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Résumé  
 

Norovirus (NoV) et le virus de l’hépatite A (VHA) ont le cout sanitaire des virus par voie 
alimentaire en termes de morbidité et de mortalité le plus élevé. Ces virus, dont la voie de 
transmission est orofécale, se transmettent aussi par une voie interhumaine. L’ingestion de 
coquillages contaminés constitue une source de cas groupés fréquente pour VHA et NoV en 
France. L’objectif de cette thèse est d’évaluer le risque lié à la consommation de coquillages 
contaminés par VHA ou NoV et d’évaluer l’efficacité de quelques mesures de gestion pour 
une population côtière, par une modélisation probabiliste. Une appréciation quantitative des 
risques (AQR) sur VHA a montré l’intérêt de mesures préventives visant à diminuer les 
apports contaminés et l’intérêt d’une surveillance virologique. Pour NoV, les paramètres de 
dose-réponse ont été évalués sur des données de TIAC documentées, par inférence 
bayesienne. Les résultats montrent une infectiosité très forte de GI et GII chez les individus 
secréteurs. Ces résultats ont été pris en compte dans l’élaboration d’un modèle dynamique 
stochastique compartimental sur NoV. L’impact d’une fermeture de zone dans une situation 
d’épidémie hivernale, prenant en compte une transmission interhumaine, à GI, GII ou les 
deux ensembles ont été évalués. Les premiers résultats montrent que la fermeture de zone 
peut avoir un impact sur le nombre de cas total, et expliquer un plus grand nombre de cas 
d’origine alimentaire pour GI que pour GII. Ce travail montre l’intérêt d’une approche AQR 
pour évaluer l’efficacité de mesures de gestion sur les cas d’origine alimentaire, mais aussi 
d’un modèle dynamique prenant en compte la transmission par voie alimentaire. 
 
 
 
Abstract 
 

Norovirus (NoV) and hepatitis A virus (HAV) are most important foodborne viruses 
considering morbidity and mortality disease burden. The main transmission pathways of 
these viruses are orofecal, involving inter-human transmission. Contaminated shellfish are 
identified as an important source of human viral outbreaks in France. The study of a coastal 
situation allows exploring complete feco –oral pathway. The aim work is to estimate the risk 
of infection for a coastal population, by consumption of contaminated oysters and to 
evaluate the effect of some mitigation strategies. The benefit of reducing the contamination 
of sea waters and of viral monitoring was show by Quantitative Risk Assessment (QRA). The 
dose-response parameters were estimated for GII and GI, based on shellfish outbreaks data, 
by bayesian inference. Nov GI and GII for secretors have been shown to be highly infectious. 
QRA approach was included into a stochastic compartmental dynamic model for NoV. The 
aim of this model was to estimate the global health impact of closure of shellfish area, with 
two ways of transmission (by food and inter-human), whenever a winter epidemic occurs 
with GI or GII or both. First results demonstrated the potential interest of closure of the 
area, and the main importance of food transmission for GI cases. This work show the benefit 
of QRA for estimating foodborne cases but also dynamic modeling involving foodborne 
pathway for humans. 
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Résumé substantiel en Français 

Chapitre I: Introduction générale 

Le coût sanitaire des infections virales d’origine alimentaire est, à quelques exceptions près, difficile à 

estimer avec précision. La liste des agents concernés est variable selon la prise en considération de 

virus rarement mis en cause par voie alimentaire ou potentiellement émergents (WHO-EFSA). Les 

estimations globales par famille de virus mettent en tête les norovirus, par voie alimentaire, qui 

seraient responsable de 119 cas/100.000 habitants par an en France, associés à une consultation 

médicale. Le virus de l’Hépatite A arrive en seconde position, avec un nombre de cas bien moindre 

(entre 0.7 et 0.08/100.000 habitants) mais avec des symptômes, en général plus sévères. Certains cas 

peuvent évoluer jusqu’à une hépatite fulminante, avec un taux de létalité pour les cas 

symptomatiques de l’ordre de 4 à 5 pour 1000 cas. Les estimations annuelles d’incidence pour les 

virus diffèrent notamment selon la valeur de la part attribuable à l’alimentation prise en compte 

dans l’estimation globale du nombre de cas. Par exemple, la part alimentaire des infections à 

rotavirus est suivant les pays, estimée comme pouvant être négligeable ou pas.  

L’estimation du nombre de cas, quelque soit le mode de transmission, lié à chaque virus, pour la 

population générale, repose sur un certain nombre d’étapes. Pour le virus de l’Hépatite A,  la 

déclaration obligatoire permet d’estimer le nombre de cas  dans la population générale à partir des 

cas confirmés par le laboratoire. Pour Norovirus, des enquêtes ponctuelles permettent de réestimer 

les cas liés à Norovirus à partir des gastroentérites recensées. L’estimation du nombre de cas 

attribuable à la voie alimentaire repose sur des études ponctuelles de TIAC, d’études 

épidémiologiques ponctuelles (enquêtes rétrospectives cas-témoin), d’élicitation de dire d’expert ou 

s’effectue par une modélisation de l’exposition et du risque. Le mode de transmission des deux 

principaux virus d’intérêt sanitaire (Norovirus et VHA) n’est pas seulement alimentaire. Il n’existe 

pas, pour ces deux virus, de réservoir animal connu pour l’infection humaine (non zoonotique). La 

transmission interhumaine est plus importante que la transmission par voie alimentaire, ce qui 

différencie ces virus des autres agents microbiens (bactéries, parasites), pour lesquels la voie 

alimentaire est prépondérante (par exemple Salmonella, Toxoplasma, Listeria). Cependant les deux 

formes de transmission (alimentaire et interhumaine) peuvent coexister et se succéder au cours des 

épidémies, rendant l’estimation précise de leur contribution respective au nombre de cas délicate à 

mener au cours d’enquêtes épidémiologiques.  

La voie féco-orale est la principale voie de transmission et peut intervenir directement entre 

personnes, par contact ou par aérosols de vomissures (pour norovirus), indirectement par des 

supports physiques contaminés, ou par des aliments contaminés directement ou indirectement par 

des selles humaines. Cette transmission orofécale explique le type d’aliment contaminé, que ce soit 

par des eaux d’irrigation contaminées (les végétaux), par un rejet d’eau usé insuffisamment traitées 

en zone côtière (les coquillages), ou par une contamination de l’aliment par des mains souillées (les 

produits élaborés-complexes). L’estimation du nombre de cas attribuable par type d’aliment repose 

le plus souvent, sur des études rétrospectives des causes de TIAC et d’elicitation de dires d’expert. 
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Ces études mettent en avant, pour les norovirus, les aliments composés, les coquillages et les 

produits végétaux pour l’ensemble des cas en population générale (données USA). Pour l’Hépatite A, 

vis à vis des épidémies observées, les coquillages sont la source alimentaire la plus souvent impliquée 

(données françaises). Les coquillages sont fréquemment associés à des TIAC à Norovirus observées 

en France et font l’objet de recommandations spécifiques récentes au niveau européen. La région 

côtière, avec la consommation de coquillages permet d’explorer la voie orofécale de façon complète, 

la contamination des eaux côtières venant, le plus souvent, d’un défaut de traitement des eaux usées 

de la population humaine côtière.  

L’objectif de cette thèse est donc d’évaluer le risque attribuable, pour le virus de l’Hépatite A et de 

Norovirus, à la consommation d’huîtres contaminées, pour une population côtière, proche d’une 

zone de production, et d’évaluer l’efficacité potentielle de quelques mesures de gestion visant à 

diminuer ce risque. 

Le virus de l’hépatite A et norovirus se distinguent par des caractéristiques biologiques distinctes. La 

durée d’incubation est plus longue pour VHA (de l’ordre de 4 semaines), la sévérité plus forte et plus 

longue pour les cas symptomatiques à VHA (durée des symptômes en mois). La sévérite des 

symptomes pour VHA est clairement liée à l’âge, avec une plus grande proportion de cas 

asymptomatiques chez l’enfant. Le nombre de cas a considérablement diminué au cours des vingt 

dernières années, et est beaucoup plus faible que le nombre de cas à Norovirus. L’immunité est 

longue et durerait toute la vie, pour un individu immunocompétent. Du fait de la diminution du 

nombre de cas et de la séroprévalence, la proportion d’individus de plus de quarante ans sensible à 

VHA augmente, avec un risque de symptômes graves en cas d'infection. L’étude de VHA est donc 

justifié par un risque de réémergence ou de TIAC impliquant un grand nombre d’individus sensibles. 

Les caractéristiques biologiques de norovirus sont clairement différentes, avec une durée 

d’incubation courte (24-48h), une durée courte des symptômes (48 heures) et une faible sévérité 

(sauf pour des populations fragilisées). L’âge ne semble pas être un facteur discriminant d’acquisition 

de l’infection. L’immunité acquise après l’infection est de courte durée (en mois) et peu connue. Une 

sensibilité individuelle innée liée à des caractéristiques génétiques est décrite, liée à l’existence d’un 

statut sécréteur et, avec de plus grandes variations vis à vis des souches de norovirus, au groupe 

sanguin. La grande diversité des souches impliquées dans les infections humaines, est une des 

caractéristiques des norovirus, et permettrait d’expliquer la faible immunité acquise contre la 

réinfection et les épidémies récurrentes hivernales. Le cluster (qui comprend plusieurs souches) GII.4 

est fréquemment impliqué ces dernières années dans les épidémies (forte transmission 

interhumaine) tandis que la transmission par voie alimentaire implique GII.4, mais aussi d’autres 

clusters comme GII.3 ou le genogroupe GI. 

Le nombre de cas attribuable à norovirus en France est de l’ordre de 1 à quelques % de la population 

française, dont une partie, entre 40 et 14 % (suivant les estimations et les pays) serait d’origine 

alimentaire. Pour HAV, le risque attribuable à une voie alimentaire serait de 5 à 7%. 

Les différences entre les caractéristiques biologiques et épidémiologiques de ces virus, qui ont en 

commun une transmission orofécale d’origine humaine, et un certain nombre de TIAC liées à des 
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coquillages contaminés par ces virus justifie l’intérêt d’essayer de les maintenir, en tant que modèle 

contrasté des virus concerné par la voie alimentaire, dans  une même étude. 

La difficulté d’estimation des contributions relatives entre la voie alimentaire et les autres voies de 

transmission ne permet pas non plus d’estimer ni de comprendre facilement le gain relatif en terme 

sanitaire d’une mesure de gestion visant à réduire la contamination des aliments pour une situation 

donnée. La méthode choisie, afin de répondre à cet objectif, est celle d’une modélisation 

probabiliste, permettant de prendre en compte la variabilité inhérente à tout système biologique. 

L’objectif de cette modélisation est aussi de mieux comprendre les mécanismes mis en œuvre. 

L’appréciation quantitative des risques alimentaires est  reconnue utile pour l’estimation et la 

mesure de l’efficacité de la gestion du risque alimentaire par la FAO et l’OMS. Cependant cette 

approche est peu utilisée pour le risque viral, probablement du fait de l’absence de mesure de 

l’infectiosité (pas de culture cellulaire possible) et de dose-réponse fiable pour les deux principaux 

virus d’intérêt, VHA et norovirus (Genogroup I sur des données de volontaires). Deux publications 

récentes apportent des éléments pour une dose-réponse sur VHA et sur norovirus (GI sur une étude 

sur volontaires). L’appréciation quantitative des risques et ses concepts seront donc utilisés pour 

estimer le nombre de cas d’origine alimentaire. La dose-réponse de norovirus, a été évaluée pour GI 

et GII, sur des données de TIAC à coquillages, ce qui correspond au cadre de notre étude. Enfin 

l’approche AQR sera intégrée dans un modèle dynamique afin d’étudier les relations possibles entre 

la transmission interhumaine et la transmission alimentaire. 

Chapitre II: Apport de l’appréciation quantitative des risques vis à vis du risque lié à la 

contamination des coquillages  

La première situation étudiée répond à un contexte particulier. Au regard de deux épidémies 

d’Hépatite A, survenues dans une même population  côtière (baie de Paimpol), à quelques années de 

distance (1999 et 2007) et associées, dans les deux cas, à une contamination des huîtres, la Direction 

Générale de la Santé et la Direction Générale de l’agriculture ont sollicité l’avis de l’ANSES. Les 

questions portaient sur l’efficacité du système de surveillance des huitres et/ou sur une origine de 

contamination particulièrement défavorable sur ce site. Afin d’apporter une contribution à 

l’expertise, une approche par Appréciation Quantitative des Risques a été menée afin d’évaluer 

l’efficacité relative de différents scenarios de surveillance et de gestion, ce travail s’insérant aussi 

dans ce travail de thèse. L’appréciation quantitative des risques repose sur des données de 

contamination quantitatives dans les aliments, sur des données de consommation, et sur des 

données de dose-réponse. Deux situations de contamination théoriques ont été explorées, à savoir 

une situation de contamination rare, de courte durée, mais forte, correspondant à un scénario 1 et 

une situation de contamination chronique des coquillages, correspondant à un scénario 2. En 

absence de données de contamination  quantitatives suffisantes (1 seule disponible sur Paimpol) 

pour ajuster une distribution de contamination, une distribution plausible de contamination 

théorique des coquillages a été attribuée, au regard des données de la littérature disponibles.  

La consommation d’huîtres est une consommation hétérogène : la consommation est plus forte en 

zone côtière que dans les autres zones, la consommation différente suivant les saisons et les jours de 

la semaine, et même liée à certains jours de fête (Noël, nouvel an). La consommation est aussi 
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différente suivant le sexe et l’âge. Ce dernier facteur a été cependant négligé, pour s’intéresser à une 

population adulte de plus de 18 ans. La variabilité temporelle de la consommation, pour des 

consommateurs adultes, vivant en région côtière a été prise en compte, en croisant les informations 

obtenues par trois bases de données différentes, pour l’élaboration d’une base de données 

reconstituée théorique de 1000 consommateurs. La dose-réponse utilisée, ainsi que l’hypothèse 

portant sur l’infectiosité des génomes détectés par RT-PCR, est issu d’un travail portant sur l’analyse 

d’une épidémie d’hépatite A en Espagne, lié à la consommation de coquillages contaminés.  

Les systèmes de surveillance et de gestion sont inspirés de ceux existant ou de ceux envisagés dans 

l’avenir : d’une part la surveillance microbiologique, basée en routine sur un suivi mensuel de E. coli 

dans les coquillages et d’autre part la surveillance basée sur la détection de VHA par RT-PCR, mise en 

place sur quelques zones de pèche à pied. Une autre approche concerne la diminution de la 

contamination des coquillages en amont, par une diminution des apports côtiers ou la recherche de 

sites moins exposés, et en aval, par une ré immersion ou une attente de commercialisation, associée 

ou non à des analyses virologiques 

L’efficacité de la surveillance par la détection directe de VHA, tenant compte des performances du 

test, et en l’absence de réglementation spécifique, a été envisagée à deux fréquences de suivi, 

mensuel et bimensuel.  A chaque épisode de contamination fécale, une contamination en E.Coli et en 

VHA est concomitante. La différence de demi-vie dans les coquillages entre E. coli et VHA, fait 

disparaître, pour le scénario 1 en quelques jours le niveau d’alerte prévu dans la surveillance 

environnementale, tandis que VHA subsiste à des niveaux importants des semaines après l’épisode 

de contamination fécale. Différents systèmes de gestion sont associés aux différents systèmes de 

surveillance, plus ou moins rapides pour la prise de décision de fermeture et de réouverture, avec 

nécessité d’une analyse de confirmation (ou pas) pour décider de la fermeture de zone (et de mise 

sur le marché de produits conchylicoles contaminés), et d’une ou plusieurs analyses négatives pour 

ré-ouvrir la zone.  Le risque alimentaire annuel est diminué dès que la zone est fermée par l’arrêt de 

l’exposition durant la période considérée. La durée correspondante de fermeture de zone, 

constituant un coût préjudiciable pour les conchyliculteurs a été évalué pour tous les scénarios de 

surveillance et de gestion. Le risque annuel de référence pour chaque scénario est une situation 

d’exposition en l’absence de tout système de surveillance et de gestion. Le risque annuel est ensuite 

évalué pour chacun des systèmes de surveillance et de gestion. Le pourcentage de cas évités est 

ensuite évalué (1-rapport entre risque évalué/risque de référence). L’approche de modélisation 

choisie est une approche stochastique séparant incertitude et variabilité (AQR de second ordre).  

C’est la première approche d’appréciation des risques de second ordre concernant un risque 

alimentaire viral. La seule approche utilisant cette méthode et préalablement publiée s’arrête à 

l’exposition. Les résultats indiquent l’absence d’efficacité du système de surveillance 

microbiologique, si une alerte précoce n’est pas enclenchée (scénario1), et la potentielle absence 

d’efficacité si E. coli reste globalement conforme à la réglementation (scénario2). Le système de 

surveillance virologique est bien plus efficace pour prévenir les risques, pour les deux scénarios, en 

particulier si le suivi est bimensuel. Le système le moins couteux et le plus efficace reste celui de la 

diminution de la contamination en amont (de 2 log10). Les systèmes de surveillance envisagés 

négligent l’hétérogénéité spatiale, qui devraient être pris en compte, mais qui dépendent de la 
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configuration des sites conchylicoles. La dose-réponse utilisée, qui est fondamentale dans 

l’estimation d’un nombre de cas, repose sur une  publication. Or la validité de cette dose-réponse est 

basée sur l’acceptation d’un certain nombre d’hypothèses sur l’infectiosité, l’efficacité de cuisson, la 

consommation. Pour une prédiction du nombre de cas « plausible » il faudrait préalablement valider 

par d’autres études les résultats obtenus, et prendre en compte la variabilité et l’incertitude associés 

à l’’estimation des paramètres de dose-réponse.  Mais même avec ces limites, L’appréciation 

quantitative des risques constitue un précieux outil d’aide à la gestion. Les travaux de ce travail ont 

été repris dans l’expertise de l’ANSES et ont fait l’objet d’une publication scientifique dans le Journal 

of Food Protection. La dose-réponse en constitue un élément critique, facteur limitant pour VHA et 

Norovirus. Enfin, l’estimation du nombre de cas par une AQR seule ne permet pas d’évaluer les 

conséquences en termes de transmission secondaire, avec extension d’une TIAC par une épidémie 

avec une transmission interhumaine. 

Chapitre III: La dose- réponse facteur critique de la transmission alimentaire 

La revue bibliographique des modèles de dose-réponse existant en microbiologie des aliments 

montre que les modèles les plus utilisés pour décrire le risque d’infection à partir d’une dose ingérée 

sont le modèle exponentiel, qui suppose l’absence  de variabilité dans la relation hôte-pathogène et 

le modèle beta-poisson, qui assume l’hypothèse de l’existence d’une telle variabilité. Ces deux 

modèles ont en commun l’absence de seuil, l’absence de coopération entre agent pathogène, et la 

possibilité, pour un agent infectieux unique, d’être à l’origine d’une infection ou d’une maladie, avec 

une probabilité non nulle. Le risque de maladie est considéré comme conditionnel à l’infection. Le 

plus souvent le risque de maladie, à l’inverse du risque d’infection n’est pas considéré comme lié à la 

dose reçue, notamment pour le risque viral. Cependant pour l’ajustement de données obtenues sur 

des volontaires, sur Norovirus, avec le genogroup  I (souche Norwalk), l’effet de la dose a aussi été 

pris en considération pour le risque de maladie. La revue des données disponibles sur les dose-

réponse sur les virus transmissibles par les aliments montre que la plupart des données disponibles 

sont anciennes, basées sur des outils de quantification peu utilisés actuellement car remplacés par 

des outils de biologie moléculaires, et menés sur des volontaires ou sur des souches vaccinales. 

L’analyse de la dose réponse pour VHA a été vue dans la partie précédente. Pour norovirus, il 

semblait intéressant d’apporter des informations, sur la base de données observées dans les TIAC, en 

particulier celles concernant des coquillages. Des premiers résultats étaient publiés sur GI (virus de 

Norwalk), sur volontaires, avec une dose ingérée diluée dans de l’eau. La disponibilité de données de 

TIAC, avec la mesure de contamination dans les coquillages, avec une quantification par Real-Time 

RT-PCR, avec suivant les cas une contamination en GI, GII (ou les deux ensembles) nous permettait 

d’envisager d’évaluer une dose réponse pour GI et GII. Aucune étude  n’avait jamais été publiée pour 

GII et en particulier GII.4, impliqués dans les épidémies inter-humaines hivernales. Seules les TIAC où 

les mêmes souches ont été identifiées dans les selles de malade et les coquillages ont été prises en 

considération. Les critères de Kaplan ont été pris en considération, vérifiant l’adéquation de 

l’incubation et des symptômes avec une infection d’origine alimentaire à norovirus pour définir les 

cas. De surcroit, pour plusieurs de ces TIAC, des données individuelles de consommation, ou un ordre 

de grandeur de la consommation (repas commun en restauration) étaient disponibles. Enfin le statut 

individuel sécréteur (ou pas) pour l’une des TIAC et une estimation du pourcentage de sécréteurs 
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dans la population générale française (même si d’effectif limité) pour les autres TIAC étaient connus. 

L’usage d’un modèle Beta-Poisson était justifié par le fait que les contaminations, par exemple, 

associaient parfois plusieurs souches, dont on ne peut exclure a priori une variabilité d’infectiosité. 

Le modèle a aussi gardé l’hypothèse retenue, au cours des essais sur volontaires, d’un effet de la 

dose sur le risque de maladie. L’hétérogénéité des données disponibles nous a amené à effectuer 

l’ajustement du modèle de dose-réponse par inférence bayesienne. L’espérance de la probabilité 

d’infection avec un seul virus infectieux est liée linéairement au statut sécréteur et au genogroupe. 

Les priors ont été choisies de façon à être peu informatives, sauf pour l’estimation de la probabilité 

d’être sécréteur. 

La recherche d’interaction entre ces deux facteurs(effet sécréteur et génogroupe) n’était pas réaliste 

au regard des données disponibles. Les résultats obtenus sur GI sont en accord avec ceux menés au 

cours de l’étude sur volontaire. Il n’a pas été possible de démontrer une différence entre GI et GII 

mais, par contre, la différence entre sécréteur et non sécréteur est extrêmement importante, 

comme cela avait été constaté dans l’étude sur volontaires sur GI. Pour les sécréteurs, le risque 

d’avoir une chance sur deux d’être malade ou 50% de la population malade (DI50) est en médiane de 

32 copies pour GI et de 5 copies pour GI, la probabilité de maladie de 0.13 [0.007-0.39] pour GI et de 

0 .18 [0.017-0.42+ pour GII. L’infectiosité de GI et GII pour les sécréteurs est une des plus élevées 

décrite pour un virus à transmission alimentaire. Comme l’unité de contamination est mesurée en 

génomes, l’infectiosité associée au génome est élevée quand mesurée dans les coquillages de ces 

TIAC. Pour les non-sécréteurs, les estimations d’infectiosité à dose égales chutent fortement d’un 

facteur 100 à 1000. Ces résultats mériteraient d’être validés sur d’autres TIAC, en particulier pour 

celles où la consommation et le statut sécréteur sont connus individuellement, les souches 

identifiées dans l’aliment et les selles de malades et quantifiées dans l’aliment. L’information 

pourrait être alors être complétée, et l’analyse de la dose-réponse pourrait être effectuée à l’échelle 

du génotype ou de la souche virale en cause, et permettrait du côté des individus, de prendre en 

compte des facteurs liés au groupe sanguin ou à toute autre caractéristique (âge, co-morbidité). 

L’ajustement réalisé est comparé aux données existantes, et l’intervalle à 95% des estimations 

basées sur les posteriors des paramètres comprend, dans tous les cas, les fréquences de malades 

pour chaque groupe de même exposition moyenne. Avec cette dose réponse il devient possible 

d’envisager une appréciation quantitative des risques liée à la contamination des coquillages sur GI 

et GII. La publication de ces travaux de dose-réponse de Norovirus a été acceptée dans le journal 

Epidemics. 

Chapitre IV: un modèle dynamique pour la compréhension des mécanismes impliqués et du rôle de 

la transmission alimentaire au cours d’une épidémie hivernale à Norovirus 

Les modèles dynamiques décrivant des infections humaines et prenant en compte une transmission 

alimentaire et interhumaine sont peu nombreux. On peut citer, cependant les travaux sur 

Cryptosporidium et les enterovirus comme des travaux ouvrant la perspective de combiner un 

modèle épidémique interhumain et une approche AQR, par consommation d’eau contaminée (eau 

de boisson ou de baignade). 
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De récentes publications sur les épidémies de choléra et d’Hépatite A étudient le rôle de la voie 

alimentaire (l’eau de boisson et les coquillages) et leur impact sur les épidémies humaines. 

Cependant la consommation humaine n’est pas évaluée par une enquête spécifique, et la dose-

réponse utilisée est de type logistique (pour le Choléra). Pour l’Hépatite A, étudiée dans une région 

endémique côtière en Italie, la voie alimentaire (moules contaminées) augmenterait la durée inter-

épidémique et jouerait un rôle important dans le nombre de total de cas de l’ordre de 50%. 

Cependant la diminution du risque alimentaire ne suffirait pas, dans l’étude par modélisation mené 

sur la situation italienne, en l’absence de campagne de vaccination sur les populations endémiques, à 

diminuer de façon significative et à long terme le nombre de cas de VHA en Italie (pour les 

populations côtières et non côtières).  

Pour norovirus si des modèles dynamiques de propagation de l’infection existent, ces modèles 

décrivent la transmission inter-humaine dans des environnements semi fermés comme des hôpitaux 

ou des colonies de vacances. La voie alimentaire n’est pas prise en compte explicitement dans ces 

approches, visant à comprendre si les vomissures sont une source d’infection, le rôle des mesures 

d’hygiène dans la diminution de la transmission au cours d’une épidémie, l’impact de la durée 

d’hospitalisation des patients sur le maintien au stade endémique de l’infection à norovirus dans les 

hôpitaux, si l’infection des asymptomatiques joue un rôle important dans la propagation de 

l’épidémie et le rôle respectif des patients et des malades dans la transmission des infections 

nosocomiales. La Direction Générale de l’alimentation, en 2011, a saisi l’ANSES pour une évaluation 

du risque lié à la réouverture d’une zone conchylicole, préalablement fermée pour contamination 

avérée de norovirus dans les coquillages, dans une situation d’épidémie hivernale côtière. Les TIAC 

liées à la contamination des coquillages ne sont pas un phénomène nouveau et peuvent être 

abordées par une AQR pour une population sensible. L’impact sur une population dans laquelle une 

épidémie à norovirus sévit est moins évident, et l’exemple de l’étang de Thau nous a servi comme 

modèle d’étude pour évaluer l’impact de la transmission alimentaire dans une épidémie à Norovirus 

dans une zone côtière, ou au moins, à en voir quelques impacts potentiels et les mécanismes 

impliqués. Un même phénomène s’est  répété, à quelques variations près sur l’étang de Thau (hiver 

2002/2003 ; 2005/2006 ; 2009 et 2010/2011). Après le démarrage de l’épidémie de gastroentérites 

hivernales dans la population humaine, de fortes pluies ont occasionné un dysfonctionnement du 

traitement des eaux usées, avec un relargage de courte durée d’eau contaminée dans l’étang, où les 

huîtres sont produites. Les huîtres consommées quelques jours à quelques semaines après ont été à 

l’origine de TIAC pour la population côtière et non côtière. Un modèle dynamique stochastique, a pris 

en compte la voie alimentaire par une approche AQR comme décrite dans le chapitre II, mais sans 

prise en compte de l’incertitude. Le modèle choisi a été de type compartimental pour le volet 

humain et environnemental. Compte tenu de la rapidité d’évolution de l’épidémie, un modèle 

« hybride » a été élaboré, à pas de temps continu pour décrire la transmission interhumaine 

(algorithme de Gillespie) et à pas de temps discret (le jour) pour décrire le changement du taux de 

transmission par voie alimentaire. Le modèle de transmission interhumaine est de type SEIR, avec 

une durée de période infectieuse courte, de l’ordre de 2 jours, et du même ordre que la période 

latente, de l’ordre de 1.5 jours. Deux populations humaines interagissant entre elles ont été définies 

suivant leur consommation, ou pas, d’huîtres. Les caractéristiques de transmission interhumaine ont 

ensuite été calibrées de façon à générer une importante épidémie interhumaine de quelques 
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semaines. Le volet environnemental a pris en compte les données publiées d’excrétion (mesurées en 

génomes) humaines, le poids des selles pendant les périodes symptomatiques et asymptomatiques, 

le volume d’eau associé pour chaque individu, l’abattement dans la station de traitement des eaux 

usées en fonctionnement normal, la durée de résidence dans la station de traitement, et 

l’abattement de charge virale qui en résulte, lié à la survie du virus dans l’environnement. Un facteur 

de dilution dans les eaux marines a été pris en compte pour les eaux traitées relarguées. En cas de 

dysfonctionnement, ni l’abattement lié au traitement, ni la durée de résidence ni la dilution n’est pris 

en compte. Pour les huîtres un facteur de bioaccumulation est pris en compte, et de répartition de la 

contamination dans les tissus a été pris en compte sur la base de données publiés, permettant 

d’estimer la contamination moyenne des huîtres. La dose-réponse utilisée est celle élaborée dans le 

chapitre III, les données de consommation celles du chapitre I. Le modèle décrit le cas d’une 

épidémie à GI, GII et le cas d’une épidémie associant GI et GII. La chronologie des événements tente 

de correspondre à celle décrite sur l’étang de Thau, et explore différents scénarios de période de 

fermeture de l’étang. La comparaison de GI et de GII.4 vise à explorer si les connaissances actuelles 

permettent d’expliquer les différences épidémiologiques observées, à savoir l’association forte de 

GII.4 aux épidémies interhumaines, et l’association moins spécifique au  genogroupe GII.4, en cas de 

TIAC, avec détection de GI et de GII.3. Quatre facteurs ont été choisis différemment entre GI et GII.4 : 

le taux de contact (plus élevé pour GII mais sans données en regard), l’excrétion (plus élevée pour 

GII), la bioaccumulation et la répartition dans les huîtres et les paramètres de dose-réponse. En cas 

de co-contamination, deux scénarios d’immunité croisée, forte et faible ont été testés. Les résultats 

préliminaires montrent que le nombre de cas augmente si un risque alimentaire se surajoute à 

l’épidémie humaine, en particulier pour la population de consommateurs mais pas seulement. La 

durée et la précocité de la fermeture limitant le risque alimentaire pourrait donc avoir un intérêt 

même pour une population côtière. Ce résultat est d’ailleurs en accord avec d’autres résultats 

portant sur l’étude de la grippe aviaire, d’oiseaux sauvages, avec la prise en compte d’un réservoir 

environnemental. La calibration a été choisie sur la base de données publiées, sauf pour la 

transmission interhumaine. Les premiers résultats, sur la base de cette calibration, sont en faveur 

d’un plus grand rôle de la part alimentaire pour GI que pour GII. En cas de co-contamination, la 

transmission inter alimentaire semble favoriser le nombre de cas lié à GI, et de coïnfections 

(successives ou simultanées), en cas de forte ou de faible valeur prise en compte pour décrire 

l’immunité croisée. L’étude menée ici doit être poursuivie par un plus grand nombre de simulations, 

par un ajustement sur des données réelles, et une analyse de sensibilité visant à identifier les 

paramètres les plus critiques de la modélisation. Cependant ce travail montre que la combinaison 

d’une approche AQR et d’un modèle dynamique, permettent de prendre en compte de façon plus 

précise la voie alimentaire et son impact direct et indirect dans le nombre de cas.  

Chapitre V: limites, perspectives, conclusion 

L’extension de ce travail au virus de l’hépatite A devrait être poursuivi par une amélioration de la 

précision sur la dose-réponse, par un ajustement sur des données de TIAC, tenant compte du niveau 

d’information (incertitude sur la consommation, sur l’effet de la cuisson) et évaluant l’effet de  la 

dose (avec son incertitude) sur la durée d’incubation, la sévérité des symptômes, ou l’excrétion 

virale. Dans les zones où des épidémies de VHA ont été associées à la contamination de coquillages 



ix 

dans la zone de production à proximité, et lorsque les abattements des stations de traitement sont 

insuffisants pour prévenir la contamination virale des coquillages, il serait intéressant d’évaluer 

l’efficacité d’une surveillance virale à la sortie des stations de traitement ou des effluents, voir dans 

les coquillages, en particulier dans les zones les plus exposées. L’incubation de la maladie étant 

longue, de nombreux cas asymptomatiques et infectieux (excréteurs), ce système pourrait être 

précoce pour détecter le démarrage d’une épidémie, et éviter la consommation de produits 

contaminés. Ceci s’inscrirait dans la continuité d’un travail mené sur l’efficacité d’un système de 

surveillance de Poliovirus dans les eaux usées, mais qui serait étendu aux coquillages et à leur 

éventuelle consommation. 

Un premier modèle dynamique sur VHA pour évaluer cette efficacité dans une région côtière, 

nécessiterait, a minima de disposer d’une estimation du statut sérologique et des taux de contact 

efficaces par classe d’âge, avec prise en compte des asymptomatiques,  pour une population côtière. 

Pour le virus de l’Hépatite A, comme pour norovirus, la prise en compte d’une transmission 

environnementale, nécessiterait de mieux connaître les caractéristiques de l’excrétion humaine, en 

terme de quantité émise (en génomes) au cours du temps, en relation avec les symptômes, les doses 

ingérées, pour les asymptomatiques et les éventuels porteurs chroniques. La survie de ces virus dans 

les coquillages a été étudiée pour norovirus, mais on ne dispose pas de telles données publiées dans 

les autres compartiments environnementaux (sédiment, station d’épuration), et on dispose d’encore 

moins de données sur le virus de l’Hépatite A. 

La question de l’infectiosité du génome est délicate, mais les résultats exprimés en génomes, 

donnent, à minima une dose maximum infectieuse potentielle. En fonction des connaissances, des 

niveaux d’abattement de l’infectiosité peuvent être pris en compte dans la modélisation (effet d’un 

traitement par exemple). Cette question n’a pas été un frein à la modélisation qui a été menée, mais 

l’apport d’information sur l’infectiosité  pourrait être intégré à de futurs travaux. L’infectiosité n’est 

pas actuellement mesurable, sur des échantillons de l’environnement pour le virus de l’hépatite A, et 

il n’existe pas de culture cellulaire pour norovirus.    

Pour norovirus, une meilleure connaissance des mécanismes de l’immunité acquise, même de courte 

durée, et sur les mécanismes de l’immunité croisée sont des éléments qui nous ont manqué. 

L’ajustement d’un modèle dynamique à des données observées en zone côtières, l’analyse de 

sensibilité du modèle, conforterait (ou pas) notre analyse et seraient à mener dans la continuité  du 

travail ébauché. Au delà, une analyse plus longue dans le temps, et plus large dans l’espace, serait 

intéressante pour étudier les conditions d’émergence ou de réémergence de certaines souches, liées 

à des réservoirs environnementaux mais amènerait aussi des modifications structurelles du modèle. 

L’extension de ce travail pourrait s’intéresser à  évaluer d’autres stratégies au niveau des populations 

humaines, comme la vaccination pour l’hépatite A, ou l‘application de recommandations d’hygiène 

pour norovirus, ciblées ou globale, qui n’ont pas été abordées ici. La prise en compte des autres 

sources d’infection humaine vis à vis de VHA ou norovirus, concernant les aliments (produits 

végétaux, eau de boisson, aliments préparés) ou des sources environnementales (eau de baignade, 

surfaces souillées) constituerait une extension naturelle du travail mené. Enfin d’autres virus 

d’origine alimentaire nécessiteraient des travaux spécifiques, comme le virus de l’hépatite E, avec ses 



x 

réservoirs zoonotiques, ou d’autres virus, dont les effets sont peu étudiés ou peu connus, qui 

comporteraient un risque d’émergence ou de réémergence.  

Ce travail montre l’intérêt de combiner dans une même approche, l’Appréciation quantitative des 

risques en tant que maillon d’un modèle dynamique, permettant une prise en compte plus précise 

du risque viral par voie alimentaire pour l’homme, et de mieux évaluer l’impact de mesures de 

gestion sur ce mode de transmission. Il est possible d’imaginer pour les agents zoonotiques, 

notamment pour le virus de l’hépatite E, une approche combinant dans un même modèle 

dynamique, l’appréciation quantitative des risques pour l’homme au regard d’une surveillance des 

épizooties dans les populations animale. 
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CHAPTER I:  GENERAL INTRODUCTION 
 

 

 

 

 

 

I.1.  PUBLIC HEALTH IMPACT OF FOODBORNE VIRUSES  

Foodborne viruses are regularly involved in outbreaks and are taken into account in foodborne 

disease burden. This PhD thesis focused on the risk associated with oyster consumption potentially 

contaminated with Hepatitis A Virus (HAV) or norovirus (NoV). However it seems useful, in this first 

part, to present other viruses and other food products to better consider if this work can be 

extrapolated or not to other situations, and also to better evaluate, in a general context, the relative 

sanitary importance of these viruses and of this food product. 

Sanitary risk ranking between infectious agents is classically based on mortality and morbidity data 

(Mead et al., 1999). Risk ranking are also dealing with different sources of uncertainties (Vaillant et 

al., 2005).  

In this context, a short description of the epidemiological data and methods used for sanitary risk 

ranking are given, and in particular, for NoV and HAV. 

 

I.1.1.  IDENTI FI CATION  OF FOO DBO RN E VIR US ES  

 

 The first step is the identification of the list of viruses of potential interest in food and water.  

Foodborne viruses were identified as a subject of concern in AFSSA (2007): rotaviruses (Human 

Rotavirus, HRV), norovirus (NoV), Hepatitis A virus (HAV), hepatitis E virus (HEV), sapovirus, 

astrovirus, adenovirus 40 and 41, enterovirus, parechovirus et reovirus (AFSSA, 2007).  

The working group of experts decided only to consider viruses which have been shown to carry a risk 

of transmission to humans through ingestion of contaminated food or water and which posed 

problems in the food processing and water supply sectors (AFSSA, 2007; FAO/WHO, 2008). 

Subsequently viruses belonging to 10 families, associated with foodborne illness, classified with their 

site of replication in the human body, were identified at international level (FAO/WHO, 2008). The 

criteria for prioritizing between viruses were (FAO/WHO, 2008): 

 The high incidence, estimated worldwide, based on the currently available data. 
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 The severity of disease including significant mortality level worldwide. 

 The potential for foodborne transmission and raise a significant threat to public health 

(including emerging viruses). 

The ranking, for FAO/WHO report, was done qualitatively.  All viruses of the AFSSA report were 

included plus Aichi virus and emerging viruses, where the transmission by food can be exceptional or 

occasional, such as SARS-Cov (Acute Respiratory Syndrom-causing Coronavirus) or HPAI virus H5N1.  

The viruses listed are reported in Table 1, together with the available quantitative data of morbidity 

and mortality. 

For each virus, in the USA and France, the overall estimated number of cases is given (morbidity, 

mortality), and, in a second step, restricted to the number cases attributable only to food 

transmission (the number of reported cases includes foodborne outbreaks and sporadic ones). 

The method used for estimating the attributable part of cases linked to those viruses, and among 

them, the relative contribution of food, is far from being simple, and is described in two steps:  

(i) the global estimation of the number of cases (morbidity/mortality) 

(ii) The percentage attributable to a foodborne origin. 
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Site of 
infection 

Virus cases 
(worldwide)(deaths) 

estimated cases 
(USA)/100,000 
[IC 95] for 2006

2 

Foodborne 
% (USA) 

Foodborne 
cases (USA) 
/100 000  
[IC 95]for 2006 
(deaths)

2 

estimated cases 
(France) /100 000  
no conf.interval. 
 for 1990-2000 

Foodborne 
% (France)

 
Foodborne cases 
(France) 
/100.000 
(deaths) 
for 1990-2000 

intestinal 
system 

Norovirus (Nov) ND 7026[4151-
10689] 

40% 
1
-26% 

2 
1826[1079-
2779] 
(0.05

2
) 

850
3 

no 
conf.interval. 

with medical seek 

14%
3 

119
3  

with medical 
seek 

Rotavirus (HRV) ND 1032[373-1782] 0.5%
 

2[5-9] 271
4
(0.01) Négligeable ND 

Sapovirus ND 1032[373-1782] 0.5%
 

2[5-9]  ND ND 

Astrovirus ND 1032[373-1782] 0.5%
2 

2[5-9]  ND ND 

Adenovirus 40-41 ND     ND ND 

Aichi virus
2 

ND     ND ND 

Liver HAV ND 7.5[3-14.5] 5%
1
-7%

2 
0.53[0.23-1] 
(0.003) 

13.7
3
-1.6

5 
5%

3 
0.68 

3
-

0.08
5,3

(0.00032
3
)

 

HEV ND  ND  0.36 
6
   

Neural tissue 
and nervous 
system 

Echovirus/Coxsackie ND  ND  3.043
7 

0 ND 

Nipah virus South East Asia
:
  

2007-2008: 10-20 
cases/years (10-20)

8 

 ND 0 0  0 

Poliovirus around 650 cases 
9 

  0
 

0 in Europa since 
2002 

 0 

Parechovirus ND    ND  ND 

Tick-borne 
encephalitis virus 
(TBEV)

 

Europe and Russia: 
1990-2007:  8755 

10 
   some cases in ( ?-

5)
11 

 0 

Respiratory 
system 

HPAI-H5N1
 

2003-2012 
602 cases 

12
(355)

12 

  
 0  0 

SARS-Cov4,5
13

 no cases since 2004;  0 
 

 0 0 

 

TABLE 1: ESTIMATED NUMBER OF ANNUAL CASES (DEATHS) IN THE WORLD, USA (DOMESTICALLY ACQUIRED), AND FRANCE, CAUSED BY 

FOODBORNE PATHOGENS. 
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Legend: Source of data: 1 (Mead et al., 1999), 2 (Scallan et al., 2011), 3(InVS, 2004), 4 160,000 severe 

acute diarrhea in children/ 59 millions French population estimates 1999-2000 (Melliez et al., 2005); 5 

(InVS, 2012, Hepatitis A 2011), 6 218 cases of confirmed diagnosis in 2008 (AFSSA, 2009) with 59 

million French population estimates;  
78978 cases with strain confirmation during 5 years (Antona et 

al., 2005), 8(WHO, 2009), 9data 2011 (Polio eradication initiative, 2012), 10(Mansfield et al., 2009), 
11(Chastel and Heller, 2012), 12(FAO/EMPRESS, 2012), 13(CDC, 2012). ND: No data. In parenthesis: 

annual number of deaths.   

 

I.1.1.ESTI MAT E O F N UMBER OF  CAS ES LI NKED TO SP EC IFI C  

VIRUS ES  

 

For estimating the number of cases associated with an infectious agent two modeling approach 

are available, depending of the available data (Mead et al., 1999; Vaillant et al., 2005) (Figure1): 

 

FIGURE 1: WAYS TO ESTIMATE INCIDENCE USING THE EXAMPLE OF HEPATITIS A VIRUS AND NOROVIRUS 

Legend: in orange the step were the data are available (Nov: Norovirus, HAV: hepatitis A virus) from 
Vaillant (2005); Mead (1999) and Scallan (2011) approaches; In blue the level to be estimated; the basis of 
the pyramid is representing all symptomatic cases in the population of interest, arrows are describing the 
different step from the data to the needed estimate.  
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1.1.1.1  ES T I M A T E  O F  I N C I D E N C E  W I T H  C O U N T S  O F  L A B O R A T O R Y  

C O N F I R M E D  I L L N E S S E S  (P A T H O G E N  B A S E D  D A T A )   

 

These estimates (Figure 1) are adjusted for undercounts (because of underreporting and 

underdiagnosis). An example of this method can be given with Listeriosis (even if it not a virus) in 

France. In 1999, exhaustivity of the mandatory reporting system was reported to be around 85% IC 

95[82-89] with the capture-recapture method on EPIBAC data (Goulet et al., 1999). However other 

parameters, described as under-reporting factors, have also to be taken into account, because all 

symptomatic cases are not seeking medical attention, not all cases are investigated, and examination 

are not exhaustive of all pathogens. 

