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1. Introduction 

The Bacillus cereus sensu lato group (Bc group) bacteria are ubiquitous in the environment 

and includes important mammalian and insect pathogens. The Bacillus spores are frequently 

found in soils while they cannot grow in this environment without nutrient input. The soil 

protozoa amoebas are predators of bacteria and a reservoir for some pathogenic species. During 

my thesis, I studied the interaction between amoebas and Bc group bacteria to explain the 

abundance of these bacteria in soils. The insects are another important niche for 

entomopathogenic B. thuringiensis strains. The role of the different B. thuringiensis virulence 

factors and toxins is not fully explained during the infection cycle. In the second part of my 

thesis, as an annex to the main project, I have initiated a study to explain the role of the 

Vegetative insecticidal protein (Vip3Aa). As a preliminary approach, I studied the expression 

and regulation of the vip3Aa gene in B. thuringiensis. As vip3A is involved in a potential patent, 

this part was not presented in the context, but it was provided to the Thesis Jury directly. 

1.1 General information about the B. cereus group bacteria  

The Bacillus cereus sensu lato bacteria are rod-shaped spore-forming, facultative anaerobic 

bacteria. This bacterial group consists of several species including B. anthracis (Ba), B. cereus 

(Bc), B. thuringiensis (Bt), B. mycoides, B. pseudomycoides, B. weihenstephanensis, B. 

cytotoxicus, and B. toyonensis (Liu et al. 2015). Phylogenetic analyses showed that these 

bacteria are closely related low-GC-content bacteria belonging to the phylum Firmicutes 

(Helgason et al. 2000; Liu et al. 2015; Rasko et al. 2005). The genomes of the Bc group species 

are highly conserved with a size of 5.2 to 5.9 Mb except the B. cytotoxicus with a smaller 

chromosome of 4.1 Mb, and they have very similar 16S rRNA gene sequences (Lapidus et al. 

2008; Stevens et al. 2019). All the Bc group bacteria share about 3000 ± 200 common genes 

(Lapidus et al. 2008). The definition of these species is based on their phenotypes and 

pathogenicity, which are usually related to their plasmid content (Kolstø, Lereclus, and Mock 

2002; Rasko et al. 2005). Ba harbors the pXO1 and pXO2 plasmids that carry genes for toxin 

synthesis and capsule formation, respectively (Moayeri et al. 2015). The emetic Bc strains 

harbor a large plasmid encoding a cluster of genes (nonribosomal peptide synthetase) 

responsible for the production of cereulide (Ehling-Schulz et al. 2006).This plasmid has a 

similar origin as the pXO1 plasmid of Ba (Rasko et al. 2007). Bt harbors plasmids encoding 

various toxins (Cry, ∂-enterotoxin) and cytotoxic proteins (Cyt), which form a parasporal 

crystal during sporulation (Schnepf et al. 1998). 
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Figure 1 Six major phylogenetic clades of the B. cereus group.  

Adapted from (Ehling-Schulz et al. 2019).  
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1.1.1 The diversity and taxonomy 

The classification of the species of Bc group bacteria has evolved as technologies advanced. 

The species were originally classified according to their phenotypes. The Ba, Bc and Bt species 

were established as early as the 1900s (Ehling-Schulz, Lereclus, and Koehler 2019). Ba is 

pathogenic to mammals and causes anthrax, Bc is able to cause emetic or diarrheal food 

poisoning and Bt produces entomopathogenic Cry toxins and are toxic to different insect larvae. 

DNA-DNA pairing was used to distinguish the Ba, Bt and Bc species in early times and no 

clear distinction is evident between those species (Somerville and Jones 1972). In the 1990s, 

the ribosomal RNA was used to distinguish the species and it was found that the 16S and 23S 

ribosomal RNA of Bt, Ba and Bc are almost identical with only a few bases difference (Ash et 

al. 1991; Ash and Collins 1992). New methods based on chromosome gene sequences were 

used for the classification of Bc group bacteria. Single gene analysis (Chen and Tsen 2002), 

amplification differences - the Amplified Fragment Length Polymorphism (AFLP) (Hill et al. 

2004), multilocus enzyme electrophoresis (MEE) analysis of the 13 enzyme loci (Helgason et 

al. 2000), as well as multilocus sequence typing (MLST) of seven housekeeping genes 

(Helgason et al. 2004) were used to differentiate Bt, Bc and Ba. However, these methods can 

separate Ba but cannot distinguish Bc and Bt. Even comparative analysis based on chromosome 

genomes fails to discriminate members of the Bc group from each other (Rasko et al. 2005). 

Recent research using the whole-genome sequence-based Genome BLAST Distance 

Phylogeny (GBDP) approach has classified 224 genomes into 30 clusters (Liu et al. 2015). The 

separation between Bt and Bc remained unclear, and some Bt or Bc isolates were clustered 

with Ba.  

As the Bc group bacteria are so close to each other, we can consider them as a super species 

with a common backbone but evolved to adapt to different environments. The horizontal 

transfer of plasmids could be a key that caused the differences between species either by the 

presence of plasmids in the strains or by introducing new genes to the chromosome. Here I 

present the commonly accepted classification of six clades of the Bc group (Fig. 1). The Clade 

I is the Ba clade but also contains some pathogenic Bt or Bc strains. The Clade II includes most 

of the common Bt or Bc commercial and type strains. The clade III is represented by the 

psychrotolerant isolate B. weihenstephanensis. Clade IV and V includes various Bc group 

species based on MLST, AFLP and whole-genome sequencing, and the thermotolerant B. 

cytotoxicus strains cluster separately (Clade VI). 
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1.1.2 Brief description of different B. cereus group species 

B. anthracis was first identified as the pathogen of anthrax by Robert Koch in 1876 (Koch 

2018) and then a vaccine was produced by Louis Pasteur using an attenuated strain. Their 

studies on Ba are the most important breakthroughs on microbiology and vaccination in the 

19th century. Ba spores can germinate in the mammalian host after infection through inhalation, 

the vegetative cells will produce capsule and virulence factors and they can escape from the 

immune systems and disseminate through lymph nodes associated with the infection site 

(Moayeri et al. 2015). The cutaneous infection can cause edema and necrosis resulting in a 

black eschar, a representative feature of anthrax infection; while the infection through 

gastrointestinal and inhalation will eventually lead to sepsis and shock-like vascular collapse 

(Moayeri et al. 2015). This bacteria was developed as a bio-weapon since World War II 

(Wenner and Kenner 2004). During WWII, the Japanese bio-weapon unit 731 in the northeast 

of China developed bio-weapons based on anthrax and other diseases and subjected humans as 

guinea pigs to gruesome medical experiments, causing over 3 000 death in experiments and 

most of the victims exposed to aerosolized anthrax (Gold 2011). Ba spores obtained from the 

US military labs were used  in a bioterrorism attack leading to 22 cases of anthrax infection 

and 5 dead after the anthrax mailing in the USA in 2001 (Jernigan et al. 2002).  

The two plasmids pXO1 and pXO2 encodes the most important virulence factors. The pXO1 

contains the pag (protective antigen, PA), lef (lethal factor, LF), and cya (edema factor, EF) 

genes and their regulators genes atxA and pagR (Okinaka et al. 1999). PA binds the cellular 

receptors and translocate LF or EF into cells to cause lethality or edema. The transcription of 

these toxin genes decreases in the atxA mutant suggesting that they are positively controlled by 

AtxA (Dai et al. 1995). The pXO2 plasmid contains the poly-d-γ-glutamic acid (PDGA)  

capsule synthesis genes, capBCADE, whose expression are also indirectly controlled by AtxA 

via the activation of the AcpA and AcpB regulators (Drysdale et al. 2004; Fouet and Mock 

2006). The pag gene can affect the expression of regulators acpA and acpB, and then regulates 

capsule synthesis  (Liang et al. 2017). The PDGA capsulation is synthesized through sequential 

isomerization, ligation, secretion and transpeptidation steps, and attached to cell wall 

peptidoglycan in the end (Chateau et al. 2018). The capsule protects Ba from macrophage 

phagocytosis (Ezzell and Welkos 1999). 

B. thuringiensis strain was first isolated from infected silkworm larvae in Japan in 1901 and 

the bacteria is the causing agent of the Sotto disease. Berliner isolated the bacterium from the 
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cadavers of flour moth collected in a mill in Thuringia, Germany, and named the bacteria 

Bacillus thuringiensis (Berliner 1915). Bt is featured by the production of parasporal Crystal 

(Cry) toxins which can account for about 25% of the dry weight of the sporulated bacteria 

(Agaisse and Lereclus 1995). The Cry toxins are the main virulence factors responsible for the 

insecticidal activity to the Lepidoptera, Diptera and Coleoptera insects, as well as to the other 

targets including aphids, mites, nematodes and cancer cells (Ehling-Schulz et al. 2019; 

Mendoza-Almanza et al. 2020). Bt based insecticide Sporine was primarily used to control 

flour moths in France in 1938, and Bt product was commercially produced and registered by 

the US Environmental Protection Agency in 1961. The Bt based pesticides are widely used in 

the world now. These bio-pesticides account for approximately 75% of the global bio-

insecticide market, representing about 4% of global insecticides in 2005 (Sanchis 2011). The 

global bio-pesticides market increased to about 4 billion dollars in 2020 and expected strong 

growth in the following five years (Anon 2021). Besides the Cry toxins, Bt cytotoxin (Cyt), 

vegetative insecticidal protein (Vip) and secreted insecticidal protein (Sip) are also important 

for their insecticidal activity (Donovan et al. 2006; Estruch et al. 1996). All the cry, cyt and vip 

toxin genes are located on large plasmids (Berry et al. 2002; Espinasse et al. 2003; Schnepf et 

al. 1998). The plasmids are conjugative and the cry genes are frequently found in the vicinity 

of mobile genetic elements such as transposon or insertion sequences (Ehling-Schulz et al. 

2019), this may explain the prevalence and diversity of these genes in Bt. 

Bacillus cereus sensu stricto bacteria was first isolated from the air of a cow shed and 

described as a highly motile bacterium (Ehling-Schulz et al. 2019). Bc strains are widely spread 

and frequently isolated from soils, they also adapt to the intestinal tract of insects and mammals 

(Stenfors Arnesen, Fagerlund, and Granum 2008). Some strains can cause emetic or diarrhoeal 

type food poisoning. Even though the symptoms of most of the cases are mild and self-limiting, 

some serious cases can lead to death (Veysseyre et al. 2015). Many kinds of food have been 

associated with Bc foodborne disease, including spices, meats, poultry, sprouts, rice and pasta 

(Stenfors Arnesen et al. 2008) and the Bc bacteria have drawn the attention of the food 

industrial world. The toxins that might be involved in the diarrhoeal includes haemolysin BL 

(Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K (CytK). Hbl and Nhe would be 

involved in the disruption of the plasma membrane of epithelial cells of the small intestine (Fox 

et al. 2020; Tausch et al. 2017), while the role of CytK remained questionable (Castiaux et al. 

2015). Other virulence factors such as phospholipases or collagenase may also contribute to 

the pathogenicity (Beecher et al. 2000). Those genes are chromosome genes and are under the 
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control of the transcriptional regulator PlcR (Gohar et al. 2008). The emetic symptom is mainly 

caused by a small ring-formed nonribosomal peptide – the cereulide (Ehling-Schulz, Fricker, 

and Scherer 2004). The cereulide synthesis genes are located in a pXO1-like plasmid (Ehling-

Schulz et al. 2006) which is found in few genetically closely related strains (Ehling-Schulz et 

al. 2005). The detection of the diarrhoeal strains was well established (Ehling-Schulz et al. 

2004) and the emetic strains can be detected by the presence of cereulide synthesis genes or by 

detecting the cereulide using mass spectrum (Doellinger et al. 2020). It is important to develop 

easy and accurate methods to discriminate the pathogenic and non-pathogenic Bc strains. 

B. weihenstephanensis are psychrotolerant strains that can be distinguished from the others 

based on their capability to grow at 7 °C but not at 43 °C (Lechner et al. 1998; Soufiane and 

Côté 2013). Some of the B. weihenstephanensis strains can produce the cereulide, like the 

emetic Bc strains (Guérin et al. 2017). The B. weihenstephanensis KBAB4 strain produces 

PlcR-controlled virulence factors and is pathogenic to insect Galleria mellonella in vivo or to 

mammalian cells in vitro at 15 °C but not at 30 °C (Réjasse et al. 2012). 

B. cytotoxicus was recently described as a novel thermotolerant species that has been 

associated with severe food poisoning outbreak (Guinebretière et al. 2013). They can be 

isolated from various food such as potato and flour products (Contzen, Hailer, and Rau 2014; 

Kindle et al. 2019; Stevens and Johler 2020). Even though it forms a separate species, it still 

has at least 90% of the average nucleotide identity (ANI) with the other members of the Bc 

group (Stevens and Johler 2020). 

B. mycoides was thought to be rhizosphere-associated bacteria isolated from soil, and some of 

the B. mycoides strains are used as biocontrol agents (Wu, Huang, and Deng 2020; Yi et al. 

2018). The metabolites produced by B. mycoides may be responsible for probiotic effects, such 

as the styrene produced by B. mycoides kills rhizosphere nematodes efficiently (Luo et al. 

2018). Some strains were reported to have a nitrogen-fixing effect (Singh et al. 2020). The 

exopolysaccharide of B. mycoides has antitumor activity (Farag et al. 2020). There is a rare 

report showing that a B. mycoides strain has infected a man and the strain was isolated from 

his blood (Heidt, Papaloukas, and Timmerman 2019). 

B. pseudomycoides is a close relative of B. mycoides with high similarity (98%) in 16S RNA 

sequences (Nakamura 1998). These bacteria were used to produce fibrinolytic enzymes (Gu et 

al. 2009) and polysaccharides (Solmaz et al. 2018), or used to treat the oil waste (Li et al. 2016) 

and wastewater (Mehrotra et al. 2020).  
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Figure 2 The growth stages of B. cereus bacteria in LB medium and the active periods of 

important regulators.  

The growth stages are indicated using double arrows. The important regulators and processes they 

regulate are indicated in the figure. The bars below the names of regulators represent the expression or 

activation periods corresponding to bacteria growth. The active periods of each regulator were described 

in corresponding references: CodY (Ratnayake-Lecamwasam et al. 2001), PlcR-PapR, NprR-NprX, 

Spo0A~P (Verplaetse et al. 2015), SinR (Gaur, Cabane, and Smith 1988) and AbrB (Strauch et al. 1989). 

 

 

Figure 3 B. cereus group bacteria spore structures.  

Adapted from Setlow (Setlow 2014b).  
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B. toyonensis is a newly defined Bc group species that have ANI values below 92% compared 

with the type Bc strains and ANI values below 94% compared with the other species in the Bc 

group (Jiménez et al. 2013). The B. toyonensis type strain BCT-7112T has been commercially 

used as a probiotic in the name TOYOCERIN® from 1975. The spores of this strain have been 

used as a feed additive of pig, poultry, cattle, rabbits and aquaculture (Jiménez et al. 2013). The 

TOYOCERIN® is also the first microorganism based feed additive authorized in the European 

Union. This strain displayed no toxicity to various animals including humans (Trapecar et al. 

2011; Williams et al. 2009). Recent studies even found that this species can improve the 

immune response of the mice and ewes to vaccines (Santos et al. 2018, 2021), and improve 

plant growth (Contreras-Pérez et al. 2019; Rojas-Solis et al. 2020). 

1.2 The development of the B. cereus group 

The Bc group bacteria have two distinct forms, the typical rod-shaped bacilli form 

corresponding to bacteria in metabolic active exponential or stationary phase, and the spore 

form, which is a stress-resistant dormant form. The growth stages of Bc group bacteria are 

shown on Fig. 2. First, the spores germinate when germinants are provided. Germination is 

followed by an exponentially growing phase where bacteria grow and divide actively. Bacteria 

will grow as single cells in rich media like LB, but they can form chain structures under certain 

conditions, such as in glucose medium during the late exponential and transition growth phases 

(Huillet et al. 2017), or in the presence of amoebas (Beeton, Atkinson, and Waterfield 2013). 

After the exponential growth, the bacteria will enter the stationary growth under the regulation 

of several transition state transcription regulators (Ehling-Schulz et al. 2019). The bacteria will 

sporulate in the late stationary growth when nutrients are deprived. They will sporulate faster 

when grown in the sporulation-specific medium (Purohit, Sassi-Gaha, and Rest 2010). Several 

important regulators are active during the growth and control different physiological events. 

Those regulators will be described in section 1.2.2. 

1.2.1 Germination of spores 

Bacillales bacteria such as all the Bc group bacteria and Bacillus subtilis can form spores when 

the environment is not conducive to growth (Setlow 2014b). The special structure of spores 

contribute to its high resistance. The Bc group spore structure from outside to inside consists 

of the exosporium, spore coat, outer membrane, cortex, germ cell wall, inner membrane, and 

core (Fig. 3). The B. subtilis spores lack the outermost exosporium layer. Most of studies on 

spore is based on B. subtilis and the spore properties of Bc group should be similar as they have 
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similar structures. The B. subtilis spores are highly resistant to physical pressures, including 

desiccation, freezing, thawing, wet or dry heat, UV light and γ-radiation, high pressures, and 

various kinds of chemical pressures, including oxidizing agents, alkylating agents, aldehydes, 

halogens, acids, and bases (Setlow 2014b). The factors that contribute to the B. subtilis spore 

resistance vary depending on the stresses. The spore coat helped the resistance to digestion, 

disinfectants, as well as oxidation agents. The spore DNA is saturated by α/β-type small acid-

soluble proteins (SASPs) and dipicolinic acid (DPA) resulting in low water content in the core. 

The low water content in the spore core and the low permeability of the spore membrane can 

help spore resistance to heat, radiation desiccation, as well as genotoxic and oxidative 

chemicals (Setlow 2014b). The exosporium of Bc group bacteria is the primary interactive site 

with the outside world worked as a semi-permeable barrier that excludes antibodies and 

destructive enzymes, and it is the surface antigen of Ba spores (Stewart 2015).  

The dormant spores will germinate in the presence of nutrient germinants and certain physical 

pressures. The amino acids such as L-alanine, L-cysteine, L-threonine, and L-glutamine or their 

combination (Hornstra et al. 2006), and inosine, glucose (Foerster and Foster 1966), Ca2+-

dipicolinic acid (CaDPA) and dodecylamine are nutrient germinants. The ammonia is not a 

germinant but it can work together with L-alanine and inosine to cause rapid germination 

(Preston and Douthit 1984). High-pressure treatment, lysozyme digestion, peptidoglycan 

fragments from other cells can also induce spore germination (Moir and Cooper 2015).  

Knowledge of spore germination is mainly obtained from studies with B. subtilis. Considering 

the high similarity of germination proteins between Bc group and B. subtilis or other Bacillales 

species, the germination process of those bacteria should be similar. Such as both Bc group 

bacteria and B. subtilis have similar GerABCD germination receptors, muropeptides dependent 

germination protein PrkC, the SpoVA operon which regulates ions and Ca-DPA release during 

sporulation and rehydration of spore during germination, SleB and CwlJ responsible for cortex 

hydrolysis during spore germination (Paredes-Sabja, Setlow, and Sarker 2011). The B. subtilis 

spore germination includes several steps (Moir and Cooper 2015). Take germination under the 

action of nutrient germinants as an example: firstly, the germinants pass through the outer 

layers of the spore to reach the germinant receptors in the inner membrane, and activate the 

receptors. The spores will then commit to germinate. The loss of germination receptors and the 

presence of germinant degradation enzymes in the spore coat of Bc group bacteria or B. subtilis 

can decrease the germination efficiency (Moir and Cooper 2015). The monovalent cations like 
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H+, Na+ and K+ are excreted from the spore in stage I of germination, and later the CaDPA 

stored in the core is released and replaced by water. Proteins of the spoVA operon mediate 

CaDPA uptake during sporulation and the release of CaDPA during germination in B. subtilis 

(Li et al. 2012; Tovar-Rojo et al. 2002). The heat resistance of the spores is lost at this stage of 

germination, but the metabolism has not started yet. The second stage of germination is the 

cortex hydrolysis by the lytic enzymes like CwlJ and SleB, and leads to full rehydration and 

expansion of the core. The SASPs associated with DNA are then degraded and the DNA is 

ready for transcription. DNA repair enzymes also start to repair the damages incurred during 

spore dormancy. In the third step, the germination signal is transduced to the surface and 

induces partial degradation of the spore coat. Lastly, the spores resume the normal metabolism 

and grow into vegetative cells.  

The germination induced by nutrients is mainly dependent on the germination receptors GerA, 

GerB, and GerK, which form the ‘Germinosome’ connected by GerD (Moir and Cooper 2015). 

The germination receptors, SpoVA proteins and SleB-YpeB proteins are usually expressed 

during sporulation under the regulation of Sigma G factor (Bagyan, Hobot, and Cutting 1996; 

Boland et al. 2000; Feavers et al. 1990). A recent report showed the stable presence of some 

mRNA associated with Sigma G in a small portion of the spore population, which suggests 

these mRNA may play a role during germination (Korza et al. 2019). 

The spores of Ba are able to infect the host through different routes indicating that germination 

happens in different host sites. The macrophages can phagocytose spores and transport them 

to the lymph nodes when infected through inhalation (Guidi-Rontani 2002) and spores may 

germinate within the macrophage (Guidi-Rontani et al. 1999). This suggests the macrophage 

intracellular environment favors Ba spore germination. However, Ba spores also germinate in 

the macrophage-conditioned media (Weiner and Hanna 2003). Ba can also cause skin and 

intestinal infections, which is different from in vivo environments. 

Studies about Bt and Bc spore infection of different insect larvae showed that spores can 

germinate in the larvae midgut and the hemocoel. The larvae midgut fluid or simulation 

alkaline buffer stimulates germination (Wilson and Benoit 1990, 1993). A later study, 

performed with the strain Bt israelensis, has shown that plasmid genes encoding germination 

receptors are involved in the alkaline activation (Abdoarrahem et al. 2009). Nasal instillation 

experiments have shown that Bt and Bc spores can germinate in vivo in mice (Salamitou et al. 

