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extrêmement précieuses dans le futur. Un très grand merci pour tout !
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Introduction

In our quest to describe and understand the world with physics, our intuition tells us
to start with the small and the simple before working our way up to larger scales and
more complex problems. This is the path we follow when we are first taught about
atomic physics and start with the smallest existing atom, Hydrogen. Even before we know
about quantum mechanics, we are often taught how to use simple Newtonian mechanics
to calculate the circular movement of the Hydrogen electron around the nucleus in the
historical Rutherford model. If we now aim at describing a slightly more complex atom,
let us say Carbon for instance, we need to consider the electrostatic forces exerted by the
nucleus on each of the 6 electrons as well as between each of the electrons. We are then
quickly overcome by a feeling of helplessness at the sight of the equations we would have
to solve.

This kind of problem is obviously not restricted to the description of atoms and is
actually found in many areas of physics. Would we want to study an ensemble of celestial
objects orbiting around a star, electrons in a copper wire, molecules in a gas, atoms in a
solid or even how a crowd behaves, a thorough description of these systems would require
to account for the motions of all the individual bodies and the interactions between each
one of them, leaving us with an enormous amount of degrees of freedom and equations
to solve. This is even more so true as the number of particles gets very large in these
problems: a good order of magnitude is the Avogadro number NA = 6.02 × 1023, giving
the number of Carbon 12 atoms in only 12g of Carbon! These problems are regrouped
under the denomination “many-body problems”.

Actually, many-body problems are not entirely impossible to approach theoretically.
To do so, we need to go against our intuition to decompose the system into its elementary
components and rather see it as a whole to study some kind of averaged behavior. This
idea is for instance at the core of the field of Thermodynamics which aims to describe
macroscopic properties of large numbers of particles, such as its temperature, pressure,
entropy etc. representing ensemble averages independent from the dynamics of the indi-
vidual components of the system. Another famous approach that relies on averaging to
study interacting many-body systems is the mean-field approximation. The idea is
to approximate the action of every particle of the system on a single one as an averaged
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effect, reducing the many-body problem to an effective one body problem that we may be
able to solve.

Quantum physics

When we study many-body problems where the individual constituents are the (almost)
smallest brick of matter, namely electrons and atoms, we enter the realm of quantum
mechanics. The key concept to understand when a system requires a quantum treatment
is the de Broglie wavelength. In 1923 [48], the french physicist Louis de Broglie took the
hypothesis of M. Planck and A. Einstein that light could have a corpuscular aspect and
turned it around by postulating that matter could behave as a wave with a wavelength
λdB equal to:

λdB = h

mv
(1)

where mv is the momentum of the particle that also writes ℏk in quantum mechanics.
Strictly speaking, k designs a wave vector but we will identify it to the momentum in the
rest of this manuscript. Translating this concept to many-body physics, when taking an
ensemble of particles at temperature T , one can define the average de Broglie wavelength,
also known as the thermal de Broglie wavelength as:

λdB = h√
2πmkBT

(2)

If the typical inter-particle distance in the many-body ensemble is much larger than the
thermal de Broglie wavelength, i.e λ3

dBn ≪ 1 with n the density of particles, the wave
character of the particles hardly plays a role as the different matter waves do not overlap
and the system is properly described using classical physics. On the other hand, when
λ3

dBn ∼ 1, the system shows quantum wave-like behavior. This regime is known as the
quantum degeneracy regime. Importantly, this condition is most often met when con-
sidering the physics of electrons in condensed matter systems even at room temperature,
due to their small mass me = 9.1 × 10−31 kg and the high densities of electrons in solids
of the order of 1029 m−3.

The wave-like nature of the particles, as well as the effect of quantum statistics and
quantum fluctuations observed in the quantum degeneracy regime brings out a large va-
riety of fascinating and “intuition-defying” phenomena of which many are still not under-
stood to this day, especially in many-body systems. For these reasons, quantum physics
constitutes an exciting and leading area of modern day physics.

Interactions in quantum systems

While approximate methods like the mean-field approach have been used with great success
in the past to study quantum many-body problems, they nevertheless fail to characterize
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more strongly interacting systems for which beyond mean-field approaches are required
[114, 102, 121]. To properly describe these systems, it is then necessary to consider the
dynamics of the individual components of the system [85, 139, 164]. As a result, the
modern day term “many-body physics” usually refers to beyond mean-field approaches
that account for the presence of correlations between the individual components of the
system. Importantly, these correlation patterns get increasingly more complex and contain
more information as the interactions are strong. Consequently, a large part of quantum
many-body physics is dedicated to studying how correlations emerge from the interplay
between the inter-particle interactions and the quantum fluctuations and what they tell us
of the physics of the system. This field of physics remains to this day a largely open field
with a lot of unresolved questions concerning systems ranging from solid state physics to
neutron stars, but that already found some great successes. We can mention the notable
example of low temperature superconductivity studied by Bardeen-Cooper-Schrieffer [7]
(BCS) in 1957 that described the superconducting current as a superfluid of Cooper pairs
[42], where a Cooper pair is a pair of electrons bound by an effective attractive interaction
(in this case the exchange of phonons). The existence of high temperature superconductors
remains however unexplained to this day and constitutes a particularly interesting question
of many-body physics.

Cold atoms and quantum simulation

Even though we have understood that exact analytical approaches are almost always im-
possible to pursue in the case of quantum many-body systems, we could however think
of using numerical techniques and the calculation power of modern-day super computers.
Nevertheless, if we wish to consider all kinds of correlations between the particles, the size
of the associated Hilbert space grows exponentially with the number of particles. This
exponential growth considerably limits the number of particles that can be simulated,
roughly to a hundred with modern day computers. In a famous paper of 1982 [59], R.
Feynman introduced the concept of quantum simulation by suggesting that quantum
phenomena could be simulated using actual quantum components instead of classical com-
puters. The idea is to simulate a system or an Hamiltonian of interest with a quantum
platform on which one can (i) precisely control all the relevant parameters and (ii) mea-
sure the observables of interest. The technological developments of the past decades have
made Feynman’s idea come to life with increasingly more precise and efficient simulators
implemented on a variety of platforms such as ions, superconducting qubits or ultracold
gases. We will focus in this manuscript on this latter example.

Contrary to condensed matter systems, ultracold gases are a dilute state of matter in
the sense that they typically contain 105 − 107 atoms in large volumes, resulting in much
lower densities than those found in solids. As a result, at room temperature, these gases
are far from being quantum degenerate. To reach the regime of quantum degeneracy,
the gas must be cooled down to very low temperatures ∼ µK to increase λdB until λ3

dBn
reaches unity. When the atoms are indistinguishable bosons, under a critical temperature
associated with λ3

dBn ∼ 1, a macroscopic number of atoms occupy the lowest energy state
of the system, forming a new state of matter called the Bose-Einstein Condensate
(BEC). Importantly, all the condensed atoms then form a single, coherent matter-wave.

The field of ultracold atoms was born thanks to the discovery of laser cooling techniques
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[38, 44, 127] that allowed to reach such low temperatures and led to the observations of
the first BECs by the teams of E. Cornell [2] and W. Ketterle [47] in 1995. From this day,
ultracold atoms and Bose-Einstein Condensates have been the subject of many experiments
and brought a large variety of important results and several Nobel prizes.

Ultracold atoms are actually perfectly suited to study condensed matter as it is rel-
atively easy to create all sorts of potentials to trap the atoms using laser light, with the
notable example of optical lattices [12] that reproduces the crystalline structure of solids.
Another interesting properties of ultracold atoms is that the strength of the interactions of
some atomic species1 can be tuned using Feshbach resonance [37, 58]. One may thus have
a system in which one controls the number of particles, the properties of the crystal-like
potential such as its geometry and the distance between the sites and finally the strength
of interactions. Such quantum gas platforms fulfill the first condition for them to be an
adequate quantum simulator of famous condensed matter models such as the Fermi- and
Bose-Hubbard models for fermions and bosons respectively, or the Ising model. This level
of control on the parameters of the simulated Hamiltonian would of course be useless if
it were impossible to measure the properties of the system. One other significant asset
of ultracold atoms in optical lattices systems is that they are actually relatively easy to
probe.

Probing the momentum degree of freedom

Recent optical lattices experiments can be categorized according to the kind of probes
they use to study the many-body problem. A first technique consists in probing the
excitations of the system, i.e how the system respond when extra energy or momentum
is deposited in the system, to obtain information about the many-body states. This
probe was developed in analogy to condensed matter approaches such as angle-resolved
photoemission spectroscopy [45] or neutron scattering [4]. For ultracold atoms systems, the
excitations of the system can be probed using radio-frequency (RF) spectroscopy [151],
Raman spectroscopy [46], amplitude modulations of a 2D lattice revealing Higgs mode
excitations [53] or Bragg spectroscopy [146, 148]. Finally, the properties of the excitations
can also be accessed by studying the out-of-equilibrium properties of the system [92, 159].

Ultracold atoms platforms have brought up new ways to probe many-body systems
differently from the techniques used in condensed matter experiments. It is notably pos-
sible to probe the position or spin degree of freedom using quantum gases microscopes
[6, 35, 54, 141] capable of detecting the fluorescence of individual atoms trapped in the
different sites of an optical lattice. These techniques allow to characterize many-body
systems through the study of position and spin correlations between individual particles.

Finally, the same idea can be extended to the momentum degree of freedom. The
momentum-space can be accessed through Time-Of-Flight (TOF) techniques [77, 147, 166]
that consist in measuring the positions of the atoms after a time tTOF of free expansion.
In a very simple picture with classical particles that do not interact during the TOF, this
position gives information about the in-trap momentum of the particle through the simple
ballistic relation:

1This is however not the case for metastable Helium-4 that we will study in this manuscript
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ℏk = mr

tTOF
(3)

The situation is actually more complex when accounting for the wave nature of the
particles, as we will discuss later, but we can keep for now this simple picture. The
combination of a TOF and a single-atom resolved detection technique allows to study
momentum-space correlations between individual particles from which meaningful infor-
mation about many-body systems can be obtained. The experiment that we will describe
in this manuscript belongs to this last category that will be our main point of focus.

There are many motivations to measure the momentum distribution to study ultracold
gases and many-body physics as a whole. One of the main advantages of the momentum
distribution is to reveal the coherence properties of the system, that are themselves
greatly influenced by the interactions and the induced correlations between the particles
[77]. Indeed, the wave-function in momentum-space ψ(k) is linked to the spatial wave-
function ϕ(r) by the Fourier transform:

ψ(k) ∝
∫

dreik·rϕ(r) (4)

As the momentum density ρ(k) writes ρ(k) = |ψ(k)|2, we obtain [129]:

ρ(k) ∝
∫

dReik·R
∫

drϕ∗(r)ϕ(r + R) ∝ FT[g(1)(R)] (5)

which tells us that the momentum distribution is obtained from the Fourier transform of
the first order correlation function g(1) which contains information about the coherence
properties of the system. This is quite reminiscent of Optics in which far-field interference
experiments are used to characterize the spatial and temporal coherence properties of a
light source. With ultracold atoms, the light waves are replaced by matter-waves and the
far-field regime of observation analog to the momentum distribution of the gas.

The momentum distribution was historically [2] used to detect the presence of Bose-
Einstein Condensation as illustrated on Fig.-1. As the BEC is a fully coherent matter-
wave, it manifests itself by the presence of sharp peak around zero momentum with a
small width set by Heisenberg uncertainty principle as the atoms are spatially localized.
The momentum distribution can also be used to study excitations, complementary to the
methods cited earlier, signaled in momentum-space by the dispersion relation from which
a variety of information can be obtained [39, 120, 136].

Last but not least, the momentum distribution also contains signatures of more com-
plex interaction-induced correlation patterns between several individual particles. One of
the most simple and famous example of such correlations are pairing mechanism inducing
opposite momentum correlations. This is notably the case for two electrons belonging
to a Cooper pair as discussed earlier, as well as for the quantum depletion of a BEC.
The quantum depletion is the fraction of atoms removed from the condensate by the ef-
fect of inter-particle interactions and quantum fluctuations at zero temperature. It is an
emblematic and conceptually simple example of a many-body effect. While the quantum
depletion has already been observed [33, 106, 166], there have been no direct observation
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Figure 1: Bose-Einstein Condensation. As temperature diminishes, the momentum distri-
bution gets increasingly peaked around zero momentum. (JILA team, NIST USA)

of pairing at opposite momentum expected for quantum depleted atoms. Obtaining this
result will be the main point of focus of this manuscript.

Metastable Helium and electronic detection

In order to detect such pairing correlations (or more complex correlation patterns with
more than 2 particles that might be present in strongly interacting systems), a detec-
tion technique capable of resolving the momentum of each individual atoms of the gas is
needed. Indeed, the idea behind correlation measurements is to measure the probability
of simultaneous detection of several particles at specific momenta (for instance k and
−k). Many experimental efforts have been made in this direction in the past decades
[118]. While optical imaging techniques typically only allow to measure the momentum
density of the gas rather than the full momentum distribution, some experiments
such as the one led by S. Jochim in Heidelberg [140] or by J. Schmiedmayer in Vienna
[19] have adapted the quantum microscope technology to detect the fluorescence of sin-
gle atoms after a TOF, thus obtaining a single-atom resolution in the momentum-space.
However, the performances of these setups are somewhat limited by the properties of the
imaging system, that requires the number of atoms to be kept relatively low so that the
fluorescence patterns of the different atoms do not overlap for them to be resolved.

