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Abstract

This thesis addresses the general problem of the compensation of deforma-
tions on a walking robot, and considers it in the particular context of the
medical exoskeleton Atalante. Structural deformations are unavoidable in
anthropomorphic robots with long legs and a heavy torso. This is even more
true for an exoskeleton, which has to support the weight of the user. Mean-
while, the presence of an uninstrumented human user leads to significant
disturbances, that limit the performance of feedforward corrections.

We propose a sensor-based methodology, that feedbacks the data of sev-
eral Inertial Measurement Units (IMUs) onto the actuators, in order to miti-
gate the effect of the multiple flexibilities on Atalante. To that end, we kine-
matically model the deformations as extra spherical joints. We study several
observers to estimate the rotations induced by the flexibilities, by estimating
the attitude of the IMUs. Three observers, based on various models, are
considered: a (naive) zero-on-average acceleration model, a kinematic model
and a dynamic model. We conclude that the best results are obtained by
relying only on the kinematic model of the robot to build an approximate
velocity measurement. This allows the design of an observer able to handle
strong accelerations while being robust to the dynamical uncertainties linked
to patient behavior.

These attitude estimates are then projected onto the joints of the robot,
to adopt a joint elasticity model, which we use to perform decentralized
high-gain feedback control. This methodology is experimentally validated
on Atalante, where it yields improved disturbance rejection and improved
trajectory tracking, enhancing the robustness of Atalante’s walk with a user.
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Résumé

Cette thèse porte sur la question générale de la compensation des déforma-
tions sur un robot marcheur, avec comme cas d’étude particulier l’exosque-
lette à usage médical Atalante. Les déformations des robots anthropomorphes
sont des phénomènes indésirables résultant de leur conception mécanique. Ces
robots sont en effet constitués de jambes longues devant soutenir un torse re-
lativement massif. Ces effets sont d’autant plus présents sur un exosquelette,
qui en plus de son propre poids doit supporter le poids de l’utilisateur. La
présence d’un humain non instrumenté induit des perturbations significatives
non mesurées, auxquelles il est difficile de s’adapter en temps-réel.

Nous proposons une approche en boucle fermée reposant sur des capteurs,
qui effectue un retour d’état sur les signaux provenant de plusieurs centrales
inertielles. A cette fin, nous modélisons cinématiquement les déformations
par des liaisons rotules supplémentaires. Nous étudions plusieurs observateurs
visant à estimer les rotations correspondantes, en reconstituant l’orientation
des centrales inertielles. Trois observateurs, utilisant des modèles différents,
sont étudiés: un modèle supposant que l’accélération moyenne des corps est
nulle, un modèle cinématique et un modèle dynamique. Nous concluons que
les meilleurs résultats sont obtenus en exploitant uniquement le modèle ciné-
matique du robot afin de reconstruire une mesure approximative de la vitesse.
Ceci permet la conception d’un observateur capable de supporter des accé-
lérations élevées, tout en restant robuste à l’incertitude dynamique liée au
comportement du patient.

Ces estimations d’attitude sont ensuite converties (par projection) sur
les articulations du robot, comme dans un modèle d’actionneur élastique, et
utilisées pour réaliser un contrôle par retour d’état grand gain décentralisé.
L’ensemble de cette méthodologie est validé expérimentalement sur Atalante,
où elle améliore le rejet de perturbation et le suivi de trajectoire, augmentant
ainsi la robustesse de la marche d’Atalante avec utilisateur.
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Notations and useful formulas

The following pages give a brief overview of the notations used in the thesis,
for quick reference. A detailed presentation and explanation of all these
variables is provided as they are introduced throughout the thesis.

Vectors are written in bold font, matrices in capital letters.

Important frames

W World frame

C Contact foot frame

L Local frame, i.e. projection of the contact foot
frame onto the ground

Spatial algebra

We define the skew-symmetric operator associated to the cross-product as

[.]× : R
3 → M3(R),







x
y
z





 7→







0 −z y
z 0 −x

−y x 0





 (1)

This operator is such that

∀(a, b) ∈ (R3)2,a × b = [a]×b (2)

Given two orthogonal frames A and B, we write:

BpA ∈ R
3 Position of the origin of frame A with respect to

frame B, in frame B

BRA ∈ SO(3) Orientation of frame A with respect to frame B

BMA ∈ SE(3) Homogeneous transform matrix from frame A to
frame B
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NOTATIONS AND USEFUL FORMULAS

ωA/B ∈ R
3 Angular velocity of frame A with respect to frame

B, expressed in frame A

We recall that the angular velocity is defined by the following identity:

B
ṘA = BRA[ωA/B]× (3)

We recall the definition of the roll-pitch-yaw decomposition, as the decom-
position in Euler angle (Tait-Bryan convention) of a rotation matrix about
axes ZYX. This writes:

R , Rz(γ)Ry(β)Rx(α) (4)

with Rx, Ry, Rz the rotations about axes first (ex), second (ey), and third
(ez) axis of the orthonormal basis of reference. α, β, γ are called the roll,
pitch and yaw angle respectively. This decomposition is singular when β ∼=
π
2
[π].

System coordinates

pff , Rff Position and orientation of the freeflyer joint of the
robot

θ Vector of encoder measurements

qr , (pff , Rff ,θ) Generalized position coordinates of the robot, as-
suming full rigidity

Dj ∈ SO(3) Orientation of the spherical joints (deformations) of
the extended flexible model

qf , (pff , Rff ,θ, Dj) Generalized position coordinates of the robot under
the extended flexible model

q Joint output angle in the joint deformation model

α , q − θ Joint deformation angle

fr Forward kinematic model, assuming full rigidity:
fr(qr) gives the pose of the robot bodies in the world
frame)

ff Forward kinematic model of the extended flexible
model

2



Chapter 1

Context

Chapitre 1 - Contexte: Ce chapitre introductif présente le problème consi-
déré dans cette thèse, à savoir la compensation des déformations au sein de
structures robotiques, en particulier humanoïdes. L’utilisation d’une approche
reposant sur des capteurs (par opposition à une pré-compensation reposant
sur un modèle prédictif) est justifiée par les spécificités du dispositif expé-
rimental considéré : l’exosquelette médical Atalante. La présence non ins-
trumentée d’un humain induit en effet une grande incertitude sur les efforts
exercés sur le système. Nous proposons d’utiliser des centrales inertielles pour
mesurer (estimer) les déformations ayant lieu autour de plusieurs points de
la structure d’Atalante, et pour les compenser.

La seconde partie du chapitre décrit l’exosquelette Atalante, et explique
son système de contrôle existante. Ces informations constituent la base de
notre étude.

1.1 Introduction

1.1.1 Deformations in humanoid robots

As robotics technology develops, humanoids robots are becoming increasingly
common. In a world designed for humans, having a human-like shape is a
great asset for a robot whose task is to collaborate with a human, or to
replace human workers in dangerous or tedious tasks.

A common practice for controlling robots, and humanoids in particular,
is to servo the position of the actuators to a reference trajectory [Finet17,
Westervelt18]. In this position control approach, the robot is assumed to be
fully rigid, such that controlling the position of the end effector is equivalent
to controlling the position of the joints.

3



CHAPTER 1. CONTEXT

However, one challenge in applying this method to humanoid robots is
the presence of deformations in the structure. While these deformations
may sometimes be the result of a voluntary design choice, e.g. to protect
the structure from impacts [Hirai98] [De Magistris16], they are often the
consequence of an unavoidable trade off in weight distribution and reduction
[Stasse19]. Humanoid robots indeed feature long, thin legs, that must carry
a rather heavy torso. To withstand the weight of the torso, the legs need
to be very stiff, and thus quite heavy. On the contrary, to ease dynamic
walking motion, which require accelerating the swing leg forward, the weight
and inertia of the leg are desired to be as small as possible. The resolution
of this conflict often results in robot designs with a non-negligible amount of
deformation, which, if unaccounted for, decrease the overall performance of
the robot [Ficht21] [Jung17]. This effect has been reported on various robots
in the literature, such as those pictured in Figure 1.1.

These deformations are often taking place near the robot joints, which
represent weaker points of the structure: namely, these deformations are
undesired rotations of the robot’s bodies with respect to each other. Being
small rotations, these deformations are usually modeled by linear elasticity
laws, i.e. springs of constant stiffness [Spong87].

Most often, existing robots do not carry any sensor to directly measure
the state of these deformations. Consequently, the most common solution
is to rely on model-based offsets to compensate the static effect of the de-
formation. In details, the general idea is to assume knowledge of a feed-
forward torque term τ : assuming that the deformation is a linear spring of
stiffness k, the resulting deformation at rest is τ

k
. This value can then be

applied as an offset to the position being tracked by the robot. This idea was
originally presented in [Tomei91]; it was applied with various modifications
and improvements on several humanoid robots: Atlas [Johnson15], DURUS
[Reher16], THORMANG [Kim16].

While these sensor-less approaches can bring significant improvements
to system performance, they often remain limited to countering the static
deflection, without offering a possibility to efficiently damp oscillations. Fur-
thermore, these approaches require an accurate model of the robot to com-
pute a meaningful feedforward term τ , and a good knowledge of the stiffness
parameter of the joints k - not even considering the fact that the linear spring
model itself might be erroneous, and seriously jeopardize the compensation
effectiveness.

In this thesis, we examine a different path. We use on-board IMUs to
enable a direct measurement of the deformations, which can be used for
closed-loop compensation. Such feedback-based approach has the potential
of countering both the static and the dynamic effect of the deformations,

4



1.1. INTRODUCTION

(a) ATLAS [Johnson15] (b) THORMANG [Kim16]

(c) DURUS [Reher16] (d) HRP-2 [Benallegue14]

Figure 1.1: An example of humanoid or biped robots on which the presence
of significant deformations has been reported.

while being robust to modeling errors and parameter uncertainties. Mean-
while, MEMS IMU sensors are extremely cheap nowadays, small and easy
to mount on existing robot hardware. Being sensitive to a change in ori-
entation, the use of several IMUs located throughout the structure can, in
principle, provide access to all internal angular deformations. This question
is not as straightforward as it may seem, because IMUs are impacted by
fictitious forces: the acceleration created by the motion of the robot and the
deformations.

The use of IMU sensors on humanoid robot is quite common: virtually all
humanoid robots use an IMU in their torso, with the aim of estimating the
global attitude of the robot in space, i.e. the freeflyer coordinates [Bloesch12,
Khandelwal13, Flayols17, Hartley18]. Using an IMU specifically to estimate a

5



CHAPTER 1. CONTEXT

deformation, and to stabilize it using feedback, has been the topic of several
recent contributions from the LAAS laboratory on the HRP-2 humanoid
robot, notably [Benallegue14, Benallegue15, Mifsud16]. This robot features
a single compliant element at the ankle: its angle is estimated using the
robot’s IMU located in the torso, assuming that the rest of the structure is
rigid.

However, many robots, including the exoskeleton Atalante described bel-
low, exhibit several points of deformation, at the ankle but also at the hips.
In this context, a single IMU is not sufficient: several sensors must be placed
to estimate each deformation individually. To our knowledge, this question
of using several IMUs to estimate and control the internal flexibilities of a
humanoid robot has not been addressed in previous works.

1.1.2 Use case: the exoskeleton Atalante

Our motivation for using a feedback-based approach is driven by the use case
of this thesis: indeed, the system under study is not a humanoid robot, but
the lower-limb medical exoskeleton Atalante (Figure 1.3).

The purpose of such an exoskeleton is to assist patients in performing
standing and walking motion. Notably, it aims at giving back mobility
and autonomy to patients suffering from walk disabilities, such as partial
or complete paraplegia or hemiplegia, enabling them to stand and walk au-
tonomously.

Pursuing this medical objective has been a long quest: works on this topic
can be traced back as early as the 70s [Vukobratovic74], while commercial
products have been available as early as 2010. Some well-known examples
are the EksoGT (Ekso Bionics), the ReWalk (ReWalk Robotics) or the In-
dego (Parker Hannifin), illustrated in Figure 1.2. All these devices enable a
paraplegic patient to stand and walk, though they require the use of crutches
to keep balance. Their use through the years has shown considerable benefits
for patients, both in terms of physical health (improved cardiac, respiratory
and gastrointestinal function; decrease in pain and spasticity; improved sit-
ting balance) as well as positive psychological effects: notably, standing up
enables a direct eye-to-eye contact [Geigle17].

Nevertheless, the use of crutches reduces the realism of the walk, while
leading to muscular fatigue of the arms and upper body. In 2011, REX Bion-
ics commercialized the REX, a self-balanced exoskeleton. While it enables a
variety of upper-body exercises, it is only able to perform slow, quasi-static
walking.

In 2019, Atalante was certified as a medical device for the European mar-
ket. Thus, it became the first commercial exoskeleton to allow for hands-

6



1.1. INTRODUCTION

(a) Ekso (https://eksobionics.com/) (b) Rewalk (https://rewalk.com/)

(c) Indego (http://www.indego.com) (d) REX (https://www.rexbionics.com/)

Figure 1.2: An example of several commercial exoskeletons.

free, dynamic walking of paraplegic and hemiplegic patients, with realistic
“human-like” walking gaits [Harib18]. The work done in this thesis is cen-
tered on this particular exoskeleton, being realized in partnership with Wan-
dercraft, the company who designs and manufactures this exoskeleton.

A lower-limb exoskeleton shares many similarities with an armless hu-
manoid robot. By design, it possesses the same anthropomorphic structure,
since the kinematics of its legs must be compatible with that of the patient.
Thus, with regard to deformations, the same difficulty in design arises: long,
thin legs must support a heavy torso. This is particularly true for Atalante:
being designed to be used without crutches, the structure must withstand its
own weight (about 80 kg), plus the full weight of the patient.

Thus, like the humanoid robots presented in Figure 1.1, Atalante exhibits
a significant amount of deformation. This effect is illustrated in a simple

7
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CHAPTER 1. CONTEXT

Figure 1.3: The exoskeleton Atalante (https://www.wandercraft.eu/), walk-
ing with a paraplegic patient in a rehabilitation center .

experiment shown in Figure 1.4: there, the exoskeleton is asked to remain
still, while one pushes or pulls on the foot. This results in a total displacement
of about 14 cm of the foot, while only 4 cm of motion are measured by the
joint encoders. The remaining motion can thus be attributed to the presence
of deformations.

Working with an exoskeleton however presents a fundamental difference
with classical robots: the presence of a human in the loop. The dynamics
of the system indeed depend both on the exoskeleton motion, and that of
the user. Since the weight of the user is comparable with that of the device,
they can drastically impact the dynamics by moving their center of mass -
thereby contributing to stabilizing or destabilizing the walk. However, while
the patient is obviously not controlled, they are also not instrumented: as
such, it is not possible to know the precise forces and moments applied onto
the exoskeleton by the user. This causes a large uncertainty in the overall
dynamics of the system, to which the control approach must be robust: in-
deed, the exoskeleton must be able to walk with various patients of diverse
height and weight, but also with various pathologies (hemiplegia, paraple-
gia...). This uncertain nature of the disturbances in the dynamics translates
into a design requirement for the present question of compensating the effect

8
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1.1. INTRODUCTION

≈14cm ≈14cm

Figure 1.4: A direct observation of the presence of deformations: when push-
ing/pulling on the swing foot, the observed displacement (about 14 cm) is
much larger than the motion measured by the encoders (only 4 cm), indicat-
ing the extra degrees of freedom, i.e. deformations.

of deformations: rather than using an ill-known model as feed-forward, we
seek a sensor-based, feedback approach.

1.1.3 Problem under consideration in this thesis

The problem that we address in this thesis is formulated below.

How can strapdown IMU sensors be used to provide a feedback-based
compensation of the deformations of a robot, in the hope of improving its
positioning accuracy robustly with respect to uncertainties in the system dy-
namics and unknown disturbances? In particular, how can this be done on
the exoskeleton Atalante, walking with a user?

Thesis outline

While the work carried out and presented in this manuscript is fully centered
on Atalante, the methodology we propose is generic enough to be applicable
to a variety of systems as well. We propose two main elements and contri-
butions:

• an estimator of the attitude of the strapdown IMUs, robust to the
presence of linear accelerations at the center of the IMU while walking.
This observer is designed to rely only on the kinematic model of the
robot and its deformation, but does not require any information about
the system dynamics (in particular we do not exploit any constitutive
equation to dynamically model the deformations).

9
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• a modification of existing PID-based low-level controllers used on Ata-
lante, to integrate a feedback term on the estimated deformation angles
and velocities.

The outline of this manuscript follows the development of this methodol-
ogy on Atalante. In the second part of this chapter, we give a more detailed
presentation of this exoskeleton. In Chapter 2, we show how to model the
deformations on this robot, to provide a convenient framework for estimation
and control. Chapter 3 then focuses on the development of an observer to
estimate these deformations, the output of which is used in Chapter 4 for
feedback control.

Publications in this thesis

The work done in this thesis led to the following published results:

• Matthieu Vigne, Antonio El Khoury, Matthieu Masselin, Florent Di
Meglio and Nicolas Petit. Estimation of Multiple Flexibilities
of an Articulated System Using Inertial Measurements, IEEE
Conference on Decision and Control (CDC), 2018

• Matthieu Vigne, Antonio El Khoury, Florent Di Meglio and Nicolas Pe-
tit. State Estimation for a Legged Robot With Multiple Flex-
ibilities Using IMUs: A Kinematic Approach, IEEE Robotics
and Automation Letters, 2019 (presented in conference at Humanoids
2019)

• Matthieu Vigne, Antonio El Khoury, Florent Di Meglio and Nicolas
Petit. Improving Low-Level Control of the Exoskeleton Ata-
lante in Single Support by Compensating Joint Flexibility,
IEEE Conference on Intelligent Robots and Systems (IROS), 2020

• Matthieu Vigne, Marine Pétriaux, Antonio El Khoury, Florent Di Meglio
and Nicolas Petit. MOVIE: a Velocity-aided IMU Attitude Esti-
mator for Observing and Controlling Multiple Deformations
on Legged Robots, IEEE Robotics and Automation Letters, 2022
(presented in conference at ICRA 2022)

A video describing the main experiments done in this thesis is available
at https://youtu.be/c2Vdx81iu1A

10

https://youtu.be/c2Vdx81iu1A


1.2. A MORE DETAILED DESCRIPTION OF THE EXOSKELETON
ATALANTE

1.2 A detailed description of the

exoskeleton Atalante

In this section, we present the exoskeleton Atalante, and give a brief overview
of its existing control architecture. Following the streamlined approach used
for the control of Atalante, which has served as a basis to develop this archi-
tecture, all the elements presented in this section rely on the assumption of
full rigidity.

1.2.1 General description

1.2.1.1 Vocabulary

To describe the kinematics of a walking human, the following planes are
defined:

• the sagittal plane is a vertical plane that cuts the body into right and
left halves. Walking motion mostly happens in this plane.

• the frontal plane is the vertical plane orthogonal to the sagittal plane,
thereby defining a front and a back - used to describe lateral motion.

• the transverse plane is a plane parallel to the ground, separating the
body into a superior and inferior part.

A representation of these planes is given in Figure 1.5. We associate to
these planes the following coordinate system: ez is the vertical axis (aligned
with gravity), and ex the forward-pointing axis, in the sagittal plane. ey

thus lies in the frontal plane, pointing from right to left, to form a direct
orthogonal frame.

A biped robot is said to be in single support when only one foot is touching
the ground, and in double support when both feet are in contact. We call
stance leg a leg in contact with the ground, and swing leg a leg not in contact
with the ground.

1.2.1.2 Hardware description

To replicate human motion, the kinematics of Atalante are similar to those
of the human legs. Namely, Atalante is composed of 12 revolute joints, six
for each leg, as represented in Figure 1.6. For one leg, it thus consists of

11
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Figure 1.5: Definition of the sagittal, frontal and transverse plane (adapted
from [Winter09]).

• three revolute joints allow for an arbitrary 3D rotation of the hip: they
are called frontal, transverse and sagittal hip joint respectively (the
name referring to the plane orthogonal to the joint axis, i.e. the plane
in which they enable motion).

• a single sagittal knee joint.

• two concurrent revolute joints for the ankle enabling motion in the
sagittal and frontal plane. The frontal motion of the human ankle is
actually performed about an upward-angled axis, called Henke’s axis,
which makes an angle of 38◦ with the horizontal transverse plane. This
kinematics is replicated on Atalante, hence these two pivot joints are
called sagittal ankle and Henke ankle respectively.

Each joint is independently actuated by an electric motor, and instru-
mented by a joint encoder: the vector of joint encoder reading is noted
θ ∈ R

12.

12
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Sagittal plane

Sagittal ankle

Henke ankle

Sagittal knee

Sagittal hipFrontal hip

Transverse hip

Frontal plane

Frontal hip

Sagittal knee

Sagittal hip

Transverse hip

Sagittal ankle

Figure 1.6: Kinematic model of Atalante.

Additionally, each foot is equipped with four 1D force sensors, one at
each corner, to measure the vertical force applied by the foot on the ground,
from which the position of the Center of Pressure (CoP) can be computed.
Finally, 5 low-cost MEMS IMUs1 are placed on the robot: one in each feet,
one in each tibia, and one in the pelvis. These sensors will be used to provide
a more accurate estimation of the position of the system in the presence of
deformations.

A patient can be securely strapped onto the exoskeleton, using straps at
the ankle, knee, thigh and waist. To prevent any pain or injury to the patient
during motion, it is crucial that the axes of the joints of the exoskeleton
remain aligned and concurrent with those of the patient. This is achieved
by adjusting the length of the tibia and thigh segments of the exoskeleton,
which can slide to match the user’s size. This enables an inclusion of patients
from approximately 1.50 m to 1.90 m of height, depending on the length of
their leg segments. Note that this setting is done manually, by loosening and
tightening a set of screws: once fastened, both parts of the slider behave like
a single rigid body. This is thus not an extra degree of freedom of the system
to be controlled - rather, it can be seen as a known change of parameters in

1The LSM6DSO, manufactured by STMicroelectronics.
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the robot’s kinematic model.

To control the robot, an additional IMU is placed on the patient’s torso.
This enables the patient to communicate intentions to the exoskeleton, by
leaning forward to trigger the walk for instance.2 Additionally, a remote
control enables the transition through various high-level operating modes
(standing, walking, turning...).

1.2.2 Kinematics and dynamics

1.2.2.1 Kinematics

As shown in Figure 1.6, Atalante is made of 13 bodies, or links, articulated
about 12 joints: as such, the joint configuration (angles) θ characterizes the
relative pose (position and orientation) of these bodies. However, to describe
the configuration of the system in the world frame W , 6 additional degrees of
freedom are needed, to represent the robot’s ability to move freely in space.
These degrees of freedom correspond to the position and orientation of an
arbitrary body of the robot, called the floating base or freeflyer. We denote
pff , Rff ∈ R

3 × SO(3) these coordinates. This enables us to define the
generalized position and velocity coordinates of the system [Featherstone08]
as







qr , (pff , Rff ,θ)

vr , (ṗff ,ωff , θ̇)
(1.1)

where ωff is the angular velocity vector associated to the rotation Rff . The
suffix r denotes the use of a rigid body model, as this parametrization will
latter be changed to account for deformations.

Consequently, assuming full rigidity, the theoretical pose of any body B
in the world frame is given as a known function of qr through the forward
kinematic model fr: this writes

WMB = fB
r (qr) (1.2)

1.2.2.2 Dynamics without a patient

In this subsection, we express the dynamics of Atalante when no user is
present, i.e. that of the robot alone, under the assumption of full rigidity.

2Note that this IMU is not rigidly linked to the exoskeleton, and thus will not be used
in this work, as it does not provide any direct information about the robot’s deformations.
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The dynamics of a system of rigid bodies in interaction with its envi-
ronment are well described in the literature [Featherstone08], and can be
generically written as

M(qr)v̇r + C(qr,vr) = Bu + Jc(qr)λc (1.3)

where M is the generalized inertia matrix, C the vector of generalized bias
forces (representing the combined effect of Coriolis, centrifugal and gravity
forces), B is a selection matrix mapping the input torque u to the generalized
velocity vector vr. Finally, Jc is the contact Jacobian, mapping the contact
wrenches λc to the system’s joints.

To compute the term in (1.3), we use the open-source kinematics and
dynamics library Pinocchio [Carpentier19] developed by the LAAS labora-
tory, which provides an efficient implementation of these rigid body dynamics
algorithms.

On Atalante, all the joints are actuated, i.e. u has the same dimension
as θ (12 degrees of freedom). We say that the exoskeleton is fully actuated.
Note that despite this property, the system remains underactuated, as the
six degrees of freedom corresponding to the freeflyer are not actuated. In
order to control this joint, to prevent the robot from falling and to enable
forward motion, the robot must therefore use the contact forces λc to apply
a force and torque to the freeflyer.

1.2.2.3 Dynamics with a (passive) patient

The dynamics of the coupled system {patient + exoskeleton} are more com-
plex than (1.3). Namely, the degrees of freedom corresponding to the motion
of the patient need to be considered, together with the muscular torque in-
duced by the patient, to express the full dynamics (i.e. to compute the forces
expressed by the patient onto the exoskeleton). Such a model however can
hardly be used in practice, considering that the patient is not instrumented,
which means that no information about their pose and velocity is directly
available.

As a simplification, we thus consider that the user is rigidly attached
to the exoskeleton, and cannot perform any motion. This simplifies the
system such that it has the same degrees of freedom as the exoskeleton alone.
Furthermore, we assume that the patient is fully passive, and does not apply
any torque (no muscular action). Then, the patient can then be seen, from a
dynamic perspective, simply as an additional mass and inertia, attached to
the bodies of the exoskeleton.

Specifically, we decompose the patient into 7 major segments - upper
body, right/left thigh, right/left tibia, and right/left foot - and add the corre-
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sponding mass and inertia to the robot’s bodies. To obtain these parameters,
we use an anthropometric description of an average human as presented in
[Winter09] that models these parameters as a function of the total mass and
height of the patient.

In the end, the dynamics of the system still takes the form of (1.3) Simply,
the mass and inertia parameters in M and C in (1.3) are modified to include
the patient, which we denote with the p suffix and write

Mp(qr)v̇r + Cp(qr,vr) = Bu + Jc(qr)λc (1.4)

Equation (1.4) simply translates the fact that we obtain a patient-specific
model of an equivalent rigid body system, with the same kinematics as the
exoskeleton but with a mass and inertia compatible with that of the coupled
system. This equivalent model is then used in a classical trajectory generation
and control framework used in humanoid robotics, as presented in the next
subsection.

An important thing to keep in mind however is that the uncertainty in
the value of the parameters in the coupled model (1.4) is vastly superior to
what one might expect on a robot alone. Indeed, an average anthropometric
model is used, but the precise distribution of mass of a given patient is not
known. Likewise, the exact position of the patient in the exoskeleton is not
measured: even in static conditions, the patient is never standing exactly as
planned in the model.

Furthermore, the patient is able to move, in particular their upper body,
while in the exoskeleton. This can be seen as the presence of an unknown
disturbance added to (1.4). This disturbance can be quite significant, consid-
ering that the mass of the user is comparable to the mass of the exoskeleton:
by leaning to the side for instance, the patient can move their center of mass
several centimeters in any direction, with a strong impact on balance.

Finally, another source of disturbance lies in the patient’s muscular activ-
ity. Atalante is indeed meant to be used with a wide variety of users suffering
from different pathologies, from valid users to hemiplegics and paraplegics.
The behavior of the exoskeleton must therefore remain robust to a variety of
behaviors from the user.

In conclusion, it is important to keep in mind the uncertain nature of the
true dynamics of the system when working with an exoskeleton. The nominal
model of (1.4) is a mere approximation, typically not accurate enough to
enable feedforward-only control: rather, robust feedback methods need to be
employed. This observation is the source of our motivation for using a sensor-
driven approach to tackle the question of compensating the deformations.
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1.2.3 Overall control architecture

Atalante is controlled following the classical position control paradigm. This
consists in considering that the position of the robot joints, θ, can be con-
trolled to follow a reference trajectory3, noted q∗. This is performed through
an inner control loop called the low-level controller, which runs at 1 kHz.
Then, an outer loop is responsible for computing this reference: this is the
high-level controller. This is illustrated in Figure 1.7.

High-level controller
trajectory generation

balance control
(example: admittance)

Low-level controller
position tracking
(example: PD)

System

Joint
trajectory

q∗
Torque

u

Decentralized feedback

Whole-body feedback

Figure 1.7: A simplified overview of “position-controll” for a robot like Ata-
lante.

1.2.3.1 High-level controller

From a control system point of view, the role of the high-level controller is
simply to provide a joint trajectory, q∗, to execute the desired motion. For
the case of legged robots, this trajectory is required to achieve an important
objective: it must enable the robot to stand or walk without falling, i.e. to
maintain balance.

Indeed, recall that a legged robot is under-actuated due to the presence
of a freeflyer joint. This joint is only controlled through the application of
external forces at the foot, as described in (1.3). This results in a complex
trajectory planning problem, which has been broadly studied in the literature
[El Khoury13, Finet17, Carpentier18, Mastalli20]. This problem is solved
offline on Atalante through an optimization framework, similar to the one
presented in [Hereid17], which provides a nominal trajectory theoretically
balanced, according to (1.4).