2000). 
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1.2.2 Exponential, transition and stationary growth 

There is a lag phase when bacteria moved to a new environment. During that time, the bacteria 

do not multiply and will modify their physiology to adapt to the new environment. Such as the 

Bc strains activate the RNA helicase-encoding genes cshA during early adaptation of lag phase, 

and then start to express the master regulator abrB (Français et al. 2019).  

The Bc group bacteria grow exponentially in rich medium after germination or after the lag 

phase. The generation time of Bc group bacteria is 20-30 min when grown at 37 or 30°C, 

respectively, in LB medium. Due to nutrient deprivation, the bacteria stop multiplying 

exponentially when OD600nm reaches about 2.5 - 4.0 in LB medium; this decrease in growth 

rate corresponds to the onset of the stationary phase (Fig. 2). The time point from exponential 

growth to stationary growth was defined as T0 in bacilli studies. Different regulators control 

the transition phase, notably CodY, AbrB and Spo0A. CodY is a metabolism transcriptional 

regulator conserved in low G+C Gram-positive bacteria (Sonenshein 2005). In Bc group, CodY 

mainly represses various metabolism pathways from amino acid transport, ion transport to 

energy production (Lindbäck et al. 2012; Slamti et al. 2016). In Bs, the intracellular branched 

chain amino acids (BCAA) and GTP cause conformation changes in CodY to increase the 

binding of CodY to target genes. Under nutrient deprivation, the concentration of BCAA and 

GTP decreased, CodY binding to targets decreased and then the repression effect decreased. 

Stationary metabolism pathways are activated allowing the bacteria to enter the stationary 

growth (Sonenshein 2005). SinR is a constitutively expressed transcriptional regulator that 

represses the expression of sporulation regulator spo0A during exponential growth. SinI 

antagonist binding to SinR and releases repression to the expression of spo0A in early 

sporulation, and releases repression to other genes such as spoIIA, and possibly spoIIG and 

spoIIE in later sporulation stage (Bai, Mandic-Mulec, and Smith 1993; Mandic-Mulec et al. 

1992; Mandic-Mulec, Doukhan, and Smith 1995). SinI-SinR also regulates biofilm formation 

in late stationary growth (Milton et al. 2020). Spo0A is expressed in growing cells and its 

expression increased rapidly under nutrient limitation conditions when repression from SinR 

was removed (Chastanet and Losick 2011). The nutrient limitation signal sensed by KinA and 

CodY results in the phosphorylation of Spo0A after several phosphate transfer steps  (Fig. 4) 

(Burbulys, Trach, and Hoch 1991). AbrB is a master regulator that represses about 171 genes 

during exponential growth (Chumsakul et al. 2011). Activated Spo0A~P represses the 

expression of abrB (Perego, Spiegelman, and Hoch 1988) leading to bacteria metabolism 

changes and thus entering stationary growth stage.  
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Figure 4 The schema of sporulation regulation and sporulation steps in Bacilli.  

(A) The sporulation regulation networks of B. subtilis. The nutrient limitation signal sensed by CodY 

and KinA leads to the phosphorylation of Spo0F, Spo0B and finally Spo0A, then starts sporulation. 

Other regulators are also involved to form a complex regulation network (Vecchia et al. 2014). (B) The 

sporulation process and the activation of regulators during sporulation. The round structure inside the 

cell represents prespore. The arrows represent direct or indirectly activation by regulators. Details are 

described in the text. 
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In Bt and Bc, two quorum-sensing systems, PlcR-PapR and NprR-NprX, are activated during 

the transition stage, they play a major role in the pathogen properties and in the development 

of the bacteria (Slamti et al. 2014). They control the production of virulence factor and the 

saprophytic necrotrophic life style of Bt and Bc, respectively. I will describe these two systems 

in detail below. 

1.2.3 Sporulation 

Bacilli and Clostridia are spore formers. The sporulation has been extremely studied in B. 

subtilis, but all the bacilli and clostridia share similar core sporulation genes including spo0A, 

sigE, sigF, sigK and most bacilli possess kinA and kinB genes involved in the sporulation 

initiation (Galperin et al. 2012). Bc group species have a similar spore structure as B. subtilis 

except Bc strains have an exosporium, however, B. subtilis have more genes related to spore 

coat formation (Galperin et al. 2012). In general, the sporulation process of Bc group species 

could refer to the B. subtilis. The Clostridia strains lacks spoIIB, sda, spoVID and safA genes 

and have nonorthologous spoIIQ and spoIVFA genes indicating they are different from bacilli 

in engulfment and spore coat formation during sporulation (Galperin et al. 2012). 

Spo0A is a master regulator that controls the initiation of sporulation in both B. subtilis and Bc 

group bacteria (Galperin et al. 2012; Green, Olmedo, and Youngman 1991; Molle et al. 2003). 

The activity of Spo0A is dependent on both the transcription of spo0A and the concentration 

level of active form Spo0A~P in the cells.  

The Spo0A~P is produced by a series of phosphorylation transduction -called phosphorelay, 

which signifies the sporulation initiation (Fig. 4A) (Burbulys et al. 1991; Phillips and Strauch 

2002; Vecchia et al. 2014). When nutrients are limited, CodY and KinA will sense the nutrient 

signal and then transfer the signal to Spo0F by phosphorylation, triggering the start of the 

phosphorelay. Spo0F~P transfer the phosphate to Spo0B, which transfer the phosphate to 

Spo0A to form Spo0A~P (Fig. 4A) (Burbulys et al. 1991; Phillips and Strauch 2002; Vecchia 

et al. 2014). Besides KinA and KinB, kinases KinC, KinD, KinE were discovered (Jiang et al. 

2000). The activity analysis showed that KinC and KinD are responsible for the 

phosphorylation in the absence of KinA and KinB. The activity of Spo0A~P is negatively 

regulated by the Rap-Phr quorum sensing systems by dephosphorylating Spo0F~P - when the 

cell concentration increases, the Phr signal peptides are imported to the cells to antagonize Rap 

protein, thus decreases the dephosphatase activity (Cardoso et al. 2019).  
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In the end of exponential growth stage, the expression of spo0A and sporulation related genes 

increased, while the dephosphorylation genes decreased. The expression of spo0F, spo0A is 

positively regulated by Spo0A~P at low concentration, the sporulation related genes such as 

spoIIG, spoIIE and sinI - antagonist of SinR - are expressed at high Spo0A~P concentration; 

the expression of abrB decreased at low Spo0A~P concentration and the dephosphorylation 

gene rapA decreased at high Spo0A~P concentration (Fujita, González-Pastor, and Losick 

2005). The increased expression of spo0A and phosphorelay result in the progressive increase 

of Spo0A~P and finally start sporulation. 

Bc and Bs probably have the same progress and regulation during sporulation because key 

Sigma factors involved in sporulation were found in both species (Schmidt, Scott, and Dyer 

2011). In B. subtilis, SigF, SigE, SigG and SigK were activated sequentially during sporulation 

(Fig. 4B) (Higgins and Dworkin 2012; Losick and Stragier 1992; Stragier and Losick 1990). 

Firstly, a septum is formed under the control of SigH. The asymmetric cell division of bacteria 

forms a smaller cell (forespore) and a larger cell (mother cell). Spo0A activates σF and σE; 

regulon of σF in the forespore activate σE in the mother cell. In the second step, the proteins 

controlled by σE and σF mediate the mother cell engulfment of the forespore. σG was then 

activated by products of σE and σF in the forespore. σK was activated by σG products in the 

mother cell after σG activation. In the next step, under the control of σG and σK, the mother cell 

produces spore cortex and spore coat. The mother cell is lysed in the last step and mature spores 

released. Only the cells activated σF and σE will commit to sporulation. The SpoIID, SpoIIM 

and SpoIIP controlled by σE worked in concert to regulate the polar division step (Eichenberger, 

Fawcett, and Losick 2001) and SpoIID worked as peptidoglycan degradation enzyme in this 

step in B. subtilis (Gutierrez, Smith, and Pogliano 2010).  

1.3 The ecology of B. cereus spp and its pathogenic properties 

1.3.1 Soil as ecological niche 

Soil is the most important niche for Bc group bacteria. The spore-forming bacteria account for 

15.7-46.0% of total bacteria in forest soil samples, and the B. cereus represents 6-14% of the 

total spore population (Siala, Hill, and Gray 1974). The spores can reach a concentration of 

approximately 106 spores/g of soil (Hong et al. 2009) and can persist in the environment for at 

least 4 years after spray (Van Cuyk et al. 2011). The Bacillus adapts to a wide range of 

temperature from 4 °C to 50 °C (Guinebretière et al. 2008). They can be isolated from various 

soils, such as permafrost, forest soil, mining soils and saline-alkali soil (Ayangbenro and 



 

 

15 

Babalola 2020; Han et al. 2020; Timofeev et al. 2019). The pH, moisture, nutrient availability 

and indigenous microorganisms of the soils will affect the survival of bacilli (West et al. 1985). 

It is believed that Bc group bacteria exist in soil as spores, and that the vegetative cells cannot 

persist for a very long time. It was shown that the wild-type bacteria will form viable spores in 

the soil environment and maintain their viability until the end of a 20 days experiment, while 

asporogenous mutant strains were no longer recovered after 8 days of incubation (Vilas-Bôas 

et al. 2000). When the vegetative cells and nutrient broth inoculated simultaneously in the soil, 

the bacteria will grow and form spores, however, the spores that were formed in situ in the soil 

died and only the originally ungerminated spores survived after two weeks of incubation 

(Petras and Casida 1985). Even though it is believed that bacilli cannot grow in the soil without 

nutrient input, the spores can germinate and grow in the soil-extracted soluble organic matter 

(SESOM) and artificial soil microcosms (ASM) saturated with SESOM (Vilain et al. 2006).  

1.3.2 Insect as ecological niche  

Besides the soil, the Bc group bacteria is also adapted for growth in the intestinal tract of insects 

and mammals (Fakhry et al. 2008; Margulis et al. 1998).  

The Bt strains are well adapted to the insect larva life (Nielsen-LeRoux et al. 2012; Raymond 

et al. 2010). Bt can effectively kill susceptible insects, multiply using the nutrients of the 

cadaver, and sporulate when nutrients are limited. The Bc and B. weihenstephanensis strains 

are virulent to the insect larvae when infected via oral route with the addition of Cry1C proteins 

or via haemocoel injection (Stenfors Arnesen et al. 2011). Bc have the same toxicity to G. 

mellonella larvae as Bt strain when Cry toxin is added to the bacteria during the infection due 

to the similar virulence factors profile of Bt and Bc (Salamitou et al. 2000). Bc SW7-1 strain 

can also cause masses of death to Bombyx mori as the Bt strains in the absence of Cry toxins 

(Li et al. 2015).  

The bloodsucking or flesh-eating mosquitoes or flies are able to transmit B. anthracis 

(Blackburn et al. 2010; Bradarić and Punda-Polić 1992; Turell and Knudson 1987). The Ba 

protective antigen and elements from other bacteria like Clostridium septicum alpha toxin can 

trigger innate immune system of Drosophila flies and Culex mosquitoes protecting the vector 

species from Ba (Alameh et al. 2020). There are two studies about the toxicity of Ba to G. 

mellonella. The attenuated B. anthracis BIG19 strain showed no lethal activity and no 

synergize with a sublethal dose of Cry1C to G. mellonella 48 h after force-feeding with 106  
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Figure 5 Schematic representing the different steps of the infection of larvae by B. thuringiensis 

through oral route or hemocoel injection.  

The cross-sectional view of the larvae, adapted from (Raymond et al. 2010). The Bt cells in different 

stages are presented using different colors as indicated at the bottom. Cry toxins are presented as 

bipyramids, virulence factors are presented as stars, and quorum-sensing peptides are presented by 

small oval dots. PapR↑ and NprX↑ represent the concentration of peptides increased.  
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CFU/larvae of spores or vegetative cells (Fedhila et al. 2010). Another attenuated B. anthracis 

Sterne strain 34F2 killed over 70% of G. mellonella larvae at 48 h when 105 CFU/larvae of 

spores were injected via abdominal (Norris et al. 2020). The different results may be caused by 

the strains, or by the different mode of infection because larvae death could be induced by 

septicemia when the abdominal injection was used.  

i. Bt infection cycle and its regulatory systems 

The development of the bacteria population during the infection of a susceptible insect has 

been thoroughly studied in our lab. Key regulators and genes involved in the infectious process 

have been identified using fluorescent reporters; we could follow the activation of several 

transcriptional regulators at the cell level to determine the differentiation course of a Bt 

population as well as to establish the lineage between cells. We could determine that the life 

cycle of Bt inside an insect can be divided into 3 steps. Bt will experience successively the 

virulence, necrotrophism and sporulation stages (Fig. 5) (Ben Rejeb, Lereclus, and Slamti 2017; 

Slamti et al. 2014; Verplaetse et al. 2015). The infection process and activation of these stages 

was described in detail below. 

The first step of infection – killing of the insect. After ingestion by susceptible larvae, the Cry 

toxins become activated by midgut juice, then the activated Cry toxins bind to receptors located 

on the surface of the epithelium cells and form oligomeric pores that finally insert into the cell 

membrane, which cause the lysis of cells (Bravo et al. 2011). The disruption of the midgut 

tissue is followed by a septicemia which kill the larvae (Raymond et al. 2010).  

The alkaline midgut environment and the midgut fluid can trigger spore germination (Wilson 

and Benoit 1990, 1993). Then the vegetative Bt cells will grow in the midgut. With the 

proliferation of the bacteria, cell density increases. The concentration of the quorum sensing 

signal peptides PapR will increase in the environment at the same time and allows the activation 

of its cognate regulator PlcR, leading to the production of a series of virulence factors including 

enterotoxins Hbl and Nhe, neutral protease NprB, NprC, metalloprotease InhA2 (Agaisse et al. 

1999; Fedhila, Nel, and Lereclus 2002; Gohar et al. 2008). Using a fluorescent transcriptional 

fusion between the PlcR-activated plcA promoter and a fluorescent gene, it was shown that all 

the Bt population in the larvae activates PlcR (Verplaetse et al. 2015). 

Some other virulence factors like InhA1 and hemolysin HlyII not regulated by PlcR are also 

expressed  at the same time as PlcR regulated virulence factors, they start to be expressed from 
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T0 in LB medium or reach highest activity 24 h post haemocoel injection infection  (Guillemet 

et al. 2010; Tran et al. 2013). InhA1 is regulated by AbrB and is expressed in the stationary 

growth stage (Grandvalet, Gominet, and Lereclus 2001). Hemolysin HlyII is repressed by 

HlyIIR in glucose rich medium and is activated in stationary growth when glucose is consumed 

(Guillemet et al. 2013).  Overall, these virulence factors contribute to the midgut disruption 

together with Cry toxins, and when infected through haemocoel injection, they can also exhibit 

full virulence to insects without Cry toxins (Fedhila et al. 2002; Guillemet et al. 2010; 

Salamitou et al. 2000; Tran et al. 2013). The regulator SigB is also involved in the adaptation 

of the gut environment and the pathogenicity of Bt by controlling Bt stress response when 

infecting insects through the oral route (Henry, Lereclus, and Slamti 2020). 

The second step of infection – necrotrophic life. After the disruption of the larvae midgut, the 

Bt cells invade the hemocoel and provoke a septicemia. Then, the production of NprX by the 

high number of cells presented in the insect cadaver triggering the activation of the quorum-

sensing regulator NprR in a part of the bacteria population (Dubois et al. 2016; Verplaetse et 

al. 2015). At least 41 genes are regulated by the NprR-NprX system, including genes encoding 

degradative enzymes that might be essential for the cadaver degradation, the major 

extracellular protease NprA, and a lipopeptide Kurstakin that is involved in swarming and 

biofilm formation (Dubois et al. 2016; Perchat et al. 2011). Together, those gene products are 

essential for the survival of the whole bacteria population in the cadaver (Dubois et al. 2016; 

Verplaetse et al. 2015). Using a transcriptional fusion between the NprR-controlled nprA 

promoter and a reporter gene, it was shown that only a part of the Bt population that colonized 

the insect cadaver activates NprR. This indicates that the benefits of the expression of the NprR 

regulon are shared with the whole population, allowing the survival of all the Bt cells in the 

cadaver (Verplaetse et al. 2015). The activation of NprR is not synchronized in the Bt 

population as the cells expressing NprR were detected 18 h post intrahemocoel injection and 

the population increases up to 72 h, demonstrating the continuous commitment of cells to the 

necrotrophic lifestyle. 

The third step of infection – sporulation within the insect cadaver. After all the nutrients of the 

cadaver were used, the bacteria will sporulate as described in 1.2.3, and sporulation occurs 

concomitantly to necrotrophism, in a part of the population (Verplaetse et al. 2015). Survival 

in the cadaver and completion of the lifecycle is also achieved through sporulation. The 

sporulation deficient Bt strain can survive in the cadaver during a 96 h of infection (Dubois et 
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al. 2016), however, the asporogenous Bt may not survive for so long as the highly resistant 

spores, as it has shown in soil (Vilas-Bôas et al. 2000). Using a transcriptional fusion between 

the SigE controlled spoIID promoter and a flourecence gene, it was whown that some cells 

commit to sporulation 24 h post infection within the nectrotrophic population (Verplaetse et al. 

2015). Similar to the activation of NprR, commitment to sporulation occurs asynchronously 

with the Bt population, with highest number of sporulating cells detected 48 h post infection. 

It is notable that Rap-Phr systems regulate sporulation, they were found in all Bc group bacteria 

on chromosome or plasmids, and they are far more abundant in plasmids of Bt strains (Cardoso 

et al. 2019). Two plasmidic Rap-Phr systems were studied in Bt HD73, they have similar 

sporulation regulating activity as the other Rap-Phr systems, but they are specifically needed 

during insect infection (Cardoso et al. 2020; Fazion et al. 2018). This suggests that the Bt 

plasmids may confer advantages to colonize specific environments, and sporulation regulation 

may be different depending on the environment. 

ii. The insecticidal proteins of Bt 

Bt produces several types of pesticidal toxins including Cry, Cyt, Vip and Sip toxins. Cry and 

Cyt toxins are produced in the parasporin crystal, and Cyt toxin is named after its cytotoxicity. 

Vip is the abbreviation of Vegetative insecticidal protein because they are produced during the 

vegetative growth stage. Sip is the abbreviation of Secreted insecticidal protein. 

The toxins played important roles during insect infection. Cry toxins paralyze the midgut of 

insect, permitting the germination of spores, and the toxins disrupt the midgut membrane 

allowing bacteria to enter the hemocoel (Nielsen-LeRoux et al. 2012; Raymond et al. 2010). 

Cyt toxins may have similar role like Cry toxins. However, the involvement of Vip is to be 

determined. 

In 1998, a nomenclature was proposed for the pesticidal crystal proteins of Bt, which is highly 

accepted and still in work until now (Crickmore et al. 1998). The toxin genes are named 

according to their degree of evolutionary divergence as estimated by phylogenetic tree 

algorithms of the gene sequences. There are four ranks discriminate with alphabets and 

numbers, such as cry1Aa2, determined by a sequence identity of 45%, 78%, and 95%, 

respectively. Cyt, Vip and Sip proteins are also named in a similar way.  
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Figure 6 The spores and Crystals of B. thuringiensis HD73 strain.  

The bipyramid crystal is formed in the mother cells and released with spore after the mother cell lysis. 

 

 

 

Figure 7 The sequential binding model of 3D-Cry toxin mode of action.  

Adapted from (Bravo et al. 2011). 
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Cry toxins 

Bt produces the Cry and Cyt toxins (delta-toxins) during sporulation, and those toxins form 

microscope visible crystals inside the mother cell and are released when the mother cell was 

lysed (Fig. 6) (Schnepf et al. 1998). The shape of Crystals varies depending on the strains, 

including bipyramid, cuboidal, flat rectangular, irregular, spherical and rhomboidal (Schnepf 

et al. 1998).  

The Crystal toxins are the most abundant proteins in the sporulating cells. The protein 

composition of the crystal varies between strains. Cry toxin genes are located on large plasmids 

and one strain can have a serial of different cry genes. The Bt kurstaki HD1 strain is most 

widely used as biopesticide in the name of Dipel®. All the cry genes of Bt HD1 locates on a 

299 kb plasmid pBMB299 (CP004876.1), and the plasmid encodes cry1Aa, cry1Ia, cry2Aa 

cry2Ab genes, and a vip3Aa gene. 

The mode of action for 3D-Cry toxins is described as a sequential binding model (Fig. 7) 

(Bravo et al. 2011). Take Cry1A as an example. The 130 kDa protoxin Cry1A will dissolve in 

the midgut of insect larvae, and then the gut proteases partially digest the N- and C-terminal to 

expose the active three domain core (Bravo et al. 2011). Shorter toxins like Cry2Aa will lose 

only the N-terminal by proteolytical cleavages. The activated toxins sequentially bind to 

different membrane proteins and form pores in the end. Activated Cry1Ab binds to the 

abundant ALP (GPI-anchored alkaline phosphatase) and APN (GPI-anchored aminopeptidase-

N) with low affinity via domain II and III, then the exposed domain II loops bind the cadherin 

receptor with high affinity; the domain I further cleaved in the N-terminal end and the alpha-

helixes form a pre-pore oligomer, and finally the pore insert into the membrane. The binding 

receptors of different Lepidoptera, Diptera and Coleoptera species vary from ALP, APN, 

Cadherin, to glucosidase, metalloprotease (Bravo et al. 2011).  

The insecticidal spectrum of Cry proteins including Lepidoptera, Diptera, Coleoptera, 

Hemiptera and nematodes (Krieg et al. 1983; Porcar et al. 2009; Wei et al. 2003). A study has 

summarized the results of around 1700 bioassays of the Cry and Cyt toxins (Frankenhuyzen 

2009). Cry1 and Cry9 are mainly toxic to Lepidoptera and some of them are toxic to Diptera; 

Cry3, Cry8 and Cry35 are mainly toxic to Coleoptera; Cry5 and Cry6 are toxic to Rhabditida. 