An alternative to optical probing is to use electronic detection techniques. In the early
2000s, the team lead by D. Boiron, C. Westbrook and A. Aspect at Institut d’Optique
pioneered a new detection scheme exploiting the properties of the metastable state of the
Helium atom that they managed to bring to quantum degeneracy in 2001 [133]. A great
advantage of this method lies in its 3D single-atom resolution as well as the possibility to
implement it for systems with larger atom numbers of the order of 103 − 105 (this must be
nuanced by the fact that the detector saturates if the atomic flux is too high). In addition,
this method allows to use large Times-Of-Flight to properly access the far-field regime of
expansion in which the interferences are well resolved, in analogy to the Fraunhofer regime
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of diffraction2.

As we will see in this manuscript, a major drawback of this technique is that it only
works with noble gases with a metastable state. To this day, Helium is the only noble gas
that has been brought to quantum degeneracy (even though Neon, Argon and Krypton
have been laser cooled [91, 142]), limiting the use of this detection technique to this single
atomic species. To this day, there are actually only a few metastable Helium experiments
in the world: Canberra led by A. Truscott [1], Vienna led by A. Zeilinger [93], Amsterdam
formerly led by W. Vassen [111] with the fermionic isotope of Helium 3He and two in
Palaiseau, the historical one led by D. Boiron, C. Westbrook and A. Aspect and a second
one led by D. Clément. This second metastable Helium experiment was built at Institut
d’Optique starting in 2011, with the observation of Bose-Einstein condensation in 2015
[16]. This new experiment implemented a new cooling sequence allowing to produce a
BEC in ∼ 6s instead of ∼ 30s on the historical experiment, thus significantly speeding up
the data acquisition time for the measurement of momentum correlations.

Optical lattices and the superfluid-to-Mott insulator transition

The other specificity of this second experiment at Institut d’Optique is the use of optical
lattices, from which the name of the team “Helium Lattice” derives. Optical lattices
are particularly suited to study many-body, strongly interacting systems as the lattice
potential locally increases the density and in turn the interactions, making phenomenon
like quantum depletion even more pronounced than in regular harmonic traps. In addition,
the Bose-Hubbard model predicts the existence of a phase transition from a superfluid
phase to an insulating phase when the depth of the lattice potential increases, known
as the superfluid-to Mott insulator transition, first observed with cold atoms in 2002 [77]
following the proposal of [89]. Studying momentum correlations all across the superfluid-to
Mott insulator transition sets the general frame of the work presented in this manuscript,
and conducted during my time as an intern and then as a PhD student in the Helium
Lattice team that I had the chance to join in 2018.

Outline of the manuscript

The manuscript is organized in five chapters. All chapters but the final one are centered
around the common topic of the k/−k correlations in the quantum depletion of weakly-
interacting lattice Bose gas.

• The first chapter is dedicated to presenting the proper formalism to study quantum
correlations. The concept of correlation functions is first introduced in the context
of Quantum Optics and then extended to Atomic Physics. We then detail the main
lines of the Bogoliubov theory of the homogeneous weakly-interacting Bose gas. We
present what the quantum depletion is and where does the k/−k pairing comes from.
Finally, we discuss some recent numerical calculations [23] of the correlations in the
Bogoliubov theory for trapped systems, before presenting the essential experimental
ingredients to observe the k/−k pairs.

2This point will be discussed in details in this manuscript
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• The second chapter is also a theoretical one and discusses the Bose-Hubbard model
of bosons trapped in a 3D optical lattice. We explain what the superfluid-to-Mott
insulator transition is and discuss the conditions under which the in-trap momentum
distribution of the gas can be properly measured using a TOF technique, as well a
the observability of the k/−k pairs of the quantum depletion in this system.

• The third chapter describes our experimental apparatus, namely the sequence used
to produce a BEC of metastable Helium and the detection technique. In a second
stage, we present two experimental measurements aimed at proving the points raised
in Chapter 2: one proving that we are able to adiabatically prepare an arbitrary
state of the Bose-Hubbard model; a second one measuring beyond-mean field two-
body collision effects happening during the TOF to prove that they are negligible in
usual experimental conditions (therefore not detrimental to our measurement of the
momentum distribution).

• The fourth chapter details our experimental observation of the k/−k pairs of the
quantum depletion. We describe the numerical procedure to analyze the data and
study the characteristics of the experimental correlation signals in light of Bogoli-
ubov theory: width, amplitude and dependency to temperature. We then perform
complementary analysis of the data to obtain results leading towards probing the
presence of entanglement in our system: we observe a relative number squeezing mea-
surement between modes k and −k, as well as a violation of the Cauchy-Schwarz
inequality. Finally, we discuss some preliminary results on the evolution of the cor-
relation signals with momentum k.

• The fifth and last chapter is separate from the rest of this manuscript and concerns
a different project that was led during this thesis, the measurement of Tan’s contact
in 1D gases. We first introduce Tan’s contact as well as the main results of a recent
theoretical study [170] of the contact for trapped 1D bosons. We then present the
procedure used to extract the contact from the raw experimental data and discuss
the first preliminary results and their discrepancy with theory.



11. Quantum correlations in the
weakly-interacting Bose gas

Chapter

The main challenge of quantum many-body physics is to understand how ensembles of
interacting individual particles behave. Towards this aim, many meaningful information
can be obtained by studying how the interactions between the different particles induce
correlations in the degrees of freedom of the particles, e.g. their position, their momen-
tum or their spin. To understand and quantify these correlations, physicists have used the
mathematical formalism of correlation functions that we will introduce in this chapter.

Historically, the first field of physics that developed and made an extensive use of
correlation functions was the field of Optics, and more specifically Quantum Optics in
the 50s-60s. The interest for correlation functions was sparked by the Hanbury Brown
and Twiss experiment of 1954 measuring intensity correlations in the light emitted by
a star between two separate photo-detectors. Trying to provide an explanation of these
experiments in terms of the detection of individual photons led R. J. Glauber to develop
his theory of photodetection [74] using correlation functions in a seminal paper of 1963.
This theory was then later adapted to study more complex systems where the particles,
for instance atoms, interact.

One of the conceptually simplest example of such an interacting many-body system
is the weakly-interacting homogeneous Bose gas, which describes an ensemble of bosons
with weak contact and repulsive interactions in an homogeneous box potential. This
system shows the great advantage that it can be theoretically described with a fairly great
accuracy at the price of a few approximations that were suggested by N. Bogoliubov in
1947 [14]. One of the great success of this theory was to predict the existence of the
quantum depletion that was later showed to be made of k/−k correlated pair of atoms by
Lee Huang and Yang [103] in 1957.

An experimental realisation of such a system proves to be rather difficult because
of the homogeneous aspect of the theory that is hard to reproduce experimentally.
Only recently were Bose gases realized in box traps in Cambridge [67] and the quantum
depletion studied in this homogeneous configuration [106]. But experiments often rely on
an harmonic potential to trap the atoms in one place, therefore breaking the homogeneity
of the system and making theoretical approaches more complicated. However, recent
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works [23, 110, 156] have aimed at characterizing correlation functions within the frame of
Bogoliubov theory for inhomogeneous trapped systems to provide theoretical ground for
comparison with experiments.

In this chapter, we will first introduce the concept of correlation functions by studying
the historical and founding experiments of Optics and Quantum Optics. In a second
stage, we will show how this formalism can be extended to atomic physics and apply
it to the Bogoliubov theory of the homogeneous weakly-interacting Bose gas of which
we will present the main lines. Finally, we will present some of the principal results of
the work [23] extending the Bogoliubov theory to inhomogeneous systems produced with
our experiment and discuss the experimental criteria to experimentally observe the k/−k
correlations of the quantum depletion.

1.1 Correlation functions in Classical and Quantum Optics

In the most general sense, correlation functions are a mathematical object characterizing
the statistical correlations between random variables. They are defined from the concept
of statistical average or expected value of a random variable in Mathematics which is
intuitively understood as the value that we will get on average if we measure the random
variable a large number of occurences. In the following, the statistical average of a random
variable X is denoted ⟨X⟩.

The simplest correlation function correlating two random variables X1 and X2 that we
take to be real for this simple introduction writes:

Corr(X1, X2) = ⟨X1X2⟩ (1.1)

Interestingly, if X1 and X2 are independent and therefore uncorrelated, one has:

⟨X1X2⟩ = ⟨X1⟩⟨X2⟩ (1.2)

meaning that the expected value of the product X1X2 is simply the product of the expected
values of X1 and X2. However, if X1 and X2 are correlated, the probability distribution
of X2 changes if we already know the realisation of X1, preventing us to write the simple
equation 1.2. The value of ⟨X1X2⟩ thus quantifies the degree of correlation of the two
random variables. The concept of correlation function can be generalized up to any order
to involve several random variables. We also note that in physics, the random variables are
often dependent from time, space etc.. In all generality, the correlation function correlating
n random variables writes:

Corr(n)(X1(s1), X2(s2), ..., Xi(si), ..., Xn(sn)) = ⟨X1(s1)X2(s2)...Xi(si)...Xn(sn)⟩ (1.3)

where si is the proper set of parameters describing the variable Xi.
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Figure 1.1: Principle of the Michelson interferometer.

1.1.1 First order correlation function of classical light

Having seen the general definition of correlation functions, let us now illustrate how they
can be used in Physics with the simple example of the classical description of light. Cor-
relation functions of light were introduced in connection with the notion of coherence
that characterizes the possibility for waves to interfere. A light field is said to be coherent
when there is a fixed phase relationship for the electric field at different positions (spatial
coherence) and different times (time coherence).

To illustrate where correlation functions come from, we will first look at time coherence
in the emblematic Michelson interferometer (see Fig.-1.1). For simplicity sake, we will not
yet discuss spatial coherence effects and will thus consider a point source producing a
complex, linearly-polarized light field E(t) that enters the interferometer. The intensity
measured by the detector writes1:

I = ⟨|E(t) + E(t− τ)|2⟩ (1.4)

with τ = 2x
c the delay between the two interfering waves induced by the optical path

difference between the two arms of the interferometer. In Optics, the notation ⟨...⟩ denotes
the time averaging made by the detector. Developing equation 1.4 we get:

I = ⟨|E(t)|2⟩ + ⟨E(t− τ)2⟩ + 2Re⟨E(t)E∗(t− τ)⟩ (1.5)

For simplicity sake, we assume that the source is stationary to write ⟨|E(t)|2⟩ =
⟨|E(t− τ)|2⟩ = I0, we then obtain :

1While we write here an equal sign for clarity, we strictly speaking only have I ∝ ⟨|E(t) + E(t − τ)|2⟩
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I = 2I0
(
1 + Re

[
g(1)(τ)

])
, g(1)(τ) = ⟨E(t)E∗(t− τ)⟩

⟨|E|2⟩
(1.6)

We have introduced the normalized first-order correlation function g(1) that char-
acterizes the interference term. If E(t) and E(t − τ) are independent random variables
and thus uncorrelated, ⟨E(t)E∗(t − τ)⟩ = ⟨E(t)⟩⟨E∗(t − τ)⟩ = 0 and interference are not
observed. On the other hand, if there is a correlation between these two quantities, an
interference phenomenon can be observed.

To illustrate what kind of information are contained in this first-order correlation
function, we compute it for the simple case of a monochromatic light source of frequency
ω0. The light field writes:

E(t) = E0e
iω0t (1.7)

Such a light source is perfectly coherent. From this, we calculate the first-order correlation
function:

g(1)(τ) = |E0|2⟨eiω0te−iω0(t−τ)⟩
|E0|2

= eiω0τ (1.8)

The detected intensity is thus a perfect sinusoidal function of τ that is scanned by changing
the position of the second mirror and thus the value of x:

I(x) = 2I0
(
1 + cos

(
ω0

2x
c

))
(1.9)

Measuring the intensity pattern as a function of x thus gives a measurement of ω0. This
model is however very idealized and does not exist in reality. To make it more plausible,
we introduce a random phase ϕ(t):

E(t) = E0e
i(ω0t+ϕ(t)) (1.10)

To keep things simple, we will take ϕ(t) uniformly distributed on [0, 2π) and assume phase
“jumps” from a value to another with a time-independent probability. This is the so-called
wave packet model. Between two times t and t+dt, the probability for the phase to change
writes:

dP = dt
τc

(1.11)

with τc a time constant called the coherence time.

