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学而不思则罔，思而不学则殆。 

论语，为政第二 (15) 

 

Learning without thinking is useless, thinking without learning is dangerous.  

The Analects of Confucius, chapter II (15) 

 

Apprendre sans réfléchir est vain, réfléchir sans apprendre est dangereux.  

Entretiens de Confucius, chapitre II (15)  
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Summary 
 

Sarcomas are cancers of mesenchymal origin that comprise more than a hundred different entities. They 

are mostly rare diseases that occur at all ages, including in children and young adolescents. Due to their 

rarity and diversity, diagnosis is often missed or delayed. Prognosis is generally poor in cases of advanced 

or metastatic disease and most treatment approaches rely on unspecific and highly toxic chemotherapy. 

There is thus an unmet need to improve the diagnosis of sarcomas and develop novel therapeutic 

approaches for these diseases.  

RNA sequencing (RNA-seq) is a promising approach for the diagnosis of sarcomas, especially for 

translocation-related sarcomas that are characterized by chromosome translocations giving rise to fusion 

genes, such as EWSR1-FLI1 in Ewing sarcoma. Using RNA-seq data of sarcomas of patients profiled at the 

Institut Curie, I explored the transcriptomic landscape of sarcomas and used machine learning and deep 

learning techniques to predict sarcoma type based on RNA-seq. This work led to the development of a tool 

currently in use at the Institut Curie to predict the origin of cancers of unknown primary and improve the 

diagnosis and prognosis of individual patients in clinical practice. 

Immunotherapy has revolutionized cancer care for the last decade, however it has had only limited success 

in sarcomas, supposedly because they are not “immunogenic”. Indeed, most sarcomas, especially 
translocation-related ones, have a very low tumor mutational burden, which is believed to be the main 

driving force in the generation of tumor neoantigens recognized by the immune system. To gain further 

insight into the potential of immune response in sarcoma, I characterized the immune microenvironment 

and lymphocyte repertoires of multiple types of sarcomas using RNA-seq of tumor samples. While most of 

them were indeed poorly infiltrated by cells of the immune system, there were some exceptions to this rule 

suggesting that immunotherapy should be considered in some cases. 

Another promising finding for immunotherapy of sarcomas was the identification of novel tumor-specific 

transcripts in multiple types of translocation-related sarcomas. These “neotranscripts” were driven by their 

characteristic oncogenic chimeric transcription factors such as EWSR1-FLI1 in Ewing sarcoma; some of them 

were found to be translated by ribosomes into peptides. Therefore, these may represent a source of tumor-

specific public neoantigens for immunotherapies of these translocation-related sarcomas. 

To characterize in detail the immune microenvironment and oncogenic processes of specific sarcomas, 

single-cell RNA-seq was performed for some of them, notably dedifferentiated liposarcomas (DDLPS). It 

revealed higher infiltration by immune cells in the dedifferentiated compartment of the tumor, but with 

more exhausted and immunosuppressive phenotypes. It also allowed to characterize the oncogenic 

processes of DDLPS and notably the relationship between dedifferentiated and well-differentiated cells 

inside the same tumor. 

Altogether, this work opens perspectives to improve diagnosis and develop immunotherapies for sarcomas 

by: 1) defining a global transcriptomic landscape of sarcoma types and their associated microenvironment; 

2) identifying novel transcriptional processes in translocation-related sarcomas with potential for 

generation of neoantigens for immunotherapy; 3) characterizing at the single-cell level oncogenic processes 

and immune microenvironment of one type of sarcoma (DDLPS); 4) resulting in the development of a 

classifier tool for diagnostic prediction used in clinical practice at the Institut Curie. 
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Résumé (en français) 
 

Les sarcomes sont des cancers d’origine mésenchymateuse qui comprennent plus d’une centaine d’entités. 
Ce sont pour la plupart des maladies rares qui peuvent survenir à tout âge, y compris pendant l’enfance et 
la jeune adolescence. En raison de leur rareté et diversité, le diagnostic en est souvent erroné ou retardé. 

Le pronostic est généralement sombre dans les formes avancées et métastatiques, et la plupart des 

traitements reposent actuellement sur des chimiothérapies non spécifiques et très toxiques. Il y a donc un 

besoin urgent d’améliorer le diagnostic des sarcomes et développer de nouvelles approches thérapeutiques 
pour ces cancers. 

Le séquençage de l’ARN (RNA-seq) est une technique prometteuse pour le diagnostic des sarcomes, 

notamment dans le cas des sarcomes liés à des translocations qui sont caractérisés par des translocations 

chromosomiques à l’origine de gènes de fusion, par exemple EWSR1-FLI1 dans le sarcome d’Ewing. A l’aide 
de la base de données du RNA-seq de sarcomes de patients de l’Institut Curie, j’ai exploré le paysage 

transcriptomique des ces cancers et utilisé des techniques d’apprentissage machine (machine learning) et 

d’apprentissage profond (deep learning) pour prédire le type de sarcome à l’aide du RNA-seq. Ce travail a 

ensuite permis le développement d’un outil actuellement utilisé à l’Institut Curie pour prédire la tumeur 

d’origine de cancers de primitif inconnu et ainsi améliorer le diagnostic et le pronostic de patients en 

pratique clinique courante. 

Au cours de la dernière décennie, l’immunothérapie a été à l’origine d’une révolution dans le traitement de 

multiples cancers. Cependant, elle n’a eu qu’un succès très limité dans les sarcomes qui sont généralement 

considérés comme des tumeurs non « immunogéniques ». En effet, la plupart des sarcomes, notamment 

liés aux translocations, ont une charge mutationnelle très faible. Or ce dernier facteur est considéré comme 

l’un des principaux générateurs de néoantigènes tumoraux qui servent de cible au système immunitaire. 

Pour étudier plus en détail la possibilité d’une réponse immunitaire dans les sarcomes, j’ai caractérisé le 
microenvironnement tumoral immunitaire et les répertoires lymphocytaires dans de nombreux types de 

sarcomes à l’aide du RNA-seq d’échantillons tumoraux. Bien que la plupart sont effectivement peu infiltrés 

par des cellules du système immunitaire, il existe des exceptions qui font penser que l’immunothérapie 
pourrait être efficace dans certains cas.  

Une autre piste prometteuse pour l’immunothérapie des sarcomes a été l’identification de nouveaux 

transcrits spécifiques dans de nombreux types de sarcomes liés à des translocations. Ces « néotranscrits » 

sont induits par le facteur de transcription oncogénique chimérique caractéristique de la tumeur, par 

exemple EWSR1-FLI1 dans le sarcome d’Ewing. Certains d’entre eux sont traduits par les ribosomes en 

peptides. Ils représentent donc une source potentielle de néoantigènes publics spécifiques de la tumeur 

pour les approches d’immunothérapie dans les sarcomes liés à des translocations. 

Pour caractériser en détail le microenvironnement immunitaire et les processus oncogéniques de sarcomes 

spécifiques, certains d’entre eux ont été étudiés par du RNA-seq à l’échelle unicellulaire (single-cell RNA-

seq), notamment les liposarcomes dédifférenciés (DDLPS). Cette technique a mis en évidence une 

infiltration plus importante de cellules immunitaires dans le compartiment dédifférencié de la tumeur, ainsi 

qu’un phénotype « épuisé » (exhausted) et immunosuppresseur de ces cellules. Elle a aussi permis de 

caractériser les processus oncogéniques des DDLPS, notamment la relation entre les cellules bien 

différenciées et « dédifférenciées » au sein d’une même tumeur. 

Au total, ce travail ouvre plusieurs perspectives pour l’amélioration du diagnostic et le développement 
d’immunothérapies pour les sarcomes, en : 1) définissant un paysage transcriptomique global des types de 

sarcomes et de leur microenvironnement immunitaire ; 2) identifiant de nouveaux mécanismes 

transcriptionnels dans les sarcomes liés à des translocations potentiellement à l’origine de néoantigènes 
pour l’immunothérapie ; 3) caractérisant à l’échelle unicellulaire les processus oncogéniques et le 
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microenvironnement immunitaire d’un type de sarcome (liposarcome dédifférencié) ; 4) mettant en place 

un outil d’aide au diagnostic actuellement utilisé en pratique clinique courante à l’Institut Curie.   
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General introduction 

 
Dear reader, you are about to read a manuscript that is built on the results of three years of PhD work that 

I had the opportunity to realize at the Institut Curie under the supervision of Joshua Waterfall and Olivier 

Delattre. As you will see, this work is not constituted by one unique project progressing linearly from start 

to end. Indeed, I got involved in multiple projects during these three years that allowed me to tackle many 

conceptual and technical questions. Nonetheless, all these revolved around some main common threads 

that were designed to be woven together into a coherent whole, as I will show you in the following text.  

The resulting “fabric” is therefore heterogeneous and multi-colored: while some projects were planned at 

the beginning of my PhD, others were the results of an unexpected biological observation or a pressing 

clinical case, some are not even mentioned in this manuscript. This diversity may be justified by the large 

number of datasets that I was fortunate to have access to, and the myriad possibilities of analyses that can 

nowadays be performed in bioinformatics. However, the main reason was probably my own tendency to 

embrace many projects at the same time. Indeed, I was eager to learn as much as possible in bioinformatics, 

analyze as many datasets as were available to me, and answer all biologically and clinically relevant 

questions that came to my mind.  

This may be due to my medical background: I am trained as a medical oncologist and my bioinformatics 

background is therefore not as strong as many of my scientist colleagues. Back in 2012, I had nevertheless 

completed my Master’s degree in systems biology and published a model of lymphocyte dynamics using 

ordinary differential equations1. However, computational biology and especially bioinformatics evolved 

rapidly before I came back into science for my PhD at the end of 2018. One landmark change was the advent 

of next-generation sequencing (NGS) technologies2, which notably allowed the large-scale genomic and 

transcriptomic profiling of cancer samples. Another was the rapid development of machine learning and 

deep learning methods for so-called “artificial intelligence”3. Considering that my medical specialty is 

oncology, I was particularly excited by the potential of these novel techniques to better understand 

biological mechanisms of cancer and help to find some cures for patients. I therefore decided to realize a 

PhD in bioinformatics to learn this expertise and be able to leverage the potential of these data to address 

fundamental biological and clinical issues in oncology. To achieve this, I was very fortunate to work at the 

Institut Curie under the supervision of Joshua Waterfall and Olivier Delattre. Not only was I allowed to 

analyze rich resources of precious transcriptomic data of patients, but I was also able to participate in many 

exciting projects taking place here. This diversity of learning and practice was exactly what I desired for my 

PhD as a medical oncologist endeavoring to get a solid grasp of a large panel of computational methods for 

analysis of biomedical data. 

 

Outline of the manuscript 
 

I will now present the outline of this manuscript and the underlying common threads to draw a coherent 

“fabric” out of all the different parts. Since each project could also be narrated in a self-limited way, I have 

chosen to focus here on the big picture, and to introduce and discuss more thoroughly each subject inside 

its corresponding part. 

One of the main threads of my work is the study of sarcomas. Sarcomas are cancers of mesenchymal origin, 

i.e. derived from bone and soft tissues such as muscle, fat, and cartilage. They form a vast group of 

heterogeneous malignant tumors comprising more than a hundred histologically distinct entities4. All types 

of sarcomas are mostly rare diseases (fewer than one case in a population of 2000 individuals in Europe). 
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Consequently, they are less well studied and have fewer therapeutic options: most patients with metastatic 

disease are treated by highly toxic chemotherapy, often without significant benefit5. 

Besides their histological classification by pathologists, sarcomas are classically divided into two groups 

based on their genomic alterations: either “complex” or “simple”6. Sarcomas with a complex genomic 

profile are characterized by a high number of genetic alterations including mutations, chromosome 

translocations, gains and deletions. They are mostly occurring in persons older than 60 years old. In contrast, 

sarcomas with a simple genomic profile are mostly driven by one unique genetic alteration which is in many 

cases a chromosome translocation resulting in a fusion gene that has oncogenic properties. These are called 

translocation-related sarcomas and are more often occurring in younger patients, including children and 

young adolescents7,8. One paradigmatic example of translocation-related sarcomas is Ewing sarcoma, which 

occurs in children and adolescents and is the result of a translocation between chromosomes 11 and 22 

resulting in the fusion gene EWSR1-FLI1 (EWS-FLI1)9.  

One critical aspect in the clinical care of patients with sarcomas is the accuracy of diagnosis. Since these are 

rare diseases, they are often confused with other more frequent cancers if doctors in charge are not familiar 

with sarcomas. This is the reason why all patients with suspected or confirmed sarcoma should be taken in 

charge by multidisciplinary reference centers: a national study in France showed improved survival with 

this measure10. However, accurate diagnosis remains a challenge even in specialized centers. As there are 

more than a hundred histological entities, and a rapidly growing number of characterized translocations for 

translocation-related sarcomas, there is a need for precise, rapid, and correct diagnosis that should not 

leave out even the rarest types of sarcomas from the differential diagnosis. One of the solutions could be 

the use of high-throughput molecular assays such as RNA sequencing (RNA-seq) to help in the classification 

and diagnosis of sarcomas. This is indeed what has been applied in practice since 2015 at the Institut Curie 

(see RNA-seq of sarcomas at the Institut Curie). As a result of this clinical sequencing effort, a rich resource 

of transcriptomic profiles of sarcomas has been constituted, and I had the opportunity to have access to it 

for my PhD. This was in fact the starting point of my thesis: to characterize the transcriptomic landscape of 

sarcomas using this database of clinical RNA-seq (see   
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Characterization of the transcriptomic landscape of sarcomas).  

In addition to the characterization of tumor cells, RNA-seq realized on bulk clinical samples can also give 

insight into the cells that form the tumor microenvironment, notably cells of the immune system. Since 

immunotherapy has now become one of the main weapons of the oncologist with impressive results against 

many types of cancers, the characterization of the tumor immune microenvironment is of great interest 

for the design of immunotherapies11. This is another main thread in my PhD work. In sarcomas, only a few 

responses to immunotherapy have been observed12, though the number of trials and treated patients has 

been much smaller than for other cancers. Most of the sarcomas that show promising responses are 

genomically complex, and it is assumed that genomically simple tumors such as translocation-related 

sarcomas are intrinsically less immunogenic because of a low tumor mutational burden. However, this 

deserves further study to evaluate the potential of immune response: using the database of Institut Curie, 

that contains a large number of translocation-related sarcomas, I was able to explore in more detail the 

tumor immune microenvironment of sarcomas (see Characterization of the immune microenvironment of 

sarcomas). 

The immunogenicity of cancers is largely driven by the presence of tumor neoantigens that can be 

recognized by cells of the immune system such as cytotoxic lymphocytes13. Most tumor neoantigens are 

believed to be generated from DNA mutations in protein-coding genes leading to modified peptides 

presented at the surface of the tumor cell. This is the reason why most tumors with a low tumor mutational 

burden such as pediatric tumors and notably sarcomas are supposed to be non-immunogenic14,15. However, 

an unexpected observation in Ewing sarcoma at the beginning of my PhD led to the identification of a 

potential source of tumor-specific neoantigens for more than a dozen of translocation-related sarcomas 

and other cancers (see Identification of novel transcripts in sarcoma).  

After having characterized the immune microenvironment by bulk RNA-seq and studied potential sources 

of immunogenicity of sarcomas, I had the opportunity to analyze more finely the immune infiltrate of some 

types of sarcomas at the single-cell level. This type of analysis is extremely rich and interesting and allowed 

to derive important insights into the oncogenesis of one specific type of sarcoma: dedifferentiated 

liposarcoma (see Transcriptomic characterization of sarcomas and microenvironment at the single-cell 

level). 

From a biological perspective, the main threads of my work are thus sarcomas and the associated immune 

microenvironment. From an orthogonal point of view, all projects were involved with RNA: not only bulk 

RNA-seq which allowed broad characterization of the transcriptomic landscape of sarcomas, diagnosis 

prediction and study of the immune microenvironment, but also at the single-cell level once for the detailed 

study of cells of the immune system and for fine characterization of the oncogenesis of one specific type of 

sarcoma. While most of my analyses were focused on measures of reference transcripts, one of my projects 

also highlighted the richness of transcriptomic resources to potentially make biological “discoveries” inside 
these treasure troves of data. I also got the opportunity to analyze specifically the translation of RNA using 

the recent technique of ribosome profiling. 

Finally, the computational thread of this work was the analysis of high-dimensional biomedical data, that 

allowed me to master multiple bioinformatics analyses including their use with high-performance 

computing (HPC) clusters, as well as machine learning and deep learning methods for characterization and 

processing of this large amount of data. I learnt to appreciate the potentials and pitfalls in the analysis of 

high-dimensional datasets. Single-cell RNA-seq particularly gave me the opportunity to explore critically the 

challenges of applying technically complicated procedures in complex biological settings, notably in the 

important open problem of data integration of different patients. Finally, I was fortunate to successfully 

apply an “artificial intelligence” to improve in clinical practice the diagnosis and prognosis of individual 

patients at the Institut Curie and beyond. 
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Introduction générale (en français) 

 
Chère lectrice, cher lecteur, vous allez entamer la lecture d’un manuscrit qui est le fruit d’un travail de thèse 
de sciences qui a duré trois ans, que j’ai eu la chance d’effectuer à l’Institut Curie sous la direction de Joshua 

Waterfall et Olivier Delattre. Comme vous allez le constater, ce travail n’est pas constitué d’un seul projet 
ayant progressé linéairement du début à la fin de ma thèse. En effet, j’ai été impliqué durant ces trois 

années dans de nombreux projets, ce qui m’a permis de réfléchir à et travailler sur des questions 
conceptuellement et techniquement très variées. Cependant et malgré cet aspect bariolé, tous ces travaux 

ont été tissés à l’aide de fils conducteurs communs pour s’inscrire dans une étoffe de trame cohérente, 

comme je vais vous le montrer dans la suite de ce texte.   

Le « tissu » final est donc hétérogène et multicolore : alors que certains projets étaient déjà conçus au début 

de ma thèse, d’autres ont vu le jour en cours, soit au décours d’une observation biologique inattendue, soit 

pour répondre au besoin d’un cas clinique urgent ; certains d’entre eux ne sont même pas mentionnés dans 
ce manuscrit. Cette diversité peut en partie être expliquée par le grand nombre de jeux de données 

auxquels j’ai eu la chance avoir accès, et la multitude d’analyses possibles grâce aux outils actuels de la 

bioinformatique. Cependant, la raison principale est probablement ma propre tendance à vouloir mener 

plusieurs projets simultanément. En effet, j’ai eu à cœur pendant ma thèse de sciences d’apprendre le plus 
possible de techniques de bioinformatique, analyser de multiples types de données, et tenter de répondre 

à toutes les questions pertinentes biologiquement et cliniquement qui se présentaient à mon esprit. 

Cela est peut-être dû à ma formation de médecin : je suis interne en oncologie médicale et par conséquent 

mes compétences en bionformatique étaient bien inférieures à celles de mes collègues scientifiques au 

début de ma thèse. J’avais toutefois déjà obtenu un Master en biologie des systèmes en 2012 et publié un 

modèle de la dynamique des lymphocytes T au sein du thymus à l’aide d’équations différentielles 
ordinaires1. Cependant la biologie computationnelle et plus spécifiquement la bioinformatique ont évolué 

très rapidement avant mon retour en thèse de sciences fin 2018. Un changement majeur a été l’arrivée des 
techniques dites de séquençage de nouvelle génération (next-generation sequecing, NGS) 2, qui ont 

notamment permis le séquençage de génomes et transcriptomes de tumeurs à large échelle. Un autre a 

été le développement rapide des méthodes d’apprentissage machine (machine learning) et deep learning 

(apprentissage profond), communément regroupées sous le terme populaire d’« intelligence artificielle » 3. 

Etant donné ma spécialisation en oncologie médicale, j’étais particulièrement intéressé par le potentiel de 

ces nouvelles techniques pour mieux comprendre les mécanismes biologiques du cancer et aider à trouver 

de nouveaux traitements pour les patients. C’est pourquoi j’ai décidé d’effectuer une thèse en 

bioinformatique pour acquérir cette expertise et les compétences nécessaires pour exploiter le riche 

potentiel de ces données à haut débit, afin de répondre à des questions fondamentales pour la biologie et 

la médecine en cancérologie. Pour atteindre cet objectif, j’ai eu beaucoup de chance de pouvoir travailler 

à l’Institut Curie sous la direction de Joshua Waterfall et Olivier Delattre. Non seulement j’ai pu avoir accès 
à de précieuses bases de données transcriptomiques de patients, j’ai également pu prendre part à une 

multitude de projets intéressants en cours au sein de l’Institut. Cette grande diversité d’apprentissage et 

de pratique correspondait parfaitement à ce que je recherchais en tant qu’oncologue médical souhaitant 

apprendre à maîtriser une large panoplie de méthodes computationnelles pour l’analyse de données 
biologiques et médicales. 

 

Plan du manuscrit 
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Je vais maintenant exposer le plan de ce manuscrit et les fils conducteurs sous-tendant la trame d’ensemble 
des différentes parties de ma thèse. Etant donné que chaque projet pourrait être traité indépendamment, 

j’ai décidé dans cette introduction générale de présenter les grandes lignes de mon travail, avant 

d’introduire et discuter plus en détail chacun des sujets au sein de leurs parties respectives.  

L’un des fils conducteurs de ma thèse est l’étude des sarcomes. Les sarcomes sont des cancers d’origine 
mésenchymateuse, c’est-à-dire dérivés des os et tissus mous tels que le muscle, la graisse ou le cartilage. 

Ils forment un vaste groupe hétérogène de tumeurs malignes comprenant plus d’une centaine d’entités 
histologiques différentes4. La majorité des types de sarcomes sont des maladies rares (moins d’un cas pour 
2000 habitants en Europe). Par conséquent, ils sont moins bien connus et n’ont que peu d’options 
thérapeutiques : la plupart des patients avec une maladie métastatique sont traités avec des 

chimiothérapies très toxiques, souvent sans bénéfice clinique majeur5. 

Indépendamment de leur classification histologique par les anatomopathologistes, les sarcomes sont 

classiquement divisés en deux groupes en fonction de leur profil d’altérations génomiques dit « simple » 

ou « complexe » 6. Les sarcomes avec un profil génomique complexe sont caractérisés par un grand nombre 

d’altérations génétiques comprenant notamment des mutations, translocations chromosomiques, gains et 

délétions. Ils surviennent principalement chez des patients adultes de plus de 60 ans. Au contraire, les 

sarcomes avec un profil génomique simple sont pour la plupart induits par une unique altération génétique ; 

celle-ci est dans la majorité des cas une translocation chromosomique donnant naissance à un gène de 

fusion codant pour une protéine chimérique avec des propriétés oncogéniques. Ces sarcomes sont dits liés 

à des translocations et touchent plus spécifiquement les patients jeunes, notamment les enfants et les 

jeunes adolescents7,8. Un des représentants les plus connus de cette classe de sarcomes liés à des 

translocations est le sarcome d’Ewing, qui survient chez les enfants et adolescents et est la conséquence 

d’une translocation entre les chromosomes 11 et 22 donnant naissance au gène de fusion EWSR1-FLI1 

(EWS-FLI1)9. 

Un aspect essentiel de la prise en charge des patients atteints de sarcomes est la précision du diagnostic. 

Comme ce sont des maladies rares, les sarcomes sont souvent confondus avec d’autres cancers plus 

fréquents si les médecins en charge du patient ne sont pas familiers avec ce type de diagnostic. C’est la 
raison pour laquelle il est obligatoire que tout patient avec suspicion ou confirmation d’un diagnostic de 
sarcome soit pris en charge dans un centre de référence multidisciplinaire : une étude nationale française 

a notamment montré un bénéfice en survie grâce à cette mesure10. Cependant, un diagnostic précis reste 

parfois difficile à obtenir y compris dans un centre spécialisé. Etant donné qu’il existe plus d’une centaine 

d’entités histologiques et par ailleurs un nombre croissant de translocations caractérisées pour les 

sarcomes liés à des translocations, il y a un besoin réel d’outils permettant un diagnostic précis, rapide et 
correct incluant même les sarcomes les plus rares dans le diagnostic différentiel. Une des solutions pourrait 

être l’utilisation de techniques de séquençage à haut débit comme le séquençage de l’ARN (RNA-seq) pour 

aider à la classification et au diagnostic des sarcomes. C’est exactement ce qui a été mis en place à l’Institut 
Curie depuis 2015 (voir RNA-seq of sarcomas at the Institut Curie). Grâce à cet usage en routine clinique du 

RNA-seq pour le diagnostic, une riche base de données de transcriptomes de sarcomes a pu voir le jour, et 

j’ai eu la chance d’y avoir accès pendant ma thèse. Cette base de données était d’ailleurs le point de départ 
pour l’objectif initial de mon travail de thèse : caractériser le paysage transcriptomique des sarcomes (voir  
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Characterization of the transcriptomic landscape of sarcomas).  

Au-delà de la caractérisation des cellules tumorales, le RNA-seq effectué sur des prélèvements tumoraux 

en « bulk » permet également l’étude des cellules constituant le microenvironnement tumoral, notamment 
les cellules du système immunitaire. Etant donné que l’immunothérapie est maintenant devenue l’une des 
principales armes dans l’arsenal de l’oncologue médical, avec des résultats impressionnants dans de 

nombreux types de cancers, l’étude du microenvironnement immunitaire de la tumeur est absolument 

essentielle pour mieux utiliser ces immunothérapies11. Ceci est un autre fil conducteur de ma thèse. Dans 

les sarcomes, seules quelques rares réponses à l’immunothérapie ont pu être observées12, bien que les 

nombres d’essais et de patients traités soient logiquement plus faibles que dans d’autres types de cancers 

plus fréquents. La plupart des sarcomes qui montrent des signes de réponse à l’immunothérapie sont à 
génomique complexe, et il est supposé que les sarcomes à génomique simple comme les sarcomes liés à 

des translocations sont intrinsèquement moins « immunogéniques » en raison d’une charge mutationnelle 
faible. Cependant, une étude plus poussée est nécessaire pour évaluer le réel potentiel d’une réponse à 

l’immunothérapie : grâce à la base de données transcriptomiques de l’Institut Curie qui contient 
notamment un grand nombre de sarcomes liés à des translocations, j’ai pu entreprendre une 
caractérisation plus en détail du microenvironnement immunitaire tumoral des sarcomes (voir 

Characterization of the immune microenvironment of sarcomas). 

L’immunogénicité (capacité à induire une réponse immunitaire) des cancers est en grande partie liée à la 

présence de néoantigènes tumoraux qui peuvent être reconnus par des cellules du système immunitaire 

telles que les lymphocytes cytotoxiques13. Il est communément admis que la plupart des néoantigènes 

tumoraux  sont créés suite à des mutations de l’ADN tumoral au niveau de gènes codant pour des protéines, 

ce qui résulte en la présentation de peptides modifiés à la surface des cellules tumorales. C’est la raison 
pour laquelle la majorité des tumeurs avec une charge mutationnelle faible, telles que les tumeurs 

pédiatriques et les sarcomes, sont considérées comme non-immunogéniques14,15. Pourtant, une 

observation inattendue dans le sarcome d’Ewing au début de ma thèse a conduit à l’identification d’une 
source alternative potentielle de néoantigènes spécifiques de la tumeur pour plus d’une douzaine de 
sarcomes et autres cancers liés à des translocations (voir Identification of novel transcripts in sarcoma).   

Après avoir caractérisé le microenvironnement immunitaire grâce au RNA-seq en « bulk » et étudié des 

sources potentielles d’immunogénicité dans les sarcomes, j’ai eu la chance de pouvoir analyser plus 
finement l’infiltrat immunitaire de certains types de sarcomes à l’échelle unicellulaire. Cette analyse dite 

en « single-cell » est extrêmement riche et intéressante et a permis également d’obtenir des résultats 

importants concernant l’oncogenèse d’un type de sarcome en particulier : le liposarcome dédifférencié 

(voir Transcriptomic characterization of sarcomas and microenvironment at the single-cell level). 