The targets of the Cry toxins are mainly determined by receptors presented in insects and the 

alteration in any steps of the mode of activation, especially mutations in receptors, confer insect 

resistance to Cry toxins (Bravo et al. 2011; Peterson, Bezuidenhout, and Van den Berg 2017).  
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Cyt toxins 

Cyt toxins encoded by cyt genes are another insecticidal protein family of Bt. Cyt proteins have 

a general hemolytic activity to cells according to its definition (Crickmore et al. 1998). The 

structure of Cyt proteins is composed of two outer layers of alpha-helix hairpins wrapped 

around a beta-sheet (Soberón, López-Díaz, and Bravo 2013). The protoxins are digested by 

midgut proteases to produce a 25 kDa active form and then interact with unsaturated lipids 

such as phosphatidyl choline, sphingomyelin and phosphatidyl ethanolamine  (Thomas and 

Ellar 1983).  It seems that Cyt toxins do not need binding receptors like the Cry proteins. Two 

modes of action were proposed for Cyt. In the pore-forming model, the beta-sheets oligomerize 

to form a pore of about 400 kDa that inserts in the membrane and kills the cell by osmotic 

(Chow, Singh, and Gill 1989; Promdonkoy and Ellar 2000). In the detergent effect model, the 

Cyt proteins aggregate on the surface of the lipid bilayer to cause the disassembly of membrane 

and cell death (Butko 2003). The toxicity of Cyt is relatively weak than Cry toxins, however, 

they can work in synergy with the Cry toxins probably working as membrane receptors for Cry 

toxin binding (Bravo, Gill, and Soberón 2007; Promdonkoy, Promdonkoy, and Panyim 2005). 

The Cyt toxin is a key component for the mosquito killing Bt israelensis strains (Lacey 2007; 

Valtierra-de-Luis et al. 2020). 

Vip toxins 

In a program to evaluate active insecticidal components from Bacillus isolates, researchers 

found that culture supernatants from Bc AB78 induce 100% mortality of Diabrotica virgifera 

virgifera and Diabrotica longicornis barberi larvae (Warren 1997). Two proteins of 80 and 45 

kDa were responsible for the toxicity and they were named Vegetative insecticidal protein 

Vip1Aa and Vip2Aa, respectively. Another 88.5 kDa protein from Bt AB88 that is highly toxic 

to A. ipsilon and other lepidopteran larvae was name Vip3 (Estruch et al. 1996; Warren 1997).  

Vip1 shared some similarity with C. botulinum toxin C2-II (29%) and Ib component of iota-

toxin from C. perfringens (31%) (Chakroun et al. 2016). Vip2 is over 30% similar to Rho-

ADP-ribosylating exotoxin C3 of C. clostridial. That similarity suggests Vip1 and Vip2 act as 

binary toxins - Vip1 act as binding and translocation component and form channels, and Vip2 

act as toxins and enter the cells perhaps by endocytosis (Leuber et al. 2006). A study of Vip1Ad 

and Vip2Ag has confirmed the binary toxin mode of action (Geng et al. 2019). 
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Figure 8 The structure of protoxin and activated toxin of Vip3Aa.  

Adapted from (Núñez-Ramírez et al. 2020). Pink - domain I, yellow - domain II, green - domain III, 

blue - domain IV, violet -  domain V. The proteases cleave between domain I and II resulting in the 

formation of 4 helixes needle-like structures. 
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The mode of action of Vip3 is similar to that of Cry toxins but is not clearly determined yet. 

Vip3 binds different receptors than those recognized by the Cry toxins (Chakroun and Ferré 

2014; Gouffon et al. 2011; Kahn et al. 2018). The scavenger receptor class C like protein (Sf-

SR-C) and Fibroblast Growth factor Receptor (Sf-FGFR) of Spodoptera frugiperda and a 

tenascins-like protein of A. ipsilon may be the Vip3 receptors (Jiang, Xiao-yue Hou, et al. 2018; 

Jiang, Xiaoyue Hou, et al. 2018; Osman et al. 2019).Vip3 proteins needs cleavage activation 

like the Cry toxins. They have a molecular weight of 89 kDa and form tetramers in solution, 

the cleaved 65 kDa and 21 kDa products associate closely (Palma et al. 2017). Recent structure 

studies of Vip3 revealed that the proteins form a tetramer structure with hitherto unreported 

topology  (Byrne et al. 2021; Núñez-Ramírez et al. 2020; Zheng et al. 2020). The protease 

trypsin cleaves the residue between domain I and II to activate the toxin, causing big 

conformation change - the domain I helixes turned over to form a 4 helixes needle-like structure, 

which inserts into the target cell membrane (Fig. 8) (Byrne et al. 2021; Núñez-Ramírez et al. 

2020). Byrne and colleagues have observed that activated Vip3A insert into the liposome 

membranes without the help of any receptor (Byrne et al. 2021). The death of cells may be 

caused by ion transporting through the needle-like structure, similar to the Rocker transporter 

or the influenza M2 channel (Lee et al. 2003; Núñez-Ramírez et al. 2020). 

Vip3 proteins are believed to be secretory proteins even though they do not contain a signal 

peptide. Vip3A was produced and retained in the mother cell compartment when grown in 

sporulation medium, and it was secreted to the medium when grown in rich medium (Z. Wang 

et al. 2021). This result suggests Vip3A secretion is nutrient-dependent. Vip3A is produced 

from the mid-log growth until sporulation, unlike the Cry proteins, whose genes (except the 

cry3 genes) are only expressed at the sporulation stage (Agaisse and Lereclus 1995; Estruch et 

al. 1996). The description of Vip3A production in Estruch’s report is not very convincing, 

because the Bt growth condition and description of growth are different from those generally 

used in Bt studies. On the other hand, western blot cannot describe the expression of vip3A 

quantitatively. Thus, the expression of vip3A needs more detailed descriptions. Moreover, the 

regulation of vip3A expression has never been studied. 

1.3.3 Mammals as ecological niche 

Bacillus species such as Ba and Bc serovar anthracis are human/mammal pathogens. Ba uses 

mammals as a survival niche. Ba can infect humans through inhalation or wounded skin. The 

classical infection of Ba through the human respiratory system was described as the “Trojan 



 

 

25 

horse model” (Guidi-Rontani 2002). The Ba spores reach the lungs through inhalation, and the 

alveolar macrophages phagocytose the spores to eliminate the intruders. Once inside the 

macrophage, the Ba spores germinate and produce toxins, which disrupt the phagolysosome. 

The disruption of the phagolysosome allows nascent bacilli transit to the macrophage 

cytoplasm. The migration of macrophages transmits the bacteria to lymph nodes and blood, 

where the bacilli multiply and cause bacteremia and toxemia. The poly-γ-D-glutamic acid 

capsule of Ba cells helps bacteria resist phagocytosis (Ezzell and Welkos 1999), thus allows 

the bacilli to survive in the blood and lymph system.  

Deadly Ba infection of wild animals favors the Ba persistence in the field. An in situ study of 

Ba infected carcasses has shown that Ba infects and kills the animals whose carcasses remain 

on the ground. After the death of the animal, the characteristic of the soil changed and favors 

the growth of grass in the site and attracts herbivores, which may result in the next cycle of 

infection (Turner et al. 2014). The concentration of spores on root and soil remained stable for 

3 years, and the Ba found in the grass only decreased 3 years after the death of the animals 

(Turner et al. 2014). The high concentration and long persistence of spores in soil and grass 

increased the possibility of a new infection.  

Some other Bacillus strains have a similar pathogenic property as Ba. The Bt subsp. konkukian 

strain was isolated from a wounded soldier and it can infect immunosuppressed mice 

(Hernandez et al. 1998). B. thuringiensis 407 Cry− and B. cereus ATCC14579 resulted in 100% 

mortality of mice in nasal instillation experiments (Salamitou et al., 2000). The B. cereus 

species are not only involved in food poisoning in humans, but they may also cause anthrax-

like progressive pneumonia, fulminant sepsis, and devastating central nervous system 

infections in immunosuppressed individuals (Bottone 2010). Nevertheless, it is not sure if the 

Bt and Bc species can use mammals as a survival niche like Ba and Bc serovar anthracis. 

Both spore and vegetative forms of Bacillus can survive in the human gastrointestinal tract 

(Berthold-Pluta, Pluta, and Garbowska 2015). The Bt species can be isolated from feces of cows, 

sheep, human and chicken (Ammons et al. 2016; Barbosa et al. 2005; Jensen et al. 2002; Pinto 

et al. 2017; Sinott et al. 2012). However, the isolation of Bacillus from feces may mainly result 

from the food intake (Turnbull and Kramer 1985). The Bt and Bc spores can have a hemocoel 

life in insect suggests they can adapt to the aerobic environment. Those bacteria occasionally 

colonize human gut resulting severe food poisoning. The bacteria may be ingested with food. 

The highly resistant spore can protect them from the acid and enzymatic stomach and small 
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intestine environment. When the intestinal environment of patient changes, the pH rises to 

alkaline, the Bc spores may germinate (Wilson and Benoit 1993). Then the bacteria can adhere 

to the mucin of gut (Tsilia et al. 2016). The vegetative cells will produce virulence factors such 

as hemolysin Hbl, nonhemolytic enterotoxin Nhe, cytotoxin K, metalloproteases, 

sphingomyelinase, and phospholipases (Gohar et al. 2008). Those virulence factors may cause 

the damage on the gut or inflammation. The Cereulide produced by emetic Bc species may also 

cause cell damages and provoke diarrhea symptoms in human (Ehling-Schulz et al. 2004). The 

bacteria will also produce different antimicrobial peptides, such as thurincins for Bt strains and 

cereins for Bc strains, to compete for the intestinal environment with the other microbes 

(Abriouel et al. 2011). The combination of disruption in the intestine and the imbalance of gut 

microbiota will result in the food poisoning symptoms. However, as the condition of intestine is 

usually not favorable for Bacillus spore germination, their colonization in the gut of normal 

human is rare. The microbiota studies showed that the phylum Firmicutes bacteria are 

predominant in the gut, the spore-forming Clostridium spp is very rich whereas Bc group bacteria 

were rarely identified (Adak and Khan 2019; Holman and Gzyl 2019). Besides human gut, the 

Bc species can cause infection in other sites such as skins, respiratory tract, eyes and blood 

(Bottone 2010; Callegan et al. 2003; Veysseyre et al. 2015). 

1.4 The phagocytic cells and their interaction with bacteria 

The phagocytic cell is a general name describing cells that can engulf target particles such as 

bacteria. This name usually referred to the phagocytes of animals as well as the phagocyte-like 

protozoa amoebas. The Bc group bacteria may encounter macrophages, such as when Ba enters 

mammalian blood or Bt enters the hemocoel of insects, and they may encounter the amoebas 

as both Bacillus and amoebas are abundant in the soil. 

Phagocytosis of bacteria by phagocytes includes the following steps: recognition of the 

microorganism through phagocyte receptors, internalize bacteria into a vacuole (the early 

phagosome), the vacuole fuse with endocytic vesicles and then fuse with lysosomes to form a 

mature phagosome and kill the bacteria (Uribe-Querol and Rosales 2017). After full digestion 

of the bacteria, the phagosome will disappear. The core mechanisms used by amoebas to ingest 

and kill bacteria are similar to that of human phagocytic cells (Bozzaro and Eichinger 2011; 

Cosson and Lima 2014). The digestion residues in amoebas will be excreted through the 

contractile vacuole.  
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Special receptors are involved in the recognition step for the mammalian macrophages and 

neutrophils, non-opsonic receptors mediate direct ingestion by phagocytes, and the opsonic 

receptors mark the targets then mediate ingestion (Uribe-Querol and Rosales 2017). Amoebas 

may have different receptors as macrophages or even different ways of recognition as they can 

phagocytose latex beads, bacteria, erythrocytes and yeast (Allen and Dawidowicz 1990). The 

Dictyostelium amoebas prefer gram-negative bacteria to gram-positive ones (Rashidi and 

Ostrowski 2019), and specific genes are required to phagocytose different bacteria (Lamrabet 

et al. 2020; Nasser et al. 2013). The Acanthamoeba seems to be a less picky eater, they can use 

both gram-positive or -negative bacteria for growth and delay cyst formation (De Moraes and 

Alfieri 2008) 

1.4.1 General information about amoebas  

The amoebas are protists that have pseudopodia-based shape-altering movements. The free-

living amoebas (FLAs) are living in the environment without a need for a host. They are widely 

spread in the soil, fresh water, and some of them adapt to extreme environment such as sea 

water, hot spring, low or high pH environments (Samba-Louaka et al. 2019). The FLAs feed 

on environmental bacteria by phagocytosis or use other soluble nutrients and small fragment 

nutrients by pinocytosis (Bowers 1977). Researchers discovered amoebas over two hundred 

years before and regain interest in FLAs as they were thought to be potential reservoirs and 

‘training camps’ for pathogenic bacteria (Samba-Louaka et al. 2019). 

1.4.1.1 The classification of amoebas 

The name amoeba is a generic name for many protists. The classification of amoebas is a 

complicated job for taxonomists. Cavalier-Smith emended the taxon Amoebozoa as a phylum 

(Cavalier‐ Smith 1998). The classification of Amoebozoa was revised based on both 

ultrastructural research and molecular phylogenetic studies in 2005, the researchers propose 

Amoebozoa to have several classes including Tubulinea, Flabellinea, Stereomyxida, 

Acanthamoebidae, Entamoebida, Mastigamoebidae, Pelomyxa, Eumycetozoa (Adl et al. 2005). 

However, the classification differs dependent on the choice of sites and taxa when analyzing 

the small subunit rDNA of amoebas. When presenting the amoebozoan phylogeny with a basal 

multifurcation that reflects better the uncertainties, six major clades can be distinguished:  
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Figure 9 The phylogeny of Amoebozoa.  

Adapted from (Kang et al. 2017; Samba-Louaka et al. 2019).  

 

Figure 10 Phase contrast microscope images of Acanthamoeba castellanii 30010 trophozoite (left) 

and cyst (right).  

Scale bar = 10 µm.  
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Tubulinea, Flabellinea, Conosea, Variosea, Thecamoebida, and Acanthopodida (Pawlowski 

and Burki 2009). A more recent study uses a phylogenomic framework (325 genes) analysis to 

present a robust phylogeny of amoebaozoa. The authors classified amoebaozoa into two major 

clades, Discosea, and Tevosa (Fig. 9) (Kang et al. 2017). The Dictyostelium discoideum and 

Acanthamoeba castellanii belonging to the Tevosa and Discosea clades, respectively, are used 

in my study. 

1.4.1.2 Free-living Acanthamoeba 

The Acanthamoeba belongs to the Discosea class and is represented by Acanthamoeba 

castellanii species. The Acanthamoeba can be distinguished at the genus level based on 

morphological characteristics but the differences between species are not apparent, the species 

can only be identified by genomic features such as 18S rDNA (Kong 2009). Acanthamoeba is 

the most well studied amoebas with classical amoeba-movement. They have two 

developmental forms: the trophozoite, an active form that has stretched pseudopodia, food 

vacuole, and a clear nucleus; the cyst form, a stress-resistant dormant form, usually round with 

doubled cell walls (Fig. 10).  

The trophozoites form cysts when encountering unfavorable environments, such as starvation, 

hypoxia, change of osmolarity (Lloyd 2014). The encystment of amoebas including pre-

encystment, cyst initiation and cyst wall synthesis steps (Khunkitti et al. 1998). In the pre-

encystment step, corresponding to the occurrence of environmental stresses, the trophozoite 

stops moving and retracts the pseudopodia to become a compact cell. The amoeba can easily 

resume normal shape when stresses were removed. In the second step, the amoeba starts to 

synthesize the outer cell wall of the ectocyst and the internal wall of the endocyst. The ectocyst 

contains proteins and polysaccharides and the endocyst is mainly composed of cellulose 

(Lemgruber et al. 2010). The cysts become mature dormant cysts after cyst wall synthesis. The 

cysts are highly resistant to environmental conditions including physical or chemical factors 

(Lloyd 2014). They can be stored at 4°C for one year (Campbell et al. 2008) or even 50 years 

(Lloyd 2014). Cysts will resume growth when cultured in proper condition for about one week.  

1.4.1.3 Social amoebas Dictyostelium 

Dictyostelium discoideum are soil amoebae that feed on bacteria (Otto and Kessin 2001). 

Aerobacter aerogenes (Klebsiella aerogenes) and Escherichia coli B/R20 are usually used to 

grow Dictyostelium (Fey et al. 2007). The lab strains can grow axenically in protease peptone  
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Figure 11 The life cycle of Dictyostelium discoideum. 

From (Otto and Kessin 2001). Stalk cells (yellow) and spore cells (blue).  
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liquid medium like HL5 or FM medium containing mainly amino acids, or on plates (Fey et al. 

2007). Their ability to grow on liquid media is mainly due to mutation in some genes resulted 

in enhanced liquid intake (Bloomfield et al. 2015). 

D. discoideum is a model organism to study social evolution because of its unique life cycle 

from unicellular to multicellular stage (Fig. 11) (Bozzaro 2019; Otto and Kessin 2001). The 

amoeba spores germinate and grow under nutrient-rich conditions. The active amoebas develop 

into multicellular form under starvation. The chemoattractant cyclic AMP attracts single 

amoebas to an aggregation center forming a mound. The cells differentiate into the pre-stalk 

cells and pre-spore cells, and then the pre-stalk cells aggregate to form a tip on the top of the 

mound. Then the amoeba slug moves to lights and lower humidity regions. The accumulation 

of pre-stalk cells leads to form a Mexican hat form. Then amoebas form the stalk to rise the 

fruit body, which contains pre-spore cells. The spores mature in the fruit body and be released 

into the environment, while the stalk cells died in the end. The Dictyostelium spores are 

resistant cells similar to Acanthamoeba cysts, they are resistant to heating, freezing, or drying 

(Cotter and Raper 1968).  

Dictyostelium was used to study cytokinesis, cell motility, phagocytosis, chemotaxis, signal 

transduction, and cell differentiation during development. It was also used for bacteria-amoeba 

interaction studies (Cosson and Lima 2014; Paquet and Charette 2016). 

1.4.1.4 Pathogenicity of amoebas 

Different species of free-living amoebas are associated with severe diseases - the Amoebic 

meningoencephalitis including primary amoebic encephalitis (PAM) and granulomatous 

amoebic encephalitis (GAE), and the Acanthamoeba keratitis (Gompf and Garcia 2019; 

Lorenzo-Morales, Khan, and Walochnik 2015). Amoebic meningoencephalitis is very rare but 

causes death with a high mortality rate, the rate is over 95% for Naegleria fowleri PAM , 44-

85% for Acanthamoeba GAE and over 95% for B. mandrillaris GAE (Gompf and Garcia 2019). 

The anti-amoeba antibody present in a high percentage of the population, which suggests that 

usually the amoebas infection is a self-limited disease (Brindley, Matin, and Khan 2009; 

Gompf and Garcia 2019). The immunosuppressed patients are more likely to develop a severe 

disease after infection. The Acanthamoeba and occasionally Dictyostelium polycephalum 

amoebas are the causal agents of amoebal keratitis which may result in loss of vision (Lorenzo-

Morales et al. 2015; Srirampur et al. 2018). All the amoeba infections are difficult to diagnosis 

because amoebas have a similar shape like the macrophages, and it is very hard to treat the 

http://dictybase.org/techniques/media/fm-medium.html
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infection because of the highly resistant cysts (Gompf and Garcia 2019; Lorenzo-Morales et al. 

2015). 

1.4.2 The interaction of amoebas with bacteria 

Because of their ubiquity, bacteria and amoebas are very likely to meet in the environment. Shi 

and colleagues described the interactions between amoebas and bacteria as three types, 

predation, parasitic interactions, and mutualistic interactions (Shi et al. 2021). The differences 

between parasitic interactions and mutualistic interactions are hard to define as they all can 

have a symbiosis interaction, and it is hard to determine if both organisms benefit or not. 

1.4.2.1 Amoeba predation of bacteria 

Predation is the dominant relationship between amoebas and bacteria. Amoebas consume 

bacteria through phagocytosis. Amoeba is one of the key factors that eliminates bacteria in the 

environment and restructures the bacteria community (Rosenberg et al. 2009). In rhizosphere 

bacteria predation experiments, amoebas preferentially digest Betaproteobacteria and 

Firmicutes bacteria; the number of amoeba disliked species increased in the same time, such 

as Actinobacteria, Nitrospira, Verrucomicrobia and Planctomycetes, and the abundance of 

some of the bacteria did not change even though the community composition shifted 

(Rosenberg et al. 2009). 

Acanthamoeba is a generalist predator that eats a variety of bacteria. They use different bacteria 

for growth delaying their encystment, and increasing their number, such as E. coli, 

Pseudomonas aeruginosa, Enterobacter cloacae, B. subtilis, Bacillus megaterium, 

Micrococcus luteus, and Staphylococcus aureus (De Moraes and Alfieri 2008). Dictyostelium 

uses the A. aerogenes (K. aerogenes) and E. coli B/R20 as feed in the standard culture protocol. 

In a survey of Dictyostelium, one-third of the wild amoeba fruiting bodies contain bacteria, 

most of the bacteria are Proteobacteria and some Actinobacteria, Bacteriodetes, or Firmicutes 

(Brock et al. 2018). In addition, over 75% of those fruiting bodies associated bacteria support 

the growth of amoebas. 

The preferential digestion of bacteria by amoebas is determined by many factors. Amoebas 

have special receptors that recognize different bacteria or organisms (Allen and Dawidowicz 

1990; Declerck et al. 2007; Pan et al. 2018). A. castellanii mannose-binding receptor 

recognizes L. pneumophila, and Dictyostelium folic acid receptor 1 binds to 

lipopolysaccharide of K. aerogenes. Dictyostelium mutation in phg1a gene impairs its growth 
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on K. pneumoniae but not on B. subtilis (Benghezal et al. 2006). Dictyostelium cell-surface 

protein gp130 and putative lysozyme AlyL are involved in the discrimination of gram-positive 

and gram-negative bacteria, respectively (Nasser et al. 2013). 

The efficiency of amoeba phagocytosis is affected by the sizes of the bacteria. Amoeba 

phagocytosis latex beads with a diameter of 1.3-2.8 µm individually, while phagocytosis the 

smaller ones in batch (Korn and Weisman 1967). The filamentous bacteria such as Bc group 

species can form very long chains in certain conditions, which is much longer than normal 

amoebas and resist the phagocytosis of amoebas (Beeton et al. 2013). The environment such 

as temperature can affect amoeba phagocytosis. Chilling of amoebas decreases the 

phagocytosis in stationary-phase cultures, but the amoebas will adapt to the lower temperature 

by increasing membrane fatty acid unsaturation (Avery, Lloyd, and Harwood 1995). 