At the laboratory level, sensitivity of analysis is not perfect, and reporting to national reference 

center (NRC) depend of the type of laboratory (private, hospital) and of the pathogen (Gallay et al., 

2006; InVS, 2004; Vaillant et al., 2012 a). The different parameters of reporting have to be estimated, 

in specific studies, in order to be extrapolated to general population (Gallay et al., 2006; Kemmeren 

et al., 2006; Couturier et al., 2007). The sensivity of reporting varies according to the severity of cases 

and has an impact on the representativeness of the surveillance. This approach could be appropriate 

for hepatitis A cases, because since November 2005, acute hepatitis A became a mandatory 

notifiable disease (InVS, 2012). The part of domestic cases has to be taken into account (InVS, 2004; 

Scallan et al., 2011). The Table 1 gave the latest number of notified cases (including those linked to 

foreign travels). In the nineties period, the percentage of domestically acquired cases was around 

23% (InVS, 2004). 

In the estimate from USA in 2011, HAV estimate takes into account domestic cases in the population 

(Scallan et al., 2011) (Figure 1). Some of these reported estimates, expressed in percentage, are 

linked to the severity of symptoms. Only 70% of the cases are considered to be associated with 

severe symptoms, such as jaundice (Scallan et al., 2011). For severe infections with hepatitis A virus, 

rates of medical care-seeking was assumed to be around 90%, (for mild infections 18%), and the 

specimen submission rate to the laboratory at 100% (19% for mild). The laboratory testing for HAV 

was estimated around 97%, with perfect sensitivity and specificity of analysis. The proportion relative 

to foreign travel related was estimated around 41% (Scallan et al., 2011). These percentages were 

used as mode values in Pert distribution, used to describe the uncertainty around those estimates 

(Scallan et al., 2011). 

 

1.1.1.2.  I N D I R E C T  E S T I M A T E  O F  I N C I D E N C E  A T  N A T I O N A L  L E V E L  

(S Y M P T O M  B A S E D  D A T A )  

 

The data of symptomatic cases (such as acute gastroenteritis) are estimated for the population level. 

The data are scaled down when attributing those cases to known pathogens (Figure 1). This is the 

way to estimate noroviruses cases (Scallan et al., 2011; InVS, 2004; Vaillant et al., 2005).  
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For estimating annual number of acute diarrhea (AD) in France (InVS, 2004), data of acute gastro-

enteritis were taken from the French Sentinel surveillance network (sentiweb, 2012). When 

estimating the norovirus contribution in those acute-enteritis cases, data were taken from an 

epidemiological study, nested in the French Sentinel surveillance network (sentiweb, 2012) during 

the winter of 1998 to 1999. A physician-based (103 general practitioner) case-control survey of Acute 

Diarrhea (defined as losing at least three soft or aqueous stools per 24 h for a duration less than 2 

weeks), with virological screening in stools, gives estimates of the proportion of acute diarrhea linked 

to norovirus detection about 19.2% (Chiki-Brachet et al., 2002) at the practitioner level. 

New data are now available in order to estimate the number of people with AD (Acute Diarrhea) who 

are consulting general practitioners around 33% (27-40) (Van Cauteren et al., 2012).  

Recent data give an estimate of the proportion of AD cases associated with norovirus in France 

associated with other viruses, in particular influenza (Arena et al., 2012). For norovirus, alternative 

approaches focus on medical sales (drug reimbursement data from the national health insurance 

system) to improve outbreak detection (Beaudeau et al., 2008; Pelat et al., 2010). For other 

pathogen sentinel surveillance results are linked to infectious disease transmission dynamics 

(Dorigatti et al., 2012). 

Consequently, more precise estimates of noroviruses annual incidence cases, including sporadic 

cases (not consulting a practitioner), could be probably estimated in the near future. For USA, all 

domestic cases of gastroenteritis due to norovirus in the general population are supposed to be 

estimated (Scallan et al., 2011) (1% non domestic for norovirus). 

The differences in reported estimates among pathogens can be explained by the severity of their 

respective symptoms. Rare pathogens or not severe were unlikely to be detected. By example the 

reporting estimates were different, between pathogens causing bloody diarrhea or not (or in %) 

(Mead et al., 1999) (Norovirus is associated with non-bloody diarrhea). 

The number of cases estimation at the population level can be  found in French studies (Gallay et al., 

2000, 2003) and in other recent international studies (Scallan et al., 2011). Uncertainty estimates are 

given in recent literature taking into account the different sources of uncertainty (Powell et al., 2001; 

Scallan et al., 2011) and in particular with bayesian inference (Albert et al., 2011; Presanis et al., 

2009). 

When the estimate of the total number of cases attributable to a specific virus is known, the second 

step is to estimate those linked to food transmission. 

 

1.1.2.  AT TRI BUTIN G I LLN ESS  TO  FOO D SO UR CE  

 

Foodborne is for several viruses one of the possible pathways of transmission. For feco-oral 

transmission, indirect pathway can occur due to the environment, such as carpets, or toilets. Direct 

transmission from human to human can occur via droplet, fomites, contacts, in particular for HAV, 

NoV, and Rotavirus. General approaches can be found from different methodological published 



 

14 

 

papers (Mead et al., 1999; Batz et al., 2005; Vaillant et al., 2005; Kemmeren et al., 2006; Havelaar et 

al., 2007; Mangen et al., 2010; Havelaar et al., 2012). 

Four broad categories of methods can be defined as source of information for attributing illness to 

food origins. 

(1.1.2.1)  O U T B R E A K  S T U D I E S  

Outbreaks are used to estimate foodborne part but also case-fatality rate. The principle of food 

attribution is to estimate attributable risk from the outbreak data. Criteria were used for selecting 

outbreaks. For waterborne outbreaks, restricted  criteria were requested to better established causal 

link with etiological infectious agent, setting the identification of the pathogen strain in water and 

stools (Beaudeau et al., 2008) as a criteria or setting minimum level to RR (Relative Risk) to 2  or p 

value =<0.05 (Blackburn et al., 2004). 

For estimating the first % attributable to food (Mead, 1999), the % of outbreaks in which the mode of 

transmission were known to be foodborne was used (Mead, 1999). Same approach was made for 

Hepatitis A virus (Mead et al., 1999). For Noroviruses data were taken from a retrospective study on 

348 NoV outbreaks, between 1996 and 2000: 3% were waterborne, 12% person-to-person, 39% 

foodborne, and 46% unknown (MMWR 1st June 2011 data from Fankhauser (1998) and CDC, 

between 1996-2000 (CDC, 2001). The attributable foodborne part to foodborne was at 40% (Mead et 

al., 1999). 

For 2011 estimate, each outbreak is attributed to an etiological origin, taking into account the 

population concerned in each kind of outbreaks. Among 13,944 persons illness cases, 3,628 (26%) 

were in foodborne classified outbreaks (CDC, unpublished data) (Batz et al., 2011; Scallan et al., 

2011).  

However, analyses of outbreaks are difficult to extrapolate to general and sporadic cases. 

Combination of mode of transmission is possible for HAV and NoV (first cases foodborne and 

secondary cases inter-human transmission) makes the real attribution of cases to each way difficult, 

even when focusing on primary cases (Matthews et al., 2012). Biological characteristics make the 

attribution difficult for NoV, with short incubation period, and for HAV, because the investigation for 

food contamination is delayed by a long incubation period. Food contamination or exposure can be 

higher in outbreaks than in the average level of the population, explaining exceptional events such as 

food outbreaks. For Norovirus, because genogroups I and II seem to be linked with different ways of 

transmission and severity in outbreaks (Desay et al., 2012; Matthews et al., 2012), it could be more 

effective to distinguish food attribution, hospitalization rate and case fatality ratio of genogroup I and 

II. 

(1.1. 2.  2)  PO P U L A T I O N  B A S E D  A N D  R E T R O S P E C T I V E  C A S E  C O N T R O L  

S T U D I E S  

For France estimates (Table 1), food attribution in NoV cases was estimated from data established in 

Netherlands, in a community-based prospective cohort study and particularly in a nested case-

control study in 1999 (De Wit et al., 2001; 2003). The cohort study was followed to estimate the 
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incidence of gastroenteritis. The nested case-control study was used to identify risk factors and 

determine etiology (De Wit et al., 2003). 

Foodborne source is commonly involved if the food contamination occurred before the household. In 

order to exclude direct transmission, in particular for norovirus, criteria were added (De Wit et al., 

2003). In this study a case can be counted as suspected foodborne origin if there were no contact 

with an ill person seven days before symptoms. All persons who reportedly had contact with 

someone with gastroenteritis were, by hypothesis supposed infected by that person. The estimate of 

PAR (Population Attributable Rate) for contaminated food’s entering the household was 16%.  The 

food-handling hygiene effect is a separate factor from foodborne and includes both the effect of 

poor food-handling hygiene in the household favoring indirect person-to-person transmission and 

food cross contamination within the household. For rotavirus, in the same study the estimate of PAR 

for contaminated food’s entering the household was 4% of all rotavirus gastroenteritis cases (De Wit 

et al., 2003).  

These studies were considered to be more representative of sporadic cases than outbreak data. 

However, unlike the latter, food vehicles are not laboratory confirmed (Mangen et al., 2010). 

Surveillance system, and any epidemiological studies have their own limitations (Hardnett et al., 

2004; Vaillant et al., 2012 a). 

(1.1. 2.  3)  E X P E R T  E L I C I T A T I O N  

 

Expert elicitation is not explicitly used in estimates of Table1; however this approach is used in the 

disease burden of foodborne pathogens in the Netherlands 2009 (Havelaar et al., 2012). The detailed 

method is published (Havelaar et al., 2008; EFSA, 2008). 

(1.1. 2.4)  F O R W A R D  A P P R O A C H  B Y  M O D E L I N G .   

A T T R I B U T I O N  M O D E L S  B A S E D  O N  M I C R O B I A L  S U B T Y P I N G  

 

Microbial subtyping (based on genetic subtyping or serotyping) is based on the difference of 

microbial fingerprintings between different food sources, between species of animal population, in 

comparison with microbial fingerprintings in human cases population. The interest is to identify the 

animal reservoir, taking into account human consumption data. It was found to be adapted for 

Salmonella and Campylobacter, using a Bayesian framework to propose an estimate attribution 

fraction (Hald et al., 2004; Hald et al., 2007, Mullner et al., 2009, Strachan et al., 2009; Ranta et al., 

2011; David et al., 2012). However because human source is the main source of virus for HAV and 

NoV human cases, this method is not appropriate, except in the case of an emerging zoonotic strain. 

For HEV, because of zoonotic transmission by pigs or other mammals, geographical and transmission 

pathways seem linked to the source. For rotavirus, main transmission is inter-human; however some 

animal strains can infect food and can be source of infection for humans.  

QU A N T I T A T I V E  R I S K  A S S E S S M E N T  

Potential contribution of risk assessment for estimating the relative sources among food products is 

a quite complex task. Semi quantitative methods were used in particular for fish products (Ross and 
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Sumner 2002; Guillier et al., 2011). Quantitative and relative risk exposure assessment was tried for 

Campylobacter and Listeria (Evers et al., 2008; Endrikat et al., 2010). Data needed, in particular in 

numerous food contamination possibilities, can be difficult to obtain, in particular in a representative 

way. Quantitative risk assessment alone is not adapted to investigating relative contribution of food 

with direct inter-human transmission.  

 
1.1.3.  PUBLI C HEALTH I MP ACT ESTI MAT ES O F FOO DBO RN E 

VIRUS ES   

The results of Table 1 show that with the available data, NoV and HAV are the main foodborne 

concerns in France, including morbidity and mortality criteria. Secondary HEV could also be of 

concern (newly diagnosed).  

The rotavirus rank is linked to the estimated percentage of % of cases attributable to foodborne 

origin, which varies between countries (France and USA Table 1). Human Rotavirus (HRV) is the 

leading cause of gastroenteritis in infants and young children worldwide, but cases are particularly 

severe in developing countries. Outbreaks of HRV gastroenteritis in day-care centers and hospitals 

can spread rapidly among non-immune children, presumably through person-to-person contacts, 

airborne droplets, or contact with contaminated toys (Gleizes et al., 2006).  The use of a vaccine 

seems efficient in the USA (CDC, 2009). Although person-to-person transmission is most common, 

there is evidence of the potential for virus transmission via drinking water and water used for food 

preparation (Villena et al., 2003). In France, among ten waterborne outbreaks, only one waterborne 

outbreak is suspected to be associated with rotavirus contaminated water (also contaminated with 

Campylobacter) (Beaudeau et al., 2008). In France, and for other high income countries (WHO, 2008) 

the foodborne contribution (excluding water) is negligible (InVS, 2004).  

NoV and HAV highest ranking are in agreement with other ranking conclusion (ANSES, 2007; 

FAO/WHO, 2008; EFSA, 2011). Norovirus are the first foodborne origin of acute gastro enteritis (AGE) 

(bacteria and parasites included), with 95% of non bacterial AGE (Karst, 2010) and more than 50% of 

AGE by itself (Batz et al., 2012). 

This is motivating the interest to focus this work to norovirus and HAV. The precision of foodborne 

sanitary impact is not well estimate for many foodborne viruses, even for HAV nor NoV. The 

foodborne pathway is not the only way of transmission, and different pathways can co-exist and 

interact with each other.  

I.2  TRANSMISSION OF FOODBORNE VIRUSES  

 

Two levels of foodborne pathways are described here: the first one compares the food pathway to 

other pathways of transmission, and the second evaluates the impact of different food matrix for 

attributing virus infection in humans inside the foodborne pathways.  

1.2.1.  PAT HW AYS  O F T RAN S MI SSION  O F F OODBOR NE VI RUS ES  
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Foodborne, is for several viruses one of the possible transmission pathway. Foodborne viruses are 

different, for this factor, from other groups of foodborne pathogens like parasites and bacteria. The 

estimate proportion of foodborne origin in cases is more than 50% for Toxoplasma (excluding water 

transmission), around 95% for Salmonella spp., 99% for Listeria, 80% for Campylobacter and 68% for 

STEC 0157. For these pathogens human-to- human transmission is not feasible or negligible. 

In comparison, for NoV and HAV, the food-borne part is only between 4% to 26% (Scallan et al., 

2011), and the second pathway of transmission is mainly from humans to humans. For these two 

pathogens, the contamination of food and water is made by human stool contamination (feco-oral 

pathway). The contamination step in the food process is variable and can occur at the primary 

production step, or taking into account poor hygienic practices, at the food preparation step (EFSA, 

2011; Mokhtari and Jaykus, 2009).  

Feco-oral indirect transmission from humans to humans can occur through the environment, via 

toilets, carpets. Direct transmission from human to human (or from animal to humans) can be also 

caused by contact, and in more exceptional cases, via droplet or fomites (ANSES, 2007; FAO/WHO, 

2008; EFSA, 2011). The different known pathways and their relative contribution, qualitatively 

evaluated for each virus listed in Table 1, are given in Table 2. Some pathways are not taken into 

account bloody transfusion risk, is not considered here). 

Because of the rare foodborne infections, some viruses were excluded, at this step, from further 

analysis. However their inclusion in WHO (2008) and EFSA (2011) lists needs some explanations. 

Outbreaks associated with foodborne transmission of newly emerging viruses are a low probability 

event but have a potentially high impact. 

 SARS coronavirus epidemiological investigations have shown that the major mode of 

transmission of the SARS virus is through close person-to-person contact, in particular exposure, to 

droplets of respiratory secretions from an infected person. However, due to the close phylogenetic 

relationship it is plausible that at the origin the virus was spread into the human population through 

the preparation and consumption of food of animal origin, Chinese ferret badgers (Melogale 

moschata), masked palm civets (Paguma larvata) and raccoon dogs (Nyctereutes procyonoides). 

Those animals are suspected to catch the infection from another reservoir, probably bats (Guan et 

al., 2003; Martina et al., 2003; Drexler et al., 2010). SARS coronavirus have been found in bat 

populations, and even in Europe, but does not represent a significant risk for foodborne transmission 

(Drexler et al., 2010; EFSA, 2011). More over no human case was detected around the world till 2004 

(CDC, 2012). 

 H5N1 infections of humans are rare, and not transmitted from human to human and  

are associated with direct contact with ill poultry (FAO-WHO, 2008; EFSA 2011). However, infectious 

H5N1 avian influenza virus has been cultured from duck meat, and the exceptional consumption of 

duck blood has resulted in the infection of humans (Tumpey et al., 2003). Food contaminated with 

H5N1 does not appear to be a significant risk for infection in humans (FAO-WHO, 2008; EFSA 2011).
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Infection 
site 

Virus animal origin (zoonotic) 
(food or contact 
transmission to human) 

Feco(animal origin)-oral 
 (food, water or contact 
transmission to human) 

feco (human origin)-oral 
transmission involving 
food or water 
contamination  

feco-oral : short interhuman 
transmission: direct-indirect 
(environmental 
contamination)  

other inter-human transmission 
fomites, aerial transmission 

 Norovirus (Nov) negligible not demonstrated ++ ++++ ++ aerolized vomitus particles, 
fomites 

Rotavirus (HRV) possible pig, cattle, cats (contact) + (accident of treatment 
of water) 

++++ + 

Sapovirus -  ?   

Astrovirus - - + +++  

Adenovirus 40-41 - - +   

Aichi virus
2 

- - +   

Liver HAV - neglible (primates) +(vegetables) ++++  

HEV ++ +: food  
+/-: contact (pig pets) 

? ++(water for endemic 
geographical areas) 
 

+(not demonstrated  to be 
important in Europa) 

- 

Nervous 
system 

Echovirus/coxsackie - primates**/pigs**   ? 

Nipah virus + contamination of fruits by 
urines/ bats saliva 

- - - 

Poliovirus
5
 - primates** ++ +++  

Parechovirus - -    

Tick encephalitis 
vius (TBEV)

1 
vectorial disease 
transmission by ticks 

Unheated raw milk 
 
(cows, 

goats, sheep) 
- - - 

Système 
Respiratoir
e 

HPAI-H5N1
3 

+ ++: contact with ill birds 
+/-: duck blood or food 
 

poultry
 

- - - 

SARS-Cov4,5
4
 +/-: original cases by food 

or contact transmission 
(civets) 

 - +++ +++ (Honk Kong) 

TABLE 2: TRANSMISSION PATHWAYS OF IDENTIFIED FOODBORNE VIRUSES 

Legend: *Number of cases per year or during the period **rare or not based on epidemiological data.  1  Mansfield et al., 2009; 2 Drexler et al., 2011;  
3FAO/EMPRESS 2012; 4Martina  et al., 2003; the number of + is the relative importance, qualitatively evaluated.- not observed. 
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 Human infections with NIPAH virus were occasionally observed, following consumption of 

contaminated fruits which were contaminated through the saliva of fruit bats (Luby et al., 2006; 

WHO, 2009, EFSA, 2011). The biggest concern is the possible adaptation of these viruses to humans 

(EFSA 2011). This disease is not present in France. 

 In Europe, tick-borne encephalitis viruses (TBEV) (flaviviruses) are transmitted from their 

natural hosts, mostly rodents, from ticks (Ixodes sp) to humans, or to cows, sheep, and goats. Viruses 

can be excreted in their milk. The consumption of contaminated raw milk can lead to human 

infection and disease, such as “biphasic milk fever” (Mansfield et al., 2009). Infectious TBEV can also 

be found in yoghurt, butter and cheese (EFSA, 2011). However in France, the human cases detected 

are not reported or very rare.  

The feco-oral pathway is the most common pathway of transmission of foodborne viruses listed, in 

particular for HAV and Norovirus in Table 2.  

The different pathways (feco-oral and human to human) are not stochastically independent of each 

other. For NoV, or hepatitis A virus, if the inter-human transmission is so high that a human epidemic 

emerges, sewage or waste water (of human origin) can be highly contaminated. Then, in the case of 

inefficient treatment of sewage water, the risk of contamination of food or water increased (Ranta et 

al., 2001; Ajelli et al., 2008). On the other hand if food is highly contaminated, a high number of 

primary cases can provoke an inter-human transmission of secondary cases and an epidemic, such as 

in Shanghai, with several hundred thousands cases of HAV (Halliday et al., 1991). On a short term 

scale, 16% of norovirus outbreaks involved two or more mode of transmission (Mathews et al., 

2012). 

This is one of the fundamental aspects of this work, which is trying to investigate the impact of 

food contamination in relation with the epidemiological situation in the human population. 

The relative importance among the different food products that can be contaminated was evaluated. 

 

1.2.2.  RELATIV E I MPO RTAN CE O F DI FFER EN T  FOO D P RO DUCT S IN  

THE FO ODBO RN E PATHWAY S  

 
 

Figure 2 gives an idea of what kind of products are concerned by the feco-oral pathway. For HAV and 
norovirus, the animal origin of contamination can be neglected.  
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FIGURE 2:  DIFFERENT SOURCES OF HUMAN EXPOSURE RISK VIA FOOD FROM 

HUMAN FECO-ORAL PATHWAY   

Legend: the origin of contamination is from humans (box “infectious humans”) food 

can be contaminated at the preparation step (hand contamination) or the 

environment by infected stools. Different pathways are possible to food products via 

sewage sludge or by sewage water contamination. Vegetables can be contaminated 

by sewage sludge or irrigation water.  Arrows indicate the transmission pathway 

between each box.  

Water can be contaminated by accidental sewage contamination or inefficient treatment of drinking 

water. Food products are contaminated via contaminated water (or in some cases sewage sludge) 

used for irrigation of fruits or vegetables, in particular salads, or raspberries. Food can also be 

contaminated by foodhandling and poor hygienic practice during the food preparation (Mokhtari et 

al., 2009). 

Those viruses are not replicated outside of their living hosts, and in particular in the environment, 

food, and water. Excluding the case of zoonotic viruses (HEV and HRV), food products and drinking 

water can be seen as passive vehicle of contamination for Norovirus and HAV.   

Shellfish are in a particular situation, because they filtrate and concentrate HAV and Norovirus 

(Atmar et al., 1995; Le Guyader et al., 2009; Maalouf et al., 2010, b). Moreover it seems that they 
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keep it inside their own tissues for a duration expressed in several weeks, with conservation that 

depends on seasonality and of genogroup for norovirus (Le Guyader et al., 2006; Maalouf et al., 2010 

a and b). Specific receptors for human norovirus were recently found in oyster tissues (Le Guyader et 

al., 2006; Maalouf et al., 2010 b). 

Considering the characteristic of shellfish bioaccumulation, it is not surprising to see the relative high 

contribution of shellfish products in outbreaks (of identified origin) nor to observe their ranking in 

sporadic and outbreak  foodborne cases, among the different food products, as given by EFSA in 

2011, or FAO/WHO report (2008): 

From FAO/WHO 2008, food virus combination priority, based on expert elicitation: 

 

 

 

 

 

 

 

 

From EFSA 2011: ordered priority setting for risk assessment, based on expert elicitation: 

 

 

 

 

 

Based on foodborne US outbreaks with known etiology and vehicle, from 1999 to 2008,  foodborne 

cases of gastroenteritis by NoV are attributed in the respective ranking to complex foods, produce 

(vegetables) and seafood (Batz et al., 2012). Based on expert elicitation, the ranking is, when 

attributing NoV cases, in respective order, produce, seafood and complex food (Batz et al., 2012). 

Around 10-34% of Nov foodborne cases are attributed to seafood in the USA (shellfish mainly) (Batz 

et al., 2012). 

In France, from the data 2009, among 1255 outbreaks, 18.4% were confirmed from a pathogen, and 

39.9 suspected (InVS, 2012). Among last category 12% were attributable to viruses. Among those 

outbreaks, when analyzing the food product, shellfish are involved in 85 outbreaks (drinking origin 6, 

complex food 269, egg products 84 and fish product 87). Shellfish are in the third position ahead of 

 “For fresh produce, the main routes of contamination are through contaminated water (used for 

irrigation, agrochemical application or wash water); the use of human sewage as fertilizer; and 

manual (human) handling during and post-harvest. However, the relative contribution of each is not 

known. 

 For bivalve molluscs consumed raw, the main route of contamination is through fecal 

contamination of the waters in which they are growing. The contamination most commonly occurs 

through sewage discharge, run-off from agriculture, and point source contamination of the 

immediate surrounding of the growing areas. 

 For prepared ready-to-eat foods, the main route of contamination is via infected foodhandlers 

practicing poor personal hygiene during food preparation and serving.” 

“NoV and HAV in bivalve molluscan shellfish 

NoV and HAV A in fresh produce 

NoV and HAV in prepared foods 

Rotaviruses in water for food preparation 

Emerging viruses in selected commodities” 
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egg products, meat (80), chicken meat (67), milk (50) or pig products (53), which is important 

considering that the consumption is limited in a general population in comparison to other products. 

For example in a study of consumption in  general population study of 2492 individuals, INCA, 1999, 

only 56 consumers of oysters and 216 consumers of mussels were registered (AFSSA, 1999). "The 

analysis of data from systems contributing to the surveillance of foodborne illnesses and from 

published outbreak investigations shows that, in France, foodborne illnesses associated with shellfish 

consumption are mainly of viral origin, mostly due to NoV followed by HAV" (Vaillant et al., 2012b).  

Thus our work focused on shellfish contamination with HAV and Norovirus, for three main 

arguments: 

 Shellfish accumulate virus not passively, in comparison with other contaminated food 

vehicles. 

 Different risk ranking classifies shellfish as one of the first level of concern for virus 

contamination. 

 The shellfish contamination and coastal population close to shellfish areas of production 

can be studied, in order to investigate the relationship between food contamination and the human 

epidemiological situation.    

 

1.3.  BIOLOGICAL CHARACTERISTICS OF NOROVIRUS AND 

HEPATITIS A VIRUS .  
Norovirus and HAV have some features in common, in particular the transmission pathway.  For 

other aspects, their biological characteristics, impact and immune response of their human hosts are 

different, thereby justify specific approaches.  

 
1.3.1  B IO LO GI CAL CHARACT ERIS TICS  O F NORO VIRUS  

 

G E N E T I C  D I V E R S I T Y  A N D  M O L E C U L A R  E P I D E M I O L O G Y  

 

NoV belongs to the Family Caliciviridae, with a single-stranded positive sense RNA genome, non 

enveloped capsid virus, explaining its high resistance in the environment. 

NoV can be divided into distinct genogroups (or genera), based on phylogenetic analyses of the 

capsid protein. To date, five NoV genogroups (G) have been recognized (GI-GV). Viruses of GI, GII, 

GIV are known to infect humans (Zheng, 2006). GII viruses have additionally been detected in pigs.  

GIII viruses infect cattle and sheep and GV viruses infect mice. Human Infection from viruses of 

animal origin is not feasible or rare.  GI and GII are the most frequent genogroups associated with 

human cases, in particular GII in human epidemics. The recombination among viruses from different 

genogroups is rare, suggesting that genogroup constitutes a species level in taxonomy (Zheng, 2006). 

Norovirus display a wide degree of genetic variability between genogroups (44.9-61.4%). Inside 
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genogroups they are subdivided into clusters or genotypes (variability between clusters 14.3-43.8), 

for example the genotype GII.4. Finally, clusters or genotypes are subdivided into strains (variability 

between 0 and 14.1%) (Zheng et al., 2006). Since 2002, GII.4 is an emerging cluster, involved every 

two years in pandemics, (2002, 2004, 2006, and 1974 or 1995-6) (Lopman et al., 2004; Karst et al., 

2010; Siebenga et al., 2009). The GII.4 cluster is perhaps more severe, spreading rapidly from inter-

human transmission and associated with  AG (Acute Gastroenteritis) epidemics in winter (Lopman et 

al., 2004; Lindesmith et al., 2008; Rohayem et al., 2009). The mutation rate is high and is of 

importance when explaining regular epidemics in human populations (Dingle et al., 2004; Lindesmith 

et al., 2008; Bull et al., 2010). 

 

C L I N I C A L  D I S E A S E  A N D  E X C R E T I O N  

The initial description of large Nov outbreaks called the “winter vomiting disease” (Mounts et al., 

2000). In immunocompetent adults, the incubation period is 24-48 hours (min 10-max 50) and the 

duration of symptoms is within 12-72 hours (Karst et al., 2010). The symptoms include vomiting and 

unbloody diarrhea with or without nausea and abdominal cramps (Kaplan, 1982). Norovirus can be 

much more severe and prolonged in specific risk groups, in the elderly (>=65), even resulting in death 

(Lopman et al., 2003; 2004; Van Asten, 2011; Gustavsson et al., 2011; Rondy et al., 2011; Verhoef et 

al., 2012). Case fatality ratios were recently estimated from German surveillance data to be around 

or less between0.02-0.04/ 100,000, changing a little with age and susceptiblity; 0.1/ 100,000 the first 

year of age, 0-0.001/ 100,000 between 2 and 11, 0.07/ 100,000 between 11 and 17, around 0.03% 

between 18-64, and 0.63/ 100,000 more than 65 (Verhoef et al., 2012). Norovirus disease can be also 

more severe in association with other infections such as inflammatory bowel disease (Khan et al., 

2009). Norovirus is also implicated in gastro enteritis of children (Zintz, 2005), and is particularly 

involved in nosocomial infection (Gallimore, 2006; Lopman et al., 2004; Sukhrie, 2010, 2011, 2012; 

Greig and Lee, 2012). Other symptoms are also described in recent papers (Porter et al., 2012; 

Nelson et al., 2012). 

Although the symptoms are usually gone after several days, virus particles can be shed from 

asymptomatic individuals up to several weeks after exposure. In a recent study, the median duration 

of shedding was 28 days after inoculation (range 13–56 days) (Atmar et al., 2006). The median peak 

amount of virus shedding was 95 × 109 (CI 95 0.5–1,640 ×109) genomic copies/g feces as measured by 

quantitative RT-PCR (Atmar et al., 2006). The peak period is during 3-10 days and decreases during 

the last 21 days. 

With the antigen ELISA detection method, the mean duration of shedding was estimated to be 

around 10 days (median 7 days) after inoculation (Atmar et al., 2006).  

EP I D E M I O L O G Y  

Globally, Noroviruses are the first foodborne origin of acute gastro enteritis (bacteria and parasites 

included), with 95% of non bacterial GE (Karst, 2010) and more than 50% of GE by itself (Batz, 2012). 

For the cost of illness, Nov are rank fourth in foodborne pathogen (after Salmonella, Toxoplasma and 

Listeria), taking into account the incidence, the severity of symptoms and the cost of treatment, in 

the US (Batz et al., 2012). 
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High attack rates are commonly reported in NoV outbreaks. Primary attack rates are around 50% of 

exposed individuals (Noda et al., 2008; Matthews et al., 2012). Norovirus outbreaks occur most 

commonly in semi-closed communities such as cruise ships, hospitals, schools, disaster 

relief/evacuation sites and military settings (Karst, 2010).  

Epidemics with intense inter-human transmission occur mainly in winter time (sentiweb), in France 

and elsewhere in the world (Lopman et al., 2003). 

IM M U N I T Y  A N D  S U S C E P T I B I L I T Y  

 classical immunity 

The duration of norovirus antibody responses has not been clearly determined. The lack of long 

term immunity is however recognized (Karst et al., 2010). Volunteer studies show that individuals 

are equally susceptible to primary and secondary exposure when there is at least a six-month 

interval between challenges (Johnson et al., 1990). The variability and evolution of strains 

involved could partly explain the phenomena (Lindesmith et al., 2008; Bull et al., 2010).  

 Susceptibility-resistance in humans 

High infectivity is described for norovirus infection for low doses of exposure in susceptible 

individuals (Teunis et al., 2008). However, the human noroviruses recognize histo-blood group 

antigens (HBGAs) that are expressed on the surface of mucosal epithelial cells. The 

glycosyltransferases that control their synthesis are encoded by the highly polymorphic ABO, 

Lewis, and secretor gene families (Marionneau et al., 2005; Le Pendu et al., 2006, Tan et al., 

2008). The association of noroviruses with HBGAs has been demonstrated to be essential for NoV 

strains (Lindesmith et al., 2003). This is best exemplified by the correlation of secretor status with 

Nov susceptibility (Teunis et al., 2008). Secretor status is expressed in gut epithelial cells and 

then can be tested with saliva specimen (Lindesmith et al., 2003). Secretor status is linked with 

wild type FUT2 gene (referred to secretors) that represents around 80% in the Caucasian 

population (Marionneau et al., 2005). Blood type (A, B, O, AB) can also interfere with 

susceptibility to Norovirus (Le Pendu et al., 2006). 

 Vaccine 

Vaccines are still experimentally tested but not used to prevent cases in population (Atmar et al., 

2011). 

RE S I S T A N C E  I N  E N V I R O N M E N T  

Noroviruses are highly resistant in the environment. Experimental studies use of quantification of 

genomes, and not demonstrated infectious particles. Laboratory, commercial settings and known 

outbreaks history, have shown that depuration times are inadequate to remove viruses despite the 

rapid removal of indicator organisms (Lees, 2000; Mc Leod et al., 2009; EFSA, 2012). The NoV GII 

contamination was reduced from 2900 to 492 copies /g of DT after 17 days of relaying (Le Guyader et 

al., 2008). NoV were further reduced from 492 to 136 copies/g of DT in 4 days and <100 copies/g of 

DT in 6 days at 17 °C for NoV GII genotypes (Dore et al., 2010, EFSA, 2012, Flannery et al., 2012). 
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DE T E C T I O N -Q U A N T I F I C A T I O N  I N  S H E L L F I S H   

The quantification is done with real-time RT-PCR. The quantification of NoV is difficult, as the 

comparison of results between laboratory, without a harmonization of the way to quantify. In 

particular, before any comparison, some steps should be examined carefully because they could be 

considered as critical: (i) sensitivity of the technique should be high, in particular, the extraction 

efficiency should be above 10%, because low numbers of virus particles could cause disease, (ii) the 

necessity of searching with different primers because of the high variability of the virus genome, and 

(iii) the control of the possible presence of inhibitory substances (EFSA, 2012). Without any cell 

culture system nor animal model for human GI or GII, infectivity estimates cannot be classically 

estimated. The integrity of capsids should be an alternative to investigating infectivity, and 

experimental work was done to investigate persistence with artificial VLP (Loisy et al., 2005). 

However, the integrity of the capsid is not enough in itself to certify infectivity and cannot be used in 

routine surveillance. 

 

1.3.2.  B IO LO GICAL CHAR ACT ERI STI CS  OF HEP ATITI S  A  VI RUS   

 

G E N E T I C  D I V E R S I T Y  A N D  M O L E C U L A R  E P I D E M I O L O G Y  

HAV belongs to the genus Hepatovirus within the Picornaviridae family, and is a non enveloped 

capsid virus, with a single-stranded positive sense RNA genome. Six genotypes are described at the 

present time (Costa-Mattioli et al., 2002; Lu et al., 2004). Three out of these six (I, II and III) are of 

human origin while the others (IV, V and VI) are of simian origin. In France genotype IA is the most 

frequently discovered, and genogroup IIIA, less so, in 2008 and 2009 (ANSES, 2010). 

CL INICA L D ISE A SE AND INFEC TIOU S MA TERIA L EX CRE TION  

Clinical symptoms are linked to age. Hepatitis A infection mostly develops asymptomatically or 

subclinically among young children (under 5), while for older children and in adulthood the infection 

usually develops with symptoms. 

Only 10% of infected children under six years of age develop jaundice. Among older children and 

adults, the infection usually causes more severe symptoms, with jaundice occurring in more than 

70% of cases (Poovorawan et al., 2005; WHO, 2000). Asymptomatic cases, in particular in children, 

are considered to be infectious (Armstrong and Bell, 2002). 

The incubation period of hepatitis A ranges from 15 to 50 days, with a mean of 30 days. 

Clinical illness usually does not last longer than 2 months, although 10%-15% of patients have 

prolonged or relapsing signs and symptoms for up to 6 months (Glikson et al., 1992; Sjogren et al., 

1987).  

The beginning phase prodroma is characterized by arthralgia, myalgia, fever and digestive symptoms 

(anorexia, nausea, abdominal pain). The typical case definition for hepatitis A is an acute illness with 

moderate onset of symptoms (fever, malaise, anorexia, nausea, abdominal discomfort, dark urine) 

and jaundice, in addition to elevated serum bilirubin and aminotransferases levels later on. Icteric 

phase duration is between 1 to 4 months (median 2 months). 



 

 

26 

 

Viraemia can be detected before clinical symptoms. Fecal excretion of viruses begins 3 to 10 days 

before the symptomatic phase. By RT-PCR, the duration is 80 days (range 57-127) (Tjon et al., 2006). 

Using Elisa screening the excretion is detected after symptoms and lasts 3 weeks in average (Polish et 

al., 1999; Hollinger et al., 2001). The quantity of virus should be maximum at the beginning of the 

clinical signs and is estimated around 109particles /g or 108 genomes copies/ml of feces. Sixty days 

after the beginning of symptoms, excretion should be around 2.103copies/ml of feces (Tjon et al., 

2006). It is intermittent and viruses are detected in 50 to 94.5% of symptomatic cases (Yotsuanagi, 

1996). Excretion is also expected to be detected in asymptomatic cases especially in children. 

Because the clinical characteristics are the same for all types of acute viral hepatitis, Hepatitis A 

diagnosis must be confirmed by a positive serologic test for immunoglobulin M (IgM) antibody to 

Hepatitis A virus. In France, cases are defined by a positive IgM-anti HAV in blood serum. Cases are 

notified by the laboratory and the clinician to the district health department (DDASS), which 

transmits the results to InVS.   

Occasionally the infection may evolve into a fulminant hepatitis, mainly among patients with 

underlying chronic liver diseases (Akriviadis and Redeker, 1989). Chronic Hepatitis A is exceptional.  

The case fatality rate is calculated on the basis of symptomatic cases (hepatitis) and can be estimated 

between 0.2-0.4% for children and around 2% for adults over 40. 

The risk of infection seems to be lower than for Norovirus for the same dose. Dose-response used in 

QRA was established with a surrogate virus, Echovirus 12 (Rose and Sobsey, 1993; Shuval and Fattal, 

2003; Pinto et al., 2009). In this dose-response, a mean dose of 6 PFU is associated with 1% of the 

risk of moderate infection. The dose seems inversely correlated with the length of incubation (Istre et 

al., 1985) 

 EPIDE MIOLOGY  

 Cases in the general population:  

Hepatitis A occurs worldwide and causes about 1.5 million cases of clinical hepatitis each year 

(WHO, 2000). Seroprevalence is highly correlated to hygiene and sanitary conditions, the socio-

economic level and other development indicators (Jacobsen et al., 2004). Moreover, the 

likelihood and severity of symptomatic illness are age-related (WHO, 2000). In a low endemicity 

area, HAV infection is more frequently observed in adults, who are more likely to show clinical 

symptoms, be hospitalized and occasionally die, while infants and young children are usually 

asymptomatic (WHO, 2000).  In Italy, a progressive reduction in the prevalence of infection in 

children has been observed over the last decade, and the percentage of patients with severe 

clinical presentations has progressively increased (Gentile et al., 2009,). In France sero-surveys of 

French military recruits, at a mean age of 21.2 years, declined from 50% in 1978 to 11.5% in 1997 

in young adults (Joussemet et al., 1999). The surveillance of acute hepatitis A has been based on 

mandatory notification since November 2005 in France. The incidence of reported cases of 

hepatitis A (notification rate) was as low as 2.2/100,000 in 2006, 1.6/100,000 in 2007, 

1.97/100,000 in 2010 (InVS 2012). Foreign travel is suspected to contribute to 30% of cases. In 

2010 33% cases were linked with outbreaks. A new serological survey confirmed the low level of 

seroprevalence (Lepoutre et al., 2011). In developing countries with very poor sanitary conditions 

and hygienic practices, most children (90%) have been infected with the hepatitis A virus before 
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the age of 10; In France seroprevalence around 10 years is around 6%. A seasonal pattern of 

incidence can be described with the return of foreign travelling in Autumn (InVS, 2012). 

 Outbreaks:  

Foodborne outbreaks are found to be on average, between 5-6 % of all outbreaks (Mead et al., 

1999, Scallan et al., 2011). Raw seafood is a known source of hepatitis A outbreaks in France 

(Guillois et al., 2009) and abroad (Desenclos et al., 1991, Conaty et al., 2000; Shieh et al., 2007).  

Epidemics related to contaminated food or water can erupt explosively, such as the epidemic in 

Shanghai, attributable to the ingestion of raw clams in 1988 that affected about 300 000 people 

(Halliday et al., 1991). In France, two hepatitis A outbreaks linked to oyster consumption were 

identified in 1999 (33 identified cases) and 2007 (111 identified cases) (InVS, 2007; Guillois Becel 

et al., 2009) in the same location in Brittany.  However, other contaminated food products can be 

involved, linked to the oro-fecal pathways, in outbreaks such as fruits (dried tomatoes) or 

vegetables (Gallot et al., 2011; Calder et al., 2003; Dentinger, 2001). 

Cooked foods also can transmit HAV if the temperature during food preparation is inadequate to 

suppress the infectivity of the virus. From frozen imported clams (Peroo), slightly cooked, two 

outbreaks were associated in Spain (Bosch et al., 2001). One in 1999 affected 184 patients 

(lasting 3 months). The second one in 2008, lasting 7 months affected 100 patients (Pinto et al., 

2009). 

Food can also be contaminated after cooking, as it occurs in outbreaks associated with infected 

food handlers (Chirona et al., 2004, Rowe et al., 2009). Waterborne HAV outbreaks are 

infrequent in developed countries with well-maintained sanitation and water supplies. In the 

USA, Hepatitis A (22%) and Shigella (16%) were the two most frequently identified etiologic 

agents of waterborne outbreaks in the 1960s (Craun et al., 2006). During 1971–1990, the relative 

contribution decreased for hepatitis A (4%) and Shigella (6%), and for 1991-2002, HAV relative 

contribution to waterbone outbreaks was around 2/207 (less than 1% with 56 cases in total) 

(Craun et al., 2006).  

IM M U N I T Y  A N D  S U S C E P T I B I L I T Y  

A single serotype of HAV has so far been reported. Immunity is protective whatever the genotype 

(among the 6 reported) is of the first infection, and immunity is considered lifelong. 

Susceptibility-resistance 

No particular genetic resistance or susceptibility has been detected.  

Vaccine 

Vaccine is used to efficiently protect an exposed population. Some new variants detected in a 

population at risk could escape the protective effect of available vaccines (Perez-Sautu et al., 2011). 

RE S I S T A N C E  I N  E N V I R O N M E N T  

HAV was found to be very resistant. Because a laboratory strain can be cultivated, the 

survival of infectivity was confirmed experimentally on this particular strain. 

DE T E C T I O N -Q U A N T I F I C A T I O N  I N  S H E L L F I S H  
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Cell culture is feasible but very difficult and in particular is not efficient routinely for wild types of 

HAV. The main way to detect (and quantify) is real-time RT-PCR, without any confirmation of 

infectivity. 

 

1.3.3.  COMPARI SON BETW EEN HAV  AN D NOV  BI OLO GI CAL 

CHARACTERI STI CS  

 

In summary,   HAV and norovirus have some characteristics in common: 

- The fecal oral transmission is the main pathway for HAV and NoV, highly resistant in the 

environment, with same food products at risk, in particular shellfish, vegetables and drinking 

water. 