However, simply following this trajectory is often not sufficient to pro-
vide a stable walk on the real system. As mentioned in Section 1.2.2.3, the
dynamics is quite uncertain, meaning that the theoretical trajectory is not

3The use of the letter q, instead of θ, is made to be consistent with the modeling of
the robot to include the presence of deformations, as presented in Chapter 2
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guaranteed to be feasible on the real system (i.e. it may lead to the robot
falling). Furthermore, disturbances are unavoidable due to the presence of a
user.

Thus, the nominal trajectory needs to be corrected online to adjust to
the true system state. Such correction is done on position-controlled robot
through admittance frameworks [Kajita10, Englsberger12, Caron19], which
adjust the target trajectory to control the contact forces λc in (1.4), thereby
providing balance. In the walking experiments presented in this manuscript,
an admittance controller based on the control of the center of mass, similar to
the one presented in [Caron19], is used to stabilize the robot - and ultimately
obtain a joint target trajectory q∗ for the low-level controller.

1.2.3.2 Low-level controller

The low-level controller is responsible for controlling the motor torque u in
order to track a target joint trajectory (q∗, q̇∗). One common choice of con-
troller is the use of decentralized, high-gain PD or PID controller [Chung08]
[Westervelt18]. In this decentralized approach, each motor is controlled in-
dividually.

The use of a decentralized approach is possible thanks to the high trans-
mission gear ratio used on Atalante, which approximately decouple the dy-
namics of the system (see [Finet17, Section 1.6.3] for an analytical study of
this property). Furthermore, a high gain approach proves to be robust to
uncertainties in the dynamics of the system, as the large gain are meant to
dominate these effects. More practically, a decentralized structure is often
adopted as it greatly simplifies the gain tuning process, since it allows one
to independently tune the gains for each actuator successively.

1.2.3.3 Impact of the presence of deformations

In a position-control framework, the presence of deformations can be seen
as an issue in trajectory tracking, and thus, a problem to be handled by the
low-level controller. Indeed, behind the joint trajectory q∗ computed by the
high-level controller really lies the rigid kinematic model of the robot (1.2).
More than tracking the angle of the actuators (rotor position) per se, the
true objective sent by the high-level controller is the relative pose of the
exoskeleton’s links: through the forward kinematic model, q∗ indicates, for
instance, where the right foot should be with respect to the left foot.

While on a rigid system, tracking the joint angles θ is equivalent to track-
ing the pose of the links, this is no longer the case in the presence of defor-
mations. This is illustrated in Figure 1.4: although the exoskeleton features
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good tracking at joint level, the position of the left foot differs from the
desired position.

One approach to solve this problem is to change the low-level control
paradigm, to provide the desired link position tracking by including a feed-
back on a measurement of this position mismatch, i.e. the deformations.
This is the solution studied in this thesis. This approach has the advantage
of leaving the high-level controller unmodified.

The modification of the low-level controller is presented in Chapter 4. It
requires a model and an estimation of the deformations: this is the topic of
Chapter 2 and Chapter 3 respectively.
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Chapter 2

Modeling of the deformations
of Atalante

Chapitre 2 - Modélisation des déformations d’Atalante: Ce cha-
pitre présente la manière dont sont modélisées les déformations d’Atalante, à
des fins d’observation et de contrôle. Une revue de la littérature fait ressortir
trois modélisations prédominantes, dont deux que nous exploitons directe-
ment dans la suite. Le premier modèle utilisé consiste à étendre le modèle
cinématique du robot en ajoutant des liaisons rotules au niveau des hanches
et des chevilles de l’exosquelette, pour représenter les déformations. Ce “mo-
dèle flexible étendu” sera utilisé au chapitre suivant à des fins d’observations.

Cependant, un tel modèle étendu complexifie le problème de contrôle, en
ajoutant des degrés de liberté non directement actionnés à la cinématique
du robot. Pour traiter ce problème, nous utilisons à la place une modélisa-
tion d’actionneur série élastique, colocalisant ainsi les déformations avec les
axes des moteurs. L’opération de projection permettant de passer du modèle
flexible étendu à ce modèle d’articulation flexible est présentée en détail. La
précision de ces deux modèles est ensuite évaluée à l’aide d’un dispositif de
capture de mouvement, qui valide leur pertinence.

In this chapter, we present the models used to describe the deformations
of Atalante. We first review the classical models used in the literature to
represent deformations in robots, from which we draw inspiration to design a
model for Atalante. We propose an extended kinematic model, i.e. a model
where extra degrees of freedom are added, in the form of spherical joints
located at the weakest points of the structure, to represent the deformations.
This model proves to be very convenient for observation purposes using IMUs,
but is not directly usable to address the control problem. For this purpose,
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we alternatively model the deformations as joint elasticity, projecting the
previous model onto the joint’s axes. The kinematic accuracy of both mod-
els is evaluated using motion capture, which confirms their relevance for,
respectively, estimation and control purposes.

2.1 Description of flexibilities in the robotics

literature

Modeling and control of flexible elements of a supposedly rigid robot have
been topics of interest since the early days of robotics. Work on this topic
can be easily traced back to the 80s, with work on industrial robotic manip-
ulators [Nicosia81, Marino86, Spong87]. These robots are typically tasked
with controlling the position of their end effector in space as accurately as
possible: their performance is thus directly degraded by the presence of de-
formations. The need for such modeling only grew throughout the years, as
the demand for cost reduction drives the development of lighter robots able
to carry heavier payloads [Moberg10].

A robotic system is an extremely complex mechanical system, with tens or
hundreds of parts interacting, from transmission elements to structural links.
Mechanically modeling each part individually to try to precisely understand
the behavior of every element is extremely complex and hardly feasible in
real-time. Instead, phenomenological models have been developed to describe
the overall behavior of such systems.

2.1.1 The flexible joint model

To model deformations on supposedly rigid robots, almost all works model
them as a consequence of joint elasticity: this is the so-called flexible joint
model [Spong87, Spong90].

The idea behind this model is to consider that the robot’s links are in-
finitely rigid, and that the deformation only stems from the robot’s trans-
mission elements. Indeed, the use of belts, gears, harmonic drives... are all
very plausible sources of compliance. This compliance results in a mismatch
between the input (motor) angle, and the output angle, i.e. the true angle
between the rigid links of the robot. Mathematically, this means that a robot
with n elastic joints is described by 2n coordinates: the link angle q ∈ R

n

and the motor angle θ ∈ R
n. We define α , q − θ the deformation angle.

This is illustrated in Figure 2.1a
Dynamically speaking, the robot’s transmission is modeled as a compli-

ant element located between the motor’s output and the driven link. By
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compliant, we mean that the torque transmitted by this element, τf ∈ R
n, is

function of the deformation angle and velocity. This relationship is typically
modeled as a linear spring damper [De Luca05a, Torabi08]:

τf , −Kα − να̇ (2.1)

where K and ν are positive-definite diagonal matrices, representing the trans-
mission’s stiffness and damping.

Often, the damping term is ignored (i.e. ν = 0), such that the deformation
is modeled as an ideal spring instead [Marino86, De Luca98, De Luca05b],
hence the name of elastic joints. Such a model in which the motor acts on
the link by transmitting torque through a flexible element, also corresponds
to the modeling of series elastic actuator [Pratt95, Buondunno18], although
this terminology commonly refers to robots where a compliant element is
placed in the transmission on purpose: example of such robots include the
iCub [Tsagarakis11] or the Valkyrie [Paine15] humanoid robots.

An important property of this model of the deformations is that the
robot’s kinematic model, describing the motion of the links, remains un-
changed. Indeed, the positions of the links remain constrained to rotations
about the original axes of the joints, as a function of q only. This is a very
convenient property for the control of the robot, where a reference joint tra-
jectory q∗ is to be tracked. Then, if each joint can be controlled such that q

tracks q∗, the links will be at the desired position.
However, considering that the deformations occur only about the actuated

axes is not always sufficient to accurately describe the kinematics of the real
system, as deformation may also happen about other points in the structure.
This stresses the need for more complex models which include additional
degrees of freedom to the robot link configuration.

2.1.2 The flexible link model

Instead of considering that the deformations are localized at the joints, the
flexible link model discussed here considers that the deformations are dis-
tributed along the robot’s link, as represented in Figure 2.1b. As such, the
robot is no longer modeled as a set of articulated rigid bodies. Instead, the
links are flexible elements capable of continuous deformation, which results
in an infinite dimensional model described by partial differential equations
[Carrera11].

While this modeling more accurately describes the physical behavior of
a robot’s link (considering that there is no such thing as an infinitely rigid
body), it is much more difficult to mathematically model and manipulate.
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This model will not be used on Atalante, where the links follow closely enough
a rigid body assumption. Hence, we do not discuss it further, and refer the
reader to [De Luca08, Bauchau11, Lismonde20] for a more complete descrip-
tion.

2.1.3 The extended flexible joint model

An intermediate solution to take into account the presence of deformations
in the links, while keeping a rigid body approach, is to generalize the notion
of joint flexibility to enable rotations about axes that are not parallel to the
joint axis [Abele11, Moberg14, Zimmermann20] . This modeling increases
the number of degrees of freedom of the system: hence, it is referred to as
the extended flexible model [Moberg10].

This model introduces extra degrees of freedom to the robot’s kinematic
model, in the form of additional revolute joints collocated to an existing joint,
but about an axis orthogonal to the actuated axis1. This is represented in
shown in Figure 2.1c. These “virtual axes” can be seen as a modeling of the
deformation of the joint’s bearings ; they also represent a linear approxima-
tion of a distributed deformation along the robot’s link. This model thus
enables a more accurate kinematic description of the robot’s motion than
the constraint joint elasticity model, while still using a rigid body formalism:
namely, the state of the system is still described by a finite set of degrees of
freedom, θ ∈ R

n and α ∈ R
m, only this time m > n. These extra unactuated

degrees of freedom often follow the same spring damper law as in the joint
elasticity model, i.e. (2.1), with appropriate dimensions.

In the context of Atalante, we use two of these modeling approaches to
describe the deformations of the robot. Namely, for observation purposes, we
use an extended flexible model approach, representing the deformations as
spherical joints and 3D springs. For the control part however, we use a joint
deformation model, which provides a good approximation of the extended
model, while making the formulation of the control problem much easier. In
the rest of this chapter, we present both of these models, and validate them
using motion capture.

1Note that a further extension considers that this joint does not need to be collo-
cated with an existing joint, but can be placed anywhere on a link, splitting in in two
halves[Bauchau11]. This alternative modeling is briefly discussed in Appendix D.
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Figure 2.1: A representation of the three proposed deformation models.

2.2 Extended flexible model for Atalante

The use of an extended flexible model came as a result of empirical physical
considerations and observations about the structure of Atalante.

On one hand, the transmission elements of Atalante are extremely stiff:
this can be observed on a simple experiment, using the fact that all joints are
equipped, at their output, by a mechanical stop, to guarantee user’s safety.
By applying the maximal motor torque when the output rests against the
stop, the rotor is able to travel further that the output, due to the deflection
of the transmission element. By comparing the motion of the rotor (measured
by the encoder) and the (known) distance between the mechanical stop, we
obtain a direct measurement of the deformation of the transmission. This
experiment shows that only a negligible amount of deformation, typically
around 0.15◦, occurs at the joint level2. The deformation of the transmis-
sion elements themselves are far from being sufficient to explain the total
deformation observed, i.e. the additional 10 cm of displacement observed in
Figure 1.4 for instance.

2This value is consistent with the very high theoretical stiffness of the harmonic drives
used on Atalante (around K = 50000 N/rad)
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On the other hand, the robot’s largest links, the thigh and the tibia,
were designed to be extremely rigid. Finite element simulations predict no
significant deformation of these parts; this is validated using motion cap-
ture experiments, which measures no visible deformation. This means that
the links can be modeled as rigid: the deformation remains a localized phe-
nomenon happening around the robot joints, where the links are less thick
and therefore less stiff.

This notion of localized deformation about the robot joints, not restricted
to the transmission elements, is exactly what is captured by an extended flex-
ible model. This is the approach we take, with a slight modification in terms
of parametrization: instead of considering successive 1D deformations about
2 or 3 axis, we directly model a flexibility as a spherical joint, enabling an
arbitrary 3D rotation about the joint center. For this purpose, we generalize
the notion of 1D spring of (2.1) to a 3D torsion spring. More precisely, let
D ∈ SO(3) be the rotation representing the deformation. We note Ω the
associated vector of rotation [McCarthy90, Grassia98], i.e. the vector such
that3

D = exp ([Ω]×) (2.2)

Then the torque applied by the flexible element on its output frame writes

τ , −KΩ − νiω (2.3)

where K and ν are positive-definite diagonal matrices representing the stiff-
ness and damping of the flexibility, and ω the local angular velocity associ-
ated to D.

Not all joints however need to be extended by a spherical joint to accu-
rately describe the deformations on Atalante. Instead, we only introduce a
spherical flexible joint at the weakest points of the structure. Namely:

• one deformation is located at the center of each ankle. This deformation
is meant to capture the total deformation of Atalante’s ankle transmis-
sion, which features a complex differential mechanism to actuate the
ankle about two orthogonal axes.

• one deformation is located at each sagittal hip joint. This localization
is chosen in regard of mechanical considerations, since the link between
the sagittal and transverse hip is the weakest part of the robot’s struc-
ture. Geometrically, it is also located at a midpoint between the pelvis

3This vector is also expressed in the well-known Rodrigues formula. More precisely, let
θ , ||Ω|| and v , Ω

||Ω|| , then Rodrigues formula gives the expression of D as the rotation

of angle θ about the unit vector v as: D = cos θI3 + sin θ[v]× + (1 − cos θ)vvT .
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and the knee joint, and thus is intended to capture deformations that
may happen through all these structural elements with minimal kine-
matic error.
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Figure 2.2: The punctual deformation model: four spherical joints (red spi-
rals) are introduced into the robot’s kinematic chain, with center point lo-
cated at the ankle and sagittal hip joint.

The location of the flexibilities is represented on a schematic view of Ata-
lante in Figure 2.2. In this model, the pose of the robot’s bodies is now
defined as a function of encoder angle θ, and the four rotation matrices
parametrizing these spherical joints. We call these (DRA, DRH , DLH , DLA) ∈
SO(3)4 to represent the deformations around the right ankle, right hip, left
hip and left ankle respectively: this is illustrated in Figure 2.2. To simplify
the notations, we use the letter j to index the joints (j ∈ {RA,RH,LH,LA}),
and simply denote these deformations Dj. We call Oj the origin of the flexible
joints (i.e. the center of rotation).

We call this kinematic model the extended flexible model with generalized
position coordinates

qf , (pff , Rff ,θ, DRA, DRH , DLH , DLA) (2.4)

We denote ff the forward kinematics function, giving the pose of a body
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in the world frame as a function of these generalized coordinates

WMB = fB
f (qf ) (2.5)

Note that the main driving factor for the choice of this model, and in
particular for parametrizing the deformations using rotation matrices, is the
fact that the corresponding position qf can be easily instrumented using
IMUs placed on the robot - the location of the IMUs being in turn driven by
the location of the flexibilities. Indeed, the generic idea of our methodology
is to place an IMU on each side of every deformation, and to compute the
deformation rotation Dj as a simple difference in IMU attitude. For Ata-
lante, with four deformations to instrument, this process requires the use of
5 IMUs, located in the pelvis, both tibias and both feet. Indeed, the dif-
ference between the tibia and foot IMU on each side gives a measurement
of the ankle deformation, and the difference between the pelvis and tibia
IMU gives the hip deformation angle. Likewise, the difference in gyroscope
measurements (correctly re-projected into the relevant frames of reference)
gives the corresponding angular velocity. Note that this methodology can be
generalized to a robot with any number of points of deformation: for a robot
with n flexibilities modeled as spherical joints, n + 1 IMUs can be used to
estimate the corresponding rotations.

2.3 Joint flexibility model for Atalante

2.3.1 Presentation

The extended flexible model presented in Section 2.2, though quite accurate
and convenient for observation purposes, raises some difficulties in terms
of control. To express this difficulty, we factorize the freeflyer joint (i.e.
the odometry coordinates, common in both models), to consider only the
relative pose of the bodies with respect to each other. Thus we rewrite the
forward kinematics of the rigid model (1.2), and that of the flexible extended
model (2.5) as

ffMB = gB
r (θ)

ffMB = gB
f (θ, DRA, DRH , DLH , DLA)

(2.6)

In other words, the mapping gr (respectively gf ) gives the pose of body B with
respect to the freeflyer using the rigid (respectively extended flexible) model,
while fr (respectively ff ) gives the pose with respect to the world frame. gr

and fr (and likewise gf and ff ) are thus linked through the following identity:
WMB = WMff

ffMB i.e. fB
r (pff , Rff ,θ) = WMffg

B
r (θ).
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2.3. JOINT FLEXIBILITY MODEL FOR ATALANTE

Equation (2.6) outlines the fact that the extended flexible model possesses
more degrees of freedom than the rigid model, and can thus reach configu-
rations which are impossible for the rigid system. Conversely, given a target
trajectory q∗ and assuming non-zero deformations Dj, it is not possible to
find motor angles θ such that the position and orientation of every body of
the system matches the target pose, i.e. such that

∀B, gB
f (θ, DRA, DRH , DLH , DLA) = gB

r (q∗) (2.7)

Instead of looking for a way to control this extended flexible model, we
take another, much simpler approach: we collocate the deformations with
the actuators, using the joint deformation model presented in Section 2.1.1.
Indeed, for the case of Atalante, both models are kinematically quite close
to each other. Both consider that the deformations are punctual rotations:
simply, where the extended flexible model considers one 3D rotation at the
sagittal hip, the joint deformation model uses three 1D rotations about the
three orthogonal hip axes. Likewise, the ankle’s spherical deformation can be
decomposed about the ankle joint axes. Using a joint deformation model also
enables for a physical interpretation of the computed angles in a joint elastic-
ity model (unlike a generic inverse kinematics solution), which proves instru-
mental for the design of a decentralized controller, as presented in Chapter 4.

Mathematically, this means that we solve the inverse kinematics prob-
lem (2.7) by considering the rotations only - in order words, we look for
alternative robot joint angles q ∈ R

12 that matches the orientation given by
the extended flexible model (and thus the orientations given by the IMUs).

The computation of the joint angle q is done independently “joint by
joint”, associating each spherical joint of the extended flexible model to the
corresponding motors. More precisely:

• No flexibility is associated to the knee joint in the extended flexible
model. Thus, this joint is considered rigid, and the encoder value is
simply kept as-is (i.e. qknee = θknee).

• The 3 angles of the hip are computed from the hip deformation - more
specifically, using the rotation from the hip to the pelvis, pelvisRright hip

(respectively pelvisRleft hip). This rotation is computed as a function of
DRH (respectively DLH) using the flexible model, gf in (2.6).

• Likewise, the 2 ankle angles are computed as a function of the ankle
deformation through the rotation right tibiaRright foot, again using gf .

We thus obtain a projection, transforming these attitudes into joint angles
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φ : R
2 × SO(3)4 → R
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(2.8)

This function is built using Euler angle decomposition of rotation matri-
ces, which enable for a close-form analytical expression of φ: this is presented
in the next subsection.

2.3.2 Computing the joint deformation angles from the
extended flexible model

In this subsection, we explicit the function φ (and its partial derivative for
computing velocity). We present it successively for the hips and for the
ankles, outlining the differences between the use of a joint deformation model
and the extended flexible model. The process is implemented independently
for the right and the left leg, hence we omit this distinction and simply refer
to the “hip” and “ankle”.

2.3.2.1 Projection of the hip deformation

For the hip deformation, we consider the rotation pelvisRthigh between the
thigh and the pelvis, given by the extended flexible deformation model (this
is a function of the joint angular displacement θ measured by the encoders,
and the hip deformation Dj).

Recall that under the rigid kinematic model fr, the hips of Atalante
consist of three orthogonal pivot joints, the frontal (x), transverse (z) and
sagittal (y) hip joints. This means that the rotation from the thigh to the
pelvis is decomposed as:

pelvisRthigh = Rx(qf )Rz(qt)Ry(qs) (2.9)

where qhip ,
(

qs qt qf

)

are the sagittal, transverse and frontal angle re-
spectively.

From (2.9), computing the angles (qs, qt, qf ) ∈ [−π, π) × [−π
2
, π

2
] × (−π, π]

to match the orientation pelvisRthigh simply corresponds to a particular form
of Euler angle decomposition4 - following the X-Z-Y order. It is well known

4Such angles corresponding to a decomposition about three different orthogonal axes
are also called Tait-Bryan angles.
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[Craig89] that such a decomposition exists and is unique (the equations are
presented in (A.4) of Appendix A), away from a singularity when the second
angle reaches π

2
modulo π: this is (abusively) referred to as gimbal lock

[Hemingway18]. In that particular case, gimbal lock corresponds to an angle
of π

2
for the transverse hip (which would render the frontal and sagittal axis

parallel to each other). Such condition will never be met in practice however,
since the transverse hip has a mechanically limited range of about 15◦ about
the origin, and the deformation can only account for a few extra degrees.

Thus, with this simple Euler angle decomposition, one creates a bijec-
tion (pelvisRthigh 7→ qhip) between the extended flexible model and the joint
deformation model. By this definition, both reconstructions will give the
same orientation. Likewise, the relative angular velocity vector can be de-
composed into Euler angle derivatives to obtain q̇hip). The precise equations
are presented in Appendix A (Equation (A.6)).

While the kinematic structure of the hip enables a conservation of the ro-
tation, both models are not equivalent in terms of position as one progresses
along the kinematic chain. Indeed, where the extended flexible model ro-
tates the rigid bodies of the robot around a single center point (the sagittal
hip), the joint deformation model applies the same rotation but as successive
rotations around non-collocated centers.

The transverse and sagittal hip are located very close to each other, ren-
dering this difference negligible. However, this effect can be viewed on the
frontal hip, illustrated in Figure 2.3. Notice there that the position of the
swing foot is different between both models, despite the fact that the orien-
tation of the hips and the pelvis are the same. Considering that the defor-
mations are small rotations, this difference however remains limited. More
precisely, at the first order, the two models differ only in the predicted height
of the swing foot according to

e = l(αl − αr) (2.10)

where l = 170 mm is the distance between the frontal and sagittal hip, and
αl, αr are the deformation around the frontal hip of the left and right leg
respectively. In practice when walking, the difference between both defor-
mations is around 0.025 rad, the support hip (which withholds more weight)
undergoes a larger deformation, leading to a difference of about 5 mm in the
predicted foot height.

2.3.2.2 Projection of the ankle deformation

For the ankle, a similar decomposition into Euler angles can be performed.
One difference worth mentioning is that only two of the three axes are ac-
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Left Sagittal Hip

Joint deformation model

αs

αf

Left Sagittal Hip

l

αs
Spherical deformation model

αf

Left Sagittal Hip

Frontal Hips

Right Sagittal Hip

Swing foot
e = l(αf − αs)

Figure 2.3: Illustration of the difference between the two models: although
the angles of the successive rotations are equal, the position of the swing foot
differs between both models.

tuated: the sagittal axis (ey) and the Henke axis h. This means that the
joint deformation model has one less degree of freedom (per leg) than the
extended flexible model.

The joint angles are computed, like for the hip, by decomposing a rotation
matrix given by the spherical model into Euler angles. A third vector v =
ey ×h is defined to complete an orthogonal basis with the two actuated axis.
Then, the rotation from the foot to the tibia decomposes along these three
axes as:

tibiaRfoot = Rv(qv)Rs(qs)Rh(qh) (2.11)

where qs and qh are the desired sagittal and Henke ankle angles. The last
angle, qv, corresponds to a rotation that cannot be accounted for in the joint
deformation model, and is simply discarded (qv = 0, i.e. Rv = I3). The
angular velocity is decomposed in the same fashion. Again, the formulas are
given in Appendix A (Equations (A.9) and (A.10)).
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2.3.3 Summary

The function φ is thus defined through the use of specific Euler-angle decom-
positions, performed at each hip and ankle. Notice that the definition of φ,
as a function preserving the input rotations at the hip, and along the two
actuated hip angles, is unique. This is a result of the uniqueness of the Euler
angles in the range of interest5: thus, there is no ambiguity in the way the
deformations are projected onto the joint6.

Note also that, because only two degrees of freedom are present at the
ankle, this operation is only a projection and not a bijection. It is straight-
forward to verify that, when applying the rigid kinematic model gr to a
configuration q ∈ R

12 to compute the rotation matrices in (2.8), then apply-
ing φ, we find back the same angles. Symbolically, this writes: φ(gr(q)) = q.
This implies that

• When no deformation are present, this mapping simply matches the
original joint angles θ (measured by the encoders).

• Having applied φ to the rotations given by the extend flexible model to
obtain q, if we iterate the process by computing these rotations through
gr(q), we find back the same q: this is why we call φ a projection.7

2.4 Comparison of the two models against

motion capture

To quantitatively and qualitatively assess the merits of these two deforma-
tion models, we look at their kinematic accuracy, i.e. we investigate how
accurately these models describe the motion of the robot’s bodies. For this
purpose, we use a motion capture device to provide ground-truth data: this
provides us with a way to directly measure the deformations, and to estimate
the accuracy of our models.

Motion capture consists of recording a scene using several infrared cam-
eras, with infrared-reflecting markers placed on moving objects. Detecting
the position of the markers in the images from several cameras enables recon-
struction of the 3D position of this marker. By placing several markers on a

5All angles are of course defined modulo 2π, but since the robot joints are equipped
with mechanical stops, only the angles closest to zero are relevant.

6This is made possible because the knee joint is modeled as rigid. Otherwise, the angle
measured by the tibia IMU could be attributed equally to the sagittal knee or to the
sagittal hip joint.

7φ ◦ φ is obviously not defined, but we have φ ◦ gr ◦ φ = φ
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Figure 2.4: Blue curve: deformation during a step (average, standard devi-
ation, over 10 steps) of the swing toe during a typical walking experiment.
The orange and green curves are the residual error committed by the ex-
tended flexible model and the joint deformation model respectively.

given rigid body, the orientation of this rigid body can be reconstructed as
well. In this thesis, we use a commercial motion capture system composed of
8 tracking cameras from OptiTrack8, offering a theoretical accuracy of 1 mm.

In Figure 2.4, the blue curve represents the total deformation observed
at the outermost toe of the swing foot, measured by motion capture, during
a walking experiment with a valid user in the exoskeleton (average over the
full walk). This deformation is measured as the difference between (i) the
position of the swing toe with respect to the stance foot computed using
the rigid model and encoder measurements, and (ii) the direct measurement
done from motion capture.

The swing toe is chosen as reference for two reasons: one is that it is
located at the very tip of the robot, furthest away from the stance foot, and
thus is the point where the deformation is the largest, summing up the effect
of all the deformations in the structure. The second, and most important
argument, is the fact that the control of the foot motion is critical to correctly
execute a walking motion, making it a variable of practical interest. Indeed,
balance while walking is entirely determined by the contact forces at both
feet. One of the most detrimental effect of the presence of deformations is
the fact that the swing toe is lower than expected: this is shown by the

8OptiTrack Prime 13 cameras, https://optitrack.com/.
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rightmost curve (Z axis) of Figure 2.4. This curve starts at t = 0 with the
start of the double support phase, during which the vertical deformation is
negligible. However once the swing foot leaves the ground (around t = 0.2 s),
the deformation increases. During the swing phase, the swing toe is about
2.5 cm lower than predicted by the rigid model. This causes the foot to strike
the ground earlier than predicted, greatly hindering walk stability.

The second most detrimental effect of the flexibilities is shown in the
middle curve: the lateral deformation (Y axis) has the largest value, with
up to 4 cm of deformation. This raises an issue in the form of potential
self-collision of the robot’s tibias, and therefore limits how close both legs
can move to each other.

Finally, the X axis also reports visible deformations, in particular in the
middle of the swing phase, as the leg is accelerated forward. Practically, this
has less impact on flat foot walking than the two effects mentioned above.
Indeed, it only slightly reduces the length of the steps, but does not cause
any direct issue on stability. Though our generic approach seeks to control all
three position axes (as well as the orientation of the swing foot), this means
that in practice, the performance requirement will be lower in X than for the
other two axes, of paramount importance.

Using motion capture data, we assess how accurately the swing toe po-
sition can be reconstructed using the extended flexible model, and the joint
deformation model. For this purpose, we use motion capture orientation
measurements to obtain the orientation of the robot’s IMUs. From this ori-
entation, we compute the deformation rotation matrices Dj as a difference
in orientations between two IMUs and encoder measurements (as described
later in Section 3.1.2), and therefore obtain an estimate of the swing toe
position using the forward kinematics of the extended flexible model ff . The
residual error between this position and motion capture is represented in or-
ange in Figure 2.4. This shows that this model quite accurately rebuilds the
position of the swing toe, with an error of only a few millimeters on each axis.
Note that the relatively large standard deviation, with a “spiky” pattern, is
due to motion capture noise in orientation estimation, which is superior to
the noise in position, which adds up for all four spherical joints of the model.