The first-order correlation function is now:



1.1 Correlation functions in Classical and Quantum Optics 23

g(1)(τ) = ⟨ei(ϕ(t)−ϕ(t−τ))⟩eiω0τ (1.12)

We therefore need to evaluate ⟨ei(ϕ(t)−ϕ(t−τ))⟩. If the phase has not changed between t− τ
and t, we simply have ⟨ei(ϕ(t)−ϕ(t−τ))⟩ = 1. On the contrary, if the phase has changed in
this time interval, ⟨ei(ϕ(t)−ϕ(t−τ))⟩ = 0 as the phase jumps are independent. We therefore
need to determine the probability P0(t) that no phase jump occurs between t = 0 and a
time t. The probability for the phase to stay constant up to a time t+ dt writes:

P0(t+ dt) = P0(t)
[
1 − dt

τc

]
(1.13)

from which we get the differential equation:

dP0(t)
dt + P0(t)

τc
= 0 (1.14)

whose solution is (with P0(0) = 1):

P0(t) = e−t/τc (1.15)

The first-order correlation function then writes:

g(1)(τ) = (1 × e−τ/τc + 0 × (1 − e−τ/τc))eiω0τ = e−τ/τceiω0τ (1.16)

The visibility of the interference pattern therefore decays exponentially on the scale set
by τc. We can keep complexifying the problem and consider a source with two monochro-
matic components ω1 and ω2. The new light field is now:

E(t) = E1e
i(ω1t+ϕ1(t)) + E2e

i(ω2t+ϕ2(t)) (1.17)

We take ϕ1(t) and ϕ2(t) to be uncorrelated random variables described by the same prob-
ability law characterized by the coherence time τc. The numerator of the first-order cor-
relation function now writes:

⟨E(t)E∗(t− τ)⟩ = e−τ/τc(I1e
iω1τ + I2e

iω2τ )
+ ⟨E1E

∗
2e

iω2τei(ω1−ω2)tei(ϕ1(t)−ϕ2(t−τ))⟩
+ ⟨E2E

∗
1e

iω1τei(ω2−ω1)tei(ϕ2(t)−ϕ1(t−τ))⟩

(1.18)

where the two last terms are null as ϕ1(t) and ϕ2(t) are uncorrelated. If we consider the
simple case where I1 = I2, the normalized first-order correlation function writes:



24 Chapter 1. Quantum correlations in the weakly-interacting Bose gas

Figure 1.2: Intensity pattern for a light source with two monochromatic component of
frequencies ω1 and ω2. The fast oscillation of frequency ω0 = (ω1 +ω2)/2 is modulated by
a slow oscillation of frequency ∆ω = |ω1 − ω2| and an exponential decay e−τ/τc .

g(1)(τ) = 1
2e

−τ/τc(eiω1τ + eiω2τ ) (1.19)

We simply get the sum of the contribution of the two frequencies. The intensity pattern
as a function of x is thus the sum of two cosine functions with different frequencies. Using
trigonometric identities, we find that the intensity pattern consists of a “fast” oscillation of
frequency ω0 = (ω1 +ω2)/2, modulated by a “slow” oscillation of frequency ∆ω = |ω1 −ω2|
as well as an exponential decay e−τ/τc , reducing the visibility of the interference pattern
(see Fig.-1.2).

Through this very simple example, we understand that the observed interference pat-
tern strongly depends on the spectrum of the source. For a source with an arbitrary
spectrum S(ω), under the assumption that every spectral components are independent
and do not interfere with one another, the overall intensity pattern results of the sum of
the contribution of each spectral component:

I =
∫ ∞

−∞
2S(ω)[1 + cos(ωτ)]dω (1.20)

Writing
∫∞

−∞ S(ω)dω = I0 and s(ω) = S(ω)/I0, we obtain

I = 2I0

[
1 +

∫ ∞

−∞
s(ω) cos(ωτ)dω

]
(1.21)

As S(ω) = |FT[E(t)]|2 where FT denotes the Fourier transform, s(ω) is real allowing us
to write [108]:



1.1 Correlation functions in Classical and Quantum Optics 25

Figure 1.3: Diagram of the historical Hanbury Brown and Twiss apparatus, taken from
[17]. The novelty of this apparatus was to use two detectors, P1 and P2, to measure the
second-order correlation function.

I = 2I0

[
1 + Re

(∫ ∞

−∞
s(ω) cos(ωτ)dω

)]
(1.22)

From which we get, using equation 1.5:

g(1)(τ) =
∫ ∞

−∞
s(ω)eiωτ dω (1.23)

where we recognize the definition of the Fourier transform. This is the Wiener-Khintchine
theorem. The first-order correlation function, measurable with an interferometric measure-
ment, thus contains information about the spectrum of the light source.

In this introductory paragraph, we have seen a concrete and evocative example of
how correlation functions can be used to obtain meaningful information about a given
system, here a light source, with the simplest correlation function there is, correlating
two values of the light field. This idea can be extended to higher order of correlations
like intensity correlations, involving four values of the light field. This was at the core of
the approach developed by Hanbury Brown and Twiss to improve the resolution of the
Michelson interferometer to measure the size of the stars and avoid the deterrent effect of
turbulences from the atmosphere in their celebrated 1954 article [18]. This experiment was
of particular importance as its interpretation in terms of individual particles, the photons,
gave birth to the field of Quantum Optics.

1.1.2 Second order correlation function of light: Hanbury Brown and Twiss experi-
ment

The scheme proposed by Hanbury Brown and Twiss relies on the measurement of cross-
correlations between the intensities measured by two independent photodetectors (see
Fig-1.3), i.e a measurement of the second-order correlation function. To understand
how it works, we will follow the complementary approach to the one developed in the last
paragraph and look at the spatial properties of the light source.
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Figure 1.4: Schematic of an extended light source. The small red dots represent the
different incoherent elementary emitters of the source.

A star is described as an incoherent, extended light source that we approximate to be
monochromatic (wavelength λ) for simplicity (in practice, filters can be used to obtain a
quasi-monochromatic source). We write S the surface of the source seen from the Earth.
We model this source of light as an ensemble of elementary, point-like and independent
emitters and note their spatial location s. The field amplitude at a point r in an ob-
servation plane situated at distance L, far-away from the source so that we are in the
Fraunhofer regime L ≫ λ, r, s, writes (see Fig-.1.4):

E(r) ∝
∫

S
e(s)e

iπ
λL

|r−s|2ds (1.24)

The second-order correlation function correlates the values of the intensity of the light
field at two different points of space r1 and r2. In terms of field amplitude, it corresponds
to the four-term correlator:

G(2)(r1, r2) = ⟨E∗(r1)E(r1)E∗(r2)E(r2)⟩ (1.25)

All the elementary emitters are incoherent and thus each have a random phase value,
determined by an uniform probability law defined on the interval [0, 2π). They thus form
a set of independent random variables with the same statistics. We can therefore
apply the Central Limit Theorem to the sum of their contributions E(r) and find that it
follows Gaussian statistics [75]. The fact that E is a classical Gaussian variable allows us
to simplify the four-term correlator into:

G(2)(r1, r2) = ⟨I(r1)⟩⟨I(r2)⟩ + ⟨E∗(r1)E(r2)⟩⟨E(r1)E∗(r2)⟩ (1.26)

We recognize in the second term the spatial counterpart of the temporal first-order corre-
lation function discussed in the previous paragraph. Using equation 1.24, we obtain:
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G(1) (r1, r2) = ⟨E∗(r1)E(r2)⟩ ∝
∫∫

S
⟨e∗(s1)e(s2)⟩ e− iπ

λL (|r1−s1|2−|r2−s2|2)ds1ds2 (1.27)

Since the source is incoherent, ⟨e∗(s1)e(s2)⟩ = I(s1)δs1,s2 , leading to

G(1) (r1, r2) ∝
∫

S
I(s1)e− 2iπ

λL
(r1−r2)s1ds1 (1.28)

In analogy with what we showed in the last paragraph for the temporal coherence, the
first-order spatial correlation function is the Fourier transform of the spatial intensity
profile. This is known as the Van Cittert-Zernike theorem [75]. For a homogeneous
intensity distribution of the source, the first-order correlation function decays on a length
scale called the correlation length lc proportional to the inverse of the source size Lsource,
lc ∼ λL/Lsource.

In a nutshell, the second-order normalized correlation function takes the simple ex-
pression:

g(2)(r1, r2) = ⟨I(r1)⟩⟨I(r2)⟩ + ⟨E∗(r1)E(r2)⟩⟨E(r1)E∗(r2)⟩
⟨I(r1)⟩⟨I(r2)⟩ = 1 + |g(1)(r1, r2)|2 (1.29)

Depending on the positions of the detectors r1 and r2 we have (see Fig.-1.5):

• g(2)(r1, r2) = 2 for r1 = r2
• 1 ≤ g(2)(r1, r2) ≤ 2 for |r1 − r2| ≲ lc
• g(2)(r1, r2) = 1 for |r1 − r2| ≫ lc

The size of the source can thus be measured by progressively increasing the distance
between the two detectors and measuring the length scale on which the second order
correlation function decreases. This was done successfully by Hanbury Brown and Twiss
[17] to measure the size of Sirius in 1956.

While the calculations are rather straightforward in a classical model where light is
described as a wave, the interpretation of the Hanbury Brown and Twiss experiment in
terms of individual particles, i.e from a Quantum Optics point of view, sparked many
debates that lead to a deeper understanding of the phenomena involved. If we take a
look at what happens for r1 = r2, we see that a peculiar phenomenon occurs. The
normalized second-order correlation function can be interpreted as the probability to detect
simultaneously two photons on the detector located at r1 and r2, normalized by the
probability to detect them independently. Therefore, since g(2)(r1, r2) = 2 for r1 =
r2, the probability to detect two photons at the same position is twice as high as it is
to detect them independently! It was only after a few years that an explanation was
suggested by Fano in 1961 [56]. Considering a pair of source points A and B in the star
and two detectors 1 and 2 on Earth, Fig-.1.6 illustrates the two possibilities for a joint
detection of two photons on the couple of detectors. For indistinguishable photons, the
paths amplitudes interfere constructively resulting in a joint detection probability higher
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Figure 1.5: Second-order normalized correlation function for the Hanbury Brown and
Twiss effect.

than that for independent events. While the interference effect is averaged out considering
all the possible pairs of elementary emitters in the source, it can be observed when the
distance between the two detectors is very close to zero, as observed by Hanbury Brown and
Twiss. Interestingly, the interferences are destructive for fermions, resulting in a reduced
probability of joint detection, also referred as anti-bunching, an effect than cannot be
explained classically contrary to the Hanbury Brown and Twiss effect.

Because it will be a crucial point in the following of this thesis, we stress that the
key ingredient to observe bosonic bunching is the chaotic character of the source. The
theoretical development that we have just presented relies on the application of the Central
Limit Theorem for the source made of a large number of independent elementary emitters,
each with a random phase. This is notably not the case for laser light that we will discuss
in the next paragraph.

To summarize, we have seen in this paragraph an example of a second-order correlation
effect, the Hanbury Brown and Twiss effect, and its classical description with a chaotic light
source. We also have an insight of how this effect can be understood when considering
individual particles, here photons, laying the grounds to study more complex systems
with correlations between interacting quantum particles. The observations of Hanbury
Brown and Twiss sparked interest in the community and lead to the development of the
new formalism of Quantum Optics [74] with quantized light fields or light particles, i.e.
photons, with the great success that we know of today. In the next paragraphs, we
will study the main elements of the theory of Quantum Optics through a few examples
of increasing complexity as a mean to understand and conceptualize correlations at the
single particle level.
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Figure 1.6: Quantum interpretation of the Hanbury Brown and Twiss effect. For two
source points A and B, a joint detection occurs if a photon produced by A is detected in 1
and a photon produced by B is detected in 2 (red arrows), or the other way around A →
2 and B → 1 (green arrows). Interferences of the paths amplitudes explain the Hanbury
Brown and Twiss effect.

1.1.3 Second quantization and correlations between individual particles

The first quantum descriptions, such as the one developed by Planck to describe black-
body radiation, were in fact semi-classical theories in the sense that only the energy of
the atoms is quantized, while the radiation fields are still described classically. While
semi-classical theories found great success, the observations of Hanbury Brown and Twiss,
as well as the development of laser light called for a theory accounting for the corpuscular
aspect of light. This gave birth to the Quantum Optics theory whose core element is to
push further the idea of quantization by quantizing the radiation fields. While the term
is most often associated with atomic physics as we will see later on, we can speak here of
second quantization, the first quantization being the one of the energy.

The general idea behind the quantization of the light field is to describe light as a
collection of independent quantum harmonic oscillators for the different modes of the
field. For a field defined in a box of volume V = L3 with periodic boundary conditions,
the field can be described as a superposition of plane waves with a wave vector k = 2π

L n
with n ∈ N each described by a harmonic oscillator [162]:

Ê(r, t) =
∑

l

iϵl

√
ℏωl

2ε0V

[
ei(kl·r−ωlt)âl − e−i(kl·r−ωlt)â†

l

]
= Ê(+)(r, t) + Ê(−)(r, t) (1.30)

where ϵl denotes the polarisation of mode l. We have introduced the two mutually adjoint
operators âl and â†

l , analog to the creation and annihilation operators of the quantum
harmonic oscillator. In the formalism of the quantum harmonic oscillator, these operators
respectively destroy or create a quanta of energy, which in our case corresponds to a photon
in mode l. Since photons are bosons, âl and â†

l follow the commutation relations:

[
âl, â

†
l′

]
= δll′ [âl′ , âl] = 0 (1.31)

To show the effect of âl and â†
l , we introduce the number states or Fock states
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|nl⟩, eigenstates of the number operator N̂l = â†
l âl with nl representing the number of

photons in mode l. The Fock state corresponding to the absence of the photons is called
the vacuum state and denoted |0⟩. The action of the creation and annihilation operators
on the Fock states writes:

â†
l |nl⟩ =

√
nl + 1 |nl + 1⟩ (1.32)

âl |nl⟩ = √
nl |nl − 1⟩ (1.33)

From this, we see that every Fock state can be obtained by applying the creation operator
on the vacuum state the right amount of times:

|nl⟩ = 1√
nl!
(
â†

l

)nl |0⟩ (1.34)

Finally we can write the Hamiltonian of the collection of independent quantum harmonic
oscillators as:

Ĥ =
∑

l

ℏωl

(
N̂l + 1

2

)
(1.35)

with ℏωl being the energy of a photon in mode l.

n-th order correlation functions

As discussed in the previous paragraphs, there is a strong connection between correlation
functions and the notion of coherence. Motivated by the measurements of Hanbury Brown
and Twiss, Roy J. Glauber introduced [74] the notion of n-th order coherence in the
formalism of Quantum Optics and linked it to n-th order correlation functions, as we will
recall now.