- Lack of cell culture, makes the evaluation of contamination classically made by real-time RT-

PCR. The contamination is expressed in genomes, and no way is available to estimate the 

relative infectivity of these genomes 

- In comparison to foodborne bacteria, no multiplication is feasible in food.  

- Both have a seasonal pattern peak of incidence. In winter for NoV and in autumn for HAV 

(linked to travel acquired cases) (InVS, 2011). 

 

HAV and NoV have some important differences: 

- High diversity of strains and no long protective acquired immunity for NoV.  

- Lesser diversity of strains and one serotype for HAV, causing life-long or quasi life-long 

protective immunity, and making vaccine efficient for HAV. 

- Difference of mechanism of susceptibility in humans, for NoV linked to the affinity and 

presence of specific receptors, linked to classical antibody immunity for HAV 

(seroprevalence in the population). 

- High infectivity at low doses is suspected for NoV but not for HAV. 

- The annual incidence is very high for NoV, not for HAV. 

- Excluding global immunodepression situations, susceptibility is different with age for HAV, 

in general less for NoV. 

- Asymptomatic excreting cases are identified and important source of transmission for HAV, 

but not for NoV. 

- Case fatality rate is stronger for HAV than for NoV. 

 

These differences can explain why both viruses were kept for modeling purpose, with their 

own characteristics. 

1.4.  CONCEPTUAL FRAMEWORK AND MODELING APPROAC H  

 

Globally foodborne public health impact cannot be easily and precisely estimated from 

epidemiological data, and can vary in space and time (Hardnett et al., 2004; Vaillant et al., 2012a)., 
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2004. Moreover the foodborne pathway can be correlated to from other transmission, by example 

person to person or environmental transmission (contact with contaminated surface. Then, it is not 

feasible to easily predict the public health impact when setting quantitative limits of contamination 

in food or waste water.  

Environmental studies give the level of contamination in oysters observed with foodborne outbreaks 

(Lowther et al., 2012a and b), but do not explain the mechanisms involved (how oysters were 

contaminated, what was human consumption, is there other transmission pathway possible).  

A modeling approach in a limited context can explore easier these mechanisms. A quantitative risk 

assessment can give an idea of the link between the food contamination and foodborne cases. 

Dynamic modeling can take into account inter -human transmission.  

Our efforts focused on a coastal situation, with HAV and NoV contaminating shellfish, because all the 

parameters we need to describe were present.  

The conceptual framework we tried to study in this PhD is summarized, for a HAV situation, in Figure 

3, but can be easily extrapolated to NoV. 

   
 

 

FIGURE 3:  CONCEPTUAL FRAMEWORK OF THE PHD, ILLUSTRATED FOR HAV SITUATION  

Legend: In blue the transmission pathway in human and in the environment under 

study; in orange the surveillance; in green, the modeling proposal 
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The Figure 3 illustrated the conceptual framework, with the inter-human and foodborne 

transmission pathways. Only one foodborne pathway is considered, the oysters contamination and 

consumption. The feco-oral contamination of other products such as water supply or vegetables is 

considered negligible. The consumption of shellfish by the coastal population is supposed to be local. 

The contamination of shellfish is considered to originate from the coastal population. Thus the 

system is quite closed, except for some population moves, for touristic, travelling or migrating 

purposes, which can export or import the disease. 

The different states of individuals are described as "S" for susceptible, "E" for exposed or infected, "I" 

for infectious (symptomatic or not for HAV) "R" for Immune, and "D" for Dead (HAV situation), in a 

classical SEIRD dynamic system. Infection can occur from direct or indirect transmission with a 

symptomatic or asymptomatic case or from consumption of contaminated food. The description of 

real outbreaks shows that this framework can be based on real observations (Guillois-Becel et al., 

2009; Halliday et al., 1991). Modeling this situation was done for HAV (Ajelli et al., 2008). The role of 

environmental reservoir with feco-oral pathway is described for other pathogen, such as wells or 

water for cholera by dynamic modeling (dyn. model. in Figure 3) (Hartley et al., 2006; Righetto et al., 

2012). However, the pathway between infectious individuals, rejecting contaminated stools, to 

shellfish contamination and the risk of infection through food consumption  is generally a blackbox, 

not taking into account, in particular, the classical triad data of contamination, consumption, and 

related dose response used in QRA (Ajelli et al., 2008) (QRA in Figure 3). It is partly justified by the 

objective, focusing the safety management approach on the interruption of interhuman transmission 

through early detection (physician surveillance), improving hygiene practices, social distancing or 

vaccine uses (Ajelli et al., 2008). Only one paper, relating to foodborne viruses, describes the cycle 

from infectious humans to sewage contamination, in order to investigate the efficiency of monitoring 

Poliovirus in sewage water, with different situations of epidemics in the population (Ranta et al., 

2001).  

Eisenberg describes and estimates using a dynamic deterministic approach, the overall cycle for 

enterovirus and Cryptosporidium for a drinking water or a bathing situation (Eisenberg et al., 1998; 

2004; 2005). On the other hand, a quantitative risk assessment for viruses linked with contamination 

of food products, is rarely done using a probabilistic approach (see part II). 

This is the methodological innovation of this work in order to investigate the improvement of using 

QRA within an epidemiological context. Then, the efficiency of management strategies such as the 

monitoring of the shellfish production area or the monitoring of shellfish safety (Figure 3) can be 

investigated more precisely. The first part of this PhD will deal with that approach. 

Dose-response is a crucial step in QRA. In particular it is needed in food safety assessment for setting 

maximum limits of contamination in food products. No validated dose-response with observed 

human cases was available for QRA for NoV, genogroup II, and the most frequent in human 

population. Available data from oyster outbreaks were used, in a Bayesian network, in order to fill in 

this data gap. 
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Finally, the impact of forbidding oyster consumption, whenever abnormal contamination is detected, 

can be estimated with a predicted attack rate, as it is usually done in QRA analysis. But it is possible 

to further investigate trying to evaluate the public health impact including secondary inter-human 

transmission, using a stochastic dynamic modeling. This is the purpose of the third part of this PhD. 

 
1.5.  OVERALL AIM OF THIS STUDY  

 

The main objective of this study is to propose a better estimation of the oyster contribution of 

viruses, and to suggest ways to limit their impact. Norovirus is first cause of foodborne gastro 

enteritis (Karst et al., 2010, Batz et al., 2012). HAV can be a re-merging problem, in high income 

countries, in particular for human outbreaks, involving elderly people less immunized than before. 

Those two viruses are considered to be main foodborne viruses to consider (InVS, 2004). 

In France, shellfish as food product is identified as the third contributor to foodborne outbreaks, 

after complex food, and other seafood product.   Furthermore, for studying the potential impact and 

mechanisms involved in foodborne outbreaks and potential epidemic impact, we chose to focus our 

efforts to describe the situation in a coastal human population, potentially concerned by HAV and 

Norovirus epidemics, close to a shellfish production area. The consumption of contaminated shellfish 

is considered to be a plausible pathway of transmission of the disease for this targeted population. 

This situation is not only theoretical. Two coastal epidemics of HAV were linked to local consumption 

of contaminated shellfish in Brittany (France) (InVS, 207). In Italy and Australia the potential impact 

of HAV contamination in shellfish was investigated (Conaty et al., 2000, Lopalco et al., 2005). For 

norovirus, the detection of contamination in shellfish areas is also problematic for risk managers. 

Lastly from initial outbreaks with the first cases linked to food contamination, secondary cases and 

epidemics may occur (Halliday et al., 1991). 

Considering the feco-oral transmission mean from coastal population to shellfish, we also consider 

management strategies and their potential impact on epidemiological situations. The Feco-oral 

pathway of transmission, involving food and inter-human transmission is not limited to foodborne 

viruses, and concerns other pathogens, such as cholera. Because pathways of transmission are not 

independent of each other we will also take into account the contamination of food as well as the 

epidemiological situation in the population and the secondary cases in the third part of this PhD 

We chose a quantitative and probabilistic approach in order to quantify as much as possible, the 

variability effect (and uncertainty for part II and III). A modeling approach enables us to better 

understand biological mechanisms involved and to investigate their plausibility and consequences for 

management strategies. Specifically, among the different management strategies, the effect of 

setting a maximum limit of contamination in shellfish, the usefulness of monitoring and management 

of shellfish safety and the potential impact of forbidding the consumption of shellfish during a 

particular period will be investigate with a probabilistic analysis. 
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CHAPTER II:  QUANTITATIVE  RISK  

ASSESSMENT  OF  FOOD  BORNE  VIRAL  CASES   
 

II.1.  INTRODUCTION    
 

The need for an objective tool to improve food control system and harmonize international trade in 

foods was at the origin of quantitative risk assessment, giving numeric values to compare risk 

(FAO/WHO 1995; Codex alimentarius Commission, 2003; Vose 1998; Haas and al., 1999). 

Risk is defined as the probability and severity of an adverse event. For food safety, it can be identified 

as the probability of illness conditionally to the exposure, by contaminated food with an identified 

hazard1 (Codex Alimentarius Commission, 2003). 

To summarize, organize and harmonize the procedure, the main different steps, from farm to fork 

were defined classically by (Haas et al., 1999): 

Hazard identification: “to describe acute and chronic human health effects associated with 

any particular hazard, including toxicity (...)” 

Exposure assessment: “to determine the size and nature of the population exposed and the 

route, amount and duration of the exposure”. 

Dose-response assessment or Hazard characterization: “to characterize the relationship 

between various doses administered and the incidence of the health effect.” 

Risk characterization: “to integrate the information from exposure, dose-response, and 

health steps in order to estimate the magnitude of the public health problem and to evaluate 

variability and uncertainty”.  

The Figure 4 shows the connections that can be established between these different steps. 
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FIGURE 4:  DIFFERENT STEPS OF QUANTITATIVE RISK ASSESSMENT 

Legend: The product of consumption by concentration gives the ingested dose, that is the result of 

exposure assessment, using the dose in dose-response relationship (given by hazard 

characterization), the probability of infection or disease can be evaluated (risk characterization). 

To protect consumers and compare sanitary effect of different management strategies, microbial risk 

assessment provides a comprehensive and reliable scientific prospective tool (WHO, 2001; WHO, 

2011). 

Increasing number of studies using Quantitative microbial risk assessment (QMRA) were published 

during the last decade (Delignette-Muller et al., 2008; Mokhtari et al., 2009; Pouillot et al., 2004). 

However most of them are dealing with bacteria or parasites, and few with viruses (EFSA, 2011; 

Mokhtari et al. 2009) even if, one of the older published paper of quantitative risk assessment  was 

dealing with viruses (Regli et al., 1991). Bacterial growth is a sensitive subject for agro industrial 

sector, with the preparation and storing of complex or fresh food products (Bemrah et al., 1998; 

Havelaar et al., 2004; 2007; Albert et al., 2005; Rieu et al., 2007; Albert et al., 2008; Pouillot et al., 

2009, 2011, 2012; Nauta et al., 2012). 

The pertinence of quantitative risk assessment lies also in its ability, like any other modeling to 

reflect the complexity of the phenomena under study, in its necessary (essential) components (Vose, 

1998, 2000).  
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Variability is irreducible and represents the heterogeneity of the studied biological population. By 

example, the consumption of oysters for human French population can be defined with its variability 

between consumers. However if the population under study changes, variability changes also.  

Probabilistic approach is then needed to estimate this variability (Vose, 1998). Point estimates, taking 

into account mean (or median) value at each step or risk assessment, are not in general used with 

the generalization of monte-carlo simulation, making easier probabilistic approaches. The variability 

is sometimes not well described by a normal distribution. In this case median and mean can be not 

similar (by example for Log-normal distribution). Moreover, if relationships are not linear, point 

estimate of the resulting mean value is not correctly estimated. 

 

 

 

 

 

 

 

 

 

 

Finally it can be interesting to investigate extreme percentiles of exposure, or to compare results 

with observed data (which is difficult with point estimate), or to take into account correlations 

between variables. For all these reasons, probabilistic estimates are needed in particular for complex 

QRA. 

Uncertainty is defined as a lack of perfect knowledge of a given variable. This lack of knowledge can 

be reduced by further experimental (or field) data, or by increasing the sampling size of 

investigations. Uncertainty can also be estimated by probabilistic distributions (Vose, 2000). 

With probabilistic approaches, and the use of Monte-carlo simulations, the variability and the 

uncertainty of the results can be evaluated in the same QRA (Vose et al.1998). 

The separation of uncertainty and variability of model parameters is now recommended in risk 

assessment and is described as second order risk assessment (Nauta et al., 2000, Vose, 2000, Pouillot 

et al., 2004, Rimbaud et al., 2010). The result of such modeling is informative because it gives 

information of what can be reducible (uncertainty) by future research, and also separate and show 

quantitatively what we know and what we don’t know. 

If time before consumption of a food product  can be described by a normal 
distribution  
t ~ N (mean=15, sd=3) 
If initial concentration of a pathogen in this product can be described with a 
Poisson distribution of parameter, mean,  
C0 ~P(10) 
If decreasing of the concentration in time is described by the relation 

C0.exp(-(T-To)/T90) wit To =0 and T90=3 

With point estimate the mean concentration at consumption is : 
Mean (C)=10.exp(-15/3)=0.067 
With 10 000 sampled values of t and of C0 in their respective distribution 
the mean concentration at consumption is : 
mean (C)=0.011 
If values of initial contamination are linked with the duration before 
consumption, the mean of c , again, would be different. 
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The way to do this is first to determine what parameters are linked to variability and uncertainty. 

Sometimes it can be complex: by example the infectivity of virus in a food matrix can be a parameter 

describe by a variability distribution, by example by a Beta (α, β) distribution, but the parameters of 

this beta can be not well known. The uncertain distribution of α and β parameters that can be 

defined as hyperparameters. The method and the way to present the method were inspired from 

other work by (Pouillot, 2006) and (Crepet, 2007). 

The number of virus in genome, Ng, in a meal is described by a Poisson distribution:  

Ng~P(10). 

The percentage of infectious viruses is given by a Beta distribution  

Prinf~Beta(α, β) 

The resulting number of infectious virus for a known value of α and β is described by a Beta-Binomial 
distribution, the number of trials is given by Ng and the probability of success by Prinf: 

Nginf~Bin (Ng, Prinf) 

Hyperparameters distributions of α and β can be estimated by Bayesian inference (there’s other way 
to do, not detailed here). Then joined posterior distributions can be sampled. An example of 
hypothetical sampled values of those hyperparameters, describing their uncertainty is given in the 
Table above: 

simulation α β 

1 10 30 

2 5 10 

k 2 8 

.. 2 10 

N 3 4 

 

For each simulation k, from 1 to K, αk and βk are random values of hyperparameters α and β, for 
different distribution of variability of infectiousness Beta (αk, βk). 

For each simulation of uncertainty,  a row is randomly selected, say k, sampling one value of the 
distribution for α, αk and one value of β, βk are selected. 

Then for each iteration u of variability, from 1 to N we sample randomly a value from prinf(u) ~   

Beta(αk,βk), of Ng(u), and of Ninf(u). 

For one value of αk, βk, by N monte-carlo simulations (usually thousands) of variability, we obtain a 
distribution for Ninf, and it is possible to calculate statistics, such as quantiles, or moments such as 
mean or variance.  

To illustrate this we simulate one thousand simulations with αk= 2, βk=8. We obtain for those 
particular values of uncertainty, the distribution of concentration of infectious viruses (variability) 

mean 2.5 th percentile median 97.5
th

 percentile α β 

1.97 0 2 6 2 8 

 

Of course the sampled values of α and β should be changed in order to explore the effect of 
uncertainty on results. Then in a second step, new sample values for α and β are randomly selected, 
and with those new values of hyperparameters, new estimate of statistics of the distribution of 
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variability are calculated. Simulating K times this two level with enough Monte-Carlo simulations, 
(usually thousands), a two-dimensional table is obtained: 

 

mean 2.5 th percentile median 97.5
th

 percentile α β 

1.97 0 2 6 2 8 

1.68 0 1 6 2 10 

…. … … … … … 

 

median, IC 95 of 
the mean 

median, IC 95 of the  
2.5 th percentile 

median, IC 95 of 
the  
median percentile 

median, IC 95 of the  
97.5

th
  percentile 

 

From results of this two-dimensional table, different statistics (in particular quantiles) can be 
calculated for the mean, and the different percentiles of the distribution representing variability.  

The Figure 5 is showing the structure of the little example developed here 

 

FIGURE 5: EXAMPLE OF SECOND ORDER MODELING 

Legend: circles are describing random variables and arrows stochastic relationship between those 
random variables.  

Usually 95% quantiles are representing the uncertainty credible interval (95% CI) about the mean or 
quantiles of the variability distribution. The median of the mean (and of quantiles) are given as usual 
estimators of results of second order risk assessment (Pouillot et al., 2004; Crepet et al., 2007, 
Rimbaud et al., 2010). 

In a more complex QRA different sources of uncertainties can be identified. In this case, each 
iteration of uncertainty is taking one value of each distribution of all uncertain hyperparameters, 
respecting, whenever it is known, correlations between them, if they are not independent. 

However another dimension of uncertainty can also deal with model structure. The causality 

pathway is not always very well-known, and the biological mechanisms can be partly known. Other 
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hypothesis, other scenarios or other model can be compared in this case (known and described in 

what- if scenarios) (Vose, 2000). 

Validation can be done, by comparison with other sources of information, and generally finding the 

same order of magnitude between prediction and observation, in a same context, is found 

satisfactory (Haas et al., 1999). However epidemiology is not an experimental and reproducible 

context, and then validation or reproducibility of an epidemiological model in another context is far 

to be trivial (Bonté, 2012). 

Sensitivity analysis is done for establishing main factors (input) responsible of the main changes of 

the results (output) (Saltelli et al., 2002). Different approaches are available (Mokhtari and Frey, 

2005). Probabilistic models are characterized by difficult statistical constraints such as non linearities 

and interaction between inputs (Frey and Patil, 2002). Sobol’s method is now one of the most used, 

because the importance of input is including interaction, non linear and non monotonic effect 

(Mokhtari and Jaykus, 2009; Lurette et al., 2009; Ellouze et al., 2010; Nauta et al., 2012). 

 

II.2.  LITERATURE REVIEW OF QRA FOR FOODBORNE 

VIRUSES  
 

Published quantitative risk assessment dealing with viruses are given in the Table 3. The aim of this 

list is not to be exhaustive but to include main papers about virus risk assessment. There’s no 

probabilistic risk assessment for shellfish viral risk, no complete risk assessment using second order 

risk modeling.  

The few number of QRA for viruses is probably due to the lack of reliable dose-response for the main 

pathogen involved in food (NoV-HAV), the lack of the reliable and inexpensive way to measure the 

dose of pathogen (not indicator or surrogates) (RT-PCR technique were expensive), and the lack of 

feasibility of measurement of infectivity for Nov and HAV (EFSA, 2011, 2012; FAO/WHO; 2008).  

Before the publication of Teunis (2008), the dose-response for norovirus or all viruses was 

substituted the use of Rotavirus dose-response (Regli et al., 1991, Rose and Sobsey, 1993), and for 

HAV by the use of the surrogate Echovirus 1, 2 (see part III.2). 

The question of aggregation or clumping of viruses is treated in some studies, more often with non 

homogenous distribution, negative –binomial use to describe the contamination in food matrix 

(Westrell et al., 2006).  

Then our work proposed in the quantitative risk assessment for HAV in shellfish is the second one 

dealing with shellfish since 1993 (Rose and Sobsey, 1993), using probabilistic, second order, risk 

modeling. Moreover, the proposed work includes the quantitative estimate of efficiency of different 

monitoring /management strategies of shellfish areas of production, in particular to avoid viral 

contamination in oysters, on the relative risk for human consumers, which was not done before.  



 

38 

 

 
TABLE 3:  PUBLISHED QUANTITATIVE QRA 

Reference Food Virus Part of QRA stochastic approach sensitivity 
analysis 

validation* remark 

    probabilistic second 
order 

no   

Regli et al., 
1991 

drinking water rotavirus complete QRA no no no no  

Haas et al., 
1993 

drinking water rotavirus complete QRA partial no no no  

Rose & 
Sobsey, 
1993  

shellfish HAV and 
enterovirus 

complete QRA no no no comparison with 
attack rate 

 

Gerba et al 
1996 

drinking water rotavirus complete QRA no no no no  

Crabtree et 
al., 1997 

drinking water adenovirus complete QRA no no no no  

Petterson et 
al., 2001 

salad crops rotavirus complete QRA partial no no no through wastewater irrigation, 
clumping exposure effect 

Shuval et 
al., 2003 

shellfish / 
bathing 

HAV and HEV complete QRA no no   DALY cost  

Hamilton et 
al., 2006 

raw vegetables 
(cucumber, lettuce 

rotavirus complete QRA yes no yes(spearman
) 

no through irrigation with 
reclaimed water 

Masago et 
al., 2006 

drinking water norovirus complete QRA partial no no no infection and DALY cost 

Pinto et al., 
2009 

coquina clams HAV complete QRA no no no partial dose-response estimate 

Mokhtari 
and Jaykus, 
2009 

retail food  Norovirus Exposure model yes no yes no  

Mara and 
Sleigh 2010 

lettuce norovirus complete QRA yes no no no through irrigation with waste 
water (daly cost) 

Schijven et 
al., 2011 

drinking water rotavirus (and 
other 
campylobacter, 
giardia) 

complete QRA yes no no no neg binomial exposure 
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II.3.  QRA FOR HEPATITIS A  VIRUS  
 

II.3.1.  PR ES EN TATION  OF T HE CON T EXT  O F P APER  

 

The objective of the work is to investigate the relative efficiency of monitoring and management 

systems in case of contamination of shellfish by HAV. The method used is second order risk 

assessment, in order to propagate separately variability and uncertainty. 

This subject emerged in France after two shellfish borne (highly suspected) outbreaks that occurred 

in the same area in Brittany in 1999 and 2007 (Guillois-Becel et al., 2009). In order to prevent 

possible next outbreaks, a regular monitoring, based with HAV genomes, was done in the area of 

shellfish-fishing of the shore. Without any specific regulation, no particular monitoring was done for 

shellfish production, except the regular microbiological exams. In this context the signification of HAV 

genome detection and its effectiveness for monitoring and management purpose was asked by the 

ministry of agriculture to ANSES (ANSES, 2010).  

The work realized for the group of expert was an opportunity to begin and illustrate the usefulness of 

the PhD work. However, this kind of question is not specific to the particular context in France, and in 

particular in Brittany, but could also be raised in other detected contaminated areas, in particular 

with HAV, such as in Australia or in the South of Italy (Puglia area) (Conaty et al., 2000; Lopalco et al., 

2005). 

I I .3.2.  PUBLI SHED P AP ER  
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ABSTRACT 

It is not yet known whether using the new molecular tools to monitor the hepatitis A virus 

(HAV) in shellfish production areas could be useful for improving food safety. HAV 

contamination can be acute in coastal areas, such as Brittany, where outbreaks of hepatitis A 

have already occurred, and have been linked to consumption of raw shellfish. A quantitative 

probabilistic approach was carried out to estimate the mean annual risk of hepatitis A in a 

population of adult raw oyster consumers. Two hypothetical scenarios of contamination 

were considered, the first for a rare and brief event, and the second for regular and 

prolonged episodes of contamination. Fourteen monitoring and management strategies 

were simulated. Their effect was assessed by the relative risk reduction in mean annual risk. 

The duration of closure after abnormal detection in the shellfish area was also considered. 

Among the strategies tested, results show that monthly molecular (RT-PCR) monitoring of 

HAV is more useful than bacterial surveys. In terms of management measures, early closure 

of the shellfish area without waiting for confirmatory analysis was shown to be the most 

efficient strategy. When contamination is very short-lived and homogenous in the shellfish 

production area, waiting for three negative results before re-opening the area for harvest is 

time-wasting. When contamination is not well-identified or if contamination is 

heterogeneous, it can be harmful not to wait for three negative results. Finally, any 

preventive measures — such as improving sewage treatment or producing shellfish in safer 

areas — that can reduce contamination by at least two log10 units are more efficient and 

less costly. Finally we show that controlling and managing transferred shellfish is useful and 

can play an important role in preventing cases. Qualitative results from HAV monitoring can 

advantageously supplement other measures that improve the safety of shellfish products in 

exposed areas. 
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INTRODUCTION 

Hepatitis A is generally an acute, self-limiting liver infection transmitted by a RNA 

picornavirus, the hepatitis A virus (HAV). Hepatitis A occurs worldwide and causes about 1.5 

million cases of clinical hepatitis each year (34). Seroprevalence is highly correlated with 

hygiene and sanitary conditions, the socio-economic level and other development indicators 

(13). Moreover, the likelihood and severity of symptomatic illness are age-related (34). In a 

low endemicity area, HAV infection is more frequently observed in adults, who are more 

likely to show clinical symptoms, be hospitalized and occasionally die, while infants and 

young children are usually asymptomatic (34). For example, in Italy, a progressive reduction 

in the prevalence of infection in children has been observed over the last decade, and the 

percentage of patients with severe clinical presentations has progressively increased (9, 27). 

In France, serological surveys of French military recruits show a decline in HAV 

seroprevalence from 50% in 1978 to 11.5% in 1997 (14). Surveillance of acute hepatitis A has 

been based on mandatory notification since November 2005 in France. The incidence of 

reported cases of hepatitis A (notification rate) was as low as 2.2 per100,000 population in 

2006 and 1.6/100,000 population in 2007 (5).Therefore food borne outbreaks with severe 

cases can occur. 

Infection is generally acquired via the fecal-oral route either through person-to-person 

contact or ingestion of contaminated food and water. Bivalve mollusks filter large volumes 

of water and thus may concentrate contaminants from polluted water receiving human 

sewage within their edible tissues (15, 19, 21). Even if raw sewage is treated, current water 

treatment practices are unable to provide virus-free sewage effluents (20). Regulations for 

shellfish production areas are based on acceptable levels of fecal indicators in shellfish 

tissues (European regulation No.854/2004/EC European and No 2073/2005/EC) such as E. 

coli. Unfortunately, the presence of E. coli is not tightly associated with the presence of 

viruses in areas classified in level A and B. This lack of association is due to differences in the 

survival-removal rate between E. coli and viruses in shellfish (20). The traditional purification 

duration of two days, appropriate for E. coli, is too short for virus decontamination (17, 20). 

Raw seafood is a known source of hepatitis A outbreaks in France (10) and abroad (6, 11, 

29). However, other contaminated food products can be involved in outbreaks such as fruits 

or vegetables (8). In France, two hepatitis A outbreaks linked to oyster consumption were 

identified in 1999 (33 identified cases) and 2007 (111 identified cases) in the same location 

in Brittany (10). Since then, regular monitoring using quantitative real time RT-PCR to detect 

HAV has been added to the shellfish monitoring program for E. coli (1). Thus two questions 

arise: (1) how do shellfish monitoring and management strategies improve the safety of 

shellfish consumption in HAV-contaminated areas? (2) what is the cost incurred for shellfish 

farmers  in terms of duration of closure of the shellfish production area ? 
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The aim of this study was to answer these questions, using a quantitative risk assessment 

approach (QRA), considering all available data and knowledge. The first quantitative risk 

assessment in shellfish with HAV was published in 1993 (26). Recent deterministic QRA 

(point estimates) have been done for HAV contaminated coquina clams as estimated from 

quantitative RT-PCR (23). In contrast, our approach is a probabilistic, second-order risk 

assessment that uses Monte Carlo simulations, thereby separately propagating variability 

and uncertainty of the model input variables (25, 32) to compare the efficiency of different 

management strategies.  

MATERIALS AND METHODS 

Baseline model parameters for a Quantitative Risk Assessment approach. 

Four steps are necessary to assess a risk: (1) estimation of the contamination in food 

products; (2) estimation of consumption patterns; (3) exposure assessment by combining (1) 

and (2); (4) dose-response assessment. Parameter definition and the distribution and 

modeling of each variable are summarized in Table 4. For one individual and for a given day 

of the year, dose exposure can be evaluated by the product of oyster contamination times 

the total amount of edible oyster tissue eaten. The lapse of time between harvesting and 

consumption is most often short in coastal areas close to the production area and was not 

taken into account.  

Estimation of contamination with a realistic number of genome copies per gram shellfish 

digestive tissue was done using two hypothetical scenarios, because observed quantified 

data of contamination of shellfish by HAV are rare. Values taken from an outbreak linked to 

coquina clams in Valencia, Spain, corrected for extraction and enzyme efficiencies, were 

around 230-1800 copies per gram of digestive tissue (23). The maximum uncorrected value 

observed in Brittany with monthly sampling, is around 1970 copies. Values corrected for 

extraction efficiencies (between 50% and 10%) and for enzyme efficiencies (around 90%) lie 

between 4,400 (1970*100/50*100/90) and 22,000 (1970*100/10*100/90) copies in grams 

of digestive tissue (1). Monitoring of E. coli in either scenario gives results in agreement with 

European directives for Class B areas. 
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Parameter Description/Value Model/distribution Reference 

i index for individual i   
j  index for the day of the year   
J0 First day of contamination in 

scenario 1 
  

CinitVHA1J Incidental contamination for 
scenario 1 in genomes/g 
digestive tissue on day j 
T90 VHA =28 days 
 Cmax=25,000 

VHATJJ

jinitVHA CC 900 /)(

max1 10  17,23,1 
assumption 

C E. coliJ Incidental contamination by E. 
coli in scenario 1 per 100 g 
edible flesh day j 
T90 E. coli = 2 days 
Cmax=46,0000 

ColiETJJ

ColijE CC .90/)0(

max. 10  
24 
assumption 

CinitVHA2J Contamination for scenario 2 in 
genomes/g digestive tissue on 
day j  
Min=Log10 (10) 
Max=Log10 (50,000) 

Max)n,Uniform(Mi

2 10~initVHAC  23,1 
assumption 

C E. coliJ Contamination by E. coli in 
scenario 2 per 100 g edible flesh 
on day j  
Min=log10(50) 
Max=log10(5,000) 

Max)n,Uniform(Mi

. 10~ColijEC  
assumption 

Noj Noj:  Number of copies in a 
single oyster 

NinitVHAj :Number of copies in 
digestive gland on day j 

Wdg  : mean digestive gland 

weight  
R=5 % in tissues other than 
digestive gland  
  

WdgCN initVHAinitVHA j
 

),1( RNNegbinNNo
jj initVHAinitVHAj  

1 
 
 
 
 
 
1 

Nioj  Number of Infectious Copy 
In single oyster 
Inf:Infectiosity=1/60 

inf),Bin(No~ jjNio  23 

CgedibleJ Concentration of infectious 
genomes per gram of edible 
oyster tissue on day J for both 
scenarios 

Wo  : mean oyster weight  

Wo

Nio
C

j

gediblej  

 
 
 
 
1 

Cij Consumption for individual i on 
day j in grams of edible tissue 

Empirical distribution (see text) 3, 2, 7 

Pij Probability of hepatitis in 
individual i on day j 
α and β are correlated bootstrap 
replicates that vary with each 
uncertainty iteration 
α=0.373(maximum likelihood 
estimate) 
β=186.4(maximum likelihood 
estimate) 

Pij=BetaBin model(Doseij, α ,β) 
With 

gediblejijij CCDose  

 

28, 23 

Pan(i) Annual probability of hepatitis in 
individual i 

365

1

)( )1(1
j

j

ijian PP  
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TABLE 4:  DEFINITION AND DESCRIPTION OF VARIABLES FOR QUANTITATIVE HEPATITIS A 

RISK ASSESSMENT 

 

Oyster contamination scenarios. 

The first scenario considers very short-term contamination, such as sudden and heavy 

rainfall and contaminated coastal land run-off, brief episodes involving the treatment of 

contaminated raw sewage, sewer overflows, or occasional contamination linked to tourist 

activities.  Initial contamination, tides, currents, and environmental factors all contribute to 

the final concentration in oysters and are specific to each coastal area and situation. We 

chose not to set values of contamination from the land-based source, but set them directly 

in oysters with range values in the same order of magnitude as real observations (1, 23). We 

used initial contamination and maximum values of 25,000 HAV genome copies per gram 

digestive gland (Figure 6(A)). For E. coli, initial contamination and maximum values as 

tolerated for rare incidents in Class B areas are 46,000 genomes copies per100 g of oyster 

flesh (Figure 6(B)). Two incidents of less than 24 hours with fecal HAV contamination of the 

shellfish production area were set to occur during a winter and a summer period. We 

assumed that the maximum contamination level in shellfish is reached in 24 h or less, in 

particular for HAV (1). Then both values decay in agreement with their T90 (i.e. time 

necessary to inactivate 90 % of the original amount) of 28 days for HAV (17) and two days for 

E. coli (24). For E. coli, five days after the incident, concentrations per 100 g of edible flesh 

are described by a uniform distribution between 230 and 4,600 genome copies. This 

contamination scenario is plotted in Figure 6(A) (HAV) and in Figure 6(B) (E.Coli). 
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FIGURE 6. THEORETICAL LEVELS OF CONTAMINATION FOR HAV (A) AND E.COLI 

(B) FOR SCENARIO 1 

 

 

The second scenario of contamination is related to an endemic situation, when, for example 

an autochthonous source of contamination of the coastal area is not detected for a long 

period of time. In this scenario, shellfish contamination by HAV is simulated twice a year, for 

longer periods and at higher levels than in the first scenario, with each episode lasting 90 

days (Figure 7(A)). For comparison, excretion of HAV in feces is intermittent and its duration 

is estimated around 80 days by RT-PCR, for a single individual (between 57-127 days) (1). 

During the period of contamination, concentration per g of shellfish digestive tissue was 

chosen to vary between 10 and 50,000 genome copies (Figure 7(A), Table 4). Between 

contamination periods, HAV concentration is null. Concentrations of E. coli were set to 

within 50 and 5,000 genome copies per 100 g of edible flesh throughout the year (Figure 

7(B)).  
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Figure 2.Theoretical levels of contamination for HAV (A) and E. coli (B) for scenario 2 

 
FIGURE 7:  THEORETICAL LEVELS OF  CONTAMINATION FOR HAV (A) AND E.  COLI (B)  FOR SCENARIO 

2 

For both scenarios, we assumed that contamination is homogeneous in the shellfish 

production area. The two episodes of contamination were modeled to occur in the winter 

and summer season, to account for the seasonality of consumption. 

HAV, like other viruses, is concentrated in the digestive tissues, target of the method of 

detection-quantification (23). Ninety to 95% of HAV genome copies are estimated to be 

located in the digestive gland (1). Concentration in the digestive tissues is greater than any 

other edible oyster tissue (15). The relative weight of the digestive gland compared to all 

edible tissues is around 8% for typical commercial-sized oyster in France (1). The number of 

genome copies in the edible tissue of oyster was deduced from the number of copies in 
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digestive tissues (Table 4). The HAV risk assessment study published in 2009 estimated that 

one copy out of 60 genome copies is infectious (23).The same value was used here.  

Consumption data. 

Oyster consumption is localized spatially and temporally. Coastal areas close to shellfish 

production areas have higher consumption rates, particularly in adults. Three different data 

sets, CALIPSO (643 coastal consumers) (3), INCA (42 consumers) (2) and France AgriMer 

(oyster sales) (7) were combined into a single data set to obtain a daily representative 

sample of 1000 oyster consumers (men and women), older than 18 years, and residing in a 

coastal area. To illustrate this data set, the number of meals consumed per day for this 

population is given in Figure 8. Peaks of consumption occurred preferentially on weekends, 

during the year-end holidays (Christmas, New Year’s Day), and, more generally, during the 

winter. In this population, the overall mean portion size (single meal of oysters) is 138.27 g 

of edible oyster flesh (one oyster weighs between 10 and 20 g). For a coastal population of 

shellfish consumers, the average size of a meal is between 6 and 14 oysters. 

 
 

FIGURE 8:  FREQUENCY OF CONSUMPTION BY DAY  

legend: Distribution of oyster meals (maximum 2 per day for an individual) in a year, in a 

population of 1000 adults (older than 18 years, men and women) who frequently consume 

fish products and live in a coastal area 
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Hazard characterization. 

The Beta-Poisson dose-response of Echovirus 12, based on published data (28), was assumed 

to have the same infectivity as HAV (23, 26, and 30). QRA-predicted attack rates based on 

the dose-response of Echovirus 12 gave similar results as observed attack rates during 

observed outbreaks in Spain, compared to other dose-responses (by example 

Rotavirus,Poliovirus1 and 3) (23). Consequently, we chose to fit the Echovirus 12 dose-

response, using a Beta-Poisson model, to model HAV dose-response (12, 31); the uncertainty 

of parameters was estimated using a parametric bootstrap procedure (12, 25). The result is 

plotted in Figure 9 and maximum likelihood estimates for α and β are given in Table 4. 

Because we used simulated doses rather than the mean of a Poisson distribution dose, we 

used the Beta-binomial dose-response model with the parameter values of alpha and beta 

from the fitted Beta-Poisson model (33). 

 

 

FIGURE 9:BETA-POISSON DOSE-RESPONSE MODEL FOR H EPATITIS A 
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 management options 

Different factors were taken into account: (1) sensitivity of different kinds of monitoring 

systems on shellfish; (2) time necessary to obtain analysis results; (3) time to application of 

management strategies (detailed below); (4) other management strategies. Some of the 

parameters taken into account were considered to be subject to improvement (human 

management); others were considered unalterable due to technical reasons (sensitivity of 

RT-PCR, time to result analysis). Assumptions made on the analysis technique for HAV 

detection were specific to RT-PCR. The different management strategies and their key 

parameters are summarized in Table 5.  

 Two types of monitoring systems were considered: one using E. coli enumeration and one 

with regular monitoring for detection of HAV in oyster digestive glands (Table 5).  

Sensitivity of the monitoring system depends on the sensitivity of detection and the 

frequency of sampling. The sensitivity and specificity of E. coli enumeration techniques is 

assumed to be perfect. Abnormal E. coli levels were set to a value of more than 4,600 

genome copies per 100 g of edible flesh. The result of the HAV analysis for management 

purposes was interpreted only qualitatively: abnormal levels are defined by any positive 

detection of HAV (whatever the quantity) The specificity of RT-PCR for HAV detection is 

considered to be perfect (there are no published cases of cross-reaction with other biological 

species). Sensitivity of HAV detection takes the following parameters into account: from the 

original sample of 1.5 g (Vs) extracted from six oyster digestive glands, after an extraction 

efficiency of 50% (pextrac), enzyme efficiency of 95%, the final volume sample is 100 µl (VFS); 

five µl (final volume VF) is used for the RT-PCR reaction with a limit of detection of five copies 

(limit of detection, LD) (1, 4, 16). We assumed that the sample is homogenously mixed. In 

comparison with extraction efficiency, the enzyme efficiency was considered to be almost 

perfect and is neglected. For each sample analyzed, the probability of detection Pdetect is 

obtained from the HAV concentration (concHAV) per gram digestive tissue in the following 

way: N1 is the number of copies in 1.5 g of digestive gland, X number of copies in a final 

volume VF . 

),Bin(conc~ HAV1 extracts pVN  

)
V

V
pN1,1,-LDXCDF(Binom,-1~

FS

F
det ectP  

 

Where CDF is the Cumulative Distribution Function  

Then, event detection on a given day can be simulated using a Bernoulli distribution with 

Pdetect as the parameter. 
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For each day of the year, the event (detection /no detection) is evaluated for HAV 

monitoring. The day of sampling is chosen according to the criteria described below. 

Whenever event detection is 1, the chosen management strategy is applied. 

The monitoring for E. coli occurs monthly in agreement with European regulations. 

The frequency of monitoring for HAV was monthly (Table 2) or twice monthly (s2-15 in Table 

2). The start date was randomly chosen during the first month of the year (discrete uniform); 

thereafter, the frequency of sampling was systematically set to every 30 days (Table 5). The 

delay between sampling date and results was set to one day for E. coli and three days for 

HAV (short period). Then the delay between last sampling and confirmatory sampling was 

two days after the first sampling for E. coli and four days after the first sampling for HAV 

(when confirmatory analysis is requested).  The next sampling date, delay  between 

confirmatory sampling, and next sampling was five days for E. coli and set to four days for 

HAV (when confirmatory analysis is requested).  

Different management strategies can be applied for closing a shellfish production area and 

re-opening it. For reopening, two negative analyses at weekly intervals are requested for E. 

coli monitoring (application of regulations) (REMI). Two hypotheses were formulated for re-

opening the area with HAV monitoring, with confirmatory analysis (M1, M2, M3, L1, L2, L3) 

or without confirmatory analysis (S1,S2,S3) (Table 5). 

The final result of analysis (confirmatory, if requested) should result in the closure of the 

area. This decision was set, with a delay estimated between one day for E. coli and seven or 

14 days for HAV (Table 5). For HAV monitoring, to allow re-opening, three hypotheses were 

formulated, with one, two or three negative analysis results requested (Table 5). The time 

between the last negative requested sampling and re-opening of the area was set to two 

days for E. coli and four or 11 days for HAV monitoring (Table 5).  

Management strategies can also be applied to shellfish that are transferred from the 

contaminated area to other production areas for growing or finishing. We set the duration of 

shellfish production in the finishing area to 15 days, by definition free of HAV. If abnormal 

levels are detected in the area of origin after confirmatory analysis (such as “M2” monitoring 

in Table 5), controls should be performed on transferred shellfish (‘monitoring transfer’ type 

of management in Table 5). All samples transferred between the sampling date for 

confirmatory analysis until the re-opening of the area were checked (after the closure of the 

area. If positive results are found, and whenever results are still positive (sampling every 

seven days), oysters cannot be sold. Two negative results and a period of five days were 

required between the last negative result and consumption (not detailed in Table 5). For 

transferred shellfish, two management practices were identified. The first was 15 days of 

“purification” with no special measures (“relaying 15 d”) (Table 5), with shellfish 

consumption 15 days after transfer to a non-contaminated area, with no special measures. 

The second management strategy was HAV controls (“monitoring transfer”) on transferred 
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shellfish before marketing and consumption (Table 5). For consumers, the real impact of this 

second management practice can be defined by the annual risk (AR) with controlled 

transferred shellfish (‘monitoring transfer’) divided by the AR “relaying 15 d”. For transferred 

products, the excess number of days (more than 15 days) of no selling is calculated and 

averaged for all samples transferred during the year (one every day of the year). 

Other global management options, such as sewage treatment, or production of shellfish in 

safer areas, which can decrease contamination in shellfish on the order of two log10 units, 

were considered (‘type of management two log10 in Table 2). Each management option was 

simulated with the two hypothetical scenarios of contamination described in the QRA 

section.  
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Type of 

manageme

nt 

Type of 

monitorin

g 

Frequency of 

sampling(day

s) 

Confirmato

ry analysis 

requested 

for closing 

the area 

Delay 

between 

last 

sampling 

and 

confirmato

ry sampling 

(days) 

Delay 

between 

confirmato

ry sampling 

and next 

sampling 

(days) 

Delay 

betwee

n last 

positive 

samplin

g and 

closing 

(days) 

Numbe

r of 

negativ

e 

results 

before 

re-

openin

g 

Delay 

betwee

n last 

negativ

e 

results 

and re-

openin

g (days) 

REMI E. coli 30 Yes 2  5 1 2 2 

S1 HAV 30 No -- 0 7 1 4 

S2 HAV 30 No -- 0 7 2 4 

S3 HAV 30 No -- 0 7 3 4 

M1 HAV 30 Yes 4  4  7 1 4 

M2 HAV 30 Yes 4  4  7 2 4 

M3 HAV 30 Yes 4  4  7 3 4 

L1 HAV 30 Yes 4  4  14 1 11 

L2 HAV 30 Yes 4  4  14 2 11 

L3 HAV 30 Yes 4  4  14 3 11 

S2-15 HAV 15 No -- 0  7 2 4 

2 log10 None -- -- -- - -- -- -- 

Relaying 15 

d 

None -- -- -- - -- -- -- 

Mon. 

transfer 

HAV 30 Yes 4   4  7 2 4 

TABLE 5:  MITIGATION STRATEGY DEFINITION
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Model development and simulations 

For each simulation of uncertainty, one sample value of the uncertain distribution of 

parameters was sampled. One thousand simulations were done for uncertain parameters: 

alpha, beta (parameter of dose-response) and the first date of sampling during the first 

period (month) of sampling. Then, depending on management strategy, every 30 days or 15 

days, a sampling day was chosen for each month of the year. For each simulation of 

uncertainty, the annual probability of illness for each individual was calculated according to 

the formulae given in Table 1. Variability was taken into account for the population of 1000 

consumers as was variability of contamination during the year. For each uncertainty 

simulation, the mean annual risk for this population was evaluated. 