D’un point de vue biologique, les fils conducteurs de mon travail sont donc les sarcomes et leur 

microenvironnement immunitaire. Si l’on prend une perspective orthogonale, tous mes projets tournaient 

autour de l’ARN : non seulement le RNA-seq en « bulk » qui a permis la caractérisation large du paysage 

transcriptomique des sarcomes, la prédiction diagnostique et l’étude du microenvironnement immunitaire, 
mais aussi à l’échelle unicellulaire (« single-cell ») pour l’étude détaillée des cellules du système 
immunitaire et la caractérisation fine de l’oncogenèse d’un type de sarcome en particulier. Bien que la 

plupart des mes analyses aient été concentrées sur la mesure de transcrits de référence déjà connus, l’un 
de mes projets a également mis en lumière les potentielles « découvertes » (en l’occurrence, de nouveaux 
transcrits) qui peuvent être faites au sein de ces riches trésors que sont les bases de données de séquençage 

à haut débit. J’ai aussi eu l’occasion par ailleurs d’analyser plus spécifiquement la traduction des ARN à 
l’aide de la technique récente dite de Ribo-seq.  

Enfin, le fil conducteur computationnel de mon travail a été l’analyse de données biomédicales à haute 

dimension, ce qui m’a permis d’apprendre à maîtriser de nombreux outils bioinformatiques, y compris à 

l’aide de clusters d’ordinateurs effectuant des calculs de haute performance, ainsi que des méthodes 
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d’apprentissage machine (machine learning) et apprentissage profond (deep learning) pour la 

caractérisation et l’analyse de cette grande quantité de données. J’ai appris à connaître le riche potentiel 

mais aussi les pièges éventuels de ces analyses de données à haute dimension. En particulier, le RNA-seq à 

échelle unicellulaire m’a donné l’occasion d’expérimenter moi-même les difficultés d’application de ces 
techniques compliquées à des données biologiques non moins complexes, notamment pour le problème 

épineux et non résolu de l’intégration de données provenant de plusieurs patients différents. Enfin, j’ai eu 
la chance de réussir à appliquer en pratique clinique un outil d’ « intelligence artificielle » pour améliorer 

en pratique clinique le diagnostic et le pronostic de patients à l’Institut Curie et au-delà.  
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RNA-seq of sarcomas at the Institut Curie 
 

Introduction 
 

Many sarcomas are characterized by chromosomal translocations7,8 which give rise to fusion genes with 

driving oncogenic properties such as EWSR1-FLI1 in Ewing sarcoma9,16,17. 

Diagnosis of these translocation-associated sarcomas is usually based on the detection of the characteristic 

gene fusion by Fluorescence In Situ Hybridization (FISH) or Reverse Transcriptase Polymerase Chain 

Reaction (RT-PCR). However, these diagnostic assays are supervised and call for a diagnostic hypothesis to 

be proposed by the clinician and pathologist. While this approach may be adapted for easy-to-diagnose 

cases, it can be complicated by the fact that 1) numerous types of sarcoma exhibit similar clinical and 

pathological characteristics, such as the groups of small round cell sarcomas18 or Ewing sarcoma and Ewing-

like tumors19–21; 2) some sarcomas may harbor previously uncharacterized molecular alterations such as 

novel chromosomal translocations. In these cases, FISH or RT-PCR is not appropriate to screen for all 

potential diagnoses, due to practical (scarcity of tumor tissue) and financial issues of performing multiple 

assays. It is also intrinsically unable to detect novel gene fusions. 

In contrast, RNA sequencing (RNA-seq)22 is a more recent assay, based on next-generation sequencing (NGS) 

of RNA, that can overcome these limits of FISH and RT-PCR for sarcoma diagnosis. Indeed, RNA-seq 1) is 

unsupervised and able to identify any known fusion gene giving rise to an expressed fusion transcript; 2) 

can moreover detect and characterize novel molecular alterations such as gene fusions.  

Notwithstanding these advantages of RNA-seq as compared to FISH and RT-PCR, these last techniques are 

still considered the standard assays for diagnosis of sarcoma, mainly due to practical reasons: RNA-seq 1) 

is not available for all clinical laboratories; 2) requires frozen tissue (formalin-fixed and paraffin-embedded, 

FFPE tissue may be used but extracted RNA is of lower quality23); 3) is costly if compared to a single FISH or 

RT-PCR assay; 4) requires specific expertise, notably bioinformatics. 

 

Clinical use of RNA-seq at the Institut Curie 
 

However, some clinical reference centers do have the capacity to implement RNA-seq for diagnostic 

purposes: this is the case at the Institut Curie in Paris, which possesses in-house sequencing equipment and 

significant technical and bioinformatics expertise of RNA-seq. Starting from 2015 onwards, the Unité de 

Génétique Somatique (UGS) of Institut Curie, directed by Olivier Delattre and Gaëlle Pierron, has thus been 

a pioneer of using RNA-seq as a diagnostic procedure for patients presenting with a clinico-pathological 

suspicion of sarcoma, especially for children and young adolescents, from all over France. RNA-seq is 

particularly relevant for cases where clinico-pathological characteristics do not hint at a specific diagnosis 

straightforwardly, leaving the clinician and pathologist with a large array of differential diagnoses to 

consider. In these cases, performing multiple FISH or RT-PCR analyses would require a large amount of 

tissue material, which is not possible notably for pediatric patients, and even financially the cost would 

rapidly overcome that of a single RNA-seq analysis.  

This use of RNA-seq as a diagnostic tool for sarcomas is unprecedented in the world: in addition to delivering 

cutting-edge diagnostic performance for clinical management of patients, including for all difficult cases 

from all over France, it has allowed the constitution of a large and unprecedented database of RNA-seq of 

patients with sarcomas, and the discovery of previously uncharacterized types of sarcoma associated to 

novel gene fusions24,25. Up to now, more than 2000 patients have been profiled in the UGS by RNA-seq for 
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diagnostic suspicion of sarcoma. In about 60% of cases, RNA-seq has confirmed the main diagnostic 

hypothesis of the clinician and pathologist, either by detecting the presence of the characteristic fusion 

gene (40%) or the absence of markers for differential diagnoses (20%). In another 20% of cases, some 

unexpected positive markers were detected and allowed a diagnosis not suspected by the clinician and 

pathologist. Finally in about 10% of cases, no diagnosis could be clearly confirmed but there were 

indications to explore further the case and clues to the potential diagnoses were delivered by RNA-seq. 

These real-world results showcase the feasibility of using RNA-seq in the diagnostic workflow of patients 

presenting with clinical suspicion of sarcoma, and its added value in helping to diagnose difficult cases for 

which usual testing would have been either unpractical (too many FISH or RT-PCR analyses needed to test 

all gene fusions suspected) or impossible (novel gene fusions). 

 

Transcriptomic database of the Institut Curie 
 

Independently of this clinical use of RNA-seq, which in practice is heavily biased towards detection of gene 

fusions associated to specific types of sarcomas, the database constituted by this sequencing effort 

represents a unique treasure trove for sarcoma research, as it contains genome-wide expression profiles of 

hundreds of patients diagnosed with a large array of types of sarcomas, including extremely rare ones. 

Institut Curie is a reference center for sarcomas in France, especially for sarcomas of children and young 

adolescents. The age of patients profiled in the UGS by RNA-seq is thus biased towards the lower age 

spectrum: 66% were less than 25 years old at sampling time (Figure 1). 

 

 

Figure 1: Age distribution of patients profiled by RNA-seq in the UGS. 
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Similarly, the distribution of final diagnoses (Figure 2) - after consideration of all evidence including RNA-

seq - reflects a higher burden of sarcomas more prevalent in children and young adolescents, as well as 

diseases characterized by small round cells in pathology, for which the differential diagnosis is broad (Ewing 

sarcoma and Ewing-like tumors, desmoplastic small round cell tumor, neuroblastoma, lymphoma, and 

others) and RNA-seq particularly valuable. 

 

 

Figure 2: Diagnoses in the RNA-seq database of the UGS. 

 

Notably, Ewing sarcoma is the most frequent type of sarcoma in the database, followed by other relatively 

frequent types such as alveolar and embryonal rhabdomyosarcoma, as well as osteosarcoma, and Ewing-

like sarcomas (CIC-fused, BCOR-rearranged). Due to the prospective inclusion of patients with diagnostic 

suspicion of sarcoma for RNA-seq profiling, some final diagnoses are not sarcomas: after RNA-seq, some 

patients may be reclassified into differential diagnoses such as neuroblastoma (one of the most frequent 

non-sarcoma pediatric cancers in the database) and lymphoma. Additionally, there are a large number of 

pediatric brain tumors in the database, since Institut Curie is also a reference center for this type of cancers. 

Finally, the largest diagnostic category remains “Unclassified sarcoma”, showing the difficulty of making a 

diagnosis for a significant number of patients, even with the use of RNA-seq. This could be due to many 

reasons: either technical (tissue sample of low quality or low tumor cellularity, precluding a meaningful 

RNA-seq analysis) or biological (non-translocation-associated sarcoma without a specific expression profile, 

non-sarcoma cancer without identifiable characteristics in RNA-seq, or potentially novel uncharacterized 

type of sarcoma). Overall, there are more than 150 different diagnostic entities in the database, but most 

of them are extremely rare sarcoma types that are represented by less than five samples each. 

The characterization of “unclassified sarcomas” by RNA-seq was precisely the object of some landmark 

studies realized in the team of Olivier Delattre with the use of this UGS database24,25. These showcased the 

ability of RNA-seq to single out specific groups of unclassified sarcomas and to discover novel gene fusions 

characterizing these, leading for instance to the identification of novel entities such as BCOR-rearranged 

sarcomas24, and epithelioid and spindle-cell rhabdomyosarcomas characterized by EWSR1– or FUS–TFCP2 

fusions25.  



21 
 

This RNA-seq database was the starting point and main resource for many of my following projects, 

including the characterization of the immune microenvironment of sarcomas, their transcriptomic 

landscape and diagnosis prediction with machine learning, as well as the identification of novel transcripts 

in multiple translocation-related sarcomas. 
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Characterization of the immune microenvironment of 

sarcomas 
 

Introduction 
 

Immunotherapy has revolutionized care of many cancers in the last decade, however only a subset of 

patients usually responds to these treatments. There is thus a high need to determine the factors that 

determine response to immunotherapy26. One obvious requirement though is the ability of cells of the 

immune system to have access to the tumor in the first place. This has prompted a focus on the study of 

the tumor immune microenvironment of cancers27 in order to determine the presence and quantity of 

specific cell populations that could influence and predict response to immunotherapy28. While definitive 

biomarkers have not yet been identified and these correlates of response vary according to cancer type, 

presence and high abundance of some cell types such as CD8+ T lymphocytes29, B cells30–32 and M1 

macrophages33, have notably been associated to response to immunotherapy in some cancers. 

In the UGS, RNA-seq is performed on bulk tumor tissue samples and thus contains RNA not only from tumor 

cells, but also potentially from neighboring cells of the tumor microenvironment such as cells of the immune 

system, endothelial cells and fibroblasts. While it is not possible to assign each sequenced transcript to its 

parent cell among the millions that constitute the sample, a large number of bioinformatics methods have 

been developed to infer the characteristics of the tumor microenvironment from bulk RNA-seq. These 

methods notably estimate the presence and relative quantity of specific microenvironment cell populations, 

such as CIBERSORT34 (and its more recent counterpart CIBERSORTx35 which takes advantage of single-cell 

RNA-seq reference profiles), xCell36, and MCP-counter37. This last method is one of the most popular in the 

literature and offers several advantages: 1) its underlying algorithm is simple to understand and interpret 

(it is based on the quantification of transcriptomic marker genes for specific microenvironment populations); 

2) it has been properly validated in multiple settings, including in controlled in vitro cell mixture experiments 

and ex vivo immunohistochemistry, and in showing survival relevance in patients with some cancer types 

such as lung adenocarcinoma, colorectal and breast carcinomas; 3) it can be used to compare abundance 

of microenvironment populations between samples, as opposed to CIBERSORT (though this last method is 

more suited to compare quantity of different microenvironment populations within the same sample38). 

 

Cell composition of the sarcoma tumor microenvironment (MCP-counter) 
 

MCP-counter has notably been used in a recent landmark study of the immune microenvironment in soft-

tissue sarcomas30. This work clearly demonstrated the heterogeneity of the immune microenvironment 

within sarcoma types present in the TCGA39, with five groups of patients including one associated with 

higher immune infiltration by B lymphocyes and tertiary lymphoid structures, showing improved survival 

and higher response rate to PD1 blockade immunotherapy. 

However, this study was done exclusively in sarcoma types present in the TCGA, which is rather limited in 

number of diagnoses (mainly adult sarcomas: dedifferentiated liposarcomas, undifferentiated pleomorphic 

sarcomas, leiomyosarcomas) and for instance does not include any pediatric sarcomas. This prompted me 

to apply MCP-counter to our dataset of RNA-seq of sarcomas from the UGS.  

To this end, I selected the samples from the UGS RNA-seq database fulfilling the following criteria: 1) final 

diagnosis of sarcoma, as validated by expert reviewing of all evidence including RNA-seq by a practicing 

sarcoma medical oncologist (Dr Sarah Watson from Institut Curie), to avoid mislabeling of samples; 2) 
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diagnostic category comprising at least four samples, to avoid diagnoses with too few samples. I also 

included some biologically sarcoma-related diagnoses such as translocation-associated carcinomas (midline 

carcinoma and TFE3-renal cell carcinoma) and non-malignant mesenchymal tumors (desmoid tumor and 

myoepithelioma). This amounted to 666 samples distributed into 34 different diagnoses (Table 1). 

 

Table 1: Selected diagnoses for study 

Diagnosis Abbreviation 

Number of 

samples 

Alveolar rhabdomyosarcoma aRMS 36 

Alveolar soft part sarcoma ASPS 10 

Angiomatoid fibrous histiocytoma AFH 7 

Atypical teratoid rhabdoid tumor ATRT 8 

BCOR-rearranged sarcoma BCOR 26 

CIC-fused sarcoma CIC 31 

Clear cell sarcoma CCS 6 

Congenital fibrosarcoma CFS 19 

Desmoid tumor Desmoid 39 

Desmoplastic small round cell tumor DSRCT 20 

Embryonal rhabdomyosarcoma eRMS 89 

Ewing sarcoma EwS 132 

EWSR1-NFATC2 sarcoma NFATC2 10 

EWSR1-PATZ1 sarcoma PATZ1 4 

Extraskeletal myxoid chondrosarcoma emCS 15 

FET-TFCP2 epithelioid rhabdomyosarcoma FET-TFCP2 4 

Inflammatory myofibroblastic tumor IMFT 11 

Lipofibromatosis-like neural tumor LFLNT 4 

Liposarcoma_NOS LPS 8 

Low grade fibromyxoid sarcoma LGFMS 8 

Malignant peripheral nerve sheath tumor MPNST 11 

Malignant rhabdoid tumor MRT 5 

Mesenchymal chondrosarcoma MCS 9 

Midline carcinoma Midline 4 

Myoepithelioma MYOEP 6 

Myxoid liposarcoma mLPS 29 

NTRK-fused sarcoma NTRK 5 

Osteosarcoma Osteo 42 

Small cell carcinoma of the ovary-hypercalcemic type SCCOHT 6 

Solitary fibrous tumor SFT 16 

Synovial sarcoma SS 25 

TFE3 renal cell carcinoma TFE3 9 

Undifferentiated pleomorphic sarcoma UPS 8 

VGLL2-fused rhabdomyosarcoma VGLL2 4 

 

Method: RNA-seq reads were adapter-trimmed with Atropos (v1.1.21), aligned to the human reference 

genome (hg19) with GENCODE version 19 as the reference gene annotation with the use of STAR (v2.7.0e)40 

and quantified with the GeneCounts algorithm. Raw counts were normalized to transcripts per million (TPM) 
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and log2-transformed with pseudocount 1. MCPcounter (v1.1.0)37 was used to calculate scores for ten 

immune and stromal cell populations with the option “HUGO_symbols”. 

 

 

Figure 3: MCP-counter scores for all samples in Table 1. Hierarchical clustering by samples (columns) using R 
package pheatmap (v1.0.12). 

 

Figure 3 shows a heatmap of MCP-counter scores of ten immune and stromal cell populations for all 666 

samples studied, with hierarchical clustering of samples independently of diagnosis. Several observations 

can be made: 1) In contrast to the TCGA adult sarcoma cohort30, there is no clear-cut separation of samples 

between immune-low and immune-high categories, especially concerning B and T lymphocytes. Except for 

some outliers, the MCP-counter scores of B and T lymphocytes as well as NK cells are globally low 

throughout the UGS cohort. 2) Cells such as monocytes and endothelial cells exhibit moderately higher 

scores but also show a global homogeneity overall. 3) The most striking separation concerns fibroblasts, for 

which a large part of samples have very large scores, while a minority (left of heatmap) display lower scores. 

These observations are consistent with what is already known of pediatric sarcomas: they are generally 

poorly infiltrated by immune cells especially from the adaptive immune system, probably due to factors 

such as low tumor mutational burden that render most pediatric tumors poorly immunogenic14,15. The 

intense fibroblastic signature is confounded by the mesenchymal origin of sarcomas, which intrinsically 

overexpress genes that are supposed to be fibroblast gene markers (such as collagen genes). This fibroblast-

rich signal should therefore not be simply interpreted as an enrichment in cancer-associated fibroblasts in 

sarcomas. Conversely the minority of samples with lower fibroblast scores are the non-sarcoma cancers of 

the cohort; this lower score may also only reflect their non-mesenchymal origin as compared to sarcomas. 

To further explore these results by diagnosis and facilitate visualization, I plotted a heatmap of MCP-counter 

median scores by diagnosis, scaled by row (cell population) in Figure 4. 
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Figure 4: MCP-counter median scores by diagnosis, scaled by row (cell population). Hierarchical clustering by 
diagnoses (columns) using R package pheatmap (v1.0.12). Abbreviations are as in Table 1. 

  

Once again, the overall picture is homogeneous: scaled scores tend to remain between -1 and 1 for all 

populations. Some outliers stand out nevertheless: NTRK-fused sarcoma (NTRK) has a relatively higher score 

for all immune cell populations, including cells from the adaptive immune system such as T and B 

lymphocytes; EWSR1-NFATC2 sarcoma (NFATC2) has a higher myeloid dendritic cell score. Desmoid tumors 

have the highest fibroblast score, which is consistent with its mesenchymal origin and its highly fibrous 

(desmoplastic) tissue component. Overall, the heatmap is quite homogeneous, though one could point out 

a subtle tendency of all cell population scores to be higher on the right part of the heatmap, as though there 

was a continuous gradient of increasingly higher scores from left to right: the most infiltrated diagnoses (on 

the rightmost part) are inflammatory myofibroblastic tumor (IMFT), congenital fibrosarcoma (CFS), 

angiomatoid fibrous histiocytoma (AFH). This makes sense especially for IMFT which is as its name implies 

an inflammatory tumor infiltrated by immune cells. 

Relative homogeneity in median scores by diagnosis does not implicate absence of heterogeneity between 

tumors of the same diagnosis: to further explore intertumoral heterogeneity within the same diagnosis, I 

plotted heatmaps of individual sample MCP-counter scores for each diagnosis separately. Though most of 

the diagnoses also display homogeneity between individual samples (most of the thirty-four heatmaps are 

therefore not displayed in this document), some do exhibit a degree of intertumoral heterogeneity with 

regards to the microenvironment. 
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Figure 5: MCP-counter scores for Ewing sarcoma (EwS). Hierarchical clustering by diagnoses (columns) using R 
package pheatmap (v1.0.12). 

  

For instance, Ewing sarcoma (EwS) has a microenvironment landscape which is globally homogeneous with 

low scores for most immune cell populations, however a few samples display significantly higher scores of 

immune cells, especially T cells and neutrophils (Figure 5). Unfortunately, the UGS database does not 

contain other characteristics than diagnosis, such as survival data, therefore it is not possible to correlate 

this interesting subset of EwS samples with clinical variables. 



27 
 

 

Figure 6: MCP-counter scores for osteosarcoma (Osteo). Hierarchical clustering by diagnoses (columns) using R 
package pheatmap (v1.0.12). 

 

Osteosarcoma (Osteo) also displays globally low scores of immune cell populations, however there is a 

subset of samples (left of heatmap) that exhibits relatively higher scores of T lymphocytes (Figure 6). 
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Figure 7: MCP-counter scores for undifferentiated pleomorphic sarcoma (UPS). Hierarchical clustering by 
diagnoses (columns) using R package pheatmap (v1.0.12). 

 

Undifferentiated pleomorphic sarcoma (UPS) is one of the subtypes present in the TCGA study and it is 

interesting to see the heatmap for this diagnosis in our UGS cohort (Figure 7). Petitprez et al.30 clearly 

demonstrated the existence of a highly infiltrated subgroup of UPS using MCP-counter and validated by 

other approaches: in our cohort there is one sample (left of heatmap) that displays higher scores of immune 

cell populations, which could be related to the observation of an infiltrated subgroup from the Petitprez 

study, though our sample numbers (n=8) preclude us from making definitive conclusions about the 

presence of an immune-rich group here. This low amount of samples is due to the difference between our 

cohort which is predominantly composed of pediatric sarcomas (UPS is an adult sarcoma), as opposed to 

the TCGA. 

To conclude on this part, using MCP-counter on our UGS cohort has enabled us to get a complementary 

view of the sarcoma immune landscape in addition to the previous study on TCGA sarcomas30. Contrary to 

adult sarcomas in the TCGA which exhibit a subgroup of highly infiltrated tumors, the overall landscape of 

pediatric sarcomas is one of globally low infiltration by immune cells, especially from the adaptive immune 

system (B and T lymphocytes), though some outliers do stand out such as NTRK-fused sarcomas, 

inflammatory myofibroblastic tumors, and some Ewing sarcomas. This is consistent with the observation 

that pediatric tumors are overall poorly immunogenic, potentially because of their low tumor mutational 

burden and consequently low neoantigen generation potential14,15. While this also seems to corroborate 

the low response rates of sarcomas to immunotherapy compared to other cancers12, this does not preclude 

the possibility of effective immunotherapy, especially for cases and sarcoma types with higher infiltration 

by cells of the immune system that probably deserve more exploration of the potential of immunotherapy.    

 

Characterization of the infiltrating lymphocyte repertoires (MiXCR) 
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Methods such as MCP-counter infer global population abundances of immune and stromal cells in the 

tumor microenvironment from bulk RNA-seq, but they give no insight into the heterogeneity within these 

cell populations. This heterogeneity would however be especially interesting to study for cells of the 

adaptive immune system, which display responses to specific antigens and exhibit complex dynamics of cell 

proliferation and immune repertoire formation upon recognition of antigens41. Specifically, a high 

infiltration of T or B lymphocytes could be due to: 1) a polyclonal response to tumor antigens; 2) one or a 

few monoclonal expansions of T or B lymphocytes with a specific T-cell receptor (TCR) or B-cell receptor 

(BCR) recognizing one cognate tumor antigen. Knowing this information would surely be of relevance to the 

understanding of immune recognition of tumors by immune cells and the design of immunotherapies. 

The so-called “repertoire” of T and B cells is the result of somatic recombination of V(D)J segments and 

accumulation of mutations in TCR and BCR: it is not encoded in the germline and cannot be recovered by 

standard alignment to the reference genome. State-of-the-art methods for characterizing this immune 

“repertoire” of T and B cells are based on specific next-generation sequencing of TCR and BCR in single-cell 

assays42,43. However, these methods are costly and are challenging to scale to large numbers of samples 

such as in the TCGA or UGS cohorts. Nonetheless, there are some methods that attempt to probe the 

immune repertoires of T and B cells from tumor bulk RNA-seq, such as MiXCR44. This method is based on 

the same principle of sequencing TCR and BCR as state-of-the-art methods, though its starting material is 

much less abundant since the TCR and BCR sequences are contained within a much higher number of non-

TCR/BCR sequences. The objective of this tool is therefore to extract all sequences mapping to a TCR or BCR 

from all RNA-seq reads, and infer the specific clonotypes (i.e. one series/”clone” of T or B cells exhibiting 
the same TCR/BCR) present in the sample. For this, it uses specialized alignment and assembly techniques 

to recover the specific sequences of each clonotype. The output of this method for each sample is therefore 

composed of: 1) number of different clonotypes (measure of “clonality”); 2) CDR3 sequence of each 

clonotype; 3) number of cells per clonotype (measure of “expansion” of each clonotype). Moreover, this 

information is extracted for 1) B cells: IGH (immunoglobulin heavy chain), IGL/IGK (immunoglobulin light 

chains kappa/lambda); and 2) T cells: TRA (TCR alpha chain), TRB (TCR beta chain), TRG (TCR gamma chain) 

and TRD (TCR delta chain). I performed MiXCR on the same 666 samples used for the MCP-counter analysis 

(Table 1).   

Method: RNA-seq reads were adapter-trimmed with Atropos (v1.1.21) and MiXCR (v3.0.5)44 was used to 

extract clonotype information with options “—starting material rna – only-productive”. Output tables from 

MiXCR were parsed to extract the following information for each sample: number of different clonotypes, 

maximum clonality (number of sequences for same clonotype), total number of sequences. To account for 

sequencing depth, these numbers were normalized to “per million RNA-seq reads”, i.e. divided by total 
number of RNA-seq reads in the sample and multiplied by one million. 
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Figure 8: MiXCR number of clonotypes per sample. Values are normalized by million reads and log10-
transformed with pseudocount 1. Hierarchical clustering by samples (columns) using R package pheatmap 
(v1.0.12). 

 

Figure 8 shows the normalized number of different clonotypes per sample retrieved by MiXCR for all 666 

samples. Several observations can be made: 1) B clonotypes (IGH, IGH, IGL) tend to be more numerous than 

T clonotypes (TRA, TRB, TRG, TRD) in a given sample. This can be due to differential levels of infiltration but 

also to the process of somatic hypermutation, generating higher diversity specifically in B cells.  2) Overall, 

the number of different clonotypes is low across most samples (less than 10 for either BCR or TCR). 3) There 

is a minority of samples (right of heatmap) that displays higher number of clonotypes notably for B cells, 

and numbers of B and T clonotypes tend to be correlated. 

To explore further these results by diagnosis and facilitate visualization, I plotted a heatmap of the median 

normalized number of different clonotypes by diagnosis in Figure 9. 
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Figure 9: MiXCR median number of clonotypes per diagnosis. Values are normalized by million reads and log10-
transformed with pseudocount 1. Hierarchical clustering by diagnoses (columns) using R package pheatmap 
(v1.0.12). 

   

The global picture is overall quite similar to the immune landscape depicted by MCP-counter: most 

diagnoses have low numbers of clonotypes, only a few have relatively higher values. It is interesting to note 

that diagnoses with higher numbers of clonotypes are generally those that have higher MCP-counter scores: 

for instance inflammatory myofibroblastic tumors (IMFT), NTRK-fused sarcomas (NTRK), angiomatoid 

fibrous histiocytoma (AFH). NTRK-fused sarcomas notably seem to have the highest number of T cell 

clonotypes. 

The number of different clonotypes measures the diversity of the B and T cell infiltrate in tumors: it informs 

about the polyclonal or oligoclonal nature of the immune response. Another measure of the immune 

infiltrate is its global abundance, that can be estimated by the total number of BCR/TCR sequences retrieved 

by MiXCR, independently of their clonality. I therefore plotted a heatmap of the median total normalized 

number of sequences by diagnosis in Figure 10. 
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Figure 10: MiXCR median number of total BCR/TCR sequences per diagnosis. Values are normalized by million 
reads and log10-transformed with pseudocount 1. Hierarchical clustering by diagnoses (columns) using R 
package pheatmap (v1.0.12). 