Finally, the green curve features the error of the joint deformation model,
computed by projecting the extended flexible model angles onto the joints
as presented in Section 2.3.2. This model causes a larger error, in particular
for the vertical axis, where the value of the error almost doubles, from less
than 5 mm to almost 10 mm. This is the consequence of having a different
center of rotation for the frontal deformation, illustrated earlier in Figure 2.3.
Nevertheless, this model remains sufficiently accurate to provide a meaningful
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improvement over controlling the robot assuming a rigid model, as illustrated
in Chapter 4.

2.5 Conclusion

Robots are complex mechanical systems, which feature a variety of potential
sources for deformation: transmission elements, joint bearings, link element
rigidity... The control of such system thus often relies on simplified linear
models to empirically describe the global phenomenon: the most common
of which being the joint deformation model, where flexibility is assumed to
come from transmission elements alone.

In the context of Atalante, we propose two different models, which we
examine at the light of their kinematic accuracy: our objective is to model
the deformations in such a way as to be able to reconstruct the position of
the swing toe while walking. These two models lay the foundation of the
global approach used in this thesis.

The first model adds four spherical joints to the robot’s kinematic model.
This extended flexible model is shown by motion capture to be quite accurate,
with a root mean square error of less than 5 mm on the swing toe position.
It is also quite convenient to instrument using IMUs: this process is detailed
in Chapter 3.

Then, to address the controller design problem, we project the deforma-
tion of this first model onto the joints of the robot, while keeping unchanged
the IMU orientation. This will prove instrumental in the design of low-level
controllers, as presented in Chapter 4.
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Chapter 3

Online estimation of the
deformations using IMUs

Chapitre 3 - Estimation en ligne des déformations à l’aide de

centrales inertielles: Ce chapitre aborde l’estimation des déformations
du robot, telles que décrites par le modèle flexible étendu exposé précedem-
ment. L’estimation des quatre rotations représentant les déformations, et de
la rotation du pied de support, est équivalente à celle de l’orientation des
cinq centrales inertielles du robot. Celles-ci, constituées d’un accéléromètre
tri-axial et d’un gyroscope tri-axial, ne permettent pas (en l’absence de modé-
lisation supplémentaire) d’observer l’angle de lacet : aussi, les déformations
en lacet sont négligées et l’angle correspondant reconstruit sous une hypothèse
de modèle rigide.

L’estimation d’attitude d’une centrale inertielle repose sur l’intégration
du signal du gyroscope, et sa fusion avec la mesure de l’accéléromètre, selon
le principe du filtrage complémentaire. Cette opération est gênée, dans le cas
d’un système dynamique en mouvement, par la présence d’une accélération
linéaire qui s’ajoute à la mesure de la gravité. Dans le but d’obtenir une
estimation précise des orientations des différents corps consituant le système,
nous étudions trois approches différentes :

• Un “observateur statique”, reposant sur une hypothèse de stationnarité
(accélération linéaire négligée devant la gravité). Il s’agit d’une implé-
mentation directe de l’observateur présenté dans [Mahony08] sur l’exos-
quelette Atalante.

• Un “observateur cinématique”, qui exploite le modèle cinématique du
robot pour reconstruire une mesure fictive de la vitesse linéaire de la
centrale inertielle, utilisée ensuite pour estimer l’attitude.
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• Un “observateur dynamique”, qui utilise le modèle dynamique com-
plet du robot et des déformations pour calculer l’accélération comme
la somme des forces modélisées s’exerçant sur le système.

Ces trois approches sont comparées en détail sur des données expérimentales.
Cette comparaison démontre la supériorité de l’“observateur cinématique”,
plus performante que les deux autres méthodes sur tous les critères considérés.

In this chapter, we address the problem of estimating the deformations of
the robot, using Atalante’s strap-down IMU sensors. In details, the objective
is to estimate the four rotation matrices Dj of the extended flexible model
presented in Section 2.2, and the corresponding angular velocities. In the
process, we also obtain an estimate of the roll and pitch angles of the contact
foot, which frees us from having to formulate a flat foot assumption.

While angular velocities are directly measured by the gyroscopes, and
only need to be projected correctly to obtain an estimation of the velocity of
the various bodies, strictly speaking IMU sensors offer no direct measurement
of attitude, which must be estimated using an observer. This orientation can
only be partially estimated, as the rotation around the gravitational field
(yaw angle) is not observable. The reconstruction of this angle thus requires
additional modeling assumptions or an extra measurement. Our approach
is simply to neglect the yaw deformations, and rebuild the corresponding
IMU rotation matrix using the rigid kinematic model, as detailed in Sec-
tion 3.1.4. Although this impacts the accuracy of the reconstruction, the
obtained performance is still satisfactory on Atalante, as shown by the re-
sults of Section 3.6.

The estimation of a roll and pitch angle from IMU measurements on an
accelerating system, such as a robot walking, is also far from trivial. Follow-
ing the complementary filter approach, the idea of IMU-based attitude esti-
mation is to integrate the gyroscope’s angular velocity measurement, while
exploiting the accelerometer measurement of gravity to prevent estimation
drift [Crassidis07]. However, this “measurement of gravity” is “corrupted”
by the linear acceleration of the sensor, also measured by the accelerometer.
The challenge then lies in separating these two terms. Different approaches
have been proposed in the literature, and we here compare three different
models:

• A “static observer”, which assumes that a can be neglected before grav-
ity. While being very simple to implement and use, the performance of
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this observer is limited by this assumption of zero-on-average accelera-
tion during dynamic motion. In this thesis, we simply call this observer
the StaticObserver.

• A “kinematics-based observer” (called KinematicObserver), which uses
only the kinematic model of Atalante to express the fact that the ac-
celeration is the derivative of the linear velocity, which can be approxi-
mately measured with onboard sensors (encoder velocity and gyroscope
measurement).

• A “dynamics-based observer” (the DynamicObserver) which uses the
full kinematic and dynamic model of the system to compute the acceler-
ation a as a result of the system dynamics, by exploiting the dynamical
model of the flexibilities as spring dampers, see Equation (2.3).

These three observers are presented successively in this chapter, then ex-
tensively compared in Section 3.6, where various experiments enable us to
quantitatively establish the accuracy of these methods on Atalante. The con-
clusion of this chapter is that the “kinematics-based observer” outperforms
the other two in all cases.

3.1 Description and problem statement

In this section, we mathematically clarify the estimation problem that we
seek to solve, and present a framework for exploiting (partial) IMU attitude
estimations to reconstruct the state of the robot. This framework is then
applied to three different observers, successively presented in the rest of this
chapter.

3.1.1 Contact point assumption and definition of the
local frame

In order to describe the state of the robot, we formulate the following as-
sumption

Assumption 1. At any given time, there is at least one foot in contact with
hard ground. We furthermore assume that the contact foot does not slip on
the ground.

This assumption implies very little practical restrictions. Indeed, we do
not assume that the ground is flat, nor that the contact foot rests flat on the
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ground: the foot can rotate about its edges. Furthermore, we do not restrict
ourselves to single support: double support also satisfies this condition.

Knowledge of which foot is in contact is readily deduced on the system
from the force sensor measurements. In the case of double support, an arbi-
trary foot can be chosen: a typical choice is to take the foot with the highest
force applied, as being the less likely to slide1. We refer to this foot as the
contact foot, and denote C the associated frame. The other foot is then called
the swing foot (even though it may also be in contact with the ground in the
case of double support).

Then, the robot is represented by a kinematic chain, from the contact foot
to the swing foot. The deformations are thus numbered in the order in which
they appear, from 1 (the support ankle deformation) to 4 (the deformation
of the swing ankle), instead of referring to them by their name. Since the
floating base coordinates can be attached to any body on the system, we can
also consider without loss of generality that the coordinates of the contact
foot are used. Thus, the generalized position vector for the rigid model and
the extended flexible model rewrite:







qr , (WpC,
WRC,θ) ∈ R

3 × SO(3) × R
12

qf , (WpC,
WRC,θ, D1, D2, D3, D4) ∈ R

3 × SO(3) × R
12 × SO(3)4

(3.1)

The contact foot frame C also gives a reference point for defining a notion
of odometry, to represent the total displacement of the robot from the world
frame. More specifically, we define the local frame L as the frame translated
along ex and ey from the world frame to lie below the origin of the contact
foot frame, and rotated about ez such that its ex axis remains aligned with
the sagittal plane of the robot2. This is represented in Figure 3.1.

By removing the odometry coordinates, the local frame offers a simpler
context to fully characterize the robot’s balance. Indeed, the robot’s dynam-
ics is independent of the absolute position of the robot in the world frame. It
depends only on the pose of the various bodies in the local frame, and their
velocities with respect to the world frame, expressed in the local frame.

1In practice, we use a time-based hysteresis to prevent rapid, erratic changes of the
contact foot due to measurement noise when the weight distribution is near the threshold.

2In other words, the origin of the local frame share the same X and Y coordinate as
the origin of the contact frame, and has a Z coordinate of 0. This frame however remains
horizontal, i.e. its vertical axis is equal to the vertical axis of the world frame, ez.
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C

L

W

Rigid model, flat foot:

L = C
Extended flexible model

Figure 3.1: Representation of the world frame, contact foot frame and local
frame.

3.1.2 Problem parametrization

In Section 2.2 and in Equation (3.1), we parametrize the extended flexible
model using the local deformation matrices Di. While this is indeed the
relevant parametrization to use in the iterative computation of kinematics
and dynamics algorithms, such as those presented in [Featherstone08], it is
not the most convenient representation for writing observers from IMU data,
which measure quantities relative to the absolute (and not relative) orienta-
tion. Thus, we use a change of coordinates to reparametrize the kinematic
chain and consider the total deviation from the rigid, flat foot model (i.e.
the sum of all deformations) instead of local deformations.

When considering only encoder measurements, the rigid body model gives
the pose of any body B of the robot with respect to the contact foot frame, C.
Without additional information or measurement about the orientation of the
contact foot, it is common to assume that the foot is flat on level ground -
and thus that C = L. With this assumption, the rigid model and encoder
measurements alone provide an estimate of the state of the robot, which
we denote CMB,r. This transform can be computed simply by setting the
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freeflyer joint to identity in (3.1), i.e.

CMB,r = fB
r (0, I3,θ) (3.2)

The flexible model of the robot then gives a pose in the local frame
that differs from this rigid configuration by the application of 5 successive
rotations:

• the rotation of the contact foot about the ground, which takes place at
one of the corners of the foot, called O0

• the four deformations, taking place around the center points Oj.

The robot can thus be described as being composed of 5 “rigid sets” (in
the sense that the relative configuration of the bodies within the set can be
described by the rigid model only, and is not affected by flexibilities nor the
contact foot angle) Si, with a spherical joint between each set (or between
the first set and the world frame).

We then define the rotation matrix Ri, for i ∈ [0, 4], as the total difference
in orientation between the rigid and flexible model present at center Oi. More
precisely, for B a body located in set Si, i.e. between Oi and Oi+1 (or simply
after O4 for the case of the last deformation), Ri is defined as:

Ri ,
WRB

CRT
B,r (3.3)

In other words, Ri takes body B from its rigid, flat-footed configuration,
to its real orientation in the world frame. This rotation thus accounts for the
support foot angle, and for all successive deformations up to body B.

These rotations enable us to introduce a new generalized position vector
for the flexible model as follows

q̄f , (WpC, R0,θ, R1, R2, R3, R4) (3.4)

An explicit bijection between qf in (3.1) and q̄f is readily defined by
decomposing the rotations into individual elements:

• For the contact foot, we directly have R0 = LRC as CRC,r is just the
identity matrix.

• For the deformation matrices, we can express Di as a function of Ri−1,
Ri and encoder measurements. For this purpose, we define Pi and Ci

the parent and child frame linked to the deformation Di. For the rigid
model, these frames are equivalent as there is no deformation: it simply
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Rigid kinematics, flat foot:
CMB,r = fB

r (θ)
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WMB = fB
f (q̄f )
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Figure 3.2: A representation of the various notations. The sets Si of the
flexible model, drawn in different colors, are connected at points Oi through
spherical joints parametrized either by the Di (local) or Ri (global) rotation
matrices.

corresponds to the orientation of the joint onto which the deformation
is attached. We note Rr , CRPi,r this orientation. By definition, we
have

Di ,
PiRCi

(3.5)

Since frame Pi is located before the deformation, it belongs to set Si−1

and thus
LRPi

= Ri−1Rr (3.6)

On the other hand, frame Ci is after the ith deformation, hence:

LRCi
= RiRr (3.7)

Combining these three equations, we get:

Di = RT
r R

T
i−1RiRr (3.8)
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This formula can be explained as follows: Di, the deformation occur-
ring at joint i, corresponds to the difference between the “total de-
formations” RT

i−1Ri, expressed in the local frame of the parent joint
Pi.

Thus, estimating the state of the deformations Di and the contact foot
angle WRC is equivalent to estimating the rotations Ri, which are character-
ized in a simple, unified manner by (3.3).

3.1.3 IMUs instrumentation on Atalante

To estimate the five rotations Ri, five low-cost MEMS IMUs are placed on
Atalante, one in each of the rigid sets Si, i ∈ [0, 4]. Specifically, one IMU is
placed in each foot, one in each tibia, and one in the pelvis.

In the rest of this chapter, we refer to each IMU according to its location:
thus, IMU i lies in set Si. This means that according to (3.3):

WRIMUi
= Ri

CRIMUi,r (3.9)

Thus, since CRIMUi,r is measured (being a function of the joint encoder
position only according to (3.2)), the problem of estimating Ri is equivalent
to that of estimating the orientation of the IMU, i.e. WRIMUi

.

3.1.3.1 Description of IMU sensors

The IMUs used on Atalante are composed of a tri-axial MEMS accelerometer
and a tri-axial MEMS gyroscope. A gyroscope measures the sensor’s angular
velocity with respect to the world frame, expressed in the sensor frame. The
accelerometer measures the specific acceleration: the linear acceleration of
the sensor in the world frame, minus gravity. Thus, the output of an idealized
IMU writes

{

ya = WRT
IMU(W p̈IMU − g)

yg = ωIMU

(3.10)

with g ,
(

0 0 −g
)T

is the gravity vector in the world frame (and g =

9.81 m/s−2).

In practice, low-cost MEMS IMUs suffer from various errors: these are
presented and discussed in Section 3.5.
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3.1.3.2 Observability considerations: definition of the tilt.

As apparent in (3.10), only part of the rotation matrix WRIMU is observable.
Indeed, consider that a constant rotation Rz around ez is applied to the
world frame, and defines a new frame W ′

. Since W ′
is fixed with respect to

W , the angular velocity and linear acceleration of the IMU, expressed in the
sensor frame, remain identical. Since RT

z g = g, this means that W ′
can be

substituted to W in (3.10).
Thus, the sensor’s output is left invariant by this rotation, stressing that

an IMU cannot distinguish between W and W ′
- or, in other words, that the

orientation of the IMU about ez cannot be reconstructed. In particular, this
stresses that an IMU cannot observe the rotation between L and W . This
is a well-known result discussed e.g. in [Mahony08, Benallegue17], which is
classically referred to as saying that the yaw angle cannot be estimated3.

In order to avoid the ambiguity related to the roll-pitch-yaw decomposi-
tion, discussed in Appendix B, and the problem of gimbal lock, we instead
formulate this property in a more precise way by defining the notion of tilt
(taken from [Benallegue17]) as follows

Definition 1. For any rotation R ∈ SO(3), we call tilt the vector

t(R) , RT ez (3.11)

We define the tilt of a body B as the tilt of its rotation with respect to the
world frame:

tB , t(WRB) (3.12)

The tilt can be physically interpreted as a measurement of verticality: it
corresponds to the perceived gravity field in the body frame. Notice that by
definition, the tilt is invariant by a yaw rotation, i.e. t(RzR) = t(R).

Unlike the seemingly closely related notion of roll and pitch4, the tilt is
singularity-free. This makes it a better parametrization for observer syn-
thesis. For this purpose, the time derivative of this vector as a function of

3A common choice used for vehicle navigation to estimate this angle is to add a 3D
magnetometer into MEMS IMUs to act as a compass, measuring Earth’s magnetic field.
Such device combining accelerometers, gyroscopes and magnetometers is called an attitude
and heading reference system (AHRS). However, a magnetometer can hardly be exploited
when located on a robot, i.e. inside a metallic structure near powerful electric motors with
generate a time-varying field, much stronger that much stronger that of the Earth.

4Considering a roll-pitch-yaw decomposition (α, β, γ) of a matrix R, its tilt writes
according to (A.9) t =

(

− sin β sin α cos β cos α cos β
)

. Hence when the decomposition
is non-singular (sin β 6= 0), the tilt is equivalent to knowing the roll and pitch angle about
a given frame of reference.
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the angular velocity will be used. This is obtained by computing the time
derivative of (3.11), which yields

ṫB = −[ωB]×tB (3.13)

Using the notion of tilt, we can rewrite (3.10) as:

{

ya = WRT
IMU

W p̈IMU + gtIMU

yg = ωIMU

(3.14)

The observability property of WRIMU can now be reinterpreted at the
light of (3.14) by saying that, using IMU signals only, the best we can hope
for is to reconstruct an estimate of the tilt of the IMU, and not the whole
rotation matrix. In particular, we cannot reconstruct the orientation of the
local frame with respect to the world frame. Note that, conversely, this
analysis does not imply that the tilt is observable - this is not always true due
to the presence of a linear acceleration term WRT

IMU
W p̈IMU . In Section 3.2

and Section 3.3.1, we show two different models granting observability of
the tilt, which we use for observer design. By contrast, in Section 3.4, we
use a dynamic model of the flexibilities to render the last component of the
rotation observable as well.

3.1.4 Reconstruction of a 3D rotation from a tilt esti-
mate

In the case where the full rotation matrix of the IMU can be estimated
(i.e. the DynamicObserver presented in Section 3.4), (3.9) directly gives the
corresponding value of Ri:

R̂i = WR̂IMUi

CRT
IMUi,r

(3.15)

In this section, we show how to adapt this formula to the case where only
an estimate of the tilt of the IMU, t̂, is available.

Estimating the tilt of the IMU, or the tilt of Ri, is actually equivalent:
indeed using (3.9) yields

t(Ri) = t(WRIMUi

CRT
IMUi,r

) = (WRIMUi

CRT
IMUi,r

)T ez = CRIMUi,r tIMUi

(3.16)
Since CRIMUi,r is measured (as a function of encoder measurements only),

we obtain an estimate of the tilt of Ri from the IMU estimate simply by
multiplying it by CRIMUi,r.
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We are thus left with the question of reconstructing Ri from an estimate
of its tilt - and therefore require some assumption about the value of the non-
observable component. Our approach is simply to neglect the deformations
of Atalante around the vertical axis of the system - and to consider that it
remains rigid.

Mathematically, this corresponds to setting the non-observable compo-
nent of the rotation to zero. This process is not completely trivial: the
intuitive solution of taking a roll-pitch-yaw decomposition and setting the
yaw to zero, is actually ambiguous due to the choice of basis used for the de-
composition, and suffers from gimbal lock. This is discussed in Appendix B.
We instead propose a more robust solution based on a minimization criteria,
presented below.

We first restate a classical result to define a norm on SO(3)[Park95,
Huynh09]:

Definition 2. Let R ∈ SO(3); there exists a unit vector v and a scalar θ
such that R is the rotation around v of angle θ. We write R = R0(v, θ)

5.
This defines a norm on SO(3) as: ||R|| = |θ|.

This norm enables us to define the smallest rotation matching a given
tilt:

Theorem 1. Let t ∈ S3 \ {−ez}, where S3 is the unit sphere of R
3. There

exists a unique rotation of minimal norm with a tilt equal to t: this rotation
is given by

Rs =















R0

(

ez × t(R)

||ez × t(R)|| , α (ez, t(R))
)

if t(R) 6= ez

I3 if t(R) = ez

(3.17)

The proof of this result is provided in Appendix B.
This formula can then be applied to the tilt (3.16): note that in prac-

tice, the condition t 6= −ez is always met, since it would correspond to the
unrealistic case of the robot being upside down6.

Thus, from a estimate of the IMU tilt t̂ obtained by an observer, we
reconstruct an estimate of Ri using (3.17), i.e.:

R̂i = R0

(

ez × CRIMUi,rt̂

||ez × CRIMUi,rt̂||
, α
(

ez,
CRIMUi,rt̂

)

)

(3.18)

5R0 can be expressed using Rodrigues formula (R0(v, θ) = cos θI3 + sin θ[v]× + (1 −
cos θ)vvT ), or the matrix exponential (R0(v, θ) = exp ([θv]×)).

6As shown in Appendix B, when t = −ez, there exists an infinite number of rotations
with minimal norm matching the tilt: namely, any rotation of angle π around a vector
orthogonal to ez.
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R̂i can be interpreted as the smallest rotation in norm that needs to be
applied to the rigid robot pose CRB,r to be consistent the tilt observed by the
sensor.

Notice that by doing this, we not only neglect the yaw deformation, but
also cancel out the robot’s heading as well (i.e. the rotation WRL). This
remains consistent with our claim of performing an estimation in the local
frame only, without trying to reconstruct the odometry coordinates.

3.1.5 Estimating the angular velocities

To reconstruct the velocity of the various bodies of the robot, we are also in-
terested in estimating the angular velocity ωi associated to the rotations Ri.
This poses no practical difficulty however: indeed, this angular velocity is di-
rectly measured. This can be seen by computing the time derivative of (3.9):

WRIMUi
[yg]× = Ri[ωi]×

CRIMUi,r +Ri
CRIMUi,r[ωr]× (3.19)

where yg is the reading of the gyroscope of IMU i, and ωr is the angular
velocity associated to CRIMUi,r. Since this rotation is a function of θ only, ωr

can be expressed as a function of θ and θ̇ (the latter being estimated in prac-
tice by numerical differentiation of encoder readings) and is thus considered
to be measured.

This rewrites

yg = CRT
IMUi,r

ωi + ωr (3.20)

and thus

ωi = CRIMUi,r(yg − ωr) (3.21)

As appears above, ωi is expressed as a simple combination of gyroscope
and encoder measurements. Note that, while for the rotation matrix we
nullify the non-observable component, the angular velocity with respect to
the world frame is fully measured: this is a valuable property as it enables us
to express the velocities of the bodies of the robot with respect to the world
referential - though only in local coordinates. This is one of the underlying
principle of the kinematic observer we present in Section 3.3.

This formula can also be expressed in a more generic fashion: for any
frame A in set Si, we have

WRA = WRIMU
IMURA (3.22)

where IMURA is a function of encoder measurements only: its angular veloc-
ity ω is thus measured as a function of θ and θ̇. Consequently, the angular
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velocity of WRA is also measured:

ωA/W = ARIMU(yg − ω) (3.23)

This can be seen as a simple angular velocity composition formula. This
formula is used in Section 3.3.2 on for observer synthesis.

3.1.6 Conclusion

In this section, we have shown how IMU sensors can be employed to re-
construct the state of the robot in the local frame - estimating both the
deformations and the contact foot angle. Namely, because only the tilt tIMU

of the IMU can be estimated, we neglect the yaw deformations using (3.18).
When a full rotation matrix is obtained this hypothesis may be dropped,
and (3.15) used instead. Meanwhile, the associated angular velocities are
measured, as given by (3.21).

The next three sections of this chapter now focus on obtaining this tilt
estimate, t̂IMU , or a complete rotation estimate R̂IMU , from each IMU. Three
successive methods are presented, and are compared at the end of the chapter.

3.2 Static observer: using a zero-on-average

acceleration assumption

3.2.1 Observer formulation

In the context of attitude estimation, a classical assumption when working
with an accelerometer is to consider that the sensor acceleration is, on av-
erage, negligible compared to gravity [Martin07, Mahony08, Khandelwal13,
Barrau17] : in other words, to work in a quasi-static context. This assump-
tion is qualitatively supported by personal experience of human walking.
While fast running motion feature significant dynamical effects (e.g. cen-
trifugal forces, that prevent sudden changes in direction while sprinting),
these are not felt while walking: gravity remains the dominant force.

Under this quasi-static assumption, the accelerometer gives a direct mea-
surement of the tilt we are trying to estimate, as (3.10) can be simplified by
removing the linear acceleration into

ya = − WRT
IMUg = −gtIMU (3.24)

One possible observer for computing a tilt estimate under this assumption
is the nonlinear complementary filter presented in [Mahony08] - which we here
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call the “StaticObserver”. In the case where additional sensors render the full
rotation observable, rotation matrices or quaternions are used to write the
observer. This is how the observer is presented in this article. However, in
the present case where, in addition to the gyroscope, only an accelerometer
is available, this observer can be readily rewritten using our formulation of
tilt, as presented below.

A convenient feature of this observer is that, alongside estimating the tilt,
it is able to estimate the gyroscope additive bias. Indeed, MEMS gyroscope
usually present a significant constant additive bias, bg so that the sensor
output writes

yg = ωIMU + bg (3.25)

To design an observer, the following error term is defined:

e , −ya

g
× t̂ (3.26)

This term measures the misalignment between the accelerometer reading
and the estimated tilt - which should be collinear according to (3.24). The
observer then takes the form of a copy of the tilt dynamics (3.13) (removing
the gyroscope’s bias estimate), plus a feedback on e generating an additional
rotational velocity of the estimate as long as the error is non-zero







˙̂
t = −[yg − b̂g + kae]×t̂

˙̂
bg = −kbe

(3.27)

where ka, kb are positive tuning parameters. Notice that this observer is
non-linear in the sense that the error term kae is not added additively to
the dynamics of the tilt, but rather inside the cross product, in the form
−[kae]×t̂. Mathematically, this guarantees that t̂ remains a unitary vector
- and thus a valid estimate of the tilt7. The term kae can be interpreted as
an extra angular velocity that is applied as a compensation of the measured
angular velocity (gyroscope measurement minus bias) in order to realign the
estimated gravity vector g t̂ with the accelerometer - thereby bringing e to
zero.

The proof of convergence of this observer is presented in [Mahony08]. One
notable property is that, though only the tilt of the rotation can be estimated,
the full 3D bias of the gyroscope can be estimated, granted that a condition

7When implementing the observer in discrete time on a computer, the vector t̂ is
renormalized at every time step to prevent the accumulation of rounding error on the
norm.
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of persistence of excitation is met. This can be intuitively explained by con-
sidering that b̂ is updated only along e, i.e. a direction orthogonal to the
accelerometer measurement ya. When the system remains motionless, only
two of the three bias components can be observed, and the non-observable
component is kept constant. But as soon as the orientation of the system
changes (sufficiently in the sense of persistence of excitation), the third com-
ponent gets to be estimated as well.

Though its great simplicity makes this observer very appealing, in prac-
tice its performance remains structurally limited by the “zero acceleration
on average” hypothesis. Indeed, this observer constantly tries to align the
estimated tilt t̂ with the accelerometer, something that is erroneous when
linear accelerations are present.

The effect of a non-persistent linear acceleration can be mitigated by
reducing the feedback gains ka and kb in (3.27). By proceeding so, only the
low frequency content of the accelerometer signal is used. This is detrimental,
and causes a very slow convergence speed. Furthermore, even with low gains,
a linear acceleration still negatively impacts the behavior of this observer:
this is illustrated in a simple example below.

3.2.2 Analysis of the effect of a linear acceleration on
this observer: analogy with the inverted pendu-
lum

To analyze the effect of linear acceleration on (3.27), and predict the be-
havior of this observer on the robot, we study the simplest representation of
Atalante: a 1D inverted pendulum oscillating at small angles in the sagittal
plane. This model nicely describes the behavior of the robot during a set
of static single support experiments, which have been used as a benchmark
scenario in this thesis. In this scenario, the exoskeleton is tasked to remain
still in single support, and the exoskeleton’s back is manually pushed. Due
to the presence of flexibilities, the robot oscillates about its reference pose at
about 1 Hz.

Interestingly, this model remains relevant even during walking phases.
Indeed, the linear inverted pendulum (LIP) model is often used in bipedal
robotics to describe the motion of the center of mass [Kajita01, Pratt06,
Caron20]. Since, by construction, the robot’s pelvis remains close to the
center of mass, the LIP model describes well the motion of the pelvis IMU
while walking.

Consider a pendulum of length l pivoting by an angle θ around the ey

axis, as illustrated in Figure 3.3. The observer (3.27) can be rewritten for

51



CHAPTER 3. ONLINE ESTIMATION OF THE DEFORMATIONS US-
ING IMUS

this planar case, where only one angle θ needs to be estimated, as






























e = −1

g
det

(

ya,

(

− sin θ̂

cos θ̂

))

˙̂
θ = yg − b̂+ kae

˙̂
b = −kbe

(3.28)

where yg is the measurement of a 1D gyroscope about axis ey, and ya the
measurements of a planar accelerometer about ex and ez.

ez

ex

IMU

θ

l

g

Figure 3.3: A simple inverted pendulum, which can be seen as a minimal
representation of the motion of the pelvis IMU.