The baseline risk management option is no monitoring and no management at all. 

 If a management strategy is applied, the theoretical annual exposure and risk of each 

individual might change. Depending on the risk management strategy chosen, if there is 

abnormal level of E. coli (monitoring E. coli) or detection of HAV (monitoring HAV), there is 

no consumption of contaminated shellfish after a given period, for a given period (no 

exposure) of the year, for the entire exposed population. For two log10 units of lower 

contamination of oysters or relaying 15 days in a clean area, oysters are less contaminated, 

therefore, exposure is lower. We assumed that closure and reopening of the shellfish 

production area had no effect on shellfish consumption after the date of re-opening. The 

benefit of human intervention can be demonstrated by the risk reduction, 1 minus the ratio 

of mean risk with intervention to mean risk without intervention. The mean of the relative 

risk reduction is expressed in percentage, i.e. % of cases avoided, with the median and the 

95% credible interval. Producers’ cost is contingent upon the duration of closure of the area 

and can be simulated for each risk management option. All calculations and simulations 

were made in R language (version 2.12.2, R Foundation for Statistical Computing).  

RESULTS 

Incidental contamination  

Results are shown in Table 6 (median and credibility intervals of the mean) (median of the 

mean) for accidental, twice yearly, short-term, homogenous contamination (scenario 1).  

 

Type of management  Percentage of cases avoided 

 

Median [95% CI] 

Number of days of closure 

of the area 

Median [ 95% CI] 

REMI 0% [0-16.7] 0 [0-14] 

No confirmation   

S1 20.62% [9.5-48.8] 103 [68-133] 

S2 21.1 %[9.8-49.1] 119 [96-147] 

S3 21.4% [9.9-50.9] 133 [110-161] 

Confirmation and short   
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delay to close the area 

M1 17% [7.1-43.8] 90 [53-125] 

M2 17.4% [7.5-45.1] 111 [76-139] 

M3 17.6% [7.5-45.4] 125 [90-153] 

Confirmation and long delay 

to close the area 

  

L1 10.5% [4.5-29.4] 90 [53-125] 

L2 10.7% [4.7-29.8] 111[76-139] 

L3 10.8% [4.7-29] 125 [90-153] 

Every 15 days   

s2-15 35.9% [23.1-52.2] 140[128-147] 

non contaminated area of 

production 

  

2 log10  88% [69-94] 0 

Transferred products   

Relaying 15 days 24.7% [16-33.7] 0 

Monitoring transfer 69.5% [29.5-96.2] 6.5 

TABLE 6: RESULTS FOR CONTAMINATION SCENARIO 1  

Legend:  "REMI": monthly E. coli monitoring; "S"," M"," L", "Monitoring transfer": 

monthly HAV monitoring; S (or M, L) 1, 2, 3: Number of negative results before re-

opening; S2-15: every 15 days HAV monitoring, no confirmation; (details see Table 2) 

The percentage of cases avoided by classical microbiological surveillance is close to zero. 

Classical microbiological surveillance cannot effectively indicate HAV contamination, 

because only a few days in the year show abnormal levels of bacterial contaminants. 

Therefore, this management strategy is not efficient. 

By comparison, the percentage of cases avoided by direct monitoring of HAV is more 

effective, in particular with twice-monthly monitoring (s2-15), with a percentage of 35.9%; 

the probability that the monitoring system detects HAV contamination increases. The 

percentage of cases avoided with short delays for closing the area (no confirmatory analysis 

wait, quick decision to close the area) increases the efficiency of the management strategy 

when we compare it with, for example, the percentage of S3 (21.4%) to M3 (17.6%) or L3 

(10.8%). In this situation, because contamination is homogenous and stopped quite rapidly, 

there is no particular advantage to waiting for three negative results to re-open the area, as 

shown by the percentage for one (% L1=10.5%) or three negative results (% L3=10.8%). 

Controlling samples transferred to other areas for growing or finishing is very effective, with 

a percentage of cases avoided of 69.5%, because contaminated products can be detected 

and appropriate confinement (or destruction) measures can be taken before products are 

placed on the market. However, this system is not perfect, because the first signal is only 

based on monthly monitoring. 
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The best cost (duration of closure) benefit, with a percentage of cases avoided of 88 % was 

observed for management practices that can decrease contamination in shellfish, by 

example by two log10 units.  

Endemic situation of contamination  

Results are similar with those given for incidental contamination, except that waiting for 

three negative results, compared to just one; to re-open the area was an effective consumer 

protection measure (Table 7). For example, the percentage of cases avoided for S1 was 

11.2%, compared to the percentage of cases avoided in S3, which was 37.2%. 

Type of management Percentage of cases avoided  

Median [ 95% CI] 

Number of days of 

area closure  

Median [ 95% CI] 

REMI 0% [0-0] 0 [0-0] 

No confirmation   

S1 11.2[2-30] 41 [10-115] 

S2 30.1 [8-75] 101 [24-175] 

S3 37.2[9.7-77.4] 120 [82-199] 

Confirmation and short 

delay to close the area 

  

M1 2 [0-20.7] 9 [0-64] 

M2 9 [0-39] 51 [0-127] 

M3 10 [0-49] 88 [0-148] 

Confirmation and long delay 

to close the area 

  

L1 2 [0-24] 9 [0-64] 

L2 9 [0-37] 51 [0-127] 

L3 9 [0-46] 88 [0-148] 

Every 15 days   

S2-15 51 [17.7-75.6] 161 [101-181] 

non contaminated area of 

production 

  

2 log10 87 [72.5-93] 0 

Transferred products   

Relaying 15 days 16 [10-26]  0 

Monitoring transfer 10 [0-27] 3.5 

TABLE 7: RESULTS FOR CONTAMINATION SCENARIO 2 

Legend:  "REMI": monthly E. coli monitoring; "S"," M"," L", "Monitoring transfer": 

monthly HAV monitoring; S (or M, L) 1, 2, 3: Number of negative results before re-

opening; S2-15: every 15 days HAV monitoring, no confirmation;  

In this scenario, the source of contamination is not identified or controlled, and variability of 

contamination among days (or samples) can give negative results that may be positive the 

following day. Controlling transfers after closure of the area, with monthly monitoring (M2 

type monitoring) is less effective than in the incidental scenario with only 10% of cases 
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avoided. Efficiency is limited by the relative lack of correlation between two successive days 

of shellfish contamination in comparison with incidental scenario, and the lack of closure of 

the area (confirmatory analysis requested in M2) in comparison with incidental scenario. 

Again, the percentage of cases avoided by direct monitoring of HAV is more effective with 

twice-monthly monitoring (s2-15) giving a percentage of 51% and fecal monitoring is not 

efficient in this situation (0%). 

Again, the best cost (duration of closure) benefit was observed for management practices 

that can decrease shellfish contamination; for example a decrease of two log10 units 

resulted in 87 % of cases avoided. 

DISCUSSION 

Quantitative data on HAV contamination are rare, particularly those that include monthly 

monitoring, and are sometimes difficult to compare (no standardization or harmonization of 

HAV quantification methods in shellfish). We therefore preferred to use hypothetical 

situations of contamination, designed after real situations and based on biological data (such 

as maximum level of contamination observed, T90). 

Even in an open environment deemed safe, as a good microbiological quality area incidental 

and rare contamination can occur. In certain circumstances, these incidents can be rapidly 

identified and stopped or contained. The first scenario illustrated this situation of incidental 

contamination. Monitoring HAV, even with just qualitative detection and early management, 

was shown to be a useful complementary action to other preventive measures that can be 

applied to avoid contamination of the shellfish production area.  Shellfish transfers for 

growing or finishing are very often neglected, because they are difficult to manage. 

However, we show here, based on simple assumptions, the importance of controlling 

shellfish and of rapidly informing producers of any detected contamination, so that they can 

take preventive measures on their production, in particular for transferred products. 

The second scenario is more realistic whenever many little uncontrolled or identified sewage 

effluents are present. It is sometimes costly to take safety measures for each effluent event 

and sometimes difficult to identify the source of contamination. For example, more than 70 

outfalls have been identified in the Bay of Paimpol, Brittany, a production area twice 

involved in outbreaks of hepatitis A (1). In this context, shellfish monitoring and better 

management strategies are obviously required. This implies the shortest possible time for 

making management decisions (no waiting for confirmatory analysis, because the assay 

specificity is almost perfect) and consideration of several negative results at different times 

before re-opening. For both scenarios, and generalizing to any exposed area (history of HAV 

outbreak or exposed to regular or high level of human microbiological contamination), HAV 

monitoring may be a useful complementary measure to microbiological monitoring, in 

particular when the frequency of sampling is every 15 days.  

Among the assumptions made in the model, the one of spatial homogeneity seems crucial.  
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This is not a safe assumption, and is probably not the case in most situations of real 

contamination. Unfortunately, not enough data are available to model spatial heterogeneity. 

Also, although we did not model it here at each step it may be required to take several 

samples at different sites for each sampling step to evaluate spatial heterogeneity in the 

contamination. 

Other assumptions are specific to this QRA for hepatitis A, such as the T90 used for HAV, 

dose-response analysis, data on bioaccumulation in oyster tissues, and real infectivity 

estimates (22). These parameters were simplified in QRA, such as T90 which depends on 

environmental factors, including temperature, oxygen concentration or physiological state of 

shellfish, as shown for E. coli (24). Because standardized methods and standards for real-

time RT-PCR are not available yet, and because infectivity of genomes cannot be clearly 

assessed and may vary, we interpreted HAV RT-PCR results qualitatively.  

However, we show that the best management strategies are those that can reduce 

contamination in sewage or reduce the exposure of shellfish (whenever it is possible). 

Treatment of sewage water should directly take viral risks into consideration. With this goal, 

the quantitative approach using real-time RT-PCR may be useful for non-cultivable viruses, 

the best being absence of detectable RNA. Another strategy is for shellfish producers to 

avoid using the most exposed areas or to decrease the time oysters spend in the most 

exposed part of production areas, and to apply preventive management practices, (e.g. HAV 

analysis in situations at risk), particularly for transferred products. The generic modeling 

approach developed here can be readily adapted to other data on contamination and other 

management strategies. For example, surveillance of sewage effluents and real- time 

information of cases in human populations in coastal areas could add overall safety of 

shellfish production (18). 

Improving surveillance and quality of shellfish production area could help prevent outbreaks 

involving consumption of contaminated oyster in a large population susceptible to more 

severe symptoms, linked to the low levels of seroprevalence of hepatitis A in the adult 

population. Nonetheless real-world data would greatly improve and validate this model. 

ACKNOWLEDGEMENTS 

Authors are grateful to Moez Sanaa for preparing the manuscript. They also thank Nawel 

Bemrah, Fabienne Loisy, Juliette Hospitalier, Jean Carré, Antoine Montiel, Elisabeth Dussaix 

and Veronique Vaillant for their strong support provided through discussions during the 

construction of the model. 

REFERENCES OF THE PAPER  

1. ANSES. Contamination de coquillages marins par le virus de l'hépatite A, recommandations pour 
l’amélioration de la maîtrise du risque. Available at: http://www.anses.fr/Documents/MIC2009sa0044-
2.pdf. Accessed 11 May 2011. 

2. ANSES. Etude Individuelle Nationale des Consommations Alimentaires 2. 2009. Available at: 
http://www.anses.fr/Documents/PASER-Ra-INCA2.pdf. Accessed 11 May 2011. 

http://www.anses.fr/Documents/MIC2009sa0044-2.pdf.%20Accessed%2011%20May%202011
http://www.anses.fr/Documents/MIC2009sa0044-2.pdf.%20Accessed%2011%20May%202011
http://www.anses.fr/Documents/PASER-Ra-INCA2.pdf.%20Accessed%2011%20May%202011


Published paper : Quantitative approach of risk management strategies for hepatitis 

A-contaminated oyster production areas 

58 

 

3. Bemrah, N., V. Sirot, J. -C. Leblanc, and J. -L. Volatier. 2009. Fish and seafood consumption and omega-3 
intake in French coastal populations:Calipso survey. Public Health Nutr. 12:599-608. 

4. Costafreda, M. I., A. Bosch, and R. M. Pinto. 2006. Development, evaluation, and standardization of a real-
man taqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish 
samples. Appl. Environ. Microbiol. 72:3846-3855. 

5. Couturier, E., M. J. Letort, A. M. Roque, E. Dussaix, and E. Delarocque-Astagneau. 2007. Hépatite aiguë A 
en France en 2006. Première année de surveillance par la déclaration obligatoire. Bull. Epidemiol. Hebd. 
29-30:253-255. 

6. Desenclos,J. –C., K. C. Klontz, M. H. Wilder, O. V. Nainan, H. S. Margolis, and R. A. Gunn. 1991. A multistate 
outbreak of hepatitis A caused by the consumption of raw oysters. Am. J. Public Health. 81:1268-72. 

7. France AgriMer. 2008. Bilan annuel 2008 Consommation des produits de la pêche et l’aquaculture. 
Available at: http://www.franceagrimer.fr/informations/publications/F-mer/etudes/2030d1_01.pdf. 
Accessed 12 May 2011. 

8. Gallot, C., L. Grout, A. M. Roque-Afonso, E. Couturier, P. Carrillo-Santisteve, J. Pouey, M. J. Letort, S. Hoppe, 
P. Capdepon, S. Saint-Martin, H. De Valk, and V. Vaillant. 2011. Hepatitis A associated with semi-dried 
tomatoes, France, 2010. Emerg. Infect. Dis. 3:566-7. 

9. Gentile, C., I. Alberini, I. Manini, S. Rossi and E. Montomoli. 2009. Hepatitis A seroprevalence in Tuscany, 
Italy. Euro Surveill. 14:19146. 

10. Guillois-Bécel, Y., E. Couturier, J. -C. Le Saux, A. M. Roque-Afonso, F. S. Le Guyader, A. Le Goas, J. Pernès, S. 
Le Bechec, A. Briand, C. Robert, E. Dussaix, M. Pommepuy, and V. Vaillant. 2009. An oyster-associated 
Hepatitis A outbreak in France in 2007. Euro Surveill. 14:19144. 

11. Halliday, M. L., L. -Y. Kang, T. -Z. Zhou, M. -D. Hu, Q. -C. Pan, T. -Y. Fu, Y. S. Huang, and S. -L. Hu. 1991. An 
epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J. Infect. Dis. 
164:852–859. 

12. Haas, C. N., J. B. Rose, and C. P. Gerba. 1999. Quantitative microbial risk assessment. John Wiley and Sons, 
Inc., New York, USA. 

13. Jacobsen, K. H., and J. S. Koopman. 2004. Declining hepatitis A seroprevalence: a global review and 
analysis. Epidemiol.Infect. 132:1005-1022. 

14. Joussemet, M., J. Depaquit, E. Nicand
,
 C. Mac Nab

,
 J. –B. Meynard

,
 R. Teyssou

,
 G.Fabre

,
 and Y. Buisson. 

 
1999. Effondrement de la séroprevalence de l’hépatite virale. Gastroenterol. Clin. Biol. 23:447-452.  

15. Le Guyader, F. S., F. Loisy, R. L. Atmar, A. M. Hutson, M. K. Estes, N. Ruvoen-Clouet, M. Pommepuy, and J. 
Le Pendu. 2006. Norwalk virus specific binding to oyster digestive tissues. Emerg. Inf. Dis. 12:931-936. 

16. Le Guyader, F. S., S. Parnaudeau, J. Schaeffer, A. Bosch, F. Loisy, M. Pommepuy, and R. L. Atmar. 2009. 
Detection and quantification of Noroviruses in shellfish. Appl. Environ. Microbiol. 75:618-624. 

17. Loisy, F., R. L. Atmar, J. –C. Le Saux, J. Cohen, M. P. Caprais, M. Pommepuy and F.S. Le Guyader. 2005. Use 
of rotavirus Virus Like particles as surrogate to evaluate virus persistence in shellfish. App. Environ. 
Microbiol. 71:6049-6053. 

18. Lopalco P. L., P. Malfait., F. Menniti-Ippolito, R. Prato, C. Germinario, M. Chironna, M. Quarto, and S. 
Salmaso. 2005. Determinants of acquiring hepatitis A virus disease in a large Italian region in endemic and 
epidemic periods. J. Viral Hepat. 12:315-321. 

19. Maalouf, H., M. Zakhour, J. Le Pendu, J-C Le Saux, R. L. Atmar, and F.S. Le Guyader. 2010. Distribution in 
Tissue and Seasonal Variation of Norovirus Genogroup I and II Ligands in Oysters. App. Environ. Microbiol. 
76: 5621-5630. 

20. Maalouf, H., M. Pommepuy, and F. S. Le Guyader. 2010. Environmental conditions leading to shellfish 
contamination and related outbreaks. Food Environ. Virol. 2:136-145. 

21. Mc Leod,C., B. Hay, C. grant, G. Greening, and D. Day. 2009. Inactivation and elimination of human enteric 
viruses by Pacific oysters.  J. Appl. Microbiol. 107:1809-1810. 

22. Monpoeho, S., A. Maul, C. Bonnin, L. Patria, S. Ranarijaona, S. Billaudel, and V. Ferre. 2004. Clearance of 
human-pathogenic viruses from sludge: study of four stabilization processes by real-time reverse 
transcription-PCR and cell culture. App. Environ. Microbiol. 70: 5434-5440. 

23. Pinto, R.M., M.I. Costafreda, and A. Bosch. 2009. Risk assessment in shellfish-borne outbreaks of Hepatitis 
A. App. Environ. Microbiol. 75:7350-7355. 

24. Pommepuy, M., D. Hervio-Heath, M.P. Caprais, M. Gourmelon, J. C. Le Saux, and F. S. Le Guyader. 2005. 
Fecal Contamination in Coastal Areas: An Engineering Approach. p. 331-359. In: Oceans and Health: 
Pathogens in the Marine Environment, S. Belkin and R.R. Colwell (Ed). Springer Science and Business Media 
Inc., New York.  

http://www.franceagrimer.fr/informations/publications/F-mer/etudes/2030d1_01.pdf.%20Accessed%2012%20May%202011
http://www.franceagrimer.fr/informations/publications/F-mer/etudes/2030d1_01.pdf.%20Accessed%2012%20May%202011
http://archimer.ifremer.fr/doc/00011/12215/
http://archimer.ifremer.fr/doc/00011/12215/


Published paper : Quantitative approach of risk management strategies for hepatitis 

A-contaminated oyster production areas 

59 

 

25. Pouillot, R., P. Beaudeau, J. B. Denis, and F. Derouin. 2004. A quantitative risk assessment of waterborne 
cryptosporidiosis in France using second-order Monte Carlo simulation. Risk Ana. 24: 1-17. 

26. Rose, J. B. and M. D. Sobsey. 1993. Quantitative Risk assessment for viral contamination of shellfish and 
coastal waters. J. Food Prot. 56:1043-1050. 

27. Sagnelli, E., T. Stroffolini, P. Almasio, A. Mele, N. Coppola, L. Ferrigno, C. Scolastico, M. Onofrio, M. 
Imparato, and P. Filippini. 2006. Exposure to HAV infection in patients with chronic liver disease in Italy, a 
multicentre study. J. Viral Hepat. 13:67-71. 

28. Schiff, G. M., G. M. Stefanovic, E. C. Young, D. S. Sander, J. P. Pennekamp, and R. Ward. 1984. Studies of 
Echovirus-12 in volunteers: determination of minimal infectious dose and the effect of previous infection 
on infectious dose. J. Infect. Disease. 150:859-866. 

29. Shieh, Y. C., Y. E. Khudyakov, L. M. Ganova-Raeva, F. M. Khambaty, J. W Woods, J. E. Veazey, M. L. Motes, 
M. B. Glatzer, S. R. Bialek, and A. E. Fiore. 2007. Molecular confirmation of oysters as the vector for 
hepatitis A in a 2005 multistate outbreak. J. Food Prot. 70:145-150. 

30. Shuval, H. 2003. Estimating the global burden of thalassogenic diseases: human infectious diseases caused 
by waste water pollution of marine environment. J. Water Health. 1:53-64. 

31. Teunis P.F.M and A.H. Havelaar. 2000. The Beta Poisson dose-response model is not a single-hit model. 
Risk Anal. 20:513-520. 

32. Vose D. 2000. Risk analysis: a quantitative guide.2
nd

 ed  John Wiley and sons: New York. 
33. Vose D. 2008. Risk analysis: a quantitative guide.3

rd
 ed.  John Wiley and sons: New York. 

34. Word Health Organization. 2000. Hepatitis A. Available at: 

http://www.who.int/csr/disease/hepatitis/HepatitisA_whocdscsredc2000_7.pdf. Accessed 6 April 2011.

http://www.who.int/csr/disease/hepatitis/HepatitisA_whocdscsredc2000_7.pdf


 

60 

 

 

II.3.3.  CO MP LEMENT  T O T HE PAP ER  
 

II .3 .3.1 .S T R U C T U R E  O F  T H E  M O D E L  

The structure of the model is given in Figure 10, illustrating the two dimensions of 

the QRA, uncertainty and variability. The effect of detection (day k) is affecting 

exposure for other days (day j). 

 

 

FIGURE 10:  STRUCTURE  OF THE QRA MODEL FOR  HAV  

Legend solid arrows link between variables inside variability dimension, hatched 

arrows link between variables between variability and uncertainty dimension 

 
I I .3.3 .2  TH E  C O N S U M P T I O N  M O D E L I N G  

The consumption for an adult population of seafood consumers, living in coastal areas is extracted 

from several data bases. Some details of the construction of the consumption data not provided in 

the paper, are given here, explaining how the variability of consumption during the year is modeled. 

CALIPSO study is a frequency based questionnaire, established on 996 adults, seafood consumers of 

5 coastal cities made in 2004 (Leblanc et al., 2006, Bemrah et al., 1998). Knowing that men are eating 
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more oysters than women, the ratio of male / female in CALIPSO study was established to over-

represent woman population, with 71.4% of oyster consumers in CALIPSO are females. This study 

was made for estimating long term exposure to cumulative chemical risk (heavy metals). Data are 

giving the frequency of meal with oysters during the year, and the usual size of this meal, for all 

individuals included in this study. On this study we selected oysters consumers: 199 data of 

consumption of men and 443 data of women were taken into account.  

INCA study, based on a representative sampling in general population (Volatier et al., 2000) gives 

representative sex-ratio of oysters consumers, with 57.5% of males consuming oysters (with only 56, 

men and women, consumers on a sample 2492 individuals. 

We sample by bootstrap of 1000 individuals from CALIPSO individuals (with replacement), respecting 

the sex ratio given by INCA database. 

For one individual i of this sample (men or women), the total number of meals NTi during the year 

can be re estimated with the frequency of consumption (by example twice a month, or once a week) 

multiplied by the number of month (or weeks concerned) in the year. 

From other studies made by SECODIP for OFIMER, data of selling show that the frequency of 

consumption is highly seasonal. Weekly data of selling were available and the relative proportion of 

each week (Psw) was evaluated from SECODIP data (France Agri Mer, 2008).  

Inside the week, we also know that the frequency of consuming is higher at the end of the week, 

during Friday, Saturday and in particular Sunday. Data from general population (INCA, 1999) give the 

frequency of consumption each day of a week. We used this source of data to estimate the relative 

proportion of the day, inside the week (Piw). 

The relative frequency of consumption each day k of the year is simulated by the product 

swiwdayk PPP  

The two meals of the same day have the same probability to be chosen. There’s no impact on risk, 

because the dose is evaluated daily. 

If we consider an individual, consuming oysters, during the year there’s 364*2=728 meals 

opportunities to eat oysters, suppressing one day of the year for simplification of calculations with 52 

weeks. Between years this particular day can be Sunday or another day of the week. For 

simplification this last day is suppressed from further calculation. Because the model is comparing 

different strategies on the same yearly basis, there’s no impact on comparing relative results. 

For sampling the meals of an individual i, we sample without resampling with unequal probability a 

particular number of meals NTi of the year. Each meal is a category with a probability to be sample is 

Pdayk/2. 

Knowing that the total number of meals (eq. Trials) is given by NTi, the corresponding distribution of 

probability is a Poly-Hypergeometric distribution. 
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For each day of the year, we attribute the total number of meals of each individual to the 

corresponding days of the year, taking into account the relative frequency of consumption of the 

week of the year and of the day inside the week. 

The idea behind is that if an individual eat oysters two times a year, it’s more likely to be at Christmas 

or at New Year day. And if you eat more often, it is more likely in winter in particular a Sunday.  

The resulting number of meals of oyster/day for a given population is described in the Figure 3 of the 

paper. 

Whenever an individual is sampled, the associate size of the meal (from CALIPSO data) is selected, 

and the different days (and inside 2 possible meals) of eating. Because the QRA is daily based, the 

sum of dose ingested each day is taken into consideration. 

II .3 .3.3 .  DO S E - R E S P O N S E  C H O I C E  

The dose–response was taken from published paper (Pinto et al., 2009). 

Dose in outbreaks is evaluated in this paper, with consumption of 60g, and for values of observed 

concentration corrected for extraction and enzyme efficiency of Real-Time RT-PCR, expressed in 

infectious dose (1 genome among 60 is considered to be infectious) and after light cooking.  

Different predicted attack rates were evaluated with mode values of parameters of some viral dose-

response, with an approximate Beta-Poisson model (for theoretical aspects of dose-response see 

part III). Those attack rates were compared to observed attack rates.  

Reproducing results of the paper (Pinto et al., 2009), the comparison of observed and predicted 

attack rates were plotted on the Figure 11. 
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FIGURE 11: COMPARISON BETWEEN DIFFERENT MEAN DOSE (EXPRESSED IN 

INFECTIOUS GENOME) -RESPONSE AND ATTACK RATES OF HAV WITH 

THEORETICAL DOSES.  

Legend: Doses, established from genomes were corrected (see text) (data from Pinto 

et al., 2009) 

The best fitting dose –response of HAV attack rates, shown in figure 11 is Echovirus 12 

The quality of fitting and the choice of the best dose-response depend on hypothesis. If the mean 

individual consumption of clams is overestimated, or if another consideration is overestimating the 

concentration (% of infectivity, effect of cooking), the best-fitting dose-response could be different. 

Uncertainty about the dose and about the estimates can be done with other approaches (see part 

III). 

However, trying to keep the same hypothesis with this paper (same % of infectivity) we assume that 

the dose-response of Echovirus 12 can predict cases of HAV not detailed in (Pinto et al., 2009) 

probably jaundice. For taking into account uncertainty distributions about the estimate of 

parameters, we used those that can be estimated from data of Echovirus 12, by maximum likelihood 

and bootstrap approach. The resulting dose-response with 95 % credible interval is shown in the 

Figure 9 of the published paper. 

 

M A N A G E M EN T  S T R A T E G I E S  

In order to prevent consumption of contaminated oysters and cases of hepatitis from foodborne 

origin, different ways of monitoring and management were explored. All of them have a theoretical 

impact on exposure, and ipso-facto, on the risk. Without accurate data, some simplifications have to 

be made. The negative impact of a closure to consumption is not taken into account. The effect of 

monitoring is a little over estimated, because we assume that all days in the month and every 30 

days (for monthly based monitoring) can be days of sampling. It is not completely realistic because 

some days might be not considered, such as Saturday and Sunday, or national no working days are 

unlikely to be days of regular monitoring. Also oysters are unlikely to be sampled and put on the 

human market every day in same quantity (linked to the level of tide). 

The relative gain in risk, (that can also be expressed in term of percentage of mortality) is explored 

for each scenario of contamination and for each monitoring and management system.  The baseline 

risk for comparison is based with no monitoring at all ("B" in Figure 9).  

Three kinds of management strategies are investigated: 

 One of them is diminishing the level of contamination at the source ("2 log" in Figure 

12). 
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 Most of other strategies are based on regular monitoring of shellfish in the 

(potentially) contaminated bay. One of the management strategy investigated is the 

actual regulation with E. coli monitoring ("REMI" Figure 12). Those different 

management strategies are forbidding the selling and consumption of shellfish, 

during a particular period, whenever an abnormal level of contamination is detected 

("S","M","L"; Figure 12). During this period, consumers are protected of harmful 

exposure. This period should be chosen in order to wait enough for shellfish to 

eliminate naturally the contamination, without any uncontrolled source of 

contamination. Different strategies were tested, waiting for one to three negative 

results (made once a week), before re-opening the shellfish area.  
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FIGURE 12:  MANAGEMENT STRATEGIES FOR HAV CONTAMINATED SHELLFISH IN AN AREA OF 

PRODUCTION  

Legend:  or (exclusive); triangle Relative Risk estimate for each management 

strategy, circles: contamination scenario, rectangles: monitoring strategy, 

parallelepipeds: management that could reduce risk, hatched lines: particular 

calculation for transferred shellfish (see Figure 9 and paper for details). 

 The last kind of strategy investigated is concerning shellfish transfers, because most 

often production of shellfish can be transferred from contaminated area to not 

contaminated ones, and products can be consumed elsewhere. Producers that can 

be informed of bad results by official monitoring can then be concerned by checking 

the level of contamination of their transferred products, and wait for negative results 

before selling to the human market. We only test one way to do this monitoring, 

(Figure 13) however the efficiency is linked to the efficiency of the official monitoring 

in the shellfish area, creating an alert for shellfish producers whenever HAV is 

detected.  

 

FIGURE 13:  MANAGEMENT STRATEGY FOR TRANSFERRED SHELLFISH  

Legend: A without management, relaying 15 days in "clean water", 

B: red box: day of the closure of the area, green box: day of the re-opening 

of the shellfish area (and last day for checking transfers); red circle detection 
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of HAV; green circle no detection of HAV; X no selling; blue box: mean 

contamination between different arrivals at the same day. 

The duration of shellfish production in the finishing area is set to 15 days, by definition free of HAV. If 

abnormal levels are detected in the area of origin, after confirmatory analysis, (such as “M2” 

monitoring in Table 5), controls should be performed on transferred shellfish (the day after the 

closure or 2 days after transfer). All samples transferred between the sampling date for confirmatory 

analysis until the re-opening of the area were checked. If positive results are detected at this check, 

(without confirmation), and whenever results are still positive (sampling every seven days), oysters 

cannot be sold. Two negative results and a period of five days were required between the last 

negative result and consumption.  The effectiveness of this strategy, for people eating these 

transferred oysters is compared with a strategy of relaying in clean water 15 days, as new baseline 

(Figure 13). 

 

II.4.  PERSPECTIVES  

 

The limitations of this work are described in the paper but we want to stress that could be done in 

future, to improve the quality and the impact of this work. Most problems evoked here for HAV can 

be extrapolated to Norovirus situation of contamination of shellfish. Accurate and recent data are 

accessible for norovirus, in particular in shellfish contamination (EFSA, 2012). 

Data of monitoring of HAV are missing in shellfish, but also is missing for a precise modeling from the 

human contamination to contamination in the bay and in oysters. At the beginning of this chain data 

of excretion in human stools, are not numerous, not quantitatively done with a representative 

sample. Quantitative values in genomes for comparing excretion in symptomatic and not 

symptomatic cases are not available. The question can be expressed with quantitative RT-PCR 

results, knowing that cell culture is very difficult or not working in routine, infectivity of HAV 

genomes remains unknown. If those data gaps were better fulfilled, we could also investigate more 

precisely the epidemiological monitoring efficiency in human population in order to prevent 

contamination in the bay.  

Discussion about infectivity is a general problem characteristic of QRA for Norovirus and HAV. For 

both cell culture is not available. Infectivity cannot be extrapolated from a situation of oysters 

contamination to treated drinking water by example. We assume here, as other authors, that we can 

make hypothesis about infectivity of genomes. Masago (2006) in drinking water, set the percentage 

of infectious genome at 100 % in norovirus, and Pinto et al set the limit at 1/60 for HAV. 

Extrapolation is regularly based on other viruses (AFSSA, 2007 page 302), however their resistance 

can be lower than for Nov and HAV (Lodder et al., 2005; Monpoeho et al., 2004). No ways of 

quantification is perfect, and for instance using cell-culture it’s possible to miss non viable non 

cultivable micro-organisms. Then, assuming a percentage of infectivity or uncertainty distribution 

about this percentage, or assuming by clear formulated hypothesis that infectivity is assumed to be 

100% of quantified genome, in particular situation can be different alternative for QRA. 



 

68 

 

The modeling from waste-water to shellfish is site specific dependent. Microbial particles (E. coli) are 

taken many often as surrogates of virus for spatiotemporal dispersion modeling in water in shellfish 

area. However size, weight and physico-chemical characteristics of virus are different. More over 

little is known about the size of aggregates of viruses in sea waters, and its impact on those 

spatiotemporal modeling. The accumulation and purification in shellfish, for HAV in particular is not 

well known. For Norovirus recent papers are now describing the situation (EFSA, 20111). 

In this paper we investigated the temporal variability of contamination during the year. The main 

thing that could be made in future would be to investigate the spatial variability, and its impact of 

the relative efficiency of the monitoring system. 

This variability can be described at different scales variation: between oysters, between batches of 

oysters and between different areas of the bay. Then knowing the spatial trend of contamination in 

the bay (by modeling it from a suspected source) and knowing the spatial position of points of 

monitoring, and the number of samples made at each time period, the relative efficiency of different 

monitoring-management could be better assessed (Schernewski et al., 2001; Bougeard et al., 2011). 

It could then be feasible to make recommendations about temporal and spatial frequencies of 

sampling to be make in shellfish (or other products) in particular situation of sources of suspected 

contamination by example (Sima Laura et al., 2011; Da Silva et al., 2007; 2008).  

The paper was also alluding to the monitoring of transfers. Real observed data about the transfers 

were missing. Also, we don’t investigate, the use of monitoring sewage water before or after 

treatment, because we couldn’t make, for this bay under study, inference of its relative impact in 

time (and space) (Bougeard et al., 2011).  

Methodologically, it could be interesting what the parameters with main impact on results are. 

Further investigation could be to perform sensitivity analysis with Sobol’s method (Ellouze et al., 

2011). However because this model is quite simple, and because 28 what-if scenarios were 

investigated, it was evidenced, that by example the time frequency of sampling is a critical parameter 

for HAV monitoring in particular for endemic situation. However such a descriptive analysis could be 

better and quantitatively assessed by further appropriate sensitivity analysis. Before doing that, an 

optimization of the program should be made in order to have the simulation runs faster.  

In conclusion, we illustrated here that quantitative risk assessment is useful for investigating 

efficiency of management strategies in order to avoid human cases linked to viral shellfish 

contamination, even if data of contamination are expressed in genomes and not with known real 

infectivity. 

We investigated the efficiency of management in the shellfish. Other management strategies were 

not explored further at this step, and could be done in future, such as different scenarios of transfer, 

or setting different quantitative limits of HAV genome contamination for management purpose, in 

shellfish, or weekly monitoring. Also it could be interesting in future to test the efficiency of the 

combination of different surveillance strategies, with monitoring waste-water, coastal water at 

critical point and shellfish.  
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 Objective of classical QRA is to estimate the number of people infected, whenever the concentration 

in shellfish and human consumption is known, in order to estimate an order of magnitude of number 

of ill people that could be compare with epidemiological data. This is the idea of validation of the 

model.  For HAV QRA we used dose-response of a surrogate, with low infectivity, Echovirus 12 as 

roughly validated in an outbreak associated with clams in Spain (Pinto et al., 2009). For Norovirus the 

situation was different, but for those both viruses dose-response is a crucial step, for making realistic 

estimate of the number of cases linked to a particular level of contamination in food. 
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CHAPTER III:  DOSE-RESPONSE,  CRUCIAL  

STEP  OF  FOODBORNE  TRANSMISSION 
 

III.1.  MAIN DOSE-RESPONSE MODELS FOR QRA PURPOSE  

 

To establish the relationship between a dose and a risk of infection or illness, some different 

points of view made for quantitative microbial risk assessment can be re-assessed here. 

Two ways of modeling are made for dose-response proposals: 

(i) best-fitting or “empirical approach”, (ii) mechanistic one (Teunis et al., 1999; Haas et al., 

1999). The last approach is based on the idea of describing biological mechanisms by key 

parameters. We stress the description here of mechanistic point of view, because, in 

particular for Bayesian analysis, biological explanation of key parameters can give an idea to 

the prior to give to those parameters, and because a theoretical biological point of view can 

be refuted or improved by new scientific data.  

We examine in a first step the theoretical and biological meaning of dose-response and then, 

briefly the way to estimate the key parameters of the data. Limitations  of such approaches 

were examined in a third step of this part.  

 III.1.1.  DOSE-RESPONSE MODELS:  THEORETICAL AND  

BIOLOGICAL MEANINGS  

 

In microbial risk assessment, the relationship between dose and response (infection or 

illness) (dose-response) are not assuming a threshold. A threshold should involve that an 

interaction occur between microbial pathogens and the human host, and because of discrete 

nature of a pathogen, more that one organism is required to survive to cause infection. 

Without threshold and without interaction, one pathogen can initiate infection  (known as 

single-hit theory) (Teunis et al., 1999; Haas et al., 1999). 

For infection two sequential process are assumed to occur (Haas et al., 1999): 

(1) “The human host must ingest one or more organisms that are capable of causing 

infection or disease”. This is the exposure step, and the probability to ingest j organisms, 

knowing the mean dose of exposure, d. The notation is P1(j/d) 

(2) “(…) only a fraction of the ingested organisms reach a site where infection can begin”. 

The probability of k organisms to infect, knowing j are ingested is noted P2(k/j) 

 

This two steps are leading to the equation 
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The common definition for Infection state is defined by an immunological response 

(serological response) or excretion of viruses in feces. The common definition for disease 

state is defined by a typical human case, and is defined usually for epidemiological 

investigation by typical and characteristic clinical symptoms of the pathogen. 

Different situations can be biologically plausible for establishing the relationship between 

dose and infection (and between dose and disease), linked to different assumptions of 

relationship between populations of pathogens and human populations. 

D O S E - I N F E C T I O N  R E L A T I O N S H I P  

For dose-infection relationship, two situations, with different biological assumptions, are 

regularly used for making inference with experimental data or used for QRA purpose (Haas et 

al., 1999; Teunis et al., 1999;2008;Pouillot et al., 2012). 

First situation: exponential model 

(1)The pathogen is homogenously dispersed in dose (assumption 1) and there's no variability 

of the probability (pm) for the pathogen to survive to m (real number unknown) barriers and 

infects, linked to the pathogen or to the host (assumption 2). We are in a general situation 

where the exact dose received by an individual is unknown, but the distribution of doses 

between individuals is known. 

The first assumption (1) can be realistic, in experiment situation, or for a water outbreak,  

whenever an inoculum is homogenously dispersed and diluted in a watery  reservoir, and if 

all doses are taken from this reservoir. By hypothesis, the pathogens shouldn't clump 

together (which is not very realistic for viruses, except in experiment situation). 

For the second assumption (2), the situation can occur and be realistic, in general in 

experiment, such as human trial, where the human population can be assumed to be 

homogenous (for susceptibility to pathogen), and the pathogen can be also assumed to be 

pure (single strain by example) or homogenous for infectivity.  

The structure of this dose-response model is given in Figure 11, corresponding to a situation 

where, an homogenous matrix with  mean concentration λ are divided in doses. A  group of N 

individuals are exposed to different doses, expressed in number of infectious viruse n. Each 

dose of each individual i is described by a Poisson distribution with  mean λ (assumption 1). 

The event that an the individual i is infected, can be described by a Bernoulli distribution with 

a probability Pinf. Each virus has an identical and independent probability to infect, defined 

as pm (assumption 2). 

For an individual i: 

 n[i,λ] ~ Poisson ([λ]) 

Pinf[i, λ]=1-(1-pm)n[i,λ] 
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Knowing that pm is a probability  that one virus virus infect, 1-pm the probability that is this 

virus not infect, and for n virus ingested, Pinf is the probability that at least one virus 

succeeds in infecting the exposed individual. 

If one individual is exposed, the event “be infected” is described by: 

inf[i] ~ Bernoulli(Pinf[i,λ]) 

The DAG is given in Figure 14, for different dilutions of the same matrix. Each dilution is 

homogenously dispersed with mean λ*k+, and with the change of notation Dose*i,λk+=n*i,λk] 

 

FIGURE 14:  DIRECTED ACYCLIC GRAPH (DAG)  OF EXPONENTIAL MODEL  

legend: rectangle: data, random node circle, dashed arrow stochastic relationship, 

arrow deterministic relationship 

The marginal risk of infection is a function of λ: 

)exp(1inf mm pP  

This relationship is known as exponential dose-response. (Haas et al., 1999) 

Another parameter is also defined  by this relationship: DMI50 which is the dose needed to 

achieve a 50% infection probability 
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Second situation: Beta-Poisson model 

The two assumptions of this situation becomes (1) the pathogen is homogenously dispersed and (2) 

there's variability for the probability of a pathogen to infect, linked to the variability of both host and 

pathogen. 

Again, each dose j of each individual i is described by a Poisson distribution with  mean λk. 

In this situation, pm is not a constant and can be described by a Beta distribution corresponding to 

the variability of host and pathogen. This a more generalized situation, corresponding to outbreaks, 

where strains are mixed in the same exposure, and when human population response to  a pathogen 

is not supposed identical (Teunis et al., 2004).  Experimental trial can also includes variability of 

response between pathogen or host, and then Beta-Poisson model is often used, in particular when 

dose is homogenously dispersed. For outbreaks, the dose cannot, many often, be assumed to be 

homogenously dispersed. Then other relationship of dose-response are used (Haas et al., 1999; 

Teunis et al., 2008 b; Chen et al., 2006) 

The relationship becomes, for an individual i: 

n*i,λ+ ~ Poisson (*λ+) 


],[

1

])[1(1],inf[
in

j
m jpiP  

The probability is independent but not identical between pathogens, and for each combination of 

individuals and pathogen, pm can be different. 

The relationship raised difficulties to compute values for pm, for each pathogen, whenever the dose 

of pathogens is high. 

Whenever the exact dose is known, the marginal risk of infection is the Beta-Binomial model (Teunis 

et al., 2008; Vose, 2008). The Beta-Binomial model is the integral of Pinf with pm, Beta distributed.  

 This characteristic is particularly useful for quantitative risk assessment, whenever distribution of 

doses, or exposure is not a Poisson distribution, is not homogenous and can describe by example the 

distribution of clumps of different size of viruses, that can be simulated. Inhomogenous distribution 

of virus in food contamination were already observed and fitted (Westrel et al., 2006; Teunis et al., 

2008; Teunis et al., 2010) .  

The equation of Beta-Binomial model is 

)()(

)()(
1),/inf(

d

d
dP  

Where Γ is a Euler gamma function. 



