

the transduction mechanism and at the convergence of afferent signals to the nucleus located in the 

central nervous system (Frijters, 1982). It is due to the fact that the perception of the flavour is not 

equivalent to a sum of individual perceptions generated by different stimuli. The cognitive interactions 

can be modulated by attention, habit, fatigue or emotional state but also knowledge, culture and language 

(Lawrence et al., 2009). The classic example is the sweet characterization of a sucrose solution which 

can increase with the addition of a raspberry odour when only the sweet intensity is evaluated and 

disappears when subjects evaluate sweetness intensity and fruit intensity (Frank & Byram, 1988). These 

interactions occur when people eat products in natural context, however if we are interested in 

understanding the sensory mechanisms and to relate them to specific compounds in the food, it may be 

interesting to limit these cognitive interactions. To limit interactions between sapid and flavour 

Table 1.1.4.:  Participation of saliva in food oral processing (adapted from Mosca & Chen, 2017). 
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perceptions, some researchers have suggested that nose clips could be employed to allow panellists to 

focus on sapid perceptions (Abegaz et al., 2004; Schoumacker et al., 2017). These interactions are 

important in the case of products based on pea protein isolates because of the complexity of their 

perceptions. It is highly likely that there are strong sensory interactions between the perceptions of 

bitterness, astringency and beaniness. Disassociating these perceptions and understanding these 

interactions is so an essential step in order to reduce pea off-notes. 

 

 
  
Figure 1.1.9.: Schematic review of binary taste interactions. Research investigating taste–taste 

interactions is variable for a number of reasons and the schematic reviews are merely indications of 

what happens to taste qualities when two are mixed together (adapted from Keast & Breslin, 2003). 

 
 

 

 

Main conclusions 

 Pea protein-based products are studied most of the time in their final application matrices 

with hedonic tests or classical profiling. 

 They are sensory described as beany, bitter or astringent with strong persistence of these 

notes. 

 Their distinct and persistent flavour challenges their sensory evaluation and calls for the 

adaptation of classical methods. 

 The dynamics of pea perceptions and in particular their persistence has been very little 

studied. 

 Food formulation and oral processing (especially saliva step) may strongly affected the 

perceptions of pea protein-based products. 

 A large number of compounds are likely to participate in the mechanisms at the origin of their 

perceptions either directly or via interactions of various kinds. 

 Thus, to better understand the mechanisms at the origin of pea protein-based perceptions we 

need to look at their chemical composition. 
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1.2. Composition of pea protein isolates and their potential role on perceptions 

  
 
Sensory properties of pea protein isolates came from various chemical compounds which act directly or 

via interactions on the olfactory and gustatory systems. Thus, to better understand mechanisms at the 

origin of perceptions of pea protein isolates, it is necessary to study their chemical composition. Pea 

protein isolates have a high protein content but also contain various peptides, volatile compounds, 

phytochemicals, carbohydrates, lipids, and minerals. All these constituents could participate to the 

perception of pea-based ingredients. Previous research works on the perception of pea-based products 

have mainly focused on the role of volatile compounds in creating sensations of beaniness. And only 

few studies identified amino acids and peptides that could be related to bitterness and others taste. 

Phytochemical compounds, as minerals and carbohydrates can also highly impacted plant product 

perception but their role were only few studied in literature. Thus we chose to focus this part of the state 

of the art on the composition of volatile, protein and phytochemical fractions to better understand 

possible mechanisms underlying beany, bitterness and astringency sensations. In addition, the role of 

other compounds (e.g. minerals and carbohydrates) on perception will be briefly discussed at the end. 

 
 
1.2.1. Volatiles composition and their contribution to beany aroma 

To understand the mechanisms at the origin of aroma perceptions, most of the article studied the 

composition on volatile compounds. A synthesis issued from 32 different studies were used to better 

understand volatile composition of pea protein isolates and their links to beany perceptions. 

 
 

1.2.1.1. Analytical methods to study volatile compounds 

To study volatile compounds composition, headspace analysis are widely used. However, a large 

number of extraction, concentration and analysis methods are used in the literature. The choice of the 

method depends on the objective of the study, its context and on the type of products and volatile 

compounds.  

 

For example, to extract volatile compounds, steam distillation/extraction, supercritical CO2 extraction, 

solvent assisted flavour evaporation (SAFE) (Engel et al., 1999), static headspace methods such as solid-

phase microextraction (SPME) (Yang & Peppard, 1994) and dynamic headspace methods such as Purge 

and Trap (Pinnel & Vandegans, 1996) could be used. Murat et al.(2013), compared three extraction 

methods (SPME, Purge and Trap extraction SAFE) on pea flour. Their results showed that the extracts 

of the volatile fraction are qualitatively and quantitatively different. The Purge and Trap extract was the 

richest in volatile compounds. The SPME extract was the poorest.  They concluded that SAFE extraction 

was the most suitable method because of its good extraction capacities and its high sensory 

representatively of the global odour of pea flour. 

 

As regards analysis methods, the gas chromatograph coupled with a mass spectrometer is the most 

widely used method. The gas chromatograph is a temperature-controlled oven that acts as a separation 

device. It allows sample compounds to travel through a mobile gas phase over a stationary phase and to 

be separated according to their retention time prior to the mass-spectrometer introduction. The mass-

spectrometer allow to characterize each of the compounds individually thanks an analyser. Single, dual 

or triple quadrupole mass analyser, time-of-flight or ion trap analyser can be used (Giannoukos et al., 

2019) (Table 1.2.1.).   
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Technics Principle Main field of 

application 

Advantages Limitations References 

GC-MS 
  

  

  
  

  

  
  

Combination of 
separate of volatile 

compounds by gas 

chromatography and 
detection of 

compounds by mass 

spectrometry. 

Food and aroma 
compounds 

detection 

1. Pre-concentration 
2. Low LOD (ppt-ppb)  

3. High sensitivity  

4. High specificity 
5. High selectivity  

6. Accuracy  

7. Qualitative & quantitative 
analysis  

8. Commercial libraries  

1. High purchase and 
maintenance costs  

2. Require specialised 

personnel for operation  
3. Bulky size and high 

weight  

4. Long analysis times 
SIFT-MS  

  

  

Adebo et 
al., 2020 

SIFT-MS 
  

  

  
  

Chemical ionization of 
trace volatile 

compounds by selected 

positive precursor ions 
during a well-defined 

time period along a 

flow tube 

Disease 
detection 

1. Real-time analysis  
2. Low LOD (sub-ppb)  

3. High sensitivity  

4. High specificity  
5. Self-calibration  

1. Uncertain identification 
of ions  

2. Limit of quantification  

3. Lack of commercial 
libraries 

  

  

Langford et 
al., 2019 

 

PTR-MS 

  

  
  

  

  
  

On-line mass 

spectrometry 

measurements 
allowing the 

monitoring of the 

release of aroma 
compounds in the air 

exhaled by a subject 

consuming food 

Food and aroma 

compounds 

detection, 
environment 

VOC detection 

1. Real-time analysis  

2. Low LOD (sub-ppt)  

3. High sensitivity  
4. High specificity  

5. No sample preparation  

6. Soft ionization – small 
number of fragments  

7. No sample pre-concentration  

1. Maximum measurable 

concentration  

2. Lack of commercial 
libraries 

  

  
  

  

  

Lindinger et 

al., 1998 

MIMS 

  

  
  

  

  
  

  

Directly sampling in 

gaseous, liquid and 

solid samples through 
a semi-permeable 

membrane coupled to 

a mass spectrometer 

Environment 

VOC detection 

1. Near-real time analysis  

2. Low LOD (ppt)  

3. High selectivity  
4. No sample preparation  

5. Gas, liquid and soil analysis  

6. Low cost  
7. Low power consumption 

8. Integrates with portable 

systems 

1. Requires stable 

membrane temperature for 

reliable quantitative 
analysis  

2. Requires temperature-

programmed desorption for 
resolving complex 

mixtures  

  
  

Davey et 

al., 2011 

High 

performance MS 

with ambient 
ionization (e.g. 

APCI, SESI)  

ionization method 

which utilizes gas-

phase ion-molecule 
reactions at 

atmospheric pressure 

commonly coupled 
with high-performance 

liquid chromatography 

Food and aroma 

compounds 

detection 

1. Real-time analysis  

2. No sample preparations  

3. MS/MS capabilities  
4. Low-invasive  

1. Possible contamination 

of new samples 

  

Viry et al., 

2018 

gas 
chromatography-

ion mobility 

spectrometry 
(GC-IMS)   

  

short multi-capillary 
separation column that 

allows separation 

according to gas 
chromatography 

principle 

Food and aroma 
compounds 

detection 

1. Real-time analysis  
2. Low LOD (ppb)  

3. High sensitivity  

4. High specificity  
5. Fast response times  

6. Portability (size & weight)  

7. Robustness  

1. False-positive alarms  
2. Lack of performance in 

highly contaminated 

chemical environments  
3. High bureaucracy for the 

systems with radioactive 

sources  

Wang et al., 
2020 

E-noses 

  

  
  

Pattern recognition of 

volatile compounds in 

idea to mimic the 
human olfactory 

receptors and their 

communication with 
the human brain 

Food and aroma 

compounds 

detection 

1. Fast response times  

2. Low cost  

3. Portability  
  

1. Unstable results  

2. Saturation effects 

3. Low specificity  
4. Relatively poor 

sensitivity 

Hou et al., 

2020 

Laser absorption 

spectroscopy 

(LAS)  

Use of lasers to assess 

the concentration or 

amount of a species in 
gas phase in breath by 

absorption 

spectrometry 

Disease 

detection 

1. Qualitative information  

2. Near real-time measurements  

3. Low instrument costs  
4. Sensitivity  

5. Selectivity 

1. Cannot resolve 

complicated mixtures – 

identification of single (or a 
small combination) of 

compounds 

Nidheesh et 

al., 2020 

Nanotechnology 

  

  

Specialized nano-

sensors capable of 

detecting volatile 
molecules in the breath 

Disease 

detection 

1. High sensitivity  

2. Fast response times  

3. High selectivity  

1. Cannot resolve 

complicated mixtures  

2. Need for results cross-
validation 

Broza & 

Haick, 2013 

Table 1.2.1.: Advantages and limits of the existing molecular technologies for volatile compounds 

analysis (adapted from Giannoukos et al., 2019). 
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Derived from this method, the GC-MS olfactrometer allows a panelist to sniff the volatile compounds 

after the gas chromatograph in the same time that they are analysed by the mass spectrometer (Figure 

1.2.1). This method allows to detect volatile compound that actually have an odour and thus may be 

important in the sensory aroma of the product (Chambers & Koppel, 2013). To take into account the 

dynamic of volatile compounds release during the food oral processing, Atmospheric Pressure Chemical 

Ionization mass spectrometry (ACPI-MS) (Viry et al., 2018) and Proton Transfer Reaction Mass 

Spectrometry (PTR-MS) allow on line measurement of volatiles release (Lindinger et al., 1998). 

 

 

 
 

 

 

1.2.1.2. Volatile compounds composition of pea protein isolates 

In the literature, a large number of volatile compounds were identified on pea protein-based products or 

on other pulses protein-based products. Among 32 papers, which studied beany flavour, more than 200 

compounds were identified (Table 1.2.2.). These compounds were extracted mainly by SPME or HS-

SPME (15/32) and identified by GC-MS (25/32) with polar columns (22/32). Nine papers have studied 

volatile compounds by GC-O. Overall studies worked on an average of 40 volatile compounds (between 

2 and 124 compounds according to the papers). These compounds belonged to many chemical families: 

aldehydes, ketones, alcohols, esters, carbonyl compounds, pyrazines, cyclic amines, furans and of 

sulphides. 

 

In pea protein-based products, alcohols and aldehydes were often the most prominent family in terms of 

the number of compounds and the total quantity, followed by ketones and esters. Hexanal, 1-hexanol, 

and 1-octen-3-ol are often the most abundant compounds (Bi et al., 2020; Murat et al., 2013; Trikusuma 

et al., 2020; Zhang et al., 2020). In the literature, the main origin of these compounds is indicating 

coming from endogen origin of pea seed, from microbial spoilage, from thermic degradation or from 

oxidation of the lipids/peptides/amino acids in the seed or during the storage (Fischer et al., 2020; Murat 

et al., 2013; Sethi et al., 2016; Trikusuma et al., 2020). For example, they could come from the oxidation 

of unsaturated lipids and phospholipids (Cowan et al., 1973) or the oxidation because of the 

lipoxygenase (Baysal & Demirdöven, 2007) which could be accelerated by oxidation and auto-oxidation 

(Damodaran & Arora, 2013) (Figure 1.2.2.). 

 

Some of these volatile compounds were highlighted as key volatile beany compounds. For example Bi 

et al. identified six volatile compounds which significantly contributed to the characteristic aroma of 

peas. Among these, 3-methylbutanoic acid  (odour activity value = 382, ratio of the concentration of an 

odorant to its odour threshold) and hexanal (odour activity value = 280) significantly contributed to the 

Figure 1.2.1.:  General workflow of the volatile analytical pipeline by GC-MS Olfactometry (GC-O-

MS): on-line mass spectrometry measurements in parallel to human perception allow the association 

between chemical compounds and odour and the identification of key odorous compounds (Jourdren 

et al., 2017). 
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aroma of peas (Bi et al., 2020). Zhang et al. identified 6 compounds which contributed most to the 

characteristic beany of pea milk, among which 2-methoxy-3-isopropyl-(5 or 6)-methyl pyrazine, 

hexanal, (E,E)-2,4-nonadienal, and (E,E)-2,4-decadienal contributed more than others (Zhang et al., 

2020). Murat et al. (2013) identified 15 volatile compounds as described on the Table 1.2.3. 

 

 

Product 
Chemical 

methods 

Extraction 

methods 
Columns 

Identified 

compounds 

Objective of the 

study 
References 

Raw and roasted 

peas 
GC-MS, GC-O SPME 

DB-5MS 

and HP-

WAX 

30 

Identify compound at 

the origin of beany 

aroma 

Bi et al., 2020 

Pea yogurt GC-MS 
Dynamic 

Headspace  
DB-5MS 87 

Impact of fermentation 

on beany aroma 

El Youssef et 

al., 2020 

Yellow pea 

protein isolate 
GC–MS HS-SPME ZB-WAX 6 

Study beany aroma 

related compounds 

obtained at different 

alkaline extraction pHs 

Gao et al., 2020 

Pea beverages 
GC-MS/MS, 

GC-MS-O 
SAFE 

HP-5 

column 
21 

Study volatile 

composition according 

the process 

Trikusuma et 

al., 2020 

Pea protein 

enriched flour 
GC–MS HS-SPME DB-5MS 28 

Study volatile removal 

with aqueous solvents 

Wang et al., 

2020 

Fermented 

soybean curd 
GC-MS HS-SPME 

DB-

WAX, 

TR-WAX 

>60 

Study volatile 

composition according 

the process 

Wei et al., 2020 

Pea and soy milk GC-O-MS HS-SPME DB-WAX 80 

Identify compound at 

the origin of beany 

aroma 

Zhang et al., 

2020 

Pea-protein-

enriched 

emulsions 

fermented 

GC–MS 
Purge and 

trap  
DB-5 74 

Impact of fermentation 

on beany aroma 

Ben-Harb et al., 

2020 

Red kidney beans GC-MS, GC-O 

Simultaneous 

distillation 

extraction 

DB-5 14 

Identify compound at 

the origin of beany 

aroma 

Mishra et al., 

2019 

Chickpea, lentil, 

and yellow pea 

flours 

GC-MS/O HS-SPME ZB-Wax 124 

Study volatile 

composition according 

the germination 

process 

Xu et al., 2019, 

2020 

Lupin and 

soybean flour 
GC-O 

Dynamic 

Headspace 
VF-WAX 35 

Study the effect of 

germination on beany 

aroma 

Kaczmarska et 

al., 2018 

Cucumbers, 

pepper, carrot, 

and peas 

GC-MS SPME ZB‐WAX 40 
Study of 

methoxypyrazine 

Mutarutwa et 

al., 2018 

Yellow pea flour GC HS-SPME ZB Wax 13 

Study volatile 

composition according 

the process 

Vatansever & 

Hall, 2020 

Pea pastes GC-MS SPME InnoWax 36 

Study volatile 

composition according 

the process 

Xing et al., 

2018 

Soybean and 

soymilk 
GC-MS HS-SPME DB-WAX 10 

Study the volatile 

composition of 

soymilk relatively to 

the volatile 

composition of 

soybean 

Shi et al., 2015 

Pea proteins GCMS HS-SPME DB-Wax 41 

Study a pea proteins–

maltodextrin aqueous 

two phases system 

Nguyen et al., 

2014 

Canola, pea and 

wheat proteins 
GC-MS 

Dynamic 

headspace 

A VF-5 

ms 
6 

Study protein-flavour 

binding 

Wang & 

Arntfield, 2016  

 

Table 1.2.2.: Volatiles studies carried out on beany aroma on pulse. 
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Product 
Chemical 

methods 

Extraction 

methods 
Columns 

Identified 

compounds 

Objective of the 

study 
References 

Pea flour and pea 

isolates 
GC-MS, GC-O 

SAFE, SPME, 

Purge and 

Trap 

Non polar 

ZB1.MS 
87 

Identify compound at 

the origin of beany 

aroma and follow their 

concentration along 

the process 

Murat et al., 

2012;, 2013 

Lupin and pea 

protein extract 

GC-FID, GC-

MS, TDS-GC-O 

Dynamic 

headspace 

Optima 

Wax, DB-

Wax and 

a HP-5 

56 
Impact of fermentation 

on beany aroma 

Schindler et al., 

2012 

Soymilk GC-FID SPME DB-23 8 

Study effect of process 

on volatile 

composition 

Zhang et al., 

2012 

Yellow and green 

pea cultivars, raw 

flour, whole 

cooked peas 

GC/MS HS-SPME VF-5MS 33 

Compare the volatile 

profile of products and 

evaluate the effect of 

processing and storage 

Azarnia et al., 

2011 

Lupin flour 
HRGC-O, 

HRGC-MS 
SAFE 

DB-

FFAP 
50 

Identify compound at 

the origin of beany 

aroma 

Bader et al., 

2009 

Soymilk GC-MS 
headspace 

autosampler 
CP-Wax 4 Reduce beany aroma 

Blagden & 

Gilliland, 2005 

Soymillk GC-MS SPME HP-5 8 

Study effect of 

cyclodextrin to reduce 

headspace 

concentrations beany 

flavour compounds 

Suratman et al., 

2006 

Soy protein 

isolates 

FID, GC-MS, 

GC-MS-O 

Chloroform 

recovered 

headspace 

EC-Wax 14 
Better understand 

beany aroma 

Boatright & Lei, 

1999 

Blanched Green 

Peas 
GC-MS, GC-O 

Dynamic 

Headspace 

WCOT 

fused 

silica 

47 

Study volatile 

composition according 

to storage and 

genotype and identify 

compound responsible 

of beany aroma 

Jakobsen et al., 

1998 

Soybean GC SPE DB-624 2 
Study volatile 

composition 

Wang et al., 

1997 

Unblanched 

Frozen Peas 
GC-MS 

Vacuum 

sublimation 
Carbowax 117 

Identify compound at 

the origin of beany 

aroma and follow their 

concentration along 

the process 

Murray et al., 

1976 

Green Peas GC 
Vacuum 

distillation 
Carbowax 24 

Compare different 

method to extract 

volatile compounds 

Shipton et al., 

1969 

Unblanched 

Frozen Peas 

Thin-layer 

partition 

chromatogram 

Distillation NA 12 
Study volatile 

composition 

Whitfield & 

Shipton, 1966 

Pea Blancher GC-MS 
Charcoal 

extraction 
Carbowax 41 

Study volatile 

composition 

Ralls et al., 

1965 
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1.2.1.3. Contribution of volatile compounds for pea protein isolates perceptions 

Aromatic perceptions can be explained through the kinetics of volatile compounds from the product 

(transport and transfer mechanisms of the volatile compounds from the product to the air phase) to the 

olfactory receptors in nasal cavity. The release of volatile compounds from pea protein isolates can be 

due to different mechanisms. It can depend on the mobility (diffusion and convective transport) and on 

the partition properties of volatile compounds within each phase and between them (Poling et al., 2001). 

Thus, the release of the volatile compounds depends on the matrix and on environmental conditions. For 

example, volatile compounds may more or less diffuse within the food or bolus according to the food 

Figure 1.2.2.: Parts of the pathway of plant oxylipin metabolism leading from linolenic acid to volatile 

aldehydes (Baysal & Demirdöven, 2007). 

Table 1.2.3.:  Odorant compounds identified in the commercial pea protein extract (Murat et al., 

2013). 
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texture and structure of gels or macromolecules (Gostan et al., 2004). Volatile compounds release 

depend also on their interactions with hydrophobic constituents of the matrix, such as lipids or proteins. 

These interactions can influence their release, in proportion relative to their hydrophobicity value 

(Druaux et al., 1998; Relkin et al., 2004).  

 

In the case of protein based systems, interactions between volatile compounds and proteins were 

highlighted in the literature (Heng et al., 2006). Evidence for protein/volatile compounds interactions 

have been found for numerous compounds as for example vanillin or 2-octanone, thanks to gas 

chromatography methods coupled with headspace extraction. These studies have been conducted mainly 

with soy proteins (Damodaran & Arora, 2013; Damodaran & Kinsella, 1981). In the case of pea, pea 

vicilin and pea legumin were shown also to be able to bind with volatile compounds (Heng et al., 2006; 

Wang & Arntfield, 2016). Physico-chemical interactions between volatile compounds and non-volatile 

compounds of a food matrix are mainly non-covalent bonds as Van der Waals type (hydrophobic 

interactions, hydrogen bonds, Debye or London forces) or ionic bonds. The nature of these interactions 

will depend on physicochemical characteristics of the volatile compounds and matrix components 

considered. In the case of proteins, most volatile compounds show hydrophobic and reversible binding 

to proteins (Damodaran & Kinsella, 1981). These interactions can be modified by different factors: the 

protein conformation (denaturation level), composition, concentration…), the volatile compounds 

(chemical function, chain length, composition, concentration…) and the environment (pH, ionic 

strength, temperature...) (Andriot et al., 2000; Damodaran & Kinsella, 1981; Druaux et al., 1998; Wang 

& Arntfield, 2016). Especially, volatile compounds binding by proteins is very dependent on the 

conformational state of the proteins which affect both the binding affinity and the number of binding 

sites on proteins for volatile compounds (Damodaran & Kinsella, 1981) (Figure 1.2.3.). Protein-volatile 

interaction mechanisms is usually expressed as a function of the volatile headspace concentration 

compared to a reference (i.e. solution without proteins) as (Wang & Arntfield, 2016): 

  (a) Binding coefficient (%) = (1 - P/ C) x 100% 

where P (mol/L) is the headspace concentration for the protein buffer solution and C (mol/L) is the 

headspace concentration in the control buffer. 

 

 

 

In addition, during the dynamic oral process, food and beverages can undergo many modifications. The 

mechanical deformation by mastication and movement between the tongue and the palate may modify 

the release and diffusion of volatile compounds (Stokes et al., 2013). As regards the saliva, its role on 

volatile compounds release is described as complex and explained by several effects. Previous research 

have reported direct mechanisms (molecular interactions, enzymatic conversion, salting-out effect, 

Figure 1.2.3.:   Illustration of protein hydrophobic interactions with aldehydes and ketones (Wang & 

Arntfield 2016). 
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dilution) involving salivary components (minerals, proteins including enzymes, microbiota) and indirect 

mechanisms (changes of volatile compound diffusion through modification of the physic chemical 

properties of the food matrix) (Buettner, 2002; Muñoz-González et al., 2018; Pagès-Hélary et al., 2014; 

Ployon et al., 2017). 

 

Main conclusions: Therefore, several studies, have already highlighted that beany notes are rooted 

in the complex composition of the volatile compounds found in pulses and belonging to many 

chemical families (mainly aldehydes, ketones and alcohols compounds). Several studies highlighted 

key beany-compounds such as hexanal and 1-octen-3-ol. However, this knowledge does not allow yet 

to control beany aroma to formulate food products with high sensory desirability. It is necessary to 

integrate the complexity of involved mechanisms to understand perception: complexity of volatile 

composition, chemical interactions with matrices and impact of the food oral processing. 

 

 

1.2.2. Peptides composition and their contribution to bitterness 

The high content of protein in pea protein isolates may surely participate to pea perceptions. In 

particular, amino acids and peptides could be related to bitterness and others taste. 

 

1.2.2.1. Analytical methods to study peptides 

More studies have been performed over the past decades to identify and quantify the taste-active 

peptides using sensoproteomics. The development of peptidomic technologies was allowed by modern 

mass spectrometry and bioinformatics. These tools are ideally suited for comprehensive peptide 

analysis, especially combined with the massive information available in today's genomic and 

transcriptomic databases. Different solvents and technologies can be used for the fractionation, 

separation and analysis of peptides (Table 1.2.4.). The liquid chromatograph-mass spectrometer is the 

most widely used method. Experimental fragmentation spectra are compared with those theoretically 

expected from the sequences stored in databases to identified peptides. Then, identified peptides are 

assigned to the proteins that contain their sequences (Langella et al., 2017). Several bioinformatics tool 

have been developed to perform these operations: X!Tandem (Craig & Beavis, 2004), OMSSA (Geer et 

al., 2004), Andromeda (Cox et al., 2011), COMET (Eng et al., 2013), Morpheus (Wenger & Coon, 

2013), MS-GF+ (Kim & Pevzner, 2014).  

 

 
Product Analytical method Reference 

Brown rice protein LC–ESI–MS/MS Selamassakul et al., 2020 

Soy sauce RP-HPLC, UPLC-Q-TOF-MS/MS Zhu et al., 2020 

Bovine milk proteins  RP-HPLC, RP-HPLC-MS/MS Iwaniak et al., 2020 

Stir-fried beef  LC-Q-TOF/MS Huang et al., 2019 

Yeast extract RP-HPLC, UP-HPLC-QTOL  Alim et al., 2019 

Bamboo shoots  UHPLC-MS Gao et al., 2019 

Cocoa Beans UPLCToF-MS, LC-MS/MS Salger et al., 2019 

UHT milk MALDI-TOF-MS Dalabasmaz et al., 2019 

Whey protein hydrolysates RP-HPLC, MALDI-MS Carvalho et al., 2019 

Cheese UPLC−MS/MS  Sebald et al., 2018 

Casein hydrolysate UPLC-Q-TOF-MS Murray et al., 2018 

Bovine muscle and porcine plasma LC-MS/MS Fu et al., 2018 

Cheese MALDI-MS  Baptista et al., 2017 

Douchi RP-HPLC-MS Ding et al., 2017 

Cheese MALDI-ToF-Pro Silva et al., 2016 

Cheese LC-MS/MS Hillmann & Hofmann, 2016 

Whey protein hydrolysates LC-Q-TOF/MS Liu et al., 2015 

Pea protein hydrolysate UPLC-API MS/MS Li & Aluko, 2010 

Cheese GPC, HPLC-MS/MS Toelstede & Hofmann, 2008 

Chicken broth GPC, PFPP-HPLC, HILIC Dunkel & Hofmann, 2009 

Cheese RP-HPLC-MS/MS Gómez-Ruiz et al., 2007 

Beans LC-MS/MS Dunkel et al., 2007 

Table 1.2.4.: Peptides studies carried out on different food products in relation with perceptions 

(except Liu et al., 2015 that does not link to perceptions). 
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However, because of sequence redundancy (a same peptide can be included in several proteins), this 

raw list may contain irrelevant proteins with respect to the actual composition of the biological sample. 

To deal with this problem, softwares (e.g. X!TandemPipeline) have been designed to perform protein 

inference and to manage redundancy in the results of phosphosite identification by database search 

(Figure 1.2.4.). It provides a minimal list of proteins or phosphosites that are present in a set of samples 

using grouping algorithms based on the principle of parsimony (Langella et al., 2017). However, to our 

knowledge, no study have analyses peptides from pea protein isolates in relation with their perceptions. 

 

 

  
1.2.2.2. Peptides composition of commercial pea protein isolates 

In term of composition, pea proteins are characterized by a complete composition on essential amino 

acids with especially high lysine content, low tryptophan content and low sulphur-containing amino 

acids content (Pownall et al., 2010). Composition of amino acid is detailed in Table 1.2.5. They are 

mainly composed of three classes of proteins: globulins (50-65%), albumins (20-40%) and so-called 

'insoluble' proteins: glutelins (15-20%) (Crevieu-Gabriel, 1999). The first two fractions were initially 

characterized by their solubility in water and in saline respectively. During the process to extract and 

concentrate proteins from seeds, glutelins are eliminated. It results a composition of pea protein isolates 

with mainly globulin and some albumins left. In addition, globulins are the main proteins reserve of the 

seed. They consist of two fractions characterized by their sedimentation coefficient in 

ultracentrifugation, 7S (20%-40%) and 11S (20-30%).   
 

 
Amino acid [g/16g N) Pea flour Pea albumin Pea globulin 11S 7S 

Lys 6.92 9.34 6.41 5.02 7.64 

His 2.30 2.63 2.55 2.65 1.95 

Arg 8.28 5.67 8.00 9.18 6.75 

Asp 12.25 11.9 12.99 12.19 12.31 

Thr 3.65 5.66 3.34 3.41 2.54 

Ser 4.79 5.03 5.30 4.89 5.43 

Glu 17.41 14.95 18.66 19.66 17.32 

Pro 3.90 4.46 4.36 4.89 4.01 

Gly 4.29 5.97 3.89 5.14 2.78 

Ala 4.06 5.85 3.97 5.34 3.07 

Cys 1.39 3.15 0.80 1.14 _ 

Val 4.69 4.41 4.73 4.53 4.43 

Met 39.00 1.34 0.70 0.73 0.28 

Ile 4.23 3.86 439 4.25 4.83 

Leu 7.20 4.87 8.23 7.78 8.79 

Tyr 3.19 4.71 3.37 3.15 3.01 

Phe 4.75 4.52 5.40 4.58 5.86 

Try 0.95 1.47 0.64 0.70 _ 

Figure 1.2.4.:  Schematic representation of X!TandemPipeline postprocessing (Langella et al., 2017). 

Table 1.2.5.: Composition on amino acids (Gwiazda et al., 1980). 
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The fraction 7S is constituted of vicilin and convicilin. The pea vicilin (Figure 1.2.5.) is a glycoprotein 

(Crevieu-Gabriel, 1999). According to Lawrence et al. (1994), this protein would have a structure 

trimerically organized along an axis of symmetry of type three. It is a trimer of 50 kDa subunits that can 

be identical or not, more or less modified by post-translational proteolysis and/or glycosylations. This 

leads to polypeptides of molecular weights from 12.5 to 35 kDa. The structure of this protein is stabilized 

by non-covalent forces. The amino acid composition of convicilin is close to vicilin composition, but 

unlike vicilin, it contains sulphur amino acids and is not glycosylated. It is a trimeric structure protein 

like vicilin, but whose subunits have a molecular mass of 68.2 kDa (Crevieu-Gabriel, 1999). Globally, 

the 7S fraction contains more lysine, leucine, isoleucine and phenylalanine. 

 

 

 
 
The fraction 11S is constituted of legumins. They are hexamers of 350-400 kDa. They are not 

glycosylated. Each of its six subunits is consisting of an α-acid polypeptide of about 40 kDa and a basic 

β polypeptide of approximately 20 kDa linked by a disulfide bridge. The subunits are gathered in the 

hexamer in a compact structure. Polypeptides α, much less hydrophobic than β polypeptides, are located 

outside the molecule. The secondary structure of legumins is rich in β-sheets (Subirade et al., 1994). 

According to Lawrence et al., monomers of the 11S protein (αβ groups) would have a similar structure 

to the monomers of the 7S protein (Lawrence et al., 1994). The hexamer of the protein 11S would consist 

of the superposition two trimers of the type of the 7S protein. Globally, the 11 S protein contains more 

methionine, cystine, tryptophan and threonine (Crevieu-Gabriel, 1999).  

 

 
 

 

 

Figure 1.2.5.:  Vicilin, 14 kDa modelling (swiss model, 2017). 

Figure 1.2.6.: Pea storage proteins (vicilins, convicilins, legumins, and albumins) in the proteome 

reference maps of Pisum sativum proteins (Pisane): 2D-electrophoresis, denaturing condition (Sirtori 

et al., 2012). 
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In commercial pea protein isolates, proteins are highly denatured. This is largely due to the extraction  

process of pea protein isolates (pH change, high temperature). Because of this denaturation, the proteins 

form aggregates. In the isolates, with the protein aggregates, there are also numerous peptides of 

different sizes as well as free amino acids. Most vicilin are denatured at temperatures around 65°C, 

whereas higher temperatures are generally acceptable for legumin. The average pH of the proteins is 4.5 

and the pH of the proteins suspended in water around 7. Figure 1.2.6 extracted from Sirtori et al, presents 

the proteomic map of a commercial pea protein isolate for the higher protein compounds at 15kDa 

(Sirtori et al., 2012).  

 

1.2.2.3. Contribution of peptides for pea perceptions 

As we just described below, pea proteins isolates are characterized by a complex protein composition, 

with different proteins, numerous peptides and free amino acids. As regards native proteins, if some are 

known to have a sweet taste, majority of proteins does not have flavour. However, proteins can interact 

with many compounds, which can give them taste. In addition, although the mechanisms of receptor 

activation are not well known, C or N-terminus of some proteins may active the bitter receptors and so 

participate to the bitterness perception (Brondel et al., 2013). As regards peptides and amino acids, it 

has been shown that they could activate the receptors of bitterness. Matoba and Hata explained the 

formation of bitterness in protein hydrolysates by the following mechanism. In a native globular protein, 

the majority of its hydrophobic side-chains may be concealed inside and cannot interact with the taste 

receptor cells. When the protein is hydrolysed (by enzyme actions or process actions) peptide moieties 

containing many hydrophobic amino acids would be exposed to the solvent and can interact with the 

taste receptor cells (Matoba & Hata, 1972).   

 

However, to perceive bitterness, it would be necessary for amino acids and peptides to be on a large 

concentration. For example, for the bitter peptide VVYPWTQRF from Bovine hemoglobin, a 0.25 mM 

of peptide solution was equivalent in bitterness to 0.073mMof quinine sulphate or 21mMof caffeine 

(Aubes-Dufau et al., 1995). Moreover all the peptides are not bitter: peptides having a size greater than 

10 residues would not be able to activate the bitter receptors because of their large size. Bitter peptides 

would have rather a size between 5 and 6 residues (Aubes-Dufau et al., 1995; Kanehisa & Okai, 1984). 

In addition, bitter peptides would be mainly hydrophobic peptides at their side chain, rich in proline and 

in leucine, especially at their C-terminal end at their C-terminal end (Kanehisa & Okai, 1984; Kim et 

al., 2008; Shinoda et al., 1987). N-terminal Arg would be also indispensable for bitterness. Kanehisa et 

al, studied the bitter character of peptides for hydrolysate casein. They found that the structure of the 

peptides would influence more the hydrophobic character than the position of basic / hydrophobic 

moieties. And a basic amino acid at the N-terminal position and a hydrophobic amino acid at the C-

terminal position significantly enhance bitterness (Kanehisa & Okai, 1984). The review of Maehashi 

and Huang proposed a model for binding of bitter peptides to bitter receptors (Figure 1.2.7.). The 

intensity of bitterness is hypothesized to depend on two binding sites called binding unit and stimulating 

unit. The size of the pocket of the proposed bitter receptor would be around 15 Š, which could allow 

contact with a peptide of eight amino acids maximum (Maehashi & Huang 2009; Tamura et al., 1990, 

Ishibashi et al., 1988). 

 

In addition Henriksen showed that the broth note of dried sausage could be related to a mixture of 

different amino acids and peptides and that the intensity of the potato note could be positively correlated 

with levels of tyrosine (in both its free and peptide residue forms) (Henriksen, 1997). Taste information 

about peptide properties can then find in databases of low-molecular-weight compounds, including 

BitterDB (Wiener et al., 2012), and in databases of peptides such as EROP-Moscow (Zamyatnin, 2006) 

or BIOPEP (Iwaniak et al., 2016).  
 

Main conclusions: Therefore, pea protein-based products perceptions (especially bitterness) may be 

rooted in the complex composition of the proteins and peptides found in pulses. The characteristics 

of bitter peptides are still poorly understood. However, the development of peptidomic technologies 

(modern mass spectrometry and bioinformatics) in relation with sensory analysis could allow the 

identification of key bitter peptides.  
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1.2.3. Phytochemicals composition and their contribution to bitterness and astringency 

Pea protein isolates contain some phytochemical compounds such as phenolic acids, flavonoids, and 

saponins. These compounds are being increasingly studied because of their health benefits  

(antioxidants, enzyme detoxification agents, immune system stimulants, lipid, hormone metabolism 

regulators and anti-angiogenic agents) (Singh et al., 2017). However, these compounds could also 

contribute to bitterness and astringency of pea protein-based products. 

 

1.2.3.1. Analytical methods to study phytochemical compounds 

The identification and characterization of phytochemicals were increased by the development of modern 

mass spectrometry and bioinformatics. Different solvents and technologies can be used for the 

fractionation, separation and analysis of phytochemical compounds (Table 1.2.6.). The liquid 

chromatograph-mass spectrometer is the most widely used method in tandem with NMR Spectroscopy.  

 

However, comprehensive identification or annotation of phytochemicals remains a real challenge 

because of 1) the high diversity of compounds; 2) the limited availability of authentic standards for peak 

identification in tandem mass spectrometry; 3) the great number of modifications of the structure that 

can occur in the seed and then during food processes; and 4) the highly complex fragmentation during 

mass spectrometry analysis of these compounds which is largely influenced by the aglycon but also of 

substituents (Akimoto et al., 2017).  

 

Nevertheless recent data bases are developing. For example, Akimoto et al. (2017) developed a system 

for annotating flavonoids (FlavonoidSearch), which consists of a database of virtual mass fragments 

(FsDatabase) predicted from 6,867 known flavonoid structures in one of the largest flavonoid databases 

(metabolomics.jp) and a computational tool (FsTool) to search the database. The objective of this data 

base is to allow a comprehensive annotation of flavonoids and so to give lists of MSMS-aglycones and 

substituents for the identification of novel flavonoids (Akimoto et al., 2017). 

 

Others free data bases are also available online:  

 http://webs2.kazusa.or.jp/msmsfragmentviewer; 

 http://spectra.psc.riken.jp; 

 http://www.knapsackfamily.com/KNApSAcK_Family; 

 http://metabolomics.jp/wiki/Category:FL. 

 

Figure 1.2.7.:  Model for binding of bitter peptides to bitter receptors (Maehashi & Huang 2009). 

http://www.knapsackfamily.com/KNApSAcK_Family
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 Product Chemical technics References 

    

Total phenolics 

and/or total 

flavonoids 

Pea 

Colorimetric method and/or 

enzymatic method  

Zhao et al., 2020 

Fava-bean, green-pea, yellow-pea flour Millar et al., 2019 

Field pea, lentil, bean and chickpea Padhi et al., 2017 

Pea peel Hadrich et al., 2014 

Chick pea, green pea Nithiyanantham et al., 2012 

Lentil, pea hulls Oomah et al., 2011 

Pea protein isolates Agboola et al., 2010 

Lentils, chickpeas, peas, soybeans Han & Baik, 2008 

Field pea, grass pea Wang et al., 1997 

Pea seed Bishnoi et al., 1994 

    

Overall 

phenolics 

Pea HPLC–UV Nazir et al., 2020 

Pea hulls UHPLC-LTQ-OrbiTrap-MS Guo et al., 2019 

Oat HPLC-DAD Soycan et al., 2019 

31 Pulses 
HPLC-MS/MS, dynamic-MRM 

triple quadrupole 
Caprioli et al., 2018 

36 Pulses HPLC-DAD Giusti et al., 2018 

Pea UHPLC-LTQ OrbiTrap MS Stanisavljevic et al., 2016 

Grass pea,  lentils, chickpea UHPLC-MS Fratianni et al., 2014 

Pea shoots, ready-to-eat baby-leaf HPLC-DAD-ESI-MSn, HR-CS-AAS Santos, et al., 2014 

Pea seed HPLC Dvořák et al., 2011 

Pea HPLC-DAD,  HPLC-(ESI)MS Duenas et al., 2004 

Soy, Lupin, Pea Protein CZE, HPLC, DAD Mellenthin & Galensa, 1999 

    

Flavonoids 

Canola, rapeseed protein isolates LC−MS/MS Hald et al., 2019 

Pea, fava bean HPLC-DAD-ESI-MSn Neugart et al., 2015 

Kale HPLC-DAD/ESI-MSn Schmidt et al., 2010 

Spinach ESI-LC-MS, NMR Brock & Hofmann, 2008 

Soy and plant extract HPLC/ESI-MS Klejdus et al., 2007 

Soy flakes, soy protein isolate, soy 

germ 
HPLC Aldin et al., 2006 

Pea shoot NMR, HPLC, FAB-MS Ferrerres et al., 1995 

Soybeans HPLC, TLC, UV, MS, IR, NMR Kudou et al., 1991 

    

Saponins 

Pea 
1D/2D-NMR, (LC-)MS/MS, LC-

TOF-MS 
Gläser et al., 2020 

Oat 
LC-TOF-MS, LCMS/MS, 1D/2D-

NMR 
Günther-Jordanland et al., 2016 

Pea HPTLC-MS Reim & Rohn, 2015 

Asparagus 
HPLC–MS/MS, LC-MS/MS, LC-

TOF-MS, 1D/2D-NMR spectroscopy 
Dawid & Hofmann, 2014 

Soy flakes, soy protein isolate, soy 

germ 
HPLC Aldin et al., 2006 

Pea RP-HPLC Heng et al., 2006 

Soybeans HPLC, LCQ-MS Decroos et al., 2005 

Soybeans HPLC, LCQ-MS, NMR Berhow et al., 2002 

Pea HPLC, LCMS Daveby et al., 1998 

Mung bean, sorghum, barley, peas GC-MS, FAB-MS,  2D-NMR Ohana et al., 1998 

Soybeans HPLC, NMR Kudou et al., 1992 

Soybean seed HPC, TLC, IR, MS, NMR Shiraiwa et al., 1991 

Chick Pea, Haricot Bean, Red Kidney 

Bean 
HPLC Ireland, 1987 

Pea and soya LC-MS Curl et al., 1985 

Pea flour, soybean flour RP-HPLC, TLC-MS Price et al., 1985 

Food plant TLC Fenwick & Oakenfull, 1983 

 

 
 

Table 1.2.6.:  Studies carried out on phytochemical compounds on various plant proteins through 

different methods. 
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1.2.3.2. Phenolics composition of pea protein isolates 

Phenolic compounds constitute one of the most numerous and ubiquitous groups of plant metabolites. 

Ranging from simple phenolic compounds to highly polymerized compounds with molecular weights 

greater than 30,000 Da, the occurrence of this complex group of substances in plant foods is extremely 

variable (Bravo, 1998). Table 1.2.7. presents the main classes of phenolic compounds based on carbon 

structure. 

 

 
Formula Family Example Structure 

C6 Phenols Hydroquinone 

 

C6-C1 Hydroxybenzoic acid Parahydroxybenzoic acid 

 

C6-C3 

Hydroxycinnamic acid Paracoumaric acid 

 

Coumarin 1-benzopyrane-2-one 

 

C6-C4 Naphtoquinone Juglon 

 

C6-C2-C6 Stilbenoid Stilbene 

 

C6-C3-C6 

Flavonoid Kaempferol 

 

Isoflavonoid Daidzein 

 

Anthocyane Chalcone 

 

(C6-C3)2 Lignan Enterodiol 

 

(C6-C3)n Lignin  

 

(C6-C3-

C6)n 
Condensed tannin Procyanidine 

 
 

Table 1.2.7.:   Main classes of phenolic compounds based on carbon structure (adapted from Cheynier 

et al., 2013) 

https://commons.wikimedia.org/wiki/File:Hydrochinon2.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Ac-p-hydroxybenzoique.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Ac-p-coumarique.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Juglone.png?uselang=fr
https://commons.wikimedia.org/wiki/File:Kaempferol.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Daidzein.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Enterodiol.svg?uselang=fr
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In pulse, different polyphenols have been identified. For example Fratianni et al. (2014) identified  gallic 

acid, chlorogenic acid, catechin , caffeic acid, epicatechin, coumaric acid, rutin, ferulic acid in grass pea 

and in chickpea. Kaempferol and quercetin glycosides, sophotriosides were also identified in leaves of 

V. faba and P. sativum (Neugart et al., 2015), and phenolic acids were found in soy (Arai et al., 1966; 

Damodaran & Arora, 2013). Among the phenolic compounds, flavonoids and especially isoflavones 

(Figure 1.2.8) have been studied in pulse. Isoflavones are substituted of 3-phenyl-chromen-4-ones and 

their conjugates. They are phytochemicals that are found in many plants and plant-derived foods in both 

native (“aglycon”) form and as acetyl-, or malonyl-, etc., β-glucosides. For example they are present in 

soymilk, tofu, miso, and tempeh with average total isoflavone contents of 0.37, 1.00, 0.84, and 

2.00/moles isoflavones/g product, respectively (Aldin et al., 2006).  Specific isoflavone like Genistein, 

daidzein, and glycitein have especially been identified in soy (Aldin et al., 2006; Klejdus et al., 2007). 

 

 

 
In Pisum sativum, more than 110 structurally different phenolic compounds have been described in the 

literature with the majority being glycosylated flavonols, along with their related counterparts (e.g. 

flavones, flavanols, flavanones, anthocyanins and isoflavonoids). A great number of sophorotriosides 

quercetin and 3-O-glycosides of kaempferol were identified (Fahim et al., 2019). In pea seed, according 

to Padhi and al, the polyphenols are concentrated in the cotyledon. The total polyphenol content was 1-

4 mg gallic acid equivalent/ g dry weight and the total carotenoid content 20-40 micro g/g dry weight 

(Padhi et al., 2017). In protein isolates, according to Damordaran et Aora, in soy more than 90% of 

phenolic acids are removed from soybean during extraction of proteins (Damodaran & Arora, 2013) so 

we can make the hypothesis that pea protein isolates contains less polyphenols than pea seed. The 

presence of phenolic compounds within the pea can also be reduced through additional steps during 

processing, such as the use of charcoal filters and alcohol washes (Lam et al., 2018). 

 

1.2.3.3. Saponins composition of pea protein isolates 

Saponins are non-volatile, amphiphilic, surface-active sterol or triterpene glycosides present in a wide 

variety of plants (Fenwick & Oakenfull, 1983). They consist in non-polar aglycones coupled with one 

or more sugar chains (Heng et al., 2006). In pulse, triterpene glycosides have been commonly identified 

(Barakat et al., 2015). They are categorized as monodesmosides which have a single sugar chain linked 

to the aglycone and as bidesmosides which have two sugar chains (Lásztity et al., 1998). According the 

plant species, they present variation in their structure (type and composition of the aglycone and the 

sugar chains). They are classically categorized into A, B & E group saponins according to their aglycone 

structures (Singh et al., 2017). In pea cultivar, saponin content was find in the range of 0,8-2,5 g/kg 

depending of the varieties (Daveby et al., 1998; Heng et al., 2006). In pea flour, Fenwick and oakenfull 

reported approximately 2.5 g/kg of saponins (Fenwick & Oakenfull, 1983) and Curl et al. (Curl et al., 

1985) around 1,8% (w/w). In soy protein isolates, studies reported that most of the saponins are 

recovered because, unlike isoflavones, they are heat stable and resist losses during processing. 

Nevertheless, in pea protein isolates, it appears that concentration of saponins is very low compared to 

soy protein (Heng et al., 2006). 

 

Peas contain two types of saponins: saponin B and DDMP saponin (Figure 1.2.9.). They are 

monodesmoside saponins with a sugar chain linked to the C-3 position of the aglycones. DDMP saponin 

has in addition a 2,3-dihydro-2,5-dihydroxy-6-methyl-4Hpyran- 4-one (DDMP) group at the C-22 

position (Heng et al., 2006). Some studies report that DDMP saponin could be converted on saponin B, 

corresponding to the release of a maltol, during extraction and processing and especially in acidic or 

Figure 1.2.8.:  Isoflavone representation (Klejdus et al., 2007) 
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basic solutions (Berhow et al., 2002; Heng et al., 2006). So varieties, harvesting, process condition and 

storage conditions could influenced the ratio of saponin B/DDMP saponin. Heng et al investigated 

saponin content and composition of 16 dry pea varieties. They found that in two varieties, DDMP 

saponin was the only saponin present whereas in the rest of the varieties, DDMP saponin was more 

abundant than saponin B. The amounts of DDMP saponin ranged from 0.7 to 1.5 g/kg (dry matter), 

whereas those of saponin B ranged from 0 to 0.4 g/kg (Heng et al., 2006).  

 

 

 

1.2.3.4. Contribution of phytochemical compounds for pea perceptions 

Polyphenols and especially flavonoids are described in the literature as contributing to bitterness and 

astringency. However, the majority of these studies deal with polyphenols of red wine and are concerned 

by tannins, tannic acid polymer fractions and flavan-3-ol monomers / dimer / trimers (Drewnowski & 

Gomez-Carneros, 2000; Hufnagel & Hofmann, 2008; Symoneaux, 2015). So there are not much studies 

on the bitter taste of polyphenols that do not belong to tannin classes, such as kaempferol derivatives. 

Regarding their structure, it seems that the conformation of polyphenol compounds plays a role in the 

activation of bitterness receptors. (+) - catechin would activate the TAS2R14 & TAS2R39 receptors 

(Roland et al., 2013) while one of these isomers (-) - epicatechine would activate the TAS2R4, TAS2R5, 

TAS2R14 & TAS2R39 receptors  (Roland et al., 2013) (Figure 1.2.10). Moreover, the size of the 

polyphenol compounds would also play a role in the activation of bitterness receptors. Polymer with a 

high degree of polymerization would tend to be less bitter and more astringent whereas polymers with 

a low degree of polymerization would tend to be more bitter and less astringent (Brossaud et al., 2001; 

Peleg et al., 1999; Robichaud & Noble, 1990). In addition, the presence of galloyl groups on epicatechin 

could modify receptor activation (Yamazaki et al., 2013). The aglycone isomers of isoflavones, being 

more hydrophobic, tend to be more adapted to receptors than their glucoside counterparts (Okubo et al., 

1992). 

 

 

 
 

Figure 1.2.9.: Structures of saponin B and DDMP saponins (Heng et al., 2006). 
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As regards saponins, like tannins, they are also generally referred to bitter and astringent perceptions 

(Heng et al., 2006). Price et al. (1985) estimated that the concentration of soyasaponin I for which the 

undesirable bitter and astringent tastes were rated as moderate (score 6-0) by a panel, was approximately 

0.08% in pea flavour. In Heng et al. study, bitterness of saponins was perceived by the sensory assessors 

at very low concentrations around 2 mg L−1 for saponins mixture (Saponin B and DDMP saponin in a 

ratio of 1:4) and around 8 mg L−1 for saponins B. According to Heng et al., both saponins have a bitter 

taste, in which intensity increases with concentration, but the DDMP saponin is significantly bitterer 

than the saponin B. Therefore, pea varieties having a high DDMP saponin content or a high total saponin 

content can likely taste more bitter than those with a low content in saponins (Heng et al., 2006). Gläser 

et al. (2020) studied the bitterness of saponins in pea protein isolates, and their results highlighted that 

not saponins but 14 bitter lipids and lipid oxidation products such as 9,10,13-trihydroxyoctadec-12-

enoic acid were implied in this perception. 

 

In addition several studies showed that these non-volatile compounds could interact with proteins. 

Phenolics could interact with pea protein and thus impact the flavour. According to Damodaran and 

Arora (2013), phenolics are mostly present in the protein-bound state and remain associated with 

proteins during the manufacture of soy isolates protein. Recent studies showed that tannins were likely 

to interact with lipids with consequences on the perception of bitterness. Studying at the molecular level 

in wine, tannin-lipid interactions, by disrupting the lipid environment of taste receptors embedded in the 

oral membranes, could affect the functionality of the receptor and its interaction with tannins, and 

therefore bitterness. Furthermore, a possible competition between the tannin-lipid and tannin-saliva 

protein interactions could reduce the astringency during the tasting of a wine (Saad et al., 2016).  

 

Saponins could also interact with protein. For example they can interact with casein and soy proteins 

(Potter et al., 1993) to form complexes with proteins at low pH in Beet (Morton & Murray, 2001). These 

interactions of saponins with proteins may affect the interactions of flavour compounds with the 

proteins. Saponins may occupy the available binding sites on proteins and lead to less flavour 

compounds that can be bound to the proteins. On the contrary, it may induce more binding of flavour 

compounds by creating hydrophobic pockets when it itself is bound to the proteins (Heng et al., 2006). 

 

Main conclusions: Therefore, pea protein-based products bitterness and astringency may be root in 

the complex composition of the phytochemicals present in pulses. The characteristics of these 

compounds are still poorly understood. However, the development of peptidomic technologies 

(modern mass spectrometry and bioinformatics) in relation with sensory analysis could allow the 

identification of key bitter and astringent compounds.  

 
 
 
1.2.4. Other pea compounds and their contribution to perceptions 

Pea protein isolates also contain various lipids, carbohydrates, or minerals. The most important lipids in 

pea are linoleic acid, oleic acid, palmitic acid, and linolenic acid (Fischer et al., 2020). Lipids have been 

particularly studied in peas, especially the unsaturated ones, because they are the substrates of several 

volatile compounds known to be beany. For example, linoleic acid leads to the formation of hexanal, 

and oleic acid to the formation of octanal (Murray et al., 1976; Fischer et al., 2020). They can also be 

responsible for sapid perceptions. For example Gläser et al., (2020) identified 14 lipids and lipid 

oxidation products related to bitter perceptions. In addition, pea seed and pea flour are a good source of 

carbohydrates (Millar et al., 2019). However the main carbohydrates are washed during the wet process 

of pea protein isolates (Schutyser et al., 2015). And there is little data in the literature on the impact of 

the left carbohydrates on perceptions for pea protein isolates. Pea seed and pea flour are also a good 

source of minerals such as calcium, iron, potassium, manganese, phosphorus and zinc (Millar et al., 

2019; Wang et al., 2008). However, variety and processing (soaking, cooking and dehulling) affected 

the composition in mineral. Soaking and cooking increased calcium, copper, magnesium and 

Figure 1.2.10.: Dose-response curves of epigallocatechin gallate (left), and scutellarein (right) on 

bitter receptors hTAS2R14 (■) and hTAS2R39 (▲) (Roland et al., 2013). 
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phosphorus content in peas and reduced iron, potassium magnesium and zinc content in peas. Dehulled 

seeds had higher potassium and phosphorus content and lower calcium, copper, iron, magnesium and 

manganese than raw seeds (Wang et al., 2008). The mineral concentrations in the protein isolates are 

therefore likely to be modified compared to the seed and the flour. As regards minerals perceptions, 

most mineral have taste properties. Bitter and astringent tastes are usually used to describe aluminium, 

calcium, copper, iron, magnesium, potassium, sodium or zinc solutions. In addition some minerals (e.g. 

zinc and copper), are necessary to maintain normal chemoreception (Delompré et al., 2019). Minerals 

can also have an indirect role by modifying pH and ionic strength. The modification of these chemical 

parameters can impact the interactions with proteins and therefore the perceptions of bitterness and 

astringency. 

 

 
 

Main conclusions 

 A synthesis issued from 32 different studies shown that pea isolates are composed to more 

than 100 volatile compounds belong to many chemical families.  

 A synthesis issued from 45 different studies shown that pea seed have a complex and not fully 

known composition on phytochemical compounds.  

 Pea isolates have also a complex composition on proteins, peptides, lipids, minerals and 

carbohydrates and few studies have studied it. 

 From a chemical point of view, the development of technologies (modern mass spectrometry 

and bioinformatics) could allow to go further in identification of these compounds.  

 However, if several studies highlight key beany-compounds (such as hexanal and 1-octen-3-

ol), the mechanisms at the origin of the taste of pea protein are still not fully known (especially 

bitter and astringent perceptions). 

 Thus, to better understand the mechanisms at the origin of pea protein-based perceptions, it 

is necessary to examine how perceptions of pea protein isolates arises from both volatile and 

non-volatile compounds and their potential interactions. 
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1.3. Implemented strategies for a better understanding of mechanisms behind perceptions 

  
As highlighted in the present state of art, the mechanisms at the origin of perceptions of food are 

multimodal and complex. In this last bibliographic section, the strategies used in the literature to lead to 

a better understanding of the mechanisms behind perceptions will be presented and discussed. To link 

sensory properties to food product composition, several types of strategies were identified in literature 

and will be presented in this section: strategies based on product deconstruction, chemical strategy, 

receptor strategy and statistical modelling. These methods are briefly exposed in the Figure 1.3.1. and 

will be presented in more details on the following sub-sections. 

 

Thus, this last bibliographic section deals with research strategies in sensory perception. Beyond the 

theme addressed, it leads to question the acceptability of plant proteins in relation to societal 

expectations, or even the link with nutritional properties. To go further, it would be interesting to 

question the impact of these sociological and/or physiological factors on sensory perception. In 

particular, it would be interesting to consider whether these factors may not constitute a limit for the 

models that are developed to understand perceptions.   

 

 

 

 
 
1.3.1. Strategies based on product deconstruction to study impact of food composition on human 

perceptions 

Deconstruction strategies focus on the evaluation of the contribution of an ingredient or a factor (for 

example temperature of a process), a molecule or a group of molecules to the food perceptions. In these 

Figure 1.3.1.: Examples of strategies used in the literature in order to lead to a better understanding 

of the mechanisms behind perceptions doing links between sensory and chemical data. 
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strategies, the product is modified according to a fractionation process, an addition or omission of 

molecules. Different methods can be used according to the objectives and studied object (investigation 

of ingredient or chemical composition). 

 

1.3.1.1. Design of experiment strategies 

At ingredient level, combination of experimental design and predictive models are commonly used. The 

data collection are often planned following an experimental design (Vatansever et al., 2020; Fikiru et 

al., 2017; Symoneaux et al., 2015). The design of experiments allows to study input parameters 

(predictor variables) in generating output variables (response variables), taking interactions into account 

that may exist between the variables. They are usually represented by a matrix with columns 

representing the independent variables and rows representing samples or experimental runs. They are 

built up of different steps as explained in the Figure 1.3.2. Several methods of experiment designs are 

used to link sensory properties and composition of food products. Their choice depends on the research 

question, type and number of variables, and number and type of food products. The most widely used 

methods are factorial designs. They are based on a combination of factors. They are orthogonal and 

balanced designs and allow the estimation of main factors and interaction factors. However, they often 

involve a large number of experimental runs or samples. To reduce the number of runs/samples while 

minimising the degree of aliasing, optimal designs are sometime used (Yu et al., 2018).  

 

 

 
 

 
1.3.1.2. Strategies of fractionation, omission or dilution test strategies 

At molecular level (or group of molecules), several strategies are used either separately or in 

combination: fractionation, omission or dilution test. The aim of fractionation strategy is to separate a 

complex products into several fractions via mechanical processes (as centrifugation, filtration steps), 

then to evaluate each obtained fraction with sensory and instrumental measurements. The links between 

the chemical data and the perceptions of these different fractions are thus studied, in order to identify 

the key molecules at the origin of perception (Engel et al., 2002). As an example, Sebald et al. used a 

fractionation strategy for the identification of bitter peptides in fresh cheese. This study allowed the 

identification of 17 peptides as bitter peptide candidate. Among them, 15 of the 17 target peptides 

showed bitter taste thresholds ranging from 30 to 690 μmol/L. Finally, the evolution of the bitter peptides 

throughout two different manufacturing processes of fresh cheese was quantitatively recorded (Sebald 

et al., 2018). 

 

Figure 1.3.2.: Flowchart of an experimental design combined with a model. 
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Omission tests are often associated to reconstitution tests (Hillmann & Hofmann, 2016; Ferreira et al., 

2002). Reconstitution consists in constructing a synthetic model mixture with composition and 

perceptions as close as possible to the raw product. Omission test consists in evaluating the contribution 

of one compound or several compounds in a synthetic mixture to perceptions by making a sensory 

comparison between the perceptions of the complete mixture and the perceptions of a mixture in which 

one compound or several compounds were omitted (Engel et al., 2002). Several studies have shown that 

taste or aroma perceptions may be similar for a raw product and a product obtained with a fraction-based 

reconstruction.  

 

 
Main chemical molecules 

identified 
Product Main strategy Reference 

Alapyridaine Beef broth Fractionation, reconstitution Ottinger & Hofmann, 2003 

Amino acids 
Dairy protein 

hydrolysates 
Fractionation Murray et al., 2017 

Amino acids, minerals, lipids, 

organic acid, volatiles 

Cheese 

Omission Engel et al., 2002 

Amino acids, organic acids Fractionation and omission Andersen et al., 2010 

Amino acids, organic acids, 

fatty acids, biogenic amines,  

minerals 

Reconstitution, dilution and 

omission 

Hillmann & Hofmann, 

2016 

Avenanthramides and 

saponins 
Oat Fractionation and dilution 

Günther-Jordanland et al., 

2016 

Peptides 

 

Beans Fractionation  and dilution Dunkel et al., 2007 

Beef stir-fried Fractionation Huang et al., 2019 

Brown rice protein Fractionation Selamassakul et al., 2020 

Casein hydrolysate 

fractions 
Fractionation Murray et al., 2018 

Cheese Fractionation  and dilution Toelstede et al., 2009 

Cheese Fractionation Gómez-Ruiz et al., 2007 

Cocoa beans Fractionation  and dilution Salger et al., 2019 

Cooked Crustaceans Fractionation  and dilution Meyer et al., 2016 

Fermented foods Fractionation  and dilution Sebald et al., 2018 

Soy sauce Fractionation Zhu et al., 2020 

Yeast extract Fractionation  and dilution Alim et al., 2019 

Phenolics 

Canola/Rapeseed 

Protein Isolates 
Fractionation  and dilution Hald et al., 2019 

Cheese Fractionation  and dilution 
Toelstede & Hofmann, 

2008 

Hops 
Fractionation, reconstitution and 

dilution 
Dresel et al., 2015 

Saponins Asparagus Fractionation  and dilution Dawid & Hofmann, 2014 

Saponins, lipids and lipid 

oxidation products 
Pea protein isolates Fractionation  and dilution Gläser et al., 2020 

Volatiles 

 

Cheese Reconstitution Thomsen et al., 2017 

Pellets of hop 

varieties 
Fractionation  and dilution Brendel et al., 2019 

Raw and Roasted 

Peas 
Omission Bi et al., 2020 

Soy sauce Omission Feng et al., 2015 

Wine 
Dilution analysis, omission, 

reconstitution 
Ferreira et al., 2002 

Volatiles, fatty acids Cheese Omission House & Acree, 2002 

 

For example, artificial ikura (Japanese salmon caviar) was prepared using vegetable oil and a low-calorie 

natural gel (e.g., one made with alginic acid) (Hayashi et al., 1990); each component of the food was 

then analysed using chemical and sensory methods. Based on the analytical data, a synthetic ikura was 

reconstituted using pure reagents. There were very few sensory differences in the taste profiles between 

the reference food and the reconstructed food (Hayashi et al., 1990). In another study (Niimi et al., 

Table 1.3.1.: Examples of fractionation, omissions, and reconstitution or dilution tests carried out on 

food products to link chemical composition and perceptions. 
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2014), a cheese solution was reconstituted using a mixture of sucrose, NaCl, monosodium glutamate, 

lactic acid, and caffeine that was then adjusted using a fractional factorial design. From sensory profiling 

data, the reconstructed products did not significantly differ from the cheddar cheese reference in overall 

intensity, as in saltiness, sourness, umami, and bitterness perceptions (Niimi et al., 2014).  

 

Dilution tests are based on the determination of the odour thresholds of compounds using gas 

chromatography-olfactometry and performed with serial dilutions of an aroma extract or of the 

taste/aroma threshold of compounds with serial dilutions of the compound extract. These tests allow to 

identify compounds detection thresholds, but also compounds psychophysical slopes. They allow to 

understand the impact of a compound according to its concentration. For example, the study of Hald et 

al. (2019) with activity-guided fractionation and dilution tests led to the identification of kaempferol 3-

O-(2‴-O-sinapoyl-β-sophoroside) which exhibited a bitter taste above its threshold concentration of 3.4 

μmol/L. This compound contributes to an unpleasant bitter taste of rapeseed protein isolates. However, 

dilution test cannot accurately predict the perceptions of these compounds in mixture. 

 

Combining instrumental analysis and human perception, on fractions or compounds isolated allow to 

identify tasteless and taste enhancing compounds in foods. Thanks to these methods, aroma models have 

been built in order to reconstitute complex odours—such as different types of wine, olive oil, cheese, 

boiled beef, coffee, and whey protein—using only a small fraction of the great number of volatiles 

occurring in these foods (Dinnella et al., 2012; Ferreira et al., 2002; Whitson et al., 2010). However, in 

addition to be very time consuming, these experiments are less effective when volatile compounds are 

included in mixtures because they can interact with other ingredients. Indeed, the ability of volatile 

compounds to modify product odour depends on both their relative concentrations in the products and 

their interactions within the food matrix (Guichard, 2002). Moreover, mixing congruous volatiles and 

taste stimuli can enhance taste intensity, while mixing incongruous stimuli can suppress taste intensity 

(Caporale et al., 2004). These methods were also used to study peptides, phenolic or lipid compounds 

as presented on the Table 1.3.1. In particular, Thomas Hofmann has worked on many different food 

products to identify key sensory chemical compounds with these methods. One of his latest studies based 

on a fractionation strategy is on pea protein isolates and led to the identification of 14 key bitter lipids 

and lipid oxidation products (Gläser et al., 2020).  

 

Concerning the perceptions of pea protein isolates, the identification of the main compounds (e.g., 

peptides, phenolics, minerals) potentially responsible for aroma and taste notes remains a real challenge 

for scientists and industrials, due to the complexity of composition of materials. Moreover, most 

analytical techniques require the use of non-food-grade solvents or buffers that are difficult to handle 

and that can pose problems if the extracts have to be used in sensory evaluations.  

 

1.3.2. Strategies based on methods in interaction with human and electronic receptors 

Different strategies focused on chemical measurements in interaction with human or mimicking human 

receptors. The main used methods are GC-olfactometry, on line mass spectrometry measurements (PTR-

MS and APCI-MS), as well as electronic measurement (E-nose and E-tongue).  
 

GC-olfactrometry allows a panelist to sniff the volatiles molecules at the output of the gas 

chromatograph column and in the same time that they are analysed by the GC detector (for instance 

mass spectrometer or FID). For example, Murat et al., studied odour active compounds and followed 

their evolution during four steps of the process (from pea flour to pea protein) using Gas 

Chromatography coupled with Mass Spectrometry and Olfactometry (Murat et al., 2013). Results 

showed that in pea protein isolates, 16 key compounds could be linked to volatile compounds. The most 

perceived compounds in term of frequency were linked to (E,E)-3,5-octadien-2-one (panel detection 

100%); 3- methylthiopropanal (panel detection 94%); (E)-2-octenal (panel detection 94%); and 5-

butyldihydro-2(3H)-furanone (panel detection 94%). However, this method does not take into account 

physico-chemical interactions as well as matrix effect or sensory interactions. 

 

On-line mass spectrometry measurements (PTR-MS or APCI-MS) allow the monitoring of the release 

of aroma compounds in the air exhaled by a subject consuming food. A lot of applications are described 
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in literature. For example, Jourdren et al., studied the influence of bread structure, volatile compounds, 

and oral processing on aroma perception using proton transfer reaction-mass spectrometry (PTR-MS). 

The release of aroma compounds of three types of bread were characterized by the study of thirty-nine 

ion fragments from m/z 45 to 139. In addition, volatile compounds of boli from panelists were studied 

using PTR-MS headspace analysis at 3 stages of oral processing (10, 40, and 100% of individual 

swallowing time). This study demonstrated for the first time that the perceived aroma of crumb with 

crust was influenced more by volatile profiles than by crumb texture (Jourdren et al., 2017). However, 

this method focused only on the monitoring of the release of a selected and low number of ion fragments 

and links with dynamic perceptions were not easy to establish.   

 

Finally, electronic measurements through E-nose or E-mouth systems are based on pattern recognition 

of flavour and taste compounds based on principle to mimic the human taste and olfactory receptors and 

their communication with the human brain. However, these methods do not generate information on 

sample composition but provide only a digital fingerprint through pattern recognition. For example, Hou 

et al., studied colour values, amino acid, and sugar composition of fresh and roasted sweet potatoes from 

11 cultivars. They used a combination of sensory evaluation, GC-MS, electronic nose, and electronic 

tongue. Results showed that the electronic nose could distinguish the differences in flavour among the 

different roasted sweet potatoes (Hou et al., 2020).  

 

1.3.3. Strategies based on identification of active compounds for human receptors 

When receptors to specific perception are known, it makes possible to study the specific interaction 

between receptors and some active compounds. These experimental strategies aim to predict how a 

molecule could be perceived based on its chemical structure and knowledge of aroma/taste receptors. 

Prediction can be done by mathematical model (Quantitative Structure–Activity Relationship models). 

For example Huang et al., developed a web server tool that can be used to predict the human bitter taste 

receptors used for certain small molecules (BitterX, Huang et al., 2016). This tool first identifies a 

compound as bitter and then predicts its candidate TAS2Rs (Huang et al., 2016). Prediction can be also 

validated by cell-based expression system for human receptors (Bouysset et al., 2020). These methods 

are interesting to confirm the taste or aroma of specific compound. However, they require to work on a 

small number of known compounds and do not allow to take into account the interactions. For example, 

Bouysset et al., used machine learning to predict novel agonists of the sweet taste receptor. A was setup 

based on open-source chemical features optimized on a curated database of 316 known sweet agents 

(SweetenersDB, Bouysset et al., 2020). The virtual screening of a large database of natural compounds 

identified thousands of putative sweeteners, of which three were selected for in vitro functional assays 

of the human sweet taste receptor and dose–response analyses. Among them, they identified arctiin as a 

novel agonist of the T1R2/T1R3 sweet taste receptor (Bouysset et al., 2020). 

 

1.3.4. Statistical modelling of perceptions according to chemical composition 

To model perceptions in function of the chemical composition, two kinds of statistical approach are 

commonly used. The first approach aims to describe and explore the data in an unsupervised manner 

searching for patterns and trends in the data or at investigating the effect of specific treatments on the 

samples. The second approach aims to predict in a supervised manner interesting characteristics about 

the samples by using the data together (regression or classification models). Predictor variables 

(independent variables, chemical compounds) and response variables (dependent variable, sensory 

intensities) are usually referred to as X and Y respectively.  

 

1.3.4.1. Extracting all information from chemical and sensory datasets 

The first step before modelling is the pre-processing of data in order to extract all information from the 

chemical and sensory data (Figure 1.3.3.). As regards chemical data, it can be separated into two main 

directions: removing data artefacts and transforming or rescaling the data by using a function (auto-

scaling, mean-centring, log-transformation). For example, in mass spectrometry analysis it is  necessary 

to remove variations attributed to experimental sources (e.g. analytical noise or experimental bias) in 

chemical data intensities among measurements while preserving the relevant variation (due to biological 

source) (Gorrochategui et al., 2016). Another problem is the general presence and/or intensity of the 

peaks in the data (e.g. ion suppression, adduct formation, fragmentation) (Proust et al., 2019).  



CHAPTER 1 – STATE OF THE ART / SECTION 3                                                                                  A. COSSON 

 67 

 

In addition, the pre-processing step depends on the approach of the study (targeted or untargeted). In 

targeted analysis, such as usually in GC-MS, a predefined group of compounds are characterized and 

annotated according to referential databases. In this type of analysis, there is less artefacts and less 

compounds to study (Johnson et al., 2015). However process becomes quite time consuming and 

complex if there is a large number of compounds to identify such as for peptides identifications (Daher 

et al., 2020). In untargeted analysis, all measurable compounds in a sample, including uncharacterized 

metabolites, are considered (e.g. consideration of each measured ions). In this type of analysis, no 

previous knowledge of the sample is required and no referential database is necessary. However, it 

requires the analysis of whole data sets which include gigabytes of information. Thus it requires previous 

reduction of their dimensions into more computationally manageable formats (Gorrochategui et al., 

2016). Data preprocessing may occur also in descriptive sensory analysis. However, in most 

publications, it is not mentioned or specified. For example, the data may be screened for panellists who 

are outliers or for mistakes (Seisonen et al., 2016). 

 

 

 
 

 
 

1.3.4.2. Statistic descriptive or unsupervised approaches 

To link sensory and chemical datasets, some studies used descriptive or unsupervised approaches. The 

aim of these approaches is to describe and explore the data searching for patterns and trends in the data 

or at investigating the effect of specific treatments on the samples. Two main types of methods are used: 

multivariate decomposition methods and correlations analysis. Correlation coefficients measure linear 

correlations between two variables X and Y (Ludbrook, 2002).  

 

 

 
 

 
For example, Moon & Li-Chan (2007) studied the links between volatile compounds and 12 soy protein 

isolates. Another example, Bi et al., studied volatile compounds of raw and cooked adzuki beans under 

three cooking methods. The results of correlations between volatile compounds and sensory attributes 

showed that pyrazines and maltol might be responsible for “caramel-like” and “cream-like” aromas (Bi 

et al., 2021). Correlation tests may provide trends and patterns within a set of data, but provide limited 

Figure 1.3.3.:  Data pre-processing in data mining. 

Figure 1.3.4.: Schematic description of PCA construction: a. object described by a complex set of 

variables (or coordinate system); b. new variables orthogonal to each other and pointing to the 

direction of largest variances; c. new variables to describe object in a more concise way. 
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information relating multiple datasets (Zielinski et al., 2014). In addition, the presence of different 

sensory interactions give a highly complex relationship, which cannot be easily analysed using 

correlations. Thus, correlation tests are also often used in conjunction with multivariate statistical 

methods (Yu et al., 2018). 

 

Multivariate decomposition methods are used to explore and visualize datasets. Principal component 

analysis (PCA), for example, is used to explore multidimensional data sets made up of quantitative 

variables (Kumar et al., 2014). It is a projection method that allows observations to be projected from 

the p-dimensional space of the p variables to a k-dimensional space (k <p) such that a maximum of 

information is conserved (the information is here measured through the total variance of the point cloud) 

on the first dimensions (Figure 1.3.4.).  

 

 
Main instrumental 

parameters 
Product 

Number of 

products 

Main statistical 

methods 
Reference 

Nuclear Magnetic Resonance 

and infrared spectroscopy 

parameters 

Tomato 112 
ComDim, PLS-

DA 
Monakhova et al., 2016 

Infrared spectroscopy 

parameters 
Oil 32 ComDim Rosa et al., 2017 

Volatiles Beers 24 MLR, ANN 
Gonzalez Viejo et al., 

2019 

Fatty acids, volatile Chicken 8 

PLS-R 

Niu et al., 2016 

Organic acid, amino acids Cheese 459 Kraggerud et al., 2014 

Peptides 

Bovine muscle and 

porcine plasma 

protein hydrolysates 

20 Fu et al., 2018 

Beef seasoning 7 Tian et al., 2015 

Bitter cocktail 16 Johnson et al., 2015 

Liquor 16 Xiao et al., 2016 

Cheese 16 Carpino et al., 2002 

Commercial egg 

flavour Sachimas 
4 Yang et al., 2019 

Garlic Oil 8 Sun et al., 2019 

Honey 6 Tahir et al., 2016 

Tea 27 Qin et al., 2013 

Wine 21 Schmidtke et al., 2013 

Yogurt 10 Sfakianakis & Tzia, 2017 

Bread 10 Heenan et al., 2009 

Volatiles and peptides 
Hydrolysates derived 

from porcine blood 
8 Fu et al., 2019 

427 varied 

compounds 
Soy sauce 25 Shiga et al., 2014 

Peptides Bamboo shoots 16 
PLS-DA 

Gao et al., 2019 

Volatiles 
Chocolate 206 Deuscher et al., 2019 

Cheese 7 PLS-DA, PLS Shiota et al., 2015 

Physical properties Bread 3 PLS-MB Jourdren et al., 2016 

Nutritional content, 

instrumental texture, structure, 

properties and colour 

Yogurt 8 PLS-PM Masson et al., 2016 

 

For example Casassa et al. (2015), linked phenolics concentrations of 6 wines to sensory properties via 

PCA. The multidimensional scaling method (MDS) is also a method used to reconstitute a map of 

individuals from a matrix of proximities (highlighting similarities or dissimilarities) between 

individuals. In öğüTçü and Yilmaz (2009), physicochemical and sensory properties of 5 olive oil 

samples were compared with MDS. Other methods can be used such as multiple factor analysis (AFM) 

(Bernhardt et al., 2015), or generalized procrustean analysis (GPA) (Guàrdia et al., 2010). For example, 

Giacalone et al. (2018) have studied sensory and chemical properties of common roasting off-note in 

Table 1.3.2.:  Example of regression studies carried out on food products to link chemical composition 

and perceptions. 
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coffee. In this study, instrumental-sensory correlations were modelled by MFA, leading  to different 

results such as sensory attributes “Burnt”, “Astringent” and “Burnt (Aftertaste)” which could be due to 

high concentrations of pyridine and furfuryl alcohol. Another example, Mitchell et al. (2011), have 

studied the impact of salt reduction on flavour profile of vegetable soup with GPA. The results revealed 

that reducing the salt content of the low salt soup had a significant effect on the attributes “green colour”, 

“sweet flavour” and “pepper flavour”.  
 

1.3.4.3. Predictive or supervised approaches 

In order to obtain cause and effect links, it is necessary to use regression models. Multivariate regression 

methods are prediction methods that look for cause-and-effect relationships between variables. Once 

again, different methods of analysis can be distinguished. Table 1.3.2. presents some examples of 

regression studies carried out on food products to link chemical composition and perceptions. 

 

Multiple Linear Regression (MLR) are usually described in the literature as models with good predictive 

ability to link texture attributes in relation to sensory attributes (Krzeminski et al., 2013). However, 

these models do not work when the number of individual is greater than the number of variables X. 

Partial Least Square Regressions (PLS-R) are used when there is a large number of explanatory variables 

or when there are strong collinearities between the variables (Höskuldsson, 1988). It allows the 

comparison of two blocks of variables taking into account the correlations between the variables (Wold, 

Sjöström, et al., 2001) (Figure 1.3.5.). PLS methods are widely used to correlate consumer sensory 

descriptive attributes with instrumental or chemicals parameters (Sfakianakis & Tzia, 2017; Fu et al., 

2019; Shiga et al., 2014; Heenan et al., 2009). PLS-DA (discriminant analysis) is a special case of PLS 

where the qualitative q variable with q classes is replaced by q indicator variables of these classes. 

 

 

 
 

 
However, simple PLS-R can present some limits. They have been developed for data sets comprising 

about twenty variables, but today the work includes hundreds, or thousands of variables. This increase 

in the number of variables poses a lot of limits in the modelling and interpretation of the results. Besides 

it deals with difficulty for Ys which measure different concepts that are quite independent (Wold et al., 

2001). Several solutions exist in the literature. For example, the ComDim method is an analysis in 

common components and specific weights (CCSWA) (Hanafi et al., 2006). It is used in the literature to 

study food products analysed using Nuclear Magnetic Resonance and infrared spectroscopy 

(Monakhova et al., 2016; Rosa et al., 2017). Another example is the PLS Multi-Block (PLS-MB), a PLS 

variant, which preserve the original structure of the data and thus allows to analyse the different tables 

simultaneously. In particular, the usefulness of PLS-MB lies on the ease of visualization of importance 

of each block of variables. In addition, PLS-MB is low sensitive to multicollinearity within explanatory 

blocks (Bougeard & Dray, 2018). Another solution is to use the PLS-Path Modelling method,  which 

permits to divide the X and Y variables into sub-blocks, to create a PC or PLS model of each sub-block, 

and then to use the resulting scores as a new set of variables in a new PLS model  (Wold, et al., 2001). 