1.4.2.2 Amoebas-resistant bacteria use amoebas as a reservoir  

Amoebas eat many bacteria, while some bacteria can resist amoeba predation or even infect 

amoebas. These bacteria are called amoeba-resisting bacteria (ARB). ARB can escape from 

phagocytosis or survive, replicate, and escape after internalization (Shi et al. 2021).  

The pathogen Legionella was isolated from Acanthamoeba in 1983 (Rowbotham 1983). This 

explains the presence of this bacteria in a hospital water system (Helms et al. 1983). The 

Legionella was further isolated from amoebas of drinking-water/wastewater systems and 

natural pools, which further expanded its persistence (Magnet et al. 2015). This discovery drew 

scientists' attention to what role the amoebas played in the survival of pathogens in the 

environment. Since then, various other pathogens, such as Mycobacterium, Salmonella, Vibrio, 

Listeria were found to use amoebas as a survival reservoir (Gaze et al. 2003; Schuppler 2014; 

Van der Henst et al. 2016; Wheat et al. 2014). A systematical review of Acanthamoeba 

intracellular microorganism showed that the bacteria species differ depending on the 

environment, E. coli, Mycobacterium spp. and P. aeruginosa are observed in amoebas isolated 

from clinical samples, and Legionella is more likely to be isolated from environmental 

Acanthamoeba (Rayamajhee et al. 2021). Legionella, Pseudomonas and Mycobacterium can 

also be isolated from clinical samples (Iovieno et al. 2010). Recent analysis of Acanthamoeba 

intracellular microbiomes indicates that the orders of Clostridiales and Bacteroidales are the 

major population (Y.-J. Wang et al. 2021). The Ruminococcus gnavus, Eubacterium dolichum, 

Roseburia faecis, and Blautia producta were identified from keratitis amoeba isolates, in which 

Blautia producta is related to early-stage keratitis (Y.-J. Wang et al. 2021). The different 
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bacterial phyla found in the wastewater amoeba samples included Proteobacteria (40.25%), 

Planctomycetes (17.71%), Bacteroidetes (15.02%) and Firmicutes (10.79%), which 

represented 83.77% of the total bacterial FLA microbiome (Moreno-Mesonero, Ferrús, and 

Moreno 2020). The pathogen species including Aeromonas, Arcobacter, Campylobacter, 

Helicobacter, Klebsiella, Legionella, Mycobacterium, Pseudomonas and Salmonella were 

detected in the wastewater FLA microbiome (Moreno-Mesonero et al. 2020). 

The ARB can also survive within the social amoeba Dictyostelium species. A screening survey 

found 45 bacterial isolates are resistant to amoeba, and seven of them can be packaged by the 

amoebas (Paquet and Charette 2016). The microbiomes isolated from the fruiting body of soil-

dwelling Dictyostelium included Proteobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, 

Firmicutes, and Acidobacteria (Sallinger, Robeson, and Haselkorn 2021).  

The resistance of bacteria to predation could be the first step of pathogenicity and virulence to 

amoebas and mammals (Adiba et al. 2010). Experiments have shown that various virulence 

genes of L. pneumophila were kept (selected) after interaction with amoebas, and those genes 

promote the growth of the bacteria in macrophages (McDougald and Longford 2020). A similar 

result was observed with E. coli (Adiba et al. 2010). The interaction with amoebas promotes 

the development and evolution of mechanisms that allow the amoeba-resistant bacteria to 

survive in eukaryotic host cells (Molmeret et al. 2005). In other words, amoebas are training 

grounds for intracellular bacterial pathogens. 

1.4.2.3 Bacterial strategies against amoebas  

Bacteria survival in vacuoles 

The survival of Legionella within amoebas as well as human phagocytes is well studied. The 

bacteria form Legionella-containing vacuoles (LCV) that are resistant to lysis and allow 

bacteria to multiply in the vacuole (Steiner, Weber, and Hilbi 2018). The LCV formation is 

controlled by the Icm/Dot type IV secretion system (T4SS), which translocates approximately 

300 different “effector proteins” into host cells (Steiner et al. 2018). Those proteins regulate 

signal transduction, cytoskeleton dynamics and membrane trafficking during the LCV 

formation (Swart et al. 2018). After micropinocytosis of Legionella by macrophage or amoebas, 

the food vacuole acquires phosphatidylinositol PtdIns(3)P in the surface, which helps the 

vacuole to resist fusion with lysosomes. The surface molecules of the LCV shift to PtdIns(4)P; 
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the LCV recruits the endoplasmic reticulum as a membrane and expands; then the bacteria 

multiply in the vacuole. 

The Salmonella spp take another way to escape from amoebas. A very small population (0.1-

1%) of Salmonella typhimurium is able to enter the contractile vacuoles of Acanthamoeba 

polyphaga, and multiply in the vacuoles (Gaze et al. 2003). It was also reported that Salmonella 

can multiply in the normal food vacuoles and kill the Acanthamoeba possibly using the 

virulence factors of the bacteria (Bleasdale et al. 2009; Tezcan-Merdol et al. 2004). The studies 

of Salmonella survival in D. discoideum suggest these bacteria exploit a set of conserved 

molecular mechanisms to survive within protozoa and animal host cells (Riquelme et al. 2016; 

Valenzuela et al. 2021). The bacteria inject effector proteins into the host cell via the Type III 

secretion system or the twin-arginine translocation system to form the Salmonella-containing 

vacuole (Urrutia et al. 2018; Valenzuela et al. 2021). Effectors SopB and SifA help shaping the 

proteome of the vacuole (Valenzuela et al. 2021). 

The pathogen bacterium Vibrio cholera is also reported to survive and replicate within the 

contractile vacuole of A. castellanii until encystment, then the bacteria enter into the cytosol of 

cysts and lyse the cyst to be released into the environment (Van der Henst et al. 2016). V. 

cholera uses extracellular lecithinases to lyse the amoeba cyst and uses the flagellum-based 

motility to escape the lysed cyst (Van der Henst et al. 2018).  

Bacteria survival in the cyst 

Except for vacuoles, some bacteria are retained and survive within the amoeba cysts. The 

Mycobacterium leprae can be retained in different amoebal cysts for up to 8 months, and the 

virulence of the bacteria remained high (Wheat et al. 2014). The Streptococcus spp can survive 

in the Acanthamoeba cysts, and can be recovered from amoeba cysts at a very high rate 

(Siddiqui et al. 2017). The cyst is a very resistant form of amoebas that allows them to survive 

adverse environmental conditions. The retaining of bacteria inside cysts can protect those 

bacteria from harsh environments. It was shown that foodborne pathogens Salmonella enterica, 

E. coli, Yersinia enterocolitica, and Listeria monocytogenes survived in cysts of A. castellanii 

when exposed to antibiotic treatment or highly acidic conditions (Lambrecht et al. 2015). 

Bacteria grow at a cost of partial digestion 

The Listeria cannot survive or multiply inside amoeba, they are usually digested by amoebas 

(Doyscher et al. 2013). The amoebas seem to use a backpack strategy that carry the aggregates 
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of Listeria in the posterior pole as a food storage. However, the bacteria can benefit from the 

interaction with amoebas (Schuppler 2014). The Listeria population increased significantly in 

the presence of amoeba (Fieseler et al. 2014). It seems the bacteria grow using metabolites 

released by amoebas (Schuppler 2014). The interactions between Listeria and amoebas 

indicates, even though amoebas can use the bacteria, the bacteria can benefit from their 

interaction. 

The bacteria farmer – Dictyostelium  

Many wild social amoebas Dictyostelium have a primitive farming symbiosis (Brock et al. 

2011). The amoebas stop consuming bacteria early and incorporate some of the bacteria into 

their fruiting bodies. The amoeba spores carry the bacteria, disperse to a new environment, and 

seed the bacteria for eating after. This brings advantages to the amoebas to survive in new sites 

and gives a chance for the bacteria to survive and multiply. 

Besides the above survival mechanisms, the amoebas and bacteria may secret small products 

that target each other (Iqbal, Siddiqui, and Khan 2014). Conditioned medium from A. 

castellanii is highly toxic to methicillin-resistant S. aureus exhibiting an almost 100% kill rate. 

In addition, the conditioned medium of E. coli K1 and Enterobacter sp. exhibits toxicity to A. 

castellanii depending on concentration.  

The giant viruses take a parasitic life in amoebas. Mimiviruses, marseilleviruses, 

pandoraviruses, pithoviruses, faustoviruses and molliviruses were isolated from amoebas 

(Colson et al. 2017). Those viruses enter the amoeba through phagocytosis and then release the 

genome into the amoeba cytoplasm to multiply. The viruses lyse amoebas to release mature 

viruses after about 12 h of infection. Another virus virophages use the mimivirus factories for 

their multiplication (Colson et al. 2017).  

1.4.2.4 Interactions between amoebas and bacilli 

The Bc group consists of ubiquitous bacteria spread in soil, water, occupying a similar 

environment as the amoebas. The isolation of Bc group bacteria from amoebas was reported 

among long lists of other bacteria. The microbiome studies usually classified the bacteria at the 

phyla level. The most abundant genera of the bacterial microbiome of wastewater FLA were 

Bacillus (8.91%) (Moreno-Mesonero et al. 2020), even though we do not know if Bc group 

bacteria were identified. There are 2 B. toyonensis strains out of a total of 174 strains of bacteria 

isolated from soil D. discoideum fruiting bodies (Brock et al. 2018). A recent report identified 
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8 Bacillus, 15 Paenibacillus in the D. discoideum fruiting bodies  (Sallinger et al. 2021). These 

results suggest it is possible for Bc group bacteria to interact with amoebas.  

The interaction of Bc group bacteria with amoebas is not consistent in different studies. 

Bacillus resists phagocytosis in one study but been digested and support the growth of amoebas 

in another study. All of those studies did not give direct evidence of bacteria digestion, nor 

described the effect of amoebas on the development cycle of bacteria. We still do not know 

what effect the virulence factors of Bt and Bc have on amoebas, and whether the lysis of 

amoebas is limited to the Ba strains (Dey, Hoffman, and Glomski 2012). 

Different Bt/Bc strains and the non-capsule Ba Sterne ASC1 have shown similar behavior when 

cocultured with Acanthamoeba (Beeton et al. 2013). The spores can sense the products excreted 

by amoebas and germinate. The vegetative cells will form micro-colonies on the surface of 

amoebas when the concentration of amoebas is low, and they will form long chains when the 

concentration of amoebas is high. The bacteria have a similar behavior when cultured with 

Dictyostelium. This kind of morphology changes in bacilli was thought to be a strategy to resist 

phagocytosis by amoebas. The virulence regulator PlcR seems to have no effect on the 

Bacillus-amoeba interactions.  

Santos and colleagues found that the spores and vegetative cells of B. cereus ATCC 14579 can 

support the growth of A. castellanii, T. pyriformis and Cercomonas sp. (Santos et al. 2017). 

However, we do not know if the growth of protists is due to the digestion of endospores, or the 

digestion of germinated spores (vegetative cells). The bacteria can be detected inside the 

protists after two antibiotic treatments suggesting that amoebas protected bacilli from 

environmental stresses. The authors detect a high rate of spore internalization and a low rate of 

vegetative cell internalization by A. castellanii, which may suggest that spores are resistant to 

digestion, while vegetative cells are not (Santos et al. 2017). 

The interaction of Ba with amoebas is quite similar to its interaction with macrophages (Dey 

et al. 2012). Ba spores can germinate and multiply inside the A. castellanii. Then, it lyses the 

amoeba in about 6 h of culture. The chromosomal gene gerH and other uncharacterized gene(s) 

on the pXO1 plasmid are essential for their multiplication in amoebas. 

1.4.3 The macrophages and their interactions with bacilli 

Macrophages are phagocytes of different animals that eliminate all the invader bacteria or 

viruses. They share similar core mechanisms of bacteria ingestion and killing as the amoebas 
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(Bozzaro and Eichinger 2011; Cosson and Lima 2014). Ba is a pathogen of humans and, as 

indicated above, they infect their hosts using macrophages as a Trojan horse (Guidi-Rontani 

2002). Some other Bc species may also be involved in human infections and cause death 

(Hernandez et al. 1998; Veysseyre et al. 2015). The bacilli are potentially able to encounter 

macrophages during their infection and the resistance to macrophages is important for their 

virulence. 

1.4.3.1 Ba infection of macrophage 

The invading of alveolar macrophages is the first step of Ba infection. Time-lapse microscope 

observation showed that about 10% of Ba spores germinate inside the murine RAW264.7 

macrophage, the germinated bacilli elongate by 4-5 h, replicate by 5-6 h, and bacteria destroy 

the macrophage by 7 h  (Ruthel et al. 2004). Spores also germinate extracellularly. AtxA, the 

regulator of virulence factors, is essential for Ba to escape from macrophages (Dixon et al. 

2000).  

The transcriptome of Ba during the infection of macrophages showed that Ba adapts to the 

intracellular environment very quickly (Bergman et al. 2007). At the beginning of infection (1-

2 h post spore infection), spores germinate and start to grow. The energy metabolism pathways 

increase steadily, while the sporulation- and germination-related pathways are downregulated; 

this is similar to the changes between early outgrowth and exponential growth in vitro 

(Bergman et al. 2007). When compared to growth in vitro, Ba grown in macrophage during the 

early infection stage have elevated expression of purine ribonucleotide biosynthesis and 

siderophore biosynthesis pathways (Bergman et al. 2007). Siderophores are responsible for 

acquiring iron from the environment. The increasing siderophore synthesis permits Ba cells to 

better utilize the nutrients in the host. The siderophore is also important for the growth of Bt/Bc 

in insect larvae as well as the virulence of Bt/Bc (Harvie et al. 2005; Segond et al. 2014). At a 

later stage of infection of macrophages, Ba made a more profound change in gene expression 

in order to fully adapt to the intracellular environment (Bergman et al. 2007). The expression 

of many virulence genes increased, including lef, pagA and cya and their regulator genes atxA 

and pagR, as well as genes encoding hemolysin, phospholipases, adhesion lipoproteins and 

catalase gene katB (Bergman et al. 2007). 
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1.4.3.2 Bt/Bc infection of macrophages and their cytotoxicity  

The phagocytosis of three Bc strains by BALB/c mouse peritoneal macrophages and 

RAW264.7 macrophage was assessed (Rolny, Racedo, and Pérez 2017). Around 24 - 50% of 

macrophages contain or are associated with Bacillus after coculture. The efficiency of 

phagocytosis is dependent on the strains - the food poisoning Bc B10502 strain is phagocytosed 

at a higher rate than the milk contaminating Bc 2 and M2 strains. The bacteria survived 

intracellularly after gentamicin treatment. Over 50% of phagosomes containing Bc are acidic 

compartments indicating they recruited the lysosomes to the food vacuoles and the bacteria 

would be digested. In contrast, some Bt spores can escape the macrophage with the help of 

immune inhibitor InA1 (Ramarao and Lereclus 2005). However, the macrophage cell line J774 

used in the later study does not reflect the response of primary macrophages (Andreu et al. 

2017). 

Various experiments have demonstrated the cytolytic activity of Bt/Bc virulence factors to 

macrophages. The virulence factors produced by Bt 407 are strongly cytolytic to G. mellonella 

plasmatocytes (Pl) and granular haemocytes 1 (Salamitou et al. 2000).  Hemolysin HlyII of Bt 

407 is sufficient to induce apoptosis of the macrophages J774 via the caspase3/8 pathway (Tran, 

Guillemet, et al. 2011). In addition, the other virulence factors controlled by PlcR are also 

involved in macrophage cytotoxicity. However, the deletion of PlcR-regulated toxins CytK and 

Hbl did not change the cytotoxicity. Different mammalian cell types (human fibroblasts 

(HT1080) and neutrophils (hPMNs), hamster ovary cells (CHO), and mouse macrophages 

(RAW264.7)) showed similar susceptibility to supernatant virulence factors of Bc strain ATCC 

10876 (Sastalla et al. 2013) and the cytotoxicity was abolished in the PlcR deletion strain. The 

hemolysin BL was the major toxin that caused cell lysis in that research.  
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2. Objective – the interaction of Bacillus with amoebas 

The previous studies have shown that Bacillus may be associated with amoebas in the 

environment. Beenton and collegues have shown that Bacillus spores can germinate in the 

amoeba environment, and the vegetative cells can form microcolonies or filaments to resist 

amoeba phagocytosis (Beeton et al. 2013). However, the Bacillus vegetative cells and spores 

were ingested by amoebas in another study (Santos et al. 2017). Contradicting to intact of cells 

in amoeba food vacuoles, the spores and vegetative cells promoted the growth of amoebas. 

They also cannot exclude that the growth of amoebas on spores is due to the digestion of 

germinated vegetative cells. No direct evidence showed the digestion of Bacillus vegetative 

cells or spores by amoebas in both studies. The interaction of human pathogen Ba with amoebas 

showed that Ba spores can germinate intracellularly and lyse amoebas in about 6 h (Dey et al. 

2012), which is distinctly different from the other species of the Bc group. 

Whether the Bacillus cereus spp can resist phagocytosis by amoebas or amoebas digest them? 

Can they support the growth of amoebas? Can the other bacilli lyse the amoebas like Ba and 

what effect the Bacillus virulence factors have to amoebas? Can the amoebas help the 

persistence of bacilli in the environment? To answer these questions, we studied the interaction 

between Bacillus and amoebas. 

This study described the fate of representative strains of Bc group in the amoeba environment, 

the toxicity of Bt and Bc virulence factors to amoebas, and determined the growth of amoebas 

on vegetative cells or spores. The effect of amoebas on the developmental stages of the Bt is 

also studied. 

The spores or vegetative cells of representative Bacillus strains were co-cultured with 

Acanthamoeba castellanii; then the germination and chain-formation were observed under 

microscope. The digestion of vegetative Bt 407 spores or vegetative cells in amoeba vacuoles 

was examined using time-lapse microscope observation. The effect of virulence factors on 

amoeba viability was examined using trypan blue exclusion after culturing amoebas in a 

medium containing virulence factors. The developmental stages of Bt 407 cells during co-

culture were followed using stage-specific fluorescence reporters. 

3. Article - The fate of bacteria of the Bacillus cereus group in the amoeba environment 
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Abstract
The Bacillus cereus sensu lato group consists of several closely related species, including B. anthracis, B. cereus sensu 
stricto, and B. thuringiensis. Spores of these pathogenic bacteria are commonly found in the soil but evidence suggests that 
they are unable to grow in such a natural environment in the absence of nutrient input. Amoebas have been reported to be an 
amplifier for several species of pathogenic bacteria and their potential involvement to explain the large amount of B. thur-
ingiensis and B. cereus spores in soil has been frequently proposed. Here, we studied the fate of Bacillus and amoebas when 
cultured together. We show that the virulence factors produced by B. thuringiensis and B. cereus do not affect the amoeba 
Acanthamoeba castellanii, which, on the contrary, can phagocytose and effectively digest vegetative Bacillus cells to grow 
and prevent the formation of cysts. Bacterial spores can germinate in the amoeba environment and the vegetative cells can 
then form chains or aggregates that appear to be less efficiently phagocyted by the amoeba. The use of transcriptional fusions 
between fluorescent reporter genes and stationary phase- and sporulation-specific promoters showed that the sporulation 
process occurs more efficiently in the presence of amoebas than in their absence. Moreover, our results showed the amoeba 
environment to promote spore germination and allow the bacteria to complete their developmental cycle. Overall, this study 
suggests that the amoeba-Bacillus interaction creates a virtuous circle in which each protagonist helps the other to develop.

Keywords  Bacillus thuringiensis · Acanthamoeba · Soil · Sporulation · Phagocytosis

Introduction

The Bacillus cereus sensu lato group (Bc sl) is comprised 
of a growing number of species, including Bacillus cereus 
sensu stricto (Bc ss), Bacillus thuringiensis (Bt), and Bacil-
lus anthracis (Ba) [1]. Spores of the Bc sl group are fre-
quently found in the soil, which is generally regarded as a 
reservoir rather than a favorable environment for the multi-
plication of these Bacilli [2–4]. The development of these 
bacteria in the soil has long been a subject of debate and 
there is currently no available evidence to definitively set-
tle the issue. Studies have addressed the ecology of Bc ss 
in soil and showed it to be a saprophytic bacterium, with a 

life cycle in soil-extracted soluble organic matter and arti-
ficial soil microcosms [5]. Other studies that addressed the 
survival of Bt in the soil showed that the bacteria are main-
tained as spores that do not germinate or multiply [6, 7]. In 
accordance with these latter observations, genomic analysis 
revealed that the Bc strain ATCC14579 cannot efficiently 
utilize complex plant carbohydrates like B. subtilis, suggest-
ing that the Bc ss species is better adapted to a protein diet 
[8]. Given the close relationship between Bt and Bc ss [9], 
this finding is also relevant to Bt and presumably all species 
of the Bc sl group. Moreover, the presence of numerous 
genes encoding proteolytic enzymes in bacteria of the Bc 
sl group is consistent with their pathogenic properties [10]. 
Bc ss and Ba are pathogenic for mammals [11, 12], and Bt 
is an entomopathogen bacterium that produces insecticidal 
crystal toxins (Cry and Cyt proteins) and various virulence 
factors that allow the bacteria to damage host tissues and 
resist immune defenses, ultimately causing septicemia [13].

All species of the Bc sl group share a similar genomic 
background and a set of core virulence factors [10, 14]. 
Most of these exported virulence factors are positively 
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controlled by the regulator PlcR at the end of exponential 
growth and early stationary phase, except for Ba, in which 
a nonsense mutation abolishes the activity of PlcR [15, 16]. 
It has been shown that the PlcR regulon plays a major role 
in the virulence of Bt and Bc ss in various animal models 
[17–20]. Bt and Bc ss produce other virulence factors not 
regulated by PlcR, such as the metalloprotease InhA1 and 
the hemolysin HlyII, which are produced at the onset of 
the stationary phase [21–23]. In the context of macrophage 
infection, InhA1 gives Bt spores the ability to escape from 
macrophages [24] and HlyII provokes macrophage cell death 
by apoptosis through its pore-forming activity [25]. How-
ever, the macrophage cell line J774 used in these studies 
does not reflect the response of primary macrophages [26].