 

74 

 

The corresponding DAG is given in Figure 15: 

 

FIGURE 15:  DAG  OF THE BETA-BINOMIAL DOSE-RESPONSE  

legend: rectangle: data, random node circle, dashed arrow stochastic relationship, 

arrow deterministic relationship 

 

This DAG and the properties of Beta-Binomial model are used to fit a dose-response model 

for Norovirus in outbreak situation (submitted paper). 

The marginal probability of infection linked to a Poisson distribution of doses (mean λ) : 

1

0
Im

1

0

11

Im

))exp(1)(,/()(

)exp(
)()(

)1()(
1)(

mmm

mm
mm

dpppgP

dpp
pp

P

 

Where g is the Beta distribution, (parameters α and β), describing variability in pm. 

The integral is defined and can be solved by the function 1F1 (Kummer confluent 

hypergeometric function) (Teunis et al., 1999), therefore the marginal risk of infection for the 

Beta-Poisson model, as a function of a mean dose λ can be written as below: 
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This relation, whenever β>>1 and α<β can be approximated by the equation (Furumoto, et 

Mickey, 1967; Teunis et al., 1999) known as approximate Beta Poisson model, and was used 

for the HAV QRA. 
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This last approximation is not valid for highly infectious pathogen such as Rotavirus and 

Norovirus. The mean of the Beta distribution, describing pm (probability of infection with one 

virus) is α/(α+β).  If pm is suspected to be high (the case for Rotavirus and Norovirus), the 

condition α<β is not valid. This approximation (whenever conditions of approximation are 

fulfilled) is also overestimating the risk at low dose. With Poisson distribution of doses (mean 

λ), and with the maximum of possible value for pm (equal one), the maximum marginal risk 

of infection is: 

Pinfmax=1-e-λ.  

It was shown that the approximate Beta-Poisson model exceeds this risk at low doses (Teunis 

and Havelaar, 2000). 

 Other dose-response model exist, but they are not widely used for microbial risk assessment and 

in particular for foodborne viruses dose-response (Haas et al., 1999).  

 

R I S K  O F  D I S E A S E  

Classically the probability of illness (mobidity ratio used in epidemiological studies) is conditional 

with probability of infection, and death probability (mortality rate) is conditional to probability of 

illness. Two approach of the probability of illness, knowing infection, are classically used (Haas et al., 

1999; Teunis et al., 1999; Teunis et al., 2005;Teunis et al., 2010 a and b). 

The first approach is setting that the probability of illness knowing infection is a constant, 

independent with the dose ingested. Usually ratio of morbidity is used for estimating uncertainty of 

this probability by a Beta distribution, and sometimes the hypothesis is checked by statistical 

approach, independent with dose (Haas et al., 1999; Pouillot et al., 2004).  

As illness is conditional on infection, the probability of becoming ill,  can be written as 

)(inf/inf)/()/( dosePillPdoseillP  

The second approach is setting that the probability of illness knowing infection is  dependent with 

the dose ingested. 
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The second approach is valid when the probability of illness independent with dose is sometimes not 

confirmed by the data set and can be explained by biological mechanism:  the probability of 

becoming ill may depend on the duration of the infection episode, linked to  the dose ingested 

(Teunis et al., 1999). “The length of the infection period could  reflect the balance between host 

defenses and pathogen growth, which may be dose dependent”(Teunis et al., 1999). 

Given infection, the probability of becoming ill can then be written as: 

)(inf/)inf,/()/( dosePdoseillPdoseillP  

The duration of infection (τ)can be described with a Gamma distribution, with parameters r (shape) 

and θ (scale). 

τ ~Gamma(r, θ) 

dose  

λ=1 if risk of illness increases with dose, λ=-1 if risk of illness decreases with dose. 

Then, by example for Norovirus dose-response (Teunis et al., 2008 a): 

dose)Gamma(r,~  

The probability that an infected subject becomes ill due to this infection episode can then be written 

as: 

))(exp(1)inf,/( dosedoseillP  

The marginal risk of disease (knowing infection and dose) can be estimated with the above equations 
(Teunis et al., 1999; Teunis et al., 2010 b?): 

 If the risk increases with dose: 
rdosedoseillP )1(1)inf,/(  

 

 If the risk decreases with dose: 
rdosedoseillP )/1(1)inf,/(  

 

 If the risk is independent with dose: 
rillP )1(1inf)/(  

 

 
III.1.2.  KEY PAR AM ET ER S  ES TIMAT E  

 

Two methods are commonly used:  

 The maximum likelihood approach is giving best values of dose-response parameters. The 

likelihood function l(X/θ) is the probability of observing X, the observed data, as a function of 

θ, dose-response parameters. A Best fitting value is obtained for each parameter of the dose-

response which maximizes the likelihood. Credible intervals of uncertain key parameters are 

obtained by bootstrap (Haas et al., 1999; Pouillot et al., 2004). For HAV QRA, this approach 
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was used with Echovirus 12 data, for dose-response parameters estimates, with the 

approximate Beta-Poisson approach with good conditions of approximation (see Table 

below)( β>>1 and α<β) (but overestimating risk at low dose). 

 The Bayesian inference is based on the join distribution on the parameters and observations. 

The different steps are (1) define prior(s) for dose-response parameter(s), (2) calculate the 

likelihood conditional for the observed data (3) calculate the posterior as the product of 

likelihood and priors distribution, then normalizing the result. For multiparameter or 

hierarchical models, it is difficult to calculate the likelihood and posteriors. Technique based 

on Markov chain simulations (MCMC) where a transition distribution converges to the 

posterior distribution, after a sufficiently large number of simulations (Gilks et al., 1996).  

 
 
III.1.3.  L I MIT ATION S  O F DO S E-R ES PON SE MO DELIN G  

 

Limitations of dose-response studies were studied from different sources. 

A summary of those considerations is expressed below: 

Extrapolation at low doses, not observed in many cases, is reflecting a part of subjectivity in main 

hypothesis, accepting the idea of single hit or not. The fitting is made on limited data and information 

and the extrapolation to other host population can be subject of debates. 

Extrapolation from experimental animal data to human population is not obvious because species 

susceptibility is often different (no animal model for Norovirus and HAV) (FAO/WHO, 2003; 

Armstrong and Haas, 2007; Tamrakar et al., 2011; Hoelzer et al., 2012; Teske et al., 2011; Watanabe 

et al., 2010). Extrapolation from trial study to general population is not obvious: characteristic of 

volunteers (young, healthy) are not representative in general of the population naturally exposed 

(FAO/WHO, 2003). Extrapolation from outbreak data to sporadic cases should take into account 

range of doses and again the representativeness of population in outbreaks for extrapolation to  

general population exposed. The state of acquire immunity before exposure is not taken into account 

in many cases, with some exception (Teunis et al., 2002; Englehardt and Swartout, 2006). In 

outbreaks, because the study is retrospective to the event it’s difficult to investigate. Extrapolation to 

more susceptible population such as immunosupressed population, pregnant women, older and 

children is difficult to justify (Haas et al., 1993; Gerba et al., 1996b; Crabtree et al., 1997; Balbus et 

al., 2004; Pouillot et al., 2004). 

The characteristic of food matrix can be suspected to interfere with the response of the host, such as 

buffer effect or increasing the effect (acidity..) (FAO/WHO, 2003). 

 Finally strains studied in dose-response can be different than those in general population we want to 

extrapolate (FAO/WHO, 2003). 

 Mix of strains and more mix of pathogens and comorbidity impact on dose-response estimate is not 

well known (synergy, independence of action, inihibition) (FAO/WHO, 2003). 

 The measurement quality of the technical method used for quantifying dose is rarely given in dose-

response study. However the extrapolation of the dose-response with the measurement of doses 
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made with different methods, or with method with other performance of measurement than the 

dose-response can be criticized (FAO/WHO, 2003).. 

 The definition of infection and cases in dose-response study should be carefully defined for its use in 

QRA. However dose–response are widely used for QRA purpose (FAO/WHO, 2003). Dose-response 

are used and recognized as valid for the risk management use, helping, by example, to set acceptable 

limit of contamination in food and water, or predict effectiveness of different management  

strategies (Regli et al., 1991;  Schijven et al., 2011; Pouillot et al., 2012 ). 

 

III.2.  LITERATURE REVIEW OF DOSE-RESPONSE FOR 

FOODBORNE VIRUSES  
A summary of the state of knowledge for different viruses is given in the Table 8. Considering all 

these dose-response relationship for infection, parameters  of dose-response were estimated by 

maximum likehood approach, except the last one, made both with bayesian inference and maximum 

likelihood approach . Confidence interval or credible intervals are not given, and results are focusing 

on best-fitting  values.  Many often this is because the classical method in  quantitative risk 

assessment, for viruses, used point estimates and not probabilistic ones.  

Most of these approaches were done with study of human volunteers, not perhaps representative of 

human population exposed, in an experimental context. The experimental context can be an 

advantage, because in particular, the dose can be homogenous dispersed in the inoculum, and then 

hypothesis of  doses Poisson distributed is justified. The experimental context permits the use of a 

purified and well identified strain. In the other hand, purified strains, store in an experimental 

laboratory can change their infectivity, and in particular vaccine strains are perhaps not justified to 

be extrapolated to wild viruses. 

The dose is given usually in a watery matrix. A matrix effect can be effective. For QRA purpose, with 

shellfish contaminated by viruses, it should be of particularly interesting to obtain dose-response 

parameters with data obtained with the same food matrix- oysters. Data could also of interest if the 

same method is used for measurement of virus contamination for dose-response or QRA  (or known 

quality of method of measurement for each situation). It's sometimes difficult to extrapolate results 

of a dose-response obtained with a particular measurement of dose, in particular if relative 

performances are not well-known. 

Extrapolation from one virus to another ("surrogate") or from a way of transmission to another, 

aerosol to oral ingestion should be also be used  with caution. By example for Adenovirus type 4, two 

ways of aerial inoculation leads to different estimates of key parameters and infectivity (Couch et al., 

1966). Then direct extrapolation to oral way of transmission seems quite  optimistic. 

SARS analysis, is pooling data different studies of different animals and humans and also different 

viruses, close to SARS. For pooling all these different data the argument was statistical. However 

assuming no variability of host -response in this context, is perhaps an optimistic point of view, even 

if the few data available are not showing differences. The dose-response is assumed to be done in 

infectious unit (single hit theory). If the infectious agent is expressed in genome unit, the infective 

part is not known. 
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Virus Type of model mode values  DI50 

PI(1) 
inoculum 
population 
infection 
definition 

reference of the 
model/referenc
e of the data 

unit of 
measurement of 
dose 

mean dose  exposed Infected 
(disease cases in 
parenthesis) 

Rotavirus 
isolated from 
disease 
children 

Approximate 
Beta-Poisson 
 

α=0.253, 
β=0.422 

 watery inoculum 
with buffer 
volunteers 
healthy adults 
rotavirus in stool 
or immune 
response 
 

(Teunis and 
Havelaar, 
2000)/data 
(Ward et al., 
1986) 
 
 

unit of dose: FFU 
(Focus Forming 
Unit) 
1 FFU=1,56.10

4 

particles (see 
Ward) 

0 
9.10

-3 

9.10
-2 

9.10
-1 

9
 

9.10
1 

9.10
2 

9.10
3 

9.10
4
 

5 
5 
7 
7 
11 
7 
8 
7 
3 

0 (0) 
0 (0) 
0 (0) 
1 (2) 
8 (6) 
6 (2) 
7 (5) 
5 (3) 
3 (2) 

Exact Beta-
Poisson 

α=0.253, 
β=0.422 

 

Poliovirus I 
(vaccine 
strain) 

Exponential pm=0.0122 57 oral vaccine 
babies 
virus in stool 

(Haas et al., 
1983)/data 
(Minor et al., 
1981) 

TCID50 

Unit causing 50% 
of positive cell 
culture 
 

7 
16 
27 
42 
50 
55 
65 
80 
90 
160 
210 
280 

1 
2 
2 
1 
6 
3 
6 
1 
4 
3 
2 
1 

0(0) 
0(0) 
0(0) 
0(0) 
3(0) 
1(0) 
0(0) 
1(0) 
3(0) 
3(0) 
2(0) 
1(0) 

 Approximate 
Beta-Poisson 

α = 15  
 β = 1000 

47 

Poliovirus I 
Sabin strain 
(LSc2ab) 

Approximate 
Beta-Poisson 

α = 0, 1097 
β=1524 

844 000 oral vaccine 
newborn infants 
virus in stool 

Regli et al., 
1991/data 
Lepow et al., 
1962 

TCID 50 10
3.5 

10
4.5 

10
5.5 

97 
91 
84 

55(0) 
52(0) 
48(0) 

Poliovirus III 
(vaccine 
strain-“Fox”) 

Approximate 
Beta-Poisson 

α = 0.409 
 β = 0.788 

3.5 oral intubation 
babies 
virus in stool 

Regli et al., 
1991/data(Katz 
et al., 1967) 

TCID50 1 
2.5 
10 

10 
9 
3 

3(0) 
3(0) 
2(0) 

Echovirus 12 
strain from 
disease 
children, 

Approximate 
Beta-Poisson 

α = 0.374 
 β = 186.7 

1005 watery inoculum 
volunteers, non 
immune,  male 
healthy adults 

Regli et al., 
1991/data Schiff 
et al., 1984 

PFU 
plaque forming 
unit 
1PFU=41 particles 

0 
330 
1 000 
3 300 

34 
50 
20 
26 

0(NA) 
15(NA) 
9(NA) 
19(NA) 
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purified and 
cultivated 

(18-45 years) 
infection is 
determined by 
seroconversion or 
intestinal 
shedding of virus 

10 000 
33 000 
330 000 

12 
4 
3 

12(NA) 
2(NA) 
2(NA) 

Adenovirus 
type 4 

Exponential pm=0.4172 0.72 aerosol 
inoculation 
volunteers free of 
serum antibody 
infection 
(serologic data) 

Crabtree et al., 
1997; Heerden 
et al., 
2005./data 
Couch et al., 
1966 

TCID50 

1 TCID50=13.6 
viral particulates 
(electron 
microscopy)  

1 
5 
11 
1000 

3 
3 
3 
6 

1(1) 
3(3) 
3(3) 
6(3) 

Hepatitis A 
virus 
 

not done but 
close to 
Echovirus 12 

  all infection are 
supposed to be 
symptomatic 
adult population 
outbreak data  

Pinto et al., 
2009/data 
 

*** 72 
72 
420 
582 

5 
4 
9 
18 

36** 
33** 
33** 
33** 

SARS and 
other 
coronaviruses 
(MHV,IBV,HCo
V-229E) 

exponential 0.002439 280[130-
530] PFU 
13 TCD50 

mice, rats, 
chickens, 
humans, 
intranasal or 
tracheal 
inoculation 

Watanabe et 
al., 2010; data 
from different 
bibliographic 
sources see 
Watanabe  

PFU and TCD50 

TCD50 10 to 30 
times  less than 
PFU 

see paper 
(not detailed 
here) 

see paper 
(not detailed 
here) 

see paper 
(not detailed here) 

Norovirus 
Norwalk GI 

Exact Beta-
Poisson 

α = 0.04 
 β = 0.055 

ID50=18 For human 
volunteers, 
Se+ subjects (Se- 
were also studied, 
all negative 
results, see 
Teunis et al., 
2008) 

Teunis et al., 
2008 

genomes *32.4 
*324 
*3, 24.10

3 

*3, 24.10
4 

*3, 24.10
5 

*3, 24.10
6 

*3, 24.10
7 

*3.24.10
8
 

6.92.10
5 

6.92.10
6 

2.08.10
7 

8 
9 
9 
3 
8 
7 
3 
6 
8 
18 
1 

0 (0) 
0(0) 
3(1) 
2(1) 
7(6) 
3(1) 
2(2) 
5(4) 
3(2) 
14(7) 
1(NA) 

TABLE 8: PUBLISHED FOOD-BORNE VIRUSES RELATIONSHIP BETWEEN DOSE AND INFECTION.  
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* for this experiment the inoculum is not homogenously dispersed. The inoculum is dispersed with 

aggregates.** the number of people exposed is not given explicitly in the published paper: the calculation of 

exposed is based on the number of cases and attack rates given in Pinto et al., 2009. 

***dose were re-estimated from concentration in genomes, corrected from extraction efficiency, infectivity 

(1/60), cooking loss (99.46%), and average consumption of 60g 

For other pathogens than viruses, outbreaks data were, in recent publications, more commonly used 

(Teunis et al., 2004; 2005; 2008b; 2010b). For foodborne viruses, except for the particular case of 

HAV outbreak in Spain (Pinto et al., 2009), no data of human outbreak is used (Table) or available to 

estimate dose-response parameters, in particular for HAV and Norovirus).  

 P(illness/infection)*100 P(death/illness)*100 P(illness/infectio
n, dose) 

Poliovirus 0, 1-1 % paralytic symptoms 
(Rose and Sobsey, 1993) 

0,9% (Rose and  Sobsey, 1993) 
10% (Macler and Regli, 1993) 

NA 

Coxsackievirus A 50 % (aseptic meningitis aseptic 
or respiratory disorder) (Gerba 
et al., 1996b; Rose and Sobsey, 
1993) 

5% (Rose and Sobsey, 1993) general population 
86% immunosuppressed (Gerba et al., 1996b) 

NA 

Coxsackievirus B 5-96% (Gerba et al., 1996b) 0,59-0,94% (Rose and Sobsey, 1993)  
general population 
13% newborne infants (Gerba et al., 1996b) 

NA 

Echovirus 50 %(respiratory or cardiac 
disorders, diarrhea, 
meningitis)(Rose and Sobsey, 
1993) 

0.27-0.29% (Gerba et al., 1996b) 
general population 
3.4% newborne infants (Gerba et al., 1996b) 

NA 

HAV 75 %(hepatitis) adults (Gerba et 
al., 1996b; Rose and Sobsey, 
1993) 
5 %(children) (Regli et al., 1991) 

adult general population: 
0,6 % (Rose and Sobsey, 1993) 
1 % (Shuval, 2003) 
around 0.4% (Scallan et al., 2011); between 0.3 
to 2% adults>40 years of age 
 

incubation linked 
with dose (Istre 
et al., 1985) 

Rotavirus 56-60 % gastroenteritis for 
children (Rose and Sobsey, 
1993) 
 
or 88 % (WHO, 2003) 

0,01 % general population 
1 % older population 
63% immunosuppressed (Gerba et al., 1996b) 
0,6 %for third world countries 
0,015 % for developed countries (Havelaar and 
Melse, 2003) 

NA 

Adenovirus 0,5 (Crabtree, 1997)) 0,01% (Crabtree, 1997) general population 
53% (Gerba et al., 1996) immunosupressed 

NA 

NoV 40-59 % gastroenteritis (Rose 
and Sobsey, 1993) 

0.0001%  (Rose and Sobsey, 1993)  
around  
5.10

-4
% (Scallan et al.,  2011)  

η=2.55*10
-3 

r=0.086 
(Teunis et al., 
2008) 

HEV Hepatitis 50% (Worm et al., 
2002; Smith, 2001) 

0.2 to 4% during outbreak 
(general population)(Worm et al., 2002) 
10 to 20% pregnant women (Worm et al., 2002) 

NA 

TABLE 9:  DISEASE AND LETHALITY RISK  

Legend: NA not evaluated 

The Table 9 shows that the probability of illness knowing infection with dose is, in most of 

cases, not estimated, and this is probably due to the lack of available data, in particular of 

dose ingested, whenever cases are observed.  
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III.3.  NOROVIRUS DOSE-RESPONSE BASED ON SHELLFISH 

OUTBREAKS DATA  
 

III.3.1.  SUB MIT T ED P APER  

II .3 .1.1 .  CO NTEXT  

Noroviruses (NoV) are the major cause of acute epidemic gastroenteritis in industrialized 

countries, leading to very high worldwide losses in years of healthy life. Very high infectivity 

estimates was found in human challenge studies for GI / Se+ (Teunis et al., 2008). 

Genogroup II, in particular the GII.4 cluster is predominant worldwide in human 

transmission, but genogroup I is regularly involved in foodborne outbreaks.  Based on data 

from five oyster related outbreaks, detected in France infectivity of genogroup I and II NoV 

was estimated from the ingested dose, accounting for genetic determinants of susceptibility 

(histo-blood group antigens: secretors Se+/ vs. non secretors Se-).  

The level of information is not the same between outbreaks. For some of them, individual 

consumption is known, for one of them the secretor status is known, and for all them, only 

cases and not infection are reported. Individual dose is unknown, and consumption can be 

different from one individual to another. Inside an outbreak, information can miss. Because 

of these missing data, Bayesian framework becomes useful. In all the outbreaks under study, 

each individual ate from the same common meal, then it was feasible to estimate a range for 

the numbers of oysters consumed. In case that information was missing, the dose ingested 

by each individual could be calculated by the prior as the product of a random sample from 

the Negative Binomial distribution of numbers of NoV per oyster, and a random sample from 

the numbers of oysters consumed, calculated separately for GI or GII NoV.  And when 

secretor status is unknown, an informative prior about the probability to be secretor in 

general population, estimated in a separate and published analysis (Marionneau et al., 2005) 

can be used. 

Our results confirm, for both genogroups in secretor positive individuals, the high infectivity 

and very low infectivity in non secretors. This is a significant advance in the field of microbial 

risk assessment, providing dose response relations based on outbreaks with natural 

diversity, in pathogen properties (infectivity, pathogenicity) and in host susceptibility. The 

results confirm NoV as (one of) the most infectious viruses known. Future regulations should 

take into account for this high level of infectivity in the prevention of outbreaks, for setting 

critical levels for NoVs in food. This is also useful for taking into account the foodborne part 

in outbreaks, associating different ways of transmission. 
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II .3 .1.2 .  SUBMITTED  PAPER  

Article Summary Line: 

The infectivity of noroviruses  (GI and GII) for secretor individuals measured in foodborne 

outbreaks is confirmed to be high. 

 

 Running Title: Norovirus dose-response from outbreaks data 
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Abstract    

Noroviruses (NoVs) are the major cause of acute epidemic gastroenteritis in 

industrialized countries. Outbreak strains are predominantly genogroup II (GII) NoV, but 

genogroup I (GI) strains are regularly found in oyster related outbreaks.  The prototype 

Norwalk virus (GI), has been shown to have high infectivity in a human challenge study. 

Whether other NoVs are equally infectious via natural exposure remains to be established. 

Human susceptibility to NoV is partly determined by the secretor status (Se+/-). Data from 

five published oyster related outbreaks were analyzed in a Bayesian framework. Infectivity 

estimates where high and consistent with NV(GI) infectivity, for both GII and GI strains. The 

median and CI95 probability of infection and illness, in Se+ subjects, associated with 

exposure to a mean of one single NoV genome copy were around 0.29[0.015-0.61] for GI 

and 0.4[0.04-0.61] for GII, and for illness 0.13 [0.007-0.39] for GI and 0.18 [0.017-0.42] for 

GII.  Se- subjects were strongly protected against infection. The high infectivity estimates for 

Norwalk virus GI and GII, makes NoVs critical target for food safety regulations.   
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Text:  

Noroviruses (NoVs) contribute significantly to morbidity worldwide [1, 2]. NoV 

infection occurs primarily through person-to-person transmission but also through 

contaminated food or water, and in particular by exposure to fomites [3]. NoVs are the 

cause of approximately 90% of epidemic non-bacterial  gastroenteritis outbreaks.  The 

majority of outbreaks occurs during winter months but sporadic cases do occur throughout 

the year [4, 5]. 

Outbreaks occur in semi closed communities such as hospitals, schools, cruise ships, 

nursing homes and military settings [3]. Severity is higher for risk groups, such as immune-

compromised individuals and the elderly [3]. NoVs are highly diverse genetically and 

antigenically, and among 5 genogroups, two are frequently associated with human 

outbreaks : genogroup I, and more frequently genogroup II [6]. Genogroup II (GII) NoVs, in 

particular the GII.4 cluster, have become predominant in human transmission of infection 

over the last two decades, but genogroup I (GI) strains co-circulate in the human population 

and are regularly involved in food and in particular oyster outbreaks [7, 8]. Like influenza, 

large outbreaks occur periodically with people of all ages infected [3]. One explanation is 

that immunity seems to be short-lived and incomplete [3], although continuing replacement 

of strains of the dominant GII.4 cluster suggests immune-driven selection to facilitate escape 

from protective (herd) immunity [9]. 

Differential genetic host susceptibility has also been identified. Since NoV strains bind 

to carbohydrates of the histo-blood group antigen family, pleiotropic interactions of alleles 

at three loci (FUT3, FUT2 and ABO) determining the Lewis, Secretor and ABO phenotypes 

also contribute to explaining differences in occurrence of strains and genogroups in the 

human population [10,11]. 

The attributable fraction of NoV gastroenteritis linked to food consumption is 

estimated at around 26% for the US [2]. Nevertheless, this estimate varies a lot between 

studies and the data are sparse. Hygiene recommendations are required to limit the spread 

of outbreaks [12], in particular in closed settings. Limiting the contamination of food could 

be crucial, to prevent primary cases and curb outbreaks at the origin, as direct person-to-

person transmission is likely and can be initiated by foodborne cases. Contaminated drinking 

water or food such as vegetables or molluscs has been shown to cause outbreaks [13-15]. To 

protect consumers and compare the effects of different management strategies, microbial 

risk assessment provides a comprehensive and reliable scientific prospective tool [16]. In 

order to evaluate the potential consequences of intervention measures in food 

contamination, the probability of primary cases of gastroenteritis should be predicted in an 

exposed population [16].  
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A human trial has been conducted to estimate infectivity and morbidity for a range of 

doses of Norwalk virus (GI.1) using a watery inoculum [17]. Genetic factors determining 

histo-blood group secretor status were taken into account and Se- status appeared to confer 

a complete protection against Norwalk virus (GI.1), in agreement with epidemiological 

studies [17]. The study highlighted the high infectivity of Norwalk virus with an average 

probability of infection of 0.5 for a single virus genome [17]. As the human trial was limited 

to a single virus isolate of a strain (G1.1), little is known yet on whether this may be 

generalized to other strains in food related outbreaks. 

For such purpose, outbreaks are an important source of information, as a 

complement to human challenge studies [18]. In the present study we have used 

information on the genogroup of the virus and the secretor status of the human hosts in 

oyster outbreaks to investigate infectivity of NoV GI  and GII in conditions of natural 

exposure.   

 Methods 

Outbreak data 

From a database of oyster related outbreaks in France, outbreaks were selected if 

the exposed population and the attack rate were known, as well as the numbers of oysters 

consumed, and if the concentration of NoVs was known from analysis of a sample of oysters 

from the same batch.  Further conditions were that the same strain of NoV should have 

been detected in human stools and oysters linked with the outbreak, and symptoms had to 

be consistent with NoV gastroenteritis. In some of the outbreaks other enteric viruses 

(enterovirus, rotavirus) were detected in stool and oysters, but it was concluded 

retrospectively that the main cause was NoV [19]. A case was defined by the sudden onset of 

vomiting or diarrhoea or both with maximum incubation period of 48h [20], exposed 

subjects were included if they ate from the same contaminated meal. For the last outbreak, 

in 2008, the secretor phenotype for 33 individuals out of 34 was determined from saliva 

[21]. 

The outbreak data are summarized in Table 10 and further details have been 

published separately [19, 21-23]. The numbers of exposed individuals ranged from 2 to 36. 

Individual data about consumption and host status (secretor phenotype and blood group), 

were not always present as summarized in Table 10. The contamination levels as numbers of 

RNA copies by oyster s and the genotype of strains found in the oyster samples for each 

outbreak are given in Table 10. In some outbreaks there was co-contamination by both GI 

and GII strains. 
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For all outbreaks, oyster analyses were performed by the same laboratory using the 

same method for NoV quantification [24]; thus all viral doses were measured on the same 

scale. 

The dose was calculated as numbers of genome copies per oyster, without correction 

for extraction and amplification efficiency, by extrapolating from the weight of the digestive 

gland (where the contamination is 90 to 99% concentrated depending on the strain [25]) to 

the weight of the whole oyster (based on the weight of total meat). In all following analyses 

the dose is expressed in number of genome (RNA) copies. 

 

 

 Table 10 Available information for each outbreak.  

 

Year of 

outbreak 

Number 

exposed 

Number 

ill 

Individual 

status 

Secretor 

Individual 

status 

ABO 

Individual 

Consumption * 

Range 

value

s ** 

Norovirus  
strain 

contamination *** 
 

2008 

 

34 23 Yes Yes Yes 2-6 GII.4 18-955-37-0 

2006 a 

 

27 11 No No No 4-6 GII 
GI 

1100 
2300 

2006 b 

 

2 2 No No No 4-6 GI 
 
 

275-6783 

2002 

 

36 21 No No No 1-6 GII.4+GII.8 
GII.4+GII.9 
GI.4 
 

25 
125 
25 

2000 

 

4 4 No No Yes 7-18 GI.1 85-237 

 

 

 

*Individual Consumption in number of oysters **Range values of number of oysters 

consumed 

*The level of contamination, (results of pool analysis of digestive gland of several oysters), 

are given by  the number of genomes by oyster 

 

.  

 

Dose-response model 
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The dose response models most commonly used for microbial pathogens are based on the 

conditional relation between exposure, infection and (acute) illness [26]. Exposure is 

equivalent to ingestion of one or more organisms (dose ingested). If pm is the probability 

that any single ingested pathogen successfully passes all (m) defensive barriers in the host, 

this parameter summarizes the effects of host-pathogen interactions for infection [26]. 

Heterogeneity in this host-pathogen relationship can be modeled as a Beta distribution, with 

two parameters α and β *27+.  Contamination in food products, in real world situations, can 

be described as a sample from a suspension with varying concentration. A Poisson-gamma 

mixture, equivalent to negative binomial distribution of number of genome copies, leads to a 

hypergeometric (2F1) dose response relationship [17]. Conditional on the ingested  numbers 

of pathogens, this relationship can be described with a Beta-binomial distribution (Table  in 

appendix). 

The host (secretor status) and pathogen (genogroup) effects were incorporated as follows. 

The parameters of the infection dose response model were transformed as (Eq.1 ): 

u = α /(α +β ) and v =  α +  β (Eq.1 ): 

The parameter u, the expectation of the Beta distributed probability pm , depends on 

secretor status (Se) and genogroup (g) as (Eq. 2): 

logit(u) =  μ0 + λ Se + γ g .  (Eq. 2) 

Hence, for each combination of  genogroup, and secretor status, parameters α and β can be 

defined, leading to 4 different dose response relationships. 

For the probability of illness among infected subjects an existing dose response model based 

on the concept of illness hazard during infection was used, with key parameters r and η *26+.  

Under mild assumptions (gamma distributed duration of infection and linearly increasing 

illness hazard with dose) the conditional probability of illness (Pill/ dose, inf) knowing dose 

(dose) and infection (inf) response can be described by the Eq3: 

-r)11inf),,,/( doseη+(rdoseillP  (Eq.3) 

For exposure to GI or GII the probability of infection becomes (Eq4.): 

Pinf2= 1-(1-pinf(αGI, βGI,dose GI))  (1-pinf(αGII, βGII,dose GII)) (Eq.4) 

With pinf the probability to be infected by GI or GII, knowing specific parameters α, β (linked 

to GI, GII  and secretor status) and ingested doses for GI or GII virus (see Source code in 

appendix) 

For simplicity, as host and pathogen factors were assumed to act on early stages of infection 

(the virus entering host intestinal cells), they were assumed to only affect infection dose 
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response: The risk of illness is considering the dose as the sum of dose by  GI and GII and the 

parameters of the illness dose response model, η and r were assumed independent of NoV 

genogroup (GI or GII) or secretor status.  

 

Bayesian framework 

A Bayesian framework was used to estimate parameters and predict the probabilities of 

primary interest. The directed acyclic graph outlining the parameters and their relationship in 

the model is shown in Figure 16. Details of chosen distributions for all parameters are given 

in the appendix.  

We followed an approach similar to a published proposal [28]. In a first step, a core model 

describing the functional dose response relationship was defined. Prior distributions were 

allocated to all parameters in order to produce a very flexible prior dose response, in order to 

accommodate any possible variation in infectivity and morbidity. Then, in a second step, the 

core model was extended by incorporating all available data (Figure 16) to produce posterior 

estimates. 
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FIGURE 16: DIRECTED ACYCLIC GRAPH OF NOROVIRUS DOSE-

RESPONSE MODEL.  

Legend: All model quantities are presented as nodes. Data are denoted by dashed 

rectangle. Logical links are gray arrows and stochastic links black arrows. Solid 

rectangles describe the loops with reference to an index indicated in the corner of 

the rectangle (o for loop inside each outbreak, for example). 

All model quantities are presented as nodes. Data are denoted by dashed rectangle. 
Logical links are gray arrows and stochastic links black arrows. Solid rectangles 
describe the loops with reference to an index indicated in the corner of therectangle 
(o for loop inside each outbreak, for example).  
Oysconc in dashed rectangle: observed data of contamination in oysters; oc number 
of observation in oyster;Contap: parameter p (success probability) of Negative 
Binomial distribution;  
contas: parameter s of Negative Binomial distribution;  
oysconta: sampled value of oyster contamination from Negative Binomial 
distribution;   
pgg in rectangle: data about the genotype involve in the outbreak 
oysconsum in dashed rectangle individual consumption data;  
oysconsum in oval sampled from truncated Poisson distribution with mean mup 
(prior); 
ingdose1: Ingested dose for each individual and each genogroup; 
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ingdose2: Sum of doses for GI and GII; pinf1: the probability of infection by one 
genogroup; pinf2 probability of infection by GI, GII or both; 
pill: the probability of illness;  
ill(in oval): illness knowing probability of infection and illness;  
ill(in rectangle): illness data in outbreak 
pse: probability to be Secretor(=1) in general population;  
sec in rectangle : data of individual secretor status  
r, η, μ0, λ, γ, siw, z: parameters of dose-response 
See appendix Table 1 for other legend explanation. 
 

 

Specification of prior distributions 

The prior probability distribution (“prior”) for the estimated fraction of Se+ among 

exposed individuals was defined by a Beta distribution with parameters estimated from 

published literature [11]. In case of co-contamination (both genogroups present) 

contamination with GI is assumed to be independent of contamination with GII.  

Numbers of NoV in oysters may be clustered: numbers of NoV in oysters were 

modeled as a Poisson-gamma mixture (Negative-Binomial) distribution.  

Because, in all the outbreaks we studied, each individual ate from the same common 

meal, it was feasible to estimate a range for the numbers of oysters consumed, in case that 

information was missing. The dose ingested by each individual could  be calculated as the 

product of a random sample from the Negative Binomial distribution of numbers of NoV per 

oyster, and a random sample from the numbers of oysters consumed, calculated separately 

for GI or GII NoV.  When individual secretory status is unknown,  the information is kept at 

the level of the choosen (informative) prior, that is the probability of  secretor positive status 

in the general population, estimated in a separate and published analysis [11]. 

Vague priors of all parameters of infection dose-response were chosen from a 

Normal (or Log Normal) (μ0, λ, γ,  z) with mean zero. Priors of the log transformed 

parameters η and r are described by a non-informative Normal distribution. All prior 

distributions are given in the appendix. The priors of parameters for Se+ Se-/GI GII are set 

identical. 

 

Model implementation 

Models were run with Jags (Jags 3.2) [29] with R. 2.14.0 [30]. Parameter estimates were 

obtained with 3 chains of 15,000,000 iterations of the Gibbs sampler, thinning every 5000 

iterations (to avoid autocorrelations), with a burn-in phase of 200,000 iterations. Source code 

of the extended core model is given in the appendix. 

Model assessment 

Convergence was assessed using the Gelman-Rubin diagnosis with three parallel chains [31]. 

A  partial sensitivity analysis was performed, changing the standard deviation  of key prior 

parameters (μ0, λ, γ) from 1 to 3. Posterior distributions from the eight resulting models 
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were graphically compared. Median values and 95% credibility intervals of posterior 

distribution of each key parameter (μ0, λ, γ, η, r, α, β) were evaluated with 9,000 posterior 

samples, with the model of increased flexibility (standard deviation of 3 for each parameter, 

μ0, λ, γ) . In order to characterize differences between dose-response relationships, the two 

parameters of the Beta (relation for infection) are given for each combination of covariates 

(Se+/Se-, G I and II). Other metrics include  mean and variance in  pm characterizing the 

heterogeneity of the dose response [32, 33]. For a Poisson inoculum (fully dispersed virus, 

homogenously mixed), with mean dose (μdose) and heterogeneous of pm, represented by a 

beta distribution(α, β) the probability of infection can be integrated to yield the confluent 

hypergeometric function(1F1).  For each mean dose, median and 95th percentile of 

probability of infection are calculated and plotted, for sampled values of α and β, using the 

relation below (Eq.5): 

)+(Fp
dose

dose11 ,,1),/inf(  (Eq.5) 

 The (unconditional) dose-response relation curves for illness were also plotted. The dose-

response probability for illness can be written as the product of the infection and illness 

dose response probabilities (Eq.5): 

inf)11(inf),,/( -r
dose p)η+(prPill dose  (Eq.6) 

 With Poisson distribution of doses (mean λ), and with the maximum of possible value for 

pm (equal one), the maximum marginal risk of infection is Eq.7  [27]: 

Pinfmax=1-e-λ  (Eq.7) 

This curve is the maximum infectivity limitation curve, plotted  with dose-response for 

infection and disease.  

Further characteristics of those curves are the median infectious dose and the dose causing 

acute enteric illness with 50% probability (ID 50), and the quantiles 95% of the probability of 

infection and disease for a mean dose of one genome copy (as quantified by RT-PCR 

method). the difference between Pinf(1) and pm can  be described by Eq. 8 and Eq. 9: 

For Poisson exposure: 

Pinf(Dose) = 1 - exp(-pm Dose) (Eq.8) 

(with pm beta distributed) therefore: 

Pinf(1) = 1- exp(-pm) (Eq.9) 

which is different from pm (Pinf(1) approaches pm only for pm<<1). 

Then, pm is a conditional probability of infection (given ingested dose or exposure to 1 

genome copy). Calculation of pm separates the infection probability from the distribution of 

exposure. The distribution of probability of infection per virus (pm) (exact single genome 

copy ingested), on a  logistic scale [34], is plotted. Infectivity of the virus is characterized by 

pm, knowing that it separates the infection probability from the distribution of exposure. 

In order to investigate the adequacy of the model with the observed data, we calculated the 

posterior caracteristics (quantiles) of the expected numbers of cases in groups of individuals 
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with the same known exposure for the same outbreak. The contamination level was taken 

from posterior mean dose. Whenever the consumption and/or the secretor status were 

unknown, they were sampled from the model posterior distribution. Samples of size 9000 

were simulated for this purpose. 

 

Results 

Boxplots of key parameters (μ0, λ, γ)  for each model are given in figure 17. 

 

 

FIGURE 17: BOXPLOT OF POSTERIOR DISTRIBUTION. 

Legend: median and 95% CI of the posterior distribution parameters μ0, λ, γ.  

Respective standard deviation of priors for each model: Nordr1(sdμ0=3,sdλ=3,sdγ=3), 

Nordr2(sdμ0=1,sdλ=3,sdγ=3), Nordr3(sdμ0=3,sdλ=1,sdγ=3), Nordr4(sdμ0=3,sdλ=3,sdγ=1), 
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Nordr5(sdμ0=1,sdλ=1,sdγ=3), Nordr6(sdμ0=1,sdλ=3,sdγ=1), Nordr7 (sdμ0=3, sdλ=1, 

sdγ=1), Nordr8 (sdμ0=1, sdλ=1, sdγ=1) 

 

Category Parameter Posteriors 
  Median 

 
2.5

th
 

percentile 
CI 

97.5
th

 
percentile 
CI 

All μ0 -1.96 -5.22 -0.66 

 λ 2.23 0.93 3.95 

 γ 0.32 -0.76 1.18 

 r 0.99 0.59 1.63 

 η 0.99 0.37 2.67 

for  Se+/GI α  1.2*10
-2 

3.13*10
-5

 0.59 

 β  1.13*10
-2

 2.01*10
-5

 5.1 

 mean(pm)  0.45 0.025 0.96 

 var(pm )  0.17 0.004 0.25 

for  Se-/GI α  3.04*10
-4

 5.3*10
-7

 1.36*10
-2

 

 β  2.88*10
-2

 8.14*10
-5

 5.57 

 mean(pm)  9.4*10
-3

 1.5*10
-4

 0.19 

 var(pm )  8.49*10
-3

 4.02*10
-5

 0.15 

for Se+/GII α 1.72*10
-2

 5.2*10
-5

 0.61 

 β 8.24*10
-3

 1.6*10
-5

 5.19 

 mean(pm ) 0.62 0.05 0.96 

 var(pm ) 0.17 0.006 0.25 

for Se-/GII α 5.5*10
-4

 1.12*10
-6

 2.16*10
-2

 

 β 2.79*10
-2

 8.13*10
-5

 5.59 

 mean(pm ) 0.018 2*10
-4

 0.30 

 var(pm ) 0.016 5*10
-5

 0.20 

 

 

TABLE 11: STATISTICS OF POSTERIOR DISTRIBUTIONS OF THE MAIN 

PARAMETERS 

Priors for (μ0, λ, γ) were symmetric around 0 are given in appendix Table 2, by 

monte-carlo simulation to give an idea about the precision of the simulation. For all these 

models, posteriors show that for μ0, the posterior distribution is shifted  to negative values. 

The positive posterior values of λ represent the strong protective effect of Se- status, as is also 

apparent for all these models.  The effect of genogroup is described by γ. The fraction of 

posterior sample of gamma greater than zero, as shown in Figure 2,  is not large or small 

(between 69.3 and 85%, for different variance of gamma distribution priors) indicating that 

we do not have strong evidence that GI and GII have different infectivities.  Posterior 95% CI 

of key parameters (μ0, λ, γ, η, r, α, β), for the model with increased flexibility (standard 

deviation of μ0, 3, λ, 3, γ, 3 respectively),  are given in Table 11, stratified by genogroup and 

secretor status. Priors of this model are detailed in the appendix. The estimated risk of 

infection per ingested virus particle pm is high, with posterior median values for the mean 

around 0.5 for Se+ subjects, 2.5
th

 percentile around 0.03, 97.5
th

 percentile around 0.96. For 

non secretor, this value is much lower, around 1/40 for the mean of pm (Table 11).  
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Dose-response graphs of predicted probabilities (median and 95% credible interval) of 

infection and illness as a function of doses are shown respectively in Figures18 and 19. 

 

FIGURE 18: POSTERIOR DOSE-INFECTION RELATIONSHIPS.  

Legend: Solid line: median of dose-response curves; dashed line: credible interval 

95%; dot dash line: maximum infectivity limitation curve.  
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FIGURE 19: POSTERIOR DOSE-ILLNESS RELATIONSHIPS.  

Legend: Solid line: median of dose-response curves; dashed line: credible interval 

95%; dot dash line: maximum infectivity limitation curve.  
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Characteristics such as median infectious dose (ID50) and probability of infection or illness at 

an average dose of a single virus are given in Table 12.  