Figure 1.3.5.: Schematic description of PLS-R construction: matrices of Y independent variables (a.) 

and then matrices of X explanatory variables (b.) are decomposed into latent structure in an iterative 

process. The latent structure corresponding to the most variation of Y is extracted and explained by a 

latent structure of X that explains it the best (c.). 
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It is very useful in calculating global indices, such as the consumer satisfaction index, but it is little used 

today in food applications (Tenenhaus et al., 2005). 

 

Another type of method used in the literature are non-linear models such as artificial neural networks 

(ANN) (Gonzalez Viejo et al., 2019). ANN are a type of machine-learning prediction method with the 

ability to self-learn relationships from labelled experimental data and generalize to unlabelled situations. 

They were designed to mimic pattern recognition and information storage processes performed by the 

brain and biological nervous system. An ANN consists of a network of connected nodes which are 

divided into the input, output, and hidden layers (Figure 1.3.6.). The input layer receive the independent 

variables. The output layer generate the predicted values. The hidden layer is a layer of nodes between 

the input and output layers where multiple connection patterns are possible (Yu et al., 2018).  

 

 

 
 

Main conclusions 
 

In food science, two main strategies are used to link sensory and chemical datasets:  
 

 The first strategy combines fractionation and test of omissions or dilution, but: 

 Compounds in pea protein isolates that are potentially responsible for sensory 

attributes are very complex and challenging to purify and identify;  

 Most analytical techniques require the use of non-food-grade solvents or buffers that 

are difficult to handle with sensory evaluations. 
 

 The second strategy combines design of experiments and predictive models: 

 Data pre-processing is a complex task in order to obtain quality data; 

 PLS methods are widely used; 

 However, links between chemical and sensory data are often nonlinear; 

 For that, artificial neural networks are sometimes used. 

 

Figure 1.3.6.: Simplified view of a feedforward artificial neural network. 
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1.4. Objectives of the PhD work and experimental approach 

 

As highlighted in the literature review, the perception of pea proteins is complex and could limit their 

use as food ingredients. A large number of molecules (volatile compounds, peptides, phytochemicals, 

lipids, minerals and carbohydrates) are likely to participate in the perception mechanisms either directly 

or via interactions between molecules, with food ingredients in matrix and with individual physiology 

parameters. This last ones play a role in food oral processing with consequences on the dynamics of 

perceptions, which also directly participate at the global image of perception. Understanding the 

physicochemical and sensory mechanisms associated with pea protein isolates may subsequently enable 

us to formulate pea based-products that meet consumer expectations. 

 

In this context, the work carried out in this PhD project aims to answer the following research question: 

“What are the main physical, chemical and sensory mechanisms that explain the sensory notes of pea 

protein isolates?” Consequently, the overall objective of this PhD project was to evaluate i) the role of 

the main groups of chemical compounds (volatile compounds, peptides, phenolics/saponins) on sensory 

perceptions, and ii) the role of food formulation, sensory interactions (chemical, physiological and 

cognitive interactions) and oral process on the release of these compounds during food intake and on 

temporal perceptions. In order to meet these objectives, some hypotheses have been formulated: 

 

 The overall aromatic composition of pea protein isolates, the protein-flavour interactions, the 

formulated matrix (fat, salt, texture, etc.) and the dilution with saliva during the oral process impact 

the release of volatile compounds, which can interact with olfactory receptors and lead to the 

dynamics of aromatic perceptions. 

 Perceptions of bitterness root in the complex composition of pea protein isolates into soluble 

molecules (peptides, phenolics, saponins). They are impacted by the protein interactions, the 

formulated matrix and the physiological characteristics of individuals involved during consumption 

act. 

 The phenolic composition of pea protein isolates and the formulated matrix impact the formation of 

saliva protein aggregates which lead to the astringent perceptions. 

 
In addition, as the literature review points out, the study of pea proteins requires adapting the used 

physico-chemical and sensory methodologies. The distinct and persistent flavour of pea proteins calls 

into question their sensory evaluation and requires the adaptation of classical methods. To understand 

the origin of perception, scientific studies usually uses the combination of molecular fractionation and 

omission tests. However, these methods need to be adapted to simultaneously study different groups of 

molecules. It is therefore necessary to also develop a strategy adapted to these complex ingredients. The 

development of technologies (modern mass spectrometry and bioinformatics) could allow a more 

precise identification of peptides and phytochemical compounds, but still requires further development. 

Finally, to link chemical and sensory data, scientific studies have generally focused on aromatic or sapid 

perceptions related to volatile or non-volatile compounds with linear regressions. However, in order to 

apprehend a global picture of perception, it is also necessary to propose a more global approach on all 

properties and composition. 

 

Thus, to test these hypotheses, a four-step experimental approach was undertaken for this PhD. The 

following diagram summarizes the different sections of the PhD work and their relationships with pea 

protein isolates (Figure 1.4.1.). 

 

In order to investigate the mechanisms that lead to sensory properties of pea-protein based products, it 

is necessary to describe and quantify their perception, and by consequences a relevant sensory profiling 

protocol is required, adapted to this type of products. In addition, the apparent complexity of 

mechanisms at the origin of off-flavours in pea protein isolates calls for the establishment of an adapted 

strategy taking into account volatiles and non-volatile compounds. Thus, the first step of the project 

aims to propose i) a relevant sensory protocol for the identification and quantification of pea protein-

based samples perception (Section 3.1.1.); and ii) a relevant strategy to develop products enabling to 
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study the relative role of volatile and non-volatile fractions of pea protein isolates on these perceptions 

(Section 3.1.2.). For this last point, an original approach based on the recombination of different 

fractions (blocks of molecules) were considered. In order to have a larger number of products with an 

interesting variability, the idea was to artificially create different protein isolates from pea protein 

isolates. The objectives of these artificial products are to create variability based on the three main block 

compositions: the volatile part, the protein part and the other components.  

 

 

 
 

 

 

As highlighted in the literature, the chemical composition of pea protein isolates (with the exception of 

volatile compounds) is still poorly known. However, the recent development of analytical technologies 

could make possible a more precise identification of chemical compounds of pea protein isolates. Thus, 

the second step of the project aims to characterize the chemical composition of pea proteins, in particular 

i) the main volatile compounds (Section 3.2.1.); ii) the main oligopeptides and polypeptides (Section 

3.2.2.); and iii) the main phytochemicals (phenolic acids, flavonoids and saponins – Section 3.2.3.). For 

each chemical profile, the links with sensory properties were considered. 

 

The third step of the project aims to go further in understanding the complex and combined role of 

volatile and non-volatile compounds on overall perceptions of pea protein isolates and to build a 

statistical model taking into account key compounds coming from different chemical families to explain 

sensory perceptions (Section 3.3.1.).  

 
Beyond the chemical composition of the food, its structure and texture could also influence the dynamics 

of perception. To better understand sensory off-notes and to be able to provide advice to improve them, 

it is therefore necessary to consider a formulated product. In addition, as shown in the literature review, 

sensory interactions and dynamic of perceptions seem very important for pea protein-based products 

and need to be studied further. Thus, the purpose of this fourth step of the project is to determine how 

the sensory perceptions of pea protein isolates are affected by the formulation as well as the consumption 

of a whole product. The temporal sensory properties were considered when consuming a spoonful, but 

also a whole portion of food (Section 3.4.1.). The rheological properties and volatile compound profiles 

were also considered (Section 3.4.2.). Among the different pea applications, pea beverages were 

considered. 

 
The following sections detail the materials and methods used in these four experimental phases. 

Figure 1.4.1.: Schematic representation of the experimental approach of the PhD work. The sections 

labels correspond to the Chapter 3 - Results. 



 

 

 

 

 

 

 

 

CHAPTER 2 

 

MATERIALS AND METHODS 
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Chapter 2 – Materials and methods 
 
This part presents the products and protocols implemented during the different phases of the PhD project 

to meet their different objectives. The pea based products (protein isolates, solutions and food products) 

used during the different phases of the project are presented in the first section. Then, the description of 

the sensory methods used are presented, followed by the physicochemical methods. Finally, the last part 

focuses the statistical analyses carried out between the different sensory and instrumental data sets. Since 

some techniques and methods are common to different phases of the project, a thematic organization 

was preferred to a chronological one. In addition, this materials and methods section has been written 

to be complementary to the information given in the results sections and to give a synthetic vision of all 

the experiments carried out. 

 

2.1. Pea protein based products used in the project 

 

To conduct this research work, three types of pea protein-based products were produced from 

commercial pea protein isolates: 6 pea protein-based solutions, 46 pea protein fraction-based products 

and 12 pea protein-based beverages (Figure 2.1.1.).  

 
Figure 2.1.1.: Schematic representation of the pea-protein products (solutions S, products P and 

beverages) studied during PhD work. 

 

2.1.1. Choice of pea proteins isolates 

For the first phase of the project, 6 quite different sensory products were first selected (S1 to S6) among 

the diversity of commercial products. No further information on the isolates and their characterizations 

can be given for reasons of confidentiality. However, the overall composition of S1 is given on the 

Figure 2.1.2. 

 

 
 

Figure 2.1.2.: Overall composition of commercial pea protein isolates S1. 

 

Then, for the fraction-recombination methodology, we wanted to work on products belonging to a range 

of similar products and not to work on different commercial products. Among batches and range of 

commercial products from a single manufacturer, we had to select the most different products possible 

on sensory and physicochemical criteria. For that, in order to select different pea protein isolates, fast 
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sensory analysis and physicochemical characterizations were performed on 10 pre-selected pea protein 

isolates (called a to h).  

 

First a free sorting test on the 10 batches was carried out. However the results did not yield any 

significant results. The 10 batches were very close in term of perceptions, so it was very difficult for 

panellists to sort them. Thus, volatiles composition (GC-MS) were analysed as well as physical 

characteristics: pH, residing at calcination, protein content, colorimetry index (L, A, B and ratio A/B), 

bulk density and granulometry (> 250µm > 100µm and > 80µm). The figure 2.1.3., presents the Multiple 

Factor Analysis between the volatile molecule data and the physical data. Among the 10 products the 

two most different products were selected (Batch a and b). For confidentiality reasons, the choice of 

these isolates a and b will not be discussed further. In the same way, in the results, the differences 

between a and b will not be discussed because of confidentiality issues. 

 

 
Figure 2.1.3.: Representation of 10 pea protein isolates pre-selected in the first and second dimensions 

of the multiple factor analysis performed on physico-chemical datasets. Rv coefficient = 0.64 between 

physical parameters and volatile molecules areas. In green are the pea protein isolates a and b selected 

for PhD work. In red are the physical parameters: pH, residing at calcination, protein content, 

colorimetry index (L, A, B and ratio A/B), bulk density and granulometry (> 250µ, > 100µ and > 

80µ). In blue are the volatile molecules areas. 

 

Finally, the sensory differences were confirmed by triangular tests. Table 2.1. presents the results of the 

triangular tests between products a and b. Significant differences were perceived by panellists between 

these two products, confirming the interest to work with them. No further information on the isolates 

and their characterizations can be given for reasons of confidentiality. 
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Table 2.1.: Results of the triangular tests between pea protein isolates a and pea protein isolates b 

performed by 19 non trained judges with 2 repetitions. 

 

Repetition Corrected responses Pvalue 

1st repetition 12 /19 < 0.01 

2nd repetition 14 /19 < 0.01 

 

 

2.1.2. Pea protein-based solutions 

For the implementation of a sensory method, it was chosen to work on the isolates present in water 

solution, without any other addition of ingredients (e.g. sugars) in order to not decrease or mask the 

potential off-notes. They were presented in the form of solutions with 4% (w/w) pea protein (S1 to S6): 

the isolates were mixed in water (Evian, France) for 1 min and then allowed to soak for 30 min.  

 
2.1.3. Pea protein fraction-based products 

To establish a predictive model of perceptions of pea protein isolate as a function of their 

physicochemical compositions and properties, it t was necessary to study a larger number of products 

(about twenty). Thus, a market study was carried out and different samples were requested from both 

Roquette and other companies. The variability of the batches obtained was statistically studied (standard 

deviation, box plot) on sensory profile data, general composition data, total amino acids and free amino 

acids. The results showed that there was a variability within the Roquette products that could be 

interesting to exploit. On the other hand, the variability within the products from different companies 

was sometimes very high. In addition, it appeared that there were not so many pea protein isolates on 

the market and that working on these products could raise confidentiality issues. The choice was 

therefore made to work only on Nutralys products.   

 

In order to have a larger number of products with an interesting variability, the idea was to artificially 

create different protein isolates from pea protein isolates. The objectives of these artificial products are 

to create variability based on the three main block compositions: the volatile part, the protein part and 

the other components. The analysis of the literature has led us to imagine to separate a soluble fraction 

(mainly proteins, called pellet), an insoluble fraction (mainly proteins, called retentate) and a soluble 

fraction with molecular weight lower than 10 kDa (mainly "non-protein" molecules, called permeate).  

 

2.1.3.1. Preliminary experiments to define conditions of fractionation 

The aim of the study was to separate a soluble fraction with molecular higher molecular weight (mainly 

composed of proteins), an insoluble fraction (mainly composed of proteins) and a soluble fraction with 

lower molecular weight (mainly composed of peptides and "non-protein" molecules) from two protein 

isolates a and b. The six fractions obtained were then re-associated to formulate the 46 samples of the 

mixing plan. For this purpose, it was necessary to obtain fractions under strictly similar conditions for 

both isolates, in large quantities and with a process that minimizes product modifications (modification 

of protein structure, loss of compounds...). Storage conditions were also adapted in order to optimize 

the long-term storage of the samples (about 12 months) and to be able to defrost them gradually 

according to the needs of the analyses. In addition, the products were aimed to be consumed, some 

specific handling precautions were also applied to produce safely the products.  

 

First, several experiments were carried out in the SayFood laboratory on a laboratory membrane 

filtration system (Figure 2.1.4.). Different centrifugation conditions and different membranes and 

filtration conditions (salt, diafiltration) were tested. These various conditions made it possible to 

determine the optimal parameters for these processes at pilot scale. These studies showed the feasibility 

of fractionation and interesting sensory differences between products. Results showed that the addition 

of the centrifugation stage was determinant to limit fouling during the filtration step. However, the use 

of a NaCl solution to extract proteins was not retained, in particular because it greatly alters the taste of 

the products obtained. However, the non-controlled temperature during filtration and the high fouling 

of the membrane have limited the fractionation but help in the establishment of further specifications.  
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Figure 2.1.4.: Microfiltration system used at SayFood laboratory. 

 
Thus the tests were quickly limited by the pilot's capacity (filtration rate, filtration temperature...). They 

were then carried out within the Improve platform. Improve (Amiens, France) is a European platform 

for research and development fully dedicated to the valorisation of proteins (http://www.improve-

innov.com/). A first experiment was carried out to choose the method for the preparation of the pellets: 

a decanter Lemitec was used. The pea protein isolate a was used in this study and prepared on water 

solution: 4% (w/w) of pea protein isolates were mixed during on water (Tap water) and hydrated during 

12h in a 200L double-walled tank with stirring. It was refrigerated to +4°C by a cooling unit to limit the 

proliferation of microorganisms. The isolate was added to the water previously cooled to 10°C. The 

powder was added with care to avoid excessive foam production. The pH and the solubility of the 

solution were measured after 30min and after 12h. After hydration, the settling tests with the Lemitec 

were carried out in two stages: a series of pre-tests to determine the settling parameters allowing to reach 

the target and a repetition of the 3 best conditions to validate the process (Figure 2.1.5.).  
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Figure 2.1.5.: a. Photographs of the device (continuous decantation with the Limitec system), b. of 

the pellet, c. of the supernatant and d. of the screw used for separation. 

 

 

Different parameters were modified as listed on Table 2.2.: modification of the screw rotation speed, 

modification of the bowl rotation speed, modification in feed rate. A spin test of the initial suspension 

is performed 4 hours after the start of the settling tests to check the stability of the product as well as a 

pH measurement. Results are compared to results obtained with centrifugation on a lab scale (12 000g 

during 15min). After this test phase, the three best tests (n°3, 4 and 7) were reproduced with an analysis 

of the dry matter, the pellet and the supernatant. 

 

Table 2.2.: Conditions used for decantation tests with Limitec. 

 

Tests n° 1 2 3 4 5 6 7 8 9 

Flow rate (L.h-1) 40 40 40 40 40 40 30 20 10 

Bowl acceleration (g) 4000 4000 4000 3500 3000 3000 3500 3500 3500 

Screw differential speed (rpm) 100 50 40 40 40 40 40 40 40 

Screw motor torque (%)  14 34 40 32 28 33 28 22 18 

Pellet volume (%) 18 4,5 4 4 4,5 15 3 4 7 

 

 

 

Results indicated that the settling was not sufficient for optimal product separation. The pellet was not 

sufficiently clarified for the following planned steps. Two possible alternatives to settling (on a small 

scale) were therefore considered. First, centrifugation of the suspension by batch (on rotor bucket) was 

considered: it allows an optimal separation of the supernatant and the sludge, but the limit is an important 

number of handling of the product which could be a source of microbiological contamination. The 

second option considered was a plate centrifugation: it allows a very good clarification of the supernatant 

with a treatment rate of 200 to 400 L.h-1. The limit of this process is a lower concentration of the solid 

phase. Finally, the choice of batch centrifugation was made. 
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2.1.3.2. Production of pea protein isolate fractions 

Then samples were produced in four days as described on Figure 2.1.6.  

 
D1 D2 D3 D4 

pm night am pm night am pm am pm 

         
Solubilisation Hydration Centrifugation Filtration      

Isolate a      
         
   Solubilisation Hydration Centrifugation Filtration   
   Isolate b   
         
      Mix Conditioning 
         

 

The isolates were dispersed in tap water in a tank to obtain a final suspension containing 4% (w/w) dry 

matter content (Figure 2.1.7.). This suspension was maintained under agitation for 12 h at 3°C with an 

external agitator (U-shaped stirrer shafts).  

 

a) Weight of the powder b) Protein solution c) Mixed of the solution 

   
 

d) Hydration of the protein solution 

 
 

Figure 2.1.7.: Photographs of the a. weight of the powder, b. of the protein solution, c. of the mixed 

of the solution and d. of the hydration of the protein. 

 

 

 

 

It was then centrifuged with two centrifuges (Jouan Kr4i and Sorvall Lynx 4000, Thermo Scientific, 

US) at 6000 g, 10 min, 4°C (Figure 2.1.8.). The supernatant was manually separated from the pellet. 

The pellet was subsequently diluted with tap water to arrive at a dry matter content of 12.35%, which 

facilitated solution creation.  

 

 

Figure 2.1.6.: Calendar of the production of isolate fractions. 
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Filling of the centrifugation bottles Recovered of the pellet 

  
 
 

Jouan Centrifuge Lynx Centrifuge 

6 bottles - Time: 12min30 4 bottles - Time: 11min 

  
  
  

Figure 2.1.8.: Photographs of the Jouan and Lynx centrifuge, the filling of the bottles and the 

recovered of the pellet. 

 

 

 

A tangential filtration module (TIA, Bollene, France) was used for the ultrafiltration process. The 

module employed two ST-3B-1812 PES Synder membranes (46-mil spacer; 10-kDa MWCO). Total 

membrane surface was 0.67 m². The filtration pilot was equipped with a high-pressure diaphragm pump 

(Wanner Hydra-Cell G10, Wanner International Ltd, UK)). The retentate was maintained at 13°C 

throughout filtration. The inlet pressure (P1) was 1.5 bar, the outlet retentate pressure (P2) was 1 bar, 

and the mean transmembrane pressure ([P1 + P2]/2) was 1.25 bar. First, ultrafiltration was used to obtain 

around 10 L of permeate; then, diafiltration was performed employing the same parameters to partially 

wash the retentate (one diavolume was used). Six fractions were obtained: permeates a and b, retentates 

a and b, and pellets a and b (Figure 2.1.9. and 2.1.10). Complementary details on protocol can be found 

in the section 3.1.2. 
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Figure 2.1.9.: Schematic representation of the filtration pilot. 

 

Filtration pilote TIA 

 
Recovered of permeate Recovered of retentate 

  
 

Figure 2.1.10.: Photographs of the filtration pilot, the recovered of the permeate and the retentate. 
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2.1.3.3. Mixture design 

An optimal mixture design was developed to have a wide range of reference and experimental solutions 

from the fractions (permeates a and b, retentates a and b, and pellets a and b). Response surface models 

were performed and included quadratic terms and first-order interactions. The experimental design was 

such that there was orthogonality among all the terms, which allowed variable effects to be differentiated 

from one another. A blocking factor was used to control for the effect of the day on which sensory 

evaluation took place. Variable levels were chosen so as to represent a wide range of variation while 

remaining realistic in terms of the protein concentrations (similar to real food products). To validate the 

model’s predictive capacity, six solutions that were not initially included in the design were added to 

the sensory evaluations (in italics in the Table 2.3.—sensory session ID 9). Complementary details on 

protocol can be found in Section 3.1.2. 

 

Table 2.3.: Composition of the different solutions used in this study by mixture design model. The 

46 solutions were produced by mixing different levels of permeates a and b, retentates a and b, and 

pellets a and b. In bold are the solutions that were replicated. In italics are the supplementary 

solutions used for validation purposes. 

 

Solution ID 
Permeate 

a (%) 

Permeate 

b (%) 

Retentate 

a (%) 

Retentate 

b (%) 

Pellet a 

(%) 

Pellet b 

(%) 
Water (%) MS (%) 

Sensory 

session ID 

          

P12 100 0 0 0 0 0 0 0.20 3 

P29 100 0 0 0 0 0 0 0.20 6 

P9 0 100 0 0 0 0 0 0.20 2 

P38 0 100 0 0 0 0 0 0.20 8 

P4 0 0 100 0 0 0 0 1.70 1 

P8 0 0 100 0 0 0 0 1.70 2 

P13 0 0 100 0 0 0 0 1.70 3 

P14 0 0 0 100 0 0 0 1.70 3 

P31 0 0 0 100 0 0 0 1.70 7 

P40 0 0 0 100 0 0 0 1.70 8 

P3 0 0 0 0 0 0 100 0.00 1 

P19 0 0 0 0 0 0 100 0.00 4 

P25 0 0 0 0 0 0 100 0.00 5 

P34 0 0 0 0 0 0 100 0.00 7 

P6 0 0 0 0 0 25 75 3.09 2 

P24 0 0 0 0 0 25 75 3.09 5 

P11 25 0 25 0 12.5 0 37.5 2.02 3 

P28 0 0 0 0 30 0 70 3.71 6 

P1 40 0 0 0 0 0 60 0.08 1 

P35 40 0 0 0 0 0 60 0.08 7 

P18 0 40 0 0 0 0 60 0.08 4 

P17 0 0 40 0 0 30 30 4.39 4 

P37 0 0 0 40 30 0 30 4.39 8 

P7 0 0 0 40 0 30 30 4.39 2 

P2 0 0 0 0 50 0 50 6.00 1 

P20 0 0 0 0 50 0 50 6.00 4 

P30 0 0 0 0 0 50 50 6.00 6 

P39 0 0 0 0 0 50 50 6.00 8 

P33 50 0 0 0 0 25 25 3.19 7 

P36 50 0 50 0 0 0 0 0.95 8 

P10 50 0 0 0 25 0 25 3.19 2 

P5 0 50 0 0 0 25 25 3.19 1 

P23 0 50 0 50 0 0 0 0.95 5 

P26 0 50 0 0 0 0 50 0.10 6 

P22 0 0 50 0 25 0 25 3.94 5 

P16 0 0 0 50 0 0 50 0.85 4 

P21 0 0 0 50 0 0 50 0.85 5 

P32 0 0 60 0 0 0 40 1.02 7 

P15 0 70 30 0 0 0 0 0.65 3 

P27 40 0 0 60 0 0 0 1.10 6 

          

P41 0 0 0 0 67 0 33 8.27 9 

P42 0 0 0 0 0 50 50 6.00 9 

P43 0 0 0 0 8 0 92 0.99 9 

P44 0 0 0 0 0 8 92 0.99 9 

P45 (Refa-R) 38 0 34 0 28 0 0 4.10 9 

P46 (Refb-R) 0 40 0 36 0 24 0 3.70 9 
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Note on the construction of this mixture design:  

 

 The choices of construction of this mixture design led to be very strongly constrained to dilution 

effects (dry matter effect). These effects are clearly visible in the results. An approach with an 

equivalent dry matter rate had previously been considered. However, in view of the fractionation 

results, it was difficult to separate the dry matter rate from the protein rate. In addition, the permeate 

fractions present dry matter and protein rates too low to be able to work at constant dry matter or 

protein rate. Dry matter variations were therefore chosen between 0 and 6%. These values are 

relatively low and in the order of magnitude of the formulated products on the market. 

 

 In addition, we chose in this design to add a 100% water sample. This product was necessary for the 

chemical analyses. This sample is also interesting because it allows to study the threshold effects. 

In addition, the permeates were much diluted and therefore very close to water. Thus, the water 

sample was not inconsistent in terms of composition. 

 

 Moreover, it was initially planned to study the quadratic effects. However, due to the complexity of 

the results, these effects could not be studied. Therefore, afterwards, the experimental design could 

have been simplified.  

 

 Finally, we added to this design, 6 specific sample. These points allowed us to validate the model’s 

predictive capacity. They have been chosen because in view of the first sensory results, it seemed 

that the products with high concentrations of dry matter were very close sensorially to each other. 

We therefore wanted to add products with high concentrations of dry matter to study how the 

panelists would describe them.  

 

 

2.1.3.4. Solutions creations 

The six different fractions were combined in various ways to formulate the 46 solutions of the mixture 

design. This process was carried out at 4°C in glass flasks, which were stored at -20°C. During 

fractionation and recombination, good hygiene practices were used to limit microbial contamination 

(usage of coat, gloves, and hygienic cap; cleaning and disinfection of hands and all equipment with pure 

ethanol, followed by air drying; work carried out in a 4°C chamber). In addition, the microbial safety of 

the solutions was tested by a certified external laboratory (Eurofins Scientific, France):  

 

 Mesophilic aerobic flora (30°C) (NF EN ISO 4833-1) 

 Yeasts (NF V 08-059) 

 Mould (NF V 08-059) 

 Escherichia coli β-glucuronidase positive (NF ISO 16649-2) 

 Escherichia coli β-glucuronidase positive (NF ISO 16649-2) 

 Presumptive Bacillus cereus (30°C) (NF EN ISO 7932) 

 Clostridium perfringens (NF EN ISO 7937) 

 Listeria monocytogenes (AES 10/03-09/00) 

 Salmonella (BRD 07/11-12/05) 

 Coagulase-positive staphylococci (37°C) (NF EN ISO 6888-2) 

 
However, the pellet b presented a high level of Mesophilic aerobic flora and presumptive Bacillus 

cereus. To face this problem, our first proposal was to autoclave the samples. This solution would allow 

us to have safe products, but possible evolution of flavour properties. In order to validate this process, 

sensory triangle tests were performed between non-autoclaved products and autoclaved products with 

two conditions (Pea protein isolates a, 4%, 110°C-10min and 100°C-5min). Results showed that the 

heat treatment considerably modified the perceptions for both heat treatments (significant triangular 

test). This solution was therefore not satisfactory. 
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Thus, we decided for the project to evaluate the samples on the aromatic notes with odour (orthonasal 

perceptions) in addition to an in-mouth evaluation (retronasal perceptions) and to add the descriptor 

sweet, i. e.: 

 

 For samples without microbiological problems (32/40 samples): in-nose evaluation on 

aromatic descriptors, in-mouth evaluation on sapid descriptors and in-mouth evaluation on 

aromatic descriptors. 

 

 For samples with microbiological problems (8/40 products): in-nose evaluation on aromatic 

descriptors on samples initially made, in-mouth evaluation on sapid descriptors on 

autoclaved samples (110°C-10 min) and in-mouth evaluation on aromatic descriptors on 

autoclaved samples (110°C-10 min). 

 

In parallel, we proposed to added products during the sensory profiling to study the autoclave effect 

(110°C, 10 min) on the initial products (Refa and Refb) as well as on the pellet b fraction (duplicate 

evaluation by the panel). Table 2.4. presents the results of the two-way analysis of variance performed 

on the intensities of all the attributes (Autoclaved, Product, Repetition and Product*Autoclaved). The 

Autoclaved effects were significant for almond, cereals and granularity. The Product*Autoclaved effects 

were significant for nuts and granularity. Thus for the others attributes (8/12) there is no impact of the 

autoclave on their intensities on products.   

 

 

Table 2.4.: Effect of the autoclaved for the evaluation of the intensities of the 12/12 attributes 

evaluated by mouth for Pellet b (6% of dry matter) and Refb (4% of dry matter): (a) F value: Fisher 

statistic for fixed factors. Pvalue for the Fisher test. In bold p-values significate at the threshold of 

0.05. 

 
 

  Autoclaved  Product  Product*Autoclaved Repetition 

  F value Pvalue F value Pvalue F value Pvalue Rapport F Pvalue 

Almond-M 13.67 0.00 0.09 0.76 0.43 0.51 0.53 0.47 

Astringent-NC 0.50 0.48 1.84 0.18 0.18 0.67 0.36 0.55 

Bitter-NC 2.98 0.09 0.13 0.71 0.85 0.36 0.11 0.74 

Broth-M 0.86 0.36 9.80 0.00 1.66 0.20 0.06 0.81 

Cereals-M 6.88 0.01 0.21 0.65 1.22 0.27 0.23 0.64 

Granularity-NC 418.49 0.00 9.36 0.00 6.41 0.01 0.75 0.39 

Mouthfeel-NC 0.82 0.37 9.11 0.00 2.56 0.11 0.03 0.86 

Nuts-M 1.18 0.28 0.55 0.46 5.81 0.02 2.45 0.12 

Pea-M 1.84 0.18 0.49 0.48 0.25 0.62 0.08 0.78 

Potato-M 0.82 0.37 0.94 0.33 0.24 0.62 0.12 0.73 

Salty-NC 0.17 0.68 10.87 0.00 0.04 0.84 1.24 0.27 

Sugar-NC 3.00 0.09 0.39 0.53 0.09 0.77 0.00 0.94 

 

 

Considering average perceived intensities and Newman-Keuls groups, the difference of intensities 

between autoclaved and not autoclaved was low for nuts, cereals and almonds (Table 2.5.). Nevertheless, 

the difference of intensity was very high for granularity (difference of 6/10). Autoclaved products were 

less granular than the not autoclaved products. We can assume that the autoclaved process induce 

important change on the structure of the pea protein isolates solutions. 
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Table 2.5.: Averaged perceived intensity (across subjects) and Newman-Keuls group associated for 

products autoclaved and no autoclaved for the significant attributes: (1) Pellet b (6% of dry matter) 

and (2) Refb (4% of dry matter). Differences of average intensities between autoclaved and not 

autoclaved were calculated. Significant differences between groups are indicated by differences in 

letters. 

 
 Nuts-M Cereals-M Almond-M Granularity-NC 

(1)     

Refb 4.25 a 3.02 a 3.22 b 5.37 b 

Autoclaved Refb 3.76 a 3.56 a 4.41 ab 0.57 c 

Differences 0.49 -0.54 -1.19 4.81 

     

(2)     

Pellet b 3.09 a 2.79 a 3.09 b 6.87 a 

Autoclaved Pellet b 4.38 a 4.11 a 4.79 a 0.71 c 

Differences -1.29 -1.33 -1.70 6.17 

 

 

2.1.4. Pea protein-based beverages 

In addition to the study on pea protein solutions, some beverages were developed in order to understand 

the role of this ingredient in real products. For that, we studied the impact of composition of beverages 

on perception. The pea protein isolates a was used to study formulated products. Among the different 

applications using pea proteins (dietary supplements, bakery and meat products…), we chose to study 

beverages because they allow to vary the concentrations of various ingredients (salt, sugar, fat, 

texturizing agent) while being easy to produce in a repeatable way over a long period of time (6 months). 

Two mixture designs were used to produce a wide range of plant-beverages from different ingredients 

while being realistic in term of ingredient concentrations. The first mixture design was formulated with 

pea protein isolates and had three independent variables with two levels: sunflower oil concentration 

(0% or 1.5% w/w), gellan gum concentration (0.12% or 0.5% w/w) and salt concentration (0.08% or 

0.12% w/w). The second mixture design was formulated with pea pellets and had also two independent 

variables: the protein, sunflower oil concentration (0% or 1.5% w/w) and two levels of gellan gum 

concentration (0.12% or 0.5% w/w). Thus, the total number of trials was 12 (composition and ingredient 

concentrations are presented in Table 2.6. Complementary details on protocol can be found in the 

Section 3.4.1. 

 

 

Table 2.6.: Composition (ingredient concentrations [w/w %]) of the pea protein-based beverages 

used in this study. Abbreviations: I = isolate, P = pellet, F+ = 1.5% oil, F- = 0% oil, G+ = 0.5% 

gellan gum, G- = 0.12% gellan gum, S+ = 0.12% salt, and S- = 0.08% salt. 

 
Product 

name 

Protein 

type 

Sunflower Oil 

(%) 

Soy lecithin 

(%) 

Gellan gum 

(%) 

Salt 

(%) 

Sugar 

(%) 

Pea protein 

(%) 

Water 

(%) 

 (P or I) (F+ or F-)  (G+ or G-) 
(S+ or 

S-) 
   

I/F-/G-/S- Isolate 0.00 0.00 0.12 0.08 1.00 7.00 91.80 

I/F-/G-/S+ Isolate 0.00 0.00 0.12 0.12 1.00 7.00 91.76 

I/F-/G+/S- Isolate 0.00 0.00 0.50 0.08 1.00 7.00 91.42 

I/F-/G+/S+ Isolate 0.00 0.00 0.50 0.12 1.00 7.00 91.38 

I/F+/G-/S- Isolate 1.50 0.10 0.12 0.08 1.00 7.00 90.20 

I/F+/G-/S+ Isolate 1.50 0.10 0.12 0.12 1.00 7.00 90.16 

I/F+/G+/S- Isolate 1.50 0.10 0.50 0.08 1.00 7.00 89.82 

I/F+/G+/S+ Isolate 1.50 0.10 0.50 0.12 1.00 7.00 89.78 

P/F-/G-/S- Pellet 0.00 0.00 0.12 0.08 1.00 7.00 91.80 

P/F-/G+/S- Pellet 0.00 0.00 0.50 0.08 1.00 7.00 91.42 

P/F+/G-/S- Pellet 1.50 0.10 0.12 0.08 1.00 7.00 90.20 

P/F+/G+/S- Pellet 1.50 0.10 0.50 0.08 1.00 7.00 89.82 
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2.2. Sensory characterizations of pea protein-based solutions and beverages 

 

To sensory characterize pea protein-based products (solutions and beverages), two different panels were 

used as well as four types of sensory methods: a classical profile, a static block profile, a mono-intake 

TDS method, and a multi-intake TDS (multi-TDS) method (Figure 2.2.2.). 

 

 

Table 2.7.: List of sensory methods carried out with used products and panels and section references. 

 
Product Sensory method Panel Section references 

S1 to S6 
Classical profiling 

Block profiling 
2018-2019 Section 3.1.1. 

46 Pea solutions Block profiling 2018-2019 Section 3.1.2. 

12 Pea 

Beverages 

Block profiling 

Mono and multi-intake TDS 
2019-2020 Section 3.4.1. 

NA Prop Test 2018-2019 and 2019-2020 Section 3.1.1. and 3.4.1. 

 
 

2.2.1. Experimental conditions and panels composition 

 

2.2.1.1. Experimental condition 

Panellists performed the sensory evaluations in individual booths under white light in an air-conditioned 

room (20°C) (Figure 2.2.1.). Sensory analysis was managed using Fizz Acquisition software (v. 2.51, 

Biosystemes, France). As some beverages were viscous, participants were instructed to intake beverages 

and solutions with spoons, instead of sipping. To reduce sensation build-up, the following palate-

cleansing protocol was used between samples during our formal experiments: panellists had to consume 

an apple slice, drink water, and wait 40 seconds.  

 

 
 

Figure 2.2.1..: Photography of the individual booths. 

 

 

2.2.1.2. Panel composition 

Two different panels were used during this PhD project. Panellists were recruited based on their will to 

participate and availability to participate in a long-term study (Table 2.7.). The first panel was trained 

and used from September 2018 to February 2019 (Panel 2018-2019) and included 17 panellists (13 

women and 4 men). They had initially no prior experience with pea products or sensory evaluation 

methods. This panel evaluated pea protein-based solutions and pea protein fraction-based products. The 

second panel was trained and used from September 2019 to February 2020 (Panel 2019-2020) and 

included sixteen panellists (15 women and 1 man, 18–39 years in age). Two of the panellists had 

participated in the first panel. The other panellists had no prior experience with pea protein-based 

products. This panel evaluated exclusively pea protein-based beverages. Figure 2.2.2. is a schematic 

representation of the PhD sensory experimental set up. 
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Figure 2.2.2.: Schematic representation of the two panels used for PhD sensory experimental set up. 

 

 

2.2.1.3. Characterization of panellist PROP status 

We assessed the PROP taster status of all the panellists using the methodology of the three-solution test, 

with sodium chloride as the standard (Tepper et al., 2001) (Figure 2.2.3.). Taste intensity ratings were 

collected for three solutions of suprathreshold 6-n-Propylthiouracil (Sigma-Aldrich, USA) (0.032, 0.32, 

and 3.2 mM) and of sodium chloride (NaCl, Sigma-Aldrich, USA) (0.01, 0.1, 1.0 M); the solvent was 

water (Evian, France). The Labelled Magnitude Scale (LMS) was used for evaluating the samples. 

Based on the results of the PROP test, we defined three groups of panellists. In the low PROP taster 

(LPT) group were panellists who had rated sodium chloride as having a more intense taste than PROP. 

Panellists who gave similar ratings to sodium chloride and PROP were in the medium PROP taster 

(MPT) group. Those who had rated PROP as having a more intense taste than sodium chloride were in 

the high PROP taster (HPT) group. Differences among groups were analysed using repeated-measures 

analysis of variance (ANOVA) and post-hoc comparisons (Newman-Keuls method).  

 

Among the panel 2018, 7/17 panellists were assigned to the HPT group (PROP intensity > sodium 

chloride intensity) and 5/17 panellists were assigned to the LPT group (PROP intensity < sodium 

chloride intensity). The 5/17 panellists who did not perceive a difference between PROP and sodium 

chloride were assigned to MPT group. Among the panel 2019, 6/16 panellists were assigned to the HPT 

group, 8/16 were assigned to the LPT group and 2/16 panellists were assigned to MPT group.  
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Figure 2.2.3.: Schematic representation of characterization of panellist PROP status. 

 
 

2.2.2. Static profiling 

 

2.2.2.1. Attribute generation, selection and training 

For attribute generation step, panellists were asked to complete a check-all-that-apply (CATA) 

questionnaire. It listed 30 attributes, and panellists could add more. After discussion with the panel, a 

final list of 17 attributes was selected (Table 2.8.). As the study was conducted in French, the terms used 

in French as well as their translation into English are presented in Table 2.8. This list of attributes was 

then adapted to each sensory study in the PhD.  

 

 
 

Figure 2.2.4.: General workflow of attribute generation, selection and training. 

 

The panellists were trained to evaluate the intensity of these 17 attributes along an unstructured scale 

(range: 0–10) using external references. Training took place over 8 sessions (for Panel 2018-2019) and 

10 sessions (for panel 2019-2020) that each lasted 45 min (Figure 2.2.4.). Afterward, panellist 

performance was evaluated and controlled. Overall performance (repetition, discrimination and 

homogeneity) was assessed using ANOVA with three independent variables (product type, panellist ID, 

and replicate) and their first-order interactions. We used fixed-effect ANOVAs here because we 

considered that the panelists were well trained. Another possibility would have been to use mixed-effects 

ANOVAs that attribute a random effect to the panelists. There was a product effect, indicating that 

panellists distinguished among the different beverages (p<0.05). The significance of various interactions 

revealed whether the panellists consistently scored attributes across replicates (panellist*replicate), 

whether there was consistency in scoring among panellists (product type*panellist ID), and whether 

panellists scored products consistently across replicates (product type*replicate). The performance of 
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individual panellists was also evaluated based on their ability to discriminate among products and on 

repeatability criteria.  

 

Table 2.8.: Definition of the different attributes evaluated by the panellists for the different sensory 

studies. 

 

Attributes 
Attributes in 

French 
Definition 

Blocks 

profiling 

(Section 
3.1.1.) 

Experimental 

design 

profiling 

(Section 

3.1.2.) 

Beverages 

profiling 

(Section 
3.4.1.) 

Beverages 

DTS 

(Section 
3.4.1.) 

Salty Salé 
A fundamental taste – sodium chloride is a 
typical example 

X X X X 

Bitter Amer 
The fundamental taste associated with a 

caffeine solution 
X X X X 

Astringent Astringent 

A sensation of drying out, roughening, 

and/or puckering that is felt in the mouth, 
like when consuming red wine or unripe 

fruit 

X X X X 

Sweet Sucré 
A fundamental taste – sucrose is a typical 

example 
 X X X 

Fat Gras 
Property relative to the perception of the 

quantity of fat in the product 
  X X 

Watery Aqueux Opposite to fat    X 

Granularity Granulosité The presence of grains or granules in a food X X   

Mouthfeel Epais 
The way a food feels in the mouth in 
relation to its viscosity 

X X X X 

Liquid Liquide Opposite to mouthfeel    X 

Overall 
aromatic 

intensity 

Intensité 
aromatique 

globale 

Total aroma impressions created by the 

product in the mouth 
  X  

Pea Pois 
The flavour characteristic of beans and 

bean-based foods 
X X X X 

Almond Amande The flavour associated with almonds X X X X 

Nuts Noix 
The flavour associated with nuts, like 

walnuts or hazelnuts 
X X X X 

Broth Bouillon 
The flavour associated with boiled 
vegetables, soup, or stock 

X X X X 

Potato 
Pomme de 

terre 
The flavour associated with cooked potato X X   

Grains Céréales The flavour associated with grains X X   

 

2.2.2.2. Classical and block profiling 

Two static protocols were used in sensory profile: classical protocol and block protocol (Figure 2.2.5.). 

The block protocol was the static profiling specifically developed for pea based-products during this 

PhD. In both cases, panellists were asked to evaluate the intensity of a sample’s sensory attributes using 

an unstructured scale ranging from 0 to 10. To account for order and carry-over effects, sample order 

was balanced across panellists using a Latin square (Williams design). When panellists employed the 

classical protocol, samples were presented monadically in sequence: panellists evaluated all attributes 

(printed on the same survey page) at once for each sample. 

 

When panellists employed the block protocol, attributes were evaluated in three blocks. Prior to the 

experiment, the attribute blocks were defined and discussed with the panellists. For each block, samples 

were presented monadically in sequence: panellists evaluated all the attributes in the block (printed on 

the same survey page) for each sample. Blocks were similar for all panellists. The samples order was 

the same for the three blocks for one subject (but different between subjects). The blocks were built 

according to the type of perception (sapid / aromatic). To create them, we discussed with the panelists 

to get their feedback. We also thought about the potential dumping or halo effects and the order of the 

attributes within the blocks, especially those of the most important attributes (e.g. bitterness). In 

analysing the data, we kept these potential effects in mind, especially for the last attributes evaluated 

(potato and grains). In addition, the first sample in each session, for the three blocks, was also the 

reference used to limit drift between sessions. This reference was available in large quantities and was 

stored under highly stable conditions.  
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Note: we have proposed during these PhD a new methodology for several reasons. First of all, it came 

from an internal need of the company who had difficulties to characterize the pea based products with 

their trained panel. Moreover, according to the interlocutors, there was no homogeneity in the definitions 

of beany. In addition, beany perception is complex and multidimensional. It is therefore difficult to 

describe it and it is possible to omit sub-dimensions of this perception. The training of the panelists and 

the choice of references is therefore important. Finally, the pea based products are also very persistent 

and there are therefore potential risks of sensory fatigue or sensory adaptation.  

 

 
 

Figure 2.2.5.: Schematic representation of the profiling protocols used in this study: classical profiling 

protocol in green and block profiling protocol in blue. 

 

2.2.3. Temporal dominance of sensations profiling 

 

2.2.3.1. Mono-intake temporal dominance of sensations profiling 

To evaluate the temporal evaluation of perceptions, a mono-intake TDS method was used (Figure 

2.2.6.). Panellists evaluated the sequence in attribute over a period of 120s after taking a sip of a given 

beverage. They evaluated six beverages per session. All the attributes were simultaneously presented on 

the computer screen. Attribute list was the same for each panellist for all the mono-intake TDS sessions 

but the attributes order in the list was randomly assigned and balanced among panellists. The evaluation 

process started as soon as the panellists took a sip of the beverage. The panellists then had to click on 

the attribute that they perceived as dominant, which was defined for them as “the attribute that draws 

the most attention.” When this dominant attribute changed, the subject had to click on the new dominant 

attribute. The panellist was free to choose the same dominant attribute several times or, conversely, to 

never select a dominant attribute. The panellists also had to click on the button “I swallowed” each time 

they swallowed the beverage or their saliva. For each panellist and each beverage, the following data 

were collected: the time at which an attribute was selected as dominant, the specific attribute, the time 

that had elapsed before the panellist clicked on “I swallowed” for the first time (i.e., the panellist had 

largely consumed the product), and the number of times that the panellist clicked on the button “I 

swallowed”.  
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Figure 2.2.6.: Schematic representation of the TDS profiling protocol used in this study. 

 
2.2.3.2. Multi-intake temporal dominance of sensations profiling 

To evaluate the temporal evaluation of perceptions, a multi-intake TDS method was used. The multi-

intake TDS profiling method can be used to evaluate changes in attribute perceptions as people 

consumed a full portion of a product (Figure 2.2.7.). Here, a portion was defined as 120 mL, which is 

equivalent to an entire ready-to-drink beverage or a cup of yogurt. First, the panellists had to cleanse 

their palates. Over the course of the session, they were not allowed to consume anything except the 

product to allow for the possible cumulative effects of persistent sensations. Second, the panellists 

evaluated the products using the same general approach as in the mono-intake TDS profiling method, 

except that a given product was evaluated at three time points. The first evaluation took place after the 

first spoonful of the product was consumed (hereafter, first spoonful). The second evaluation took place 

after panellists had consumed 60 mL of the product (~ half the portion); they then had to evaluate a 

second spoonful of the product (hereafter, second spoonful). The third evaluation took place after 

panellists had consumed the remaining 60 mL of the product; they then had to evaluate a final spoonful 

of the product (hereafter, third spoonful). We thus obtained three sets of data reflecting the shift in 

sensations from the beginning to the end of product consumption. No time limits were placed on this 

process. 

 

 
 
Figure 2.2.7.: Schematic representation of the multi-intake temporal dominance of sensations (TDS) 

method used in this study. 

 
2.2.4. Statistical analysis 

The data were automatically acquired using Fizz Acquisition software (v. 2.51; Biosystemes, 1990). 

Data analysis was performed using XLSTAT (Addinsoft, 2017, Paris, France), R (R Core Team, 2019) 

and JMP software version 13.1.0 (SAS Institute Inc., Cary, SC, USA). The threshold for statistical 

significance was α = 0.05. 
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The static profiling data were analysed using ANOVA. To assess panellist performance, ANOVA were 

carried out in which product type, panellist ID, and replicate were fixed effects and there were first-

order interactions. Post-hoc comparisons were then performed to interpret the specific effect of product 

type (Newman-Keuls method). To visually explore differences in the results obtained, we carried out 

principal component analysis (PCA) on a correlation matrix; the data were averaged across replicates 

and panellists. To study the possible drift between sessions, we carried out a two-way ANOVA on the 

data for the reference solution. To visually explore differences in the results obtained using classical 

versus block protocol, we carried out multiple factor analysis (MFA) (centred by group; Pearson type); 

the data from both protocols were averaged across replicates and panellists. 

 

Note: For all of the PCAs in the PhD manuscript, the Cos2 values that were considered acceptable for 

PCA interpretation are values greater than 0.7. But in each case, the PCAs were used for visualization 

purposes. The results were confirmed by regressions and analysis of variances. In the same way, only 

the first two axes will generally be presented but all the axes have been studied each time. 

 

In the case of TDS profiling analyses, the time to the first instance of swallowing and the total duration 

of the evaluation period were extracted from the data collected during the sessions. ANOVA were 

performed in which product type, panellist ID, and replicate were fixed effects and there were first-order 

interactions. For the multi-intake TDS profiling data, the ANOVA had product type, panellist ID, 

replicate, and spoonful ID as fixed effects and included first-order interactions. Relative attribute 

dominance (i.e., the percentage of panellists who perceived a given attribute as dominant) was 

determined for each beverage at each time point, and the TDS curves were graphed. As suggested by 

Pineau et al. (Pineau et al., 2009), two lines were drawn on the TDS graph: one line representing the 

relative dominance an attribute could achieve by chance alone when considering all the attributes 

evaluated and one line representing the minimum relative dominance an attribute must obtain for the 

result to be significantly different from that expected by chance alone (binomial distribution, α = 0.05). 

 

 

 

2.3. Physico-chemical characterizations of pea protein-based products 

 

2.3.1. Overall characterisation of composition of pea protein-based products 

A large number of characterization methods were used during the PhD work in order to select the best 

to answer to the objectives and along the decided strategy (Table 2.9.). So, the volatile molecules of 

some products have been also characterised by GC-MS with Olfactrometry (GC-MS-O) and Proton-

transfer-reaction mass spectrometry (PTR-MS). However, GC-MS-O does not take into account the 

physico-chemical interactions and the matrix. For PTR-MS analysis, whatever the conditions (pea 

protein concentrations and quantity consumed), monitor ions presented areas under the curve at the limit 

of detection of the PTR-MS. Results presented also a high variability between panellists (5) 

complicating the analysis of results. We thus preferred to avoid these types of measurements.  

 

In addition, the protein fraction of some isolates was characterised by 1D and 2D electrophoresis. 

However, the 1D results showed only little difference between the samples. The 2D results showed more 

difference between the samples. The intensity of the spots could be measured and correlated with 

sensory perceptions. However, no relevant results could be drawn. Moreover, this method was difficult 

to apply to fractions. 

 

The free amino acids were also characterised in few samples. However, the differences between the 

samples were not correlated with sensory differences. Finally, the structure of some isolates was 

characterised by micro DSC and DLS. The DSC analyses did not lead to any relevant results. Indeed, it 

is highly probable that the proteins of the commercial isolates are highly denatured due to their process. 

The DLS results showed few relevant results between the different isolates. Moreover, these two 

methods were also difficult to apply to fractions. Therefore, the choice was made not to further study 

these methods and not to present the results in more detail in this PhD manuscript. 
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Table 2.9.: List of characterizations carried out, location of the information and principle of the 

characterization methods. 

 

Products 
Compounds/ 

characteristics 
Methods Abbreviation Laboratories 

References if used for the models 

if not explanation of why it was 

not continued the 

characterization with this method 

Fractions Phytochemicals 

Ultra-high performance 

liquid chromatography 

mass spectrometry 

UHPLC-MS Sayfood Section 3.2.3. 

Solutions Free amino acids 

Ultra-high performance 

liquid chromatography 

mass spectrometry 

UHPLC-MS Sayfood 
No relevant differences between 
products 

Solutions, 
Beverages 

Volatiles 
Proton-transfer-reaction 
mass spectrometry 

PTR-MS Sayfood 
Monitor ions presented areas under 
the curve at the limit of detection 

Beverages Texture Rheometer NA Sayfood Section 3.4.2. 

Solutions 
Hydrophobicity 

index 
Spectrofluorometry Na Sayfood Section 3.2.2. 

Solutions 
pH and 

conductivity 
Conductivity probe Na Sayfood Section 3.1.2. 

Isolates Proteins Electrophoresis 1D NA Sayfood 

No relevant differences between 

products. Not applicable for 
fractions 

Isolates Proteins Electrophoresis 2D NA Sayfood 
Difficult to achieve. Not applicable 

for fractions 

Solutions, 

Beverages 
Volatiles 

Gas Chromatography‐

Mass Spectrometry 
GC-MS Sayfood Section 3.2.1. and 3.4.2. 

Solutions Volatiles 

Gas Chromatography‐

Mass Spectrometry 
coupled to olfactrometry 

GC-MS-O Roquette 
Do not take into account physico-

chemical interactions 

Solutions Peptides 

Ultra-high performance 

liquid chromatography 
mass spectrometry 

UHPLC-MS PAPPSO Section 3.2.2. 

Solutions Protein content Kjeldahl method Na External Section 3.1.2. 

Isolates Heat capacity 
Micro Differential 

scanning calorimetry 
micro DSC External 

No relevant differences between 

products. Not applicable for 
fractions 

Isolates 
Size distribution 
particle 

Dynamic light scattering DLS External 

No relevant differences between 

products. Not applicable for 

fractions 

 

The following sections provide the description of relevant methods to better understand the perceptions 

of pea protein isolates. In order not to multiply the information presented in this manuscript, only a brief 

description of each used method will be detailed in the following sections. In order to obtain more 

information, the reader could refer to the Material and Methods sections of the Results following the 

correspondence presented in the Table 2.9. 

 

 

2.3.2. Characterisation of volatile composition of pea protein-based products 

To analyse the aroma compounds present in the pea protein beverages, GC-MS analysis was performed. 

The Figure 2.3.1. describe the general workflow of the volatile analytical pipeline and characteristics of 

the different samples analysed. 

 

A Dynamic Headspace Gas Chromatography coupled with a Mass Spectrometer (MPS: Gerstel, GC: 

Agilent 7890B, MS: Agilent 5977B MSD) was used to quantify aroma compounds released from the 

different beverages. Protocol was carried out as follows. After thawing during one night at 4°C, 5g of 

each product was stored at 10°C on the GC-MS sample holder. Each sample was then incubated at 40°C 

for 3min. The headspace was then purged with a constant flow of helium for 10 min for pea solutions 

and 20 min for beverages at 30°C and aroma compounds were trapped on an adsorption unit (tenax 

polymer). The trap was dried under a stream of helium to remove traces of water. Then the trap unit was 

desorbed from 30°C to 270°C.  The GC was equipped with polar or an apolar column (respectively HP-

INNOWax Agilent, 60m x 320μm x 0.25μm and DB-5, 60m x 320μm x 1μm) with a helium flow of 1.6 

mL/min. 
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The two types of chromatography column were used to identify a larger number of volatile compounds. 

A mass spectrometer was used to characterize aroma compounds. The compounds were identified by 

comparison of their mass spectra with those of the NIST 2017 Mass Spectral Library. The retention 

times and the Kovats retention index were also used for the tentative identification. The data were 

reported as peak area for each compounds detected. Quantification data were obtained from the 

integration of the areas from the total ion current (TIC). MassHunter software was used for instrument 

control, data acquisition and data analysis. 

 

 
 

Figure 2.3.1.: General workflow of the volatile analytical pipeline and characteristics of the different 

samples analysed. 

 

2.3.3. Characterisation of peptides composition of pea protein-based products 

The Figure 2.3.2. describe the general workflow of the peptidomics analytical pipeline, starting from 

the experimental part to the bioinformatic analyses. Before LC-MS analysis, pea solutions were 

centrifuged (15 000g, 4°C, 15min). Supernatants were filtrated via Vivaspin centrifugal concentrator 

(20mL, 10 kDa, sigma Aldricht) at 8000g (30min, at 4°C). Filtrate solution were stored in the dark at -

80°C previous to analysis. Mass spectrometry was performed on the PAPPSO platform (MICALIS, 

INRAE, Jouy-en-Josas,France). An Orbitrap FusionTM LumosTM TribridTM (Thermo Fisher 

Scientific) coupled to an UltiMateTM 3000 RSLC nano System (Thermo Fisher Scientific) was used. 

Eluted peptides were analysed on line on the Orbitrap mass analyser. Peptide identification was 

performed with X!Tandem version 2017.2.14 (Alanine) and X!Tandem Pipeline (C++) version 0.2.40 

(Langella et al., 2017) on the protein sequence of L. Pisum Sativum. MassChroQ version 2.2.17 (mass 

Chromatogram Quantification) was used to perform alignment, XIC extraction, peak detection and 

quantification (Valot et al., 2011). 
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Figure 2.3.2.: General workflow of the peptidomics analytical pipeline, starting from the experimental 

part (in orange) to the bioinformatic analyses (in blue). 

 

 

2.3.4. Characterisation of phytochemicals composition of pea protein-based products 

The Figure 2.3.3. describe the general workflow of the phytochemicals analytical pipeline, starting from 

the experimental part to the bioinformatic analyses. 

 

Samples with a high dry matter content (flour, isolates a and b, pellets a and b) were extracted three 

times with methanol/formic acid mixture (99/1, v/v) for 2h with a magnetic stirrer at room temperature, 

protected from light. After extraction, supernatants were kept for 10 min at -20°C then separated by 

centrifugation. The supernatant was evaporated under vacuum at 40°C and in the dark to protect sample 

from light. In order to remove some precipitates occurring during the concentration step, a centrifugation 

was performed before total evaporation of solvent. After that, supernatants were evaporated under 

vacuum at 40°C protected from light until the solvent has evaporated completely. After resolubilization, 

in methanol/water mixture (80/20, v/v), samples were kept for 10 min at -20°C to promote precipitation. 

At that point, samples were separated by centrifugation. Supernatants were filtered through a micrometer 

PTFE filter and stored in the dark at -80°C previous to analysis. All these steps of filtration and 

centrifugation were added to ensure obtaining a clear extract without any precipitate. Samples with a 

low dry matter content (retentate a and b, permeate a and b) were directly mixed to methanol/formic 

acid mixture (99/1, v/v) for 10 min at room temperature, protected from light. Then, solvents were 

prepared as previously explained.  

 

Chromatographic separations were performed using UHPLC system (Ultimate 3000 Thermo Scientific, 

USA). The analytical column used for separations was a Hypersil GOLD (length 100mm, internal 

diameter 2.1mm, granulometry 1.9µm, Thermo Scientific). The mobile phase consisted of (A) water + 

0.1% formic acid and (B) acetonitrile + 0.1% formic acid (Optima, Thermo Fisher Scientific). The 

UHPLC system was coupled to a Q Exactive Orbitrap high resolution mass spectrometer (Thermo 

Scientific, USA) equipped with heated-electrospray ionization probe (HESI II, Thermo Scientific, 

USA). The mass spectrometer was operated in negative and in positive ion modes. MS spectra (MS and 

MS²) were acquired by full MS and Full MS/ddMS2 range (m/z). The system was also coupled to a 

diode array detector covering full range acquisition between 190 and 600 nm. 
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Figure 2.3.3.: General workflow of the phytochemicals analytical pipeline, starting from the 

experimental part to the bioinformatic analyses. 

 

Phytochemicals were identified according to the corresponding spectral characteristics: mass spectra, 

accurate mass, characteristic fragmentation, UV spectrum and characteristic retention time. Xcalibur 

(Thermo Scientific, USA) was used for instrument control, data acquisition, and data analysis. 

Phytochemical quantification was obtained by integration of specific reconstructing ion current in 

comparison with the calibration curves with TraceFinder software (Thermo Scientific, USA). 

Compound discoverer (Thermo Scientific, USA) with several databases (PubChem, Phenol explorer, 

Flavonoid database, Arita database, NPASS database) were used to propose formula and identification 

of peaks. 

 

2.3.5. Characterisation of mechanical properties of pea protein beverages  

A rheometer (MCR301, Anton Paar, Graz, Austria) equipped with sanded coaxial cylinders (diameter 

of 27 mm) was used to test the gels' rheological properties. The beverages were carefully poured into 

the cylinder, which was kept at 20 °C. Different tests were subsequently carried out on the samples 

(Figure 2.3.4.):  

 

 Steady shear rate (1 to 1000 1/s, 15 measurement points) were performed at 20 °C using rotation 

mode. From the shear rate and the shear stress data, the flow curves were plot using logarithmic 

scales and modelled with a power law (τ  = γ kn such as τ  = shear stress, γ = shear rate, n = power 

law index and k= consistency). 

 Strain sweeps (0.001–100%, 1 Hz) were performed at 20 °C. From the shear stress data, the loss 

modulus [Pa] and the storage modulus [Pa] were calculated. 

  

 Frequency sweeps (10–0.01 Hz, 1%, 11 measurement points) were performed at 20 °C. From the 

shear stress data, the loss modulus [Pa] and the storage modulus [Pa] were calculated. 
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Figure 2.3.4.: Characterisation of mechanical properties of pea protein beverages. 

 

 

 

2.4. Statistical approaches used to link different instrumental and sensory data sets 

 

Several statistical methods were used between the different sets of data obtained experimentally. They 

have been chosen from a large panorama of multidimensional statistical methods in order to best answer 

to the different objectives of the PhD project. The aim of these models was to model sensory attributes 

as a function of composition. In a first step, the sensory attributes were modelled from the composition 

in fractions (Optimal mixture models). 

 

Then the relevant sensory attributes were correlated to the different chemical data sets separately. 

Volatile compounds were correlated to sensory attributes with Pearson correlation coefficients, Partial 

Least Square (PLS) regressions and Artificial Neural Network (ANN) regressions. Phytochemical 

compounds and peptides were correlated to sensory attributes with Pearson correlation coefficients. This 

step allowed the selection of key compounds and the reduction of the number of variables. 

 

Finally, to establish the relative contribution of each group of chemical compounds present on pea 

protein isolates on sensory perceptions, a multi-block PLS model was used. Figure 2.4.1. summarizes 

all the physic-chemical and sensory variables as well as the main models developed. 
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Figure 2.4.1.: Generals workflow of the statistical analysis done during this PhD. 

 

 

2.4.1. Variables clustering 

This dataset allowed us to compare different clustering methods used on sensory data but also chemical 

data: hierarchical clustering, k-means, latent class and VARCLUS®. Clustering methods allow products 

to be grouped according to similarity or difference. In particular, they have been used in the construction 

of latent variables. These methods yielded similar results as shown on the Figure 2.4.2. for sensory 

attributes. So finally, in a classical way, we have always used hierarchical clustering.  

 

 

 

A) Blocks as evaluated 

by panellists: 4 groups 

1. Salty-NC, Bitter-NC, 

Astringent-NC, Sugar-

NC 
2. Mouthfeel-NC, 

Granularity-NC 
3. Broth-N, Pea-N, 

Potato-N, Almond-N, 

Nuts-N ,Cereals-N 
4. Broth-M, Pea-M, 

Potato-M, Almond-M, 

Nuts-M, Cereals-M 

B) Varclus (6 groups) 

1. Sugar-NC 
2. Mouthfeel-NC, 

Granularity-NC 

3. Broth-M, broth-N, Salty 
4. Pea-N, Pea-M 

5. Nuts-N, Almond-N, 
Cereals-N, Potato-N, Nuts-

M, Almond-M, Cereals-M, 

Potato-M 
6. Bitter-NC, Astringent-NC 

C) Kmeans (9 

groups) 

1. Sugar-NC 

2. Mouthfeel-NC 

3. Granularity-NC 
4. Broth-N, Broth-M 

5. Salty-NC, Pea-M 
6. Pea-N, Almond-

N, Nuts-N, Cereals-

N 
7. Almond-M, 

Cereals-M 

8. Potato-N, 
Astringent-NC, 

Potato-M, Nuts-M 

9. Bitter-NC 

D) Hierachical 

clustering (9 groups) 

1. Sugar-NC 

2. Mouthfeel-NC 

3. Granularity-NC 
4. Broth-N, Broth-M 

5. Salty-NC, Pea-M 
6. Almond-M, 

Cereals-M 

7. Potato-N, Almond-
N, Nuts-N, Cereals-N 

8. Pea-N, Astringent-

NC, Potato-M, Nuts-
M 

9. Bitter-NC 

E) Latent class (9 

groups) 

1. Sugar-NC 

2. Mouthfeel-NC 

3. Granularity-NC 
4. Broth-M, Broth-N 

5. Salty-NC 
6. Pea-M, Pea-N 

7. Almond-N, 

Cereals-N, Nuts-N, 
Potato-M, Potato-N 

8. Almond-M, 

Cereals-M, Nuts-M 
9. Astringent-NC, 

Bitter-NC 

Figure 2.4.2.: Clustering of sensory attributes (scores/10) evaluated for the 46 pea solutions in 

duplicate by 17 trained panellists by block profiling with different clustering methods. 
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2.4.2. Optimal mixture models (fractions) 

The objective of the mixing design is to model the effects of composition on fraction (X effect) on the 

sensory perceptions of the products (Y responses) and to find the levels of X factors to optimize the Y 

responses (predictive capability of the model) (Figure 2.4.3.). JMP (v. 13.1.0; SAS Institute Inc., Cary, 

SC, USA) was used to generate and analyse the optimal mixture design. 

 

 

 
 

Figure 2.4.3.: Structure of the data sets associated with the design of experiment. 

 

The modelling of Y by X is carried out in the form of a first-degree polynomial model, with interactions 

as for example:  

𝑌 = 𝑎0 + 𝑎1 . 𝑥1 + 𝑎2 . 𝑥2 [ + 𝑎12. 𝑥1 . 𝑥2 ] + Ε 

 

With 𝑎0 the model constant; 𝑎1 and 𝑎2 the coefficients of the simple effects of the factors X1 and X2; 

𝑎12 the coefficient of the interaction of the factors X1 and X2; Ε the random error. To solve the system 

of equations of the model, the X variables are normalized (centred and reduced) so as to erase the 

differences of variation between each factor. Since several Y responses were measured, a model 

explaining the variation of each Y response by the set of X factors individually was created for each Y 

response. As not all answers Y were relevant to the problem, a selection of responses Y was made. 

 

The first step of the analysis is the calculation of the effects of the models by the method of least squares 

with their p-value. The second step of the analysis is to sort the effects so that only those that are 

statistically significant are retained. To do this, the backward elimination procedure was used, i.e. we 

start by removing the least significant effect and stop at the effect with a p-value less than or equal to 

5%. Once the effects have been sorted, the coefficients 𝑎𝑖 corresponding to each term of the model 

(effects and constant) are estimated with their associated probabilities. They are presented coded with 

their sign of variation, which makes it possible to compare their relative influences on the responses.  

 

The quality of the generated model was then evaluated with analysis of variance and associated Fisher 

tests, calculation of the R² ratio, and examination of the distribution of residuals.  The aim is to determine 

whether the model is out of fit with the modelled responses relative to the experimentally measured 

responses. After statistical validation of the model's efficiency, the model was validated experimentally 

by producing additional mixture products. The measured values are compared with the values predicted 

by the model for the same level of X-factor setting. The generated models were then used to understand 

the key X-factors (fractions composition) affecting Y-responses (sensory perceptions) and to predict the 

level of X-factor setting to target Y-responses using the desirability function. The desirability function 

is a multi-criteria optimization tool that allows to find a compromise between the different settings of 

X-factor levels needed to maximize desirability for several Y-responses. The overall process is 

schematized in Figure 2.4.4. In order to obtain more information, the reader could refer to the Material 

and Methods Section 3.1.2. 
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Figure 2.4.4.: Schematization of the analysis process of the mixing design models. 

 

2.4.3. Pearson correlations (phytochemicals, volatiles and peptides datasets) 

Due to the complexity of the data sets, it was sometimes difficult to make prediction models. In this 

case, only Pearson's correlation coefficients were calculated. Pearson correlation coefficient is a statistic 

method that measures linear correlation between two variables X and Y. They have been used to 

determine correlations between different sensory attributes as well as to correlate sensory attributes with 

volatile compounds, peptides and phytochemical compounds.  

  

2.4.4. Partial Least square regressions (volatiles datasets) 

These datasets allowed us also to compare different multivariate regression methods. Multivariate 

regression methods are prediction methods that look for cause-and-effect relationships between 

variables. Principal component regressions (PCR) were first used. There are regression analysis 

techniques based on principal component analysis (PCA): the principal components of the explanatory 

variables are used as regressors (Figure 2.4.5.). PCR are efficient to result in dimension reduction 

through substantially lowering the effective number of parameters characterizing the underlying model. 

They are efficient to deal with multicollinearity problem which arises when several explanatory 

variables are close to being collinear. However, with PCR model, the first components, associated with 

the largest eigenvalues, are not necessarily correlated with Y and are therefore not necessarily the best 

candidates for modelling Y (Jackson & Mudholkar, 1979).  
 

 
Figure 2.4.5.: Schematization of the Principal Component Regression as applied to the volatile 

compounds datasets (data not presented). 

 

Thus, Partial Least Square Regressions (PLS) were then used. PLS are also useful when there is a large 

number of explanatory variables and when there are strong collinearities between the variables 

(Höskuldsson, 1988). It allows the comparison of two blocks of variables taking into account the 

correlations between the variables (Wold, Sjöström, et al., 2001). One of the advantage of this model is 

to obtain the variable importance projection scores which could be easily calculated. They are a measure 

of a variable’s importance relative to model both X and Y; 0.8 being the commonly used criterion to say 

that the variable is significant (Eriksson et al. 2006). This method has been used to predict aromatic 

perceptions as a function of volatile compounds (Figure 2.4.6.). In order to obtain more information, the 

reader could refer to the Material and Methods section 3.2.1. 
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Figure 2.4.6.: Schematization of the Partial-Least-Square regression as applied for the volatile 

compounds dataset on section 3.2.1. 

 
2.4.5. ANN model (volatiles datasets) 

We tested also artificial neural networks (ANN) to model pea perceptions in function of composition. If 

ANN model allows to make more complex models taking into account interactions and threshold, they 

are however black box prediction machine with no insight into relationships between predictors and 

variables and which do not allow formal hypothesis tests. In addition, with ANN model, it is difficult to 

identify the most important variables in predicting the response (Seisonen et al., 2016). This method has 

been used to predict aromatic perceptions as a function of volatile compounds (Figure 2.4.7.). In order 

to obtain more information, the reader could refer to the Material and Methods section 3.2.1. 

 

 
 

Figure 2.4.7.: Schematization of artificial neural networks as applied for the volatile compounds 

dataset on section 3.2.1. 

 

2.4.6. Partial Least square Multi-Block regressions 

In order to consider the block structure of the datasets, more complex models were also used. First, PLS-

Path Modelling (PLS-PM) method was tested to model pea perceptions in function of composition 

model. In PLS-PM method, X and Y variables are divided into sub-blocks, to create a PLS model of 

each sub-block, and then to use the resulting scores as a new set of variables in a new PLS model (Figure 

2.4.8.). It allows to study in the same model different variables to explain using latent variables (Wold, 

Sjöström, et al., 2001). However, within our dataset, it was difficult to group the manifest variables 

(VM) of the external model and thus create the latent variables (VL) of the internal model. These 

difficulties were particularly important for the phytochemicals and peptides datasets. In addition, it was 
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difficult to give meaning to the results obtained. And the resulting models were not very efficient. We 

therefore decided to work with another regression method. 

 

 
 

Figure 2.4.8.: Schematization of Partial-Least-Square Path-Modelling regressions. 

 

Subsequently, we then built a PLS Multi-Block (PLS-MB) model. Different algorithms have been 

proposed for PLS-MB (Biancollilo et al., 2019). The one adopted in the present work is the one proposed 

by the mbpls function of the R package “ade4” version 1.7-16 (Bougeard and Dray 2018; Dray and 

Dufour 2007). This method is based on a classical PLS algorithm. However, it makes it possible to group 

the variables by blocks of the same concept and to calculate the respective contributions of each of these 

blocks (Figure 2.4.9). To build these models, the 90 chemical compounds were grouped by chemical 

family (peptides, volatile compounds, phytochemical compounds). In addition, sensory attributes were 

also grouped together. Bitter and astringent attributes were clustered together. Broth attribute, very 

different from the other sensory attributes was clustered separately. The other aromatic attributes pea, 

potato, almond, nuts and cereals were clustered together. Thus for each of these 3 groups of sensory 

attributes an optimal model was selected with a two-fold cross-validation. In order to obtain more 

information, the reader could refer to the Material and Methods section 3.3.1. 

  
 
 

Figure 2.4.9.: Schematization of Partial-Least-Square Multi-Blocks regressions as applied on the 

bitter and astringent attributes on section 3.3.1. 

 



 

 

 

 

 

RESULTS 

 

Section 1 - Sensory methodologies and 

experimental strategy to study pea protein 

isolates perceptions 
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Section 3.1. – Sensory methodologies and experimental strategy 

to study pea protein isolates perceptions 

 

 

Context, objectives and presentation of section 3.1. 

In order to investigate the mechanism that lead to sensory properties of pea-protein based products, it is 

necessary to describe and quantify their perception, and by consequences a relevant sensory profiling 

protocol is required, adapted to the type of products. The literature review shows that pea protein isolates 

are usually sensory described as beany, bitter and astringent with strong persistence. However, 1) there 

is no consensus definition of beany's perceptions; 2) high differences among panellists in bitterness 

sensitivity could greatly influence sensory perceptions of foods containing pea proteins; 3) during a 

sensory evaluation using conventional methods, some bias can strongly impact the sensory assessment 

of studied products (carry over, sensory fatigue, etc.). Thus, the aim of the work of this section was to 

propose a relevant protocol with relevant attributes for the evaluation and the characterization of pea 

protein-based samples.  

 

Here, we developed a sensory profiling protocol (block profiling) that could be used by trained panellists 

to effectively evaluate the perception of pea-protein-based foods (Section 3.1.1.). In short, as explained 

on the graphical abstract (Graphical abstract 3.1.1.), we adapted a classical profiling protocol —we 

incorporated relative-to-reference evaluation, and panellists assessed attributes in blocks rather than all 

at once. A focus on palate-cleansing was performed, to optimise the conditions of evaluations. In 

addition, sensitivity to bitterness of panellists (PROP test) was evaluated to better characterize the used 

panel. Results were published and discussed on Food Quality and Preference as presented below 

(Cosson, A., Delarue, J., Mabille, A.-C., Druon, A., Descamps, N., Roturier, J.-M., Souchon, I., & Saint-

Eve, A. (2020). Block protocol for conventional profiling to sensory characterize plant protein isolates. 

Food Quality and Preference, 83, 103927. https://doi.org/10.1016/j.foodqual.2020.103927).  

 

 

 
 

Graphical abstract 3.1.1.: Block protocol for conventional profiling to sensory characterize plant 

protein isolates 

 

 

In a second step, the apparent complexity of mechanisms at the origin of off-flavours in pea protein 

isolates calls for the establishment of an adapted strategy. As highlighted in the state of art, different 

strategies could be used to focus on the impact of composition of perception. In this study, we chose to 

use a mixture design based on fractions from protein isolates (Section 3.1.2.). Thus, the aim of the work 

of this second part was to propose a relevant strategies to link composition to perceptions. In short, as 

explained on the graphical abstract (Graphical abstract 3.1.2), a mixture design was used. First, we 

separated the pea protein isolates into three fractions (the pellet, permeate, and retentate) from two pea 
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protein isolates, resulting in a total of six fractions. Second, we used various combinations of the six 

fractions to create a set of 46 pea-protein-based solutions via various processes (solubilisation, 

centrifugation, filtration, and mixing). Third, trained panellists were asked to score the attributes of the 

solutions using sensory profiling to build optimal mixture models. Results were published and discussed 

on Food Research International as presented below (Cosson, A., Blumenthal, D., Descamps, N., 

Souchon, I., & Saint-Eve, A. (2021). Using a mixture design and fraction-based formulation to better 

understand perceptions of plant-protein-based solutions. Food Research International, 110151. 

https://doi.org/10.1016/j.foodres.2021.110151). 

 

 
 

Graphical abstract 3.1.2.: Using a mixture design and fraction-based formulation to better understand 

perceptions of plant-protein-based solutions 
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Section 3.1.1. – Block protocol for conventional profiling to 

sensory characterize plant protein isolates 

 

3.1.1.1. Introduction 

 

Over the last decade, the food industry has been searching for alternatives to animal proteins as more 

consumers are making dietary choices based on health, ethical, or environmental criteria. In this context, 

pea (Pisum sativum L.) protein isolates are becoming increasingly common in new plant-based foods, 

enhancing the sustainability of food systems (Siddique et al., 2012). Pea proteins have desirable 

functional properties (e.g., emulsification, foaming, and whipping) (Gharsallaoui et al., 2009); they also 

have low allergenicity and high nutritional value (Gharsallaoui et al., 2009). If many articles deal about 

their physico-chemical characteristics, little deal about their sensory characteristics reflecting difficulties 

to sensory describe them (Roland et al. 2017). 

 

Like other pulse plant proteins, pea proteins have a distinct flavour. Sensory characterizations have 

highlighted the existence of three highly persistent notes: bitterness, astringency, and beaniness (Bott 

and Chambers, 2006; Humiski and Aluko, 2007). Beaniness corresponds to a complex flavour 

perception that is associated with bean products: consumers perceive such diverse notes as musty/earthy, 

musty/dusty, sour, starchy, powdery, green pea, nutty, and brown (Bott and Chambers, 2006). Such 

notes are rooted in the complex composition of the aroma compounds found in pulses (Murat et al., 

2013). In mouth, pea proteins are also often described as astringent, which has been defined as “the 

complex of sensations due to shrinking, drawing, or puckering of the epithelium as a result of exposure 

to substances such as alums or tannins” by the American Society for Testing Materials (ASTM, 1991). 

Finally, pea proteins are often perceived as bitter, which could result from the interaction of bitter 

compounds (e.g., amino acids, phenolics) with the TAS2R family of receptors, which are found on the 

apical membranes of taste receptor cells (Maehashi et al., 2009; Meyerhof et al., 2010). 

 

Consequently, the distinct and persistent flavour of pea proteins limits their use as food ingredients (Lam 

et al., 2018) and challenges their sensory evaluation. In sensory evaluation of foods, descriptive analysis 

such as classical profiling is conventionally employed (Lawless and Heymann, 2010). However, in 

classical profiling, the multidimensional nature of beaniness can be difficult for panellists to precisely 

describe and quantify. As a result, there is an increased probability of omitting a sensory dimension 

(Torres-Penaranda et al., 2001). In addition, the prolonged persistence of bitter and astringent notes can 

lead to physiological adaptation and sensory fatigue (Kallithraka et al., 1997). These same difficulties 

occur when pea proteins are part of food matrices, where composition, texture, and structure play an 

essential role in shaping sensory properties (Kühn et al. 2009; Guichard et al., 2002). Perception could 

also be affected by cognitive interactions (i.e., neurophysiological interactions) between taste qualities 

(e.g., bitterness, saltiness, sweetness; Keast and Breslin, 2003). These cognitive interactions may act 

differently for individuals depending on their cultural background, food use, food consumption habits, 

and physiology (Lawrence et al., 2009). These interactions occur when people eat products in natural 

context, however if we are interested in understanding the sensory mechanisms and to relate them to 

specific compounds in the food, it may be interesting to limit these cognitive interactions.  

 

Several alternatives to the classical sensory profiling protocol have already been described in literature 

to deal with these issues. To limit interactions between sapid and flavour perceptions, some researchers 

have suggested that nose clips could be employed to allow panellists to focus on sapid perceptions 

(Abegaz et al., 2004; Schoumacker et al., 2017). In descriptive analysis, to cope with complex food and 

to limit the probability of omitting a dimension, some protocols allow each panellist to add descriptors 

to a pre-established list of attributes as with the Mixed profiling (Coulon-Leroy et al., 2017). As food 

presentation schemes can impact how memory is activated, other researchers have recommended 

adapting how samples are presented (monadically, comparatively, or accompanied by a reference) 

(Mazzucchelli and Guinard, 1999; Saint-Eve et al., 2006). Using a stable and known reference for 
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product evaluation could be interesting. For example, Polarized Sensory Positioning proposes to 

compare and indirectly describe a set of products to three known reference products (Teillet, et al., 

2010). The use of references is also used by the method of Pivot Profile (Thuillier et al., 2005), which 

is based on a free expression of the difference between a tested product and an identified pivot product. 

For both methods, the choice of the reference product is critical to produce meaningful descriptions. 

 

In addition, pronounced variability in sensitivity to bitterness has been observed in the general 

population and among panellists (Hansen et al., 2006); furthermore, past research has shown that 

panellists who are less sensitive to bitterness are less able to discriminate among foods (Dinehart et al., 

2006). Consequently, when carrying out sensory assessments, it is necessary to characterize panellists’ 

sensitivity to bitterness. For example, the 6-n-Propylthiouracil (PROP) test can be used. Indeed, past 

work has found that PROP status could be a proxy for overall oral responsiveness, which means that 

high PROP tasters could potentially display greater overall sensitivity to sensory properties (Carney et 

al., 2018). This hypothesis is based on research that has found links between sensitivity to PROP 

bitterness and sensitivity to i) other basic taste sensations (Fischer et al., 2015; Hayes et al., 2008; 

Prescott and Swain-Campbell, 2000; Webb et al., 2015); ii) chemesthetic sensations (pungency 

associated with capsaicin and other oral irritants) (Prescott and Swain-Campbell, 2000; Yang et al., 

2014); and iii) tactile sensations (astringency associated with alum) (Bajec and Pickering, 2008). 