In the case of the pendulum of Figure 3.3, the sensor measurements write















ya =

(

−g sin θ + lθ̈

g cos θ − lθ̇2

)

yg = θ̇ + bg

(3.29)

Combining (3.28) and (3.29) yields

e = sin(θ − θ̂) +
l

g
(θ̇2 sin θ̂ − θ̈ cos θ̂) (3.30)
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Assuming small displacements of the pendulum, we linearize this equation
about θ = 08 which yields

e = θ − θ̂ − l

g
θ̈ (3.31)

Notice that (3.31) clearly shows the nefarious effect of an acceleration:
if no acceleration is present, then e is indeed a measurement of the error
between θ and θ̂ - but the acceleration acts as an extra bias term.

Injecting (3.31) into (3.28), we get the following linear observer dynamics:



















˙̂
θ = θ̇ + b− b̂+ ka(θ − θ̂ − l

g
θ̈)

˙̂
b = −kb(θ − θ̂ − l

g
θ̈)

(3.32)

Differentiating the first equation to remove the constant b term, we obtain
the following second-order dynamics for the estimated angle:

¨̂
θ = θ̈ + kb(θ − θ̂ − l

g
θ̈) + ka(θ̇ − ˙̂

θ − l

g

...
θ ) (3.33)

Thus, the proposed observer (near the true value of θ) is simply a linear
time-invariant filter, with transfer function

H(s) ,
θ̂

θ
= 1 − l

g

s2kb + s3ka

s2 + ska + kb

(3.34)

The corresponding Bode diagram is represented in Figure 3.4. As ex-
pected from the transfer function, at low frequencies the transfer function is
approximately equal to 1 , and thus the observer gives a satisfactory estimate
of θ. At high frequencies however the observer has an asymptote of − l

g
kas

as the acceleration terms becomes dominant over the gyroscope’s velocity.
The observer therefore no longer gives a reliable orientation estimate, i.e. a
transfer of 1 between θ and θ̂.

From (3.34), we can see that the bandwidth of the filter can be increased
by decreasing the values of ka and kb. The lower the gains, the less we trust
the accelerometer, and thus the more acceleration we can handle. But re-
ducing the gains also means having a slower convergence time: indeed (3.33)
shows that, in the absence of acceleration, the observer converges exponen-
tially to θ with a characteristic time of τ = 2

ka
.

8The global convergence property of the observer justifies the fact that, if θ ≈ 0 is
small, then eventually θ̂ ≈ θ and these terms can be linearized as well. We are simply
studying the local behavior of the equations.
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Figure 3.4: Bode diagram of the observer, for ka = 0.27 and kb = 0.07, the
values used on the robot.

In practice, another phenomenon empirically limits the useful range of
these gains: the overall quality of the gyroscope. Indeed, the lower the
gains, the more we rely on pure gyroscope integration to obtain an atti-
tude estimate. But MEMS gyroscopes are not perfect: in addition to the
estimated constant bias bg, a gyroscope also suffers from other defects such
as, among other, normalization and orthogonalisation errors, sensitivity to
impacts, colored noise... [Titterton04, Woodman07] Thus, the attitude esti-
mate computed through open loop integration will ultimately drift, even if an
estimated bias is taken into account. This is why the accelerometer feedback
term remains important, to anchor the attitude about a known direction.

Therefore, the tuning of the gains ka and kb on Atalante is performed not
in terms of theoretical bandwidth, but rather using brute-force optimization,
to minimize the reconstruction error on a chosen set of experiments, featuring
both static experiments and walking motions. This leads to the choice of
ka = 0.27 and kb = 0.07. As a sanity check, notice on the Bode plot of
Figure 3.4 that this gain value corresponds to a 3dB bandwidth of 5.5 Hz,
a seemingly reasonable choice considering that the walk pattern happens at
1 Hz.

Yet Figure 3.4 allows us to anticipate the effect linear accelerations will
have on the walking pattern: though the gain at 1 Hz is almost equal to one,
this observer will induce a significant phase shift of 10◦, i.e. a lag of 27 ms at
1 Hz, while having a high characteristic time of tau = 7.4 s which implies very
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slow convergence. Both of these effects are indeed observed experimentally,
as shown in Section 3.6 - and justify the need for a more advanced observer,
not restricted by a static hypothesis.

3.3 Kinematics-based observer: acceleration

as velocity derivative

Instead of neglecting the linear acceleration of the IMU, as done in the pre-
vious section, we here design an observer that exploits a simple fact: the
linear acceleration is the time derivative of the linear velocity. Assuming
that a measurement of the linear velocity in the IMU frame is available, this
relationship can be used to build a tilt observer that is no longer limited
by accelerated motions. This question first received interest in the case of
outdoor ground or aerial vehicles, where the use of GPS or computer vi-
sion (optical flow [Barron94]) can provide such velocity measurement (see
for instance [Bonnabel09, Herissé11, Hua16]).

In the context of a rigid robot pivoting about a single fixed point in its
environment, [Benallegue17] shows that already available joint encoder and
IMU measurements are sufficient to provide a measurement of this linear
velocity. This enables the design of such an observer, without requiring ad-
ditional sensors. This is the philosophy we extend, to enable the support of
multiple deformations in an original algorithm which we call the Kinemati-
cObserver.

3.3.1 Velocity-aided observer for a system with only
one unmeasured spherical joint

For tutorial purposes, in this section we recall the results of [Benallegue17],
which serve as a basis for the general observer we design in Section 3.3.2.

Consider the rigid model of Atalante in single support, as presented
in (1.2). We furthermore assume for now that the robot’s foot can be modeled
as punctual (this hypothesis will be fully relaxed later on). More generally
than just Atalante, we consider a rigid robot fully equipped with joints en-
coders, capable of measuring the position and velocity θ and θ̇ of the joints,
in punctual contact with the ground. We call O0 the contact point, which
is assumed to be fixed (i.e. the foot is not slipping and the ground is hard),
and set this as the origin of the world frame. This is presented in Figure 3.5.

Using the robot’s forward kinematic model, the position and orientation of
any body in frame C can be determined as a function of encoder measurement:
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Figure 3.5: Representation of the system: a rigid robot with point feet,
rotating about the world frame around a fixed point O0.

in what follows, we explicit this dependency by writing these quantities as a
function of θ (and θ̇ for the velocity terms).

As detailed earlier, our goal is to estimate the tilt of the rotation WRC,
using a single IMU placed anywhere on the rigid robot9. This is equivalent
to estimating the tilt of this IMU as

tIMU , t(WRIMU) = CRT
IMU(θ)t(WRC) (3.35)

and CRIMU(θ), the orientation of the IMU with respect to the contact foot,
is measured by joint encoders.

We begin by showing that the kinematics of the studied system allow for
a measurement of the linear velocity of the IMU with respect to the world
frame, in the sensor frame. We denote v , WRT

IMU
W ṗIMU this velocity.

Let pI(θ) , IMURC(θ)CpIMU(θ) be the position of the IMU with respect
to the contact foot frame, expressed in the IMU frame: this "internal" position

9This rotation may be the result of the support foot tilting or resting on a non-horizontal
ground, or the consequence of an ankle flexibility, as considered in [Benallegue17].
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of the IMU, which represents the position of the IMU relative to another link
of the robot (the contact foot) is known as a function of encoder readings,
unlike the absolute position of the IMU in the world frame, which is not
measured. We note ṗI(θ, θ̇) its time derivative, i.e. the velocity of the IMU
with respect to the contact foot, in the sensor frame.

Since the contact foot frame and the world frame share the same origin
(under the punctual foot assumption), WpC = 0. Thus, the position of the
IMU in the world frame writes

WpIMU = WRIMUpI(θ) (3.36)

Injecting (3.36) into the definition of v, we obtain an explicit expression
of this velocity:

v = WRT
IMU

d

dt
(WRIMUpI(θ))

= WRT
IMU

(

WRIMU [ωIMU ]×pI(θ) + WRIMU ṗI(θ, θ̇)
)

= [yg]×pI(θ) + ṗI(θ, θ̇)

(3.37)

This shows that the linear velocity v can be expressed in terms of encoder
position, encoder velocity, and gyroscope measurement yg. This velocity is
thus available as an extra measurement in any state estimation methodology.

To use it, we relate its dynamics to the accelerometer measurement. In-
deed, from (3.14) we get

ya = WRT
IMU

W p̈IMU + g tIMU

= WRT
IMU

d

dt
(W ṗIMU) + g tIMU

= WRT
IMU

d

dt
(WRIMUv) + g tIMU

= [yg]×v + v̇ + g tIMU

(3.38)

Combined with (3.13), this gives the following system dynamics

{

v̇ = −[yg]×v + ya − g tIMU

ṫIMU = −[yg]×tIMU

(3.39)

Note that (3.39) are not specific to the particular kinematics of our sys-
tem, but are true for any motion. They are simply consequences of com-
puting the time derivative of rotation matrices for any system undergoing
motion with rotations (i.e. an application of the Frenet–Serret formulas).
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In our opinion, a major contribution of [Benallegue17] is to show that, in
the presented case of a robot with point feet pivoting about O0, existing on-
board instrumentation is sufficient to reconstruct this velocity at not extra
hardware cost.

Equation (3.39) now enables the formulation of an observer, which unlike
the previous StaticObserver takes into account the presence of linear accel-
erations. Several observers have been proposed relying on these equations:
see for instance [Hua16, Benallegue17, Benallegue20]. In this thesis, we nat-
urally use the formulation proposed in [Benallegue17], as their use case (the
humanoid robot HRP-2) is very similar to ours. This observer writes







˙̂v = −[yg]×v̂ + ya − gt̂ + α(v̂ − v)

˙̂
t = −[yg − β[t̂]×(v̂ − v)]×t̂

(3.40)

with α, β positive observer gains such that βg0 < α2.
A proof of convergence is provided in [Benallegue17]: just like the previ-

ous observer, this observer benefits from almost global convergence, in the
sense that away from a zero-measure set of initial condition (the unstable
equilibrium point t̂ = −ez), the error converges to zero.

Notice that, unlike the previous StaticObserver, no approximation is made
in the formulation of this observer, which can therefore handle arbitrarily
large acceleration. A notable strength of this estimation technique is that
it is achieved using only velocity measurements: the encoder acceleration θ̈

does not need to be estimated. This is significant in practice, given that
computing this quantity from θ using numerical differentiation of noisy and
quantized measurements can lead to significant amplification of noises.

To summarize, (3.40) gives an observer for the tilt of an accelerated IMU,
granted that a measurement of its linear velocity v is available. For the case
of an articulated multi-body system rotating about a known fixed point O0

(i.e. a rigid robot with point feet), this velocity is indeed measured, as a
combination of encoder and gyroscope measurements.

3.3.2 The KinematicObserver: a cascade implementa-
tion on Atalante

In this section, we propose an extension of the work presented above, to adapt
it to Atalante, i.e. to a system with non-punctual foot where more than one
uninstrumented rotation needs to be estimated. The resulting algorithm is
the observer we call the KinematicObserver. While the observer of the pre-
vious section can be directly applied to the contact foot IMU, provided that
the center of rotation is properly defined, a more significant modification is
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needed for subsequent IMUs along the kinematic chain. For tutorial pur-
poses, we first present the case of the contact foot IMU in Section 3.3.2.1,
before generalizing it in Section 3.3.2.2 to encompass all the IMUs in a single,
unified formulation.

3.3.2.1 Direct application to the support foot IMU

The application of the observer (3.40) to the contact foot IMU requires a
proper definition of the ground contact point, in order to compute the IMU
velocity. Indeed, in the case of a non-punctual foot for which we still assume
non-slipping motion, the center of rotation O0 is time-varying, going from
one edge of the foot to the other as the foot tilts on the ground: its position
needs to be known in order to compute the linear velocity (3.37).

For that purpose, we use force sensor measurements, and locate O0 at the
center of pressure of the contact foot - in other words, we consider that the
system is rotating about this center of pressure. Indeed, if the center of pres-
sure is located strictly inside the support foot, then this foot rests flat on the
ground and is not moving: the position of O0 is then irrelevant. Conversely,
as the foot starts to tilt about one of its edge, the center of pressure will be
located on the corresponding edge. With this slight modification, (3.40) is
used to estimate the tilt of the support foot IMU.

3.3.2.2 Generalization for the other IMUs

For the other IMUs, we run into the fact that the linear velocity vi of these
IMUs is no longer measured, due to the presence of several points of rotations
Oi in the kinematic chain. Nevertheless, a very good approximation of this
linear velocity can be obtained, by decomposing the motion of an IMU along
the kinematic chain and exploiting the estimations coming from the previous
observers in a cascade. More precisely, we use the estimations from IMU
0 to i − 1 to estimate the velocity of IMU i, from which we estimate an
attitude using (3.40). Before giving the mathematical details of this process,
we illustrate it on an example. We take i = 2, and thus consider the pelvis
IMU: this is shown in Figure 3.6.

The velocity of the pelvis IMU, expressed in the local frame, v2, is de-
composed as the sum of two velocities:

• The velocity of point O2, the origin of the previous deformations (here
the right hip, in orange in Figure 3.6).

• The velocity due to the motion of the IMU with respect to O2, i.e. the
motion of set S2 (pI2

and its derivative, in red in Figure 3.6).
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Figure 3.6: Illustration of the induction reasoning of the KinematicObserver
for i = 2: the velocity of the pelvis IMU (black arrow) is the sum of the
velocity of the deformation’s origin O2 (in orange), estimated by the previous
observers, and the velocity induced by motions of the current rigid set (the
hips, in red), measured by the joint encoders.

The motion of set S2 is measured by the joint encoder: thus, the as-
sociated velocity term is measured. Meanwhile, the velocity vO2

can be
estimated, in the world frame, using sensor measurements and an attitude
estimation of the previous IMUs (IMU 0 and IMU 1). This velocity however
needs to be rotated into the IMU frame: this rotation is precisely the orien-
tation we seek to estimate, and is thus unknown. Instead, we approximate
this rotation by neglecting the last deformation (D2 about O2): this gives us
an estimation of the desired velocity, v̄2 in (3.49), which depends only on the
attitude estimation of all previous IMUs. This velocity is used to run the
observer (3.40) on IMU2 - and the process is then iterated on the next IMU.

Thus, the KinematicObserver we propose is constructed in successive
steps, following an iterative procedure. At each step, we use the previous
estimates to propagate the orientation and velocity estimation from one de-
formation to the next, and use it for attitude estimation.
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This formulation is in fact valid for the contact foot IMU as well, which
is only a specific, simpler subcase. To allow a consistent notation with the
deformations, which are parametrized by the frames Pi and Ci, we denote
C0 = C and P0 = L. Then, for the generic case of a robot with n deformations,
the KinematicObserver algorithm writes

KinematicObserver algorithm.
For i from 0 to n:

1. compute an estimate of the linear velocity of point Oi with respect to
the world frame, in the parent frame Pi (i.e. before the deformation).
We denote this velocity Piv̂Oi/W .

2. use this estimate to compute an approximation of the velocity of IMU i,
and thus use the observer (3.40) to estimate its tilt.

Both steps of the algorithm are detailed below:

Step 1: computation of the linear velocity of Oi For the first IMU,
the contact assumption simply gives PivOi/W = 0.

For i ≥ 1, we use the velocity and IMU tilt estimation from the previous
IMU (i.e. step i−1 of the algorithm) to compute this velocity. More precisely,
we decompose the position of point Oi about Oi−1: let pi(θ) be the position
of Oi with respect to Oi−1, expressed in frame Pi. This position is a function
of the encoder measurement only, as it depends only on the configuration of
set Si−1

10, and thus is measured. Then, the position of Oi in the world frame
writes

WpOi
= WRPi

pi(θ) + WpOi
(3.41)

Differentiating this equation yields

WvOi/W = WRPi

(

[ωPi/W ]×pi(θ) + ṗi(θ, θ̇)
)

+ WvOi−1/W (3.42)

Multiplying both sides of (3.42) by WRT
Pi

thus yields

PivOi/W = [ωPi/W ]×pi(θ) + ṗi(θ, θ̇) + PiRPi−1

Pi−1vOi−1/W (3.43)

Finally, the rotation PiRPi−1
can be decomposed about the i − 1 defor-

mation into PiRPi−1
= PiRCi−1

(θ) Ci−1RPi−1
= PiRCi−1

(θ)DT
i−1. The rotation

10Recall that Pi, the parent frame of the ith deformation, is simply the last frame of set
Si−1.
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PiRCi−1
(θ), i.e. the rotation from the first frame to the last frame of set Si−1,

is thus a function of encoder measurement only. Thus, the velocity of point
Oi writes

PivOi/W = [ωPi/W ]×pi(θ) + ṗi(θ, θ̇) + PiRCi−1
(θ)DT

i−1
Pi−1vOi−1/W (3.44)

Since Pi and IMU i− 1 belong to the same set (Si−1), ωPi/W is measured
according to (3.23). Meanwhile, the previous iteration of the algorithm (at
step i − 1) gives an estimate of Di−1 and Pi−1vOi−1/W . Hence, the following
estimation of vOi

is constructed

Piv̂Oi/W = [ωPi/W ]×pi(θ) + ṗi(θ, θ̇) + PiRCi−1
(θ)D̂T

i−1
Pi−1v̂Oi−1/W (3.45)

This concludes step 1 of the algorithm.

Remark. Note that Piv̂Oi/W is simply computed by applying the forward
kinematics model ff to the IMU measurements and the previous estimations,
“propagating” the velocity accross set Si−1 from point Oi−1 to point Oi. In
other words, this is not a new state being estimated, but simply a mathemat-
ical byproduct of the previous estimates. We only detailed its computation
in (3.45) because this velocity is instrumental to the implementation of the
observer.

Step 2: estimating the tilt of IMU i To estimate the tilt of IMU i
using (3.40), we need an estimate of its linear velocity in the sensor frame,
vi. This is obtained by performing the same computation as done in Step 1 :
this time, instead of propagating the velocity of Oi−1 to Oi across set Si−1

and deformation Di−1, we propagate the velocity of Oi to IMUi across set Si

and deformation Di. While this only corresponds to performing substitutions
in (3.45), we briefly detail anew the computation for the sake of clarity.

Let pIi
(θ) be the position of IMU i with respect to Oi, expressed in the

IMU frame. This position is a function of the configuration of set Si only.
The position of the IMU in the world frame then writes

WpIMUi
= WRIMUi

pIi
(θ) + WpOi

(3.46)

Differentiating (3.46) yields

WvIMUi/W = WRIMUi
[ωIMUi

]×pIi
(θ) + WRIMUi

ṗIi
(θ) + WvOi/W (3.47)

Multiplying by WRT
IMUi

and decomposing IMUiRP〉
= IMUiRC〉

(θ)DT
i , we

obtain the expression of vi in a form identical to (3.45):

vi = [ygi
]×pIi

(θ) + ṗIi
(θ, θ̇) + IMUiRC〉

(θ)DT
i

PivOi/W (3.48)
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Notice that Equation (3.48) is similar to (3.37) that describes the case
where only one deformation is present, with the addition of one extra term:
the linear velocity of point Oi expressed in the IMU frame. Again, the first
two terms of (3.48) are measured. But this is not the case of the last term:
though we have an estimate Piv̂Oi/W of the linear velocity, (3.48) also depends
on Di, i.e. the attitude of the IMU we are trying to estimate.

The reconstruction choice we make consists of neglecting the ith defor-
mation in the computation of this velocity. We thus set Di = I, and obtain
an approximate measurement of the linear velocity vi under the form

v̄i , [ygi
]×pIi

(θ) + ṗIi
(θ, θ̇) + IMUiRC〉

(θ)Piv̂Oi/W (3.49)

We then apply the observer (3.40) using v̄i instead of vi to obtain an
estimate of the ith tilt - therefore completing Step 2 of the algorithm.

3.3.2.3 Summary

The algorithm we propose thus consists of applying the same observer (3.40)
successively 5 times - each time using data from the previous observers to
propagate the velocity computation to the next IMU. The first IMU, i.e. the
contact foot, is the only one for which a measurement v is truly available.
For the other, we use v̄i from (3.49) instead.

Technically speaking, v̄i is not a true measurement of the linear veloc-
ity, since we neglect the last deformation to propagate the velocity Piv̂Oi/W ,
which is itself an estimate coming from the previous observers and not a true
measurement. In particular, we do not have a proof to formally guarantee
the convergence of the resulting observer.

Nevertheless, we find in experiments that this methodology gives an ex-
cellent approximation of the true linear velocity, yielding an observer not
only stable, but also with very good performance. This is illustrated in Fig-
ure 3.7. There, the velocity of the swing foot IMU, estimated by (3.49), is
compared with the velocity measured by motion capture (using finite dif-
ferences on motion capture data). Because the swing foot is located at the
tip of the kinematic chain, this is where the error will be maximal. Yet the
velocity we estimate there is still very consistent with motion capture: the
most visible difference is the high level of noise, coming from the combined
noise of all 5 gyroscopes. Though this likely limits the value of the gains
that can be used, in practice these high-frequency components are naturally
filtered by integration, to result in practice in a smooth orientation estimate,
as presented in Section 3.6.

Remark. In practice, tuning the gains for the KinematicObserver is quite
easy. In particular, we saw no need to account for the fact that each observer
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Figure 3.7: Velocity of the left foot, approximated by formula (3.49) and
measured using motion capture.

depends on the previous one, which intuitively suggests that the convergence
of IMU i + 1 needs to be slower than that of the previous IMU. Instead, in
simulation we observe that good results can be obtained by setting an identical
gain value for all IMUs. In practice though, we notice a slight improvement
by using a lower gain value on the support foot IMU: we believe this is linked
to the saturation of the accelerometer that happens at impact, as discussed
in Section 3.6.2.2. Thus, the curves in this manuscript are obtained using
α = 0.75 and β = 0.057 for the support foot IMU, and α = 1.5 and β = 0.229
for the other IMUs.

3.4 Dynamics-based observer: acceleration

as a sum of modeled forces

In the previous section, we considered the linear acceleration of the ac-
celerometer as a kinematic consequence of a linear velocity v. Another pos-
sibility to evaluate this term is to model it as the dynamic consequence of a
sum of forces, according to Newton’s law of motion. This leads to a formu-
lation where the dynamic model of the exoskeleton, and of its flexibilities, is
used: we thus call the corresponding observer the “DynamicObserver”. Note
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that a similar approach can be found in the literature for robotic manipula-
tors with elastic joints, for instance in [Axelsson12, Staufer12] - but to our
knowledge, this is the first time such approach is formulated on an extended
flexible model, on a biped robot.

To formulate this observer, we consider the following assumption

Assumption 2. The robot is standing in pure single support, with its swing
foot not touching the ground. Additionally, the contact foot is considered to
be flat on the ground, i.e. LRC = I3.

Note that this assumption is much more restrictive that the framework
used for the previous two observers, which, by comparison, allows for double
support phases, and makes no assumption about the angle of the swing foot
(or the angle of the ground plane itself).

Due to the flat foot hypothesis, the robot now becomes an open kine-
matic chain parametrized by the joint angles θ and the four deformations Di.
We denote qf , (D1, D2, D3, D4) the coordinates corresponding the flexible
joints, vf , (ω1,ω2,ω3,ω4) the associated velocities, to use as generalized
coordinates: qe , (θ, qf ) and ve , (θ̇,vf ).

Our goal is to estimate the vector of flexible state x , (qf ,vf ). For this
purpose, we formulate these two assumptions

Assumption 3. The vector u , (θ, θ̇, θ̈) representing the rigid joints posi-
tion, velocity and acceleration, is known.

Assumption 4. The deformations are modeled as decoupled linear springs,
similarly to the model presented in (2.3), without damping. The torque trans-
mitted by the ith flexibility onto the previous body, expressed in frame Ci, thus
simply writes

τi , −Kj Ωj (3.50)

where Kj and Ωj are, respectively, the stiffness matrix and vector of rotation
associated to the deformation at joint j. The value of the joint stiffness Kj

is known (through for instance system identification).

An important feature of (3.50) is the fact that the torque depends only
on x. This enables us to write the derivative of x as a function of x and u

only.
Indeed, thanks to Assumption 2, the system is simply an open kinematic

chain with no external forces applied at the tip of the chain: thus, the equa-
tion of inverse dynamics can be generally written as

M(qe)v̇e + C(qe,ve) = τ (3.51)
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with M the generalized inertia matrix, C the generalized bias force (inertial
forces and gravity), and τ the generalized forces acting at the joints.

Separating the rigid and flexible part, we obtain:

(

Mθ(qe) MT
θ,f (qe)

Mθ,f (qe) Mf (qe)

)(

θ̈

v̇f

)

+

(

Cθ(qe,ve)
Cf (qe,ve)

)

=

(

τθ

τf (x)

)

(3.52)

where τθ is the torque applied about the rigid joints, and τf (x) is the torque
at the flexible joints, given by (2.3). By solving only for the flexible part, we
obtain the following dynamics:

v̇f = M−1
f (qe)

[

τf (x) − Cf (qe,ve) −Mθ,f (qe)θ̈
]

(3.53)

Since qe, ve and θ̈ are simply the elements of the vectors x and u, (3.53)
gives the dynamics of vf as a function of x and u. Coupled with the rela-
tionship between the generalized position qf and the generalized velocity vf

(i.e. Equation (3) giving the derivative of a rotation matrix as a function of
its angular velocity), the dynamics of the state x adopts the canonical form

ẋ = f(x,u) (3.54)

The IMU measurements can in turn be expressed in terms of x and u.
Indeed, using the forward kinematics equation, the angular velocity and lin-
ear acceleration of the IMU can be reconstructed in term of qe, ve and v̇e -
or equivalently, u, x and v̇f . Thus, calling y the vector of all IMU measure-
ments (both accelerometer and gyroscope), we have

y = g(x, v̇f ,u) (3.55)

In order to remove the dependency in v̇f , we simply use the system’s
dynamic equation (3.53). This writes

y = g(x,M−1
f (qe)

[

τf (x) − Cf (qe,ve) −Mθ,f (qe)θ̈
]

,u) , h(x,u) (3.56)

Thus, having modeled the flexibilities according to (3.50) enables us,
though the use of classical rigid body dynamics, to write the problem of
estimating the deformation as a canonical non-linear observation problem:

{

ẋ = f(x,u)

y = h(x,u)
(3.57)

The remarkable property of this formulation is stated as a theorem below:
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Theorem 2. Under Assumption 2 - 4, the state x is observable. More
specifically, it is E-uniformly observable as defined in [Besançon07, Defi-
nition 2.4.1]: for any T > 0 and any input u : [0, T ] 7→ E, u distinguishes
every pair of initial state.

The proof of this result is given in Appendix C: it relies on applying the
recursive Newton-Euler algorithm for each set Si between each flexibility.

Notice here an interesting feature of this observer: unlike the previous
two observers, which only reconstructed the tilt of the IMU, here the observ-
able state x includes the full 3D rotation of the IMU. The yaw deformation
can thus be reconstructed: this is made possible by the modeling of the defor-
mation as a spring. This observer is the only one to rely on such dynamical
model. While this is conceptually a strength, this practically proves to be
a great weakness, as shown by the experimental results of Section 3.6: the
main culprit being the vast level of uncertainty associated to the flexibility
model (3.50) (the value of the stiffness parameter K, but also uncertainty
in the linear nature and localization of the deformation, as discussed in Sec-
tion 3.6.1).

To optimize the estimation results, we use an Extended Kalman Filter
to provide an estimate based on (3.57). Although the observability prop-
erty does not guarantee the convergence of the EKF, the EKF is a natural
first choice for the implementation of an asymptotic observer, as illustrated in
several contributions in the literature [Khandelwal13, Benallegue15]. Though
pure elasticity is instrumental in the observability proof that we propose in
Appendix C, in practice we implement the dynamics of the flexibilities with
a damping term, i.e. use (2.3) instead of (3.50) for added representative-
ness. The values of Kj and νj are identified experimentally, as explained in
Section 4.1.2.2.

3.5 Handling sensor imperfections

In the formulation of our observers, we considered idealized IMUs, i.e. fol-
lowing the model of (3.10). In practice however, we use low-cost MEMS
sensors, which are known to introduce a variety of errors (see for instance
[Titterton04, Woodman07, Niu13]). While proper IMU calibration is out
of the scope of this thesis, we here show how we account for the two main
sources of error identified.
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3.5.1 Handling the gyroscope bias

As mentioned in Section 3.2, a MEMS gyroscope is affected by an additive
bias bg, which can be quite significant: values of up to 2◦/s are observed
on the IMUs of Atalante. This bias is handled only by the StaticObserver
where it is estimated - but the KinematicObserver and DynamicObserver
ignore it completely. In practice, this is a weakness which negatively affects
the performance of both observers, by creating in static a constant bias on the
estimated tilt (or rotation matrix): while this is less damaging than a linear
drift that would result from open-loop integration, this is still something to
take into account.