Amoeba is another phagocytic organism. Free-living 
protozoa, such as Acanthamoeba, live in soil and adopt 
two developmental forms depending on the encountered 
environmental growth conditions: trophozoites, a meta-
bolically active feeding form, and cysts, a round, dormant, 
stress-resistant form. Major feeding mechanisms of free-
living amoebas are pinocytosis and phagocytosis of soil 
microorganisms such as bacteria, fungi, or algae present in 
their environment [27]. Some bacteria are able to resist to 
amoebas, since they are able to escape predation, others are 
able to resist intracellular digestion and survive therefore 
intracellularly, or are able to survive, grow, and escape from 
amoebas after phagocytosis. About 20% of human patho-
genic bacteria, among them are Legionella, Mycobacterium, 
or Listeria, are able to live and multiply inside free-living 
amoebas [28, 29]. Amoebas might represent a reservoir for 
bacteria, allowing the propagation of bacteria in the envi-
ronment or provide a shelter to protect them from various 
physical and chemical stresses such as biocides [28].

Acanthamoeba has been reported to be an amplifier and 
reservoir for bacteria such as Mycobacterium and Legionella 
[30–32]. Bacillus and amoebas share the same ecological 
niches, such as soil and insects, and Bacillus has been identi-
fied as the most abundant genus in the bacterial microbiome 
of free-living amoebas [33]. The interaction between the two 
organisms has been investigated by several research groups. 
It has been demonstrated that after phagocytosis by A. cas-
tellanii, the spores of Ba are able to germinate inside amoe-
bic phagosomes [34]. Vegetative cells subsequently grew 
as chains before lysing the host cell. Similar to mammalian 
macrophage infection, the pXO1 plasmid was required for 
the growth of Ba within amoebas. The main pXO1-encoded 
toxin genes (pagA, lef, and cya) appeared to be dispensable 
for the germination of Ba spores and the subsequent out-
growth process, suggesting that other pXO1 genes play a 
role in this process [34]. The relationship between the Bt 
israelensis 4Q7 strain and protozoa has also been studied. In 
the presence of Acanthamoeba polyphaga and Dictyostelium 
discoideum, Bt israelensis grew as long chains or formed 

micro-colonies, depending on the densities of the amoebas 
[35]. This observation suggested that these bacterial struc-
tures were resistant to the phagocytosis of the amoebas. 
Factors released by the amoebas were shown to promote Bt 
germination, allow growth, and induce filamentous develop-
ment. Interactions between the Bc strain ATCC14579 and 
several protozoans were also studied [36]. It was demon-
strated that A. castellanii, Tetrahymena pyriformis, and Cer-
comonas spp. can ingest and use Bc ss spores or vegetative 
cells for growth. They also observed survival and prolifera-
tion of ingested bacteria inside protist cells, suggesting that 
protists can act as an amplifier of Bc ss in soil.

Based on published data, it is still unclear whether amoe-
bas allow all bacteria species of the Bc sl group to mul-
tiply, leaving open the question of the high abundance of 
Bc sl spores in soil. Ba uses amoebas to grow, leading to a 
decrease in the amoeba population [34], whereas Bc ss and 
Bt appear to be a prey for the amoebas, as no increase in the 
Bc ss or Bt population has been observed upon co-culture of 
the two organisms [35, 36]. In contrast, the amoeba popula-
tion is able to grow on Bc ss and Bt. However, occasional 
germination of Bc ss and Bt and intracellular growth were 
reported in the last two cited studies. Overall, these observa-
tions raise the question of whether Ba represents an excep-
tion within the Bc sl group or whether other Bc sl bacteria 
are also able to use amoebas to amplify. They also raise the 
question of whether amoebas allow Bc sl bacteria spores to 
germinate and vegetative cells to grow and sporulate.

Here, we compared the fate of seven strains of the Bc 
sl group when they were co-cultured with A. castellanii. 
Reciprocal effects on the population of each organism were 
evaluated. The toxicity of the virulence factors secreted by 
Bt and Bc ss to amoebas was assessed. In addition, the effect 
of A. castellanii on the developmental process of Bt was ana-
lyzed. In order not to restrict our study to the Bc sl group–A. 
castellanii interaction, we also tested the impact of Bc sl 
bacteria on the growth of another soil amoeba known to feed 
on bacteria, D. discoideum.

Materials and Methods

Bacteria and Amoeba Strains, and General Culture 
Conditions

The following Bacillus species and subspecies were 
used in this study: B. thuringiensis 407, B. thuringiensis 
kurstaki HD73, B. thuringiensis israelensis IPS82, B. thur-
ingiensis konkukian 97–27, B. cereus 569 (ATCC10876), 
B. cereus ATCC14579, B. cereus AH187, and B. wei-
henstephanensis KBAB4. These strains are described 
in Table 1. Bacillus strains were routinely grown in LB 
broth at 30  °C. Exponentially or stationary-growing 
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bacteria were harvested at an optical density of 600 nm 
(OD600nm) = 1.0 or 4.0, respectively. Bacillus spores were 
prepared in sporulation-specific HCT medium [37]. A. 
castellanii (ATCC30010) was maintained in T75 tissue 
culture flasks at room temperature in PYG medium (ATCC 
medium 712) [38]. Heat inactivated E. coli K-12 strain 
TG1 was used as supplemental food for Acanthamoeba 
during co-culture experiments to delay cyst formation. E. 
coli was grown overnight in LB medium at 37 °C under 
vigorous shaking. E. coli cells were then resuspended 
in 1/10 of the initial culture volume in 10% glycerol 
and stored at − 80 °C. CFU counting was performed on 
an aliquot to determine the concentration of the E. coli 
suspension.

Plasmid Construction

The gfp coding sequence and PsarA promoter sequence 
were amplified from pCM12 [48] using primers SGFPFW 
and SGFPRV (5′-TTG​GCG​CGC​CGC​CAG​TGC​CAA​GCT​
TCTG-3′ and 5′-GGG​TAA​CCG​CTT​CCG​GCT​CGT​ATG​
TTGTG-3′, respectively). The amplified DNA fragment 
was cloned between the HindIII and BamHI sites of plas-
mid pHT304-18 [49]. The resulting plasmid (pHT304-
18ΩPsarA’-gfp) was used to transform the Bt 407 strain by 
electroporation [39].

Co‑culture Assays

The protocol for Bacillus-amoeba co-culture was adapted 
from [35] and [34]. Briefly, confluent A. castellanii 
grown in PYG medium were harvested by centrifugation 
at 300 × g for 10 min and the pellet washed two times in 
Page’s modified Neff’s amoeba saline (PAS) buffer [50] 
supplemented with 0.5% glucose (PAS-Glu). The con-
centration of amoebas was adjusted to 1.25 × 105 cells/
ml. A suspension of Bacillus spores or vegetative cells in 
PAS-Glu buffer was then added to reach a concentration of 
2.5 × 107 CFU/ml and a multiplicity of infection (MOI) of 
200. Physical interaction between the bacteria and amoe-
bas was initiated in tubes by centrifugation at 500 × g for 
5 min. The suspension was subsequently homogenized by 
gentle pipetting and dispatched into tissue culture flasks 
or 24-well plates (for microscopic analysis, each well con-
tained a sterile round coverslip at the bottom), depend-
ing on the experiment. Amoebas were allowed to attach 
to the bottom of the substrates by stationary incubation 
at 30 °C for 1 h. Extracellular spores or vegetative cells 
were removed by washing with fresh PAS-Glu buffer two 
times. Then, an equal amount of PAS-Glu buffer contain-
ing 107 CFU/ml heat-inactivated (80 °C, 12 min) E. coli 
cells per ml (PAS-Glu-E. coli) was added. For experiments 
of longer than 24 h, 107 CFU/ml of heat-inactivated E. coli 
were added every 24 h to delay cyst formation [30]. The 

Table 1   Bacillus cereus strains used in this study

Strain Features Reference

Bt 407 Cry+ A representative of the Bacillus thuringiensis subspecies, belongs to serotype 1, laboratory 
model strain. Produces Cry toxins active against lepidopteran insects

[39]

Bt 407 Cry− Acrystalliferous Bt 407 strain cured of its cry plasmid [39]
Bt HD73 A Bt kurstaki strain, belongs to serotype 3abc, laboratory model strain [40]
Bt israelensis (Bti) IPS82 A Bt israelensis strain, belongs to serotype H-14. Produces Cry toxins active against Diptera 

insects (especially mosquitoes)
[41]

Bt konkukian (Bt kon) 97–27 A Bt konkukian serotype strain, distantly related to all the pesticidal strains but close to Ba. 
This strain was originally isolated from a wounded soldier

[42]

Bc 569 (ATCC10876) A representative of the B. cereus sensu stricto strain. Isolated by Northern Regional Research 
Laboratory, U.S

[43]

Bc ATCC14579 A representative of the B. cereus sensu stricto strain. It is a common reference strain [8]
Bc AH187 A pathogenic Bc strain harboring the pCer270 plasmid, belonging to the pX01 family and 

encoding the genes involved in the production of the emetic toxin, the cereulide
[44]

B. weihenstephanensis (Bw) 
KBAB4

A psychrotolerant B. weihenstephanensis species strain. This strain was isolated from soil and 
produces virulence factors at 15 °C

[45, 46]

Bt 407 nprA Bt 407 Cry− carrying pHT304-18ΩPnprA-mCherry, used to reflect the necrotrophism stage [47]
Bt 407 spoIID Bt 407 Cry− carrying pHT304-18ΩPspoIID-yfp, used to reflect the sporulation stage [47]
Bt 407 Papha3-mCherry Bt 407 wt carrying pAT-Papha3-mCherry-LGC, a strain constitutively expressing the mCherry This work
Bt 407 PsarA-gfp Bt 407 wt carrying pHT304-18ΩPsarA-gfp, a strain constitutively expressing the GFP This work
Bt 407 pHT304 Bt 407 Cry− carrying the pHT304 plasmid, used as a fluorescence negative control [47]
Bt 407 ΔplcR A plcR mutant Bt 407 Cry− strain, defective for PlcR-regulated virulence factor production [19]
Bc ATCC14579 ∆plcR A plcR mutant Bc ATCC14579 strain, defective for PlcR-regulated virulence factor production [19]
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co-culture assays were performed at 30 °C. T0 was defined 
as the time point after the washing step.

For co-culture with D. discoideum, D. discoideum DH1 
cells were grown in the presence of different Bacillus strains 
as described previously [51]. Bacillus were grown overnight 
in LB medium at 30 °C. Klebsiella aerogenes (Ka) strain 
KpGE was used and grown overnight in LB medium at 
37 °C. Ka is a commonly used food supply for D. discoi-
deum (http://​dicty​base.​org/​techn​iques/​media/​dicty_​growth.​
html). Fifty microliters of an overnight Bacillus culture (or 
25 μL Bacillus and 25 μL Ka) was plated on 2 mL SM-
Glucose-agar or HL5-agar (HL5 was diluted in water at 2, 
5, 10, 20, 50, or 100% HL5). For growth on SB-agar (2 mM 
Na2HPO4 and 14.7 mM KH2PO4), 10 μL of concentrated 
Bacillus (3 mL overnight culture resuspend in 60 μL SB) 
was plated on SB-agar. After the bacteria dried, 104, 5 × 103, 
103, 102, or 10 D. discoideum cells were deposited on top of 
the bacterial lawn. Growth of D. discoideum formed holes 
in the bacterial lawn after 2 to 6 days of incubation at 21 °C.

Enumeration of Amoebas and Bacillus in Co‑cultures

The amoeba population during co-culture was counted as 
follows. A T25 tissue flask containing 10 mL of the Bacil-
lus-amoeba suspension was first thoroughly scraped. The 
suspension was then centrifuged and the pellet resuspended 
in 2 mL PAS-Glu buffer. The amoebas contained in this 
five-fold concentrated suspension were enumerated using 
a hemocytometer. Due to the variation of the number of 
amoebas in different co-culture experiments, a growth index 
was calculated as (T24-T0)/T0 to show the relative growth 
of the amoebas. For amoebas grown with Bacillus collected 
in stationary phase, the bottom of the T25 culture flasks 
was observed directly under a reverse microscope and the 
number of amoebas present in areas of the same size was 
counted. The amoeba population was enumerated every 2 h 
during the first 6 h of contact and at 24 h. The time points 
were selected based on the co-culture of Ba with amoebas, 
as previously described [34]. The percentage of amoeba 
cysts during co-culture was measured as follows: arbitrarily 
chosen microscopy fields localized at the four angles and 
center of the T25 tissue flask (for vegetative cell-amoeba 
co-cultures) or coverslips (for spore-amoeba co-cultures) 
were imaged; a sufficient number of fields to represent at 
least 200 amoebas were imaged and the cysts identified on 
the images were counted. Bacillus present in the co-culture 
samples were quantified by collecting and concentrating the 
co-cultures of Bacillus spores or vegetative cells with amoe-
bas in T25 tissue-culture flasks as described above. Amoe-
bas were lysed by passing the sample five times through 
a 26-gauge needle to release intracellular bacteria. Serial 
dilutions of the suspension were performed. The diluted sus-
pensions were plated on LB plates directly for vegetative 

cell quantification. Spores were quantified by heating the 
samples at 80 °C for 12 min before plating. The CFU were 
counted after an overnight incubation at 30 °C.

Lecithinase Activity Assay

Production of lecithinase by Bacillus in co-culture with 
amoebas or in LB was assessed on LB plates containing 5% 
egg yolk as described [52]. Briefly, the samples were col-
lected by centrifugation, filtered on a 0.22-μm membrane, 
and then 100 μL loaded into wells dug into the plates. Plates 
were incubated at 30 °C for 24 h and scanned. Lecithinase 
activity was detected by the formation of rings around the 
wells.

Bacillus Growth in Amoeba‑Conditioned Medium

Amoeba-conditioned medium was prepared extemporane-
ously as follows: amoebas were cultured in PAS-Glu-E. coli 
medium in tissue-culture flasks at 30 °C for 24 h at a con-
centration of 1.25 × 105 cell/ml. The residual amoeba and E. 
coli cells in the conditioned medium were removed by cen-
trifugation at 300 × g for 10 min and filtration on a 0.22-μm 
membrane. Exponentially growing Bt cells at OD600nm = 0.8 
were collected, washed in PAS-Glu, and resuspended in 
the amoeba-conditioned medium to reach approximately 
2.5 × 107 CFU/ml, as estimated by the OD600nm. Samples 
were dispatched in 24-well plates (1 ml/well) and the growth 
of Bt was assessed by measuring the OD600nm. Samples were 
harvested at the indicated time points for microscopy and 
flow cytometry analysis and fixed as described above, except 
for the amoeba-lysis step.

Microscopy

Coverslips to which amoebas were attached were collected 
and inverted onto microscope slides for microscopic obser-
vation. The coverslips were fixed to the slides using wax. 
Cells were observed with a Zeiss AxioObserver.Z1 inverted 
fluorescence microscope equipped with a Zeiss AxioCam 
MRm digital camera and Zeiss fluorescence filters. The 
amoebas and Bacillus cells were observed using the × 40 
or × 100 objective in phase-contrast mode. The filters 46 
HE and 45 HE were used for the fluorescence imaging of 
YFP and mCherry, respectively. Wildtype cells harboring 
the pHT304 plasmid (Bt 407 pHT304) without fluorescence 
genes were analyzed to determine the background of YFP 
or mCherry and the optimal exposure time. For time-lapse 
observations, the co-culture procedure of PaphA3-mCherry 
fluorescent Bt 407 cells with amoebas was the same as that 
described above, except for incubation in tissue-culture 
flasks for 30 min. The co-culture was scraped from the 
flask bottom after incubation and transferred into a 35-mm 
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cell culture dish with a glass bottom (Greiner Bio-One) for 
microscopy. Amoeba and Bt development were monitored 
by microscopy as described above, with the addition of a 
temperature-controlled chamber at 30 °C. The entire time-
lapse observation lasted over 4 h. More than 15 amoebas 
that had phagocytosed Bt cells were observed. The observa-
tions started when bacteria were found inside the amoebas 
(0 min) and ended when the bacteria were no longer detected 
inside the amoebas, from several minutes to 2 h depending 
on the amoeba under observation. Images of the amoebas 
were captured every 3 min or less, depending on the speed 
of digestion or movement.

Flow Cytometry Analysis

For flow cytometry analysis, 500 μL of the amoeba-Bacil-
lus co-culture were thoroughly scraped from the wells, 
resuspended, and the amoebas lysed by passing the sample 
through a 26-gauge needle five times. The suspension was 
centrifuged, the supernatant discarded, and the bacterial 
pellet fixed for 7 min in 4% formaldehyde-PBS and then 
washed in PBS. Fixed bacteria were resuspended in 30 μL 
GTE buffer [53] and maintained at 4 °C until use. Before the 
analysis, fixed samples were treated to disrupt any aggre-
gates and obtain a homogeneous cell suspension of single 
bacteria by mild sonication with a Branson Sonifier 250. 
Samples were diluted in filtered PBS and the fluorescence 
measured using a CyFlow Space cytometer (Sysmex-Partec, 
France). FL1 and FL4 channels (with 527-nm and 585-nm 
band pass filters, respectively) were used to analyze the fluo-
rescence signal of YFP and mCherry [47]. Data were col-
lected using FlowMax software (Sysmex-Partec, France). 
The results were analyzed and overlays generated using 
Weasel version 3.4 software (WEHI, USA, and available 
from https://​www.​frank​battye.​com.​au/​Weasel/). YFP- or 
mCherry-expressing cells were identified using histograms 
in which the cells showed a higher signal intensity than the 
reporterless cells used as controls.

Statistical Analyses

To determine whether the number of cysts formed when 
amoebas are grown in the presence of Bt 407 (spores or 
vegetative cells) are different from the control condition in 
the absence of Bt 407, a non-parametrical Mann–Whitney 
test was performed and the exact P value was calculated. 
Results were considered as statistically different when the P 
value < 0.05. To determine if the percentage of fluorescence-
expressing cells grown with amoebas or grown in condi-
tioned medium was different from the control condition 
(without amoebas or in non-conditioned medium, respec-
tively), Mann–Whitney tests were performed. The exact P 
value were calculated and the differences were considered 

statistically relevant when the P value < 0.05. All the statisti-
cal analyses were done using Prism version 8.4.3 for macOS 
(GraphPad Software, La Jolla, CA).

Results and Discussion

B. cereus spp. Spores Display Similar Germination 
and Aggregation Behavior in the Presence 
of Amoebas

We examined the development of seven representative 
strains of the Bc sl group to determine whether different 
species of the Bc sl group behave similarly when interact-
ing with amoebas. The strains, described in Table 1, were 
the following: Bt 407, Bt kurstaki HD73, and Bt israelen-
sis IPS82, selected as representatives of the insecticidal Bt 
strains; Bt konkukian, which is not pathogenic for insects but 
is close to B. anthracis; Bc 569 and the emetic Bc AH187 
strains, chosen as representatives of Bc ss; and B. weihen-
stephanensis (Bw) KBAB4, selected as a representative 
of the psychrotolerant Bacillus species. A. castellanii and 
the Bacillus spores were statically co-cultured in PAS-Glu-
E. coli medium and the development of the seven strains 
observed by microscopy. Micrographs taken at T0 showed 
spores of all strains present inside vacuole-type structures in 
the amoebas, indicating that they were efficiently phagocy-
tosed by the amoebas (Fig. 1, left two columns). After 24 h 
of incubation (T24), we observed a heterogeneous bacte-
rial population of spores and vegetative cells for all strains 
tested in co-culture with the amoebas (Fig. 1, right two col-
umns). We also observed that vegetative cells formed chains 
or aggregates outside the amoebas. No spores of any strain 
germinated by 24 h in PAS-Glu medium in the absence of 
amoebas (Fig. S1). These results show that the seven Bt, Bw, 
and Bc ss strains behave similarly in the presence of amoe-
bas. A portion of the spore population germinated and the 
vegetative cells developed subsequently as chains and aggre-
gates in the amoeba environment for all strains. However, we 
did not observe germination of the spores or development of 
the bacteria in the amoebas. The same type of behavior was 
also previously observed with the Bt israelensis strain 4Q7 
co-cultured with amoebas [35].

Bt and Bc Virulence Factors Do Not Affect 
the Viability of Amoebas

Bacteria of the Bc sl group (except B. anthracis) produce 
exported virulence factors, such as degradative enzymes, 
cytotoxins, and hemolysins during early stationary phase 
upon activation of the PlcR-PapR quorum sensing system 
[15, 16]. The cytotoxicity of these PlcR-regulated enzymes 
and toxins has been demonstrated for several eukaryotic 
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cell-types [19, 52, 54]. In addition to these virulence factors, 
the Bc AH187 strain produces the emetic toxin cereulide at 
the beginning of the stationary phase [11, 55] and the Bt 407 
strain produces hemolysin II, which has been characterized 
for its ability to lyse J774 macrophages by apoptosis through 
a pore-forming activity [25].