Dinehart and colleagues found that people with greater PROP sensitivity gave higher bitterness scores 

to vegetables (Dinehart et al., 2006). As a result, differences among panellists in bitterness sensitivity 

could greatly influence sensory perceptions of foods containing pea proteins. In summary, the complex 

sensory properties of pea proteins require an improved sensory profiling protocol if we wish to better 

and more extensively characterize food products containing pea proteins and understand the mechanisms 

that lead to sensory perceptions. 

 

The aim of this study was to propose a relevant protocol for the evaluation and the characterization of 

pea protein-based samples. Based on this past research, we adapted a classical protocol to evaluate 

pea-protein-based foods. To decrease the effects of sensation saturation and sensory fatigue, we limited 

sample number and employed a strict palate-cleansing protocol. To deal with the complex and 

multidimensional perception of beaniness, we asked panellists to evaluate attributes by blocks. In 

addition, panellists were extensively trained to recognize different attributes, and we employed a 

reference sample to evoke these sensory memories during the experiment. Finally, to limit cognitive 

interactions between taste and flavour, and to dissociate cognitive interactions from chemical 

interactions, panellists wore nose clips during the evaluation of sapid perceptions. In this study, we 

compared how panellists evaluated solutions of pea protein isolates using both the classical protocol and 

the adapted protocol called here block protocol.  

 

3.1.1.2. Materials and methods 

 

Samples preparation 

Six commercial pea protein isolates (representing different batches and suppliers) were used in this 

study. They were presented in the form of solutions (S1 to S6). No further information on the isolates 

will be given for reasons of confidentiality. We prepared 4% (w/w) pea protein solutions: the isolates 

were mixed in water (Evian, France) for 1 min and then allowed to soak for 30 min. The solutions were 

then mixed by hand before being served to the panellists. The samples were stored at 4°C before serving. 

They were served at 20°C (room temperature) in transparent cups (29.5 mL) bearing three-digit codes. 

 

Experimental conditions 

We recruited 17 panellists (13 women and 4 men) based on their interest in participating in a long-term 

study. They were grouped on two sub-groups: 9 panellists (8 women and 1 man, mean age = 20 years) 

and 8 panellists (5 women and 3 men, mean age = 26 years). These groups were formed according to 

the availability of panellists. They had no prior experience with pea products or sensory evaluation 

methods. They were not informed of the precise aim of the experiment. They gave their free and 

informed consent to participate in the study and received compensation for their participation. They 
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were asked not to eat, drink, or smoke for at least 1 h prior to any experiments or training sessions. All 

sensory profiling was carried out in individual booths under white light (samples had similar colour) in 

an air-conditioned room (20°C). To reduce sensation build-up, three main strategies have been used: 

limiting sample number, increasing waiting time between samples, and more effectively cleansing the 

oral mucosa between samples (Courregelongue et al., 1999). Among these possibilities, the following 

palate-cleansing protocol was used between samples during our formal experiments: panellists had to 

consume an apple slice, drink water, and wait 40 seconds.  

 

Characterization of panellist PROP status 

We assessed the PROP taster status of the panellists using the three-solution test, with sodium chloride 

as the standard (Tepper et al., 2001). Taste intensity ratings were collected for three solutions of 

suprathreshold 6-n-Propylthiouracil (Sigma-Aldrich, USA) (0.032, 0.32, and 3.2 mM) and of sodium 

chloride (NaCl, Sigma-Aldrich, USA) (0.01, 0.1, 1.0 M); the solvent was water (Evian, France). The 

panellists first assessed the three sodium chloride solutions and then the three PROP solutions; the order 

of presentation in three-solution tests does not produce systematic differences in taste ratings. The 

Labelled Magnitude Scale (LMS) was used for evaluating the samples (Tepper et al., 2001). For each 

solution type, the order in which different solutions were presented was balanced across panellists. 

Between solutions, panellists rinsed their mouths with the palate-cleansing. The panellists assessed each 

solution twice. 

 

Attribute selection and panellist training 

Panellists were asked to fill out a check-all-that-apply (CATA) survey. It contained 30 attributes, and it 

was possible for panellists to add more. For our final list, we selected attributes that were cited more 

than 20% of the time and that allowed significant discrimination among sample types. We also wished 

to limit attribute number to avoid panellist fatigue. The eleven attributes that we retained were salty, 

bitter, astringent, mouthfeel, granularity, pea, broth, nuts, almond, potato, and grains. For the evaluation 

of textured food matrices, the granularity attribute was not relevant to be used. 

 

 

Table 3.1.1.1.: Definition of the sensory attributes evaluated by the panellists for the pea-protein-

based sample types. 

 

Attributes 
Attributes in 

French 
Definition 

Salty Salé A fundamental taste - sodium chloride is a typical example 

 Bitter Amer The fundamental taste associated with a caffeine solution 

Astringent Astringent 
A sensation of drying out, roughening, and/or puckering that is 

felt in the mouth, like when consuming red wine or unripe fruit 

Mouthfeel Epaisseur The way a food feels in the mouth in relation to its viscosity 

Granularity Granulosité The presence of grains or granules in a food 

Pea Pois The flavour characteristic of beans and bean-based foods 

Broth Bouillon The flavour associated with boiled meat, soup, or stock 

Nuts Noix The flavour associated with nuts, like walnuts or hazelnuts 

Almond Amande The flavour associated with almonds 

Potato Pomme de terre The flavour associated with cooked potato 

Grains Céréales The flavour associated with grains 

 

 

We then trained all the panellists to assess these attributes using external references and an unstructured 

scale ranging from 0 and 10 (Table 3.1.1.1.). Training took place over 8 sessions that lasted 45 min. 

Afterward, panellist performance was evaluated and confirmed. The panel performance was assessed 

for the entire panel (subgroup 1 and subgroup 2) using an ANOVA model with three factors (sample, 

panellist, repetition) and their interactions. The sample effect indicates the discrimination of products 

by panellists (p < 0.05). Interactions were also used to determine whether panellists used the intensity 
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scale between repetitions in a similar way (panellist * repetition), whether there was agreement among 

panellists (product * panellist) and whether panellists generated similar values between repetitions 

(product * repetition). Panellist performance was also evaluated for panellist discrimination, agreement 

and repeatability. 

 

General experimental set-up 

Nine panellists (9) were taught to use classical protocol, and eight others (8) were taught to use block 

protocol. They were then asked to evaluate the solutions S1 to S6. The panellists were unaware of sample 

identity and they evaluate the samples twice during two different sessions. After this first round of 

evaluation, the panellists were taught the profiling protocol they had not yet used, and they were asked 

to repeat the evaluation process. So in total 17 panellists evaluated products with both block and classical 

protocol. This repeated measures approach to sensory profiling allowed us to account for potential order 

and learning effects. 

 

Sensory profiling methods 

Two protocols were used: classical protocol and block protocol. In both cases, panellists were asked to 

evaluate the intensity of a sample’s sensory attributes using an unstructured scale ranging from 0 to 10. 

To account for order and carry-over effects, sample order was balanced across panellists using a Latin 

square (Williams design). Panellists were given two replicates of each sample. The palate-cleansing 

protocol described above was used between samples. 

 

 

 
 

Figure 3.1.1.1.: Schematic representation of the profiling protocols used in this study. (a) Classical 

profiling protocol. (b) Block profiling protocol. 

 

 

When panellists employed the classical protocol, samples were presented monadically in sequence 

(Figure 3.1.1.1.): panellists evaluated all eleven attributes (printed on the same survey page) at once for 

each sample.  

 

When panellists employed the block protocol, attributes were evaluated in blocks (Figure 3.1.1.1.). Prior 

to the experiment, the attribute blocks were defined and discussed with the panellists. The first attribute 

block focused on taste perception and mouthfeel (attributes of block 1: salty, bitter, astringent, 
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mouthfeel, and granularity), for which panellists wore nose clips. The next two attribute blocks focused 

on olfactory perception (attributes of block 2: pea, broth, nuts, almond; attributes of block 3: potato, 

grains and other), and panellists did not wear nose clips during the evaluation. For each block, samples 

were presented monadically in sequence: panellists evaluated all the attributes in the block (printed on 

the same survey page) for each sample. The samples order was the same for the three blocks for one 

subject (but different between subjects). In addition, the first sample (S1) in each session, for the three 

blocks, was also the reference used to limit drift between sessions. This reference was available in large 

quantities and was stored under highly stable conditions.  

 

Data analysis 

All the analyses were performed using XLStat (Addinsoft, 2017, Paris, France) and R (R Core Team, 

2017). For analyses of an inferential nature, we used α = 0.05 to determine statistical significance. 

 

Based on the results of the PROP test, we defined three groups of panellists. In the low PROP taster 

(LPT) group were panellists who had rated sodium chloride as having a more intense taste than PROP. 

Panellists who gave similar ratings to sodium chloride and PROP were in the medium PROP taster 

(MPT) group. Those who had rated PROP as having a more intense taste than sodium chloride were in 

the high PROP taster (HPT) group. Differences among groups were analysed using repeated-measures 

analysis of variance (ANOVA) and post-hoc comparisons (Newman-Keuls method). 

 

To analyse the sensory profiling results, in a classical way, we carried out three-way ANOVA. There 

were two sets of models: models using the classical protocol data and models using the block protocol 

data. Within each set, there was one model focused on the results for a single attribute. For all the models, 

sample type, replicate, and panellist identity were the fixed effects, and all first-order interactions were 

included. When the fixed effects were significant, we carried out post-hoc comparisons (Newman-Keuls 

method). We also performed additional three-way ANOVA and Newman-Keuls tests to assess the effect 

of PROP status on the intensity scores for the 11 attributes: sample type, replicate, PROP status and 

panellist identity (nested factor with PROP status) were the fixed effects, and all first-order interactions 

were included. To visually explore differences in the results obtained using classical versus block 

protocol, we carried out multiple factor analysis (MFA) (centred by group; Pearson type); the data from 

both protocols were averaged across replicates and panellists. 

 

 

3.1.1.3. Results 

 

Assessing panellist performance 

We examined how well panellists performed (reproducibility and homogeneity) when using classical 

versus block protocol to evaluate attribute intensity. Table 3.1.1.2. presents the results from the three-

way ANOVA that used the scoring data for each attribute from each of the protocols. The interaction 

between replicate and sample type were not significant (except in the case of granularity as evaluated 

with classical protocol). Replicate was significant for 6 attributes for the block protocol and for 2 

attributes for the classical protocol. The interaction between panellist and replicate was not significant 

for potato, nuts, broth, grains and bitter for the classical protocol and, granularity for the block protocol. 

But the F values for these factors are low compared to the F values for the effects produced. 

Nevertheless, these effects indicated a low level of repeatability of the panel and ask to be circumspect 

for the following analysis. The interaction between panellist and sample type was significant for seven 

attributes and one attribute for the block and the classical protocols, respectively. Such interactions are 

common when sensory attributes are evaluated using unstructural scales and are difficult to control even 

when panellists have undergone extensive training (Jourjon et al., 2005). Nevertheless, the block 

protocol seems to enhance differences between products and panellists. These results nonetheless 

suggest that the panellists generally came up with repeatable and homogeneous scores, even if there was 

some disagreement for some attributes.  
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Table 3.1.1.2.: Results of the three-way ANOVA examining panellist performance and comparing 

the two protocols during the experiment where attribute intensity for pea protein solutions was 

evaluated using the classical profiling protocol (CP) and the block profiling protocol (BP) (degrees 

of freedom: 118; residual degrees of freedom: 85). Significant p-values are in bold (α = 0.05). 

 

Sensory 

attributes 

Sample type Replicate Panellist ID 
Sample 

*Panellist 

Sample* 

Replicate 

Panellist* 

Replicate 

F Pvalue F Pvalue F Pvalue F Pvalue F Pvalue F Pvalue              
Almond-BP 8.26 <0.01 0.76 0.39 15.31 <0.01 1.86 <0.01 0.68 0.64 3.17 <0.01 

Almond-CP 4.35 <0.01 1.03 0.31 13.84 <0.01 1.27 0.15 1.01 0.42 2.42 0.01 

Astringent-BP 4.10 <0.01 6.54 0.01 6.86 <0.01 1.13 0.29 1.64 0.16 2.46 <0.01 

Astringent-CP 2.16 0.07 2.77 0.10 9.73 <0.01 1.12 0.30 2.33 0.05 3.41 <0.01 

Bitter-BP 13.29 <0.01 15.19 <0.01 14.34 <0.01 1.34 0.10 1.15 0.34 2.91 <0.01 

Bitter-CP 5.62 <0.01 1.06 0.31 11.50 <0.01 0.79 0.85 0.87 0.50 1.22 0.27 

Broth-BP 12.44 <0.01 1.83 0.18 13.56 <0.01 1.41 0.06 1.46 0.21 3.65 <0.01 

Broth-CP 6.98 <0.01 7.26 0.01 4.70 <0.01 0.93 0.64 1.76 0.13 1.71 0.06 

Grains-BP 4.54 <0.01 11.96 <0.01 16.14 <0.01 1.57 0.02 1.62 0.16 3.14 <0.01 

Grains-CP 1.84 0.11 1.05 0.31 7.02 <0.01 0.98 0.53 1.35 0.25 1.29 0.22 

Granularity-BP 8.67 <0.01 0.13 0.72 8.81 <0.01 1.39 0.07 0.62 0.69 1.38 0.17 

Granularity-CP 10.04 <0.01 3.77 0.06 6.97 <0.01 1.69 0.01 2.85 0.02 3.81 <0.01 

Mouthfeel-BP 21.14 <0.01 22.52 <0.01 10.72 <0.01 1.68 0.01 0.52 0.76 2.19 0.01 

Mouthfeel-CP 5.37 <0.01 4.34 0.04 13.81 <0.01 1.29 0.13 1.88 0.11 5.11 <0.01 

Nuts-BP 21.61 <0.01 21.64 <0.01 5.35 <0.01 2.50 <0.01 0.93 0.47 3.08 <0.01 

Nuts-CP 7.69 <0.01 0.70 0.41 6.23 <0.01 1.26 0.15 2.34 0.05 1.38 0.17 

Pea-BP 9.19 <0.01 5.15 0.03 8.11 <0.01 2.76 <0.01 2.38 0.05 1.93 0.03 

Pea-CP 1.62 0.17 1.60 0.21 6.16 <0.01 1.30 0.12 1.91 0.10 1.97 0.03 

Potato-BP 11.89 <0.01 0.05 0.83 13.16 <0.01 2.19 <0.01 0.99 0.43 5.22 <0.01 

Potato-CP 6.71 <0.01 1.12 0.29 8.37 <0.01 1.29 0.13 2.29 0.05 1.66 0.07 

Salty-BP 16.69 <0.01 0.38 0.54 14.22 <0.01 2.24 <0.01 1.69 0.15 3.39 <0.01 

Salty-CP 7.49 <0.01 0.00 0.95 15.99 <0.01 1.11 0.32 0.72 0.61 4.14 <0.01 

 

 

Comparison of the classical protocol and block protocol results 

In the three-way ANOVA, sample type was significant, revealing that there were differences in how the 

different pea protein solutions were perceived (Table 3.1.1.3.). When the block protocol was used, 

panellists discriminated among the six sample types for all the attributes; for the classical protocol, the 

same was true for eight of the attributes (except pea, grains and astringent). For the block protocol, the 

greatest degree of discrimination was observed with the attributes nuts and mouthfeel (F = 21.61 and 

F=21.14); for the classical protocol, it was with granularity (F=10.04). For the block protocol, there was 

some degree of discrimination displayed in granularity, pea, and almond (resp. F=8.67, F=9.19, F=8.26) 

as well with grains and astringent (resp. F=4.54, F=4.10), although F-values were weaker in the latter 

case. In contrast, with classical protocol, panellists did not discriminate among the sample types for the 

attributes astringent, grains, and pea. Consequently, the block protocol allowed a greater degree of 

discrimination among a larger number of attributes. Table 3.1.1.3. presents the results of the Newman-

Keuls groups associated for the evaluation of pea protein isolates for significant attributes with the 

classical and the block protocols. Overall products are ranked in the same way. Nevertheless there is a 

higher number of different groups with the block protocol for the attributes bitter, astringent, mouthfeel, 

pea, broth and grains (respectively from 2 to 4, and 1 to 3 groups). 
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Table 3.1.1.3.: Results from the Newman-Keuls post-hoc comparisons for the evaluation of pea 

protein isolates in water solutions by different protocol. (CP) Classical profiling protocol. (BP) Block 

profiling protocol. Nb_group number of Newman-Keuls group. Significant differences between 

groups are indicated by differences in letters. 

 
Solutions Salty Bitter Astringent Mouthfeel Granularity Pea Broth Nuts Almond Potato Grains             

S1-BP a a a a ab a b a a a a 

S1-CP abc a a a c a b a ab b a 

S2-BP b ab ab b bc bc c a a b ab 

S2-CP bc ab a a c a b ab a b a 

S3-BP a c ab cd a b a b b a b 

S3-CP a b a c ab a a c b a a 

S4-BP b c b d ab bc bc b a b ab 

S4-CP c b a bc a a b bc ab ab a 

S5-BP b bc b d a c bc b b b b 

S5-CP c ab a abc bc a ab ab b b a 

S6-BP b c b bc c ab bc a a b ab 

S6-CP ab ab a ab c a b bc a b a             
Nb_group -BP 2 3 2 4 3 3 3 2 2 2 2 

Nb_group -CP 3 2 1 3 3 1 2 3 2 2 1 

 

The results of the MFA are shown in Figure 3.1.1.2. There was a good correlation between the results 

obtained with the two protocols (RV coefficient = 0.778) (Josse et al., 2008). The first two axes 

accounted for a large proportion of the variance (81.01%) in the sensory profiles. The loadings of the 

attributes showed that evaluations of granularity were well correlated between the two protocols, as 

were evaluations of broth, salty, mouthfeel, bitter, nuts, and almond. The only attribute for which this 

was not the case, was potato. This is because of higher potato intensity scores when panellists used block 

protocol, especially for S1 (5.31 for block profiling vs. 2.68 for classical profiling). It may be that, with 

the classical protocol, it was easier to confuse the potato attribute with other attributes; in contrast, block 

protocol might have limited such confusion. Along the first axis (52.95% of variance explained), sample 

types were mainly differentiated based on the attributes nuts, mouthfeel, almond, and granularity. Along 

the second axis (28.05% of variance explained), sample types were mainly differentiated based on the 

attributes salty and potato. The sample types evaluated with classical protocol are mostly distributed 

along the first axis, which means that panellists mainly used a single dimension when differentiating 

among sample types. In contrast, the sample types evaluated with block protocol are distributed along 

axes 1 and 2, which means that panellists used two dimensions in the discrimination process. Overall, 

this finding indicates that there was a greater degree of discrimination among sample types when block 

protocol was employed. 

 

For both protocols, panellists had the possibility to complete their descriptions with another attribute in 

‘Other’. However, with both protocols, this attribute has been used only rarely and never in a consensual 

way. These results do not allow us to conclude on the usefulness of such an attribute. 
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PROP status of panellists and its relationship with perceptions 

Among the 17 individuals who evaluated pea protein isolates in solution with both protocols, 7 were 

assigned to the HPT group (PROP intensity > sodium chloride intensity) and 5 were assigned to the LPT 

group (PROP intensity < sodium chloride intensity). The 5 panellists who did not perceive a difference 

between PROP and sodium chloride were assigned to MPT group.  

 

Table 3.1.1.4.: Effects of panellist PROP status on the evaluation of the attribute intensities of pea 

protein solutions from the results from the ANOVA (degrees of freedom: 34; residual degrees of 

freedom: 169). Significant p-values are in bold (α = 0.05). (CP) Classical profiling protocol. (BP) 

Block profiling protocol. 

 

Sensory attributes 

Panellist 

[PROP] 
Sample type PROP status Replicate 

Replicate* 

PROP 

PROP * 

Sample 

F Pvalue F Pvalue F Pvalue F Pvalue F Pvalue F Pvalue              
Almond-BP 9.50 <0.01 5.37 <0.01 12.45 <0.01 0.39 0.53 1.55 0.21 1.03 0.42 

Almond-CP 12.21 <0.01 4.08 <0.01 12.32 <0.01 0.16 0.69 6.06 <0.01 1.77 0.07 

Astringent-BP 3.74 <0.01 3.24 0.01 19.51 <0.01 4.83 0.03 2.27 0.11 0.78 0.65 

Astringent-CP 5.20 <0.01 1.52 0.19 21.66 <0.01 1.66 0.20 1.47 0.23 0.42 0.93 

Bitter-BP 11.99 <0.01 10.74 <0.01 8.79 <0.01 12.46 <0.01 5.31 0.01 1.41 0.18 

Bitter-CP 13.16 <0.01 5.75 <0.01 6.91 <0.01 1.09 0.30 0.19 0.83 1.08 0.38 

Broth-BP 5.08 <0.01 8.21 <0.01 39.35 <0.01 0.63 0.43 3.06 0.05 0.35 0.96 

Broth-CP 4.46 <0.01 7.00 <0.01 5.32 0.01 8.11 <0.01 1.10 0.34 1.34 0.21 

Grains-BP 11.61 <0.01 3.09 0.01 14.29 <0.01 11.61 <0.01 4.57 0.01 1.74 0.08 

Grains-CP 7.03 <0.01 1.63 0.16 4.35 0.01 0.98 0.32 1.19 0.31 0.61 0.80 

Granularity-BP 8.01 <0.01 7.07 <0.01 3.04 0.05 0.04 0.84 0.32 0.73 1.18 0.30 

Granularity-CP 4.28 <0.01 6.23 <0.01 8.60 <0.01 0.75 0.39 10.88 <0.01 0.99 0.46 

Mouthfeel-BP 9.16 <0.01 14.79 <0.01 0.52 0.59 17.48 <0.01 0.84 0.43 1.96 0.04 

Mouthfeel-CP 11.23 <0.01 3.60 <0.01 2.76 0.07 2.13 0.15 10.00 <0.01 1.29 0.24 

Nuts-BP 2.42 <0.01 11.54 <0.01 8.18 <0.01 13.97 <0.01 1.28 0.28 2.42 0.01 

Nuts-CP 4.54 <0.01 6.98 <0.01 10.73 <0.01 0.39 0.53 0.79 0.45 1.28 0.24 

Pea-BP 2.80 <0.01 4.64 <0.01 15.97 <0.01 2.80 0.10 0.01 0.99 1.97 0.04 

Pea-CP 5.57 <0.01 0.89 0.49 2.21 0.11 1.63 0.20 1.05 0.35 1.74 0.08 

Potato-BP 3.90 <0.01 6.02 <0.01 28.99 <0.01 0.08 0.78 3.92 0.02 0.70 0.72 

Potato-CP 6.27 <0.01 5.06 <0.01 11.99 <0.01 1.71 0.19 2.77 0.07 1.04 0.42 

Salty-BP 8.12 <0.01 9.88 <0.01 10.06 <0.01 0.37 0.55 0.97 0.38 1.82 0.06 

Salty-CP 13.26 <0.01 5.60 <0.01 4.56 0.01 0.18 0.67 2.86 0.06 0.71 0.71 

 

We used the block protocol data and the classical protocol data for the S1-S6 solutions to examine 

whether panellist PROP status influenced attribute evaluation (Table 3.1.1.4.). The ANOVA results 

show that PROP status affected the panellists’ evaluation of 9 of the 11 attributes (all except mouthfeel 

Figure 3.1.1.2.: Results of the multiple factor analysis comparing the sensory evaluations of pea 

protein solutions by classical (CP) versus block profiling protocol (BP) (RV coefficient: 0.778) (8/11 

attributes which are significant for both methods). (a) Correlation map of the variables along the first 

two axes. (b) Observations and projected points along the first two axes. 
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and granularity) for block protocol and 9 of the 11 attributes (all except mouthfeel and pea) for classical. 

Table 3.1.1.5. presents the results from the Newman-Keuls post-hoc comparisons. With block protocol, 

in contrast to the HPT and MPT groups, the LPT group perceived all the attributes as less intense (all 

except mouthfeel and granularity which are not significant). With classical protocol, LPT group 

perceived the products as less intense in astringent, granularity and aroma attributes (except pea 

attribute). The differences between the two protocols therefore depend on the attributes. Nevertheless, 

for bitter attribute, block protocol allow the expression of a greater difference between PROP status 

populations.  

 

Table 3.1.1.5.: Results from the Newman-Keuls post-hoc comparisons, where HPT = high PROP 

taster group, MPT = medium PROP taster group, and LPT = low Prop taster group. (CP) Classical 

profiling protocol. (BP) Block profiling protocol. Nb_group number of Newman-Keuls group. 

Significant differences between groups are indicated by differences in letters. 

 
Prop taster Salty Bitter Astringent Mouthfeel Granularity Pea Broth Nuts Almond Potato Grains             
HPT - BP a a a a a a b a b a a 

HPT - CP a a a a a a a a a a a 

MPT - BP a a a a a a a a a a a 

MPT - CP a a b a a a ab ab ab a ab 

LPT - BP b b b a a b c b b b b 

LPT - CP a a c a b a b b b b b             
Nb_group-BP 2 2 2 1 1 2 3 2 2 2 2 

Nb_group-CP 1 1 3 1 2 1 2 2 2 2 2 

 

3.1.1.4. Discussion 

 

We found that classical and block protocols yielded correlated results. However, the block protocol 

allowed better discrimination among sample types. These differences were likely due to the differences 

in the presentation schemes, which activated different cognitive processes. In past research, monadic 

presentation has been found to be faster and less tiring than comparative presentation (Mazzucchelli and 

Guinard, 1999); however, comparative presentation allows panellists to detect smaller differences 

among foods and to make more accurate decisions about these relative differences (Saint-Eve et al., 

2006). Here, our classical protocol employed a monadic presentation scheme, which means that 

panellists based their attribute evaluations on their memory of the references from the training period. 

They thus had to activate both their long-term and short-term memory. In contrast, in our block protocol, 

the presentation scheme combined both monadic and comparative elements. Consequently, the 

panellists could base their attribute evaluations on both their memories from the training period as well 

as on the reference sample, which was the first sample in the sequence (Hastie and Park, 1986). As a 

result, they might have needed to rely less on their long term-memory than when using the classical 

protocol.  

 

The differences in the results obtained with the two protocols could also be rooted in bias. For example, 

during sensory evaluation, one of a food’s attributes can strongly influence or bias the perception of the 

food’s other attributes (halo effect) (Thorndike, 1920), or, in contrast, the absence of a potentially salient 

attribute from a food can affect how the food’s other attributes are perceived (dumping effect) (Clark 

and Lawless, 1994). By having panellists evaluate attributes in groups, block protocol may reduce 

correlations among attributes and thus limit halo and dumping effects. Such factors could explain the 

distribution patterns along the first and second axes in the MFA (Figure 3.1.1.2.).  

 

Here, we asked panellists to evaluate sapid and texture attributes with nose clips. If nose-clip evaluation 

does not mimic what happens when people taste the products in real life, it allows to dissociate chemical 

interactions from cognitive interactions in order to study the relationships between sensory data and 

instrumental data to move towards an understanding of the mechanisms of sensory perceptions (Abegaz 

et al., 2004).  
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In term of practicality, the block protocol takes more time than the classical protocol for products 

evaluation (about 20 min versus 15 min). Although using the nose clip for only one of the attributes 

blocks requires to panellists to put on and remove it during the evaluation, panellists found it easier to 

evaluate perceptions than classical protocol in particular due to the focus on a smaller number of 

attributes. In addition, the use of the reference, which makes sample preparation more cumbersome, was 

greatly appreciated by the panellists to help them to rate the products. 

 

In summary, with this explorative study, block protocol is more efficient (better repeatability and 

discrimination) than classical protocol. Nevertheless, due to the high presence of the replicate effect, 

particularly in the classical protocol, and to the low number of evaluated products, as well as the limited 

number of subjects used in the panels, results have yet to be confirmed by other studies. 

 

This research has also improved our knowledge of how pea proteins are perceived. Plant proteins are 

often described as “beany,” a multidimensional and ambiguous descriptor. In our study, we decided 

against using the term beany. Instead, we parsed out its multiple components and expressed them via 

other terms. Indeed, in the literature, the definition of beany varies across consumers and food types. 

For example, lupin flour has been described as having beany/green, mushroom/soil, floral, meaty, nutty, 

woody/green, sweet, and baked attributes (Kaczmarska et al., 2018), and pea and soybean have been 

described as having beany, green, fresh, and grassy attributes (Troszyńska et al., 2007). As a result, the 

use of beany as a descriptor is sometimes avoided (Lawrence et al., 2016). For example, one study 

allowed cooked peas to only be described with the attributes pea, cooked vegetable, earthy, brothy, 

grainy, and hay like (Malcolmson et al., 2014). 

 

In our study, pea protein solutions could be described using attributes such as potato, pea, grains, broth, 

almond, and nuts. This definition of pea flavour (in particular the following attributes: green/pea, 

grain/starchy, nuts, and broth) is consistent with the definition developed by Vara-Ubol, Bott, and 

Chambers (Bott and Chambers, 2006; Vara-Ubol et al., 2004), where beany is a combination of 

musty/earthy, musty/dusty, and one or more of the characteristic attributes green pea pod, nutty, brown, 

sour, starchy, and powdery. However, there are some differences in the beaniness of pea proteins (as 

illustrated in our results) and the beaniness of proteins in soybeans, green peas, or lupin flour. More 

specifically, the attributes musty/dusty and earthy/mushroomy are not associated with pea proteins.  

 

Another aspect of our study is that we found a relationship between panellist PROP status and 

evaluations of pea protein solutions. The percentage of HPTs and LPTs that we identified among our 

panellists generally concurs with what has been reported in the literature. However, it is important to 

note that there is pronounced variability among populations worldwide (India: 26% HPT and 42% LPT; 

West Africa: 3% LPT; China: 6%–23% LPT; North America [Caucasians]: 30% LPT (Deshaware and 

Singhal, 2017). Here, we found that PROP status affected evaluations of bitterness (as also shown by 

Dinehart et al., 2006) as well as evaluations of other sapid and flavour attributes. In particular, LPTs 

seemed to have a harder time discriminating among sample types for a number of attributes; the only 

attribute for which there was evidence of discrimination was a texture attribute, which suggests that 

mechanisms underlying texture perception are very different from those underlying chemical 

perception. However, some researchers have been questioning whether PROP status is a global indicator 

of taste function given that the PROP test only measures sensitivity to one bitter compound (Webb et 

al., 2015). That said, certain studies have shown that, compared to LPTs, MPTs and HPTs do perceive 

a variety of compounds with greater intensity (Fischer et al., 2015). Therefore, to improve the quality 

of food descriptions and discrimination, sensory studies might want to strictly employ panellists who 

are HPT or MPT. Alternatively, researchers could control for panellist PROP status when carrying out 

the analyses. 

 

3.1.1.5. Conclusions 

 

In this study, we drew upon classical sensory protocol to develop a block protocol in which attributes 

are evaluated in groups. Panellists evaluated samples that were presented monadically and sequentially; 
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for each evaluation sequence, the first sample in the series was the reference. This protocol made it 

easier to evaluate samples with strong persistent attributes, such as bitterness or astringency, and 

multidimensional attributes, such as beaniness. The use of a reference sample may help limit drift 

between sessions. The block protocol made it possible for panellists to provide a more complete sensory 

characterization of the samples, which included a large number of attributes. In this study, the use of 

nose clips limited interactions between taste and flavour with a view to dissociate cognitive interactions 

from chemical interactions. We also assessed the PROP status of our panellists, which allowed us to 

better understand each panellist’s evaluations. Furthermore, our results suggest that PROP status could 

help researchers select panellists based on sensory sensitivity. In closing, our overall findings should 

improve the characterization and formulation of innovative products based on pea proteins. 

Nevertheless, these results have yet to be confirmed for its use when evaluating other types of products. 

In particular, foods with complex, multidimensional sensory properties, such as foods incorporating pea 

protein isolates would be interesting to consider. 

 

Main results 

 Here, we proposed an explorative study for the use of an adapted sensory evaluation protocol, 

that could be used by trained panellists to effectively evaluate the intensities of sensory properties 

of pea-protein-based foods. In short, we adapted a classical protocol: we incorporated relative-to-

reference evaluation, and panellists assessed attributes in blocks rather than all at once.  

 We conducted an experiment in which both classical and block protocols were used to evaluate 

pea protein solutions made with one set of isolates. Similar results were obtained with classical 

versus block protocol, although panellist performance (reproducibility and homogeneity) was 

better with block protocol.  

 Sensitivity to bitterness was also investigated for this limited number of panellists (PROP test), 

and it was found that high and medium PROP tasters could better discriminate among pea protein 

solutions but this observation could be confirmed on a greater number of individuals. 
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Section 3.1.2. – Using a mixture design and fraction-based 

formulation to better understand perceptions of plant-protein-

based solutions 
 

3.1.2.1. Introduction 

 

Over the last few years, plant-based protein ingredients have received much attention from the food 

industry and consumers because of their environmental sustainability, attractive prices, nutritional 

values, and protein content (Davis et al., 2010). In particular, yellow field pea (Pisum sativum L.) is an 

increasingly common ingredient in plant-based foods (Siddique et al., 2012). Its proteins exhibit low 

allergenicity; have a high nutritional value; and can restore the amino acid balance of grain-based diets. 

They also display functional properties that are useful in food formulation: they promote emulsification, 

foaming, gelation, and whipping (Adebiyi & Aluko, 2011; Gharsallaoui et al., 2009).  

 

Industrial pea-protein ingredients are traditionally generated via a several-step wet process. Pea seeds 

are solubilized in an alkaline solution, which is then centrifuged to remove insoluble compounds; the 

precipitate is obtained at the isoelectric point using acidification and centrifugation. The resulting isolate 

has a protein content of 80–90% (mainly globulins), but also contains lipids, carbohydrates, minerals, 

and other small compounds (e.g., phenolics), which are the products of seed metabolism (Schutyser et 

al., 2015). The isolate can also serve as an ingredient in the formulation of many food products, including 

dietary supplements, bakery and confectionery products, beverages, yogurts, ice creams, meat products, 

and meat and dairy alternatives. 

 

However, a challenge remains: pea-protein-based products are usually described as having strong beany, 

bitter, and astringent notes, which makes them less desirable to consumers. The mechanisms and 

chemical compounds underlying the perception of food are partly understood and may be multifarious 

(Owusu‐Ansah & McCurdy, 1991). Indeed, the composition of pea protein isolates is complex: they 

have a high protein content but also contain various peptides, volatile compounds, phenolics, complex 

heterosides, carbohydrates, fibres, and minerals. All these constituents could influence the perception of 

pea-based ingredients.  

 

Research in this area has often focused on the perception of beaniness, which is a complex flavour 

associated with bean products (Bott & Chambers, 2006). It results from the intricate composition of the 

volatile aroma compounds found in pulses; present at the highest concentrations is hexanal, whose 

occurrence is linked to the green notes of peas (Murat et al., 2013). Bitterness arises from the interaction 

of bitter compounds (e.g., amino acids, peptides, phenolics, and complex heterosides) with the TAS2R 

family of receptors, which are found on the apical membranes of taste receptor cells (Maehashi et al., 

2009; Meyerhof et al., 2010). For example, the caffeic acid in coffee and other plant products generates 

an intense sensation of bitterness (Frank et al., 2007; Streit et al., 2007). Astringency is produced by 

“the complex sensations due to shrinking, drawing, or puckering of the epithelium” and results from 

interactions between phenolics and saliva proteins (ASTM, 1991; Gibbins & Carpenter, 2013). From an 

industrial and scientific point of view, it has proven extremely challenging to clarify how pea-based 

ingredients give rise to these sensory attributes. 

 

Research on the perception of pea-based products has largely focused on the role of volatile aroma 

compounds in creating sensations of beaniness (Azarnia et al., 2011; Ben-Harb et al., 2020; Bi et al., 

2020; Bott & Chambers, 2006; El Youssef et al., 2020; Murat et al., 2013; Mutarutwa et al., 2018; 

Schindler et al., 2012; Trikusuma et al., 2020; Wang & Arntfield, 2016; Xu et al., 2019; Xu et al., 2020). 

A few studies have exclusively examined the peptides that could be related to bitterness (Akin & Ozcan, 

2017; Pownall et al., 2010; Sirtori et al., 2012); the phenolics related to bitterness and astringency (Guo 

et al., 2019; Padhi et al., 2017); and the saponins related to bitterness (Daveby et al., 1998; Heng et al., 

2006; Price et al., 1985). However, to our knowledge, no study to date has used a more global approach 
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to examine how the complex perception of pea protein isolates arises from both volatile and non-volatile 

compounds and their potential interactions.  

 

Several research strategies have been used to understand how complex products are perceived and to 

account for the interactions between matrix molecules. Omission testing is commonly used to estimate 

the effect of specific compounds on the sensory characteristics of products (Engel et al., 2002). Thanks 

to this technique, aroma models have been built that reconstitute complex doors—such as those of 

different types of wine, olive oil, cheese, boiled beef, coffee, and whey protein—using only a small 

fraction of the great number of volatiles occurring in these foods (Dinnella et al., 2012; Ferreira et al., 

2002; Whitson et al., 2010). However, in addition to being very time consuming, these experiments are 

less effective when volatile compounds are included in mixtures because the volatiles interact with other 

ingredients. Indeed, the ability of volatile compounds to modify how something tastes depends on both 

their relative concentrations and their interactions within the food matrix (Guichard, 2002). Mixing 

congruous volatiles and taste stimuli can enhance taste intensity, while mixing incongruous stimuli can 

suppress taste intensity (Caporale et al., 2004). Omission testing has also been used in tandem with gel 

permeation chromatography to study the water-soluble fraction of peptides found in cheese (Andersen 

et al., 2010; Engel et al., 2002; Gómez-Ruiz et al., 2007; Toelstede & Hofmann, 2008). The compounds 

in pea protein isolates that are potentially responsible for sensory attributes (e.g., peptides, phenolics, 

minerals) are very complex and challenging to purify and identify. Moreover, most analytical techniques 

require the use of non-food-grade solvents or buffers that are difficult to handle and that can pose 

problems if the extracts are to be used in sensory evaluations. 

 

Studies have shown that attribute perception may be similar for a complex product and a fraction-based 

reconstruction of the product. For example, artificial ikura (Japanese salmon caviar) was prepared using 

vegetable oil and a low-calorie natural gel (e.g., one made with alginic acid) (Hayashi et al., 1990); each 

component of the food was then analysed using chemical and sensory methods. Based on the analytical 

data, a synthetic ikura was reconstituted using pure reagents. There were very few sensory differences 

in the taste profiles between the reference food and the reconstructed food (Hayashi et al., 1990). In 

another study (Niimi et al., 2014), a cheese solution was reconstituted using a mixture of sucrose, NaCl, 

monosodium glutamate, lactic acid, and caffeine that was then adjusted using a fractional factorial 

design. The reconstructed products did not significantly differ from the cheddar cheese reference in 

overall intensity, saltiness, sourness, umami, and bitterness (Niimi et al., 2014).  

 

Thus, the aim of this study was to examine how the main fractions of pea protein isolates individually 

affected the perception of sensory attributes, namely undesirable attributes such as beaniness, bitterness, 

and astringency. To this end, an original approach was employed, in which different fractions were 

combined in various ways to create a range of pea-protein-based solutions. These fractions were 

obtained from commercial pea protein isolates and were an insoluble fraction (called the pellet), a 

soluble fraction (called the retentate), and a soluble fraction with a molecular weight of less than 10 kDa 

(called the permeate). Through this approach, the focus was thus on different groups of compounds 

instead of on a single compound type. 

 

3.1.2.2. Materials and methods 

 

Production of pea protein isolate fractions 

Two pea protein isolates (protein content Nx6.25, 83% dry matter) were used; they were called isolate 

a and b, respectively. The isolates were dispersed in tap water in a tank to obtain a final suspension 

containing 4% (w/w) dry matter content. This suspension was maintained under agitation for 12 h at 

3°C with an external agitator (U-shaped stirrer shafts); it was then centrifuged with two centrifuges 

(Jouan Kr4i and a Sorvall Lynx 4000 [Thermo Scientific, Waltham, US]; 6000 g, 10 min, 4°C). The 

supernatant was manually separated from the pellet. The pellet was subsequently diluted with tap water 

to arrive at a dry matter content of 12.35%, which facilitated solution creation. A tangential filtration 

module (TIA, Bollene, France) was used for the ultrafiltration process. The module employed two ST-

3B-1812 PES Synder membranes (46-mil spacer; 10-kDa MWCO). Total membrane surface was 0.67 
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m². The filtration pilot was equipped with a high-pressure diaphragm pump (Wanner Hydra-Cell G10, 

Wanner International Ltd, Church Crookham, UK)). The retentate was maintained at 13°C throughout 

filtration. The inlet pressure (P1) was 1.5 bar, the outlet retentate pressure (P2) was 1 bar, and the mean 

transmembrane pressure ([P1 + P2]/2) was 1.25 bar. First, ultrafiltration was used to obtain around 10 

L of permeate; then, diafiltration was performed employing the same parameters to partially wash the 

retentate (one diavolume was used). Six fractions were obtained: permeates a and b, retentates a and b, 

and pellets a and b. 

 

Characterization of the pea protein isolate fractions 

Each fraction was characterized to determine the key pea protein compounds it contained (Figure 

3.1.2.1.). Nitrogen content was determined via the Kjeldahl method (nitrogen content x 6.25), and dry 

matter content was determined by a certified external laboratory (SAS IMPROVE, Amien, France) via 

drying (prepASH®219 analysis system). Sodium content was also determined by a certified external 

laboratory (SAS QUALTECH, Vandoeuvre-les-Nancy, France) using inductively coupled plasma mass 

spectrometry. Caffeic acid content was determined using gas chromatography–mass spectrometry (GC-

MS) and comparison with an external standard (CAS 331-39-5, grade ≥ 98.0% HPLC, MW 180.16, 

Sigma Aldricht, Saint-Louis, US). Hexanal levels were determined using GC-MS as per El Youssef et 

al. (2020). 

 

 

 

 

 

Figure 3.1.2.1.: Key characteristics of the six pea protein isolate fractions used in the study (pellet a 

and b, permeate a and b, retentate a and b): dry matter content (%), protein content (% Nx6.25), 

caffeic acid content (ng/g), sodium content (mg/kg), and hexanal levels (GCMS area). 

 

Mixture design 

An optimal mixture design was used to create a wide range of reference and experimental solutions from 

the fractions (permeates a and b, retentates a and b, and pellets a and b). Response surface models were 

created and included quadratic terms and first-order interactions. The experimental design was such that 

there was orthogonality among all the terms, which allowed variable effects to be differentiated from 

one another. A blocking factor was used to control for the effect of the day on which sensory evaluation 

took place. The order of solution evaluation within the blocks was fully balanced. Overall, the mixture 

design had eight independent variables (see Table 3.1.2.1. for the levels). Ten repetitions were 

performed to estimate experimental error. The total number of trials was 40. Variable levels were chosen 
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so as to represent a wide range of variation while remaining realistic in terms of the protein 

concentrations actually experienced when pea protein isolates are used to create foods. 

 

Table 3.1.2.1.: Composition of the different solutions used in this study, which were created by 

mixing permeates a and b, retentates a and b, and pellets a and b. In bold are the solutions that were 

replicated. In italics are the supplementary solutions used for validation purposes. 

 

Solution ID 
Permeate 

a (%) 

Permeate 

b (%) 

Retentate 

a (%) 

Retentate 

b (%) 

Pellet a 

(%) 

Pellet b 

(%) 

Water 

(%) 
MS (%) 

Sensory 

session ID 

P12 100 0 0 0 0 0 0 0.20 3 

P29 100 0 0 0 0 0 0 0.20 6 

P9 0 100 0 0 0 0 0 0.20 2 

P38 0 100 0 0 0 0 0 0.20 8 

P4 0 0 100 0 0 0 0 1.70 1 

P8 0 0 100 0 0 0 0 1.70 2 

P13 0 0 100 0 0 0 0 1.70 3 

P14 0 0 0 100 0 0 0 1.70 3 

P31 0 0 0 100 0 0 0 1.70 7 

P40 0 0 0 100 0 0 0 1.70 8 

P3 0 0 0 0 0 0 100 0.00 1 

P19 0 0 0 0 0 0 100 0.00 4 

P25 0 0 0 0 0 0 100 0.00 5 

P34 0 0 0 0 0 0 100 0.00 7 

P6 0 0 0 0 0 25 75 3.09 2 

P24 0 0 0 0 0 25 75 3.09 5 

P11 25 0 25 0 12.5 0 37.5 2.02 3 

P28 0 0 0 0 30 0 70 3.71 6 

P1 40 0 0 0 0 0 60 0.08 1 

P35 40 0 0 0 0 0 60 0.08 7 

P18 0 40 0 0 0 0 60 0.08 4 

P17 0 0 40 0 0 30 30 4.39 4 

P37 0 0 0 40 30 0 30 4.39 8 

P7 0 0 0 40 0 30 30 4.39 2 

P2 0 0 0 0 50 0 50 6.00 1 

P20 0 0 0 0 50 0 50 6.00 4 

P30 0 0 0 0 0 50 50 6.00 6 

P39 0 0 0 0 0 50 50 6.00 8 

P33 50 0 0 0 0 25 25 3.19 7 

P36 50 0 50 0 0 0 0 0.95 8 

P10 50 0 0 0 25 0 25 3.19 2 

P5 0 50 0 0 0 25 25 3.19 1 

P23 0 50 0 50 0 0 0 0.95 5 

P26 0 50 0 0 0 0 50 0.10 6 

P22 0 0 50 0 25 0 25 3.94 5 

P16 0 0 0 50 0 0 50 0.85 4 

P21 0 0 0 50 0 0 50 0.85 5 

P32 0 0 60 0 0 0 40 1.02 7 

P15 0 70 30 0 0 0 0 0.65 3 

P27 40 0 0 60 0 0 0 1.10 6 

P41 0 0 0 0 67 0 33 8.27 9 

P42 0 0 0 0 0 50 50 6.00 9 

P43 0 0 0 0 8 0 92 0.99 9 

P44 0 0 0 0 0 8 92 0.99 9 

P45 (Refa-R) 38 0 34 0 28 0 0 4.10 9 

P46 (Refb-R) 0 40 0 36 0 24 0 3.70 9 

 

This experiment was designed with a view to minimizing solution number (final solution count: 40), 

which facilitated solution evaluation. In contrast, a central composite design or a Box-Behnken design 

would have required ~60 and ~80 solutions, respectively. Furthermore, we used an optimal design 

because it is the only design that allows the addition of a blocking factor. This experiment displayed 

better or equivalent efficiency—with a D-optimal value of 13.25% and a G-optimal value of 50.85%—

compared to experiments based on other designs. These metrics reflect goodness of fit relative to a 

hypothetical orthogonal design: the D-optimal value indicates whether the design minimizes the volume 

of the joint confidence region for the vector of regression coefficients, and the G-optimal value indicates 

whether the design minimizes the maximum prediction variance over the design region.   
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To validate the model’s predictive capacity, six solutions that were not initially included in the design 

were added to the sensory evaluations (for more details, see Table 3.1.2.1—sensory session ID 9). 

 

Solution creation 

The six different fractions were combined in various ways to formulate the 46 solutions of the mixture 

design. This process was carried out at 4°C in 500 mL and 100 mL glass flasks, which were stored at -

20°C. During fractionation and recombination, good hygiene practices were used to limit microbial 

contamination (usage of coat, gloves, and hygienic cap; cleaning and disinfection of hands and all 

equipment with pure ethanol, followed by air drying; work carried out in a 4°C chamber). In addition, 

the microbial safety of the solutions was tested by a certified external laboratory (Eurofins Scientific, 

France). However, for microbiological reasons, the solutions containing pellet b had to be heat treated 

(autoclaved at 110°C for 10 min) before oral sensory evaluation, so the supplemental effect of the 

autoclave procedure on perception was also evaluated. It was slightly significant for the attributes nuts, 

cereals, and almond and strongly significant for the attribute granularity (mean difference between 

autoclaved and unautoclaved solutions: 0.89/10 for nuts; 0.94/10 for cereals; 1.44/10 for almond, and 

5.49/10 for granularity). Because this effect was minor (except in the case of granularity) and collinear 

with pellet b, it will not be discussed further.  

 

Sensory evaluation conditions 

We recruited 17 panellists (13 women and 4 men; mean age = 23 years old) based on their interest in 

participating in a long-term study that required their presence at two evaluation sessions per week for 

three months. They had already been trained to carry out sensory evaluations of pea products or to use 

sensory evaluation methods, but they all received additional training for this study. They were not 

informed of the precise aim of the experiment. They gave their free and informed consent to participate 

and received compensation for their participation. They were asked to not eat, drink, or smoke for at 

least 1 h prior to any of the sessions (training or experimental). Sensory profiling was carried out in 

individual booths under white light (the solutions were similar in colour) in an air-conditioned room 

(20°C). To reduce sensation build-up, the following palate-cleansing protocol was used between 

solutions during the experimental sessions: panellists had to consume an apple slice, drink water, and 

wait 40 seconds before consuming the subsequent solution (as described in Cosson et al., 2020 – Section 

3.1.1.). 

 

Sensory profiling method 

The process to lexicon development was as followed. Panellists were asked to fill out a check-all-that-

apply (CATA) survey. It contained 30 attributes, and it was possible for panellists to add more. For our 

final list, we selected attributes that were cited more than 20% of the time and that allowed significant 

discrimination among solution types. To select the list of attributes, we also wished to limit total attribute 

number to avoid panellist fatigue. Panellists were then asked to assess solutions using the sensory 

profiling method (with a block protocol) described by Cosson et al. (2020 – Section 3.1.1.). The 

objective was to score the intensity of a solution’s sensory attributes along an unstructured scale ranging 

from 0 to 10. Panellists were trained to assess the attributes along the unstructured scale using external 

references (Table 3.1.2.2). Training took place over 8 sessions that each lasted 45 min. Afterward, 

panellist performance was evaluated.   

 

Attributes were evaluated in blocks. The first attribute block (pea, broth, nuts, almond, potato, and 

cereals) focused on aroma perception (i.e., evaluated by nose). The second attribute block (salty, sugar, 

bitter, astringent, mouthfeel, and granularity) focused on taste perception and mouthfeel, and the 

panellists wore nose clips. The third attribute block (pea, broth, nuts, almond, potato, and cereals) again 

focused on aroma perception, but the solutions were evaluated in mouth; the panellists did not wear nose 

clips. For each block, the solutions were presented on a sequential monadic presentation: for each 

solution, the panellists evaluated all the attributes within the block, which were printed on the same 

survey page. Solution order was the same for all three blocks for a given panellist; however, it differed 

among panellists. In addition, for the three blocks, the first solution in each session was always the 

reference solution (Refa), which limited and controlled drift between sessions. This reference was 

available in large quantities and was stored -20°C in 500 mL glass flasks to ensure sensory stable 
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conditions for the entire study period. To account for order and carry-over effects, solution order was 

balanced across panellists using a Latin square (Williams design). Each solution was evaluated in 

duplicate by the 17 panellists. 

 

Table 3.1.2.2.: Definitions and references of the sensory attributes evaluated by the panellists to 

describe the perception of the pea-protein-based sample types by profiling method. 

 

Descriptors 
Attributes in 

French 
Definition Reference 

Salty Salé A fundamental taste of which sodium chloride is typical. 
2 g/L of sodium chloride 

solution 

Sugar Sucré A fundamental taste of which saccharose is typical. 12 g/L of saccharose solution 

Bitter Amer 
The fundamental taste associated with a caffeine 

solution. 
0,8 g/L of caffeine 

Astringency Astringent 
A drying-out, roughening, and puckery sensation felt in 

the mouth like with red wine or unripe fruit. 

1,7g/L of sulphate aluminium 

potassium 

Mouthfeel Epaisseur 
The way the product feels in the mouth in relation with 

his viscosity. 
4% of pea protein isolates 

Granularity Granulosité The presence of grains or granules in the products. 4 % of semolina 

Pea Pois Aromatics characteristic of beans and bean products. 
Split peas cooked during 5 

minutes in boiling water 

Broth Bouillon 
The aromatic associated with boiled meat, soup, or 

stock. 

1 stock cube in 2L of bolt 

water 

Nuts Noix 
The aromatics associated with nuts like walnuts or 

hazelnuts. 

Walnut cooked during 5 

minutes in boiling water 

Almond Amande The aromatics associated with almonds. Almond powder 

Potato 
Pomme de 

terre 
The aromatics associated with cooked potato. 

Potato cooked during 5 

minutes in boiling water 

Cereals Céréales The aromatics associated with cereals. 
Wheat cooked during 5 

minutes in boiling water 

 

Statistical analysis of the sensory data 

Analyses were performed using XLStat (Addinsoft, 2017, Paris, France) and R (R Core Team, 2017). 

For analyses of an inferential nature, α = 0.05 was the threshold for statistical significance. To analyse 

the sensory profiling results, we carried out a three-way ANOVA. Solution identity (ID), replicate ID, 

and panellist ID were the fixed factors, and all the first-order interactions were included. To visually 

explore differences in the results obtained using the classical versus block profiling protocol, we carried 

out principal component analysis (PCA) on a correlation matrix; the data were averaged across replicates 

and panellists. To study the possible drift between sessions, we carried out a two-way ANOVA on the 

data for the reference solution. Panellist ID, sensory session ID, and their interaction were the fixed 

factors. 

 

Statistical analysis of the mixture design 

JMP (v. 13.1.0; SAS Institute Inc., Cary, SC, USA) was used to generate and analyse the optimal mixture 

design. Multiple regression analysis was performed to evaluate the effects of all the independent 

variables on each response variable (i.e., via the regression coefficients). The most influential 

independent variables (p ≤ 0.05) were identified using backward elimination. The regression coefficients 

were calculated for each final model. Model performance was assessed via ANOVA (F-test for 

significance), lack-of-fit tests, and coefficients of determination (R2). For the six validation solutions, 

the predicted and observed responses (with 95% confidence intervals) were calculated.   

  

3.1.2.2. Results 

 

The aim of this study was to understand how the sensory perception of pea protein isolates is affected 

by the isolates’ main fractions. To this end, we used a mixture design. The first part of the 

results/discussion section examines how the design model was built: it provides an assessment of 

panellist performance over the 3-month experiment, an explanation of how attributes were chosen, a 

validation of the study methodology (i.e., creating solutions by combining isolate fractions), and a 
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statistical representation of the model. The second part of the results/discussion section focuses on how 

different sensory attributes (primarily beaniness, bitterness, and astringency) are affected by pea protein 

isolate composition (i.e., the main constituents—insoluble proteins, volatiles, and soluble compounds 

[proteins, peptides, phenolics, and minerals]). 

 

Construction of surface response models from the sensory data 

 

Assessment of panellist performance over the 3-month experiment 

Panellists used sensory profiling to assess the 46 solutions (reference and experimental; in duplicate) 

during two weekly sessions over the course of three months. Because solution number was high and 

study duration was long, it was important to examine panellist performance over time (i.e., 

reproducibility, homogeneity, and between-session drift). To do so, a three-way ANOVA was used to 

analyse the attribute scoring data (Table 3.1.2.3.). 

 

Table 3.1.2.3.: Assessment of panellist performance in scoring the intensities of the six aroma 

attributes evaluated by nose (N), the six taste attributes evaluated in mouth with the nose clip (NC), 

and the six aroma attributes evaluated in mouth (M) for the range of solutions used in the study; 

solution evaluation employed a block protocol. In the three-way ANOVA, the fixed factors were 

solution ID, panellist ID, replicate ID, and their first-order interactions. F: Fisher statistic for the fixed 

effects. Pvalue: p-value for the Fisher test. Significant p-values (threshold of 0.05) are in bold. Model 

degrees of freedom (DF): 735; residual DF: 624. 

 

Sensory 

attributes 

Solution ID Panellist ID Replicate ID 
Panellist* 

Solution 

Replicate* 

Panellist 

Replicate* 

Solution 

F  Pvalue F Pvalue F Pvalue F Pvalue F Pvalue F Pvalue 

Almond-M 45.78 <0.01 86.43 <0.01 19.15 <0.01 2.17 <0.01 3.02 <0.01 1.22 0.18 

Almond-N 22.20 <0.01 100.15 <0.01 0.22 0.64 2.03 <0.01 4.62 <0.01 0.99 0.49 

Astringent-NC 33.94 <0.01 58.61 <0.01 0.17 0.68 1.75 <0.01 4.85 <0.01 1.42 0.05 

Bitter-NC 14.83 <0.01 44.76 <0.01 11.48 <0.01 1.23 <0.01 2.72 <0.01 1.20 0.19 

Broth-M 54.09 <0.01 49.60 <0.01 5.39 0.02 1.98 <0.01 3.08 <0.01 1.43 0.04 

Broth-N 27.26 <0.01 48.37 <0.01 10.46 <0.01 1.24 <0.01 2.30 <0.01 1.66 0.01 

Cereals-M 47.01 <0.01 48.42 <0.01 1.58 0.21 2.34 <0.01 2.72 <0.01 1.86 <0.01 

Cereals-N 23.43 <0.01 53.96 <0.01 0.91 0.34 1.46 <0.01 3.43 <0.01 0.82 0.78 

Granularity-NC 261.12 <0.01 24.39 <0.01 0.05 0.82 2.29 <0.01 1.77 0.03 1.11 0.30 

Mouthfeel-NC 116.94 <0.01 42.39 <0.01 35.61 <0.01 2.07 <0.01 3.53 <0.01 2.16 <0.01 

Nuts-M 29.50 <0.01 89.91 <0.01 0.93 0.34 1.80 <0.01 3.62 <0.01 1.10 0.31 

Nuts-N 25.95 <0.01 99.72 <0.01 2.13 0.15 1.60 <0.01 3.39 <0.01 1.62 0.01 

Pea-M 27.57 <0.01 41.31 <0.01 55.09 <0.01 1.88 <0.01 6.76 <0.01 1.54 0.02 

Pea-N 28.12 <0.01 45.61 <0.01 28.95 <0.01 1.52 <0.01 2.92 <0.01 1.94 <0.01 

Potato-M 23.79 <0.01 61.59 <0.01 1.52 0.22 1.91 <0.01 3.83 <0.01 1.34 0.08 

Potato-N 19.63 <0.01 40.01 <0.01 2.18 0.14 1.16 0.03 3.18 <0.01 0.94 0.57 

Salty-NC 15.74 <0.01 70.85 <0.01 0.51 0.48 1.33 <0.01 4.24 <0.01 0.83 0.76 

Sugar-NC 9.20 <0.01 94.31 <0.01 17.01 <0.01 1.96 <0.01 5.53 <0.01 1.37 0.07 

 

Reproducibility and homogeneity were examined first. Solution ID was significant for all 18 attributes, 

which indicates that panellists distinguished among solutions. Panellist ID and the interaction between 

panellist ID and solution ID were also significant for all the attributes. Such interactions are common 

when sensory attributes are evaluated using unstructured scales and are difficult to control even when 

panellists have undergone extensive training (Jourjon et al., 2005). The interaction between replicate ID 

and solution ID was not significant for 10/18 attributes. Replicate ID was not significant for 11/18 

attributes, but the interaction between panellist ID and replicate ID was significant for all 18 attributes. 

However, the F-values for these interactions were low compared to the F-values for the main effect of 

solution ID. For example, for the broth-M attribute, F(39,624) = 54.09 for solution ID; F(1,624) = 5.39 

for replicate ID; F(16,624) = 3.08 for the panellist-by-replicate interaction; and F(16,39) = 1.43 for the 

solution-by-replicate interaction (model degrees of freedom [DF] = 735, residual DF = 624). 

 

The presence of between-session drift was examined by looking at the scores for the reference solution 

across the entire experiment. To this end, a two-way ANOVA (fixed factors: panellist ID and sensory 

session ID) was performed using scores for each attribute given to the reference solution (Table 3.1.2.4.). 

Sensory session ID was not significant for any of the attributes except broth-M and granularity-NC: 
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these attributes were assigned slightly higher and slightly lower scores, respectively, during a single 

session. Although using the reference can make solution preparation more cumbersome, it was important 

in helping to validate panellist performance. In addition, panellists found the reference useful as they 

scored the other solutions. In past research, monadic presentation has been found to be faster and less 

tiring than comparative presentation (Mazzucchelli & Guinard, 1999). However, comparative 

presentation allows panellists to detect smaller differences among food products and to make more 

accurate decisions about these relative differences (Saint-Eve et al., 2006). Here, via its use of blocks, 

the presentation method combined monadic and comparative elements. Consequently, the panellists 

could base their attribute scoring on both their memories from the training period as well as on the 

reference, which was always the first solution in the sequence (Hastie & Park, 1986). 

 

Table 3.1.2.4.: Assessment of panellist performance in scoring the intensities of the six aroma 

attributes evaluated by nose (N), the six taste attributes evaluated in mouth with the nose clip (NC), 

and the six aroma attributes evaluated in mouth (M) for the main reference solution. In the two-way 

ANOVA, the fixed factors were panellist ID, sensory session ID, and their interaction. F value: Fisher 

statistic for the fixed effects. Pvalue: p-value for the Fisher test. Significant p-values (threshold of 

0.05) are in bold. Model DF: 35; residual DF: 304. 

 
Sensory 

attributes 

Sensory session ID Panellist ID 

F Pvalue F Pvalue 

Almond-M 1.17 0.28 89.99 <0.01 

Astringent-NC 0.50 0.96 30.02 <0.01 

Bitter-NC 1.49 0.09 32.90 <0.01 

Broth-M 2.48 <.01 30.36 <0.01 

Cereals-M 0.88 0.61 40.19 <0.01 

Granularity-NC 2.88 <.01 19.64 <0.01 

Mouthfeel-NC 1.51 0.08 24.90 <0.01 

Nuts-M 0.69 0.83 35.17 <0.01 

Pea-M 1.37 0.14 24.88 <0.01 

Potato-M 0.99 0.47 36.41 <0.01 

Salty-NC 1.29 0.18 22.97 <0.01 

Sugar-NC 1.08 0.37 63.31 <0.01 

 

 

Taken together, these results suggest that the panellists generally came up with repeatable and 

homogeneous scores and that there was no between-session drift in scoring. There was some 

disagreement in the case of certain attributes (e.g., sugar-NC), which was taken into account when the 

results were analysed. 

 

Attribute choice 

Plant-protein-based ingredients are often said to be “beany,” a multidimensional and complex descriptor 

(Bott & Chambers, 2006). Here, the decision was made not to use the term “beany.” Instead, its multiple 

components were parsed out and expressed via other terms (see Cosson et al., 2020 – Section 3.1.1.). 

Thus, six aroma attributes were selected: potato, pea, cereals, broth, almond, and nuts. Plant-protein-

based ingredients are also often described as being persistently bitter and astringent (Roland et al., 

2017); consequently, bitterness and astringency were included as well. Finally, two taste attributes—

salty and sugar—and two texture attributes— mouthfeel and granularity—were also chosen because 

they have been found to be important in descriptions of food quality and preference (van Vliet et al., 

2009).  

 

Attribute intensities for the different solutions were investigated using a three-way ANOVA (Table 

3.1.2.3.). Solution ID was significant for the 18 attributes (model DF: 735; residual DF: 624), which 

means the solutions had distinct sensory profiles. There were pronounced differences in perceived 

texture (F = 261.12 for granularity and F = 116.94 for mouthfeel) and smaller differences in perceived 

sweetness (F = 9.20 for sugar). These results are not surprising. It is easier to describe food products 

based on texture and taste than on aroma (Saint-Eve et al., 2011). Furthermore, temporally, they are the 

first attributes to become dominant in the mouth (Le Calvé et al., 2019; Pineau et al., 2009; Saint-Eve 
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et al., 2011). Additionally, when describing overall preferences and sensory satisfaction, consumers 

appear to primarily focus on taste and then on texture, paying the least attention to aroma (van Vliet et 

al., 2009). Finally, since the solutions had very low levels of natural sugar content (and no sugar was 

added), it was not surprising that sweetness did not greatly contribute to the perceived differences among 

the solutions. Consequently, this attribute was not included in the statistical model. 

 

 
 

Figure 3.1.2.2.: Results of the principal component analysis (PCA) examining the solutions' sensory 

profiles. The plot shows the loadings i.e. the correlational relationships between PCA axes 1 and 2 

and the sensory attribute values in the original dataset, as well as the relative similarity of the 

solutions’ sensory profiles. In green are the active observations corresponding to the raw products 

(Refa and Refb). In blue are the active observations corresponding to 100% of water. In orange are 

the active observations corresponding to 100% of permeate (a or b). In purple are the active 

observations corresponding to 100% of retentate (a or b). In yellow are the active observations 

corresponding to 50% of pellet (a or b). In dark are the others active observations. In red are the 

supplementary observations corresponding to the experimental solutions with the same composition 

as the reference solutions (Refa-R and Refb-R). 

 

To build upon these results, PCA was used to visually depict the relationships among solution types and 

attributes (Figure 3.1.2.2.). The solutions were well distributed along axes F1 and F2, which accounted 

for 82.68% of the variance. Thus, maps based on the first two axes seemed to provide a good quality 

projection of the initial multidimensional table, even though some information might have remained 
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hidden in the subsequent axes. The 12 aroma attributes were clustered within one quarter of the 

correlation circles and thus clearly interacted in multiple ways. Aroma attributes assessed in the mouth 

and nose were strongly correlated (R2 = 0.86 for pea, R2 = 0.88 for broth, R2 = 0.83 for cereals, R2 = 

0.95 for nuts, R2 = 0.87 for almond, R2 = 0.89 for potato). These results suggest that panellists assigned 

similar scores to aroma attributes perceived orthonasally and retronasally and that food processing in 

the mouth had a minor effect on olfactory perception. Orthonasal doors result from volatile compounds 

traveling from the external environment and through the nares to the olfactory mucosa, whereas 

retronasal doors result when volatile compounds travel to the olfactory mucosa after they have been 

released during food destructuration in the oral cavity (Sun & Halpern, 2005). That said, orthonasal and 

retronasal responses are often similar, except in cases where there are physicochemical or sensory 

interactions induced by texture, taste, or in-mouth food destructuration (Goldberg et al., 2018). 

Furthermore, results for the attributes pea-M and salty-NC were also correlated (R² = 0.87), which 

suggests possible congruency (Oladokun et al., 2017). Consequently, our results indicate that there may 

have been limited interactions between texture, taste, and flavour (except in the case of the attributes 

pea and salty) and that food oral processing had a minimal impact on these attributes. Therefore, the 

aroma attributes evaluated via the nose were not included in the statistical model. 

 

The aroma attributes potato, almond, cereals, and nuts as well as the attributes astringent and mouthfeel 

were significantly correlated (R² range = 0.72–0.98). They were also correlated with the dry matter 

content (%) of the solutions (R² = 0.97 for mouthfeel, R² = 0.88 for cereals-M, R² = 0.85 for almond-M, 

R² = 0.82 for potato-M, R² = 0.81 for nuts-M, and R2 = 0.73 for astringent). These results suggest that 

the perception of these attributes was mainly driven by dry matter content and, thus, protein 

concentration. However, dry matter content was not correlated with the perception of the attributes pea 

and bitter. It is therefore necessary to build a more complex model to understand the origin of these 

attributes. 

 

Validation of the study methodology—fraction-based formulation of solutions 

In this study, a mixture design was used to create a large number of solutions by combining pea protein 

isolate fractions. To validate this methodology, the sensory properties of the two reference solutions, 

created directly from the pea protein isolates, were compared with the sensory properties of two 

experimental solutions that were created using the isolate fractions to have the exact same compositions 

as the reference solutions. 

 

PCA was used to visually depict the main differences between the reference solutions and these 

experimental solutions (Figure 3.1.2.2.). The results show that the two reference solutions (Refa and 

Refb) and the two experimental solutions (Refa-R and Refb-R) occur in relatively close proximity 

compared to the other solutions on the map. The distance is greater between Refa and Refa-R than 

between Refb and Refb-R. For the panellists, Refa was the “sensory reference”. As a result, there may 

be a bias in its sensory properties that is directly due to the study’s methodology. 

 

The main difference between the reference solutions and the experimental solutions was in their 

perceived granularity. The experimental solutions were perceived as less granular than the reference 

solutions. In commercially produced isolates, proteins are highly denatured due to the extraction process 

(pH changes, high temperatures) and form large aggregates that are primarily structured by hydrophobic 

interactions (Oliete et al., 2018). It is likely that these aggregates are fairly insoluble, which could be 

responsible for the perceived granularity of the reference solutions. When the experimental solutions 

were created by combining the isolate fractions, the processes that they underwent (centrifugation and 

filtration) might have broken up these aggregates and induced structural changes, resulting in smaller, 

more soluble clusters. 

 

Construction of the optimal mixture models 

In past studies, various experimental and statistical methods have been used to explore the sensory 

perception of food, and the choice of techniques depends on the research question, variable type and 

number, and food product number (Seisonen et al., 2016; Yu et al., 2018; Zielinski et al., 2014). While 

classical approaches such as fractional factorial design and simple regression have been widely used, 
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they may be inadequate for fully describing a complex food. Thus, this study employed optimal mixture 

models. This approach made it possible to limit solution number, while also minimizing the degree of 

aliasing to ensure less collinearity among the independent variables (Yu et al., 2018). 

 

The attribute scoring data were used to develop the optimal mixture models. Model performance was 

tested using ANOVA (global model; F-test for significance), lack-of-fit tests (which calculate a pure-

error negative log-likelihood by constructing categories for every combination of model effect values in 

the data), and the coefficients of determination (R²) (Table 3.1.2.5.). The results of the ANOVA were 

significant: the F-ratios ranged from 23 to 520, and the p-values were below 0.01. The lack-of-fit tests 

were not significant for the 10 attributes examined, which means that the error for each model was 

smaller than the pure error associated with replication. Thus, the models developed for each sensory 

attribute have relevance. Since the R² values were between 82 and 96%, a large amount of the variation 

in the attribute scores was explained, so the models’ results could be interpreted with confidence. These 

results showed a good-quality fit. The model with the best fit was the one for the attribute mouthfeel. 

This finding is not surprising because past research has found that models relating food product 

composition and perceived texture often have the greatest explanatory value (Burseg et al., 2009; Cook 

et al., 2005).  

 

Table 3.1.2.5.: Performance of the optimal mixture models as assessed via ANOVA; lack-of-fit tests; 

and the coefficients of determination (R2). F: Fisher statistic for the fixed effects. Pvalue: p-value for 

the Fisher test. DF: degrees of freedom. Significant p-values (threshold of 0.05) are in bold.  

 

Sensory 

attributes 

ANOVA Lack-of-fit test 
Coefficient of 

determination 

F (model DF, residual 

DF) 
Pvalue 

F (model DF, 

residual DF) 
Pvalue R2 

Almond-M 62.97 (17, 62) <0.01 0.50 (8, 54) 0.85 0.95 

Astringent-NC 62.42 (14, 65) <0.01 0.94 (11, 54) 0.51 0.93 

Bitter-NC 23.12 (13, 66) <0.01 0.43 (12, 54) 0.94 0.82 

Broth-M 90.44 (15, 64) <0.01 0.94 (10, 54) 0.50 0.95 

Cereals-M 70.29 (14, 65) <0.01 0.94 (11, 54) 0.51 0.94 

Mouthfeel-NC 519.98 (8,72) <0.01 1.04 (18, 54) 0.44 0.96 

Nuts-M 57.98 (14, 65) <0.01 1.21 (11, 54) 0.30 0.93 

Pea-M 50.92 (9, 70) <0.01 0.88 (16, 54) 0.59 0.87 

Potato-M 53.68 (13, 66) <0.01 0.49 (12, 54) 0.91 0.92 

Salty-NC 33.54 (14, 65) <0.01 1.33 (11, 54) 0.23 0.88 

 

When the backward elimination procedure was used (p-value < 0.05 for the F-statistic), the number of 

significant variables in the models ranged from 8 to 18 (main effects, first-order interactions) (Figure 

3.1.2.3.). Consequently, attribute perception depended on several variables (permeate type, retentate 

type, and pellet type) as well as on their interactions. However, scores for different attributes were 

explained by different sets of variables. In other words, the perceptions of different attributes (e.g., pea, 

nuts, almonds, bitter) could be explained by differences in solution composition. Overall, retentate type 

and pellet type, but not permeate type, had strong effects on attribute perception. In addition, although 

the experiment was designed to incorporate orthogonality among the fixed factors, some interactions 

were significant. The interactions with the greatest effect on solution perception were permeate a*pellet 

b and pellet b*water. That said, the relative importance of the interactions was minimal compared to 

that of the main effects. This finding clearly suggests that the perception of pea-protein-based food 

products is influenced by the types of compounds present as opposed to the interactions among 

compound types. 
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Figure 3.1.2.3.: Main significant effects identified using a backward elimination procedure (F=Fisher 

statistic for the fixed effects) for the six fractions: pellet (a and b), retentate (a and b) and permeate 

(a and b). 

 

Solutions created from isolate-b fractions were perceived as more bitter and astringent, with greater 

mouthfeel, and stronger notes of almond, cereals, nuts, and potato. In contrast, solutions created from 

isolate-a fractions were perceived as more salty with stronger notes of pea and broth. These results 

suggest that isolate identity does matter, even when isolates are reduced to their fractions. Furthermore, 

for almost all the significant effects, the coefficients were positive. This finding means that there was a 

positive relationship between fraction concentration and perceived attribute intensity and thus that the 

perception of pea-protein-based food products is driven by compound presence rather than compound 

absence. 

 

To validate the model’s predictive capacity, panellists were also asked to evaluate six supplementary 

solutions (created with the same fractions as the main experimental solutions but using different fraction 

concentrations) (Table 3.1.2.1.). Although the data for these solutions were located towards the range 

limits of our main data set, there was overlap between the 95% confidence intervals for the observations 

and predictions in most cases (Table 3.1.2.6.). Predictions were least accurate for the solutions P43 and 

P44 (8% pellet), notably for the attributes salty, bitter, astringent, and pea. The model generated good 

predictions when interpolating (i.e., predicting data points that would fall within the range of our 

observed data). However, its predictions were of lower quality in the case of extrapolation (i.e., 

predicting data points outside the range of the observed data).  

 

Table 3.1.2.6.: Observed and predicted attribute scores with the 95% confidence intervals (CIs) for 

the six validation solutions (two replicates performed). O = Observed. P = Predicted. 

   
Result ± 

95% CI 
Salty-NC Bitter-NC 

Astringent-

NC 

Mouthfeel-

NC 
Broth-M Pea-M Potato-M Almond-M Nuts-M Cereals-M 

P41 O 2.96 ± 0.64 3.35 ± 0.61 4.73 ± 0.62 7.58 ± 0.75 2.31 ± 0.67 4.67 ± 0.55 2.83 ± 0.63 3.30 ± 0.79 4.00 ± 0.69 3.54 ± 0.68 

P41 P 2.93 ± 0.57 2.81 ± 0.98 4.40 ± 0.78 9.58 ± 0.44 2.88 ± 0.65 6.03 ± 0.58 2.91 ± 0.50 2.02 ± 1.19 4.37 ± 0.88 4.28 ± 0.84 

P42 O 2.86 ± 0.71 4.18 ± 0.64 5.01 ± 0.73 5.01 ± 0.70 2.10 ± 0.69 4.61 ± 0.76 2.53 ± 0.58 3.09 ± 0.77 3.09 ± 0.72 2.79 ± 0.64 

P42 P 2.98 ± 0.28 3.94 ± 0.43 5.88 ± 0.34 5.36 ± 0.33 1.72 ± 0.40 3.65 ± 0.42 2.73 ± 0.22 4.20 ± 0.33 4.29 ± 0.31 4.02 ± 0.38 

P43 O 2.39 ± 0.62 4.02 ± 0.75 3.31 ± 0.74 1.41 ± 0.47 1.70 ± 0.68 2.47 ± 0.79 1.34 ± 0.48 2.47 ± 0.59 1.85 ± 0.70 1.44 ± 0.43 

P43 P 1.36 ± 0.23 2.46 ± 0.36 2.26 ± 0.28 1.14 ± 0.05 0.88 ± 0.38 1.12 ± 0.27 0.74 ± 0.18 1.32 ± 0.29 1.28 ± 0.27 0.94 ± 0.27 

P44 O 2.87 ± 0.63 4.43 ± 0.67 3.31 ± 0.69 1.42 ± 0.40 1.6 ± 0.55 2.68 ± 0.66 1.04 ± 0.35 2.11 ± 0.58 2.16 ± 0.65 1.29 ± 0.50 

P44 P 1.33 ± 0.21 2.72 ± 0.32 2.19 ± 0.22 0.86 ± 0.05 0.79 ± 0.36 0.96 ± 0.26 0.56 ± 0.14 1.99 ± 0.22 1.15 ± 0.22 1.83 ± 0.24 

P45 O 3.91 ± 0.80 3.79 ± 0.66 4.19 ± 0.67 4.01 ± 0.68 5.22 ± 0.72 5.03 ± 0.71 2.51 ± 0.53 2.55 ± 0.65 3.42 ± 0.81 2.6 ± 0.57 

P45 P 2.94 ± 0.61 3.65 ± 0.90 4.03 ± 0.72 4.9 ± 0.22 3.78 ± 0.58 5.22 ± 0.32 2.51 ± 0.47 3.13 ± 0.65 4.77 ± 0.66 4.12 ± 0.65 

P46 O 3.82 ± 0.85 4.05 ± 0.64 4.9 ± 0.71 3.68 ± 0.6 3.16 ± 0.86 5.06 ± 0.80 2.47 ± 0.51 3.02 ± 0.68 3.47 ± 0.80 2.5 ± 0.61 

P46 P 3.86 ± 0.59 4.15 ± 0.80 6.7 ± 0.50 4.08 ± 0.46 2.95 ± 0.31 4.85 ± 0.30 2.9 ± 0.31 3.59 ± 0.54 4.49 ± 0.54 4.31 ± 0.59 

 

However, despite the low degree of collinearity among the independent variables and the incomplete 

orthogonality of the design, this model has helped clarify the perception of plant-protein-based foods. 
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Use of the models to better understand sensory perceptions 

 

Identification of the fractions underlying beaniness 

The mixture models helped clarify the origin of perceived beaniness and the respective contributions of 

the different isolate fractions.  

 

The results show that the perception of the attribute cereals was largely influenced by retentates a and b 

(respectively: F[14,65] = 512 and F[14,65] = 613). The attribute broth was mainly affected by permeates 

a (F[15,64] = 929) and by retentate a (F[15,64] = 253). Attribute potato was mainly affected by pellet b 

(F[15,64] = 504). Finally, the perception of the attribute pea was simultaneously affected by pellets a 

and b (respectively: F[9,76] = 423 and F[9,76] = 441); retentates a and b (respectively: F[9,76] = 370 

and F[9,76] = 225); and permeates a and b (respectively: F[9,76] = 264 and F[9,76] = 419). Retentate 

a, which had higher hexanal levels, led to more intense potato, broth, and pea attributes.  

 

Dry matter content was similar among the fractions. However, pellets and retentates differed in their 

main protein type: insoluble proteins versus soluble proteins, respectively. In contrast, permeates were 

mainly composed of non-proteins, such as sodium, caffeic acid, and hexanal (Figure 3.1.2.1.). Hexanal 

was selected as the key volatile compound because recent studies have shown that hexanal have a large 

contribution to perception of beany notes (Trikusuma et al., 2020; Bi et al., 2020). Caffeic acid was 

selected as the key phenol compound because studies have shown that it can contribute to bitter 

perceptions in plant-based product (Franck et al., 2007). Thus, unsurprisingly, the volatile-rich 

permeates contributed to the perception of the aroma attributes, as observed in previous studies. Indeed, 

the beaniness of pulses has been found to be strongly related to volatile composition and, notably, 

hexanal levels (Bott & Chambers, 2006; Vara-Ubol et al., 2004). More recently, Murat et al. (2013) 

examined the volatile composition of pea isolates and pea flour and suggested that certain aldehydes, 

alcohols, and ketones were responsible for beaniness (Murat et al., 2013). These results were confirmed 

recently by Bi et al., who demonstrated that six aroma compounds (including 3-methylbutanoic acid and 

hexanal) significantly contributed to the characteristic aroma of peas and that fifteen aroma compounds 

(including pyrazines and pyranones) significantly contributed to the characteristic aroma of roasted peas 

(Bi et al., 2020).  