In fact, the value of this bias can be obtained simply by leaving the
exoskeleton motionless, and computing the average of the gyroscope signal,
over a period of time long enough to smooth out the effect of white noise
(in practice, a few seconds is sufficient for this). In the literature, this bias
is often modeled as being dependent on the temperature, and slowly time-
varying [Niu13]. On the IMUs of Atalante however, both of these phenomena
are very small in magnitude, as confirmed by some long-term experiments.
Indeed, computation of biases done several months apart typically differ by
no more than 0.3◦/s. Meanwhile, the temperature dependency is around
0.01◦/s/◦C, and thus remains marginal in typical operating conditions.

Consequently, it is safe to assume that the bias remains constant over the
duration of the robot’s operation. In practice, we compute it manually at
the start of an experimental session, on a static experiment, and apply the
same bias value for all subsequent experiments. This process could easily
be automated, for instance, by averaging the value of the gyroscope at the
robot’s startup, before any motion.

3.5.2 Correcting IMU alignment by a constant rota-
tion matrix

In practice, when applying these observers, we observe a static offset between
the tilt given by motion capture, tm, and the one estimated from the IMU
signal - even in static, when this tilt is directly measured by the accelerom-
eters.

We model this as a consequence of sensor misalignment with respect to
the body it is attached to. Due to the tolerances in the mounting of the IMU
on the robot (coming from robot assembly, soldering error, but also errors
in the assembly of the IMU itself), the frame attached to the real sensor, S,
is slightly different from the theoretical frame IMU11: this means that the

11We assume that the gyroscope and the accelerometer share the same frame S, though
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measurement of the real IMU, ys, differs from the expected measurements
yIMU , that should be obtained by a theoretical IMU, by a (constant) rotation
matrix IMURS according to:

yIMU = IMURS ys (3.58)

This rotation is identified offline using motion capture data: in static the
accelerometer directly measures the tilt, in the sensor frame: ts =

Sya

||Sya||
.

Thus, we place the robot in double support in a reference position, then
compute IMURS to realign this vector with motion capture, using a simple
least-square approach:

IMURS = arg min
R∈SO(3)

∑

t

||R ts(t) − tm(t)||2 (3.59)

where ||.|| is the Euclidean norm.
This results in small bias rotations12, typically around 1◦, that are then

applied to the raw sensor signal according to (3.58).

Note that the presence of a rotational mounting offset is not the only
reason of why the accelerometer does not give the same direction as motion
capture in static. In practice, MEMS accelerometers suffer from a static bias,
which can be modeled as a constant, yielding a more accurate model of the
sensor

yIMU = IMURS(SaS/W + g tS + ba) (3.60)

with ba the additive bias. In static, this biases the observed direction: with
bias value as high as 0.2 m/s2, this bias can contribute to errors of 1◦ as well.

In practice, the impact of the additive bias is partially mitigated by our
computation of IMURS, which in the reference double support pose realigns
the accelerometer measurement with gravity, thereby providing the correct
direction despite the bias. This only works in the neighborhood of the refer-
ence position however: when the sensor rotates, the bias ba rotates with it,
whereas gravity does not. This means that we will observe a distortion of the
tilt’s estimate as the IMU rotates, with the correct tilt value being predicted
only about the reference position.13 However, in practice, this effect seems

in practice a (small) misalignment may exist there as well.
12We numerically solve this problem by gradient descent, parametrizing R by its rotation

vector, R = exp [v]×. Note that the fact that R is a small rotation (i.e. ||v|| << 1)
implies that the exponential can be linearized to obtain a true least square problem. Note
that, in the more general context of large rotations, this problem corresponds to the
well-known Wahba problem [Wahba65] for which analytical solutions have been proposed,
e.g. [Shuster81].

13Interestingly, this effect can be used to estimate both IMU RS and ba if rotations with
sufficiently large angles can be performed for the sake of calibration.
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negligible, considering that, while walking, IMU rotation remains small (no
more than 20◦). In a more general context where large rotations need to be
considered, the separate calibration of this additive bias should be considered
as well, as presented for instance in [Frosio09, Tedaldi14].

3.6 Experimental results and discussion

In this section, we compare experimental results obtained with the three
proposed approaches (StaticObserver, KinematicObserver and DynamicOb-
server) against motion capture. As a baseline, we use the rigid model of
Atalante, with the flat-foot assumption: this gives an estimation of the pose
of the robot that depends only on encoder measurements: we refer to this
estimate as the RigidModel.

We illustrate the respective performances by performing two sets of ex-
periments: a static experiment around a reference position in Section 3.6.1,
and a more dynamic experiment featuring the exoskeleton walking in Sec-
tion 3.6.2.

3.6.1 Static experiment

A simple static experiment is enough to tell us a lot about the properties of
the presented observers. In this experiment, the exoskeleton is empty, i.e.
without any user inside, and standing still in single support. The exoskele-
ton is then manually pushed generating disturbances causing excitation of
the flexibilities. More precisely, in the next subsection, the exoskeleton is
pushed in the back, which mostly excites a single flexibility (the support
ankle). Then, in Section 3.6.1.2, the swing foot is pushed, which triggers all
the flexibilities. Natural damping of the system yields a slow decay of the os-
cillations. A video of this experiment, and the associated 3D reconstruction,
is available at https://youtu.be/c2Vdx81iu1A?t=60.

3.6.1.1 Pushing the exoskeleton’s back

Figure 3.8 shows the estimated orientation of the pelvis IMU, when a dis-
turbance is applied to the exoskeleton’s back, and the corresponding error14.
The pelvis IMU is indeed the most relevant output for this experiment: not
only is it the closest to the localization of the disturbance, but it also acts

14This error is obtained by performing a roll-pitch-yaw decomposition of the rotation
error Re , R̂RT

m, (where Rm is the motion capture rotation and R̂ the estimated rotation),
and not a term by term difference of the roll-pitch-yaw coefficients.
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as a proxy for the center of mass of the system, a key element for describing
balance in static.

Without surprise, neglecting the deformations by using the RigidModel
yields a significant static error, and does not capture well the oscillations
which happen when the robot is pushed: these oscillations indeed mostly
come from the flexibilities The moderate amount of oscillations seen on the
RigidModel comes from the low-level tracking error induced by the pertur-
bation, which is measured by the joint encoders.
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Figure 3.8: Pitch attitude estimation, on a static single support experiment,
exoskeleton empty.

Out of the three proposed observers, the DynamicObserver behaves far
worst than the other two. In particular, it suffers from a significant bias,
mostly in pitch, where the estimated steady-state angle is almost the same as
the rigid model. This comes from the fact that the use of spring dynamics to
model the flexibilities dictates the equilibrium state: at rest, the deformation
should be equal to the torque induced by gravity, divided by the stiffness.
However, in this experiment, the position of the robot is such that, according
to the CAD model of the robot, the center of mass of the robot is located
at the vertical of the support ankle. Consequently, the (modeled) torque
due to gravity about these points is close to zero, and our observer predicts
no deformations. In practice however, the support ankle undergoes a static
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deformation of 0.02 rad (which increases up to 0.05 rad when the exoskeleton
is pushed), responsible for the robot’s forward angle .

This static deformation underlines the approximative nature of our dy-
namical model. The most likely explanation of this shortcoming is that the
deformations are not exactly collocated with the joints: considering that the
center of the deformations is located a bit behind the ankle joint is mechan-
ically sound, as this would correspond to a deformation of the rods of the
differential transmission of the ankle. Changing the center of the deformation
would result in a different equilibrium state for the dynamical model, which
would bring us closer to the true attitude. Other causes of error include
incorrect stiffness and viscous friction parameters, which would also explain
the error observed in dynamic. Finally, the CAD model of the robot may
also be inaccurate in terms of inertia and position of the center of mass of the
various links. While, conceptually, the trade-off between model accuracy and
sensor precision can be adjusted in a Kalman filter by modifying the associ-
ated covariance matrices, in practice we could not find a set of values that
yielded results comparable to the other observers: adding more trust to the
sensors would result in a strong amplification of the noise before significantly
modifying the steady-state bias of this observer.

Generally speaking, we believe that a more thorough system identification
of the mentioned deformation parameters could improve the results obtained
by this observer. However, system identification, a reportedly tedious and
difficult task, becomes intractable when a patient is present in the exoskele-
ton. On the contrary, this complex question of dynamic modeling is not
necessary for both the StaticObserver and the KinematicObserver, which
yield a significantly better performance. Both observers converge to a zero
steady-state error, although the convergence phase of the KinematicObserver
is much faster, lasting only 4 s, against 25 s for the StaticObserver. This slow
convergence of the StaticObserver is related to the requirement of using low
gains to reduce the error linked to a linear acceleration. Yet, despite this con-
strained tuning, the effect of the linear acceleration can still be seen during
the oscillations, as shown in Figure 3.9 on a zoom on the third perturba-
tion of this experiment. The error of the StaticObserver, an oscillation of
0.01 rad of amplitude, in fact comes from the presence of a 10◦ phase shift,
as predicted by the linear analysis of Section 3.2.2. While reducing the gains
of the observer would decrease this effect, this is done at the expense of an
even slower convergence: structurally, it is not possible to achieve both fast
convergence and good dynamical behavior with this observer. Conversely,
the KinematicObserver does not suffer from this limitation, and thus easily
outperforms the StaticObserver.
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Figure 3.9: Pelvis pitch estimation during a perturbation: the StaticObserver
suffers from a phase shift of 10◦, as expected from the linear study of Sec-
tion 3.2.2.

3.6.1.2 Pushing the exoskeleton’s swing foot

Pushing the exoskeleton in the swing leg, in the back of the tibia, illustrates
the presence of multiple deformations, and the importance of using more
than one IMU. Figure 3.10 shows the deformation (in pitch angle, since the
exoskeleton is pushed forward) of the support ankle, support hip and swing
hip. The swing ankle receives no disturbance, and holds only very little
weight (the weight of the foot alone) hence the deformation there remains
negligible. However, the support ankle and both hips all show a comparable
amount of deformations and oscillations as a response to the disturbance.
In the end, the cumulative effect of these oscillations generates a significant
motion of the swing foot, with an amplitude of 5 cm - something than cannot
be captured by considering, for instance, the ankle deformation alone.

Notice that once again the KinematicObserver is very accurate at recon-
structing the deformation observed by motion capture. Due to the linear
acceleration, the StaticObserver is off during the oscillatory phase. Mean-
while, the DynamicObserver behaves more poorly, with both a large static
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Figure 3.10: Deformation in pitch of the support ankle and both hips when
pushing the tibia of the swing leg: this disturbance generates significant
oscillations for all three considered flexibilities. Once again, the Kinemati-
cObserver best captures this motion.

bias and a poor handling of the oscillations. This is consistent with the
observations made on the pelvis IMU alone in the previous subsection.

3.6.1.3 Conclusion

Testing the observers in a simple static, single support scenario, already
shows a clear ranking between these observers. The KinematicObserver out-
performs both other approaches. Indeed, the StaticObserver is negatively
impacted by linear accelerations during the oscillatory phases, despite a low
tuning of the gains which leads to a very long convergence phase. Meanwhile,
the DynamicObserver proves to be quite sensitive to modeling errors, and
uncertainties in the parameters representing the dynamical behavior of the
deformations (i.e. the modeling of the torque in (2.3) or (3.50)).

These results lead us to abandon the dynamics-based approach. Improv-
ing its performance would require complex system identification, with a more
advanced modeling of the deformations to try to account for the observed
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bias. On the contrary, both the StaticObserver and the KinematicObserver
are independent of the precise dynamics of the deformation (i.e. independent
of the spring-damper model (2.3)). Rather, they are only impacted by kine-
matic parameters, i.e. the localization of the deformations. This makes both
of these observers much easier to implement than the DynamicObserver. This
dynamics-free property is all the more important to us considering that Ata-
lante is an exoskeleton, meant to work with a user that acts as an unknown
disturbance: this would yield patient-dependent results for the DynamicOb-
server. Finally, in the way it is designed, the DynamicObserver is not directly
applicable to the case of dynamic walking: indeed, to correctly capture the
dynamics of the system, we need to consider the presence of double support
phases during which the contact forces are distributed on both feet, and the
fact that the support foot can tilt on its edge during single support phases.
An extension of this observer, using force sensor measurements and data
from the support foot IMU in single support, is theoretically possible, but
this was not performed in this thesis: considering the very good results of
the KinematicObserver, we see no need to push this complex method any
further.

3.6.2 State estimation while walking

3.6.2.1 Experimental results

We now consider the principal use case for Atalante: dynamic walking with a
user. We here compare the two applicable observers, i.e. the StaticObserver
and the KinematicObserver.

IMU attitude estimation Once again, the KinematicObserver outper-
forms the StaticObserver, which remains limited by the zero average accel-
eration hypothesis. This assumption is obviously not fully satisfied during a
walking motion. Indeed, the forward motion of the swing foot typically gener-
ates accelerations of 4 m/s2: thus, during the swing phase, the accelerometer
direction significantly differs from gravity, resulting in an attitude error for
the StaticObserver. This is illustrated in Figure 3.11.

While both observers give an equivalent attitude estimation during the
stance phase, the error in pitch angle of the StaticObserver greatly increases
during the walk, due to the phase shift caused by the forward acceleration
of the foot. Notice that this time, the phase shift is negative, unlike the case
of the pelvis IMU in Figure 3.9. This can be explained as follows. While the
motion of the pelvis can be approximated by that of an inverted pendulum,
the robot’s foot swings about the hips following the motion of a regular
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Figure 3.11: Estimation of the orientation of the left foot, and corresponding
error: notice the phase shift in the StaticObserver, created by the linear
acceleration during the swing phase.

pendulum instead. Applying the study of Section 3.2.2 to a regular pendulum
instead indeed changes the sign of the obtained phase shift, compatible with
the present observations15

The motion of the tibia IMU is very similar to that of the foot, and there-
fore shows the same error pattern. The pelvis however performs a different
motion: unlike the leg which alternates between an stance and swing phase,
the pelvis is continuously in motion. In particular, it oscillates from right
to left as the weight is transferred from one foot to the next. The resulting
acceleration again cause a significant phase shift for the StaticObserver, this
time mostly visible on the roll angle, as shown in Figure 3.12.

Contrary to the StaticObserver, the KinematicObserver is far less affected
by the presence of linear accelerations, as this term is kinematically taken
into account in this observer. The observer thus keeps a far more constant
estimate, with a root mean square error typically around 0.007 rad for all
IMUs, when computed over a complete walk experiment.

15More precisely, linearizing (3.30) about θ = π leads to a modification of the transfer

function from (3.34) into H(s) = 1 + l
g

s2kb+s3ka

s2+ska+kb

.
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Figure 3.12: Estimation of the attitude of the pelvis IMU while walking:
once again, the KinematicObserver outperforms the StaticObserver, which is
continuously out of phase due to the exoskeleton’s acceleration.

Link position estimation The IMU tilt estimates are in turn used to
estimate the position of the robot’s link in the local frame, using the extended
kinematic model. Of particular interest during walking is the position of the
swing foot toe: indeed, controlling when and where the swing foot impacts
the ground is critical to realizing a stable walk. Figures 3.13 shows the
corresponding position estimates during a full stride, while Table 3.1 gives
the root-mean-square error of these quantities over a complete walk sequence.

Recall that we are only interested in local information (the deformations,
and the angle of the contact foot), and not odometry: this comparison is
done in the local frame, i.e. the frame following the support foot. Thus,
the first half of the figure corresponds to the position (and orientation) of
the right foot with respect to the local frame under the left foot, while the
second half shows the position of the right foot with respect to the left foot
- hence the discontinuity and symmetry for the Y axis in these curves.

The switch between left support and right support is done just as the
swing foot impacts the ground: this is detected using the robot’s force sen-
sors. Thus, each step starts by a double support phase during which weight
transfer is performed. When the step ends, the rigid, flat foot model, over-
estimates the height of the swing foot, which is in fact lower than expected
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Figure 3.13: Estimation of the position of the swing foot’s toes in the local
frame while walking, and corresponding error.

due to the deformations and the tilt of the support foot. This mismatch in
height between both feet remains constant through impact, hence a negative
height estimate just after impact.

As can be expected from the IMU attitude estimation error, the StaticOb-
server is outperformed by the KinematicObserver : in particular, it yields a
rather large error in the X direction: this is a consequence of the large error
in the pitch estimate of the swing foot committed by this observer.

X (mm) Y (mm) Z (mm)

RigidModel 15 32 21

StaticObserver 16 11 9

KinematicObserver 9 9 7

Table 3.1: Root mean square error of the estimation of the swing foot’s toe
position (ground truth being provided by motion capture).

By contrast, using the KinematicObserver provides a significantly more
accurate estimation of the toe’s position, with an error typically below 1 cm:
as will appear later on in the next chapter, this level of precision is sufficient
to perform IMU-based feedback and provide a meaningful impact on the
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system’s performance.

3.6.2.2 Investigating performance limitations using motion cap-
ture data

While the performance obtained by the KinematicObserver are already quite
satisfactory, in this section we provide a deeper analysis to explain the sources
of the residual error observed. For this purpose, we use motion capture data
to simulate “perfect” IMU signals, in order to obtain a lower bound on the
residual error.
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Figure 3.14: Error in swing toe reconstruction: the error committed by the
KinematicObserver mainly comes from the deformation model and the fact
that the yaw cannot be estimated.

Accuracy of the toe position estimate: the limitation induced by
the kinematic model and non-observability of the yaw The residual
error committed on the position of the toe can be mostly explained by the
accuracy of our deformation model itself, and the fact that we neglect the yaw
deformations. This is evaluated in Figure 3.14, where we use motion-capture
to obtain a direct estimate of the IMU attitude. Namely, the red curve shows
the error in the toe position when using the full orientations given by the
motion capture in place of the IMU. This full estimate of the attitude however
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cannot be obtained in practice, since the yaw deformation is not observable by
IMUs. Thus, the yaw deformations are removed from these motion-capture
rotations, as presented in Section 3.1.4. The resulting estimate is represented
by the purple curve, which corresponds to the error that would be obtained
if all IMUs gave a perfect tilt (roll and pitch) estimation. The IMU-based
estimation given by the KinematicObserver is given in orange, while the blue
curve is the RigidModel estimate (i.e. the deformation), for reference.

The difference between the red and purple curve indicate the presence
of yaw deformations: these deformations, which amount for about 0.02 rad,
cause an additional error of up to 2 cm in the foot X position, and a slight
increase (less than 1 cm) along the Y axis. On the contrary, the vertical
position is not affected.

The fact that the KinematicObserver ’s estimate (in orange) remains quite
close to the red curve shows that we are reaching the limit in precision that
can be obtained by using tilt estimates from IMUs only. This is consistent
with the fact that the error in IMU tilt given by this observer is quite small
(RMSE of 0.007 rad). To further improve the accuracy, we would need
additional sensors to estimate the yaw deformation (e.g. computer vision
[Scandaroli11]) - or a more complex model featuring more deformations (and
also more sensors) to further reduce the error committed by the model itself.

Behavior during a full walk: IMU signal quality as the limiting
factor. While the curves presented in Section 3.6.2.1 show the dominant
features of both observer (namely, a significant error for the StaticObserver
in the presence of acceleration, which barely affects the KinematicObserver),
a look at a complete walk experiments reveals that both observers exhibit
slow variations, over the course of several steps, which decrease the quality
of the estimation. This is shown in Figure 3.15.

While the error committed by the KinematicObserver remains quite small
(it rarely goes above 0.01 rad, and the RMSE remains around 0.007 rad
for all the considered IMUs), it exhibits a strange low-frequency behavior,
similar to a random walk. The StaticObserver additionally shows a very slow
oscillation: notably, the right tibia roll or the pelvis roll angle seem to be
slowly drifting away from zero.

We attribute this error, in the case of the KinematicObserver, to arti-
facts in the IMU signals themselves. To reach this conclusion, we use motion
capture to generate data representing fictitious IMU, in place of that of the
real robot’s IMUs. Namely, taking the time derivative of the position and
orientation of the motion capture, we generate a gyroscope and an accelerom-
eter signal for each IMU. We then use this data as input for both observers:
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Figure 3.16 reports the resulting tilt estimation error.

While the StaticObserver uses only IMU data to perform its estimation
of IMU orientation16, the KinematicObserver relies on the kinematic model
of the robot, the non-slipping foot hypothesis, and encoder and force sensor
data from the robot. Finally, it is intrinsically built on an approximation to
compute a linear velocity in (3.49), by neglecting the last deformation being
estimated. All these elements are possible sources of error for this observer.
As shown in Figure 3.16 however, they only contribute to a negligible error.
This validates the overall soundness of the KinematicObserver, demonstrat-
ing that this observer can be expected to give an almost perfect attitude
estimation of a walking Atalante.

By contrast, the StaticObserver exhibits the expected sharp error increase
at each step for the leg IMUs (tibia and foot), and a significant oscillation
at 0.7 Hz (the frequency of the walk) for the pelvis IMU roll. But on top of
this, it also exhibits a slow oscillation, with a period of about 25 s: the error
drifts away during the first 15 s of the walk, and converges back very slowly
at the end of the excitation. This oscillation can be attributed to the fact
that, while walking, the average linear acceleration is not equal to zero. This
effect stems from the presence of Coriolis and centrifugal accelerations, which
result in a non-zero average acceleration despite the fact that the walk is
performed at a constant speed17. This results in a non-zero average bias term
being added to the accelerometer direction, hence to the error term of the
StaticObserver in (3.26). The observer then slowly converges to the direction
of the bias acceleration - with the current gain value, the convergence lasts
about 25 s, as seen in the static experiment, which is about the duration of
the walk, hence this impression of a slow drift. As the walk ends and the
excitation vanishes, the observer starts to converge back to the right angle,
again taking a considerable time to do so. Unlike the KinematicObserver,
the StaticObserver is thus intrinsically limited in terms of performance, and
bound to exhibit larger error patterns.

Since the only difference between Figure 3.16 and Figure 3.15 is the use
of true IMU data versus motion-capture derivatives, this indicates that the
higher error observed on real experiment indeed stems from the quality of
the sensor signal. Low-cost MEMS IMUs are know to suffer from a variety of

16Encoder measurements are only used when doing the reconstruction using the ex-
tended flexible model (2.5) to obtain the link position.

17This somewhat counter intuitive effect can be illustrated by a simple pendulum as
shown in Section 3.2.2. Consider a pendulum oscillating as θ = sin(t): this motion has an
average velocity of zero. Yet, as shown by (3.29), the centrifugal acceleration −lθ̇2 has a
non-zero average − l

2
.
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Figure 3.15: Attitude estimation error of the pelvis, right tibia and right foot
IMU during a full walk: notice that the error is not constant throughout the
experiment, but varies from one step to the next.

errors: axis misalignment resulting in a non-orthogonal measurement frame;
scaling errors; temperature sensitivity; accelerometer additive bias, among
others. These effects are not accounted for: as presented in Section 3.5, we
only approximately cancel the gyroscope bias, and realign the accelerometer
with the motion capture vertical axis.

An extra source of error in the IMU signal is the presence of impacts
due to the foot striking the ground while walking. Indeed, impacts results
in strong vibrations, which often cause the accelerometer to briefly satu-
rate. Additionally, we experimentally observe the presence of high-frequency
vibrations on the gyroscope at impact, sometimes with non-zero average cre-
ating an error of up to 0.01 rad in a few tenths of milliseconds. We believe
this to be the result of signal aliasing: indeed while the accelerometer is
equipped with an analog low-pass filter, this is not the case of the gyroscope.
Finally, inconsistencies in the sampling of the multiple sensors are known
to be present, as the internal clocks and timers are not synchronized. Each
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Figure 3.16: Attitude estimation error on the same experiment as Figure 3.15,
but using motion capture derivatives instead of IMU signal: the error in the
KinematicObserver vanishes, while the StaticObserver keeps both a per-step
error, and converges very slowly towards a biased value.

IMU, encoder and force sensor thus reports its sample individually, creating
a different time delay and jitter for each signal, which negatively affects the
global reconstruction we perform, relying on the comparison of all of these
signals.

Thus, we believe that to further improve the results, one needs to take
a closer look at the sensor signals themselves, and in particular look at the
various calibration methods documented in the literature: see for instance
[Frosio09, Niu13, Tedaldi14]). The current results, obtained without these
extra calibration steps, remain quite satisfying: most importantly, the qual-
ity of the estimation is sufficient to perform feedback control, and obtain
meaningful results, as presented in Chapter 4. Conversely, we wish to stress
the fact that the realignment of the IMU onto the motion capture, presented
in Section 3.5.2, is not required for the methodology presented in this thesis
to be applicable. Indeed, this step is only added as a final touch to improve
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the results on the motion capture experiments used to validate this thesis,
but the development was done on several exoskeletons before any motion
capture was performed, without requiring any bias identification.

3.7 Conclusion

In this chapter, we have studied the problem of estimating the deformation
of Atalante using IMUs. This is equivalent to estimating the orientation
of the IMUs, as the deformations are simply characterized by the difference
between two IMUs. To answer this problem, we have looked at three different
formulations. The StaticObserver assumes that no acceleration is present to
estimate the tilt of each IMU independently. The KinematicObserver consists
in using the robot’s kinematic model to estimate the linear velocity of each
IMU sequentially, the estimation of each IMU serving as input for the next.
Finally, the DynamicObserver uses the complete dynamical model of the
robot, with the flexibilities modeled as spring dampers, to estimate all the
deformations.

We have found the KinematicObserver to be the best approach, yielding
an estimation of the IMU tilt with a root mean square error of 0.007 rad on
all IMUs. Indeed, the erroneous nature of the dynamical model underlying
the DynamicObserver yields poor performance, even in the simplest sin-
gle support, exoskeleton empty scenario. While system identification would
probably render this methodology viable for a humanoid robot, its depen-
dency on the system’s dynamics remains a point of concern for real-world
use on an exoskeleton. Meanwhile, the zero-acceleration hypothesis underly-
ing the StaticObserver creates significant artifacts: despite having tuned the
observer with modest gain to provide a slow convergence, the attitude esti-
mation remains sensitive to linear acceleration, causing a significant phase
shift at each step, as well as an attitude bias that slowly appears during the
walk.

By contrast, the KinematicObserver does not suffer from the dynamic
nature of the motion, and gives a much more accurate tilt estimate. Ex-
perimentally, we explain the residual error as a consequence of sensor signal
quality more than a limitation of the observer. In the end, this approach
gives access to an estimate of the swing toe position with a precision of 1 cm.
The position error mostly comes from the kinematic model of the flexibili-
ties, and the fact that the yaw deformations are not observable when using
only IMU sensors. Nevertheless, the quality of the estimation provided by
the KinematicObserver proves to be sufficient to be used in feedback control:
this is presented in the next chapter.
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Chapter 4

Improving Atalante’s low-level
controllers to account for
deformations

Chapitre 4 - Amélioration des contrôleurs bas-niveau d’Atalante

par la prise en compte des déformations: Ce chapitre aborde le
contrôle en boucle fermée des déformations, en exploitant les données d’es-
timation produites par l’observateur cinématique présenté au chapitre précé-
dent. L’approche choisie est celle d’un retour d’état grand gain décentralisé.
Le réglage de gain est réalisé articulation par articulation, par la méthode
LQR appliquée à un modèle linéaire d’actionneur série élastique. Le contrô-
leur résultant est tout d’abord testé expérimentalement sur plusieurs scénarios
quasi-statiques en simple support, où il démontre une capacité de rejet de per-
turbation bien supérieure à celle du contrôleur PID classiquement utilisé sur
Atalante.

Ce contrôleur de compensation de flexibilités est ensuite adapté au cas de
la marche dynamique, par la prise en compte de la nature hybride du mouve-
ment (alternance phase de support / phase de vol), et l’ ajustement des gains
pour un meilleur suivi de trajectoire. Celui-ci est ensuite à nouveau com-
paré au contrôleur PID sur plusieurs expériences de marche, avec patient et
avec différents mannequins. Ces expériences témoignent d’une amélioration
significative des performances de suivi et de la robustesse de la marche.

The previous chapter has provided us with an observer to estimate the
deformations on Atalante. Here, we seek to use this estimation to improve
the position-tracking performance of the low-level controllers.
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As explained in Section 2.3, we use for the controller a slightly different
model of the deformations than for the observer: namely, we consider joint
flexibilities instead of the extended kinematic model. The objective of the
low-level controller can thus be formulated once again at joint level: given a
reference trajectory q∗ coming from the high-level controller, we wish for the
output (flexible) angle q, estimated by the IMUs, to track this reference as
accurately as possible.

Atalante’s current low-level controller is a classical high-gain PID, which
assumes a rigid system and thus simply servoes the motor variable θ to the
target trajectory:

u = −Kp(θ − q∗) −Kd(θ̇ − q̇∗) −Ki

∫

(θ − q∗) (4.1)

where Kp, Kd, Ki are diagonal gain matrices (carefully tuned by trial and
error).

We call (4.1) the rigid controller, which acts as a benchmark controller:
indeed, even though this controller does not take into account the presence
of deformations, it is sufficient to enable stable walking motions on Atalante.