We assessed the effect of the Bt and Bc ss virulence fac-
tors towards amoebas by co-culturing A. castellanii with 
Bacillus cells harvested at the beginning of the stationary 
phase. The Bt 407, Bc 569, and Bc AH187 strains were 
used for the assays. The avirulent strain Bt 407 ΔplcR was 
included as a control. The growth of the amoeba population 
in co-culture with the Bacillus strains was monitored for 
24 h. The number of amoebas was stable during the first 6 h 
of co-culture and then increased by approximately1.5 fold 
by 24 h, regardless of the strain used, whereas the population 
did not grow in the absence of Bacillus (Fig. 2a). Micro-
scopic observations of culture samples did not reveal any 
signs of amoeba lysis (not shown). These results suggest 
that the virulence factors produced by the Bt 407, Bc 569, 
and Bc AH187 strains have no detectable effect on amoebas. 
Alternatively, the Bt and Bc ss cells may have stopped the 
production of the virulence factors upon their transfer to the 
co-culture medium used in this study. Therefore, we used 
a lecithinase and a hemolytic assay to assess the presence 
of the PlcR-regulated lecithinase and hemolytic enzymes 
under such conditions [52]. The supernatants of the co-cul-
ture samples were collected after 2 h of contact between the 
amoebas and Bacillus to allow accumulation of the enzymes 
and the activity of the lecithinase (phosphatidylcholine-spe-
cific phospholipase C, PC-PLC) then assayed on egg-yolk 
plates (Fig. 2b). We did not observe the formation of a halo 
that would reflect activity of the lecithinase around the wells 
containing the supernatants of the co-culture samples. In 
contrast, lecithinase activity was detected in the supernatants 
of the Bt 407, Bc 569, and Bc AH187 early stationary phase 
cultures in LB medium (Fig. 2c). No lecithinase activity was 
detected in the fresh LB medium or the supernatant of the Bt 
407 ΔplcR preculture. Overall, these results show that the 
Bacillus cells did not produce detectable lecithinase activity 

when co-cultured with amoebas, suggesting that PlcR activ-
ity was abolished upon the transfer of the cells from LB 
medium to the co-culture conditions. We confirmed this 
result by assaying the PlcR-dependent hemolytic activity of 
the Bt and Bc strains on 5% sheep blood plates (Fig. S2). 
The results were in accordance with those of the lecithinase 
assay; the supernatants of the Bacillus-amoeba co-cultures 
did not show any hemolytic activity. In contrast, we detected 
a hemolysis ring with the supernatants of Bt 407, Bc 569, 
and Bc AH187 stationary phase cultures and no hemolysis 
was detected with the Bt 407 ΔplcR sample and fresh LB. 
These results show the absence of PlcR-dependent activity 
in bacilli transferred into the amoebal environment but did 
not allow us to determine whether A. castellanii is able to 
resist the virulence factors produced by Bc and Bt.

We tested the sensitivity of the amoebas to the Bacillus 
virulence factors using the supernatants of the Bt 407, Bt 
407 ΔplcR, Bc 569, and Bc AH187 LB cultures harvested at 
the beginning of the stationnary phase (Bacillus-conditioned 
medium). Fresh LB medium was used as a negative control. 
Viability of the amoebas was evaluated by trypan blue dye 
exclusion [56]. Most of the amoebas remained viable after 
2 and 24 h of culture (Fig. S3). Less than 1% of the amoeba 
population was stained blue when incubated in the Bacillus-
conditioned media, even after an extended duration of the 
incubation. A similar proportion of viable cells was obtained 
in the control sample when amoebas were incubated in fresh 
LB medium. This result suggests that the virulence factors 
produced by Bt 407, Bc 569, and Bc AH187 have no signifi-
cant effect on amoeba viability.

Vegetative Bacillus Cells Support the Growth 
of Amoeba

It was previously shown that Ba spores can germinate and 
multiply within amoebas, causing their lysis in approxi-
mately 6 h and a twofold decrease in the amoeba population 
within 24 h of co-culture [34]. In contrast, our microscopic 
observations of Bacillus spore-amoeba co-cultures at T24 
(Fig. 1) revealed no signs of amoebic lysis or suffering; most 
of the amoebas were present as trophozoites and were mov-
ing their pseudopodia. We confirmed this by quantifying the 
development of the amoeba population when grown alone or 
in the presence of Bacillus spores or vegetative cells. As all 
the Bacillus strains tested displayed a similar behavior when 
grown in the presence of A. castellanii, the Bt 407 strain was 
used for these assays as a representative of the Bc sl group. 
The amoeba cell number was quantified using a hemocy-
tometer over 24 h and we determined a value (growth index) 
indicating the increase of the amoeba population between T0 
and T24 (Fig. 3a). The total amoeba population was similar 

Fig. 1   Micrographs of A. castellanii co-cultured with spores of seven 
Bacillus strains. Spores were mixed with amoebas at a MOI of 200 
in PAS-Glu-E. coli medium. A centrifugation step was performed to 
increase the contact between the two organisms. The suspension was 
transferred into a flask. Amoebas were allowed to attach to the bot-
tom for 1 h and washed to remove most of the unincorporated spores. 
T0 was defined after the washing step. Images were captured at T0 
and T24. For each time point, the left column corresponds to a large 
field and the right column a focus on the area defined with a rectan-
gle. Spores are indicated by white arrows. Magnification of × 40, 
scale bar represents 50 μm. The names of the strains, as described in 
Table 1, are indicated on the left of the panels

◂
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in the presence or absence of Bt 407 spores, with a growth 
index ranging from 0.4 to 0.5. The growth of the amoebas 
was also assessed when exponentially growing bacteria were 
provided. The growth index was 1.15 when the amoebas 
were co-cultured with vegetative Bt 407 cells versus 0.37 in 
the absence of bacilli (Fig. 3b). Experiments were also con-
ducted in the absence of inactivated E. coli cells (Fig. S4). 
The growth index of amoebas cultured in the presence or in 
the absence of exponentially growing Bt 407 cells was 0.7 
and 0.3, respectively. This result indicates that the growth 
of the amoebas was stimulated by the presence of vegetative 
Bacillus cells.

Amoebas form cysts when they are confronted with 
harsh conditions, such as starvation or the presence of 
biocides [57]. Cyst formation may thus indicate whether 
there is a negative effect of Bt on amoeba development. 
We thus evaluated the presence of cysts and their abun-
dance during co-culture with Bt by microscopic obser-
vation and enumeration. The proportion of cysts reached 
approximately 25% of the total amoeba population after 

24 h in the presence or absence of Bt 407 spores (Fig. 3c). 
In contrast, cysts accounted for less than 5% of the total 
amoeba population after 24 h of co-culture with vegetative 
Bt 407 cells, a proportion similar to that initially present 
at T0 (Fig. 3d). Same results were obtained in experiments 
performed in the absence of inactivated E. coli cells in the 
co-culture medium (Fig. S4). The increase in the number 
of amoebas and reduced transformation into cysts suggest 
that the amoebas consumed the vegetative Bacillus cells to 
sustain growth, whereas the spores were not used as food. 
However, a statistical analysis did not reveal a significant 
difference between the mean values of the percentage of 
cysts formed after 24 h of culture in the presence or in 
the absence of vegetative Bt 407 cells. In contrast, San-
tos et al. [36] observed that various species of amoebas 
(including A. castellanii) could grow on a medium con-
taining spores of Bc (strain ATCC14579). However, under 
such conditions, the amoebas could consume the vegeta-
tive cells resulting from germination of the spores. The 
authors also observed the weak growth of the amoebas 
from spores that were inactivated by heat treatment. Such 
growth could have been the result of a lower resistance of 
heat-treated spores.

We determined whether Bacillus cells can be used to 
sustain the growth of another amoeba species by conduct-
ing experiments on D. discoideum. Vegetative Bacillus 
cells of 10 strains were provided as food as a layer on 
different media (Table 2). The culture of D. discoideum 
on a layer of Bt or Bc ss strains on SM-Glucose or HL5 
agar medium did not lead to growth of the amoeba. How-
ever, D. discoideum grew well on a layer composed of any 
Bacillus strain tested mixed with 50% Ka on SM-Glucose 
medium. D. discoideum grew well with a Bacillus layer 
on SB-agar medium. A lower growth rate was neverthe-
less observed on Bt HD73 and Bt israelensis strains. 
Overall, these experiments suggest that D. discoideum as 
well as A. castellanii are able to use the vegetative cells 
of Bacillus as food.

The Fate of Bacillus in the Presence of Amoebas

The results presented above show that vegetative 
Bacillus cells can be used as food by amoebas (Fig. 3). 
However, some bacterial cells can escape this fate 
and multiply (Fig. 1). We determined the fate of the 
Bacillus in an amoeba environment by quantifying the 
development of the Bt 407 population co-cultured with 
amoebas and compared it to the development of bacte-
ria grown alone under the same conditions. PAS-Glu-
E. coli medium was inoculated with Bt spores in the 
presence or absence of amoebas. CFU-counting showed 
that the total number of spores remained stable over 
48 h under both conditions (Fig. 4a). This observation 

Fig. 2   Toxicity of the virulence factors produced by Bacillus on A. 
castellanii. Toxicity was assessed by measuring amoeba growth and 
lecithinase activity of the virulence factors. a The amoeba popula-
tion in a defined area of the flask was enumerated when grown axeni-
cally or co-cultured with stationary phase Bt 407, Bt 407 △plcR, Bc 
569, or Bc AH187 cells. Error bars represent the standard deviation 
from the mean, n = 3. The lecithinase activity of the supernatants was 
assessed by depositing the suspension from wells onto 5% egg yolk-
containing LB plates and checking for the formation of a clear ring 
after 24 h of incubation at 30 °C. b Lecithinase activity of superna-
tants of 2-h amoeba-Bacillus co-cultures. c Lecithinase activity of LB 
medium and supernatants of Bacillus cultures grown in LB and har-
vested at the beginning of the stationary phase. Images were captured 
after incubation at 30 °C for approximately 24 h
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suggests that only a small portion of the spore popula-
tion germinated and was at the origin of the vegetative 
population observed in the microscopy images (Fig. 1). 

We also investigated the development of vegetative 
Bacillus cells in co-culture with amoebas (Fig. 4b). 
The total number of CFUs remained stable whether the 

Fig. 3   Development of the 
amoeba population in co-culture 
with spores or vegetative Bt 407 
cells. Amoeba growth index 
when they were cultured with 
or without Bt 407 spores (a), 
and with or without vegetative 
Bt 407 cells (b). Percentage of 
cysts in the amoeba population 
when they were cultured with or 
without Bt 407 spores (c), and 
with or without vegetative Bt 
407 cells (d). Amoeba cultures 
were inoculated with spores or 
vegetative cells as described in 
Fig. 1. A, amoebas. Error bars 
represent the standard deviation 
from the mean, n = 3. Statisti-
cal analysis performed using 
a Mann–Whitney test showed 
that the difference between the 
percentage of cysts when amoe-
bas are grown with or without 
vegetative Bt 407 cells was not 
significant

Table 2   Growth of D. 
discoideum using Bacillus as 
food

SM-Glucose/HL5 agar medium is an axenic culture medium; SB-agar medium is a very poor medium; K. 
aerogenes (Ka) was routinely used as an appropriate food supply. The symbol “-” means that amoebas did 
not grow, “ + ” means that amoebas grow well, “ ± ” means that amoebas grow slowly. Medium reference: 
http://​dicty​base.​org/​techn​iques/​media/​media.​html
* We did not observe any amoeba growth whatever the concentration of HL5 (100, 50, 20, 10, 5, or 2%)
** SM glucose agar supplemented with an amount of Ka corresponding to 50% does not allow amoeba 
growth
*** Amoebas do not grow in an axenic SB-agar medium

Medium

Bacillus strains SM-glucose 
agar

HL5-agar* SM glucose agar** SB-agar***

50% 
Ka/50%Bt

1% Ka/99%Bt

Bt 407 Cry+ - -  +  -  + 
Bt 407 Cry− - -  +  -  + 
Bt 407 Cry− ∆plcR - -  +  -  + 
Bt HD73 Cry+ - -  +  -  ± 
Bti - -  +  -  ± 
Bt konkukian - -  +  -  + 
Bc 569 - -  +  -  + 
Bc ATCC14579 - -  +  -  + 
Bc ATCC14579 ∆plcR - -  +  -  + 
Bw - -  +  -  + 
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vegetative cells were co-cultured with amoebas or cul-
tured alone for 24 h. Most of the bacteria were detected 
as spores after culturing with or without amoebas at 
24  h, with sporulation rates for Bt 407 of 96% and 
99%, respectively. Thus, the entire bacterial popula-
tion sporulated in PAS-Glu-E. coli medium, with or 
without amoeba.

This quantitative approach was reinforced by micro-
scopic observations over 96 h. The co-culture of spores 
with amoebas resulted in a heterogeneous bacterial popu-
lation of spores and vegetative cells at 24 h (Fig. 4c). Some 
vegetative cells had formed small chains and aggregates. 
At T96, we observed a mixed population of vegetative 
cells, sporulating cells, and free spores. If Bt spores were 
inoculated alone in the same medium, the spores did not 
germinate and no vegetative cells were observed at T24 or 
T96 (Fig. S5). These results suggest that Bt 407 spores can 
complete an entire life-cycle (from spores to vegetative 
cells back to spores again) in the amoebic environment. 
However, these observations do not indicate whether Bt 
spores can germinate inside amoebas, as was shown for 
Ba [34].

We used time-lapse microscopy to follow the fate of 
vegetative Bt 407 cells phagocytosed by amoebas. Expo-
nentially growing Bt 407 cells carrying pAT-Papha3’-
mCherry were used. Papha3 is constitutively expressed and 
fused to the mCherry gene allows to follow the bacteria 
during exponential growth. Images from a representative 
experiment are presented (Fig. 4d). A rod-like bacte-
rium was identified inside the amoeba selected for this 
time-lapse analysis (time arbitrarily set to T0 for the first 
observation). The shape of the fluorescence of the Bt cell 
became blurred after 7 min. The rod-like bacterium was 
broken down and the vacuole containing the bacterium 

became fluorescent at 9 min. The rod-shaped bacterium 
could not be identified after 12 min. Concomitantly, over 
the course of the observation, the content of the vacuole 
became fluorescent, indicating the expression of Papha3 
and the release of the mCherry protein from the bacteria 
into the vacuole. The other red fluorescent vacuoles show 
that this amoeba had digested several Bt cells before the 
observation began.

The Effect of Amoebas on Bt Developmental Stages

We investigated the development of a bacterial population 
in the amoebic environment by microscopic observation of 
vegetative Bt 407 carrying a PsarA’-gfp transcriptional fusion 
(Table 1) co-cultured with amoebas over 20 h (Fig. 4e, top 
panels). PsarA is constitutively expressed during the vegeta-
tive growth. A mixed population of vegetative cells and 
spores was present both inside and outside the amoebas after 
15 h of co-culture. We also observed a heterogenous popula-
tion of vegetative and sporulating cells when the vegetative 
cells were grown in PAS-Glu-E. coli medium in the absence 
of amoebas after 15 h (Fig. 4e, bottom line). However, the 
presence of free spores, i.e., spores that are released from 
the mother cells, was observed at T15 for bacteria grown in 
the amoebic environment, but was only identified from T20 
when the bacteria were grown in the absence of amoebas. 
This observation suggests that the sporulation process was 
faster when the bacterial population grew in an amoebic 
environment.

We next monitored the physiological development 
of Bt in amoeba using transcriptional fusions between 
a f luorescent reporter gene and promoters that are 
activated during the stationary phase. Two promoters 
were selected: PnprA, which is activated by the quorum-
sensing regulator NprR and controls necrotrophism at 
the onset of the stationary phase [58, 59], and PspoIID, 
which is activated by the sigma factor SigE during the 
early stage of the sporulation [60, 61]. Bt 407 nprA and 
spoIID strains harboring plasmid transcriptional fusions 
pPnprA’-mCherry or pPspoIID’-yfp (Table 1) were grown in 
the presence of amoebas or axenically in the same cul-
ture medium. Exponentially growing Bt cells (i.e., bac-
teria expressing no reporter genes) were collected and 
co-cultured with amoebas. Microscopic observations, as 
well as flow cytometry analysis, were performed (Fig. 5). 
Microscopic analyses showed that Bt cells were present 
inside and outside the amoebas and that the expression 
of PnprA’-mCherry and PspoIID’-yfp started before T2 and 
T4, respectively (Fig. 5a, b). We observed similar kinet-
ics of expression for the two promoters when Bt grew in 
the absence of amoebas (Fig. S6). The PnprA-expressing 
population was detected at T0 by flow cytometry (Fig. 5c, 
e). However, the level of fluorescence was low and may 

Fig. 4   The fate of Bt 407 spores or vegetative cells during co-culture 
with amoebas. a The development of the Bt 407 spore population 
cultured with or without amoebas was determined by counting the 
CFUs after heat treatment. b The development of vegetative Bt cells 
cultured with or without amoebas was determined by CFU counting. 
Spores present in the population were counted after heat treatment. c 
Microscopy images of amoeba-Bt spores co-cultured at the indicated 
time points (magnification × 100). Two distinct areas are shown for 
T24. d Time-lapse microscopy images showing Bt Papha3-mCherry 
lysis in amoeba vacuoles (magnification × 100). The duration of 
observation is indicated in the images. The first image was arbitrarily 
designated as 0 min. Images are representative of four experiments. 
A vacuole identified as containing a bacterium at T0 and tracked for 
the duration of the experiment is indicated with an arrow. e Micro-
graphs of Bt 407 PsarA-gfp vegetative cells co-cultured with amoebas 
(top panels) or alone (bottom panels). The spores are indicated by 
the arrow heads. Images presented are representative of three experi-
ments. Error bars represent the standard deviation from the mean 
(n = 3). The experiments in a, b, and e were performed in PAS-Glu-
E. coli medium at 30 °C and those in c and d in PAS-Glu medium at 
30 °C
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explain why PnprA-expressing cells were not detected at 
this time point by the less sensitive fluorescent micros-
copy. Two populations were present, indicating that PnprA 
was expressed heterogeneously. The population of cells 

expressing PnprA increased from 25% at T0 to over 80% 
at T4 and later in the presence of the amoebas (Fig. 5e). 
We observed similar kinetics of PnprA’-mCherry expres-
sion and heterogeneity in the Bt 407 nprA population for 
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Bt cells grown in the absence of amoebas (Fig. 5c, e and 
S6). In co-culture with amoeba, PspoIID’-yfp expression 
was detected from T4 in approximately 15% of the Bt 
407 spoIID population and expression of the sporulation 
reporter gene increased over time to represent approxi-
mately 70% of cells by T8 (Fig. 5d, f). The percentage 
of PspoIID’-yfp-expressing cells was lower when the Bt 
cells were grown in the absence of amoebas. Under axenic 
conditions, PspoIID-expressing cells represented 7% of the 
population at T4 and 40% at T24. Flow cytometry analy-
ses confirmed the microscopic observations (Fig. 5a, b); a 
higher percentage of bacteria became committed to sporu-
lation when grown in the presence of amoebas than under 
axenic conditions. However, a statistical analysis did not 
reveal a significant difference between the mean values 
of the PspoIID-expressing population in the two growth 
conditions.

We studied the development of the necrotrophic and 
sporulation reporter strains in 24  h amoebic-condi-
tioned medium and non-conditioned medium to deter-
mine whether such stimulation of sporulation was due 
to direct contact of the bacteria with amoebas or the 
amoeba-released or -consumed components. The growth 
of vegetative cells was quantified by OD600nm measure-
ments (Fig. 6a). The growth profile of Bt was similar 
in the conditioned or non-conditioned medium, with the 
turbidity of the medium increasing from 0.3–0.4 at T0 
to 0.5–0.8 at T10 under both conditions and showing no 
significant differences (Fig. 6a). We then determined the 
expression kinetics of the reporter genes under the two 
growth conditions by flow cytometry (Fig. 6b–e). PnprA 
and PspoIID expression started at T2 and T4, respectively. 
The expression of the PnprA’-mCherry transcriptional 
fusion increased progressively in the bacterial population 

to reach 80% of the cells at T6 and later (Fig. 6b, d). The 
PnprA-expressing population decreased to approximately 
35% of the whole population at T24. Bt cells grown in 
conditioned and non-conditioned media showed similar 
PnprA expression kinetics. During the first 10 h of culture, 
the necrotrophic population was slightly but not signifi-
cantly smaller in the non-conditioned than conditioned 
medium (Fig. 6d). As for the sporulation reporter, PspoIID 
expression increased faster in the amoebic-conditioned 
medium than in the non-conditioned medium; expres-
sion of the reporter gene started between T2 and T4 and 
increased to represent approximately 35% of the bacterial 
population (Fig. 6c, e). The first PspoIID-expressing cells 
were detected at T4 in the non-conditioned medium, but 
they represented only 1% of the population (Fig. 6e). The 
sporulating population increased over time but remained 
below 20% until T10, finally representing 33% of cells 
by T24. The percentage of PspoIID-expressing cells at T24 
was similar in both conditioned and non-conditioned 
medium. Overall, these results suggest that the amoebic 
environment accelerates the commitment of Bt cells to 
sporulation.

Conclusions

This study of representative strains of three main spe-
cies of the Bc sl group, except Ba, shows these bacteria to 
have a similar behavior when in the presence of amoebas, 
such as A. castellanii and D. discoideum. Spores of these 
Bacilli can use molecular signals and nutrients secreted by 
amoebas to germinate; the vegetative cells then develop 
as chains or aggregates. Although a portion of the veg-
etative cells are phagocytosed and digested by the amoe-
bas, another portion of the bacterial population commits 
to sporulation and all the vegetative cells finally sporu-
late. Entry into this developmental pathway occurs faster 
in an amoebic environment than under axenic conditions. 
As a counterpart, amoebas can take advantage by prey-
ing on vegetative cells but not spores to grow and delay 
cyst formation. Consistent with this result, we show that 
amoebas are not affected by the numerous virulence fac-
tors produced by the tested Bt and Bc ss strains. This study 
also shows that the major virulence regulator PlcR is not 
expressed in the amoeba-Bacilli co-culture medium. This 
is consistent with the accelerated entry of the bacteria into 
the sporulation process, which involves a rapid increase 
in the intracellular concentration of the phosphorylated 
form of Spo0A, known to repress the transcription of the 
plcR gene [62]. Although Bt and Bc ss cannot replicate 
inside amoebas, unlike Ba, amoebas can nevertheless con-
tribute to the spread of the Bacillus in the environment. 

Fig. 5   Expression of nprA and spoIID in vegetative Bt 407 cells co-
cultured with amoebas. Fluorescence microscopy images of a Bt 407 
nprA and b Bt 407 spoIID strains co-cultured with amoebas. Left 
panel, merge of phase-contrast images and fluorescence images; right 
panels, epifluorescence images. The fluorescent mCherry and YFP 
signals are false-colored red and green, respectively. Flow cytometry 
histograms showing the distribution of c Bt 407 nprA and d Bt 407 
spoIID cells as a function of the fluorescence level. Each time point 
is indicated by a unique color. The gray area represents the fluores-
cence obtained with the reporterless Bt 407 pHT304 strain used as 
the control at T6. The x-axis represents the fluorescence intensity in 
arbitrary units (A.U.) and the y-axis the cell count. Percentage of Bt 
407 cells expressing e PnprA or f PspoIID determined by flow cytom-
etry. Blue dots, Bt cells co-cultured with amoebas; gray squares, Bt 
cells cultured in the in PAS-Glu-E. coli medium; black bars represent 
the means. The data are the results of 3 independent experiments, 
with each symbol representing one repetition. Statistical analysis 
performed using a Mann–Whitney test showed that the differences 
between fluorescence expressing cells grown with or without amoe-
bas were not significant. T0 was defined as 1 h after the initial contact 
of Bt cells with amoebas
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Indeed, Acanthamoeba may eventually compensate for the 
loss caused by the digestion of vegetative cells by provid-
ing a favorable environment for the growth of bacteria. 