 

Initially, the influence of the retentates and pellets on beaniness was quite surprising. However, hexanal 

levels in these fractions were rather high, especially in retentate a (Figure 3.1.2.1.). Interactions between 

hexanal and proteins may be playing a role (Houde et al., 2018; Wang & Arntfield, 2016). Indeed, in 

pea protein isolates, most volatiles are bound to proteins (Kuhn, 2004); for example, 88% of the octanal 

present may be bound to pea vicilin. These interactions might also be related to protein solubility 

(Suppavorasatit et al., 2013). As proteins were present at higher concentrations in the retentates and the 

pellets, interactions between proteins and volatiles could explain the hexanal levels in these fractions 

and their effect on perceived aroma intensities. In addition, the perception of the attributes almond, 

broth, and pea may also have been influenced by the composition of peptides and amino acids, which 

may be richer in the retentates. Indeed, Henriksen showed that the bouillon note of dried sausage was 

related to a mixture of different amino acids and peptides and that the intensity of the potato note was 

positively correlated with levels of tyrosine (in both its free and peptide residue forms) (Henriksen, 

1997).  

 

Thus, the mixture models helped reveal the factors that contribute to the perception of beaniness. The 

results suggest that beany notes are strongly related to hexanal composition. However, according to the 

literature, there may also be an influence of others volatile compounds and of protein-volatile 

interactions as well as peptide composition.  

 

Identification of the fractions underlying mouthfeel, bitterness, and astringency 

The mixture models were also a useful tool for gaining insight into the origin of the taste and texture 

attributes. The results show that perceived mouthfeel intensity mainly depended on pellets a and b 

(respectively: F[8, 72] = 1923 and F[8, 72] = 1072). Past work found that texture was relatively balanced 

in hydrocolloid solutions due to the high number of factors at play (e.g., hydrocolloid type, viscosity 
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range, food matrix, choice of sensory evaluation technique) (van Vliet et al., 2009). In this study, the 

ratio of dry matter content to protein content was 0.83 for pellets, 0.88 for retentates, and 0.2 for 

permeates. The difference in texture perception among the fractions was therefore not due to protein 

concentration but rather to protein type. Pea protein isolates mainly consist of globulins, which represent 

65–80% of total protein concentration and belong to three major groups (legumin 11S, vicilin 7S, and 

convicilin 7S); some albumins are also present (Sirtori et al., 2012). In addition, in commercially 

produced isolates, proteins tend to be highly denatured and form large aggregates primarily structured 

by hydrophobic interactions (Oliete et al., 2018). Consequently, the process of creating new food 

products from isolate fractions can induce changes in this protein network. Our results suggest that 

different types of proteins are present in different concentrations in the pellet and retentate and that the 

specific pattern likely depends on protein size, solubility, and hydrophobicity. These compositional 

differences are probably responsible for the differences in perceived texture.  

 

Perceived astringency mainly depended on retentates a and b (respectively: F[14, 65] = 721 and F[14, 

65] = 1001) but also on pellet b (F[14, 65] = 776). Past research has indicated that the perceived 

astringency of foods and beverages is mainly due to the composition of phenolics, namely monomeric 

and polymeric phenols, such as flavan-3-ols, as has been described in wine (Damodaran & Arora, 2013; 

Hufnagel & Hofmann, 2008; Peleg et al., 1999). Here, perceived bitterness was influenced by retentates 

a and b (respectively: F[13, 66] = 582 and F[13, 66] = 693). Like astringency, bitterness has been found 

to be influenced by the composition of phenolics, but, additionally, there is an influence of saponins 

(Heng et al., 2006) and peptides (Aubes-Dufau et al., 1995). We expected caffeic acid to mainly be 

present in the permeates (i.e., they are small, soluble molecules). However, retentates and pellets 

(especially from isolate b) had higher concentrations of caffeic acid, which is considered to be a marker 

of phenolic levels (Figure 3.1.2.1.). In plant-protein-based foods, phenols can bind to proteins via 

hydrophobic and hydrophilic interactions (Morton & Murray, 2001; Potter et al., 1993; Zhang et al., 

2016). In these interactions, important roles are played by phenol chemical structure, phenol size and 

composition (including the number of OH groups), and food environment (e.g., pH) (de Freitas & 

Mateus, 2012). In this study, the fractions had different pH values (~7.5 for the retentates and pellets vs. 

~9 for the permeates), which suggests that phenol-protein interactions may have been different as well. 

Thus, the proteins in the pellets and the retentates may also interact with phenolics, leading to differences 

in perceived astringency and bitterness. Numerous mechanisms can therefore be at the origin of these 

perceptions. 

 

Finally, perceived saltiness is not directly in the scope of study. However, a better understanding of this 

perception seem relevant to the overall understanding of off-notes and the potential sensory interactions. 

Perceived saltiness depended simultaneously on permeates a and b (respectively: F[14, 65] = 584 and 

F[14, 65] = 481) and retentates a and b (respectively: F[14, 65] = 641 and F[14, 65] = 273). Solutions 

made from isolate a had higher sodium contents and were perceived as more salty. Relative to their dry 

matter content, the permeates and retentates had higher levels of sodium (Figure 3.1.2.1.). Previous work 

has found that both sodium and chloride ions are required to activate the salt receptor (van der Klaauw 

& Smith, 1995). However, when Frankowski et al. (2014) studied the sensory characteristics and 

composition of permeate obtained from whey ultrafiltration, they showed that, in addition to sodium, 

both lactic acid and potassium chloride can heighten the intensity of perceived saltiness. Past research 

suggests that mineral concentrations could be higher on the permeates and retentates which may also 

have contributed to perceived saltiness. 

 

Thus, the mixture models provided insight into the origin of the taste and texture attributes. Our results 

suggest that the protein composition of the pellets and retentates influenced perceived texture. 

Interactions between proteins and phenolics in the pellets and retentates may have affected perceived 

astringency. Retentates may also be richer in phenolics, saponins, and peptides, whose presence may 

have impacted perceived bitterness. Finally, the permeates and retentates may have been richer in salts, 

heightening perceived saltiness. 
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Optimizing ingredient choice and product formulation 

Based on these results, recommendations can be developed to improve the flavour of the pea protein 

isolates used in plant-protein-based food products. First, attention should be paid to ingredient 

optimization. Our results suggest that the filtration step was not especially effective in removing the 

compounds responsible for off-notes. In this regard, the centrifugation step seemed more useful: the 

pellets were described as less beany, bitter, and astringent than the retentates. Consequently, it could be 

useful to formulate plant-protein-based products using pellets. However, because pellets consist mainly 

of insoluble compounds, there might be a loss of functionality. Thus, employing a pellet/retentate 

mixture could help limit off-notes while retaining functionality. The results for the retentates also 

highlight the importance of protein conformation and the interactions between both proteins and 

aromatics as well as proteins and phenolics. These mechanisms appear to play an important role in the 

sensory perception of pea protein isolates and must be studied further.  

 

The specific nature of these recommendations will depend on food type, which will, in turn, determine 

protein concentration and functionality, matrix type, and ingredient choice. Indeed, pea protein isolates 

are used in different applications, for which protein concentrations vary widely (from < 1% to > 50%, 

with a median of 5%). For example, they are used in sports nutrition and to replace casein and whey 

proteins in fermented and unfermented dairy products (Akin & Ozcan, 2017; Ben-Harb et al., 2020; 

Schindler et al., 2012); they can help enrich protein levels in baked foods, cereals, and snacks (Philipp 

et al., 2017); and they can improve the cooking yield, water/fat binding, and sliceability of meat, fish, 

processed foods, soups, and sauces (Baugreet et al., 2016). They are also emerging as an alternative 

ingredient in specialized foods, such as gluten-free products (Mariotti et al., 2009) and infant formula 

(Le Roux et al., 2020). The results of this study can help inform product formulation. For example, to 

improve the aroma of a product containing 3% pea protein, a mixture of pellet b (25%) and water (75%) 

would seem to be ideal (Figure 3.1.2.4.). In such a product, undesirable aromas would be relatively less 

intense (broth score of 1.4/10, pea score of 2.4/10, and potato score of 1.2), while desirable aromas 

would be relatively more intense (almond score of 4.2/10, cereals score of 3.9/10, and nuts score of 

2.9/10). To provide another example, it might be helpful to decrease the bitterness and astringency of a 

flavoured product containing 3% pea protein; in this context, a mixture containing 74% permeate b and 

26% pellet a could be useful (Figure 3.1.2.4.). This formulation should result in less intense bitterness 

(score of 1.6/10) and astringency (score of 1.7/10).  

 

 

Here, we discuss using customized combinations of isolate fractions as a strategy for reducing the off-

notes of pea-protein-based products. Past research has identified several other strategies (see the review 

Roland et al., 2017). First, some approaches attempt to prevent the formation of certain contributing 

precursors (e.g., LOX, isoflavones) via cultivar selection (Stephany et al., 2015) or heat treatments 

(which limit oxidation; Azarnia et al., 2011). Other approaches try to remove or modify off-notes via 

soaking or heat treatments (Curti et al., 2018), by influencing germination (Simons & Hall, 2018), or by 

solvent-based extraction (Heng et al., 2006). However, such strategies often lead to a loss in 

functionality, which is a major drawback. Other approaches more selectively target off-notes using 

ultrasound technology (Miano et al., 2019), radio frequency treatments (Jiang et al., 2018), or enzyme 

treatments (Liu et al., 2017). In particular, fermentation can change the volatile profiles of foods (Ben-

Harb et al., 2020; El Youssef et al., 2020; Meinlschmidt et al., 2016; Schindler et al., 2012). Another 

strategy focuses on protein-bound precursors and aims to form inclusion complexes with β-cyclodextrin 

(Damodaran & Arora, 2013). Filtration can also limit the presence of compounds responsible for off-

notes (Yu et al., 2017). The last strategy involves masking off-notes by adding sugars, salts, acids, or 

flavouring (Bertelsen et al., 2018; Heng, 2006; Zha et al., 2019). The new strategy described in this 

study can serve as a complement to these other techniques for improving the flavour of pea-protein-

based foods. 
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Figure 3.1.2.4.: Cross-sectional view of the predicted attribute scores as a function of a solution’s 

fractional composition for a target dry matter content of 3%: (a) solution formulation in which 

astringency and bitterness are minimized; (b) solution formulation in which undesirable attributes 

(potato, pea, and broth) are minimized, whereas desirable attributes (almonds, nuts, and cereals) are 

maximized. The vertical red lines correspond to the current values of the factors (also indicated in red 

below the x-axes). The horizontal red lines correspond to the mean predicted scores based on the 

current factor values (also indicated to the left of the y-axes [95% confidence intervals in blue]). The 

confidence intervals are represented in grey on the plots. Overall solution desirability is shown in the 

last plot row and column. It was defined as the geometric mean of the desirability functions for the 

individual responses. 



CHAPTER 3 – RESULTS / SECTION 3.1.2.                                                                                            A. COSSON 

 133 

3.1.2.4. Conclusions 

 

This study adopted an original approach: to work with fractions instead of compounds to explore how 

combinations of volatiles and non-volatiles affect the sensory characteristics of pea-protein-based 

solutions. We broke down pea protein isolates into three fractions (pellet, retentate, and permeate), 

which were then recombined to form different experimental solutions using a mixture design. The study 

yielded several key results. First, we found that panellists generally came up with repeatable and 

homogeneous scores for the 46 solutions during the 3-month experiment. Second, attribute intensity did 

not significantly differ between the reference solutions and the experimental solutions. Third, among 

the 18 sensory attributes initially evaluated, 10 were identified as useful for building the optimal mixture 

models, whose performance was validated using ANOVA and data from six supplementary solutions. 

The results suggest that the models effectively predicted the perception of sensory attributes based on 

solution composition. Fourth, these models were also used to obtain greater insight into the origin of 

perceived beaniness, bitterness, and astringency. Our results suggest that beaniness is a 

multidimensional and complex descriptor that can be expressed via other attributes: almond, broth, 

cereals, nuts, pea, and potato. They also indicate that attributes contributing to perceived beaniness were 

mainly influenced by the retentate and permeate fractions, likely because of hexanal levels. Perceived 

astringency was mainly influenced by the retentate and pellet fractions, while perceived bitterness was 

largely driven by the retentate fraction. Bitterness and astringency were associated with levels of caffeic 

acid content. The results of this study will thus improve understanding of how different pea protein 

fractions contribute to the undesirable sensory characteristics of pea-protein-based ingredients. They 

have also revealed that fraction-based food formulation could help reduce beaniness, bitterness, and 

astringency. However, it is also clearly necessary to more precisely analyse food product composition 

(i.e., look beyond the levels of hexanal and caffeic acid) to clarify the deeper origins of the sensory 

perception of foods. 

 

 

Main results 

 Here, we proposed an experimental strategy to study pea protein isolates perceptions: pea 

solutions with controlled variability were created by combining isolate fractions using a mixture 

design. 

 The retentate fraction contributed the most to perceived beaniness, bitterness, and astringency. 

 Beany aroma seemed strongly related to volatile composition. 

 Protein interactions with volatiles and phenolics likely modified flavour perception.  

 These results can help improve the formulation of pea-protein-based products in modifying the 

process. 

 



 

 

 

 

 

RESULTS 

 

Section 2 - Chemical characterisation of pea 

protein isolates and first links to 

perceptions 
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Section 3.2. – Chemical characterisation of pea protein isolates 

and first links to perceptions 

 

 

Context, objectives and presentation of section 3.2. 

The second step of this PhD project aims to characterize the chemical composition of pea proteins, in 

particular the main volatile compounds; the main peptides and the main phytochemicals. 

 

Firstly, the aim of the first work of this section (Section 3.2.1.) was to study volatile compounds 

composition and their interactions with proteins in these products, as well as their impact on perceptions. 

In short, as explained on the graphical abstract (Graphical abstract 3.2.1.), volatile compounds were 

identified by gas-chromatography-mass-spectrometry and protein-volatile interactions were 

investigated for 13 volatile molecules identified in literature as involved in beany perceptions. Relations 

between sensory analysis and volatile profiles were then analysed and discussed using linear (Partial-

Least-Square) and non-linear (Artificial Neural Network) models. 

 

 

 
 

  

Graphical abstract 3.2.1.: Retention of volatile compounds in pea protein solutions and its impact on 

beany perceptions. 

 

 

Secondly, the aim of the second work of this section (Section 3.2.2.) was to identify the main 

oligopeptides and polypeptides in pea protein solutions and to examine their correlations with sensory 

perceptions. In short, peptides present in pea solutions were identified and characterized using ultra 

high-performance liquid chromatography-mass spectrometry. Then, we examined the impact of our 

fraction-based formulation on peptide profile. Finally, the relationships between peptide profiles and the 

sensory properties of solutions were explored, with a particular focus on perceived bitterness. The 

graphical abstract 3.2.2. gives the main elements of this study. This work was done in collaboration with 

the PAPPSO platform. Results have been published and discussed in Food Chemistry.  
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Graphical abstract 3.2.2.: Identification and characterization of the main peptides in pea protein 

isolates using ultra high-performance liquid chromatography coupled with mass spectrometry and 

bioinformatics tools. 

 

Then, the aim of the third work of this section (Section 3.2.3.) was to identify the main phytochemicals 

(phenolic acids, flavonoids and saponins) in pea protein solutions and examine their correlations with 

sensory perceptions. In short, phytochemicals profiles of the pea solutions were determined by UPLC-

DAD-MS. Then, the impacts of isolates and their fractions on phytochemicals profile were studied. 

Finally, key phytochemical compounds were correlated to bitterness and astringency properties of pea 

solutions. The graphical abstract 3.2.3. gives the main elements of this study. This work was done in 

collaboration with the polyphenol platform (Montpellier, France). Results will be published in Food 

Chemistry. 

 

 
 

Graphical abstract 3.2.3.: Identification and quantification of main phytochemicals from pea protein 

isolates and first links with perception. 
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Section 3.2.1. – Retention of volatile compounds in pea protein 

solutions and its impact on beany perceptions 

 

 

3.2.1.1. Introduction 

 

Over the last few years, plant protein ingredients are receiving much attention by industry and 

consumers, thanks to their nutritional values, their protein content, their environmental sustainability 

and their attractive price (Davis et al., 2010). In particular, yellow field pea (Pisum sativum L.) is 

becoming more and more used in plant-based food (Siddique et al., 2012). Its proteins are appreciated 

for their functional properties in food formulation: emulsifying, foaming, gelation ability and whipping 

capacity (Adebiyi & Aluko, 2011; Gharsallaoui et al., 2009). They are also appreciated for their low 

allergenicity and high nutritional value and for restoring nutritional balance in amino acids in cereal-

based diets. However, like other pulse proteins, pea proteins have a distinct flavour, which may decrease 

their desirability by consumer and so their use in food formulation (Bott & Chambers, 2006; Trikusuma 

et al., 2020). This flavour, usually called beany, is a complex flavour perception associated with diverse 

notes such as musty/earthy, musty/dusty, sour, starchy, powdery, green pea, nutty, and brown (Bott & 

Chambers, 2006).  

 

Several studies, have already highlighted that these flavour notes are rooted in the complex composition 

of the aroma volatile compounds found in pulses and belonging to many chemical families: mainly 

aldehydes, ketones and alcohols compounds but also esters, carbonyl compounds, pyrazines, cyclic 

amines, furans and sulphides (Bi et al., 2020; Murat et al., 2013; Murray et al., 1976; Trikusuma et al., 

2020; Whitfield & Shipton, 1966; Zhang et al., 2020). They showed that these compounds are either 

naturally present in the seed or generated via different pathways (enzymatic and non-enzymatic 

degradation of lipids, amino acids, and peptides) (Baysal & Demirdöven, 2007; Damodaran & Arora, 

2013; Fischer et al., 2020; Sethi et al., 2016) and can be modified via different processes (see review of 

Roland et al., 2017). 

 

Nevertheless, the mechanisms behind the beany notes of plant proteins are still poorly understood. 

Aroma of pea protein are still difficult to control to formulate food products with high sensory 

desirability. This result can be explained by the complexity of involved sensory mechanisms. Indeed, 

aromatic perceptions are explained through the kinetics of the aroma compounds release from the 

product (transport and transfer mechanisms of the aroma compounds from the product to the air phase) 

to the olfactory receptors in nasal cavity. These mechanisms depend on the mobility (diffusion and 

convective transport) and on the partition properties of aroma compounds within each phase and 

between them  (Poling et al., 2001). It depends also on the physico-chemical interactions between 

volatile compounds (Bott & Chambers, 2006) and between volatile compounds and the other 

components of the food matrix (Taylor & Roberts, 2004) - such as pea proteins (Wang & Arntfield, 

2016). In addition, the link between volatiles and sensory perception is often nonlinear as illustrated by 

psychophysics curves used to propose the thresholds values (detection, recognition, difference, and 

terminal) in particular conditions (Chambers & Koppel, 2013). However, statistical methods used to 

study the relationships between sensory analysis and volatile measurements (regression and multivariate 

techniques) are mainly linear models and so do not account for thresholds values or interactions with 

complex matrix (Yu et al., 2018; Zielinski et al., 2014). One solution would be to use nonlinear models 

such as artificial neural networks. However these models need large datasets to handle with sensory 

analysis (Seisonen et al., 2016), limiting their use in published studies. 

 

In this context, the aim of this article is to study beany odour on pea protein solutions in relation to their 

volatiles composition. For this purpose, two lines of study are proposed here: 1) taking into account 

protein-volatiles interactions and 2) using linear and non-linear regressions to model odour perceptions 

in function of volatiles composition. To this end, the products based on the recombination of different 
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protein isolate fractions developed by Cosson et al (Cosson et al., 2021 – Section 3.1.2.) have been 

reused. Volatile compound profiles were studied by gas chromatography–mass spectrometry as well as 

protein-volatile compound interactions. Then olfactive sensory responses were acquired by descriptive 

quantitative analysis with trained panellists. Finally, relations between sensory analysis and volatile 

measurements were analysed and discussed using linear and non-linear models.   

 

3.2.1.2. Materials and methods 

 
Source of materials 

As standards, analytical grade aroma compounds ((E)-2-methylbut-2-enal – grade ≥ 97%, Hexanal – 

grade ≥ 98%, Hexan-1-ol – grade ≥ 99%, heptan-2-one – grade ≥ 99%, Heptanal – grade ≥ 95%, 

Benzaldehyde – grade ≥ 99%, oct-1-en-3-ol – grade ≥ 98%, octan-2-one – grade ≥ 98%, 2-Pentylfuran 

– grade ≥ 98%, Octanal – grade ≥ 99%, octan-1-ol – grade ≥ 99.5%, nonan-2-one – grade ≥ 99%, 

Decanal – grade ≥ 92%) were purchased from Sigma Aldricht (Sigma Aldrich, St. Louis, MO, USA). 

 

Preparation of protein solutions 

Six fractions were obtained from two pea protein isolates (protein content Nx6.25, 83% dry matter) as 

explained on Cosson et al., (Cosson et al., 2021 – Section 3.1.2.): permeates a and b, retentates a and b, 

and pellets a and b. Then, the six different fractions were combined in various ways to formulate 15 

solutions according to the concentrations described in Table 3.2.1.1. Solutions were chosen to explore 

a wide range of variation of this type of ingredients while being realistic in term of protein concentration 

(0 to 4.25%). Recombined solutions were done at 4°C in 500mL and 100mL glass bottles and stored at 

-20°C for a maximum of 12 month. During fractionation and recombination Good Hygiene Practices 

have been ensured to limit microbial contamination (coat, gloves and hygienic cap wearing; cleaning 

and disinfection of hands and all equipment used with absolute ethanol follow by air drying; work in 

4°C chamber). The protein content was determined by Kjeldahl method (Nitrogen content x 6.25) and 

dry solids were determined by drying with a prepASH®219 device by a certified external laboratory 

(SAS IMPROVE, Amien, France). 

   

Table 3.2.1.1.: Composition of solution as a mixing of permeate a and b, retentate a and b, pellet a 

and b with their dry matter content as well as their protein content. In bold repeated solution. 

 

Solutions 
Permeate 

a (%) 

Permeate 

b (%) 

Retentate 

a (%) 

Retentate 

b (%) 

Pellet 

a (%) 

Pellet b 

(%) 

Water 

(%) 

MS 

(%) 

Protein 

content (%) 

100W 0 0 0 0 0 0 100 0.00 0.00 

100Pa 100 0 0 0 0 0 0 0.20 0.03 

100Pb 0 100 0 0 0 0 0 0.20 0.04 

70Pb-30Ra 0 70 30 0 0 0 0 0.65 0.45 

50Pb-50Rb 0 50 0 50 0 0 0 0.95 0.77 

100Ra 0 0 100 0 0 0 0 1.70 1.40 

100Rb 0 0 0 100 0 0 0 1.70 1.50 

25Pa-25Ra-13Ia-38W 25 0 25 0 12.5 0 37.5 2.02 1.62 

50Pb-25Ib-25W 0 50 0 0 0 25 25 3.19 2.64 

50Ra-25Ia-25W 0 0 50 0 25 0 25 3.94 3.23 

40Ra-30Ib-30W 0 0 40 0 0 30 30 4.39 3.70 

50Ia-50W 0 0 0 0 50 0 50 6.00 5.05 

50Ib-50W 0 0 0 0 0 50 50 6.00 5.24 

Refa 38 0 34 0 28 0 0 4.10 3.53 

Refb 0 40 0 36 0 24 0 3.70 3.27 

 

Gas chromatography and mass spectrometry analysis 

 
Qualitative analysis 

Measurements of volatile compounds release were performed using a Dynamic Headspace Gas 

Chromatography coupled with a Mass Spectrometer (MPS: Gerstel, GC: Agilent 7890B, MS: Agilent 

5977B MSD). Protocol was carried out as follows. After thawing during one night (about 15h) at 4°C, 
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5g of each solution was stored at 10°C on the GC-MS sample holder (maximum during 4h). Each sample 

was then incubated at 40°C for 3min (agitation at 500 rpm). The headspace was then purged with a 

constant flow of helium at 30 ml/min for 10 min at 30°C and volatile compounds were trapped on an 

adsorption unit (tenax polymer). The trap was dried for 6 minutes under a stream of helium to remove 

traces of water. Then the trap unit was desorbed from 30°C to 270°C at a rate for 60°C/min with an 

isotherm of 7 min in a cool injection system at -100°C. The column head injection was carried out from 

-100°C to 270°C at a rate of 12°C/min with an isotherm of 5 min. The GC oven temperature was 

programmed from 40°C with an isotherm of 5 min, to 155°C at a rate of 4°C/min, then to 250°C at a 

rate of 20°C/min with an isotherm of 5 min. The GC was equipped with a polar or an apolar column 

(respectively HP-INNOWax Agilent, 60m x 320μm x 0.25μm and DB-5, 60m x 320μm x 1μm) with a 

helium flow of 1.6 mL/min. The two types of chromatography column were used to identify a larger 

number of volatile compounds. A mass spectrometer was used to characterize volatile compounds. It 

was performed in the electron impact mode at 70 eV, in full scan from m/z 29 to 300 A.M.U. (Atomic 

Mass Unit). The ionisation source was set at 230 °C and the quad at 150 °C. The compounds were 

identified by comparison of their mass spectra with those of the NIST 2017 Mass Spectral Library. The 

retention times and the Kovats retention index were also used for the tentative identification. The data 

were reported as peak area for each compounds detected. Quantification data were obtained from the 

integration of the areas from the total ion current (TIC). MassHunter software was used for instrument 

control, data acquisition and data analysis. 

 

Quantitative analyses: Standard addition method 

Quantification of volatile compounds was performed using standard addition method with 13 

compounds. They have been chosen for their different chemical characteristics (as described on Table 

3.2.1.2.) and their possible contribution in beany notes mentioned in the literature for plant solutions. 

 

Table 3.2.1.2.: Volatile compounds used for standard addition method, their physicochemical 

properties at 25°C from literature (EPI-Suite4.11), and their concentration in the initial stock aroma 

solution. 

 

Volatile compounds 
CAS 

Number 

LogPow 

(est)* 

Solubility in 

water (mg/L)** 

Volatility (atm-

m3/mole)*** 

[volatile]  

(µg/g) 

Benzaldehyde 100-52-7 1.71 7.0E+04 2.7E-05 9.40 

Heptan-2-one 110-43-0 1.73 4.3E+04 1.7E-04 8.15 

Octan-2-one 111-13-7 2.22 9.0E+02 1.9E-04 6.70 

Hexan-1-ol 111-27-3 1.82 5.9E+03 1.7E-05 7.05 

Heptanal 111-71-7 2.29 1.3E+03 2.7E-04 6.85 

Octan-1-ol 111-87-5 2.81 8.1E+02 2.5E-05 6.90 

Decanal 112-31-2 3.76 4.4E+01 1.8E-03 7.15 

Octanal 124-13-0 2.78 3.9E+02 5.1E-04 6.40 

Oct-1-en-3-ol 3391-86-4 2.6 1.8E+03 2.3E-05 5.65 

2-Pentylfuran 3777-69-3 3.87 4.2E+01 1.8E-02 6.40 

(E)-2-Methylbut-2-enal 497-03-0 1.15 2.5E+04 1.1E-02 8.25 

Hexanal 66-25-1 1.8 5.6E+03 2.1E-04 6.80 

Nonan-2-one 821-55-6 2.71 1.7E+02 3.7E+00 6.75 

*: estimated hydrophobic constant expressed as octanol/water partition coefficient (EPI-Suite4.11) 

**: solubility in water (mg/L) at 25°C (EPI-Suite4.11) 

***: volatility in water at 25°C (atm-m3/mole) (EPI-Suite4.11) 

 

A mixture of these 13 volatile compounds was prepared in water (Evian, France). Each volatile 

compound was diluted at around 10 ppm (0.001 mL/100 mL, measurement carried out using a 0.001g 

precision balance). Concentrations are presented on Table 3.2.1.2. Standard solution was stored in amber 

glass bottles at -80°C before used to prevent losses. In addition before used and after defrosting, standard 

solution was mixed during 5 min to ensure a thorough distribution of volatile compounds. Six-point 

standard curves were used. Standard solution was diluted in protein solutions (initial solution Refa or 

pellet solution 50Ia-50W) to approximatively 0, 0.5, 0.8, 0.15, 0.30 and 0.50 µg/g. Samples were shaken 

slowly and stored during 12h at 4°C to allow the equilibrium of binding of volatile compounds with 

proteins. All samples were prepared in triplicate and stored in dark condition at -80°C in glass vial 

previous to analysis. Measurements of volatile compounds release were performed using a Dynamic 
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Headspace Gas Chromatography (DB5 column) coupled with a Mass Spectrometer as explained 

previously. The calibration curves for each individual compound were obtained by plotting the area 

response ratio of the respective standard compound and their concentration ratio. From these results, the 

estimations of volatile compound concentrations (on μg.kg−1 of dry matter) were calculated with their 

standard error. The odour activity values (OAVs) of all each individual compound were then calculated 

as the ratio of the concentration of each compound to the respective odour threshold in water such as 

OAV = C / T where C is the concentration of the volatile compound in the sample and T is the odour 

threshold of this compound, which was obtained from information available in the literature. 

 

Biding coefficient between volatile compounds and proteins 

Binding coefficients for the 13 standards were also calculated from the six-point standard curves. The 

percentage of volatile compounds bonded to proteins was determined from the difference between the 

peak areas of flavoured samples in the absence and presence of proteins such that:  

Binding coefficient (%) = (1 - Ps/ Cs) x 100% 

where Ps (mol/L) is the calculated slope between peak headspace area and the volatile compounds 

concentration for the protein solution (ref or pellet). Cs (mol/L) is the corresponding calculated slope in 

the control (water).  

 

Sensory analysis  

Pea solutions were sensory characterized as explained by Cosson et al., 2021 (Section 3.1.2.) by 17 

trained panellists (13 women and 4 men; mean age = 23 years old). Attributes were evaluated in blocks. 

The first attribute block focused on olfactory perception evaluated by nose (attribute block 1: pea, broth, 

nuts, almond, potato and cereals). The second block focused on taste perception and mouthfeel (attribute 

block 2: salty, sugar, bitter, astringent, mouthfeel, and granularity). The last attribute block focused 

again on olfactory perception but solutions were evaluated in mouth (attribute block 3: pea, broth, nuts, 

almond, potato and cereals). Each solution was evaluated in duplicate by the 17 judges. These sensory 

analyses were carried out in a more global research project (Cosson et al., 2021 – Section 3.1.2.). 

However, in this article, only the volatile data evaluated by nose (attribute block 1) will be discussed. 

 

Statistical analysis 

Analyses were performed using JMP software version 13.1.0 (SAS Institute Inc., Cary, SC, USA) and 

R software (R Core Team, 2017). For analyses of an inferential nature, we used α = 0.05 to determine 

statistical significance. 

 

GC-MS data sets were analysed with Analysis of Variance (ANOVA) to confirm the significant 

differences in aroma release between the studied solutions (data not shown, p-value significant at the 

threshold of 0.05). They were completed by Principal Compound Analysis (PCA, centred-scaled, 

Pearson type) to visualize the main differences between solutions.  

 

Sensory data were analysed with ANOVA to confirm the significant differences in odour sensory 

properties between the studied solutions (data not shown, p-value significant at the threshold of 0.05). 

Then, differences among solutions were studied by multiple product pair comparisons (LSD-

Bonferroni). The relationships between sensory and volatiles data were first studied by correlation test 

(Pearson type, centred-scaled). 

 

To obtain a better insight into the origin of these aromatic perceptions, two different models were 

developed between the volatile compound release data and the sensory data: Partial least square (PLS) 

modelling and artificial neural network (ANN) modelling. For the PLS regression modelling: a model 

using NIPALS methods was fitted with potential explanatory variables (centred-scaled). The model was 

fitted with 15 initial latent variables. To determine the optimum number of factors to extract, the 

solutions were partitioned randomly into 4 folds. In turn, each fold was used to validate the model that 

is fit to the rest of the data, fitting a total of 4 models. This was run 100 times. This method is best for 

small data sets because it makes efficient use of limited amounts of data. For the ANN regression 

modelling, trainings were performed with random separation of data into training (12 protein solutions), 

and validation (3 protein solutions) sets and run 1000 times. Because the ANN method is a relatively 
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flexible model method that can be easily over-fit to the applied data set, a penalty function (weight 

decay) was used to avoid over-fit model results. In addition, the model was trained using least absolute 

deviations instead of least squares to minimize the impact of response outliers (Hastie et al., 2008). 

Different model were tests with 1 or 2 layers and several activation nodes (sigmoid, linear or Gaussian). 

The performances of the developed models were statistically measured by the root mean squared error 

(RMSE), the residual sum of squares (RSS) and the correlation coefficient (R2) and the best model was 

selected.  

 

3.2.1.3. Results and discussion 

 

Impact of fraction composition on volatile compounds profiles 

 
Identification of volatile compounds from pea protein solutions 

To better understand the mechanisms related to aroma release in pea-based solutions at the origin of 

perceptions, composition on volatile compounds were studied on different pea protein solutions by GC-

MS analysis. A total of 79 volatile compounds (15 specific to the apolar colum, 16 to the polar column 

and 48 common to both) belonging to 7 chemical classes are identified on the 15 solutions (Table 

3.2.1.3.). Ketones, aldehydes and alcohols are the most prominent compounds in number (20/79 

aldehydes, 20/79 ketones and 14/79 alcohols). Aldehydes and furan are the most prominent compounds 

in term of GC-MS area (for the apolar column): 1.16E+06 for aldehydes and 8.31E+05 for furan (mean 

GC-MS area for all the volatile compounds of the family). Most of these compounds were already 

identified on others publications. For example, 1-pent-3-ol, (E,E)-2,4-heptadienal and heptadienal are 

known to be key odour active volatile produced by secondary lipid oxidation (Baysal & Demirdöven, 

2007; Jacobsen, 1999; Murat et al., 2013; Trikusuma et al., 2020). According to the literature, these 

compounds mainly come from endogen origin of pea seed or from oxidation of the lipids/peptides/amino 

acids in the seed or during the storage (Baysal & Demirdöven, 2007; Murat et al., 2013; Trikusuma et 

al., 2020).  

 

As regards the differences between pea protein-based solutions studied, GC-MS areas from apolar 

column (with standard deviation) obtained for the 15 solutions and for 4 volatile compounds (pentanal, 

2-pentylfuran, heptan-2-one and oct-1-en-3-ol) are plotted in Figure 3.2.1.1. For the 4 compounds 

illustrating different chemical families, the permeate a, permeate b, retentate b and refb, as well as the 

recombined solutions 70Pb-30Ra and 50Pb-50Rb presented the same order of magnitude and the lowest 

areas. In opposition for the 4 compounds, the recombined solution 50Ra-25Ia-25W presented the highest 

values of peak area. To complete these results, a PCA is presented (Figure 3.2.1.2.) to visualize the 

relationships among solutions and the 63 volatile compounds identified in the apolar column. To the 

PCA, the means of the 7 chemical families were added as supplementary variables to make the graph 

easier to read. Solutions are distributed on axes F1 and F2 with respectively 34.2% and 17.7% of the 

variance. The PCA therefore represents moderately the volatiles diversity of solutions on a 2-

dimensional level. Along the first axis, solutions are mainly differentiated based on their composition 

in aldehyde, furan and ester compounds. Along the second axis, solutions are mainly differentiated based 

on their compositions in ketone and alcohol compounds. Solutions recombined from batch b present 

lowest areas on volatile compounds than solutions recombined from batch a, especially on ketones, 

aldehydes, alkenes and furan areas. Fractions present lowest areas on volatile compounds than initial 

solutions (Refa and Refb). Among them, permeate (100Pa and 100Pb) present highest areas on esters 

and on alcohols. Pellet (50Ia-50W and 50Ib-50W) and retentate (100Ra and 100Rb) surprisingly present 

equivalent overall areas of volatile compounds than permeate (100Pa and 100Pb).  
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Table 3.2.1.3.: Volatile compounds identified by GC-MS with polar or apolar column (respectively 

HP-INNOWax Agilent, 60m x 320μm x 0.25μm and DB-5, 60m x 320μm x 1μm) from pea protein 

isolates recombined solutions (tentative identification using NIST mass spectra library, comparison 

of the GC retention index – Kovats index, physicochemical properties at 25°C from literature - EPI-

Suite4.11). 

 

IUPAC name 

Retention 

time 

(apolar 

column) 

Retention 

time 

(polar 

column) 

NIST 

score 

(apolar 

column) 

NIST 

score 

(polar 

column) 

Kovats 

index 

(apolar 

column) 

Kovats 

index 

(polar 

column) 

CAS 

number 

Chemical 

family 

Chemical 

formula 

Molecular 

mass 
Odour 

LogPow 

(est)* 

Solubility 

in water 

at 25°C 

(mg/L)** 

Volatility 

Henry Law 

constant 

(atm-

m3/mole)*** 

ethanol 4.88 7.5 98 98 440 929 64-17-5 alcohol C2H6O 46.04 

strong 

alcoholic 

ethereal 

medical 

-0.31 7.92E+05 5.00E-06 

propan-2-one 5.49 5.34 88 96 503 814 67-64-1 ketone C3H6O 58.00 
solvent ethereal 

apple pear 
-0.24 2.20E+05 3.50E-05 

pentane 5.6 3.87 92 93 500 500 8031-35-4 alkane C5H12 72.00 alkane 3.39 4.98E+01 1.25E+00 

methyl acetate 6.19 5.52 86 92 531 827 79-20-9 ester C3H6O2 74.04 

green, etherial, 

fruity, fresh, 

rum and 

whiskey-like 

0.18 9.39E+04 1.15E-04 

2-

methylpropanal 
7.03 NA 98 NA 554 NA 78-84-2 aldehyde C4H8O 72.06 

fresh aldehydic 

herbal green 

malty 

0.74 3.12E+04 1.80E-04 

butane-2,3-

dione 
7.89 NA 81 NA 560 NA 431-03-8 ketone C4H6O2 86,00 

sweet, buttery, 

creamy, milky 
-1.34 1.00E+06 1.33E-05 

butanal 8.03 6.25 98 96 596 867 123-72-8 aldehyde C4H8O 72.06 pungent, green 0.88 2.39E+04 1.15E-04 

butan-2-one 8.07 6.7 99 88 602 900 78-93-3 ketone C4H8O 72,00 

chemical-like 

and slightly 

fruity green 

0.29 7.61E+04 5.69E-05 

ethyl acetate 8.67 6.46 83 77 601 907 141-78-6 ester C4H8O2 88.05 

etherial, fruity, 

sweet, with a 

grape and 

cherry nuance 

0.73 2.99E+04 1.34E-04 

oxolane 9.3 5.98 90 87 617 866 109-99-9 alkane C4H8O 72.06 NA 0.46 5.45E+04 7.05E-05 

3-

methylbutanal 
10.49 7.07 98 91 641 912 590-86-3 aldehyde C5H10O 86.07 cocoa, almond 1.23 1.12E+04 1.23E+00 

butan-1-ol 10.69 14.28 90 94 654 1145 71-36-3 alcohol C4H10O 74.07 wine 0.88 7.67E+04 8.81E-06 

benzene 10.78 7.65 96 94 662 953 71-43-2 alkene C6H6 78,00 aromatic 2.13 2.00E+03 5.55E-03 

2-

methylbutanal 
10.88 6.96 96 97 665 910 96-17-3 aldehyde C5H10O 86.07 

musty, furfural 

and rummy, 

with nutty and 

cereal notes, 

and caramel 

and fruity 

undernotes 

1.23 1.12E+04 2.62E-04 

pent-1-en-3-ol 11.6 14.86 94 93 674 1165 616-25-1 alcohol C5H10O 86.07 

ethereal 

horseradish 

green radish 

chrysanthemum 

vegetable 

tropical fruity 

1.12 4.53E+04 9.88E-06 

pentan-2-one 11.71 NA 95 NA 680 NA 107-87-9 ketone C5H10O 86.07 fish, pungent 0.91 2.12E+04 8.36E-05 

pentane-2,3-

dione 
12.17 11.27 92 85 681 1060 600-14-6 ketone C5H8O2 100.05 

toasted, buttery 

and caramellic 

with 

marshmallow 

and molasses 

nuances 

-0.85 6.16E+05 2.62E-07 

pentanal 12.29 8.65 98 98 684 998 110-62-3 aldehyde C5H10O 86.07 
almond, malt, 

pungent 
1.31 9.72E+03 1.47E-04 

2-ethylfuran 12.37 7.97 94 95 720 960 3208-16-0 furan C6H8O 96.06 

solvent-like 

with a dirty 

musty brown 

earthy nuance 

2.4 1.07E+03 7.88E-03 

3-hydroxy 

butan-2-one 
12.74 19.59 76 88 718 1282 513-86-0 ketone C4H8O2 88.05 butter, cream -0.36 8.33E+05 1.03E-05 

propane-1,2-

diol 
14.05 NA 87 NA 745 NA 57-55-6 alcohol C3H8O2 76.10 sweet -0.92 8.11E+05 1.29E-08 

(methyl 

disulfanyl) 

methane 

14.7 NA 79 NA 785 NA 624-92-0 alkane C2H6S2 93.99 
onion, cabbage, 

putrid 
1.77 3.74E+03 1.21E-03 

pentan-1-ol 15.54 18.16 97 96 790 1255 71-41-0 alcohol C5H12O 88.09 balsamic 1.51 2.09E+04 1.30E-05 

hexan-2-one 16.66 NA 95 NA 792 NA 591-78-6 ketone C6H12O 100.09 ether 1.38 7.75E+03 9.32E-05 

hexanal 17.29 11.89 98 98 801 1084 66-25-1 aldehyde C6H12O 100.09 
grass, tallow, 

fat 
1.78 3.53E+03 2.13E-04 

butyl acetate 17.85 11.57 95 94 802 1079 123-86-4 ester C6H12O2 116.00 

sweet, ripe 

banana, tutti 

frutti, tropical 

and candy-like 

with green 

nuances 

1.78 3.13E+03 2.81E-04 
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IUPAC name 

Retention 

time 

(apolar 

column) 

Retention 

time 

(polar 

column) 

NIST 

score 

(apolar 

column) 

NIST 

score 

(polar 

column) 

Kovats 

index 

(apolar 

column) 

Kovats 

index 

(polar 

column) 

CAS 

number 

Chemical 

family 

Chemical 

formula 

Molecular 

mass 
Odour 

LogPow 

(est)* 

Solubility 

in water 

at 25°C 

(mg/L)** 

Volatility 

Henry Law 

constant 

(atm-

m3/mole)*** 

2-methylbut-2-

enal 
18.2 NA 80 NA 808 NA 

19780-25-

7 
aldehyde C6H10O 98.07 green, fruit 1.64 4.71E+03 2.03E-04 

(E)-hex-2-enal 19.94 16.93 95 94 854 1220 6728-26-3 aldehyde C6H10O 98.07 apple, green 1.58 5.26E+03 4.89E-05 

4-methyloctane 20.4 NA 95 NA 862 NA 2216-34-4 alkane C9H20 128.16 NA 4.69 2.69E+00 1.00E+01 

2-methylidene 

hexanal 
20.44 14.59 87 83 NA 1160 1070-66-2 aldehyde C7H12O 112.09 NA 2.21 1.39E+03 4.15E-04 

hexan-1-ol 20.54 21,87 97 94 868 1360 111-27-3 alcohol C6H14O 102.10 
resin, flower, 

green 
2.03 6.89E+03 1.71E-05 

heptan-2-one 21.61 15.55 97 94 870 1170 110-43-0 ketone C7H14O 114.10 

cheese, fruity, 

coconut, waxy, 

green 

1.98 2.15E+03 1.69E-04 

2-butylfuran 21.8 13.68 91 85 889 1130 4466-24-4 furan C8H12O 124.09 

mild fruity 

wine sweet 

spicy 

3.38 1.25E+02 1.39E-02 

heptanal 22.26 15.66 98 91 903 1174 111-71-7 aldehyde C7H14O 114.10 
fat, citrus, 

rancid 
2.29 1.17E+03 2.70E-04 

1-(methyl 

disulfanyl) 

propane 

24 NA 91 NA 928 NA 2179-60-4 alkane C4H10S2 122.02 

onion, garlic, 

tomato, potato, 

alliaceous and 

vegetative 

2.86 3.59E+02 2.14E-03 

benzaldehyde 25.44 27.55 97 98 960 1495 100-52-7 aldehyde C7H6O 106.04 
almond, burnt 

sugar 
1.48 6.10E+03 2.67E-05 

oct-1-en-3-ol 25.83 25.06 92 96 964 1445 3391-86-4 alcohol C8H16O 128.12 

mushroom, 

earthy, fungal, 

green, oily, 

vegetative, 

umami 

sensation and 

savory brothy 

2.6 1.84E+03 2.31E-05 

octane-2,3-

dione 
25.97 NA 81 NA 967 NA 585-25-1 ketone C8H14O2 142.10 

green spicy 

cilantro fatty 

leafy cortex 

herbal 

0.63 2.38E+04 6.13E-07 

6-methylhept-

5-en-2-one 
26.06 21.21 93 93 988 1342 110-93-0 ketone C8H14O 126.10 

green, 

vegetative, 

musty, apple, 

banana and 

green bean-like 

2.06 1.65E+03 5.11E-05 

octan-2-one 26.3 19.3 95 93 966 1285 111-13-7 ketone C8H16O 128.12 

dairy, waxy, 

cheese, woody, 

mushroom and 

yeast 

2.37 8.84E+02 1.88E-04 

2-pentylfuran 26.43 17.3 94 95 985 1241 3777-69-3 furan C9H14O 138.10 

green, waxy, 

with musty, 

cooked 

caramellic 

nuances 

3.87 4.18E+01 1.84E-02 

octanal 26.96 19.46 97 97 984 1280 124-13-0 aldehyde C8H16O 128.12 
fat, soap, 

lemon, green 
2.78 3.94E+02 5.14E-04 

2-ethylhex-2-

enal 
27.16 21.09 88 84 987 1330 645-62-5 aldehyde C8H14O 126.10 NA 2.62 5.49E+02 4.88E-04 

2-ethylhexan-1-

ol 
27.98 26.86 96 97 1032 1491 104-76-7 alcohol C8H18O 130,00 rose, green 2.73 1.38E+03 2.65E-05 

(4R)-1-methyl-

4-prop-1-en-2-

ylcyclohexene 

28.46 15.9 86 92 1033 1201 5989-27-5 alkene C10H16 136.13 lemon, orange 4.38 4.58E+00 3.19E-02 

octan-1-ol 29.75 28.63 97 96 1072 1553 111-87-5 alcohol C8H18O 130.14 
chemical, 

metal, burnt 
3 8.14E+02 2.45E-05 

octa-3,5-dien-

2-one (E,Z) 
29.84 28.87 95 93 1071 1567 

38284-27-

4 
ketone C8H12O 124.09 

fruit, fat, 

mushroom 
2.08 1.62E+03 9.96E-06 

1-

phenylethanone 
30.05 31.4 88 84 1076 1645 98-86-2 ketone C8H8O 120.10 

sweet pungent 

hawthorn 

mimosa 

almond acacia 

chemical 

1.58 4.48E+03 1.04E-05 

nonan-2-one 30.68 22.93 88 97 1081 1388 821-55-6 ketone C9H18O 142.14 

cheesy green 

fruity dairy 

dirty buttery 

3.14 1.71E+02 3.67E-04 

pentyl 

butanoate 
30.68 20.39 91 95 1080 1305 540-18-1 ester C9H18O2 158.13 

sweet, fruity, 

banana, 

pineapple and 

tropical 

3.32 1.02E+02 8.88E-04 

octa-3,5-dien-

2-one (E,E) 
30.86 NA 94 NA 1095 NA 4173-41-5 ketone C8H12O 124.09 

fatty fruity hay 

green herbal 
2.08 1.62E+03 9.96E-06 

nonanal 31.33 23.1 99 93 1104 1385 124-19-6 aldehyde C9H18O 142.1 
fat, citrus, 

green 
3.27 1.32E+02 7.34E-04 

non-3-en-2-one 34.44 NA 88 NA 1122 NA 
14309-57-

0 
ketone C9H16O 140.12 

oily spicy 

ketonic 

fermented bleu 

cheese waxy 

fatty woody 

2.79 3.50E+02 6.43E-05 

decan-2-one 34.64 26.36 88 88 1172 1480 693-54-9 ketone C10H20O 156.15 
orange floral 

fatty peach 
3.73 4.64E+01 4.45E-04 

dodecane 34.88 15.78 99 72 1200 1200 112-40-3 alkane C12H26 170.20 alkane 6.1 1.10E-01 8.18E+00 

Decanal 35.11 26.54 95 94 1209 1484 112-31-2 aldehyde C10H20O 156.20 
soap, orange 

peel, tallow 
2.79 3.50E+02 6.43E-05 
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IUPAC name 

Retention 

time 

(apolar 

column) 

Retention 

time 

(polar 

column) 

NIST 

score 

(apolar 

column) 

NIST 

score 

(polar 

column) 

Kovats 

index 

(apolar 

column) 

Kovats 

index 

(polar 

column) 

CAS 

number 

Chemical 

family 

Chemical 

formula 

Molecular 

mass 
Odour 

LogPow 

(est)* 

Solubility 

in water 

at 25°C 

(mg/L)** 

Volatility 

Henry Law 

constant 

(atm-

m3/mole)*** 

2-phenylethyl 

acetate 
36.35 35.49 97 97 1224 1825 103-45-7 ester C10H12O2 164.08 

sweet, honey, 

floral, rosy 

with a slight 

green nectar 

fruity body and 

mouth feel 

2.3 7.11E+02 3.30E-06 

decan-1-ol 36.55 34.5 95 78 1263 1765 112-30-1 alcohol C10H22O 158.17 fat 4.57 2.82E+01 3.20E-05 

4,6-dimethyl 

dodecane 
36.61 NA 82 NA 1317 NA 

61141-72-

8 
alkane C14H30 198.24 Na 7.07 1.19E-02 1.65E+01 

tridecane 37.06 NA 83 NA 1300 NA 629-50-5 alkane C13H28 184.00 alkane 6.73 2.75E-02 2.88E+00 

undecanal 37.24 NA 77 NA 1310 NA 112-44-7 aldehyde C11H22O 170,00 

waxy soapy 

floral aldehydic 

citrus green 

fatty fresh 

laundry 

4.25 1.43E+01 1.34E-03 

(Z)-2-butyloct-

2-enal 
38.24 31.69 88 90 1389 1659 

13019-16-

4 
aldehyde C12H22O 182.17 Na 4.59 6.50E+00 1.94E-03 

dodecanal 38.68 32.9 85 86 1499 1709 112-54-9 aldehyde C12H24O 184.00 

soapy, waxy, 

citrus, orange 

mandarin 

4.75 4.65E+00 1.90E-03 

heptane NA 4.41 NA 90 NA 700 142-82-5 alkane C7H16 100.13 sweet ethereal 3.78 3.55E+00 2.27E+00 

octane NA 5.11 NA 88 NA 800 111-65-9 alkane C8H18 114.14 gasoline 4.27 1.15E+00 3.01E+00 

propan-2-ol NA 7.33 NA 91 NA 922 67-63-0 alcohol C3H8O 60.06 
alcohol musty 

woody 
0.28 4,02E+05 7.52E-06 

2-ethyl-5-

methylfuran 
NA 10.24 NA 75 NA 1013 1703-52-2 furan C7H10O 110.07 

fresh gassy 

burnt 
2.95 3.29E+02 8.69E-03 

toluene NA 10.49 NA 94 NA 1042 108-88-3 alkene C7H8 92.06 sweet 2.54 5.73E+02 5.95E-03 

ethylbenzene NA 13.41 NA 92 NA 1136 100-41-4 alkene C8H10 106.08 NA 3.03 2.29E+02 7.89E-03 

2-methylbutyl 

butanoate 
NA 18.56 NA 92 NA 1272 

51115-64-

1 
ester C9H18O2 158.13 

fruity pear 

apricot apple 

tropical 

gooseberry 

spicy rummy 

3.25 1.18E+00 9.60E-04 

1-

hydroxypropan-

2-one 

NA 20.15 NA 83 NA 1284 116-09-6 ketone C3H6O2 74.04 

pungent sweet 

caramellic 

ethereal 

-0.78 1.00E+06 7.73E-06 

(E)-hept-2-enal NA 20.74 NA 95 NA 1318 
18829-55-

5 
aldehyde C7H12O 112.09 

pungent green 

vegetable fresh 

fatty 

2.07 1.81E+03 1.31E-04 

oct-3-en-2-one NA 23.59 NA 96 NA 1408 1669-44-9 ketone C8H14O 126.10 

earthy spicy 

herbal sweet 

mushroom hay 

blueberry 

2.29 1.05E+03 9.58E-05 

(E)-oct-2-enal NA 24.34 NA 88 NA 1425 2548-87-0 aldehyde C8H14O 126.10 

fresh cucumber 

fatty green 

herbal banana 

waxy green leaf 

2.57 6.13E+02 1.74E-04 

heptan-1-ol NA 25.35 NA 86 NA 1462 111-70-6 alcohol C7H16O 116.12 

musty leafy 

violet herbal 

green sweet 

woody peony 

2.31 1.94E+03 2.34E-05 

acetic acid NA 25.96 NA 75 NA 1465 64-19-7 
carboxylic 

acid 
C2H4O2 60.02 

sharp pungent 

sour vinegar 
0.09 4.76e+05 5.48E-07 

3,7-

dimethylocta-

1,6-dien-3-ol 

NA 28.08 NA 73 NA 1537 78-70-6 alcohol C10H18O 154.14 

citrus floral 

sweet bois de 

rose woody 

green blueberry 

3.38 6.84E+02 4.23E-05 

(5E)-6,10-

dimethyl 

undeca-5,9-

dien-2-one 

NA 36.01 NA 88 NA 1835 3796-70-1 ketone C13H22O 194.2 

fresh green 

fruity waxy 

rose woody 

magnolia 

tropical 

4.36 8.87E+00 9.08E-04 

2,6-di-tert-

butyl-4-

methylphenol 

NA 36.80 NA 88 NA 1870 128-37-0 alcohol C15H24O 220.2 
mild phenolic 

camphor 
5.03 5.75E+00 4.12E-06 

*: estimated hydrophobic constant expressed as octanol/water partition coefficient (EPI-Suite4.11) 

**: solubility in water (mg/L) at 25°C (EPI-Suite4.11) 

***: volatility in water at 25°C (atm-m3/mole) (EPI-Suite4.11) 

 
The solutions therefore have different molecule profiles. Solutions from batch a have a higher number 

of compounds than solutions from batch b. Furthermore, solutions with higher protein/dry matter content 

appear to have higher areas of volatile compounds. This is true except for pellets diluted only with water 

(50Ib-50W and 50Ia-50W) which have lower concentrations and highest protein/dry matter content. 

These different volatile compounds profiles could be due to the different protein composition of 

solutions. Indeed, whereas the protein content/dry matter was similar, pellets were mainly constituted 

of insoluble protein and retentates of soluble proteins. However, permeates were mainly constituted of 

"non-protein" compounds - such as minerals, phenolic compounds or volatile compounds. 
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Figure 3.2.1.1.: Average and standard deviation of peak areas obtained by GC-MS for 15 solutions 

and for 4 volatile compounds from different chemical families: pentanal, 2-pentylfuran, heptan-2-one 

and oct-1-en-3-ol. The colour gradient corresponds to the DM content of the samples: from light blue 

corresponding to water to dark blue corresponding to solutions with 6% DM. 

 

  
Figure 3.2.1.2.: Principal component analysis of axes 1 and 2 based on the GC-MS data for the 15 

solutions. In the variable figure (at right): in red are the active variable (GC-MS compounds) and in 

blue are the supplementary variable corresponding the mean of chemical families. In the observations 

figure (at left), the colour gradient corresponds to the DM content of the samples: from light blue 

corresponding to water to dark blue corresponding to solutions with 6% DM. 
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Quantification of volatile compounds in pea protein solution (Refa) and pellet (50Ia-50W)   

Quantification of 13 volatile compounds were performed for pea protein solution (Refa) and pellet 

solution (50Ia-50W). However, for confidentiality reasons, these concentrations are not presented. In 

addition, from the concentrations, the OAVs of volatile compounds were calculated and listed in Table 

3.2.1.4. For 7 compounds, OAVs were greater to 1. These compounds might significantly contribute to 

the aroma of pea protein isolates (Table 3.2.1.4.). 

 

Table 3.2.1.4.: Comparison of the binding coefficient for initial (Refa) and pellet a solutions for the 

13 volatile compounds with their chemical family, their type of chain, their formula, their odour 

threshold (ppb, in water obtained from the literature) and their odour activity value (OAV). 

  

IUPAC name 
Chemical 

family 

Type of 

chain 

Chemical 

formula 

Odor 

threshold 

(ppb) 

Binding 

Refa 

(%) 

Binding 

pellet a 

(%) 

OAV 

Refa 

OAV 

pellet 

a 

(E)-2-methylbut-2-enal Aldehydes Branched C5H8O 3a 4.4 7.1 3 2 

2-pentylfuran Furan Aromatic C9H14O 6a 16.8 12.1 151 201 

benzaldehyde Aldehydes Circular C7H6O 390a 12.5 11.6 <1 NA 

decanal Aldehydes Linear C10H20O 5b 29.1 19.7 9 10 

heptan-2-one Ketone Linear C7H140 140a 9.2 10.9 <1 <1 

heptanal Aldehydes Linear C7H14O 3a 22.8 17.4 2 3 

hexan-1-ol Alcohol Linear C6H140 500a 8.8 10.1 <1 <1 

hexanal Aldehydes Linear C6H12O 4.5a 21.1 17.7 158 326 

nonan-2-one Ketone Linear C₉H₁₈O 190b 21.9 17.1 <1 <1 

oct-1-en-3-ol Alcohol Linear C8H160 1a 15.6 14.3 4 6 

octan-1-ol Alcohol Linear C8H180 190c 23.1 17.7 <1 <1 

octan-2-one Ketone Linear C8H160 190b 15.1 14.3 <1 <1 

octanal Aldehydes Linear C8H16O 0.7a 29.2 18.7 9 37 
aButtery et al., 1999 ; bBelitz et al., 2004 ; cAhmed et al., 1978 

 

To better understand the differences between volatile compositions and recombined solutions, the links 

between volatile compounds and protein concentration were studied. The correlation coefficients 

(Pearson method) were calculated between protein concentrations and peak area obtained with the apolar 

column. Several significant correlations were calculated for data from 13/15 solutions (except 50Ia-50W 

and 50Ib-50W). Six aldehydes were significantly correlated to the concentration on protein. In addition, 

six ketones were significantly correlated to the concentration on protein. Two alcohols were also 

significantly correlated to the concentration on protein. Concentrations on these volatile compounds 

increase when the protein concentration of solutions increase. Slopes are particularly important for 

furans and butanal which may means higher protein interactions for these compounds. Solutions only 

constituted of pellet 50Ia-50W and 50Ib-50W were not taken into account because they decrease the 

quality of regressions. One hypothesis could be different composition on proteins between the pellets 

and the other fractions, especially in terms of insoluble/soluble proteins composition. 

 

Characterization of protein-volatiles interactions from pea protein solutions 

Volatile-protein interactions has been further studied. The interactions of pea protein with volatile 

compounds were focused on the study of 6 aldehydes, 3 alcohol, 3 ketones, 1 furan with two different 

protein buffer solutions: initial solution from batch a (Refa) and solution mainly constituted of pellet a 

(50Ia-50W). These 13 compounds have been chosen for their different chemical characteristics (as 

described on Table 3.2.1.2.) and their possible contribution in beany notes mentioned in the literature 

for plant solutions. Table 3.2.1.4. presents the results concerning the binding coefficients for Refa and 

50Ia-50W solutions (related to the protein concentration of solutions) for the 13 volatile compounds, in 

regard to their chemical family, their type of chain and their chemical formula. The two protein solutions 

were able to bind the volatile compounds used in this study and the different factors tested including 

chemical class, carbon number and protein source were found to significantly impact the level of volatile 

compound retention.  

 

Regarding the chemical function, binding capacities of volatile compounds were higher to aldehydes 

than alcohols than ketones for C8, higher to aldehydes than ketones for C7, higher to aldehydes than 

alcohol for C5. These results are in agreement with Wang and Artnfield, who found that all proteins 

tested exerted higher binding capacities to aldehydes than ketones (Wang & Arntfield, 2016). A similar 
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trend was also reported by Heng et al. and Gremli (Heng, 2006). An impact of carbon chain length was 

also observed: retention of alcohols, linear aldehydes and ketones significantly increases within the 

increase in carbon number. For example, heptanal (C7) had a binding of 17.4 for Refa and decanal (C10) 

a binding of 19.7. These results indicate that interactions were predominantly hydrophobic in nature, as 

already generally observed in the literature (Andriot et al., 2000; Damodaran & Arora, 2013; Damodaran 

& Kinsella, 1981; Wang & Arntfield, 2016). These hypothesis were confirmed by the strong correlation 

between binding coefficients for each volatile compounds and their corresponding hydrophobic constant 

(LogPow – logarithm of the octanol/water partition coefficient obtained from literature) presented on 

Figure 3.2.1.3. To be noted, coefficient correlations (Pearson type) were much higher for both buffer 

solutions without 2-pentylfuran: 0.57 (with 2-pentylfuran) vs 0.82 (without 2-pentylfuran) for 50Ia-

50W; 0.68 (with 2-pentylfuran) vs 0.84 (without 2-pentylfuran) for Refa. To explain the particularity of 

2-pentylfuran, a hypothesis could be steric clutter in the cycle that limits interactions with proteins. 

 

Regarding the binding coefficients, the volatile compounds used showed an increasing amount of 

binding with increasing volatile compounds concentrations. These results were in agreement with 

literature results (Landy et al., 1995). However, contrary to these studies, the concentration on protein 

was relatively high (4% and 6%) and the concentration of volatile compounds low (less than 10 ppm). 

These results suggested there is no saturation of the binding sites with the used concentrations of volatile 

compounds and of proteins.  

 

Regarding protein solution type, the binding capacity was higher for Refa than for 50Ia-50W for 10/13 

volatile compounds. The other 3 compounds (heptan-2-one, Hexan-1-ol, (E)-2-methylbut-2-enal) 

presented all as common characteristics to not be an aldehydes and to have a short length of carbon 

chain (inferior to C7). According the results from the literature, volatile compounds binding by proteins 

is very dependent on the conformational state of the proteins which affect both the binding affinity and 

the number of binding sites on proteins for volatile compounds (Damodaran & Kinsella, 1981). Proteins 

of the pellet must be more denatured with different protein composition (protein type and protein 

conformation). These modifications must explain the loss of solubility and so the aggregation but also 

the differences of protein-volatiles interactions. 

 

 
 

Figure 3.2.1.3.: Binding coefficient of 13 volatile compounds in function of their corresponding 

octanol/water partition coefficient LogPow (estimated hydrophobic constant, EPI-Suite4.11) for the 

two different protein buffer solutions: Refa in red (triangle) and 50Ia-50W in blue (lozenge). In light 

blue and light red: values for 2-pentylfuran. In dashed line: trends line with R2 for Refa and 50Ia-

50W. 

 

These results (strong correlations with protein concentration and no saturation of the binding sites with 

the used concentrations of volatile compounds and of proteins) are consistent with the hypothesis of 

protein-volatiles interactions impacting the volatile compounds release on pea protein isolates. 
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However, these interactions only impact about 18% of the volatile compounds (in quantity for the 

solution Refa, 15% for the pellet solution 50Ia-50W). Thus we can assume that they have only a low 

impact on the olfactory perceptions. In addition, each volatile molecule must interacts differently with 

proteins according to its chemical characteristics, in particular its hydrophobicity, and so impacting 

differently the olfactory perceptions. The differences between initial solutions (Refa and Refb) and pellet 

solutions (50Ia-50W and 50Ib-50W) in term of volatile and sensory profile could be explained partly by 

differences in term of protein conformation (protein type and protein conformation).  Therefore, in the 

following multivariate approach, protein-volatile compound interactions will not be taken into account. 

 

Multivariate approach to reveal relationships between sensory perception of pea protein solutions 

and aroma profile 

 
Correlations between sensory attributes and volatile compounds 

 

 

 

 
 

Figure 3.2.1.4.: Averaged perceived intensities (across subjects and replicates) of the 15 solutions 

studied for sensory attributes (p-value are significant at the threshold of 0.05 for the 6 attributes and 

letters corresponds to the LSD-Bonferroni group associated). The colour gradient corresponds to the 

DM content of the samples: from light blue corresponding to water to dark blue corresponding to 

solutions with 6% DM. 

 

e e e

cd cd

ded d

de

bcd

bcd

cd

bcd

bcd cdbcd
bcd

c
bc

bc

bc
abc

ab

abcabc bc
bc

bcd

b

abc
abc

bc abc

a

a

a

ab ab
abc

abc

b abab
bc bc

0

1

2

3

4

5

6

7

Almond Nuts Cereals

S
en

so
ry

 a
tt

ri
b

u
te

s 
(s

co
re

/1
0

)

e d f

cd

c

def
de

c

ef

a

bc

bcdbcd

b

cde

a

bc

bc

cd

bc

bc
bcd

bc

bcbcd

b

abc
bc

b

bc
cd

bc

ab
b

a

a
bc

b

a

cd

b

ab

cd

bc

abc

0

1

2

3

4

5

6

7

Broth Pea Potato

S
en

so
ry

 a
tt

ri
b

u
te

s 
(s

co
re

/1
0

)

e e fd d defd d efcd cd defd cd decd cd cdd cd debcd bcd bcdabc ab abcd bc abbc ab aa ab aab abc abcbc bc abbc a a

0

10

Potato Almond Cereals

S
en

so

ry
 

at
tr

ib

u
te

s 

(s
co

r

e/
1

0
)100W 100Pa 100Pb 70Pb-30Ra 50Pb-50Rb

100Ra 100Rb 25Pa-25Ra-13Ia-38W 50Pb-25Ib-25W 50Ra-25Ia-25W

40Ra-30Ib-30W Ref a Ref b 50Ia-50W 50Ib-50W



CHAPTER 3 – RESULTS / SECTION 3.2.1.                                                                                            A. COSSON                                                                                      

 149 

It has been reported that in experimental investigations of mixture aroma, a single sensory attribute 

describing the main character of the aroma cannot sufficiently reflect the contributions of all the volatile 

compounds to the aroma (Bult, 2002). In particular, it has been argued that the use of a single attribute 

might obscure perceptual interactions between odours (Barkat et al., 2012). Thus, in our study, we 

decided parsed out the multiple components of beany aroma and expressed them via other terms as used 

in Cosson et al., 2021 (Section 3.1.2.). Therefore, solutions were described by the used of 6 aroma 

attributes: potato, pea, cereals, broth, almond, and nuts.  

 

For each of aromatic sensory attributes, their significant discrimination between solutions were 

confirmed by ANOVA results (data not shown, p-value significant at the threshold of 0.05). Their 

averaged perceived intensities (across subjects and replicates) are presented in Figure 3.2.1.4. Multiple 

product pair comparisons (LSD-Bonferroni) showed differences between solutions. As expected, 

solution 100W (composed only of water) presents intensities close to 0 for the six aromatic attributes. 

As regards nuts intensities, the initial solution Refa presents the highest values (4.55/10) and solutions 

composed only of permeate (100Pa and 100Pb) the lowest values (1.46/10 and 1.70/10 respectively). 

As regards to broth intensities, overall solutions from batch a present highest values, more specifically 

solution composed of permeate b and of retentate a (70Pb-30Ra) and solution composed only of 

retentate a (100Ra) present the highest values (4.80.15/10 and 5.07/10 respectively).  

 

As regards to pea, the 14 solutions (except water 100W) are perceived globally with high values of 

intensity (between 3 and 6). Among them, the solution containing only permeate a (100Pa) presents the 

lowest values contrary to the initial solution Refa which presents the highest values. For potato 

intensities, the 15 solutions present relatively low values with maximum reach by initial solution Refa 

(3.3/10). For cereals intensities, the initial solutions (Refa and Refb) as well as the solution composed 

only of pellet a (50Ia-50W) present the highest values (3.9/10, 3.3/10 and 3.4/10 respectively). For 

almond intensities, the solutions containing only permeate (100Pa and 100Pb) present the lowest values 

(1.57/10 and 1.33/10 respectively) and initial solution Refa the highest value (3.44/10). Thus, as already 

noticed for GC-MS data, solutions from batch a present the highest intensity values than solutions from 

batch b. 

 

To go further, correlation matrices (Pearson method) between sensory intensities and composition 

concentration were calculated. Almond, nuts, potato and cereals intensities are correlated to the 

concentration on protein (R²=0.82, R²=0.72, R²=0.83, and R²=0.82 respectively) with lowest intensities 

on permeate (100Pa and 100Pb) and highest intensities for initial solution (Refa and Refb). Attributes 

contributing to perceived beaniness are mainly influenced by the retentate and permeate fractions as 

previously shown by Cosson et al. (Cosson et al., 2021 – Section 3.1.2.). The importance of protein 

concentration on beaniness intensities is in line with the protein-volatiles interactions described earlier. 

The volatile compounds are mainly bound to protein, modifying their release and so the perceived odour. 

In addition, pea, almond, nuts, potato and cereals intensities are correlated between each other’s (R² 

between 0.98 and 0.79). However, broth intensity is correlated only to pea intensity (R²=0.53). These 

results suggest that whereas beaniness is due to a mixture of volatile compounds, the individual 

perceptual features of each volatile compounds are less perceived, such that panellists perceived mainly 

the key association of volatile compounds named beaniness. 

 

Correlation matrices (Pearson method) between sensory and aroma release data were calculated from 

peak area obtained with the apolar column - correlations with areas obtained from the polar column 

analyses, data not shown, were also analysed but do not provide additional information. Results show 

that 21 volatile compounds are significantly correlated to aromatic sensory notes (nuts, almond, potato, 

pea and cereals) as presented on Table 3.2.1.5.  

 

These correlated volatile compounds (except one ketone) are lipophilic with positive octanol-water 

partition coefficient, low solubility in water (inferior at 7.6E+04 mg/L) and high volatility (Henry Law 

constant inferior at 5.7E-05 atm-m3/mole). In addition, these compounds present relatively high odour 

threshold (Table 3.2.1.5.). Besides, as expected by psychophysics graph, most of these correlations are 

positive such that intensities increase with volatile compound concentrations increase.  
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Table 3.2.1.5.: Correlations coefficients (Pearson method) between volatile compounds (CG-MS 

area) and overall aromatic intensity, pea and broth sensory attributes (scores/10) and odour threshold 

(ppb, in water obtained from the literature). In bold, negative correlations coefficients. For 

confidentiality reasons, only the chemical family of the compounds are given here. 

  
Chemical family* Pea Potato Almond Nuts Cereals Odour threshold (ppb) 

Ketone NA NA NA 0.56 0.55 300b 

Alkene 0.59 NA 0.52 0.65 0.58 NA 

Aldehyde 0.58 0.72 0.68 0.63 0.7 110d 

Furan 0.67 0.66 0.66 0.78 0.76 6e 

Aldehyde 0.65 NA NA 0.53 NA 3a 

Furan NA NA NA 0.58 0.6 6a 

Ketone NA -0.54 NA NA NA 50f 

Aldehyde 0.61 NA NA 0.58 0.53 15.9c 

Ketone NA NA NA NA 0.52 0.19g 

Aldehyde -0.7 -0.72 -0.83 -0.74 -0.72 5b 

Aldehyde -0.82 -0.74 -0.86 -0.81 -0.76 24.2c 

Ketone 0.62 NA NA 0.65 0.59 140a 

Alcohol 0.79 0.58 0.67 0.64 0.63 500a 

Aldehyde 0.65 0.53 0.57 0.71 0.66 4.5a 

Ketone 0.66 NA NA 0.63 0.63 NA 

Ketone 0.53 NA NA 0.56 NA 200b 

Alcohol NA -0.54 NA NA -0.56 190c 

Ketone 0.6 NA NA 0.66 0.6 190b 

Ketone 0.61 NA NA 0.58 0.54 NA 

Ester NA 0.53 0.56 0.55 0.52 210h 

Aldehyde NA NA -0.56 NA NA NA 
aButtery et al., 1999 ; bBelitz et al., 2004 ; cAhmed et al., 1978 ; dJelen et al. 2013 ; eConception et al. 2017 ; fSchindler et al. 

2010; gSiek et al. 1971; hTakeoka et al. 1990 

 

The main volatile compounds are associated to the six aroma attributes (nuts, potato, pea, cereals, broth 

and almonds). However, each attributes is also correlated to specific compounds volatiles. However, 

broth intensity is illustrated by a different behaviour, without clear link to volatile compounds, 

suggesting either an impact of non-volatile compounds on this perception either correlation coefficients 

are not relevant to understand volatile compounds at the origin of broth intensity. It is commonly known 

that perceived aroma intensities are not determined by a single component but by a mixture of 

components (Laing & Jinks, 1996). The disadvantage of considering only two-by-two interactions is 

that the interactions between volatile compounds are not taken into account as well as the cognitive 

olfactory mechanisms. Besides, physiological differences between individuals make it complex the 

understanding of perceptions and are not taken into account here (average across panellists). Indeed, 

individuals do not necessarily perceive the same odour in a particular product and do not present the 

same sensibility. This inter-individual variability may result from many factors: genetic differences, 

anatomical differences, health status and age as well as experiences and semantic knowledge (Thomas-

Danguin et al., 2014). In particular, Barkat et al. (2011) suggested that the individual’s characteristics 

of the main character of the odour in the case of blending mixtures reflects the degree of similarity 

between the actual odour perception of a stimulus and its internal memorized representation. These 

different points highlight the need to go further to study relationships between sensory perception of pea 

protein solutions and aroma profile, in particular to understand the specificities of broth intensity. 

 

Regression modelling between sensory attributes and volatile compounds 

To obtain a better insight into the origin of these aromatic perceptions, two different models (linear 

model and artificial neural network model) were developed between the volatile compounds release 

measured by the GC-MS data and the sensory data. 

 

On the one hand, the relationships between sensory and volatiles data was investigated by PLS 

regression model. PLS is a multivariate method that establishes linear relationships between a set of 

predictors (volatile compounds areas) and a set of responses (sensory intensities) using latent variables.  

 

The purpose of PLS was to establish which volatile compounds are mainly related to sensory attributes 

of the pea solutions. A PLS model using NIPALS methods was fitted with potential explanatory 
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variables (63 compounds volatiles GC-MS area from apolar column). Results show that the optimum 

number of latent variables is two. For this two components, the model explained 48.41% of variation in 

X and 70.75% of variation in Y. The predicted residual sum of squares (RSS) was 0.99. It is a measure 

of the discrepancy between the data and the estimation model. RSS is close to 1, indicating a relatively 

good fit of the model to the data. However, statistical methods such as PLS regression are linear models 

and so do not account for thresholds (Zielinski et al., 2014; Yu et al., 2017). Thus, the relationships 

between sensory and volatiles data was also investigated by artificial neural network model (ANN). 

ANN are a type of machine-learning prediction method with the ability to self-learn relationships from 

labelled experimental data and generalize to unlabelled situations. Several ANN model were fitted with 

the same potential explanatory variables (63 compounds volatiles GC-MS area from apolar column). 

The optimal model selected with our data presented 1 layer and 2 nodes: 1 sigmoid node and 1 linear 

node. As for PLS model, ANN model show globally high performance except for broth attribute as 

presented on Table 3.2.1.6. For training coefficient of determination are between 0.80 and 0.99 with low 

training error (RSS between 0.18 and 1.07) and for validation between 0.74 and 1.00 with low validation 

error (RSS between 0.00 and 2.13). Both models (PLS and ANN) are therefore significant but their 

prediction capabilities are only moderately good.  

 

Table 3.2.1.6.: Performance of the final selected Artificial Neural Network (ANN) model to predict 

the 7 sensory attributes variables in function of compounds volatiles area analysed by GC-MS. 

RMSE: root-mean-square error. R²: coefficient of determination. RSS: residual sum of squares. Sum 

Freq: number of observations used. T = Training. V = Validation. 

 

Performance 
Broth Pea Potato Almond Nuts Cereals 

T V T V T V T V T V T V 

R² 0.42 0.93 0.86 0.74 0.80 1.00 0.98 0.98 0.99 1.00 0.90 1.00 

RMSE 1.20 0.17 0.30 0.84 0.34 0.06 0.13 0.13 0.12 0.04 0.24 0.01 

RSS 17.41 0.09 1.07 2.13 1.42 0.01 0.21 0.05 0.18 0.00 0.66 0.00 

Sum Freq 12 3 12 3 12 3 12 3 12 3 12 3 

 

As regards important volatile compounds, PLS model shown 34 volatile compounds with variable 

importance projection values superior to 0.8. The variable importance projection score is a measure of 

a variable’s importance relative to model both X and Y (Wold et al., 2001); 0.8 being the commonly 

used criterion to say that the variable is significant. These 34 compounds include the 20 volatile 

compounds find previously correlated to sensory attributes. To these compounds are added 4 ketones, 

aldehydes, 1 alcohol, 1 furan, 2 alkanes and 1 alkene. These correlated volatile compounds are lipophilic 

with octanol-water partition coefficient superior to 0.  

 

Figure 3.2.1.5. shows the correlation loadings of the 15 solutions combined with sensory evaluation and 

63 volatile compounds. The Y responses (sensory attributes) are located in the lower right quadrant. The 

predictors (compounds volatiles) located close to the Y responses give a positive contribution to the Y 

estimates, while predictors located in the opposite part of the graph contribute negatively to the Y 

estimates. Studies show that a mixture of compounds is not a simple addition of each of its odours. Many 

effects are possible depending on the compounds and their initial concentration (additivity, synergy or 

asymmetric model).  

 

Concerning ANN results, the most important compounds in predicting the overall sensory attributes are 

similar to those highlighted from PLS model. If ANN model allows to make more complex models 

taking into account interactions and threshold, they are however black box prediction machine with no 

insight into relationships between predictors and variables and which do not allow formal hypothesis 

tests. With ANN model, it is difficult to identify the most important variables in predicting the response 

(Seisonen et al., 2016). And in our case they confirm the results of the PLS model but provide little 

additional information to understand the sensory mechanisms due to volatile compounds, perhaps 

because of the small number of products. In our case, we can conclude that the PLS model provides 

more information to understand olfactory perceptions. 
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Figure 3.2.1.5.: An overview of the correlation loadings of the 15 solutions combined with sensory 

evaluation and 63 volatile compounds analysed by partial least squares (PLS) (centred-scale data). 

For confidentiality reasons, only the chemical family of the molecules are given here. 

 

Therefore, as for two-by-two interactions, each attribute is predicted by specific compounds volatiles. 

However, the main volatile compounds correlated to aroma intensities are similar to the 5 attributes 

(nuts, potato, pea, cereals and almonds). This findings support the hypothesis that the key volatile 

compounds of pea protein isolates may lose some of their perceptual features in mixing and create 

meaningful associations that strongly contribute to the mixture odour characteristics (Paravisini & 

Guichard, 2016; Romagny et al., 2018). Instead of other mixture where the key volatile compounds may 

preserve their perceptual features such that the individual odour they carry as single compounds is still 

identifiable within the mixture (Bult, 2002). Evaluation of this hypothesis could be done by omission 

experiments or reconstitution analysis to validate the actual impact of the identified volatile compounds 

within mixtures. 