We have discussed so far correlation functions up to the second order. Correlation
functions can be extended to higher order n describing the probability of joint detection
of n photons at a set of positions and times {(r1, t1), (r2, t2), ..., (rn, tn)}:

G(n) (r1, t1, ..., rn, tn) =
〈
Ê(−) (r1, t1) ...Ê(−) (rn, tn) Ê(+) (rn, tn) ...Ê(+) (r1, t1)

〉
(1.36)

Note that the order of the operators is important with all the terms in Ê(−) (and thus â†)
on the left and terms in Ê(+) (and thus â) on the right. This is called normal ordering
and ensures that the expectation value of the combination of the operators is zero for the
vacuum state.

Likewise, we introduce the normalized n−th order correlation function.
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g(n) (r1, t1, ..., rn, tn) = G(n) (r1, t1, ..., rn, tn)
n∏

j=1
G(1) (r1, t1, ..., rn, tn)

(1.37)

Coherent states

From this definition, we define a fully coherent field as a field that verifies, for any value
of n ∈ N∗ [74]:

g(n) (r1, t1, ..., rn, tn) = 1 (1.38)

This means that for a fully coherent field, we have the simple relation:

G(j) (r1, t1, ..., rj , tj) =
j∏

i=1
G(j)(ri, ti) (1.39)

Interestingly, we note that if the field was in a state |α⟩ that would be an eigenstate
of Ê(+), Ê(+) |α⟩ = α |α⟩, and an eigenstate of Ê(−), ⟨α| Ê(−) = ⟨α|α∗, the conditions
1.38 and 1.39 would be automatically verified. For simplicity sake, we consider a single
mode and use the fact that Ê(+) ∝ â and Ê(−) ∝ â†. We are thus looking for the state
|α⟩ which is an eigenstate of â. It can be shown that in the basis of the number states,
|α⟩ writes [73]:

|α⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩ (1.40)

The state |α⟩ is called a coherent state or Glauber state. We thus find that a coherent
state writes as a sum of number states and that the probability to find n photons follows
a Poissonian law (see Fig.-1.7). A well-known example of coherent state is laser light.

Let us now close the parenthesis on the coherent state and come back to the Hanbury
Brown and Twiss effect described in the last sub-section, characterized by g(2)(r1, t1, r2, t2) =
2 for r1 = r2 and t1 = t2. As we have just seen, it would be impossible to observe this
effect with a fully coherent light as g(2)(r1, t1, r2, t2) = 1 by definition. Let us rewrite the
second order correlation function in the formalism of Quantum Optics to see if it tells us
something new. For r1 = r2 and t1 = t2, the expression writes:

g(2) (r1, t1, r2 = r1, t2 = t1) =

〈
â†â†ââ

〉
⟨â†â⟩2 (1.41)

Using the commutation relation, we write:
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Figure 1.7: Probability distribution of the number of photons for coherent and chaotic
light sources for a fixed value of |α2|.

g(2) (r1, t1, r2 = r1, t2 = t1) =

〈
â†(ââ† − 1)â

〉
⟨â†â⟩2 = ⟨N̂2⟩ − ⟨N̂⟩

⟨â†â⟩2 = 1 + σ2
N − ⟨N̂⟩
⟨â†â⟩2 (1.42)

where we introduce σN the standard deviation of the number of photons N. We see that
the value of g(2) depends on the statistics of the source. For the case of laser light where
N follows a Poissonian law, σ2

N = ⟨N̂⟩ and we retrieve g(2) (r1, t1, r2 = r1, t2 = t1) = 1.

Thermal chaotic states

To understand how the Hanbury Brown and Twiss effect arises, we need to introduce
the concept of mixed states, in opposition to pure states. In most cases, our limited
knowledge of the system requires to describe it as a statistical mixture of pure states.
This is what we call a mixed state. For such states, we use the formalism of the density
matrix which is defined as:

ρ̂ =
∑

i

pi |Ψi⟩ ⟨Ψi| (1.43)

where pi is the probability for the system to be in the pure state |Ψi⟩. The expectation
value of an operator Ô is obtained through:

⟨Ô⟩ = Tr(ρ̂Ô) (1.44)

This formalism is particularly useful to describe light sources made of a large number
of independent individual emitters. Let us say that the first emitter brings the field in
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state |α1⟩, the second emitter in state |α2⟩ etc.. It can be shown ([73]) that for a large
number of individual emitters j, the probability distribution for the complex amplitude
α = α1 + α2 + ...+ αj follows a Gaussian law:

P (α) = 1
π⟨n⟩

e
− |α|2

⟨n⟩ (1.45)

where ⟨n⟩ is the mean value of |α|2 and represents the number of energy quanta in the
mode. From this, we use equation 1.40 to write the density matrix of the system in the
basis of the number states:

ρ̂ = 1
1 + ⟨n⟩

∞∑
m=0

( ⟨n⟩
1 + ⟨n⟩

)m

|m⟩⟨m| (1.46)

The probability to find m photons then writes (see Fig.-1.7):

P (m) = 1
1 + ⟨n⟩

( ⟨n⟩
1 + ⟨n⟩

)m

(1.47)

A light source with these statistics is called a chaotic light source. This is notably the
case of thermal light, described by the Planck’s distribution with ⟨n⟩ = 1/(ehν/kBT − 1).
From equation 1.47, we find that the variance of the photon number N writes:

σ2
N = ⟨N⟩2 + ⟨N⟩ (1.48)

Injecting this result into equation 1.42, we find that for a chaotic light source,
g(2) (r1, t1, r2, t2) = 2 for r1 = r2 and t1 = t2, that is the bosonic bunching observed by
Hanbury Brown and Twiss!

In fact, this result can be obtained through a complementary approach that relies on
the application of the Wick’s theorem [66].

Wick’s theorem

Wick’s theorem

When a system is characterized by a Gaussian density matrix [66]
ρ̂ ∝ exp

(∑
i(αiâ

†
i âi + βiâ

2
i + γiâ

†
i
2)
)

and ∀i, ⟨âi⟩ = ⟨â†
i ⟩ = 0, the high-order prod-

ucts of of creation and annihilation operators can be factorized into all possible
products of only two operators. For bosonic particles, this writes:

⟨Â1...Â2m⟩ =
∑

σ

⟨Âi1Âi2⟩⟨Âi3Âi4⟩...⟨Âi2m−1Âi2m⟩

where σ denotes all possible permutations changing the order 1, 2, ..., 2m to
i1, i2, ..., i2m, and Âi is any creation or annihilation operator.
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As shown in equations 1.45 and 1.46, the density matrix of a chaotic light source
is Gaussian, it is therefore possible to use Wick’s theorem to simplify the second-order
correlation function

g(2) (r1, t1, r2 = r1, t2 = t1) = ⟨â†â†⟩⟨ââ⟩ + 2⟨â†â⟩2

⟨â†â⟩2 (1.49)

For a thermal chaotic state where the number of photons is well-defined, the averages
⟨â†â†⟩ and ⟨ââ⟩ are null as they do not conserve the number of photons. We thus retrieve
that g(2) (r1, t1, r2 = r1, t2 = t1) = 2. Actually, this procedure can be extended up to any
order to show that the n-th order correlation function can be simplified to a linear combi-
nation of first-order correlation functions. This means that the entirety of the information
is contained in the first-order correlation function. The normalized probability of joint
detection of n photons then writes:

g(n)(r1, ..., rn, t1, ..., tn) = n! for r1 = r2 = ... = rn and t1 = t2 = ... = tn (1.50)

which is a generalisation of the two particles bosonic bunching, seen previously, for n
particles. Importantly, the situation is very different with a coherent state |α⟩ as we have
⟨â⟩, ⟨â†⟩, ⟨ââ⟩, ⟨â†â†⟩ ≠ 0 (because the well-defined phase implies that the photon number
is not defined). While the Wick’s theorem still applies, its expression is more complicated
and not helpful as the second order correlation function is much easier to compute:

g(2) (r1, t1, r2 = r1, t2 = t1) = ⟨α| â†â†ââ |α⟩
⟨α| â†â |α⟩2 = |α|4

|α|4
= 1 (1.51)

This proves that coherent states do not show bosonic bunching.

We have thus seen how the Hanbury Brown and Twiss effect writes in the formalism of
Quantum Optics and shown the differences between a coherent and chaotic light source.
We will keep this result in the back of our minds as it will be of primary importance when
we will study second order correlation functions with interacting atoms a little further
down the line.

1.1.4 The non-degenerate parametric amplifier

We will now increase the complexity by adding non-linearity in the systems we study as
a means to induce additional correlations between different modes. The most emblem-
atic example of such a system in Quantum Optics is the non-degenerate parametric
amplifier. Through the interaction with a non-linear optical medium, a pump photon at
frequency 2ω can be converted into two photons in two modes at frequency ω1 and ω2,
the signal and idler mode that we name mode 1 and mode 2, with 2ω = ω1 + ω2. Using a
few approximations (see [162]), the Hamiltonian of the system may be written as:

H = ℏω1â
†
1â1 + ℏω2â

†
2â2 + iℏχ(â†

1â
†
2e

−2iωt − â1â2e
2iωt) (1.52)
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where χ is a coupling constant. The particularity of the two photons produced from the
pump photon is that they are emitted in a correlated manner as a pair. The system will
thus feature cross-correlations between the modes 1 and 2.

This time-dependent problem is best solved in the interaction picture, i.e. where the
time dependence is carried by both operators and states. The interaction Hamiltonian
then writes:

ĤI(t) = iℏχ(â†
1(t)â†

2(t) − â1(t)â2(t)) (1.53)

The counterpart to the Schrödinger equation in the interaction picture is the Heisenberg
equation of motion:

dâ1
dt = 1

iℏ
[â1, ĤI ] = χâ†

2 (1.54)

dâ†
2

dt = 1
iℏ

[â†
2, ĤI ] = χâ1 (1.55)

The solution of these coupled equations are:

â1(t) = â1(0)coshχt+ â†
2(0)sinhχt (1.56)

â2(t) = â2(0)coshχt+ â†
1(0)sinhχt (1.57)

From this, we can derive a few interesting results. First, we write the quantum state |Ψ(t)⟩
generated by the parametric amplification process. To do so, we write the interaction
picture evolution operator:

Û(t) = exp
[
χt
(
â†

1â
†
2 − â1â2

)]
(1.58)

At the price of a few lines of calculations (see [138]), this operator can be re-written in a
factored form:

Û(t) = 1
(coshχt)e

â†
1â†

2 tanh χte−
(

â†
1â1+â†

2â2+1
)

ln(cosh χt)e−â1â2 tanh χt (1.59)

While this expression is a bit daunting, it becomes way simpler if we consider the initial
state to be the vacuum:

|Ψ(t)⟩ = 1
(coshχt)e

â†
1â†

2 tanh χt |0⟩ (1.60)

We obtain easily from this the expression of |Ψ(t)⟩ in the number states basis:
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|Ψ(t)⟩ = 1
(coshχt)

∞∑
n=0

(tanhχt)n |n⟩1 |n⟩2 (1.61)

The state thus writes as a superposition of number states with the same number of photons
in modes 1 and 2. The populations in modes 1 and 2 are therefore perfectly correlated.
If we now look at the reduced state corresponding to mode 1 for instance, the reduced
density matrix writes:

ρ̂1(t) = Tr2 [|Ψ(t)⟩ ⟨Ψ(t)|] = 1
cosh2 χt

∞∑
n=0

tanh2n χt |n⟩1 ⟨n|1 (1.62)

Using the properties of hyperbolic functions, we get:

ρ̂1(t) = 1
1 + sinh2 χt

∞∑
n=0

(
sinh2 χt

1 + sinh2 χt

)n

|n⟩1 ⟨n|1 (1.63)

where we recognize the form of the chaotic density matrix defined in equation 1.46 with
⟨n⟩ = sinh2 χt. This result tells us that if we look only at one of the two modes
and ignore the paired photons in the other mode, we observe bosonic bunching [172]
g(2)(1, 1) = g(2)(2, 2) = 2 .

Amplitude of cross-correlations

We have seen that the pairing process induces the presence of cross-correlations between
modes 1 and 2 that can once again be characterized with the second-order correlation
function. To look for a signature of these correlations, we compute the two-body correlator
G(2)(1, 2) = ⟨â†

1(t)â†
2(t)â2(t)â1(t)⟩ which describes the probability to detect simultaneously

a photon in mode 1 and a photon in mode 2. As explained in the last paragraph, we apply
Wick’s theorem and use equations 1.56 and 1.57 to get:

⟨â†
1(t)â†

2(t)â1(t)â2(t)⟩ = ⟨â†
1(t)â†

2(t)⟩⟨â1(t)â2(t)⟩ + ⟨â†
1(t)â1(t)⟩⟨â†

2(t)â2(t)⟩
+⟨â†

1(t)â2(t)⟩⟨â†
2(t)â1(t)⟩

(1.64)

Working with initial vacuum conditions, we compute the different correlators:

⟨â1(t)â2(t)⟩ = cosh(χt)sinh(χt)(⟨â1(0)â†
1(0)⟩ + ⟨â†

2(0)â2(0)⟩) + cosh2(χt)⟨â1(0)â2(0)⟩
+sinh2(χt)⟨â†

2(0)â†
1(0)⟩

(1.65)

which gives:
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⟨â1(t)â2(t)⟩ = ⟨â†
1(t)â†

2(t)⟩ = cosh(χt)sinh(χt) (1.66)

Likewise,

⟨â†
1(t)â1(t)⟩ = ⟨â†

2(t)â2(t)⟩ = sinh2(χt) (1.67)

⟨â†
1(t)â2(t)⟩ = ⟨â†

2(t)â1(t)⟩ = 0 (1.68)

Now that we have evaluated G(2)(1, 2), we can write the normalized second-order correla-
tion function:

g(2)(1, 2) = ⟨â†
1(t)â†

2(t)â2(t)â1(t)⟩
⟨â†

1(t)â1(t)⟩⟨â†
2(t)â2(t)⟩

= 1 + cosh2(χt)sinh2(χt)
sinh4(χt)

= 1 + (1 + sinh2(χt))sinh2(χt)
sinh4(χt)

(1.69)

from which we finally get:

g(2)(1, 2) = 2 + 1
⟨n̂1(t)⟩ (1.70)

where n̂1(t) is the number of photons in mode 1. We see that the amplitude of the cor-
relation function scales linearly with the inverse average mode occupation. Interestingly,
we notice that this amplitude is higher than the bosonic bunching correlations within a
single mode g(2)(1, 1) = g(2)(2, 2) = 2. In fact, this is quite an important result as we will
now discuss.