Ultimately, our results suggest that the amoeba-Bacillus 
interaction could create a virtuous circle in which each 
protagonist helps the other to develop.

Fig. 6   Expression of nprA and spoIID in vegetative Bt 407 cells 
grown in conditioned or non-conditioned medium. a Growth of veg-
etative Bt 407 cells cultured in 24 h amoeba-conditioned medium or 
non-conditioned medium. Growth was determined by measuring the 
turbidity of the cultures at OD600nm. b Flow cytometry histograms 
showing the distribution of Bt 407 nprA and c spoIID cells as a func-
tion of the fluorescence level at time points indicated by a unique 
color. The gray area represents the fluorescence obtained with the 
reporterless Bt 407 pHT304 strain used as control at T6. The x-axis 
represents the fluorescence intensity in arbitrary units (A.U.) and the 

y-axis the cell count. Percentage of Bt 407 cells expressing d PnprA or 
e PspoIID determined by flow cytometry. Blue dots, Bt cells cultured 
in amoeba-conditioned medium; gray squares, Bt cells cultured in 
fresh PAS-Glu-E. coli medium; black bars represent the means. The 
data are the results of 3 independent experiments, with each symbol 
representing one repetition. Statistical analysis performed using a 
Mann–Whitney test showed that the differences between fluorescence 
expressing cells grown in amoeba-conditioned or non-conditioned 
medium were not significant. T0 was defined as 1 h after the seeding 
of growth media
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Figure S1. Micrographs of Acanthamoeba castellanii and the spores of seven Bacillus
strains cultured axenically in the PAS-Glu-E. coli medium at T0 and T24. A magnification of 
40× was used for all the strains except 100× for Bt 407.
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(a)

Figure S2. Hemolytic activity of the supernatants of the Bacillus-amoeba co-cultures and of
the Bacillus axenic cultures harvested at the beginning of the stationary-phase assessed on
sheep blood plates. Hemolytic activity was assessed by loading 100 µl of non-diluted supernatant
in wells dug into the sheep blood plates. a Hemolytic activity of the supernatants of the amoeba-
Bacillus co-cultures harvested at T2. T0 was defined as 1h after the initial contact of Bt cells with
amoebas. b Hemolytic activity of fresh LB medium and the supernatants of the Bacillus stationary
growth culture. Pictures were taken after 20 h of incubation at 30℃.
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Figure S3. Viability of amoebas after cultured in the Bacillus-conditioned medium for 2h or
24h and assessed by trypan blue exclusion staining. The Bacillus supernatant was collected after
growing the indicated strains to the beginning of the stationary phase (OD600nm 3.0-4.0). 1.25×105
cell/ml of A. castellanii was cultured in the Bacillus supernatants for 2 h (left two columns) or 24h
(right two columns) and stained by trypan blue. Representative microscopy images were shown.
Cells stained in blue are indicated by arrows.
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Figure S4. Development of the amoeba population in co-culture with spores or vegetative Bt
407 cells without E. coli. Amoeba growth index when they were cultured with or without Bt 407
Cry+ vegetative cells (a). Percentage of cysts in the amoeba population when they were cultured
with or without Bt 407 Cry+ vegetative cells (b). The experiments were performed in PAS-Glu
medium without E. coli.
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Figure S5. Micrographs of Bt 407 spores cultured axenically in the PAS-Glu-E.coli medium. 
Magnification of 100×, scale bar = 20 µm
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Figure S6. nprA and spoIID promoter activities in vegetative Bt 407 cells in PAS-Glu-E. coli
medium. a Fluorescence microscopy images of Bt 407 nprA and b Bt 407 spoIID strains cultured
in the medium for the indicated times. Left panel, merge of phase contrast and fluorescence images;
right panels, epifluorescence images. The fluorescent mCherry and YFP signals were false-colored
red and green, respectively. Pictures presented are representative pictures of 3 experiments
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Figure 12 The effect of additional glucose and E. coli on amoebas growth and cyst formation.  

The amoebas were cultured in PAS buffer with the addition of 0.1 M glucose or/and 107 E. coli/ (ml·24 

h). The amoebas and cysts in the tissue culture flasks within the same size of field were counted. One 

experiment.  

 

 

Figure 13 Plate reader signals intensities and microscope images of Bt cells after treatments. 

(A) The correlation between Bt cell concentrations with plate reader signals. One experiment. The 

correlation equations were obtained by linear regression in excel. (B) Representative microscope 

images of bacteria before and after treatment. 
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The involvement of the PhD condidate in the work  

The PhD candidate performed most of the experiments published in the article, except that the 

results about the growth of Dictyostelium discoideum on Bacillus were obtained by Tania 

Jauslin during collaboration with the lab of Pierre Cosson (Université de Genève). 

The wildtype Bt strains are from the collection of the lab. The Bt strains harbouring plasmids 

or with plcR mutation are constructed previously by other lab members.  

Additional results unincorporated in the published article 

(1) I observed that the amoebas became cysts easily when cultured in the PAS buffer and this 

is not good to study the digestion of Bacillus because the cysts stop predation. Glucose and E. 

coli were included in co-culture experiments in some studies to delay cyst formation (Bakala 

N’Goma et al. 2015; Dey et al. 2012). To set up the bacteria-amoeba infection protocol, I first 

modified the PAS buffer. I have assessed the growth and cyst formation of amoebas in different 

PAS mediums with the addition of glucose or E. coli (Fig. 12). I found that the addition of 0.1 

M glucose and 107 E. coli/ (ml·24 h) to the PAS buffer can help the amoebas to maintain a 

lower cyst formation compared to PAS buffer and amoebas have nearly no growth after 24 h 

in this modified buffer. This modified buffer was used in co-culture experiments of the article. 

(2) To quantify the Bt population during co-culture, I tried to use a fluorescent probe to stain 

the Bt cells. I treated Bt 407 vegetative cells with SDS, Triton, or heat, then stained the cells 

with propidium iodide and assessed the fluorescence of cells. 

Method: The Bt 407 cells were collected when bacteria OD600nm reaches 1.0 and different 

volumes of culture were fixed in 50 % ethanol for 10 min. Then the bacteria pellets were treated 

with 250 µl of 1 mg/ml lysozyme at 37°C for 30 min. The bacteria were precipitated and 

resuspended in 250 µl of hybridization solution (0.01 % SDS) or Triton X100 (0.1 %) at room 

temperature for 2 h; or resuspended in hybridization solution without SDS and heated at 90°C 

for 10 min. Resuspend pellets in 100 µl PBS after 1 wash. Add 2 µl of propidium iodide to 20 

µl of samples and incubate at room temperature for 10 min in dark. Then wash with PBS for 1 

time and resuspend in 20 µl PBS. The fluorescence (excitation 535 nm, emission 617 nm) of 

the bacteria samples were assessed using a plate reader. The correlation between the 

concentration of bacteria and plate reader signals were shown in Fig. 13. 

Different concentrations of Bt 407 vegetative cells were treated by 0.01 % SDS, 0.1 % Triton 

X100 or heat at 90°C for 10 min as described above. The Bt concentration and plate reader  
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Figure 14 TEM images of amoebas co-cultured with Bt 407 spores for 48 h. 

(A) Image of a trophozoite containing two spores. The spores are indicated by arrows. The gap between 

spores and amoeba indicates that the spores are located in vacuoles. (B) Image of an amoeba cyst. The 

cyst wall is indicated by arrow. 
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signals are ligne correlated (Fig. 13A). The signal of bacteria treated with 0.01 % SDS is the 

strongest, followed by Triton and heating. We observed the treated Bt cells under a fluorescent 

microscope and found that bacteria are lyzed efficiently in all treatments (Fig. 13B). The 

proportion of fluorescent bacteria population is higher when treated with 0.01 % SDS, the 

Triton and heating treated cells formed more ghost cells, which cannot retain the propidium 

iodide. This result indicates that the quantification of the Bt population by fluorescence is not 

a good method to use. 

(3) Many bacteria can be retained between the cyst walls of amoebas, such as the 

Mycobacterium, Streptococcus, Listeria (Lambrecht et al. 2015; Siddiqui et al. 2017; Wheat et 

al. 2014). We tried to identify the presence of Bacillus in the amoeba cysts by Transmission 

electron microscopy (TEM). 

Method: the amoebas were co-cultured with Bt 407 spores for 48 h. Ten milliliters of the 

coculture were harvested at 1200 rpm for 10 min, the pellets were washed with PAS buffer 2 

times. The amoebas were resuspended in 50 µl of fixation solution (2 % glutaraldehyde in 0.1M 

cacodylate disodium buffer). Then the amoebas were kept at 4°C before sending to the TEM 

platform. 

Results: After 48 h of co-culture, many amoebas became cysts; the spores in the coculture can 

germinate and form vegetative cells. We observed that the spores were presented in the 

vacuoles of amoebas (Fig. 14A), but no vegetative cells were observed, which are possibly 

digested by amoebas. We checked the cysts in all samples and found no spore nor vegetative 

cells in the cysts. Probably the Bacillus can not be retained inside amoeba cysts like the other 

bacteria. 
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5. Discussion and perspectives 

The Bc group bacteria spread in different kinds of ecological niches. Ba uses animal carcasses 

(Turner et al. 2014), Bc infects humans causing food poisoning (Dietrich et al. 2021), Bt infects 

different species of arthropods (ie. Insects and nematodes) (Ehling-Schulz et al. 2019), and B. 

mycoides is frequently found in rhizosphere environment (Yi et al. 2018). Nevertheless, the 

soil is the original pool for all the Bacillus species. The stress-resistant Bacillus spores can 

persist in the soil for a very long time from several months to several years (Addison 1993; 

Van Cuyk et al. 2011). The Bacillus spores can reach a high concentration in the soil, about 

106 spores/g (Hong et al. 2009; Siala et al. 1974) and the spores can be isolated from various 

types of soil in a wide range of temperatures (Guinebretière et al. 2008). However, Bacillus 

cannot grow effectively in the soil environment without nutrients input, except for some 

nutrient-rich sites with enough soluble organic matters (Vilain et al. 2006). How do the bacteria 

grow and reach such a high spore concentration in the soil is an important question. My thesis 

project was based on the hypothesis that the amoebas could favor the persistence of Bc group 

bacteria in the soil. The interaction of Bc group species with amoebas is studied in my thesis. 

My results have shown that seven representative Bc group species have a similar behavior in 

the amoeba environment. A part of spores will germinate in the presence of amoeba or in the 

amoeba-conditioned medium, giving rise to vegetative cells that grow in the amoeba 

environment. The bacterial cells will then form chains or aggregates in the vicinity of the 

amoeba. Such an observation has been reported previously and it was suggested that these 

structures allow the Bacillus to resist the amoeba phagocytosis (Beeton et al. 2013). Our results 

obtained with representative species of Bt, Bc and psychrotolerant Bw suggest that all the Bc 

group bacteria have a similar germination and growth behavior in the amoeba environment.  

Bacillus spores can germinate in the amoeba environment without direct contact with amoebas. 

Beeton and colleagues have shown the factors that caused spore germination are heat-resistant 

with small molecular weight (less than 5 kDa), they searched those factors in amoeba-

conditioned PBS using mass spectrum but the spectrum profiles vary between experiments 

(Beeton et al. 2013). Our experiments used a similar medium - the amoeba-conditioned PAS-

Glucose medium - and obtained similar results, a part of spores of different Bacillus species 

germinate in the amoeba-conditioned medium. The conditioned medium of macrophages has 

similar germination promotion effect on Ba spores (Weiner and Hanna 2003), suggesting 

germinants secreted in the medium may not be specific to amoebas. Weiner and Hanna have 
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found that the inosine and at least some amino acids secreted by macrophages triggered Ba 

germination. Small amino acids such as L-alanine, L-cysteine, L-threonine, and L-glutamine 

or their combination are nutrient germinants for spores (Hornstra et al. 2006). Amoebas 

produce a large amount of ammonia during vigorous growth (Weekers et al. 1996), which can 

work synergistically with L-alanine and inosine causing rapid germination, though ammonia 

alone is not an ion germinant (Preston and Douthit 1984). Amoebas possibly secrete some of 

these nutrient germinants and ammonia in the medium to trigger spore germination. To 

determine if it is the amino acids secreted by amoebas that have triggered spore germination 

and determine which amino acid is involved, we can use amino acid-specific germination 

receptor mutation Bacillus strains to test the amoeba-conditioned medium in the future, as has 

been shown (Weiner and Hanna 2003). Mass spectrum analysis of amoeba-conditioned 

medium focusing on detecting amino acids will also help to answer this question. 

The proportion of spores that have germinated is low after cultured in amoeba-conditioned 

medium for 18 h ranging from 1.2 % to 22.4 %. The properties of spores and low concentration 

of germinants may explain the result. Some of the spores are superdormants, they have very 

low levels of germinant receptors and are hard to germinate (Setlow 2014a). The spores have 

variable mRNA contents. Only 6% of Bacillus mRNA has more than 1 copy per spore and 

these mRNA may be used as a ribonucleotides source for new RNA synthesis during 

germination (Byrd et al. 2021). The concentration of germinants in the environment affects 

spore germination efficacy. The germinants need to reach a certain concentration to trigger 

germination. The nutrient germinants L-alanine (100 mmol/L)  and inosine (10 mmol/L)  can 

trigger Bt and Ba spore germination in the soil, but they have no effect on spores when L-

alanine concentration decreased to 5 mmol/L (Bishop 2014). The concentration of germinants 

in the amoeba-conditioned medium is not high due to the large volume of culture and low 

amino acids input from the PAS-Glu-E. coli buffer. 

Some bacteria formed structures to resist phagocytosis, but amoebas may digest some 

vegetative cells. I used Bt 407 as a representative of the Bc group and observed that amoebas 

digested vegetative Bt cells to grow and delay encystment. However, the Bt spores were not 

used by amoebas. The Bt spores remained intact after 4 hours inside amoebas under time-lapse 

observation suggesting that spores can resist amoeba digestion. The spores do not promote 

amoeba growth or delay cyst formation. Santos and colleagues observed the growth of protists 

on both Bc spores and vegetative cells (Santos et al. 2017). The growth of A. castellanii on 
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vegetative cells and active spores is higher than growth on inactivated spores in that study, this 

may suggest that spore structure (inactivated spores) resists amoeba digestion (lower amoeba 

growth) and the amoebas may have grown on germinated spores rather than using active spores 

directly (high amoeba growth). The Ba spores not only resist amoeba digestion, but they can 

also germinate and multiply intracellularly and lyse amoebas to be released (Dey et al. 2012). 

Unlike Ba spores, I did not observe germination of Bt 407 spores when they were found inside 

amoebas. It seems Ba is an exception among the Bc species during interaction with protists. 

The chromosomally encoded germination receptor gerH and gene(s) located on pXO1 may be 

responsible for Ba germination intracellularly (Dey et al. 2012).  

Most of the Bc group bacteria (except Ba) can produce a series of virulence factors during 

stationary growth, which are hemolytic to erythrocytes or epithelial cells, as well as mammalian 

macrophages (Lindbäck et al. 2004; Sastalla et al. 2013; Tran, Puhar, et al. 2011). We observed 

that the virulence factors produced by vegetative growth Bt or Bc strains do not affect the 

viability of amoebas. The virulence factors need to bind the target cells to form active toxins 

(Dietrich et al. 2021; Sastalla et al. 2013), they might not bind to amoeba membranes and thus 

showed no toxicity effect. In addition, amoebas have detoxification mechanisms that digest or 

export the toxic elements (Choi et al. 2005; Grechnikova et al. 2020; König et al. 2020). The 

social amoebas Dictyostelium protect themselves by the differentiated sentinel cells which 

engulf bacteria and sequester toxins (Chen, Zhuchenko, and Kuspa 2007). These mechanisms 

may protect the amoebas from Bt and Bc virulence factors. It will be interesting to determine 

the mechanisms amoebas use to resist Bacillus virulence factors in the future, and it is also 

interesting to study if those virulence factors can protect Bacillus from the other soil protists. 

The Bt strain can also produce large amount of Cry and Cyt toxins during sporulation. I did not 

observe a side effect when Bt strains were cocultured with amoebas until sporulation. It will 

be interesting to study the toxicity of the Cry and Cyt toxins to amoebas in the future. The Cry 

and Cyt toxins played an important role during Bt infection of insects. Cry toxins paralyze and 

kill the insects, Cyt has a cytolytic activity and worked as receptors to enhance the toxicity of 

Cry (Cantón et al. 2011; Pérez et al. 2007). Cry toxins bind to specific receptors to lyse the 

target cells and they are toxic to many species of insect larvae and some cancer cells (Bravo et 

al. 2011; Mendoza-Almanza et al. 2020). Cyt toxins show non-specific toxicity to cells and are 

mainly toxic to Diptera insects (Palma et al. 2014). Besides the toxins with insecticidal, cancer 

killing, and nematocide activities, we do not know the targets of a large part of Cry toxins. It  
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Figure 15 The ecology of the B. cereus group bacteria.  

The B. thuringiensis spores can infect insects and grow in cadavers. The B. anthracis and B. cereus 

strains can infect mammals including humans. In the soil environment, amoeba secreted germinants or 

environmental nutrients triggers Bacillus spore germination. Vegetative cells then grow as 

chains/aggregates resisting amoeba digestion and sporulate completing a life cycle. Amoebas promotes 

a faster sporulation. 
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will be interesting to know if some Cry or Cyt toxins are toxic to amoebas or other protists. 

This may further explain the role of these toxins in the ecological adaptation of Bt. 

The survival and growth of Bc group in the amoeba environment is different from other 

pathogenic species. Some pathogenic bacteria can resist digestion by amoebas and form 

bacteria-containing vacuoles for survival and multiplication, such as Legionella-containing 

vacuole (Steiner et al. 2018) and Salmonella-containing vacuole (Valenzuela et al. 2021). 

However, amoebas can promote the growth of some bacteria without internalizing them such 

as K. pneumoniae (Maisonneuve et al. 2017), and S. aureus (Maisonneuve 2017). For the Bc 

group species, vegetative cells cannot survive in amoeba vacuoles (except Ba), they survive as 

spores or by forming chains or aggregate structures. The amoebas help the growth of Bc group 

bacteria in their vicinity by promoting spore germination and vegetative cell sporulation. 

Taking advantage of amoebas, it will be interesting to develop a pesticide containing both 

amoebas and Bt strains in the future. The amoebas may help the persistence of Bt in the field 

and thus increases the efficacy of pesticides. 

In a general view of the ecology of Bc group bacteria, the bacteria persist mainly in the soil 

(Fig. 15). The Bacillus spores may contaminate plant leaves. For the Bt spores, they can be 

ingested by insects, then germinate in vivo and kill the insect starting necrotrophic growth, 

finally, the cells sporulate and be released to the environment. For the Ba and Bc cells, they 

can occasionally infect mammals including humans. Ba can kill the animal and multiply in the 

carcasses, and they will sporulate when exposed to the air. Ba spores in the soil and grass can 

cause a second round of infection. The Bc cells can be ingested and cause food poisoning in 

humans, and be released in feces. My work about amoebas complemented the persistence of 

Bacillus spores in the soil, showing that they can have a full lifecycle and growth in the amoeba 

environment.  

In the soil environment, the amoeba population increases as the environmental nutrients 

increase, the chances of amoebas meet the Bacillus spores increase at the same time. The 

amoebas secrete germinants perhaps amino acids which triggers a small part of Bacillus spores 

to germinate. For most of the Bacillus cells except Ba, the vegetative cells multiply rapidly 

using the nutrients from the environment or nutrients secreted by amoebas, a part of cells form 

chains or aggregates to resist amoeba digestion, a part of single cells may be digested by 

amoebas. The vegetative cells sporulating again finishing a whole life. The presence of 

amoebas accelerates the sporulation process, which reduced the chances of Bacillus being 
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digested by protists. For Ba spores, they exploit amoebas to germinate, grow intracellularly, 

and are released after lysing amoebas. The presence of amoebas wakes up a part of Bacillus 

spores to exploit the environmental nutrients for multiplication, which may help Bacillus to 

maintain or increase the population. 
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Résumé substantiel en français 

Le groupe Bacillus cereus sensu lato (Bc sl) comprend un nombre croissant d'espèces, dont 

Bacillus cereus sensu stricto (Bc ss), Bacillus thuringiensis (Bt) et Bacillus anthracis (Ba). Les 

spores de ces bactéries pathogènes sont couramment trouvées dans le sol, qui est généralement 

considéré comme un réservoir plutôt que comme un environnement favorable à la 

multiplication de ces bacilles. Le développement de ces bactéries dans le sol a longtemps fait 

l'objet de débats et il n'existe actuellement aucune preuve permettant de trancher définitivement 

la question. Des études ont abordé l'écologie de Bc ss dans le sol et ont montré qu'il s'agit d'une 

bactérie saprophyte, avec un cycle de vie dans la matière organique soluble extraite du sol et 

dans un microcosme artificiel du sol. D'autres études portant sur la survie de Bt dans le sol ont 

montré que la bactérie se maintient sous forme de spores qui ne peuvent pas germer, ni se 

multiplier. Conformément à ces dernières observations, une analyse génomique a révélé que la 

souche Bc ATCC14579 ne peut pas utiliser efficacement les glucides végétaux complexes 

comme peut le faire B. subtilis, ce qui suggère que l'espèce Bc ss est mieux adaptée à un régime 

protéique. Étant donné la relation étroite entre Bt et Bc ss, cette information est également 

pertinente pour Bt et probablement pour toutes les espèces du groupe Bc sl. De plus, la présence 

de nombreux gènes codant pour des enzymes protéolytiques chez les bactéries du groupe Bc sl 

est cohérente avec leurs propriétés pathogènes. Bc ss et Ba sont pathogènes pour les 

mammifères et responsables respectivement de toxi-infections alimentaires et de la maladie du 

charbon. Bt est une bactérie entomopathogène qui produit des toxines cristallines insecticides 

(protéines Cry et Cyt) et divers facteurs de virulence qui permettent à la bactérie d'endommager 

les tissus de l'hôte et de résister aux défenses immunitaires, provoquant finalement une 

septicémie. Toutes les espèces du groupe Bc sl partagent un fond génomique commun et un 

ensemble de facteurs de virulence. La plupart de ces facteurs de virulence exportés sont 

contrôlés positivement par le régulateur PlcR à la fin de la croissance exponentielle et au début 

de la phase stationnaire, sauf pour Ba, chez qui une mutation non-sens abolit l'activité de PlcR. 