 

Regarding broth attribute, it is the attribute the least well explained by the PLS model as reflected in the 

fact that the broth point is near the 25% circle whereas the others attributes are near the 100% circle 

(Figure 3.2.1.5.). Similarly, the lowest correlations between experimental data and the ANN prediction 

data were obtained for broth attribute (for training RSS=17.41, R²=0.42) as previously found for two-

by-two interactions. As can be seen on Figure 3.2.1.6., difficulties in modelling the broth attribute seem 
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to be mainly due to two solutions: solution constituted only of retentate a (100Ra) and solution 

constituted of permeate b and retentate a (70Pb-30Ra). 

 

As regards sensory data, these solutions distinguished from others with a high broth intensity: 5.07/10 

for 100Ra and 4.80/10 for 70Pb-30Ra. Several hypotheses can explain these results. It could be due to 

very strong inter-individual differences, to a dumping effect or to other non-volatile compounds (Clark 

& Lawless, 1994). For example, the perception of the attribute broth may also have been influenced by 

the composition of peptides and amino acids, which could be richer in the retentate a. Indeed, Henriksen 

showed that the bouillon note of dried sausage was related to a mixture of different amino acids and 

peptides and that the intensity of the potato note was positively correlated with levels of tyrosine (in 

both its free and peptide residue forms) (Henriksen, 1997). 

 

a) 

    
b) 

    
 

Figure 3.2.1.6.: Comparison of predicted and measured sensory attributes for the test dataset using a) 

the PLS model and b) the ANN model. 

 

 

3.2.1.4. Conclusion and perspectives 

 

This study adopted an original approach: to work with fractions instead of compounds to explore how 

combinations of volatiles and proteins affect the sensory characteristics of pea protein-based solutions. 

We broke down pea protein isolates into three fractions (pellet, retentate, and permeate), which were 

then recombined to form different experimental solutions using a mixture design. The study yielded 

several key results. First, a total of 79 volatile compounds were identified coming from endogen origin 

of pea seed or from oxidation of the lipids/peptides/amino acids in the seed or during the storage. Second, 

the protein-volatile interactions were mainly hydrophobic interactions and can be explained by the 

octanol/water partition coefficient (LogPow). However, these interactions only impact about 18% of the 

volatile compounds and so may have only a low impact on the olfactory perceptions. Third, the key 

volatile compounds are associated to the six aroma attributes (nuts, potato, pea, cereals, broth and 

almonds). Thus there is a common nucleus of compounds responsible for the beany perceptions. The 

compounds may lose some of their perceptual features in mixing and create meaningful associations 

that strongly contribute to the beany odour. Fourth, these key volatile compounds belong to many 

chemical families, mainly aldehydes, ketones and alcohols. They are mainly lipophilic but they present 

various solubility characteristic in water and various volatility. In order to improve the desirability of 

products based on pea protein isolates, it is therefore difficult to make recommendations in terms of 

volatile compounds to be removed. However, solutions that lead to significant changes in volatile 

compounds could be an interesting strategy. For example, fermentation, washing or trapping of volatile 

compounds and addition of flavouring. In addition, the interactions between volatile compounds and 



CHAPTER 3 – RESULTS / SECTION 3.2.1.                                                                                            A. COSSON                                                                                      

 154 

pea proteins could be an interesting way to reduce aromatic perceptions. Indeed, by modifying the 

protein conformations, we could modify the interactions of volatile compounds with proteins and thus 

modify the aromatic perceptions.  

 

 

 

Main results 

 A total of 79 volatile compounds were identified with varied concentrations in pea protein 

isolates and fractions. 

 Protein-volatile molecule interactions were about 18% and were mainly hydrophobic 

interactions, which can be explained by the octanol/water partition coefficient (LogPow).  

 The key volatile compounds are associated to the perception of the six aroma attributes (nuts, 

potato, pea, cereals, broth and almonds). Thus there is a common nucleus of compounds 

responsible for the beany perceptions.  

 The broth attribute is the one that stands out the most. 
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Section 3.2.2. – Identification and characterization of the main 

peptides in pea protein isolates using ultra high-performance 

liquid chromatography coupled with mass spectrometry and 

bioinformatics tools 
 

3.2.2.1. Introduction 

 

A major recent challenge in the agrifood industry is developing new protein sources to compensate for 

the anticipated future paucity of traditional animal proteins. Consequently, both the industry and 

consumers are focusing their attention on plant proteins. Plant protein isolates, such as those derived 

from peas (Pisum sativum L.), are often used to create foods because of their functional properties, 

protein content, sustainable production, and relatively low cost (Davis et al., 2010). However, plant 

proteins, and especially isolate fractions from raw plant matter, have some drawbacks from a sensory 

point of view (e.g., their color, smell, and taste). It is necessary to better understand the sensory issues 

associated with plant proteins if we wish to develop plant protein-based foods that will be attractive to 

consumers. 

 

Research on the perception of pea-based products has largely focused on the role of volatile aroma 

compounds in creating sensations of beaniness (Bi et al., 2020) and of phenolics/saponins in creating 

sensations of bitterness and astringency (Heng et al., 2006). However, it is important to carry out more 

detailed compositional analyses to clarify how foods are sensorily perceived. 

 

Pea protein isolates are mainly composed of globulins, which are the main storage proteins in seeds. 

Globulins consist of two fractions that are characterized by their ultracentrifugation sedimentation 

coefficients: 7S (20%–40%) and 11S (20–30%). The 7S fraction is composed of vicilins and convicilins. 

The 11S fraction is composed of legumines (Crevieu-Gabriel, 1999). During protein isolate extraction 

(notably during temperature and pH changes), proteins may be naturally hydrolysed into numerous 

peptides of different sizes (Li & Aluko, 2010; Sirtori et al., 2012). Several structural changes result 

because of the exposure of hydrophobic sites normally found in the protein’s core (Daher et al., 2020). 

Although such peptides remain little studied, they could potentially have properties that might serve to 

improve the sensory properties of plant-based products. 

 

Indeed, specific protein fragments may elicit various sensory perceptions (e.g., sweet, bitter, umami, 

sour, or salty notes). Sourness and saltiness could result from the presence of charged terminal groups 

and/or charged side chains (Temussi, 2012). Other perceptions (sweetness, umami, and bitterness) could 

be explained by the presence of different peptide families. For example, certain small peptides (5¬–8 

residues in size) can activate the TAS2R bitter taste receptors in the mouth (Aubes-Dufau et al., 1995; 

Maehashi & Huang, 2009). These peptides tend to be hydrophobic with proline- and leucine-rich side 

chains, especially at their C-terminals (Kim et al., 2008). They can have quite an impact: for example, 

0.25 mM of a peptide (VVYPWTQRF) solution derived from bovine hemoglobin elicits the same 

sensation of bitterness as 0.073 mM of quinine sulfate or 21 mM of caffeine (Aubes-Dufau et al., 1995). 

With regards to sweetness, there are no known natural peptides that result in sweet notes. However, 

semi-synthetic peptides, such as aspartame (the methyl ester of the aspartic acid/phenylalanine 

dipeptide) and neotame (a secondary amine of 3,3-dimethylbutanal and aspartame), can activate 

T1R2/T1R3 sweet taste receptors. In the case of umami, the umami heterodimer (T1R1/T1R3) has 

ligands with multiple binding sites, and thus the receptor displays low specificity and can respond to a 

chemically diverse range of umami molecules. More than 50 peptides (such as KGDEESLA) appear to 

elicit umami, but their specific functional roles remain unclear. Research on the relevant receptors has 

suggested that such peptides might directly lead to the sensation of umami. However, it is also possible 

that umami is a consequence of partial hydrolysis, which leads to sizeable concentrations of Asp or Glu 

(Temussi, 2012; Wang et al., 2020). 
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Several experimental approaches have been used to study the sensory properties of protein fractions. 

The most common strategy to examine how specific compounds affect the sensory characteristics of 

products, using a combination of fractionation and omission tests (Engel et al., 2002; Toelstede & 

Hofmann, 2008). However, peptidomics techniques are increasingly used thanks to advances being 

made in modern mass spectrometry and bioinformatics. These tools are ideally suited for carrying out 

comprehensive peptide analysis, especially when such analyses exploit the massive quantities of 

information currently available in genomic and transcriptomic databases. In peptidomics, different 

solvents and techniques are used in the fractionation, separation, and analysis of peptides (Gao et al., 

2019; Salger et al., 2019). In such work, liquid chromatography-mass spectrometry is the most widely 

used analytical method. Fragmentation spectra obtained from samples are compared with theoretically 

expected spectra for peptide reference sequences. Sample peptides are thus assigned to the proteins that 

contain their sequences. Several bioinformatics tools have been developed to automate these operations, 

such as COMET (Eng et al., 2013) or X!tandempipeline (Langella et al., 2017). Information about 

peptide properties can be found in databases such as BIOPEP (Iwaniak et al., 2016). Recently, Daher et 

al. (2020) demonstrated that peptidomics could be a valuable tool for evaluating the bitterness of protein 

isolates. 

 

Thus, the aim of this study was to identify the main oligopeptides and polypeptides (5–40 amino acids 

long) found in pea protein isolates and to characterize their sensory properties. To this end, we used pea 

protein solutions and an experimental design previously employed by Cosson et al. (2021). The peptide 

profiles of the solutions were determined using ultra high-performance liquid chromatography coupled 

with mass spectrometry (UHPLC-MS/MS). The resulting peptides were identified, and both their 

physicochemical properties and their antioxidative properties were characterized. Then, we examined 

the impact of our fraction-based formulation strategy on peptide profile. Finally, the relationship 

between peptide profiles and the sensory properties of solutions (as determined in Cosson et al., 2021) 

was explored, with a particular focus on perceived bitterness.. 

 

3.2.2.2. Materials and methods 

 

Solution preparation 
Six fractions were obtained from two pea protein isolates (protein content = nitrogen [N] content x 6.25; 

83% dry matter) as explained in Cosson et al. (2021 – Section 3.1.2.): permeates a and b; retentates a 

and b; and pellets a and b. Then, these six fractions were combined in various ways to formulate 28 

solutions (see the mixture design described in Cosson et al., 2021 – Section 3.1.2.). This process was 

carried out at 4°C in 50 mL glass flasks, which were stored at -20°C. Work was performed on different 

groups of compound types rather than on a single compound type. Each fraction was associated with a 

main compound type: insoluble proteins in the case of the pellets; soluble compounds (e.g., volatiles, 

peptides, and phenolics) in the case of the permeates; and soluble proteins interacting with volatiles in 

the case of the retentates. This approach made it possible to formulate a diversity of pea protein-based 

solutions to obtain continuous responses and build reliable statistical models. Solutions were chosen to 

represent a broad spectrum of combinations while also remaining realistic in terms of protein 

concentrations (0–4.25%). 

 

Overall characterization of the solutions 
For each fraction, protein content was determined via the Kjeldahl method (N content x 6.25). Dry 

matter content (% w/w) and ash content were determined by a certified external laboratory (SAS 

IMPROVE, Amiens, France) via drying and calcination (prepASH®219 analysis system). Conductivity 

at 20°C was measured with a calibrated conductivity probe (InPro 7108-25/65-VP 3.B, M300 

transmitters; Mettler Toledo, Switzerland), and pH was measured at 20°C (InPro 4801i/SG/120; Mettler 

Toledo, Switzerland). 

 

Hydrophobicity index values were measured as per Kato and Nakai (1980). The reaction between the 8-

anilinonaphthalene-1-sulphonic acid probe (ANS) and hydrophobic amino acids (Alanine, Valine, 

Leucine, Isoleucine, Methionine, Phenylalanine, Tryptophan, Proline) leads to the formation of a 
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fluorescent complex, which is measured by spectrofluorometry. Each solution was diluted with 

phosphate buffer (0.053 M Na2HPO4-2H2O, 0.067 M KH2PO4, pH = 7.0) to establish five 

concentration levels between 0.002% and 0.032% (wt). Then, 20 μL of an 8-anilinonaphthalene-1-

sulphonic acid probe (ANS; Sigma Aldrich) was added to 4 mL of each solution; the result was 

thoroughly mixed for 15 min in the dark (concentration of 8 mM in the phosphate buffer). Signal 

intensity was measured using a spectrofluorometer (Cary Eclipse; Agilent) with excitation wavelengths 

of 380nm and emission wavelengths of 480nm.Protein surface hydrophobicity was then calculated as 

the initial slope of relative fluorescent intensity in function of the protein concentration. The relative 

fluorescent intensity was calculated as (F-Fo)/Fo where Fo is the fluorescent intensity values of the ANS 

blanks (ANS solution made with buffer - without any proteins). F is the fluorescent intensity values of 

the protein solutions. The slope of the relationship between protein concentration (%) and fluorescent 

intensity was determined via linear regression analysis. Three replicates of the analysis were performed. 

 

Peptide identification and relative quantification 
Before the UHPLC-MS/MS analysis, a sample pre-treatment procedure was applied adapted from 

previous work (Guillot et al., 2016). Due to the nature of the samples, which are the result of several 

fractionation steps, it was possible to simplify the sample preparation procedure as follows. Pea solutions 

were centrifuged (15,000 g, 4°C, 15 min). The supernatants were filtered using a Vivaspin centrifugal 

concentrator (20 mL, 10 kDa; Sigma Aldrich) run at 8,000 g (30 min, 4°C). The filtrates were stored in 

the dark at -80°C prior to analysis. 

 

MS was performed at the PAPPSO platform (MICALIS, INRAE, Jouy-en-Josas, France). An Orbitrap 

FusionTM LumosTM TribridTM mass spectrometer (Thermo Fisher Scientific) coupled to an 

UltiMateTM 3000 RSLCnano System (Thermo Fisher Scientific) was used. Peptides were loaded into 

a precolumn (Acclaim PepMap C18; 5 µm particle size, 5 mm length, 300 µm ID) at a rate of 20 µL/min 

and were separated using a C18 column (Acclaim PepMap nanoViper; 2 µm particle size, 500 mm 

length, 75 µm ID) at a rate of 300 nl/min and  measured over a total gradient length of 147 min with 

increasing buffer B (80% acetonitrile [ACN] and 0.1% formic acid) from 1 to 60 % for 115 min. Buffer 

A was 0,1% formic acid in 98% water. The eluted peptides were distributed throughout the gradient 

showing a good and an adequate peptide separation.  The eluted peptides were analyzed online using 

the Orbitrap mass analyzer. The mass spectrometer was operated in data dependent acquisition (DDA) 

and positive mode ionization was performed, employing a spray voltage of 2.8 kV. Peptide ions were 

analyzed using a data-dependent method as follows: a full MS scan (m/z: 300–1,600; resolution: 

120,000) was performed by the Orbitrap mass analyzer. Doubly and triply charged peptides underwent 

MS/MS analysis (collision energy: 30%; resolution: 30,000; cycle time: 3 sec).  

 

Peptide identification was performed with X!Tandem v. 2017.2.14 (Alanine) and X!Tandem Pipeline 

(C++) v. 0.2.40 (Langella et al., 2017) using protein sequences for Pisum sativum L. The main peptide 

identification parameters were the following: no cleavage specificity, variable methionine oxidation 

state, and mass tolerance for parent and fragment ions of ±10 ppm. Peptides were retained when the E-

value was ≤ 0.05, and the presence of one peptide per parental protein was considered to enable 

identification. Contaminant peptides were discarded following identification using a standard 

proteomics contaminant database, and the false discovery rate was estimated using the reversed protein 

database. MassChroQ software (v. 2.2.17) was employed to perform alignment, XIC extraction, peak 

detection, and quantification (Valot et al., 2011). 

  

Fourteen pea solutions were analyzed using UHPLC-MS/MS: Refa, Refb, 100Pa, 100Pb, 100Ra, 100Rb, 

50Ia-50W, 50Ib-50W, 50Pb-25Ib-25W, 25Pa-25Ra-13Ia-38W, 70Pb-30Ra, 40Ra-30Ib-30W, 50Ra-

25Ia-25W, and 50Pb-50Rb. Among them, 100Ra, 100Rb, Refa, and Refb were performed in duplicate 

to assess method repeatability.  

 

To cut down on the analysis time, we hypothesized that the solutions’ peptide concentrations could be 

estimated from solution formulations, given that the solutions were mixtures of the fractions. We found 

support for this hypothesis using a subset of six of the solutions (50Pb-25Ib-25W, 25Pa-25Ra-13Ia-

38W, 70Pb-30Ra, 40Ra-30Ib-30W, 50Ra-25Ia-25W, and 50Pb-50Rb). For the other thirteen solutions 
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(50Pa-Ia25-W25, 50Rb-50W, 40Pb-60W, 50Pb-50W, 40Pa-60Rb, 30Ia-70W, 60Ra-40W, 50Pa-25Ib-

25W, 40Pa-60W, 50Pa-50Ra, 40Rb-30Ia-30W, 25Ib-75W, and 40Rb-30Ib-30W), peptide composition 

was calculated based on the peptide composition of the fractions. A linear equation of the following type 

was used: 

 

ARrecombined.Products =  Apellet.a x Cpellet.a + Aretentate.a x Cretentate.a +Apermeat.a x Cpermeat.a + Apellet.b x Cpellet.b + 

Aretentate.b x Cretentate.b +Apermeat.b x Cpermeat.b 

 

where A was the area of the peptides, and C was the relative quantity of each fraction. 

 

Before the statistical analyses were performed, the data were processed. First, the areas of each replicate 

were averaged (cleansing step). The areas of identical peptides with the same charges were also summed. 

In this study, we chose to use all a peptide’s isotopes in its quantification. This decision was made for 

two reasons: a) the isotope distribution for a given peptide is discrete and depends mainly on the presence 

of heavy isotopes and b) isotope composition can be treated as "homogeneous." Consequently, using all 

the isotope peaks should improve the results because signal variability should decline if multiple values 

are used. Missing data are always a modeling concern, so we assumed that this approach would still 

yield a better approximation than comparing isotopes separately. Second, certain peptides were removed 

(first filtering step): only peptides present in at least two solutions were retained. Third, the peptide 

composition of 13 of the solutions was calculated as described above (calculation step). Fourth, peptides 

with little variation in area were removed (second filtering step): only peptides that varied at least 50% 

among the solutions were retained. Finally, to remove any artefacts, null values were replaced by 

randomly selected values between 1+E04 and 1+E05 (i.e., values corresponding to the detection 

threshold). The general workflow of the different steps of peptidomics analysis is illustrated below (Fig. 

3.2.2.1.). 

 
 

Figure 3.2.2.1.: General workflow of the different steps of peptidomic analysis: the preparation and 

measurement processes (in orange) to the bioinformatic analyses (in blue), the preprocessing of the 

data (in green), and the calculations for the recombined products (in yellow). 

 

Characterization of peptide properties 
Peptides were characterized based on nine physicochemical properties: length (number of amino acids), 

the GRAVY index (the grand average of hydrophobicity), bulk (the average bulkiness of the amino 

acids), the aliphatic index (relative volume occupied by aliphatic side chains), polarity (average polarity 

of the amino acids), charge (overall net charge), relative basic nature (fraction of informative positions 



CHAPTER 3 – RESULTS / SECTION 3.2.2.                                                                                            A. COSSON 

 159 

that are occupied by Arg, His, or Lys), relative acidic nature (fraction of informative positions that are 

occupied by Asp or Glu), and relative aromatic nature (fraction of informative positions that are 

occupied by His, Phe, Trp, or Tyr). As in Proust et al. (2019), these properties were computed using the 

aminoAcidProperties function of the R package “alakazam” v. 0.2.8 (Gupta et al., 2015). Default 

settings were used for scaling and normalization. The bioactivity and sensory properties of peptides 

were explored via comparisons with known bioactive and taste peptides listed in the BIOPEP database 

(Iwaniak et al., 2016). Only peptides that were more than three amino acids long were examined to 

avoid noise in the results. Finally, the perceptions of peptides were investigated by looking at the sensory 

scores of the 28 solutions evaluated by Cosson et al. (2021 – Section 3.1.2.). 

 

Statistical analysis 
Analyses were performed using R (R Core Team, 2019) and JMP (v. 13.1.0; SAS Institute Inc., Cary, 

SC, USA). For the inferential analyses, α = 0.05 was the threshold for statistical significance. To 

visualize the intersections in the peptide sets among the six fractions and the two raw solutions, the 

function “upset” in the package UpSetR was used (Conway et al., 2017). To visually explore differences 

in peptide profiles among the 28 solutions, we carried out principal component analysis (PCA, wide 

method) on a correlation matrix. To visualize the overall characteristics of the peptides, we plotted the 

distributions of each physicochemical property (normalized distribution, kernel density). Finally, to 

examine the relationships between the peptide data and the sensory data for the 28 solutions, we analyzed 

a correlation matrix (Pearson method). 

 

3.2.2.3. Results and discussion 

 

Identification and characterization of the main peptides in pea protein isolate solutions  

 

Identification of the peptides in the pea protein solutions 

After preliminary processing of the peptide data, 3,561 peptide ions (with different charges) and 3,005 

unique peptides were identified. Mass ions varied in m/z (305–1395 m/z), charge (2–4), isotope number 

(0–5), and area (1.0E+04–1.0E+10, median = 1.4E+06). The three most common peptides were 

NPFIFK, FANAQPQQR, and NQKQSYF; they came from vicilins and provicilins. They likely 

represent favored hydrolysis sites. In addition, 348 peptides with the following modifications were 

identified: loss of an ammonia, usually via vicinal dehydration, ammonia rearrangement, and 

rehydration via ammonia release, resulting in the loss of nitrogen without any gain in oxygen 

(MOD:01160); oxygenation of an L-methionine residue to form a diastereomeric L-methionine 

sulfoxide residue (MOD:00719); replacement of a residue amino or amino hydrogen with an acetyl 

group (MOD:00408); and formation of a double bond via the removal of a water molecule from a residue 

(MOD:00704) (Jupp et al., 2015). 

 

The 3,005 peptides had origins in a wide range of proteins from three main groups (Fig. 3.2.2.2.): storage 

proteins (45%), enzymes (23%), and proteins derived from seed metabolism (32%). Within these 

groups, only the proteins with the most peptides are illustrated. The others have been grouped according 

to their functions. The majority of the peptides came from storage proteins and more specifically, from 

vicilins (18%), convicilins (4%), and legumins (11%). This result is not surprising since protein isolates 

are mainly composed of the latter three protein types (Crevieu-Gabriel, 1999).  

 

It was interesting to note the presence of peptides from proteins associated with sensory off-notes. There 

were large quantities of peptides from lipoxygenases (7%), which catalyze the degradation of 

polyunsaturated fatty acids; the latter are thought to play an important role in the development of 

undesirable off-flavors in pulses. The initial products of lipoxygenase activity are hydroperoxides, 

which are further degraded into a wide range of compounds, including many that are responsible for 

off-flavors, such as hexanal and n-pentylfuran (Roland et al., 2017). In addition, peptides from aldehyde 

dehydrogenase were observed. This enzyme catalyzes the oxidation of aldehydes and so can modify the 

composition of volatile compounds of pea protein solutions and so the sensations of beaniness. Peptides 

from protein that catalyzes phenolic acids modifications were observed: carotenoid cleavage 
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dioxygenase, chalcone synthase, gibberellin dioxygenase, and isoflavone synthase were present. 

Phenolics acids play also a role in the development of undesirable off-flavors in pulse (bitter and 

astringent notes).  

 

The peptides displaying modifications were generally associated with three types of proteins: 

lipoxygenases (10% of modified peptides), histones (12% of modified peptides), and ribosomal proteins 

(5% of modified peptides). Peptides from these protein types could probably more sensitive to 

modifications during the pea processing. 

 

Thus, these results show that a wide variety of peptides were identified. These peptides represent 

proteins from different families, mainly seed storage proteins. Clarifying the origin of these peptides 

also gives us information about the proteins present in the isolates, including which proteins may cause 

sensory perceptions (e.g., the lipoxygenases). 

 

 
 
Figure 3.2.2.2.: Categorization of the 3,005 unique peptides identified via UHPLC-MS/MS based on 

protein origin (threshold for peptide number: 24). 

 

Physicochemical properties of the peptides in the pea protein solutions 

The peptides’ physicochemical and antioxidative properties were characterized. The nine 

physicochemical properties were chosen with a view to comprehensively describing pea peptide 

diversity. The normalized distributions of the property values for the peptides are in Figure 3.2.2.3. The 

peptides were mostly polar and hydrophilic. The mean GRAVY index value was around -0.5, which is 

also the overall mean value for the 20 standard amino acids (i.e., -0.49; Kyte & Doolittle, 1982). The 

median net charge was close to zero. Mean bulk was around 15 Å, which is also the overall mean for 

the 20 standard amino acids (i.e., 15.4 Å; Zimmerman et al., 1968). In terms of amino acid composition, 

the peptides had more aliphatic amino acids (Ala, Val, Leu, and Ile) than aromatic amino acids (His, 

Phe, Trp, and Tyr) or acidic amino acids (Asp and Glu). Finally, average length was 10 residues, 

although this observation should be interpreted with caution given the specificities of the analytical 

pipeline. Indeed, the upper limit on length was defined by the purification process and, more specifically, 

by the ultrafiltration steps; the lower limit on length (no peptides < 6 residues were detected) was a direct 

consequence of the chosen MS detection range (300–1,600 m/z). Thus, these results show that the main 

peptides in the pea protein isolates varied greatly in their physicochemical properties; however, when 

the overall averages were obtained, they generally corresponded to the averages for the 20 standard 

amino acids. 
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Figure 3.2.2.3.: A) Distribution of the overall 3,561 peptides on the 28 solutions (normalized 

distribution, kernel density): A1 = Relative aromatic nature; A2 = Relative acidic nature; A3 = 

Aliphatic index; A4 = Relative basic nature; A5 = Polarity; A6 = Bulk; A7 = GRAVY index; A8 = 

Length; A9 = Charge. 
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B) Comparison of distributions of the overall 3,561 peptides (normalized distribution, kernel density): 

B1 = Charge with 50Ib-50W in blue; 100Rb in green and 100Pb in red; B2 = Charge with 50Ia-50W 

in blue; 100Ra in green and 100Pa in red; B3 = Polarity with Refa in yellow and Refb in orange. 

C) Comparison of distributions of the overall peptides (3,561 peptides in blue) and for the peptides 

correlated to bitterness (275 peptides in red) on the 28 solutions (normalized distribution, kernel 

density): C1 = Polarity; C2 = Aliphatic index; C3 = GRAVY index. 

 

In addition, some of the identified peptides matched with antioxidant peptides observed in pea and 

included in BIOPEP database (see Table 3.2.2.1.). Bioactive peptides are usually 2–20 amino acids long 

and have molecular masses of less than 6 kDa (Sarmadi & Ismail, 2010; Sun et al., 2004). Here, eleven 

peptides had sequences that were homologous with those of known antioxidant peptides (BIOPEP 

database) previously identified in pea-protein-based solutions (Iwaniak et al., 2016): ADGF; 

ADVFNPR; ELLI; FVPH; HLHP; KFPE; LPILR; SAEHGSLH; SGAF; YLKT; and YVGD. These 

peptides contained many copies of phenylalanine, an amino acid known to mediate antioxidant activity 

(Sarmadi & Ismail, 2010). They came from different proteins—storage proteins such as legumins; 

enzymes such as seed linoleate 9S-lipoxygenase-3; and metabolic proteins such as transporters. These 

results highlight that the diversity of peptides present in pea-protein-based solutions may have 

nutritional benefits and could be used to enhance the value of plant-based foods. Peptide composition 

should be studied further from a nutritional point of view.  

 

Table 3.2.2.1.: Peptides identified in the pea protein solutions that had sequences homologous to those 

of previously described antioxidant peptides (BIOPEP database) (Iwaniak et al., 2016). 

 
Antioxidative sequence Protein Peptide identified in this study 

ADGF 

 
Lectin 

SYNVADGFTFF 

VINAPNSYNVADGFT 

VINAPNSYNVADGFTF 

VINAPNSYNVADGFTFF 

ADVFNPR 
 

Legumin L1 beta chain 
 

HEDLAGSSQADVFNPRAGRIT 

HEDLAGSSQADVFNPRAGRITSVN 

HEDLAGSSQADVFNPRAGRITSVNSLT 

HEDLAGSSQADVFNPRAGRITSVNSLTL 

HEDLAGSSQADVFNPRAGRITSVNSLTLPVLK 

HEDLAGSSQADVFNPRAGRITSVNSLTLPVLKL 

LKLHEDLAGSSQADVFNPRAGRITSVN 

LKLHEDLAGSSQADVFNPRAGRITSVNSLT 

ELLI Histone H3.2 STELLIR 

FVPH PsRT17-1 
VFVPHIRTLGD 

VFVPHIRTLGDA 

FVPH and SAEHGSLH Legumin A2 
SAEHGSLHKNAM(MOD:00719)FVPH 

SAEHGSLHKNAM(MOD:00719)FVPHY 

HLHP Sucrose transport protein QLSGAFKELKRPM(MOD:00719)W 

KFPE PIP1-2 
M(MOD:00719,MOD:00408)EAKEEDVSLGANKFPERQPIG 

M(MOD:00719,MOD:00408)EAKEQDVSLGANKFPERQPLG 

KFPE PIP-type 7a M(MOD:00408)EAKEQDVSLGANKFPERQPLG 

LPILR 
Legumin (Minor small) 
 

LPILRN 

LPILRNL 

SGAGRISTVNSLTLPILR 

SGAGRISTVNSLTLPILRN 

SGAGRISTVNSLTLPILRNL 

SGAF Malate dehydrogenase Q(MOD:01160)RIARISAHLHPSN 

YLKT 

 

Seed linoleate 9S-

lipoxygenase-3 

VKSPQKAYLKTITP 

VKSPQKAYLKTITPKFQT 

YLKTITP 

YVGD Actin-3 AYVGDEAQSKRGILT 

 

Impact of fractionation and recombination on peptide profiles 
 

Impact of fractionation on peptide profiles 

This study adopted an original approach: the decision was made to work with fractions instead of 

compounds because i) we had no a priori hypothesis on which compounds would be linked to 

perceptions and ii) from a sensory point of view working with all compounds (e.g. with molecular 
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fractionation and omission tests) can be very long and difficult. We broke down the pea protein isolates 

into six fractions (two pellets, two retentates, and two permeates), which were then recombined to form 

different solutions using a mixture design. Before studying the recombined solutions, we studied the 

impact of fractionation on peptide profile composition. 

 

The overall characteristics of the six fractions and the two raw solutions are presented in Table 3.2.2.2. 

The number of peptides per fraction was linearly correlated with the sum of the areas of the peptides 

(Pearson method; R² = 0.83). The permeates (100Pa and 100Pb) contained the greatest number of 

peptides, followed by the raw solutions (Refa and Refb). The pellets (50Ia-50w and 50Ib-50W) had the 

lowest number of peptides. Solutions from pea protein isolate b (Refb, retentate 100Rb, permeate 100Pb 

and pellet 50Ib-50W) had fewer identified peptides overall than solutions from pea protein isolate a 

(Refa, retentate 100Ra, permeate 100Pa and pellet 50Ia-50W). These differences could come from the 

processing of the two commercial products. A perspective to this work could be to study and identify 

the step (or steps) of the processing that generates these differences in peptide composition. 

 

To visualize the intersections in peptide sets among the six fractions and the two raw solutions (Rfa and 

Refb), an UpSet plot was used (Fig. 3.2.2.4.). An higher number of peptides were observed in solutions 

from Refa (permeate 100Pa, retentate 100Ra, refa and then pellet 50Ia-50W) than in the respective 

products from Refb (permeate 100Pb, retentate 100Rb, refb and pellet b). However, there were more 

peptides in the raw solution from Refb than in the raw solution from Refa. Thus, the two pea protein 

isolates were not impacted in the same way by the pea processing: it would appear that more specific 

peptides were “lost” from isolate b. 

 

To understand the effect of fractionation on the peptide profiles of the fractions, we examined the 

relationship between the fractions’ physical characteristics (Table 3.2.2.2.) and the sum of the areas of 

the peptides. There was not a significant correlation between peptide area and either dry matter content, 

protein content, ash content, pH, or surface hydrophobicity. However, there was a significant linear 

correlation with conductivity (Pearson method; R² = 0.84). Peptides (e.g., salts, which drive 

conductivity) are rather soluble and small in size. During the centrifugation step, they must have mostly 

gone into the supernatant, and then, during the filtration step, they must have passed into the permeate. 

Protein content and conductivity were slightly higher in isolate a than in isolate b. It can be assumed 

that these properties explain the higher peptide concentrations in the fractions from batch a. 

 

The peptides’ physicochemical properties showed similar normalized distributions across fractions (Fig. 

3.2.2.3.). The only notable differences occurred in charge between the pellets (50Ib-50W and 50Ia-50W) 

and the permeates (100Pb and 100Pb) and in the polarity between the raw solutions (Refa versus Refb). 

The peptides in the permeate solutions varied slightly more in charge. The peptides in the raw solution 

Refb were slightly more polar. Therefore, the fractionation process did not lead to peptide profiles that 

differed in physicochemical properties. As for the eleven peptides with sequences homologous with 

those of known antioxidant peptides, they occurred across the range of solutions. They were, however, 

most common in the raw solutions (Refa and Refb). 

 

Table 3.2.2.2.: Overall characteristics of the six fractions and the two raw solutions. 

 

Products 

Number 

of 

peptides 

identified 

Sum of 

peptide 

area 

Dry 

matter 

content (% 

w/w) 

Protein 

content 

(%) 

Ash content 

(%) 

Conductivity 

(mS/cm) at 

20°C 

pH at 

20°C 

Surface 

hydrophobicity 

index 

100Pa 2586 1.31E+11 0.20 0.04 0.07 1.44 8.4 363 

100Pb 1756 4.92E+10 0.20 0.04 0.04 1.16 9.3 298 

100Ra 2376 7.05E+10 1.70 1.41 0.15 1.08 7.5 933 

100Rb 1551 2.98E+10 1.70 1.48 0.12 0.88 7.5 1269 

50Ia-50W 1565 3.72E+10 6.00 4.91 0.18 1.06 7.5 2083 

50Ib-50W 809 9.26E+09 6.00 5.10 0.19 0.84 7.5 2172 

Refa 2235 7.13E+10 94.00 79.05 4.14 1.09 7.5 2961 

Refb 1488 2.26E+10 93.70 80.68 3.84 1.01 7.5 3504 
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Figure 3.2.2.4.: Depiction of the intersections in peptide sets among the six fractions and the two raw 

solutions (UpSet plot). The blue horizontal bars show the number of peptides in each 

fraction/solution. The black dots and lines show the combinations of peptides that make up each 

cluster or subset of the fractions/solutions. The vertical histogram shows the number of peptides in 

each subset. 

 

Peptide profiles of the recombined solutions 

A mixture design was used to create a suite of solutions by combining the pea protein fractions in 

different ways. To validate this methodology, the peptide profiles of six of the recombined solutions 

(50Pb-25Ib-25W, 25Pa-25Ra-13Ia-38W, 70Pb-30Ra, 40Ra-30Ib-30W, 50Ra-25Ia-25W, and 50Pb-

50Rb) were determined; the results were compared with the peptide profiles that were calculated using 

the fraction-based approach. Considering the number of values to be compared (3,561 peptides x 6 

solutions), we did not contrast the individual values of the recombined solutions but rather the 

distributions of the differences between their measured and calculated values. These distributions were 

compared to the distributions for replicates of the experimental replicate solutions (100Ra, 100Rb, Refa 

and Refb). The quartiles were calculated excluding any null values. The quartiles for repeated solutions 

were: 1st quartile—4.39E+05, median—1.18E+06, 3rd quartile—2.39E+06, and maximum—

6.11E+08. The differences between the quartiles for the measured versus calculated values were as 

follows: 1st quartile—7.19E+05, median—1.65E+06, 3rd quartile—4.22E+06, and maximum—

1.47E+09. The overall distributions were similar between replicate solutions and the data for the 

recombined solutions. The quartiles were slightly lower in the case of the former, but the orders of 

magnitude were similar. In the case of some peptides, there were significant differences between the 

measured and calculated values for the recombined solutions. However, these peptides were among 

those with the largest areas, and the relative differences were therefore small. In conclusion, it appeared 

that peptide profiles could be reliably estimated for the recombined solutions using fraction-based 

calculations.  

 

PCA was used to visually assess the main differences among the recombined solutions (Fig. 3.2.2.5). 

The solutions were well distributed along axes F1 and F2, which accounted for 71.8% of the variance. 

Thus, the maps based on the first two axes seemed to provide a good¬ quality projection of the initial 

multidimensional table, even though some information might have remained hidden in the subsequent 

axes. The data for the areas of the 3,561 peptides were clustered within one half of the correlation circles 

and were thus clearly correlated. Overall, peptide concentrations increased from water solution (X, lower 

left) to the more permeate-based solutions (100 Pb and 100Pa; X upper/right). The solutions formulated 

with fractions from batch a (Fig. 3.2.2.5: in green) and the solutions formulated with fractions from 

batch b (Fig. 3.2.2.5: in blue) stand out clearly. Batch a variability is mainly found on axis 1, and batch 

b variability is mainly found on axis 2. Solutions formulated with fractions from both batch a and b are 

in the middle (Fig. 3.2.2.5: in orange). Regardless of the batch, permeates (100Pa and 100Pb) had the 

highest peptide concentrations. The pellets (50Ia-50W and 50Ib-50W) had the lowest peptide 

concentrations. The raw solutions (Refa and Refb) had intermediate peptide concentrations. 
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Consequently, with this experimental design, we have managed to create two different ranges of peptide 

concentrations. The peptides in fraction mixtures (batch a and batch b) allowed us to explore any 

interactions.  

 

  

Figure 3.2.2.5.: Results of the principal component analysis (PCA, wide method) examining the 

peptide profiles for the 28 solutions, which were determined using a fraction-based formulation 

strategy and the peptides that had been identified (based on 3,561 peptides). On the left is a loading 

plot showing the correlational relationships between the PCA axes 1 and 2 and the peptide areas. On 

the right is a PCA plot with the same two axes that shows the relative similarity in the solutions’ 

peptide profiles. The green circles are the recombined solutions created from batch b. The blue 

triangles are the recombined solutions created from batch a. The orange squares are the recombined 

solutions created from batch a and batch b. The dark star is the water solution. The solid symbols 

represent the measured values, and the empty symbols represent the calculated values. 

 

Identifying factors influencing perceived bitterness 
 

Sensory properties of the recombined solutions 

The 6 different fractions were combined in various ways to formulate 28 pea protein solutions. These 

solutions had been used by Cosson et al., in a previous sensory study  to obtain greater insight into the 

origin of perceived beaniness (expressed via the following attributes: almond, broth, cereals, nuts, pea, 

and potato), bitterness, and astringency in pea-protein-based foods. Cosson et al., found that the 

attributes contributing to perceived beaniness were mainly influenced by the retentate and permeate 

fractions, likely because of their levels of volatiles, which were indirectly reflected by hexanal levels. 

Perceived astringency was mainly influenced by the retentate and pellet fractions, while perceived 

bitterness was largely driven by the retentate fraction. Bitterness and astringency were associated with 

the levels of phenolics, which were indirectly reflected by caffeic acid content. However,  this previous 

study concluded that a more detailed analysis of solution composition (i.e., beyond hexanal and caffeic 

acid levels) would be needed to uncover the more precise origins of these sensory perceptions (Cosson 

et al., 2021). 

 

Drawing upon the results of this previous study, the peptide profiles of the pea protein solutions were 

examined in tandem with the sensory profile data. The correlations between peptide areas and sensory 

scores were evaluated (Pearson method). Each sensory attribute (score out of 10) was correlated with 

the areas of several peptides (p-value < 0.05). Correlations were most common for the broth attribute 

(1,640 out of 3,561 peptides), followed by the salty attribute (1,277 out of 3,561 peptides). In contrast, 

correlations with other attributes were significantly less frequent: bitter—275 peptides; astringent—173 

peptides, mouthfeel—410 peptides, pea—440 peptides, potato—246 peptides, almond—80 peptides, 
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nuts—135 peptides, and cereals—214 peptides. We also compared the peptides from this study with the 

sensory peptides listed in the BIOPEP database (Iwaniak et al., 2016), but there were no noteworthy 

findings. 

 

Perceived saltiness can arise from the presence of peptides with charged terminals and/or charged side 

chains (Temussi, 2012). However, the phenomenon can also have an indirect cause: NaCl and peptides 

(small soluble molecules) are likely distributed in a similar way in pea protein fractions. Furthermore, a 

higher salt concentration can also change how protein hydrolysis or peptide fractionation plays out, 

resulting in different peptide concentrations (Cheison & Kulozik, 2017).  

 

Broth notes may be perceived when peptides have activated T1R1/T1R3 umami receptors. Indeed, 

umami is often described as a meaty, broth-like, or savory taste and can participate in perceived 

brothiness (Lioe et al., 2010). Such peptides are between 2 and 11 residues long. For example, Glu-Gly-

Ser-Glu-Ala-Pro-Asp-Gly-Ser-Ser-Arg was found to elicit the sensation of umami during the 

consumption of peanut hydrolysate (Su et al., 2012). However, the idea that some peptides activate 

umami receptors is controversial because when such peptides are synthetized, they do not always elicit 

umami (Maehashi et al., 1999). Another explanation could be that the sensation of umami is a 

consequence of the peptides’ partial hydrolysis, which results in sizeable concentrations of Asp or Glu 

(Temussi, 2012; Wang et al., 2020). Considering the number of peptides associated with the broth note 

(36% of the peptides), several mechanisms are likely at work. In any case, peptides appear to play a 

major role in the construction of brothiness. 

 

Relationships between peptide presence and bitterness 

Although bitterness is correlated with a much smaller number of peptides, it is important to discuss this 

sensation as well. Indeed, the bitterness of pea-protein-based foods is a major off-note in these products 

(Roland et al., 2017). Here, among the 275 peptides correlated with bitterness, 106 were exclusively 

correlated with bitterness. Many peptides have the ability to activate bitter receptors (Aubes-Dufau et 

al., 1995). Based on past research, such peptides are between 5 and 8 residues long (Aubes-Dufau et al., 

1995; Maehashi & Huang, 2009). Here, however, only 14 of the peptides associated with bitterness were 

less than 8 residues in length: SRNPIY, KRHGEW, NLQNYR, SNKFGKF, NQKQSYF, YLKGLKF, 

YQKSTEL, APHWNIN, AQPLQRE, ISLNKIRL, NQKQSYFA, ANAQPLQR, NAQPLQRE, and 

EVLSWSFH. The peptides KRHGEW, NQKQSYF, NAQPLQRE, and AQPLQRE are particularly 

noteworthy because they were positively correlated with the bitterest solutions. In contrast, the peptides 

YLKGLKF, YQKSTEL, and EVLSWSFH were negatively correlated with bitterness. The correlations 

are shown on the Figure 3.2.2.6.  

 

Using BitterX software (Huang et al., 2016), it was found that these eight peptides were highly likely to 

activate bitter receptors (either TA2R7 or T2R40; probability: 88–79%). However, to confirm that these 

peptides contribute to perceived bitterness in the mouth, it would be necessary to study their effects on 

bitter receptors in vitro or to have a sensory panel evaluate them in solution. It would also be useful to 

assess their concentrations relative to their perception thresholds. For example, Toelstede and Hofmann 

(2008) found that 12 peptides eliciting bitter sensations had recognition thresholds between 0.05 and 6.0 

mmol/L. 

 

In addition, while other groups of peptides correlated with sensory perceptions had largely overlapping 

characteristics, bitterness-related peptides displayed certain differences (Fig. 3.2.2.3), such as lower 

GRAVY values (i.e., are more hydrophilic on average), lower aliphatic values (i.e., have smaller relative 

volumes on average), and higher polarity (i.e., are more polar on average). These results do not concur 

with the results of previous studies, which have shown that such peptides are mainly hydrophobic (Kim 

et al., 2008). In conclusion, these peptides may affect sensations of bitterness in the mouth by activating 

bitter receptors (i.e., the peptides displaying positive correlations), blocking bitter receptors (i.e., the 

peptides displaying negative correlations), or interacting with other molecules that do either (i.e., the 

peptides displaying positive or negative correlations).  
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Figure 3.2.2.6.: Peptides (size < 8 residues) correlated with perceived bitterness (score out of 10); the 

R² values and p-values from the Pearson’s correlational analysis are indicated. 
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3.2.2.4. Conclusion 

 

In this study, we identified and characterized the main oligopeptides and polypeptides (5–40 amino acids 

long) found in pea protein solutions. We had four main findings. First, we identified a wide variety of 

peptides representing a range of protein families, mainly those containing seed storage proteins but also 

those containing proteins that can play a role in sensory perceptions, such as lipoxygenases. Second, 

these peptides were mostly polar and hydrophilic, and our fraction-based formulation strategy did not 

affect their overall physicochemical properties. Third, eleven peptides had sequences homologous with 

those of known antioxidant peptides. These results indicate that the variety of peptides present in pea 

protein solutions can have nutritional benefits. Fourth, most of the peptides in the pea protein solutions 

were correlated with sensory attributes. In particular, many peptides were correlated with salty and broth 

attributes, perhaps expressing the relationship of some peptides to umami. A lower but still significant 

number of peptides displayed a correlation with bitterness. These results highlight the mechanistic 

importance of these molecules in sensory perceptions in the mouth. Taken together, these results suggest 

that a better understanding of the peptide composition of plant protein isolates could help us address 

related sensory issues and develop plant-protein-based foods whose taste appeals more to consumers. 

 

Main results 

 3,005 unique peptides were identified in the pea protein solutions. 

 45% of these peptides came from seed storage proteins, mainly vicilin proteins. 

 Among them, 11 peptides displayed sequence homology with known antioxidants. 

 As regards links with perceptions, 1,640 peptides were associated with broth scores, perhaps 

reflecting umami perceptions. 

 In addition, 14 peptides were associated with bitter scores and were likely to activate bitter 

receptors. 
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Section 3.2.3. – Identification and quantification of main 

phytochemicals from pea protein isolates and first links with 

perception 
 

3.2.3.1. Introduction 

 

For several years now, one of the major challenges for the agri-food industry has been to develop new 

protein sources to compensate for the future lack of animal proteins. In this context, plant proteins are 

receiving much attention from industry and consumers. Plant protein isolates such as pea (L. Pisum 

sativum) are increasingly used as food ingredients because of their functional properties, their protein 

content, their good environmental sustainability and their attractive price. However, plant proteins and 

especially the isolate fractions of plant raw materials, possess sensory drawbacks, including olfactory 

and sapid off-notes which impede the development of plant protein-based foods for human consumption. 

Research on pea-based food products has largely focused on the role of volatile aroma compounds in 

creating beaniness perception. But knowledge explaining the bitterness and astringency of these 

products remains partial, as few studies have been carried out in comparison of beaniness perceptions.  

 

In recent years, it has been proposed that a wide variety of phytochemicals could be responsible for the 

bitter and astringent perception of pea-protein isolates. In particular lipids, saponins and phenolic 

compounds were highlighted in the literature. Bitter lipid oxidation products that are formed either 

through enzymatic pathways or by autoxidation have been considered. Recently, Gläser et al. identified 

14 lipids and lipid oxidation products on pea protein isolate fractions with high bitter taste (Gläser et al., 

2020). Saponins have also been associated with a bitter-astringent perception in pea protein isolates. In 

particular, two types of saponins have been reported: soyasaponin I and DDMP saponins (2,3-dihydro-

2,5-dihydroxy-6-methyl-4H-pyran-4-one) (Heng et al., 2006; Reim & Rohn, 2015). Gläser et al. studied 

the influence of soyasaponin I on the overall bitter and astringent perceptions of pea protein isolates by 

calculating the Dose-over Threshold factor (ratio of the concentration to the taste threshold of the 

respective taste active substance). For bitterness, values were below the taste threshold indicating that 

the tested pea-protein isolate had limited impact whereas for astringency, they concluded that the 

concentration of the soyasaponin I exceeded its astringent taste threshold by a factor of 1.8. However, 

to our knowledge, there is no detailed studies on the composition, the content and the impact of other 

pea saponins on taste perceptions of pea products.  

 

For phenolic compounds, studies on their composition and content in pea protein isolates are scarce with 

few links to perceptions. However, several phenolic acids were described with bitter-astringent 

perception on other types of plant materials. For example, caffeic acid and o-caffeoylquinic acids have 

been reported in coffee (Frank et al., 2006) and hydroxybenzoic acids, hydroxycinnamic acids and their 

ester derivatives in wine (Hufnagel & Hofmann, 2008). Several flavonoids have also been associated 

with bitter-astringent perceptions. For example, catechin and gallic acid have been reported in red wine 

(Robichaud & Noble, 1990); flavan-3-ols and flavonol glycosides in cocoa (Stark et al., 2006). In 

addition, in yellow pea, a total of 115 different structural phenolic compounds have been described in 

different studies (Fahim et al., 2019; Neugart et al., 2015; Stanisavljevic et al., 2015). These phenolics 

were mainly glycosylated flavonols and their related compounds such as flavanols, anthocyanins, 

isoflavonoids (Fahim et al., 2019). A large number of 3-O-glycosides of kaempferol and quercetin were 

also identified and quantified in pea (Neugart et al., 2015; Stanisavljevic et al., 2015). These compounds 

could therefore potentially also participate in bitterness and astringency perceptions of pea protein 

isolates. 

 

Thus, the aim of this study is to identify the key phytochemicals (phenolic acids, flavonoids and 

saponins) from pea protein isolates and to identify links explaining sensory properties. To this end, pea 

flour, pea protein isolates and pea protein isolate fractions were studied. The phytochemicals profiles of 

the pea products were determined by UHPLC-DAD-MS. Then, the impacts of isolates and their fractions 
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on phytochemicals profile were studied. Finally, key phytochemicals compounds were correlated to 

bitterness and astringency properties of pea products. 

 

3.2.3.2. Materials and methods 

 

Chemical reagents  

Based on literature, 12 phenolic compounds were used as standards : Kaempferol-3-O-glucoside (CAS. 

480-10-4, grade analytical standard), Soyasapogenol B (CAS. 595-15-3, grade ≥98% HPLC), Caffeic 

acid (CAS. 331-39-5, grade  ≥98.0% HPLC), (+)-Catechin (CAS. 225937-10-0, grade ≥98% HPLC), 

trans-Ferulic acid (CAS. 537-98-4, grade ≥99.0% HPLC), Gallic acid (CAS. 149-91-7, grade 97.5-

102.5% titration), Naringin (CAS. 10236-47-2, grade ≥95% HPLC), trans-p-Coumaric acid (CAS. 501-

98-4, grade ≥98.0% HPLC), p-Hydroxybenzoic acid (CAS. 99-96-7, grade ≥99% FG), Quercetin-3-O-

glucoside (CAS. 482-35-9, grade ≥90% HPLC), Quercetin-3-O-rutinoside, (CAS. 207671-50-9, grade 

≥94% HPLC) and Sinapic acid (CAS. 530-59-6, grade ≥98%) were purchased from Sigma Aldricht. 

Acetonitrile quality Optima for HPLC-MS, Water quality Optima for HPLC-MS, Formic acid quality 

Optima for HPLC-MS and Methanol quality Optima for HPLC-MS were purchased from Thermo 

Fisher. Solutions were filtered before UHPLC analysis through PTFE filters of 13mm, porosity 0.22 µm 

purchased from Fisherbrand. Stock solutions of single analytes and working solutions were prepared 

and immediately stored in glass vial at -80°C (Vial N9 1.5 mL, 11.6x32 mm, MACHEREY-NAGEL 

GmbH & Co. KG). 

 

Pea Products 

Pea flour and two pea protein isolates (80% protein content Nx6.25, 83% dry matter ?) were obtained 

from Roquette Frères (Lestrem, France). In addition, six fractions were obtained from the two pea 

protein isolates, by centrifugation and membrane filtration, as explained by Cosson et al., (2021 – 

Section 3.1.2.): pellets a and b, permeates a and b, and retentates a and b. All fractionation steps were 

carried out at 4°C, and stored at -20°C in 50 mL glass flasks. Dry matter content was determined via 

drying (prepASH®219 analysis system) and the 9 pea products obtained had the following dry matter: 

92% for flour, 93.7% for isolates a and b, 6.18% for retentate a and b, 1.7% for retentate a and b, 0.2% 

for permeate a and b.  

 

Preparation of standards and pea samples 

 

Preparation of standard solutions 

Solutions of 0.1 g/L of each standard were prepared in methanol/water (70/30 V/V). For Quercetin-3-

O-glucoside and Quercetin-3-O-rutinoside, solubilisation was helped by 15min of sonication. Then a 

0.01g/L stock solution of a mixture of all standards was prepared in methanol/water (70/30 V/V). 

Dilution of the stock solution with methanol yielded the working solution at concentrations of 0.05 to 

15 ng/µl for p-Hydroxybenzoic acid and of 1 to 10 ng/µl for the other references. All stock and working 

solutions were filtered through a 0.22 µm PTFE filter and stored in the dark at -80°C until analysis. 

Calibration curves were obtained by plotting the peak areas of the compounds as a function of the 

concentration of the standard solution with TraceFinder software (Thermo Scientific, USA). Calibration 

curves were linear with R2 values exceeding 0.99. The limit of detection (DL) was of 0.02 ng/μl and the 

limit of quantification (QL) was of 8.0 ng/μl; except for Soyasapogenol B where DL = 0.07 ng/g and 

QL = 3 ng/g, and except for p-Hydroxybenzoic acid where DL = 0.05 ng/g and QL = 30.0 ng/g. 

 

Preparation of pea samples with a high dry matter content (powders and pellets) 

Samples with a high dry matter content (flour, isolates a and b, pellets a and b) (6.0g) were placed in 

150 mL glass vials (Schott vial, Dutscher France) and extracted three times with 30 ml of 

methanol/formic acid mixture (99/1, V/V) for 2h with a magnetic stirrer at room temperature, protected 

from light. After extraction, supernatants were kept for 10 min at -20°C then separated by centrifugation 

at 4500 rpm for 20 min at 4°C (Eppendorf 5804R). The supernatant was evaporated under vacuum at 

40°C and in the dark to protect sample from light (Evaporator vacuum concentrators, Jouan Thermo 

Electron Corporation, RC 1022). In order to remove some precipitates occurring during the 

concentration step, a centrifugation was performed before total evaporation of solvent (4500 rpm for 20 
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min at 4°C). After that, supernatants were evaporated under vacuum at 40°C protected from light until 

the solvent has evaporated completely. After solubilisation, in 1 mL of methanol/water mixture (80/20, 

V/V), samples were kept for 10 min at -20°C to promote precipitation. At that point, samples were 

separated by centrifugation at 4500 rpm for 20 min at 4°C. Supernatants were filtered through a 0.22 

µm PTFE filter and stored in the dark at -80°C previous to analysis. All these steps of filtration and 

centrifugation were added to ensure obtaining a clear extract without any precipitate. Samples were 

prepared in triplicate. 

 

Preparation of pea samples with a low dry matter content (permeates and retentates) 

Samples with a low dry matter content (retentate a and b, permeate a and b) were prepared as explained 

previously except for the first step (extraction step): 6.0 g of samples were mixed to 1 ml of 

methanol/formic acid mixture (99/1, V/V) for 10 min at room temperature, protected from light. 

 

Ultra-high performance liquid chromatography (UHPLC) – mass spectrometry (MS) analysis of 

phytochemical compounds 

Chromatographic separations were performed using UHPLC system (Ultimate 3000 Thermo Scientific, 

USA). The analytical column used for separations was a Hypersil GOLD (100mmx2.1mmx1.9µm, 

Thermo Scientific). The mobile phase consisted of (A) water + 0.1% formic acid and (B) acetonitrile + 

0.1% formic acid (Optima, Thermo Fisher Scientific). A gradient program at a flow rate of 0.25ml/min 

was used: 4 min 98% of (A), linear gradient from 98% to 70% of (A) in 26 min, linear gradient from 

70% to 2% of (A) in 6 min, 9 min 2% of (A). The initial gradient pressure was 280 bar. The injection 

volume was 5µL and the injector temperature 7°C. The oven temperature was 25°C.  

 

The UHPLC system was coupled to a Q Exactive Orbitrap high resolution mass spectrometer (Thermo 

Scientific, USA) equipped with heated-electrospray ionization probe (HESI II, Thermo Scientific, 

USA). The mass spectrometer was operated in negative and in positive ion modes. Parameters of the ion 

source were as follows: sheath gas pressure 2.4E5 Pa, auxiliary gas flow rate 10, no sweep gas flow rate, 

spray voltage 3KV, capillary temperature 300°C, S-lens RF Level 50V and heather temperature 300°C. 

MS spectra (MS and MS²) were acquired by full MS and Full MS/ddMS2 range (m/z) from 85 to 1000 

amu the resolution was 70000 and 17500 respectively. The system was also coupled to a diode array 

detector covering full range acquisition between 190 and 600 nm. 

 

Phytochemicals were identified according to the corresponding spectral characteristics: mass spectra, 

accurate mass, characteristic fragmentation, UV spectrum and characteristic retention time. Xcalibur 

(Thermo Scientific, USA) was used for instrument control, data acquisition, and data analysis. 

Phytochemical quantification was obtained by integration of specific reconstructing ion current in 

comparison with the calibration curves with TraceFinder software (Thermo Scientific, USA). 

Compound discoverer (Thermo Scientific, USA) with several databases (PubChem, Phenol explorer, 

Flavonoid database, Arita database, NPASS database) were used to propose formula and identification 

of peaks. 

 

Sensory analysis 

Pea solutions were characterized by static profiling by 17 trained panellists (13 women and 4 men; mean 

age = 23 years old). First attribute selection were done with the help of check-all-that-apply (CATA) 

questionnaire. Secondly, the panellists were trained to evaluate the intensity of these attributes along an 

unstructured scale (range: 0–10) using external references. Thirdly, the attributes were evaluated in 

blocks. The first attribute block focused on olfactory perception evaluated by nose (attribute block 1: 

pea, broth, nuts, almond, potato and cereals). The second block focused on taste perception and 

mouthfeel (attribute block 2: salty, sugar, bitter, astringent, mouthfeel, and granularity). The last 

attribute block focused again on olfactory perception but solutions were evaluated in mouth (attribute 

block 3: pea, broth, nuts, almond, potato and cereals). Each solution was evaluated in duplicate by the 

17 judges. Complementary details on attribute selection, panellist training and method characterization 

can be found in the companion papers Cosson et al., 2021 (Section 3.1.2.). Here, only the bitter and 

astringent attributes evaluated by mouth will be discussed. 
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Statistical analysis 

Analyses were performed using R (R Core Team, 2019) and JMP (v. 13.1.0; SAS Institute Inc., Cary, 

SC, USA). For analyses of an inferential nature, α = 0.05 was the threshold for statistical significance. 

To visually explore differences in the results of phytochemicals profile between the nine pea products, 

we carried out principal component analysis (centred-reduced, Pearson n) on a correlation matrix. 

Phytochemicals were also investigated in relation with the sensory attributes scores of the solutions. For 

that, Pearson correlation matrix was performed to study links between concentration on phytochemicals 

and sensory scores (bitterness and astringency).  

 

3.2.3.3. Results and discussion 

 

Identification of phytochemicals in pea samples 

This research provides an exploratory identification of main soluble phytochemicals from pea flour, pea 

protein isolates and pea fractions. The analysis of the materials obtained by UHPLC-DAD-MS allowed 

the tentative identification of a total of fifty-four compounds. These identified compounds are either 

native seed compounds or reaction products formed during the processes. By comparing retention times 

and accurate MS and MS2 data with those of reference standards, eleven compounds were 

unambiguously identified: two hydroxybenzoic acids, four hydroxycinnamic acids, three flavonols, two 

flavanols and one saponin. In addition, based on UV–vis, accurate MS and MS2, web database and 

literature data, nine compounds were tentatively identified as phenolic acids, ten as flavonoids, six as 

terpenoids and one from other family. Table 3.2.3.1 includes information about the retention times, 

assigned identities, UV–vis absorption, molecular formula, accurate masses, main MS data and web 

database for individual compounds. 

 

Identification of phenolic acids 

Standard solutions of Gallic acid (peak n°1), p-Hydroxybenzoic acid (peak n°5), Caffeic acid (peak n°8), 

trans-p-Coumaric acid (peak n°11), trans-Ferulic acid (peak n°12) and Sinapic acid (peak n°13) were 

used and analysed with ESI source in positive and negative ion modes. ESI source in negative ion mode 

showed better sensitivity. In addition, nine phenolic acids were tentatively identified and will be 

discussed in the following paragraphs in negative ion mode. 

 

The peak n°2 presented two absorption bands characteristic of phenolic acids, one at 241sh-257 and one 

at 293 nm. It displayed a major molecular ion at m/z 299.0773. The fragment at m/z 137.0235 was 

observed on its MS2 spectrum which may correspond to the presence of a hydroxybenzoic moiety and 

the loss of a hexoside residu (-162). The fragment at m/z 93.0334 was also observed related to the loss 

of carboxylic acid function (-44). It was thus tentatively identified as p-Hydroxybenzoic hexoside or 

isomer. The peak n°3 presented also two absorption bands at 256 nm and at 293 nm. It displayed a major 

molecular ion at m/z 153.0183. The fragment ion at m/z 109.0284 was observed on its MS2 spectra 

which may correspond to the loss of COO. It was so tentatively identified as Protocatechuic acid, 

previously reported in pea (Klejdus et al., 2008; Singh et al., 2017).  

 

Table 3.2.3.1.: Phytochemicals identified in pea flour, pea protein isolates and/or pea fractions with: 

peak number, RT [min], UV (nm), [M+H]+ MS1, [M+H]+ MS2, [M-H]- MS1, [M-H]- MS2, molecular 

weight theoretical, [M+H]+, theoretical, [M-H]- theoretical, formula hypothesis, tentative of 

identification and database used for the identification.  
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The peak n°6 presented two adsorption bands at 271 nm and 330 nm. It displayed a major molecular ion 

at m/z 341.0874. The fragment at m/z 179.0343 was observed on its MS2 spectra which may correspond 

to [caffeic acid−H+] and only one secondary fragment at m/z 135 which may correspond to [caffeic 

acid−CO2−H+] (Jaiswal et al., 2014). It was thus tentatively identified as Caffeoyl hexoside previously 

reported in pea leaves (Klopsch et al., 2019; Neugart et al., 2015). The peak n°7 presented an adsorption 

band at 295 nm. It displayed a major molecular ion at m/z 325.0928. The fragment at m/z 163.0396 was 

observed on its MS2 spectra which could correspond to [coumaric acid−H+] as well as the fragment at 

m/z 119.0492 which could correspond to [coumaric acid−CO2−H+] (Iswaldi et al., 2013). It was thus 

tentatively identified as Coumaroyl-4-O-hexoside which has been previously reported in pea leaves 

(Klopsch et al., 2019).  

 

The peak n°4 presented an absorption bands at 254 nm. It displayed a major molecular ion at m/z 

252.0512. Odd mass indicates the presence of an odd number of nitrogen atoms. The fragment at m/z 

132.0293 was observed on its MS2 spectra which may correspond to [aspartic acid–H+], as well as the 

fragment at m/z 93.0334 which may correspond to the phenol moiety. It was tentatively identified as N-

p-Hydroxybenzoyl aspartic acid, based on the work of Clifford et al. on amino acid-bound 

hydroxycinnamic acids (Clifford et al., 2010). Similarly, the peaks n°9, n°10, n°14 and n°15 displayed 

odd mass and fragment at m/z 132.0293. The peaks n°9 and n°10 presented two adsorption bands 

characteristics of hydroxycinnamic acids at 295/293 nm and at 320 nm. The peak n°9 displayed a major 

molecular ion at m/z 278.067. The fragment ion at m/z 162.0552 could correspond to the loss of succinic 

acid. It was thus tentatively identified as a N-Coumaroyl aspartic acid derivative (Oracz et al., 2019). 

The peak n°10 displayed a major molecular ion at m/z 308.0776. The fragment at m/z 193.0502 could 

correspond to [acide ferulic –H+]. It was thus tentatively identified as a N-Feruoyl aspartic acid 

derivative acid. The peaks n°14 and n°15 presented an absorption band at 250 nm. The peak n°14 

displayed a major molecular ion at m/z 250.0720. The fragment at m/z 135.0442 may correspond to 

[phenylacetic acid –H+].  It was tentatively identified as a N-Phenylacetyl aspartic acid derivative. The 

peak n°15 displayed a major molecular ion at m/z 266.0670. It was tentatively identified as another 

Aspartic acid derivative. 

 

Identification of flavonoids  

Standard solutions of Kaempferol 3-O-glucoside (peak n°20), Quercetin-3-O-rutinoside (peak n°25), 

Quercetin-3-O-glucoside (peak n°26), Catechin (peak n°28) and Naringin (peak n°29) were studied 

using ESI source in positive and negative ion modes. ESI source showed better sensitivity in the negative 

ion mode for these compounds. In addition, ten other flavonoids were tentatively identified and will be 

discussed in the following paragraphs in negative ion mode. They presented two absorption bands 

characteristic of flavonoids, i.e. one in the range 211–267 nm corresponding to the phenolic nuclei and 

the second one in the range 347–373 nm corresponding to the conjugated system (Mabry et al., 1970). 

 

Fragment ions at m/z 287.0545 (positive ion mode) and m/z 284.0237 or 285.0405 (negative ion mode) 

were observed on the MS2 spectra of peaks n°16 to 22 which could corresponds to the presence of a 

kaempferol moiety. The peaks n°16, n°17, n°19, n°21 and n°22 displayed a MS2 fragment at m/z 

609.1436 which could corresponds to [kaempferol + 2 hexoses]. In addition, the peaks n°21 and n°22 

displayed a MS2 fragment at m/z 771.1990 which could corresponds to [kaempferol + 3 hexoses]. 

Kaempferol derivatives have been reported in pea seed coat (Duenas et al., 2004; Stanisavljevic et al., 

2015), in pea seed (Jha et al., 2019), in pea leaves (Klopsch et al., 2019; Neugart et al., 2015) and in pea 

shoots (Ferreres et al., 1995; Santos et al., 2014). The peak n°16 displayed a major molecular ion at m/z 

771.1978. It was tentatively identified as Kaempferol sophorotrioside which was previously identified 

by RMN in pea shoots (Ferreres et al., 1995). The peak n°19 displayed a major molecular ion at m/z 

695.1442. From the major molecular ion, it was tentatively identified as Kaempferol malonyl di-

hexoside. The peak n°22 displayed a major molecular ion at m/z 947.2452. It was tentatively identified 

as a Kaempferol feruloyl tri-hexoside, by similarity of the Quercetine feruloyl tri-hexoside previously 

identified by RMN in pea shoots (Ferreres et al., 1995) and by comparison of spectra with the results of 

Goupy et al. (2013). The peak n°21 displayed a major molecular ion at m/z 977.2558. It was tentatively 

identified as a Kaempferol sinapoyl tri-hexoside by similarity of the Quercetine sinapoyl tri-hexoside 

previously identified by RMN in pea shoots (Ferreres et al., 1995). The peak n°17 displayed a major 
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molecular ion at m/z 753.1879 and the peak n°18 displayed a major molecular ion at m/z 593.1510. 

They were tentatively identified as a Kaempferol derivatives. 

 

A fragment ion at m/z 303.0497 (positive ion mode) or at m/z 300.0276 (negative ion mode) was 

observed on the MS2 spectra for peaks n°23 to 27, which could corresponds to the presence of a 

quercetin moiety or to a flavone of the same mass. The peaks n°23 and n°24 displayed also a MS2 

fragment at m/z 445.0775 which could corresponds to [quercetine + hexose - H2O]. Like kaempferol 

derivatives, quercetin derivatives have been reported in pea seed coat (Duenas et al., 2004; 

Stanisavljevic et al., 2015), in pea seed (Jha et al., 2019), in pea leaves (Klopsch et al., 2019; Neugart 

et al., 2015) and in pea shoots (Ferreres et al., 1995; Santos et al., 2014). The peak n°23 displayed a 

major molecular ion at m/z 787.1926 and presented two absorption bands at 256-267sh nm and at 350 

nm. It was tentatively identified as Quercetin tri-hexoside. The peak n°24 displayed a major molecular 

ion at m/z 625.1401 and presented two absorption bands at 256 nm and at 355 nm. It was tentatively 

identified as Quercetin di-hexoside. The peak n°27 displayed a major molecular ion at m/z 301.0352, 

an higher retention time (35.95 min) and one absorption band at 370 nm. It was tentatively identified as 

the Quercetin aglycone, which has been reported in pea seed coat (Stanisavljevic et al., 2015) and pea 

seed (Jha et al., 2019). 

 

The peak n°30 presented two absorption bands at 267 nm and 336 nm. It displayed a major molecular 

ion at m/z 431.0981. A fragment ion at m/z 269.0456 4 was observed on its MS2 spectra which may 

correspond to the Apigenin moiety and at m/z 164.0448 which may correspond to an hexoside in the O 

position. It was tentatively identified as Apigenine-7-O-glucoside which was previously identified in 

pea root with a standard (Šibul et al., 2016).  

 

Identification of terpenoids 

Standard solution of Soyasapogenol B (peak n°37) was studied using ESI source in positive and negative 

ion mode. ESI source in positive ion mode showed better sensitivity for Soyasapogenol B. It presents 

only one little absorption band with maximum at 228 nm and displayed a major ion at m/z 459.3844 on 

the MS1 spectra (positive mode). Two fragment ions at m/z 441.3723 and 423.3616 were observed on 

its MS2 (positive mode). 

 

In addition, seven peaks were tentatively identified as saponins (peak n°31 to peak n°36). The seven 

peaks showed a better sensitivity in positive ion mode and presented only one little absorption bands 

with maximum between 193 nm and 229 nm characteristics of saponins (Decroos et al., 2005). Their 

retention time were also high (between 35.9 and 37.6 min) confirming the hypothesis of very apolar 

compounds. The same fragment ions at m/z 85.0291, 141.0183, 365.3195, 423.3616, 581.3833 and 

441.3723 were observed in their MS2 spectra (positive mode) in favour of compounds from the same 

family. The fragments m/z 441.3723 and 423.3616 are similar to Soyasapogenol B. The fragments m/z 

581.3833 and 423.3616 are similar to DDMP Saponin (Daveby et al., 1998). In addition, saponins have 

been previously reported in pea seed (Curl et al., 1985; Daveby et al., 1998; Heng et al., 2006; Reim & 

Rohn, 2015) and the masses found for peaks n°31 to 36 correspond to saponins existing in Knappsack 

database for Pisum Sativum. In particular, the peak n°33 displayed a major molecular ion at m/z 

943.5251 on the MS1 spectra (positive mode) and was tentatively identified as Saponin B (Heng et al., 

2006). 

 

Finally, a last peak, which did not belong to any of the above families, have been tentatively identified. 

The peak n°38 displayed a major molecular ion at m/z 203.0821 in the negative ion mode. It presented 

a characteristics absorption band at 279-289sh nm and was tentatively identified as tryptophan. 

 

Phytochemical profiles of pea products and identification of key bitter-astringent compounds 

 

Quantification of phytochemicals in pea products and impact of processes 

In this work, six phenolic acids, five flavonoids and one saponin were used as standards and were 

quantified in pea flour, pea isolates and pea fractions through their response to UHPLC-DAD-MS and 

calibration curves. Table 3.2.3.2 shows the concentration of the twelve standards with their standard 
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deviation. Quercetin-3-O-rutinoside and Catechin were identified but were not quantified due to their 

very low concentration in pea products. In addition, Gallic acid, Sinapic acid and Quercetin-3-O-

glucoside were only quantified in the flour due to their low concentration in other pea products. Overall 

calculated concentrations were higher in pea flour than in pea isolates except for Kaempferol-3-O-

glucoside and Soyasapogenol B for which it is the contrary. For p-Hydroxybenzoic acid, concentration 

differences were relatively small between protein isolates and flour. In addition, calculated 

concentrations were higher in pea isolates than in pea fractions except for soyasapogenol B for which 

concentrations were higher in pellet. It is difficult to explain these concentrations because of the different 

nature of the samples, due in particular to the different MS rates, and the different extraction protocols.  

 

Concentrations vary between 0 and 2000 ng/g (i.e. 0.002 mg/g) according to the compounds and the pea 

products. In the literature, there is few quantitative data on phytochemicals of pea flour and pea isolates. 

Dvorak et al., quantified several phenolic acids in pea samples with concentrations varying between 0 

and 0.026 mg/g (Dvořák et al., 2011). During different pea seed processing, the concentration of total 

phenolic acids in pea varied between 12 to19 mg/g and total flavonoids contents between 0 to 9 mg/g 

(Nithiyanantham et al., 2012). As regards saponins in pea flour, DDMP saponin was quantified at 1.5 

mg/g (Reim & Rohn, 2015) and between 0.7 to 1.90 mg/g (Heng et al., 2006). Soyasaponin I was also 

quantified in pea flour between 0.82 to 2.5 mg/g (Curl et al., 1985) and in pea protein isolates to 1.1 

mmol/kg, i.e. 1.4 mg/g (Gläser et al., 2020). However, it is complicated to compare these values due to 

the different raw materials as well as the different extraction and analysis protocols.  

 

Then, in order to be able to compare the products more easily, the areas were related to their dry matter 

content. In order to study all of the identified compounds, further work was carried out on the peak areas 

obtained by UHPLC-DAD-MS. Figure 3.2.3.1 shows the results of the principal component analysis 

(centred-reduced, Pearson n) examining the phytochemical profiles of pea flour, pea isolates and pea 

fractions (pellets, retentates and permeates). The solutions were well distributed along axes F1 and F2, 

which accounted for 82.6% of the variance. Thus, maps based on the first two axes seem to provide a 

good quality projection of the initial multidimensional table. Most of the phytochemical attributes were 

clustered within one quarter of the correlation circles along axis 1 and thus clearly are correlated. A 

smaller number of phytochemicals from the different families identified are orthogonal to this majority 

along axis 2. Related to their dry matter content, the nine products present varied profiles in 

phytochemicals. Permeates a and b present higher overall peak areas of phytochemicals. Flour presents 

higher peak areas of flavonoids. Finally, pellets a and b present higher peak areas of terpenoids.  

 

Commercial pea protein isolates undergo significant temperature and pH changes during processing. In 

particular, pea proteins are usually extracted via isoelectric precipitation in which the pH is decreased 

to pH 4-5 (Boye et al., 2010). To allow a faster flocculation, the raw extract can also be heated to 

denature protein (Murat et al., 2013). At the end of the process, protein solutions are dried with drum 

drying or spray drying methods with a consequent rise in temperature. Flavonoids and most of phenolic 

acids are highly unstable and easily susceptible to degradation with modifications of pH, temperature, 

light and enzymes. Thus, overall pulses processes significantly reduce the level of phenolics 

(Nithiyanantham et al., 2012) as observed in our results (differences between flour and isolates). 

Nevertheless, synergistic combinations or counteracting of several types of factors can occur, possibly 

explaining why a minority of phytochemicals present different behaviours. For example, oxidative 

reactions and formation or breakdown of compounds, leaching of water-soluble compounds and solid 

losses could occur during processing (Nithiyanantham et al., 2012) as well as protein-compound 

interactions (Damodaran & Arora, 2013). According to the review of Singh et al., saponins are also 

easily susceptible to be degraded with modifications of pH and temperature during processing (Singh et 

al., 2017). In addition, the large number of phytochemicals in the permeates could be explained by the 

phenomenon of leaching of water-soluble compounds.  
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Table 3.2.3.2: Concentration of the 12 standards with 

their standard deviation on 10-3 mg/g (from 

extraction triplicates). The limit of detection (DL) 

was of 0.02 ng/μl and the limit of quantification (QL) 

was of 8.0 ng/μl; except for Soyasapogenol B where 

DL = 0.07 ng/g and QL = 3 ng/g, and except for p-

Hydroxybenzoic acid where DL = 0.05 ng/g and QL 

= 30.0 ng/g. 
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Identification of the phytochemicals underlying bitterness and astringency 

Phytochemical profiles of the 6 fractions were correlated to their bitterness and astringent profiles. 

Bitterness and astringency profiles were analysed and discussed by Cosson et al. (2021). However, the 

main results are recalled here and the Figure 3.2.3.2 summarize the results presenting the scores for the 

two isolates (4% dry matter), the two permeates, the two retentates and the two pellets (6% dry matter) 

as well as the results of the stepwise multiple comparisons procedure (Newman-Keuls test, pvalue 0.05). 

For the bitterness attribute, retentates and isolates showed higher scores; permeates have the lowest 

scores; and the products from batch a have overall lower scores for bitterness. For the astringent 

attribute, the differences between the products are less pronounced: pellet b has the highest score and 

permeates have the lowest scores.  

 

Correlation coefficients (Pearson method) were calculated between phytochemical areas and sensory 

scores (p-value of 0.05). The products evaluated in sensory analysis and used for phytochemical analysis 

measurements were identical. According to psychophysics curves, the perception of a compound in a 

product depend on its concentration (Chambers & Koppel, 2013). Indeed the links between chemical 

compounds and sensory intensities can be linear (in supra liminar part, i.e. above threshold) or non-

linear (in liminar part i.e. below threshold). Thus we chose to evaluate both linear and logarithmic 

correlations to cover both situations. Table 3.2.3.3 shows the correlation coefficients (Pearson method) 

between phytochemical compounds (UPHLC-MS peak area) and bitter and astringent intensities 

(scores/10) for linear and logarithmic models. In addition, linear correlations with bitter or astringent 

attributes are presented in Figure 3.2.3.3. Results showed that a total of eleven phenolic acids, two 

flavonoids, six saponins and ten non identified compounds were significantly correlated with 

perceptions. 

 

Among phenolic acids, Caffeic acid (peak n°8) is correlated positively to bitterness (R²=0.90) and to 

astringency (R²=0.87). Caffeic acid is known in the literature to exhibit a very bitter persistent perception 

in plant products such as coffee (Frank et al., 2006). 

 

 

Figure 3.2.3.1.: Principal component analysis (centred-reduced, Pearson n) examining the 

phytochemicals profiles of pea flour, pea isolates and pea fractions (pellets, retentates and permeates). 

On the right is a loading plot showing the correlational relationships between PCA axes 1 and 2 and 

the peak area (related to the dry matter content of products) of the 48 identified phytochemicals: 

phenolic acids are in blue (dotted line), terpenoids are in red (solid line), flavonoids are in green 

(dashed line) and other compounds are in orange (densely dashdotted line). On the left is a PCA plot 

with the same two axes that shows the relative similarity of the 9 pea products. 
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In addition, Caffeoyl hexoside (peak n°6) is negatively correlated to bitter-astringent perceptions. 

Caffeic acid may be more specific to bitter receptors than their glucoside counterparts. The degradation 

of caffeic acid derivatives may lead to an increase in the concentration of free caffeic acid. As regards 

the other phenolic acids, p-Hydroxybenzoic hexoside (peak n°2), Protocatechuic acid (peak n°3), N-p-

Hydroxybenzoyl aspartic acid (peak n°4), p-Hydroxybenzoic acid (peak n°5), Coumaroyl-4-O-hexoside 

(peak n°7), N-Phenylacetyl aspartic acid derivative (peak n°14) and Aspartic acid derivative (peak n°15) 

are negatively correlated to astringency. The peaks n°5, n°15 and n°4 are also negatively correlated to 

bitterness. Finally, N-Coumaroyl aspartic acid derivative (peak n°9) and N-Feruoyl aspartic acid 

derivative (peak n°10) are negatively correlated to bitterness. In the literature, a series of hydroxybenzoic 

acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine 

(Hufnagel & Hofmann, 2008) and a series of N-phenylpropenoyl-L-amino acids have been identified as 

key astringent compounds of roasted cocoa (Stark et al., 2006). However, these ethyl esters are less 

polar than acids which could explain their bitterness. In addition, several hydroxycinnamic acids were 

studied as precursors of off-flavours in fruits (Naim et al., 1992). Thus, these negative correlations may 

also be explained by the release of derivative compounds responsible for bitter-astringent perceptions 

and not identified here. However, as regards their threshold values, various values are reported in the 

literature according to the matrix. For example for chlorogenic, caffeic and p-coumaric acids, threshold 

values were reported in water between 90 and 40 mg/ L, in beer between 690 and 520 mg/L and in wine 

between 10 and 32 mg/L (Boulet et al., 2017). This is in any case much higher than the concentrations 

of these compounds in the isolates. 