1.1.5 Violation of the Cauchy-Schwarz inequality and Busch-Parentani criterion

The celebrated Cauchy-Schwarz inequality has seen countless applications in Mathematics
and Physics. What will most interest us here is its formulation in the framework of
probability theory. In classical Physics, with two fluctuating quantities I1 and I2, the
Cauchy-Schwarz inequality writes:

⟨I1I2⟩ ≤
√

⟨I2
1 ⟩⟨I2

2 ⟩ (1.71)

This inequality can be rewritten with creation/annihilation operators to work with
two-body correlation functions. With the notations G(2)(i, j) = ⟨â†

i â
†
j âiâj⟩ we have used

so far, the Cauchy-Schwarz inequality becomes [162]:
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G(2)(1, 2) ≤
√
G(2)(1, 1)G(2)(2, 2) (1.72)

In the symmetrical case with ⟨â†
1â1⟩ = ⟨â†

2â2⟩ (valid for the non-degenerate parametric
amplifier), we obtain G(2)(1, 1) = G(2)(2, 2) and finally:

g(2)(1, 2) ≤
√
g(2)(1, 1)g(2)(2, 2) ⇐⇒ g(2)(1, 2) ≤ g(2)(1, 1), g(2)(2, 2) (1.73)

Therefore, the Cauchy-Schwarz inequality states that the cross-correlation amplitude
cannot exceed the amplitude of the auto-correlation with a classical model. The result
of equation 1.70 violates this inequality and is therefore the signature of a quantum phe-
nomenon, as observed experimentally in [176]. Actually, violating the Cauchy-Schwarz
inequality was at the core of different landmark Quantum Optics experiments [132] aim-
ing to identify light sources that could not be described with classical optics.

In fact, violating the Cauchy-Schwarz inequality can be enough to demonstrate en-
tanglement in some situations. The work [22] devises the Busch-Parentani criterion for a
state to be entangled that writes:

⟨n̂1n̂2⟩ − |⟨â†
1â

†
2⟩|2 < 0 (1.74)

From equation 1.64, we get

⟨â†
1â

†
2â1â2⟩ = |⟨â†

1â
†
2⟩|2 + ⟨n̂1n̂2⟩ + ⟨â†

1â2⟩⟨â†
2â1⟩ (1.75)

where the last term is zero in the non-degenerate parametric amplifier problem as shown
before. Injecting 1.74, we get:

⟨â†
1â

†
2â1â2⟩ > 2⟨n̂1n̂2⟩ (1.76)

Dividing by ⟨n̂1n̂2⟩, we obtain:

g(2)(1, 2) > 2 ⇐⇒ g(2)(1, 2) > g(2)(1, 1), g(2)(2, 2) (1.77)

which is strictly equivalent to violating the Cauchy-Schwarz inequality, therefore proving
that the emitted photon pairs form an entangled state. Note that this development holds
only if (i) the statistics of the system are Gaussian so that we can apply Wick’s theorem and
have g(2)(1, 1) = g(2)(2, 2) = 2, (ii) ⟨â†

1â2⟩⟨â†
2â1⟩ = 0 which is true here but not in general.

The effect described in this paragraph is also known as spontaneous parametric down
conversion and is in fact one of the simplest way to obtain entangled states of light and
has been used in many landmarks experiments [21, 82, 131].

We have thus seen so far a few examples of historical Quantum Optics results through
which we have familiarized ourselves with the concept of correlation functions and the kind
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of information they contain. However, we are still overlooking one of the key ingredient of
the problem we wish to study, namely interactions. Indeed, photons are essentially mass-
less, non-interacting particles. In order to add interactions into these famous Quantum
Optics problems, physicists naturally turned to atoms. As a matter of fact, the Quantum
Optics formalism can be extended quite easily to matter and atoms and gives an incentive
to reproduce famous Quantum Optics effects with massive particles.

1.2 Bogoliubov theory of the homogeneous weakly-interacting gas

We will now use the formalism of correlation functions to study one of the most simple
many-body problem, the weakly-interacting homogeneous Bose gas, i.e. an ensemble of
bosonic particles with weak contact interactions in a box of volume V . This approach is a
nice compromise: while it accounts for interactions between individual particles that may
give rise to interesting correlations phenomena, the system can be described theoretically
at the price of a few approximations as stated in the introduction to this chapter. This
theory has been developed by Nikolay Bogoliubov in his celebrated 1947 article [14]. In
this section, we will remind the main lines of Bogoliubov’s approach and see what it tells
us in terms of correlation functions.

1.2.1 Second quantization in atomic physics

Before diving into the specifics of Bogoliubov theory, we briefly remind the formalism of
second quantization in atomic physics that will allow us to use the results obtained in
the last paragraph for Quantum Optics. Interestingly, the idea of second quantization of
Quantum Optics can be extended to treat the quantum many-body problem in a more
efficient and intuitive way. Indeed, calculations get quite complex when considering many-
body systems of indistinguishable particles as the many-body wave-function must be (anti-
)symmetrized in the case of bosons (fermions), a problem that the second quantization
formalism aims to resolve.

The key point is to switch things around by counting the number of particles in each
state instead of the usual approach which would be to determine in which state each
particle is. To this end, the many-body state is represented as a set of occupation numbers:

|{nβ}⟩ = |n1, n2, ..., nβ, ...⟩ (1.78)

where nβ denotes the number of particles in state β. For fermions, this number is either 0
or 1 because of the Pauli exclusion principle, whereas it can be any integer value for bosons.
We recognize the states |{nβ}⟩ as the Fock states described in the last paragraph. As for
Quantum Optics, we introduce creation and annihilation operators â†

β and âβ respectively
creating or destroying a particle in state β. For bosons on which this thesis will be focused:

â†
β |nβ⟩ =

√
nβ + 1 |nβ + 1⟩ (1.79)

âβ |nβ⟩ = √
nβ |nβ − 1⟩ (1.80)
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Just as for photons, the Fock states are constructed by applying the creation operators
the right amount of times on the vacuum state. For bosonic particles, the commutation
relation is the same as for photons:

[
âβ, â

†
β′

]
= δββ′

[
âβ′ , âβ

]
= 0 (1.81)

This has the advantage that the symmetric properties are taken care of by the commutation
relations, avoiding complex symmetrization calculation.

1.2.2 Bogoliubov approximation

We now describe the weakly-interacting Bose gas of Nbec atoms with contact interactions.
In the second quantization formalism, the Hamiltonian of the system writes [14]:

Ĥ =
∫ ( ℏ2

2m∇ψ̂†(r)∇ψ̂(r)
)

dr + g

2

∫
ψ̂†(r)ψ̂† (r′) δ (r − r′) ψ̂(r)ψ̂

(
r′) dr′dr (1.82)

with δ (r − r′) the contact interaction potential and g = 4πℏ2as

m
the strength of the in-

teractions with as the s-wave scattering length [101] with as = 7.5 nm for He∗. The
approximation of contact interactions is reasonable in the case where the scattering length
is much smaller than the distance between atoms, |as|n1/3 ≪ 1, as it is the case in our
experiment. For a homogeneous gas contained within a box of volume V , the field operator
ψ̂ can be written in the plane wave basis:

ψ̂(r) = 1√
V

∑
k

âke
ik·r (1.83)

ψ̂†(r) = 1√
V

∑
k

â†
ke

−ik·r (1.84)

with âk the operator destroying a particle of momentum k. The Hamiltonian can then be
rewritten

Ĥ =
∑

k

ℏ2k2

2m â†
kâk + g

2V
∑

k1,k2,k3

â†
k1+k3

â†
k2−k3

âk1 âk2 (1.85)

The interaction term is written so that the momentum is conserved as the scattering
process is elastic. At T = 0, all the atoms are in the ground state of the system. In
order to simplify this Hamiltonian, we use the Bogoliubov approximation that assumes
the interactions to be weak so that the fraction of atoms removed from the BEC by
interactions is small. This has two consequences:
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• We treat â0 and â†
0 as ordinary numbers and replace them by

√
Nbec where Nbec is

the number of condensed atoms.
• The effect of the interactions is treated perturbatively by writing the field operator

as [14]:

ψ̂(r) = â0√
V

+ θ, θ = 1√
V

∑
k ̸=0

âke
ik·r (1.86)

considering θ as a correction term and neglecting all terms of order 2 and superior
of θ in equation 1.82.

With these approximations, the simplified Hamiltonian writes:

Hbogo =
∑
k ̸=0

ℏ2k2

2m â†
kâk + gn

2
∑
k ̸=0

(â†
kâ

†
−k + âkâ−k) + gnNbec

2 (1.87)

with n = Nbec/V . Importantly, this Hamiltonian can be diagonalized. This is achieved
through the linear Bogoliubov transformation where we introduce a new quasi-particle
operator:

b̂k = ukâk + v−kâ
†
−k (1.88)

To determine the expression of the coefficients uk and vk, we impose that the new operator
b̂k follows the bosonic operator commutation rule:

[b̂k, b̂
†
k′ ] = δk,k′ (1.89)

This gives u2
k − v2

−k = 1. We can therefore write uk = cosh(αk) and v−k = sinh(αk) and
look to determine αk. For the Hamiltonian to be diagonal, this value must be chosen so
that the coefficients of the terms in b̂†

kb̂
†
−k and b̂kb̂−k vanish. We obtain an additional

equation:

gn

2
(
u2

k + v2
−k

)
+
(
ℏ2k2

2m + gn

)
ukv−k = 0 (1.90)

from which we finally obtain after a few lines of calculation using the properties of hyper-
bolic functions:

uk, v−k = ±
(
ℏ2k2/2m+ gn

2ε(k) ± 1
2

)1/2

(1.91)

with

ε(k) =
√

ℏ2k2

2m

(ℏ2k2

2m + 2gn
)

(1.92)
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the famous Bogoliubov dispersion relation. The Hamiltonian has now been diagonalized
and writes:

ĤB =
∑

k

ε(k)b̂†
kb̂k + E0

2 (1.93)

The system of interacting particles has thus been transformed into a system of non-
interacting Bogoliubov quasi-particles associated to creation and annihilation operators
b̂†

k and b̂k with a dispersion relation ε(k). The prediction of this excitation spectrum is
one of the key results of Bogoliubov theory that we will now discuss in further details.

1.2.3 Spectrum of excitations

The Bogoliubov dispersion relation has two clear asymptotic trends for small and high
momentum values. For low values of k, using ℏ2k2

2m ≪ 2gn, we obtain:

ε(k) =
k→0

ℏk
√
gn

m
(1.94)

The dispersion relation takes a phonon-like linear form where the sound velocity is c =√
gn

m
. In this regime, the Bogoliubov quasi-particles are phonons corresponding to a

coherent superposition of a forward and backward propagating waves b̂k = ukâk +v−kâ
†
−k

with |uk| ≃ |v−k|.

On the other hand, at high values of k, the dispersion relation becomes that of free
particles:

ε(k) =
k→+∞

ℏ2k2

2m (1.95)

In terms of operators, vk =
k→+∞

0 and uk =
k→+∞

1 so b̂k =
k→+∞̂

ak, a quasi-particle is equivalent to a
particle.

The transition between the two regimes occurs when ℏ2k2

2m ≃ gn, it thus convenient to
define a characteristic length associated to this momentum range:

ξ =
√

ℏ2

2mgn (1.96)

This length is called the healing length. Its name comes from the fact the ξ represent
the length scale on which a local perturbation of the density is “healed” back to the bulk
density.

2E0 is not simple to calculate and was the subject of the famous work [103] that we will discuss later
on.
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Figure 1.8: Experimental observation of the Bogoliubov excitation spectrum (Steinhauer
et al. [148]). The phononic and free particle parts are clearly identifiable. The inset shows
a zoom on the linear part of the spectrum and the dashed line the free particle spectrum.
ξ is the healing length of the condensate.

The Bogoliubov spectrum of excitations provides a support for the superfluid properties
and has been a very successful theoretical prediction observed experimentally in a large
variety of systems [63, 112, 119, 148, 150]. This is not however all that is predicted by
Bogoliubov theory. As we will discuss below, this theory also describes the many-body
ground-state of the system.