Il a été démontré que le régulon PlcR joue un rôle majeur dans la virulence de Bt et de Bc ss 

dans divers modèles animaux. Bt et Bc ss produisent aussi d'autres facteurs de virulence non 

régulés par PlcR, tels que la métalloprotéase InhA1 et l'hémolysine HlyII, qui sont produits au 

début de la phase stationnaire. Dans un contexte d'infection des macrophages, InhA1 confère 

aux spores de Bt la capacité de s'échapper des cellules et HlyII provoque la mort cellulaire des 

macrophages par apoptose grâce à son activité de formation de pores. Cependant, la lignée 
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cellulaire de macrophages J774 utilisée dans ces études ne reflète pas la réponse des 

macrophages primaires.  

Les protozoaires libres, comme Acanthamoeba, sont d’autres organismes présents dans le sol. 

En fonction des conditions de croissance environnementales rencontrées, ils peuvent adopter 

deux formes de développement : le trophozoïte, une forme de vie végétative métaboliquement 

active, et le kyste, de forme ronde, dormante et résistante au stress. Les principaux mécanismes 

d'alimentation des amibes libres sont la pinocytose et la phagocytose des micro-organismes du 

sol tels que les bactéries, les champignons ou les algues présents dans leur environnement. 

Certaines bactéries sont capables de résister aux amibes, car elles sont capables d'échapper à la 

prédation, d'autres sont capables de résister à la digestion intracellulaire et survivent donc de 

manière intracellulaire, ou encore sont capables de survivre, de se développer et de s'échapper 

des amibes après phagocytose. Environ 20 % des bactéries pathogènes humaines, parmi 

lesquelles Legionella, Mycobacterium ou Listeria, sont capables de vivre et de se multiplier à 

l'intérieur d'amibes libres. Les amibes pourraient donc représenter un réservoir pour les 

bactéries, permettant la propagation des bactéries dans l'environnement ou fournir un abri pour 

les protéger de divers stress physiques et chimiques tels que les biocides. Acanthamoeba a été 

signalé comme un amplificateur et un réservoir de bactéries telles que Mycobacterium et 

Legionella. Par ailleurs, Bacillus et les amibes partagent les mêmes niches écologiques, comme 

le sol et les insectes, et Bacillus a été identifié comme le genre le plus abondant dans le 

microbiome bactérien des amibes libres. L'interaction entre les deux organismes a été étudiée 

par plusieurs groupes de recherche. Il a été démontré qu'après phagocytose par Acanthamoeba 

castellanii, les spores de Ba sont capables de germer à l'intérieur des phagosomes des amibes. 

Les cellules végétatives se développent ensuite en chaînes avant de lyser la cellule hôte. 

Comme pour l'infection par les macrophages des mammifères, le plasmide pXO1 est nécessaire 

à la croissance de Ba dans les amibes. Les principaux gènes de toxine codés par pXO1 (pagA, 

lef et cya) semblent être inutiles pour la germination des spores de Ba et le processus de 

croissance externe qui s'ensuit, ce qui suggère que d'autres gènes pXO1 jouent un rôle dans ce 

processus. Les relations entre la souche Bt israelensis 4Q7 et les protozoaires a également été 

étudiée. En présence d'A. polyphaga et de Dictyostelium discoideum, Bt israelensis s'est 

développé sous forme de longues chaînes ou a formé des micro-colonies, en fonction de la 

densité des amibes. Ces observations suggèrent que ces structures bactériennes sont résistantes 

à la phagocytose par les amibes. Il a été démontré que les facteurs libérés par les amibes 

favorisaient la germination de Bt, permettaient sa croissance et induisaient un développement 
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filamenteux. Les interactions entre la souche Bc ATCC14579 et plusieurs protozoaires ont 

également été étudiées. Il a été démontré que A. castellanii, Tetrahymena pyriformis, et 

Cercomonas spp. peuvent ingérer et utiliser les spores ou les cellules végétatives de Bc ss pour 

leur croissance. Ils ont également observé la survie et la prolifération des bactéries ingérées à 

l'intérieur des cellules de protistes, ce qui suggère que les protistes peuvent agir comme un 

amplificateur de Bc ss dans le sol. Toutefois, sur la base des données publiées, on ne sait 

toujours pas si les amibes permettent à toutes les espèces de bactéries du groupe Bc sl de se 

multiplier, ce qui laisse ouverte la question de la forte abondance des spores de Bc sl dans le 

sol. Ba utilise les amibes pour se développer, ce qui entraîne une diminution de la population 

d'amibes, tandis que Bc ss et Bt semblent être des proies pour les amibes, car aucune 

augmentation de la population de Bc ss ou de Bt n'a été observée lors de la co-culture des deux 

organismes. En revanche, la population d'amibes est capable de se développer sur Bc ss et Bt. 

Cependant, une germination occasionnelle de Bc ss et Bt et une croissance intracellulaire ont 

été rapportées dans les deux dernières études citées. Globalement, ces observations soulèvent 

la question de savoir si Ba représente une exception au sein du groupe Bc sl ou si d'autres 

bactéries Bc sl sont également capables d'utiliser des amibes pour s'amplifier. Elles soulèvent 

également la question de savoir si les amibes permettent aux spores des bactéries Bc sl de 

germer et aux cellules végétatives de se développer et de sporuler. 

Nous avons formulé l’hypothèse que les amibes peuvent être également un amplificateur pour 

Bc sl et étudié́ le devenir de ces bacilles et des amibes lorsque ces deux micro-organismes sont 

cultivés ensemble. Nous avons étudié le comportement de 7 souches appartenant au groupe Bc 

sl en interaction avec l’amibe libre A. castellanii. Les souches de Bacillus sélectionnées sont 

les suivantes : Bt 407, Bt kurstaki HD73, et Bt israelensis IPS82, en tant que représentantes 

des souches Bt insecticides ; Bt konkukian, qui n’est pas pathogène pour les insectes mais est 

proche de Ba; Bc 569 et la souche émétique Bc AH187, choisies comme représentatives de 

l’espèce Bc ss; et B. weihenstephanensis (Bw) KBAB4, sélectionnée comme représentante des 

espèces psychrotrophes. Les observations microscopiques de ces deux organismes cultivés de 

façon statique dans le milieu de co-culture PAS-Glucose-E. coli que nous avons mis au point, 

ont montré que les spores de ces sept souches étaient localisées dans les amibes, dans des 

structures de type vacuoles, indiquant qu’elles avaient été efficacement phagocytées après leur 

mise en contact. Après 24h de co-culture, une population bactérienne mixte, de spores et de 

cellules végétatives, a été observée. Nous avons également remarqué que les cellules 

végétatives avaient formé des structures de type chaines et des agrégats dans le milieu de 
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culture à l’extérieur des amibes. En absence d’amibes, aucune spore d’aucune souche n’avait 

germé sur une période de 24h dans le milieu de co-culture. Nos résultats montrent que les sept 

souches Bt, Bw et Bc ss étudiées se comportent de la même manière en présence d’A. 

castellanii, un comportement qui avait également déjà été observé pour la souche Bt israelensis 

4Q7 lorsqu’elle était cultivée en présence d’A. polyphaga par Beeton et collaborateurs en 2013.  

Les bactéries du groupe Bc sl (à l'exception de Ba) produisent des facteurs de virulence 

exportés, tels que des enzymes de dégradation, des cytotoxines et des hémolysines, au début 

de la phase stationnaire lors de l'activation du système de détection du quorum sensing PlcR-

PapR. La souche Bc AH187 produit également la toxine émétique, le céréulide, en début de 

phase stationnaire et la souche Bt 407 produit l'hémolysine II (HlyII), qui a été caractérisée 

pour sa capacité à lyser les macrophages J774 par apoptose grâce à une activité de formation 

de pores. Nous avons étudié les effets de ces facteurs de virulence et évalué la viabilité des 

amibes incubées dans un milieu de culture dans lequel les souches Bt 407, Bt 407 ΔplcR, Bc 

569, et Bc AH187 ont poussé jusqu’en début en phase stationnaire par comparaison avec la 

viabilité des amibes cultivées dans le milieu de culture frais. La viabilité des amibes a été 

déterminée par exclusion du colorant bleu trypan. Nous avons observé que la plupart des 

amibes restent viables après 2h ou 24h d’incubation. Moins de 1% de la population d'amibes 

étant colorée en bleu lorsqu'elle était incubée dans le milieu conditionné par Bacillus. Une 

proportion similaire de cellules viables a été obtenue dans l'échantillon témoin lorsque les 

amibes ont été incubées dans un milieu de culture frais. Ce résultat suggère que les facteurs de 

virulence produits par Bt 407, Bc 569 et Bc AH187 n'ont pas d'effet significatif sur la viabilité 

des amibes. Au contraire, nous avons pu observer par des observations microscopiques en time-

lapse qu’A. castellanii peut phagocyter et digérer efficacement les cellules végétatives de Bt 

407 pour se développer et empêcher la formation de kystes. En collaboration avec le laboratoire 

de P. Cosson en Suisse, nous avons déterminé si les cellules de Bacillus peuvent être utilisées 

pour soutenir la croissance d'une autre espèce d'amibe en réalisant des expériences sur D. 

discoideum et montré que celle-ci est également capable d'utiliser les cellules végétatives de 

Bacillus comme nourriture. Cependant, certaines cellules bactériennes peuvent échapper à ce 

destin et se multiplier. Nous avons déterminé le sort des bacilles dans l’environnement amibien 

en quantifiant le développement de la population de Bt 407 co-cultivée avec des amibes et en 

le comparant au développement de bactéries cultivées seules dans les mêmes conditions. Le 

milieu de co-culture a été inoculé avec des spores de Bt en présence ou non d'amibes. Le 

comptage des UFC a montré que le nombre total de spores est resté stable pendant 48 h dans 
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les deux conditions. Cette observation suggère que seule une petite partie de la population de 

spores a germé et est à l'origine de la population végétative observée précédemment en 

microscopie. Nous avons également étudié le développement des cellules végétatives de 

Bacillus en co-culture avec des amibes. Le nombre total d'UFC est resté stable, que les cellules 

végétatives aient été mises en co-culture avec des amibes ou cultivées seules pendant 24 h. La 

plupart des bactéries ont été détectées sous forme de spores après 24 h de culture avec ou sans 

amibes, avec des taux de sporulation pour Bt 407 de 96 % et 99 %, respectivement. Ainsi, la 

totalité de la population bactérienne a sporulé dans le milieu co-culture, avec ou sans amibe. 

Nous avons renforcé ces données qualitatives par des observations microscopiques sur 96h. La 

co-culture de spores avec des amibes a donné lieu à une population bactérienne hétérogène de 

spores et de cellules végétatives à 24 h. Certaines cellules végétatives avaient formé de petites 

chaînes et des agrégats. Au bout de 96 h de co-culture, nous avons observé une population 

mixte de cellules végétatives, de cellules sporulantes et de spores libres. Lorsque les spores de 

Bt ont été inoculées seules dans le même milieu, nous n’avons pas observé de germination et 

en cohérence, aucune cellule végétative n'a été observée au bout de 24 h ou de 96 h de culture. 

Ces résultats suggèrent que les spores de Bt 407 peuvent accomplir un cycle de vie complet 

(des spores aux cellules végétatives puis à nouveau devenir des spores) dans l'environnement 

amibien. Cependant, nos observations ne nous ont pas permis d’établir si les spores de Bt 

peuvent germer à l'intérieur des amibes, comme cela a été montré pour Ba par Dey et ses 

collaborateurs en 2012. Cependant, nos observations microscopiques ont permis de remarquer 

que le processus de sporulation semblait se dérouler plus rapidement lorsque la population 

bactérienne se développait en présence d’amibes. En effet, la présence de spores libres, c'est-

à-dire des spores libérées des cellules mères, a été observée au bout de 15 h de co-culture pour 

les bactéries cultivées dans l'environnement amibien, mais n'a été identifiée qu'à partir de 20h 

lorsque les bactéries étaient cultivées en l'absence d'amibes. Nous avons alors souhaité suivre 

le développement physiologique et le déroulement de la phase stationnaire chez Bt lorsque les 

bactéries se développent dans un environnement amibien à l’aide de fusions transcriptionnelles 

entre un gène rapporteur fluorescent et des promoteurs qui sont activés pendant la phase 

stationnaire. Deux promoteurs ont été sélectionnés : PnprA, qui est activé par le régulateur de 

quorum sensing NprR qui contrôle le nécrotrophisme en début de la phase stationnaire et PspoIID 

qui est activé par le facteur sigma SigE pendant le stade précoce de la sporulation. Des 

observations microscopiques, ainsi qu'une analyse par cytométrie de flux, ont été réalisées sur 

des cellules de Bt en co-culture avec des amibes sur une période de 24 h afin de quantifier le 
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nombre de cellules exprimant les rapporteurs. Les analyses microscopiques ont montré que les 

cellules de Bt étaient présentes à l'intérieur et à l'extérieur des amibes et que l'expression du 

promoteur PnprA et PspoIID a commencé avant T2 et T4, respectivement. Nous avons observé des 

cinétiques d'expression similaires pour les deux promoteurs lorsque le Bt s'est développé en 

l'absence d'amibes. La quantification des bactéries fluorescentes exprimant PnprA par cytométrie 

en flux a montré que deux populations étaient présentes, indiquant que PnprA était exprimé de 

manière hétérogène, et que les proportions de bactéries exprimant nprA, ou non, étaient 

identiques que Bt pousse en présence d’amibes ou en leur absence. La quantification des 

bactéries exprimant PspoIID en co-culture avec des amibes, a montré que le rapporteur était 

exprimé de façon hétérogène dans environ 15 % de la population à T4 et augmente au cours du 

temps pour atteindre environ 70 % des cellules à T8. Le pourcentage de cellules exprimant 

PspoIID était plus faible lorsque les cellules Bt étaient cultivées en l'absence d'amibes. Dans des 

conditions axéniques, les cellules exprimant le rapporteur de sporulation représentaient 7 % de 

la population à T4 et un maximum de 40 % à T24. La cinétique d’expression et la quantification 

des bactéries exprimant les deux rapporteurs ont également été étudié dans un milieu 

conditionné par les amibes pour déterminer si la stimulation de la sporulation était due au 

contact direct des bactéries avec les amibes ou aux composants libérés ou consommés par les 

amibes. Nous avons pu montrer que la croissance des bactéries était identique dans un milieu 

conditionné par les amibes, ou non. Nous avons également pu observer que les cellules Bt 

cultivées dans des milieux conditionnés et non conditionnés ont montré une cinétique 

d'expression de PnprA similaire. L’expression du rapporteur de nécrotrophisme démarre à T2 

dans une petite fraction de la population pour atteindre approximativement 80 % des cellules à 

T6 avant de diminuer pour ne concerner que 35 % de la population à T24. En ce qui concerne 

le rapporteur de sporulation, l'expression de PspoIID a augmenté plus rapidement dans le milieu 

conditionné par les amibes que dans le milieu non conditionné ; l'expression du gène rapporteur 

a commencé entre T2 et T4 et a augmenté pour représenter environ 35% de la population 

bactérienne. Les premières cellules exprimant PspoIID ont été détectées à T4 dans le milieu non 

conditionné, mais elles ne représentaient que 1 % de la population. La population sporulante a 

augmenté avec le temps mais est restée inférieure à 20 % jusqu'à T10, pour finalement 

représenter 33 % des cellules à T24. Le pourcentage de cellules exprimant PspoIID à T24 était 

similaire dans le milieu conditionné et non conditionné. Globalement, ces résultats suggèrent 

que l'environnement amibien accélère l'engagement des cellules Bt dans la sporulation. 
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En conclusion, cette étude utilisant des souches représentatives des trois principales espèces du 

groupe Bc sl, à l'exception de Ba, montre que ces bactéries ont un comportement similaire en 

présence d'amibes, telles que A. castellanii et D. discoideum. Les spores de ces bacilles peuvent 

utiliser les signaux moléculaires et les nutriments sécrétés par les amibes pour germer; les 

cellules végétatives se développent ensuite sous forme de chaînes ou d'agrégats. Bien qu'une 

partie des cellules végétatives soit phagocytée et digérée par l'amibe, une autre partie de la 

population bactérienne s'engage dans la sporulation et toutes les cellules végétatives finissent 

par sporuler. L'entrée dans cette voie de développement se produit plus rapidement dans un 

environnement amibien que dans des conditions axéniques. En contrepartie, les amibes peuvent 

également tirer un avantage de cette interaction en se nourrissant des cellules végétatives, mais 

pas de spores, pour se développer et retarder la formation de kystes. En cohérence avec cette 

affirmation, nous montrons que les amibes ne sont pas affectées par les nombreux facteurs de 

virulence produits par les souches de Bt et Bc ss testées. Bien que les Bt et Bc ss ne puissent 

pas se répliquer à l'intérieur des amibes, contrairement aux Ba, les amibes peuvent néanmoins 

contribuer à la propagation des Bacillus dans l'environnement. En effet, Acanthamoeba peut 

éventuellement compenser la perte causée par la digestion des cellules végétatives en 

fournissant un environnement favorable à la croissance des bactéries. De plus, nos résultats ont 

montré que l'environnement des amibes favorise la germination des spores et permet aux 

bactéries de compléter leur cycle de développement. Globalement, cette étude suggère que 

l'interaction amibe-Bacillus crée un cercle vertueux dans lequel chaque protagoniste aide l'autre 

à se développer. 
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Résumé :  Le groupe Bacillus cereus sensu lato comprend 

plusieurs espèces bactériennes très proches, incluant B. 

anthracis (Ba), B. cereus sensu stricto (Bc), et B. thuringiensis 

(Bt). Ba est l’agent responsable de la maladie du charbon, 

Bc est impliqué dans des toxi-infections alimentaires et Bt 

est un pathogène d’insectes. Les spores de ces bactéries 

pathogènes sont présentes abondamment dans le sol. 

Cependant, ces bactéries ne sont pas capables de se 

multiplier dans ce type d’environnement naturel sans 

apport nutritionnel. Il a été montré que les amibes peuvent 

être considérées comme des amplificateurs de plusieurs 

espèces de bactéries pathogènes et leur implication 

potentielle pour expliquer la grande quantité de spores de 

Bc et de Bt dans le sol a été fréquemment proposée. Nous 

avons formulé l’hypothèse que les amibes peuvent être 

également un amplificateur pour Bacillus et étudié le 

devenir des Bacillus et des amibes lorsque ces deux 

microorganismes sont cultivés ensemble. Mes résultats 

montrent que les facteurs de virulence produits par Bt et 

Bc n’affectent pas la viabilité de l’amibe Acanthamoeba  

castellanii qui, au contraire, parvient à phagocyter et 

digérer les bactéries sous leur forme végétative pour 

soutenir sa croissance et empêcher sa transformation 

sous forme de kyste. Nous avons également observé que 

les spores bactériennes peuvent germer dans 

l’environnement amibien et que les cellules végétatives 

produites forment ensuite des chainettes et des agrégats 

qui apparaissent moins efficacement phagocytés par les 

amibes. En utilisant des fusions transcriptionnelles entre 

des gènes codant pour des protéines fluorescentes et 

des promoteurs spécifiques de la phase stationnaire et 

de la sporulation, nous avons montré que le processus 

de sporulation se déroule plus efficacement en présence 

d’amibes qu’en leur absence. De plus, mes résultats 

montrent que l’environnement amibien favorise la 

germination des spores et permet ainsi aux bactéries 

d’accomplir leur cycle développemental. En conclusion, 

mes travaux suggèrent que les interactions entre les 

amibes et Bacillus créent un cercle vertueux dans lequel 

chaque protagoniste aide l’autre à se développer. 

 

 

Title : The fate of bacteria of the Bacillus cereus group in the environment: interaction with amoeba 
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Abstract : The Bacillus cereus sensu lato group consists of 

several closely related species, including B. anthracis (Ba), 

B. cereus sensu stricto (Bc), and B. thuringiensis (Bt). Ba is the 

causal agent of anthrax, Bc is involved in some food 

poisoning events and Bt strains are pathogens to insects. 

Spores of these pathogenic bacteria are commonly found 

in the soil. However, evidence suggests that they are unable 

to grow in such a natural environment without nutrient 

input. Amoebas have been reported to be an amplifier for 

several species of pathogenic bacteria and their potential 

involvement to explain the large amount of Bt and Bc 

spores in soil has been frequently proposed. We speculated 

that amoebas are an amplifier for Bacillus and studied the 

fate of Bacillus and amoebas when cultured together. My 

results show that the virulence factors produced by Bt and 

Bc do not affect the amoeba Acanthamoeba castellanii,  

which, on the contrary, can phagocytose and effectively 

digest vegetative Bacillus cells to grow and prevent the 

formation of cysts. Bacterial spores can germinate in the 

amoeba environment and the vegetative cells can then 

form chains or aggregates that appear to be less 

efficiently phagocytosed by the amoeba. The use of 

transcriptional fusions between fluorescent reporter 

genes and stationary phase- and sporulation-specific 

promoters showed that the sporulation process occurs 

more efficiently in the presence of amoebas than in their 

absence. Moreover, my results showed that the amoeba 

environment promotes spore germination and allows the 

bacteria to complete their developmental cycle. Overall, 

my study suggests that the amoeba-Bacillus interaction 

creates a virtuous circle in which each protagonist helps 

the other to develop. 
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