Category Infection/disease statistics Median 2.5
th

 
percentile CI 

97.5
th

 
percentile 
CI 

Se+/GI    
 

Infection risk curve ID 50 
 

7.1 0.73 >10
6
 

 

  prob inf with mean 1 
 

0.29 0.015 0.61 

 Disease risk curve 
 

ID 50 
 

32 1.32 >10
6
 

 

  prob dis with mean 1 
 

0.13 0.007 0.39 

Se-/GI 
 

Infection risk curve ID 50 >10
6
 

 
>10

6
 

 
>10

6
 

 

  prob inf with mean 1 
 

9*10
-4

 4.4*10-6 0.12 

 Disease risk curve ID 50 >10
6
 

 
>10

6
 

 
>10

6
 

 

  prob dis with mean 1 
 

4.25*10
-4

 2.1*10
-6

 6.19*10
-2

 

Se+/GII 
 

Infection risk curve ID 50 1.6 0.74 >10
6
 

 

  prob inf with mean 1 
 

0.4 0.04 0.61 

 Disease risk curve ID 50 
 

4.86 1.24 >10
6
 

 

  prob dis with mean 1 
 

0.18 0.017 0.42 

Se-/GII 
 

Infection risk curve 
 

ID 50 >10
6
 

 
>10

6
 

 
>10

6
 

 

  prob inf with mean 1 
 

2.12*10
-3

 0.96*10
-5

 0.19 

 Disease risk curve 
 

ID 50 >10
6
 

 
>10

6
 

 
>10

6
 

 

  prob dis with mean 1 1.03*10
-3

 4.2*10
-6

 0.1 

 

 

TABLE 12:  STATISTICS OF POSTERIOR DOSE-INFECTION (AS 

PLOTTED IN FIGURE 1) AND DOSE-DISEASE CURVES (AS PLOTTED 

IN FIGURE 2)  

Characteristics such as median infectious dose (ID50) and probability of infection or 

illness at an average dose of a single virus are given in Table 12. Median ID50 estimates 

ranging between 1.6 and 7.1  genome copies per oyster consumed (Table 12), probability of 

infection with a mean dose of a single NoV genome (Poisson distribution) are 0.29 [0.015-

0.61] for GI and 0.4 [0.04-0.61] for  GII in Se+ subjects (Table 12). For Se- subjects the 

probability of infection and disease with a mean dose of a single NoV genome (Poisson 

distribution) are lower, 9.10
-4

[4.4.10
-6

-0.12] for GI and 2.12.10
-3

[0.96.10
-5

-0.19]for  GII. 
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In  Se+ subjects the probability of acute enteric disease was also very high: with a 

mean dose of one genome copy, the median probability of illness is, for GI, 0.13 [0.007-0.39], 

for GII, 0.18 [0.017-0.42], and much lower for Se-individuals (Table 12) 

A density graph of the probability density of  pm (transformed to logit scale) can be 

constructed using a posterior sample of the infectivity parameters (α, β) showing  strong 

heterogeneity in infectivity for Se+ subjects and smaller heterogeneity in Se- subjects (Figure 

20) for the 2.5
th

 percentile. 

Results of the prediction are given in the Table 13. The posterior predictive distributions look 

plausible with respect to the observed data, the observed numbers of cases are always 

within the predicted the 95% credible interval.  

 

year of 
outbreak 

group 
SE+(1)/ 
SE-(0) 

number 
of 
oysters 
eaten 

observed 
contamination
/oyster   
 

number 
exposed 

observed 
illness 
cases 

posterior quantile estimate of number of 
illness cases 

  

    

 2.5% 25% 50% 75% 97.5% 

2008 1 0 3 GII: 118-955-
37-0 

3 0 0 0 0 0 2 

2008 2 0 4 2 0 0 0 0 0 1 

2008 3 0 6 1 1 0 0 0 0 1 

2008 4 1 2 3 3 1 2 3 3 3 

2008 5 1 3 17 12 6 13 15 16 17 

2008 6 1 4 2 2 0 1 2 2 2 

2008 7 1                6 4 3 1 3 4 4 4 

2008 8 NA 3 1 1 0 1 1 1 1 

2008 9 1 2-6 1 1 0 1 1 1 1 

2006a 10 NA 4-6 
GII: 1100 
GI: 2300 

27 11 10 12 14 16 20 

2006b 11 NA 4-6 GI: 275-683 2 2 0 1 2 2 2 

2002 12 NA 1-6 
GII: 25-125 
GI: 25 

36 21 17 21 22 24 27 

2000 13 NA 7 GI: 85-237 1 1 0 1 1 1 1 

2000 14 NA 9 2 1 0 1 2 2 2 

2000 15 NA 18 1 1 0 1 1 1 1 

Table 13. observed numbers of cases in some identically exposed individuals and related 

simulated predictions from the posterior distribution model 
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FIGURE 20. DENSITY GRAPH OF THE POSTERIOR SINGLE-HIT 

PROBABILITY OF INFECTION PM, TRANSFORMED TO LOGIT SCALE. 

Legend: Solid line: contour of median density of probability; dashed line: contour of 

a 95% credible interval.  

 

Discussion 

Strong differences were found between secretor and non secretor phenotypes (Tables 2 and 

3). For secretor positives, infection probability and disease probability at low dose were high. 

In a human challenge study, the median infectious dose for Norwalk virus (GI.1) in Se+ 

subjects, was found to be around 18 genome copies [17], and probability of infection for a 

single Norwalk genome copy was close to 0.5. For Se+ subjects, our results are very similar to 

these clinical estimates, for both GI and GII NoV, with median ID50 estimates ranging 
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between 1.6 and 7.51 genome copies per oyster consumed (Table 12), and probability of 

infection(pm) for a single NoV genome copy near 0.5(Table 11).  In  Se+ subjects the 

probability of acute enteric disease was high, tand this is in agreement with high attack rates 

reported in NoV outbreaks, keeping in mind that around 20% of the population is less 

susceptible (secretor negative)[10, 11]. This high apparent infectivity (low ID50) in PCR units 

suggests that there cannot be large fraction of uninfectious (defective) genome copies.  

However, credible intervals are wide and the lower limit of the credible interval should be 

examined carefully. The 2.5 th percentile represents the lowest plausible infectivity, and for 

secretor positives, those values are still high, with the 2.5th percentile of E(pm) (Expectation) 

around 0.05 (Table 11), compared to the lower limit of the prior near 10-5 (see Table  in 

appendix).    

At low doses, there are few symptomatic cases, so that the chance of reporting is low 

(endemic cases), while at high doses there are many illnesses among the infected cases and 

the cluster, or outbreak, is easily detected, as suggested recently in a study comparing 

shellfish implicated in outbreaks compared to background environmental levels [35]. 

However, exposure is different from place to place [40], and data of French outbreaks, show 

that there were identified outbreaks with values of contamination relatively low (see Table 

10). 

We did not detect any difference in infectivity between GI and GII strains among the five 

outbreaks analyzed here. However, the variances of estimated infectivities (pm ) are high, 

and  inclusion of  additional outbreaks might reduce the uncertainty and reveal a difference 

in infectivity.  

It may be surprising to find GI NoV so frequently involved considering the large dominance 

of GII in human outbreaks [9]. Different factors such as distinct resistance to waste water 

treatment [36] or selective mechanisms in  bio-accumulation of NoV strains have to be 

considered [25, 37]. 

The genogroup effect as two distinct classes of  susceptibility is a simplification. 

Heterogeneity of responses can be found between strains within genogroups, possibly linked 

with the ABO blood group phenotype [21, 38, 39]. Because the ABO blood group was only 

known in one of the studied outbreaks and its effect could vary between strains within 

genogroups, this mechanism of genetic susceptibility was neglected as well as any pre-

existing acquired immunity. However the use of a Beta-Poisson (Hypergeometric 2F1 in this 

case) dose-response takes into account any variability of response of the host, and we may 

assume that it is incorporated into the dose-response estimates reported here. 

Analysis of the saliva of consumers in outbreaks suggested that the effect of secretor status 

may not always be all or none [21]. Susceptibility of secretor negative individuals requires 

the existence of other ligands with weaker binding or the occurrence of rare strains that can 

infect non-secretors.  
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The dose method used for oyster analysis includes quality control such as extraction 

efficiency and absence of RT-PCR inhibitors. Only samples complying with these controls 

(over 10% extraction efficiency and absence of inhibitors) were quantified [24] knowing that 

the extraction efficiency ranged between 13% and 38% in these shellfish analyses. As no 

method is currently available to evaluate NoV viability, we assumed that the fraction virus 

viable for infection was identical between the different oyster related outbreaks. All these 

factors have to be considered for future quantitative risk assessment studies. 

For this first approach, we considered effects of genogroup or secretor status on infection 

and not on the illness dose-response relationship. It has been shown that secretor negative 

subjects are protected against infection, and thus their risk of becoming ill is also decreased 

[10]. For other enteric pathogens, variation in infectivity among strains has been 

demonstrated [18]. Since illness is conditional on infection, any effect acting on the 

probability of infection also modifies the marginal probability of illness. As in these 

outbreaks the data do not provide infection status, we have chosen the simplest way to take 

these covariates into account.  

Contamination by multiple infectious agents is frequent in oyster-related outbreaks because 

of the fecal origin of contamination, by sewage contaminated water [19]. Since no 

information is available regarding mechanisms of cooperation or antagonism between 

infectivity or morbidity of NoV genogroups, we assumed there was no interaction. We 

consider also in this study only outbreaks with undetectable bacterial contamination and 

with identical NoV sequences in stool and shellfish samples of the same outbreak. 

The actual scarcity of information is reflected by wide credible intervals. When additional 

outbreak data become available, with at least information on host secretor status, ABO 

blood type, size of exposed population, food intake and level of NoV in the contaminated 

food, the proposed dose response model may be improved, including ABO type as a 

covariate, and/or enable users to make more specific assumptions about effects on infection 

or illness. The generic model used here is described into the appendix, can also be used for 

the study of other outbreaks. 

Conclusions 

In conclusion, this study uses outbreaks to establish a human dose-response model for GI 

and GII, confirming that these viruses are highly infectious to humans with the secretor 

positive phenotype. Se- subjects have a strongly decreased susceptibility to NoV infection 

from either genogroup, as previously demonstrated with human challenge studies using 

G1.1. This is remarkable because the present results are based on outbreaks induced by 

consumption of contaminated oyster with a natural mix of strains and genogroups. For 

several years now, the increased recognition of the role of food, especially oysters, in 

gastroenteritis outbreaks has raised questions for safety regulations. Current processes 

(depuration, relaying, high pressure treatment or home cooking) as commonly performed 

are not effective to eliminate NoVs from oysters. Improving microbiological criteria for 
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shellfish or food items by including NoVs surveillance measures will help to improve the 

safety of food introduced on the market [40]. Oyster producers must avoid harvesting from 

fecally contaminated areas and food business operators need such information to consider 

their safety limits [40]. This work will be useful for risk assessors and risk managers to 

establish acceptable limit for NoV in oysters to be harvested and placed on the market, and 

may also be helpful for other risky food such as raspberries [41]. The present study provides 

new insights that will need to be considered for future regulation.  
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Appendix 
 

Parameter status Components  Value / Distribution Rationale 

o  Index of 
outbreak 

1 to 5  

g  Index of 
Genogroup 

1 or 2  

i, o  Index of 
individual i in 
outbreak o 

1 to n *o+,…see Table 1 
 

see Table 1 

pse margin
al 

Probability 
to be 
Secretor(=1) 
in general 
population 

 

Beta(79, 19) 
 

[11] 

Sec[i,o] conditi
onal 

Secretor 
status of 
individual 

 

Bernoulli(pse):(0, 1) Informed by 
individual 
data or by 
prior pse 

Contap[o,g
] 

margin
al 

Parameter p 
of Negative 
Binomiale 
distribution 

 

10uniform[-4,0] 

 

Informed by 
observed 
data in 
oyster 
samples [o, 
g] 

Contas[o,g
] 

margin
al 

Parameter s 
of Negative 
Binomiale 

 

Round (10Uniform(1, 1000)) Informed by 
observed 
data in 
oyster 
samples [o, 
g] 

oysconta 
[o, i, g] 

conditi
onal 

Number of 
virus /oyster 

Negbin (contap[o,g],contas[o,g])  
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Ran[o, 1] 

 
 
 
 

fixed Minimum 
value of 
consumption 
(number of 
oyster) 

 

Respective values 
 

Data from 
outbreaks 

 

Ran[o, 2] fixed Maximum 
value of 
consumption  
(number of 
oyster) 

 

Respective values 
 

Data from 
outbreaks 

 

Mup[o] fixed Parameter of 
Poisson 
distribution 

 

]ran[o,]ran[o, 21  

Geometric 
Mean value 
calculation 

Oysconsu
m[o,i] 

margin
al 

Oyster 
Consumption 

 

Poisson (Mup[o]) 
Truncate (ran[o, 1]*ran[o, 2]) 

Informed by 
individual 
data or rank  

Pgg[o,g] fixed Presence of 
genogroup in 
outbreak 

 

0 or 1 Data from 
outbreak  

ingdose1[o
,i,g] 

interm
ediate 

Ingested 
dose for 
each 
individual 
and each 
genogroup 

 

oysconsum[o,i]*Pgg[o,g]*oysconta[o,i,g]  

μ0 margin
al 

Intercept 
muw 

Normal(mean=0,std=3) Low 
informative 

λ margin
al 

Parameter of 
the Secretor 
effect   

Normal(mean=0,std=3) Low 
informative 

γ margin
al 

Parameter of 
the 
Genogroup 
effect 

Normal(mean=0,std=3) Low 
informative 

Muw[sec[i
,o],g] 

interm
ediate 

Expectation 
of beta 
distribution 

μ0+λ*(sec*i,o+*2-1)+γ*(g*2-3)  

siw fixed Std of w 1 Low 
informative 

w conditi
onal 

Logit of the 
mean of beta 
distribution 

Normal(mean=Muw,std=siw) Low 
informative 

z margin
al 

Log (of 
quantity 
inversely 
related with 
variance) 

Normal(mean=0,std=4) Low 
informative 

α[sec[i,o],
g] 

interm
ediate 

First 
Parameter of 
dose-
infection 
relationship 

exp( w [ i,g ])

1+ exp( w [ i,g ])
× exp( z)

 

 

β[sec[i,o],g
] 

interm
ediate 

Second 
parameter (z)

g])(w[i,+

g])(w[i,
exp

exp1

exp
1  
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TABLE 13.DEFINITION, DISTRIBUTIONS AND VALUES OF PARAMETERS USED IN THE MODEL.   

Legend: Status,  gives the situation in Bayesian framework: marginal status for root 

random nodes, conditional for the other random nodes, fixed for constant values, 

and intermediate for the other nodes. 

pinf1[ 
i,o,g] 

interm
ediate 

Probability of 
infection 
knowing 
exact dose 

g])i,[o,Ingdose+g]b[i,+g]Γ(a[i,g])Γ(b[i,

g])i,[o,Ingdose+g]Γ(b[i,g])b[i,+g]Γ(a[i,

1

1
1

 

Beta-
Binomial 

 

pinf2[ i, o, 
g] 

interm
ediate 

Probability of 
infection 
with both 
genogroups 

1-(1-pinf1[i, 1] )*(1-pinf1[i, 2]) independenc
e of action 

ingdose2[i,
o] 

interm
ediate 

Sum of doses 
for GI and GII 

ingdose1[i,o, 1]+ingdose1[i,o, 2]  

η margin
al 

1
st

 
parameter exp( Normale(mean=0, std=0. 5))

 

Low 
informative 

r margin
al 

2
nd

 
parameter 

 

exp( Normale(mean=0, std=0. 25))
 

Low 
informative 

pill[o,i] interm
ediate 

Probability of 
illness g][i,p])[η+( inf2)io,Ingdose211( -r

 

[38] 

Ill[o,i] conditi
onal 

Illness 
Bern( pill [ o,i ])
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Category Parameter Priors 

  Median 

 

2.5
th

 

percentile CI 

97.5
th

 

percentile CI 

 μ0 
 

0.005 -5.83 5.84 

 λ 0.01 
 

-5.89 
 

5.87 
 

 γ -0.02 -5.97 
 

5.87 
 

 r 1 0.6 
 

1.63 
 

 η 1.005 
 

0.38 
 

2.64 
 

 pse 0.81 
 

0.74 
 

0.87 
 

 z -0.02 
 

-7.86 7.74 

Se+/GI 
 

α 
 

0.15 
 

2.06*10
-6

 969 

 β 0.14 
 

1.86*10
-6

 
 

955 
 

 mean(pm ) 
 

0.51 
 

3.2*10
-5

 
 

0.9999 
 

 var(pm ) 
 

0.004 
 

2.5*10
-7

 0.23 

Se-/GI 
 

α 0.15 
 

2.1*10
-6

 
 

986 
 

 β 0.14 
 

2*10
-6

 
 

997 
 

 mean(pm ) 0.51 
 

3*10
-5

 
 

0.9999 
 

 var(pm ) 
 

0.004 4*10
-5

 0.15 

Se+/GII 
 

α 
 

0.15 2.36*10
-6

 
 

943 
 

 β 0.15 2.2*10
-6

 
 

943 

 mean(pm ) 0.5 3.2*10
-5

 0.9999 
 

 var(pm ) 0.004 2.1*10
-7

 0.22 
 

Se-/GII 
 

α 
 

0.13 
 

2.12*10
-6

 
 

941 
 

 β 
 

0.15 
 

2.16*10
-6

 
 

928 
 

 mean(pm ) 
 

0.49 3.22*10
-5

 
 

0.9999 
 

 var(pm ) 
 

0.004 2.4 *10
-7

 0.224 

 

 

 

TABLE 14:  STATISTICS OF PRIORS DISTRIBUTIONS OF THE MAIN 

PARAMETERS 
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Appendix program:  

R code preparing data file for BUGS code: 

# given on request 

BUGS code describing the extended core model. 
model { 

 

  # ANCESTOR NODES = HYPERPARAMETERS 

  #common between outbreaks (otb) 

  # proportion of positive secretors people 

  pse ~ dbeta(79, 19); 

 

   #hyperparameters for dose-response (infection risk) 

   # central dose response 

  simu0<-3; 

  mu0 ~ dnorm(0, 1/simu0^2); 

  # effect due to the secretary status of the individual 

  silambda<-3; 

  lambda ~ dnorm(0, 1/silambda^2); 

  # effect due to the genotype of the virus 

  sigamma<-3; 

  gamma  ~ dnorm(0, 1/sigamma^2); 

   

  # common shape for the dose response 

  # irrespective the attributes 

  muz<-0; 

  siz<-4; 

  z ~ dnorm(muz, 1/siz^2); 

  siw<-1; 

 

  # hyperparameters for disease risk 

   

  logetadis ~ dnorm(0, 1/0.5^2); 

  logrdis ~ dnorm(0, 1/0.25^2); 

  eta <- exp(logetadis); 

  r <- exp(logrdis); 

  # 

   

  ###   looping on outbreaks with the help of indexes matrices 

  ###       over all individuals from any outbreaks 

  ###       over all sampled oysters 

 

  for (otb in 1:nbotb) { 

    # 

    ############## 

    # modelling the level of contamination of 

    # the oysters for the two genotype 

    for (ge in 1:2) { 

      #   the parameters 

      #       ancestor 

      conts[otb,ge] ~ dunif(-4,0); 

      contmu[otb,ge] ~ dunif(1, 1000); 

      #       parameter to use 

      contap[otb,ge] <- pow(10,conts[otb,ge]); 

      contas[otb,ge] <- round (contmu[otb,ge]); 

    } 

    # modelling the contamination of sampled oysters 

    for (oys in oyind[otb, 1]:oyind[otb, 2]) { 

      oys.con1[oys] ~ dnegbin (contap[otb, 1],contas[otb, 1]); 

      oys.con2[oys] ~ dnegbin (contap[otb, 2],contas[otb, 2]); 
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    } 

    # 

    ############## 

    # modelling the illness of individuals 

        for (ind in indind[otb, 1]:indind[otb, 2]) { 

      # 

      # consumption of oysters 

      mup[ind] <- sqrt (ran[otb, 1]*ran[otb, 2]); 

      oysconsum[ind] ~ dpois(mup[ind]) T (ran[otb, 1],ran[otb, 2]); 

      # secretory status 

      sec[ind] ~ dbern (pse); 

      # loop onto the two genogroupes I an II 

      for (g in 1:2) { 

        

        # 

 # oyster contamination 

 oysconta[ind,g] ~ dnegbin (contap[otb,g],contas[otb,g]); 

 # ingested dose 

 ingdose1[ind,g] <- oysconta[ind,g]*oysconsum[ind]*pgg[otb,g]; 

        # 

        # modelling the dose-response for infection 

        # 

 # expectation 

 muw[ind,g] <- mu0 +  

       (sec[ind]*2-1)*lambda + 

       (g*2-3)*gamma  

     ; 

 # variability around it 

 w[ind,g] ~ dnorm(muw[ind,g], 1/siw^2); 

 # 

 u[ind,g] <- exp(w[ind,g]) / (1+exp(w[ind,g])); 

 v[ind,g] <- exp(z); 

 # 

 a[ind,g] <- u[ind,g] * v[ind,g]; 

 b[ind,g] <- (1-u[ind,g]) * v[ind,g]; 

 # 

 gammag1[ind,g] <- loggam(a[ind,g]+b[ind,g]) - 

     loggam(a[ind,g]+b[ind,g]+ingdose1[ind,g]) + 

     loggam(ingdose1[ind,g]+b[ind,g]) - 

     loggam(b[ind,g]); 

 # proba of infection per genogroup 

 pinf1[ind,g] <- (1-exp(gammag1[ind,g])); 

      } # ending the loop over g 

      # 

      # probability of infection combining all genogroups 

      pinf2[ind] <- 1-(1-pinf1[ind, 1])*(1-pinf1[ind, 2]); 

      # 

      # Looking for illness dose-response 

      # common dose for conditional illness 

      ingdose2[ind] <- sum(ingdose1[ind,]) 

      # probability to get ill for the assumed dose 

      pill[ind] <- (1-pow(1+eta*ingdose2[ind],-r))*pinf2[ind]; 

      # modelling the illness 

      ill[ind] ~ dbern (pill[ind]); 

    } # ending loop over ind 

    # 

  } # ending loop over otb 

  # 

} # ending the model 
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II.3.2.  CO MP LEMENT  O F T HE P AP ER  
 

II .3 .2.1 .  C H O I C E  O F  T H E  M O D E L  

Other kind of modeling were possible, but were finally rejected, those possibilities and reasons for 

reject were developed here.  

 The first kind of other modeling is concerning the effect of dose with the disease risk. The effect is 

supposed to be increasing with dose. This is justified by the previous work of dose-response with 

Norovirus, showing that the effect of dose was relevant for risk of diseases with GI in a trial 

experiment situation for Se+ individuals. By hypothesis, for the risk of infection and disease, an 

increasing effect of dose was also postulated for Se- individuals, in the model  we have submitted. 

Our data were scarce, and our proposal was simple as possible, and can be changed  in future with 

added information. 

 In the same idea, the effect of Genotype and Secretor status is associated with risk of infection and 

not disease, or not on both risks. Our data cannot differentiate infection and ilnness, referencing only 

illness cases. Further studies on excretion on the exposed group, should help to refine and confirm 

hypothesis made on this model. Due to the scarcity of the data, and of combination presented, 

interactions between Genotype and  Secretor status was not searched. Interaction between GI and 

GII, in case of co-contamination, was also neglected. 

 Also the effect of genotype and Secretor status are treated as categorical variables, in linear 

relationship, with the mean of the Beta distribution describing variability of infectivity. Other 

parameterization can be investigated, again with more data. 

We didn’t set a hierarchical model for dose-response parameters. Two level dose-response 

parameter, enabling analysis of the variation within and between outbreaks., were by example set 

for the dose-response of E. Coli, Campylobacter and Salmonella dose-response (Teunis et al., 2005; 

2007; 2008). Variation among separate outbreak dose–response relations is described by the (joint) 

distribution of the infection parameters (α, β ) and the illness parameters (ρ, η). Extra variability due 

to outbreaks was justified for  E. coli, Campylobacter and Salmonella,  because those outbreaks were 

identified in different countries, in different food matrix, and in different   age group. Outbreaks data 

used for our modeling were not different in food matrix, exposed population (healthy adults), and 

country. However in future, outbreaks data from other situation could be used for better estimating 

dose-response parameters. The generalization of our work in the context of hierarchical approach, 

taking into account variability between outbreaks for dose-response parameters can be proposed. 

For infection risk, we should have then to consider if the effect of the outbreak is affecting the mean 

of the Beta distribution on all parameters describing u (muw in the Table 1 of the appendix of the 

paper), such as μ0,λ (Secretor effect) and γ (genotype effect) or only μ0 by example, and if the 

outbreak effect is also affecting v (inversely correlated with the variance of Beta distribution). We 

make the hypothesis that an outbreak effect is only affecting mean of the Beta distribution, with 

parameters  μ0,λ (Secretor effect) and γ, and also parameters of disease risk, r and η.  For each 

parameter we should have to define uncorrelated non-informative hyper-parameters, to describe 

variability between outbreaks, such as normal distribution, as suggested by previous studies (Teunis 
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et al., 2008). We imagine easily that the uncertainty of those hyperparameters should be high, unless 

we have enough outbreaks (and data) to investigate.  

 

 In future, with more data, it can be plausible to investigate another model involving  the strain effect 

of the virus, hierarchically with genotype effect or, not taking account a genotype effect (a strain is 

belonging to one genotype only). Same questions can be raised for A, B, O blood type and secretor 

status for the human host. Because genetically, the corresponding alleles are segregated 

independently, the question becomes about the effect of an interaction or not between those two 

characteristics of the host. 

 

III.3.2.2.  INFL UEN CE  OF THE  CHOI CE OF THE PRIO RS  ON  THE  

PRIO R DOSE-RES PONS E REL ATI ONSHI PS  

 

Even if this point is raised in the paper, the parameterization with u and v of alpha and beta 

parameters is done in order to avoid the correlationship between those highly correlated parameters 

(Teunis et al., 2005; 2007; 2008). The influence of the choice of priors can be checked by plotting the 

dose-response models with priors distribution of parameters. Figure 21 and 22, are giving 

respectively the marginal risk of infection and disease, (taking into account infection), conditional to 

a mean dose. Those figures showing that, the information given by those priors is so limited that 

credible interval of risk of infection or diseases, linked with mean dose is between 0 and the 

maximum limit of single hit dose –response ((1-exp(-λ)) (Teunis and Havelaar, 2000), or very close to 

this limit for risk of disease.  The median of the credible interval is quite median for disease risk  

between 0 and maximum limit curve, which was what we expect, given as less as possible 

information by the priors, in order that estimates are driven more by the structure of the model and 

by the data. 
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FIGURE 21:  PRIOR DOSE- INFECTION AND PRIOR DOSE- ILLNESS RELATIONSHIP (SAME FIGURE FOR THE 

4  SITUATIONS);   

Legend: solid line: median of dose-response curves; dashed line: credible interval 

95%; red dot dash line: maximum infectivity limitation curve (see text) 
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FIGURE 22:  PRIOR FOR PM  

Legend: solid line: median of dose-response curves; dashed line: credible interval 

95%; 

The Figure 22 is giving the prior of density of probability pm, in order to be compared with this 

obtained by the Bayesian inference. The prior of this density probability pm is symmetric around 0 

and covering a large range of values, what we expected, in order to take into account all variability 

given by the data.  
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III.3.2.3.  ADE QUACY  OF TH E MODEL  TO  TH E  D ATA  

 

With simplification,  it is difficult to distinguish, in a bayesian inference, the validity of the 

model, and the validity of posterior distribution estimates for predictive aim.  

Validity of prior is checked by sensitivity analysis, is done for some variance values (see 

submitted paper) and checked for consequences for prior of dose-response model (III.3.2.2). 

Also the method used for establishing the model fitting criterion can applied to the same 

data set used for estimation, or to a new data set (which is currently described as 

“validation”. 

If we had a big data set we could have split the data into different subsets, to use part for 

establishing inference, and another part for validation purposes. 

Because we only have limited data from few outbreaks, we used all the available data for 

Bayesian inference.  

In this situation, fitting criterion applied to the same data set can be, theoretically,  of use, 

such as or DIC (Deviance Information Criteria) or BIC (Bayesian Information Criteria)which 

add a penalty to the approximate error.  

“The model with the smallest DIC is estimated to be the model that would best predict a 

replicate dataset which has the same structure as that currently observed. BIC attempts to 

identify the 'true' model, DIC is not based on any assumption of a 'true' model and is 

concerned with short-term predictive ability” (http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml). 

However DIC, easily tractable (unlinke BIC) with rjags, is  valid under the assumptions of 

asymptotic normality of posterior distributions of parameters, and not valid with missing 

data (neither hierarchical model). We have missing data in our study. 

We compared our results to a completely different study, and show that infectivity values 

found for GI were close in both studies (Teunis et al., 2008) and discussion. (Reported attack 

rate in Norovirus outbreaks are also known to be strong) 

Then, a practical and simple point of view is a posterior predictive checking with data used 

for Bayesian inference (Gelman et al., 2004). The observed data should look plausible under 

the posterior predictive distributions (Table 13). 
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The results given in Table 13 are showing adequacy between posterior estimates and observed data, 

used for Bayesian inference,with a little over-estimation in median, but showing observations in 95% 

CI for each situation. A more complex model, with interaction process between two genogroups, was 

not used, taking into account the few number of data available (scarcity principle). Validation of the 

model was not feasible without the use of new data. We prefer to take all the data for the inference 

estimates.  

 
III.4.PERSPECTIVES  

 

If the aim of dose-response modeling is to estimate a mean number of cases linked to a particular 

mean dose ingested, the approach developed here, with the different known dose-response model 

have been shown to be enough. This is the classical of dose-response, known as hazard 

characterization and is widely used for QRA. 

 For Norovirus or HAV, because inter-human transmission is feasible after foodborne cases, 

incorporating time to excretion, duration and level of excretion, or time to incubation can be of 

interest. Other published models are incorporating incubation time dependency (duration between 

exposure and illness) (Huang et al., 2009 a and b). The prediction is concerning the number of cases, 

as a function of mean dose but also as a function of time post-inoculum (Huang et al., 2009). 

However, this kind of data is not available for Norovirus, and the duration of incubation is usually 

short ( 1-2 days). For HAV, the incubation is long and more variable–(15 to 50 days), then the study of 

a function depending of dose, and time post-inoculum, and interaction between those two factors 

could be interesting to investigate in future. The link with the duration and importance of excretion 

or/and severity of symptoms with the dose and strain ingested can be also a matter of consideration 

in dose-response modeling. Data of outbreaks with immuno depressed situation in human 

population, linked to previous of illness or age effect should be better documented in order to be 

taken into account in dose-response estimates. 

The effect of co-infection is not, also well established, between strains, genogroups or even different 

pathogens. The previous immune status of susceptible individuals exposed to Norovirus is not so –

well known, and is not known in retrospective outbreak studies. The effect of airborne transmission, 

with exposure of aerosolized viral particles, where exposure to  vomiting  is high could also be 

explored in future (Marks et al., 2003; Teunis et al., 2010). 

The dose-response we established here can be easily used in future for QRA purpose, establishing 

limitations of contamination in food in order to avoid sporadic cases and foodborne outbreaks. We 

propose here to use  NoV dose-response model to better understand the potential part of oyster 

consumption when an epidemic occurs in human population.  
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CHAPTER IV:  DYNAMIC  MODEL  FOR  COMPREHENSIVE  

ANALYSIS  OF  THE  FOODBORNE  AND  NOT  FOODBORNE  

TRANSMISSION  PATHWAY 
 

IV.1.  DYNAMIC MODELS USED IN EPIDEMIOLOGY:  

BIOLOGICAL AND THEORETICAL MEANINGS  

IV.1.1.  INT RO DUCTI ON  

 

Quantitative modeling may have different purposes. In epidemiology, different management 

strategies can be rarely tested in the real world, and if so it is always in a particular context. 

Reproducibility of results is therefore a critical question that should guide policy decisions (Wallinga 

and Teunis, 2004; Vynnycky and White, 2010) .  

Epidemiological models provide  theoretical results of management decisions, avoiding insofar as 

possible situations that are non observable in the real world. For making quantitative predictions 

that can guide policy decisions, modeling results must be used with caution. Real-world data are 

required for fitting the main parameters of the model, particularly those identified as critical by 

sensitivity analyses. Testing the model in other situations, not used for estimation, makes the validity 

of the model more accurate (validation step). Our purpose here is not to provide quantitative 

estimates for risk managers. The models were designed to provide a comprehensive analysis, 

explaining how the infection can spread, and how some control scenarios can interfere with results, 

under various assumptions. This comprehensive analysis sets out to explain the links between the 

main factors, with an idea of causality and plausible link pathway.  Finally, our model also seek to 

highlight some gaps in our knowledge and help identify what kind of field data is required for fitting 

the model to real-data situations. 

We examine the spread of infection and not just the spread of disease cases. For the dynamic of 

epidemics, the spread of infection is considered separately from the spread of symptoms (Figure 13). 

The disease period, when symptoms are manifest, is not necessarily completely correlated with the 

period of infectivity (Anderson and May, 1992; Keeling  and Rohanni, 2008). More over 

asymptomatic individuals can be infectious and can contribute to the spread of infection, as in HAV 

and NoV cases (Sukhrie et al., 2012). 

 

 

 

  

 

 

FIGURE 23:  THE DYNAMICS OF INFECTION AND DISEASE PROGRESSION (FROM KEELING AND 

ROHANNI, 2008) 

Susceptible Infected 
 

Infectious Recovery 

Latent  diseased Illness 
recovery 

 Time of infection 

Time  

infectious status 

clinical status 
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A basic concept of dynamic epidemic models is R0 "the Basic Reproduction Number that is the 

average number of secondary infectious persons resulting from one infectious person following their 

introduction into a totally susceptible population" (Vynnycky and White, 2010). If R0 less than 1, 

epidemics go to extinct, if R0 is greater than 1, epidemics can remain endemic (or go extinct with 

some probability). R0 characterizes, the infectiousness and rapidity of a pathogen in a specified 

population of all susceptible individuals.  R0 is related to the concept of the herd immunity threshold, 

or critical immunization threshold, defined in a SIR (Susceptible-infectious-Removed) model as 1-

1/R0. To eradicate an infection, in a SIR process the proportion of the population that is immunized 

must exceed this threshold value (Vynnycky and White, 2010). Whenever the epidemic continues, 

the average number of secondary cases produced by a single individual during its entire infectious 

period is characterized by the effective reproductive number RN. This reproduction number can be 

changed by efficient management strategies, or can be evaluated to monitor the efficiency of control 

measures (Lipsitch et al., 2003; Wallinga and Teunis, 2004; Heesterbeek and Roberts, 2007). 

The type of model used depends on the epidemiological purpose. The first step is to identify the 

question that can be treated by modeling (Vynnycky and White, 2010). Deterministic formulations 

are used for describing the spread of infection in large populations, whenever randomness cannot  

interfere with the main results. Stochastic formulations are necessary whenever randomness can 

play an important role, such as in small populations, or when rare events are under study. From one  

initial situation, with fixed parameters and a deterministic framework, only one type of epidemic 

situation can be predicted. This may be unrealistic in some cases, e.g. when a small number of 

individuals can play an important role in an epidemic, when studying disease invasion or disease 

extinction (in which rare chronic carriers or super-spreader events can play a significant role (Cori et 

al., 2009). We will focus here on probabilistic models. 

Probabilistic models can be described by the structure of the population considered, by the time 

analysis and by their formal mathematical framework. Individual-based models (Ajelli et al., 2008), in 

comparison with compartmental models, can take into consideration individual variation, e.g. in 

contact rates (superspreader individuals for example). Heterogeneity in the population (age, contact 

rate, vital dynamics ) can be analyzed as a number of discrete compartments in the population or in 

an individual-based model (Ajelli et al., 2008). With additional dimensions, meta-population models 

can explore relationship between distinct populations, in space (Ajelli et al., 2011) and/or between 

different hosts populations (Keeling and Gilligan, 2000; Durand et al., 2010). 

A model can be based on continuous or discrete time processes. In discrete time processes, the 

choice of the interval is crucial: two possible transition states should not be possible to occur during a 

single time step. The time step duration should be less than the mean duration of a given health 

state. Computation is faster, and less subjective for the choice of the time step, with short time steps 

in a long period of study, in a quite large population, with continuous-time compartmental models 

(Gillespie algorithm)(Vynnycky and White, 2010). 

The diversity of mathematical formalisms in stochastic modeling can be illustrated by extensions of 

the Reed-Frost equation (O’Neill and Marks, 2005), generation-time processes (Wallinga and Teunis, 

2004; Cauchemez et al., 2006; Heijne and Teunis, 2009), jumping processes with discrete time, 

Galton Watson branching processes (Bruss et al., 1984), jumping processes with continuous time, 
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Crump-mode-Jagger branching process (Antia et al., 2003) and the Gillespie algorithm (Breban et al., 

2009; Wang et al., 2012). The generation time is the mean interval between infection of the primary 

case and its secondary cases.  

For simulating jumping processes with continuous time, we used the Gillespie algorithm. We chose 

to develop the principle of this algorithm here, due to its particular use in our work (see section  

IV.3). 

IV.1.2.  EXAMP L E O F  A  STO CHASTI C PRO CES S  WIT H CON TINUOUS 

TIME :  G I LLESPI E ALGO RITHM  

 

The principle of the Gillespie algorithm is given below, in a simple example: 

A population of size N (closed population) can be divided into three compartments, with a particular 

number of individuals in each, (S) for susceptibles, (I) for infectious, and (R) for removed.  

 

Possible transitions or events, include the following: 

1 susceptible individual can be infected (migration of 1 from compartment S to I): event (SI) 

1 infectious individual can be removed (migration of 1  from compartment I to R):event (IR) 

The resulting simplistic compartmental model is given in Figure 14: 

  

 

FIGURE 24: COMPARTMENTAL MODEL ILLUSTRATED WITH A FLOW DIAGRAM 

Legend: Arrows indicate migration between the compartments. (S) for 

susceptible, (I) for infectious, and (R) for removed. 

The algorithm proceeds as follows:  

1. All possible events are labeled; here there are two events, ESI and EIR. 

2. For each event the transition rate at which events occur  is calculated 

for event ESI, the transition rate is given by the following equation:  

F1=β S I/ N (where β is the contact rate between S and I, I the number of Infected, S the 

number of susceptible). 

β is the exact per capita rate at which specific individuals come into effective contact per unit 

time. 

The number of individuals newly infected by inter-human transmission  is related to the 

number of susceptible individuals, infectious individuals, and the contact rates between 

them. The force of infection is the rate at which susceptible become infected per unit time " 

(Vynnycky and White, 2010). It can be expressed by βI or βI/N. 

Under a frequency based assumption, the risk of infection remains unchanged as the 

population size increases. There is no crowding, nor change of individual behavior with the 

S I R 
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population size. This assumption is deemed to be true, for large epidemics in humans such as 

the Flu. The transmission term for infection is thus βI/N. The alternative assumption is the 

density dependence assumption, used for example in animal diseases (Roche et al., 2009). 

The force of infection is then βI.  

for the event EIR, the transition rate  (F2) from state I to R is given by: 

F2=γ I (where γ is the removal rate or 1/average duration of infectiousness) 

3. For short time periods, the number of events that occur is Poisson-distributed. The time to 

the next event is given by an exponential distribution and is memoryless. It describes the 

time between two events, i.e. a process in which events occur continuously and 

independently at a constant average rate: 

o for one event, this time for ESI is tSI and for EIR is tRI: 

 tSI~exp(F1), where F1= β S I/ N 

 tRI~exp(F2), where F2= γI 

o the minimum time to the next event (ESI or EIR), considering independent 

exponentially distributed random variables (tSI and tRI) with transition rate 

parameters F1 and F2, is a random variable, exponentially distributed, with a rate 

parameter equal to the  sum of parameters of each separate exponential distribution 

(using the property of exponential distribution): 

 tmin~exp(MT) 

 where Mt=F1+F2 

4. After sampling the time to the next event, the kind of event is being sampled. 

The probability of each competing event is 

pESI= F1/Mt 

pEIR= F2/ Mt 

The next  event to be ESI can be described by a Bernoulli distribution (pESI). (1 is an 

ESI event, 0 is an EIR event) 

The number of individuals in each compartment changes. 

5. Return to the step 2. 

6. Stop when the time of simulation is reached. 

The Bernoulli distribution is a special case of Binomial distribution, with only one trial sample. 

Generalization to N events can be then easily obtained by changing the Binomial distribution to a 

multinomial distribution. The future state of the system depends only upon the current state 

(Markov chain property). 

IV.  1.3.  PAR AMET ER  ESTI MAT ES  A N D S EN SITI VITY  ANALY SI S  

 

The parameter estimation for dynamic modeling is classically performed in one of three ways: a 

maximum likelihood  approach (Wallinga and Teunis, 2004), Bayesian inference (Cauchemez et al., 

2004; O’Neill and Marks, 2005; Cauchemez et al., 2006; Courcoul et al., 2010; Sukhrie et al., 2012), or 

Approximate Bayesian Computation based on sequential Monte Carlo simulations(ABC-SMC) (Liepe 

et al., 2010; Toni et al., 2009). This last method, given a parameter θ, its prior distribution π(θ) and a 

data set x, estimate the posterior distribution π(θ/x), as in classical bayesian inference. The ABC 
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rejection sampler is more flexible than the Gibbs sampling-Metropolis-Hasting algorithm (Gilks et al., 

1996), allowing a tolerance parameter, that can be set by the user, for rejection criteria (Liepe et al., 

2010). 

The sensitivity analysis is usually done using different sampling methods (Monte-Carlo, Latin hyper 

cube, Full Factorial) and using different rank order estimate. Sensitivity analysis orders  the input 

estimate by the magnitude of the uncertainty that it causes in the outcome variable. Here, the 

sensitivity analysis focuses on parameters with uncertain estimates rather than on parameters with 

variability estimates, already taken into account in the probabilistic framework. To do so, different 

metrics are used such as the Spearman partial rank correlation coefficient, the Pearson correlation 

coefficient, and the partial rank correlation coefficient (with different assumptions for the use of 

each) (Le Menach et al., 2006; Hoare et al., 2008). Global approaches, suitable for non-linear or non- 

additive models, and measuring the effect of an input factor when all other factors are varying, use 

Sobol’s method and the Fourier Amplitude Test (FAST) (Saltelli et al., 2002; Reusser et al., 2011). For 

stochastic modeling, which takes into account each time point of each dynamic output, there are 

specific approaches based on principal component analysis and on analysis of variance (Lamboni et 

al., 2009; Lurette et al., 2009; Courcoul et al., 2011).   

 

IV.2. LITERATURE REVIEW OF PUBLISHED DYNAMIC 

MODELS WITH FOOD-BORNE TRANSMISSION  
 

Two categories of papers were selected: (1) examples of published dynamic models on foodborne 

transmission, with pathogens other than viruses (not exhaustive) and (2) published dynamic models 

of foodborne viruses, with or without foodborne transmission. 

The information is provided in Table 15 for foodborne pathogens other than viruses, taking into 

consideration foodborne transmission (in particular for humans) and in Table 16 for foodborne 

viruses. For HAV some papers on dynamic modeling were omitted (Gay, 1996; Armtrong et al., 2002; 

Jacobsen et al., 2004, Bauch et al., 2007) to focus on those that explicitely describe foodborne 

transmission (Ajelli et al., 2008; 2009; 2011). 

Several papers on indirect transmission of Vibrio cholerae via water use a logistic dose-response 

curve (Codeço et al., 2001; Longini et al., 2007; Righetto et al., 2012). This dose-response model does 

not assume a minimum threshold as do exponential or beta-poisson dose-responses. The resulting 

estimate can take any value as an input ranging from minus infinity to plus infinity, whereas the 

output is confined to values between 0 and 1, as a probability. The logistic function is a sigmoid 

curve, and is widely used, to introduce more or less complexity to models in ecology (Lotka-Volterra 

equations) (Brown and Rothery, 1993; Dennis et al., 1989;Breban et al., 2010) and bacterial growth 

(Rosso et al., 1995).  