 

This heatmap is overall very similar to Figure 9, perhaps unsurprisingly considering that the total number 

of sequences is the product of the number of different clonotypes and the (average) number of sequences 

per clonotype. This last factor is a measure of the expansion of clonotypes, i.e. the extent to which one 

specific clonotype is amplified due to antigenic positive selection. This can be approximately appreciated 

by plotting the median maximal clonality per diagnosis (Figure 11). 
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Figure 11: MiXCR median maximal clonality per diagnosis. Values are normalized by million reads and log10-
transformed with pseudocount 1. Hierarchical clustering by diagnoses (columns) using R package pheatmap 
(v1.0.12). 

  

Interestingly, this heatmap looks also quite similar to Figure 9, meaning that diagnoses with higher numbers 

of clonotypes generally harbor more expanded clonotypes, which is also consistent with them having 

overall higher numbers of total TCR/BCR sequences (Figure 10). Though repertoire diversity and clonal 

expansion are not necessarily correlated (there could be a polyclonal infiltrate with no highly expanded 

clone, or inversely a high oligoclonal or monoclonal expansion), it seems that they generally are in sarcomas. 

One explanation could be that most sarcomas are poorly infiltrated, as shown by MCP-counter and MiXCR, 

and this accounts for both low diversity of repertoire and low clonal expansion; while in contrast the few 

diagnoses that have higher immune infiltration, exhibit statistically both higher diversity and higher clonal 

expansion than other sarcomas, even if this diversity or clonal expansion is generally quite moderate in 

comparison to other cancers. 

To further explore intertumoral heterogeneity within the same diagnosis, I plotted heatmaps of MiXCR 

measures by individual sample for each diagnosis separately. As for the previous analyses, patterns of total 

number of BCR/TCR sequences and maximal clonality were quite similar to number of different clonotypes 

(all heatmaps not shown in this document), I will therefore only focus here on this last measure of repertoire 

diversity. While most diagnoses display relative homogeneity within all individual samples (most of the 34 

heatmaps are therefore not displayed in this document), some subtypes of sarcoma exhibit a degree of 

intertumoral heterogeneity in terms of clonotype number, as detailed below. 
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Figure 12: MiXCR number of clonotypes per sample in alveolar rhabdomyosarcoma (aRMS). Values are 
normalized by million reads and log10-transformed with pseudocount 1. Hierarchical clustering by samples 
(columns) using R package pheatmap (v1.0.12). 

 

For instance, alveolar rhabdomyosarcoma (aRMS) is generally lowly infiltrated by B and T cells, however 

some samples (left and right of heatmap) display rich repertoires especially of B cells (Figure 12). This is also 

the case for other lowly infiltrated sarcomas such as embryonal rhabdomyosarcoma (Figure 13) and 

synovial sarcoma (Figure 14). 
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Figure 13: MiXCR number of clonotypes per sample in embryonal rhabdomyosarcoma (eRMS). Values are 
normalized by million reads and log10-transformed with pseudocount 1. Hierarchical clustering by samples 
(columns) using R package pheatmap (v1.0.12). 
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Figure 14: MiXCR number of clonotypes per sample in synovial sarcoma (SS). Values are normalized by million 
reads and log10-transformed with pseudocount 1. Hierarchical clustering by samples (columns) using R package 
pheatmap (v1.0.12). 

 

There is generally good agreement between observations made by MiXCR and MCP-counter, as 

demonstrated for the heatmaps of Ewing sarcoma (Figure 15), osteosarcoma (Figure 16), and UPS (Figure 

17). 
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Figure 15: MiXCR number of clonotypes per sample in Ewing sarcoma (EwS). Values are normalized by million 
reads and log10-transformed with pseudocount 1. Hierarchical clustering by samples (columns) using R package 
pheatmap (v1.0.12). 
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Figure 16: MiXCR number of clonotypes per sample in osteosarcoma (Osteo). Values are normalized by million 
reads and log10-transformed with pseudocount 1. Hierarchical clustering by samples (columns) using R package 
pheatmap (v1.0.12). 
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Figure 17: MiXCR number of clonotypes per sample in undifferentiated pleomorphic sarcoma (UPS). Values are 
normalized by million reads and log10-transformed with pseudocount 1. Hierarchical clustering by samples 
(columns) using R package pheatmap (v1.0.12). 

 

In conclusion of this analysis by MiXCR of the UGS cohort, the global picture of the immune landscape that 

emerges is consistent with that already drawn by MCP-counter: pediatric sarcomas are generally lowly 

infiltrated by immune cells notably T and B lymphocytes, and they do not show high repertoire diversity or 

clonal expansion, except for a few diagnoses that are those already highlighted by MCP-counter, e.g. NTRK-

fused sarcomas, inflammatory myofibroblastic tumors, angiomatoid fibrous histiocytomas. There exists 

however some degree of heterogeneity within some poorly infiltrated subtypes of sarcoma such as Ewing 

sarcoma, rhabdomyosarcomas and osteosarcoma, with a few samples showing higher lymphocyte 

infiltration, repertoire diversity and clonal expansion.  

 

Discussion 
 

We unfortunately do not have access to more information in individual samples to correlate these measures 

of immune infiltration to clinical variables such as treatment response and survival. It would be very 

interesting indeed to evaluate whether patients with higher infiltration by T or B cells, higher repertoire 

diversity or clonal expansion, are more responsive to treatments such as immunotherapies or show 

improved survival independently of administered therapy. In contrast to adult sarcomas studied in the 

TCGA and Petitprez et al. for which PD1-blockade immunotherapy has already been widely tested12, 

pediatric sarcomas are still in need of further exploration concerning the potential efficacy of these 

immunotherapies. The relatively low number of immunotherapy trials has in part been due to the 
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widespread notion that pediatric sarcomas are poorly immunogenic as already discussed, and lowly 

infiltrated by lymphocytes as confirmed here in most samples. However, our observations that a subset of 

diagnoses and samples within otherwise poorly infiltrated subtypes of sarcoma can display higher values of 

immune infiltration do seem to warrant a more thorough exploration of the potential benefit of 

immunotherapies for these patients. 
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Characterization of the transcriptomic landscape of sarcomas 
 

Introduction 
 

Tumor bulk RNA-seq delivers insight into the tumor microenvironment as shown previously, but it also 

naturally allows genome-wide characterization of the “average” transcriptomic profile of tumor cells 

present in the sample. As discussed previously, our UGS cohort is unique in the sense that it is an 

unprecedented collection of RNA-seq of mostly rare diagnoses such as pediatric sarcomas. While the main 

subtypes of adult soft-tissue sarcoma have already been profiled by several high-throughput sequencing 

assays including RNA-seq, notably by the TCGA39, there is to my knowledge no similar study yet involving 

RNA-seq of pediatric sarcomas. 

One main theme in oncology which is particularly complex in sarcoma is the classification of disease: there 

are many subtypes of sarcoma as already discussed4,45, diagnosis of which is based on multiple types of 

criteria (clinical, radiological, pathological, molecular). High-throughput molecular assays have in recent 

years been used to refine the classification of several cancers, as it allows finer characterization of the 

heterogeneity of some types of cancers that otherwise exhibit similar clinical or pathological 

characteristics46. By applying this strategy to sarcomas, one could hypothesize for instance that a molecular 

assay such as RNA-seq could 1) enable the delineation of a type of sarcoma into different molecular 

subtypes, or 2) demonstrate unexpected molecular similarity between different diseases. Indeed, there are 

already some examples of these occurring in the field of sarcomas. For the first case, a well-known example 

is the distinction of rhabdomyosarcomas between alveolar (characterized by a PAX-FOXO gene fusion) and 

embryonal (PAX-FOXO negative) rhabdomyosarcoma, or more recently the identification of many Ewing-

like tumors with different translocations than Ewing sarcoma20,21. For the second case, one could mention 

the interesting observation that clear cell sarcoma and angiomatoid fibrous histiocytoma, two different 

subtypes of sarcoma as characterized by pathologists, nonetheless harbor the same characteristic 

molecular alteration (a EWSR1-CREB1/ATF1 gene fusion). 

Another related question that could be addressed by a molecular high-throughput assay such as RNA-seq 

is the diagnosis of an individual patient: given a tumor bulk expression profile, what is the correct diagnosis? 

This is closely related indeed to the previous issue of classification of sarcomas, as the diagnosis could itself 

be potentially improved with a refined molecular picture of the classification of sarcomas. 

Unsurprisingly, these questions have already been widely addressed in oncology, notably by a series of 

landmark studies using DNA methylation arrays to characterize the molecular classification of some types 

of cancer including sarcomas, and to help in the diagnosis of individual patients. For this, techniques of 

machine learning (often popularly referred as “artificial intelligence”) have been of paramount importance. 

One high-profile study used DNA methylation arrays to classify brain tumors47 and a random forest machine 

learning algorithm to predict the diagnosis of new patients. A recent work from the same team in 

Heidelberg used the same technique for sarcomas48. These studies demonstrated capability of molecular 

assays to define a refined classification of cancers and of machine learning for automatic prediction of 

diagnosis based on these assays. The advantages of using DNA methylation for these studies were both 1) 

technical: standardized arrays are available and relatively easy to perform; and 2) biological: DNA 

methylation is generally well conserved in tumor cells as compared to the cell-of-origin, allowing a 

biologically relevant classification mirrored by the different cells-of-origin of different types of cancer49,50. 

However, the results of DNA methylation arrays are difficult to interpret in terms of functionality: the 

classification in these studies depends on methylation “probes” that have no straightforward biological 

meaning. This does not help interpretability of the classification and diagnosis prediction; it also reinforces 

the “black-box” nature of the machine learning algorithm. 
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In contrast, RNA-seq is more suited for interpretability, as it measures expression levels of mostly well-

characterized genes that can also be organized into biologically relevant functional sets and pathways. It 

also delivers a high amount of information that is comparable in number of dimensions to DNA methylation 

arrays, and its result could therefore be another molecular assay to be used for the classification and 

diagnosis prediction problems. Biologically, while the transcriptomic profile may generally be less related 

to the cell-of-origin than DNA methylation, it nonetheless reflects the various oncogenic processes at play 

in the tumor cells and can thus potentially be used to finely characterize different subtypes of cancer51.   

 

Transcriptomic landscape of the Institut Curie dataset 
 

As discussed previously, RNA-seq was already in use at the Institut Curie to help in the diagnosis of pediatric 

sarcomas since 2015, and while the most important information from this assay for diagnosis was the 

presence of characteristic fusion transcripts, the genome-wide expression profile was also being used as a 

tentative tool to help in the diagnosis of individual patients. Specifically, a simple procedure of hierarchical 

clustering based on the transcriptomic profile was performed and the diagnosis of individual patients could 

be estimated by observing their position within the clustering. 

To go further in this direction of transcriptomic characterization of sarcomas, I started by visualizing in two 

dimensions the overall picture of the sarcoma transcriptomic landscape in our UGS cohort. For this, I once 

again used the 666 samples described in Table 1. To enable visualization of high-dimensional data, there 

are several techniques of dimensionality reduction that attempt to encode the maximum amount of the 

original high-dimensional information into a space of reduced number of dimensions. One well-known and 

often used dimensional reduction technique is principal component analysis (PCA), a linear technique that 

attempts to find in the data the most representative principal components, i.e. linear combinations of all 

original features52. On the other hand, other techniques can make use of non-linear relationships in 

between the features to better capture the overall structure of the data, especially when transforming it 

into spaces easily visualizable by humans, e.g. in two dimensions. Indeed, PCA is not as suited for this 

visualization task since it often needs many more than two PCs to capture a sizable fraction of the total 

variance present in a dataset. Powerful non-linear dimensional reduction techniques for visualization, 

especially popular in single-cell analysis in biology, are t-distributed stochastic neighbor embedding (t-

SNE)53 and Uniform Manifold Approximation and Projection (UMAP)54. Both methods are well suited to 

represent in lower dimensional embeddings the original local neighborhoods of individual points, but UMAP 

seems to be better at conserving global distances found in the original space55. Here, I used UMAP reduction 

of the original high-dimensional transcriptomic space into two dimensions to visualize it. Note that in all 

following analyses, I first reduced the original space (> 50 000 dimensions, i.e. all GENCODE v19 entries in 

the RNA-seq count matrix) to the 5000 most variable features in order to facilitate computation and discard 

non-variable features that may only reflect technical noise. 

Method: RNA-seq reads were adapter-trimmed with Atropos (v1.1.21), aligned to the human reference 

genome (hg19) with GENCODE version 19 as the reference gene annotation with the use of STAR (v2.7.0e)40 

and quantified with the GeneCounts algorithm. Raw counts were normalized to transcripts per million (TPM) 

and log-transformed with pseudocount 1. The 5000 most variable features after a variance-stabilizing 

transform were selected with the package Seurat (v3.1.4) using FindVariableFeatures (option “vst”) and 

values were scaled using ScaleData. RunUMAP was then used to calculate the UMAP coordinates for all 

samples and plotted using DimPlot. 
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Figure 18: UMAP of sarcomas using 5000 most variable features. 

  

The resulting UMAP (Figure 18) on all variable features already delivers several insights: 1) Most diagnoses 

can be readily identified in one specific location of the UMAP, though many have overlapping samples with 

other diagnoses, especially in the middle-left concentration of samples. 2) Some sarcoma subtypes are 

clearly separated from others, such as Ewing sarcoma (EwS), CIC-fused sarcoma (CIC), and to a lesser degree 

BCOR-rearranged sarcomas (BCOR) and alveolar rhabdomyosarcomas (aRMS). These are all translocation-

related sarcomas characterized by a specific fusion gene and reflect the specific transcriptomic profiles of 

these subtypes induced by the oncogenic chimeric transcription factor deriving from the chromosome 

translocation. Other diagnoses tend to cluster together in the middle-left of the UMAP, though some are 

more distinct at the periphery, notably other translocation-related sarcomas such as desmoplastic small 

round cell tumors (DSRCT) and myxoid liposarcomas (mLPS). 

This first UMAP is insightful but has some limits: it is calculated from 5000 features and therefore does not 

give an easy way of interpreting it, also it is not straightforward to use as a diagnostic tool as such. One way 

to enhance interpretability and facilitate diagnosis prediction would be to further reduce the space of 

features and “encode” the high-dimensional transcriptomic profile in a more human-interpretable format. 

A thought experiment helps to conceptualize the following ideal tool: a dimensional reduction technique 

that extracts from the original space of features, one unique “meta-feature” very specifically associated to 

each diagnosis, which would give in this space of ideal meta-features a very clear separation between all 

diagnoses, as well as a very straightforward way of classifying new samples just by calculating each of these 

discriminating meta-features. Moreover, this tool would potentially be interpretable if each meta-feature 

could be decomposed in its contributing genes or functional pathways. However, reality is more complex, 
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and it is not obvious that we can in any way clearly delimit specific diagnoses without any overlap between 

them. For instance, some diseases might be variants on a continuous spectrum of the same diagnostic entity 

and intrinsically non-separable in transcriptomic space. 

Nonetheless, I continued in this direction and tried to further meaningfully reduce dimensions of the 

dataset by using PCA, one of the most widely used, well-known and best performing linear dimensional 

reduction techniques for high-dimensional data. In this approach, I reduced the data to 50 dimensions 

(arbitrary “round” number, chosen to accommodate the number of diagnoses: 34) using the 50 first 

principal components, and once again used UMAP to visualize the resulting 50-dimensional transcriptomic 

space. 

Method: Same as for the previous UMAP, except for the following steps after the scaling of data: PCA was 

run on the 5000 most variable features using RunPCA (Seurat), and RunUMAP was then used to calculate 

the UMAP coordinates based on 50 PCs for all samples. 

 

 

Figure 19: UMAP of sarcomas using 50 principal components calculated by PCA. 

 

The resulting UMAP (Figure 19) has many similar characteristics with the previous one, however several 

diagnoses tend to be more clearly separated, especially DSRCT and notably EWSR1-NFATC2 sarcomas 

(NFATC2), which were not distinct in the previous UMAP. This shows that at least for some diagnoses, 

reducing the transcriptomic space with PCA is also likely to improve classification and diagnosis prediction. 
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The variational autoencoder (VAE) 
 

Considering these preliminary results, I could have chosen to use PCA to further explore classification, 

diagnosis prediction and interpretability for this dataset. However, I instead investigated other dimensional 

reduction techniques that were likely to be better-performing and potentially more biologically 

interpretable than PCA. Specifically, PCA is a linear dimensional reduction technique, but most biological 

phenomena are the result of complex, often non-linear relations between interacting biological factors56 

such as gene expression. I therefore chose to test a non-linear dimensional reduction technique on this 

dataset. Recently, methods of machine learning and deep learning have been used with success to extract 

meaningful non-linear features from high-dimensional datasets3. Specifically, a method from the field of 

deep learning called the variational autoencoder (VAE)57 has been used successfully for this purpose. As 

with many methods of deep learning, it has first been used for image data: for instance, the VAE is able to 

extract from pictures of faces some meaningful non-linear features such as gender, age, skin color, even 

smile and glasses-wearing. In contrast, linear techniques such as PCA are unable to extract this kind of 

meaningful information, since these extracted features are intrinsically non-linear in the space of original 

features (pixels).  

The VAE is based on an architecture of two neural networks: the “encoder” and “decoder” neural networks. 

To train these, the first objective of the VAE is to accurately “reconstruct” a high-dimensional dataset from 

a corresponding low-dimensional “encoded” representation. To achieve this optimally, the “encoder” 
network is trained to learn a low-dimensional representation, while the “decoder” network is concurrently 
trained to reconstruct in the most accurate way the original high-dimensional dataset from this low-

dimensional representation. At the end of training, the optimal neural networks have thus learnt a good 

low-dimensional “encoding” of the original high-dimensional dataset. Using these two neural networks it is 

then possible to “encode” new data into this optimal low-dimensional representation. In most cases, one 

is not necessarily interested in the best reconstruction of an original dataset (an exception being image 

compression), but rather in the low-dimensional encoded space which allows not only manipulation of the 

dataset in low dimensions without too much loss of information, but also potentially a more meaningful 

and interpretable representation of the data. Indeed, each of the low-dimensional features of the encoded 

space is a non-linear combination of original features and could potentially be a high-level meaningful 

feature, such as smile or gender in face pictures. This requirement is present in the objective of the VAE, as 

reflected in the loss function used during its training, which is composed of a first part that incentivizes 

accurate reconstruction, but also a second “penalty” term (or regularization term in machine learning 
jargon) that favors mathematically “smooth” and regular low-dimensional spaces that have nice properties 

for subsequent manipulation and interpretation. This second “aesthetic” term is also motivated by the fact 

that in domains such as imaging and biology, it may be assumed that most of the dimensions in the original 

space are not independent and can be reduced to a much smaller number of meaningful factors. 

Constraining the encoded space to be more “regular” also attenuates the risk of overfitting, which is 

unavoidable for highly flexible machine learning procedures such as neural networks, that can 

accommodate and learn any high-dimensional pattern if they are allowed to explore all the possibilities 

offered by the fitting procedure58. In a sense, we impose on the VAE a preconceived notion of what an 

optimal encoded space should be: this is why the VAE has some connections with so-called Bayesian 

machine learning57, i.e. it uses prior knowledge of the best parameter space to learn the data.  

In a sense, this procedure of encoding with a VAE is similar to what is accomplished by classical techniques 

of dimensional reduction that search for the “best” combinations of original features: for instance PCA is 

finding the best set of linear combination of features to “encode” the original data into a low-dimensional 

PC space. One could therefore think of the VAE as a kind of “non-linear” PCA, where each “non-linear 

principal PC” is potentially more meaningful than a linear PC since it can accommodate non-linear 

relationships in the original dataset. 
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I became very interested by this new technique due to its theory but also because some authors had 

recently started to apply it to biology: notably a paper59 that encoded RNA-seq data from the TCGA into a 

low-dimensional space, with some of the encoded features being associated to biologically meaningful 

variables such as gender or immune infiltration. This seemed very promising, and I therefore wanted to try 

to encode the sarcoma RNA-seq dataset with a VAE into a potentially biologically meaningful low-

dimensional encoded space: not only may I then be able to extract biologically meaningful features, but 

also it would potentially improve and facilitate the classification and diagnosis prediction tasks, as a 

dimensionality reduction technique such as PCA had already hinted at. In analogy to the PCA approach, I 

trained a VAE to find a 50-dimensional encoded space. A schematic of the VAE is in Figure 20. 

 

 

Figure 20: Schematic of the VAE for RNA-seq. 

 

Method: The VAE was trained on the same 5000 most variable features as previously. The encoder neural 

network was fully connected and one layer deep, with an encoding intermediate layer of 50 neurons, and 

the decoder network was also fully connected and one layer deep. The latent space was therefore 50-

dimensional. Input features were scaled between 0 and 1 before training (divided by maximum value of the 

corresponding feature). The VAE was implemented and trained with Keras v2.2.4 (TensorFlow v1.14.0), 

optimized with Adam, batch-normalized. Activation was relu (rectified linear unit) for the encoding layer 

and sigmoid for the decoding layer. Learning rate was 0.0005 and the model was trained for 50 epochs with 

no evidence of overfitting. 

To visualize the encoded 50-dimensional space after training, I once again used UMAP dimensionality 

reduction in two dimensions (Figure 21). 
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Figure 21: UMAP of sarcomas using the 50 encoded features of the VAE. 

 

The VAE-encoded space as visualized by UMAP displays interesting properties already found in the two 

previous UMAPs (all variable features and PCA): some diagnoses are clearly distinct from others, such as 

Ewing sarcoma (EwS), CIC-fused sarcomas (CIC). However, in contrast to PCA and especially the non-

reduced space, several diagnoses clearly stand out as distinct this time: desmoplastic small round cell 

tumors (DSRCT), EWSR1-NFATC2 sarcomas (NFATC2), BCOR-rearranged sarcomas (BCOR), myxoid 

liposarcomas (mLPS), desmoid tumors. It is interesting to note that at the top right corner, all 

rhabdomyosarcomas (alveolar and embryonal) and related diagnoses (VGLL2-fused and FET-TFCP2) are 

closely connected but still distinct. This is also the case for instance between alveolar soft part sarcoma 

(ASPS) and TFE3-renal cell carcinoma (TFE3) which are two distinct pathologic diseases but share the same 

fusion gene. The rest of the diagnoses, which are mostly the non-translocation-related sarcomas, as 

previously tend to cluster together and overlap in the middle, though an underlying structure can still be 

seen. Overall, even though UMAP is only a qualitative way of comparing between methods, it seems that 

encoding by the VAE allows a clearer separation of diagnoses than using no dimensional reduction or PCA.  

This first evaluation of the VAE was encouraging for the tasks of sarcoma classification and diagnosis: indeed 

clearly separating different entities in the VAE space is a prerequisite for both tasks, and above all this is 

accomplished using “only” 50 dimensions as opposed to the original > 50,000, therefore allowing easier 

manipulation and interpretation of the data. Nonetheless, I did not venture much further for the 

classification of sarcomas, due to the following reasons considering the UMAP in Figure 21: the separate 

entities corresponded overall to the previous diagnostic labeling, and apart from confirming that some 

sarcomas, especially translocation-related sarcomas, have very distinct transcriptomic profiles from the rest, 
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I did not see either novel clusters of unknown significance or conversely separation of the same diagnostic 

label into distinct sub-entities. One important insight to me though was the observation that some 

sarcomas, especially non-translocation-related ones, tend to cluster together and overlap, hinting that 

these may be transcriptomically very similar and even impossible to distinguish. This fact is corroborated in 

the clinic where sarcoma diagnosis is particularly difficult because of the overlapping nature of the 

presentations of different diseases. In fact, one could potentially ask the relevance of distinguishing these 

diseases, as they may for some be different states of a same continuous spectrum of disease. For instance, 

it is known that undifferentiated pleomorphic sarcoma can take differentiation characteristics of bone, 

cartilage or muscle, and the potential plasticity of these tumors could account for the fact that they have a 

common transcriptomic backbone that can evolve between different forms of the same disease. One is 

even tempted to make a parallel with normal development, where stem cells can take on characteristics of 

different tissues, and specifically in the case of “mesenchymopoesis”, a mesenchymal stem cell can become 

an adipocyte, a muscle cell, a chondrocyte or an osteocyte60. 

 

RNA-seq for diagnostic prediction 
 

For diagnosis prediction, a first approach takes advantage of the visualization by UMAP: a new sample is 

simply projected on the two-dimensional representation, since the UMAP transformation is learned once 

based on the original features and can then be applied to any sample in the original feature space. Since 

the “best” UMAP seems to be the one after encoding by VAE, this is the approach that I used for a first 

guess at diagnosis prediction: encoding a new RNA-seq sample into the low-dimensional VAE feature space, 

and then projecting this encoding on the UMAP. Unsurprisingly, this basic method works well for “easy” 
cases, i.e. diagnoses localizing in a distinct part of the UMAP, such as Ewing sarcoma and most other 

translocation-related sarcomas. For other cases, when the sample ends up in the middle within the 

overlapping diagnoses, it is less straightforward to predict the correct diagnosis, though the underlying 

structure often makes for a good guess. In fact, I have implemented an algorithm of this sort that has now 

been included in the diagnostic pipeline of the UGS for nearly two years, where eight new patients are 

processed each week, and this tool is an addition to the other tests for helping with the diagnosis. However, 

the added value of this prediction method is often modest: the “easy” cases are also easy for standard 
techniques, especially when RNA-seq is used to search for translocations, while difficult cases tend to go 

into the middle of the UMAP, thus not necessarily improving the diagnostic hypotheses.  

Before definitely downplaying the added value of this method, I wanted to test a more systematic method 

of prediction than simple visualization of the UMAP. Indeed, UMAP visualization is constrained to show 

information in only two dimensions and can thus potentially hide important insights from the 50-

dimensional original encoded space. I therefore used a random forest61, a classical high-performing 

machine learning technique which is a tree-based classifier, based on the 50 features encoded by the VAE. 

Method: The RF classifier was trained using the RandomForest package in R, with 5000 trees, mtry= 10, 

using as input the 666 samples encoded in 50 features by the VAE, with “Diagnosis” as label. 

A confusion matrix of this RF classifier is revealing (Figure 22).  
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Figure 22: Confusion matrix of a sarcoma random forest classifier based on 50 VAE features. Values are in 
percentage. Rows correspond to the predicted diagnoses and columns to the true diagnoses. 

 

Diagnoses which are “easy” to predict, i.e. have near to 100% correct prediction on the diagonal of the 

confusion matrix, are translocation-related sarcomas such as Ewing sarcoma (EwS), CIC-fused sarcomas (CIC) 

or desmoplastic small round cell tumors (DSRCT). In contrast, some diagnoses tend to be confused with one 

another, corresponding to overlapping diagnoses on the UMAP such as osteosarcoma (Osteo) and 

undifferentiated pleomorphic sarcoma (UPS). For most cases, the RF classifier is indeed equivalent to a 

“visual” prediction by UMAP. 

As for interpretability, I first visualized a heatmap of the 50 VAE encodings for all diagnoses (Figure 23).  
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Figure 23: Heatmap of mean VAE feature values for sarcomas by diagnosis. 

 

This is far from an “ideal” heatmap which would have shown features lighting up in only one or a few specific 

diagnoses: most features have non-zero values in more than one diagnosis, which is not inconsistent with 

the hypothesis that some diagnoses may be viewed as different states of a single continuous spectrum in 

transcriptomic space. There are however some features more specifically associated to only one or a few 

diagnoses, and without going into the detail of all features I present here some examples.  