To design our so-called flexibility compensation controller, we first study
the behavior of Atalante in single support, about a reference static position,
in Section 4.1. Our controller stems from (4.1), and simply consists in adding
a feedback term on q and q̇, to perform full state feedback, while keeping
a decentralized, high-gain approach. We propose to perform gain tuning
by applying LQR design to the linearized dynamics at every joint. This
controller is successfully tested on Atalante, where it provides significantly
improved disturbance rejection, quickly damping the oscillations which are
the dominant behavior in this setup.

We then adapt this controller to a walking scenario: while the overall
approach remains the same, this requires two main modifications:

• A discrete switching in the gains and integrator values when transition-
ing from right support to left support, to account for the hybrid nature
of the system.

• A novel tuning of the gains, to account for the highly dynamic nature
of the walk. This process is partially manual: the gains are slightly
adjusted to mitigate the presence of high-frequency vibrations which
otherwise appear when applying a pure LQR design, something we
explain as the consequence of additional, modeled deformations in the
system.

The performance of the resulting controller is successfully demonstrated,
both on valid users and on experiments with a dummy.
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4.1 Controlling the flexibilities in static: en-

hancing disturbance rejection

In this section, we consider the case of Atalante standing in pure single sup-
port, and we assume that its support foot remains flat on the ground. This
effectively removes the freeflyer coordinates from the state of the system: in
fact, the robot becomes similar to a fixed-based robotic manipulator. Fur-
thermore, we model the deformations as joint flexibilities, as explained in
Section 2.3.

4.1.1 Literature review of feedback controllers

The control of a robotic manipulator with elastic joints is an old question
which has received significant attention since as early as the 1980s. We refer
the reader to [Spong90, Benosman04, Moberg10] for a more complete review
of the problem and different techniques used. Here, we simply give a brief
overview of some of the most common approaches.

The dynamics of a manipulator with joint flexibilities, assuming that each
rotor is symmetric about its rotation axis, simply writes [Spong87]

(

M(q) 0
0 Im

)(

q̈

θ̈

)

+

(

C(q, q̇)q̇ + g(q)
0

)

+

(

−τf (α, α̇)
τf (α, α̇)

)

=

(

0
u

)

(4.2)

where M(q) is the link inertia matrix, Im the diagonal matrix of rotor inertia,
C(q, q̇)q̇ contains Coriolis and centrifugal torques, and g(q) is the torque due
to gravity. Finally, τf (α, α̇) is the torque generated by the joint flexibility,
which we assume to follow a spring-damper law according to (2.1).

As mentioned in the introduction of this thesis, several methods have been
proposed to compensate part of the effect of the flexibilities in the absence of
a direct measurement, by using the linear spring model and the feedforward
torque to apply an offset to the error term of existing PD controllers. This
was first proposed in the so-called gravity compensation method of [Tomei91].
This method was refined in [Zollo05], while different variations are proposed
on humanoid robots in [Johnson15, Reher16, Kim16]. A more advanced
approach is proposed in [Kim18], where a disturbance observer is used to
provide compliance and thus reduce vibrations.

When a measurement of the deformation is available, as in the case of
our IMU-based approach, we naturally turn toward more direct feedback-
based approaches. In the absence of a viscous damping term (i.e. when
the flexibility is modeled as a pure elasticity), the system (4.2) is statically
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feedback-linearizable [Spong87, De Luca95], leading to the following feedback
controller [De Luca08, eq. (13.45)]

u =ImK
−1
(

M(q)v + M̈(q)q̈ + 2Ṁ(q)q(3) +
d2

dt2
(C(q, q̇)q̇ + g(q))

)

+ (M(q) + Im) q̈ + C(q, q̇)q̇ + g(q)

(4.3)

where v is the new control input. However, feedback linearization controllers
are known to be quite sensitive to modeling errors [Moberg08]: for instance,
computing the control law (4.3) requires the second derivative of the terms
of (4.2). This computation is not suitable in the case of an exoskeleton, where
motion of the user introduces large unknown variations in the dynamics.

Even in the context of robotic manipulator, the use of high-gain decou-
pled PID controllers is often preferred over feedback linearization [Chung08,
Finet17]. Indeed, this controller is quite simple to implement and tune (as
each joint can be tuned individually), and is known to be quite robust.
With this consideration in mind, the natural extension of the PID controller
is to perform linear full-state feedback on both θ and q, as proposed in
[Albu-Schaffer00] or in [Moberg10, Section (5.3.5)]. This can be generically
written as:

u = −Kθ(θ − θ∗) −Kdθ(θ̇ − θ̇∗)

−Kq(q − q∗) −Kdq(q̇ − q̇∗) −Ki

∫

(q − q∗)

+ uff

(4.4)

where Kθ, Kdθ, Kq, Kdq, Ki are positive diagonal gain matrices, and uff a
feedforward torque.

4.1.2 Proposed controller design

The controller we propose for Atalante takes the form of the linear con-
troller (4.4).

In this equation, the feedforward term is computed using the full dynamics
of the system (4.2). Neglecting the torque due to the rotor acceleration
Imθ̈ as compared to the gravity torque due to the much heavier links, the
feedforward term writes

uff ,M(q∗)q̈∗ + C(q∗, q̇∗)q̇∗ + g(q∗) (4.5)

This enables a simple computation requiring only link-side information,
without needing an explicit value of the parameters of the flexibilities The
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presence of a patient is another source of uncertainty - however, this term is
only a feedforward torque: ultimately, the error is supposedly mitigated by
the presence of an integral term on q.

One significant challenge in implementing the controller 4.4 however lies
in the fact that this controller requires both a link trajectory q∗ and a motor
trajectory θ∗ - or equivalently, a trajectory for the flexibility α∗.

Mathematically speaking, this trajectory can in principle be computed by
integration of the inverse dynamics equation (4.2) along the trajectory q∗.
Yet this requires precise knowledge of the dynamics, which is not realis-
tic considering the presence of an uninstrumented patient. Practically on
Atalante, the uncertainty on the localization of the center of mass of the
patient, but also on the precise localization of the deformations as outlined
in Section 3.6.1, means that this computation, when done on the nominal
model (1.4), can result in values of α∗ having the wrong sign, as the patient
leans forward while our dynamic model predicts a backward deformation.

Instead, we use a simpler, coarse approximation: we set α∗ = 0, i.e.
θ∗ = q∗. This way, we let the integrator capture the missing feedforward
term, i.e. the average value of the deformation. In the end, our controller
writes

u = −Kθ(θ − q∗) −Kdθ(θ̇ − q̇∗)

−Kq(q − q∗) −Kdq(q̇ − q̇∗) −Ki

∫

(q − q∗)

+ uff

(4.6)

Notice that by doing this, we have removed any explicit dependency on
the dynamic model of the system in the feedback terms, to rely only on
constant feedback gains to tune. This is done with the objective to keep
a controller as robust as possible to changes in the parameters, namely the
presence of different users: the dynamical model is only present in the feed-
forward term.

4.1.2.1 Controller gain tuning methodology

To compute the gain matrices of (4.6), we use a simplified model for each
joint. We consider the robot standing still in a reference single support
posture, and we model the dynamics of joint i to compute the corresponding
gain. Given that the decentralized controller structure of (4.6) does not
include any coupling between joints, we simplify the dynamics by considering
that all other joints are fixed. Thus, the model reduces to a simple planar
series-elastic actuator: motor i is fixed, and is linked to a single body B,
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aggregating all links downstream of joint i, through a spring damper. This
single joint model is represented in Figure 4.1.

q

θ

α

Motor

Flexible element

Link B

Figure 4.1: Model of a single joint of the robot: a flexible element links a
single body to the rotor shaft.

Let α be the flexibility angle (i.e. the ith component of α), and q the
angle between the vertical axis and the center of mass of B, that is, the link
angle qi plus a constant angle. The dynamics of the system writes











Jα̈ = − u+ νm(q̇ − α̇) − k(1 +
J

I
)α− ν(1 +

J

I
)α̇+

J

I
mlg sin (q)

Iq̈ = − kα − να̇+mlg sin(q)
(4.7)

where J is the rotor inertia, m and I the mass and inertia of body B, k the
spring stiffness, and ν, νm viscous friction coefficients for respectively the
flexibility and the motor joint.

We choose a reference single support pose q for the robot. Let q0 be the
corresponding reference position for the joint angle in this simplified model
(q0 is in general different from 0). The associated equilibrium state of (4.7)
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is











α0 =
mlg sin q0

k
u0 = −mlg sin q0

(4.8)

Linearizing (4.7) about this equilibrium yields a linear time-invariant sys-
tem

δẋ = Aδx +Bδu (4.9)

where

x ,
(

δq δ̇q δα ˙δα
)T

(4.10)

A ,
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mlg cos q0
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0 −k
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J
−k

(

1
I

+ 1
J
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(

1
I

+ 1
J

)

− νm

J













(4.11)

B ,
(

0 0 0 − 1
J

)T
(4.12)

The given linear system is controllable, except in the singular case Ik2 =
mlg cos q0ν

21. Then, a classical solution to design a robust linear controller
for a stationary system is to use a steady-state LQR [Lublin10]. We use
diagonal weighing matrices, which are manually tuned to obtain the desired
response for each axis.

4.1.2.2 Identification of the joint stiffness and damping

In order to apply LQR design to compute the controller gains, one needs to
know the coefficients of the matrices A and B of (4.11)-(4.12). The main mo-
tivation for using a LQR controller is the known robustness of this controller
against model uncertainties: this is key for use on Atalante, where we use
a single set of gain independently of the weight of the user. Knowing that
this inherent uncertainty is present, we have only carried out minimal system
identification experiments with the aim of getting simply an order of magni-
tude on the value of each parameter, more than a precise value; experimental
results have shown this to be sufficient to obtain a working controller.

For the mass and inertia parameters (m, I, J), we directly use theoretical
CAD values for a user of average mass. Motor-side friction was previously

1This case is never encountered in practice on the system, as numerically k is much
larger than the other parameters. This condition would require a particularity large damp-
ing and/or low stiffness to be encountered.
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identified during actuator design on a simple testbed, following an approach
similar to [Kelly00] to identify a viscous and Coulomb (dry) friction term2.

Remark. Notice that we do not perform robot-specific identification. In prac-
tice, the friction coefficients vary from one robot to the next due to tolerances
in actuator assembly. However, the high-gain LQR approach we follow is ro-
bust enough to only rely on this “nominal value”, identified once on a testbed.
Likewise, the flexibility stiffness and damping which we identify below is per-
formed only once, and does not need to be redone whenever a new robot is
built.

This leaves us with only two parameters to identify: the flexibility stiffness
and damping, k and ν.

In order to identify the stiffness, we use a simple calibration experiment
with the objective of plotting the deformation versus torque curve. Indeed,
in static the spring-damper model simplifies to τ = kα: thus, if measurement
of τ and α are available, then k can be simply computed as the slope of the
associated linear regression.

To perform this experiment, the exoskeleton is set to a reference stand-
ing position. Then, we manually apply a gradually increasing force on the
swing foot, to generate as much deformation as possible, each time holding
a constant position (and thus, a constant torque) for a few seconds. We
then use our IMU-based observer to obtain a direct measurement of the
deformations α. For the torque, since Atalante is not equipped with joint
torque sensors, we instead use the motor’s current measurement as a torque
measurement, assuming that the torque constant kt is accurately known3.

When doing this identification, the resulting point cloud features a visible
offset, with a non-zero deformation at zero torque. This is attributed to IMU
bias: indeed, at the time of these experiments, the IMU alignment offset
presented in Section 3.5.2 had not been calibrated. We thus remove this offset
to keep only the linear part: this is presented in Figure 4.2, which reports
on six different experiments, carried out on different robots, to identify the
stiffness of the sagittal hip.

The resulting fit shows a significant dispersion of the results, with varia-
tion of more than 20% between experiments. This reflects possible differences
between exoskeletons, but also the inaccuracy of the identification procedure,
where we consider that a measurement of the motor’s current is equivalent
to measuring the joint’s torque at the output of the transmission: in prac-
tice, the motor’s torque constant or the presence of dry friction introduce

2Only the viscous friction coefficient is kept in our linear model (4.9)
3We use the manufacturer’s nominal value with no further identification.
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additional sources of error. Nevertheless, these experiments are sufficient to
obtain a nominal value of the joint’s stiffness: this is sufficient to perform
gain tuning, as the resulting feedback controller proves to be robust to these
modeling errors.
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Figure 4.2: Identification of the sagittal hip stiffness: each color represents a
different experiment, carried out on the right and left hip of different robots.
The offset is attributed to IMU bias and is removed: the slope of the corre-
sponding linear regression gives an estimate of the stiffness.

Finally, the last parameter, ν, is estimated to make the simulation of (4.9)
match the decay rate of the oscillations observed as a response to a perturba-
tion in static, similar to the experiment shown in Section 3.6.1. Again, this
does not give access to a precise value of this damping coefficient, but only
gives the correct order of magnitude, which is all that is needed to obtain
meaningful gains with a LQR.

4.1.2.3 Controller implementation summary

The implementation of our flexibility compensation controller thus ultimately
comes down to computing new gains for the hips and ankle joints, to imple-
ment (4.6). Indeed, for the knee joints which are modeled as rigid, the original
PID controller (4.1) is kept as-is.

The gain tuning is done joint per joint using LQR design as presented
in Section 4.1.2.1. When tuning the gain, we had to pay attention to the
presence of delays in the control loop, which could render some joint con-
trollers unstable. This is handled by making sure in simulation that the
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gains computed by the LQR have a sufficiently large delay margin to be
safely implemented on the hardware. Both the observer and the controller
are implemented on the robot’s hardware in the low-level control routine,
running at 1 kHz.

Note that while the controller for each joint is tuned to be stable and
robust on the linear single joint system, this does not guarantee that the
resulting controller (4.6), applied on the whole system, remains stable. To
numerically validate our controller, we linearize the dynamics (4.2) and check
that the resulting close-loop dynamics is indeed stable, despite having ne-
glected joint coupling for gain tuning.

4.1.3 Experimental results

To validate the effectiveness of this new controller, we perform two differ-
ent experiments: disturbance rejection, on an empty exoskeleton, about a
static pose, and a slow stepping trajectory, both with a user and a dummy.
Each time, we benchmark the performance of our flexibility compensation
controller against the rigid controller (4.1).

Note that these experiments were done in the middle of the PhD, as
work on state estimation and controller were carried out in parallel. They
constitute an important milestone in the development of a feedback con-
troller applicable to Atalante’s dynamic walking, as presented hereafter in
Sections 4.2-4.3.

At the time of these experiments, the KinematicObserver was not fully
developed, thus we used the StaticObserver instead4. Note also that the robot
was not equipped with foot IMUs at the time: these IMUs were replaced by
a flat foot hypothesis for the stance foot, while the deformation of the swing
foot ankle is simply set to zero (considering that no weight is supported by
this joint). In the evaluation of these experiments, we simply use the observer
as ground truth5.

4.1.3.1 Disturbance rejection

In a first test case, we assess how each controller reacts to external pertur-
bations. We place the empty exoskeleton in single support on its right leg.
We then apply perturbations by manually pushing the exoskeleton, at two
different points: pushing the swing foot downward and pushing the back of
the exoskeleton forward. A similar experiment is carried out for both the

4The KinematicObserver will be used for the final walking experiments in Section 4.3
5A more formal evaluation using motion capture is done in Section 4.3
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rigid controller (4.1) and the flexibility compensation controller (4.6). This
experiment is shown in the associated video 6.

Figure 4.3 shows the comparison of both of these experiments when a
push is applied to the swing foot. Because the deflection due to the flexi-
bilities are not taken into account, the rigid controller suffers from a large
static error, despite accurate tracking on the motor side. This error is mostly
compensated by our flexibility compensation controller, with a residual er-
ror coming from the fact that the kinematic model used for the observer,
spherical deformations at the hip, does not exactly match the model used for
control, which considers three successive deformations at the hip motors.
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Figure 4.3: Position of the swing foot, when using the rigid controller (first
experiment, blue) or the flexibility compensation controller (second experi-
ment, orange). The target position is the same, and in both experiment an
external force is applied to the swing foot at t=1s.

Furthermore, our controller provides a much better damping of the os-
cillations, which are mostly absorbed in two periods, whereas the rigid con-
troller oscillates for several seconds, and slows down mostly thanks to the
natural damping of the system. This improved damping is not present in
feedforward-based gravity compensation techniques, but is here provided by
the full-state feedback approach.

Since the disturbances applied are pushes in the sagittal plane, the joint

6https://youtu.be/c2Vdx81iu1A?t=128
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Figure 4.4: Sagittal ankle joint position (top) and flexibility angle (bottom).
The right column shows experimental results, the left simulation results of
the proposed linear model. In both cases, an external force is applied at
t=1s.

with the most impact on the overall response of the system is the sagittal
ankle, which bears the largest load. Figure 4.4 shows the response of the
sagittal ankle flexible joint, when pushing the back of the exoskeleton, both in
simulation and experiments. The simulation model used here is the linearized
joint model (4.9) used for gain tuning. Notice that the curve of the center of
mass indeed closely matches the oscillations observed at the ankle, proof that
this is the predominant dynamics in this experiment.7 This illustrates that
our linear model manages to capture the overall dynamics of the system, by
predicting a qualitatively correct response.

The main difference that can be seen is the value of the flexibility at

7These observations are consistent with those made during similar experiments while
doing observer design, in Section 3.6.1.1.
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rest: while a linear spring models predicts only 0.16° of deflection, the real
deformation is estimated to be 1.25°. The model of linear elasticity, though
sufficient to obtain an oscillation at the correct frequency, is thus inaccurate:
a non-linear stiffness plus backlash would be necessary to bring the model
closer to reality.

4.1.3.2 Stepping with a user

Our second test case features a more realistic scenario: a slow stepping tra-
jectory with a user inside. Atalante is of course not meant to be used empty,
but together with patients with various morphologies. A very convenient
property of the rigid controller is that the same controller can be used both
on the empty exoskeleton and when bearing any user. This robustness is very
desirable, as doing individual gain tuning for each user would be impractical
in a real world scenario.

The same robustness is achieved with our flexibility compensation con-
troller. This is illustrated in the experiment depicted in Figure 4.5, where
we perform a slow stepping motion. This experiment is conducted with both
a dummy and a valid user, who is asked to remain still in the exoskeleton8.
In both cases, the exact same controller is used, with no further gain tuning
compared to the empty exoskeleton case (thus, our controller is completely
agnostic of the mass of the user). Not only is the controller still stable, but
it again outperforms by far the rigid controller.

Both experiments start with the exoskeleton in single support, with the
rigid controller enabled. In the first experiment (in blue in Figure 4.5), this
controller is kept active, whereas in the second (orange) one we switch at
t = 0 to the flexibility compensation controller. For the first 5 seconds of
the experiments, the target position remains constant, in order to allow the
integrator in (4.6) to cancel the static error created by the flexibility. Then,
a stepping trajectory is performed: the motion is slowed down compared to a
real walking pattern to remain statically stable, so as to enable an experiment
starting at the middle of the step, with the swing foot already airborne and
the robot statically balanced on its right foot. To keep the single support
assumption valid, weight transfer onto the left foot is not fully performed
either.

When using the rigid controller, a large static error remains throughout
the trajectory. In particular, the foot is approximately 2.5 cm lower than
it should be. This discrepancy causes the robot to strike the ground much
earlier than expected, after only 2.5 s of stride. As the target continues to

8The video of these experiments is available at https://youtu.be/c2Vdx81iu1A?t=202.
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Figure 4.5: Height of the swing foot during a stepping trajectory with a
dummy, and swing foot force sensor readings showing ground impact. Due
to early ground strike, the exoskeleton falls (the force goes back to zero)
when using the rigid controller.

push the foot lower, the exoskeleton tips over and falls.

On the contrary, the flexibility compensation controller greatly reduces
the static error and improves trajectory tracking. Even though the position
of the swing foot is not perfectly compensated, this correction makes the
exoskeleton strike the ground as planned at t = 9 s. The exoskeleton then
no longer falls, and is able to complete the step up to the start of the double
support phase.

This experiment shows the importance of being able to control the po-
sition of the swing foot: when the flexibilities are not mitigated, early im-
pact can indeed cause the exoskeleton to fall. In practice, other stabiliza-
tion strategies such as the use of an admittance controller at the high-level
[Caron19] enable Atalante to walk stably even with the rigid controller - but
the control of the swing foot position during a walking gait remains a key
element.
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4.2 Modifications of the controller to handle

a walking gait

The static experiments presented in Section 4.1.3 are a promising proof of
concept of a flexibility-compensating controller. However, the implemented
controller is not directly applicable to a walking gait. While the overall
approach remains the same, three modifications are carried out to perform
walking experiments.

4.2.1 Removal of the feedforward term

The computation of a feedforward term is more complex while walking than
in single support, due to the presence of double support phases, during which
the motor torque greatly depends on the repartition of effort between both
feet. The trajectories currently generated for Atalante theoretically feature
an instantaneous double support phase, with a direct transfer of the center of
pressure from one foot to the next through the application of a discontinuous
torque.

In practice however, such motion is not feasible: this would require a
perfect knowledge of the instant at which the exoskeleton strikes the ground,
and an unlimited control bandwidth. Instead, the real system thus features
a true double support phase, lasting about 0.2 s. During this phase, the feed-
forward term computed from the trajectory, which assumes single support,
is very inaccurate. Coupled with its discontinuous nature, this term proves
to be nefarious to the system’s performance.

The computation of a more meaningful feedforward term would require
an adaptation of the input trajectory, to include a double support phase
with a continuously varying force under both feet. This adaptation however
is beyond the scope of the thesis. Instead, we simplify our controller by
removing this feedforward term altogether, considering that the use of high
feedback gains, and the presence of an integrator, is sufficient to obtain good
tracking. Indeed, even without feedforward, our controller can be tuned to
obtain a good quality tracking, with root mean square error below 0.01 rad.

4.2.2 Handling the change in stance leg

The choice of the feedback gains in Section 4.1.2.1 relies on the assumption
that the exoskeleton is in single support. The gains obtained are thus asym-
metrical, with the stance leg having larger gain values than the swing leg.
This is particularly true of the ankle: where the support ankle supports the
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full weight of the system, i.e. about 150 kg, the swing ankle only needs to
hold a few kilos, the weight of the foot.

As the exoskeleton alternates between right support and left support dur-
ing the walk, the gains need to be modified accordingly. More generically,
one could imagine changing the value of the gains continuously during the
weight transfer phase in double support. To keep things simple however, we
decided to rely only on two sets of gains, and a discrete switch. Namely, we
use the force sensors under each foot, and set a threshold to determine the
stance phase from the swing phase. We then change the value of the gains
of the ankle controller as we transition from one phase to the next.

On the contrary, for the hips controller, we use the same value of the
gain for both phases. Indeed, the gain values provided by the LQR are quite
close for the stance and swing hip: there is no more than a factor 2 in the
difference of inertia between both joints, whereas this difference is close to 50
for the ankle joints. This simplifies gain tuning by reducing the number of
parameters, requiring only a single set of gains for both hips. Note that using
equal gains for both legs is also the approach of the existing rigid controller.

Although the feedback gains of the hip controllers are not changed, an-
other element of this controller is modified between the swing and stance
phase: the value of the integral term. This is linked to the fact that, in our
controller, we set the reference value of the flexibility to zero (thus θ∗ = q∗):
hence, the value of the integral actually captures the average deformation.
The deformation however can be quite different between the stance phase
and the swing phase: this is in particular the case of the frontal hip (i.e. the
roll angle of the hips deformation), the largest source of deformation during
the walk. This is shown in Figure 4.6.

To capture this, we thus compute and store two integrals: one is applied
and updated during the swing phase only, the other during the stance phase.
Mathematically, our controller thus rewrites

u = −Kθ(θ − q∗) −Kdθ(θ̇ − q̇∗)

−Kq(q − q∗) −Kdq(q̇ − q̇∗)

−Ki

(

1sw

∫

t
[1sw(s)(q − q∗)(s)ds]

+ (1 − 1sw)
∫

t
[(1 − 1sw)(s)(q − q∗)(s)ds]

)

(4.13)

where 1sw is the characteristic function of the swing phase, i.e. the func-
tion equal to 1 during the swing phase, and 0 during the stance phase, as
determined by thresholds on the force sensor data.
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Figure 4.6: Deformation of the right frontal hip while walking, as seen by
motion capture. The deformation angle is much larger during the stance
phase than the swing phase, motivating the use of a different integrator to
capture this pattern.

4.2.3 Manual adjustment to LQR gain tuning

Finally, the last modification carried out on the controller is a novel tuning of
the gains, increasing their values to enhance tracking performance. Indeed,
the controller as used in single support is mostly designed for disturbance
rejection more than trajectory tracking. This is visible for instance in the
very slow convergence visible in Figure 4.5, a consequence of using a low
integral gain: fast convergence was not required for this experiment.

To retune the gains, we simply modify the weights of the LQR controller
(reducing the weight on the input u i.e. a “cheap control” problem [Seron99])
following the method of Section 4.1.2.1. When doing so however, we observe
significant high-frequency vibrations, at frequencies around 20 Hz (the exact
frequency being dependent on the joint considered), that render the controller
unusable. These vibrations cannot be explained or reproduced in simulation
when using the elastic joint model - even when considering the non-linear
equation (4.2) which introduces a coupling between the joints, or taking into
account the presence of a control delay on the real system.

Instead, we believe that these vibrations are the consequence of the pres-
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ence of additional deformations in the system. Recall indeed that the joint
deformation model is only an approximation, a kinematically convenient for-
mulation for control. In practice, the deformation comes from the exoskele-
ton’s structure, and it is not unrealistic to consider that several parts con-
tribute to the total deformation observed. While this can be kinematically
represented as a single deformation by summing up the angles, dynamically
speaking the presence of another deformation modifies the high-frequency
response of the system, which proves to be detrimental to the stability of the
controller.

In Appendix D, we show how the addition of a second spring to the series-
elastic actuator model (4.7) can explain the vibrations observed on the robot.
This study also suggests a heuristic workaround to remove these troublesome
vibrations: since the presence of a second deformation mostly modifies the
phase of the gyroscope signal, we reduce the corresponding feedback gain,
i.e. Kdq.

Thus, we perform gain tuning by computing a complete set of gains using
an LQR on the nominal, one-deformation model, then manually decreasing
the gyroscope gain until no more vibrations are observed. This decrease
ranges from a factor 1 (no modification) to a factor 10, depending on the
joint considered. The resulting controller proves to be sufficient to provide
very good tracking while walking, as shown in the next section. The main
drawback of this modification however is a severe decrease in disturbance
rejection around a static position: when compared to the results of Sec-
tion 4.1.3, this novel flexibility compensation controller yields oscillations as
large as the rigid controller. In the end, this means that different controllers
(or rather different feedback gains) need to be applied depending on whether
the exoskeleton is static or walking. Unifying these controllers, by providing
a gain switching strategy, a more robust gain tuning method, or a different
controller altogether, could be the topic of future research.

4.3 Experimental results on walking motion

In this section, we present the results obtained on walking experiments, with
a valid user and with a dummy. Valid users, although asked to remain mo-
tionless so as not to purposefully help the exoskeleton walk, yield more stable
walking patterns than paraplegic patients, let alone dummies. Keeping bal-
ance is indeed a deeply anchored reflex, and both valid users and paraplegics
always work to keep their torso and head straight. Testing our controller on
both a valid user and various dummies is therefore a good way to test its
robustness.
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Figure 4.7: Motion of the swing foot’s toe in the local frame, as seen by
motion capture, when using the PID controller (blue) and the flexibility com-
pensation controller (orange). Notice how the steps are shorter when using
the rigid controller, due to the early ground impact linked to the presence of
flexibilities.

In these experiments, the KinematicObserver is used. We use motion
capture to evaluate the combined accuracy of the controller and the observer,
and perform a detailed error analysis.

4.3.1 Walking with a valid user

The nominal development and test case at Wandercraft consists in having a
valid user inside the exoskeleton.

We perform two walking experiments with the same user, following the
same trajectory and using the same high-level controller. Between these
experiments, we only change the low-level controller, from the nominal rigid
controller to our flexibility compensation controller (4.13). Figure 4.7 shows
the corresponding motion of the swing toe, as seen by motion capture, during
the entire experiment: the right and left steps are plotted separately, each
line corresponds to a single step. The black line corresponds to the nominal
trajectory being tracked.

Using the flexibility compensation controller enables a much more accu-
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rate trajectory tracking: most notably, it removes the 4 cm lateral offset, and
raises the foot by about 2 cm during the swing phase. Another significant
difference is the duration of each step: notice that, when using the flexibil-
ity compensation controller, the steps are longer, lasting 0.88 s on average,
instead of 0.79 s. In both cases however, the steps are not fully completed
(notice that the height of the nominal trajectory is not zero): in theory, a
full step should last 1 s. This behavior comes from the high-level controller,
which performs an impact-triggered trajectory switch. This is an empiri-
cal stabilization mechanism, which considers that, once the swing foot has
reached the ground, the exoskeleton must not try to lower it anymore: this
would mean pushing harder on the ground, and could make the exoskeleton
fall9. Instead, the high-level controller directly jumps to the start of the next
step, performing trajectory interpolation to yield a continuous target for the
low-level controller.