1.2.4 Many-body ground state and quantum depletion

The Bogoliubov approach describes the excitations of the weakly-interacting Bose gas as
non-interacting quasi-particles. These quasi-particles therefore behave as ideal bosons and
are populated by the finite temperature with the Bose distribution:

⟨b†
kbk⟩ = 1

eε(k)/(kBT ) − 1
(1.97)

At T = 0, the population of quasi-particles is null: ⟨b̂†
kb̂k⟩T =0 = 0. What can we say

about real particles? By using the Bogoliubov transform, one can express the population
of particles for a given momentum k ̸= 0:

⟨â†
kâk⟩ = (|uk|2 + |vk|2)⟨b̂†

kb̂k⟩ + |vk|2 (1.98)

The blue term corresponds to the Bogoliubov excitations populated by temperature. The
fraction of particles removed from the condensate this way is called the thermal deple-
tion. This fraction vanishes at T = 0. Interestingly, an additional term |vk|2 is present that
results from the non-commutation of the bosonic creation and annihilation operators, the
signature of an essentially quantum phenomenon. This term implies that ⟨â†

kâk⟩T =0 ̸= 0,
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Figure 1.9: Illustration of the k/−k pairing of the quantum depleted atoms in the BEC
(light blue).

meaning that there is a fraction of atoms outside of the BEC with a non-zero momentum
in the ground state! Under the interplay between interactions and quantum fluctuations,
some atoms are removed from the BEC and promoted to non-zero momentum states. This
fraction is called the quantum depletion.

1.2.5 Pairing mechanism in the quantum depletion

We now look to build a microscopical, physically meaningful picture of how the quantum
depletion emerges. We remind that a key ingredient of the Bogoliubov theory is that the
only considered interaction processes are the ones involving two particles of the BEC or two
particles outside of the BEC being brought into it. From this consideration, we understand
that the atoms belonging to the quantum depletion were initially in the BEC and were
removed from it after undergoing a two-body interaction process. The interaction process
populating the quantum depletion thus involves two atoms in the BEC with a momentum
value k ≃ 0. To conserve the overall momentum, the two atoms leaving the BEC then have
opposite momenta k and −k and form a momentum correlated pair. This falls exactly
into the kind of signal we are interested in, namely correlations between several particles,
here two, caused by a quantum, interaction-induced effect.

The common factor with quantum effects is that they usually defy our intuition built
on our observation of the everyday world, well described by classical physics. In this
case, the “quantum weirdness” comes from the fact this process seems to violate the
conservation of energy. Initially, the two atoms belong to the at-rest BEC, their total
kinetic energy is then zero. After the collision process, they acquire momenta k and −k
meaning that the total kinetic energy is 2(ℏ2k2/2m). The important aspect is that k
can be arbitrarily large, making the kinetic energy of the pair larger than the available
interaction energy. Naturally, the conservation of energy is still well respected here. The
apparent contradiction comes from the fact that it is conceptually wrong to isolate two
atoms in the BEC. Every atom of the ground state belongs to the same quantum state,
which exhibits non-zero momentum components at large momenta. Because the pairs are
created by the interaction term of the Hamiltonian, the pair creation is a coherent process.
The many-body ground state is thus a superposition of the BEC and the pairs and writes:
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|ψB⟩ ∼ exp
(√

N0a
†
0 +

∑
k ̸=0

(vk/uk)a†
−ka

†
k

)
|0⟩ (1.99)

which is of the same form of the ground-state of the Bardeen-Cooper-Schrieffer theory of
supraconductivity [7].

The energy of the many-body ground state of the weakly-interacting Bose gas thus
contains a small correction that corresponds to the presence of the k/−k pairs of the
quantum depletion. This small correction is called the Lee-Huang-Yang correction, named
after the authors of the seminal 1957 article [103] that first predicted the presence of the
k/−k pairs.

This pairing effect is quite reminiscent of the spontaneous parametric down conversion
photon pairing effect that we saw in 1.1.4. The analogy between the non-degenerate
parametric amplifier and the Bogoliubov Hamiltonian, replacing modes 1 and 2 by modes
k and −k will in fact allow us to re-use the majority of the results derived in 1.1.4 for
the k/−k pairs. There is however one crucial difference, which is that the non-degenerate
parametric amplifier is an out-of-equilibrium, time-dependent problem contrary to
the equilibrium weakly-interacting Bose gas. This is in fact the fascinating aspect of the
k/−k pairs of the quantum depletion whose existence can only be explained by the effect
of quantum fluctuations.

We are thus looking at a system which falls into our general area of interest described
in the introduction of this thesis, namely many-body systems with interactions displaying
quantum behaviors. The weakly-interacting Bose gas shows the advantage to be one of
the conceptually simplest many-body systems for which a theory can be derived as we just
have shown. We will now build a bridge with the first part of this chapter by discussing
what are the relevant correlation functions to study the weakly-interacting Bose gas.

1.3 Two-body correlations in the homogeneous weakly-interacting Bose
gas

Now that we have identified the k/−k pairing mechanism in the quantum depletion,
it is natural to look for a signature of it in the second order correlation function that
characterizes the correlations between two particles [23, 110, 156]. We start by describing
the general case of the two-body correlator between two modes k and k′:

G(k,k′) = ⟨â†
kâ

†
k′ âkâk′⟩ (1.100)

As we have seen in the previous section, the Bogoliubov Hamiltonian is diagonal in
the quasi-particle basis, meaning that all quantum states have Gaussian statistics in this
basis. As the Bogoliubov transformation is linear and therefore conserves Gaussianity,
the statistics are Gaussian in the particle basis as well [23]. We can then apply Wick’s
theorem (see 1.1.3) to simplify the correlator:
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G(k,k′) = ⟨â†
kâ

†
k′⟩⟨âkâk′⟩ + ⟨â†

kâk⟩⟨â†
k′ âk′⟩ + ⟨â†

kâk′⟩⟨â†
k′ âk⟩ (1.101)

We end up with three different terms:

• The first term that equals |⟨â†
kâ

†
k′⟩|2.

• We recognize in the second term the product of the momentum densities ρ(k)ρ(k′).
• The third term that equals |⟨â†

kâk′⟩|2.

We regroup the two last terms in the function G
(2)
N (k,k′) = ρ(k)ρ(k′) + |⟨â†

kâk′⟩|2 that
we call the normal correlation function as the operators are normally ordered (see 1.1.3).
In opposition, we introduce for the last term the function G(2)

A (k,k′) = |⟨â†
kâ

†
k′⟩|2 that we

call the anomalous correlation function. Interestingly, this term is non-zero only if there
exists interactions coupling different modes, in our case k and −k.

We must now determine which atoms participate to which correlation signal. We
have seen in 1.2.4 that the depletion of the condensate is divided between the quantum
and the thermal depletion. As we have shown in 1.2.5, we expect that the quantum
depleted atoms contribute to the anomalous k/−k correlation signal due to the microscopic
mechanism describing how the quantum depletion is populated. In fact, it is also possible
for the thermal depletion to contribute to the anomalous correlation signal. Indeed, as
discussed in 1.2.3, for low k values such as kξ ≪ 1, the Bogoliubov quasi-particles have
a strong phononic character b̂k = ukâk + v−kâ

†
−k with |uk| ≃ |v−k| and exhibits non-

negligible k/−k correlations. This is an issue as if we were to observe k/−k correlations,
we would not be able to unambiguously attribute them to the quantum depletion as they
could come from phonons of the thermal depletion. To quantify this contribution, we use
Bogoliubov’s transformation to rewrite equation 1.101 in its normalized form in terms of
quasi-particle operators and Bogoliubov coefficients uk and vk [23, 110].

g(2)(k,k′) = |ukvk(1 + 2⟨b̂†
kb̂k⟩)|2(

(|uk|2 + |vk|2)⟨b̂†
kb̂k⟩ + |vk|2

)2 δk,−k′ + δk,k′ + 1 (1.102)

The function g(2)(k,−k) is plotted on Fig.-1.10 for both quantum (T = 0) and ther-
mally depleted atoms. As kξ increase, the density of quantum depleted atoms decreases,
meaning that their contribution to g(2)(k,−k) increases following from the analogy with
the non-degenerate parametric amplifier and the result of equation 1.70. On the contrary,
the contribution of the thermally depleted atoms decreases with kξ as the phononic char-
acter of the quasi-particles disappears, and becomes negligible for kξ ≥ 1. This gives us
a nice workaround: if we restrict our measurement of k/−k correlations to large k, we
could safely attribute them to the quantum depletion.

Let us now take a look at normal correlations, i.e bosonic bunching. We get from
equation 1.102 and the plots of Fig.-1.10 that we have perfect bosonic bunching indepen-
dently of k for both quantum and thermally depleted atoms. As we have seen in 1.2.3 and
1.2.4, the Bogoliubov quasi-particles of the thermal depletion follow the Bose distribution
and therefore have thermal chaotic statistics, explaining the presence of bosonic bunching.
On the other hand, the k/−k pairs of the quantum depletion form a pure coherent state
(see equation 1.99) for which we would then not expect bosonic bunching as explained in
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Figure 1.10: Second order correlation function for normal k/k correlations (blue) and
anomalous k/−k correlations (green) with quantum (subscript QD) and thermally de-
pleted (subscript TD) atoms (resp. top and bottom row) as a function of kξ. These
results are obtained from the Bogoliubov theory of the weakly-interacting, homogeneous,
1D Bose gas with a chemical potential µ = h× 1.5 kHz and temperature T = 60 nK.
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1.1.3. The situation is however a bit more subtle than that. In direct analogy with the
non-degenerate parametric amplifier, when we look for same mode k/k correlations, we
do so between atoms belonging to two different pairs. We retrieve a density matrix with
a chaotic character [172] by tracing over the second atom of the pair that we ignore, as
proven in 1.1.4. This means that we should observe bosonic bunching with the quantum
depletion as well [23]!

In a nutshell, we have two correlation features of interest well separated in momentum-
space and containing very different types of information. On the one hand, the normal
correlations correspond to close-by correlations and bosonic bunching revealing the chaotic
statistics of the system, coming from either the thermal statistics of the thermal depletion,
or the partial trace over the second atom of the pair destroying the quantum coherence
for the quantum depletion. On the other hand, the anomalous correlations correspond
to k/−k correlations and reveal the quantum coherences of the many-body ground state,
provided that we probe them in the region kξ ≥ 1. While our main goal will be to measure
the anomalous k/−k correlations for the reasons mentioned earlier, it will also be of great
interest to measure the normal correlations to contrast their behaviour with the anomalous
correlations as a means to illustrate the different physical origins of the two signals.

1.4 Effects of an external trapping potential

The weakly-interacting homogeneous Bose gas Hamiltonian does not actually faithfully
represent our experiment as we use an external harmonic potential V (r) to trap the
atoms, making the system not homogeneous anymore. This makes the theoretical approach
significantly more difficult, but still manageable through numerical calculations as it was
recently done in [23] to evaluate the correlation functions in the trapped case.

In this section, we will summarize the main results of [23] to show how the spatial
size of the system affects the widths of the correlation signals and obtain estimates for
comparison with experimental data. Indeed, as we have seen in the Hanbury Brown
and Twiss experiment aiming to measure the size of Sirius through the measurement of
the second order correlation function, the width of the correlation function is inversely
proportional to the spatial size of the source.

1.4.1 Normal correlations

As discussed in the last paragraph for the homogeneous case, we expect a perfect bosonic
bunching g(2)(k,k) = 2 for both the thermal and the quantum depletion. This feature is
actually the same in the trapped case as shown in [23] where the numerical calculations
also give a perfect bosonic bunching, independently of the temperature and thus of the
balance between the thermally and quantum depleted atoms. The width of the correlation
peak shows however quite interesting dependencies on the momentum value k and the
temperature.

At T = 0 or very low temperatures, the RMS width σk of the normal correlations is
dominated by the contribution of the quantum depletion. As the quantum depletion is
non-existent outside of the BEC, its spatial size is the one of the BEC, meaning that the
width of the normal correlations at T = 0 should be ∼ 1/LBEC with LBEC the spatial
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Figure 1.11: Evolution of the normal correlations width σkl0 as a function of kl0/π with
l0 =

√
ℏ/2mω where ω is the trapping frequency for different values of the temperature.

Taken from [23].

size of the BEC, and so independently of k. This is what we observe on Fig.-1.11 from
[23], with however a small increase of the width with k that the authors attribute to a
stronger localisation of the highly-excited Bogoliubov modes associated to the quantum
depletion. For T ̸= 0 however, the dependency of the normal correlations width with k
is non-monotonic. At large k, we retrieve the same width than for T = 0. Indeed, the
thermal energy is not sufficient to populate such high k values. The depletion is thus fully
quantum and the width ∼ 1/LBEC. As k decreases, we progressively reach a momentum
region where the depletion is mainly thermal. As the spatial size of the thermal excitations
is larger than that of the BEC because of the increased kinetic energy, σk is reduced. We
then enter a plateau region that starts for higher values of k and stabilizes around lower
values of σk as T increases as shown on Fig.-1.11. The plateau region ends for very low
values of k as σk slightly increases with decreasing k that the authors of [23] attribute to
the phononic character of the thermal excitations in this k region.

1.4.2 Anomalous correlations

The situation is more straightforward for the anomalous correlations related to the quan-
tum depletion that is not affected by the temperature. The width of the anomalous
correlations is therefore almost insensitive to temperature and independent from k, apart
from a small increase at low k in the same fashion than for normal correlations at T = 0
(see Fig.-1.12).