To interpret a feature, we must remember that each one is the result of a non-linear combination of the 

initial transcriptomic features, and the associated weights in the decoder network of the VAE give us an 

idea of the genes most contributing to this feature. I therefore extracted and explored the genes with 

highest “weights” for each feature. As a first example, consider VAE feature number one (VAE_1): its value 

is plotted in all samples grouped by diagnosis in Figure 24. 
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Figure 24: VAE feature 1 (VAE_1) values in all samples grouped by diagnosis. 

 

This feature is especially expressed in rhabdomyosarcomas and related diagnoses (aRMS, eRMS, FET-TFCP2, 

VGLL2). Its top 20 highest-weight genes are: SHD, SGCA, IGF2, CHRND, MIR483, MYL4, RAPSN, IGF2-AS, RP1-

302G2.5, DLK1, RP11-2E11.9, VGLL2, KREMEN2, C20orf166-AS1, PLA2G16, CHRNG, MYOG, ITIH5, NNAT, 

MYOD1. It is notable that there are multiple genes related to muscle tissue (MYL4, MYOG, MYOD1), as well 

as the eponymous gene VGLL2. 

As another example, take feature number 42 which on the heatmap of mean encodings (Figure 23) is 

especially high in desmoplastic small round cell tumors (DSRCT), as shown in Figure 25.  



52 
 

 

Figure 25: VAE feature 42 (VAE_42) values in all samples grouped by diagnosis. 

 

Its top 20 genes are: PHLDA2, GJB2, THBS2, CHI3L1, KIF26B, F2RL1, BAI1, FOXC2, MEIS3, AHNAK2, SHOX2, 

GAL, MT1E, MT1F, AP000688.8, ISM1, COL8A1, SCG5, LAMP5, ALOX5. Three of these genes at least (GJB2, 

CHI3L1, GAL) are known to be overexpressed in DSRCT. 

As a final representative example, consider VAE number 26 which shows its highest mean value in midline 

carcinoma (Figure 23), as shown in Figure 26.  
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Figure 26: VAE feature 26 (VAE_26) values in all samples grouped by diagnosis. 

 

Its top 20 genes are: IGKV3-20, IGKV1-5, IGLV3-21, IGKV1-27, IGHV1-69, C15orf48, IGHA1, S100A9, IGHV3-

21, LAMC2, IGLC2, IGHV1-18, IGHV4-34, IGLC3, IGKV3-15, IGKV3D-20, MGST1, S100A8, IGKV3-11, IGHM. 

These genes are almost all coding for immunoglobulin heavy or light chains, and this VAE feature is probably 

capturing a measure of immune infiltration, especially from B cells. It is moreover interesting to see a good 

correlation between the distribution of this feature and the results from MCP-counter (Figure 4) and MiXCR 

(Figure 9), as for instance the top 5 diagnoses for this feature are also the most infiltrated with B cells 

according to these other tools: midline carcinoma, angiomatoid fibrous histiocytoma, inflammatory 

myofibroblastic tumor, NTRK-fused sarcoma and clear cell sarcoma. 

Overall, without detailing all 50 VAE features, we can observe that some features correspond to sets of 

genes with biologically meaningful interpretation. However, the interpretation is limited by the fact that 

the relationship between genes in a feature is non-linear, thus the weights of a neural network are not 

easily interpretable. Nonetheless, there is still value in highlighting important genes, especially for genes 

that are not known to be involved in disease, since some of these high-weight genes may have biological 
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significance for the diagnoses in which the feature is enriched. In total, the VAE is relatively interpretable 

since one sample is represented by “only” 50 features, each of which can be assigned specific biological 

significance through its high-weight genes. Also, the VAE potentially allows novel biological insights by 

extracting biologically meaningful features and highlighting specific genes in these. 

 

Extension of diagnostic tool to cancers of unknown primary 
 

As discussed previously, the VAE can potentially be used to improve diagnosis prediction, I therefore 

implemented this method as an additional tool to the standard diagnosis of patients profiled in RNA-seq at 

Institut Curie. However, clinical practice soon brought forth a challenge for the initial tool and motivated 

the finding of new ideas to improve it. Indeed, a diagnostic prediction tool of this kind is based on the 

“learning” of previously known diagnoses, however the method cannot predict an entity which it has never 

“seen”. Thus, the prediction can only be accurate if the correct diagnosis is already present in the training 

dataset. But in clinical practice, the patient that is addressed for RNA-seq profiling in Institut Curie is by 

definition a case for which there is diagnostic doubt. Though we have high clinical suspicion of sarcoma, it 

is not rare to discover that the tumor is in fact another type of cancer: carcinoma, lymphoma or 

neuroblastoma for instance (this is why there are a significant number of non-sarcomas in the UGS database, 

cf Figure 2). For the tool initially implemented for the UGS, this issue was addressed in the first place by 

including in the training dataset not only the sarcomas, but the whole set of diagnoses present in the 

database. 

Nonetheless, the diagnoses in the UGS still exhibit a bias towards particular pathologies: sarcomas, small 

round cell tumors and pediatric tumors in general. There are virtually no cases of adult carcinomas for 

instance, which are much more frequent cancers in the general population. Soon after implementation of 

my first tool for the clinical diagnostic workflow of the UGS, one clinical case of a patient illustrated this 

issue and prompted the development of the next phase of the project: a 30-year old male patient was 

addressed to Institut Curie (Dr Sarah Watson) for suspicion of bone sarcoma after having been evaluated in 

multiple other clinical centers in Paris. He presented with rapid degradation of performance status, an 

abdominal mass of unknown origin as well as diffuse bone and sub-diaphragmatic lymph node metastases. 

Pathological review of the tumor biopsy could not determine the origin of his cancer. Based on the 

aggressive nature of the cancer and the abdominal mass, chemotherapy for pancreatic cancer was 

proposed by the tumor board in Institut Curie. Before the beginning of chemotherapy, Dr Watson had the 

idea to address this patient to the UGS for RNA-seq profiling. However, in light of the clinical history and 

considering that the sample ended up in the “middle” of the UMAP as though it did not belong to any of 

the learned entities, we suspected that the correct diagnosis was not present in the UGS database used for 

training. 

It was a fortunate coincidence that I had just finished at the time a months-long work of reprocessing raw 

RNA-seq data of diverse public projects including The Cancer Genome Atlas (TCGA, 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga), Genotype-

Tissue Expression (GTEx, https://gtexportal.org/home/), Human Protein Atlas (HPA)62 using the same 

bioinformatics pipeline, an effort designed to answer a different question, as discussed in the following 

section on Ewing sarcoma neotranscripts (see Identification of novel transcripts in sarcoma). I had thus at 

hand RNA-seq training data not only for UGS diagnoses but also for all other major cancer types present in 

the TCGA, as well as normal tissues from TCGA, GTEx and HPA, all of them having been processed with the 

same bioinformatics pipeline (> 20,000 samples in total). I therefore took advantage of all this processed 

data to design a new “classifier” based on a VAE: for training I used all cancer samples from the TCGA, and 

also included all normal tissues from TCGA, GTEx and HPA, to let the VAE “learn” normal tissue profiles and 
account for potential normal cell contamination of tumor samples. Since the number of diagnoses was close 
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to 100, I chose this number of encodings for the training of the VAE. After visualization of the encoded space 

by UMAP and projection of the unknown sample on the plot, the diagnosis was clear: this patient clustered 

perfectly within the kidney cancers. 

The case was then reviewed by a kidney cancer specialist, who confirmed that this diagnosis was indeed 

very likely, considering that the abdominal mass was possibly developed from an embryological remnant of 

developing kidney tissue, thus explaining the absence of tumoral mass in the kidneys: this situation is rare 

but is known to occur in some patients63. The patient was thus treated as for kidney cancer: he was included 

in a clinical trial evaluating an anti-PD1 immune checkpoint inhibitor in combination with an anti-angiogenic 

tyrosine kinase inhibitor. First evaluation at three months showed a complete response, and according to 

the latest report, the patient is still progression-free. Altogether, this story showcased the potential of RNA-

seq to help with the diagnosis of difficult cases and orient treatment with success. 

This prompted us with Dr Watson to launch a clinical study of the potential utility of RNA-seq to determine 

the tumor of origin of cancers of unknown primary (CUP), a well-defined clinical entity that comprises up 

to 5% of metastatic cancers64. 

As this project was the object of a peer-reviewed publication65, I reproduce it in Annex 1 without developing 

this theme further in the manuscript. 
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Identification of novel transcripts in sarcoma 

 

Introduction 
 

As discussed previously, the immune landscape of pediatric sarcomas is relatively poor compared to other 

more immunogenic tumors such as melanoma or non-small cell lung cancer27. This is likely due to many 

factors including low tumor mutational burden leading to fewer neoantigens14,15. However, as shown 

previously, some pediatric sarcomas do have higher immune infiltration, and sometimes present isolated 

cases of response to immunotherapy, even in genomically “calm” tumors66. Therefore, it may not be 

excluded that some tumor antigens could be recognized in these tumors by the immune system, 

independently of the generation of neoantigens by classical processes such as DNA mutations13. 

This part of my thesis is precisely about the characterization of a potential novel source of neoantigens for 

some pediatric sarcomas. It is fair to say that I had absolutely not expected this to become the main part of 

my thesis when I began my PhD, but serendipity is often generous in science, and I welcomed it gratefully.  

 

Identification of novel transcripts in Ewing sarcoma 
 

When I began my PhD in November 2018, a PhD student (Olivier Saulnier) and a Master’s student (Jérômine 
Vigneau) from our team were just beginning to unravel an interesting observation they had made in a 

pioneering experiment. They had used long-read RNA sequencing (PacBio technology), a technique that 

enables sequencing of reads of up to 10 kilobases (compared to reads of about 75-150 nucleotides in short-

read RNA-seq), to characterize the long-read transcriptome of a Ewing sarcoma cell line (A673). 

Interestingly, apart from reads that aligned to known human transcripts annotated in the RefSeq reference 

transcriptome, they found that 145 high-quality sequences did not align to any known human gene, but 

rather to intergenic regions. They called these sequences “NA” (non-annotated) sequences. They explored 

each of these sequences manually by visualizing them in a genome browser (Integrative Genomics Viewer, 

IGV, https://software.broadinstitute.org/software/igv/). They discarded 15 of these as having low-read 

support, and flagged 50 of them as errors of automatic annotation (i.e. sequences that did in fact 

correspond to known human genes). However, there remained 80 sequences corresponding to potentially 

“novel” transcripts originating from completely unannotated intergenic regions of the human genome. 

They hypothesized that some of these novel transcripts might be related to the oncogenic chimeric 

transcription factor of Ewing sarcoma: EWS-FLI19. Using short-read RNA-seq in the same cell line (A673) 

with controlled knockdown of EWS-FLI1 by a doxycycline-inducible short hairpin RNA (shRNA) system, they 

found that 42 of these transcripts were downregulated following the knockdown of EWS-FLI1. It is known 

that EWS-FLI1 binds the genome at sites called GGAA microsatellites67,68: they found that 20 of these 42 

transcripts had a GGAA microsatellite just upstream of their transcription start site (TSS). The binding of 

EWS-FLI1 at these sites, as well as presence of chromatin activation marks (H3K27ac and H3K4me3), were 

confirmed for 18 of these novel transcripts by ChIP-seq (Chromatin ImmunoPrecipitation sequencing) in the 

same cell line. Finally, they concentrated on a set of 4 novel transcripts that were also found to be expressed 

in human tumor RNA-seq data. This filtering procedure is summarized in Figure 27. 
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Figure 27: Filtering procedure from 145 PacBio NA sequences to 4 novel transcripts. 

 

A characteristic genomic profile of one of these four transcripts is reproduced in Figure 28: this transcript 

is composed of four exons in the forward orientation, there is a GGAA microsatellite near its transcription 

start site (TSS), where there is evidence in ChIP-seq of binding of EWS-FLI1, as well as presence of H3K27ac 

and H3K4me3 chromatin activation marks; these ChIP-seq signals disappear in the doxycycline-induced 

EWS-FLI1 depletion state (+DOX). As for RNA-seq, the transcript is expressed both in the A673 cell line and 

human tumors, and its expression disappears in the cell line after EWS-FLI1 knockdown (+DOX). 

 

 

Figure 28: Genomic view of a novel transcript in Ewing sarcoma (Ew_NG1). 

 

In addition to these characteristics, further experimental evidence showed the dependence of these novel 

transcripts on EWS-FLI1: quantitative reverse transcription PCR (RT-qPCR) showed downregulation of their 
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expression in the A673 cell line after knockdown of EWS-FLI1 (+DOX), while on the contrary their expression 

was induced in mesenchymal stem cells (the putative cells-of-origin of EwS) transfected with EWS-FLI1, 

which showed that EWS-FLI1 was both necessary and sufficient for their expression. 

At this point of the project, I had just begun my PhD, and one important question was still remaining: was 

the expression of these novel transcripts really EwS-specific, as could be hypothesized based on this 

mechanical understanding of their expression? To answer this question and confirm the hypothesis that 

these novel transcripts are direct products of the EwS-specific oncogenic chimeric transcription factor EWS-

FLI1, I took advantage of large public gene expression datasets available for analysis: specifically, I searched 

for the presence of these novel transcripts in more than 20,000 RNA-seq samples, including all primary 

tumors (n=10,201) and juxta-tumor normal tissues (n=746) in TCGA, as well as all samples in GTEx (n=9,659) 

and the Human Protein Atlas (n=200) that comprise the vast majority of normal tissues. I also searched for 

their presence in all annotated samples of the UGS dataset. 

Method: FASTQ files from TCGA, GTEx and HPA (http://www.proteinatlas.org) were downloaded from their 

respective platforms and aligned to the hg19 genome assembly using STAR (v2.7.0e). The GTF file used for 

alignment and quantification of gene expression was based on evidence-based annotation of the human 

genome (GRCh37), version 19 (Ensembl 74) provided by GENCODE, to which was added the annotation of 

the four novel transcripts in GTF format. Gene expression was quantified using the GeneCounts procedure 

from STAR. Raw counts were then normalized to Transcripts Per Million (TPM). This analysis was performed 

on the Curie HPC cluster using NextFlow, and raw FASTQ files were deleted after analysis to avoid storing 

large data files on the cluster. 

The results confirmed what we expected: expression of these four novel transcripts is extremely specific to 

EwS, one example of a transcript is in Figure 29. 

 

 

Figure 29: Expression level of a EwS-specific novel transcript (Ew_NG3) across cancer types and normal tissues. 

Abbreviations are as in TCGA and in the submitted manuscript. 



59 
 

 
There are some non-EwS samples that show non-zero expression levels of these novel transcripts, however 

these are very low levels compared to EwS and should probably be assigned to “background noise” 
expression. For this specific transcript though (Ew_NG3), there is low but consistent expression in a chronic 

myelogenous leukemia-derived cell line (CML-CL), BCOR-rearranged sarcoma (BCOR) and testis. This search 

for the expression of these novel transcripts across a large panel of other cancers and normal tissues was 

not only important to confirm the hypothesis that they are induced by EWS-FLI1, but also because we had 

already considered their potentially promising translational relevance as tumor-specific markers, for 

diagnostic and even therapeutic purposes. Indeed, one holy grail of cancer treatment research is to find 

molecular targets that are tumor-specific and absent in all non-tumor cells. This is especially true of 

therapies harnessing the immune system (“immunotherapies”) that rely on the ability of the adaptive 
immune system to recognize an antigen on the surface of a tumor cell11. The ideal tumor target for 

immunotherapy is therefore a tumor-specific antigen not expressed in normal cells to avoid toxicity in 

healthy tissues. This is the reason why a large part of immunotherapy target research has concentrated on 

tumor-specific neoantigens, i.e. antigens that are novel and not expressed in a normal context. Up to now, 

the main source of neoantigens that has been explored is their generation by DNA mutations in protein-

coding genes13,69. Due to the mainly “private” nature of most mutations (i.e. they are not shared across 

patients), these neoantigens are mostly patient-specific, and it is rare to characterize a neoantigen shared 

across multiple patients, e.g. through a common mutation70. These so-called “public” neoantigens71 would 

however be more attractive for clinical practice, in the sense that a therapy targeting them could be 

delivered “off-the-shelf” for many patients, without all the cumbersome process of identifying neoantigens 

and designing specific therapies for each patient. 

The identification of tumor-specific novel transcripts that are directly induced by the oncogenic driver event 

in EwS is therefore very interesting in this regard: these novel transcripts are only found in EwS (which is 

corroborated by the mechanistic insights as well as the demonstration of their absence in non-EwS samples) 

and thus could potentially be a source of tumor-specific neoantigens, that are importantly “public” since 
they are shared across patients of the same disease. To come back to the observation that some novel 

transcripts seem to be expressed at low levels in other cancer types and testis, this is currently unexplained 

but it would not compromise a therapeutic strategy targeting them, since activity against other cancer types 

is not a problem in practice, while testis is an immune sanctuary and is therefore not subject to 

immunotherapy toxicity. 

However, there is a significant gap to be filled before demonstrating that these novel transcripts can 

generate neoantigens and be of relevance for immunotherapy. Antigens are small peptides that must be 

presented by the MHC (Major Histocompatibility Complex) to be recognized by immune cells. In any case, 

an RNA transcript is not by itself an immune target and must be translated to be recognized as such. This 

question will be explored subsequently in the manuscript. 

To come back to these initial results, we identified four novel transcripts originating from otherwise silent 

genomic regions in EwS, that are directly induced by the oncogenic chimeric transcription factor EWS-FLI1, 

and that are not found in non-EwS cancers and normal tissues. We decided to name these novel transcripts 

“neotranscripts”, and to name their corresponding genomic loci as “neogenes” (NG). These four initial 

neogenes were thus named Ew_NG1-4. 

 

Neotranscript discovery using short-read RNA-seq 
 

Ew_NG1-4 were discovered using long-read RNA sequencing in a EwS cell line; however this technique is 

costly and sequencing depth is not as high as in short-read RNA-seq. We hypothesized that more 
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neotranscripts could be present in EwS but had not been detected in the initial experiment. Instead of using 

long-read RNA sequencing, which is moreover technically difficult to perform on clinical samples, we 

wondered if we could search for neotranscripts in short-read RNA-seq data, of which we have a large 

number of samples including from tumors of patients. 

To this effect I started exploring ways of finding novel transcripts from short-read RNA-seq data. Initially I 

focused on identifying specific k-mers in RNA-seq samples, notably using a method named DE-kupl72. This 

method is designed to find differentially expressed k-mers in a set of samples as opposed to a set of 

reference samples, which it then uses to reconstruct approximately a differentially expressed transcript 

sequence with help from alignment to the reference genome. To test this method, I tried to “re-discover” 
Ew_NG1-4 with its help. When I used this method on a set of RNA-seq samples from the A673 cell line as 

compared to the same cell line with EWS-FLI1 knockdown, the results were both promising and 

disappointing: for all neotranscripts the method could definitely pinpoint a differentially expressed 

transcript in the correct genomic region, however the reconstructed transcript sequence was very 

imprecise and did not allow correct annotation of neotranscripts, unless manual annotation was performed 

with the help of visualization of RNA-seq alignments in a genome browser. 

I therefore turned to more straightforward and precise methods of transcript reconstruction. There are 

many computational methods designed to assemble the exact sequence of transcripts from RNA-seq reads, 

either completely de novo73 or using help from alignment to a reference genome (“genome-guided 

transcript assembly”74). The former approach is logically more prone to making errors and is generally used 

when no reference genome is available; in the case of human RNA-seq the best-performing methods are 

the genome-guided ones. Multiple methods have been developed for genome-guided transcript assembly, 

some of the most popular being Cufflinks75 and StringTie76. I chose to use a more recent tool named 

Scallop77, a genome-guided transcript assembly method based on phase-preserving graph decomposition. 

During benchmarking, it notably reconstructed 34.5% more transcripts than StringTie, especially lowly 

expressed ones (67.5% more than StringTie). It also has the advantage of not requiring excessive 

computational resources and memory. I therefore ran Scallop on an RNA-seq sample of a human EwS tumor 

to assemble all expressed transcripts, independently of their being or not part of the reference 

transcriptome. I then only kept the assembled transcripts without any overlap with a known annotation in 

GENCODE. 

Method: Paired-end FASTQ files were first aligned to the hg19 human reference genome using STAR 

(v2.7.0e). Then Scallop (v0.10.4) was used on the resulting BAM file with default parameters to assemble 

all expressed transcript sequences. To conserve only unannotated transcripts, I used Gffcompare78 to 

compare the Scallop output GTF file with the reference GENCODE v19 GTF file, and conserved only 

transcripts labeled by Gffcompare as « u » (unknown, intergenic), « y » (contains a reference within its 

introns) and « x » (exonic overlap on the opposite strand). Finally, to remove lowly expressed transcripts 

and decrease the rate of false positives, I removed all transcripts with coverage less than 10 as output by 

Scallop. 

In total, Scallop assembled 70,061 transcripts from the EwS tumor RNA-seq sample, of which I conserved 

1,069 which did not overlap any known annotation and were of sufficient coverage. My objective was to 

identify recurrent and EwS-specific novel transcripts: I therefore designed the following strategy to rapidly 

identify the best candidates among these 1,069 potentially novel transcripts, considering that most of the 

false positives or “private” (not shared across patients) novel transcripts would be filtered out by this 

procedure. 

Method: I applied a first filter based on high and tumor-specific expression as compared to a limited set of 

other tumors: for this I quantified the expression of these 1,069 transcripts in samples of eight different 

sarcoma types including EwS (three samples of each tumor type) by re-aligning each sample with STAR and 

quantifying expression using the GeneCounts procedure with the GENCODE v19 reference GTF file to which 
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were added the sequences of the 1,069 candidate neotranscripts. Raw counts were converted to transcripts 

per million (TPM) before the filtering process. To retain only tumor-specific and highly expressed candidates, 

I selected transcripts with 1) mean expression in EwS of more than 10 TPM; 2) log-fold change of mean 

expression in samples of other diagnoses versus mean expression in EwS of less than -2; 3) mean expression 

in samples of other diagnoses of less than 3 TPM; 4) maximum expression in samples of other diagnoses of 

less than 15 TPM. 

This resulted in the selection of 114 candidate neotranscripts. To conserve only highly, recurrently 

expressed and above all tumor-specific neotranscripts, I then undertook a similar approach as for the initial 

four neotranscripts, i.e. searching for their expression in a large panel of other cancer types and normal 

tissues. However, as the initial search for the four neotranscripts, which was based on the totality of 

samples of TCGA, GTEx, HPA (n>20,000), was very time-consuming to repeat, I instead chose to limit the 

search to 50 samples of each cancer and normal tissue type. 

Method: I quantified expression of these 114 candidate neotranscripts in all tumor samples from the UGS, 

all cancer types in TCGA (either all samples from one type, or only 50 samples if number of samples 

exceeded 50), all normal tissue samples in TCGA, all normal tissue types in GTEx (either all samples from 

one type, or 50 samples if number of samples exceeded 50) and all normal tissue samples from the Human 

Protein Atlas. Every sample was re-aligned with STAR and expression quantified by the GeneCounts 

procedure with the use of a GTF file including GENCODE v19 and the candidate neotranscripts. Raw counts 

were converted to TPM before filtering. To retain tumor-specific candidates with a relatively high 

expression level in EwS (to account for potentially lower tumor content in some samples, I lowered the first 

threshold as compared to the first filter) and near-zero expression in other cancers and normal tissues, I 

selected transcripts with 1) mean expression in EwS of more than 7.5 TPM; 2) log-fold change of mean 

expression in other samples versus mean expression in EwS of less than -3; 3) mean expression in other 

samples of less than 2 TPM; 4) 99 % quantile of expression in other samples of less than 10 TPM; 5) 

maximum mean expression in another cancer or normal tissue of less than 10 TPM (excluding testis and 

placenta). 

I noted during this procedure that some neotranscripts could be moderately expressed (most less than 10 

TPM) in germinal tissues (testis and placenta), reflecting known higher transcriptomic diversity and 

exclusivity there (e.g., for cancer-testis antigens79), and therefore allowed the few genes (less than 1.5% of 

neotranscripts in this study) expressed in these tissues at more than 10 TPM to pass filter 5) nonetheless.  

This pipeline (summarized schematically in Figure 30) resulted in a total of 61 EwS-specific neotranscripts, 

corresponding to 25 different genomic loci or EwS-specific neogenes = “Ew_NGs” (one “neogene” can have 
multiple alternative “neotranscripts” due to alternative splicing). 
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Figure 30: Schematic diagram of the neotranscript discovery pipeline from short-read RNA-seq data. 

 

Interestingly, three out of the four initial neogenes were retrieved within these 25 Ew_NGs, moreover 

Scallop allowed some splice variants of these three neogenes to be identified. It was intriguing though that 

one previously characterized neogene (Ew_NG3) had not been identified by Scallop, since it seemed to be 

very highly and recurrently expressed in EwS (Figure 29). To understand why, I searched manually for 

Ew_NG3 at the different steps of the pipeline: it turned out that a corresponding transcript had accurately 

been assembled by Scallop but had been filtered out at the initial step of discarding transcripts overlapping 

any known annotation. Indeed, the reason for this discrepancy between its identification from the PacBio 

experiment as opposed to Scallop rapidly became clear: this transcript had been filtered out in my pipeline 

because it corresponded to an annotated transcript in GENCODE (AC073135.3), however Olivier Saulnier 

had used the RefSeq reference transcriptome to filter out known transcripts from the PacBio experiment. 

This transcript was only annotated in GENCODE but not in RefSeq, which contains fewer transcripts, notably 

fewer non-coding RNAs. Nonetheless, it appeared that Ew_NG3, which is very specific to EwS and induced 

by EWS-FLI1, was already “known” and not novel. I therefore searched for the origin of this annotation and 

found the explanation: this transcript annotation in GENCODE had been derived from a series of five 

expression sequence tags (ESTs) exclusively from EwS cell lines80, and no relevant information was available 

for this transcript in any database. Considering this and although this neotranscript was already “known”, 
we conserved this neogene in our list and thus had in the end a set of 26 Ew_NGs corresponding to 62 EwS-
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specific neotranscripts. Their expression profile across cancer types and normal tissues is represented in 

Figure 31. 

 

 

Figure 31: Expression levels across cancers and normal tissues of Ew_NGs. Abbreviations are as in TCGA and in 
the submitted manuscript. 

 

Considering this set of 26 Ew_NGs, an important question was the same as for the four initial ones: could 

they be directly induced and regulated by the oncogenic chimeric transcription factor EWS-FLI1? To answer 

this, I analyzed RNA-seq data - already available in the lab - of nine EwS cell lines where EWS-FLI1 expression 

had been downregulated by short hairpin (sh-) or small interfering (si-) RNA. I also searched for expression 

of Ew_NGs in mesenchymal stem cells transfected with EWS-FLI1. Results are in Figure 32. 
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Figure 32: Ew_NG expression in EwS cell lines and MSCs with EWS-FLI1 modulation. Dot size shows mean 
expression level in EwS cell lines and MSCs transformed by EWS-FLI1 (capped at 100). Color represents log2 fold-
change (capped at 6) as compared respectively to EWS-FLI1 knocked-down conditions and parental MSCs (EF 
low). 

 

This showed that a large part - but not all - of Ew_NGs were downregulated with knockdown of EWS-FLI1 

in EwS cell lines and were induced in MSCs expressing EWS-FLI1 (all Ew_NGs had zero expression level in 

MSCs without EWS-FLI1). As for the four initial Ew_NGs, I examined manually their genomic context in a 

genome browser with attending functional data including ChIP-seq for EWS-FLI1, H3K27ac and H3K4me3, 

and found that a large number of them had profiles similar to the initial ones, i.e. binding of EWS-FLI1 on a 

GGAA microsatellite just near their TSS, and presence of chromatin activation marks H3K27ac and H3K4me3. 