 

Among the flavonoids, a Kaempferol derivative (peak n°17) is negatively correlated to bitterness and 

astringency. Quercetin-3-O-glucoside (peak n°26) is positively correlated to astringency. Flavonoids are 

described in the literature as contributing to bitterness and astringency. However, the majority of these 

studies deals with polyphenols in red wine (Hufnagel & Hofmann, 2008). Regarding their structure, it 

seems that the conformation of flavonoid compounds plays a role in the activation of bitterness 

receptors. (+)-catechin would activate the TAS2R14 and TAS2R39 receptors while one of these isomers 

(-)-epicatechin would activate the TAS2R4, TAS2R5, TAS2R14 & TAS2R39 receptors (Roland et al., 

2017). Moreover, the molecular size of the polyphenol compounds would also play a role in the 

activation of bitterness receptors. Polymer with a high degree of polymerization would tend to be less 

bitter and more astringent whereas polymers with a low degree of polymerization would tend to be 

bitterer and less astringent (Sun et al., 2007). In addition, the presence of galloyl groups on epicatechin 

can modify receptor activation (Yamazaki et al., 2013) and the aglycone isomers of isoflavones, being 

more hydrophobic, tend to be more adapted to receptors than their glucoside counterparts. Thus, the 
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Figure 3.2.3.2.: Concentrations of bitter and astringent attributes (scores/10) as evaluated by a static 

profiling by a trained panel (Cosson et al., 2021). Results of the stepwise multiple comparisons 

procedure (Newman-Keuls test, pvalue 0.05). Significant differences between groups are indicated 

by differences in letters. 



CHAPTER 3 – RESULTS / SECTION 3.2.3.                                                                                               A. COSSON 

 182 

negative correlations could be explained by the presence of derivatives of peak n°17 (more or less 

glycolysed forms for example) not identified here which would play a role in bitter-astringent 

perceptions. The other identified flavonoids are not correlate with perceptions. However, threshold 

values between 0.1 and 20 mg/L have been reported for various flavones in red wine (Sáenz-Navajas et 

al., 2010). These concentrations are much higher than the concentrations of these compounds in the 

isolates. 

 

 

      
Linear model - 

Bitter 

Linear model - 

Astringent 

Logarithmic 

model - Bitter 

Logarithmic model - 

Astringent 

Family 

hypothesis 

Peak 

number 

Compound 

hypothesis 
pvalue R² pvalue R² pvalue R² pvalue R² 

           

Phenolic 

acids 

n°2 
 p-Hydroxybenzoic 

hexoside 
NA NA <0.01 -0.94 NA NA <0.01 -0.96 

n°3  Protocatechuic acid NA NA <0.01 -0.96 NA NA <0.01 -0.99 

n°4 
 N-p-
Hydroxybenzoyl 

aspartic acid 

0.04 -0.83 <0.01 -0.95 0.03 -0.85 <0.01 -0.95 

n°5 
 p-Hydroxybenzoic 
acid 

0.02 -0.89 0.03 -0.87 0.01 -0.92 0.03 -0.86 

n°6  Caffeoyl hexoside 0.02 -0.88 0.01 -0.91 0.02 -0.89 0.01 -0.90 

n°7 
 Coumaroyl-4-O-

hexoside 
NA NA <0.01 -0.96 NA NA <0.01 -0.98 

n°8  Caffeic acid 0.02 0.90 NA NA NA NA 0.02 0.87 

n°9 

 N-Coumaroyl 

aspartic acid 

derivative 

0.02 -0.88 NA NA 0.01 -0.94 NA NA 

n°10 
 N-Feruoyl aspartic 
acid derivative 

NA NA NA NA 0.05 -0.82 NA NA 

n°14 

 N-Phenylacetyl 

aspartic acid 
derivative 

NA NA 0.01 -0.93 NA NA <0.01 -0.97 

n°15 
 Aspartic acid 

derivative 
0.03 -0.84 <0.01 -0.95 0.02 -0.87 <0.01 -0.95 

           

Flavonoids 

n°17 
 Kaempferol 

derivative 
0.01 -0.93 0.01 -0.92 0.01 -0.94 0.02 -0.88 

n°26 
 Quercetin-3-O-

glucoside 
NA NA NA NA NA NA 0.03 0.85 

           

Terpenoids 

n°31  Saponin derivative NA NA 0.02 0.88 NA NA 0.01 0.92 

n°32  Saponin derivative NA NA NA NA NA NA 0.02 0.88 

n°33  Saponin B NA NA NA NA NA NA 0.02 0.90 

n°34  Saponin derivative NA NA NA NA NA NA 0.01 0.92 

n°35  Saponin derivative NA NA NA NA NA NA 0.04 0.83 

n°37  Soyasapogenol B NA NA NA NA NA NA 0.02 0.88 

           

Others 

n°39 NA NA NA <0.01 -0.95 NA NA <0.01 -0.96 

n°42 NA 0.02 -0.90 0.01 -0.92 0.01 -0.90 0.01 -0.90 

n°43 NA NA NA NA NA 0.05 -0.81 NA NA 

n°40 NA NA NA <0.01 -0.97 NA NA <0.01 -0.97 

n°41 NA <0.01 -0.97 0.03 -0.84 <0.01 -0.98 NA NA 

n°44 NA NA NA <0.01 -0.97 NA NA NA NA 

n°45 NA NA NA <0.01 -0.96 NA NA NA NA 

n°46 NA NA NA 0.04 0.84 NA NA NA NA 

n°47 NA NA NA NA NA NA NA 0.02 0.88 

n°48 NA NA NA NA NA NA NA 0.03 0.86 

 

 

Table 3.2.3.3.:  Correlations coefficients (Pearson method) between phytochemical compounds (LC-

MS peak area) and bitter and astringent attributes (score/10) for linear model and logarithmic model. 

In bold, negative correlations coefficients. Only significative values are indicated (pvalue<0.05). 
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R² = 0,8357
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Finally, six saponins are correlated positively to astringency. Saponins are generally referred to be 

perceived as bitter and astringent (Heng et al., 2006). To assess the impact of saponins in the pea-protein 

isolate, the concentrations of these compounds were calculated from the standard soyasapogenol B in 

pea isolates and compared to the literature values. The disadvantage of this quantification was that all 

saponin compounds were quantified by the same one standard compound, not by each their own 

standards. This is due to no commercial pea saponin compounds are available, and purification of all 

these saponins as standards is still difficult so far. Figure 3.2.3.4 shows the averaged concentration of 

the 6 saponins correlated to astringency with their standard deviation. The higher concentration is 

reached by Saponin B (peak n°33) with 0.05 mg/g. Considering the 4% concentration in pea protein 

isolate in solutions for sensory analysis, the Saponin B concentration tested by panellists was equivalent 

to 20 mg/L. In Heng et al. study, bitterness of saponins was perceived by the sensory assessors at very 

low concentrations values around 2 mg.L for saponins mixture (Saponin B and DDMP saponin in a ratio 

of 1:4) and around 8 mg/L for Saponin B (Heng et al., 2006). According to this study, the concentration 

of Saponin B would be sufficient to be perceived by the panellists and participate in the perceptions of 

bitterness and astringency. However, according to Gläser et al., soyasaponin I has recognition thresholds 

of 1.62 mmol/L for bitterness and 0.64 mmol/L for astringency (i.e. 1528 and 604 mg/L respectively) 

(Gläser et al., 2020). The concentration of saponin alone would not be sufficient in this case to elicit 

bitterness and astringency but may interact with other compounds. 
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Figure 3.2.3.3.: Representative positive and negative linear correlations between phytochemicals 

(UHPLC-DAD-MS peak area) and bitter or astringent attributes (scores/10) with their R² (Coefficient 

of determination). 
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3.2.3.4. Conclusion 

 

In this study, the main phytochemicals from pea flour, pea protein isolates and pea fractions were 

determined by ultra-high performance liquid chromatography – mass spectrometry. The study yielded 

several key results. First, forty-height phytochemicals were highlighted. Fifteen compounds were 

tentatively identified as phenolic acids, fifteen as flavonoids and seven as saponins. In addition, 

comparing MS data with those of reference standards, two hydroxybenzoic acids, four hydroxycinnamic 

acids, three flavonols, two flavanols and one saponin were unambiguously identified and quantified. 

Second, peak area comparison has shown larger amounts of compounds in flour than in pea protein 

isolates and fractions suggesting some degradation of these compounds during the process. However, 

related to the dry matter content of products, permeates had larger amount of phytochemicals and could 

be explained by the phenomenon of leaching of water-soluble compounds. Third, the peak areas of these 

phytochemical compounds were linked to bitterness and astringency perceptions. Twenty-nine 

compounds (phenolic acids, flavonoids and also saponins) were correlated to bitterness and/or to 

astringency attributes. The complex mixture of these compounds (as well as other compounds, such as 

peptides), could participate in overall bitterness-astringency perceptions. In order to improve the 

desirability of products based on pea protein isolates, it is therefore difficult to make recommendations 

in terms of phytochemical compounds to be removed. However, solutions that lead to significant 

changes in phytochemical composition could be an interesting strategy, such as decrease of oxidative 

reactions or leach of water-soluble compounds. 

 

 
 

Main results 

 6 phenolic acids, 5 flavonoids and 1 saponin were identified and quantified.  

 9 other phenolic acids, 10 flavonoids and 6 saponins were tentatively identified.  

 Results showed larger amounts of compounds in flour than in pea protein isolates and fractions 

suggesting some degradation of these compounds during the process. 

 29 compounds (phenolic acids, flavonoids and also saponins) were correlated to bitterness 

and/or to astringency attributes and could participate in overall bitterness-astringency 

perceptions. 
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Figure 3.2.3.4.: Concentration of the 6 saponins correlated to astringency with their standard deviation 

on ng/g. 
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Section 3.3. – Relative roles of the different chemical compound 

families on perceptions 

 

 

Context, objectives and presentation of section 3.3. 

In the previous section, different types of chemical compounds were highlighted to be linked to targeted 

perceptions: volatile molecules for beany aroma notes, peptides and saponins for bitterness, phenolics 

for bitterness and astringency. The aim of the work described in the following section was to go further 

in understanding the complex and combined role of volatile and non-volatile compounds on overall 

perceptions of pea protein isolates. Then, the aim was to build a statistical model taking into account 

key compounds coming from different chemical families to explain sensory perceptions. In short, as 

explained on the graphical abstract (Graphical abstract 3.3.1.), sensory scores were pooled to chemical 

quantitative datasets: 63 volatile compounds, 3561 peptides and 48 phytochemicals. In addition, 12 other 

concentrations were acquired. Then regression analysis based on partial-least-square multi-block 

algorithm were used to explore the links between sensory and chemical datasets. 

 

For confidentiality reasons, these results will not be published and will be not detailed in this 

manuscript. 

 

 

 
 

 

Graphical abstract 3.3.1.: Identification through statistical modelling of volatile and non-volatile 

compounds responsible for perceptions in pea protein isolates 
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Section 3.3.1. – Identification through statistical modelling of 

volatile and non-volatile compounds responsible for perceptions 

in pea protein isolates 
 

3.3.1.1. Introduction 

 

As the world's population, and consequently the world's diet, increases, protein has been identified as a 

future limiting nutrient. Therefore, the development of new and more sustainable sources of protein is 

an indispensable issue. In the food industry, proteins and especially plant protein isolates are often used 

as food ingredients because of their functional properties (e.g., emulsification, foaming, and whipping)  

(Gharsallaoui et al., 2009). They are used in the formulation of many types of foods, including dietary 

supplements, bakery and meat products. For these applications, pea protein isolates (L. Pisum Sativum) 

are receiving much attention by industry and consumers. Indeed, they are often used thanks to their 

protein content, their good environmental sustainability and their attractive price (Davis et al., 2010).  

 

However, the use of these ingredients is limited due to their strong sensory notes which can decrease 

their desirability. Sensory characterizations have highlighted the existence of three highly persistent 

notes: bitterness, astringency, and beaniness (Bott & Chambers, 2006; Humiski & Aluko, 2007). The 

mechanisms and chemical compounds underlying these perceptions are partly understood and may be 

due to multiple factors (Owusu‐Ansah & McCurdy, 1991). Indeed, the composition of pea protein 

isolates is complex: they have a high protein content but also contain various peptides, volatile 

compounds, phytochemical compounds, complex heterosides, lipids, minerals…. All these constituents 

participate to the complex perception of pea-based ingredients.  

 

Research works on the perception of pea-based products have largely focused on the role of volatile 

aroma compounds in creating sensations of beaniness (Bi et al., 2020; Bott & Chambers, 2006; El 

Youssef et al., 2020; Murat et al., 2013; Trikusuma et al., 2020; Xu et al., 2020). In addition, few studies 

have exclusively examined the peptides which could be related to bitterness (Akin & Ozcan, 2017; 

Pownall et al., 2010; Sirtori et al., 2012). Other studies focused on the phenolics related to bitterness 

and astringency (Guo et al., 2019; Padhi et al., 2017). The role of saponins was also examined to be 

related to bitterness (Daveby et al., 1998; Heng et al., 2006; Price et al., 1985). Finally, lipids and lipid 

oxidation products were studied and related to bitterness and astringency (Baur et al., 1977; Gläser et 

al., 2020). However, to our knowledge, no study to date has used a more global approach to examine 

how the complex perception of pea protein isolates arises from both volatile and non-volatile compounds 

and their potential interactions. 

 

The study of the role of each family of chemical compounds on perception is necessary and a prerequisite 

to the study of links and interactions between volatile and non-volatile compounds. For that purpose, 

we first examined the role of volatile compounds composition and their interactions with proteins in pea 

protein isolates, as well as their impact on perceptions (Section 3.2.1.). A second part of this study 

identified the main peptides from pea protein isolates and studied their impact on perceptions (Section 

3.2.2.). A third part of the present study identified the key phytochemicals (phenolic acids, flavonoids 

and saponins) from pea protein isolates at the origin of sensory properties (Section 3.2.3.). Following to 

these different parts, the objective of this study is to establish the relative contribution of the each group 

of chemical compounds present on pea protein isolates on sensory perceptions. To this end, this work 

was performed on the same pea protein solutions obtained by an experimental design and presented by 

Cosson et al., (Cosson et al., 2021 – Section 3.1.2.) have been used. Sensory and chemical datasets (key 

compounds, issued from the articles on peptides, phenol and GCMS) have been pooled in order to obtain 

a homogenous dataset. 

 

The dataset was also completed by others identifications not specified here for confidentiality 

reasons. This large dataset was then used to model sensory attributes based on chemical compounds 

using PLS multi-block models. The results of the models clarified the origin of the perceived beany, 
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bitter, and astringent notes. However, for confidentiality reasons, only the model will be presented 

here. The results that explain the perceptions will not be detailed. 

 

 

3.3.1.2. Materials and methods 

 

The protocols of producing of pea protein solutions and their chemical and sensory characterization are 

described in this part (Table 3.3.1.1.). But complementary details on method characterization can be 

found in the others sections (Section 3.1.2.; Section 3.2.1.; and Section 3.2.2.; Section 3.2.3.). 

 

Table 3.3.1.1.: Chemical and sensory variables used in this study with their characterization methods 

and their references. *The dataset was also completed by others identifications not specified here 

for confidentiality reasons. 
 
Family 

compounds 
Methods Variables Code References 

Sensory 

 

Static profiling 

 

Almond Almond 

Section 3.1.2. 

 

Astringent Astringent 

Bitter Bitter 

Broth Broth 

Cereals Cereals 

Nuts Nuts 

Pea Pea 

Potato Potato 

Volatiles GC-MS 

Ketone V1 

Section 3.2.1. 

 

Alkene V2 

Aldehyde V3 

Furan V4 

Furan V5 

Aldehyde V6 

Aldehyde V7 

Aldehyde V8 

Furan V9 

Aldehyde V10 

Alkane V11 

Ketone V12 

Ketone V13 

Aldehyde V14 

Ketone V15 

Aldehyde V16 

Aldehyde V17 

Alkane V18 

Ketone V19 

Alcohol V20 

Ketone V21 

Aldehyde V22 

Ketone V23 

Aldehyde V24 

Alcohol V25 

Ketone V26 

Alcohol V27 

Ketone V28 

Ketone V29 

Ketone V30 

Aldehyde V31 

Ketone V32 

Ester V33 

Aldehyde V34 

Peptides 

 

UHPLC-MS 

 

ANAQPLQR P*AN 

Section 3.2.2. 

 

APHWNIN P*AP 

AQPLQRE P*AQ 

EVLSWSFH P*EV 
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ISLNKIRL P*IS 

KRHGEW P*KR 

NAQPLQRE P*NA 

NLQNYR P*NL 

NQKQSYF P*NQ 

NQKQSYFA P*NQK 

SNKFGKF P*SN 

SRNPIY P*SR 

YLKGLKF P*YL 

YQKSTEL P*YQ 

Phytochemicals 

 

UHPLC-MS 

 

n°2 M2 

Section 3.2.3. 

 

n°3 M3 

n°4 M4 

n°5 M5 

n°6 M6 

n°7 M7 

n°8 M8 

n°9 M9 

n°10 M10 

n°14 M14 

n°15 M15 

n°17 M17 

n°26 M26 

n°31 M31 

n°32 M32 

n°33 M33 

n°34 M34 

n°35 M35 

n°37 M37 

n°39 M39 

n°42 M42 

n°43 M43 

n°40 M40 

n°41 M41 

n°44 M44 

n°45 M45 

n°46 M46 

n°47 M47 

n°48 M48 

 

Pea protein solutions 
Two raw pea protein isolates a and b (protein content Nx6.25, 83% dry matter) in water suspensions 4% 

(w/w) dry matter were used and called Refa and Refb. Six fractions were obtained from these two pea 

protein isolates as explained in Cosson et al., (Cosson et al., 2021 – Section 3.1.2.) and called permeates 

a and b, retentates a and b, and pellets a and b. Then, the six different fractions were combined in various 

quantities to formulate 26 solutions according an experimental design. Their concentrations were 

described in Table 3.3.1.2. The interest was to work with variable quantities of groups of compounds, 

instead of to varying only a single compound type. Each fraction was associated with a main compound 

type: insoluble proteins for pellet; soluble compounds (e.g., volatiles, peptides, and phenolics) for 

permeate; and soluble proteins interacting with volatiles for retentate. This strategy of formulation 

allowed to obtain a large number of diverse pea-protein-based solutions in order to obtain continuous 

responses and to build reliable statistical models. Solutions were chosen to explore a wide range of 

composition while being realistic in term of protein concentration (0 to 4.25%). 

 

Recombined solutions were done at 4°C in 500mL and 100mL glass bottles and stored at -20°C for a 

maximum of 12 month. During fractionation and recombination, Good Hygiene Practices have been 

ensured to limit microbial contamination (coat, gloves and hygienic cap wearing; cleaning and 

disinfection of hands and all equipment used with absolute ethanol follow by air drying; work in 4°C 

chamber).  
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Table 3.3.1.2.: Composition of the 26 solutions used in this study, which were created by mixing 

permeates a and b, retentates a and b, and pellets a and b. Refa and Refb represent the initial pea 

protein isolates solutions. DM: dry matter content (%). Protein content (% Nx6.25). 

 

Solution ID 
Permeate 

a (%) 

Permeate 

b (%) 

Retentate 

a (%) 

Retentate 

b (%) 

Pellet a 

(%) 

Pellet b 

(%) 

Water 

(%) 
DM (%) 

Protein 

content (%) 

100W 0 0 0 0 0 0 100 0,00 0,00 

25Ib-75W 0 0 0 0 0 25 75 3,09 2,62 

50Ib-50W 0 0 0 0 0 50 50 6,18 5,24 

30Ia-70W 0 0 0 0 30 0 70 3,71 3,03 

50Ia-50W 0 0 0 0 50 0 50 6,18 5,05 

40Rb-30Ib-30W 0 0 0 40 0 30 30 4,39 3,74 

40Rb-30Ia-30W 0 0 0 40 30 0 30 4,39 3,63 

50Rb-50W 0 0 0 50 0 0 50 0,85 0,75 

100Rb 0 0 0 100 0 0 0 1,70 1,50 

40Ra-30Ib-30W 0 0 40 0 0 30 30 4,39 3,70 

50Ra-25Ia-25W 0 0 50 0 25 0 25 3,94 3,23 

60Ra-40W 0 0 60 0 0 0 40 1,02 0,84 

100Ra 0 0 100 0 0 0 0 1,70 1,40 

40Pb-60W 0 40 0 0 0 0 60 0,08 0,01 

Refb 0 40 0 36 0 24 0 3,70 3,27 

50Pb-50W 0 50 0 0 0 0 50 0,10 0,02 

50Pb-25Ib-25W 0 50 0 0 0 25 25 3,19 2,64 

50Pb-50Rb 0 50 0 50 0 0 0 0,95 0,77 

70Pb-30Ra 0 70 30 0 0 0 0 0,65 0,45 

100Pb 0 100 0 0 0 0 0 0,20 0,04 

25Pa-25Ra-

13Ia-38W 
25 0 25 0 12.5 0 37.5 2,02 1,62 

Refa 38 0 34 0 28 0 0 4,10 3,53 

40Pa-60W 40 0 0 0 0 0 60 0,08 0,01 

40Pa-60Rb 40 0 0 60 0 0 0 1,10 0,91 

50Pa-25Ib-25W 50 0 0 0 0 25 25 3,19 2,64 

50Pa-Ia25-W25 50 0 0 0 25 0 25 3,19 2,54 

50Pa-50Ra 50 0 50 0 0 0 0 0,95 0,72 

100Pa 100 0 0 0 0 0 0 0,20 0,03 

 

Sensory analysis 

Pea solutions were sensory characterized by 17 trained panellists (13 women and 4 men; mean age = 23 

years old) with a descriptive quantitative methodology proposed by block (Cosson et al. 2021 – Section 

3.1.2.). 18 attributes were evaluated and organised in blocks. The first attribute block focused on 

olfactory orthonasal perception evaluated by nose (attribute block 1: pea, broth, nuts, almond, potato 

and cereals). The second block focused on taste perception and mouthfeel (attribute block 2: salty, sugar, 

bitter, astringent, mouthfeel, and granularity). The last attribute block focused again on olfactory 

retronasal perception evaluated in mouth (attribute block 3: pea, broth, nuts, almond, potato and cereals). 

Evaluations were performed in sensory booths, at 19°C. Each solution, coded with a 3 digit number, 

was evaluated in duplicate.  

 

Chemical analysis 

The nitrogen protein content was determined by Kjeldahl method (Nitrogen content x 6.25) and dry 

solids were determined by drying with a prepASH®219 device by a certified external laboratory (SAS 

IMPROVE, Amien, France). 

 

The measurements of volatile compounds release were performed using a Dynamic Headspace Gas 

Chromatography coupled with a Mass Spectrometer (MPS: Gerstel, GC: Agilent 7890B, MS: Agilent 

5977B MSD). MassHunter software (Agilent) was used for instrument control, data acquisition and data 

analysis. The detailed protocol used for these analyses are presented in Section 3.2.1. 
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The measurements of peptides were performed on the PAPPSO platform (MICALIS, INRA, Jouy-en-

Josas,France) with an Orbitrap FusionTM LumosTM TribridTM (Thermo Fisher Scientific) coupled to 

an UltiMateTM 3000 RSLC nano System (Thermo Fisher Scientific). Peptide identification was 

performed with X!Tandem version 2017.2.142015.12.15.2 (AlanineVengeance) and X!Tandem 

Pipeline (C++) version 0.2.4016 (Langella et al.,2016) on the protein sequence of L. Pisum Sativum. 

MassChroQ version 2.2.17 (mass Chromatogram Quantification) was used to perform alignment, XIC 

extraction, peak detection and quantification (Valot et al., 2011). The laboratory equipment and 

parameters used for these analyses are presented in Section 3.2.2. 

 

Measurements of phytochemical were performed using UHPLC system (Ultimate 3000 Thermo 

Scientific, USA) coupled to a Q Exactive Orbitrap high resolution mass spectrometer (Thermo 

Scientific, USA) equipped with heated-electrospray ionization probe (HESI II, Thermo Scientific, 

USA)). Xcalibur (Thermo Scientific, USA) was used for instrument control, data acquisition, and data 

analysis. The detailed protocol used for these analyses are presented in Section 3.2.3. 

 

The dataset was also completed by others identifications not specified here for confidentiality reasons. 

 

Statistical analysis 

Analyses were performed using JMP software version 13.1.0 (SAS Institute Inc., Cary, SC, USA) and 

R software (R Core Team, 2017). For analyses of an inferential nature, we used α = 0.05 to determine 

statistical significance. Sensory attributes were clustered by hierarchical clustering. 

 

Different algorithms have been proposed for PLS-MB (Biancolillo et al., 2019) (Biancollilo et al., 

2019). The one adopted in the present work is the one proposed by the mbpls function of the R package 

“ade4” version 1.7-16 (Bougeard & Dray, 2018; Dray & Dufour, 2007).  

 

Prior to PLS-MB analysis, the explanatory variables were standardized. In addition, data blocks were 

normalized to ensure that each one had the same weight in the calibration, independently of their number 

of variables (uniform option). The optimal model is then identified by selecting the number of latent 

variables with a two-fold cross-validation. The products sets are partitioned randomly into a calibration 

and a validation sets. In turn, each set was used to validate the model that is fit to the rest of the data. 

The root mean square error of calibration (RMSEc) and the root mean square error of validation 

(RMSEv) were calculated. This was run 500 times. The optimal model were retained as a compromise 

between a good fitting ability (minimization of RMSEc) and a good prediction ability (minimization of 

RMSEv) (Bougeard & Dray, 2018). Bootstrapping simulations (1000 times) were also applied to the 

three main predictive parameters (regression coefficients, cumulated variable importance index and 

cumulated block importance index) to provide confidence intervals, computed by the non-Studentized 

pivotal method (Bougeard & Dray, 2018). 

 

3.3.1.3. Results and discussion 

 

Construction of PLS-MB models 

The general workflow of the PLS-MB analysis is described in Figure 3.3.1.1., starting from the 

experimental part to the statistical analyses. Steps done in previous studies are indicated in the yellow 

frame. Steps done in this study are indicated in the blue frame. 
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Figure 3.3.1.1.: General workflow of the PLS-MB analysis, starting from the experimental part to the 

statistical analyses. Steps done in previous studies are indicated in the yellow frame. Steps done in 

this study are indicated in the blue frames and focused on statistical links between the different 

datasets. 

 

Selection of key sensory attributes and key chemical compounds 

Eighteen sensory attributes were evaluated for the 26 protein solutions by the trained panel. Figure 

3.3.1.2. shows the plot constellation on attributes from hierarchical clustering.  

 

It can be observed that the sensory attributes broth and pea are quite separate from the other aromatic 

attributes, expressing different concepts. The bitter and astringent attributes are also quite different from 

the other attributes. Of the 18 sensory attributes evaluated, we chose to focus only on 8 aromatic 

attributes evaluated in the mouth (broth, pea, potato, almond, nuts and cereals) and bitter and astringent 

attributes to develop the models. Indeed, since sweet, salty granularity and mouthfeel attributes did not 

greatly contribute to the perceived differences among the solutions and/or are not directly within the 

scope of the study, these attributes were not included in the statistical model (Cosson et al., 2021 –

Section 3.1.2.). In addition, previous results indicated that there may be limited sensory interactions 

between texture, taste, and flavour and that food oral processing had only a minimal impact on solution 



CHAPTER 3 – RESULTS / SECTION 3.3.1.                                                                                            A. COSSON 

 

 197 

perceptions. We also chose to not taken into account the odour attributes evaluated via the nose in the 

statistical model and to study only the aroma attributes evaluated in mouth. 

 

 
Figure 3.3.1.2.: Constellation plot from hierarchical clustering of sensory attributes. Each observation 

is represented by an endpoint and each cluster join is represented by a new point. The lines that are 

drawn represent cluster membership. The lengths of the lines represent the distance between clusters. 

The circle represents a cluster with all the sensory attributes. 

 

Among all the identified chemical compounds (63 volatile GC-MS area compounds from apolar column; 

48 phytochemical compounds from UHPLC-MS and 3561 peptide sequences from UHPLC-MS), only 

a selection of compounds was used in the model. 

 

Thirty-four volatile compounds were selected for modelling, because these last were identified as 

significant in the model to discriminate the 26 solutions (Section 3.2.1.). Fourteen peptides were selected 

because they were identified as correlated with perceptions of bitterness and with a size inferior to 8 

residues (Section 3.2.2.). Twenty-nine phytochemical compounds were selected, because they 

correspond to the compounds identified to be correlated to the perceptions of bitterness and astringency 

(Section 3.2.3.). 

 

These reductions in the number of variables is an indispensable step in order to build a robust model. 

The table 3.3.1.3. presents the main results of the companion studies that allowed the selection of these 

variables. 
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Table 3.3.1.3.: Main results of the companion studies on pea protein isolates solutions: 1) mixture 

design, fraction-based formulation and sensory characterization; 2) identification of the main volatile 

compounds; 3) identification of the main peptides; and 4) identification of the main phytochemicals. 

 
Family 

variables 
Methods Products Variables 

Key 

variables 
Main results References 

Sensory 
Static 

profiling 

 6 pea 

solutions (pure 

fractions)  

 19 

recombined 

solutions 

(fractions 

mixing) 

 1 water 

18 

sensory 

attributes 

8 sensory 

attributes 

 Panellists generally came up with 

repeatable and homogeneous scores. 

 Perceived beaniness were mainly 

influenced by the retentate and permeate 

fractions. 

 Perceived astringency was mainly 

influenced by the retentate and pellet 

fractions. 

 Perceived bitterness was largely driven by 

retentate fraction. 

Section 

3.1.2. 

Volatiles GC-MS 

 6 pea 

solutions (pure 

fractions)  

 6 

recombined 

solutions 

(fractions 

mixing) 

63 

volatiles 

molecules 

34volatiles 

molecules 

 Most of the key volatile compounds 

correlated to aroma intensities are similar to 

the different aroma attributes suggesting a 

common nucleus of compounds responsible 

for the beany perceptions. 

 Key volatile compounds are mainly 

lipophilic but they present various solubility 

and volatility. 

 Protein-volatile interactions were mainly 

hydrophobic interactions and seem to have a 

low impact on the olfactory perceptions. 

Section 

3.2.1. 

Peptides 
UHPLC-

MS 

 6 pea 

solutions (pure 

fraction) 

 6 

recombined 

solutions 

(fractions 

mixing) 

3561 

peptides 

14 

peptides 

 Identified peptides were mostly polar and 

hydrophilic and there were no impact of the 

fraction-based formulation strategy on their 

overall physical properties. 

 Most of the peptides were correlated to 

sensory attributes of pea solutions. In 

particular, many peptides were correlated to 

broth perception expressing perhaps the 

umami character of some peptides 

 275 peptides were correlated to bitterness 

but only 14 have a size inferior to 8 residues. 

Section 

3.2.2. 

Phyto 

chemicals 

UHPLC-

MS 

 6 pea 

solutions (pure 

fraction) 

48 phyto 

chemicals 

29 phyto 

chemicals 

 16 compounds were tentatively identified 

as phenolic acids, 23 as flavonoids, 13 as 

terpenoids and 2 compounds from other 

families. 

 Peak area comparison has shown larger 

amounts of compounds in flour than in pea 

protein isolates and fractions suggesting 

some degradation of these compounds 

during the process.  

 29 molecules were correlated to bitterness 

and/or to astringency attributes. 

Section 

3.2.3. 

 

Datasets homogenization 

Here, a mixture design was used to create 26 solutions by combining pea protein isolate fractions. If the 

26 solutions were analysed by the sensory panel, only 12 solutions were analysed by UHPLC-MS to 

identify the peptides and by GC-MS to identify the volatile compounds. On the other hand, only 6 

solutions were analysed by UHPLC-MS to identify phytochemical compounds.  

 

To complete the datasets, we hypothesized that it would be possible to calculate the compounds area 

from the solution formulation. To validate this hypothesis, the peptides areas of six recomposed 

solutions measured experimentally were compared with the peptides areas calculated from the area of 

fractions (50Pb-25Ib-25W, 25Pa-25Ra-13Ia-38W, 70Pb-30Ra, 40Ra-30Ib-30W, 50Ra-25Ia-25W and 

50Pb-50Rb). Considering the number of values to be compared (3561 peptide sequences x 6 solutions), 

the distributions of the differences between calculated and measured values were compared and 
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presented no significate differences (Section 3.2.2.). In conclusion, calculated peptide composition of 

the recomposed solutions from the peptide composition of the fractions seems a good estimate. 

 

Similarly, the volatiles composition was recalculated for the 13 last products. The volatile areas of six 

recomposed solutions measured experimentally were compared with the volatile areas calculated from 

the fraction areas (50Pb-25Ib-25W, 25Pa-25Ra-13Ia-38W, 70Pb-30Ra, 40Ra-30Ib-30W, 50Ra-25Ia-

25W and 50Pb-50Rb). Standard deviations of the repeated values were compared to standard deviations 

of the calculated versus measured values. The different quartiles for repeated solutions were: 1st quartile 

4.20E+03, median 1.14E+04, 3rd quartile 3.13E+04, maximum 2.37E+06. The different quartiles for 

measured versus calculated solutions were: 1st quartile 1.25E+05, median 3.51E+04, 3rd quartile 

8.98E+04, maximum 1.24E+07. The quartiles are a little lower in the case of duplicate distributions but 

the orders of magnitude are similar. Some volatile compounds (hexanal, 2-pentylfuran, butan-2-one, 

pentanal and octan-1-ol) show the highest differences between the experimentally measured and the 

calculated solutions, but these are among the compounds with the largest areas. Their relative difference 

is therefore relatively small. However, it can be noted that the differences between the calculated and 

measured values are larger for volatile compounds than for peptides. It can be assumed that this is due 

to the volatile-protein interactions that are relatively important in pea protein isolates (Section 3.2.1.). 

A better prediction of these areas could be obtained by taking into account the binding coefficient of 

volatile molecules (which could be estimated by their hydrophobicity coefficient) in the recalculation 

of the areas. However, in order to work in a consistent way with the different datasets, we have chosen 

to recalculate only the concentrations from the fraction concentrations.  

 

Similarly, the phytochemical, compositions were recalculated for the 19 last products. However, we 

could not validate the calculation hypothesis because no products recombined from the fractions was 

analysed. However, we can assume that there is little interaction between phytochemicals and pea 

proteins in this type of matrix (Damodaran & Arora, 2013; Potter et al., 1993). It can therefore be 

assumed that the steps of extraction and analysis of phytochemicals are less matrix-dependent. 

 

Before building the model, the RV coefficients (Pearson method) were calculated between each group 

of chemical compounds and sensory attributes. Taking into account all the physico-chemical datasets 

allows to improve the RV coefficients. This result is consistent with the calculation of RV coefficients 

that depend on the variance and covariance of the variables. 

 

Construction of the PLS-MB models 

Therefore, from these 8 sensory attributes (Y responses) and 90 chemical compounds (X explanatory 

variables), different statistical models were constructed. The objective of these models are to model the 

sensory attributes as a function of the chemical compounds in order to be able to propose hypotheses of 

mechanisms at the origin of the perceptions (with a focus on perception of beany, bitterness and 

astringency). Here, the 8 sensory attributes measure different concepts that are quite independent. In the 

literature, several statistical methods have been proposed to handle these situations with multiblocks. 

The one adopted in the present work is the one proposed by the mbpls function of the R package “ade4” 

version 1.7-16 ( Bougeard & Dray, 2018; Dray & Dufour, 2007). 

 

The objective of the PLS-MB is to model the effects of chemical composition on pea protein solutions 

(X explanatory variables) on the sensory perceptions of the products (Y responses). Partial least squares 

(PLS) are a multivariate regression methodologies that seeks to find factors (latent variables) which both 

capture variance and achieve correlation, by maximizing the amount of variance explained in X that is 

relevant for predicting Y (Westerhuis et al., 1998). For the same pre-treatment, the total variance 

explained by classical PLS will be the same as for PLS-MB (Westerhuis et al., 1998). However, PLS-

MB preserve the original structure of the data and thus allows one to analyse the different tables 

simultaneously. In particular, the usefulness of PLS-MB lies on the ease of visualization of importance 

of each block of variables. In addition, PLS-MB is low sensitive to multicollinearity within explanatory 

blocks (Bougeard & Dray, 2018). 

 

To build these models, the 90 chemical compounds were grouped in four blocks dependant of their 

chemical family origin. In addition, sensory attributes were also grouped together. Bitter and astringent 
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attributes, close in the plot constellation, were clustered together. Broth attribute, very different from 

the other sensory attributes on the plot constellation was clustered separately. The other aromatic 

attributes pea, potato, almond, nuts and cereals were clustered together. Thus for each of these 3 groups 

of sensory attributes an optimal model was selected with a two-fold cross-validation. 

 

To evaluate the generated models, the analyses by Root mean square error of calibration (RMSEc) and 

Root mean square error of validation (RMSEv) were used. RMSEc gives an estimate of the average 

deviation of the model from the data, giving us an idea on how well the model fit the data. RMSECv 

can be used to measure the predictive power of a model, making it a useful tool in comparing models. 

The closer these indicators are to 0, the more robust the models can be considered. Table 3.3.1.4. presents 

these indicators for the 3 models. It can be seen that the model that best fits the data and has the most 

predictive power is the model to explain aromatic attributes. The model that has the lowest predictive 

power is the model with the broth attribute. The results suggested that a good prediction of aromatic 

attributes and a relative good prediction of bitterness and astringency attributes could be achieved when 

using chemical parameters with the developed PLS-MB regression model, in comparison with models 

developed in the literature on similar data sets (sensory and chemical datasets) for others PLS model 

(Barbin et al., 2012). The results of the Broth model present lowest prediction ability. But this result is 

in itself interesting by showing the complexity of the mechanisms at the origin of this perception. Thus, 

these models will allow us to better understand the links between sensory attributes and chemical 

compounds. 

 

Table 3.3.1.4.: Performances of the selected PLS multi-block model to predict the 8 sensory attributes 

variables in function of chemical compounds area analysed with confidence intervals (25% lower 

quantiles; 75% upper quantiles). 

 

Block of attributes 
Root mean square error of calibration Root mean square error of validation 

Mean 25% 75% Mean 25% 75% 

Block 1: Aroma (pea, 

almond, nuts, potato 

and cereals) 

0,28 0,27 0,30 0,34 0,30 0,37 

Block 2: Bitter and 

astringent 
0,44 0,42 0,46 0,74 0,67 0,82 

Block 3: Broth 0,54 0,48 0,59 0,92 0,79 1,08 

 

Use of the models to better understand sensory perceptions 

 

Similarly to variable importance in projection used in classical PLS model, cumulated block importance 

indexes are used to estimate the contribution and importance of the block of variables in the PLS-MB 

model (Figure 3.3.1.3). Expressed as a percentage, they allow to quantify the impact of each group of 

chemical compounds on the block of perceptions of pea protein solutions. 

 

In addition, the cumulated variable importance index are used here to estimate the contribution and 

importance of each variables in the PLS-MB model (Figure 3.3.1.4). Expressed as a percentage, they 

allow to quantify the impact of each variable inside the group of chemical compounds on the perceptions 

of pea protein solutions. 

 

However, for confidentiality reasons, only the model will be presented here. The results that 

explain the perceptions will not be detailed.  
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Figure 3.3.1.3.: Cumulated block importance for the first dimension (in %) with the 97.5% confidence 

intervals for the three PLS-MB regressions modelling sensory attributes in function of chemical 

composition of pea protein isolates. 1) Aroma: model in function of pea, potato, nuts, cereals and 

almonds sensory attributes. 2) Broth: model in function of broth sensory attribute. 3) Bitter and 

astringent: model in function of bitter and astringent sensory attributes.   
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Figure 3.3.1.4.: Cumulated block importance for the first dimension (in %) with the 97.5% confidence 

intervals for the three PLS-MB regressions modelling sensory attributes in function of chemical 

composition of pea protein isolates. 1) Aroma: model in function of pea, potato, nuts, cereals and 

almonds sensory attributes. 2) Broth: model in function of broth sensory attribute. 3) Bitter and 

astringent: model in function of bitter and astringent sensory attributes. 

 

 

3.3.1.1. Conclusion 

 

This consequent dataset provides a better understanding of the sensory perceptions of pea-based 

products. Multi-block regression models made it possible to highlight the respective contribution of pea 

chemical compounds on perceptions. Unfortunately, for reasons of confidentiality, we have not been 

able to detail the results here. 

 

To conclude, this study proposes an original statistical methodology to better understand the different 

mechanisms that occur in pea protein perceptions. This work could help in the formulation of new pea 

protein-based products with lower beany, bitter, and astringent perceptions and so higher desirability 

for consumers. 
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Section 3.4. – Impact of formulation and consumption of a whole 

pea based-beverage on perceptions 

 

 

Context, objectives and presentation of section 3.4. 

Beyond the chemical composition of the food, its structure and texture could also influence the dynamics 

of perception. Thus, the purpose of this fourth section is to determine how the sensory perceptions of 

pea protein isolates are affected by the formulation as well as the consumption of a whole product. 

Among the different pea applications, pea beverages were considered because they allow to vary the 

concentrations of various ingredients while being easy to produce in a repeatable way over a long period 

of time. Thus, following the previous PhD work, a pea protein isolate and its pellet were selected. They 

were then formulated in 12 different beverages varying in their level of salt, fat, thickeners and type of 

proteins. 

 

From these beverages, the first objective was to identify the main mechanisms responsible for beany, 

bitter and astringent temporal perceptions and to study the interactions between sapid and olfactory 

perceptions (Section 3.4.1.).  In short, as explained on the graphical abstract (Graphical abstract 3.4.1.), 

pea beverages were described and quantified using three sensory profiling methods: static block 

profiling with and without nose clip, mono-intake temporal dominance of sensations (TDS) profiling, 

and multi-intake TDS profiling. Results were published and discussed on Foods as presented below 

(Cosson, A., Souchon, I., Richard, J., Descamps, N., & Saint-Eve, A. (2020). Using Multiple Sensory 

Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods. 

Foods, 9(8), 969. https://doi.org/10.3390/foods9080969). 

 

 

 
 

Graphical abstract 3.4.1.: Using multiple sensory profiling methods to gain insight into temporal 

perceptions of pea protein-based formulated foods. 

 

 

The second objective was to better understand how product composition affected the sensory perception 

of pea protein-based beverages (Section 3.4.2.). Particular focus was placed on how rheological 

properties influence sensory perception, and on molecules volatiles release and on saliva’s role during 

oral processing. In short, as explained on the graphical abstract (Graphical abstract 3.4.2.), sensory 

profiles of pea beverages were completed by classical rheological methods and gas-chromatography–

mass-spectrometry analysis. Relation between instrumental profiles and sensory profiles were studied. 
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Graphical abstract 3.4.2.: Sensory perceptions of pea protein beverages explained by rheological and 

chemical approaches. 
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Section 3.4.1. – Using multiple sensory profiling methods to gain 

insight into temporal perceptions of pea protein-based 

formulated foods 
 

3.4.1.1. Introduction 

 
Consumers are increasingly seeking out healthy, ethically produced, and eco-friendly foods. In this 

context, plant proteins are proving to be a great success. Yellow field pea (Pisum sativum L.) is becoming 

a common ingredient in plant-based foods (Siddique et al., 2012) because it has a low level of 

allergenicity and a high nutritional value. It also helps ensure the nutritional balance of amino acids in 

grain-based diets. Yellow field pea isolates also have desirable functional properties: they have excellent 

emulsification, foaming, gelation, and whipping capacities (Adebiyi & Aluko, 2011; Gharsallaoui et al., 

2009). They are used in the formulation of many types of foods, including dietary supplements, bakery 

and confectionery products, beverages, yogurts, ice creams, meat products, and alternatives to meat and 

dairy products. 

  

That said, consumers usually describe pea protein-based foods as having strong beany, bitter, and 

astringent notes, which can decrease desirability. These attributes have different chemical origins. 

Indeed, beaniness is the complex flavour perception associated with bean products (Bott & Chambers, 

2006) and results from the complex composition of volatile aroma compounds found in pulses (Murat 

et al., 2013). Bitterness arises from the interaction of bitter compounds (e.g., amino acids, phenolics) 

with the TAS2R family of receptors, which are found on the apical membranes of taste receptor cells 

(Maehashi et al., 2009; Meyerhof et al., 2010). Finally, astringency is produced by “the complex 

sensations due to shrinking, drawing, or puckering of the epithelium,” and it results from interactions 

between phenolic compounds and saliva proteins (ASTM, 1991; Gibbins & Carpenter, 2013). 

 

To develop novel products with less pronounced beany, bitter, and astringent notes, food production 

companies combine pea proteins with several other ingredients (e.g., fat, salt, sugar, flavouring agents, 

and/or texturizing agents). However, successfully formulating new products from combinations of these 

ingredients can be challenging and requires a great deal of trial and error. Sensory profiling is a valuable 

tool in this context: it can be used to explore the impact of food composition on the perceived sensory 

characteristics of formulated foods, and it thus allows target food products to be obtained more quickly. 

Many studies have used static block sensory profiling to examine how formulation affects sensory 

perceptions, the physico-chemical interactions between the different constituents of the food matrix, and 

the interactions between perceptions of texture, sapidity, and flavour (Fontoin et al., 2008; Giacalone et 

al., 2018; Lestringant et al., 2019; Tournier et al., 2007).  

 

However, static methods cannot quantify the dynamic mechanisms that play an essential role in how 

consumers experience foods. Indeed, the oral processing of food includes mastication, salivation, and 

tongue movements, leading to a complete transformation of food in the mouth. Food transformation has 

major consequences on food perception and perception persistence (Di Monaco et al., 2014). Retronasal 

aroma perception is affected by interactions among volatile compounds, and the levels of salivary 

compounds are not constant over the course of food consumption (Canon et al., 2018). Sensations of 

astringency and bitterness often go hand and hand (Muñoz-González et al., 2018) and slowly develop 

in the mouth after ingestion. They also increase following repeated exposure (Green, 1993).  

 

Temporal sensory profiling methods are increasingly being used to take these phenomena into account 

and to obtain a more realistic picture of the sensory experiences elicited by food products. One widely 

adopted approach is the temporal dominance of sensations (TDS) method. It yields information on the 

sequence and duration of dominant sensations (Pineau et al., 2009). The dominant sensations to occur 

are those that attract the most attention from consumers (Schlich, 2017). The TDS method has been used 

in tandem with static sensory profiling to evaluate different types of products, making it possible to 

identify sensory characteristics that are not picked up by one method alone. For example, this combined 

approach has proven to be useful for studying the persistence of gel containing odorants (Labbe et al., 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ingestion


CHAPTER 3 – RESULTS / SECTION 3.4.1.                                                                                            A. COSSON 

 

 207 

2009); interactions between texture and aroma in model candies (Saint-Eve et al., 2011); solid foods 

with contrasting textural layers (i.e., fish sticks; (Albert et al., 2012); interactions between olive oil 

composition and pureed beans and tomatoes (Dinnella et al., 2012); the influence of aroma on taste and 

texture in an apple matrix (Charles et al., 2017); and the key flavours perceived in strawberries (Oliver 

et al., 2018). 

 

Typically, the TDS method is applied to a single instance of food intake (i.e., one bite of a solid food or 

one sip of a beverage). However, in real life, food consumption involves a series of instances of food 

intake. Several studies have shown that repeated intake of a product can change the perception of product 

attributes due to sensory adaptation and/or perception persistence (Lawless & Heymann, 2010). The 

multi-intake TDS method can provide a sensory profile for a full portion of food. It has recently proven 

its utility in studies evaluating the influence of wine on cheese perception (Galmarini et al., 2017) and 

in studies characterizing the sensory properties of an oral nutritional supplement (Thomas et al., 2016), 

fat-free strawberry yogurts (Lesme et al., 2020), and yogurts with granola (van Bommel et al., 2019).  

 

The aim of this study was to better understand how product composition affected the sensory perception 

of pea protein-based beverages using three different sensory profiling methods; particular focus was 

placed on the perception of beany, bitter, and astringent notes. Trained panellists therefore analysed lab-

formulated beverages using three sensory profiling methods: static block profiling, mono-intake TDS 

profiling, and multi-intake TDS profiling. Analysis were centred on the effects of food composition 

(protein type, gellan gum content, salt content, and oil content) on texture, sapidity, and aroma as well 

as on the sensory interactions of flavour with taste and texture. Finally, the usefulness of a combined 

sensory profiling approach was discussed. 

 

3.4.1.2. Materials and methods 

 

Materials 

Water (Evian, France), gellan gum (Texturas Ferran Adria, Spain), salt (Auchan, France), sunflower oil 

(Auchan, France), sugar (Daddy, France), soy lecithin (Louis Francois, France) and commercial pea 

protein isolates were the ingredients used to formulate the beverages. Two Thermomix® TM5TM 

appliances (Vorwerk, Germany) were employed to standardize product preparation. 

 

Product preparation 

In this study, different pea protein-based beverages were created in the lab. Two mixture design were 

used to produce a wide range of plant-beverages from different ingredients while being realistic in term 

of ingredient’ concentrations. The first mixture design was formulated with pea protein isolates (batch 

a) and had three independent variables with two levels: sunflower oil concentration (0% or 1.5%), gellan 

gum concentration (0.12% or 0.5%) and salt concentration (0.08% or 0.12%). The second mixture 

design was formulated with pea pellets (pellet a) and had also two independent variables: the protein, 

sunflower oil concentration (0% or 1.5%) and two levels of gellan gum concentration (0.12% or 0.5%). 

Thus, the total number of trials was 12 (composition and ingredient concentrations are in Table 3.4.1.1.).  

 

First, pea protein pellets were obtained as follows: water and pea protein isolates were slowly mixed 

together (96% [w/w] water, 4% [w/w] pea protein isolate) and then left to hydrate for 60 min at 4°C 

under stirring. The pellet and supernatant were separated via centrifugation at 6,000 rpm at 4°C for 10 

min. The pellet was stored at 4°C for a maximum of 2 h before the beverages were made. 

 

Second, the beverages were created using the following method: the water was mixed and heated (3 

min, 50°C, and speed setting of 2.5) in one of the Thermomix appliances. The sugar, salt, pea protein 

(isolate or pellet), and gellan gum were then gradually mixed into the water (30 min, 50°C, speed setting 

of 4.5). Simultaneously, the sunflower oil was heated (1 min, 65°C, speed setting of 1.5) in the second 

Thermomix. The soy lecithin was then mixed into the sunflower oil (3 min, 65°C, speed setting of 2). 

The contents of the first Thermomix were added to the contents of the second Thermomix and combined 

without heating (5 min, speed setting of 5). After this step, the overall mixture was heated (6 min, 90°C, 

speed setting of 3.5). Immediately after preparation, the beverages were stored at 4°C until they were 
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used in the sensory profiling sessions. The Thermomix appliances were cleaned by filling them with a 

mixture of 2 L of water, 100 mL of white vinegar, and 5 mL of dishwashing liquid, which was then 

heated (5 min, 70°C, and speed setting of 1). The appliances were subsequently thoroughly rinsed with 

hot water and stored at 4°C until they were next used in order to prevent any bacterial growth. 

 

Table 3.4.1.1.: Composition (ingredient concentrations [w/w %]) of the pea protein-based beverages 

used in this study. Abbreviations: I = isolate, P = pellet, F+ = 1.5% oil, F- = 0% oil, G+ = 0.5% gellan 

gum, G- = 0.12% gellan gum, S+ = 0.12% salt, and S- = 0.08% salt. 

 
Product 

name 

Protein 

type 

Sunflower Oil 

(%) 

Soy lecithin 

(%) 

Gellan gum 

(%) 
Salt (%) 

Sugar 

(%) 

Pea protein 

(%) 

Water 

(%) 
 (P or I) (F+ or F-)  (G+ or G-) (S+ or S-)    

I/F-/G-/S- Isolate 0.00 0.00 0.12 0.08 1.00 7.00 91.80 

I/F-/G-/S+ Isolate 0.00 0.00 0.12 0.12 1.00 7.00 91.76 

I/F-/G+/S- Isolate 0.00 0.00 0.50 0.08 1.00 7.00 91.42 

I/F-/G+/S+ Isolate 0.00 0.00 0.50 0.12 1.00 7.00 91.38 

I/F+/G-/S- Isolate 1.50 0.10 0.12 0.08 1.00 7.00 90.20 

I/F+/G-/S+ Isolate 1.50 0.10 0.12 0.12 1.00 7.00 90.16 

I/F+/G+/S- Isolate 1.50 0.10 0.50 0.08 1.00 7.00 89.82 

I/F+/G+/S+ Isolate 1.50 0.10 0.50 0.12 1.00 7.00 89.78 

P/F-/G-/S- Pellet 0.00 0.00 0.12 0.08 1.00 7.00 91.80 

P/F-/G+/S- Pellet 0.00 0.00 0.50 0.08 1.00 7.00 91.42 

P/F+/G-/S- Pellet 1.50 0.10 0.12 0.08 1.00 7.00 90.20 

P/F+/G+/S- Pellet 1.50 0.10 0.50 0.08 1.00 7.00 89.82 

 

Rheological tests were performed on each beverage to verify repeatability, and the microbial safety of 

the products was tested by a certified external laboratory (Eurofins Scientific, France). The products 

were served to the panellists at room temperature (20°C) in transparent cups (29.5 mL) identified with 

three-digit codes. 

 

Experimental conditions 

Sixteen panellists (15 women and 1 man, 18–39 years in age) were recruited based on their desire and 

availability to participate in a long-term study. Two of the panellists had participated in a study that 

focused on the sensory characterization of pea protein solutions the year before. The other panellists had 

no prior experience with pea protein-based products. The panellists were told the overall aim of the 

experiment. They gave their free and informed consent to participate in the study and received 

compensation for their participation. They were asked not to eat, drink, or smoke for at least 1 h prior 

to the training sessions and evaluation sessions. Panellists performed the sensory evaluations in 

individual booths under white light in an air-conditioned room (20°C). 

 

Panellists had to analyse the beverages using three different sensory profiling methods: a static block 

method (Cosson et al., 2020 –Section 3.1.1.), a mono-intake TDS method, and a multi-intake TDS 

(multi-TDS) method. To account for the order in which the beverages were experienced and any 

potential carry-over effects, beverage order was balanced across panellists using a Latin square. To 

reduce sensation build-up, a palate-cleansing protocol was used between beverages: panellists had to 

consume an apple slice, drink water, and wait 40 seconds before consuming the following beverage 

(Cosson et al., 2020 – Section 3.1.1.). As some beverages were viscous, participants were instructed to 

intake beverages with spoons, instead of sipping for the three profiling methods. Sensory analysis was 

managed using Fizz Acquisition software (v. 2.51, Biosystemes, France). 

 

Attribute selection and panellist training 

Panellists were asked to complete a check-all-that-apply (CATA) questionnaire. It listed 30 attributes, 

and panellists could add more. For the final list and the validation process with the panellists, we retained 

the attributes that were mentioned most of the time and that allowed the products to be clearly 

distinguished. These 11 attributes were salty, bitter, astringent, sweet, fat, pea, almond, nuts, broth, 

mouthfeel, and overall aromatic intensity (Table 3.4.1.2.). As the study was conducted in French, the 

terms used in French as well as their translation into English are presented.  
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The panellists were trained to evaluate the intensity of these attributes along an unstructured scale 

(range: 0–10) using external references. Training took place over 10 sessions that each lasted 45 min. 

Afterward, panellist performance was evaluated and verified. Overall performance was assessed using 

ANOVA with three independent variables (product type, panellist ID, and replicate) and their first-order 

interactions. There was a product effect, indicating that panellists distinguished among the different 

beverages (p<0.05). The significance of various interactions revealed whether the panellists consistently 

scored attributes across replicates (panellist*replicate), whether there was consistency in scoring among 

panellists (product type*panellist ID), and whether panellists scored products consistently across 

replicates (product type*replicate). The performance of individual panellists was also evaluated based 

on their ability to discriminate among beverages and on repeatability criteria.  

 

Table 3.4.1.2.: Definition of the sensory attributes evaluated by the panellists. 

 

Attributes 
Attributes in 

French 
Definition 

Salty Salé A fundamental taste – sodium chloride is a typical example 

Bitter Amer The fundamental taste associated with a caffeine solution 

Astringent Astringent 
A sensation of drying out, roughening, and/or puckering that is felt in the 

mouth, like when consuming red wine or unripe fruit 

Sweet Sucré A fundamental taste – sucrose is a typical example 

Fat Gras Property relative to the perception of the quantity of fat in the product 

Mouthfeel Epais The way a food feels in the mouth in relation to its viscosity 

Overall aromatic 

intensity 

Intensité 

aromatique globale 
Total aroma impressions created by the product in the mouth 

Pea Pois The flavour characteristic of beans and bean-based foods 

Almond Amande The flavour associated with almonds 

Nuts Noix The flavour associated with nuts, like walnuts or hazelnuts 

Broth Bouillon The flavour associated with boiled vegetables, soup, or stock 

 

Static block profiling 

Panellists were asked to score the attributes of the 12 beverages using a static block profiling method 

adapted from the technique used in Cosson et al. (Cosson et al., 2020 – Section 3.1.1.).  

 

 
 

Figure 3.4.1.1.: Schematic representation of the static block profiling method used in this study. 

 

They had to evaluate six different beverages per session and were unaware of beverage identity. They 

were exposed to four replicates of each product. In total, the panellists evaluated the products over 8 

different sensory sessions during four weeks of evaluation. For two replicates, sapidity and texture were 

evaluated using a nose-clip, and aroma attributes were evaluated without using a nose-clip. For two 

replicates, all the attributes were evaluated without the nose-clip (Figure 3.4.1.1.). The panellists were 

asked to evaluate attribute intensity as during the training process (along an unstructured scale ranging 
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from 0 to 10). Attributes were assessed in blocks of 4, 5, and 6. First, the panellists had to evaluate 

sapidity and texture. Second, they had to evaluate aroma. Thirdly, they had to evaluate attribute 

persistence (using a shorter list of attributes). 

 

Mono-intake temporal dominance of sensations profiling 

Panellists were asked to evaluate the 12 beverages using a mono-intake TDS method—they evaluated 

the change in attribute intensity over a period of 120 s after taking a sip of a given beverage. Panellists 

were exposed to two replicates of each beverage, and they evaluated six beverages per session. In total, 

the panellists evaluated the products over 4 different sensory sessions during two weeks of evaluation. 

The attributes were the same as in the static block profiling method except for overall aromatic intensity, 

which was removed because it was not relevant in this method. Watery was added as an attribute, and it 

was described to panellists as being the opposite of the fat attribute. Another attribute was also added: 

“I swallowed.” All the attributes were simultaneously presented on the computer screen. Attribute order 

was the same for each panellist for all the mono-intake TDS sessions but was randomly assigned and 

balanced among panellists. 

 

The evaluation process started as soon as the panellists took a sip of the beverage. The panellists then 

had to click on the attribute that they perceived as dominant, which was defined for them as “the attribute 

that draws the most attention.” When this dominant attribute changed, the subject had to click on the 

new dominant attribute. The panellist was free to choose the same dominant attribute several times or, 

conversely, to never select a dominant attribute. The panellists also had to click on the button “I 

swallowed” each time they swallowed the beverage or their saliva.  

 

For each panellist and each beverage, the following data were collected: the time at which an attribute 

was selected as dominant, the specific attribute, the time that had elapsed before the panellist clicked on 

“I swallowed” for the first time (i.e., the panellist had largely consumed the product), and the number 

of times that the panellist clicked on the button “I swallowed”.  

 

Multi-intake temporal dominance of sensations profiling 

Panellists were asked to evaluate two beverages using a multi-intake TDS method; these two beverages 

were chosen based on the static block profiling results and the mono-intake TDS profiling results. They 

contained different protein types (isolate vs. pellet), had a low level of astringency persistence, and 

displayed different temporal sensory profiles despite having the same gellan gum, salt, and oil contents. 

The multi-intake TDS profiling method can be used to evaluate changes in attribute perceptions as 

people consume a full portion of a product (Figure 3.4.1.2.). Here, a portion was defined as 120 mL, 

which is equivalent to an entire ready-to-drink beverage or a serving of yogurt.  

 

First, the panellists had to cleanse their palates. Over the course of the session, they were not allowed to 

consume anything except the beverage to allow for the possible cumulative effects of persistent 

sensations. Second, the panellists evaluated the beverages using the same general approach as in the 

mono-intake TDS profiling method, except that a given beverage was evaluated at three time points. 

The first evaluation took place after the first spoonful of the beverage was consumed (hereafter, first 

spoonful). The second evaluation took place after panellists had consumed 60 mL of the beverage (~ 

half the portion); they then had to evaluate a second spoonful of the beverage (hereafter, second 

spoonful). The third evaluation took place after panellists had consumed the remaining 60 mL of the 

beverage; they then had to evaluate a final spoonful of the beverage (hereafter, third spoonful). We thus 

obtained three sets of data reflecting the shift in sensations from the beginning to the end of beverage 

consumption. No time limits were placed on this process. Panellists were exposed to two replicates of 

each product. One replicate of one product was evaluated per session, resulting in a total of four sessions.  
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Figure 3.4.1.2.: Schematic representation of the multi-intake temporal dominance of sensations (TDS) 

method used in this study. 

 

Statistical analysis 

The data were automatically acquired using Fizz Acquisition software (v. 2.51; Biosystemes, 1990). 

Data analysis was performed using XLSTAT (Addinsoft, 2017, Paris, France) and R (R Core Team, 

2019). The threshold for statistical significance was α = 0.05. The static block profiling data were 

analysed using ANOVA. To assess panellist performance, ANOVA were carried out in which product 

type, panellist ID, and replicate were fixed effects and there were first-order interactions. Post-hoc 

comparisons were then performed to interpret the specific effect of product type (Newman-Keuls 

method). To analyse the effect of beverage composition on attribute perception, ANOVA were 

performed in which panellist ID, protein type, gellan gum content, salt content, oil content, and nose-

clip use were fixed effects and there were first-order interactions. In the case of the mono-intake TDS 

profiling analyses, the time to the first instance of swallowing and the total duration of the evaluation 

period were extracted from the data collected during the sessions. ANOVA were performed in which 

product type, panellist ID, and replicate were fixed effects and there were first-order interactions. For 

the multi-intake TDS profiling data, the ANOVA had product type, panellist ID, replicate, and spoonful 

ID as fixed effects and included first-order interactions. Relative attribute dominance (i.e., the 

percentage of panellists who perceived a given attribute as dominant) was determined for each beverage 

at each time point, and the TDS curves were graphed. As suggested by Pineau et al. (2009), two lines 

were drawn on the TDS graph: one line representing the relative dominance an attribute could achieve 

by chance alone when considering all the attributes evaluated and one line representing the minimum 

relative dominance an attribute must obtain for the result to be significantly different from that expected 

by chance alone (binomial distribution, α = 0.05).  

 

3.4.1.3. Results 

 

Panellist performance 

The static block profiling data were used to examine how consistent panellists were in their scoring of 

attribute intensity (three-way ANOVA; Table 3.4.1.3.).  

 

Product type was significant for 15/15 attributes, so the panellists were clearly able to distinguish among 

the beverages. The interactions between replicate and product type were not significant for 10/15 

attributes (except for sweet, mouthfeel, persistence of bitterness, persistence of fattiness, and persistence 

of overall aromatic intensity). Replicate was not significant for 12/15 attributes (except for salty, pea, 

and persistence of overall aromatic intensity), but the interaction between panellist ID and replicate was 

significant for 11/15 attributes (all except bitter, mouthfeel, pea, and broth). However, in the latter case, 

the F-values were low compared to the F-values for the product effects. Panellist ID and the interaction 

between panellist ID and product type were significant for 15/15 attributes. Such interactions are 

common when sensory attributes are evaluated using unstructured scales, and they are difficult to control 

even when panellists have undergone extensive training (Jourjon et al., 2005). These results nonetheless 

suggest that the panellists’ scoring was consistent (repeatable and homogeneous) for the majority of 

attributes. For 3 attributes (bitter, pea and almond), there was some inconsistency between panellists, 

which was taken into account in the analysis of the results. 
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Table 3.4.1.3.: Results of the three-way ANOVA (panellist ID, replicate, and product type as fixed 

effects + their first-order interactions) examining consistency in panellist performance (total degrees 

of freedom: 739; residual degrees of freedom: 681). Significant p-values are in bold (α = 0.05). 

Abbreviations: Astringent-P = persistence of astringency; Bitter-P = persistence of bitterness; Fat-P 

= persistence of fattiness; and Aromatic intensity-P = persistence of overall aromatic intensity. 

 

 

Panellist ID Replicate Product type 
Panellist 

ID*Replicate 

Panellist 

ID*Product 

type 

Replicate* 

Product type 

F p-value F 
p-
value 

F p-value F p-value F p-value F p-value 

Salty 29.47 < 0.01 5.71 0.02 61.90 < 0.01 4.42 < 0.01 1.78 < 0.01 1.34 0.21 

Bitter 34.83 < 0.01 0.01 0.92 8.44 < 0.01 1.22 0.25 2.49 < 0.01 0.43 0.93 

Astringent 26.94 < 0.01 0.95 0.33 5.71 < 0.01 3.23 < 0.01 1.78 < 0.01 0.25 0.99 

Sweet 23.09 < 0.01 0.92 0.34 8.14 < 0.01 2.60 < 0.01 1.64 < 0.01 2.03 0.03 

Fat 10.11 < 0.01 0.49 0.49 62.77 < 0.01 1.98 0.02 2.38 < 0.01 0.91 0.53 

Mouthfeel 13.79 < 0.01 1.07 0.30 358.24 < 0.01 1.58 0.07 2.00 < 0.01 3.77 < 0.01 

Overall 

aromatic 

intensity 

9.17 < 0.01 0.17 0.68 14.71 < 0.01 2.55 < 0.01 1.93 < 0.01 0.87 0.57 

Pea 29.85 < 0.01 4.82 0.03 2.44 0.01 1.48 0.11 2.47 < 0.01 1.03 0.42 

Almond 32.78 < 0.01 0.16 0.69 2.57 < 0.01 2.61 < 0.01 1.60 < 0.01 0.29 0.98 

Nuts 27.21 < 0.01 3.69 0.06 5.72 < 0.01 2.84 < 0.01 2.60 < 0.01 0.84 0.59 

Broth 25.34 < 0.01 0.04 0.83 41.96 < 0.01 1.01 0.45 1.76 < 0.01 0.21 1.00 

Astringent-

P 
52.86 < 0.01 1.41 0.23 9.47 < 0.01 3.54 < 0.01 1.86 < 0.01 1.38 0.19 

Bitter-P 34.61 < 0.01 0.02 0.89 2.88 < 0.01 2.93 < 0.01 1.71 < 0.01 1.91 0.04 

Fat-P 79.46 < 0.01 3.19 0.07 26.28 < 0.01 1.90 0.02 2.89 < 0.01 1.90 0.04 

Aromatic 

intensity-P 
57.42 < 0.01 11.22 0.00 4.71 < 0.01 1.90 0.02 1.35 0.01 1.97 0.03 

 

 

Impact of beverage composition on perceived attribute intensity 

The static block profiling data were also used to examine the effects of beverage composition on attribute 

intensity (five-way ANOVA; Table 3.4.1.4.). The mean attribute intensities (across replicates and 

panellists) for the different beverages and the differences among groups (Newman-Keuls post-hoc 

analysis) are shown in Figure 3.4.1.3. 

 

 

Table 3.4.1.4.: Results of the five-way ANOVA (panellist ID, nose-clip use, oil content, gellan gum 

content, salt content, and protein type as fixed effects + their first-order interactions) examining the 

effects of beverage composition on attribute perception using the static block profiling data (total 

degrees of freedom: 739; residual degrees of freedom: 716). Significant p-values are in bold (α = 

0.05). Abbreviations: Astringent-P = persistence of astringency; Bitter-P = persistence of bitterness; 

Fat-P = persistence of fattiness; and Aromatic intensity-P = persistence of overall aromatic intensity. 

 

 Panellist ID Nose-clip use Oil content 
Gellan gum 

content 
Salt content Protein type 

Oil*Gellan 

gum  

Gellan 

gum*Salt 

Gellan 

gum*Protein 

type 

 F p-value F 
p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 

Salty 25.39 <0.01 4.17 0.04 0.24 0.62 27.96 <0.01 49.64 <0.01 241,07 <0.01 0,73 0,39 15,56 <0.01 1,15 0,28 

Bitter 26.64 <0.01 14.71 <0.01 1.30 0.26 0.65 0.42 1.69 0.19 34.38 <0.01 0.00 0.99 1.20 0.27 0.11 0.74 

Astringent 22.23 <0.01 0.86 0.35 2.39 0.12 14.33 <0.01 2.00 0.16 5.32 0.02 2.76 0.10 0.88 0.35 0.05 0.83 

Sweet 21.44 <0.01 0.88 0.35 1.24 0.27 1.73 0.19 1.36 0.24 55.21 <0.01 0.00 0.95 2.89 0.09 1.09 0.30 

Fat 7.71 <0.01 2.53 0.11 6.45 0.01 247.75 <0.01 13.13 0.00 46.78 <0.01 0.33 0.57 8.18 <0.01 14.18 <0.01 

Mouthfeel 11.39 <0.01 0.52 0.47 19.10 <0.01 1769.43 <0.01 82.71 <0.01 233.58 <0.01 2.03 0.15 39.03 <0.01 23.56 <0.01 

Overall 

aromatic 

intensity 

7.24 <0.01 3.07 0.08 7.39 0.01 15.19 0.00 2.07 0.15 55.03 <0.01 6.78 0.01 0.41 0.52 5.41 0.02 

Pea 23.19 <0.01 1.95 0.16 0.01 0.94 0.90 0.34 0.00 0.99 10.48 <0.01 0.36 0.55 0.98 0.32 0.47 0.49 

Almond 29.31 <0.01 1.67 0.20 9.88 <0.01 6.57 0.01 0.14 0.71 1.71 0.19 0.98 0.32 0.02 0.88 0.17 0.68 

Nuts 20.15 <0.01 1.86 0.17 12.40 <0.01 0.99 0.32 0.69 0.41 8.99 <0.01 6.09 0.01 1.10 0.29 3.41 0.07 

Broth 23.17 <0.01 0.82 0.36 1.10 0.29 21.10 <0.01 31.06 <0.01 142.49 <0.01 0.65 0.42 0.16 0.69 11.41 0.00 

Astringent

-P 
39.99 <0.01 0.68 0.41 0.03 0.87 16.27 <0.01 1.36 0.24 17.26 <0.01 0.00 0.97 3.59 0.06 5.01 0.03 

Bitter-P 29.24 <0.01 0.04 0.84 2.47 0.12 0.06 0.80 0.83 0.36 8.16 <0.01 0.08 0.78 3.07 0.08 0.01 0.90 

Fat-P 54.04 <0.01 3.77 0.05 1.91 0.17 118.24 <0.01 14.35 <0.01 21.24 <0.01 0.00 0.96 6.11 0.01 0.02 0.89 

Aromatic 

intensity-P 
51.62 <0.01 2.82 0.09 16.59 <0.01 0.15 0.70 1.25 0.26 9.73 <0.01 2.12 0.15 4.00 0.05 0.52 0.47 
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Sensory interactions between taste and flavour and between texture and flavour were examined. When 

panellists were wearing the nose-clip, they perceived the bitter and salty notes as more intense (F=14.71 

and F=4.17, respectively) than when they were not wearing the nose-clip (4.00 vs. 3.45 and 3.98 vs. 

3.70, respectively).  

 

Protein type influenced the perception of 14/15 attributes (not almond). The most affected attributes 

were salty (F=241.07), mouthfeel (F=233.58), and broth (F=142.49). Compared to isolate-based 

beverages, pellet-based beverages were perceived as more bitter and fatty with a more pronounced 

mouthfeel and more persistent astringency and bitterness; they were also perceived as less salty, sweet, 

and aromatically intense with less persistent overall aromatic intensity.  
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Figure 3.4.1.3.: Mean attribute intensities (across replicates and panellists) of the 12 beverages 

containing different levels of the same ingredients as evaluated using static block profiling 

(differences in letters indicate significant differences among groups as revealed by Newman-Keuls 

post-hoc analysis). Intensity scores could range from 0 to 10. Abbreviations: I = protein from isolate 

(solid colour), P = protein from pellet (dotted colour), F+ = 1.5% oil content (dark colour), F- = 0% 

oil content, G+ = 0.5% gellan gum content (blue), G- = 0.12% gellan gum content (orange), S+ = 

0.12% salt content (light colour), and S- =0.08% salt content. 

 

Gellan gum content (0.5% vs. 0.12%) influenced the perception of 9/15 attributes (not bitter, sweet, pea, 

nuts, the persistence of bitterness, or the persistence of overall aromatic intensity). The most affected 

attributes were mouthfeel (F=1769.43) and fat (F=118.24). Beverages with 0.5% gellan gum content 

were perceived as fattier with a more pronounced mouthfeel; the persistence of fattiness was also greater. 

These beverages were also perceived as less salty and astringent with a lower overall aromatic intensity 

and less persistent astringency. Their almond and broth notes were also less pronounced. Salt content 

(0.08% vs. 0.12%) influenced the perception of 5/15 attributes (salty, fat, mouthfeel, broth, and the 

persistence of fattiness). Interestingly, the most affected attributes were mouthfeel (F=82.71) and salty 

(F=49.64). Unsurprisingly, beverages with 0.12% salt content were perceived as saltier; they were also 

perceived as fattier and brothier with a more pronounced mouthfeel.  

 

Oil content (1.5% vs. 0%) influenced the perception of 6/15 attributes (fat, mouthfeel, overall aromatic 

intensity, almond, nuts, and the persistence of overall aromatic intensity). The most affected attribute 

was mouthfeel (F=19.10). Consequently, oil content appeared to have more moderate effects than 

protein type, gellan gum content, and salt content. Compared to beverages without oil, beverages with 

oil were perceived as fattier with a more pronounced mouthfeel. They were also perceived as having 

greater overall aromatic intensity, more persistent overall aromatic intensity, and stronger notes of 

almond and nuts. Except in the case of protein type, beverage composition did not significantly affect 

the perception of bitterness. Only protein type and gellan gum content influenced the perception of 

astringency. 

 

There were interactions between protein type and gellan gum content that significantly impacted 5/15 

attributes (fat, mouthfeel, overall aromatic intensity, broth, and the persistence of astringency). When a 

beverage was made with pellet-based protein and contained 0.5% gellan gum, its fattiness and mouthfeel 

were perceived as more intense, whereas its overall aromatic intensity and brothiness were perceived as 

less intense; when the gellan gum content was lower (0.12%), the persistence of astringency was 

perceived as lower. There were also interactions between gellan gum content and salt content, which 

affected 4/15 attributes (salty, fat, mouthfeel, and the persistence of fattiness). Beverages containing 

0.12% gellan gum and 0.12% salt were perceived as saltier and fattier with a more pronounced mouthfeel 

and more persistent fattiness. The interaction between gellan gum content and oil content significantly 

impacted 2/15 attributes (nuts and overall aromatic intensity). Beverages containing 0.5% gellan gum 

and 1.5% oil were perceived as nuttier and as having greater overall aromatic intensity. The other 

interactions were not significant.  

 

For the four attributes whose persistence was evaluated (bitter, fat, astringent, and overall aromatic 

intensity), the mean intensity of attribute persistence was around 2/10, which was lower than the mean 

intensity of the stand-alone attributes during beverage evaluation. Consequently, static block profiling 
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appears to provide limited information about attribute persistence, at least for the attributes tested. 

Furthermore, the intensities for the stand-alone attributes (blocks 1 and 2, Figure 3.4.1.1.) were strongly 

correlated with the intensities for attribute persistence (block 3, Figure 3.4.1.1.) (R2=0.84 for astringent 

and the persistence of astringency; R2=0.81 for bitter and the persistence of bitterness; R2=0.95 for fat 

and the persistence of fattiness; R2=0.79 for overall aromatic intensity and the persistence of overall 

aromatic intensity). Thus, temporal sensory profiling is needed to provide better-quality information on 

attribute persistence. 

 

Results of mono-intake temporal dominance of sensations profiling 

The perceived dominant attributes of the beverages across the consumption period can be seen in Figure 

3.4.1.4. 
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Figure 3.4.1.4.: Standardized TDS curves for the 12 pea protein-based beverages used in this study. 

The curves depict attribute dominance over time. The two horizontal lines indicate the relative 

dominance an attribute could achieve by chance alone (chance level) and the minimum relative 

dominance an attribute needed to obtain for the result to be significantly different from that expected 

by chance alone (significance level). Abbreviations: I = isolate, P = pellet, F+ = 1.5% oil, F- = 0% 

oil, G+ = 0.5% gellan gum, G- = 0.12% gellan gum, S+ = 0.12% salt, and S- = 0.08% salt. 

 

The first instance of swallowing is not indicated because it always occurred at the very beginning of the 

evaluation period (within 4.32–7.90 s of starting the 120-s period), which underscores the effect of the 

aftertaste on attribute dominance. Beverage composition affected the time to the first instance of 

swallowing and total evaluation duration (three-way ANOVA; Table 3.4.1.5.). Differences in both these 

dependent variables (F=3.43 and F=6.51, respectively) were observed among beverages: beverages with 

the least pronounced mouthfeel were swallowed the fastest (I/F-/G-/S-, I/F+/G-/S+, I/F-/G-/S+, and 

I/F+/G-/S- were first swallowed within 4.32–4.93 s). The beverage with the most pronounced mouthfeel 

was swallowed the slowest (I/F+/G+/S+ product was first swallowed within 7.90 s), and its evaluation 

duration was the longest. There were also marked differences among panellists in both variables (time 

to first swallow: range: 0–42.25 s, mean: 30.48 ± 5.11 s, and F=35.82; evaluation duration: range: 10.75–

120 s, mean: 24.49 ± 5.90 s, and F=158.70). The interactions between product type and panellist ID 

were also significant (time to first swallow: F=1.40 and evaluation duration: F=1.98). The pronounced 

variability in both variables reflected the prominent differences in food oral processing among panellists.  

 

 

Table 3.4.1.5.: Results of the three-way ANOVA (panellist ID, replicate, and product type as fixed 

effects + their first-order interactions) examining the effects of beverage type (all 12 beverages) on 

the time to the first instance of swallowing and the total duration of evaluation using the mono-intake 

TDS profiling data (total degrees of freedom: 359; residual degrees of freedom: 154). Significant p-

values are in bold (α = 0.05). 

 
 Panellist ID Replicate Product type 

Panellist ID* 

Replicate 

Panellist ID* 

Product type 

Replicate* 

Product type 

 F 
p-

value 
F 

p-

value 
F p-value F 

p-

value 
F p-value F p-value 

Time to 

first 
swallow 

35.82 <0.01 0.01 0.90 3.43 0.00 0.46 0.95 1.40 0.02 0.71 0.73 

Total 

duration of 
evaluation 

158.70 <0.01 1.03 0.31 6.51 <0.01 0.84 0.63 1.98 <0.01 2.31 0.01 

 

During the evaluation period, panellists described the 12 beverages using at least 5 attributes. Specific 

sensory phases were also identified. In the first part of the evaluation period, for all beverages, the 

dominant attributes were those associated with texture and sapidity (liquid, mouthfeel, and salty). Then, 
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depending on the specific beverage, attributes related to aroma (almond, pea, and broth), texture (fat, 

watery), and sapidity (salty, bitter) were simultaneously dominant. Finally, in the last part of the 

evaluation period, astringency was dominant for all the beverages.  

 

When the beverages were examined separately, the results were consistent with those obtained using 

static block profiling as illustrated by the high RV coefficient of 0.796 between static and TDS profiling 

data (Multiple Factor Analysis). For the pellet-based beverages versus the isolate-based beverages, the 

attributes fat, mouthfeel, and astringent remained dominant for a longer period of time, while the 

attributes salty, almond, pea, and broth remained dominant for a shorter period of time. The dominance 

of the attributes fat and mouthfeel lasted longer in beverages containing 0.5% gellan gum than in 

beverages containing 0.12% gellan gum. Unsurprisingly, the dominance of the attribute salty lasted 

longer in beverages containing 0.12% salt than in beverages containing 0.08% salt. Similarly, the 

dominance of the attribute fat persisted for longer in the beverages containing oil (1.5%) than in the 

beverages without any oil.  