One of the reasons for which the swing foot strikes the ground earlier
is the presence of deformation, which implies that the foot is lower than
expected, and angled forward. Hence, when using the rigid controller, the
toes almost always impact the ground before the heels. This is why we use
the toe position as metric to evaluate the performance of our approach. By
correcting the foot position and orientation, compensating the flexibilities,
we effectively raise the toe, thereby delaying impact and realizing a walk
closer to the desired trajectory: as mentioned above, the average trajectory
completion goes up from 79% to 88%, corresponding to a trajectory height
of 18 mm at impact, against 31 mm for the rigid controller.

4.3.1.1 Analysis of the residual error

Consider again the trajectory tracking performance illustrated on Figure 4.7.
We here perform a detailed analysis of the residual error committed by the
flexibility compensation controller. Indeed, our approach features the use
of an observer-controller for the low-level control. It is thus important to
distinguish between the error caused by the observer, and that cause by the
control, to see what is the limiting factor. Two other sources of error are also
present in Figure 4.7, which are not caused by the low-level control but are
the result of the complete system behavior:

• a lack of balance causing the support foot to tilt on the ground, im-
pacting the position of the swing foot (by modifying the freeflyer coor-
dinates) despite good low-level tracking.

9This is what happens in the quasi-static stepping experiment of Section 4.1.3.2, where
this mechanism is not active.
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• an interpolation of the nominal trajectory done by the high-level con-
troller to handle the early ground impact, explaining the double support
phase at the start of the step.

These various effects are discussed below.

Controller tracking error In this paragraph, we evaluate the tracking
error, i.e. the error due to the control part alone. For this purpose, we need
to look at the quantity on which the feedback is performed. Indeed, feedback
is not done on motion capture, but on the output of the KinematicObserver,
followed by a projection of the deformation angles onto the joint axes. This
process gives an estimated flexible angle, q̂, which the low-level controller
tries to servo to q∗.
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Figure 4.8: Tracking error of the right frontal hip, when using the rigid
controller (top) or the flexibility compensation controller (bottom).

The controller’s tracking error can be evaluated at joint level as ejoint ,

q̂ − q∗: this is presented in Figure 4.8 for the exoskeleton’s frontal hip, the
largest deformation during the walk. The top curve shows the tracking of
the rigid controller : since this controller works on θ only, the resulting error
on the flexible angle is quite large, as the flexibility is not compensated.
Conversely, our controller provides almost perfect tracking during the swing
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Figure 4.9: Impact of the tracking error on the swing toe position, evaluated
using the joint deformation model, when using the rigid controller (blue) and
the flexibility compensation controller (orange).

phase. The error is largest during the double support phase: indeed, during
double support, the constraints applied on the system change rapidly, as the
load is transferred from one leg to another. This results in a rapid variation
of the deformation and the desired feedforward torque, two elements our
controller is missing: the error thus momentaneously increases, but quickly
drops back to zero at the end of double support.

Such a small tracking error (with root mean square error of 0.005 rad,
against 0.024 rad for the rigid controller) is far from explaining the total
error observed on Figure 4.7. To illustrate this, Figure 4.9 reports the effect
of this tracking error on the swing toe tracking: more precisely, we compute
the swing toe position using the robot’s (rigid) forward kinematics gr, thus
comparing gr(q̂) − gr(q

∗).

While the rigid controller causes a large error due to the presence of
deformations, the error linked to the flexibility compensation controller is
quite small. This is particularly true in the vertical direction, where the
error always remains below 5 mm. This means that there remains little
to gain in term of foot height simply by enhancing the low-level controllers
(increasing the gains), and that the cause for the early impact must be looked
for elsewhere.
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Other sources of error To clarify the error analysis, we focus the study
on the vertical axis only: indeed, controlling the height of the swing foot is
what has the most impact on the walk behavior, in particular by determining
the frequency of the steps due to the impact-triggered switch. Figure 4.10
shows various curves that represent the height of the swing foot toe during
the experiment with flexibility compensation. The meaning of each curve
and its significance is detailed below.
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Figure 4.10: Various measurements or estimation of the foot height, which
shows that the position error is the result of various effects of comparable
amplitude.

The black curve represents the nominal trajectory, i.e. the input trajec-
tory we seek to follow. This is however not the target trajectory q∗ sent
to the low-level controllers, represented in gray in Figure 4.9. The discrep-
ancy comes from the fact that it is not realistic to directly track the nominal
trajectory, due to the discontinuity at impact. Indeed, when the swing foot
impacts the ground at t = 0.88 s in this case, the height of the swing foot in
the trajectory is still about 18 mm. This results in a discontinuity with the
next step, which starts with equal feet heights. This discontinuity is han-
dled by the high-level controller, which performs an interpolation to smooth
out the trajectory: from this computation, we obtain the true target tra-
jectory q∗, represented in gray in Figure 4.10. Notice that the interpolated
swing foot height is negative at the start of the step: this comes from the
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change in reference frame between both steps (the new swing foot is the old
stance foot, which is located 18 mm below the other foot at the end of the
previous step). This process explains the double support phase observed at
the start of the step: it indeed takes 0.16 s for the target trajectory to reach
an equal height for both feet, so the swing phase cannot start before this
time.

The red curve shows the position of the swing toe in the local frame, as
seen by motion capture: this curve should track the gray target trajectory
curve. This position however is determined by two different types of motion:
the relative motion of the robot’s swing foot with respect to the stance foot,
which we directly control with a low-level controller, and the motion of the
stance foot with respect to the ground. While a control objective of the
high-level controller is to keep the stance foot flat on the ground, as is the
case in the target trajectory, in practice the stance foot can tilt on its edges.
This is shown in the purple curve, which shows the position of the swing
foot with respect to the stance foot, instead of the local frame. As such,
the difference between the red and purple curve is the height loss due to the
stance foot tilting on the ground, something for which the low-level controller
is not directly accountable.

The difference between the purple and gray curve now truly represents the
tracking accuracy of the low-level observer-controller, i.e. the difference in
relative foot placement between the target trajectory q∗, and motion capture
measurement. This error can further be attributed separately to the control
and observation part of our methodology. More precisely, the green curve
is the height estimated by the KinematicObserver - and thus, the difference
between the green and purple curve is the observer error, as quantified at
the end of Chapter 3. This error however is computed by using the extended
flexible model: instead, the blue curve shows the height estimate when pro-
jecting the deformation onto the joints. This causes an additional 5 mm of
height error, as seen in Section 2.4. This error is not accounted for in our
control framework, which works on the joint deformation model, and there-
fore only seeks to bring the corresponding foot position (blue curve) onto
the target (gray curve). The error between these curves is what is shown in
Figure 4.9, which confirms the fact that there is little to gain from trying to
push the gains even further.

Summary: total tracking error imputable to the low-level control
strategy The above study shows that the error in swing toe placement in
the local frame comes from many different sources. In particular, the cause
for the early ground impact (at 88% of the trajectory) is shared between four
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Figure 4.11: Complete low-level tracking error, measured by motion capture,
for the rigid and flexibility compensation controller. This corresponds to the
error in swing toe placement with respect to the stance foot frame.

elements (low-level controller tracking, observer performance on the extended
flexible model, impact of the projection on the joint deformation model,
and influence of the support foot loss of balance), which all contribute for
comparable amounts, i.e. around 5 mm each.

To get a fair picture of the overall performance of our approach, it is im-
portant to separate the errors that can be attributed to the low-level control
strategy from those that come from other sources. Namely, the interpolation
process of the high-level controller explains why the nominal trajectory does
not correspond to the realized motion, in particular at the start of the step.
Meanwhile, the lack of balance characterized by the fact that the support
foot tilts on the ground, though it stems from the motion of the robot and
therefore the torque send by the low-level controller, is meant to be compen-
sated for by high-level balance-keeping strategies. This is already the case
in these experiments, where an admittance-based controller is used to keep
balance, though it does not guarantee foot flatness. The corresponding error
however is not relevant to benchmark a low-level controller, which only aims
at controlling the relative position of the robot’s links.

Thus, the total error imputable to our low-level control strategy can be
formulated by removing both of these effects, and looking only at the error
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in swing foot position relative to the support foot, compared to the target
trajectory q∗. This error can be directly measured by motion capture, and
is shown in Figure 4.14. This shows the significant improvement in using a
feedback flexibility compensation controller, over the nominal rigid controller.

4.3.2 Walking with a dummy

The second test case for this controller is to perform the same type of ex-
periments with a dummy, instead of a valid user. As mentioned earlier, a
dummy is by definition fully passive, while a human subject always applies
reflex forces to stabilize themselves. As a consequence, a dummy is a more
difficult setup for performing stable walking.

4.3.2.1 Walking with a light dummy

In this section, we use a “light” dummy, which weights 55 kg - a weight com-
parable to that of the user in the experiments of Section 4.3.1. Figures 4.12
shows the corresponding toe motion.
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Figure 4.12: Walk with a 55 kg dummy: motion of the swing foot’s toe in
the local frame, as seen by motion capture, when using the rigid controller
(blue) and the flexibility compensation controller (orange).
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Once again, the flexibility compensation controller manages to signifi-
cantly raise the swing foot: this effect, which can be viewed in the curves of
Figure 4.12, is also clearly visible on the linked video10, or on the images of
Figure 4.13, which shows the position of the feet at the highest point in the
trajectory. Notice how, when the flexibilities are not accounted for, the foot
is not only lower, but also slanted, both in roll and pitch - an effect corrected
by the flexibility compensation controller, which keeps the foot flat.

(a) Rigid controller (b) Flexibility compensation controller

Figure 4.13: Picture of the robot’s feet when the swing toe is at the highest
point of its trajectory.

The experiment done with the rigid controller shows significant differ-
ences with the one done with a valid user. Most strikingly, when using the
rigid controller, the walk is a lot more asymmetrical than with a patient; the
exoskeleton lifts its swing foot a lot lower (only 1 cm during the right steps,
against 3 cm for the case of a valid user), and the steps are shorter, lasting
on average only 0.65 s and 0.73 s for the right and left steps. Visually, the
exoskeleton appears to be constantly tripping on the ground, with very long
double support phases. This is related to the fact that the deformations are
larger when using a dummy than with a user. The vertical deformation of
the toe is around 3.5 cm, against 2.5 cm with the previous valid user. This
difference does not come from a weight difference, as the user of the previous
experiments is in fact heavier than the dummy11. Rather, we explain the
difference from the posture adopted by the user in the exoskeleton. While a

10https://youtu.be/c2Vdx81iu1A?t=225
11The user is asked not to use their leg muscles to support their own weight - though

no direct measurement is available to ensure that this is fully the case. This is a potential
source of difference as well.
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valid user (as well as many paraplegics with control of their abdominal mus-
cles) stands straight against the exoskeleton, keeping their back close to the
exoskeleton’s back, a dummy falls forward and therefore pulls harder on the
abdominal belt linking it to the exoskeleton, resulting in larger deformations.
Note that this difference is not captured by our nominal dynamical model,
which depends only on the mass of the patient and assumes that they are
standing straight.

However, in a feedback based approach, this difference can be sensed by
the IMUs, and absorbed by the controller. Indeed, applying our flexibility
compensation controller raises the foot significantly, to a height comparable
to that obtained with a user. Notice that the steps remain shorter than
with a user (0.81 s on average), and that the toe height curve show a large
dispersion. This comes not from the low-level controllers, but from a balance
issue: keeping the support foot flat on the ground proves to be more difficult
with a dummy. As such, the swing foot tilts a lot more on the edge, in a
slightly different manner at each step, resulting in different foot height in the
local frame.
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Figure 4.14: Comparison of the low-level error between both controllers, on
a valid user and on a dummy (on the right stance steps only).

This effect can be seen in Figure 4.14 and Table 4.1, which compares the
low-level accuracy (tracking of the swing toe in the stance foot frame), for
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X (mm) Y (mm) Z (mm)

Valid user, rigid controller 19 38 20

Valid user, flexibility compensation 13 6 10

X (mm) Y (mm) Z (mm)

Dummy, rigid controller 31 37 28

Dummy, flexibility compensation 16 7 12

Table 4.1: Root mean square error of the swing foot tracking (as shown in
Figure 4.14), measured by motion capture.

the rigid and flexibility compensation controller, for the case of a dummy
and a valid user. The large difference between both rigid experiments (top
curves) can be mostly attributed to the difference in terms of deformation
when working with a user or with a dummy. In particular, the fact that
the impact happens even earlier for the dummy causes a longer unplanned
double support phase, during which the exoskeleton pushes forward as it tries
to follow the reference trajectory. This results in larger deformations, and
thus a much larger error in X.

Conversely, activating the flexibility compensation yields a comparable
error: notably, in both cases the error in toe height is reduced to about 1 cm
during the swing phase. While this does not mean that the walk of a valid
user and a dummy are fully equivalent (a valid user remains more stable than
a dummy), the difference between the two is significantly reduced.

4.3.2.2 Walking with a heavy dummy

Finally, we consider a third, more difficult test case: a heavier dummy, with
a weight of 80 kg.

This experiment features an even more drastic conclusion: with this
dummy, the exoskeleton is unable to walk when using the rigid controller.
Indeed, we have seen that when using a 55 kg dummy, the exoskeleton barely
manages to lift its toe off the ground, with a peak height of only 1 cm. With a
heavier dummy, the rigid controller is no longer sufficient to fully lift the foot
off the ground: the exoskeleton trips forward, and ends up falling. On the
contrary, with the flexibility compensation controller, the swing foot is raised
successfully, and the walk is stable. This effect is shown in Figure 4.15, and
can be seen in video at https://youtu.be/c2Vdx81iu1A?t=245. This experi-
ment thus further illustrates the significant benefits brought by compensating
the deformations. Indeed, it makes Atalante’s walk robust enough to function
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with a heavy, 80 kg dummy.

(a) Rigid controller (b) Flexibility compensation controller

Figure 4.15: State of the robot at the middle of the swing phase, with a 80 kg
dummy. When using the rigid controller, the exoskeleton does not manage
to lift its toe off the ground: the exoskeleton then trips and fall.

4.4 Conclusion

In this chapter, we have presented a feedback-based approach for compen-
sating the impact of the deformations on the positioning accuracy of the
system. This is done by modeling the deformations as joint elasticity, using
the projection of the deformations estimated by the KinematicObserver to
obtain the corresponding angle, as presented in Section 2.3.

To control these angles, we perform full-state feedback on a series-elastic
actuator model. Instead of doing a PID on the motor angle θ, we perform
linear feedback on both θ and q. Gain tuning is initially done using an
LQR approach, in single support. This controller lead to a correction of the
static deformation, and a greatly improved disturbance rejection, canceling
the oscillations linked to the flexibilities.

The application of this controller to a walking gait is done using a discrete
switch, to handle the hybrid nature of the walk. Furthermore, the gains
are retuned to improve tracking performance. This requires to manually
reduce the feedback gain on q̇ to prevent strong vibrations around 20 Hz.
We believe this to be linked to the presence of unmodeled deformations in
the system, resulting in a mismatch between our controller model and the
real exoskeleton. Nevertheless, the resulting controller provides a significant
improvement in trajectory tracking while walking, handling equally well a
valid user, or two dummies of different weights. By contrast, the existing
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rigid controller leads to a large tracking error, with poor performances and
significant discrepancies between experiments - notably, it is unable to make
a 80 kg dummy walk in a stable manner. By reducing the tracking error
to less than 2 cm, regardless of the use case, our proposed estimation and
control approach thus provides enhanced performance and robustness to the
walk of Atalante.
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Chapter 5

Conclusion and perspectives

Chapitre 5 - Conclusion et perspectives: Ce chapitre conclut notre
étude, et présente des pistes de recherches futures. Un rapide résumé de la
méthodologie développée est tout d’abord présenté. Son implémentation sur
Atalante soulève plusieurs questions qui sont examinées, afin de rendre la
méthode plus générique et robuste. Notamment, l’étude de l’impact d’une
deuxième déformation sur le modèle d’actionneur série-élastique nous semble
être un point important, pour comprendre, maitriser et expliquer les vibra-
tions rencontrées lors du réglage des gains du contrôleur et proposer une so-
lution plus performante.

Enfin, nous concluons en rappelant la généricité de l’approche. Nous sou-
lignons son importance dans les développements de robots et d’exosquelettes
futurs, plus légers afin de réduire l’encombrement et de permettre des mouve-
ments plus dynamiques. Cette réduction de poids rend bien souvent la struc-
ture plus flexible. Dans le cas d’un exosquelette, elle implique aussi que la
dynamique de l’utilisateur devient de plus en plus prédominante sur celle du
système. Dans ce contexte, une solution robuste de compensation des défor-
mations par boucle fermée sur des IMUs est d’autant plus indispensable.

Summary

In this work, we have developed and successfully validated an IMU-based
correction of the effect of structural deformations on the exoskeleton Ata-
lante.

Our methodology considers punctual angular deformations, modeled as
extra spherical joints inserted in the structure. The corresponding rotations
are estimated using low-cost IMUs located on the robot’s links, between each
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deformation. We developed an observer to estimate the tilt of each IMU,
relying on the sequential application of a velocity-aided observer. One major
strength of this approach is to rely only on the exoskeleton kinematic model.
Not limited by a static assumption, this observer is also independent of the
dynamical model, and therefore is not affected by the uncertainty in the
patient’s inertial parameters, or by patient’s movements. This observer gives
excellent angular precision, with a root mean square error of only 0.007 rad on
dynamic walking experiments, resulting in only 1 cm of error on the position
of the swing foot.

To use this estimation for control purposes, we project these angular de-
formations onto the robot joints, preserving the IMU angles: this corresponds
to modeling the deformations as joint elasticity. We then modify the existing
PID controllers, by adding a feedback term on the deformation angle and ve-
locity, keeping a decentralized, high-gain approach. To perform gain tuning,
we use a LQR approach based on a linear series elastic actuator model for
each joint. The resulting controller brings significant tracking improvement,
reducing the error in swing foot position to less than 2 cm, while being robust
to the presence of a user. This correction has a major impact on the over-
all performance of the system. Indeed, while the presence of deformations
causes the swing foot to be lower than expected, and angled forward, which
often result in the exoskeleton tripping and falling, this behavior is corrected
by the proposed compensation technique.

Overcoming the encountered limitations

Though the results obtained experimentally on Atalante are quite satisfy-
ing, several leads can be proposed to further enhance the performance and
usability of this methodology.

On the observation side, sensor calibration seems required to further en-
hance the tilt estimate, taking into account elements such as sensor mis-
alignment and cross-coupling or temperature sensitivity. Furthermore, the
proposed method to realign, at rest, the accelerometer with gravity, requires
a motion capture setup. This is not practical in an industrial scenario, where
a fast, in-situ calibration using only proprioceptive information would be a
valuable asset. Moreover, our proposed IMU-based method only reconstructs
the tilt of the sensors, and thus cannot estimate yaw deformations. The in-
tegration of additional sensors, such as cameras or LIDARs, would provide
this missing information.

On the control side, we observed high-frequency vibrations which we be-
lieve are linked to the presence of a second deformation between the mea-
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surement points, i.e. the IMUs. The solution we propose - to reduce the
gain of the gyroscope - negatively affects low-frequency disturbance rejec-
tion. As such, we do not have a unified controller on Atalante yielding both
satisfactory disturbance rejection in static single support experiments, and
efficient tracking while walking. A more complete analysis of the control of
a system with a second deformation, with poorly known parameters, could
provide a more efficient solution for controlling this system using only one
IMU. Alternatively, the use of an additional IMU to instrument both angles
of deformation could be used to generalize our full-state LQR-based approach
to a system with two deformations.

Perspectives

In this thesis, we developed and applied a flexibility-compensation method-
ology specifically for the exoskeleton Atalante. However, this approach of
modeling deformations as a punctual phenomenon at the ankle and hip level
is likely to be a good approximation for many anthropomorphic bipeds. More
generally, we believe that this approach can be applied to a variety of sys-
tems for which a joint elasticity model is already used: robotic manipulators,
humanoid robots and exoskeletons... We stress the fact that, once this hy-
pothesis is met, and once IMUs have been mounted on the robot, our method
is straightforward to implement, as it requires only minimal system identi-
fication. Namely, it only needs an approximate value for the joint elasticity
stiffness and damping, for the tuning of feedback gains only. The robustness
of a LQR-based controller is then exploited for the control side, while the
observer is inherently independent of the dynamic parameters.

This approach was benchmarked on Atalante, a relatively stiff robot: with
a total (patient + exoskeleton) weight of up to 160 kg, the swing foot is only
lowered by 4 cm. Although this is sufficient to significantly hinder the ab-
solute performance of the system, something which we improve on in this
work, this value is small enough to enable the development of stable walks
for many patients, without considering this question of deformations. How-
ever, the development of future exoskeletons is likely to feature lighter, less
cumbersome robots - which will likely translate into more flexible structures,
for which a deformation-aware control approach will be even more impor-
tant. Meanwhile, the weight ratio of patient over exoskeleton will increase,
meaning that robustness to patient parameters and behavior will be even
more critical. In this context, we believe that using a sensor-based feedback
approach is all the more important.
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Appendix A

Euler angle decomposition used
for projecting the deformations

In this section, we derive the formulas used to decompose a rotation matrixR,
and its corresponding angular velocity ω, into a set of Euler angles and their
derivatives. These classical formulas [Craig89] are often readily implemented
in linear algebra libraries, for instance the well-known C++ library Eigen1

used for on-board implementation in this thesis.

Euler angles consist in decomposing a rotation matrix into unitary rota-
tions, which correspond to rotations about the canonical basis’s axes: this
writes

Rx(α) =







1 0 0
0 cosα − sinα
0 sinα cosα





 Ry(α) =







cosα 0 sinα
0 1 0

− sinα 0 cosα







Rz(α) =







cosα − sinα 0
sinα cosα 0

0 0 1







(A.1)

There exists 12 different decompositions into Euler angle (or Tait-Bryan
angles), depending on the choice of vectors (x, y or z) for each rotation. We
here present the two versions used for the hip and ankle decomposition in
the projection operation φ presented in Section 2.3.2.

We first recall the definition of the “2-argument arctangent” function

1https://eigen.tuxfamily.org
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giving the principal value of the argument of the complex number x+ iy as

atan2: R
2 \ 0 → (−π, π]

(x, y) 7→






2 arctan y√
x2+y2+x

if x > 0 or y 6= 0

π otherwise

(A.2)

A.1 Hip decomposition: X-Z-Y order

For the hip joint, we consider the succession of a frontal (X), transverse (Z)
and sagittal (Y) rotation, yielding the X-Z-Y order

R = Rx(γ)Rz(β)Ry(α)

=







cosα cos β − sin β sinα cos β
cosα sin β cos γ + sinα sin γ cos β cos γ sinα sin β cos γ − cosα sin γ
cosα sin β sin γ − sinα cos γ cos β sin γ sinα sin β sin γ + cosα cos γ







(A.3)
From (A.3), we thus compute the Euler angles as follow:

α =

{

0 if cos β = 0
atan2(R13, R11) otherwise

∈ (−π, π]

β = − arcsinR12 ∈ [−π

2
,
π

2
]

γ =

{

atan2(R31, R21) if cos β = 0
atan2(R32, R22) otherwise

∈ (−π, π]

(A.4)

Note that when cos β = 0, the decomposition is not unique2, and (A.4)
reflects a particular choice. This is the well-known singularities of Euler
angles (gimbal lock). In practice, this case is never encountered on the robot
where mechanical stops limit the value of β, and this formula is only included
for generality.

Differentiating (A.3) and identifying the resulting matrix with the defini-
tion of the angular velocity (Ṙ = R[ω]×), we obtain the following relationship

ω =







0 − sinα cosα cos β
1 0 − sin β
0 cosα sinα cos β













α̇

β̇
γ̇





 (A.5)

The matrix in (A.5) is invertible if and only if cos β 6= 0, in other words,
outside of the singularity of the Euler angle decomposition. Then, by com-

2only the sum α + γ is defined.
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“ROLL-PITCH-YAW”, Z-Y-X ORDER

puting the inverse we obtain the desired Euler angles derivatives







α̇

β̇
γ̇





 =







cosα tan β 1 sinα tan β
− sinα 0 cosα

cos α
cos β

0 sin α
cos β





ω (A.6)

A.2 Ankle decomposition: the classical “roll-

pitch-yaw”, Z-Y-X order

The decomposition done for the ankle actually follows the Z-Y-X order. This
specific decomposition is often called “the roll-pitch-yaw decomposition”. In-
deed, when done about the inertial frame, this decomposition corresponds
to the “intuitive” notion of what these angles mean for an aircraft. Namely,
the roll is the rotation about the aircraft body, the pitch the angle about the
wings, while the yaw gives the aircraft heading.

Note however that this decomposition can be done about any basis of
reference, not necessarily aligned with the world frame: X-Y-Z must form
an orthogonal basis, but X does not have to be the world ex axis for this
decomposition to make sense. This is the case for the ankle, and this is why
in (2.11) we insisted on the fact that the decomposition is done about the
sagittal and Henke axis.

Mathematically however, we decompose the rotation tibiaRfoot about the
Henke frame, defined as the frame rotated from the foot frame by −38◦ about
the Y axis (see Figure 1.6). Let H , Ry(−38◦) be this constant rotation,
and define

tibiaRhenke ,
tibiaRfootH

T (A.7)

In the Henke frame, the Henke axis is the X axis, while the sagittal axis
is the Y axis. Thus, the motion of this frame with respect to the tibia follows
the classical Z-Y-X order (with the rotation of the Z axis set to zero for the
rigid model): this is the decomposition we perform on the rotation (A.7).

This decomposition writes

R = Rz(γ)Ry(β)Rx(α)

=







cos β cos γ sinα sin β cos γ − cosα sin γ cosα sin β cos γ + sinα sin γ
cos β sin γ sinα sin β sin γ + cosα cos γ cosα sin β sin γ − sinα cos γ

− sin β sinα cos β cosα cos β







(A.8)
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This yields the following formulas for computing the Euler angles

α =

{

0 if cos β = 0
atan2(R32, R33) otherwise

∈ (−π, π]

β = − arcsinR31 ∈ [−π

2
,
π

2
]

γ =

{

atan2(R12, R22) if cos β = 0
atan2(R12, R11) otherwise

∈ (−π, π]

(A.9)

Once again, this decomposition is singular when cos β = 0. Away from
this singularity, computing the derivative and performing the same compu-
tation as in (A.5) yields







α̇

β̇
γ̇





 =







1 sinα tan β cosα tan β
0 cosα − sinα
0 sin α

cos β
cos α
cos β





ω (A.10)
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Appendix B

Reconstructing a rotation
matrix from a tilt estimate

As we have seen in Section 3.1.3.2, an IMU is only able to observe its tilt,
and not the rotation about ez, i.e.the yaw rotation. We thus need a method
to decompose a rotation matrix into an observable and an unobservable part
- which we use in our context to cancel out the unobservable part, leaving a
rotation matrix “without yaw” that can explain the sensor’s tilt. However,
the intuitive solution of using Euler angles and the roll-pitch-yaw decompo-
sition is ill-defined, as presented below. Instead, we propose a constrained
minimization-based method that relies on another decomposition: the twist-
swing decomposition.

B.1 Ambiguity of the roll-pitch-yaw decom-

position

The first solution that comes to mind to define and remove the yaw angle
of a rotation is to perform a roll-pitch-yaw decomposition, then remove the
yaw rotation. For concision, we write the decomposition of a rotation matrix
in roll-pitch-yaw as R = rpy(α, β, γ), i.e.

rpy(α, β, γ) = Rz(γ)Ry(β)Rx(α) (B.1)

Then, we define the rotation “without yaw” as

Rnoyaw , rpy(α, β, 0) (B.2)

While it is clear that this rotation has the correct tilt (t = RT ez =
RT

noyawR
T
z (γ)ez = RT

noyawez), this choice suffers from two significant draw-
backs.
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The first one is the issue of gimbal lock, always present when working
with Euler angles. This decomposition is singular when θy

∼= π
2
[π], and thus

cannot be applied. More importantly, because Euler angles are discontinu-
ous when crossing the singularity, the resulting mapping from t to Rnoyaw

is also discontinuous: small changes in tilt can result in large changes in
Rnoyaw. Consider for example the rotation R1 = rpy(0, π

2
− ǫ, 0), for ǫ << 1.

Applying a rotation of angle 2ǫ about ey to this rotation makes it cross the
singularity, resulting in R2 = rpy(π, π

2
− ǫ, π): thus, their rotation “without

yaw” according to (B.2) differ by an angle of π about ex, though these two

rotations share approximately the same tilt, i.e.
(

1 0 0
)

at the first order.
This is clearly undesirable.