With the help of a bioinformatician in the team (Maud Gautier), we formally analyzed the distance between 

TSS and nearest EWS-FLI1-bound GGAA microsatellite for all Ew_NGs and known transcripts in GENCODE, 

to show the enrichment of EWS-FLI1-bound GGAA microsatellites near the TSS of Ew_NGs (Figure 33). 
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Figure 33: Distance from TSS to nearest EWS-FLI1-bound GGAA microsatellite for Ew_NGs and GENCODE 

transcripts. 

 

For three Ew_NGs, no EWS-FLI1-bound GGAA microsatellite was found near the TSS: using analysis of 

H3K27ac HiCHIP (a protein-centric chromatin conformation mapping method81) data from the lab by a 

bioinformatician in the team (Véronique Hill), we could show that they were instead present within so-

called enhancer-promoter chains regulated by EWS-FLI182. An example (Ew_NG17) is represented in Figure 

34.   
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Figure 34: Example of a Ew_NG regulated within an EWS-FLI1 enhancer-promoter chain (Ew_NG17). 

 
These results strongly suggested that most Ew_NGs are directly dependent on EWS-FLI1 binding for their 

induction. To further demonstrate this fact, we used CRISPR interference (CRISPRi) targeting DNA 

sequences flanking GGAA microsatellites upstream of six Ew_NGs to prevent EWS-FLI1 from binding to 

them: this abrogated expression of Ew_NGs (experiments done by Céline Collin, a PhD student in the team). 

Interestingly, we also used CRISPRi to prevent binding of EWS-FLI1 to the two enhancers upstream of 

Ew_NG17: targeting of both enhancers was synergistic for the downregulation of this NG expression. These 

results are in Figure 35. 
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Figure 35: Ew_NGs are downregulated by CRISPRi targeting of sequences close to GGAA microsatellites. 

Barplots show Ew_NG relative expression measured by qPCR after CRISPRi of upstream GGAA microsatellite for 
a, Ew_NGs with GGAA microsatellite near the promoter (three guide RNAs each), b, Ew_NG17 regulated within 
two enhancer-promoter chains (three guide RNAs for each enhancer GGAA microsatellite targeted individually 
and targeting of both enhancers enh1 and enh2). Barplots show mean ± s.e.m. of individual replicates (dots). 

 

Finally, to demonstrate that Ew_NGs are specifically expressed by EwS cells and can be detected in single-

cell RNA-seq (scRNA-seq) data, I reprocessed some single-cell RNA-seq data of an EwS tumor, along with a 

non-EwS tumor (desmoplastic small round cell tumor, DSRCT), to quantify expression of Ew_NGs in single 

cells. 

Method: To quantify expression of neotranscripts in scRNA-seq data, a custom transcriptome was produced 

by appending sequences of the neotranscripts to the reference transcriptome and running Cellranger count 

on scRNA-seq FASTQ files with this custom index. Counts for neotranscripts were log-normalized and the 

average log-normalized expression level was plotted with FeaturePlot. 

The following UMAP plot shows that Ew_NGs are expressed specifically in EwS cells but not in cells of the 

microenvironment nor in DSRCT cells (Figure 36). 
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Figure 36: UMAP plot of scRNA-seq of EwS and DSRCT tumor samples showing mean expression level of 

Ew_NGs. 

 
Altogether, we have shown the existence of a set of EwS-specific neotranscripts, of which a large part are 

directly induced by the binding of EWS-FLI1 to GGAA microsatellites in otherwise silent intergenic regions. 

Based on our knowledge of the mechanisms of action of EWS-FLI1, we proposed a mechanistic model to 

explain this phenomenon: EWS-FLI1 binding sites such as GGAA microsatellites are in closed chromatin 

conformation in non-EwS cells. Upon binding of EWS-FLI1, these sequences are transformed into neo-

enhancers able to activate neighboring known target genes83,84 but also to induce transcription of Ew_NGs 

(Figure 37).  
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Figure 37: Proposed model for EWS-FLI1 induction of Ew_NGs. EF: EWS-FLI1. 

 

Extension to other sarcomas 
 

EWS-FLI1 is an oncogenic chimeric transcription factor (OCTF) resulting from a translocation between 

chromosomes 11 and 22 that characterizes EwS9. Other sarcoma types are defined by different 

chromosome translocations giving rise to specific OCTFs7,8. Some non-sarcoma cancers are also 

characterized by OCTFs (Table 2). 

 

Table 2: List of OCTF-driven cancers (non-exhaustive). 

Cancer type Abbreviation OCTF 

Angiomatoid fibrous histiocytoma AFH EWSR1-ATF1/CREB1 

Alveolar rhabdomyosarcoma aRMS PAX3/PAX7-FOXO1 

Alveolar soft part sarcoma ASPS ASPSCR1-TFE3 

BCOR-rearranged sarcoma BCOR BCOR-CCNB3 

Clear cell sarcoma CCS EWSR1-ATF1/CREB1 

CIC-fused sarcoma CIC CIC-DUX4/NUTM1 

Desmoplastic small round cell tumor DSRCT EWSR1-WT1 

Extraskeletal myxoid chondrosarcoma emCS EWSR1-NR4A3 

Ewing sarcoma EwS EWSR1-FLI1/ERG 

Low-grade fibromyxoid sarcoma LGFMS FUS-CREB3L2 

Mesenchymal chondrosarcoma MCS HEY-NCOA2 

Midline carcinoma MIDLINE BRD-NUT 

Myxoid liposarcoma mLPS FUS-DDIT3 

EWSR1-NFATC2 sarcoma NFAT EWSR1-NFATC2 

EWSR1-PATZ1 sarcoma PATZ1 EWSR1-PATZ1 

Solitary fibrous tumor SFT NAB2-STAT6 

Synovial sarcoma SS SS18-SSX1/SSX2 

TFE3-translocated renal cell carcinoma TFE3 ASPSCR1-TFE3 
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Transcription factors bind specific sequences across the genome to induce transcription of downstream 

genes. By definition, OCTFs are novel transcription factors that do not exist physiologically and are the result 

of a gene fusion in a cancer cell. Due to the modification of their structure as compared to the wild-type 

transcription factor which constitutes only one part of the gene fusion, they may bind different sites of the 

genome and/or recruit different co-factors, thus acquiring oncogenic properties. For instance, EWS-FLI1 

binds GGAA microsatellites whereas wild-type FLI1 recognizes a single GGAA canonical motif67,68. While 

most of the binding sites for other OCTF-driven cancers have not been characterized yet, we hypothesized 

that other OCTFs could also bind specific regions of the genome not bound by the wild-type transcription 

factor, including otherwise silent regions of the genome, and thus give rise to other OCTF-driven tumor-

specific neotranscripts. 

As a proof-of-concept that more neogenes could be found in another OCTF-driven cancer, we focused on 

desmoplastic small round cell tumor (DSRCT), which is an aggressive soft tissue sarcoma mainly occurring 

in young male adults and is driven by EWS-WT185. Using the same neotranscript discovery pipeline as for 

EwS (Figure 30), I found 37 DSRCT-specific neogenes (DSRCT_NGs) corresponding to 105 neotranscripts 

(Figure 38). 

 

 

Figure 38: Expression levels of 37 DSRCT_NGs identified from short-read RNA-seq data. Abbreviations are as in 
TCGA and in the submitted manuscript. 

 

To unravel the potential role of EWS-WT1 in the induction of these DSRCT_NGs, I took advantage of 

published RNA-seq data of two DSRCT cell lines with siRNA-induced inactivation of EWS-WT186, in which I 
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quantified expression of DSRCT_NGs. Most of DSRCT_NGs showed downregulation with inactivation of 

EWS-WT1 (Figure 39). 

 

Figure 39: DSRCT_NGs are expressed in DSRCT cell lines and downregulated in EWS-WT1-low (EW low) 

conditions. 

 

I also used published ChIP-seq data of a cell line (JN-DSRCT-1) to show with the help of Maud Gautier that 

EWS-WT1 was binding near the TSS of a large part of these DSRCT_NGs (Figure 40). 
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Figure 40: Distance from TSS to nearest EWS-WT1 peak for DSRCT_NGs and GENCODE transcripts. 

 
Finally, I quantified DSRCT_NGs in single-cell RNA-seq data of a DSRCT tumor and a EwS tumor to show 

specificity of expression in DSRCT tumor cells (Figure 41). 
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Figure 41: UMAP plot of scRNA-seq of EwS and DSRCT tumor samples showing mean expression level of 

DSRCT_NGs. 

 

Altogether, these data showed that as in EwS, a set of DSRCT-specific neotranscripts could be identified and 

were for a large part of them directly driven by EWS-WT1. 

Considering that two different OCTFs led to induction of specific neotranscripts, we hypothesized that the 

same phenomenon might be observed in other OCTF-driven cancers. I took advantage of our collection of 

RNA-seq in the UGS to run my neotranscript discovery pipeline (Figure 30) in the sixteen other OCTF-driven 

cancers listed in Table 2. Overall, I identified 398 neogenes corresponding to 807 neotranscripts across all 

cancer types (Figure 42). 
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Figure 42: Expression levels of all neogenes identified across eighteen OCTF-driven cancers. Abbreviations are 
as in Table 2. 

  

This demonstrated that tumor-specific neotranscripts could be found in all OCTF-driven cancers studied. 

However, contrary to EwS and DSRCT, there were no functional data available in the other tumor types to 

determine the potential role of the OCTF in the expression of their respective NGs. Nonetheless, some 

observations that I made while running the neotranscript discovery pipeline were in favor of this potential 

role: when quantifying expression of candidate tumor-specific neotranscripts across the range of cancers 

and normal tissues, I noticed that sometimes interesting candidates were also expressed in a second type 

of tumor. Specifically, some candidate NGs from angiomatoid fibrous histiocytomas (AFH) were also 

expressed in clear cell sarcoma (CCS), while candidate NGs from CCS could be expressed in AFH (see 

columns “AFH” and “CCS” in Figure 42). The same phenomenon was taking place between NGs of alveolar 

soft part sarcoma (ASPS) and TFE3-translocated renal cell carcinoma (TFE3). This intriguing observation was 

less surprising in the light of the potential mechanism for the induction of NGs: AFH and CCS on one side, 

and ASPS and TFE3 on the other side, while being distinct pathological entities, share the same OCTF (Table 

2). Obviously, this is not as strong an argument as the functional data presented for EwS and DSRCT, 

nevertheless this suggests that some of the NGs identified here are also directly induced by a specific OCTF, 

in line with our proposed model of the induction of novel transcripts by the specific binding of an OCTF to 

silent regions in the genome. 

These results demonstrated that OCTFs, which are completely novel and aberrant transcription factors not 

present physiologically, have the neomorphic ability to bind specific regions of the genome that are 

normally “silent”, probably as a consequence of their unique structural properties. This binding leads to a 

cascade of epigenetic events that induces robust transcription of novel spliced, polyadenylated transcripts 
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(neotranscripts), a phenomenon which is reminiscent of enhancer RNA generation at enhancer sites such 

as GGAA microsatellites for EwS87, though enhancer RNAs are usually short and bidirectionally transcribed88. 

As these neotranscripts are products of novel transcription factors that have presumably not previously 

existed during evolution, it is not surprising to observe that their sequences do not show high scores of 

evolutionary conservation as compared to protein-coding genes (Figure 43).  

 

 

Figure 43: Sequence conservation scores for neotranscripts as compared to protein-coding transcripts and 

lincRNAs. 

 

Instead, neotranscripts have sequence conservation scores more similar to lincRNAs and may a priori be 

considered as such, as they do not show signs of evolutionary selection to encode stable proteins. However 

a large number of lincRNAs are known to have functional roles including in cancer development and 

progression89; it thus remains to be seen if these neotranscripts are of functional significance. From an 

evolutionary standpoint, these neotranscripts seem to be “by-products” of completely novel transcription 
factors, and considering that they arise from otherwise silent genomic regions with non-conserved 

sequences, it is probably reasonable to assume that they may not have any essential function. However, 

biological sequences evolve through acquired mutations and it is tempting to think that this phenomenon 

may help to address the unresolved question of de novo gene birth90. Indeed, completely novel genes can 

arise in evolution from otherwise silent regions of the genome, and can acquire specific functions over the 

course of evolution: it is probable that they do not exhibit functional activity at their birth, but may 

progressively acquire functionality through further genetic mutations. In total, it is tempting to hypothesize 

that the modification of transcription factors could be a general gene-forming mechanism in evolution, by 

inducing novel binding events in the genome and subsequent opening of chromatin to make possible the 

appearance of novel units of transcription that may become over the course of evolution bona fide 

functional and even protein-coding genes. 

 

Translation of neotranscripts (Ribo-seq) 
 

We have shown that tumor-specific neotranscripts are expressed in OCTF-driven cancers and should 

probably be considered a priori as lincRNAs without any functional role or protein-coding potential. In fact, 

many cancer-specific lincRNAs have already been identified in other tumor types91. However, it has recently 

been shown that lincRNAs - notwithstanding their eponymal “non-coding” status - can in some cases be 

translated by ribosomes and give rise to peptides coded by open reading frames (ORFs). These ORFs are 

usually shorter than for protein-coding transcripts, nonetheless they can be a source of peptides recognized 

by the immune system as neoantigens92–97. As discussed previously, the neotranscripts we have found could 

be - if translated - a very important source of tumor-specific neoantigens absent from normal tissues, shared 

across patients of the same tumor type (“public”), with significant translational relevance as potential 

targets of immunotherapies. In order to demonstrate that neotranscripts can indeed be translated as other 
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lincRNAs, we focused on EwS-specific neotranscripts and addressed this question using state-of-the-art 

techniques. 

To be translated, transcripts have to be bound by ribosomes: a technique called ribosome profiling, or Ribo-

seq, is specifically designed to detect the RNA molecules that are bound by ribosomes in a cell (Ribosome-

Protected Fragments, RPFs)98. The principle of this technique is to block active translation with inhibitors 

such as cycloheximide, then to degrade all RNA not protected by ribosomes and sequence the remaining 

RPFs by next-generation sequencing99,100. This experiment thus allows the profiling of “ribosome footprints”, 
which represent the presence of ribosomes across actively translated transcripts. Due to the three-

nucleotide periodicity of ribosome translation that proceeds one codon after another, the specific frame of 

translation can be inferred from this profile, allowing determination of the open reading frame of the 

transcript101. This technique has notably been used to show that, in addition to coding sequences (CDS) of 

protein-coding transcripts, other so-called “untranslated” parts of these transcripts - such as 5’UTRs and 
3’UTRs - can also be bound by ribosomes and give rise to small ORFs102. Similarly, it has allowed to discover 

that many “non-coding” RNAs are in reality translated103. 

However, Ribo-seq is a non-trivial technique: there is no gold-standard procedure, many protocols exist and 

results may vary according to experimental conditions. In fact, only a few specialized teams use it in routine; 

they usually have their own adapted protocol and custom bioinformatic tools. We had previously no 

experience of this technique in the team and had to ask for help from Olivier Namy’s group in the Institute 

for Integrative Biology of the Cell (I2BC) for our first experiments with Ribo-seq. Céline Collin (a PhD student 

in the team) thus profiled two EwS cell lines with the help of colleagues from Orsay. However, as I 

performed quality control of the results, the data was not showing the expected profiles. This highlighted 

the experimental difficulty of Ribo-seq, even using a protocol from an experienced team. Fortunately, we 

had also in parallel sent the same samples to a company specialized in Ribo-seq (Ribomaps Ltd, 

https://ribomaps.com); their experiments were successful and I therefore focused on analyzing this Ribo-

seq dataset. 

There were six samples in total: two EwS cell lines (A673 and EW7) in three replicates each. The sequencing 

depth was of 40 to 95 million raw reads per sample. Ribo-seq analysis has many specificities in contrast to 

other NGS assays: the most important reasons for this being that RPFs normally 1) are of very short length 

(29 nucleotides in humans); 2) accumulate at the position of the translation start codon; 3) display three-

nucleotide periodicity, with the majority of reads positioned in-frame relative to the translated ORF. 

Therefore, specific bioinformatics tools have been developed in recent years to analyze Ribo-seq 

experiments101; however no gold-standard tool exists and there are multiple “home-made” methods of 

analysis (for instance our colleague team in Orsay are developing their own tool). After discussion with 

experts from Orsay and exploration of many existing tools, I decided to focus on a set of complementary 

packages that performs comprehensive Ribo-seq analysis and is currently being used by many teams: 

RiboseQC104 and ORFquant105. The first package is designed to perform all Ribo-seq quality control analyses 

and extract ribosome footprints, while the second one is more specifically aimed at determining the 

sequences of open reading frames (and the specific isoform being translated for alternatively spliced 

transcripts).  

Before using these specific Ribo-seq analysis tools, there are necessary steps of data pre-processing that 

are common to other NGS analyses: notably adapter-trimming and alignment of reads to the genome. As 

discussed previously, there are no gold-standard analysis pipelines for Ribo-seq, including for these early 

steps. After exploring many protocols used in the literature, I settled for the following consensus pipeline 

implemented with commonly used tools. Some protocols contain a specific step of discarding ribosomal 

RNA - which is expected to be present in samples - by aligning to ribosomal genes. I chose the alternative 

option of directly mapping to the whole human genome without this step. To avoid spurious mapping of 

ribosomal RNA, I used one of the best-performing mappers (STAR40) and specified very stringent criteria as 

opposed to classical RNA-seq, in order to only conserve reads mapped with very high confidence: 
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specifically I discarded all multi-mapping reads, and all reads with more than two mismatches during 

alignment to the genome. The outline of the whole pipeline is in Figure 44. 

 

 

Figure 44: Pipeline for Ribo-seq analysis. 

 

Method: Adapters were trimmed using Trim Galore! (v.0.6.5). Ribo-seq reads were mapped with STAR 

(v2.7.0e) with options --outFilterMultimapNmax 1 --outFilterMismatchNmax 2 to conserve only uniquely 

mapping reads with a maximum of two mismatches, using a GTF file containing GENCODE v19 reference 

transcripts to which was added the annotation of the Ew_NGs. Ribo-seq quality control analyses were 

performed with RiboseQC (v0.99.0) using default parameters, after which P-site positions and number of 

reads mapping to Ew_NGs (raw and TPM) were extracted. ORF predictions were then performed with 

ORFquant (v1.02.0) using default parameters on RiboseQC output data. 

 

A crucial part of Ribo-seq analysis is quality control: since all RNA molecules in the sample are sequenced 

at the end of the experimental protocol, we have to make sure that the experiment went well and that we 

are indeed looking at RPFs. Indeed, a “failed” experiment without successful isolation of RPFs would still 

result in the sequencing of millions of transcripts present in the sample, that could also map in majority to 

protein-coding genes but would not be proper RPFs. The importance of this step is compounded by the fact 

that Ribo-seq is experimentally challenging as previously discussed, and “failed” experiments happen more 
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often than for other well-established techniques such as classical RNA-seq (this was indeed the case for our 

first experiments in the lab). To select RPFs present in the data, we must first discard all RNA molecules that 

are potentially contaminating, notably all fragments that do not have the required length of 29 nucleotides. 

For this, all reads that were aligned uniquely to the genome are filtered based on their length; by plotting 

the length distribution of reads, ideal Ribo-seq data should display a peak at 29 nucleotides, more or less a 

few nucleotides to account for experimental variability. A second quality control measure is the distribution 

of aligned reads onto coding sequences (CDS) and other sequences: we expect a major part of RPFs to align 

to CDS. This second control is necessary but not specific for Ribo-seq (it would also be expected of classical 

mRNA-seq). A third control is then applied that is this time truly specific to Ribo-seq: by plotting the position 

of reads relatively to the start codon and known ORF of protein-coding transcripts, we expect to observe 

accumulation of reads at the start codon and three-nucleotide periodicity with the majority of reads 

positioned in-frame relatively to the ORF (“frame 0”, as opposed to “frame 1” and “frame 2”).  

I used RiboseQC to perform all these quality control analyses. The read length and location distributions for 

our six samples are represented in Figure 45.   

 

 

Figure 45: Ribo-seq read length and location distribution. 

 

As expected, the read length distributions are peaking at 29 nucleotides and the location distributions show 

that most of the reads are mapping to CDS (purple). These profiles are comparable to high-quality Ribo-seq 

datasets in the literature. To explore the quality control of nucleotide periodicity, each read must be 

assigned a frame among the three possible ones. For this, one does not use directly the 5’ end of the read, 

because the ribosome P-site - that corresponds to the translating position of the ribosome - is positioned 

at an offset (12 nucleotides usually) downstream of the 5’ end. When plotting the P-site profiles (ribosome 

footprints) of a “metagene”, i.e. all genes collapsed to the same abscissa, we expect to see: 1) most of the 
P-sites at the starting codon “ATG”; 2) most reads in the “frame 0” that is the reading frame corresponding 

to the known ORF. P-site profiles for our six samples are represented in Figure 46. 
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Figure 46: P-site profiles colored by frame. TES: transcription end site. 

 

The P-site profiles each display the expected three-nucleotide periodicity and accumulation at the starting 

codon of translation. After all these quality controls, we can confirm that we are indeed analyzing genuine 

RPFs in these six samples, in contrast to the first experiments done in our team that did not pass these 

quality criteria (data not shown in this manuscript). 

Once we were confident of the quality of this data, we could ask the question of whether some 

neotranscripts are bound by ribosomes and potentially translated into peptides. After discarding reads 

outside the expected length distribution by RiboseQC, I quantified the RPFs mapping to the genomic loci of 

neotranscripts. As a control for these analyses, I used high-quality Ribo-seq data of two non-EwS cell lines 

(K562, HepG2) from the literature105 which I processed using exactly the same pipeline. After normalization 

in TPM by RiboseQC, sixteen Ew_NGs showed a level of associated RPFs of more than 0.1 TPM. Their 

expression values in EwS and non-EwS cell lines are represented in Figure 47.  
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Figure 47: Heatmap of ribosome protected fragments (RPFs) mapping to Ew_NGs in EwS and non-EwS cell lines. 

Levels are in log10(TPM+0.1). Ew_NGs are ordered from top to bottom by maximum RPF levels. Right heatmap 
reports number of computationally predicted ORFs in corresponding Ew_NG. rep: replicate. 

 

Based on the periodicity of RPFs mapping to Ew_NGs, the software ORFquant was also able to infer the 

sequence of seventeen ORFs for six of these NGs (the number of inferred ORFs for each NG is represented 

in Figure 47). 

Overall, the amount of RPFs associated to Ew_NGs is low (except for Ew_NG3, which is also the most 

abundant NG in RNA-seq) as compared to protein-coding transcripts, which can show levels of over a 

thousand TPM for highly translated genes. However, this is not surprising considering that translation of 

lincRNAs is usually much less prevalent in the cell. Though numbers of RPFs are not high enough to allow 

confident ORF sequence prediction in most Ew_NGs, these results show that a large part of them can be 

bound by ribosomes and potentially translated. While this phenomenon is mostly present at low levels, it 

does not necessarily compromise their ability to be recognized as antigens96. Also, it is possible that 

increasing the depth of sequencing could have allowed the detection of more RPFs associated to these and 

additional Ew_NGs, as well as more computationally predicted ORF sequences. 

Finally, another argument that reinforced the confidence in these Ribo-seq results came from a completely 

orthogonal approach to detect translation of neotranscripts, as described next. 

 

Translation of neotranscripts into peptides (Proteomics) 
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Ribo-seq aims at detecting ribosome-bound transcripts that are potentially translated, while proteomics 

looks directly at the peptide level: this set of techniques uses mass spectrometry (MS) to detect all proteins 

in a sample. Briefly, proteins are digested by trypsin and resulting tryptic peptides are identified based on 

their characteristics of mass, charge, and polarity106. To explore the potential translation of neotranscripts 

into peptides, we used mass spectrometry in EwS cell lines. Floriane Petit (a post-doctoral student in the 

lab) profiled ten EwS cell lines in five replicates each with the help of the Institut Curie mass spectrometry 

facility. MS has the particularity that it detects tryptic peptides according to their mass to charge ratio, but 

the experimentally obtained MS “spectra” have to be compared to reference spectra derived from known 

peptides potentially present in the sample. In a way, this is analogous to genome mapping of RNA-seq which 

uses the reference transcriptome to infer the identity of the read sequences. Thus, MS is a reference-based 

search for peptides, and one cannot detect a peptide that is not in the reference used for searching. Usually, 

one searches against reference MS spectra of peptides derived from known proteins, such as the set of 

human proteins in Uniprot. However, for our purpose to search for peptides translated from neotranscripts, 

I had first to computationally predict all ORF sequences that could potentially be generated from 

neotranscripts. Using the software ORFfinder, I derived all possible ORFs from neotranscript sequences in 

all three reading frames, starting either at a canonical start codon “ATG” or a non-canonical one. This 

“neopeptide” list was then fused with the Uniprot database, and the search was performed against this 

merged database in all samples processed by the MS platform. The bioinformatic processing was performed 

by dedicated bioinformaticians in the MS facility and Olivier Ayrault’s team in Institut Curie (Jacob Torrejon 

Diaz). 

Method: ORFs of Ew_NGs were computationally predicted with ORFfinder (v.0.4.3; options: minimal 

length=75 nucleotides; start codon: any) to constitute a database of potential neopeptides (Fasta file). For 

identification, the data were searched against the Homo Sapiens (UP000005640_9606) UniProt database, 

this neopeptide database and a database of the common contaminants using Sequest HT through Proteome 

Discoverer (version 2.4). Enzyme specificity was set to trypsin and a maximum of two miss cleavages sites 

were allowed. 

Overall, 247 neopeptides were identified in EwS samples, including 65 that were present in at least three 

out of five replicates of all ten cell lines and that could be precisely quantified. These included three tryptic 

peptides predicted to be derived from the same ORF that was identified in Ribo-seq for Ew_NG3, the most 

highly expressed NG in RNA-seq and Ribo-seq (Figure 48). To confirm specificity of this finding, we searched 

for neopeptides in eight non-EwS (medulloblastoma) samples processed with a comparable protocol (data 

from Olivier Ayrault’s team in Curie) and found zero EwS neopeptide in this dataset. 

 

 

Figure 48: Genomic view of first two exons of Ew_NG3 and derived ORF predicted by Ribo-seq and detected in 

mass spectrometry (NG3:0:356). From top to bottom: Ribo-seq P-sites for EwS cell lines, colored by frame (0: 
red; 1: green; 2:blue); RNA-seq in A673; nucleotide sequence; transcript annotation; predicted ORF. Peptides 
highlighted in red are detected in mass spectrometry. 
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Altogether, while quantification levels are - as for Ribo-seq - moderate compared to known proteins, 

proteomics confirms that neotranscripts can be translated into peptides. Moreover, finding evidence for 

the same translated ORF in Ribo-seq and MS is very significant and adds confidence to these results. Since 

Ribo-seq and MS are both techniques more suited to detect products of highly translated protein-coding 

genes, it is a very promising result that we can already find signal for the translation of neotranscripts in 

this data, considering that other neotranscripts may also be translated at lower levels and may not have 

been detected by these techniques.  

As this work on neotranscripts has been submitted to a peer-reviewed journal, I reproduce the manuscript 

in Annex 2. 

 

From neotranscripts… to neoantigens? 
 

Since neotranscripts can be translated into peptides - at least in EwS -, it is legitimate to further ask whether 

these “neopeptides” may be presented by the MHC complex at the cell surface and recognized by the 

immune system as neoantigens. As discussed previously, this would be of high translational significance for 

the design of immunotherapies, not only in EwS but also in all other cancers harboring potentially translated 

neotranscripts. 