 

However, mono-intake TDS results also provided additional information, notably with regards to 

bitterness and astringency. Panellists seemed to barely perceive astringency in the beverages containing 

0% oil and 0.12% salt (I/F-/G-/S+ and I/F-/G+/S+). This attribute was also much less dominant in 

beverages containing 1.5% oil and 0.08% salt (P/F+/G+/S-, I/F+/G+/S-, I/F+/G-/S-, and P/F+/G-/S-). 

The attribute bitter was rarely perceived as dominant; when it was, it was only in the three beverages 

containing the higher percentage (0.5%) of gellan gum (P/F-/G+/S-, I/F-/G+/S-, and I/F+/G+/S+). Based 

on these results, two beverages (I/F+/G+/S- and P/F+/G+/S-) were selected for evaluation with the multi-

intake TDS method because they displayed weakly persistent astringency and different temporal profiles 

for the attribute pea (a contributor to beaniness).  

 

Results of multi-intake temporal dominance of sensations profiling 

In the multi-intake TDS method, panellists had to evaluate attribute dominance at three time points: 

once after consuming the first spoonful of beverage, once after consuming 60 mL (half) of the beverage, 

and once after consuming 120 mL (all) of the beverage.  

 

Product type affected the time to the first instance of swallowing and total evaluation duration (four-

way ANOVA; Table 3.4.1.6.). Beverages differed in the time to the first swallow (F=4.70). The beverage 

with the less pronounced mouthfeel was swallowed faster (I/F+/G+/S-: 5.87 s) than the beverage with 

the more pronounced mouthfeel (P/F+/G+/S-: 6.73 s). There were differences in both variables among 

the evaluation time points (time to first swallow: F=11.48 and evaluation duration: F=7.10). Time to the 

first swallow was longest after the first spoonful, regardless of product type (1st spoonful: 7.55 s; 2nd 

spoonful: 6.12 s; 3rd spoonful: 5.23 s), as was the length of the evaluation period (1st spoonful: 48.11 s; 

2nd spoonful: 44.39 s; and 3rd spoonful: 41.82 s). These results likely reflect panellist fatigue and 

adaptation effects. 

 

Table 3.4.1.6.: Results of the four-way ANOVA (panellist ID, product type, spoonful ID, and replicate 

as fixed effects + their first-order interactions) examining the effects of beverage type (only 

I/F+/G+/S- and P/F+/G+/S-) on the time to the first instance of swallowing and the total duration of 

evaluation using the multi-intake TDS profiling data (total degrees of freedom: 191; residual degrees 

of freedom: 107). Significant p-values are in bold (α = 0.05). Abbreviations: I = isolate, P = pellet, 

F+ = 1.5% oil, G+ = 0.5% gellan gum, and S- = 0.08% salt. 

 

 Panellist ID Product type Spoonful ID Replicate 

Panellist ID 

*Product 

type 

Panellist ID* 

Spoonful ID 

Panellist ID * 

Replicate 

Product type 

* Spoonful 

ID 

Product type 

* Replicate 

Spoonful ID* 

Replicate 

 F p-value F 
p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F 

p-

value 
F p-value 

Time to 

first 

swallow 

33.07 <0.01 4.70 0.03 11.48 <0.01 0.06 0.81 4.29 <0.01 0.85 0.68 2.98 <0.01 1.94 0.15 1.06 0.31 1.24 0.29 

Total 

duratio

n of 

evaluati

on 

61.87 <0.01 2.74 0.10 7.10 <0.01 10.54 0.00 2.15 0.01 1.81 0.02 3.42 <0.01 0.76 0.47 0.10 0.76 0.26 0.77 
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Attribute dominance over time for the two beverages are shown in Figure 3.4.1.5. These two beverages 

were selected from the evaluation with the multi-intake TDS method because they displayed weakly 

persistent astringency and different temporal profiles for the attribute pea. As in the results for the mono-

intake TDS method, panellists described the beverages as having at least five different attributes. The 

sequence of dominant attributes was also similar. In the first part of the evaluation period, the dominant 

attributes for I/F+/G+/S- were mouthfeel and pea; for P/F+/G+/S-, they were mouthfeel and fat. Then, 

the attributes fat, pea, nuts, and almond were more dominant, but their relative ranks were dependent on 

product type and spoonful ID. In the last part of the evaluation period, the attributes astringent and bitter 

were dominant for I/F+/G+/S-, and the attributes astringent and fat were dominant for P/F+/G+/S-. 

 

The results for the first spoonfuls consumed during the multi-intake TDS sessions did not fully match 

the results for the single spoonfuls consumed during the mono-intake TDS sessions. When I/F+/G+/S- 

was evaluated using the multi-intake TDS method, the attributes bitter and nuts were dominant for the 

longest amount of time after the first spoonful of beverage was consumed; in contrast, when the mono-

intake TDS method was used, the attributes mouthfeel, fat, and pea were the most dominant. Similarly, 

when P/F+/G+/S- was evaluated using the multi-intake TDS method, the attributes bitter, astringent, 

pea, and almond were dominant for the longest amount of time after the first spoonful of beverage was 

consumed; in contrast, when the mono-intake TDS method was used, the attributes mouthfeel and fat 

were the most dominant. These contrasting results may stem from methodological differences. During 

the mono-intake TDS sessions, panellists evaluated a total of 12 spoonfuls of beverage at random points 

during a given session. Thus, these single spoonfuls do not truly correspond to the “real” first spoonfuls 

taken during the multi-intake TDS sessions. 

 

 

 



CHAPTER 3 – RESULTS / SECTION 3.4.1.                                                                                            A. COSSON 

 

 220 

 

 
 

Figure 3.4.1.5.: Standardized TDS curves for the two pea protein-based beverages (I/F+/G+/S- and 

P/F+/G+/S) evaluated using multi-intake TDS profiling. The curves depict attribute dominance over 

time (i.e., following the first spoonful, the second spoonful [after consuming 60 mL], and the third 

spoonful [after consuming 120 mL]). The two horizontal lines indicate the chance level and the 

significance level (see Figure 3.4.1.4.). Abbreviations: I = isolate, P = pellet, F+ = 1.5% oil, G+ = 

0.5% gellan gum, and S- = 0.08% salt. 

 

Attributes decreased in dominance over the course of the evaluation period for I/F+/G+/S-. Panellists 

perceived the beverage’s attributes quite differently by the time they reached the end of consumption: 

for example, the dominance of the attributes pea and astringent declined between the first and the third 

spoonful (from 45% to 35% and from 32% to 25%, respectively). For P/F+/G+/S-, the same decline in 

dominance was observed for the attributes pea, nuts, and almond. However, astringency was still highly 

dominant at the end of the evaluation period, and the attribute fat increased in dominance over time. 

 

 

 

3.4.1.4. Discussion 

 

The aim of this study was to better understand how product composition affected the sensory perception 

of pea protein-based beverages using three different sensory profiling methods. The first part of the 

discussion focuses on how beverage composition affected the perception of texture and sapidity. The 

second part examines the perception of aroma and the sensory interactions of flavour with taste and 

texture. The third part addresses the importance of employing a combination of sensory profiling 

methods (static/temporal, mono-intake/multi-intake) when evaluating potential food products.  
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Perception of texture and sapidity 

In this study, the composition of the pea protein-based beverages greatly impacted perceptions of texture 

and sapidity. When the static block profiling method was used (i.e., when sensory attributes were 

evaluated immediately after consumption), gellan gum content, salt content, and oil content were found 

to significantly increase the perceived intensity of fattiness and mouthfeel. This result suggests a 

relationship exists between the two attributes. Similarly, when the mono-intake TDS method was used 

(i.e., where sensory attributes were evaluated over a 2-min period following consumption), the attribute 

mouthfeel was perceived as more dominant for beverages with low gellan gum and salt contents. The 

attribute fat was perceived as more dominant for beverages with high gellan gum contents that also 

contained oil.  

 

When beverages had a lower salt content, the perceived intensity of saltiness was lower (as measured 

via static block profiling) and the attribute salt was less dominant (as measured via mono-intake TDS 

profiling). When beverages had higher gellan gum content, the perceived intensity of astringency was 

lower (as measured via static block profiling), but the attribute bitter was highly dominant (as measured 

via mono-intake TDS profiling). Here however, in contrast to other studies, there was no significant 

effect of fat content on bitterness (Schoumacker et al., 2017), perhaps because the differences in oil 

content were small (1.5% vs. 0%). 

 

The type of protein used to make the beverage (isolate vs. pellet) also affected perceptions of texture 

and sapidity. Based on static block profiling, pellet-based products were perceived as being fattier, 

bitterer, and less salty and as having a more pronounced mouthfeel. Based on mono-intake TDS 

profiling, astringency was highly dominant in pellet-based products. Protein type has a compositional 

effect on food products. Although pea pellets and isolates both contain similar levels of total proteins, 

pellets are richer in insoluble proteins, while isolates are richer in minerals, carbohydrates, polyphenols, 

volatile molecules, and peptides. Analyses of protein extracts have identified the proteins and peptides 

responsible for bitterness: they have hydrophobic side chains rich in proline and leucine (Aubes-Dufau 

et al., 1995; Shinoda et al., 1987). Astringency results from saliva proteins (e.g., salivary amylase, 

mucin, esterase) binding with the polyphenols present in pea protein isolates and then precipitating 

(Charlton et al., 2002; Gibbins & Carpenter, 2013; Ma et al., 2014). Thus, it can be assumed here that 

differences in protein type were at the origin of differences in attribute perception. 

 

As observed in previous studies, texture attributes initially dominate food perception (Le Calvé et al., 

2019; Pineau et al., 2009; Saint-Eve et al., 2011). In addition, swallowing occurs more quickly, after a 

few seconds (during the first part of the evaluation period), for liquid products, a result that could be 

explained by the oral processing dynamics of liquid foods (Salles et al., 2010). While solids need to be 

fragmented and mixed with saliva to form a cohesive bolus, liquids can be swallowed immediately after 

being diluted by saliva and warmed to body temperature (Engelen, 2003). Thus, liquids usually remain 

in the mouth for a much shorter period of time than do solids.  

 

The results obtained with multiple-intake TDS profiling (i.e., where the sensory attributes of a full 

beverage portion were evaluated) revealed a gradual decrease in the dominance of texture attributes and 

bitterness over time. This decrease was more pronounced for the pellet-based beverage than the isolate-

based beverage. Such attributes might become less noticeable after repeated tasting due to sensory 

adaptation (Lawless & Heymann, 2010). There was also a gradual increase in perceived fattiness across 

time, which could be due to the lingering and build-up of sensations (Lawless & Heymann, 2010). These 

results fit with those from several other studies showing that perceptions of fattiness build up in the 

mouth due to fat lingering on oral surfaces (i.e., the tongue and the palate) (Appelqvist et al., 2016). The 

persistence of the sensation of fattiness may stem from the presence of residual fat or oil in the oral 

cavity after swallowing, which can increase the attribute’s intensity over the course of repeated ingestion 

(Appelqvist et al., 2016).  

 

Perception of aroma and the interactions of flavour with taste and texture 

Beverage composition greatly influenced the perception of aroma. Static block profiling showed that 

products with greater gellan gum content were perceived as having lower overall aromatic intensity and 

less pronounced almond and broth notes. In contrast, mono-intake TDS profiling revealed that the 
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attribute pea was relatively dominant in this beverage type. The impacts of hydrocolloid solutions on 

the sensory perception of food depend on a large number of variables (e.g., hydrocolloid type, range of 

viscosity, food matrix type, choice of sensory evaluation technique). Only a few studies have explored 

the effects of hydrocolloids on the perception of thickened beverages (Yanes et al., 2002), and, to our 

knowledge, none have looked at gellan gum. However, these studies generally found that an increase in 

beverage viscosity led to a decrease in aroma perception (Cook et al., 2005; Tournier et al., 2007), which 

is consistent with the results of this study. 

 

Beverages containing oil were perceived as having greater overall aromatic intensity and more intense 

almond and nut notes based on static block profiling. When mono-intake TDS profiling was used, these 

beverages displayed the highest dominance of almond and the lowest dominance of broth. Past research 

has repeatedly shown that lipids can modify the sensory perception of food. They function as reservoirs 

for numerous aroma compounds, resulting in delayed release and perception (Saint-Eve et al., 2009). In 

addition, in static block profiling, beverages with a higher salt content were perceived as displaying 

more intense brothiness and, in mono-intake TDS profiling, they were perceived as having the least 

dominant almond note. This result can be explained by sodium chloride causing the salting out of 

hydrophobic aroma compounds (Saint-Eve et al., 2009). 

 

Protein type influenced the perception of overall aromatic intensity: pellet-based products were 

perceived as less aromatic than isolate-based products, based on static block profiling. The results for 

mono-intake TDS profiling provided additional support for this finding: the attributes pea and nuts were 

perceived as less dominant in pellet-based products than in isolate-based products. Previous research 

has extensively examined interactions in protein-based foods between aroma compounds and proteins 

(Heng et al., 2006). These interactions can be modified by different factors: protein conformation and 

composition; the properties of aroma compounds, such as hydrophobicity; and environmental 

conditions, such as pH (Damodaran & Kinsella, 1981). Thus, it can be assumed that the above sensory 

differences arose from differences in protein type and, more specifically, differences in interactions 

between aroma compounds and proteins. 

 

Here, it was found that aroma attributes were dominant during the latter part of the evaluation period, 

based on mono-intake TDS profiling. This finding concurs with what has been seen in previous studies. 

During the swallowing process, the liquid bolus is first held on the upper surface of the tongue 

(Macqueen et al., 2003). During this step, the soft palate is most often closed, and aroma compounds 

have limited access to the nasal cavity, which may explain why only texture and sapidity attributes were 

dominant during the initial part of the evaluation period. Then, the tongue generates a wave of pressure 

that squeezes the liquid backward through the mouth and pharynx toward the esophagus (Mackley et 

al., 2013). Immediately after the liquid passes the epiglottis, the soft palate is re-opened (Buettner, 

2002). For liquid foods, this is the first moment in which aroma compounds have access to the nasal 

cavity (Buettner, 2002), and the highest aroma release signal is generally observed during the first 

expiration after swallowing (called the swallow breath) (Linforth & Taylor, 2000). This series of events 

may explain why aroma attributes were more dominant during the latter part of the evaluation period. 

After a few seconds, the concentration of volatile compounds in the mouth and nasal cavity decrease 

significantly (Mesurolle et al., 2013). In contrast, non-volatile compounds remain on oral surfaces (i.e., 

the tongue and palate) and continue to influence perceptions (Appelqvist et al., 2016), which may 

explain why astringency was dominant later in the evaluation period. Multiple-intake TDS profiling 

showed that beaniness gradually decreased over time. This decrease was more pronounced for the pellet-

based beverages. However, these attributes might become less noticeable after repeated tasting due to 

sensory adaptation (Lawless & Heymann, 2010).  

 

Beverage composition had a limited effect on the sensory interactions of flavour with taste and texture. 

However, there were some prominent taste-flavour interactions. When the panellists used nose-clips to 

evaluate attributes related to texture and sapidity, bitter and salty notes were perceived as less intense 

than when the nose-clip was not used. Beverages were also perceived simultaneously as more beany, 

bitter, and salty, suggesting congruent effects. These results are consistent with those found in other 

studies on bitter beverages. For example, cocoa flavouring enhanced bitterness in a cocoa beverage 

(Labbe et al., 2006), and the addition of aroma compounds increased bitterness in beers (Oladokun et 
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al., 2017). Taken together, these results suggest that interactions between taste and aroma are induced 

by effects of congruency. 

 

The importance of employing a combination of sensory profiling methods 

Static block profiling, in which beverage attributes were evaluated immediately after consumption, 

revealed that the perception of beaniness was strongly affected by beverage composition. At the same 

time, the differences between the different attributes contributing to beaniness (pea, nuts, almond, and 

broth) were not very pronounced. Mono-intake TDS profiling, in which beverage attributes were 

evaluated over a 2-min period following consumption, provided more detailed information about 

differences among beverages, especially in terms of the different attributes contributing to beaniness. In 

particular, results suggest that pellet-based beverages were perceived as more brothy and less pea-like 

than isolate-based beverages. Static block profiling found that perceived astringency was moderate and 

the intensities for the stand-alone attributes (blocks 1 and 2, Figure 3.4.1.1.) were strongly correlated 

with the intensities for attribute persistence. In contrast, mono-intake TDS profiling highlighted that 

perceived astringency was strongly persistent over the evaluation period and that the perception of other 

attributes shifted. The static block profiling method made it possible to rapidly and independently 

evaluate attribute intensity. However, it is difficult for panellists to assess attribute dominance and 

intensity at the same time during TDS (Di Monaco et al., 2014), and there is thus a risk of 

interdependence among attributes (Saint-Eve et al., 2011; Teillet et al., 2010). That said, static block 

profiling requires panellists to integrate their changing sensory perceptions over the course of oral 

processing to come up with a summary evaluation (Cliff & Heymann, 1993), and it is hard to control 

the point in the oral process at which products are evaluated. Thus, it makes sense to jointly use static 

block profiling and TDS profiling to obtain a better understanding of attribute intensity and dominance 

in food products. 

 

Conventionally, in TDS profiling, different attribute families (taste, texture, and aroma) can be evaluated 

during different parts of a study (Lesme et al., 2020). Here, however, the choice was made to evaluate 

the different attribute families at once. Although the influence of listing attributes from different families 

in the same list remains unknown (Di Monaco et al., 2014), this methodological approach makes it 

possible to assess all the attributes simultaneously and to identify specific sensory phases. The initial 

part of the evaluation period was dominated by texture attributes. Then, depending on the product and 

the panellist, different attributes became dominant. Finally, in the latter part of the evaluation period, 

astringency became dominant.  

 

The results obtained with the multi-intake TDS profiling method underscore that quantifying sensory 

experiences over time could provide additional information about how consumers perceive foods. For 

example, perceived fattiness became more dominant over the course of consumption, while other 

attributes (except astringency) became less dominant, perhaps because repeated tasting led to sensory 

adaptation. Previous research using multi-intake TDS profiling found that attributes related to texture 

and sapidity gradually increased over time but that there was no intake effect on how long aroma 

attributes remained dominant (Galmarini et al., 2017; Lesme et al., 2020; Thomas et al., 2016; van 

Bommel et al., 2019). However, in these studies, panellists evaluated multiple spoonfuls of product in 

a row. In contrast, the present study had panellists evaluate spoonfuls of beverage at three distinct time 

periods, corresponding to the beginning, the middle, and the end of the consumption of a full product 

portion. Another study that examined temporal changes in attribute perceptions during the consumption 

of an entire portion of an oral nutritional supplement found that there were differences in the aroma 

attribute “praline” over time (Thomas et al., 2016).  

 

These findings raise questions regarding the ideal number of spoonfuls and amount of product that 

should be consumed by panellists. Here, it seemed to be more useful to have panellists evaluate 

spoonfuls taken at specific moments during the consumption of a full beverage portion than to have 

panellists consume several spoonfuls of beverage in a row. In other contexts, it could make more sense 

to evaluate multiple spoonfuls consumed ad libitum, such as when the goal is to investigate the effect of 

sensory-specific satiety, which is a decrease in attribute perception for a specific food following repeated 

exposure (Hetherington & Havermans, 2013). Nevertheless, both these methodologies (i.e., 

consumption of a full portion or ad libitum consumption) share the disadvantage that only one replicate 
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of one product can be evaluated per session. Thus, in addition to being time consuming, there is a risk 

of failing to pick up on differences among products. For this reason, it is important to explore how 

spoonful number and the amount of product consumed influence the results obtained. 

 

Finally, for food production companies, improving methods for characterizing the sensory profiles of 

products is key to better understanding consumers’ experiences. This study did not take into account 

temporal hedonic profiles. However, it could be interesting to combine descriptive and hedonic analyses 

with multi-intake TDS profiling. This approach could provide further insight into pea protein-based 

products, leading to their improvement (Thomas et al., 2016; van Bommel et al., 2019). 

 

3.4.1.5. Conclusions and perspectives 

 

In conclusion, this study’s use of three methods—static block profiling, mono-intake TDS profiling, and 

multi-intake TDS profiling—helped clarify how the composition of pea protein-based beverages 

affected sensory perceptions. The static block profiling method, in which beverage attributes were 

evaluated immediately after consumption, revealed that the perception of beaniness depended on protein 

type; it was higher when the pea protein source was an isolate than when it was a pellet. Perceived 

beaniness also increased when gellan gum content was lower and oil content was higher. The mono-

intake TDS profiling method, in which beverage attributes were evaluated over a 2-min period following 

consumption, showed that beverages differed markedly in the dynamics of their aroma attributes. In 

particular, almond notes were more dominant and pea notes were less dominant in pellet-based 

beverages than in isolate-based beverages. These characteristics were accentuated from one spoonful to 

the next. Perceptions of astringency and bitterness were mainly impacted by protein type and gellan gum 

content. While static block profiling found a moderate level of perceived astringency, mono-intake TDS 

profiling highlighted that astringency was strongly persistent and that this persistence seemed to be 

limited by gellan gum and salt contents. The use of the nose-clip during static block profiling indicated 

that there were few interactions of flavour with texture and taste. It also yielded evidence of a weak 

effect of congruency between the bitter/salty notes and the beany note. Specific sensory phases were 

also identified: texture attributes were more prominent during initial consumption, and astringency was 

more prominent during later consumption. Finally, the multi-intake TDS profiling results suggest that, 

over time, the perception of fattiness built up and the perception of beaniness shifted because of sensory 

adaptation. Thus, taken together, this study’s findings have enhanced understanding of sensory 

perceptions of pea protein-based beverages under conditions that more closely resemble those associated 

with real-life consumption. They also provide clues for reformulating pea protein-based products to 

reduce beaniness, bitterness, and astringency. 

 

 

Main results 

 The static block and mono-intake TDS profiling methods yielded complementary 

results about the impact of beverage composition on attribute perceptions. 

 Static block profiling revealed that beaniness was mainly affected by gellan gum 

and oil content and that bitterness and astringency were mainly affected by protein 

type and gellan gum content. 

 Mono-intake TDS profiling highlighted the dynamics of beaniness and the strong 

persistence of astringency, and its results suggested that higher gellan gum and salt 

contents could limit this persistence. 

 Multi-intake TDS profiling found that, over the course of the consumption of a full 

product portion, beaniness and bitterness decreased, indicating an adaptation effect, 

while fattiness increased, indicating a build-up effect. 
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Section 3.4.2. – Sensory perceptions of pea protein beverages 

explained by rheological and chemical properties 

 

3.4.2.1. Introduction 

 

Consumers are increasingly seeking out healthy, ethically produced, and eco-friendly foods. In this 

context, plant proteins are proving to be a great success and yellow field pea (Pisum sativum L.), in 

particular, is becoming a common ingredient in plant-based foods (Siddique et al., 2012). This last is 

used in the formulation of many types of foods, including fortified beverages, imitation milk and sports 

drink (Boye et al., 2010). However, consumers usually describe pea protein-based foods as having 

strong beany, bitter, and astringent notes, which can decrease their desirability. These distinct and 

persistent perceptions challenge their use as beverages ingredients (Lam et al., 2018).  

 

Particular attention has been paid in literature to the beany perceptions of pea protein-based products, 

to understand the volatile compounds at their origin. Murat et al. investigated the key volatile 

compounds of pea flour and pea protein isolates using three extraction methods and GC-MS-O (Murat 

et al., 2013). Azarnia et al. compared the volatile compounds in peas of different cultivars and under 

storage conditions (Azarnia et al., 2011). Bi et al., investigated the effects of roasting on variations in 

the key volatile compounds in peas by recombination and omission experiments (Bi et al., 2020). 

Trikusuma et al., characterize changes in the aroma profile of a pea protein beverage as impacted by 

UHT processing and storage (Trikusuma et al., 2020). Zhang et al., investigated the volatile composition 

of pea milk with GC-O-MS, and calculated odour activity values of key volatile compounds (Zhang et 

al., 2020). Nevertheless, none of these studies, take into account the impact of the food oral process and 

the role of saliva on these particular perceptions.  

 

However, during oral processing, beverages are subject to a range of mechanical and chemical 

transformations which can modify greatly perceptions (Foster et al., 2011). It is a dynamic process 

involving mechanical deformation processes by mastication and movements between the tongue and the 

palate (Stokes et al., 2013); particle hydration and lubrication by saliva to form a bolus (Mishellany et 

al., 2006); and enzymatic degradation by salivary enzymes (Pagès-Hélary et al., 2014, Buettner et al., 

2002). During this process, volatile compounds can be adsorbed at the surface of the oral mucosa, before 

being progressively desorbed and released into the oral cavity after the equilibrium has changed due to 

food swallowing (Buettner et al., 2002). They can also be enzymatically converted to new compounds 

in the oral cavity by salivary enzymes (Buettner, 2002; Pagès Hélary, et al., 2014) or by cellular enzymes 

(Robert-Hazotte et al., 2019). In addition, volatile compounds release, and so aromatic perceptions, 

depend also of the mobility (diffusion and convective transport) and on the partition properties of aroma 

compounds on the matrix (Poling et al., 2000; Deleris et al., 2016). They depend also of their interactions 

with hydrophobic constituents of the matrix, such as lipids, polysaccharides and proteins (Relkin et al., 

2004). 

 

Thus, complex olfactory perceptions can depend on oral process between food and individual and on 

physico-chemical interactions, particularly with saliva. In this context, the objective of this part of work 

is to quantify these different interactions in order to better understand the origin of perceptions of pea-

based beverages and how these perceptions can be impacted by the formulation. For this purpose, 

different pea protein-based beverages (containing pea-proteins, salt, sunflower-oil, gellan gum, sugar 

and soy-lecithin) were formulated and sensory described by a trained panel. Their texture was 

characterized by rheological methods and aroma release by gas-chromatography–mass-spectrometry in 

different conditions (with no dilution, dilution with water and dilution with saliva). Relationships 

between rheological data and sensory data were discussed taking into account some oral processing 

factors implied for liquid products. In addition, the ability of volatile compounds to predict aroma 

perceptions was discussed taking into account the food dilution with saliva. 

 
 

https://www.sciencedirect.com/topics/food-science/sports-drink
https://www.sciencedirect.com/topics/food-science/sports-drink
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3.4.2.2. Materials and methods 

 
Product preparation 

In this study, 12 types of pea protein-based beverages were created in the lab (composition and 

ingredient concentrations are in Table 3.4.2.1.). Water (Evian, France), gellan gum (Texturas Ferran 

Adria, Spain), salt (Auchan, France), sunflower oil (Auchan, France), sugar (Daddy, France), and soy 

lecithin (Louis Francois, France) were the other ingredients used to formulate the beverages. Two 

Thermomix® TM5TM appliances (Vorwerk, Germany) were employed to standardize product 

preparation. 

 

Table 3.4.2.1.: Composition (ingredient concentrations [w/w %]) of the pea protein-based beverages 

used in this study as well as the pH and the power law index and consistency index measured by 

steady shear stress. Abbreviations: I = isolate, P = pellet, F+ = 1.5% oil, F- = 0% oil, G+ = 0.5% 

gellan gum, G- = 0.12% gellan gum, S+ = 0.12% salt, and S- = 0.08% salt. 

 

Product 

name 

Protein 

type 

Sunflower 

Oil (%) 

Soy 

lecithin 

(%) 

Gellan 

gum (%) 

Salt (%) 

(NaCl) 

Sugar 

(%) 

Pea 

protein 

(%) 

Water 

(%) 
pH 

Power 

law 

index 

Consistency 

index 

 (P or I) (F+ or F-)  (G+ or G-) (S+ or S-)       

I/F-/G-/S- Isolate 0.00 0.00 0.12 0.08 1.00 7.00 91.80 7.95 0.55 0.51 

I/F-/G-/S+ Isolate 0.00 0.00 0.12 0.12 1.00 7.00 91.76 7.88 0.51 0.59 

I/F-/G+/S- Isolate 0.00 0.00 0.50 0.08 1.00 7.00 91.42 7.91 0.25 12.09 

I/F-/G+/S+ Isolate 0.00 0.00 0.50 0.12 1.00 7.00 91.38 7.94 0.21 15.19 

I/F+/G-/S- Isolate 1.50 0.10 0.12 0.08 1.00 7.00 90.20 7.88 0.54 0.56 

I/F+/G-/S+ Isolate 1.50 0.10 0.12 0.12 1.00 7.00 90.16 7.86 0.49 0.72 

I/F+/G+/S- Isolate 1.50 0.10 0.50 0.08 1.00 7.00 89.82 7.84 0.26 10.26 

I/F+/G+/S+ Isolate 1.50 0.10 0.50 0.12 1.00 7.00 89.78 7.87 0.21 20.44 

P/F-/G-/S- Pellet 0.00 0.00 0.12 0.08 1.00 7.00 91.80 7.73 0.51 1.94 

P/F-/G+/S- Pellet 0.00 0.00 0.50 0.08 1.00 7.00 91.42 7.66 0.34 16.76 

P/F+/G-/S- Pellet 1.50 0.10 0.12 0.08 1.00 7.00 90.20 7.74 0.50 2.15 

P/F+/G+/S- Pellet 1.50 0.10 0.50 0.08 1.00 7.00 89.82 7.64 0.33 16.32 

 

Two different types of pea protein (isolates and pellet) were evaluated. First, pea protein pellets were 

obtained as follows: water and pea protein isolates were slowly mixed together (96% [w/w] water, 4% 

[w/w] pea protein isolate) and then left to hydrate for 60 min at 4°C under stirring. The pellet and 

supernatant were separated via centrifugation at 6000 rpm at 4°C for 10 min. The pellet was stored at 

4°C for a maximum of 2 h before the beverages were made.  

 

Second, the beverages were created using the following method: the water was mixed and heated (3 

min, 50°C, and speed setting of 2.5) in one of the Thermomix appliances. The sugar, salt, pea protein 

(isolate or pellet), and gellan gum were then gradually mixed into the water (30 min, 50°C, speed setting 

of 4.5). Simultaneously, the sunflower oil was heated (1 min, 65°C, speed setting of 1.5) in the second 

Thermomix. The soy lecithin was then mixed into the sunflower oil (3 min, 65°C, speed setting of 2). 

The contents of the first Thermomix were added to the contents of the second Thermomix 2 and 

combined without heating (5 min, speed setting of 5). After this step, the overall mixture was heated (6 

min, 90°C, speed setting of 3.5). Immediately after preparation, the beverages were stored at 4°C until 

they were used in the sensory profiling sessions. The Thermomix appliances were cleaned by filling 

them with a mixture of 2 L of water, 100 ml of white vinegar, and 5 mL of dishwashing liquid, which 

was then heated (5 min, 70°C, and speed setting of 1). The appliances were subsequently thoroughly 

rinsed with hot water and stored at 4°C until they were next used in order to prevent any bacterial growth. 

 

Before all sensory analysis, the microbial safety of the products was controlled by a certified external 

laboratory (Eurofins Scientific, France). The products were served to the panellists at room temperature 

(20°C) in transparent cups (29.5 ml) identified with three-digit codes. 

 

Texture analysis 

A rheometer (MCR301, Anton Paar, Graz, Austria) equipped with sanded coaxial cylinders (diameter 

of 27 mm) was used to test the gels' rheological properties. The beverages were carefully poured into 
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the cylinder, which was kept at 20 °C. Different tests were subsequently carried out on the samples. 

Three replicates were done for each experiment and each product.  

(1) Steady shear rate (1 to 1000 1/s, 15 measurement points) were performed at 20 °C using rotation 

mode. From the shear rate and the shear stress data, the flow curves were plot using logarithmic scales 

and modelled with a power law (τ  = γ kn such as τ  = shear stress, γ = shear rate, n = power law index 

and k= consistency). 

(2) Strain sweeps (0.001–100%, 1 Hz) were performed at 20 °C. From the shear stress data, the loss 

modulus [Pa] and the storage modulus [Pa] were calculated. 

(3) Frequency sweeps (10–0.01 Hz, 1%, 11 measurement points) were performed at 20 °C. From the 

shear stress data, the loss modulus [Pa] and the storage modulus [Pa] were calculated. 

 

Volatile compounds analysis 

To analyse the aroma compounds released from the pea protein beverages, GC-MS analysis was 

performed. A Dynamic Headspace Gas Chromatography coupled with a Mass Spectrometer (MPS: 

Gerstel, GC: Agilent 7890B, MS: Agilent 5977B MSD) was used to quantify aroma compounds released 

from the different beverages. Protocol was carried out as follows. After thawing during one night (about 

15 hours) at 4°C, 5g of each product was stored at 10°C on the GC-MS sample holder. Each sample was 

then incubated at 40°C for 3min (agitation at 500 rpm). The headspace was then purged with a constant 

flow of helium at 30 ml/min for 20 min at 30°C and aroma compounds were trapped on an adsorption 

unit (tenax polymer). The trap was dried for 6 minutes under a stream of helium to remove traces of 

water. Then the trap unit was desorbed from 30°C to 270°C at a rate for 60°C/min with an isotherm of 

7 min in a cool injection system at -100°C.  The column head injection was carried out from -100°C to 

270°C at a rate of 12°C/min with an isotherm of 5 min. 

 

The GC oven temperature was programmed from 40°C with an isotherm of 5 min, to 155°C at a rate of 

4°C/min, then to 250°C at a rate of 20°C/min with an isotherm of 5 min. The GC was equipped with an 

apolar column (DB-5, 60m x 320μm x 1μm) with a helium flow of 1.6 mL/min. A mass spectrometer 

was used to characterize aroma compounds. It was performed in the electron impact mode at 70 eV, in 

full scan from m/z 29 to 300 A.M.U. (Atomic Mass Unit). The ionisation source was set at 230 °C and 

the quad at 150 °C. The compounds were tentatively identified by comparison of their mass spectra with 

those of the NIST 2017 Mass Spectral Library. The data were reported as peak area for each compounds 

detected. Quantification data were obtained from the integration of the areas from the total ion current 

(TIC). MassHunter software was used for instrument control, data acquisition, and data analysis. 

 

Impact of saliva on volatile compounds analysis 

Samples (2.5g) were diluted at 50% with either water (Evian, France) or saliva (Commercial human 

saliva, pooled from 10 donors - 5 female and 5 male, BioIVT, United Kingdom). Samples were shaken 

slowly and stored during 2h at 4°C to allow complete solubilisation and equilibrium for the interactions 

within volatile and non-volatile compounds.  All samples were prepared in duplicate and stored in dark 

condition at -80°C in glass vial previous to analysis. Measurement of aroma compounds release was 

conducted using the same GC-MS. The protocol was exactly as described previously except that the 

headspace was purged with a constant flow of helium at 30 ml/min for 20 min at 30°C.  

 

Sensory analysis 

The pea protein solution sensory characterization can be found in the companion papers (Cosson et al., 

2020; Section 3.4.1.). However, the main parameters are recalled here for sake of clarity. Pea solutions 

were characterized by sixteen panellists (15 women and 1 man, 18–39 years in age). Panellists 

performed the sensory evaluations in individual booths under white light in an air-conditioned room 

(20°C). The attributes were generated and selected with a check-all-that-apply (CATA) questionnaire. 

A final list of 11 attributes was used to characterise the intensities of beverages: salty, bitter, astringent, 

sweet, fat, pea, almond, nuts, broth, mouthfeel, and overall aromatic intensity. The panellists were 

trained to evaluate the intensity of these attributes along an unstructured scale (range: 0–10) using 

external references. Training took place over 10 sessions that each lasted 45 min.  

 

Panellists were asked to score the attributes of the 12 beverages using a static block profiling method. 

They had to evaluate six beverages per session and were unaware of beverage identity. To account for 
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the order in which the beverages were experienced and any potential carry-over effects, beverage order 

was balanced across panellists using a Latin square. To reduce sensation build-up, a palate-cleansing 

protocol was used between beverages: panellists had to consume an apple slice, drink water, and wait 

40 seconds before consuming the following beverage  (Cosson et al., 2020; Section 3.4.1.). Sensory 

analysis was managed using Fizz Acquisition software (v. 2.51, Biosystemes, France). Panellist’s 

performances were evaluated and controlled. Overall performance was assessed using ANOVA with 

three independent variables (product type, panellist ID, and replicate) and their first-order interactions. 

There was a product effect, indicating that panellists distinguished among the different beverages 

(p<0.05). The significance of various interactions revealed whether the panellists consistently scored 

attributes across replicates (panellist*replicate), whether there was consistency in scoring among 

panellists (product type*panellist ID), and whether panellists scored products consistently across 

replicates (product type*replicate). The performance of individual panellists was also evaluated based 

on their ability to discriminate among beverages and on repeatability criteria. 

 

Statistical analysis 

Data analysis was performed using XLSTAT (Addinsoft, 2017, Paris, France) and JMP (JMP software 

version 13.1.0 (SAS Institute Inc., Cary, SC, USA). For analyses of an inferential nature, we used α = 

0.05 to determine statistical significance. 

 

To analyse the profiling results, we carried out PCA (Principal component analysis) on correlation 

matrix; the data were averaged across replicates and panellists (centred, Pearson type).  

 

To analyse rheological data, the dynamic viscosity was calculated and plotted in function of the shear 

rate according to the formulations of pea beverages. The power law index and consistency index from 

the power law model were also calculated. To analyse effects of the samples composition on the power 

law index, ANOVA (analysis of variance) were performed in which pea protein origin, oil content, 

gellan gum content, and salt content were fixed effects. The loss modulus and the storage modulus and 

their ratio were calculated and plotted in function of the strain or the frequency according to the 

formulations of pea beverages. Finally, correlations coefficients and their corresponding p-value 

(Pearson method) were calculated between rheological parameters and mouthfeel/astringent sensory 

intensities. 

 

To analyse GC-MS data, hierarchical cluster analysis (HCA, two-way clustering, Ward method) was 

performed on GC-MS data. Dendrogramms were plotted with colour map. To analyse impact of dilution 

with saliva on GC-MS results, we carried out PCA (Principal component analysis) on correlation matrix; 

the data were averaged across replicates (centred, Pearson type). To visually explore differences in the 

results obtained using sensory analysis and GC-MS analysis, we carried out multiple factor analysis 

(MFA) (centred by group; Pearson type); the data from both methods were averaged across replicates 

(and panellists). Finally, correlations coefficients and their corresponding p-value (Pearson method) 

were calculated between volatile compounds (CGMS area) and overall aromatic intensity, pea and broth 

sensory attributes. 

 

3.4.2.3. Results and discussion 

 

Chemical and rheological characterization of pea beverages 

 

Rheological properties of different pea beverages 

In this study, three common rheological tests were done: steady shear test, strain sweep test and 

frequency sweep test. The analysed set of beverages presented two concentrations of NaCl, gellan gum 

and sunflower oil as well as two different types of pea protein (isolates and pellet). 

 

Results from the steady shear test are presented on Figure 3.4.2.1. with the dynamic viscosity plotted in 

function of the shear rate according to the formulations of pea beverages. Results show monotonic 

increase in viscosity with the increase in shear rate: products with higher gellan gum content and less 

salt content present the highest value of viscosity. A power law was successfully used to link the shear 
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stress to the shear rate and allowed to determine two characteristic indexes: the power law index and 

consistency index. These indexes were calculated for each pea beverage (Table 3.4.2.1.).  

 

 
Figure 3.4.2.1.: Dynamic viscosity [Pa.s] in function of the shear rate [1/s] according to the 

formulations of pea beverages. 

 

The power law index is inferior to 1 for the 12 beverages. Therefore beverages are shear thinning. The 

effects of the composition on the power law index was also compared through ANOVA (Table 3.4.2.2.). 

The pea protein origin, the gellan gum content and the salt content have a significant impact on the 

power law index whereas the oil content have no significant effect. Gellan gum content is responsible 

of the most significant effect, whereas pea protein origin the least significant. Samples containing 0.5% 

of gellan gum are more shear thinning than samples containing 0.12%. According to the literature, the 

gelation mechanism and the solution-gel transition of gellan gum are strongly influenced by cosolutes 

such as minerals, polyols or carbohydrates (Miyoshi, Nishinari, 1999; Sworn et al., 2009). So, it could 

explained why salt content and protein type modified the rheological properties of the pea beverages. 

 

Table 3.4.2.2.: Results of the ANOVA examining effects of the samples composition on the power 

law index (n). (Total degrees of freedom: 11 ; residual degrees of freedom: 7. Significant p-values are 

in bold (α = 0.05). 

 
Source F p-value 

Pea protein origin 11.36 < 0.01 

Oil content 2.27 0.13 

Gellan gum content 1895.14 < 0.01 

Salt content 37.09 < 0.01 

 

To characterize the beverages, their strain-dependent behaviour was also examined by oscillatory 

measurements (strain sweep test). Results are presented on Figure 3.4.2.2. They showed monotonic 

increase of the shear stress when the strain increase. The storage modulus [G'] and the loss modulus [G''] 

shown constant values for strain around 0.1% (linear viscoelastic region). G'' value represents the energy 

dissipated (i.e. the viscous portion) and G' value represents the stored energy, (i.e. the elastic portion) 

(Meyers and Chawla, 1999). For most pea beverages G' > G'', except for pea beverages with isolates as 

protein type and less gellan gum content where G'=G''. Thus these samples have a gel-like structure 

which indicate the presence of a network structure. Indeed, the proposed gelation mechanism of gellan 
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gum is based on the model domain which assumes the formation of distinct junction zones and 

disordered flexible polymer chains connecting adjacent junction zones (Sworn et al., 2009). Gel 

character is often found in polysaccharides such as gellan which react gel-like under static conditions 

and exhibit very low viscosities at high shear rates (Lam et al., 2017). Besides, pea beverages with 

isolates as protein type, higher gellan gum content and less salt content present a pronounced G'' 

maximum at the end of the viscoelastic region. It means that the microstructural reorganization before 

breakdown entails energy dissipation leading to an increase of G′′ values up to a peak value at the be-

ginning of the non-linear response (Hellriegel et al., 2013). After the cross over point (G' = G''), 

beverages present a fluid behaviour (G'' > G') and the food material start to flow. In addition, pea 

beverages with isolates as protein type, higher gellan gum content and higher  salt content present higher 

ratio G'/ G'' i.e. a more elastic behaviour. 
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Figure 3.4.2.2.: Loss modulus (in blue) and storage modulus (in red) [Pa] in function of the strain [%] 

according to the formulations of pea beverages. 

 

To characterize the beverages, their frequency-dependent behaviour was finally examined by oscillatory 

measurements (frequency sweep test). Results shown monotonic increase of the shear stress when the 

frequency increase. The ratio G'/ G'' in function of the frequency according to the formulations of pea 

beverages is presented Figure 3.4.2.3. Results show few variations of the ratio G'/ G'' according to the 

frequency. At 10 Hz, beverages with isolates as protein type present higher G'/ G'' than beverages with 

pellet as protein type. But, results show more variation between the pea beverages at 0,01 Hz: beverages 

with isolates as protein type, higher gellan gum content and higher salt content present much more higher 

G’/G”.  

 
Figure 3.4.2.3.: Storage modulus [G'] / Loss Modulus [G''] in function of the frequency [Hz] according 

to the formulations of pea beverages. 
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Volatile compounds profiles of different pea beverages 
In this study, composition on volatile compounds were studied by GC-MS analysis on the 12 beverages 

previously described. A total of 71 volatile compounds belonging to 8 chemical classes were identified 

(Table 3.4.2.3.). The distribution of these compounds is presented on a heat map associated to an AHC 

on products and on compounds (Figure 3.4.2.4). Ketones and aldehydes are the most prominent 

compounds in number (ketones: 18 compounds, aldehydes: 19 compounds). Ketones, aldehydes, 

alcohols and furan families are the most prominent compounds in term of GC-MS area (which is linked 

mainly to the concentration and on the less extend to the volatility and hydrophobicity of the compounds 

in the beverages): aldehydes 1.86E+06, alcohol 9.74E+05, ketones 9.56E+05, furan 6.05E+05 (mean 

GC-MS area for all the volatile compounds of the family). 

 

Most of the compounds identified were also known on others publications. For example, on the 78 

compounds identified by Murat et al. (2013) on pea protein isolates, 39 volatile compounds are similar 

with this study, including (E,E)-2,4-heptadienal known to be important odour active volatile secondary 

lipid oxidation products (Jacobsen, 1999). On the 21 compounds studied by Trikusuma et al., (2019) on 

pea protein beverage, 7 volatile compounds are similar. On the 72 compounds identified by Bi et al. 

(2020) on roasted pea protein isolates, 22 volatile compounds are similar including 2-pentylfuran and 

1-octanol. These differences in composition are not surprising because the studied products are different 

in terms of composition and sourcing as well as in term of extraction protocols and analytical methods. 

This result shows that the profile in volatile compounds could be highly variable according to the 

process, the formulation and the analytical conditions. To be noted, in the literature, the main origin of 

these compounds is indicating coming from endogen origin of pea seed or from oxidation of the 

lipids/peptides/amino acids in the seed or during the storage (Murat et al., 2013; Trikusuma et al., 2019). 

For example, they could come from the oxidation of unsaturated lipids and phospholipids (Cowan et al, 

1973) or the oxidation because of the lipoxygenase (Baysal and Demirdöven 2007) which could be 

accelerated by oxidation and auto-oxidation (Damodaran and Arora 2013). 

 

Besides, the volatile profiles of products did not changed much according to the beverages composition 

(oil content, salt content, gellan gum content and protein type) and these variations are highly depending 

of the chemical compounds. Globally, beverages with higher gellan gum content present lower volatiles 

release. The strength of the gels being higher for beverages with higher content of gellan gum, we can 

assume that there is less open space located between the gel chains resulting in higher obstacles to the 

free diffusion of volatile compounds and higher interactions with proteins (Gostan et al. 2004; Wang & 

Artnfield, 2016). This result is constituent with sensory results which shown lower aromatic perceptions 

with higher gellan gum concentration. In addition, globally beverages with pellet present lower 

concentrations on volatile compounds. Although pea pellets and isolates both contain similar levels of 

total proteins, pellets are richer in insoluble proteins and they have a different mineral composition. 

Previous research has examined interactions in protein-based foods between volatile compounds and 

proteins and these interactions can be modified by different factors: protein conformation and 

composition as well as the environmental conditions, such as pH and NaCl composition (Damodaran & 

Kinsella, 1981). These modifications of interactions can result on modifications on volatile release. This 

result is also constituent with sensory results which shown lower aromatic perceptions with pellet. 

 

But beverages present few variation of concentrations on volatile compounds according to the 

concentration in oil. In the literature, the role of lipids is often described as a role of reservoir for the 

volatile compounds. Indeed, volatile compounds mainly hydrophobic are less released in the vapour 

phase from oil than from water resulting in their delayed release (Voilley and Etiévant, 2006; Paravisini 

et Guichard 2016). Beverages present also few variation of concentrations on volatile compounds 

according to the concentration on NaCl. Usually, an increased amount of NaCl induces an increase in 

the air/water partitioning of most aroma compounds, due to a salting-out effect (Endo et al. 2012). 

Indeed, NaCl ions mobilising water compounds for their hydration, less water is available for the 

solubilisation of volatile compounds and they are therefore more released into the vapour phase (Rabe 

et al. 2003). But, NaCl can modify the structure of proteins and so their interactions with volatile 

compounds resulting also on modifications on volatile release. This low impact of the NaCl content on 

volatile compounds is also constituent with sensory results which shown low impact of NaCl content on 

aromatic perceptions. 
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Figure 3.4.2.4.: Hierarchical clustering (ward method) of the 12 beverages analysed by GC-MS and 

the 71 volatile compounds identified. 
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Table 3.4.2.3.: Volatile compounds identified by GC-MS with apolar column (DB-5, 60m x 320μm 

x 1μm) from pea protein isolates beverages (tentative identification using NIST mass spectra library, 

comparison of the GC retention index – Kovats index, physicochemical properties at 25°C from 

literature - EPI-Suite4.11). 

 
IUPAC name Retention 

time 

NIST 

score 

Kovats 

index 

CAS 

number 

Chemical 

family 

Chemical 

formula 

Molecular 

mass 

Odour LogPow 

(est)* 

Solubility** Volatility*** 

ethanol 4.9 98 440 64-17-5 Alcohol C2H6O 46.04 strong alcoholic ethereal 

medical 

-0.31 7.92E+05 5.00E-06 

propan-2-one 5.5 88 503 67-64-1 Ketone C3H6O 58.00 solvent ethereal apple 

pear 

-0.24 2.20E+05 3.50E-05 

propan-2-ol 5.8 93 515 67-63-0 Alcohol C3H8O 60.10 dry alcoholic woody 

musty 

0.05 4.02E+05 8.10E-06 

methyl acetate 6.2 86 531 79-20-9 Ester C3H6O2 74.04 green, etherial, fruity, 

fresh, rum and whiskey-

like 

0.18 9.39E+04 1.15E-04 

2-methylpro 

panal 

7.0 98 554 78-84-2 Aldehyde C4H8O 72.06 fresh aldehydic herbal 

green malty 

0.74 3.12E+04 1.80E-04 

propan-1-ol 7.1 98 560 71-23-8 Alcohol C3H8O 60.10 alcohol, pungent 0.25 2.72E+05 7.41E-06 

butane-2,3-

dione 

7.9 81 560 431-03-8 Ketone C4H6O2 86.00 sweet, buttery, creamy, 

milky 

-1.34 1.00E+06 1.33E-05 

butan-2-one 8.1 99 602 78-93-3 Ketone C4H8O 72.00 chemical-like and 

slightly fruity green 

0.29 7.61E+04 5.69E-05 

2-methylfuran 8.5 95 605 534-22-5 Furan C5H6O 82.10 ethereal green cocoa 

nutty almond coffee 

1.85 3.41E+03 5.93E-03 

ethyl acetate 8.7 83 608 141-78-6 Ester C4H8O2 88.05 etherial, fruity, sweet, 

with a grape and cherry 

nuance 

0.73 2.99E+04 1.34E-04 

oxolane 9.3 90 617 109-99-9 Alkane C4H8O 72.06 NA 0.46 5.45E+04 7.05E-05 

3-methyl 

butanal 

10.5 98 641 590-86-3 Aldehyde C5H10O 86.07 cocoa, almond 1.23 1.12E+04 1.23E+00 

butan-1-ol 10.7 90 654 71-36-3 Alcohol C4H10O 74.07 wine 0.88 7.67E+04 8.81E-06 

benzene 10.8 96 662 71-43-2 Alkene C6H6 78.00 aromatic 2.13 2.00E+03 5.55E-03 

2-methyl 

butanal 

10.9 96 658 96-17-3 Aldehyde C5H10O 86.07 musty, furfural and 

rummy, with nutty and 

cereal notes, and 

caramel and fruity 

undernotes 

1.23 1.12E+04 2.62E-04 

3-

methylhexane 

11.4 94 670 589-34-4 Alkane C7H16 100.20 NA 3.71 2.32E+01 1.64E+00 

pent-1-en-3-ol 11.6 94 674 616-25-1 Alcohol C5H10O 86.07 green radish vegetable 

rummy truffle oily 

resinous 

1.12 4.53E+04 9.88E-06 

pentan-2-one 11.7 95 680 107-87-9 Ketone C5H10O 86.07 fish, pungent 0.91 2.12E+04 8.36E-05 

propan-2-

ylcyclobutane 

12.0 88 690 872-56-0 Alkane C7H14O 98.19 NA 3.52 3.39E+01 3.39E-01 

pentane-2,3- 

dione 

12.2 92 681 600-14-6 Ketone C5H8O2 100.05 toasted, buttery and 

caramellic with 

marshmallow and 

molasses nuances 

-0.85 6.16E+05 2.62E-07 

pentanal 12.3 98 732 110-62-3 Aldehyde C5H10O 86.07 almond, malt, pungent 1.31 9.72E+03 1.47E-04 

2-ethylfuran 12.4 94 735 3208-16-0 Furan C6H8O 96.06 solvent-like with a dirty 

musty brown earthy 

nuance 

2.40 1.07E+03 7.88E-03 

3-hydroxy 

butan-2-one 

12.7 76 718 513-86-0 Ketone C4H8O2 88.05 butter, cream -0.36 8.33E+05 1.03E-05 

Methylcyclo 

hexane 

13.9 92 720 108-87-2 Alkane C7H14 98.19 NA 3.61 2.84E+01 4.30E-01 

propane-1,2-

diol 

14.0 87 745 57-55-6 Alcohol C3H8O2 76.10 sweet -0.92 8.11E+05 1.29E-08 

3-methylbutan-

1-ol 

14.1 98 736 123-51-3 Alcohol C5H12O 88.15 whiskey, malt, burnt 1.16 4.16E+04 1.41E-05 

(E)-pent-3-en-

2-one 

14.2 96 739 625-33-2 Ketone C5H8O 84.12 musty, stale water and 

phenolic with a fishy 

and shell fish nuance 

0.52 4.62E+04 1.34E-05 

2-methylbut-2-

enal 

14.5 97 753 497-03-0 Aldehyde C5H8O 84.06 green, fruit 1.15 1.34E+04 1.20E-04 

pyridine 14.6 90 740 110-86-1 Pyridine C5H5N 79.10 sickening sour putrid 

fishy amine 

0.65 7.30E+05 1.10E-05 

(methyldisul 

fanyl) methane 

14.7 79 785 624-92-0 Alkane C2H6S2 93.99 onion, cabbage, putrid 1.77 3.74E+03 1.21E-03 

1H-pyrrole 14.8 87 760 109-97-7 Pyrrole C4H5N 67.09 sweet warm nutty 

ethereal 

0.75 3.12E+04 1.80E-05 

(E)-pent-2-enal 15.1 89 759 1576-87-0 Aldehyde C5H8O 84.12 green, waxy and fruity 1.09 1.50E+04 3.22E-05 

pentan-1-ol 15.5 97 766 71-41-0 Alcohol C5H12O 88.09 balsamic 1.51 2.09E+04 1.30E-05 

toluene 15.9 90 773 108-88-3 Alkene C7H8 92.14 paint 2.73 5.73E+02 6.64E-03 

1-ethyl-2-

methylcyclo 

pentane 

16.5 82 776 3726-46-3 Alkane C8H16 112.21 NA 4.01 1.17E+01 4.50E-01 

hexan-2-one 16.7 95 792 591-78-6 Ketone C6H12O 100.09 ether 1.38 7.75E+03 9.32E-05 
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IUPAC name Retention 

time 

NIST 

score 

Kovats 

index 

CAS 

number 

Chemical 

family 

Chemical 

formula 

Molecular 

mass 

Odour LogPow 

(est)* 

Solubility** Volatility*** 

4-methylpent-

3-en-2-one 

17.2 97 787 141-79-7 Ketone C6H10O 98.14 potato bin, raw and 

baked potato, jimica 

with raw vegetative, 

nutty and dirt like 

nuances 

1.37 8.04E+03 3.67E-05 

hexanal 17.3 98 801 66-25-1 Aldehyde C6H12O 100.09 grass, tallow, fat 1.78 3.53E+03 2.13E-04 

2-ethylbut-2- 

enal 

17.8 97 808 19780-25-7 Aldehyde C6H10O 98.14 NA 1.64 4.71E+03 1.17E-004 

butyl acetate 17.9 95 802 123-86-4 Ester C6H12O2 116.00 sweet, ripe banana, tutti 

frutti, tropical and 

candy-like with green 

nuances 

1.78 3.13E+03 2.81E-04 

furan-2-

carbaldehyde 

18.9 88 815 98-01-1 Furan C5H4O2 96.08 brown, sweet, woody, 

bready, nutty, 

caramellic with a burnt 

astringent nuance 

0.41 5.36E+04 3.77E-06 

furan-2-yl 

methanol 

19.8 81 850 98-00-0 Alcohol C5H6O2 98.10 burnt, sweet, caramellic, 

brown 

0.28 2.21E+05 7.86E-08 

(E)-hex-2-enal 19.9 95 854 6728-26-3 Aldehyde C6H10O 98.07 apple, green 1.58 5.26E+03 4.89E-05 

2-methylidene 

hexanal 

20.4 87 842 1070-66-2 Aldehyde C7H12O 112.09 NA 2.21 1.39E+03 4.15E-04 

hexan-1-ol 20.5 98 868 111-27-3 Alcohol C6H14O 102.10 resin, flower, green 2.03 6.89E+03 1.71E-05 

1,2-xylene 21.0 95 876 95-47-6 Alkene C8H10 106.17 geranium 3.16 2.24E+02 5.18E-03 

heptan-2-one 21.6 97 870 110-43-0 Ketone C7H14O 114.10 cheese, fruity, coconut, 

waxy, green 

1.98 2.15E+03 1.69E-04 

2-butylfuran 21.8 91 889 4466-24-4 Furan C8H12O 124.09 mild fruity wine sweet 

spicy 

3.38 1.25E+02 1.39E-02 

Cyclooctate 

traene 

22.0 93 880 629-20-9 Alkene C8H8 104.15 NA 3.08 7.73E+01 8.88E-04 

heptanal 22.3 98 899 111-71-7 Aldehyde C7H14O 114.10 fat, citrus, rancid 2.29 1.17E+03 2.70E-04 

2H-furan-5-one 22.5 93 876 497-23-4 Ketone C4H4O2 84.07 buttery -0.60 4.18E+05 9.74E-06 

(Z)-hept-2-enal 24.9 85 927 57266-86-1 Aldehyde C7H12O 112.09 NA 2.07 1.81E+03 6.43E-05 

heptan-1-ol 25.3 92 969 111-70-6 Alcohol C7H16O 116.20 herb 2.62 1.94E+03 1.88E-05 

benzaldehyde 25.4 97 960 100-52-7 Aldehyde C7H6O 106.04 almond, burnt sugar 1.48 6.10E+03 2.67E-05 

phenol 25.6 98 980 108-95-2 Alcohol C6H5OH 94.11 phenol 1.46 2.62E+04 3.33E-07 

oct-1-en-3-ol 25.8 92 980 3391-86-4 Alcohol C8H16O 128.12 mushroom, earthy, 

fungal, green, oily, 

vegetative, umami 

sensation and savory 

brothy 

2.60 1.84E+03 2.31E-05 

ethenyl 

hexanoate 

26.0 89 996 3050-69-9 Ester C8H14O2 142.20 NA 2.69 4.12E+02 1.20E-03 

6-methylhept -

5-en-2-one 

26.1 93 988 110-93-0 Ketone C8H14O 126.10 green, vegetative, 

musty, apple, banana 

and green bean-like 

2.06 1.65E+03 5.11E-05 

octan-2-one 26.3 95 997 111-13-7 Ketone C8H16O 128.12 dairy, waxy, cheese, 

woody, mushroom and 

yeast 

2.37 8.84E+02 1.88E-04 

2-pentylfuran 26.4 94 985 3777-69-3 Furan C9H14O 138.10 green, waxy, with 

musty, cooked 

caramellic nuances 

3.87 4.18E+01 1.84E-02 

2,2,4,6,6-

pentamethyl 

heptane 

26.6 84 997 13475-82-6 Alkane C12H26 170.20 NA 5.94 1.51E-01 9.35E+00 

(Z)-oct-2-en-1-

ol 

26.8 93 1039 18409-17-1 Alcohol C8H16O 128.21 fatty oily sweet fruity 2.59 1.86E+03 2.73E-05 

octanal 27.0 97 1001 124-13-0 Aldehyde C8H16O 128.12 fat, soap, lemon, green 2.78 3.94E+02 5.14E-04 

2-ethylhex-2 -

enal 

27.2 88 1007 645-62-5 Aldehyde C8H14O 126.10 NA 2.62 5.49E+02 4.88E-04 

4-ethylcyclo 

hexan-1-ol 

27.4 81 1000 4534-74-1 Alcohol C8H16O 128.22 NA 2.55 2.02E+03 2.55E+00 

(2E,4E)-hepta -

2,4-dienal 

27.4 88 1000 4313--03-5 Aldehyde C7H10O 110.07 fried 1.86 2.81E+03 1.41E-05 

2-ethylhexan -

1-ol 

28.0 96 1032 104-76-7 Alcohol C8H18O 130.00 rose, green 2.73 1.38E+03 2.65E-05 

(4R)-1-methyl-

4-prop-1-en-2-

ylcyclohexene 

28.5 86 1033 5989-27-5 Alkene C10H16 136.13 lemon, orange 4.38 4.58E+00 3.19E-02 

1,3,3-trimethyl-

2-oxabicyclo 

[2.2.2] octane 

28.7 74 1032 470-82-6 Alkane C10H18O 154.00 minty camphoreous 

cooling eucalyptus 

medicinal 

2.74 3.32E+02 1.10E-04 

(E)-oct-2-enal 29.4 90 1060 2548-87-0 Aldehyde C8H14O 126.10 green, nut, fat 2.57 6.13E+02 7.34E-05 

octan-1-ol 29.8 97 1072 111-87-5 Alcohol C8H18O 130.14 chemical, metal, burnt 3.00 8.14E+02 2.45E-05 

octa-3,5-dien-2 

-one (E,Z) 

29.8 95 1075 38284-27-4 Ketone C8H12O 124.09 fruit, fat, mushroom 2.08 1.62E+03 9.96E-06 

1-

phenylethanone 

30.1 88 1076 98-86-2 Ketone C8H8O 120.10 must, flower, almond 1.58 4.48E+03 1.04E-05 

nonan-2-one 30.7 88 1081 821-55-6 Ketone C9H18O 142.14 cheesy green fruity 

dairy dirty buttery 

3.14 1.71E+02 3.67E-04 

octa-3,5-dien-

2-one (E,E) 

30.9 94 1096 4173-41-5 Ketone C8H12O 124.18 fatty fruity hay green 

herbal 

2.08 1.62E+03 9.96E-06 

undecane 31.1 91 1100 1120-21-4 Alkane C11H24 156.31 alkane 5.74 2.57E-01 1.93E+00 

nonanal 31.3 99 1104 124-19-6 Aldehyde C9H18O 142.10 fat, citrus, green 3.27 1.32E+02 7.34E-04 
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IUPAC name Retention 

time 

NIST 

score 

Kovats 

index 

CAS 

number 

Chemical 

family 

Chemical 

formula 

Molecular 

mass 

Odour LogPow 

(est)* 

Solubility** Volatility*** 

non-3-en-2-one 34.4 88 1122 14309-57-0 Ketone C9H16O 140.12 oily spicy ketonic 

fermented bleu cheese 

waxy fatty woody 

2.79 3.50E+02 6.43E-05 

decan-2-one 34.6 88 1172 693-54-9 Ketone C10H20O 156.15 fermented cheesy 3.73 4.64E+01 4.45E-04 

dodecane 34.9 99 1200 112-40-3 Alkane C12H26 170.20 alkane 6.10 1.10E-01 8.18E+00 

decanal 35.1 95 1209 112-31-2 Aldehyde C10H20O 156.20 soap, orange peel, 

tallow 

2.79 3.50E+02 6.43E-05 

2-methyl-5-

prop -1-en-2-

ylcyclohex -2-

en-1-one 

36.4 82 1255 6485-40-1 Ketone C9H12O2 150.22 minty 2.71 3.67E+02 7.73E-05 

tridecane 37.1 83 1300 629-50-5 Alkane C13H28 184.00 alkane 6.73 2.75E-02 2.88E+00 

(Z)-2-butyloct-

2-enal 

38.2 88 1361 13019-16-4 Aldehyde C12H22O 182.17 NA 4.59 6.50E+00 1.94E-03 

5-pentyloxolan 

-2-one 

38.3 92 1360 104-61-0 Ketone C9H16O2 156.12 coconut creamy waxy 2.08 1.20E+03 1.69E-04 

dodecanal 38.7 85 1401 112-54-9 Alkane C12H24O 184.00 soapy, waxy, citrus, 

orange mandarin 

4.75 4.65E+00 1.90E-03 

tetradecane 38.7 88 1399 629-59-4 Alkane C14H30 198.39 mild waxy 7.20 9.19E-03 9.20E+00 

*: estimated hydrophobic constant expressed as octanol/water partition coefficient (EPI-Suite4.11) 

**: solubility in water (mg/L) at 25°C (EPI-Suite4.11) 

***: volatility in water at 25°C (atm-m3/mole) (EPI-Suite4.11) 

 

Effect of saliva dilution on volatile compounds release 

In this study, we chose to focus on the impact of saliva to study the impact of food oral process, which 

can have an impact on aroma release, and by consequence on perception. For that, dilution by water or 

saliva on volatile compounds profiles was studied by GC-MS methods. Indeed, during eating, volatile 

compounds are released directly from food to the air but also from food to saliva. In the literature, the 

role of saliva on volatile compounds release is highlighted as an important mechanisms for sensory 

perceptions (Canon et al., 2018).  

 

Among the 12 studied beverages, 7 beverages were characterized with water dilution and saliva dilution 

to observe the impact of the main factors that can affect the release of aromas in interaction with saliva. 

Firstly  I/F+/G+/S-, I/F-/G-/S-, I/F+/G-/S- and I/F-/G+/S- were analysed to study the impact of 

sunflower oil concentration (1.5% versus  0%), of gellan gum concentration (0.5% versus 0.12%) and 

their interactions. P/F+/G+/S- and P/F+/G-/S- were also analysed to study the impact of protein type 

(isolates versus pellet) and its interaction with gellan gum concentration. Finally I/F+/G+/S+ were 

analysed to focus on the impact of NaCl concentration (0.12% versus 0.08%).  

 

A total of 73 volatile compounds were identified and released from beverages diluted with water or 

saliva including 57 volatile compounds common to the previous analysis (Table 3.4.2.3.). Nineteen 

volatile compounds were identified on the saliva alone (i.e. diluted with water). These compounds were 

already identified on saliva in the literature. They could have several endogenous or exogenous origin. 

Pentane-2,3-dione, butane-2,3-dione and phenol could come from bacterial activity in mouth (Soini et 

al., 2010; Milanowski et al., 2016). 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane, ethanol and 2-

ethylhexan-1-ol could come from commercial products such as cosmetics, fragrances, detergents 

(Milanowski et al., 2016) . Others compounds could dissolve into the saliva from breathe such as 

propan-2-one (Lindinger et al., 1997) and consumed foods (Milanowski et al., 2016). Among these 

compounds, 11 present significant differences between GC-MS areas from the beverages diluted with 

water and/or diluted with saliva: 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane, butan-1-ol, ethanol, ethyl 

acetate, propan-1-ol, propan-2-one, butane-2,3-dione, octan-1-ol, phenol, 1-methyl-4-(1-

methylethenyl)-cyclohexene and 2-ethylhexan-1-ol.  

 

To visualize the main differences in volatile compounds profiles between pea beverages diluted by water 

or by saliva, a PCA is presented in Figure 3.4.2.5. On the figure, the mean of each chemical family were 

added as additional variables. Results showed that beverages diluted by saliva and by water are well 

distributed on axis F1 representing 34% of the variance. Beverages with different compositions are 

distributed on axis F2 representing 24% of the variance. The effect of saliva on volatile compounds 

profile has a higher impact than the composition of the studied beverages. The release of 73 volatile 

compounds was significantly impacted by the nature of the dilution by saliva or by water. This effect 

was dependent of the chemical structure of the volatile compounds.  
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Figure 3.4.2.5.: Results of the principal component analysis (PCA) examining the beverages’ GC-MS 

area profiles diluted by saliva or by water. On the left is a loading plot showing the correlational 

relationships between PCA axes 1 and 2 and the volatile compounds. In blue are the supplementary 

variables (mean chemical family). On the right is a PCA plot with the same two axes that shows the 

relative similarity of the beverages’ GC-MS area profiles. Beverages diluted with water are in red. 

Beverages diluted with saliva are in green. 

 

First, most of the identified aldehydes such as ((E)-oct-2-enal or heptanal) presented higher areas in 

beverages diluted by water than in beverages diluted by saliva. In opposition, most of alcohols (such as 

hexan-1-ol, pent-1-en-3-ol or 3-methylbutan-1-ol) present higher areas in beverages diluted by saliva. 

 

These results are in agreement with the data of literature, which described the complex role of saliva on 

volatile compounds release. Previous researches reported both direct mechanisms (molecular 

interactions, enzymatic conversion, salting-out effect, dilution) involving salivary components (salts, 

proteins including enzymes, microbiota) and indirect mechanisms (changes of aroma diffusion through 

modification of the physic chemical properties of the food matrix) (Ployon et al., 2017; Pérez-Jiménez 

2018; Muñoz-González et al., 2018). In addition, these effects seem to be impacted by the saliva pre-

treatment, the nature of food matrices, the used analytical methods and the chemical structure of the 

volatile compounds. For example, results showed that the extent of enzymatic degradation varies 

according to the chemical structure of the volatile compounds suggesting the involvement of 

hydrophobic effects (Pagès-Hélary et al., 2014, Buettner et al., 2002). According to the study of Odake, 

Roozen, & Burger (1998), in presence of saliva or water in water/oil emulsions, the release of 

hydrophilic compounds was lower in the air phase above the emulsions. In contrast, hydrophobic 

compounds would be mostly solubilized in the oil phase, thus saliva/water addition did not impact on 

their partitioning with air. 

 

For example, if we compare two chemically similar compounds hexanal and hexan-1-ol. The chemical 

properties of these compounds are relatively similar: mass of 100 g/mol for hexanal and 102 g/mol for 

hexan-1-ol, hydrophobicity (LogPow) of 1.8 for hexanal and 2.0 for hexan-1-ol, solubility in water at 

25°C of 3E+03 mg/L for hexanal and 7E+03 mg/L for hexan-1-ol; volatility (Henry Law constant) of 

2E-04 atm-m3/mole and 1,71E-05 atm-m3/mole for hexan-1-ol). However the area of hexanal is higher 

on beverages diluted by water and the area of hexan-1-ol is higher on beverages diluted by saliva. For 

example for beverage I/F+/G+/S- the area of hexanal was 6.71E7 for beverage diluted with water and 

2.48E7 for beverage diluted with saliva. For the same beverage I/F+/G+/S- the area of hexan-1-ol was 

8.71E05for beverage diluted with water and 1.25E7 for beverage diluted with saliva. In order to explain 

these differences, the most likely hypothesis is that they are due to enzymatic activities of the saliva or 

the microbiota. 
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All these results confirmed that release behaviours were strongly molecule-dependent. They highlighted 

the fact that different types of interactions with mucosa and/or saliva were involved, depending on the 

molecule’s properties. These results are in agreement with previous studies, which notably showed the 

key role of interaction between ethyl propanoate, 2-nonanone and (Z)-3-hexen-1-ol and mucosa 

(air/mucosa partition coefficient) on the persistence of aroma compound in exhaled air (Déléris et al., 

2016). 

 

In addition, previous results can be found concerning the impact of food composition. The release of 

compounds are differently impacted in function of the nature of each compound and the composition. 

Globally beverages with pellet present lower areas on volatile compounds. For example, they present 

lower 3-methylbutanal areas. Beverages with different oil content present different profile on volatile 

compounds. For example, they present lower 4-methylpent-3-en-2-one areas. In addition, globally 

beverages with higher salt content present higher areas on volatile compounds. For example, they 

present higher propane-2-one areas. However, beverages diluted were less impacted by gellan gum 

concentration. We can assume that the strength of the gels are similar after dilution for the 7 beverages 

and allow a similar free diffusion of volatile compounds (Gostan et al. 2004). 

 
Identifications of the role of chemical and rheological parameters explaining perceptions 

 

Effect of formulation factors on sensory perceptions of pea beverages 

To better understand how product composition affect the sensory perception of pea protein-based 

beverages, the 12 beverages were sensory described by a trained panel. The perception of these pea 

protein beverages were evaluated and described in companion papers (Cosson et al., 2020; Section 

3.4.1.). However, the main results are recalled here for sake of clarity. A PCA was used providing a way 

to visualize the relationships among products and sensory attributes (Figure 3.4.2.6). Overall four groups 

of beverages are distinguished (confirmed by AHC). Along the first axis, beverages are divided in two 

groups corresponding to the protein type (pellet versus isolate). Pellet-based beverages are perceived as 

being fattier, bitterer, and less salty, less aromatic and as having a more pronounced mouthfeel. Along 

the second axis, beverages are separated in two groups corresponding to the gellan gum content (0.12% 

and 0.5%). Beverages with greater gellan gum content are perceived as having lower overall aromatic 

intensity, less pronounced almond and broth notes, higher fattiness and mouthfeel notes as well as lower 

astringent notes. In addition and consistently, beverages with the highest salt content were perceived as 

more salty.  

  
Figure 3.4.2.6.: Results of the principal component analysis (PCA) examining the beverages’ sensory 

profile. On the left is a loading plot showing the correlational relationships between PCA axes 1 and 

2 and the sensory attributes. On the right is a PCA plot with the same two axes that shows the relative 

similarity of the beverages’ sensory profiles. In blue are the 7 beverages diluted by saliva/water during 

the GC-MS analysis. 



CHAPTER 3 – RESULTS / SECTION 3.4.2.                                                                                            A. COSSON 

 

 239 

RV coefficients (Pearson method) were calculated between sensory intensities of all beverages and 

physicochemical variables: 1) composition variables (sunflower oil, soy lecithin, gellan gum and salt), 

2) rheological parameters (issued from steady shear test (Power law index, Consistency index, n/k, pH, 

Viscosity at 50s-1), strain sweep test (G''/G' Strain 0.001 %, G''/G' Strain 0.06%, G''/G' Strain 44% and 

G''/G' Strain 100%) and frequency sweep test (G''/G' at 10s-1, G''/G' at 0.01 Hz)); and 3a) volatile areas 

without dilution, 3b) volatile areas when a dilution by water was used, 3c) volatile areas when a dilution 

by saliva was used. For correlation with volatile release, the dataset included only the 7 beverages 

studied. 

 

The coefficients obtained are relatively high: 0.74 for rheological group, 0.56 for volatile -no dilution- 

group, 0.70 for volatile compounds for volatile -water dilution- group, 0.65 for volatile - saliva dilution- 

group, 0.49 for composition group (Josse et al., 2008). It can thus be observed that the sensory dataset 

is closer to the data set of rheological parameters followed by the correlation with volatile compounds 

area. These results show that texture perceptions are prominent in the perceptions of these pea beverages. 

The interactions of texture perceptions with sapid (bitter in particular) and aromatic (beany) perceptions 

are surely not negligible. The results concerning the difference between volatile datasets diluted by 

saliva or water in correlation with perception is surprising since the closest volatile dataset is the one 

diluted with water. This result is in disagreement with the study of Neyraud and Dransfield (2003), who 

showed that the concentration of taste compounds (NaCl and sugar) dissolved in saliva was higher 

correlated to taste perception than the initial concentration of tastants in the food material.  

 

To understand our results, we need to consider four parameters: the food composition, the chemical 

compounds characteristics, the GC-MS parameters, and the saliva dilution. Each of these parameters 

impacts the release of volatile compounds. 

 

As regards the food composition, as previously discussed, the release of volatile compounds is 

formulation-dependent. As regards chemical compounds characteristics, the release of the compounds 

depends on their hydrophobicity and volatility. As regards the GC-MS parameters, we had an extraction 

time of 20 min and we used non-limiting teenax cartridges. The aim was to minimize the interactions 

with saliva and matrix effects, which is not the case in real conditions. One hypothesis to explain our 

results would be that these parameters are not well representative of what happens during the food oral 

processing.  

 

As regards, saliva dilution, different sub-parameters could impacted our results. First, preliminary saliva 

treatments are likely to affect the structure of saliva proteins. For example, freezing can lead to the 

denaturation of proteins and the formation of non-native protein aggregates (Pérez-Jiménez 2018). 

Changes in the structure of salivary proteins can impact their interactions with volatile compounds and 

thus their release. Secondly, the value of dilution (here 50%) impact also volatile compounds release. 

To discuss this dilution coefficient, it is necessary to take into account the dynamic of the oral process.  

At the beginning of the food oral process, the saliva film is thin and there is few product-saliva dilution. 

During the swallowing process, the saliva film become thicker and the product-saliva dilution increase 

(De Loubens et al., 2011). According to the study of Doyennette et al. (2011), when considering the 

consumption of a liquid product, approximately 10% of the initial solution was kept in the final diluted 

mixture. Thus, to go further, it would be interesting to modify this conditions of dilution. Finally, a last 

parameters was not taking into account here: the oral mucosa also both impacts the kinetic of aroma 

compounds release and metabolizes volatile compounds (Ployon et al., 2020, Déléris et al., 2016).  

 

Specific association between rheological measurements and sensory perceptions 

In order to focus and detail the role of the rheological parameters in perception, two-by-two correlations 

were calculated (Pearson method) for the 7 beverages diluted (Table 3.4.2.4.) and the significant 

correlations considered as the most relevant are plotted in Figure 3.4.2.7.  
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Table 3.4.2.4.: Correlations coefficients and associated pvalue (Pearson method) between rheological 

parameters and mouthfeel and astringent sensory attributes (scores/10). 

 
  Mouthfeel Astringent 
  pvalue coefficient pvalue coefficient 

Steady shear test 

Power law index (n) <0.01 -0.92 <0.01 0.77 

Consistency index (k) <0.01 0.96 0.03 -0.62 

n/k <0.01 -0.94 0.12 0.47 

Viscosity 50s-1 [Pa·s] <0.01 0.92 0.13 -0.47 

Frequency sweep test G''/G' at 10 Hz 0.53 0.20 0.08 0.53 
 G''/G' at 0,01 Hz <0.01 -0.80 0.17 0.42 

Strain sweep test G''/G' at 0,001% 0.02 -0.67 0.08 0.53 
 G''/G' at 0,06% <0.01 -0.89 0.09 0.51 
 G''/G' at 100% 0.68 -0.14 0.01 0.75 
 G''/G' at 44% 0.26 -0.35 <0.01 0.81 

 

The highest correlations concerned the mouthfeel attribute. This last is well correlated to parameters 

from the steady shear test but also to a lesser extent to parameters from the frequency sweep test (G''/G' 

at 0,01 Hz) and the strain sweep test (G''/G' at 0,001% and G''/G' at 0,06%). Constituently, in the 

literature, initial thickness perception has been found to be correlated to viscosity measurements made 

at shear rates around 50 s− 1 (Joyner, 2018; Stokes et al., 2013). However, several studies highlighted 

that other rheological parameters may be also important. Indeed, food is exposed to a range of shear and 

deformation processes during oral processing. Especially, Stokes et al., highlight that full rheological 

characterisation of foods, including high shear viscosity, normal stress differences (non-linear 

viscoelasticity) and extensional viscosity, could be interesting (Stokes et al., 2013).  

 

Besides, astringent intensity was correlated to a lesser extent to parameters from the steady shear test 

(power law index and consistency index). Astringent attribute is also correlated to parameters from the 

strain sweep test (G''/G' at 100% and G''/G' at 44%). In the literature, astringent perceptions are more 

likely to be compared to friction coefficient (Rossetti et al., 2009). While the shear rate used is perhaps 

not relevant to astringency perception, it may well be the determining factor explaining mass transfer, 

from the bulk to the receptors, of phenolic compounds responsible of astringency. Besides, in a previous 

study (Cosson et al., 2020; Section 3.4.1.), TDS results showed that astringency was dominant for all 

the beverages in the last part of the evaluation period. In this period, the material properties of the food 

bolus may then be drastically different from those measured in the rheometer, because of exposition to 

a range of shear and deformation processes but also because of changes induced by mixing/interacting 

with saliva and from temperature (Stokes et al., 2013). To continuously study the different phases of 

oral processing, in-situ and non-destructive methods have also been proposed in the literature 

(Foegeding et al., 2017, Mantelet al., 2020). These methods could be interesting to study astringency of 

pea beverages with different saliva dilution. 

 
Figure 3.4.2.7.: (a) Mouthfeel intensity (scores/10) in function of log(n/k). (b) Astringent in function 

of G’’/G’ at strain 40%. 
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Specific association between volatile compounds and sensory perceptions 
In order to distinguish more precisely the volatile compounds with the greatest impact, two-by-two 

correlations were calculated (Pearson method) with the 7 beverages not diluted, diluted with water and 

diluted with saliva. Table 3.4.2.5. presents the significate correlations (pvalue < 0.05). Thirty-two 

volatile compounds were significantly correlated to aromatic sensory notes. Seventeen volatile 

compounds were correlated to almond attribute, fourteen to broth attribute, eight to pea attribute, four 

to overall aromatic intensity and three to nuts attribute. These volatile compounds have known flavours 

(Table 3.4.2.3.). Two-thirds of these correlations are negative. Among them, some compounds been 

identified as being particularly relevant to pea flavour such heptan-2-one (Trikusuma et al., 2019), octa-

3,5-dien-2-one (Murat et al., 2013) and hexan-1-ol (Bi et al., 2020).  