The continuity about the singular configuration is only one problem of the
roll-pitch-yaw decomposition. The second, less obvious phenomenon, is the
fact that the yaw angle defined by this process is not intrinsic to the rotation
matrix, but instead depends on the choice of the two horizontal vectors, ex

and ey, leading to an ambiguous formulation. This is best illustrated by an
example: we take as example

R , rpy(0.4,−0.7, 0.6)

The value of these angles was chosen at random to provide a readable 2D
drawing in Figure B.1, where this rotation is drawn to scale.

Removing the yaw according to (B.2) yields Rnoyaw = rpy(0.4,−0.7, 0),
drawn in red in Figure B.1. Notice that the rotated vector R1ex lies in the
xOz plane: this is guaranteed by (B.2), as (Rnoyawex)·ey = (Ry(β)ex)·ey = 0.
This can be seen however as an arbitrary choice: indeed, while vector ez has
a true meaning to define the tilt (physically, it represents gravity), the choice
of the direction for ex and ey for the world frame is arbitrary, and does
not influence the definition of the tilt: as such, it should not influence the
decomposition we perform.

The observation that ex remains in the xOz plane, whereas ey does not
remain in the xOy plane, shows that this is not the case: somehow, ex is
being privileged over ey: changing the direction of these vectors thus changes
the rotation given by this method. Mathematically, this translates into the
following: let ψ ∈ R, and define frame W ′

by a rotation from the world
frame of angle ψ about ez. W and W ′

therefore share the same vertical
axis ez, but their horizontal axes differ. Instead of performing a roll-pitch-
yaw decomposition in W , we can do it in W ′

: this is done by computing the
roll-pitch-yaw decomposition of Rz(−ψ)RR(ψ) (this express the change of
basis of the endomorphism R).

Doing this for instance for ψ = π
2

(such that the X axis of W ′
is the

128



B.1. AMBIGUITY OF THE ROLL-PITCH-YAW DECOMPOSITION

world’s Y axis), we obtain a yaw angle of 0.87 rad. By contrast, the yaw
angle in W is 0.6 rad. Yet both values represent a rotation about the same
axis. This shows that the yaw angle (or in fact any angle of a Euler angle
decomposition) is not intrinsic to the rotation matrix and the chosen axis,
but also depends on the full choice of the basis.

Back to our example, if we perform perform the roll-pitch-yaw decompo-
sition in W ′

then remove the yaw, we remove an angle of 0.87 rad instead
of 0.6 rad, and thus obtain a different rotation matrix. Re-expressed in the
world frame, we thus obtain R

′

noyaw = (0.4,−0.7,−0.27) instead of Rnoyaw:
this is shown in orange in Figure B.1. Notice that this time, ey lies in the
yOz plane. More generally, by choosing any value for ψ, we can get different
rotations ranging from Rnoyaw to R

′

noyaw: all are candidates for version of R
“without yaw”, and there is a priori no reason to choose one over the other.

R
′

noyaw

e
′

y

ex

ey = e
′

x

ez = e
′

z

W

W ′

R

Rnoyaw

Figure B.1: Attempting to remove the yaw angle of a rotation R using roll-
pitch-yaw decomposition: the rotation obtain depends on the definition of ex.
The red frame shows the rotation obtained by computing Euler angles in W ,
the orange frame in W ′

: this gives two different candidate rotation for a
version of R “without yaw”.

In conclusion, this idea of canceling the yaw angle of a roll-pitch-yaw
decomposition offers an ill-posed solution. It creates a bias toward the hori-
zontal vector chosen to represent ex, though the notion of tilt is independent
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of this vector. Furthermore, it offers a discontinuous solution about the sin-
gularity of the decomposition. Both of these issues can be solved by taking
another route, no longer relying on Euler angles, as presented below.

B.2 A minimization-based approach: the

twist-swing decomposition

To overcome the limitations of a Euler angle decomposition, we instead use
another decomposition of rotation matrices, the so-called twist-swing decom-
position [Baerlocher01]. This enables the reformulation of the problem of
removing the unobservable component as a minimization problem for which
a simple, closed-form solution exists.

We first restate a classical result to define a norm on SO(3) [Park95,
Huynh09]:

Definition 3. For two non-zero vectors a, b, we write α (a, b) the angle
from a to b.

Let R ∈ SO(3); there exists a unit vector v and a scalar θ such that R
is the rotation around v of angle θ. We write R = R0(v, θ)

1. This defines a
norm on SO(3) as: ||R|| = |θ|2. Furthermore, this norm is characterized by

||R|| = max
{a∈R3 | ||a||=1}

|α (a, Ra) | (B.3)

Using this norm, the twist-swing decomposition can be defined as follows:

Theorem 3. Any rotation matrix R can be decomposed as

R = RzRs (B.4)

where Rz (the twist) is a rotation around ez and Rs (the swing) is the smallest
(according to the norm (B.3)) rotation matrix such that t(Rs) = t(R). In
other words,

Rs = arg min
{P ∈SO(3) | t(P )=t(R)}

||P || (B.5)

1R0 can be expressed using Rodrigues formula (R0(v, θ) = cos θI3 + sin θ[v]× + (1 −
cos θ)vvT ), or the matrix exponential (R0(v, θ) = exp ([θv]×)).

2This norm corresponds to the classical Riemannian metric [Moakher02] d(R1, R2) =
|| log(R1RT

2 )||: indeed, taking the log of R0(v, θ) = exp ([θv]×) readily shows that |θ| =
|| log R||.
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If additionally RT ez 6= −ez, this decomposition is unique, and is given by
the following formula:

Rs =















R0

(

ez × t(R)

||ez × t(R)|| , α (ez, t(R))
)

if t(R) 6= ez

I3 if t(R) = ez

(B.6)

Before giving the proof of this result, we first explain its significance.
The swing rotation given by (B.6) represents the rotation R with nulli-

fied non-observable component that we seek. Notice that this rotation can
be computed from knowledge of t only, and does not need an intermediate
computation of a rotation matrix R: from a tilt measurement, it directly
gives the rotation with zero “yaw rotation”.

Notice that (B.6) only depends on t and ez: this guarantees that the ob-
tained rotation Rs is independent of the choice of vectors ex and ey, therefore
solving the ambiguity encountered when using the roll-pitch-yaw decompo-
sition. This rotation is now really intrinsic to the tilt being observed. Note
also that this formula is continuous (as a composition of continuous func-
tions, and because α (ez, t(R)) converges to zero as t(R) converges to ez) on
its domain of definition, i.e. the unit sphere minus the south pole, −ez. This
is a significant improvement over the roll-pitch-yaw decomposition, which is
singular over the whole equator (i.e. a rotation of π

2
in ey). The remaining

singularity (this function has no limit as t(R) converges to −ez) is now truly
intrinsic to the quantity being observed: when the tilt is equal to −ez, i.e.
the IMU is upside down, there is no way to tell in which direction the IMU
has rotated. This can also be understood by saying that, on a sphere, there
exists a unique geodesic (i.e. unique minimal rotation), except when going
from one pole to the other.

Proof of Theorem 3. Let R ∈ SO(3) be an arbitrary rotation matrix.
We define θ , |α (t(R), ez) | and A , {P ∈ SO(3) | t(P ) = t(R)} the

set of all rotation matrices with the same tilt than R.
For any P ∈ A, we define Rz , RP T . Then as

t(P ) = t(R) ⇐⇒ P T ez = RT ez ⇐⇒ ez = RT
z ez

Rz is indeed a rotation of axis ez, yielding a decomposition of R according
to (B.4). Thus, we only need to show that A has a unique minimum given
by (B.6). Using (B.3) on t(R) yields

||P || ≥ |α (t(R), P t(R)) | = |α (t(R), P t(P )) | = |α (t(R), ez) | = θ (B.7)
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If RT ez = −ez, any rotation of angle π around a unit vector normal to ez

is a minimum over A: thus the proposed decomposition exists but is not
unique.

If RT ez = ez, the identity matrix is trivially the only minimum over A.
Finally, we consider the case where RT ez is not collinear to ez. Let Rs

be an element of A of norm θ. We call v its axis of rotation, and use the
property (proven in [Huynh09]) that, for any nonzero vector a,

|α (a, Rsa) | = ||Rs|| ⇐⇒ a is orthogonal to v (B.8)

Consequently, as

|α (t(Rs), Rst(Rs) | = |α
(

RT
s ez, ez

)

| = ||Rs|| (B.9)

|α (ez, Rsez) | = |α
(

RT
s ez, ez

)

| = ||Rs|| (B.10)

v is orthogonal to both ez and t(Rs). As these vectors are not collinear, this
implies that v ∈ span(ez × t(Rs)). Since v is a unit vector, there are only
two possible choices

- v1 = ez×RT ez

||ez×RT ez ||
, in which case Rs = R0(v1, θ) to verify RT

s ez = t(R).

- v2 = − ez×RT ez

||ez×RT ez ||
, in which case Rs = R0(v2,−θ) to verify RT

s ez = t(R).

As v2 = −v1 and R0(v, θ) = R0(−v,−θ), this analysis yields a unique
candidate for the minimum, which is indeed the value given in (B.6).

Remark. It should be noted that, for the case of small rotations, the proposed
twist-swing decomposition method, or the erroneous roll-pitch-yaw formula-
tion are in fact equivalent. Indeed, Rs computed in (B.6) has a vector of
rotation v = ez × t(R). This vector is orthogonal to ez, and thus has a zero
vertical component.

However, for small rotations, the roll-pitch-yaw angles are equal (at the
first order) to the coordinates of the vector of rotation. This means that Rs

has a zero yaw angle (according to the roll-pitch-yaw decomposition), and is
thus, in this context, is equivalent to the solution computed by (B.2). This
justifies the denomination of Rs as the rotation “without yaw”, though the
yaw is not defined in the twist-swing decomposition.
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Appendix C

Proof of observability for the
DynamicObserver

In this appendix, we prove the observability of the state x defined in Sec-
tion 3.4 under Assumption 2 - 4. Since the angular velocities can obviously
be determined from the rotation matrices once they are known, the challenge
is to prove that the deformations Di are observable - or equivalently, that
the vector of rotation Ωi is observable. For this purpose, we show that this
vector can be reconstructed from u, the sensor signal y and their derivative.

In this proof, we say that a given quantity is measured when it can be
expressed as a function of u, y and their derivative.

To explicitly express the dynamics of the system, we use the Newton-Euler
formulation instead of the Lagrange formalism of (3.51). For this purpose,
we use the notion of “rigid sets” defined in Section 3.1.2: namely, set Si is
composed of all bodies between the ith and i + 1th flexibility (respectively
the end of the kinematic chain for the final deformation). The relative config-
uration of the bodies inside set Si is determined by encoder measurements θ

only: thus, the position, velocity and acceleration of any point of the set Si

with respect to the parent frame Ci is measured.
For i ∈ [1, n], where n is the number of deformations, we call fi and τi

the force exerted by set Si on set Si−1 in frame Ci. We recall that τi, the
corresponding torque, is given by (3.50). By convention, we define fn+1 = 0
and τn+1 = 0 as no external force is applied to the last set1.

Consider now set Si. We call Gi its center of mass, and mi the total mass
of the set. This set is subject to three external actions: gravity, the interac-
tion with Si−1 and the interaction with Si+1. This is shown in Figure C.1.

1Note that the proof of observability would still hold if a known external force is applied
(for instance, in the context of a robot manipulator arm with a force / torque sensor at
the tip).
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O1

P1

C1

D1

O2

W
RIMU1

W
RIMU2

W = C

P2
C2

D2

fi+1

τi+1

−fi

−τi

G1

mg

mW p̈G1

S1

S2

Figure C.1: Illustration of the system dynamics. The dynamics of set S1 is
the result of four actions: its acceleration, gravity, and the wrench from the
previous (−fi, −τi) and next (fi+1, τi+1) set.

Applying Newton’s law of motion to this set thus yields

mi
W p̈Gi

= mig + WRCi
fi − WRCi+1

fi+1 (C.1)

Writing (C.1) for i = 1...n and solving for the forces yields the expression
of each force fi as:

fi = WRCi

T
n
∑

k=i

(W p̈Gk
− g) (C.2)

The remarkable property of fi is that it can be expressed only in terms of
sensor data, the input u, and the deformation Dj, j ≥ i. Namely, we define
Zi , (ya,yg, ẏg,u, Di, ...Dn) and show that fi depends only on Zi.

For that purpose, we use the following lemma:
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Lemma 1. Let A be a frame attached to a body of set Si. The quantity

φ(A) , WRT
Ci

(W p̈A − g) (C.3)

is a function of u, ya and yg and their derivatives - and is thus measured.

Remark. φ(A) is the specific acceleration of frame A, expressed in frame Ci.

Proof. Since IMU i belongs to set Si, the rotation IMUiRCi
is measured (as a

function of θ only). The accelerometer of IMUi measures

yai
= WRT

IMUi
(W p̈IMU − g) (C.4)

Thus φ(A) rewrites

φ(A) = IMUiRT
Ci

yai
+ IMUiRT

Ci

WRT
IMUi

(W p̈A − W p̈IMU) (C.5)

Consequently, since IMUiRT
Ci

yai
is measured, we just need to show that

WRT
IMUi

(W p̈A − W p̈IMU) is measured.
For this purpose, we decompose the position of point A about the frame

IMUi as
WpA = WpIMUi

+ WRIMUi

IMUipA (C.6)

Since A and IMUi belong to the same set, the position IMUipA is a
function of θ only. The first derivative of this equation gives

W ṗA − W ṗIMU = WRIMUi
[ygi

]×
IMUipA + WRIMUi

IMUiṗA (C.7)

Differentiating a second time, we obtain

WRT
IMUi

(W p̈A − W p̈IMU) = [ẏgi
]×

IMUipA

+ [ygi
]2×

IMUipA

+ 2[ygi
]×

IMUiṗA

+ IMUip̈A

(C.8)

All the terms on the right hand side are functions of u, ygi
and ẏgi

only
- and thus, so is φ(A)

By decomposing the rotations WRCi
about frame Ck in (C.2), this equation

yields

fi =
n
∑

k=i

CkRCi

T WRCk

T (W p̈Gk
− g) (C.9)

This enables us to use Lemma 1 on each term WRCk

T (W p̈Gk
− g) in the

sum. Meanwhile, CkRCi
can be written as a successive product of rotation
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through set Sj,
PjRCj

, function of θ only, and the jth deformation Dj. Thus,
it is indeed a function of Zi only. We write

fi = Φ(Zi) (C.10)

The same idea is now applied to the angular momentum, using Euler’s
law of motion applied at point Oi. For this purpose, we consider a body B
in Si. We call L(B) its angular moment with respect to point Oi, expressed
in Ci. This definition yields the following expression

L(B) , CiRBIBωB + CipB × (mB
WRT

Ci
(W ṗB − W ṗOi

)) (C.11)

where mB is the mass of body B, and IB its inertia with respect to its center
of mass, in the body frame.

The angular velocity ωB can be expressed in terms of the gyroscope mea-
surement, using (3.23). Furthermore, decomposing the position of point B
as W pB = W pOi

+ WRCi

CipB, we obtain

WRT
Ci

(W ṗB − W ṗOi
) = [ωCi

]×
CiṗB + CipB (C.12)

Using once again (3.23) shows that ωCi
is measured - and thus WRT

Ci
(W ṗB −

W ṗOi
) is measured.

Hence, the angular momentum L(B) is measured. The total angular mo-
ment of set Si, L(Si), is simply the sum of the individual angular momentum
of each body, and is also measured.

We now apply Euler’s law of motion at point Oi to the set Si, along the
world frame axes. As Oi is not fixed in W , we add the torque due to the
inertia forces related to the translational motion of Oi with respect to the
world. This writes

d

dt

(

WRCi
L(Si)

)

=mi[
WRCi

CipGi
]×(g − W p̈Oi

)

+ [WRCi

CipOi+1
]×

WRCi
fi+1

+ WRCi
τi

− WRCi+1
τi+1

(C.13)

This rewrites as

τi = CiRCi+1
τi+1

+ [ωCi
] × L(Si) +

d

dt

(

L(Si)
)

− [CipOi+1
]×fi+1

+mi[
CipGi

]×
WRT

Ci
(W p̈Oi

− g)

(C.14)
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The remarkable property is that the right hand side of this equation
depends on Zi+1 only - i.e. only the deformations downstream of Si. Indeed,
taking each line one by one:

•
CiRCi+1

τi+1 is a function of u and Ωi+1 according to (3.50)

• [ωCi
] × L(Si) + d

dt

(

L(Si)
)

is composed only of measured terms

•
CipOi+1

is measured, while fi+1 = φ(Zi+1) according to (C.10)

• For the last term, we use Lemma 1 on point Oi to obtain the desired
result.

Hence, (C.14) rewrites as

τi = Ψ(Zi+1) (C.15)

Finally, using (3.50) and the fact that the stiffness matrix Ki is positive
definite, we obtain

Ωi = −K−1
i Ψ(Zi+1) (C.16)

The proof then follows by induction:

• For the last set, Zn+1 = (u,y, ẏ) is measured, hence Ωn is measured.

• For a set i < n, we assume that Ωj, j > i are all measured. Then Zi+1

is measured, and thus according to (C.16), Ωi is measured.

This ends the proof.
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Appendix D

Impact of the presence of a
second deformation on a
feedback controller

When tuning the gains of the low-level controller in Section 4.2.3, we had
to deal with the presence of strong vibrations at around 15 − 20 Hz, that
could not be explained by the joint elasticity model. The presence of a time
delay in the system, the coupling between the various joints of the robot, or
the impact of the KinematicObserver, were studied in simulation1, but these
effects alone could not reproduce the phenomenon.

Instead, we believe that these vibrations are caused by the fact that the
deformations are not really punctual, but distributed about several points of
the structure. This hypothesis is corroborated by the following study.

D.1 Presentation of the model

Modeling the deformation as a simple joint elasticity leads to the series-
elastic actuator model, presented in Section 4.1.2.1 and used for gain tuning.
This model is represented graphically on the left in Figure D.1. Namely,
it considers that a single rigid link (in practice, the aggregation of several
links of the robot) is attached to the motor through a spring-damper. In this
section, we call this the single deformation model.

To account for the presence of more than one flexible element, we split the
link into two parts, about a point located at a distance d from the motor’s

1For wholebody simulation, we used the open-source simulator Jiminy [Duburcq20],
which relies on the dynamics library Pinocchio[Carpentier19]. This simulator integrates a
model of the flexibilities as spherical springs, as presented in (2.3)
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axis. The two halves are connected by a spring-damper. We call this model
the double deformations model.

The state of the system in the double deformations model is now char-
acterized by three angles: the motor angle theta, θ, the deformation of the
motor flexibility α1 and that of the link flexibility α2. This means that the
order of the system increases, from 4 to 6 degrees of freedom. Our current in-
strumentation however only gives access to two angles (and the two associated
flexibilities): θ, the motor angle, through the encoder, and q , θ + α1 + α2,
the angle of the IMU located at the tip of the second link element. Note
therefore that the angle α1 cannot be directly estimated kinematically2: an
additional IMU located on the first half of the link would be necessary for
that purpose.

The dynamics of the single deformation model is given by (4.7). Mean-
while, the dynamics of the double deformations, linearized about a reference
position q0, writes

M







θ̈
α̈1

α̈2





 =







m1gl1(θ + α1) +m2g(d(θ + α1) + l2q)
m1gl1(θ + α1) +m2g(d(θ + α1) + l2q)

m2gl2(θ + α1 + α2)





 cos q0

+







u− νmθ̇
−k1α1 − ν1α̇1

−k2α2 − ν2α̇2







(D.1)

with

M ,







I + J I I2 +m2l2d
I I I2 +m2l2d

I2 +m2l2d I2 +m2l2d I2







where I1 and I2 is the inertia of both half of the link about the previous joint,
and I = I1 + I2 +m2d

2 + 2m2dl2 is the apparent inertia of the link.

D.2 Open-loop identification on Atalante

The difference between the single deformation model and the double deforma-
tions model only become visible in dynamic, when high-frequency excitation
are present. Indeed, kinematically speaking, the models are equivalent, since

2The dynamical modeling of the flexibility as a spring-damper theoretically renders this
state observable. But in practice the uncertain nature of this model is likely to greatly
limit the accuracy of the reconstruction, as observed on the single deformation model for
the DynamicObserver in Section 3.6.1.
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(a) Single deformation model
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IMU

(b) double deformations model

Figure D.1: Representation of both models: the double deformations model
splits the link in half, adding a second spring damper.

both the length of the segment and the angles of deformation are small. This
is why such deformation may go unnoticed when looking only at the kine-
matic accuracy of the various models - in particular, this is how we designed
the extended flexible model, considering only one spherical joint at the sagit-
tal hips to represent potential deformations about the three hips and the
knee.

Likewise, the static identification experiment performed in 4.1.2.2 does
not distinguish between both models. Rather, in the case of the double
deformations model, it gives access to the equivalent stiffness obtained by
placing two springs in series, i.e. k1k2

k1+k2
.

In order to test the hypothetical presence of a second deformation, we
performed a more advanced identification experiment, to obtain the open-
loop transfer from the input to the sensor’s reading. This identification was
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carried out in the frontal plane, with the objective of seeing if the double
deformations model gives a better match of the transfer from the frontal hip
motor to the tibia IMU, i.e. the point where the deformations are measured.
During this experiment, the exoskeleton’s pelvis is rigidly attached to a wall
to prevent it from moving. The frontal hip motor is then fed a sinusoidal
torque input, at increasing frequencies. The motors of the other leg are
deactivated; the other motors of the identified leg are kept active using a
PID controller, to prevent erratic motion of the leg in the other planes.

In Figure D.2, the dots show the obtained Bode diagram for the open-loop
transfer from u to θ (encoder measurements) and from u to q̇ (gyroscope mea-
surements). On top of this data, we plot the transfer function for “nominal”
model values:

• For the single deformation model, we use the parameters used for LQR
tuning as detailed in 4.1.2.2 - most importantly, we use the stiffness k
identified in the described static experiment.

• For the double deformations model, we locate the second deformation at
the robot’s knee, a likely guess for the presence of a small deformation.
We arbitrarily assign the same stiffness value, i.e. a value of 2k to the
motor and link stiffness, so as to obtain the same equivalent stiffness
in static, and use the same damping,

νf

2
for both flexible joints.

While the nominal models used do not accurately fit the data, they en-
able for a qualitative comparison between both models. As expected, at low
frequencies (under 10 Hz), the single deformation model and double defor-
mations model are equivalent. They however start to differ as the frequency
increases: notably, the single deformation model exhibits a single resonance
frequency, across which the phase of q̇, the gyroscope, drops from −90◦ to
−180◦. By comparison, the double deformations model exhibits two succes-
sive peaks in amplitude, and leads to a increase in phase of −360◦ for q̇.

This change in phase is likely to have a drastic impact on the stability of
a controller. Indeed, a controller designed for the single deformation model
expects a phase shift of −180◦ on q̇, whereas the actual shift will be −360◦:
in other words, for this frequency range, the sign of the gyroscope signal is
not what we expect it to be ! Note that by contrast, the encoder signal θ is
barely affected by the presence of a second deformation.

The experimental data (the dots in Figure D.2) qualitatively shows the
features of a double deformations model: two peaks in the amplitude of the
transfer toward q̇, but most importantly a decrease in phase below −180◦

between 10 Hz and 20 Hz. This behavior cannot be explained by a model
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(a) Transfer from u to the encoder signal.
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Figure D.2: Experimental determination of the open-loop transfer response
of the system, and bode plot of the nominal model.
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with only one deformation, and therefore indicates a more complex behavior
of the system, for which the presence of a second deformation is a plausible
explanation.

While it is possible to over-fit this data with a 6th order model, the re-
sulting parameters are nonphysical. We believe this is due to the complexity
of the system (which may be more complex than simply two linear springs),
with relatively poorly controlled boundary conditions. Indeed, the exoskele-
ton’s back was not perfectly constrained to remain fixed (as the identification
experiment needed to be non-destructive). The fact that other motors were
active in the system might also play a role in modifying the overall response
by introducing or dissipating energy. Motor current is used in place of a
true torque measurement, with associated uncertainty on the value of the
torque constant. Finally, the range of available measurements proved to be
limited in frequency, between 0.5 Hz and 25 Hz. Lower frequency points
could no be acquired due to the increase in amplitude of the motion, while
high-frequency points proved to be erratic and unrepeatable from one exper-
iment to the next, in particular for the gyroscope data. This is likely due to
the strong attenuation of the signal (−75 dB at 20 Hz) which leads to a very
poor signal-to-noise ratio

In the end, from the experimental data in Figure D.2, we draw the con-
clusion that the system does not behave simply like a series-elastic actuator:
at frequencies above 10 Hz, the gyroscope phase starts to significantly differ
from this model. We see this as the explanation for the presence of vibrations
in the 15 − 20 Hz region, when applying the gains computed by a LQR on
a one-deformation model. This is further confirmed by the fact that, when
looking at the various terms used in feedback, these frequencies are almost
only present on q̇, but negligible on the other states.

To remove these vibrations, simply filtering the gyroscope above 10 Hz
(with a low-pass or band-stop filter) does not work: the induced phase shift of
the filter leads to more vibrations at different frequencies. Instead, we took
the most simple yet drastic solution: to completely remove the gyroscope
signal, at all frequencies. More precisely, we reduce the gain provided by the
LQR, sometimes quite drastically (up to a factor 10), until these vibrations
were no longer present. While this gives a satisfactory controller in particular
for trajectory tracking, reducing this gains leads to a poorer low-frequency
behavior: namely, disturbance rejection at 1 Hz is significantly reduced.

We believe that finding a better method to handle this discrepancy be-
tween our model, and the actual response of the system, is a topic of valuable
research, with the objective of finding a unified controller than can perform
both accurate trajectory tracking and efficient disturbance rejection.
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MOTS CLÉS

Exosquelette, flexibilités, estimation d’attitude, centrale inertielle, contrôle boucle fermé

RÉSUMÉ

Cette thèse porte sur la question générale de la compensation des déformations sur un robot marcheur, avec comme
cas d’étude particulier l’exosquelette à usage médical Atalante. Les déformations des robots anthropomorphes sont des
phénomènes indésirables résultant de leur conception mécanique. Ces robots sont en effet constitués de jambes longues
devant soutenir un torse relativement massif. Ces effets sont d’autant plus présents sur un exosquelette, qui en plus de
son propre poids doit supporter le poids de l’utilisateur. La présence d’un humain non instrumenté induit des perturbations
significatives non mesurées, auxquelles il est difficile de s’adapter en temps-réel.
Nous proposons une approche en boucle fermée reposant sur des capteurs, qui effectue un retour d’état sur les signaux
provenant de plusieurs centrales inertielles. A cette fin, nous modélisons cinématiquement les déformations par des
liaisons rotules supplémentaires. Nous étudions plusieurs observateurs visant à estimer les rotations correspondantes,
en reconstituant l’orientation des centrales inertielles. Trois observateurs, utilisant des modèles différents, sont étudiés:
un modèle supposant que l’accélération moyenne des corps est nulle, un modèle cinématique et un modèle dynamique.
Nous concluons que les meilleurs résultats sont obtenus en exploitant uniquement le modèle cinématique du robot afin de
reconstruire une mesure approximative de la vitesse. Ceci permet la conception d’un observateur capable de supporter
des accélérations élevées, tout en restant robuste à l’incertitude dynamique liée au comportement du patient.
Ces estimations d’attitude sont ensuite converties (par projection) sur les articulations du robot, comme dans un modèle
d’actionneur élastique, et utilisées pour réaliser un contrôle par retour d’état grand gain décentralisé. L’ensemble de cette
méthodologie est validé expérimentalement sur Atalante, où elle améliore le rejet de perturbation et le suivi de trajectoire,
augmentant ainsi la robustesse de la marche d’Atalante avec utilisateur.

ABSTRACT

This thesis addresses the general problem of the compensation of deformations on a walking robot, and considers it in
the particular context of the medical exoskeleton Atalante. Structural deformations are unavoidable in anthropomorphic
robots with long legs and a heavy torso. This is even more true for an exoskeleton, which has to support the weight
of the user. Meanwhile, the presence of an uninstrumented human user leads to significant disturbances, that limit the
performance of feedforward corrections.
We propose a sensor-based methodology, that feedbacks the data of several Inertial Measurement Units (IMUs) onto the
actuators, in order to mitigate the effect of the multiple flexibilities on Atalante. To that end, we kinematically model the
deformations as extra spherical joints. We study several observers to estimate the rotations induced by the flexibilities,
by estimating the attitude of the IMUs. Three observers, based on various models, are considered: a (naive) zero-on-
average acceleration model, a kinematic model and a dynamic model. We conclude that the best results are obtained by
relying only on the kinematic model of the robot to build an approximate velocity measurement. This allows the design
of an observer able to handle strong accelerations while being robust to the dynamical uncertainties linked to patient
behavior.
These attitude estimates are then projected onto the joints of the robot, to adopt a joint elasticity model, which we use
to perform decentralized high-gain feedback control. This methodology is experimentally validated on Atalante, where it
yields improved disturbance rejection and improved trajectory tracking, enhancing the robustness of Atalante’s walk with
a user.
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