This is the reason why several experiments are currently undergoing in our team to characterize: 1) the 

ability of the MHC complex to present neopeptides to the immune system, and the ability of T lymphocytes 

to recognize them and mount an immune response following this recognition (MHC tetramer assays); 2) 

the potential presence of naïve T lymphocytes able to recognize and respond to such neopeptides in blood 

of healthy patients; 3) the potential presence of memory T lymphocytes that recognize neopeptides in 

blood of EwS patients, as a proof of their previous encounter with neopeptides. Using a commonly used 

software to predict peptide affinity for binding to the MHC-I complex (NetMHCpan 4.1107), I estimated that, 

in EwS only, there were 4355 potential peptides predicted to be strongly bound to the MHC-I HLA-A2 allele 

(the most widespread allele in the European population). We cannot of course test all these peptides; the 

Ribo-seq and proteomics data have enabled us to choose the best candidates for these immunology 

experiments, including the ORF from Ew_NG3 that was detected independently both in Ribo-seq and MS 

experiments. 

If we find convincing evidence that neopeptides derived from neotranscripts can indeed be recognized as 

neoantigens and stimulate an immune response against tumor cells in lymphocytes, these could be used as 

targets for immunotherapies such as cancer vaccines108,109, adoptive cell therapy with chimeric antigen 

receptor (CAR)- or TCR-T cells110 or bispecific antibodies111, with potential application in multiple types of 

sarcomas. 
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Transcriptomic characterization of sarcomas and 

microenvironment at the single-cell level 

 

Introduction 
 

Up to now I have focused on RNA sequencing of bulk tumor samples for characterization of tumor cells and 

their microenvironment, however it is inherently impossible to assign measures obtained in bulk samples 

to a specific cell population, let alone a single cell. Multiple methods have thus been developed to 

computationally “deconvolve” the signal obtained in bulk experiments into the contributions of different 

cell populations composing the bulk sample, such as MCP-counter37 discussed previously. While these 

methods certainly perform well in many cases, with rigorous benchmarking performed in studies involving 

controlled experiments of mixing pure cell populations in vitro or in silico112, it is not possible to evaluate 

their results in comparison to “gold-standard” references when considering tumor samples.  

In recent years, this technical difficulty has been successfully overcome with the advent of single-cell 

technologies that allow the isolation of single cells and identification of their material (DNA113, RNA114, even 

proteins115 and multiple modalities in the same cell116,117). Most of these techniques rely on ingenious 

barcoding systems to conserve the information of the cell-of-origin of each single measurement118,119. The 

most advanced of single-cell technologies is single-cell RNA-seq (scRNA-seq): multiple experimental 

protocols are available, with varying throughput in numbers of cells, depth of sequencing per cell, or read 

length (full-length120,121 or 3’/5’-end). One of the most widely used methods for scRNA-seq is the Chromium 

platform developed by 10x Genomics (https://www.10xgenomics.com/), which is based on droplet 

isolation of single cells, barcoding of single cells and high-throughput sequencing of the 3’-end of transcripts. 

 

Single-cell RNA-seq of sarcomas at the Institut Curie 
 

Single-cell RNA-seq has already widely been applied to the study of tumor samples122–126, to characterize 

the different populations of tumor cells and the tumor microenvironment at single-cell resolution. While 

some protocols can be applied on frozen tissue samples, the best experimental quality is obtained with 

rapidly processed fresh tumor tissue127: this may constitute an important limiting factor for the study of 

clinical samples of patients. However, we have the advantage in Institut Curie of being a reference center 

for sarcomas; we are especially home to one of the most active surgery departments for soft-tissue sarcoma 

in France. In collaboration with our surgeons (Sylvie Bonvalot, Dimitri Tzanis), we have thus been able to 

launch a project named “SingleSARC” (led by Sarah Watson; experiments performed by Nadège Gruel) to 

characterize by scRNA-seq some types of sarcomas that are resected at the Institut Curie, in order to better 

characterize their tumor microenvironment and decipher the different tumor cell populations.  

Since scRNA-seq is costly and requires fresh tissue, it is not currently possible to profile large numbers of 

patients by this technique. Moreover, sarcomas are relatively rare diseases and surgical samples are 

precious. To account for these limiting factors, we decided to concentrate our attention on a type of adult 

soft-tissue sarcoma named dedifferentiated liposarcoma (DDLPS).  

Dedifferentiated liposarcoma (DDLPS) 
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This is one of the most frequent sarcomas in adults. As its name implies, this tumor has some characteristics 

of, and is thought to be derived from, normal adipose tissue. Indeed, so-called “well-differentiated” 

liposarcoma is composed of tumoral adipocytes with a macroscopic appearance of fat tissue. DDLPS is a 

subtype of liposarcoma128, which further includes other subtypes such as pure well-differentiated 

liposarcoma (WDLPS), pleomorphic liposarcoma and myxoid liposarcoma. While this last subtype is a 

translocation-related sarcoma (it was studied in the neotranscripts project), DDLPS and WDLPS are 

molecularly characterized by a driver genomic alteration - chromosome 12q amplification - with 

overexpression of corresponding genes in the amplicon, notably MDM2 and CDK4.   

WDLPS is thus composed of tumoral “adipocytes” with chromosome 12q amplification; it is a slow-growing 

tumor that is usually located in the abdominal cavity and can measure up to tens of centimeters at diagnosis, 

since its slow-growing pace and location do not usually cause any symptoms apart from progressive 

abdominal diameter growth – often confused with physiologic weight gain. This is a relatively benign tumor, 

which does not metastasize and can be cured by surgery129. 

However, an intriguing phenomenon sometimes occurs in WDLPS: the appearance of one or multiple areas 

of undifferentiated tumor cells also displaying the 12q amplification, classically designated as 

“dedifferentiated” contingents inside the initially pure WDLPS. As soon as this “dedifferentiated 
compartment” appears, the tumor is classified as a “dedifferentiated liposarcoma” (DDLPS). Thus, there is 

a very close relationship between these two subtypes of tumors, since DDLPS seems to arise on a 

background of WDLPS. In fact, the sharing of a same molecular driver alteration (12q amplification) and 

their invariable temporal succession suggest that WDLPS and DDLPS are probably more two different stages 

of a same disease process than two separate entities. The term “dedifferentiation” precisely assumes that 

the undifferentiated cells of the dedifferentiated compartment are originating from the well-differentiated 

tumoral adipocytes, however this has never been demonstrated.  

Finally, DDLPS is also one of the few sarcoma types to have shown promising responses to anti-PD1 

immunotherapy12. Altogether, adding to the fact that DDLPS is one of the most operated sarcomas in 

Institut Curie, we decided to focus on DDLPS for our scRNA-seq studies, to explore the tumor 

microenvironment in light of the potential responses to immunotherapy, and to decipher the molecular 

underpinnings of the relationship between well-differentiated (WD) and 

undifferentiated/“dedifferentiated” (DD) cells, notably the putative dedifferentiation of WD cells into DD 

cells.   

 

Single-cell RNA-seq of DDLPS 
 

The experimental protocol was as followed: as soon as a DDLPS tumor was resected by the surgeon, it was 

sent to the pathologist who selected two samples for scRNA-seq: one from the WD compartment and 

another from the DD compartment. These samples were then processed by Nadège Gruel with cell 

dissociation and scRNA-seq using the 10x Genomics Chromium platform (chemistry version 3). In total, we 

profiled more than ten DDLPS tumors in this way. However, due to different technical issues (notably 

pathologists eventually refuting the diagnosis of DDLPS, or scRNA-seq failure on one or two samples of the 

same tumor), we only focused in the end on four different tumors (eight samples) that were of high quality 

and came from pathologically confirmed DDLPS. I performed all bioinformatics analyses of the scRNA-seq 

data generated by this project. 

In parallel with the development of experimental protocols for scRNA-seq, a myriad of methods have been 

developed for the analysis of the high-dimensional data that result from these experiments130,131. As a 

simple calculation shows, while one sample of bulk RNA-seq can be represented by a vector of tens of 

thousands of entries, one single dataset of scRNA-seq is composed of a set of thousands of such vectors 
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(one per individual cell). This multiplication of data points has catalyzed the development of novel methods 

of analysis; it has also stimulated the widespread adoption in modern computational biology of techniques 

from machine learning and even deep learning, that can only be used with sufficiently large high-

dimensional datasets3,132.  

This richness of data comes with many opportunities but also many potential pitfalls. This is moreover 

complicated by the high sparsity of the single-cell data: due to the necessarily incomplete sequencing of all 

transcripts in each single cell, especially in low sequencing depth protocols such as 10x, most of the entries 

are equal to zero (“dropouts”133) in the resulting count matrix. 

With these caveats in mind, many aspects of cancer biology can nonetheless be explored and precisely 

characterized with scRNA-seq: 1) the composition at single-cell level of bulk tumor tissues; 2) the study of 

transcriptomic profiles of different cell types and states, of tumor cells and the microenvironment; 3) the 

relationship between cell types and states such as differentiation “trajectories”; 4) the gene regulatory 

networks within, and cellular interactions between cells in the tumor sample. 

I will now detail the bioinformatics analyses that I performed on these DDLPS scRNA-seq samples. 

 

Analysis of single-cell RNA-seq 
 

As there are literally hundreds of computational methods available to perform analyses in scRNA-seq 

(stating that currently about one new tool is published every day should not be too far from reality134), I 

inevitably tested a lot of them during my thesis, but I chose those that I used in the end based on the 

following criteria: open-source, easy-to-use, widely used tools with good documentation available and a 

broad user community. I only used less well-known and more specialized tools in cases of more complicated 

or field-specific analyses (such as gene regulatory network inference), I also chose an alternative tool for 

some analyses if the commonly used tool showed obvious limitations.  

Since we used the 10x Genomics platform to perform experiments, I chose to use the dedicated Cell Ranger 

software to preprocess the raw data, as advised by 10x Genomics and performed by most users of this 

platform. This preprocessing step is designed to generate the count matrix for a scRNA-seq sample, basically 

by mapping reads to the 3’-end of reference transcripts, and using the barcode associated to each read to 

assign it to its single cell of origin in the experiment. An “UMI” (unique molecular identifier) tag attached to 

each read moreover allows to identify PCR duplicates and thus avoids multiple quantification of the same 

read. To be more specific, a read is not assigned to a single “cell” but to a single “droplet”, since this 

technology is based on isolating single cells inside droplets before sequencing their RNA. While one droplet 

is ideally only containing one single cell, it is possible and indeed happens that one droplet contains in fact 

more than one cell (so-called “doublets” for two cells in the same droplet), or no cell at all (“empty 
droplets”). In these cases, the specific barcode assigned to the droplet will be associated to either two or 

more different cells, or no cell at all (“empty droplets” contain only “ambient” RNA that may have been 

enclosed inside the droplet during the experiment). A first step in the processing of scRNA-seq data is thus 

to discard these barcodes corresponding to “empty droplets”: they contain a significantly lower number of 

reads per barcode, and are discarded by a dedicated well-performing package called “EmptyDrops”135 that 

is implemented inside the Cell Ranger command-line tool that I used. 

Method: Single cell RNA-seq raw base call (BCL) files were demultiplexed and converted into FASTQ files by 

using the 10X Genomics Cell Ranger pipeline (v3.0.2) “mkfastq” command. FASTQ files were then processed 

with the Cell Ranger “count” command to perform quality control, barcode processing, and single-cell gene 

counting. Sequencing reads were aligned to the GRCh38 human reference genome (v3.0.0 Cell Ranger 

index). 
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After this first step of preprocessing, the dataset consists of a count matrix in which each line is a gene (also 

called a “feature”) and each column is - normally - a single cell (more rigorously it is a single droplet, so it 

could still be a “doublet”, whereas “empty droplets” have normally been filtered out in the previous step). 
Before further downstream analysis, there are some quality controls that have to be performed, in order 

for instance to filter out problematic low-quality cells, or filter out genes not expressed in the sample to 

facilitate computation. I chose to perform all these downstream analyses with Seurat 

(https://satijalab.org/seurat/), which is currently the most widely used package in the community for this 

type of analyses. 

First, one usually wants to discard genes (features) that are very lowly or not at all expressed in the dataset, 

in order to reduce the number of lines of the - already huge - count matrix. This is usually done by fixing a 

minimal threshold for the number of cells expressing one feature, for instance one may discard all features 

that are not expressed in more than 3 cells in the dataset (there are usually thousands of cells in one 

experiment). Then, it is common practice to filter out cells that do not show proper quality criteria (“low-

quality cells”), such as cells that have very low RNA content or few expressed features. For instance, a 

commonly used filter is to discard all cells that have less than 200 expressed features (an expressed feature 

has non-zero expression). This criteria of number of expressed features is sometimes also used to discard 

cells which display a high value for this parameter, the assumption being that “cells” with too many 

expressed genes may correspond to “doublets”. However, the number of expressed genes is known to be 

highly variable between different cell types: there is thus a risk of discarding some cell populations that 

truly display an “outlier” distribution of higher number of expressed genes130. To account for this, I chose 

not to use this filter based on the higher end of number of expressed genes. Finally, it is known that “dying” 
cells - including cells damaged by the experimental protocol - release a lot of mitochondrial transcripts in 

the droplet, so it is also common practice to discard all cells showing a higher proportion of mitochondrial 

reads. However, this proportion can also vary with the underlying biology of the cell130, for instance cells 

relying on a high amount of oxidative phosphorylation for energetic purposes (e.g. cardiomyocytes) display 

a very high proportion of mitochondrial reads and may be filtered out if not accounting for this biological 

variability. As we did not know a priori what proportion of mitochondrial reads was to be considered normal 

in DDLPS samples, and considering that this parameter may vary according to underlying biology, I chose to 

fix a filtering threshold based on visual appreciation of the distribution of mitochondrial read proportion in 

all cells of each experiment. Outlier cells with proportion of mitochondrial reads higher than this threshold 

were then discarded. 

As a more general comment on quality control analyses and filtering procedures in scRNA-seq, there are no 

agreed gold-standard criteria for these130, since every experiment can be different in terms of protocol, cell 

populations and other technical or biological factors. In fact, one constant in computational analysis of 

biological data is the need to “correct” for technical artefacts of the experimental assay, without “erasing” 

true underlying biological variability that may itself masquerade as a technical artefact. Indeed, unraveling 

technical from biological variability is often challenging and sometimes impossible. This issue of trade-off 

between technical “correction” and “conservation” of biological variability is particularly exacerbated in 

scRNA-seq, as will be discussed later for data integration. In the case of filtering, one must find the correct 

balance between throwing out real technical artefacts (low-quality cells and doublets) and true biologically 

outlier cells (for instance cells with intrinsically lower or higher RNA content). This explains why filtering 

procedures used in the literature are often dependent on results of quality control analyses and vary 

according to the specific experiment analyzed; they are data-driven and adaptive procedures. 

Unfortunately, it does not facilitate comparison and reproducibility of analyses, so I tried as much as 

possible to conserve the same preprocessing steps for all my analyses after assessment of quality control 

analyses, and to use commonly used criteria from the literature. I also chose to follow this rule, which is of 

course debatable and reflects my own  “philosophical” stance for this: I preferred not to apply too stringent 

criteria for filtering cells out, in order to be able to recover potentially interesting rare populations that may 
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be of biological significance, with the risk of keeping truly technical outlier cells (for instance “doublets” or 
lower-quality cells), since these problematic cells can generally be detected and accounted for in the 

downstream steps. To say it differently using the previously discussed framework of “technical 
correction/biological conservation” trade-off, I favored conservation of biological variability at the expense 

of technical correction, assuming that technical artefacts can still be figured out at a later point in the 

analysis, while true biological signal cannot be recovered after having been erased during preprocessing. 

Method: Downstream analysis was conducted using Seurat (https://satijalab.org/seurat/) (v3.1.4) in R 

(v3.5.1). Cells with fewer than 200 features, and features expressed in less than 3 cells, were filtered out 

(standard default filters in Seurat). Cells with a high proportion of mitochondrial reads (threshold varying 

between 15 and 30% based on the distribution of mitochondrial reads in each sample) were filtered out. 

Both sample (WD and DD) count matrices were merged with the function “merge”. 

A specific step in the analysis of DDLPS samples is due to the fact that we have each time profiled two 

samples from the same tumor, so that there are two count matrices per tumor. Since both samples come 

from the same tumor of the same patient, were resected and processed at the same time under the same 

experimental conditions, the so-called “batch effect”136 between different scRNA-seq samples is minimal; 

this is the reason why I chose to perform all downstream analyses on a “merged” matrix for each patient 

(using the “merge” function in Seurat) which is simply the concatenation of the two count matrices without 

any mathematical transformation of the counts to account for a potential batch effect (as opposed to data 

integration discussed in a next section).  

After having filtered out lowly expressed genes and low-quality cells from the count matrix, a usual 

downstream step is “normalization” to account for variable sequencing depth in each single cell; one 

common method is the “log-normalization” of counts (essentially a normalization by the total number of 

reads in each cell and a log-transformation with a pseudocount of 1 to avoid negative infinite values). 

Another usual step is designed to further reduce the dimension of the matrix, specifically by discarding 

genes with supposedly no relevant biological information that may increase technical noise in the analysis 

and overburden the computation. To do this, we retain only the most variable genes – assuming these are 

the ones that are most likely to contain biological “information” - in the matrix based on their variance 

across all cells, after correcting for mean-variance bias with a variance-stabilizing transform.  

While log-normalization has been the most widely used normalization method from the beginning of 

scRNA-seq data analysis, it has recently been shown to have limitations137,138, especially because of the 

“pseudocount” that is added to the majority of zero counts present in the matrix so as to avoid negative 

infinity log-normalized values. Indeed, this may lead to skewed results in downstream analyses, notably 

falsely called differentially expressed genes due to sequencing depth variability. To avoid these pitfalls, 

multiple alternative methods have been developed, including GLM-PCA139 and the sctransform140 method 

of Seurat. This last method is based on a regularized negative binomial regression of counts and was shown 

in benchmarking to avoid the main pitfalls of log-normalization; it is currently one of the most widely used 

methods in the literature. I therefore chose to use this method for normalization, which is implemented in 

the “sctransform” function of Seurat. This function also selects the 3000 most variable features and scales 

the data for downstream processing. 

Method: Normalization was performed using the Seurat function sctransform (v0.2.0). 

We thus end up with a matrix containing normalized counts of 3,000 most variable features for filtered cells 

(usually between 3,000 and 10,000 per experiment). Though 3,000 is much fewer than the initial > 20,000 

features, it is still too large a number for most methods of data analysis, which have difficulty to scale and 

avoid the curse of dimensionality at such a high number of dimensions141. Usually, the matrix is therefore 

once again reduced, often with a commonly used linear dimensional reduction technique: PCA (described 

in the first part of my thesis). This allows one to drastically reduce the number of features in the matrix by 

decomposing the transcriptomic space into major axes of variation that are linear combinations of the initial 
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features (principal components, PCs). While PCA can calculate as many PCs as there are of features (3,000 

in this case), a choice has to be made for the number of PCs to be kept for downstream analysis; keeping 

too few may erase important biological signal, while retaining too many may in the contrary decrease the 

signal-to-noise ratio. There are a number of more or less sophisticated methods to choose an “optimal” 
number of PCs, for instance the “JackStraw” procedure in Seurat which evaluates statistically the 

significance of each PC using permutations of the data118. In contrast, a commonly used and less time-

consuming method is the “elbow” rule, which is based on the plot of the percentage of variance explained 

by each PC ranked in decreasing order of value: the observer chooses the number of PCs at the point of the 

graph which makes an “elbow”, i.e. where the percentage of variance explained by adding more PCs drops 

down and levels off at near-zero values. This heuristic method is unfortunately subject to bias and variability 

between users. To keep in line with my previously detailed “philosophical” stance of analysis, I chose to 

keep the first 50 PCs for each analysis, since this number is generally higher than for the “elbow” method, 

and therefore minimizes the risk of losing rare populations. Conversely, it is not too large and avoids the 

accumulation of unwanted noise as well as the curse of dimensionality. Finally, this number may be 

arbitrary but it is the same in all my analyses; it is also within the range of recommended number of PCs to 

use with the sctransform method. 

The rest of the analysis is thus performed on a reduced matrix of only 50 dimensions, which is well suited 

to most mathematical tools and avoids the curse of dimensionality. One common and useful step is 

designed to visualize the global structure of the data: for this we can use non-linear dimensional reduction 

methods such as t-SNE53 and UMAP54 to project the 50-dimensional PCA space into human-friendly two-

dimensional representations. 

Method: UMAP was performed with the function “RunUMAP” on 50 principal components after “RunPCA”. 

As an example, the UMAP representation of the scRNA-seq data of a DDLPS patient is plotted in Figure 49, 

in which each sample origin (WD and DD) is colored differently. 

 

Figure 49: UMAP plot of a DDLPS tumor, colored by sample origin (WD and DD). 
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Regarding this first UMAP plot we can make several observations: 1) There are multiple distinct “clusters” 
of cells; 2) the distribution of these clusters between WD and DD samples is different, with some clusters 

present in both samples, whereas others are predominantly found in only one compartment of the tumor.  

To formally segregate cells into so-called “clusters” that should represent groups of cells with a 
homogeneous transcriptomic profile, many clustering methods can be used for single-cell analysis. The 

most commonly used is based on so-called “graph clustering”, i.e. inferring clusters from the graph of 

nearest neighbors in the transcriptomic space (which is usually reduced to the PCA space to avoid the curse 

of dimensionality, i.e. all distances are nearly equal when the number of dimensions of the space is too 

large). The algorithm used by default in Seurat is the Louvain clustering algorithm142. One important 

parameter when performing clustering is the “resolution”: as its name implies it controls the “granularity” 

of the clusters that are defined by the algorithm. It is in some way related to the height of the horizontal 

line that can be drawn on a hierarchical clustering plot to determine the number of clusters. The number 

of clusters is higher (respectively lower) by increasing (respectively decreasing) this parameter; it is a 

supervised parameter that has to be chosen by the user. To avoid too much bias (there is once again no 

gold-standard for the “optimal” resolution), I consistently used 0.6 as the resolution value, which is a 

standard choice in many contexts, and only changed this parameter if downstream biological interpretation 

of clusters justified either higher (to refine the clustering of some cell populations) or lower (to merge two 

similar cell populations) resolution. 

Method: The nearest-neighbor graph was calculated using the “FindNeighbors” function in the PCA 50-

dimensional space. Then clusters were inferred using the “FindClusters” function with resolution 0.6. 

 The clusters found in the same tumor presented above are plotted in Figure 50. 

 

Figure 50: Clusters found in a DDLPS tumor. 

 

Biological interpretation of results 
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Using this analysis pipeline, there are thus 22 different clusters in this DDLPS tumor. The next step in the 

analysis is to assign a biological identity to each one of these clusters. For this, there are multiple ways to 

proceed, and often they are complementary. On one side, one can use prior biological knowledge to “guess” 
the identity of the different cell populations in the sample: for instance, by plotting on the UMAP the 

expression of some known “marker” genes of pre-defined cell populations (e.g. CD3G and CD3D for T 

lymphocytes), and thus searching for them in a supervised way. On the other side, one can first calculate 

for each cluster the differentially expressed genes as compared to other cells in the sample, in order to 

derive a list of “marker genes” that may inform on the identity of the cluster. Finally, one can use automatic 

methods that have been developed recently143–145: they generally take advantage of large reference 

datasets containing transcriptomic profiles (single-cell or bulk) of known cell populations, and by comparing 

either marker genes or whole transcriptomes, try to infer the identity of each single cell (or cluster) in the 

data by finding the “nearest neighbor” in the reference cell populations. 

In our case, we can already make good guesses at the cell populations present in the sample: notably tumor 

cells, which in DDLPS show overexpression of the genes MDM2 and CDK4 due to the canonical 12q 

amplification. Indeed, we rapidly identify their presence on the UMAP by plotting the normalized expression 

value of these genes (Figure 51). A complementary criterion to confirm the identity of DDLPS tumor cells is 

their genomic profile, which can also be inferred from scRNA-seq (see Inference of copy number alterations 

at the single-cell level).  

 

Figure 51: MDM2 expression in the DDLPS tumor. 

 
Besides tumor cells, we also expect cells of the tumor microenvironment – cells of the immune system, 

endothelial cells, pericytes, etc - to be present in this whole tumor sample, since we did not perform any 

experimental selection of cells before scRNA-seq (in contrast, many studies focus on specific cell 

populations by isolating them using e.g. flow cytometry before performing scRNA-seq). Using manual 

exploration (plotting of marker genes, curation of differentially expressed genes) and helped by an 

automatic annotation procedure (SingleR143), I annotated the different clusters as in Figure 52. 
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Method: Lists of marker genes (differentially expressed genes versus all other clusters) for each cluster were 

generated with the function “FindAllMarkers” using the default Wilcoxon’s test. SingleR (v0.2.2) was used 

to calculate the most probable cell identity for each cell with use of Human Primary Cell Atlas bulk RNA-seq 

as reference data. 

 

Figure 52: Cluster annotations for the DDLPS tumor. RBCs: red blood cells. 

 
By comparing with Figure 49, we can observe that: 1) tumor cells are separated into two distinct groups of 

cells (clusters 3-6 on one side and cluster 8 on the other); 2) tumor cells originating from the WD 

compartment are all part of one of these groups (clusters 3-6), while those from the DD compartment 

constitute all cells of cluster 8, but can also be present in cluster 6; 3) most cells of the microenvironment, 

especially cells of the immune system, are for the major part localized in the DD compartment of the tumor. 

 

Inference of copy number alterations at the single-cell level 
 

As mentioned previously, DDLPS tumor cells carry a 12q amplification, and it is possible using dedicated 

tools to infer computationally a single-cell copy-number profile from gene expression (scRNA-seq) data. 

Several methods exist, including HoneyBadger146 which is based on an Hidden Markow Model (HMM), and 

inferCNV (https://github.com/broadinstitute/inferCNV), which is one of the most commonly used and that 

I chose to perform. Basically, inferCNV assigns copy-number alterations (such as gains or deletions) by 

comparing the combined expression of sliding windows of a hundred genes across all chromosomes 

between cells of interest and “reference” cells that are supposed to have a normal “flat” genomic profile: 

global overexpression (underexpression respectively) of a gene window leads the algorithm to infer a gain 

(deletion respectively) at this genomic location. For this tumor, I used T lymphocytes from the same sample 

as reference cells to infer the copy-number profile of the tumor cell clusters. The result of inferCNV for the 

same DDLPS tumor is displayed in Figure 53. 

Method: inferCNV (v0.8.2) was run on the filtered count matrix with default parameters, using normal 

stromal cells (T lymphocytes here) as reference cells and tumor clusters as query cells for the algorithm. 
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Figure 53: Inferred CNV profile of DDLPS tumor cells. Clusters are numbered as in Figure 50. Chromosomes are 
ordered from 1 to 22, X and M. 

 

From the inferred CNV profile, we can clearly see the 12q amplification that is present in tumor cells 

(clusters 3, 6, 8). The 6p loss is an artefact due to the overexpression of the HLA locus at this site in reference 

cells (lymphocytes). We also observe other copy-number alterations that are either shared by all tumor 

cells (clonal) or private to some cells only (sub-clonal). The main observation here - and in other patients 

(data not shown) - is that, except for some shared copy-number variations (CNVs) such as the ubiquitous 

12q amplification, WD and DD cells (here, clusters 3 and 6 versus cluster 8) generally harbor specific CNVs. 