 

Table 3.4.2.5.: Correlations coefficients (Pearson method) between sensory attributes (scores/10) and 

volatile compounds (CG-MS area, beverages undiluted, diluted with water and diluted with saliva). 

Negative correlations are in bold. C = Correlation coefficient. 

*For confidential reasons, only the chemical family of the compounds are given here.  

 
Sensory 

attributes 

Beverages 

diluted 
IUPAC name C  Sensory 

attributes 

Beverages 

diluted 
IUPAC name C 

Almond 

 

saliva aldehyde 0.80  

Broth 

 

not aldehyde -0.87 

saliva aldehyde -0.76  not aldehyde -0.83 

water aldehyde -0.92  not aldehyde 0.76 

saliva aldehyde -0.89  water ketone 0.80 

water aldehyde -0.84  not aldehyde 0.80 

water alcohol -0.81  saliva aldehyde 0.80 

saliva aldehyde -0.84  not ketone 0.92 

saliva furan -0.77  not ketone 0.86 

saliva alcane 0.85  not alcohol 0.86 

water alcane 0.83  water alcohol 0.77 

water ester 0.76  not ketone 0.79 

water furan -0.76  not ester 0.93 

saliva ketone -0.77  not ketone 0.76 

water ester -0.78  saliva ketone 0.76 

water ketone -0.76  saliva ketone 0.76 

saliva ketone -0.78  not ketone 0.84 

water ketone -0.82  
Nuts 

 

saliva ester -0.87 

not ketone -0.79  water ketone -0.76 

saliva ketone -0.77  not alcohol 0.83 

water ketone -0.83  

Pea 

 

not aldehyde -0.77 

saliva ketone -0.79  not aldehyde -0.82 

water ketone -0.78  water aldehyde -0.86 

saliva ketone -0.87  not aldehyde -0.83 

saliva alcane -0.83  saliva aldehyde -0.83 

Overall 

aromatic 

intensity 

 

not aldehyde -0.81  water aldehyde -0.84 

not aldehyde -0.76  water ketone -0.75 

saliva alcohol -0.77  saliva alcohol -0.84 

water alcohol -0.83  water alcohol -0.88 
     saliva alcohol -0.78 
     water aldehyde -0.78 

 

These results allowed us to discuss on i) compounds effects and ii) saliva effect. First, as regards 

compounds effect, these results confirm that perceived aroma perceptions are not determined by a single 

component. And so the identification of the overall sensory-relevant volatile compounds profile should 

be needed (Diez-Simon et al., 2019). Secondly, as regards saliva effect, different correlations are 

observed for undiluted beverages, diluted with saliva or water. For example, octa-3,5-dien-2-one is 

correlated with almond perceptions regardless of the dilution of beverages. However, hexan-1-ol is 

correlated only with beverages undiluted or diluted with water, whereas 2-methylidenehexanal is 

correlated only with beverages diluted with saliva. These results confirm the hypothesis that the impact 

of saliva must be molecularly dependent. It is therefore difficult to predict the impact of saliva on 

aromatic perceptions. Finally, as a prospective, it will be interesting to take into account the dynamics 

of release of volatile compounds during food oral process. Indeed, in a previous study (Cosson et al., 
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2020; Section 3.4.1.), TDS results showed specific aroma phases for the beverages. In the first part of 

the evaluation period, pea attribute is more often dominant. Then, almond attribute is more often 

dominant. Finally, in the last part of the evaluation period, nuts attribute is more often dominant. These 

results suggest a dynamic release of volatile compounds (and therefore probably a different impact of 

saliva depending on these compounds) which is not taken into account here. To go further, it will be 

interesting to study volatile compounds with dynamic analytics methods such as PTR-MS (Ployon et 

al., 2020). 

 

3.4.2.1. Conclusion 

 

In conclusion, this study’s use of three types of approach—sensory profiling, rheological profiling and 

GC-MS profiling—helped to clarify how the composition of pea protein-based beverages affected 

sensory perceptions. The 12 pea protein beverages studied permits to explore a wide range of ingredients 

while being realistic in term of plant beverage products with variation on NaCl content, on gellan gum 

content, on oil content and on protein type (isolates and pellets). As regards texture perceptions, 

mouthfeel and astringent perceptions were significantly impacted by the gellan gum content. 

Rheological properties allow a good understanding of these perceptions. As regards aromatic 

perceptions, these studies allowed us to discuss 1) the formulation effect, and 2) the individual effect 

via the saliva dilution. First, the composition and release of volatile compounds were only relatively 

little affected by studied formulation: products with low hydrocolloid content present highest volatile 

release. Secondly, volatile compounds releases were significantly modified when beverages were 

diluted by saliva in comparison to water. In term of aroma perceptions prediction, the study of the food 

saliva-dilution provides additional information and seems necessary for understanding sensory 

perceptions of pea protein-based foods during oral processing. Therefore, the formulation factor that 

appears to be most relevant for decreasing off-notes in pea protein products appears to be the 

concentration of texturizing ingredients.  

 

 

 
Main results 

 Products with a low hydrocolloid content present the highest volatile release and were perceived 

as the lowest intense in aroma perception. 

 Volatile compounds releases were significantly modified when beverages were diluted by saliva 

in comparison to water. 

 In term of aroma perceptions prediction, the study of the food saliva-dilution provides 

additional information. 

 Mouthfeel and astringent perceptions were significantly impacted by the gellan gum content. 

Rheological properties allow to model these perceptions. 
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CHAPTER 4 - GENERAL DISCUSSION 

 

The results presented in the chapter 3 allowed us to improve our understanding, both in terms of sensory 

and chemical knowledge of pea protein isolates, as well as on the methodological level. The objectives 

of the present chapter are to integrate and discuss all the results obtained on the role of the main groups 

of chemical compounds and role of formulation on sensory perceptions as well as the different 

methodologies employed. The main conclusions drawn in the previous chapters are presented in order 

to be discussed on i) the knowledge sharing between solutions and beverages, ii) the impact of inter-

individual variability on perceptions and iii) the reflective analysis on strategy and used methods. 

 

4.1. How to explain the off-notes of pea-based products from the composition? 

 

To begin with, to understand the role of composition on perception, a multidisciplinary strategy 

combining sensory, physico-chemical and statistical analysis has been developed on pea protein isolates. 

46 pea-protein-based solutions were formulated by combining the different fractions (insoluble, soluble 

fraction, and soluble fraction with low molecular weight) and sensory and physicochemical properties 

were characterised. The main results on the perception of the fractions are illustrated in Figure 4.1.1. 

They showed that beaniness was mainly influenced by the retentate and permeate fractions. Bitterness 

was mainly influenced by the retentate fraction, whereas astringency was influenced by the retentate 

and pellet fractions. 

 

 
 

 

 

Then, the main groups of compounds in pea protein isolates were identified: volatile compounds, 

peptides and phytochemicals (phenolics and saponins). Relations between sensory profiles and 

compounds profiles were analysed using different statistical methods. A second diagram, synthesizing 

the links between the perceptions and the fractions is presented in Figure 4.1.2.  

A total of 79 volatile compounds were identified, including 34 volatile compounds correlated to “beany” 

aroma. The large majority of these 34 compounds was similarly correlated to the different notes 

contributing to beany, suggesting a common nucleus of compounds responsible for the beany 

perceptions. A total of 3500 peptides were identified including 14 peptides with sequences inferior to 8 

Figure 4.1.1.: Diagram of the main results of the model of pea perceptions in function of the pea 

fractions composition. 



CHAPTER 4 – GENERAL DISCUSSION                                                                                                  A. COSSON 

 

 245 

residues and correlated to bitter perceptions. A total of 48 phytochemicals were tentatively identified as 

phenolic acids, flavonoids or terpenoids, including 29 compounds correlated to bitterness and 

astringency perceptions. But they were also correlated to the aromatic perceptions which could be due 

to their indirect role by modifying pH and ionic strength. 

 

As regards the relative role of each group of components, for reasons of confidentiality, we are not allow 

to discuss the results here (Figure 4.1.2.). 

 

 

 
 

Figure 4.1.2.: Diagram of the main results of the model of pea perceptions in function of the chemical 

composition. 

 

In addition, this work has provided some knowledge on these pea protein isolates composition. As 

regards peptides identification, we identified a wide variety of peptides representing a range of protein 

families, mainly those containing seed storage proteins but also those containing proteins that can play 

a role in sensory perceptions, such as lipoxygenases. These peptides were mostly polar and hydrophilic. 

Moreover, eleven peptides had sequences homologous with peptides known as being antioxidant. As 

regards phytochemical compounds, larger amount of these compounds can be found in flour than in pea 

protein isolates and fractions highlighting maybe the degradation of these compounds during the 

process. However, related to the dry matter content of products, permeates had larger amount of 

phytochemicals. Concerning the volatile compounds, 79 were identified coming from endogen origin of 

pea seed or from oxidation of the lipids/peptides/amino acids in the seed or during the storage. In 

addition, the protein-volatile interactions were mainly hydrophobic interactions and could be explained 

by the octanol/water partition coefficient (LogPow). However, these interactions could only impact 

about 18% of the volatile compounds and so may have only a low impact on the olfactory perceptions.  

 

Secondly, this works contributed to better understand how product composition affected the sensory 

perception of pea protein-based beverages, varying in protein type (pellet vs. isolate) and their content 

of gellan gum, salt and oil. Relations between sensory profiles and chemical/physico profiles were 

discussed in regards to the food oral processing. A third diagram, summarizing the results obtained in 

relation to the formulation and dynamics of perceptions, is presented in Figure 4.1.3. 
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Figure 4.1.3.: Diagram of the main results of the study on pea beverages. TDS: Temporal dominance 

of sensations. 

 

Concerning the methodologies, sensory profiling and TDS methods yielded complementary results 

about the impact of beverage composition on perceptions. Static block profiling revealed that beaniness 

was mainly affected by gellan gum and oil content and that bitterness and astringency were mainly 

affected by protein type and gellan gum content. In addition, mono-intake TDS profiling highlighted the 

dynamics of beaniness and the strong persistence of astringency. The results suggested that higher gellan 

gum and salt contents could limit its persistence. Taken into account the consumption of a full portion 

of product, results of multi-intake TDS profiling showed that beaniness and bitterness decreased during 

the consumption, indicating a possible adaptation effect, while fattiness increased, indicating a build-up 

effect. As regards texture perceptions, mouthfeel and astringent perceptions were significantly impacted 

by the gellan gum content. Rheological properties were clearly related to these perceptions. Concerning 

aromatic perceptions, the individual effect via the saliva dilution were evaluated in addition to the 

formulation effect. Products with low hydrocolloid content present highest volatile release. Volatile 

compounds releases were significantly modified when beverages were diluted by saliva in comparison 

to water. In term of aroma perceptions prediction, the study of the food saliva-dilution provides 

additional information and seems necessary for understanding sensory perceptions of pea protein based 

foods during oral processing. Therefore, the formulation factor that appears to be the most relevant for 

decreasing off-notes in pea protein products seems to be the concentration of texturizing ingredients. 

 

Thus, this PhD work provides some results which could be used to reformulate pea protein products to 

improve their perception. In closing, the following diagram present a summary of the main results listed 

previously on knowledge of pea protein isolates ingredients and pea protein based-products (Figure 

4.1.4.). We have seen with these works that it is possible to modify perceptions at several levels. First, 

it is possible to modify perceptions at the level of molecular composition. The bitter and astringent 

attributes are mainly explained by the composition of phytochemicals and peptides. The beany 

perceptions are mainly explained by the volatile composition. We could therefore limit these perceptions 

by preventing the formation of these compounds during the process. It is also possible to modify the 

perceptions at the level of the fraction composition. Retentates are perceived as mainly as broth, cereals, 

astringent and bitter. The filtration step was so not especially efficient in removing the compounds 

responsible of these off-notes. However, the pellet are perceived mainly as astringent and potato-like. 

The centrifugation step seem so more useful to decrease these off-notes. It is also possible to modify the 

perceptions from the food composition. Beaniness, bitterness, astringency and their persistence can be 

decrease by adding gellan gum, sugar, salt or oil. It is also possible to mask off-not by adding texturing 

agents, sugars acid of flavouring. Finally, the perception of these off-notes depends of the individuals. 

Thus it could be interesting also to educate consumer on the benefits and the taste of the pea protein, to 
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promote new recipes and new industrial products or to train chefs in collective catering to promote pea 

based products. 

 

 

 

 

 
 

Figure 4.1.4.: Diagram of the main results of this work and propositions which could be envisaged to 

decrease pea protein off-notes and increase the desirability of pea based products. 
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4.2. What is the impact of the food (beverages vs solutions) on the results? 

 

4.2.1. Solutions vs beverages: sensory results 

The sensory profiles of protein solutions and formulated products were different, showing the clear 

impact of formulation on perception. The impact of the use of two different panels for the solutions and 

beverages could also explain the differences of perception. Hence, in the following paragraphs we chose 

to relatively compare the results issued of the two panels/products types to gain more insights about pea 

proteins perceptions. 

 

 
 

Figure 4.2.1.: Results of the Generalised Procrustes Analysis (GPA)1 examining the common sensory 

attributes used by the two panels/products type for axis 1 and 2. In blue (triangle) are the attributes 

evaluated for the pea beverages. In green (circle) are the attributes evaluated for the pea recombined 

solutions. 
 

1 Generalized Procrustes Analysis (GPA) was performed on all sensory data to visually compare the panels’ positioning of 

the 8 common attributes. As explained by Elgaard et al., 2019, data was averaged over both replicates and panellists, and 

analysed with the GPA function in the FactoMineR package (Lê et al., 2008). The tolerance level for solution convergence 

was set to 10E-10. The maximum number of iterations was set to 200. The data was scaled. RV coefficients were extracted, 

to numerically investigate the panels’ similarities. A permutation test was performed on the GPA solution to investigate the 

strength of the results with the GPA.test function (RVAideMemoire package). The number of permutations was set to 500 

(Elgaard et al., 2019). 
 

GPA was performed to visually investigate the positioning of 8 common sensory attributes in the sensory 

space by the two panels (Figure 4.2.1.). The two panels used the sensory attributes in a similar manner, 

since their individual panel means are placed closely together in the sensory space. The RV coefficient 

of 0.58 between the two panels confirmed the relative similarity of the two panels. The GPA plot shows 

that mouthfeel, almonds, nuts, salty and broth attributes were well discriminated from each other by 

both panels. They therefore represent different sensory dimensions. To go further in the comparison of 

the panels, as the panels seem to have used sensory attributes relatively in the same way, the results of 

the products were compared by PCA (Figure 4.2.2.). Beforehand, these data were reduces-centred by 

data sets to avoid different scaling-used by panels. These results allow us to compare relatively the 
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spaces of products. We observed more variability within solutions than beverages. In particular, four 

solutions (the most diluted with water) stand out clearly.  This could suggest that there is a perception 

threshold at which the products are perceived to be significantly more intense (psychophysical curve). 

For beverages, four products, formulated with pellet, are also clearly perceived different. 

 

 
 

Figure 4.2.2.: Results of the principal component analysis (PCA) examining the sensory profiles. The 

plot shows the loadings i.e. the correlational relationships between PCA axes 1 and 2 and the sensory 

attribute values (in common for both products datasets). In blue (triangle) are the pea beverages. In 

green (circle) are the pea recombined solutions. In order not to overload the graph, only the most 

relevant legends have been added. 

 

4.2.2. Solutions vs beverages: volatile compounds results 

In a same way, we compared volatiles profiles obtained by GC-MS analysis from both sets of products. 

However, one should be cautious about the results of this comparison as the volatile compounds in the 

two datasets are derived from slightly different GC-MS parameters (extraction of 10 min for the pea 

solutions versus 20 min for the pea beverages). Of all the identified volatile compounds, 34 were 

common to both sets of products. Beforehand, these data sets were reduced-centred and represented with 

a principal component analysis (Figure 4.2.3.).  

 

A similar variability on aroma release is observed between pea solutions and pea beverages. Most of the 

variability is on axis 1 (39.5%) carried by the majority of compounds. These axes can differentiate the 

samples with high GC-MS areas such as I/F+/G-/S-, Refa or 50Ra-25Ia-25W and products with lower 

areas such as water (100W) or P/F+/G-/S, P/F-/G+/S-, P/F-/G-/S-. Here again a clear distinction is made 

between products formulated with pellets. The differences between Refa and 50Ia-50W seem similar to 

the differences between beverages formulated with Refa (I) and pellet (P) with the exception of the 

product P/F+/G+/S-. The differences between pea beverages and pea solutions can be explained by the 
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impact of i) the formulation (hydrocolloids content, interactions with lipids and matrix, salting out 

effect…) and of ii) the oral process (time of swallowing, viscosity of the products…).  

 

 
Figure 4.2.3.: Results of the principal component analysis (PCA) examining the volatile compounds 

profiles for both type of products. The plot shows the loadings i.e. the correlational relationships 

between PCA axis 1 and 2 and the volatile compounds GC-MS areas attribute values (in common for 

both products datasets). In blue (triangle) are the pea beverages. In green (circle) are the pea 

recombined solutions (50Ia-50W in dark green). In order not to overload the graph, only the most 

relevant legends have been added. 

 

4.2.3. Solutions vs beverages: sensory interactions 

In addition to other effect, sensory interactions seem to play a key role in the perceptions of pea protein 

isolates. While it is complicated to measure sensory interactions in the case of aromatic attributes, 

sensory interactions could be evaluated for flavour and texture/sapid attributes by using a nose-clip for 

the pea solutions (solutions P1 to P6, Section 3.1.1.) and pea beverages. The Figure 4.2.4. presents the 

Newman-Keuls post-hoc comparisons examining effects of using nose-clip for significant attributes 

(ANOVA, data not shown) for the evaluation of 6 pea solutions and 12 pea beverages by block protocol 

profiling. Salty and bitter notes are significant perceived different for both types of products and show 

the same trends. Products evaluated with nose clip have lower scores. For solutions, the astringent 

attribute presents a significant effect and shows lower scores in presence of the nose clip. For beverages, 

the overall aromatic and fat-P attributes are significantly perceived differently and have higher scores 

with the presence of nose clip. Thus these results confirm the existence of sensory interactions within 

formulated products or solutions. Zhang et al. (2016) reported interactions between beany and bitterness 

perceptions in soya isolates. So, pea aroma perception could increase the bitterness perception in the 

studied products. The modification of the overall aromatic attribute suggests a congruent effect of the 

panellists in the evaluation of beverages. 
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Figure 4.2.4.: Results from the Newman-Keuls post-hoc comparisons examining effects of using 

nose-clip for significant attributes (ANOVA, data not shown) for the evaluation of 6 pea solutions 

and 12 pea beverages by block protocol profiling. Significant differences are indicated by differences 

in letters (α = 0.05). 

 

4.3. What is the impact of inter-individual variability on perceptions? 

 

Inter-individual variability in perception is largely known and must be taken into account. During the 

different works of the PhD, we chose to work a small group of healthy adults (16 and 17 panellists) to 

conduct the sensory evaluation. This number is classically used for secretive tests in the literature 

(usually between 10 and 20 panellists), but we would to characterise our panellists in regards to the 

population with as example their evaluation of sensibility with PROP test. Despite the small sample 

size, differences were observed between our panellists in terms of duration before swallowing, changes 

in perceptions (TDS) or bitterness sensitivity (Prop Test). These differences were not taken into account 

in the work setting, because we averaged results of panellists to study the link with physicochemical 

data. However, one strategy could have been to take this variability into account by studying groups of 

panellists to construct separate models. This clustering stems from (i) consumers' eating habits, (ii) 

physiological characteristics and/or (iii) genotypic characteristics. 

 

4.3.1. Panellists physiological inter-variability express via TDS parameters 

Chewing time is one of the criteria frequently found in the literature to distinguish between panellists' 

chewing behaviours (Jourdren et al., 2017). The chewing duration can induce differences in the physico-

chemical properties of the bolus at the origin of different dynamics of texture perceptions. Here, we did 

not have the opportunity to measure this parameter. However, the TDS gives us some indirect 

parameters: time of first swallow, time of last swallow, time of last sensation. If we look at the 

parameters from the TDS, two groups of panellists can be distinguished on the hierarchical cluster as 

shown on Figure 4.3.1 (green and red). The green cluster group the panellists with the longer time of 

perception, the longer first swallow time and the longer last swallow time. To be noted, there is not 

correspondence between these clusters of panellists and their PROP status. 
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Figure 4.3.1.: Panellists (16) physiological inter-variability express via Temporal Dominance of 

Sensation profiling parameters: time of first swallow (s), time of last swallow (s), time of last 

sensation (s). Constellation plot from hierarchical clustering of TDS parameters from panellists. Each 

observation is represented by an endpoint and each cluster join is represented by a new point. The 

lines that are drawn represent cluster membership. The lengths of the lines represent the distance 

between clusters. The circle represents a cluster with all the panellists. 

 

The impact of these clusters was studied on sensory scores by ANOVA (Table 4.3.1). We observed that 

the cluster effect is significant for 7 attributes (almond, aromatic intensity-P, astringent, broth, fat, 

mouthfeel and overall aromatic intensity) and for the interaction cluster*product for the fat attribute. 

The panellists of cluster green noted the products more almond, more broth, fatter and more aromatic. 

And they rated the products as less astringent and less mouthfeel. It can be assumed that for the green 

group, the products are kept longer in the mouth. This means that the aroma compounds could have 

more time to be released and the fat to cover the oral surfaces (i.e., the tongue and the palate) (Appelqvist 

et al., 2016). 
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Attributes 
Cluster of panellists Cluster*Product Product 

F pvalue F pvalue F pvalue 

Almond 17.58 <0.01 0.97 0.47 1.13 0.34 

Aromatic intensity-P 8.11 <0.01 0.45 0.93 1.75 0.06 

Astringent 22.01 <0.01 0.31 0.98 2.41 <0.01 

Astringent-P 0.82 0.36 0.14 1.00 3.10 <0.01 

Bitter 0.28 0.60 0.65 0.79 3.33 <0.01 

Bitter-P 0.81 0.37 0.49 0.91 1.00 0.44 

Broth 9.38 <0.01 1.24 0.26 20.96 <0.01 

Fat 6.31 0.01 2.98 <0.01 39.31 <0.01 

Fat-P 0.02 0.89 0.67 0.77 7.09 <0.01 

Mouthfeel 4.08 0.04 1.30 0.22 182.23 <0.01 

Nuts 1.16 0.28 1.25 0.25 2.52 <0.01 

Overall aromatic intensity 4.38 0.04 1.58 0.10 9.86 <0.01 

Pea 0.02 0.88 0.82 0.62 0.69 0.75 

Salty 0.02 0.88 1.78 0.05 30.40 <0.01 

Sweet 0.00 0.96 0.51 0.90 4.04 <0.01 

 

4.3.2. Panellists genotypique inter-variability express via the Prop Test 

Bitterness sensitivity (PROP Test) is also one of the criteria frequently found in the literature to 

distinguish between panellists' behaviour (Dinehart et al., 2006). Some studies have shown that, 

compared to lower bitter sensitive panellists (i.e. Low Prop Tasters), higher bitter sensitive panellists 

(i.e. High Prop Tasters) do perceive a variety of compounds with greater intensity (Fischer et al., 2015). 

Here, we found that PROP status affected evaluations of bitterness as well as evaluations of other sapid 

and flavour attributes (6 pea solutions, Section 3.1.1.). In particular, LPTs seemed to have a longer time 

discriminating among sample types for a number of attributes; the only attribute for which there was 

evidence of discrimination was a texture attribute. We used the beverages data to examine whether 

panellist PROP status influenced sensory evaluation. The ANOVAs results showed that PROP status 

influenced the evaluation of all the attributes (PROP status significant for 15/15 attributes). The 

Newman-Keuls post-hoc comparisons results (Figure 4.3.2.) showed the variation of intensity scores by 

PROP status. In particular, there are significant rating differences for the attributes bitter, sweet, broth, 

fat-P and aromatic intensity-P. 

 

 
Figure 4.3.2.: Results of the sensory scores evaluated for the 12 beverages and from the Newman-

Keuls post-hoc comparisons examining effects of PROP status where HPT = high PROP taster group, 

MPT = medium PROP taster group, and LPT = low Prop taster group. Significant differences between 

are indicated by differences in letters. 

Table 4.3.1.: Results of the ANOVA examining cluster of panellists and product effects during the 

experiment where attribute intensity evaluated in mouth for the 12 pea beverages was evaluated using 

the static profiling protocol. Significant p-values are in bold (α = 0.05). 
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To study the impact of panellists having different PROP status on formulated products, some ANOVA 

were performed in which oil, gellan, protein and salt content were fixed effects (Table 4.3.2.). We 

observed that according to the PROP status, the ingredients did not have the same impact. For example, 

the oil concentration impacts the perceptions of almond, astringency and fat only for the high PROP 

taster group. On the other hand, the gellan concentration does not impact astringency perceptions for the 

high PROP taster group. Thus, the sensitivity to bitterness measured by the PROP test seems to be an 

interesting variable to take into account for a better understanding of the mechanisms at the origin of 

food perceptions related to the diversity of individuals. 

 

pvalue 
Oil content Gellan content Protein content Salt content 

HPT LPT MPT HPT LPT MPT HPT LPT MPT HPT LPT MPT 

Almond 0.01 0.25 0.84 <0.01 0.29 0.74 0.58 0.15 0.43 0.86 0.86 0.83 

Aromatic 

intensity-P 
0.01 0.20 0.09 0.91 0.44 0.78 0.47 0.12 0.03 0.24 0.48 0.47 

Astringent 0.01 0.57 0.70 0.13 <0.01 <0.01 0.02 0.87 0.40 0.72 0.28 0.45 

Astringent-P 0.73 0.62 0.84 0.10 0.02 <0.01 <0.01 0.09 0.12 0.20 0.57 0.19 

Bitter 0.55 0.93 0.06 0.76 0.85 0.05 <0.01 <0.01 0.13 0.43 0.69 0.38 

Bitter-P 0.18 0.94 0.34 0.57 0.68 0.22 <0.01 0.76 0.26 0.84 0.83 0.25 

Broth 0.65 0.73 0.77 <0.01 <0.01 0.94 <0.01 <0.01 0.08 <0.01 0.02 0.21 

Fat <0.01 0.10 0.38 <0.01 <0.01 <0.01 <0.01 <0.01 0.12 0.04 0.06 0.01 

Fat-P 0.96 0.36 0.20 <0.01 <0.01 <0.01 0.21 0.01 0.01 <0.01 0.43 0.17 

Mouthfeel 0.02 <0.01 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Nuts 0.40 0.05 0.00 0.11 0.72 0.20 0.14 0.18 0.13 0.43 0.92 0.60 

Overall 

aromatic 
0.13 0.09 0.13 0.10 <0.01 0.49 

<0.01 <0.01 <0.01 
0.52 0.16 0.94 

Pea 0.84 0.66 0.84 0.85 0.47 0.16 0.31 0.54 <0.01 0.67 0.97 0.37 

Salty 0.41 0.30 0.87 0.05 0.00 0.13 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 

Sweet 0.21 0.33 0.27 0.03 0.41 0.19 <0.01 <0.01 <0.01 0.26 0.66 0.82 

 

4.3.3. Panellists’ eating habit inter-variability 

As regards consumers' eating habits, a questionnaire was asked to the pea solutions panellists about their 

eating habits. Among the 17 panellists, 1 panellist never cooked, 5 panellists rarely cooked, 5 panellists 

occasionally cooked and 6 panellists daily cooked. In addition, 1 panellist did not like legumes and can 

eat them only on some exceptions (in restaurants, at friends' homes), 7 panellists preferred cereals to 

legumes but can eat them occasionally, 9 panellists like legumes and eat them regularly.  

 

 

Attributes 
Cluster Cluster*Product Product 

F pvalue F pvalue F pvalue 

Almond 22.94 <0.01 2.12 <0.01 29.77 <0.01 

Astringent 0.27 0.60 0.70 0.87 26.13 <0.01 

Bitter 0.87 0.35 0.95 0.53 14.86 <0.01 

Broth 2.57 0.11 3.27 <0.01 45.57 <0.01 

Cereals 58.86 <0.01 1.10 0.33 39.45 <0.01 

Mouthfeel 0.56 0.45 1.18 0.24 102.72 <0.01 

Nuts 18.13 <0.01 0.97 0.51 29.42 <0.01 

Pea 2.63 0.11 1.16 0.27 41.87 <0.01 

Potato 70.45 <0.01 1.99 <0.01 37.45 <0.01 

Salty 13.25 <0.01 0.45 0.99 22.95 <0.01 

 

Table 4.3.2.: Results of the ANOVA examining formulation effects (oil, gellan gum, protein and salt 

content) according to the PROP status during the experiment where attribute intensity evaluated in 

mouth for the 12 pea beverages solutions was evaluated using the static profiling protocol. Significant 

p-values are in bold and in blue (α = 0.05). HPT = high PROP taster group. MPT = medium PROP 

taster group. LPT = low Prop taster group. 

Table 4.3.3.: Results of the ANOVA examining cluster and product effects during the experiment 

where attribute intensity evaluated in mouth for the 26 pea recombined solutions was evaluated using 

the block profiling protocol. Significant p-values are in bold (α = 0.05). 
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Clusters of panellists were performed on their food habits and related to their perception evaluation of 

pea solutions (Table 4.3.3.). The first cluster of panellists regrouping 8 panellists, seems do not like 

legumes or prefer cereals to legumes and eat them occasionally (Cluster “occasionally”). The second 

cluster regrouped the 9 panellists which liked legumes and eat them regularly (Cluster “Regularly”). To 

be noted, there is not correspondence between these clusters of panellists and their PROP status. We 

observed that the cluster effect is significant for 5 attributes (almond, cereals, nuts, potato and salty) and 

for the interaction cluster*product for the potato, broth and almond attribute. The cluster “Regularly” 

overall noted the products with higher scores.  

 

4.3.4. Panellists inter-variability and chemical variability 

Another challenge of the present work was to take into account the inter-individual variability measured 

in sensory analysis (here i.e. sensory repetitions) in statistical models. For chemical measurements, the 

variability due to the measuring instruments is different. This raises the question of how to deal with 

repetitions. Here we have chosen to always work with averaged data. However, it would have been 

conceivable to work with the repetitions for the sensory data and to try to relate them to the averaged 

chemical data. For example, the PLS-MB model was built again but considering all the sensory 

repetitions (by copying the averages of the chemical data) (exactly same methods as explained on 

Section 3.3.1.). Table 4.3.4. presents the model indicators (Root mean square error of validation and of 

calibration) for the 3 models for both datasets. Results are similar. It can be seen that the models that 

best fit the data and have the most predictive power are the models to explain aromatic attributes and 

then the models to explain bitter and astringent attributes. However, overall model with repeated sensory 

data less fit the data and have a lower predictive power. Nevertheless, with repeated sensory data, there 

is less differences between root mean square error of validation and root mean square error of calibration. 

We can assume that this is due to the largest "rows" in the model. 

 

 

Attributes 
Sensory repetitions Sensory average 

RMSE calibration RMSE validation RMSE calibration RMSE validation 

Aroma 0.40 0.40 0.28 0.34 

Bitter 0.64 0.64 0.44 0.74 

Broth 0.86 0.85 0.54 0.92 

 

 
Figure 4.3.3.: Cumulated block importance for the first dimension (in %) with the 97.5% confidence 

intervals for the three PLS-MB regressions modelling sensory attributes in function of chemical 

composition of pea protein isolates. 1) Aroma: model in function of pea, potato, nuts, cereals and 

almonds sensory attributes. 2) Broth: model in function of broth sensory attribute. 3) Bitter and 

astringent: model in function of bitter and astringent sensory attributes. Rep: model with repeated 

sensory data. Av: model with averages sensory data. 
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Table 4.3.4.: Performances of the selected PLS Multi-Block model to predict the 8 sensory attributes 

variables in function of chemical compounds area analysed taking into account either sensory 

averages or sensory repetitions. RMSE = Root mean square error. 
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Cumulated block importance indexes are also used to estimate the contribution and importance of the 

block of variables in the PLS-MB models (Figure 4.3.3.). Expressed as a percentage, they allow to 

quantify the impact of each group of chemical compounds on the block of perceptions of pea protein 

solutions. Results are similar for both datasets. However, here the standard deviations are much smaller 

in the case of repeated sensory data. Taking into account individual variability thus provides interesting 

additional information to better understand the mechanisms behind off-notes of pea protein isolates. 

 

In order to go further, to the discussions of the previous paragraphs, the questions of individual and 

collective performance of the panels, of the understanding of the attributes could have been discussed. 

Furthermore, in addition to the reflection on the variability of the panelists, the variability of the 

physicochemical measurements, although much lower than the variability of the panelists, could also 

have been discussed. These different points underline the importance of taking into account all the 

characteristics of a study and not forgetting, when interpreting the results, the limitations of these studies. 

 

 

4.4. Reflexive analysis of the choice of methods for the study of the links between composition 

and perceptions 

 

To better understand the mechanisms behind the perceptions of pea protein isolates, a design-based 

experimental strategy was combined with a strategy of statistical modelling of sensory attributes based 

on compositional data. This strategy made it possible to highlight groups of compounds that participate 

in the mechanisms at the origin of perceptions. It also allows to make hypotheses on these mechanisms. 

This strategy is necessary as a first step because it allowed to refocus research on specific groups even 

if it is not precise enough to understand the individual impact of each molecule. For this, it would be 

necessary to complete our analyses. For example, we could use the strategy of omission (Engel et al., 

2002). Besides, to confirm the taste/aroma of an individual molecule we could predict how molecule 

could be perceived based on knowledge of their chemical structure and knowledge of aroma/taste 

receptors (Huang et al., 2016). Another possibility would be to test these compounds on cell-based 

expression system for human receptors (Bouysset et al., 2020).  

 

In addition, the second most important strategic choice of these PhD works was used to create a large 

number of solutions by combining pea protein isolate fractions. To validate this strategy, the sensory 

properties of the two reference solutions, created directly from the pea protein isolates, were compared 

with the sensory properties of two experimental solutions that were created using the isolate fractions to 

have the exact same compositions as the reference solutions. The main difference between the reference 

solutions and the experimental solutions was in their perceived granularity. These results allowed us to 

make the hypothesis that when the experimental solutions were created by combining the isolate 

fractions, the processes that they underwent (centrifugation and filtration) might have broken up these 

aggregates and induced structural changes, resulting in smaller and more soluble clusters. 

 

In addition, this strategy allowed us to think about calculated compound concentrations from their 

formulation. The proposed calculation was based on a linear combination of the dry matter area of 

compounds and the relative quantity of each fraction. This model has been particularly efficient for the 

characterization of peptides. To increase the robustness of the model for volatile compounds, it would 

be interesting to take into account the interactions with proteins in the calculation. To do this, it would 

be necessary to redo the volatiles analyses on all mixtures because the interactions are very molecule-

dependent. 

 

Besides, one of the challenges of this PhD was to manage the limited number of products (number of 

rows) compared to the number of identified compounds (number of columns). As a result, the models 

built are less powerful and it is more difficult to take into account the interactions. However, this problem 

is recurrent in descriptive sensory studies, because when working with panellists, it is always difficult 

to obtain large data sets. Nevertheless, this study allowed us to work on ways to select the most relevant 

data such as clustering methods and preliminary models such as PLS regressions. 
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As regards the pea solutions, in order to have a large number of products in a same range of perceptions, 

the choice taken in the present study was to work with only two commercial pea protein isolates and to 

create a controlled variability. Therefore, an original approach based on the recombination of different 

fractions from raw products was considered. This original strategy of using recombined products has 

yielded interesting results to model perceptions. However, this approach is insufficient to extrapolate to 

the diversity of commercial protein isolates. To go further, it would be interesting to validate the 

developed models on other pea protein isolates. 

 

Concerning the beverages, Pea protein isolates are used as ingredients in many foods, including dietary 

supplements, bakery and meat products. Among these applications, we decided for this project to study 

pea protein beverages, for which large formulations could be tested (salt, sugar, fat, texturizing agent). 

This food application was chosen while being a key application and easy to produce in a repeatable way 

over a long period of time (6 months). However, it would also have been interesting to study other 

formulated products such as plant cakes or plant meat analogues for which the cooking step leads to 

very significant modifications of the composition and sensory perceptions (in particular due to Maillard 

reaction, product oxidation,…). Besides, it would have been interesting to also study other formulation 

factors such as sugar content.  

 

Regarding the methods of chemical characterization of pea protein isolates, the results showed that the 

most impacting parameters to understand the perceptions of protein solutions were protein 

concentrations. However, other characterizations of protein isolates also seem to impact the perceptions 

of protein isolates: volatile compounds impacting mainly aromatic perceptions, phytochemical 

compounds impacting mainly bitterness and astringency perceptions; and peptides impacting mainly 

bitterness and broth perceptions. However, in the literature other compounds not studied here have been 

highlighted as potential bitter or beany compounds. In particular bitter lipid oxidation products that are 

formed either through enzymatic pathways or by autoxidation have been considered (Baur et al., 1977). 

Gläser et al. identified 14 lipids and lipid oxidation products on pea protein isolates fractions with high 

bitter taste (Gläser et al., 2020). In addition, in yellow pea, a total of 115 different structural phenolic 

compounds have been described in different studies (Fahim et al, 2019; Stanisavljevic et al, 2016; 

Neugart et al., 2015). With the extraction and analysis conditions used here, we might be able to extract 

and identify only a part of these compounds. For example, MS spectra were acquired by full MS range 

(m/z) from 85 to 1000 AMU limiting the identification of compounds with a greater mass than 1000 

AMUS such as saponins. In addition, several peaks could not be identified due to coalitions and limited 

knowledge on these compounds. Similarly, the identification of peptides was probably not exhaustive. 

However, this study is an essential first step and will allow later more in-depth studies of these 

compounds. 

 

Many other methods were tried during this PhD work, but they proved to be less relevant to meet the 

objective set and therefore were not pursued. Thus, the characterization of isolates by 2D and 1D 

electrophoresis; the characterization of volatile compounds by GC-MS olfactrometry and by PTR-MS; 

the characterization of the denaturation of isolates by nano DSC and DLS; the characterization of free 

peptides and total peptides were not continued. However, these laborious works to characterize pea 

protein isolates have allowed the capitalization of knowledge on these products. They will also allow 

the optimization of future work on similar products.  

 

To conclude, this PhD work has highlighted the importance of the choice of extraction and analysis 

methods to characterize the composition of pea protein isolates. Moreover, although the results obtained 

can only be applied to the product area studied, the different methods could be transposed to other 

product areas. One of the challenges of future work is to design methods for the extraction of 

compounds, (volatiles, peptides, phytochemical compounds) that correspond to the compounds released 

during the oral process. This would allow a better modelling of dynamic sensory attributes and thus go 

further in the understanding of perceptions. 
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General conclusion and perspectives 
 

Developing a food offer rich in plant products appreciated by consumers is a major challenge to move 

towards a more sustainable food system. Indeed, pea off-notes (bitter, astringent and beany notes) are a 

critical limit for the incorporation of high levels of plant proteins in food and for their acceptability of 

products by consumers. In this context, the objectives of this PhD project were i) to identify the role of 

composition on sensory perceptions, ii) to establish the role of food formulation, sensory interactions 

and oral process on perceptions. 

 

For this, a multidisciplinary strategy combining sensory analysis, physico-chemistry and statistics was 

set up. A mixing plan was built to create a range of solutions from 6 fractions (permeates a and b, 

retentates a and b, pellets a and b) derived from commercial pea protein isolates. Then, 23 solutions 

were formulated by combining these fractions and analysed by a sensory profile and different chemical 

composition characterisation: volatile compounds, peptides, phytochemical compounds (phenolic acids, 

flavonoids and terpenoids). The relationships between sensory and chemical profiles were analysed 

using Pearson correlations, linear (Partial-Least-Square) and non-linear (Artificial Neural Network) 

models. As main results, 79 volatile compounds were identified, including 34 correlated to beany notes; 

3500 peptides including 14 correlated to bitterness; and 48 phytochemical compounds including 29 

correlated to bitterness and astringency. In addition, the relative role of each group of compounds on 

perceptions were analysed by multi-block PLS models. These results made it possible to quantify the 

relative role of compounds on all studied perceptions. 

 

In a second step, the role of pea protein isolates was investigated in real foods in order to understand the 

influence of formulation on perceptions. For this purpose, 12 beverages were formulated, varying in pea 

protein type and gellan gum, salt and oil contents. They were analysed by temporal sensory profiling 

methods, rheological measurements and volatile compound release measurements. The results showed 

that beany, bitter and astringent perceptions are mainly driven by protein type and gum gellan content. 

Rheological properties allowed a prediction of texture and astringency perceptions. Volatile compounds 

release were strongly affected by the presence of saliva showing the role of the oral process on 

perceptions. 

 

Different research perspectives can be suggested to this work. The use of model foods could be very 

interesting. For example, it would be valuable to work on beverages with similar textures to the beverage 

of the thesis, which could be flavoured in beany note by adding “beany” volatile molecules and with 

different compounds as variable of formulation. The temporal sensory evaluation of these beverages 

could allow decomposing the effect of each compounds and the interactions with the aromatic notes of 

beany. The second perspective deals with the dynamic aspect of perceptions. Indeed, the perceptions of 

pea protein isolate based-products in the mouth, such as beany aroma, bitterness and astringency, cannot 

be explained only by the chemical composition of products or by their structure. They also depend on 

dynamic phenomena, resulting from the destructuring of products during the oral process, which is 

highly dependent on each individual. Taking into account individual differences and the dynamics of 

the mechanisms is therefore a challenge. Thus, a perspective would be to integrate the predictive 

approach data from analyses allowing to characterize dynamic phenomena. On line analysis of in-nose 

release of aroma compounds during consumption of pea based products would help to address this 

question. First tests using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) have been made 

during the PhD thesis, but the sensitivity of the device used was not sufficient. It could be interesting to 

go further into this issue. At the same time, the use of the time-intensity profile method during 

consumption of the products would provide data in the form of intensities of the descriptors during 

consumption, the form of which would allow an easier modelling of these perceptions according to the 

composition. The third research perspectives deals with the modelling. The PLS-MB allowed to identify 

the main group of compounds involved in perceptions. However, a simplification of the data set has first 

been necessary to perform the modelling. These simplifications have been performed through linear 

regressions and other mathematical methods could perhaps be applied in order to better taking into 

account interactions between compounds during the step of data reduction.  
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Thus, this PhD work highlights the key role of interactions between the different constituents present in 

isolates or formulated products to explain perceptions. They also provide clues to reformulate pea 

protein products to reduce sensory off-notes. Based on these results, recommendations on combinations 

of isolate fractions, on chemical compounds composition, and on formulation composition can be 

developed to improve the flavour of the pea protein isolates used in plant-protein-based food products. 

First, attention should be paid to ingredient optimization. Our results suggest that the filtration step as 

used in this work, was not effective enough in removing the compounds responsible for off-notes. A 

longer diafiltration would be more efficient, but probably complex due to the fouling of membrane. The 

centrifugation step seems to be a more efficient process as the pellets were described less beany, bitter, 

and astringent than the retentate for protein solutions. Consequently, it could be used as a strategy of 

reformulation by using plant-protein-based products based on pellets. Because pellets consist mainly of 

insoluble compounds, they might loss functionality. Thus, employing a pellet/retentate mixture could 

help limit off-notes while retaining functionality. However, this strategy needs to be validated for 

formulated products. We can also recommend to prevent the formation of some contributing compounds 

during the process (phenolics and saponins, volatiles from oxidation process, peptides from proteins 

hydrolyses). Thirdly, as regards formulation, its effect is low in relation to the type of protein. In order 

to improve products based on pea protein isolates, it is therefore critical to improve the perception of 

the pea protein isolate ingredients. However, beaniness, bitterness and astringency and their persistence 

can be decreased by adding texturing agents. It may be also recommended to reduce the beany notes by 

using fermentation or other process (thermal treatment, pH modification). 

 

Therefore, the specific nature of these recommendations are clearly dependant on food type, which could 

determine protein concentration and functionality, matrix type, and ingredient choice. Other strategies 

for reducing the off-notes of pea-protein-based products could also be envisaged, such as cultivar 

selection (Stephany et al., 2015), ultrasound technology (Miano et al., 2019), radio frequency treatments 

(Jiang et al., 2018) or enzyme treatments (Ben-Harb et al., 2020; El Youssef et al., 2020). The strategies 

proposed here can serve as a complement to these other techniques for improving the perceptions of 

pea-protein-based foods. To go further, it would be interesting to complete this study with liking and 

perception by consumers, from the first stages of conception to the evaluation of final products. 

 

Lastly, it would be interesting to carry out similar studies on other types of pulse such as soybean or 

lupin proteins. If similar compounds were identified as also participating in the perceptions of beany or 

perceptions of bitterness or astringency, this would allow us to extend our results to other plant proteins. 

This would also allow crossover studies and a better chance of identifying common molecules 

responsible for off-notes. Indeed, food industry are working on the development of new products 

enriched with different plant proteins, suitable to consumers. Understanding the perceptions of pulse in 

general is a key step to help the industry in the development of food products. These new products, more 

appreciated, could help to change the image of plant proteins. It is therefore necessary to continue 

research work in nutrition, processes, food behaviour and sensory analysis to develop this sector and be 

in line with the expectations and needs of consumers. With a positive image (good for health and eco-

friendly), plant proteins have a strong potential for growth in diets. 
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RESUME EN FRANCAIS 
 
Introduction 

Face à la croissance démographique et la crise climatique à venir, comment proposer un régime 

alimentaire plus riche en protéines végétales? L’utilisation de légumineuses telles que le pois dans les 

aliments permettrait de contribuer à l’évolution de cette offre (Siddique et al., 2012). Cependant, les 

légumineuses ont encore du mal à se développer dans l'alimentation humaine en raison de verrous 

technologiques, nutritionnels et sensoriels. En particulier, elles sont encore fortement limitées par des 

défauts sensoriels (Roland et al., 2017). La revue de la littérature a mis en évidence trois principaux 

types de défauts associés aux protéines végétales : des notes aromatiques dites « beany », des notes 

d’amertume et des notes d'astringence. Ces notes sont décrites comme très persistantes et difficiles à 

évaluer rendant difficiles la formulation des produits alimentaires à base d’isolats de protéines de 

légumineuses.  

 

Concernant leurs origines, l’étude de la littérature a montré qu’un grand nombre de molécules tel que 

des molécules volatiles, des peptides, des phytomicronutriments mais également des lipides, des 

minéraux et des glucides, sont susceptibles de participer aux mécanismes à l’origine de ces perceptions 

(Gläser et al., 2020; Humiski & Aluko, 2007; Murat et al., 2013). Ces molécules sont soit intrinsèques 

à la graine, soit générées lors des différentes étapes de fractionnement des matières premières ou lors de 

la transformation finale du produit. Jusqu’à présent, la majorité des travaux de recherche ont porté sur 

le rôle des molécules volatiles (issues principalement de l’oxydation des lipides) à l’origine des 

sensations de « beany » (Bi et al., 2020; Murat et al., 2013; Trikusuma et al., 2020). D’autres travaux 

se sont intéressés à la composition en phytomicronutriments, notamment des saponines, comme 

contributeur des perceptions d’amertume et d’astringence (Heng et al., 2006). Cependant, aucune 

étude n'a utilisé une approche globale pour comprendre le rôle des molécules volatiles et non volatiles 

des isolats protéiques de pois et de leurs interactions potentielles sur ces perceptions complexes. Pour 

identifier les molécules clés à l’origine des perceptions, des méthodes de fractionnement moléculaire 

et des tests d'omission sont généralement utilisés (Engel et al., 2002). Ces méthodes ne prennent pas en 

compte les différentes interactions et sont dépendantes de la connaissance fine de la composition de ces 

isolats protéiques de pois, qui reste encore à approfondir, notamment concernant la composition en 

peptides ou en phytomicronutriments. Le récent développement des technologies (spectrométrie de 

masse et bio-informatique) doit pouvoir permettre des identifications plus précises de ces composés.   

 

Différents mécanismes permettent d’expliquer la perception : i) mécanismes directs par l’activation des 

récepteurs par les molécules (Matoba & Hata, 1972), ii) mécanismes indirects par le biais d'interactions 

entre les constituants de la matrice alimentaire (Wang & Arntfield, 2016, Guichard, 2002), ou 

d’interactions physiologiques et/ou cognitives (Keast & Breslin, 2003). Si dans la littérature, des travaux 

existent sur les interactions sensorielles et physico-chimiques qui peuvent moduler les perceptions 

d'amertume et d'astringence, les dynamiques des perceptions restent peu étudiées dans le cas des 

produits à base de protéines végétales. 

 

Dans ce contexte, les travaux menés dans le cadre de ce doctorat visaient à répondre à la question de 

recherche suivante : "Quels sont les principaux mécanismes physiques, chimiques et sensoriels qui 

expliquent les notes sensorielles des isolats protéiques de pois ? » Différents objectifs ont alors été 

identifiés. Le premier cherchait à évaluer le rôle des principaux groupes de molécules chimiques 

(molécules volatiles, peptides, phytomicronutriments, minéraux) sur les perceptions des isolats 

protéiques. Le second objectif était d’évaluer le rôle de la formulation des aliments, des 

interactions sensorielles (interactions chimiques, physiologiques et cognitives) et du processus oral 

sur la libération de ces molécules lors de la consommation d'aliments et sur les perceptions 

temporelles.  

 

Une stratégie originale et multidisciplinaire a donc été entreprise combinant analyse sensorielle, 

physico-chimie et statistique. Tout d’abord, un protocole de profil sensoriel adapté à ces produits très 

persistants a été développé pour décrire au mieux les perceptions des isolats protéiques de pois (Section 
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1.1., Figure 1). Ensuite une stratégie expérimentale basée sur un plan d'expérience a été développée pour 

créer une "diversité contrôlée" de produits (Section 1.2., Figure 1). La composition chimique (molécules 

volatiles, peptides et phytomicronutriments) des produits obtenus a été étudiée et des premiers liens 

entre ces molécules et les perceptions du pois ont été identifiées (Section 2, Figure 1). Pour aller plus 

loin dans la compréhension du rôle complexe et combiné des molécules volatiles et non volatiles sur les 

perceptions globales des isolats protéiques de pois, un  modèle statistique prenant en compte l'ensemble 

des différentes molécules chimiques a été construit (Section 3, Figure 1). Au-delà de la composition 

chimique de l'aliment, sa structure et sa texture peuvent également influencer les perceptions, et 

notamment leurs dynamiques. Ainsi, la dernière partie de cette thèse a cherché à comprendre le rôle de 

la formulation sur les perceptions des isolats protéiques de pois au cours de la consommation d'une 

portion entière de produit. Pour cela, des boissons à base de protéines de pois ont été étudiées, en variant 

leur niveau de sel, de matière grasse, d'épaississants et le type de protéines utilisées (Section 4, Figure 

1). 

 

 
 

 

Méthodologies sensorielles et stratégie expérimentale pour étudier les perceptions des isolats 

protéiques de pois 

Caractérisation sensorielle des isolats protéiques de pois 

Afin d'étudier les mécanismes à l’origine des propriétés sensorielles des produits à base de protéines de 

pois, il a été nécessaire dans un premier temps de décrire et quantifier leurs perceptions. La revue de la 

littérature a montré que les isolats protéiques de pois sont généralement décrits comme étant « beany », 

amer et astringent avec une forte persistance (Bott & Chambers, 2006; Humiski & Aluko, 2007). 

Cependant, il n'existe pas de définition consensuelle des perceptions de « beany » et lors d'une 

évaluation sensorielle la forte rémanence des produits influence fortement l'évaluation sensorielle des 

produits suivants (fatigue sensorielle). Ainsi, l'objectif des premiers travaux étaient d’optimiser le 

protocole d'évaluation des produits à base de pois lors de l’utilisation de la méthode de profil sensoriel. 

 

Pour ce faire, un protocole de profil sensoriel par évaluation de blocs d’attributs (« Block profiling ») 

a été développé comme présenté Figure 2. Les produits y sont présentés de manière monadique et 

séquentielle. Pour chaque séquence d'évaluation, le premier échantillon de la série sert de référence. Le 

protocole de rinçage a également été travaillé afin d'optimiser les conditions d'évaluation de ces isolats 

protéiques. Le protocole par bloc s’est révélé plus performant (sur des critères de discrimination, 

répétabilité et homogénéité) pour évaluer les échantillons présentant des perceptions persistantes et 

intenses, tels que l'amertume ou l'astringence, et des perceptions multidimensionnelles, tels que le 

« beany ». Les attributs ont été évalués avec et sans pince-nez afin de limiter les interactions entre les 

sapides/textures et les arômes afin de dissocier les interactions cognitives des interactions chimiques.  

Figure 1: Représentation schématique de l'approche expérimentale du travail de doctorat. Les 

étiquettes des sections correspondent au « Chapitre 3 – Résultats » du manuscrit de thèse. 
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Les résultats confirment que « beany » est un descripteur multidimensionnel et complexe que l’on 

peut définir par les notes « amande », « bouillon », « céréales », « noix », « pois » et « pomme de terre ».  

En termes de caractérisation des produits, des résultats similaires ont été obtenus avec le protocole 

classique par rapport au protocole en bloc. Toutefois, les performances des panélistes (reproductibilité 

et homogénéité) ont été meilleures avec le protocole en bloc. En outre, la sensibilité à l'amertume des 

panélistes (test 6-n-Propylthiouracil dit « PROP ») a été évaluée afin de mieux caractériser le panel 

utilisé. Ici, les résultats ont montré que la sensibilité au PROP affecte la capacité à discriminer et évaluer 

l’amertume ainsi que les évaluations d'autres attributs sapides et aromatiques. Ce statut caractérisant la 

« sensibilité au PROP » pourrait ainsi aider à sélectionner les panélistes en fonction de leur sensibilité 

sensorielle. L’intérêt de l’utilisation de ce nouveau protocole de profil au service de l’évaluation 

sensorielle des légumineuses a été présenté, discuté et publié dans Food Quality and Preference (Cosson 

et al., 2020). 

 

Construction d’un plan de mélange à base de fractions pour mieux comprendre les perceptions 

L'apparente complexité des mécanismes à l'origine des défauts sensoriels des légumineuses nous a 

conduit à mettre  en place une stratégie originale impliquant un plan de mélange basé sur le 

fractionnement des isolats protéiques de pois  et permettant de créer une gamme de solutions à base de 

pois avec des compositions variées. Trois fractions ont été obtenues à partir d'isolats protéiques de pois 

commerciaux : une fraction insoluble (appelée culot), une fraction soluble (appelée rétentat) et une 

fraction soluble contenant des composés d'un poids moléculaire inférieur à 10 kDa (appelée 

perméat). Chaque fraction est composée principalement d’une famille de molécules : les protéines 

insolubles pour le culot ; les composés solubles de faible masse molaire pour le perméat ; et les protéines 

solubles pour le rétentat. Ensuite, 26 solutions (40 avec les produits répétés) et 6 produits de 

validations ont été formulés en combinant ces différentes fractions selon un plan de mélange. Les 

perceptions de ces solutions ont été caractérisées et quantifiées par profil sensoriel par bloc (« Block 

profiling ») et un modèle a ensuite été construit en combinant ces données comme présenté en Figure 

3.  

 

L’étude des résultats a montré que les panélistes ont globalement obtenu des scores répétables et 

homogènes au cours des trois mois d’évaluations, comme le souligne l’utilisation d’une référence 

constante et de produits répétés. Par ailleurs, les produits recombinés ont pu être comparés avec les 

produits initiaux. Les intensités perçues entre ces 2 produits n’étaient pas significativement différentes, 

signifiant un impact faible des procédés de fractionnement/recombinaison sur les perceptions de 

« beany », d’amertume et d’astringence et validant l’approche utilisée. Parmi les 18 attributs sensoriels 

initialement évalués, 10 ont permis d’établir un modèle de prédiction robuste. Les performances de ces 

modèles ont ensuite été validées par analyse de variance et l’évaluation de six solutions supplémentaires.  

 

Figure 2: Bloc protocole utilisé pour la caractérisation sensorielle d'isolats protéique de pois. 
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Les résultats suggèrent que les différentes notes contribuant aux perceptions de « beany » sont 

principalement influencées par les fractions de rétentat et de perméat. L'astringence est quant à 

elle plutôt influencée par les fractions de rétentat et de culot. Cette stratégie d’étude a donc permis 

de mieux comprendre comment différentes fractions d’isolats protéiques de pois contribuent aux 

caractéristiques sensorielles indésirables de ces ingrédients. Elle a également révélé que formuler des 

aliments à l’aide de ces fractions protéiques serait une stratégie intéressante pour réduire les défauts de 

ces ingrédients. Cependant, pour comprendre plus finement les mécanismes, il est nécessaire d'analyser 

précisément la composition des fractions et des solutions recombinées et ainsi aller plus loin pour 

identifier les molécules à l’origine des perceptions. Les résultats ont été publiés et discutés dans Food 

Research International (Cosson et al., 2021). 

 

Caractérisation chimique des isolats protéiques de pois et premiers liens avec les perceptions 

Identification et quantification des principales molécules volatiles et premiers liens avec les perceptions 

de « beany » 

Afin d’étudier la composition en molécules volatiles des isolats de pois et des fractions, des mesures par 

chromatographie en phase gazeuse couplée à la spectrométrie de masse ont été réalisées comme 

présentés dans la Figure 4. Pour une sélection de molécules identifiées dans la littérature comme étant 

clés dans les perceptions de « beany », les interactions protéines-composés volatils ont été étudiées. Les 

relations entre les données sensorielles et les données chimiques ont ensuite été analysées et discutées à 

l'aide de modèles linéaires (Régression des moindres carrés partiels) et non linéaires (Réseaux de 

Neurones). 

Figure 3: Diagramme des principaux résultats du modèle de perception des isolats protéiques de pois 

en fonction de la composition des fractions de pois. 
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Un total de 79 molécules volatiles a été identifié. Ces molécules proviennent principalement de 

l'oxydation des lipides/peptides/acides aminés dans les graines ou lors de la transformation/stockage des 

isolats. Les résultats ont montré que les interactions protéines-composés volatils sont principalement 

hydrophobes et peuvent être expliquées par le coefficient de partage octanol/eau (LogPow). Cependant, 

les interactions entre molécules et protéines ne semblent impacter la rétention des composés d’arôme en 

moyenne que de 18% comparé à l’eau, ce qui suggère  qu’elles n’impactent que peu les perceptions 

olfactives.  

 

Concernant l’impact de la composition et de la libération des molécules volatiles sur les perceptions, les 

résultats ont montré que la majorité des molécules volatiles sont associées aux six attributs 

aromatiques (« noix », « pomme de terre », « pois », « céréales », « bouillon » et « amandes »). On 

peut supposer que ces molécules peuvent créer des associations qui contribuent fortement aux notes « 

beany ». Ces molécules volatiles clés appartiennent à différentes familles chimiques, principalement des 

aldéhydes, des cétones) et des alcools. Elles sont principalement hydrophobes mais présentent des 

caractéristiques de solubilité dans l'eau et de volatilité variées. Afin de réduire les défauts des produits 

à base d'isolats de protéines de pois, il est donc difficile de cibler spécifiquement certaines 

molécules volatiles. Ainsi, les solutions qui permettraient de modifier la composition globale des 

molécules volatiles pourraient constituer une stratégie intéressante. On peut par exemple imaginer que 

la fermentation, le lavage ou le piégeage des molécules volatiles seraient des solutions intéressantes, 

comme l'ajout d'arômes pour masquer les défauts. En outre, jouer sur les interactions entre les molécules 

volatiles et les protéines de pois par la formulation des produits alimentaires pourraient être un moyen 

intéressant et efficace de réduire les perceptions aromatiques. En effet, en modifiant les conformations 

des protéines, les interactions des molécules volatiles avec les protéines pourraient être modifiées et par 

conséquent moduleraient les perceptions aromatiques. Pour des raisons de confidentialité, ces résultats 

n’ont pas pu être publiés pour l’instant et sont en discussion avec la société Roquette. 

 

Identification et quantification des principaux peptides et premiers liens avec les perceptions  

Afin d’étudier une partie des molécules non volatiles des isolats protéiques de pois, les principaux 

oligopeptides et polypeptides (de 5 à 40 acides aminés) ont été identifiés et caractérisés par 

chromatographie liquide à ultra haute performance et spectrométrie de masse. Ensuite, l'impact 

du fractionnement et des recombinaisons sur ces compositions en peptides a été étudié. Les relations 

entre les profils de peptides et les propriétés sensorielles des solutions protéiques ont été analysées, en 

particulier les liens aux perceptions d’amertume. L’ensemble de la démarche et les principaux résultats 

sont présentés dans la Figure 5. 

 

Figure 4: Libération des molécules volatiles dans les solutions protéiques de pois et impact sur les 

perceptions aromatiques. 
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Une grande variété de peptides a été identifiée, représentant une série de familles de protéines : 

principalement des protéines de stockage des graines mais aussi des protéines pouvant jouer un rôle dans 

les perceptions, comme les lipoxygénases. Ces peptides sont pour la plupart polaires et hydrophiles. 

Onze peptides ont été identifiés comme ayant des séquences homologues à celles de peptides 

antioxydants connus. Concernant les liens aux données sensorielles, la plupart des peptides présents 

dans les solutions de protéines de pois présentent une corrélation significative avec au moins un attribut 

sensoriel. En particulier, de nombreux peptides ont été corrélés positivement avec les attributs 

« salé » et « bouillon », exprimant peut-être la relation de certains peptides avec les récepteurs 

responsables des perceptions umami. Un nombre plus faible mais néanmoins significatif de peptides 

présente également des corrélations significatives avec les intensités d'amertume. En particulier, 14 

peptides avec une taille inférieure à 8 acides aminés sont positivement corrélés à l’amertume et 

donc sont potentiellement capable d’activer les récepteurs à amertume. Les résultats ont été publiés et 

discutés dans Food Chemistry (Cosson et al., 2022). 

 

Identification et quantification des principaux phytomicronutriments et premiers liens avec les 

perceptions d’amertume et d’astringence 

Dans un troisième temps, les principaux phytomicronutriments (acides phénoliques, flavonoïdes et 

saponines) ont été identifiés par spectrométrie de masse à haute résolution dans les solutions de 

protéines de pois. L’impact des procédés de fabrication des isolats et du fractionnement a été étudié en 

comparant les profils de la farine, des isolats et des fractions. Enfin, les principaux 

phytomicronutriments ont été corrélés aux propriétés d'amertume et d'astringence des solutions de pois. 

L’ensemble de la démarche et les principaux résultats sont présentés dans la Figure 5. 

 

Figure 5: Identification et caractérisation des principaux peptides dans les isolats protéique de pois 

par chromatographie liquide à ultra haute performance couplée à la spectrométrie de masse. 
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Ainsi, quarante-huit molécules ont été identifiées dans les produits. Parmi elles, quinze ont été 

potentiellement identifiées comme des acides phénoliques, quinze comme des flavonoïdes, sept 

comme des terpénoïdes. En comparant les données de la masse avec celles des références, deux acides 

hydroxybenzoïques, quatre acides hydroxycinnamiques, trois flavonols, deux flavanols et une saponine 

ont été identifiés et quantifiés sans ambiguïté. Concernant l’impact des procédés, la comparaison des 

aires des pics des molécules a montré de plus grandes quantités de molécules dans la farine que dans les 

isolats et fractions de protéines de pois, ce qui suggère une certaine perte ou dégradation de ces 

molécules au cours des procédés. Cependant, par rapport à la teneur en matière sèche des produits, les 

perméats contiennent une plus grande quantité de phytomicronutriments que les autres fractions. Par 

ailleurs, vingt-neuf molécules (acides phénoliques, flavonoïdes et saponines) ont pu être corrélées 

à des attributs d'amertume et/ou d'astringence. Un article est en préparation et sera soumis à Food 

Chemistry en Septembre 2021. 

 

Rôles relatifs des différentes familles de molécules chimiques sur les perceptions 
Différents types de molécules chimiques ont été identifiés et quantifiés afin de comprendre l’origine des 

perceptions: des molécules volatiles pour les notes de « beany », des peptides et des saponines pour 

l'amertume, des molécules phénoliques pour l'amertume et l'astringence. Afin d'aller plus loin dans la 

compréhension du rôle complexe et combiné de ces différents blocs de molécules (volatiles et non 

volatiles) sur les perceptions des isolats protéique de pois, des modèles statistiques de régression ont 

été utilisés. Pour cela, les données sensorielles quantitatives (intensités sur 18 attributs) ont été reliées 

avec les données chimiques quantitatives (63 molécules volatiles, 3561 peptides et 48 

phytomicronutriments). Ces données chimiques ont été complétées par d’autres types de mesures non 

décrite ici pour des raisons de confidentialité. Ensuite, une régression basée sur l'algorithme des 

moindres carrés partiels en multi-blocs (Multi Block-Partial Least square régression) a été construite 

pour explorer les liens entre les ensembles de données sensorielles et chimiques comme présenté dans 

la Figure 7. 

 

Figure 6: Identification et quantification des  principaux phytomicronutriments des isolats protéiques 

de pois et premiers liens avec les perceptions. 
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Figure 7: Identification par modélisation statistique des molécules volatiles et non volatiles 

responsables des perceptions dans les isolats protéiques de pois. 

 

Ces travaux ont conduit à la rédaction d’une publication qui n’a pu être pour l’instant soumise, car celle-

ci est en discussion avec le service de valorisation de la société Roquette qui a financé ce travail. 

 

Impact de la formulation et de la consommation d'une boisson entière sur les perceptions 

Au-delà de la composition chimique des aliments, leur structure et leur texture peuvent également 

influencer la dynamique des perceptions des produits alimentaires formulés à base d’isolat protéique de 

pois (Guichard, 2002; Saint-Eve et al., 2011). Ainsi, l'objectif de cette quatrième partie était de 

déterminer comment les perceptions des isolats protéiques de pois sont affectées par la formulation. 

Parmi les différentes applications des isolats protéiques de pois, les boissons protéiques ont été choisies 

pour cette étude, car elles permettent de faire varier les concentrations de divers ingrédients tout en étant 

faciles à produire et reproductible sur une longue période. 

 

Ainsi, suite  aux résultats des travaux précédents, un isolat protéique de pois et son culot ont été 

sélectionnés comme ingrédients protéiques pour la formulation des boissons. Ainsi, 12 boissons variant 

selon leur niveau de sel, de matière grasse, d'épaississants (gomme de gellane) et de type de 

protéines (culot et isolat) ont été formulées. Ces boissons végétales ont été décrites sensoriellement 

par l’utilisation de trois méthodes sensorielles : profil statique avec et sans pince-nez, dominance 

temporelle des sensations (TDS) en mono-bouché et TDS en multi-bouché (portion de 120mL : 

évaluation de la première bouchée, de la bouchée à 60mL (moitié de la portion) et de la dernière bouchée 

à 120mL). L’ensemble de la démarche et les principaux résultats sont présentés dans la Figure 5. 
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Figure 8: Diagramme des principaux résultats de l'étude sur les boissons à base de protéines de pois. 

TDS : Dominance temporelle des sensations. Les étiquettes des sections correspondent au « Chapitre 

3 – Résultats » du manuscrit de thèse. 

 

Complémentarité des méthodes de profil sensoriel pour mieux comprendre les perceptions temporelles 

des boissons formulées 

Les résultats obtenus par profil (« Block profiling ») a révélé que les perceptions de « beany » 

dépendent principalement du type de protéines, de la teneur en gomme gellane et en huile. 

L'utilisation du pince-nez lors du profil statique a indiqué qu'il n’y a que peu d'interactions entre les 

attributs sapides et de textures et les attributs aromatiques. La méthode TDS utilisée sur une seule 

bouchée, et sur une période de 2 minutes après l’introduction en bouche, a montré que les boissons 

diffèrent nettement dans les séquences de perception. Par ailleurs, les perceptions d'astringence et 

d'amertume sont très persistances et principalement influencées par le type de protéine et la teneur en 

gomme gellane. Des phases sensorielles spécifiques ont également été identifiées : les attributs de 

texture sont plus importants lors de la première bouchée, et l'astringence est plus marquée lors de la 

dernière bouchée. Enfin, les résultats TDS obtenus lors de la consommation d’une portion entière de 

produit (multi-bouchées) suggèrent qu'au fil du temps, la perception de la matière grasse s'est accrue 

(effet d’accumulation) et les perceptions aromatiques ont diminué (adaptation sensorielle). Ainsi, les 

résultats de cette étude ont permis de mieux comprendre les perceptions des boissons à base de protéines 

de pois dans des conditions qui ressemblent davantage à celles associées à une consommation réelle. Ils 

fournissent également des pistes pour reformuler les produits à base de protéines de pois afin de réduire 

les défauts sensoriels. Les résultats ont été publiés et discutés dans Foods (Cosson et al., 2020). 

 

Les perceptions des boissons expliquées par des approches rhéologiques et chimiques 

Le deuxième objectif de cette partie du travail était de mieux comprendre comment la composition du 

produit affecte les perceptions des boissons à base de protéines de pois. Un accent particulier a été mis 

sur la façon dont les propriétés rhéologiques influencent les perceptions, les molécules volatiles libérées 

et le rôle de la salive lors du processus oral. Pour cela, les profils sensoriels des boissons ont été 

complétés par des caractérisations rhéologiques classiques et par des analyses par chromatographie 

en phase gazeuse et spectrométrie de masse. Les relations entre les profils instrumentaux et les profils 

sensoriels ont été étudiées. 

 

En ce qui concerne les perceptions de texture, l’« épaisseur » des solutions et l’astringence sont 

significativement influencées par la teneur en gomme de gellane. Les propriétés rhéologiques permettent 

d’expliquer les perceptions de texture. En ce qui concerne les perceptions aromatiques, l'effet de la 

formulation a été pris en compte, mais également le rôle des individus en intégrant l’impact lié à la 

dilution de l’aliment par la salive. Les résultats ont permis de montrer que la composition et la 

libération des molécules volatiles n'ont été que relativement peu affectées par les formulations 

étudiées : les produits à faible teneur en gellane présentent la plus forte libération de molécules volatiles. 

Ainsi, le facteur de formulation qui semble être le plus impactant pour diminuer les défauts sensoriels 

dans les produits à base de protéines de pois semble être la concentration des texturants. Deuxièmement, 

la libération de molécules volatiles au-dessus des échantillons a été sensiblement modifiée lorsque les 

boissons sont diluées par la salive par rapport à l'eau. En termes de prédiction des perceptions 

aromatiques, l'étude de la dilution des aliments par la salive fournit des informations supplémentaires et 

semble nécessaire pour comprendre les perceptions des aliments à base de protéines de pois lors du 

processus oral.  

 

Conclusions et perspectives 

Pour évoluer vers un système alimentaire plus durable, développer une offre alimentaire riche en 

produits végétaux appréciés par les consommateurs est un enjeu majeur. Pour répondre à cet enjeu, mes 

travaux de doctorat apportent à la communauté scientifique et industrielle des connaissances nouvelles 

ainsi que des outils et des approches méthodologiques originales (sensorielles, analytiques, statistiques) 

pour mieux comprendre les perceptions des protéines de pois. Ils ouvrent sur des pistes pour revisiter 
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les procédés de fractionnement du pois et aider à la mise en œuvre des ingrédients protéiques végétaux 

dans des aliments afin de diminuer leurs défauts sensoriels. 

 

Ainsi, à partir des solutions de pois, 79 molécules volatiles ont pu être identifiées, dont 34 corrélées aux 

notes « beany » ; 3500 peptides dont 14 corrélés à l’amertume ; et 48 phytomicronutriments dont 29 

corrélés à l'amertume et l’astringence. Les modèles multi-blocs ont permis d’identifier le rôle relatif de 

ces blocs de molécules de nature différente sur les perceptions « beany », amère et astringente. A partir 

des boissons à base de pois, les résultats ont montré que les notes « beany » et d’amertume dépendent 

principalement du type de protéine et de la teneur en gellane. L’astringence, fortement persistante, peut 

être limitée par la formulation. Enfin, les profils en molécules volatiles, affectés par la présence de salive, 

ont permis de montrer le rôle clés du processus oral sur ces perceptions. Sur la base de ces résultats (et 

selon le type d'aliment), des recommandations sur les combinaisons de fractions d'isolats, sur la 

composition des molécules chimiques et sur la composition des formulations ont été développées pour 

améliorer la saveur des isolats protéique de pois utilisés dans les produits alimentaires. Ces travaux ont 

été valorisés au travers de publications dans des revues à comité de lecture (4 publiées et 2 à soumettre), 

des communications orales (4), sous forme de poster dans des congrès internationaux (5), mais 

également des communications orales chez l’industriel partenaire de la thèse.  

 

Différentes perspectives de recherche peuvent être proposées suite à ce travail. La première concerne 

l'aspect dynamique des perceptions. En effet, les perceptions en bouche des produits dépendent 

également de phénomènes dynamiques, résultant de la déstructuration des produits au cours du 

processus buccal, qui est fortement dépendant de chaque individu. Ainsi, une perspective serait 

d'intégrer les données de l'approche prédictive des analyses permettant de caractériser les phénomènes 

dynamiques. La seconde perspective de recherche porte sur la modélisation. La regression Partial Least 

Square multi-bloc a permis d'identifier les principaux groupes de molécules impliquées dans les 

perceptions. Toutefois, d'autres modèles statistiques pourraient peut-être être appliquées afin de mieux 

prendre en compte les interactions entre les molécules. Enfin, il serait intéressant de mener des études 

similaires sur d'autres types de légumineuses comme les protéines de soja ou de lupin. Cela permettrait 

de réaliser des études croisées et d'avoir de meilleures chances d'identifier les molécules communes 

responsables des défauts sensoriels. En effet, l'industrie alimentaire travaille sur le développement de 

nouveaux produits enrichis avec différents types de protéines végétales. La compréhension des 

perceptions des légumineuses en général est donc une étape clé pour aider les industriels dans le 

développement de ces produits alimentaires. Par conséquent, il est nécessaire de poursuivre les travaux 

de recherche en nutrition, en procédés, en comportement alimentaire et en analyse sensorielle pour 

développer ce secteur et être en phase avec les attentes et les besoins des consommateurs. Avec une 

image positive (bonne pour la santé et respectueuse de l'environnement), les protéines végétales ont un 

fort potentiel de croissance dans les régimes alimentaires. 
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Titre : Des protéines de pois pour les aliments de demain: de la composition chimique aux modèles statistiques, pour 

comprendre les mécanismes à l’origine des perceptions de beany, d’amertume et d’astringence 
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Résumé : Face à la croissance démographique et la crise 

climatique à venir, comment proposer un régime alimentaire plus 

riche en protéines végétales? L’utilisation de légumineuses telles 

que le pois dans les aliments permettrait de contribuer à 

l’évolution de cette offre. Cependant, l’amertume, les notes 

aromatiques «beany» et la rémanence de ces ingrédients sont des 

freins à leur utilisation. L'objectif de ce doctorat était de 

comprendre l’origine de la perception des isolats protéiques de 

pois à partir de leur composition (en molécules volatiles et non 

volatiles), puis d’étudier le rôle de la composition d’aliments 

formulés avec ces ingrédients protéiques sur les propriétés 

physicochimiques et les perceptions au cours du processus oral. 

Pour cela, une stratégie originale et multidisciplinaire a été mise 

en place combinant analyse sensorielle, physico-chimie et 

statistique. Un plan de mélange a été construit pour développer 

une gamme de 23 solutions formulées à partir de 6 fractions issues 

d’isolats protéiques de pois commerciaux. Un profil a permis de 

caractériser les propriétés sensorielles de ces solutions. En 

parallèle, leurs compositions en composés volatiles, peptides et 

composés phytochimiques (acides phénoliques, flavonoïdes et 

terpénoïdes) ont été caractérisées. Les relations entre les profils 

sensoriels et compositions chimiques ont été analysées à l'aide de 

corrélations de Pearson et de modèles linéaires (Partial-Least-

Square) et non linéaires (Artificial Neural Network). A partir de ces 

solutions de pois, 79 molécules volatiles ont pu être identifiées, 

dont 34 corrélées aux notes « beany » ;  

3500 peptides dont 14 corrélés à l’amertume ; et 48 molécules 

phytochimiques dont 29 corrélés à l'amertume et l’astringence. 

Puis, des modèles PLS multi-blocs ont été réalisés pour identifier 

le rôle relatif de ces blocs de composés de nature différente sur 

les perceptions « beany », amères et astringente. La seconde 

partie du travail s’est intéressée à comprendre comment la 

formulation d’une boisson à base de pois peut moduler les 

perceptions. Une large gamme de boissons végétales a alors été 

développée en faisant varier le type de protéines utilisées, la 

teneur en matière grasse, en épaississant et en sel. Les 

propriétés sensorielles temporelles ont été évaluées lors de la 

consommation d’une bouchée, mais aussi d’une portion entière 

d'aliments, ainsi que les propriétés rhéologiques et les 

composés volatiles. Les résultats ont montré que les notes 

beany et d’amertume dépendent principalement du type de 

protéine et de la teneur en gellane. L’astringence, fortement 

persistante, peut être limitée par la formulation. De plus, les 

propriétés rhéologiques permettent une prédiction fiable des 

perceptions d’astringence. Enfin, les profils en molécules 

volatiles, fortement affectés par la présence de salive, ont permis 

de montrer le rôle clés du processus oral sur ces perceptions. 

Au-delà des approches méthodologiques originales et des 

connaissances nouvelles sur les produits, ces travaux ouvrent sur 

des pistes pour revisiter les procédés de fractionnement du pois 

et aider à la mise en œuvre des ingrédients protéiques végétaux 

dans des aliments, afin de diminuer leurs défauts sensoriels.  
 

 

Title : Pea protein based foods for the future: From chemical composition to statistical models to understand the 

mechanisms behind perceptions of beany, bitterness and astringency  

Keywords : aroma compounds, phenolics, peptidomics, perceptions, formulation, modelling 

Abstract : With population growth and the coming climate crisis, 

how can we offer a diet with higher levels of plant proteins? The 

use of pulses such as peas in foods would contribute to the 

evolution of this offer. However, their bitterness, their "beany" 

aromatic notes and their persistence are obstacles to their use. The 

objective of this PhD was to understand the role of their 

composition (volatile and non-volatile compounds) on 

perceptions. The role of food formulation was also studied on their 

physicochemical properties and perceptions during the oral 

process. For this, an original and multidisciplinary strategy 

combining sensory analysis, physico-chemistry and statistics was 

set up. A mixing plan was built to create a range of 23 solutions 

formulated from 6 fractions derived from commercial pea protein 

isolates. A profile was used to characterize the perceptions of these 

solutions In parallel, their compositions in volatile compounds, 

peptides and phytochemical compounds (phenolic acids, 

flavonoids and terpenoids) were characterized. The links between 

sensory and chemical profiles were analysed using Pearson 

correlations, linear (Partial-Least-Square) and non-linear (Artificial 

Neural Network) models. From these pea solutions, 79 volatile 

compounds were identified, including 34 correlated to beany 

notes; 3500 peptides including 14 correlated to bitterness;  

and 48 phytochemical compounds, including 29 correlated to 

bitterness and astringency. Then, multi-block PLS models were 

carried out to identify the relative role of these blocks of 

chemical compounds on beany, bitter and astringent 

perceptions. The second part of the work focused on 

understanding how the formulation of a pea-based beverages 

can modulate perceptions. A wide range of plant beverages was 

then developed by varying the type of proteins and the fat, 

texturizing and salt contents. The temporal sensory properties 

were evaluated when consuming a spoon, but also a whole 

portion of food; rheological properties and volatile compound 

profiles were determined. The results showed that the beany 

and bitterness notes depend mainly on the type of protein and 

gellan content. Astringency, which is highly persistent, can be 

limited by the formulation. In addition, rheological properties 

allow a reliable prediction of astringency perceptions. Finally, 

volatile molecule profiles, strongly affected by the presence of 

saliva, have shown the key role of the oral process on these 

perceptions. Beyond the original methodological approaches 

and new knowledge on products, this work opens up avenues 

to revisit pea fractionation processes and help the formulation 

of plant protein in foods, in order to reduce their off-notes. 
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