1.5 Towards the experimental detection of k/-k pairs

Now that we have formed a clear picture of the kind of correlation functions we want
to measure and have understood their essential features, we need to identify the key
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Figure 1.12: Evolution of the anomalous correlations width σkl0 as a function of kl0/π for
different values of the temperature. Taken from [23].

experimental ingredients necessary to observe such signals. The principal one is to have
an experiment capable of measuring the momentum of individual atoms in momentum-
space and not only the momentum density as in most cold atoms experiment. This will
be the subject of Chapter 3.

In addition, there are several key features of the k/−k correlation signal that we need
to understand to design an experimental scheme where the k/−k correlation signal can
be properly detected.

1.5.1 Separating the BEC from its depletion

A crucial aspect of studying the correlations in the depletion is the ability to separate
the depleted atoms from the condensed ones. As a matter of fact, the BEC is a fully
coherent state with macroscopic occupation of a single mode. In analogy with laser light
in Optics, the statistics of the BEC are not chaotic and no bosonic bunching can therefore
be observed. In addition, no k/−k correlations are expected for atoms belonging to the
condensate. Furthermore, in the weakly-interacting BEC, the number of condensed atoms
is much larger than the number of depleted atoms. This has a direct consequence for our
measurement: if we are unable to remove condensed atoms from the analysis, they will
entirely drown out the correlation signals of the depletion.

Fortunately, the BEC and the depletion extents in momentum-space are very different.
As for the width of the first-order correlation functions, the typical size of the momentum
mode of the BEC is 1/LBEC [149]. On the other hand, the typical momentum width of the
quantum depletion is 1/ξ. Since ξ ≪ LBEC, 1/ξ ≫ 1/LBEC meaning that the quantum
depletion extends on a much larger momentum area than the BEC. Likewise, for the typical
temperatures accessible in our experiment, the momentum width of the thermal depletion
is significantly larger than for the BEC. This effect is illustrated on Fig.-1.13. This provides
us with a natural way to separate the condensate from its depletion and defines one of the
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Figure 1.13: Experimental momentum density illustrating the different momentum ex-
tents of the BEC and the depletion. The condensed atoms correspond to the sharp and
narrow peaks, as opposed to the wide background between the peaks that correspond the
depletion. Note that the presence of several condensed peaks is linked to the presence of
an optical lattice, as it will be explained in Chapter 2. Taken from [29].

experimental ingredients: we need an experimental setup capable of resolving the different
regions of momentum-space so that the region around k = 0 corresponding to the BEC
can be removed from the analysis. In addition, while removing the BEC region we also
remove the low k part of the momentum-space in which the Bogoliubov quasi-particles
have a strong phononic character (see Chapter 4 for experimental numbers) and thus k/−k
correlations between particles, fulfilling the requirement described in 1.3.

1.5.2 Finite temperature effects

Another parameter that we must be very careful of is the temperature. In an ideal situa-
tion, we would conduct the experiment at zero temperature where the depletion is entirely
quantum and all atoms consequently k/−k paired. Obviously this is impossible to do in
practice and the experiment will always be conducted at finite temperature.

Temperature is an absolutely crucial parameter when measuring k/−k correlations
as it sets the population of the thermal depletion, i.e. the population of the Bogoliubov
quasi-particles (see equation 1.97). Indeed, as we have just seen, thermally depleted
atoms show no k/−k correlations in the momentum range that we wish to probe. If the
temperature is too high, the thermally depleted atoms will significantly outnumber the
quantum depleted ones and it will then be impossible to detect the k/−k correlations. In
order to quantify the effect of temperature, we compare the typical thermal energy kBT to
the chemical potential of the condensate µ quantifying the effect of interactions. We aim
to be in an experimental regime where kBT ≪ µ, i.e. where interactions effects dominate
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temperature effect. The first idea that comes to mind is then to reduce the temperature as
much as possible. We however quickly hit a brick wall: the lowest temperature in ultracold
experiments are obtained through evaporative cooling. This process will be detailed in
Chapter 3 but we can quickly give here the main idea, which is to selectively remove the
atoms of the gas with the highest thermal energy to let the other thermalize at a colder
temperature. We quickly see the problem here: when the energy is dominated by the
interaction energy ∼ µ with µ the chemical potential, the atoms are removed randomly
with respect to their thermal energy and there is thus no cooling anymore. This method
allows us to typically reach kBT ∼ 0.75µ [33] which is not sufficient to ensure the proper
detection of k/−k correlations.

We are thus left with one only possible solution which is to increase the interactions.
To this end, we will use a 3D optical lattice. As a brief overview, a 3D optical lattice is
formed by interference of 3 pairs of counter-propagating beams, one for each direction of
space. The interferences create a sinusoidal potential trapping the atoms at the maximum
of the light intensity profile, i.e. in periodically arranged wells, mimicking a condensed
matter crystal. Interestingly, the density increases inside of the individual wells as a result
of higher local trapping frequencies, increasing the strength of interactions and thus the
likelihood to observe k/−k correlations.

1.6 Conclusion

In this chapter, we have shown that correlation functions are an important and powerful
tool that was first developed to describe classical effects of the light such as interferences.
The experiment of Hanbury Brown and Twiss introduced the use of second-order corre-
lation functions and revealed the existence of bosonic bunching. This observation later
gave birth to the Quantum Optics formalism and the extended theory of coherence devel-
oped by R. J. Glauber with higher order correlation functions. This formalism was then
adapted to atomic physics where correlation functions are of great interest to characterize
many-body interacting systems. We made the proposition to study one of the simplest
many-body system, the weakly-interacting Bose gas described by the Bogoliubov theory
that we detailed the main lines of. We have shown that the Bogoliubov theory predicts
the existence of the quantum depletion, a fraction of atoms removed from the conden-
sate through the interplay between interactions and quantum fluctuations, and that we
expect these atoms to form k/−k correlated pairs that we will aim to detect by measuring
second-order correlation functions. To this end, we have devised that our experimental
setup should:

• Detect single atoms in momentum-space.
• Isolate the contribution of the depletion from the one of condensed atoms.
• Be in the low-temperature regime where interactions dominate temperature effects
kBT ≪ µ.

We decided for this last point to use 3D optical lattices that we will discuss in details
in the next chapter of this thesis.
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Chapter

Quantum gases loaded in optical lattices (lattice gases for short) are one of the paramount
examples of Quantum Simulation systems. The periodical trapping potential indeed well
reproduces the crystal structure of condensed matter system and allows one to study
relatively simple Hamiltonians such as the Bose- and Fermi-Hubbard Hamiltonians or
the Ising model [12] that however account for interactions and show strong correlations
effects. The main advantages of this experimental platform is that the different parameters
of the Hamiltonians can be set and controlled, while information about the system can
be accessed using a variety of experimental techniques as described in the introduction
to this manuscript. Following the proposition of [89], the experimental observation of the
superfluid to Mott insulator transition in 2002 [77] sparked interest in the community and
lead to the development of the field from the early 2000s up until this day.

In this chapter, we expose the main elements of the Bose-Hubbard theory of lattice
gases and briefly study the superfluid to Mott insulator transition. We then show how
and under which conditions the in-trap momentum distribution of the gas can be accessed
through Time-Of-Flight measurements, before drawing the connection with the Bogoli-
ubov theory exposed in Chapter 1. The goal of this chapter is to give all the essential
points necessary to obtain a system in which the k/−k pairs of the quantum depletion can
be experimentally observed, rather than providing a detailled description of Bose-Hubbard
physics. For a more thorough study of the superfluid to Mott insulator transition with
our experimental apparatus, we refer the reader to the manuscript of Cécile Carcy [25].

2.1 The Bose-Hubbard Model

We consider a 3D lattice potential with cubic symmetry and spacing d:

V (r) = V0

[
sin2

(
kd

2 x
)

+ sin2
(
kd

2 y
)

+ sin2
(
kd

2 z
)]

+ Vext(x, y, z) (2.1)
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where kd = 2π
d is the associated wave-vector and V0 the lattice depth. For convenience,

V0 is usually expressed in units of recoil energy V0 = sEr with Er = h2/8md2. In most
experiments, such a potential is created with counter-propagating pairs of Gaussian laser
beams. The term Vext(x, y, z) denotes the additional harmonic potential that results from
the Gaussian shape of the beams. For simplicity of calculations, we will first treat here
the homogeneous case Vext(x, y, z) = 0.

We consider an ensemble of N bosons that interact with one another with the potential
Uint(r1, r2) loaded in the lattice potential V (r). The Hamiltonian of the system writes:

Ĥ =
N∑

i=1

p2
i

2m +
N∑

i=1
V (ri) +

N∑
i

N∑
j>i

Uint (ri, rj) (2.2)

Non-interacting lattice gas

To begin with, we consider that the atoms are non-interacting and study the simplified
Hamiltonian:

Ĥ0 =
N∑

i=1

p2
i

2m +
N∑

i=1
V (ri) (2.3)

As the Hamiltonian is separable along the 3 directions of space and the gas of atoms is
non-interacting, we can simply work with the one-dimensional, single particle Hamiltonian:

Ĥ1D = p2
x

2m + sin2
(kd

2 x
)

(2.4)

To find the eigenstates of this Hamiltonian, we use the Bloch’s theorem [4]:

Bloch’s theorem

The eigenstates of a Hamiltonian corresponding to a spatially periodic potential
V (r) on a lattice B are Bloch waves ψq(r), product of a plane-wave eir.q and a
periodical function on B, uq(r).

We therefore look for eigenstates of the form:

ψn,q(x) = eiqxun,q(x) (2.5)

with n ∈ N and q ∈ R the quasi-impulsion. In order to determine the functions un,q(x)
and the energy En(q), we inject equation 2.5 in the eigenvalue equation to find that they
must verify:

[
(px + ℏq)2

2m + V0 sin2
(
kd

2 x
)]

un,q(x) = En(q)un,q(x) (2.6)
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Figure 2.1: First five Bloch energy bands for various lattice amplitudes V0. The gap
between the first bands increases as V0 increases.

As En(q) is periodic En(q + kd) = En(q) ∀(n, q), we can restrict the definition interval
of q to [−kd/2, kd/2) which is called the first Brillouin zone. This equation can be
easily numerically solved to obtain un,q(x) and En(q). We plot on Fig.-2.1 the first five
energy bands as a function of q in the first Brillouin zone for various values of the lattice
amplitude V0. Interestingly, we see that a gap appears between the different bands as
we increase V0. For a 3D lattice, the total energy is the sum of the energies along each
direction of the lattice. The first excited band then corresponds to two 1D lowest energy
bands and one 1D excited band. In order for the gap to appear, the lattice amplitude
must be above V0 ≃ 2.2 Er, whereas it is present at all values of V0 in the 1D case.

In addition to the Bloch waves, it is possible to define a new kind of functions called
the Wannier functions [163] that are localized near the lattice sites. They are defined
from the Bloch waves by:
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Figure 2.2: Real parts of the Bloch and Wannier functions for various lattice depths.
When the lattice depth increases, the Bloch function is increasingly peaked around the
lattice sites and the Wannier function gets narrower.

wn,j(x) =
√

d

2π

∫
BZ
ψn,q(x)e−ijqd dq, j ∈ Z (2.7)

with BZ denoting an integration over the first Brillouin zone and where j can be interpreted
as the index of a lattice site. Actually, we have from equation 2.7 the simple relation:

wn,0(x− jd) = wn,j(x) (2.8)

The Bloch waves can then be re-written with the definition of the Wannier functions
and write:

ψn,q(x) =
(
d

2π

)1/2∑
j

wn,j(x)e−ijdq (2.9)

The Bloch waves are the sum of the localized Wannier functions wn,j that can be inter-
preted as the wave-functions of a particle located in lattice site j. The Bloch and Wannier
functions for various lattice depths are represented on Fig.-2.2.

We can now re-write the Hamiltonian of the system with the newly introduced Wannier
functions. To do so, we start by writing it in the Bloch waves basis with the second
quantization formalism, introducing the operator ĉn,q that destroys a particle in the Bloch
wave ψn,q.
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Ĥ1D =
∑

n

∫
BZ
En(q)ĉ†

n,q ĉn,q dq (2.10)

To change into the Wannier function basis as defined in 2.9, we introduce the operator
b̂n,j destroying a particle in the Wannier function wn,j and defined such as:

ĉn(q) =
√

d

2π
∑

j

b̂n,je
ijdq (2.11)

Injecting equation 2.11 in equation 2.10, we get:

Ĥ1D =
∑

n

∑
j,j′

Jn
(
j − j′) b̂†

n,j′ b̂n,j (2.12)

This Hamiltonian has a nice physical meaning: it describes the tunneling process by
which a particle in site j can “hop” to another lattice site j′ with the tunneling amplitude
Jn(j − j′) that writes:

Jn
(
j − j′) = d

2π

∫
BZ
ei(j−j′)qdEn(q)dq (2.13)

This expression tells that the probability for a particle to tunnel from lattice site j to j′

is reduced as the distance between the two sites j and j′ increases and as the potential
barrier, i.e the lattice depth, increases.