This is in favor of the existence of different genomic profiles for these two types of transcriptomically 

distinct cells, that may thus constitute different clonal populations that have diverged at an early time point 

from a common precursor cell displaying the driver event of 12q amplification. This would corroborate 

studies using bulk whole-exome sequencing of WD and DD compartments of the same tumor, which favor 

a model of early divergence from a common precursor, with specific genetic alterations in each 

compartment147–149. However, we have to keep in mind that CNVs inferred from scRNA-seq may not be true 

genomic copy-number alterations but rather the reflection of epigenetically coordinated overexpression 

(or underexpression) of specific genomic regions as compared to the cells used as reference (e.g. the 

artefactual 6p loss mentioned previously). 
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Analyses of individual patients 
 

I will not detail in this manuscript all analyses of the four DDLPS tumors profiled for this study, since the 

main observations were largely similar in all samples. There are invariably two transcriptomically distinct 

groups of tumor cells, one exclusively composed of cells from the anatomical DD compartment, that I called 

“DD cells” (in a transcriptomic sense), and one composed of cells both from the anatomical WD (in majority) 

and also sometimes the DD compartment, which I called “WD cells” (in a transcriptomic sense). The DD cells 

have expression profiles and marker genes reminiscent of fibroblasts, whereas WD cells display a pre-

adipocytic profile (in fact, they cluster closely with normal pre-adipocytes that are found in two of the 

tumors, the main difference being the absence of the 12q amplification and associated MDM2 

overexpression in normal pre-adipocytes). In a couple of samples, we can also observe a little cluster of cells 

that have a mature adipocytic profile, but do not seem to harbor 12q amplification (though there are too 

few cells to be confident about the result of inferCNV). This confirms that adipocytes - whether normal or 

tumoral - are technically difficult to capture by droplet-based scRNA-seq due to their large size; they may 

however be profiled more easily by single-nucleus RNA-seq after disruption of the cell membrane150. 

Besides these common observations, I noticed an interesting variation in the DD cells of the fourth patient 

(patient ID 0504583): next to the “classical” fibroblast-like cells, there were two clusters with differing 

characteristics. One of them expressed desmin (DES) - a classical marker of smooth muscle cells - as a top 

marker gene, while the other expressed in abundance multiple keratins (KRT), similarly to a classical 

keratinocyte (Figure 54: “Tumor cells_DD_DES” and “Tumor cells_DD_KRT”). These two clusters were 

tumoral as inferred from their CNV profile but displayed some subclonal alterations as compared to the 

other fibroblast-like cells (Figure 55). This observation is consistent with what is known from the pathology 

of DDLPS: so-called “dedifferentiated” cells are classically spindle-cell shaped like fibroblasts, however there 

is sometimes the presence of smooth-muscle-like or keratinizing compartments. This may be due to the 

fact that “dedifferentiated” cells are probably phenotypically closer to the normal stem cell of adipogenesis 

and thus display more propensity to acquire alternative differentiation characteristics. Finally, we can also 

observe in this patient that one of the clusters besides all the other WD tumor cell clusters is in fact non-

tumoral, since it does not display the 12q amplification (Figure 55), and corresponds to normal pre-

adipocytes, confirming the close proximity of WD tumor cells to normal adipocyte progenitors. 
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Figure 54: Annotated clusters in another DDLPS tumor. RBCs: red blood cells. 

 

 

Figure 55: Inferred CNV profiles of the DDLPS tumor cells in Figure 54. Endothelial cells and pericytes were used 
as reference cells. A cluster within the WD tumor cells is not displaying the 12q amplification and corresponds to 
non-tumoral pre-adipocytes. 

 

For the tumor microenvironment, all patients show the same trends: cells of the immune system are found 

predominantly in the DD compartment, and differential expression analysis reveals a more “exhausted” 
phenotype of T lymphocytes151, as well as an enrichment in “M2” (anti-inflammatory, pro-tumoral) 

macrophages152 in the DD compartment as compared to the WD compartment. 

 

Data integration 
 

All these analyses were performed in individual tumors, however it would be interesting to analyze in a 

joint manner all patients, in order to facilitate the assessment of common characteristics of all patients as 

well as inter-patient heterogeneity. This would also increase statistical power by augmenting the number 
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of cells in common cell populations, potentially even allowing some clusters of rare populations to be 

defined. This “integration” of scRNA-seq datasets is not a trivial issue and can rarely be performed 

satisfactorily by a simple “merge” of count matrices (one counter-example is the integration by “merge” of 

the WD and DD samples from the same patient that I detailed previously, in the virtual absence of “batch 
effect”). Indeed, scRNA-seq is highly sensitive to the so-called “batch effect”, which is a term encompassing 

all technical covariates that may influence the generation of the final count matrix, independently of real 

“biological” signal. Multiple methods have been developed to address this data integration challenge131,153 

and evaluate batch correction154,155 in scRNA-seq; the objective is to correct for technical “batch effect” and 
conserve biological variation. Once again, we can think of this in terms of the previously discussed general 

trade-off between “technical correction” and “biological conservation” of signal. However, this issue is 

much more complicated for scRNA-seq than in classical “batch-correction” for bulk RNA-seq, which can 

often be addressed with linear models156. In scRNA-seq, batch correction requires in most cases non-linear 

methods, in order to account for technical variation at the level of genes but also of single cells, that 

depending on their cell type may be more or less affected by technical covariates between experiments. 

This is the reason why the best-performing methods in the literature are complex non-linear methods155,157–

160 that generally try first to identify common cells between experiments (using for instance “mutual nearest 
neighbors”161 in transcriptomic space) and use this information to correct the count matrix in a cell-specific 

way, in order to align together cells that are inferred to be similar across datasets.  

One very important assumption of these methods though is that there exist some common cell types 

between the datasets to be integrated: indeed they will then try to identify these, before using them as 

“anchors” (to talk with the terminology of Seurat) in order to align different datasets onto the same 

transcriptomic space (for instance using canonical correlation analysis, CCA)162. In the case of normal cells - 

which are generally similar from one person to another - these methods perform correctly: e.g. cells of the 

immune system are commonly used for benchmarking and relatively easily integrated using these 

methods155. However, this assumption is not so obvious in the case of tumor samples. Indeed, tumors from 

different patients, even if they are from the same tumor type, often contain specific alterations that may 

confer them patient-specific transcriptomic profiles: in fact, it is generally the case that simply “merging” 
scRNA-seq datasets of tumors from different patients shows clustering of microenvironment cell 

populations by cell population (independently of patient origin), while tumor cells cluster separately by 

patient123,125 (cf below in DDLPS). These methods of integration can thus reasonably be used only if we 

assume that at least some of the tumor cells are similar between different patients, so that the method can 

identify these similar cells and use them to align datasets and enable integrated analysis. If this assumption 

turns out to be false, there is a risk that the method falsely “aligns” datasets that are not truly similar. 

Indeed, since the method is defining “common” cells (“anchors” in Seurat) as “nearest” cells - in relative 

distance - between datasets, these “common” cells may in fact be biologically different (in absolute 

transcriptomic distance) but still be aligned together since they are - relatively - nearer each other when 

compared to other cells in the data. In other terms, there is a risk of “over-correction”: correction of 

technical batch effect (“alignment” of datasets) is also erasing true biological variability (grouping different 

cells in “common”): one has once again to find the right balance between these two factors. 

To perform integrated analysis of all DDLPS patients, I decided to use several of the currently best-

performing and most widely used methods, in order to compare different approaches and assess the 

resulting integrations; I assumed that each method had downsides, but using several may allow them to 

compensate for each other’s failings and add to the robustness of results if they were reproducible across 

methods. Indeed, I was particularly keen at avoiding “over-correction”, so as not to erase biological 
variability that might be present between patients. To this end, I tried first to be very thorough in the 

exploration of the individual datasets, in order to have good prior knowledge of what “should” be a 

reasonable integration. To be more specific, a good annotation of the individual datasets allows one to 

evaluate in a critical way how the integration procedure performs in “gluing” together identical populations 
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and leaving apart rare and patient-specific populations. This last point is particularly critical to avoid “over-

correction”, where non-overlapping cell types are “glued” together. This way of proceeding may seem 

circular because the “reference” is manual annotation of clusters in individual datasets, however since there 

is no gold-standard of integration especially for tumor cells163, I thought it was a reasonable way to evaluate 

integration. In these datasets, I notably focused on some patient-specific clusters: for instance the keratin-

high and desmin-high DD cells of the fourth patient, as well as rare cell populations from the 

microenvironment, such as some neurons and testis cells that were found in one patient (DDLPS_1819409), 

whose tumor had developed inside the testis. 

I compared four methods of data integration: the first one was not strictly speaking “integration” but simple 

“merging” of datasets, in order to have an idea of the intensity of the “batch effect” between patients, 

notably between cells of the microenvironment that are not supposed to be very different between patients, 

as opposed to tumor cells that usually cluster by patient123,125. The second method was Harmony158, a PCA-

based approach that learns a simple linear cell-specific adjustment function. The third was the method 

developed by the Seurat team using identification of “anchors” and alignment of transcriptomic space using 

CCA157. The fourth was reciprocal PCA (RPCA)164, a method also developed by the Seurat team, that was 

specifically designed to attenuate the “over-correction” known to occur sometimes with the classical Seurat 

integration method: in essence it is the same procedure beginning with identification of “anchors”, but CCA 
is replaced by reciprocal PCA that represents a more conservative approach where cells in different 

biological states are less likely to “align” after integration. 

Methods: 1) Merge: All individual filtered count matrices were merged with the function “merge”. As 

“sctransform” has not been validated for the merging of samples, I used the standard normalization 

workflow in Seurat, i.e. log-normalization with “NormalizeData”, selection of most variable features by 

“FindVariableFeatures” (method “vst”, variance-stabilizing transform), scaling of data with “ScaleData”. 

PCA was then applied with “RunPCA”, and UMAP was calculated by “RunUMAP” based on 50 PCs. 2) 

Harmony: As Harmony has not been designed to work with sctransform, I used the standard normalization 

workflow of Seurat as detailed in 1) and used Harmony (v1.0) on the first 50 PCs of the resulting merged 

Seurat object. UMAP was then calculated by “RunUMAP” based on 50 Harmony components. 3) Seurat 

integration with anchors: using the individual Seurat objects preprocessed with “sctransform”, integration 

features were selected with “SelectIntegrationFeatures”, preparation of integration was done with 

“PrepSCTIntegration”, anchors were found with “FindIntegrationAnchors” (dims = 1:50, normalization 

method = “sct”), and data was integrated using “IntegrateData” (dims = 1:50, normalization method = “sct”). 
PCA was then performed on the integrated matrix with “RunPCA”, and UMAP was calculated by “RunUMAP” 

based on 50 PCs. 4) Reciprocal PCA (RPCA): the workflow is the same as for 3), except for the function 

“FindIntegrationAnchors” which is run with reduction = “rpca”. 

To visually assess the different integration results in this manuscript, I will plot below for each method the 

resulting integrated UMAP split by individual patient and annotated by cluster names of the individual 

datasets. In this way, one can see if cells from different patients characterized by the same original cluster 

annotations are localized together in the integrated UMAP. I apologize for the crowded nature of some 

cluster annotations, but I will try to guide the reader and convey the main messages of each plot in the text. 

Figure 56 shows the “merge” of all patients. Unsurprisingly, tumor cells cluster by patient and do not overlap 

in the UMAP. However, cells of the microenvironment cluster by cell type, which is reassuring for the 

confidence in the original individual annotations and also a sign that the “batch effect” is probably not very 

important between these four experiments. 
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Figure 56: Merge of all four DDLPS patients (Patient IDs: 1817604, 1819409, 1907961, 0504583). Integrated 

UMAP is split by patient, annotations are for clusters from each individual patient (preceded by their cluster 

number annotation, a suffix is added to tumor cell clusters that indicates WD/DD classification and marker 

gene(s)). TC: tumor cells; RBCs: red blood cells. 
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Figure 57: Harmony integration of all four DDLPS patients (Patient IDs: 1817604, 1819409, 1907961, 0504583). 

Integrated UMAP is split by patient, annotations are for clusters from each individual patient (preceded by 

their cluster number annotation, a suffix is added to tumor cell clusters that indicates WD/DD classification 

and marker gene(s)). TC: tumor cells; RBCs: red blood cells. 

 

Figure 57 shows the integration by Harmony of all patients: tumor cells are overlapping and do not cluster 

by patient anymore, while cells of the microenvironment also cluster by cell type. Overall, the integration 

seems to have been performed correctly by the algorithm. However, close observation suggests some 

caveats: 1) Rare cell types from the second patient (1819409, top-right) including neurons (cluster 15) and 

testis cells (cluster 21) do not form distinct clusters and overlap with other unrelated cell types; 2) In this 

same patient (1819409), the DD tumor cell (TC_DD) clusters (clusters 1, 4, 22) do not cluster with the TC_DD 

clusters of the other three patients (that together form a distinct TC_DD cluster in the top-middle of the 

UMAP) but are closer to the center of the UMAP, near the WD tumor cell clusters (TC_WD); 3) There seems 

to be an intriguing phenomenon of “centripetal attraction” that I also noticed when using Harmony with 

other datasets (data not shown): cells that are a priori more “difficult” to integrate by the algorithm tend 

to be plotted in the middle, for instance here neurons and testis cells that are rare populations only present 

in one patient. A consequence of this phenomenon is the appearance in the UMAP of central connections 

(“bridges”) between completely different cell populations, for instance here between tumor cells and T 

lymphocytes. Other clusters that seem “difficult” to integrate and get “attracted” to the center of the UMAP 

inside this “middle cloud” are some tumor cell clusters (cluster 8_TC_DD in patient 1907961, cluster 

13_TC_DD in patient 0504583) and notably the rare cluster of keratin-high DD cells in the fourth patient 

0504583 (cluster 18_TC_DD_KRT). 
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Figure 58: Seurat integration with anchors of all four DDLPS patients (Patient IDs: 1817604, 1819409, 1907961, 

0504583). Integrated UMAP is split by patient, annotations are for clusters from each individual patient 

(preceded by their cluster number annotation, a suffix is added to tumor cell clusters that indicates WD/DD 

classification and marker gene(s)). TC: tumor cells; RBCs: red blood cells. 

 

Figure 58 shows the integration using the Seurat method with anchors and CCA. Once again, the integration 

seems to be coherent with overall overlap of tumor cells and microenvironment by cell type. In comparison 

to Harmony: 1) Rare cell types in the second patient 1819409 - neurons and testis cells - are this time 

localized distinctly from the other cell types and are accurately represented as patient-specific clusters. This 

is a good indication that for this dataset Seurat seems to be better than Harmony in the conservation of 

biological information as opposed to technical “over-correction”; 2) The intriguing observation in Harmony 

about DD cells of the second patient 1819409 (they were clustering separately from other patients and 

were closer to WD cells) is not reproduced here. Using this method, all tumor cells cluster together at the 

left of the UMAP, with an approximate “gradient” from WD (top) to DD (bottom) that seems to be similar 

in all patients. My impression though is that tumor cells are more tightly clumped together and intra-

tumoral heterogeneity - notably between WD and DD clusters - is less clear than in Harmony. This may be 

a sign of “over-correction”, considering also that the two patient-specific clusters (18_TC_DD_keratin-high 

and 9_TC_DD_desmin-high) in the fourth patient 0504583 are not clearly distinct from other tumor cells; 3) 

There is no more “centripetal attraction” of some “difficult”-to-classify cells to the center of the UMAP, so 

there is no intriguing “bridge” between tumor cells and lymphocytes as in Harmony. 
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Figure 59: Integration using reciprocal PCA (Seurat RPCA) of all four DDLPS patients (Patient IDs: 1817604, 

1819409, 1907961, 0504583). Integrated UMAP is split by patient, annotations are for clusters from each 

individual patient (preceded by their cluster number annotation, a suffix is added to tumor cell clusters that 

indicates WD/DD classification and marker gene(s)). TC: tumor cells; RBCs: red blood cells. 

 

Finally, Figure 59 shows the integration using the reciprocal PCA method (RPCA) of Seurat. The overall 

picture is satisfying as well, with clustering of tumor cells and microenvironment by cell type. In comparison 

to the previous methods: 1) Rare cell types (neurons and testis cells from the second patient) form distinct 

clusters as in the Seurat integration with CCA; 2) Tumor cells are more clearly separated into WD cells (top-

right) and DD cells (bottom-left); there is also evidence of patient heterogeneity, notably DD cells from the 

second patient 1819409 are more to the right of the UMAP, while those from the fourth patient 0504583 

are at the extreme bottom-left. Interestingly, the two patient-specific DD clusters of patient 0504583 

(18_TC_DD_keratin-high and 9_TC_DD_desmin-high) form “satellite clusters” clearly distinct from the 

other DD cells in this integration. 3) There is still no “centripetal attraction” nor “bridge” between tumor 
cells and lymphocytes in contrast to Harmony. 

Overall, the main conclusions from this comparison of integration methods are: 1) Simple “merge” is 
sufficient to correctly cluster the cells of the microenvironment by cell type, however all tumor cells cluster 

by patient if no further computational integration is performed. One could argue that this method is the 

closest to “biological reality”, with conservation of “real” inter-patient tumoral heterogeneity. We cannot 

exclude some “batch effect” nonetheless, and since all patients a priori display the same disease, we can 

suppose that computational integration of tumor cells is still possible and justified. 2) The three 

computational integration methods (Harmony, Seurat CCA and Seurat RPCA) perform well overall to cluster 

tumor and microenvironment cells together by cell type: differences between methods are rather subtle in 

fact if we only concentrate on the big picture and particularly the main cell populations of the 

microenvironment. 3) For finer detail though, Harmony seems to struggle for some cell types, notably rare 
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and patient-specific cell populations. It also shows a tendency to accumulate these “difficult”-to-integrate 

cells in the middle of the UMAP, thus creating “bridges” or a “middle cloud” between non-similar cell types. 

4) In contrast, both methods from Seurat overcome this difficulty: they conserve rare cell types as distinct 

clusters and do not create a “bridge” between non-similar cell types. However, Seurat integration with 

anchors and CCA tends to clump together all tumor cells, whereas RPCA manages to conserve a degree of 

inter-patient tumoral heterogeneity which is consistent with the analyses of individual samples, notably for 

patient-specific tumor clusters. 

Altogether, while this comparison of integration methods is surely not exhaustive in terms of methods and 

parameters - the definition of the “best” integration method may moreover vary with other evaluation 

criteria -, it seems that Seurat RPCA is in this case the best method to perform integration in terms of the 

trade-off between “technical over-correction” (present for rare cell types in Harmony and tumor cells in 

Seurat CCA) and “biological conservation” of variability (“merge” also conserves biological variability but 

retains technical batch effect). More generally, I think that whichever integration method is used, this 

balance between batch effect correction and conservation of biological variability should always be 

weighed with caution. This is complicated by the fact that there is no gold-standard in cancer studies to 

correctly rate the “best” integration for tumor cells, since it is not generally known what is supposed to be 

the real “biological” heterogeneity between different tumors, in contrast to simple “technical” 

heterogeneity of batch effect. One strategy to alleviate this issue would be to minimize the batch effect by 

experimental design, for instance by processing all patients at the same time; however this is not possible 

if we are profiling fresh tumor tissue coming directly from the operating room (freezing samples and 

processing them altogether later in time could be an alternative though).  

In practice, the strategy that I would recommend to perform computational integration of tumor cells is to 

first thoroughly analyze individually each patient, in order to have a good a priori idea of the similarities 

and specificities between patients. If no similarities can be found between tumor cells of different patients 

at this stage, it would probably be better not to proceed with integration, since as discussed previously all 

integration methods rest on the assumption that common cells exist between datasets, so the results could 

be misleading by “forcing” alignment of unrelated tumor cells of different patients. If integration is 

considered possible and justified, I would recommend trying at least two methods in order to evaluate the 

consistency of the results. Indeed, one observation that is not reproduced by other integration methods 

should be subject to caution (cf the DD cells of the second patient 1819409 that were clustering near WD 

cells when using Harmony: due to some specific characteristics they were probably “difficult” to integrate 
and placed in the middle of the UMAP by Harmony). To compare between different integration results, it is 

important to focus attention on rare populations or patient-specific clusters that are more subject to 

technical over-correction. In the end, the “best” integration should be coherent with the analyses of 
individual patients and conserve biological specificities such as rare populations or patient-specific clusters. 

Of course, one could also favor one integration method based on the objective of the study: if it is only 

designed to find global similarities between patients (such as between DD and WD cells of different patients 

in DDLPS), a method which slightly “over-corrects” will not necessarily be a problem. However, if the 

objective is to study in detail inter-patient heterogeneity and find subtle differences or patient-specific 

clusters, using a method that better conserves biological variation may be the best solution.  

In the end, the comparison of integration methods also reminds us that all these methods are 

computational transformations of the data and may show great variability according to parameters and 

datasets. Therefore, one should not make hasty conclusions based on one unique analysis. For instance 

here, the integration by Harmony had localized DD cells from the second patient next to WD cells: without 

performing the other integrations - or knowing from the individual analysis that DD cells from this patient 

were clearly not similar to WD cells -, we could have falsely concluded that DD cells from this patient were 

in fact WD cells, and that this patient was not a “true” DDLPS (it was of course a DDLPS, as confirmed by 

pathology). The reason for this confusion by Harmony seems to be that DD cells of the second patient are 
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slightly different from the other patients (some marker genes are indeed specific to this patient) and thus 

should be integrated in a specific location – as done by Seurat RPCA -, however Harmony struggles to 

conserve this patient specificity and - as for other rare populations - instead localizes these cells in the 

middle of the UMAP, next to the WD cells in this case. 

  

Immune microenvironment 
 

For the study of the immune microenvironment of DDLPS, integration allows joint analysis of all patients, 

but as shown previously a simple “merge” could have been sufficient for this, and in the end the main 
observations are similar to the analyses of individual patients. Altogether, scRNA-seq has allowed 

deciphering of the composition of the different cell populations present in the tumor, including differing 

proportions and differential gene expression between the WD and DD compartments. The main 

observation is that most cells of the immune system are preferentially infiltrating the DD compartment. 

Also, T lymphocytes and macrophages display more exhausted and immunosuppressive phenotypes, 

respectively, in this compartment. This is interesting since it may reflect modified crosstalk between cells 

of the immune system and DD tumor cells, as compared to WD cells. On one hand DD cells may attract 

more immune cells through chemokine and cytokine signaling, or by increased neoantigen burden due to 

the presence of more genetic alterations. On the other hand, DD cells may also be able to “blunt” the 
immune system by inducing exhaustion of T lymphocytes and conversion of macrophages towards more 

immunosuppressive phenotypes. Since it is the DD compartment that represents the aggressive side of the 

tumor and is monitored for treatment response in clinical trials, it is likely that the responses seen with 

immunotherapy in some DDLPS patients12 were related to the presence of this immune infiltrate which may 

have been reactivated by the immune checkpoint inhibitor, despite pre-existing exhaustion. However, this 

is mainly speculation and precise immune correlates of response to immunotherapy in DDLPS are 

unfortunately not possible to deduce from these experiments since these patients were not exposed to 

immunotherapy. There are nevertheless a number of studies in the literature that have started exploring 

this fascinating question of identifying the immune markers that will predict response to immunotherapy 

by using scRNA-seq (often with associated single-cell TCR sequencing) of tumors124,165–168. 

 

Relationship between WD and DD cells 
 

During my PhD, I performed many other analyses of scRNA-seq data on DDLPS samples as well as other 

types of sarcomas, such as undifferentiated pleomorphic sarcoma, desmoplastic small round cell tumor, 

and Ewing sarcoma. However, I will not detail all of these in this manuscript, but instead focus on some 

complementary interesting analyses that were performed in DDLPS, notably to try to answer the initial 

question of the relationship between the WD and DD compartments of this tumor. 

As shown previously, we can identify two different types of tumor cells in each patient, that I named WD 

and DD cells, but in a transcriptomic sense. This must be differentiated from the terms “WD” and “DD” used 
to define the anatomical compartments that are defined macroscopically by the pathologist and that are 

used to identify the origin of the two samples profiled by scRNA-seq. We observe in all our patients that: 

the DD anatomical compartment is composed of transcriptomically DD cells in majority but can also contain 

some transcriptomically WD cells, while the WD anatomical compartment only contains transcriptomically 

WD cells. If we correlate this with the clinical observation that the DD compartment invariably appears on 

a background of WD tumor and often forms “nodules” inside the WD compartment, we may propose the 

following conceptual model to explain this: the transcriptomically WD cells may be the earliest ones present 
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in the tumor and form the background of the whole tumor, while transcriptomically DD cells appear only 

afterwards in localizations which are already occupied by WD cells. Therefore, a pathologist that cuts tissue 

from the WD compartment will retrieve only transcriptomically WD cells in the sample, while cutting tissue 

from the DD compartment may retrieve not only transcriptomically DD cells but also “background” WD cells. 

Concerning the relationship of transcriptomically WD and DD cells, apart from their differing marker genes 

and genomic profiles as shown previously, we also asked the question of the potential existence of a 

“trajectory” between these two types of cells, since the pre-existing clinical hypothesis is that DD cells are 

the result of a dedifferentiation of WD cells. This type of “trajectory” analysis is particularly suited for 

analyzing the cellular states of normal development, where one stem cell gives rise to progressively more 

differentiated cell types and can be represented by a continuous spectrum of transcriptomic change across 

“trajectories” between cell types visible on a UMAP. Many methods169–173 have taken advantage of scRNA-

seq to infer “trajectories” between different cell states or clusters inside a single-timepoint sample, without 

any temporal information about the system. To achieve this, these methods make the following 

assumptions: cells that are currently differentiating or traveling along a trajectory will be sampled at all 

steps of this trajectory and will display a continuum of gene expression profile between the start and end 

states of this trajectory. They then apply mathematical constructions such as graphs, principal curves or 

trees to infer the trajectories in transcriptomic space (which is often reduced to the PCA or even UMAP 

space). However, these methods only allow the inference of potential trajectories between different cell 

states or clusters, without giving any information on the direction of these trajectories. In other words, we 

cannot deduce from them the start and end points of the trajectory. To achieve this, specific methods use 

the ratio of spliced and unspliced transcripts in scRNA-seq to infer the near-future expression state of each 

gene in each cell: either increasing expression (higher number of unspliced reads) or decreasing expression 

(higher number of spliced reads). Based on this information and considering the differential expression of 

genes along the trajectory, these methods can then infer the direction of the trajectory. This concept is 

termed “RNA velocity”, the main methods for its computation are Velocyto174 and scVelo175. 

When implementing these methods for our DDLPS samples, I did not find any trajectory between DD and 

WD cells, and RNA velocity was also uninformative. This was in fact already expected, as WD and DD cells 

invariably form distinct clusters in the UMAPs of all patients: since trajectories are inferred from 

transcriptomic proximity, it is unsurprising that the algorithms do not find trajectories between clusters 

that are localized separately in a UMAP.  

 

Discussion 
 

Altogether, these analyses tend to favor a model of DDLPS in which it is formed of two different clonal 

populations of the same disease: they both share the 12q amplification, but have probably diverged early 

from a common precursor, with resulting differences in genomic and transcriptomic profiles, and no active 

“trajectory” between these two types of cells. While this does not rule out that a transcriptomically WD cell 

may be the cell-of-origin of a clone that subsequently gives rise to the DD cells (dedifferentiation model), 

we are tempted to favor a model inspired from hematologic malignancies such as chronic myeloid leukemia 

(CML)176. In this tumoral proliferation of mature myeloid cells, which all display the Philadelphia 

chromosome encoding the BCR-ABL1 fusion gene, all cells retain the ability to differentiate into mature 

myeloid cells. However, during “acutization” of the leukemia, one of these cells loses the ability to 

differentiate properly and gives rise to a less differentiated tumor cell with enhanced proliferation rate, 

resulting in the transformation to a much more aggressive disease, acute myeloid leukemia. We 

hypothesize that in pre-existing well-differentiated liposarcoma, WD tumoral cells retain the ability to 

differentiate into tumoral adipocytes (we indeed find in our data that they display a transcriptomic profile 

close to pre-adipocytes or adipocyte normal progenitors, and pathology shows large tumoral adipocytes). 
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However, at one point one of these WD cells loses this differentiation capacity and gives rise to a DD clone 

which is undifferentiated and much more aggressive, resulting in the appearance of dedifferentiated 

liposarcoma that thus contains two genomically divergent clones. 