The initial stage of growth is approximately exponential; then, as saturation begins, growth slows, 

and at maturity, growth stops, with the limitation of available resources. Studies of avian influenza 

viruses in southern France, (i.e. the Camargue area) also use logistic dose-response curve. This dose-

response is not used in classical microbiological QRA, and does not have the same biological 
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assumptions, in particular, (i) exposure and (ii)survival and infectivity of the pathogen (see section 

III.1). However recent papers have used the well-known exponential dose-response (section II) 

(Breban et al., 2009) to describe avian influenza epidemics in ducks populations (Breban et al., 2009; 

Wang et al., 2012). Consumption is described by a constant rate. 

Two papers relating to Cryptosporidum parvum  and an enterovirus consider an exponential dose-

response in a dynamic framework (Eisenberg et al., 1998; 2004; 2005) see Tables 15 and 16. Main 

dynamic models on viruses generally do not consider indirect foodborne transmission, given their 

objectives and context, and consider that foodborne transmission is negligible (Table 16). HAV is an 

exception, in endemic situations and coastal populations (Ajelli et al., 2008; 2009; 2011). The kinetics 

of virus excretion and depletion has been considered for polioviruses and HAV (Ranta et al., 2001; 

Ajelli et al., 2008; 2009; 2011). For HAV, the foodborne transmission rate is a function  of viral load 

for an infectious individual and the rate of depletion in the environment, and a periodic factor β2, 

that can be observed and is fitted to describe individual consumption (Ajelli et al., 2008; 2009; 2011) 

(Table 16). The rate of exposure (Table 15) describes the consumption by unit time. Consumption is 

not based on observations, but is fitted indirectly, based on seasonal fluctuations.  

In the work described here, introducing stochastic QRA as a part of a dynamic modeling framework, 

with human consumption data, and dose-response variabilty described by a Beta-Distribution (Beta-

Binomial), for foodborne viruses, is therefore a methodological improvement for modeling the 

foodborne pathogen dynamics (with several transmission routes). 
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Foodborne 

pathogen 

 

reference context objective/mitigation 

strategies tested 

Type of modeling/type 

of dose response 

type and rate of foodborne transmission considered 

Vibrio cholerae Righetto 

et al., 

2012 

 

Human cholera 

insurgence with 

seasonality  

Role of aquatic 

reservoir 

fluctuations in long 

term cholera 

pattern-  

SIR /logistic dose-

response curve 

(Codeco, 2001) 
doseVK

dose

*50

(1) 

β=rate of exposure to contaminated water (day
-1

) 

(water consumption/unit of time Hartley et al.2006) 

dose=total number of cholera bacteriae in the water reservoir of volume V 

dose is a function of Infectious individuals 

K50 concentration in bacteria that grants 50% probability for a susceptible of 

contracting the disease 

V volume of reservoir (with its own dynamic) 

logistic dose-response curve (Codeco, 2001)also used in Hartley and al, 2006 and in 

Shuai and Van den Driessche, 2011. 

Vibrio cholerae Longini et 

al., 2007  

Human cholera effect of oral 

vaccine for 

controlling endemic 

cholera 

SEIR with infectious 

asymptomatic 

individuals /two  

transmission routes: 

(1)person-person 

(2)person-

environment-person 

The probability, P(t), that a susceptible person is infected with cholera in sub-region i 
on day t is then given by: 
 
 
 
Where 

  = probability that an unvaccinated susceptible is infected either from the  

environment or from direct contact due to the presence of a single   unvaccinated 
infective in the sub-region (transmission probability), 
r = relative susceptibility multiplier.  
x = 1 if susceptible is vaccinated, 0 if unvaccinated, 

  = 1 – vaccine efficacy against susceptibility, 

  = 1 – vaccine efficacy against infectiousness, 

u
i 
(t) = number of unvaccinated infectious people in sub-region i on day t, 

vi (t) = number of vaccinated infectious people in sub-region i, on day t; and  
b = seasonal boost factor for first 30 days of each run. 
Indirect transmission (via water is proportional to Infectious) 

( ) ( )( ) 1 (1 ) (1 )i iu t v tx xP t br br
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Cryptosporidium Eisenberg 

et al., 

2005 

Humans 

massive 

outbreak of 

Milwaukee, 

1993 

Relative impact of 3 
transmission 
pathways 
 

SEIR: 

3 transmissions 
pathways: 
(1)environnent-person 
(2) person –
environment-person  
(3) person-person 

proportional to Infectious (taking into account shedding, depletion rate, transport 

time, and failure of water plant treatment) 

in previous studies (Eisenberg et al., 1998;1996) 

β(d)=1-exp(-rd)  

Avian Influenza 

Virus 

(AIV) 

Roche et 

al., 2009 

wild birds Effect of ecology of 

the host (density, 

migration) and AIV 

persistence in water 

environment 

linked to  

epidemiological 

cycles 

SIRS/logistic dose-

response curve dose

dose
same (1) 

ω contact rate with water or drinking volume year
-1

 

θ minimal viral load to initiate an (50%) infection 

(Roche et al., 2009) 

Avian Influenza 

Virus (AIV) 

Breban et 

al., 2009 

Ducks reservoir of virions 

that have long 

persisted in the 

environment. 

explain the pattern 

of periodicity and 

persistence of AIV;  

major results: 

environmental 

transmission 

provides a 

persistence 

mechanism in small 

community size, 

may explain 2-4 

SIR/exponential dose-

response 

environmental transmission: 

ρS(1-exp(-αD) with α=log(2)/ID50 

S number of susceptible individuals 

ρ per capita fraction of v virions ingested per unit of time and exposure rate, per 

capita consumption rate scaled by lake volume. V viral exposure. 
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year periodicity, 

long term 

persistence by 

reservoir 

Avian Influenza Wang et 

al., 2012 

Wild waterfowl Show 

environmental 

transmission role in 

the periodicity of 

influenza outbreaks 

(2-4 years) and 

persistence of the 

virus 

SIR/exponential dose -

response 

as Roche et al., 2009 

Avian Influenza 

multistrain) 

Breban et 

al., 2010 

wild waterfowl Results suggest that 

the endemic strain 

with non mixed 

transmission is 

more resistant to 

invasion 

SIR 

multistrain/exponential 

doose -response 

perfect cross immunity 

between strains 

two strains with same 

Ro, one with one  

transmission route, 

one with two 

transmission routes.  

As Roche et al., 2009 

 

TABLE 15:  EXAMPLES OF RATES OF FOODBORNE TRANSMISSION IN DYNAMIC MODELS OF FOODBORNE PATHOGENS 
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(Potential) 

Foodborne 

pathogen 

 

reference context objective/mitigation strategies tested Type of modeling Foodborne transmission 

investigated 

Enterovirus 

(poliovirus) 

Eisenberg et 

al., 2004 

Consequences of exposure 

to biosolid for human 

exposed population 

To provide a method for assessing the 

consequences of pathogen exposure, example 

of exposure through consumption of biosolid-

amended soil  

SEIRS with person-environment 

person pathway 

yes, approximation of a Beta-

Poisson dose-response with 

ingestion rate of soil 

0.01g/day 

dose is a function of 

Infectious individuals and 

external contamination 

Poliovirus Ranta et al., 

2001 

Large unstructured 

(metropolitan) population, 

with endemic or epidemic 

transmission of Poliovirus 

theoretical assessment of the likely efficiency 

of environmental surveillance (sewage water) 

compared to surveillance of human cases 

I(t) for different situations no  

 

Poliovirus Tebbens et 

al.,  2006 

human outbreaks consequences of reintroduction of poliovirus SEIR no 

Poliovirus Rahmandad 

et al., 2010;  

human outbreak consequences of network structure on the 

poliovirus transmission process understanding 

the dynamics of outbreaks 

SEIR no 

HAV Ajelli et al., 

2008 

coastal population of 

seafood consumers  

unit of time: month 

length of time: years 

Role played by risk factors (mussel 

consumption) on equilibria, stability and the 

period of HAV oscillations, with and without 

vaccination program. 

Deterministic SIR with a 

constant homogenously mixed 

population. 

3 sources of infection: 

(i) direct transmission between 

S and I 

(ii) indirect transmission by 

locally contaminated raw 

dS=μN-μS-λ(t)S 

(μ mortality and fertility rate, 

N size of population, S 

susceptible, λ force of 

infection) 

λ(t)=β1I/N+β2(t)U+β3 

(I infectious, U HAV 

contamination, β2 periodic 
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seafood 

(iii)traveling to higher endemic 

areas 

transmission rate) 

dU=d (I-U) where d is the  rate 

of depletion (virus)d=0.33 

month
-1

 

HAV Ajelli et al., 

2009 

endemic areas of Italy 

(Campania and Puglia) 

unit of time:week 

length of time: 50 years 

effect of target vaccination, social distancing 

measures, improvements in standards of living 

and hygiene in endemic areas of Italy 

50% of cases in those areas due to ingestion of 

infected seafood (Mele et al., 2006) 

combination of vaccination coverage and 

hygiene improvement decreases the number of 

notified cases by half in 50 years, social 

distancing alone can be counterproductive, 

hygiene improvement alone not very efficient 

(in the range under study), most efficient 

mitigation strategy: targeted vaccination 

program.  

stochastic individual-based 

model of HAV 

same consideration with Ajelli 

et al., 2008. 

β is linked with age 

hygiene mitigation strategy 

decrease U(t) by a reduction 

factor (20 to80%) accounting 

for improved conditions(other  

fishing areas, or better 

hygiene in fish market) 

d=0.033week
-1

 

HAV Ajelli et al., 

2011 

Italy  

unit of time=month 

length of time 50 years 

Effect of the vaccination program in Puglia on 

the decline of HAV incidence in the country as a 

whole 

Effect of the continuation of vaccination 

program in the endemic areas from Puglia to 

Campania. Differences in consumption during 

the year is not considered, between areas 

considered but not detailed. 

spatiotemporal dynamics, 

metapopulation model, 

 SIR based model with two main 

sources of infection direct and 

indirect (via food) 

The decay of virus δ in the 

environment may vary from 

region to region (length of  

the pipe of sewage system or 

harbor). With the same 

notation as in Ajelli et al., 

2008 

G(U)=δe
-δU

 

(exponentially decay) 

dU=δ*I-U)] 

NoV O’Neill and 

Marks, 2005 

human outbreak 

data =school (primary 

school and nursery) 

Effectiveness of vomiting episodes in enhancing 

the spread of the virus via aerosol transmission 

individual stochastic model 

(Reed –Frost) 

S Susceptible, I Infective or 

no 
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unit of time =day 

length of time=22 days 

Vomiter and R.  

NoV Heijne, 

Teunis et al., 

2009 

human outbreak 

unit of time=days 

length of time =16 days 

data on outbreaks in 11-

14, 15-17 and 1 camp for 

staff >18 years old; 

disease attack rate 2.3% to 

10.7% 

Effectiveness of hygiene measures in reducing 

the number of cases in an outbreak (=the 

spread of norovirus infection). 

Effect on the Effective Reproduction Number R 

from 14 to 2; (number of secondary cases per 

primary case) 

mean generation time 3.6 days 

generation time modeling 

and individual based stochastic 

model 

SI 

no 

NoV Vanderpas 

et al., 2009 

hospital outbreaks 

unit of time day 

length of time 1000 days 

effectiveness of patient turnover on the 

endemic prevalence of norovirus 

acute-care setting is at –risk of endemic 

situation 

attack rate 41%-R0=3.74 

deterministic SEIR (differential 

equations 

no 

NoV Sukhrie et 

al., 2012 

hospital/health care 

facilities outbreak (human) 

unit of time: days 

length of time 38 to 77 

days 

Contribution of symptomatic and 

asymptomatic individuals (patient and 

healthcare workers HCW) to the spread of 

norovirus in health care facilities. 

symptomatic individuals are main contributors  

generation time to construct 

plausible pathway of 

transmission and reproduction 

number for symptomatic and 

asymptomatic individuals 

(patient and HCW) 

no 

NoV Heijne et al., 

2012 

hospital/ outbreak in 4 

wards of psychiatric 

institution 

unit of time days 

length of time 33 days 

contribution of transmission route between 

HCW to patient, patient to patient, patient to 

HCW, main was patient to patient, second 

patient to HCW 

generation time modeling-

transmission tree 

no 

TABLE 16:  DYNAMIC MODELS OF VIRAL FOODBORNE PATHOGENS  
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IV.3.DYNAMIC MODEL OF NOROVIRUS CASES IN A COASTAL 

AREA  
 

4.3.1.  CON TEXT  

 

In 2011, the French ministry of Agriculture asked ANSES, about the efficiency for public health, of 

preventive measures such as the duration of closure of a norovirus contaminated shellfish area, in 

the context of a Norovirus epidemic in the human coastal population (ANSES, 2011). The shellfish by 

this public health issue was the Thau Lagoon. 

The risk associated with consumption of contaminated shellfish in coastal areas can be studied, using 

QRA to estimate primary cases (linked to food consumption). It is known that selling contaminated 

oysters, outside the coastal production area can generate human foodborne outbreaks (ANSES, 

2011). However for the coastal area population itself, it was not obvious, in a context of occurrence 

of a human epidemic,  that the total number of cases would be affected significantly by foodborne 

transmission. It was not easy to define the end of the foodborne risk for the human population, 

linked to the duration of the epidemics and environmental parameters. The winter 2002-2003, 2005-

2006, 2009, 2010-2011 outbreaks showed the same sequence of events, with the beginning of a 

winter gastroenteritis outbreak in the human coastal population, heavy rainfall some weeks after the 

beginning of the human outbreaks (associated with malfunctions in waste water treatment), the 

subsequent sale of shellfish, some days (or weeks) thereafter, creating foodborne outbreaks in the 

human population. The contamination of shellfish by Norovirus was confirmed later. The human 

foodborne outbreaks involved coastal and non coastal population, because oysters can be 

transferred for sale elsewhere in France. Microbial monitoring was shown to be inefficient in 

preventing these foodborne outbreaks.   

In this context the report (ANSES, 2011), based on a qualitative analysis of the situation in Thau 

Lagoon, recommended that one month after the last negative results in the shellfish production area, 

without any further human epidemic, and without any new episode of heavy rainfall, are suitable 

criteria to re-open the shellfish area to sale for human consumption, and prevents new foodborne 

outbreaks (ANSES, 2011). Other preventive measures were proposed (ANSES, 2011; Vaillant et al., 

2012b), as for HAV contamination episodes (ANSES, 2010), associating improvement in early 

reporting of the warning information on potential contamination of shellfish in light of certain 

environmental factors, targeting in particular shellfish producers and local authorities, and 

improvement in shellfish traceability. Improvement in the exhaustivity of mandatory declaration of 

foodborne outbreaks is also suggested (ANSES, 2011; Vaillant et al., 2012b). 

The duration of a norovirus epidemic in the general population is from 1 to 19 weeks, with an 

average of 7 weeks (sentiweb, 2012). The average number of (incidence) cases is 450 cases  per 

100,000 population, reported by physicians (sentiweb, 2012). In the Languedoc Roussillon region 

(including Thau Lagoon), the average peak is from 500 to 800 cases per 100, 000 (from 2004 to 2009), 

with two other observed peaks around 1100 to 1268 cases /100, 000 in 2010-2011 (sentiweb, 2012). 

Based on data from 7 winter outbreaks of this period the peak is, roughly, at the median of the 
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period of the epidemic. This number of reported cases can be corrected, by the number of people 

with Acute Diarrhea (AD) who consult general practitioners, around 33% (27-40%) (Van Cauteren et 

al., 2012). This reporting rate should also be corrected by the asymptomatic rate, which can be 

estimated at around 30%: 30% of exposed persons had positive collected stool specimens (Gallimore 

et al., 2006, Heijne et al., 2009).  However not all gastroenteritis cases are linked to noroviruses (see 

part I), only 19.2% of AD stools are found to be NoV positive (Chiki-Brachet et al., 2002).  

The estimate of the total number of cases in France, seeking medical assistance with AD during the 

winter epidemic is approximately 2-9.5% (9.4% in 2010) of the French population (sentiweb, 2012). A 

more precise number of cases for fitting an epidemic model on coastal population should be used for 

more precise statistical analysis.   

We investigated a situation close to that described above using  dynamic stochastic modeling, to 

examine the different sources of variability, such as the epidemic pattern and shellfish 

contamination, with a QRA approach in a dynamic model framework. Our aim was to identify 

biological factors involved in a causative pathway, and also to explain some qualitative trends of the 

results with some specific parameter calibration, based on recently published studies (Chan et al., 

2006; Atmar et al., 2006; Teunis et al., 2008; Maalouf et al., 2011) . Our work was designed to 

identify the data gaps in the available data for a modeling purpose. The model was also designed to 

investigate the public health effect of the closure of the shellfish area in a theoretical situation.  

When fitted with available data, and validated, in other context, this model can help risk managers to 

make valuable decisions about the closing the area (and the duration of closure), in the case of  

shellfish contamination.  

For norovirus, shellfish outbreaks raise another question. The relative contribution of Genotype GI 

(and other strain such as GII.3) in shellfish outbreaks is surprisingly higher in comparison to other 

outbreaks, in particular compared to inter-human main transmission outbreaks, which are more 

associated with GII and in particular with the GII.4 genotype (Glass et al., 2000; FAO/WHO, 2008; 

Verhoef et al., 2010; Matthews et al., 2012; EFSA, 2012). Biological differences in bio-accumulation in 

oysters, have recently been detected, in addition to other parameters (survival in the environment, 

infectivity, excretion) that may explain the epidemiological difference between the GI and GII NoV 

(Lindesmith et al., 2008; FAO/WHO;2008; Maalouf et al., 2011). 

Our dynamic model aimed to investigate, whether some parameters, particularly excretion level, 

infectivity (contact rate and dose-response parameters), and bio-accumulation in shellfish, can 

explain (or affect)  the spread of infection and the number of cases attributable to each genotype in 

an theoretical exposed coastal human population (with shellfish consumers and non shellfish 

consumers) with two transmission routes, interhuman and foodborne. Specific Dose-response results 

on GI and GII were used (Teunis et al., 2008; Thebault et al., submitted).  

Se- subject appeared to be better protected from infection with GI (Teunis et al., 2008) or GII (see 

section II), although perhaps less homogenously for GII (Lindesmith et al., 2003; Marionneau et al., 

2005; Le Pendu et al., 2006; Tan et al., 2008; Le Guyader et al., 2010). Genetic factors determining 

histo-blood group secretor status were taken into account in our dynamic model.  
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Co-contamination by GI and GII in Thau Lagoon and in human outbreaks has been observed several 

times: in 2002-2003; 2005-2006 in oysters only; 2009; but not observed in 2010-2011 (GII only) 

(ANSES, 2011). We explored co contamination, with assumptions of cross-immunity between 

norovirus GI and GII. 

Although previous dynamic models of Norovirus are available, describing the inter-human dynamics 

of infection in a semi-closed environment (school, hospitals, scout camp) but do not explicitly 

consider the foodborne pathway (O’Neill and Marks, 2005; Heijne and Teunis, 2009; Vanderpas et al., 

2009; Sukhrie et al., 2012, Heijne et al., 2012). 

  

4.3.2.  MO DEL ST R UCTURE  

4.3.2.1.  DE F I N I T I O N  OF  S P A T I A L  A N D  T I M E  S C A L E ,  D E F I N I T I O N  O F  

H U M A N  P O P U L A T I O N  U N D E R  S T U D Y  

 

The duration under study is similar to that observed during the epidemics in Thau Lagoon: around 

100 days, occurring in winter,  with an epidemic lasts around 7 weeks (6-8 weeks).  

During this period, the human population was modeled as closed, (no migration), the demographic 

parameters (birth, death rates) are considered negligible, the population size is assumed to be 

constant. The mixing of individuals is perfect and the efficient contact rates control inter-individual 

transmission (direct and indirect). Indirect contact rates exclude oyster foodborne transmission. 

The population was considered homogenous and randomly mixed, the heterogeneity of contact with 

age, in particular, was not considered in the first simplistic model. Nevertheless there are no 

available data for describing such heterogeneity in the coastal population.  

Half of the population is considered to consume oysters, at least once during the period (including 

Christmas and New Year's Day), the other half does not eat oysters. The mixing rate is assumed to be  

the same between and within both populations. Representative data estimate of the percentage of 

oyster consumers in coastal population is assumed to be higher than in the general population (i.e. 

below 10% in INCA1 )(ANSES, 1999; 2009). The coastal population, close to a seafood production 

area eats more fish and shellfish products than the general population (Calipso study) (see part 

II),however the actual proportion of shellfish eaters in coastal populations is unknown (Leblanc et al., 

2006; Sirot, 2010).  

Genetic factors determining histo-blood group secretor status were taken into account, but simply. 

Se- (secretor negative) subjects seem to be better protected from infection with GI (Teunis et 

al;2008, or GII (section II), although less homogenously so for GII (Lindesmith et al., 2003; 

Marionneau et al., 2005; Le Pendu et al., 2006; Tan et al., 2008; Le Guyader et al., 2010). A 

percentage of the population, lacking the Se+ receptor is considered to be  resistant to infection. This 

assumption slightly overestimates the resistance, but is introducing too much complexity in the 

model. The proportion of Se- subjects in the population, based on published data (Marionneau et al., 

2005) is estimated at around 20% (Table 18), and is assumed, for an individual,  to be independent 

oysters consumption status. Therefore, 20% of this population is then considered to be Se-, and with 
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simplification, not sensitive to GI or GII (resistant to infection), either via direct transmission between 

individuals, or  indirect and foodborne transmission.  

Chronic carriers (Sukhrie et al., 2010), hyper infectious individuals (or super-spreaders) are ignored. 

Asymptomatic individuals are not considered. 

The size of the theoretical population is 2,500 individuals, with 1, 250 oyster consumers, 1, 250 non 

oyster consumers. For each population 250 individuals are expected to be Se-, and thus resistant to 

infection. For the remaining 1,000 population consumers and non consumers,  no protective 

immunity was assumed before the epidemic: all individuals of these populations are susceptible. 

Protective immunity may be absent  or short lived (in term of weeks or months) (Karst et al., 2010). 

The beginning date of epidemic is declared the 1st December, which is plausible, given the data on 

the observed beginning date of the gastroenteritis epidemic in the Languedoc –Roussillon region in 

previous years (Doyle et al., 2004; sentiweb, 2012; ANSES, 2011; Vaillant et al., 2012). This is 

important for human oyster consumption which is taken into consideration in the model, (see 

section  “environmental transmission”). The data of consumption where daily based. The winter 

period is important to consider, because norovirus and gastroenteritis epidemic occurring during the 

winter (Lopman et al., 2009). The specific winter bioaccumulation rates in shellfish were used 

(Maalouf et al., 2011). 

4.3.2. 2.  MO D E L  F O R M A L I S M  

A stochastic approach was chosen to include the variability of some parameters in the model, and to 

examine its potential impact on results. The length of time considered is around 100 days. The unit of 

time can be one day or less, because the norovirus transmission pathway can be very short, and 

mean length of time in one compartment can be close to one day (duration of incubation). The 

heterogeneity in human populations is treated with a compartmental model, with few homogenous 

categories. We therefore chose a hybrid model (Breban et al., 2010), in continuous time, for 

describing the inter-human epidemic with a simple stochastic model, using the Gillespie algorithm, 

and in discrete time for describing virus environmental dynamics, and foodborne transmission risk 

dynamics. Human food consumption has daily time basis, and it is quite plausible that environmental 

foodborne risk assessment changes daily. Oysters are generally harvested once a day. The dynamics 

of foodborne transmission was evaluated in discrete time, with a single day  as the unit of time. Fifty 

Monte Carlo simulations were performed for each situation, and quantiles (median, 95%CI ) were 

plotted in results with R.2.14.1. The number of simulations can be improved upon publication 

request for more precise estimates of quantiles (one to several thousand simulations) . 

4.3.2. 3.  HU M A N  E P I D E M I C  M O D E L  S T R U C T U R E  

The different health states in the human population, and the possible transitions between them, in 

the general situation of co-infection with GI and GII are given in Figure 25. The list of events 

associated with the transitions rates for the Gillespie algorithm is given in Table 19. The definition of 

parameters, calibration values and references for setting calibration values are given in Table 20. 

The latent period is of the same order of magnitude as the infectious period (Table 18) . The basic 

model assumes that hosts can be divided into four health classes, susceptible (S), exposed or infected 

(E), infectious (I) and immunes R (Vanderpas et al., 2009). No protective immunity before the 
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epidemic is considered. The genetic diversity of norovirus can play a role in this system. Infection 

with a strain of one genotype may not confer immunity against strains of other genotypes or even 

variants within a genotype (Lindesmith et al., 2008). However, in the period of time  considered, each 

individual can only become infected once by one genotype, and then enters the removed state (R). 

 

 FIGURE 25:  STRUCTURE OF THE TWO STRAIN MODEL IN THE INTER-HUMAN TRANSMISSION FOR GI 

AND GII.   

Legend: Green dashed arrow: indirect foodborne (via oysters) transmission, only possible for the population of 

oyster consumers; dashed blue arrow transition with an infectious state; other blue arrows, other transition 

between health states. 

 

In the Table 19, the two letters reflect a status-based formulation, with GI and GII respectively, but 

also a history-based formulation (Keeling and Rohanni, 2008) (Figure 25). Each transition between 

result is the departure of one individual from the source compartment (or origin) and the arrival of 

one individual in the target compartment (of destination)  (Table 17). Parameters and their 

definition are given in Table 18. 
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Event (reference number) Health 
status(from)-1 

Health status (to)+1 Event Transition rate  

1 SS  ES B1*SS*(I1/N) 

2 SS SE B2*SS*(I2/N) 

3 ES IS L1*ES 

4 ES EE δ1*B2*ES*I2/N 

5 IS RS G1*IS 

6 IS IE δ1*B2*IS*I2/N 

7 RS RE δ1*B2*RS*I2/N 

8 SE SI L2*SE 

9 SE EE δ2*B1*SE*I1/N 

10 SI SR G2*SI 

11 SI EI δ2*B1*SI*I1/N 

12 SR ER δ2*B1*SR*I1/N 

13 EE IE L1*EE 

14 EE EI L2*EE 

15 IE II L2*IE 

16 IE RE G1*IE 

17 EI II L1*EI 

18 EI ER G2*EI 

19 ER IR L1*ER 

20 IR RR G1*IR 

21 II RI G1*II 

22 II IR G2*II 

23 RE RI L2*RE 

24 RI RR G2*RI 

25 (food transmission) SS ES ε*pmal1*SS 

26 (food transmission) SS SE ε*pmal2*SS 

27 (food transmission) SS EE ε*pmal3*SS 

28 (food transmission) SE EE ε*pmal1*SE 

29 (food transmission) ES EE ε*pmal2*ES 

TABLE 17: LIST OF EVENTS WITH TRANSITION RATE FOR HUMAN EPIDEMIC 

DYNAMIC 

Legend: for I1 and I2: with index c for consumers and nc for non consumers: 

I1=sum(IS,IE,IR,II)c+ sum(IS,IE,IR,II)nc 

I2=sum(SI,EI,RI,II)c + sum(SI,EI,RI,II)nc 
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Parameter Definition Value for 

GI 

Value 

for GII 

(GII.4) 

Remark and Reference 

B1, B2 effective 
contact rate 
parameter 

B1=0.8 

 

B2=1 calibrated for an outbreak 
B1cc=B1NCNC=B1NCC=B1CNC=B1 
B2cc=B2NCNC=B2NCC=B2CNC=B2 

C consumers 

NC non consumers 
e.g. Bncc contact rate between non consumers and 
consumers etc… 

1/L1 for GI 
1/L2 for GII.4 

duration of 
latent period 

1.5 days as for 
GI 

first virus shedding in stool (Atmar et al., 2008) 
2 days (Heijne et al., 2009) 

1/G1 for GI 
1/G2 for GII.4 

duration of 
infectious 
period for inter-
human 
transmission 

2 days as for 
GI 

symptomatic duration Karst et al., 2010;, and with 
the assumption that the symptomatic phase is the 
main contributor to inter human transmission 
(Karst et al., 2010) in agreement with 1-3 days 
postchallenge peak(Heijne and Teunis, 2009); 49% 
enter the symptomatic phase within  1-2 days (Van 
derpas et al.,  2009) 

δ1 
δ2 

cross-immunity 
parameters 

0.8 or 0.1 as for 
GI 

Assumption (see text) 

durexcret (g1 or 

g2) 
duration of 
excretion of 
genomes in 
stool by an 
infectious 
individual 

x ~ 
Betapert 
(5, 10,30) 
(min 5, 
mode 10, 
max 30) 

as for 
GI 

excretion last a median of  28 days after 
inoculation (Atmar et al., 2008) extrapolated from 
GI (Norwalk) to GII 
10 days with ELISA (Atmar et al., 2008) 
 

cmax(g1 or g2) 
cmin (g1 or g2) 

concentration in 
genome /g of 
stool 

1 to 4 
days: 
cmax~10

No

rm(7, 1)
 

4 to x 
days < 24 
days: 
cmin~ 
10

Unif(0,4) 

cmax 
~10

Norm

(9, 1) 

cmin~ 
10

Unif(0,6

)
 
 

Median peak at 3 days after begins of symptom (4 
days after inoculation) 
(Atmar et al., 2008) extrapolated from GI 
(Norwalk) to GII 
difference between GI and GII, in excretion (Chan 
et al., 2006) 
100-fold higher for GII compared to GI 
estimate conc/g ~10^BetaPert (2,6,8) (Mokhtari et 
al., 2009) 

weightstoolda
ymin 

weightstoolda
ymax 

quantity of stool 
excreted per 
individual per 
day 

250 g 
during 
first 2 
days 
130 g 
during x-
2 days 

as for 
GI 

criteria 200 g for symptoms (Atmar et al., 2008) 
severity can be higher for GII (Atmar et al., 2008) 

ε consumption 
authorized or 
not 

0: 
closure- 
1: open-
authorize
d 

 assumed identical to open/closure of shellfish area 
efficiency of closure (=0)assumed to be perfect  
 

percse % of Se- in 
general 
population 

20% as for 
GI 

Marionneau et al., 2005 

N total  
population size 

2500   

TABLE 18:  HUMAN PARAMETERS DEFINITION, CALIBRATION VALUES,  REFERENCES 
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Inter-individual transmission is described with a frequency dependent transition rate. However the 

size of the population is constant and demographic parameters are not considered here.   

The model is similar in structure to other two-strain models (Keeling and Rohanni, 2008; Roche and 

Rohanni, 2010). Simultaneity of change in health state for both genotypes is considered negligible, 

except for simultaneity of co-infection, which was possible for indirect transmission via food. Finally, 

after infection by both genotypes, the individual is completely removed (resistant to infection). If the 

modeling had been built for more seasons or several years, immunity should decrease and 

individuals  should become susceptible individuals, with the assumption of no long term immunity ( 

in a SEIRS system).  

The effective contact rates per unit time (B1 for genotype I and B2 for genotype II) are  estimated to 

be the same within the population of consumers and non consumers and between these two 

populations (Table 18). The total number of Infectious I1 and I2 that can infect consumers and non 

consumers, is the total sum of infectious in both populations (Tables 17 and 18). B1 and B2 are 

calibrated to generate a small epidemic in the human population. B2 is assumed to be more 

important for GII.4 than for GI, to take into account the fact that GII.4 is dominant in inter-human 

epidemics (Lindesmith et al., 2008).  

The duration of latent phase (1/L1, 1/L2) is estimated to be similar to the incubation period (Karst, 

2010), and similar to the  time to the  first excretion of viruses in stools defined for Norovirus, in a 

median time of 36 h, (range 18-110 h)(Atmar et al., 2008) (Table 18). The duration of the infectious 

period (1/G1, 1/GII) is estimated as the usual range of the symptomatic phase, given that the high 

excretion rate in stools can be found during the first days of clinical symptoms (24-48 hours) (Karst, 

2010; Atmar et al., 2008). The symptomatic phase for norovirus, which sometimes includes vomiting, 

can result in a higher transmissibility phase (Sukhrie and Teunis 2012).  

The interaction between strains over time is described by parameters of partial cross-immunity. In 

the model, the probability of being infected by a genotype I(II.4) was lower after being removed from 

one infection with genotype (II.4)(I). In our model competition also occurs before being removed 

from one infection (Table 17), during the latent and infectious period. The interaction between 

strains is represented by δ1 and δ2 (Table 17). Between 0 and 1, these factors decrease the 

probability to be infected by the other genotype. Co-infection in stools occurs but is not common, 

making unlikely any enhanced susceptibility, but can be confirmed by further data analysis. A mild 

immune response, short term, is detected (Karst, 2010). The combination of no long-term protective 

immunity and the huge diversity of strains is a mechanism that underlies the regular repeated 

epidemics of norovirus. Therefore the factors δ1, δ2 of 0.1 and 0.8 (Table 18) should be interpreted 

as an exploratory ways, for investigating their influence on co-contamination. These factors can be 

set differently for GI and GII.4, however, for this analysis, we chose to keep the same values for both.  

Finally symptomatic individuals, and chronic carriers were ignored, although they may play a role in 

direct and indirect transmission (Sukhrie et al., 2010; 2012; Partridge et al., 2012).  

Indirect transmission is considered by following transition probabilities per unit time, regarding the 

consumer population (equation 25 to 29 in Table 17). 
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The mean probabilities of daily illness in the population of consumers (pmal1, pmal2 and pmal3) are 

functions of I1, I2, I1 and I2 respectively, environmental parameters, consumption data and dose-

response parameters as described in section III. For NoV, we assume that each genome corresponds 

to one infectious virus. Details of calculations of the indirect transmission rate (pmal1, 2,3) are given 

in the next section. 

4.3.2.4.  IN D I R E C T  T R A N S M I S S I O N  R A T E   

 

All parameters of indirect transmission and their distribution are given in Tables 18 and 19. 

Parameter Definition Value for GI Value 
for GII 
(GII.4) 

Remark and Reference 

waterconsum
p 

waste water per 
individual, daily 

180 liters as for 
GI 

(ADEME, 2011) 

concwi concentration in water 
influent 

(∑(weightstooldayi*Cmi))/(
N*waterconsump) 

as for 
GI 

 

pabatstep probability of surviving 
water treatment and 
loss in the system's 
network  

10-4 as for 
GI 

can be documented in the future 
(site-treatment dependent); can be 
different between GI and GII 
no strong survival difference 
(Flannery et al., 2012); survival 
difference (Da Silva et al.,  
2007;2008) 

delaystep residence time in 
treatment plan 

2 days as for 
GI 

data obtained from Brittany (aNSES, 
2010) (can be documented in the 
future, in particular for maturation 
pond) 

T90  time to a 90% decrease 
of initial quantity of GI 
(in treatment plant or in 
oysters) 

12 days as for 
GI 

T90 between 8 and 12 days, 
estimated  from data (Le Guyader et 
al., 2008; Dore et al., 2010) 

concwe concentration in 
wastewater 
effluent/liter 

n~Binom(concwi,, 

pabatstep) 
concwe=n10

-(delaystep/T90)
 

as for 
GI 

 

dilustep treated waste water 
dilution and loss  in the 
sea 

10^4 as for 
GI 

indirectly calibrated in order to 
obtain realistic value of 
concentration in genomes in sea 
water 

concmwT  conc in sea water in 
contact with 
shellfish/liter with 
wastewater treatment 
plant  

concmwT= concwe/dilustep as for 
GI 

 

rawdilu conc in sea water in 
contact with 
shellfish/liter without 
wastewater treatment 
plant (raw reject) 

none
 

as for 
GI 

assumption 

Residence 
time in sea 

1 day   assumption 

γg bio concentration 
between concentration 

10
-Unif(-2;0) 

mean: 10
-1.5 

10
-unif(-

8;-6) 
November-January-march  data of 
bioaccumulation in 24 h, (Maalouf et 
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of digestive tissues (DT) 
in oysters from 
concentration in sea 
water 

mean: 
10

-7
 

al., 2011) 

rg Biodilution factor 
between DT and edible 
tissues 

0.01 1 January-march  data of 
bioaccumulation in 24 hours, 
(Maalouf et al., 2011) 

proDT Average weight of 
digestive tissues (WDT)/ 
average weight of edible 
oyster tissues  WO 

proDT =0.08 
WDT/WO 

Wo~Unif(10;20) 
WDT= proDT. WO 

 

 

as for 
GI 

data from Le Guyader, published in 
Thebault et al.2012 

Vge mean quantity of 
genome per gram of 
oyster edible tissue  

Vge=((WDT.VgDT)+(Wo- WDT) 
rg VgDT)/Wo 
VgDT: mean quantity of 
genome (g for GI or GII) by 
gram of digestive tissue 
 

as for 
GI 

 

Qg quantity of genome/g of 
oyster 

Qg~Poisson (Gamma(Vge, 
1)) 

as for 
GI 

heterogeneity of contamination 

tpostharvest time between harvest 
and consumption 

0 as for 
GI 

no delay, because coastal 
consumption  

consum(i) consumption data in 
gram/indiv/day 

empirical distribution with 
1000 
consumers data set 

as for 
GI 

from Calipso, SECODIP and INCA data 
(Thebault et al., 2012) 

α,β,η,r Dose-response 
parameters 

posteriors distribution of 
dose-response outbreaks 
data for GI 

data 
for GII 

posteriors distribution of dose-
response outbreaks (Thebault, A., 
Teunis, P., Le Pendu, J., Le Guyader, 
S., Denis JB. submitted 

 

TABLE 19:  ENVIRONMENTAL PARAMETERS INVOLVED IN INDIRECT TRANSMISSION  

Legend : Unif: Uniform distribution, Poisson: Poisson distribution; Gamma: Gamma 

distribution 

 

For each new Infectious (I1 or I2) individual, two period of infectivity in stools were considered: 

 A first period, corresponding to the maximum symptomatic phase, and a hyperinfectious 

state of viral excretion in stools, corresponding to high concentration of virus (genomes)/g 

stool (cmax) . The first period was set to 4 days (Table 18). 

A second period, corresponding to asymptomatic phase, and less viral excretion in stool, cmin. 

The duration of the second period is sampled from a Beta-Pert distribution (Table 18). 

Calibration of parameters was considered plausible based on published studies (Atmar et al., 

2008; Chan et al., 2006; Lee et al., 2007; Mokhtari and Jaykus, 2009). 

The excretion rate (concentration in stools/g) were set differently for GI and GII (Table 18), at 

100-fold higher for GII than for GI (Chan et al., 2006).  
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 For each infectious individual, daily excretion was estimated for the first and second period. 

For each day and each infectious individual, the quantity of virus excreted with the product 

of the concentration in genomes and the average weight of stools produced daily by an 

individual, diluted by the quantity of water consumed each day (Table 18). 

 The duration of each period was set identical for GI and GII, but could be different (GII.4 is 

suspected to have longer excretion periods (Atmar et al., 2008; Chan et al., 2006). 

 At the sewage treatment plant, each day the influent contains the sum of all daily quantities 

associated with each infectious individual for GI and GII.4, diluted by the sum of sewage 

water produced by the population of size N. This approach was used for estimating Poliovirus 

concentration in a city influent (Ranta et al., 2001). The concentration in influent is noted 

concwi. 

 The effectiveness of sewage treatment at the plant is defined by the probability that one 

virus (or genome) survives the treatment and the aggregation in the network sewage system 

or sewage sludge (Table 19). 

 The residence time in the sewage plant is taken into consideration before the effluent is 

discharged into the environment. The concentration in the effluent, noted concwe is a 

function of the survival of the virus in the environment (in the plant reservoir) and residence 

time (Table 19). Using an exponential decay, the time to 90% loss was defined based on 

published data (Le Guyader et al., 2008; Dore et al., 2010). 

 The quantity of virus in the effluent is diluted, to obtain plausible values of concentration of 

viruses per liters in sea water, in the neighboring shellfish area. Sea water are set daily 

memoryless. This assumption should be estimated for a specific coastal site, because the 

residence time is site dependent (effect of tide, hydrological characteristics, depth) and 

period (i.e.season) dependent (tide, tempest, rainfall) (Pommepuy et al., 2005;Rueda et al., 

2006; ANSES, 2010). This assumption probably underestimates the virus concentration in sea 

water. The residence time is not the only factor to consider: shellfish activity in production 

areas (cultivated or wild) can deplete the concentration in sea water, and sedimentation with 

aggregates of organic matter. Therefore, our assumption mildly underestimates the 

concentration of NoV  in sea water. 

  In case of heavy rainfall, and during periods of heavy rainfall, a by-pass system is considered 

in replacement of the sewage treatment plant. The dilution in sea water is considered to be 

null in comparison, to the regular system, because points of accidental discharge were not 

elaborated to minimize sea water contamination. During the period of heavy rainfall, sea 

water are again daily memoryless. The quantity of virus in sea water is result of the 

concentration of viruses in the influent, taking into account the dilution of wastewater 

population  consumption (Table 19).  

The mean concentration in oysters is a function of concentration in sea waters, taking into 

consideration the bioaccumulation factor γg (with g specific to GI or GII) (Maalouf et al., 2011). The 
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mean quantity of virus per gram digestive tissue (DT) in shellfish VgDT was obtained using the 

following dynamic for GI or GII.4 (day j) 

VgDT (j)=γg . Cmwgj+Vg(j-1)10^(-1/T90g) 

where t is the time in days, T90, the duration for 90% decay of virus, γg the bioaccumulation in oysters, 

taken as a random variable (time of oyster variability during winter period) (Table 19).  

 The mean quantity per gram edible oyster tissue was different for GI and GII (g=1 or g=2), 

and is different between days j. This mean quantity was noted as VgE (j). The relationship between the 

quantity of viruses in the digestive and edible tissues is given by: 

 Vge=((WDT.VgDT)+(Wo- WDT) rg VgDT)/Wo 

with rg the biodilution factor as the relative percentage of virus in tissues other than in digestive 

gland, compared to the digestive tissue (different for GI and GII.4) (Maalouf et al., 2011), WDT mean 

weight of digestive tissues, Wo, mean weight of oyster (Table 19). 

Heterogeneity of contamination in oysters was introduced (in the idea of small scale spatial 

heterogeneity), assuming  that the contamination per gram oyster is Gamma Poisson distributed 

(Qg(j)) 

The parameter of the Poisson distribution is Gamma distributed with shape= VgE, and scale=1. (The 

mean of the Gamma distribution is the product of shape and scale). 

The oysters were assumed to come from a large homogenous population, with some heterogeneity 

of contamination. Their demography (linked to human practices) is not considered. During the 

considered period, transfers for sale for human consumption and other transfers of shellfish were 

assumed to have no impact on the distribution of contamination in oysters. 

Knowing the quantity of genome per gram oyster per day, daily shellfish consumption data was used. 

Shellfish consumption is highly seasonal, and higher in coastal population. We took the consumption 

data from the 1st December for the beginning period of the simulation to focus on the period of 

interest in Thau Lagoon (ANSES, 2011).The way these consumption data were compiled from three 

different data bases has been already described (Thebault et al., 2012 and section II) . We obtained 

for each day j the  consumption of oysters in gram for each individual i in a population of 1000 

consumers, noted consum(ij). 

 

In this population, we evaluated the daily mean risk of illness (Pill) due to oyster consumption from 

each day of the period. For a population of 1000 consumers, SE+ subjects, individual daily risk was 

evaluated using the following equations: 

 

Doseinggij=consum(I,j)*Qg(j) 

 

P(infgij)=1-Gamma(αg+βg)Gamma(β+Doseinggij)/((Gamma(βg)Gamma(β+α+Doseinggij)) 

 where Gamma is the Gamma function, α and β parameters specific to GI and GII 

and were taken from previous estimates (see section III) 
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 The probability of illness, conditional to infection and dose for each genogroup is 

given by 

P(ill/infgij)=1-(1+η Doseinggij)
-r  

 

The probability of illness, taking into account infection risk is given by  

Pillg,i,j= P(infgij)P(ill/infgij) 

 

For individual i, day j, the event of illness with GI (or transition from S to E for one individual 

) is Bernoulli distributed with parameter (Pillg,i,j) and is noted ill(1,i,j) for illness with GI, for 

illness with GII ill(2,I,j). 