We do not know the specific molecular events that are responsible for this divergence between WD and 

DD cells, but some clues emerge from scRNA-seq: notably, using a method to infer gene regulatory 

networks known as “regulons” in scRNA-seq data177, we have been able to show that some important 

transcription factors for WD cells as opposed to DD cells are MYC, FOS and JUN. Experiments are currently 

undergoing to try to demonstrate the functional role of these genes in DDLPS. In parallel, a manuscript is 

being prepared for submission to a peer-reviewed journal in the next weeks. 
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General conclusion : 
 

Dear reader, thank you for having read this manuscript to the end! I hope that the picture that I drew from 

my thesis was not too heterogeneous and that you still managed to follow the underlying threads of all this 

work. 

I have already discussed most of the results inside each of the dedicated parts of this manuscript, however 

I would like to finish here with some more general comments and perspectives. 

Unfortunately for a clinician like me, the main biological results of this work are still descriptive and do not 

impact clinical practice at least in the short term. For instance, the analysis of the transcriptomic landscape 

of sarcomas is interesting but only paints a broad picture of the biological processes at play in sarcoma. 

Classification was not overhauled by RNA-seq, diagnosis prediction was effective but difficult in many cases. 

I could also have analyzed in more depth the transcriptomic changes of specific types of sarcomas.  

However, I believe that molecular high-throughput assays have the potential to guide and significantly 

improve the clinical management of cancer patients in the near future, especially with the development of 

techniques such as machine learning to analyze them. The work presented here on classification of cancers 

of unknown primary is an example of this, where the characterization by RNA-seq allows to correctly predict 

the tissue of origin in most cases. While this is a small study that does not prove a gain in overall survival 

for patients, I expect this kind of tool to be more broadly used in the clinic as soon as they are shown to be 

effective in larger studies. Indeed, there are already some molecular assays that can be used in practice, for 

instance to guide the clinician in the prescription of adjuvant chemotherapy for localized breast cancer178. 

Conceptually, molecular data can simply be considered as an additional piece of information available to 

the clinician to help in the elaboration of a diagnosis, prognosis, or therapeutic strategy. While some of 

these techniques may still be costly and unavailable in some places, we can make a parallel with the use in 

medicine of - what are now considered standard - biological, pathological, or radiological exams. In their 

early days, these were also considered as highly advanced and costly technologies. However they were 

broadly adopted as soon as they showed their significant impact on the clinical management of patients, 

since this stimulated the investment in technologies to allow their high-scale deployment and decrease in 

cost179,180. Concerning molecular assays, I have no doubt that they allow us to gain precious information 

about specific characteristics of a patient’s cancer which cannot be captured by standard biological, 

pathological or radiological exams of the tumor. The main difficulty with high-throughput assays is the very 

large amount of information delivered, which is enormous and cannot be interpreted as such by a 

bioinformatician, let alone a clinician. There are so many dimensions in the data that it is difficult to “make 
sense” of what is the important signal, and what is to be considered as “noise”. The main challenge is thus 

to “translate” high-dimensional molecular data into human-understandable information that can guide the 

clinician. Fortunately, the disciplines of statistics and specifically machine learning have progressed rapidly 

in recent years and continue to deliver at a high pace novel ways of analyzing this high-dimensional data to 

extract from it the information relevant to the clinician. Moreover, the development of analysis methods 

will undoubtedly be facilitated by the positive spiral of increasing use of these assays and demonstration of 

their clinical benefit. This could indeed lead to the constitution of larger databases of molecular data that 

would not only allow studies to better understand molecular correlates of cancer diagnosis, prognosis and 

treatment efficacy, but also contribute enough training data to refine the machine learning algorithms used 

to analyze them. In the end, I expect that this piece of information could be used in complement with the 

other data (clinical, biological, pathological, radiological) to determine a precise diagnosis, estimate the 

prognosis and define the best therapeutic strategy. Since cancer is inherently a complex disease with 

specific characteristics for each patient, I believe the concept of “precision medicine”181 is justified and 

molecular assays are bound to contribute to this personalized characterization of cancer. Finally, the 

continued improvement in technology could also lead to the use of more precise and sensitive assays at a 



106 
 

lower cost and using less tissue material; this could then allow for instance the better characterization of 

cancer samples in space (different locations in the same patient), time (before, during and after treatment) 

and in multiple modalities. In the case of sarcomas, one potential way of refining classification would be for 

example to integrate different modalities that have already proved of value individually, such as RNA-seq 

and DNA methylation48. 

To come back to my work, the analysis of the immune microenvironment was broad and only descriptive 

across sarcomas. The main conclusions were expected: paucity of immune infiltration with only some 

outliers. It is difficult to draw conclusions on the reasons behind higher immune infiltration in some 

subtypes without further experiments. Analysis by single-cell RNA-seq is much more precise but still quite 

descriptive and cannot be extended to large numbers of patients as bulk RNA-seq. From a clinical point of 

view, it is difficult to infer correlates of response to immunotherapy since none of the patients analyzed 

either by bulk or single-cell RNA-seq were treated by immunotherapy. One can only hope that future studies 

will allow to answer to these questions more precisely. 

However, in this case also I expect that significant advances in the near future could rapidly lead to more 

direct impact on cancer patients. While immunotherapy is already well integrated in clinical practice and 

now represents one of the main weapons of the medical oncologist11, as well as the bulk of current 

therapies in human trials182, the main issue remains that only a subset of patients will respond to it, and it 

is still very difficult to predict which patient will at the individual level26. This is one of the most pressing 

clinical challenges currently in oncology, because these therapies are highly effective in some cases but will 

lead to ineffective treatment, delaying of effective therapy or even “hyperprogression” in some patients183. 

Based on the mechanical understanding of immunotherapy, it seems that the correlates of response should 

be found within factors such as the specific therapy used, the characteristics of the tumor, as well as the 

status of the immune system of the patient184, which can depend on both host and environmental factors 

such as gut microbiota185. An algorithm to predict response to immunotherapy would probably rely on a 

combination of all of these. The aspect that was more specifically addressed in my thesis was the immune 

system, i.e. the presence and abundance of specific types of immune cells such as lymphocytes in the tumor 

microenvironment. However, we expect and know that there is no simple relationship between this and 

response to immunotherapy: high infiltration by lymphocytes for instance may be correlated to higher 

response rates, but it is not a perfect correlation and this measure cannot be used as a reliable predictor of 

response in the clinic186. Some related measures of immune infiltration have been proposed as candidates 

such as the pathologically measured “Immunoscore”187,188, while other biomarkers have taken advantage 

of some potentially immunogenic characteristics of tumors such as mismatch repair deficiency189, high 

tumor mutational burden190,191 or PD-L1 expression level192. One aspect though that is the most interesting 

to me is the focus on the specific antigens that are recognized by the immune system, since this opens a 

window into the mechanistic understanding of the response to immunotherapy, which is currently in most 

cases only limited to statistical concepts such as “high tumor mutational burden”. Indeed, it is possible that 

response to immunotherapy is in a large way dependent on some specific mechanistic event, such as the 

“right” antigen(s) being recognized by the “right” immune cell in the “right” immune microenvironment. 

This could account for the intrinsic uncertainty of relying on statistical “bulk” measures such as tumor 

mutational burden or global lymphocyte infiltration to predict response to immunotherapy. However, this 

deep mechanical understanding at the antigenic level is still very imprecise. Even if we can accurately 

determine the sequences of TCRs and BCRs, it is exquisitely difficult to know which antigens they 

recognize193. Using my study on MiXCR as an example, it is very interesting to see clonal expansions of some 

TCRs or BCRs in some samples, however we cannot know what is the corresponding antigen that has driven 

their expansion. We can expect though that this understanding could probably help us in deciphering if, 

how, and why an immunotherapy is going to work. While this is still an open problem, there are signs that 

it is not intractable: high-throughput methods to characterize TCRs and BCRs on one side194, and antigens 

on the other side, are allowing the accumulation of data to help in figuring out and predicting 
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correspondences between antigens and BCRs/TCRs195,196. The latest advances in predictions of protein 

structures achieved by deep learning (such as “Alphafold”197) also point to the possibility of using three-

dimensional information to better understand this complex problem of the recognition of an antigen (in 

the form of a peptide/MHC complex) by a TCR or BCR. While in hematology the therapeutic principle of 

using immune cells to target an antigen expressed by tumor cells (such as CD19) has been demonstrated to 

be highly effective (for instance using modified T lymphocytes such as CAR-T cells198,199), it is realistic to 

assume that, in solid tumors also, characterizing the correct “target” antigens for each cancer, but in a 

personalized way69,200, could lead to the design of a corresponding immunotherapy such as a vaccine, CAR-

T cell or bispecific antibody. In addition to the design of these specific immunotherapies, better 

understanding of the immune response would also allow the enhancement of existing unspecific 

immunotherapies such as immune checkpoint inhibitors. First, we could probably better predict response 

with information about neoantigens present in the tumor, lymphocyte repertoire and immune status of the 

patient, gut microbiota or other features. For non-responding patients, interventions could then be tailored 

to either stimulate the expression of neoantigens, generate immune cells recognizing them, and/or 

boosting those that are present but held in check by some immune checkpoint. In the end, these conceptual 

considerations show the necessary limits of the present study that only reports global measures of immune 

cell abundance or measures of clone without other information. Further insights will be needed to 

understand and improve the clinical response of patients to immunotherapy, but these goals seem possible 

to attain in the near future.  

The characterization of neoantigens was suitably the subject matter of another part of my work. The 

discovery of novel transcripts driven by oncogenic chimeric transcription factors was totally unexpected 

and highlights the potential phenomena that may still be “hidden” inside NGS data. Of course, we are far 

from having proved that these are sources of neoantigens that could be targeted with success using 

immunotherapies, however it is a very promising avenue of research and opens perspectives for other 

cancers that may also harbor novel transcripts induced by aberrant transcription factors. 

This potential mechanism of neoantigen generation is very interesting because it would lead to tumor-

specific public antigens71. Most currently characterized neoantigens are derived from mutational processes 

specific to each patient and are thus called “private” antigens. Designing personalized immunotherapies to 

target them is time- and resource- consuming. In contrast, some antigens derived from normal cells can be 

shared by tumor cells across patients but will lead to toxicities in normal tissues201. The ideal targets are 

therefore tumor-specific, not expressed in normal cells, clonally expressed in all tumor cells and shared by 

many patients – tumor-specific public antigens. In this case, it would be possible to design immunotherapies 

available “off-the-shelf” to treat many patients, which could in turn lead to more rapid and less costly 

treatments. In addition, resistance to immunotherapies is often driven by the loss of the antigen by the 

tumor202. Since neotranscripts are direct downstream consequences of the oncogenic driver event, they 

would not easily be “lost” by the tumor without it rewiring a critical circuit of its oncogenic process. 

Independently of their translational relevance, what is also fascinating to me from this study is the ability 

of modified transcription factors to induce totally novel transcription units – genes-. This leads us to 

speculate if this could not be one of the processes at play behind the appearance of novel genes “de novo” 
during evolution90: transcription factors that are randomly modified could lead to their acquiring novel 

binding properties, thus targeting them to silent regions in the genome and allowing the transcription of 

novel transcripts, that may then through genetic drift acquire functional properties and even be translated 

into novel proteins. 

One significant advance in the understanding of the immune microenvironment of cancers has been the 

advent of single-cell molecular assays, of which single-cell RNA-seq is the most developed in terms of 

experimental techniques and bioinformatics analyses. While previous assays on bulk tumor samples had to 

estimate the different immune populations using algorithms such as MCP-counter, single-cell RNA-seq has 

allowed to directly characterize the specific transcriptome of each single cell and the precise composition 
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of the immune microenvironment in one sample. Indeed, we were able to quantify the different 

proportions of immune cells inside dedifferentiated liposarcoma and showed that the dedifferentiated 

compartment is more highly infiltrated by lymphocytes and macrophages. We also could characterize their 

phenotype as more “exhausted” and immunosuppressive. This is a significant improvement as compared 

to bulk RNA-seq; however practical considerations - of cost notably - preclude a comparatively large study 

across numerous tumors. For the study of the adaptive immune system in particular, the possibility to 

sequence TCRs and BCRs at the single-cell level is also a significant advance as compared to global results 

obtained from bulk RNA-seq using methods such as MiXCR. I did not get the opportunity to analyze this sort 

of single-cell data, however these assays have the potential to greatly enhance our understanding of the 

immune response to cancer. As discussed previously, this precise characterization could eventually pinpoint 

the combination of specific TCR/BCR and corresponding antigen responsible for response to 

immunotherapy. Indeed, several studies have already tried to profile this information in patients before 

and after treatment with immunotherapy; this is surely one of the exciting potential uses of this kind of 

technology for personalized immunotherapy166. 

Concerning the mechanisms of “oncogenesis” of sarcomas, single-cell RNA-seq also opens many more 

perspectives than bulk RNA-seq: I could have explored more in depth some types of sarcomas in bulk RNA-

seq to look for functional information on specific genes or pathways contributing to disease, however being 

able to characterize the transcriptome at the single-cell level was a lot more instructive to characterize 

molecular forces at play in DDLPS. Only a few papers have been published (Ewing sarcoma203, synovial 

sarcoma204, osteosarcoma205) but we can expect more single-cell studies in sarcoma to be conducted in the 

near future to enable better understanding of the oncogenesis of these cancers. 

Sarcomas are indeed one of the best models to study oncogenic processes, since many of them - especially 

translocation-related sarcomas – are the consequences of one unique driver event that leads to oncogenic 

transformation7,8. In a way, this process is “simple” and facilitates the deciphering of oncogenesis. 

Therefore, the possibilities offered by scRNA-seq of depicting the heterogeneity within the same tumor is 

even more interesting for sarcomas, since it can pinpoint phenomena of plasticity that are independent of 

genetic alterations206. Obviously, obtaining complementary information from epigenetics would be needed 

to explain this, but this is now possible using single-cell assays of chromatin accessibility (assay for 

transposase-accessible chromatin: scATAC-seq)207,208 or chromatin-binding proteins (scChIP-seq209, and 

single-cell Cleavage Under Targets and Tagmentation: scCUT&Tag)210. I did not get the opportunity to 

analyze these other modalities, but I expect them to be very important for our understanding of the 

plasticity of cancer in its adaptation to a hostile microenvironment, interactions with normal cells and 

resistance to therapy. One important issue that could be addressed also is the question of the cell of 

origin211,212, since the epigenetic and transcriptomic profiles might conserve a signature of this cell. This is 

a fundamental question in oncology since oncogenic processes should probably occur in one specific cell of 

origin to become cancerous. Sarcoma, due to its relatively simple oncogenic process, is thus a key model to 

understand this interaction between normal cellular programs and development of cancer. In parallel with 

hematology, where each leukemia or lymphoma subtype can in a way be related to a specific cell of origin 

in the hematopoiesis tree213, one could contemplate the prospect of mapping each sarcoma to its cell of 

origin on a developmental manifold of “mesenchymopoiesis”. Another exciting avenue is the ability to 

profile multiple modalities in the same single cell116,117,214 - including genomic alterations, transcriptomic 

perturbations and the underlying epigenetic changes - opening the way for a more comprehensive picture 

of the oncogenic processes at play at the single-cell level. This could also lead to better understanding of 

cells of the microenvironment such as immune cells; for instance they are probably driven by epigenetic 

and programs that determine their transcriptome, function and possibly response to immunotherapy215. In 

the case of lymphocytes, the prospect of studying clonal dynamics is also enabled by the complementary 

assays of single-cell TCR/BCR profiling. One very exciting avenue for single-cell studies is the ability to gather 

information about space: so-called “spatial transcriptomics” are developing at a great pace and several 
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technologies are already available216, though most are still not technically attaining single-cell resolution. 

Classical scRNA-seq involves dissociation of the cancer tissue, but spatial organization of cells surely plays a 

major role in the oncogenic process of the tumor and its interactions with the microenvironment. For 

instance, receptor-ligand interactions necessitate physical proximity to take place: computational 

algorithms can try to predict ligand-receptor interactions from classical scRNA-seq data217,218, however 

these predictions would be much more confident with spatial information to corroborate them. Another 

issue that could also be addressed is the relative position between a cancer cell expressing one specific 

antigen relatively to the immune cell recognizing it; it is expected that this could possibly influence response 

to immunotherapy184. Indeed, spatial restriction could be one way for tumor cells to evade the immune 

system. This could also complement previous insights about the potential dynamic processes at play at the 

interface between cancer cells and immune cells: proliferation of clonotypes targeting specific antigens in 

the tumor, leading to selection pressures and so-called “immunoediting” with consequent loss of the 

antigen by the tumor cells219. Finally, one obvious extension to this deep characterization would be 

longitudinal profiling across time, but tissue and money are limited; for now we can only dream of a 

complete characterization of the dynamics in space and time of oncogenic processes inside cancer cells, 

their interactions with the environment and response to treatment. 

From a computational point of view, the analysis of single-cell RNA-seq in particular gave me the 

opportunity to experience both the enormous potential and dangerous pitfalls of the analysis of high-

dimensional data in biology and medicine. On one side, this technology gives an unprecedentedly detailed 

snapshot of biology and cancer; on the other hand this huge amount of data needs highly rigorous statistical 

tools and critical analysis to avoid falling into inconsistent results. Indeed the more data there is, the more 

likely we are of “falling” into false positive results. The crucial issue of data integration for cancer samples, 

which remains an open problem, allowed me to appreciate critically the power of computational algorithms 

and the risk of their “over-use”, notably when considered in the more general framework of computational 

methods that have to find the right balance between technical correction of batch effect (or smoothing of 

the data for analysis purposes) as opposed to conservation of biological signal (and possibly associated 

noise or residual batch effect that may disturb the analysis). One may even think that there is probably no 

gold-standard method attainable for this issue and that the optimal balance depends upon specific 

questions and experiments at hand.   

Single-cell RNA-seq is one of the domains where machine learning and deep learning methods have been 

the most widely imported into biology, due to the high amount of data generated by these single-cell 

assays132. This allowed me to learn and manipulate multiple methods of classical machine learning but also 

deep learning, which are indeed very powerful both for supervised (e.g. diagnosis prediction) and 

unsupervised analysis (e.g. encoding the transcriptomic landscape into meaningful low dimensions). More 

than ever computational methods have the power to analyze, interpret and even make “discoveries” for 
biology. Moreover, they can be used in the clinic to improve diagnosis and prognosis of individual patients, 

as was the case for our “classifier” of cancers of unknown primary.  

Genomic data is currently the main training data for machine learning algorithms in medical oncology 

(radiotherapy in contrast is taking advantage of large amounts of radiological data, for instance with so-

called “radiomics”220), due to its high-dimensional throughput. As a clinician, I am also very interested in 

developing these tools to analyze other clinical data such as patient symptoms, bio-variables, and EHR 

(electronic health record) data221. I believe that the main challenge for using these types of data for now is 

that they are less well-structured than genomic data; however I am sure that we could use them with great 

power once we address this issue. This could for instance be improved by standardizing EHRs and other 

clinical variables, as well as sensitizing clinicians to the importance of recording well-structured data and 

simplifying the processes for doing so. The challenge for machine learning is usually not the power of the 

algorithms, but the quality and quantity of the data that is used to train them: if we progress in this respect, 

I have no doubt that machine learning could one day be - not a replacement but - a very powerful helping 
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hand for the clinician. Finally, this emphasizes the importance of training clinicians to become familiar with 

concepts of machine learning, so that these tools are not blindly but correctly used by them for the benefit 

of the patient. 

Considering the huge amount of biomedical data currently generated, I am confident that judicious use of 

computational methods will result in even more exciting developments for the fundamental understanding 

of the biology of cancer and the care of patients. In addition to my clinical duties as a medical oncologist, I 

will definitely continue to learn and work in this direction to try to contribute to these objectives.  

Thank you very much for reading me!   
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ABSTRACT 
Sarcomas are cancers of mesenchymal origin that comprise more than a hundred different entities. They are mostly rare diseases that 
occur at all ages, including in children and young adolescents. Due to their rarity and diversity, diagnosis is often missed or delayed. 
Prognosis is generally poor in cases of advanced or metastatic disease and most treatment approaches rely on unspecific and highly 
toxic chemotherapy. There is thus an unmet need to improve the diagnosis of sarcomas and develop novel therapeutic approaches for 
these diseases.  
RNA sequencing (RNA-seq) is a promising approach for the diagnosis of sarcomas, especially for translocation-related sarcomas that 
are characterized by chromosome translocations giving rise to fusion genes, such as EWSR1-FLI1 in Ewing sarcoma. Using RNA-seq 
data of sarcomas of patients profiled at the Institut Curie, I explored the transcriptomic landscape of sarcomas and used machine learning 
and deep learning techniques to predict sarcoma type based on RNA-seq. This work led to the development of a tool currently in use at 
the Institut Curie to predict the origin of cancers of unknown primary and improve the diagnosis and prognosis of individual patients in 
clinical practice. 
Immunotherapy has revolutionized cancer care for the last decade, however it has had only limited success in sarcomas, supposedly 
because they are not “immunogenic”. Indeed, most sarcomas, especially translocation-related ones, have a very low tumor mutational 
burden, which is believed to be the main driving force in the generation of tumor neoantigens recognized by the immune system. To 
gain further insight into the potential of immune response in sarcoma, I characterized the immune microenvironment and lymphocyte 
repertoires of multiple types of sarcomas using RNA-seq of tumor samples. While most of them were indeed poorly infiltrated by cells of 
the immune system, there were some exceptions to this rule suggesting that immunotherapy should be considered in some cases. 
Another promising finding for immunotherapy of sarcomas was the identification of novel tumor-specific transcripts in multiple types of 
translocation-related sarcomas. These “neotranscripts” were driven by their characteristic oncogenic chimeric transcription factors such 
as EWSR1-FLI1 in Ewing sarcoma; some of them were found to be translated by ribosomes into peptides. Therefore, these may 
represent a source of tumor-specific public neoantigens for immunotherapies of these translocation-related sarcomas. 
To characterize in detail the immune microenvironment and oncogenic processes of specific sarcomas, single-cell RNA-seq was 
performed for some of them, notably dedifferentiated liposarcomas (DDLPS). It revealed higher infiltration by immune cells in the 
dedifferentiated compartment of the tumor, but with more exhausted and immunosuppressive phenotypes. It also allowed to characterize 
the oncogenic processes of DDLPS and notably the relationship between dedifferentiated and well-differentiated cells inside the same 
tumor. 
Altogether, this work opens perspectives to improve diagnosis and develop immunotherapies for sarcomas by: 1) defining a global 
transcriptomic landscape of sarcoma types and their associated microenvironment; 2) identifying novel transcriptional processes in 
translocation-related sarcomas with potential for generation of neoantigens for immunotherapy; 3) characterizing at the single-cell level 
oncogenic processes and immune microenvironment of one type of sarcoma (DDLPS); 4) resulting in the development of a classifier 
tool for diagnostic prediction used in clinical practice at the Institut Curie. 
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RÉSUMÉ 
Les sarcomes sont des cancers d’origine mésenchymateuse qui comprennent plus d’une centaine d’entités. Ce sont pour la plupart des 
maladies rares qui peuvent survenir à tout âge, y compris pendant l’enfance et la jeune adolescence. En raison de leur rareté et diversité, 
le diagnostic en est souvent erroné ou retardé. Le pronostic est généralement sombre dans les formes avancées et métastatiques, et 
la plupart des traitements reposent actuellement sur des chimiothérapies non spécifiques et très toxiques. Il y a donc un besoin urgent 
d’améliorer le diagnostic des sarcomes et développer de nouvelles approches thérapeutiques pour ces cancers. 
Le séquençage de l’ARN (RNA-seq) est une technique prometteuse pour le diagnostic des sarcomes, notamment dans le cas des 
sarcomes liés à des translocations qui sont caractérisés par des translocations chromosomiques à l’origine de gènes de fusion, par 
exemple EWSR1-FLI1 dans le sarcome d’Ewing. A l’aide de la base de données du RNA-seq de sarcomes de patients de l’Institut Curie, 
j’ai exploré le paysage transcriptomique des ces cancers et utilisé des techniques d’apprentissage machine (machine learning) et 
d’apprentissage profond (deep learning) pour prédire le type de sarcome à l’aide du RNA-seq. Ce travail a ensuite permis le 
développement d’un outil actuellement utilisé à l’Institut Curie pour prédire la tumeur d’origine de cancers de primitif inconnu et ainsi 
améliorer le diagnostic et le pronostic de patients en pratique clinique courante. 
Au cours de la dernière décennie, l’immunothérapie a été à l’origine d’une révolution dans le traitement de multiples cancers. Cependant, 
elle n’a eu qu’un succès très limité dans les sarcomes qui sont généralement considérés comme des tumeurs non « immunogéniques ». 
En effet, la plupart des sarcomes, notamment liés aux translocations, ont une charge mutationnelle très faible. Or ce dernier facteur est 
considéré comme l’un des principaux générateurs de néoantigènes tumoraux qui servent de cible au système immunitaire. Pour étudier 
plus en détail la possibilité d’une réponse immunitaire dans les sarcomes, j’ai caractérisé le microenvironnement tumoral immunitaire et 
les répertoires lymphocytaires dans de nombreux types de sarcomes à l’aide du RNA-seq d’échantillons tumoraux. Bien que la plupart 
sont effectivement peu infiltrés par des cellules du système immunitaire, il existe des exceptions qui font penser que l’immunothérapie 
pourrait être efficace dans certains cas.  
Une autre piste prometteuse pour l’immunothérapie des sarcomes a été l’identification de nouveaux transcrits spécifiques dans de 
nombreux types de sarcomes liés à des translocations. Ces « néotranscrits » sont induits par le facteur de transcription oncogénique 
chimérique caractéristique de la tumeur, par exemple EWSR1-FLI1 dans le sarcome d’Ewing. Certains d’entre eux sont traduits par les 
ribosomes en peptides. Ils représentent donc une source potentielle de néoantigènes publics spécifiques de la tumeur pour les 
approches d’immunothérapie dans les sarcomes liés à des translocations. 
Pour caractériser en détail le microenvironnement immunitaire et les processus oncogéniques de sarcomes spécifiques, certains d’entre 
eux ont été étudiés par du RNA-seq à l’échelle unicellulaire (single-cell RNA-seq), notamment les liposarcomes dédifférenciés (DDLPS). 
Cette technique a mis en évidence une infiltration plus importante de cellules immunitaires dans le compartiment dédifférencié de la 
tumeur, ainsi qu’un phénotype « épuisé » (exhausted) et immunosuppresseur de ces cellules. Elle a aussi permis de caractériser les 
processus oncogéniques des DDLPS, notamment la relation entre les cellules bien différenciées et « dédifférenciées » au sein d’une 
même tumeur. 
Au total, ce travail ouvre plusieurs perspectives pour l’amélioration du diagnostic et le développement d’immunothérapies pour les 
sarcomes, en : 1) définissant un paysage transcriptomique global des types de sarcomes et de leur microenvironnement immunitaire ; 
2) identifiant de nouveaux mécanismes transcriptionnels dans les sarcomes liés à des translocations potentiellement à l’origine de 
néoantigènes pour l’immunothérapie ; 3) caractérisant à l’échelle unicellulaire les processus oncogéniques et le microenvironnement 
immunitaire d’un type de sarcome (liposarcome dédifférencié) ; 4) mettant en place un outil d’aide au diagnostic actuellement utilisé en 
pratique clinique courante à l’Institut Curie.   
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