The infection by GI and GII is given by the result of the Bernoulli distribution for GI and GII 

via Pinf, with both events=1; the sum of doses for risk of illness; it is noted ill(1and2,i,j). 

The mean risk of illness, on day j in the population, of size S=1000, by GI only, is given by: 

S
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The mean risk of illness, on day j in the population, by GII only, is given by the same 

equation, replacing (1) with (2) 
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Pmal1(j), is the mean of the daily risk of illness on day j by GI, Pmal2(j) is the mean risk of 

illness on day j by GI, Pmal3(j) is mean of risk of illness on day j by GI and GII. One set of 

dose-response parameters was taken from the posterior distribution of dose-response 

estimates (see section III).  

This calculation allows for comparison with observational studies, on the influent of the 

sewage treatment system, on the effluent of the sewage treatment system, on sea water 

and on shellfish for both the digestive and edible tissues. 

The corresponding concentration are plotted in the Figure 26. 
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FIGURE 26:  CORRESPONDENCE BETWEEN INDIRECT TRANSMISSION PARAMETERS AND DIFFERENT 

STEP OF CONTAMINATION (DEFINITION TABLE 10).   

Legend: Black arrows virus transmission to each compartment (red arrow initial 

contaminated). One point dashed arrow is raw reject (no sewage treatment or 

further dilution); two points dashed arrows step reject (sewage treatment and 

dilution in sea water 

 

From Tables 18 and 19, it can be seen that only four categories of parameters differentiate GI from 

GII: human excretion, transmissibility rate (B1,B2), genotype-specific oyster accumulation (γg, rg) and 

genotype-specific dose-response parameters. Differential survival estimates should be further 

documented, but were not taken into account here, whenever suspected (Da Silva et al., 2007; 2008; 

Sima et al., 2011; Flannery et al., 2012). 

In the QRA part of the model, the calculation of daily risk comprises the variability in contamination 

parameters and consumption data. 

 

4.3.2.5. M I T I G A T I O N  S T R A T E G I E S  A N D  I N I T I A L  P A R A M E T E R S .  

The Table 20 gives the initial states and the period parametrization 

Scenario (1 to 5) describes the mitigation strategy implemented. 
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definition of 

period 

date of 

beginning: 

1 December 

days since the  

beginning date 

Environmental 

source of 

contamination 

Initial state 

1
st

  period 1 to 20 WTP  5 infectious GI or GII 

 995 S consumers 

 1000 S non 

consumers 

 500 RR  

other initial state Null 

N= 2500 

 Environmental 

contamination null 

2
nd

 period 20 to 23 CCR  from 1
st

 period 

3
rd

 period 23 to 30 WTP from 2
nd

 period 

4
th

 period 30 to 51 WTP from 3
rd

 period 

5
th

 period 51 to 120 WTP from 4
th

 period 

 

TABLE 20:  DEFINITION OF PERIOD AND INITIAL STATES 

Legend: WTP contamination of sea water by sewage water treatment plant 

                CCR contamination of sea water by raw reject only 

The dynamics of the system and the definition of period were based on those observed in the Thau 

Lagoon, with epidemics at winter time, associated with heavy rainfall for some days and failure of the 

water treatment system (by-pass of waste water influent into sea waters), and some days (weeks) 

later, food-borne outbreaks detected within and outside the shellfish production area (Table 20). 

Other strategies, such as relaying, purification, and effectiveness of monitoring were not tested here. 

The initial states were 5 infectious individuals of GI, or GII according to the genotype under  

investigation. In case of co-contamination, 5 infectious individuals of G and GII were involved in the 

initial states. We were not interested in explaining how these five individuals became infectious, or in  

the beginning of epidemic itself. We can make the assumption they became infected after travelling 

to other areas, where epidemics occur in the winter time. These infectious individuals contribute to 

initial environmental contamination. 

Five different mitigation strategies were investigated for contamination by only GI GII or by both GI 

and GII (Tables 19 and 20), and then for co-contamination of GI and GII. 

The scenarios (1 to 5) describe the mitigation strategy implemented. The mitigation strategy is called 

closure of the area or local shellfish consumption ban, both of which produce same effect, i.e. they 

stop the foodborne transmission. 



 

143 

 

The mitigation strategies investigated were “scenario 1”, no foodborne transmission; “scenario 2”, 

oyster consumption during the whole period; "scenario 3", 3 weeks consumption ban; "scenario 4" 

long term consumption ban, "scenario 5" early implemented consumption ban (Table 21).  

 

 scenario1 scenario2 scenario3 scenario4 scenario5 

period 1 forbidden authorized authorized authorized authorized 

period 2 forbidden authorized authorized authorized forbidden 

period 3 forbidden authorized authorized forbidden forbidden 

period 4 forbidden authorized forbidden forbidden forbidden 

period 5 forbidden authorized authorized forbidden authorized 

TABLE 21:  SUMMARY OF MITIGATION STRATEGY INVESTIGATED BY THE MODEL  

Legend: mitigation is different with local shellfish  consumption authorized or not for 

particular period 

4.3.6.  RES ULT S  

 

The Figure 27 shows median results for scenario 3 for GI. Figure 27 A gives the changes in  median 

health  states in time, and environmental results are given in Figure 27 B. The red vertical dashed 

lines indicate the mitigation periods. A strong effect of consumption (foodborne cases) is shown 

(more than half the cases in consumer population). The period of consumption is quite long enough, 

but shown some cases after 51 days. Consumption of shellfish is high (during Christmas holiday 

period). 

The Figure 27 B shows median concentration in sea(marine) waters, and concentration of virus per g 

(with 95% IC) edible oyster tissues. This figure illustrates the high bioconcentration effect in GI, even 

if biodilution is lower (in comparison with GII; Figure 29). The contamination of shellfish is governed 

by the episode of raw contamination in the environment. 
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FIGURE 27  A.  HUMAN EPIDEMIC SITUATION WITH GI CONTAMINATION, FOODBORNE TRANSMISSION, 

AND PARTIAL TIME FORBIDDING CONSUMPTION (SCENARIO 3).   

Legend: SSconso susceptible oysters consumers, SSnonconso susceptible oysters non consumers, RSconso, 

removed oyster consumers (GI cases in consumer population of 1000),  RSnonconso, removed non oyster 

consumer (GI cases in non consumer population of 1000), alimcases, foodborne cases in consumer population. 

 

FIGURE 27.B.  CONCENTRATION IN SEA WATER AND IN SHELLFISH WITH TIME (IN LOG10) 
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Legend of Figure 27. B:  

Med.conc. by g ed.oys: median concentration of virus /g (with IC95 in hatched lines) in the edible part of oyster 

conc m.w : median concentration in sea waters 

The Figure 28 shows the results for the different scenario of duration of closure of the area with GI 

contamination only. 

 

 

FIGURE 28.  HUMAN EPIDEMIC SITUAT ION WITH GI CONTAMINATION,  FOODBORNE TRANSMISSION, FOR SCENARIO 1,  

2,4,5 

1 2 

4 5 
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Legend: upperleft scenario 1; upperright scenario 2; bottom left scenario 4; bottom 

right scenario 5. 

The figure 28 shows strong effect of foodborne transmission for GI cases. 

The Figure 29 shows median results for scenario 3 for GI. Figure 29 A gives the changes in  median 

health  states in time, and environmental results are given in Figure 29 B. The red vertical dashed 

lines indicate the mitigation periods. An effect of consumption (foodborne cases) is shown but less 

than before (comparison 27 A). The period of consumption is quite long enough. The Figure 29 B is 

showing median concentration in sea(marine) waters, and concentration of virus per g (with 95% IC) 

edible oyster tissues. This figure illustrates the less bioconcentration effect in GII, even if biodilution 

is higher (in comparison with GII; Figure 29). The contamination of shellfish is governed by the 

episode of raw contamination in the environment. 

 

 

FIGURE 29  :  A:   HUMAN EPIDEMIC SITUATION WITH GI CONTAMINATION , FOODBORNE 

TRANSMISSION, AND PARTIAL TIME FORBIDDING CONSUMPTION (SCENARIO 3).  B CONCENTRATION 

IN SEA WATER AND IN SHELLFISH WITH TIME ( IN LOG10 

Legend : 29 A upper Figure, 29 B Bottom Figure 
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Legend 29 A: SSconso susceptible oysters consumers, SSnonconso susceptible oysters non consumers, RSconso, 
removed oyster consumers (GI cases in consumer population of 1000),  RSnonconso, removed non oyster 
consumer (GI cases in non consumer population of 1000), alimcases, foodborne cases in consumer population 
Legend of Figure 29 B:  
Med.conc. by g ed.oys: median concentration of virus /g (with IC95 in hatched lines) in the edible part of oyster 
conc m.w : median concentration in sea waters 
The Figure 30 shows the results for the different scenario of duration of closure of the area with GII 

contamination only. 

 

 

 

 

FIGURE 30:  HUMAN EPIDEMIC SITUATION WITH GII  CONTAMINATION, FOODBORNE TRANSMISSION, FOR SCENARIO 1,  

2,4,5 
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Legend: upperleft scenario 1; upperright scenario 2; bottom left scenario 4; bottom right scenario 5. 

The figure 30 shows potential effect of foodborne transmission for GII cases in scenario 2. 

Figure 31 show the results for GI (left) and GII (right) cases  with GI and GII coinfection with cross immunity 

parameter at 0.8 (low level of cross immunity), for scenario 1, 2,3,4,5. At the end of epidemic an SSconso can 

become RSconso, RRconso, or SRconso, or can remain SSconso.  

 

 

 

 

Scenario 1 
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FIGURE 31:  GI  AND GII   CASES  WITH GI  AND GII  COINFECTION WITH LOW CROSS IMMUNITY FOR 

SCENARIO 1  TO 5 

legend: show the results for GI (left) and GII (right) cases  with GI and GII coinfection with cross immunity 

paramter at 0.8 (low level of cross immunity), for scenario 1, 2,3,4,5. At the end of epidemic an SSconso can 

become RSconso, RRconso, or SRconso, or can remain SSconso. Red curve left GI cases only (dashed non oyster 

consumers), Red curve right GII cases only (dashed non oyster consumers), blue curve RR (dashed non oyster 

consumers), black curve SS (dashed non oyster consumers), green curve foodborne cases, right GI, left GII. 

The effect of foodborne transmission is shown by GI cases and RR cases in scenario 2, by example, in 

comparison with scenario 1 (Figure 31). Oyster consumers are more likely to be RR or GI cases in scenario 2. 

The total number of cases (SS curve) is more important with foodborne transmission. 

Figure 32 show the results for GI (left) and GII (right) cases  with GI and GII coinfection with strong cross 

immunity parameter at 0.1 strong level of cross immunity), for scenario 1, 2,3,4,5. At the end of epidemic an 

SSconso can become RSconso, RRconso, or SRconso, or can remain SSconso.  

 

 

 

 

 

scenario 5 



 

151 

 

 
 

 

 

 

 

 

 

 

Scenario 1 

Scenario 2 



 

152 

 

 

 
 
 

 
 

 

 
 
 

Scenario 3 

Scenario 4 



 

153 

 

 
 

 

FIGURE 32:  GI  AND GII   CASES  WITH GI  AND GII  COINFECTION WITH STRONG CROSS IMMUNITY 

FOR SCENARIO 1  TO 5 

 

Legend: show the results for GI (left) and GII (right) cases  with GI and GII coinfection with cross immunity 

paramter at 0.8 (low level of cross immunity), for scenario 1, 2,3,4,5. At the end of epidemic an SSconso can 

become RSconso, RRconso, or SRconso, or can remain SSconso. Red curve left GI cases only (dashed non oyster 

consumers), Red curve right GII cases only (dashed non oyster consumers), blue curve RR (dashed non oyster 

consumers), black curve SS (dashed non oyster consumers), green curve foodborne cases, right GI, left GII. 

The effect of foodborne transmission is shown by GI cases and RR cases in scenario 2, by example, in 

comparison with scenario 1 (Figure 31). Oyster consumers are more likely to be RR or GI cases in scenario 2. 

The total number of cases (SS curve) is more important with foodborne transmission. The number of RR is less 

important in Figure 32 than in Figure 31, with the strong effect of cross immunity. 

 

4.3.7.  D I SCUSSIO N  

 

The mitigation strategy of closing shellfish areas to protect human shellfish consumers seems 

effective, even for a population exposed to a winter Norovirus epidemic, whatever the genotype, but 

(more for GI), for shellfish consumers and non consumers. Comparing results in scenario 1 (without 

foodborne transmission) and scenario 2 (with food borne transmission) (Figure 28 for GI and 30 for 

GII) show an increase in the number of cases, for consumers and non consumers, with a high number 

of cases attributed, for consumers, to foodborne transmission for GI (Figure 28). 

Scenario 5 
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This effect is not surprising, already intuitively explained by the fact that the reproduction number 

and the size of an epidemic are linked to transmissibility parameters. Introducing environmental 

shellfish transmission adds another component to transmissibility, and, as a consequence to the 

reproduction number and the size of the epidemic (Rohanni et al., 2009). Estimates of the changes in 

reproduction number over time and according to the implemented mitigation strategy are potential 

future avenues of investigation. 

How should the mitigation strategy be implemented ? Long closure periods (scenario 5) or early 

closure measures (scenario 4) seemed to be, on average effective (Figure 28 for GI and 30 for GII; 31; 

32). Whenever abnormal level of contamination is suspected, NoV contamination should be 

confirmed quite rapidly with real-time RT-PCR technique, and the decision for closure can be made 

rapidly and implemented for a long enough period to avoid foodborne contamination cases (scenario 

5). Or, if suspicion of contamination is strong enough (epidemic in population, failure in treatment) , 

decision to declare closure can be made under the precautionary principle, while waiting for results 

from the PCR analysis (scenario 4). Waiting for one month after the end of epidemic, and until 

enough negative results to re-open could be explored in future developments of the model. However 

scenario 3 for GI shows that some foodborne cases could happen if the closure of the area 

(forbidding consumption period) is not long enough. The decreasing of the virus concentration in 

shellfish is a long process, and in the case of raw sewage discharge, the initial contamination can be  

high (Figure 27B and 29 B), whenever the infectivity of GI and GII by food transmission are high. 

Alimentary cases continue to happen with concentration close to 1/g in edible tissues (in DT the 

concentration should be 100 X more). During this period of the year, consumption of oysters reaches 

its yearly maximum increasing foodborne risk (France AgriMer, 2008) 

The sporadic or accidental contamination effect has already been described for HAV (Thebault et al., 

2012 ; section II), and microbial monitoring was found to be inefficient in this situation to prevent 

cases, paving the way to other management strategies, such as improvement of sewage water 

treatment, virus monitoring, and an alert system for shellfish producers and local public authorities 

(Thebault et al., 2012; ANSES, 2011).  

Some parameters were set different for GI and GII. Bioconcentration effect is shown in Figure 27B 

and 29B.The median concentration in sea waters was more elevated for GII than for GI, and that can 

be explained by higher rate of excretion, and higher number of infectious individuals at the beginning 

of the epidemic, linked to the higher transmissibility rate assigned for GII. Without environmental 

transmission, the number of cases is more elevated for GII than for GI (scenario 1, Figure 28 and 29). 

In the end, however, the concentration in edible tissues is higher for GI than for GII, due to the higher 

bioaccumulation factor for GI than for GII in winter period (Maalouf et al., 2011). The relative 

contribution of foodborne cases to epidemic cases is stronger for GI than for GII (as shown in Figure 

in scenario 2 of Figure 28 and 29. The mechanism and calibration of this model could explain, along 

with the differences in the biological characteristics of each genotype, the relatively higher incidence 

of GI in shellfish-relatedfoodborne outbreaks compared to GII.4  

The last point was to explain the effect co-contamination. The results are linked to value given to 

cross-immunity factor (Figure 31, 32). If cross immunity is high (Figure 32), GII given its higher 
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transmissibility rate reaches a higher number of cases, and co-infection (RR) is rare. If cross immunity 

is low (0.8), RR cases became more frequent (Figure 31). Food related cases can be the cause of RR 

cases (co-infection or successive infection GI GII), SR (GII cases) or RS cases (GI cases). The effect of 

foodborne  transmission is shown by comparison with scenario 1 and 2, with an increase number of 

GI and RR cases with foodborne transmission (Figure 31-32). This effect (for RR) was limited in the 

case of strong cross-immunity. 

The long term effect of environmental transmission was not studied here, but is suspected to be 

different from previous studies. Environmental reservoirs are known to increase the inter-epidemic 

period for scrapie in sheep (Woolhouse et al., 1998,), cholera (Codeço, 2001), bubonic plague 

(Keeling and Gilligan, 2000), avian influenza (Roche et al., 2009; Wang et al., 2012) and HAV (Ajelli et 

al., 2008). However, the duration of immunity and demographic conditions should have an impact on 

these results, which could be explored in the future for Norovirus dynamics.  

Another human reservoir impact was not explored here: chronic shedders. The estimate of the 

proportion of chronic shedders and their impact on the dynamics in the general population is 

another challenging question. Other environmental reservoirs such as other shellfish species, or 

sediment can be explored, in particular those involved in viral contamination after storms or tempest 

(e.g. Xynthia, Grodzki et al., 2010). Survival rates in water (cool and marine) and in sediments (and 

soil) are factors to consider for long term exploration of the reservoir effect with higher survival rate 

(Breban et al., 2010)(Figure 33). 

Some waste water treatment plants have higher residence times (1 or 2 months), including reservoir 

ponds, and these can have a different effect on virus survival.  

We ignored here the problem of infectivity, because there is no kind of culture system for Norovirus. 

Alternative assumptions should be done by comparing with closely related viruses, but there is no 

global agreement on the percentage of genomes that can be infectious. We therefore assumed that 

all genomes correspond to infectious genomes, which is partly justified by the high infectivity found 

in dose-response estimates (Teunis et al., 2008; Thebault et al., submitted). We also ignored other 

sources of contamination, such as irrigated crops, water consumption and winter bathing in the sea. 

Contaminated fruit and vegetables could be investigated from contamination data on these 

products, and their involvement checked by case-control studies from data on outbreaks. For 

consumed water, the source and treatment of water can be known, and classified, roughly according 

to different level of viral risk for consumers, involving superficial water sources, and treatment 

efficiency (AFSSA, 2007). Before trying to analyze coastal epidemic data, the origin of water 

consumption must be checked. However, as in all sources of indirect transmission other than oysters, 

we can assume that these factors are included in and therefore overestimated, the inter –individual 

transmission parameter in our model. 

The effect of demography and zootechnical practices, heterogeneity of shellfish in space and time, 

the effect of environmental conditions on shellfish activity (filtration) all probably affect the 

contamination level of shellfish on the market level (post harvest). This should be investigated to 

better estimate the associated parameters and examine their effect on results. For example results 
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of NoV bioaccumulation in shellfish in the summer time are different than those reported for the 

winter(Maalouf et al., 2011).  

Differences between the biological characteristic of each genotype can explain, under all 

assumptions made for the model, the relatively higher incidence of GI in shellfish outbreaks 

compared to GII.4. Another genotype GII.3 with some characteristics similar to those to GI should 

have more or less same effect as GI (Maalouf et al., 2011). The survival rate, in different kinds of 

situations and treatment, is not well defined for the different strains and genotypes of norovirus and 

should be better investigated, even if some papers have already been published on the subject (Le 

Guyader et al., 2008; Flannery et al., 2012). Although not surprising, but the effect of cross immunity 

could be better explored with other hypotheses, with full cross immunity and lower values of cross 

immunity (Roche et al., 2010), after or before removal of symptoms, in particular for longer time 

scales, to see their effect on dominance or coexistence patterns in cases in coastal areas . 

Understanding and making estimates of  immunity and cross-immunity  parameters for Norovirus, is 

a fundamental question in the  understanding of the persistence of strains and genotypes in the 

human population. 

The long term effect of role shellfish in the maintenance of some genotypes, such as GI or GII.3 

rather than GII.4,is an interesting point to explore in the future. First the structure of the model for 

inter-individual transmission should be changed from a SEIR model to a SEIRS model, to take into 

account the short immunity generally associated with Norovirus infection (Karst, 2010). Then a 

metapopulation model could explore, including demography (and migration effect) in light of 

previous work done on HAV (Ajelli et al., 2011). However more precise data on shellfish consumption 

in different kinds of areas (coastal, non coastal)  is needed. Furthermore our model could be 

generalized using more genotypes or strains, each having its own dynamic, depending on data 

availability (Figure 33). We chose to apply the stronger contact rate for GII than for GI. The excretion 

rate is higher for GII than for GI, and perhaps survival and infectivity of the GII virus justifies this 

assumption. The dominance of GII.4 in inter-human epidemics is a complex phenomenon, and strain 

diversity dynamics need to be included in the model (Lindesmith et al., 2008).  “The rapid evolution 

of RNA viruses, means that their evolution and ecology occur on the same timescale, and therefore 

must be studied jointly to be fully understood“(Pybus and Rambaut, 2009).  A general multistrain 

model should then be developed, perhaps based on genotype cluster characteristics (Lipsitch et al., 

2009; Breban et al., 2010) (Figure 33). However the dominance of a particular genotype is illustrated 

here by a higher transmissibility rate. 

 The calibration choice should be investigated using  other parameter values. Uncertainty analysis 

should be carried out to confirm results on a wider range of values for uncertain parameters, for 

example for δ1 and δ2, describing cross immunity or dose-response parameters (α, β, r, η). We could 

imagine, as for QRA, a second level of the dynamic model, taking into account the uncertainty of 

parameters, and focusing on median of the mean of variability estimates (see section II). 

A sensitivity analysis would indicate which parameters are the most influent to results. It would also 

highlight the gaps in data. 
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The effective contact rate parameter β should be better informed with specific data, localized at 

small scale in shellfish production areas and estimated with real-data (Melegaro et al., 2011). 

Heterogeneity in the population was oversimplified here. Dealing specifically with the norovirus 

infection, specific effective contact rates of chronic shedders (Sukhrie et al., 2010), asymptomatic 

carriers (Sukhrie et al., 2012), and secretor-negative populations could be better explored 

(Marionneau et al., 2005). However, data from the general population on which to base estimates 

are lacking. At a lower scale, strain effect and ABO blood type can also be involved. Even if infection 

sensitivity does not seem to be age-specific, age and social habits interfere with the contact rate and 

transmission risk (transmission at primary school for example) and even duration of excretion 

(Partridge et al., 2012). Therefore introducing an age factor could be interesting also because 

shellfish consumption in France can be associated with age, sex, season, location.  

The proportion of shellfish consumers with representative data in coastal areas in France is not 

known. The proportion of negative secretors is based on few available data. Contact rates between 

consumers and non consumers were assumed to be equal even if age can differ between those 

groups, because again, informed data were missing. The knowledge of risk factors associated with 

gastroenteritis can provide more information on heterogeneity in the population that the model 

could take into account.  

Finally estimating the latency and infectious periods for Norovirus is a challenging question. Excretion 

data were used to determine the latency period, knowing that incubation and excretion data are give 

close estimates (Karst, 2010, Atmar et al., 2008). We chose to keep excretion data and infectious 

period separate. Short generation time (Heijne et al., 2009) and short infectious period are reported 

(1.8 days) (Van Der Pas, 2009)whenever excretion in stool seem long and elevated. The symptomatic 

phase seems to be linked to transmission rather than asymptomatic, even with high rates of 

excretion (Sukhrie et al., 2012).  Other approaches can be explored using viral excretion data (Cori et 

al., 2012), and also exploring alternatives such as modifying the structure of the model with a 

hyperinfectivity state (Hartley et al., 2006) or different infectivity states.  

In any case, this work is the first attempt to explain the effects of the management strategy that 

involves closure of the shellfish area in a context of a Norovirus epidemic in human population, and is 

the first  attempt to understand what kind of role shellfish selectivity plays in the incidence of a 

particular genotype in a human norovirus epidemic.  
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4.4.  PER SP ECTIV ES  

 

We chose to focus the dynamic model on Norovirus due to the particular context in shellfish areas, 

where winter epidemics occur yearly in human coastal populations, in comparison with HAV, where 

epidemics are becoming rarer (ANSES, 2010). 

The dynamic model of Norovirus provides insights into situations, where two (or more) transmission 

infection routes are possible, in order to attribute cases to specific pathways. Results seem to justify 

closing shellfish production areas, during contamination period, to prevent foodborne cases in 

coastal population, even during epidemics in the human population, which is not possible to evaluate 

with QRA. On other hand, introducing QRA in a dynamic model made the estimate of foodborne 

cases more realistic.  Moreover, this point was defined as a challenging point (EFSA, 2011) for 

understanding what the consequences  of virus foodborne  contamination are  in the whole process. 

However we do not estimate the risk of an emerging epidemic due to food (oyster) contamination. 

QRA gives an estimate of primary cases, linked to foodborne transmission only. For this assessment, 

precise contact rate estimates for inter-human transmission, and consumption data, are needed. For 

Norovirus secondary cases are known to occur after or along with foodborne cases. However the 

winter epidemic of gastroenteritis is not driven by foodborne cases, but by inter-human 

transmission, and the seasonal pattern is not explained by any particular food contamination or 

consumption. However it may be useful in closed environments to prevent primary and secondary 

cases of food origin, by setting a limit for contamination in food, even if there are other ways of 

introducing infection in these environments (asymptomatic carrier by example)(Alfano-Sobsey, 

2012). In hospitals, cases can be more severe for older and immunosuppressed individuals 

(Gustavsson et al., 2011; Partridge et al., 2012; Greig and Lee, 2012). 

The epidemic following foodborne cases is known for HAV and the size of the epidemic can be 

tremendous (Halliday et al., 1991). A long term dynamic model of HAV for coastal populations has 

already been constructed in Italy (Ajelli et al., 2008; 2009; 2011) and shows that (i) a high number of 

cases can be due to HAV food contamination, in endemic situations and due to the lack of protection 

of shellfish resources; (ii) foodborne cases are linked to a longer inter-epidemic period. In France it 

would be of interest to investigate the risk of an emerging epidemic due to particular level of food 

contamination, in regularly exposed population and in susceptible population. The latter situation 

currently seems more frequent, due to the decline of seroprevalence in France. For HAV, an 

individual based model with a discrete time pattern, would be useful, taking into account age and 

seroprevalence structure, asymptomatic carriers, contact rate estimates, food consumption, and 

contamination data. However the dose-response for HAV, which is a critical point for assessing the 

risk associated with a particular level of contamination in food, should be further validated or 

evaluated in real outbreak situations. In terms of precautionary principle, effectiveness of monitoring 

at sewage treatment plant, or in conjunction with shellfish monitoring, should be investigated. 

Because Hepatitis A has a long incubation period and because in many cases infectious individuals 

can remain asymptomatic, a dynamic model would help to explore the effectiveness of monitoring 

sewage water to prevent or detect the beginning of a human epidemic, and to prevent shellfish 
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contamination (in coastal areas), similar to what has been proposed for Poliovirus (Ranta et al., 

2001).  
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V/  GENERAL  DISCUSSION-CONCLUSION 
 

5.1.  MAJOR FINDINGS  

 

The aim of this work was to better estimate viral foodborne cases in human population, focusing on 

the viruses with major sanitary impact in high level of hygiene countries, such as HAV and NoV. In 

order to evaluate prevention measures in a particular example, the study focused on shellfish, in 

particular oysters, because of their particular biology and bioaccumulation of viruses in tissues. The 

contamination is coming from coastal human population, via sewage system. Ministry of Agriculture, 

has recently raised  questions for this particular food production, in relationship with virus 

contamination, in France. At international level, the question was also raised: “A challenging 

question is how much disease caused by norovirus can be attributed to foodborne spread” (EFSA, 

2011; 2012).  

The cost of closure of shellfish areas is hardly accepted by shellfish breeders and coastal populations. 

Therefore such a decision and the length of closure need to be well motivated and supported  by 

scientific knowledge.  

Fundamentally ecological factors are suspected to contribute to the selection of strains capable of 

spreading in terrestrial populations (Coburn et al., 2009; Henaux et al., 2010; Haven et al., 2012; 

Rohanni et al., 2009; Roche et al., 2010). Genotype II.4 of Norovirus is less associated with foodborne 

outbreaks and shellfish outbreaks (more associated with GI or GII.3 genotype) than with epidemics 

with interhuman transmission (Matthews et al., 2012). With the use of newly published biological 

data (Maalouf et al., 2010b, 2011) on shellfish, we investigate the foodborne transmission pathway 

of GI and GII during an epidemic. 

From a methodological aspect the aim of this work was also to bridge the gap between Quantitative 

Risk Assessment (QRA), classically used for predicting foodborne cases and dynamic modeling, 

involving different ways of transmissions, through a stochastic approach. 

For that purpose the first step was to define a complete stochastic risk assessment framework for 

foodborne viruses from food contamination to foodborne cases. This was applied to HAV (part II) and 

NoV (part II and III).  

The stochastic QRA for HAV took into account the effectiveness of different monitoring and 

management strategies, in order to prevent primary (foodborne) cases in human population. In 

particular, the effectiveness of the closure duration of a shellfish area was evaluated under two 

scenarios of shellfish contamination, and compared with other strategies, such as a better sewage 

treatment. Effectiveness of monitoring transferred products from areas of production to other, as a 

current zootechnical practice in France, was also evaluated. 

However we identified weakness points in estimating a precise dose response and infectivity 

estimates for HAV. Dose-response was indirectly validated in previous study published study, but 

with surrogate virus data (Pinto et al., 2009), and specific assumptions (infectivity) were made. Data 
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about HAV shellfish contamination are also rare, and the  seroprevalence level for human population,  

in coastal area is  unknown (ANSES, 2010). Then the relative diminution of number of cases was only 

considered, not giving absolute number of cases estimates in coastal population, for each 

intervention strategy and each scenario of contamination investigated. Results showed that 

microbial monitoring system  was not useful to prevent viral contamination risk . HAV (RT-PCR) 

monitoring at high frequency, by example twice a month can be efficient. However the most efficient 

strategy is to prevent or diminish contamination in coastal waters, using better sewage treatment 

systems. Sampling strategy is not taking into account spatial heterogeneity, introducing the need of 

several samples at each point of time. Monitoring transfers by HAV analysis, in case of contamination 

in the bay is shown to be also efficient. The effectiveness of waiting for 1 to 3 negative results, to 

reopen the area, increasing the duration of closure was also investigated. In case of homogenous, 

limited (rapidly stopped) and identified source of contamination, the need for waiting of three 

negative results is not always justified. In case of unidentified source of contamination, or endemic 

situation of contamination, the need for wait of three negative results is becoming necessary, in 

order to prevent foodborne cases.  

For Norovirus situation, the diversity of strains and genotypes involved make the situation complex. 

At the beginning of this work we had data of dose-response from human trial, with watery matrix, for 

Norwalk virus (GI) (Teunis et al., 2008). 

We had the opportunity to obtain outbreaks data associated with doses of each genotype  that can 

be estimated. For one of these outbreaks, individual secretor status was known. This secretor status 

(driven by genetic character) was known to be associated with less susceptibility to infection (Teunis 

et al., 2008). Because the level of information was different between individuals and outbreaks, and 

because posterior distribution can be used for uncertainty estimate of dose-response parameters, a 

bayesian framework was used. Our results confirmed the very high infectivity of GI, as previously 

shown (Teunis et al., 2008), with a probability of disease with one copy around 0.13 [0.008-0.4] and 

show the same high infectivity of GII for secretor individuals with a probability of disease with one 

copy around 0.18 [0.018-0.42]. This high infectivity showed also that genome can be associated, for 

Norovirus, with an infectious virus with a high probability. Infectivity was much lower for non 

secretors, with a factor around 1000. 

It was the first estimate of infectivity for GII, involved in winter gastroenteritis epidemic (with other 

viruses), and concerning a non negligible percentage of French population each winter (sentiweb, 

2012). It is also a data gap for quantitative risk assessment for Norovirus, identified in several 

reports, which is fulfilled by this work, and opening the gate for QRA with norovirus in particular for 

shellfish. 

The last part of the work is answering different questions. First, methodologically, we introduce 

foodborne QRA in dynamic modeling which was not done explicitly before, even for other pathogens 

such as Cholera and HAV (Righetto et al., 2012; Ajelli et al., 2008, 2009, 2011) using human 

consumption data and dose-response estimates, as used for QRA analysis. We introduce QRA in a 

dynamic and stochastic framework in order to take into account variability of the dynamic of 

infection and variability in environmental transmission, and we use dose-response parameters and 

consumption data estimated previously. 
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For Norovirus this is the first dynamic model that takes into account, in the same framework 

foodborne and inter-human transmission, trying to attribute cases to each pattern of transmission. 

This work, with all the limitations due to the lack of available data, sensitivity analysis, validation 

criteria, justifies in some circumstances the closure of shellfish area in order to prevent cases in 

coastal population, even if this population is already exposed to a human epidemic. Finally this model 

explores the case of a coinfection by GI and GII, using recently published selective bioaccumulation 

results in shellfish (Maalouf et al., 2011). Then the question of selection and competition of viral 

strains, considering  two ways of transmission (food and inter-human), and with a marine reservoir 

selectivity,  is explored for the first time for a human pathogen, in a time scale of a hundred days, 

and for a closed population (coastal). This would be helpful, especially when trying  to investigate 

why foodborne outbreaks are more associated with genotype other than GII.4. 

 

5.2.  LIMITATIONS OF THIS W ORK AND PERSPECTIVES  

 

All sort of limitations need to be mentioned for this work. Some data gaps were clearly identified.  

Quantitative data of HAV in shellfish, more precise meta-analysis of outbreaks data of HAV for 

estimating dose-response of HAV, seroprevalence data with age for coastal area (in particular in 

Paimpol area) were missing for HAV study. For both, HAV and NoV, consumption data is only known 

for fish consumers (Leblanc et al., 2006), but representative percentage of population consuming 

shellfish in coastal areas was unknown. For both HAV and Norovirus infectivity of genome was not 

known. Nevertheless we show that this is not really a limitation while investigating efficiency of 

management strategies in coastal areas.  

Quantitative excretion data of humans and the link with transmission should be further investigated 

for both viruses.  

For both data at the human population level are also missing for this work. Efficient contact rates in 

French general population and in coastal areas, by age or sociodemographic characteristics for those 

diseases are not known, and the epidemic data at lower scale for Norovirus, in coastal-shellfish areas 

of production in comparison with non coastal areas (with less consumption of shellfish), should be 

further investigated, including by example genotype or strain characteristics. It would be helpful 

when trying to fit the model to real data. For other parameters, such  as dilution factor in the 

environment, expert elicitation can help for calibration the model (Albert et al., 2012).  

Sensitivity analysis is missing for part I and IV, and is partially made for part III. It could be an 

important point to do in future, in order to better know key factors linked to the output, and 

prioritize data provision. Second order risk analysis was made for QRA part, and could be done in 

future for part IV, showing the effect of uncertainty estimates on results. However this approach is 

limited to the range of values chosen for describing uncertainty of parameters (and shape of 

distribution) and need to  be compared with other model structure. 

For Norovirus, whenever sensitivity analysis is missing for prioritizing parameters, it was particularly 

difficult to set immunological parameters. Long and short term acquired immunity is not known, and 
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should be defined, probably at cluster level and strain level. Innate immune  protection, in this work 

takes into account secretor status, but is neglecting  ABO blood type, that could be linked with strain 

effect in particular for GII (Le Pendu et al., 2006; Tan et al., 2008). For dose-response it could be an 

interesting perspective, with more documented outbreaks, to investigate ABO blood type effect with 

strain and genotype. And in a general manner to investigate the effect of dose, not only with 

infection and disease risk, but also  with incubation time, duration and level of excretion, and 

severity of symptoms, for both pathogens (HAV and NoV).   

The effect of co-infection is partly seen at genotype level for GI and GII (part III and IV). More data 

are required to inform about the co-infection effect of strain by the same pathogen, and between 

pathogens. Very often microbial contamination of fecal origin is involving several pathogens (AFSSA, 

2007 ;Le Guyader et al., 2008). And during winter epidemic, several pathogens are involved and can 

interfere each other (Chiki-Brachet et al., 2002; Arena et al., 2012). The winter seasonal pattern of 

Norovirus (Lopman et al., 2009) raised questions about infectivity and epidemic potential from a 

foodborne outbreak in summer times, which could be further explored. One environmental 

explanation could be the lack of survival of virus to ultraviolet rays or drought  in summertime (Yang 

and Marr, 2011), but should be confirmed by further research, and interfere with other possible 

explanation (change of contact rate, change of susceptibility in human population). For investigating 

foodborne cases risk linked to shellfish, it is interesting to see that bioaccumulation in shellfish is 

found to be seasonal (Maalouf et al., 2011). 

As further objective to be considered is the risk of an emerging  epidemic, in coastal areas originally 

caused by food contamination, as it was observed in China (Halliday and al., 1991). For this purpose, 

a dynamic model for HAV, without further validation of dose-response, without an estimate of 

seroprevalence  and contact rate is unrealistic. But for HAV it could be an interesting perspective to 

see if monitoring at sewage plant (and /or shellfish) can be an interesting strategy to prevent cases, 

and an epidemic (with more data) . 

As management strategies investigated in this work, we focused on oyster monitoring in the area of 

production (sea),  on diminishing the level of contamination and effectiveness of closure of shellfish 

areas. We don’t investigate the monitoring at sewage plant (in influent or effluent), knowing that 

sewage plant systems (residence time, treatment) are different from one coastal area to another 

area. We don’t investigate, and it would be interesting to do so,  the efficiency of combination of 

surveillance systems, by example in water sewage at sewage plant, in sea waters, in shellfish in the 

area of production, and in shellfish sold for human consumption (at breeder or at the seller level). 

Spatial heterogeneity of contamination in oyster production areas can be also further explored, 

taking into account hydrodynamic modeling, for differentiating different risk areas, in time, from 

known sources of contamination. 

We don’t investigate interventions in the human population. For HAV, target vaccination strategy in 

endemic(coastal) areas was found to be efficient in Italy (Ajelli et al., 2011), in order to diminish 

seroprevalence and number of cases. This strategy is not investigated for France, in fact endemic 

areas with important size of population and cases, which act as a reservoir for other areas do not 

exist  in France. However this strategy could be investigated in some situations, as a limitation of 

spread of disease, in a case of emerging and local epidemic, remembering that in France HAV 
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vaccination is recommended for most exposed  groups (InVS, 2009). It could of use to assess 

quantitatively the effectiveness of sentinel surveillance for NoV and HAV, for comparing/fitting 

results with modeling predictions. For HAV, taking into account asymptomatic cases known to be 

involved in transmission, and long incubation of the disease to investigate  the interest of a 

complementary monitoring in the environment (sewage plant) to prevent an epidemic spread, as 

previously done for Poliovirus (Ranta et al., 2001).  The diversity of strains and mechanisms of 

emerging and persistence in human population, in association with lack of immunity data, is making 

vaccination strategy for NoV more complex (Lindesmith et al., 2008; Karst, 2010; Atmar et al., 2011). 

Other strategies, as social distancing, were shown  to be counterproductive for HAV, increasing risk 

for older population with more severe symptoms (Ajelli et al., 2011). However analysis of efficiency 

of measures such as improvement of hygiene practices or social distancing should be studied in a 

particular context, and for a specific population. Improvement of hygiene to prevent Norovirus risk in 

hospitals, or closed environment was shown to be  effective (Heijne et al., 2011). 

We investigated two ways of transmission, the foodborne and inter-human. In fact we approach  the 

question in a simple manner, because as seen in part I, other food products than oyster can be 

contaminated, food preparation can be contaminated (Mokhtari et al., 2009) and also because this 

coexposure can occur at the same period  for the same individual. The same analysis can be made in 

what we called “inter-human transmission”. This inter-human transmission include individuals 

contacts (by hand by example), but concerns different infectious material for NoV (fomites and feces 

excretion)(Marks et al., 2003; O’Neill and Marks, 2005), and also indirect transmission by 

contamination of walls, carpets, (..) and in summer time by bathing is sea or river. All these different 

ways of transmission could be  considered for future investigation. Our study cannot be extrapolated 

to all other foodborne viruses. Hepatitis E virus (HEV), another foodborne virus is different with those 

that are developed here, and need specific study. In high hygiene countries, it is the only known 

zoonotic virus for human by food, with reservoir in animals (in particular in pigs who are multiplying 

the virus) and the disease is not known to be transmitted from human to human (AFSSA, 2007).  

As a last point the dimension of our analysis in time and space was limited to duration of one 

epidemic (one season, one epidemic period or a year) and to a limited population (neglecting 

migration). Results of QRA, and foodborne risk linked to shellfish, are linked to food consumption 

habits, that are known to be seasonal and heterogeneous in space (coastal and non coastal). 

However comparison can be done for characterizing risk between population areas (coastal and non 

coastal).  

Long term effect and effect for a coastal population, then for a larger population taking into account 

the exchanges network, could be an interesting challenge to explore strains and genotypes 

dominance for Norovirus. A final framework, for a coastal population, illustrated how it could work 

out, introducing the dynamic of strains change, including other reservoirs as sediment (Grodzki et al., 

2012) or other shellfish species (Figure 33). Heterogeneity in population (by age or food habit) can be 

studied with other model structure (SEIRS, or SEIS) (Figure 33). 
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FIGURE 33:  DYNAMIC MODEL FOR LONG TERM EFFECT OF NOROVIRUS SHELLFISH FOODBORNE 

TRANSMISSION FOR COASTAL POPULATIONS 

Legend: S: susceptible, E infected, I infectious, R immune, RW raw reject of sewage water, WTP treated reject 

by water treatment plant, MW, sea water, GI genogroup I, GII.4 (cluster)genotype II.4, GII.3 (cluster) genotype 

II.3 of Norovirus 

Arrows: environmental and foodborne transmission pathway; dashed arrows: rare or accidental pathway, 

tempest (sediment to MW), heavy rainfall (RW to MW), heavy mortalities or releasing (shellfish to MW)(not 

observed) 

Rectangle human population (with different compartments describing heterogeneity of transmission), 

rectangle with round corners, environmental compartments 
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5.3.  CONCLUSION  
 

Specificity of virus, as foodborne pathogens were took into account in this work, with application to 

NoV and HAV. Secondary cases, mechanisms of resistance and immunity, detection and 

quantification were taken into account. This work provides help for virus risk assessors, in particular 

in giving a dose-response based on outbreaks data for norovirus. It provides help for risk managers, 

involved in the closure of shellfish areas or monitoring, in order to prevent primary cases of HAV 

(part II), and comprehensive mechanisms of primary and secondary cases of Norovirus (part IV). It 

provides a contribution to scientific knowledge and raises epidemiological concerns, with estimates 

of high infectivity of norovirus GII, and confirmation by outbreak data for GI (Teunis et al., 2008) for 

secretor individuals, and the very low infectivity for non secretors. A new scientific question is raised, 

trying to explain high level of non GII.4 oyster foodborne outbreaks, in exploring mechanisms 

involved in genotype selectivity for human coastal epidemic and foodborne outbreaks. And finally 

this work, initiated conceptually by previous work (Codeço et al., 2001; Eisenberg et al., 1998, 2004, 

2005) bridge the gap, for Norovirus, by linking two disciplines, with their own conceptual framework, 

quantitative microbial food risk assessment and dynamic modeling, that could be extended to other 

foodborne viruses, such as HAV and other foodborne pathogens. 
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