As for the rest of this thesis, we will focus on the ground-state properties of the
system and therefore assume that the lowest energy band is the only one populated. This
assumption is valid as long as V0 ≥ 2.2 Er at which the gap is opening and the typical
excitation energy ∆E is smaller than the gap ∆ = E1 −E0. In addition, for V0 ≥ 5 Er [71],
we can use the tight-binding approximation for which only the tunneling events between
adjacent sites are non-negligible. We thus simplify the Hamiltonian 2.12 by replacing
Jn (j − j′) by a constant J denoting the probability to tunnel between adjacent lattice
sites,

J = −J0(1) (2.14)

so that J is positive. Finally, we obtain the first term of the Bose-Hubbard Hamiltonian:

Ĥ1D = −J
∑
⟨i,j⟩

b̂†
i b̂j (2.15)

where ⟨i, j⟩ denotes the ensemble of all adjacent lattice sites i and j. In the 3D case, the
expression of the Hamiltonian remains the same.
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Interaction term

We now turn to studying the interaction term that we had left out in the full Hamiltonian
of equation 2.2. In the formalism of second quantification, the short-range, s-wave, 1D
interaction Hamiltonian writes:

Ĥint = 1
2

∫
dx

∫
dx′Uint

(
x, x′) Ψ̂†(x)Ψ̂† (x′) Ψ̂

(
x′) Ψ̂(x) (2.16)

with Ψ̂(x) the operator destroying a particle at position x that we write in terms of
Wannier functions as:

Ψ̂(x) =
∑

j

wj(x)b̂j =
∑

j

w0(x− xj)b̂j (2.17)

Note that we dropped the energy band number n as we are considering only the lowest
energy band. We approximate the interactions to be contact, repulsive interactions so
that:

Uint = gδ(x1 − x2) (2.18)

with g = 4πℏ2as

m
the strength of the interactions. The interaction Hamiltonian can then

be re-written:

Ĥint = g

2
∑
j1

∑
j2

∑
j3

∑
j4

b̂†
j4
b̂†

j3
b̂j2 b̂j1

∫
w∗

j4(x)w∗
j3(x)wj2(x)wj1(x) dx (2.19)

which is still a fairly complicated expression. We can however greatly simplify it by
considering that the Wannier functions become narrower as the lattice depth increases.
The overlap between the Wannier functions of the different lattice sites then becomes
increasingly negligible. This means that the integral of equation 2.19 is non-zero only if
j1 = j2 = j3 = j4, i.e if we only consider on-site interactions. This approximation is at
the core of the tight-binding regime. In the end, the interaction Hamiltonian writes:

Ĥint = U1D
2
∑

j

n̂j(n̂j − 1) (2.20)

where we have introduced the on-site energy U1D = g
∫

|w0,0(x)|4 dx, easily generalized to
the 3D case with U = g(

∫
|w0,0(x)|4 dx)3.

Combining this Hamiltonian to the non-interacting Hamiltonian of equation 2.15, we
obtain the celebrated Bose-Hubbard Hamiltonian (see Fig.-2.3):

ĤBH = −J
∑
⟨i,j⟩

b̂†
i b̂j + U

2
∑

j

n̂j(n̂j − 1) (2.21)
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Figure 2.3: Representation of the Bose-Hubbard model. The physics of the system are set
by the tunneling coefficient J and the on-site interaction energy U .

Figure 2.4: Evolution of U , J and the ratio U/J as a function of the lattice depth in
log-scale from a numerical calculation with Wannier functions.

The physics of the homogeneous ground-state depends only from the two parameters J
and U as we will see in the next paragraph. Interestingly, the ratio u = U/J depends
from the lattice depth V0 as illustrated on Fig-2.4. The parameter u is therefore easily
controllable in an experiment over orders of magnitude, for instance by changing the power
of the laser beams used to produce the lattice potential.

2.2 The superfluid to Mott insulator transition

We discuss in this section the properties of the Bose-Hubbard Hamiltonian ground-state
for N particles spread over M sites with filling n̄ = N/M . To begin, we describe the
extreme cases u → 0 and u → ∞, which are the only cases for which the Hamiltonian can
be analytically solved.
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2.2.1 Extreme cases

Perfect superfluid (SF) phase u → 0

In this case, the particles are non-interacting. In these conditions, the ground-state |Ψ0⟩
of the N particles system is simply the product of the single particle ground state wave-
functions, i.e the Bloch wave-functions for q = 0 [13]:

|Ψ0⟩SF = 1√
N !

(ĉ†(q = 0))N |0⟩ = 1√
N !

 1√
M

M∑
j=1

b̂†
j

N

|0⟩ (2.22)

The ground-state is an ideal Bose-Einstein condensate with a condensed fraction equal to
1. In the thermodynamic limit with N → ∞, M → ∞, it is possible to show at the price
of a few lines of complex calculations [71] that the probability to find ni atoms at a given
site i is:

p (ni) ≈ e−n̄ n̄
ni

ni!
(2.23)

We recognize the same Poissonian distribution that we obtained for a bosonic coherent
state in Chapter 1. We therefore write:

|Ψ0⟩SF ≈ |Ψ⟩coh = N e
√

Nĉ†(q=0) |0⟩ = N
∏

i

e
√

n̄b̂†
i |0⟩ =

∏
i

Ni

∞∑
ni=0

αni
i√
ni!

|ni⟩i (2.24)

with αi =
√
n̄ ∀i ∈ Z and the normalization factor Ni = e−|αi|2/2. We thus find that

the ground state can be described as a product of local coherent states associated to the
different lattice sites.

As in Chapter 1, we write the first-order correlation function between two different
lattice sites i and j to characterize the coherence properties of the ground-state:

G(1)(i, j) = ⟨b̂†
i b̂j⟩ (2.25)

In the limit u → 0, G(1)(i, j) is easy to calculate and writes:

G(1)(i, j) = u→0 ⟨Ψ0| b̂†
i b̂j |Ψ0⟩u→0 = α∗

iαj = n̄ (2.26)

We see that the result does not depend from the chosen lattice sites i and j and thus from
the distance between them, indicating an infinite range coherence.
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Perfect Mott insulator (MI) phase u → ∞

In the opposite extreme limit, one can consider that the tunneling probability goes to
zero (J = 0) so that each of the lattice sites are independent from one another. The
Hamiltonian reduces to:

ĤBH = U

2
∑

j

n̂j(n̂j − 1) (2.27)

Because of the strong repulsive interactions, the atoms localize on the lattice sites and
cannot hop from site to site as J = 0. The ground-state is then reached by distributing
the particles among the different sites of the lattice so that the number of particles per
site is as low as possible to minimize the interaction energy. This corresponds to putting
n̄ = N/M particles in each of the M available lattice sites. For simplicity sake, we assume
here that the filling is commensurate, i.e n̄ is an integer. The ground-state then has the
simple expression of a Fock state:

|Ψ0⟩MI = 1√
N !

M∏
j=1

(
b̂†

j

)n̄
|0⟩ (2.28)

This state is called the Mott insulator state [60]. The first-order correlation function
now writes

G(1)(i, j) = u→∞ ⟨Ψ0| b̂†
i b̂j |Ψ0⟩u→∞ = δi,jn̄ (2.29)

and is zero when we consider any pair of different lattice sites with i ̸= j. In the limit
J → 0, the system is therefore fully incoherent.

2.2.2 The zero-temperature Mott phase transition

What can then be said for intermediates values of u = U/J? If we start from the case
J = 0 and progressively increase J , it becomes possible for the atoms to hop from site
to site. When an atom hops to an adjacent site, the occupancy is increased, increasing
the energy by U . When the gain in kinetic energy J is smaller than U , this process
is unfavorable and the atoms remain localized on the lattice sites. However, when J is
much larger than U , the gain in kinetic energy outweighs the effect of the interactions and
the atoms hop through the different sites of the lattice. The ground-state of the Bose-
Hubbard then undergoes a phase transition as U/J varies from an insulating phase to
a superfluid phase with very different properties (see Fig.-2.5).
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Figure 2.5: Schematic of the superfluid to Mott insulator transition. In the superfluid
phase, the atoms are delocalized and the system shows long range coherence, contrary to
the Mott insulator phase where the atoms are well localized on the lattice sites, making
the system incoherent.

Superfluid phase
• The atoms are delocalized over the

entire lattice.
• The condensed fraction is non-

zero.
• The system shows long range co-

herence, i.e the phase is fixed.
• The on-site number of atoms is

fluctuating.
• For low values of u (far from the

transition), the effect of interaction
is small, so that we can use the Bo-
goliubov approximation (detailled
later in this chapter). We find that
the excitation spectrum is gapless
and phonon-like at low q.

Insulating phase
• The atoms are localized on the lattice

sites.
• The condensed fraction is zero.
• The system is incoherent, the phase

is fluctuating.
• The on-site number of atoms is well

defined and non-fluctuating.
• The excitation spectrum is gapped,

with the excitations consisting of
particle-hole modes that can restore
short-range coherence.

Phase diagram

In the homogeneous case, the properties of the system thus change dramatically when
u = U/J crosses the Quantum Critical Point (QCP) uc. To discuss the value of uc, we
slightly complexify our model where we had only considered commensurate fillings, thus
fixing the chemical potential that we now set to be a free parameter. We plot on Fig.-2.6
the full phase diagram function of µ/U , set by the filling in the Mott insulator phase n̄ and
J/U . As the system is homogeneous, the filling n̄ is independent of u. The grey dashed
lines correspond to iso-filling lines for a given value of n̄. For commensurate fillings, the
iso-filling lines cross the Mott stability lobes at the critical ratio uc that increases as the
filling increases. If the filling is however incommensurate (line n = 1 + ε), we notice that
the system remains in the superfluid phase as long as J ̸= 0. This is due to the fact that
a small fraction of the atoms can delocalize over the whole lattice without being blocked
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Figure 2.6: (a) Homogeneous phase diagram as a function of µ/U and J/U . The dashed
lines are iso-filling lines. We observe a superfluid to Mott insulator phase transition for
commensurate fillings. (b) Wedding-cake structure for the trapped gas. The red arrow
illustrate how µeff varies and the corresponding phases as the distance from the center of
the trap increases. Taken from [13].

by the interactions U as there will never be two of these particles in the same site as a
consequence of the fact that the filling is incommensurate.

The value of uc was first calculated with mean-field theories giving out the general
formula holding for any dimension uc = 5.8z for n̄ = 1 and uc = 4n̄z for n̄ ≫ 1, with z
being the number of nearest neighbors (6 in 3D, 4 in 2D and 2 in 1D). Later on, Quantum
Monte Carlo (QMC) calculations [24] simulating the 3D system for a filling n̄ = 1 found
uc = 29.3(2), i.e slightly lower than the mean-field prediction uc = 34.8. For more details
on this aspect, we refer the reader to the works of our team [25, 83] studying the value of
uc in our experiment.

2.2.3 Trapping effects

In practice, the system is often not homogeneous because of the external harmonic poten-
tial Vext(r) mentioned in 2.1. The properties of the trapped system can be linked to the
properties of the homogeneous system by applying the Local Density Approximation1 [11]
and replacing the chemical potential by an effective one:

µeff = µ− Vext(r) (2.30)

This means that the effective chemical potential, and thus the lattice filling, varies with
the distance from the center of the trap. A typical situation is illustrated by the red arrow
on the phase diagram of Fig.-2.6 where J/U is small enough for Mott phases to exist and
the center of the trap corresponds to a filling n̄ = 2. As we get away from the center
of the trap towards regions of low µeff following the red arrow, we exit the first Mott

1Valid as long as the trapping potential varies slowly from site to site and the system is at thermal
equilibrium. This approximation may however fail at the quantum critical point [130].
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Figure 2.7: Visualisation of the wedding cake structure with a quantum microscope ex-
periment. The imaging technique used here allows to detect the fluorescence of atoms
trapped in a single site of an optical lattice, only if the number of atoms in the site is odd.
We observe that as N increases, the wedding cake structure appears. Taken from [141].

region n̄ = 2 to enter a superfluid region where the filling decreases continuously up to
a second Mott region with filling n̄ = 1 and finally reach a last superfluid region at the
edge of the trap at vanishing values of µeff . The Mott phases are incompressible, meaning
that the density remains constant even though the external trapping potential is rising,
differentiating them from the superfluid region. This results in the famous “wedding-cake”
density profile as illustrated on panel (b) of Fig.-2.6 and Fig.-2.7.

Actually, the external harmonic potential is quite important for experiments. If the
system is homogeneous and the entropy constant, when the lattice depth is increased
thus going deeper in the Mott phase, the increase of the energy gap makes it increasingly
difficult for excitations to be created meaning that the temperature must increase to keep
the entropy constant. In the presence of a trap however, the entropy is concentrated in
the superfluid shells that can also turn to a normal gas phase, preventing the temperature
of the system from increasing too much.

In the remainder of this manuscript for clarity sake, the system will be said to be in
the Mott insulator phase as long as a Mott plateau exists, i.e when u > uc where uc is the
critical point for the corresponding homogeneous system.

2.2.4 Finite temperature effects

If we finally consider the effect of temperature, we obtain the complete phase diagram
of Fig.-2.8 function of T/J and u with the apparition of an additional phase, the normal
(thermal) gas. For u ≤ uc, the transition between the normal gas phase and the super-
fluid phase driven by the temperature is similar to the well-known BEC transition. This
transition is induced by the thermal fluctuations and is then called classical, in opposi-
tion to the T = 0 Mott transition which is driven by variations of physical parameters
of the Hamiltonian in the presence of quantum fluctuations and therefore is a quantum
transition.

On the other hand, the Mott insulator phase also goes to the normal gas phase as
the temperature increases, but with a smooth crossover. When T increases, excitations
are created preferably near the edges of the Mott plateaus, progressively smoothing out
the sharp density profile of the Mott insulator phase. A Mott-like region survives until
T ∗ ∼ 0.2 U/kB [70] also called the “melting temperature” of the Mott phase.
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Figure 2.8: Bose-Hubbard phase diagram function of T/J and U/J . We identify three
phases, the Superfluid, Mott Insulator, and Normal Gas. The green area indicates the
region in which critical point quantum effects could be observable in spite of the finite
temperature.

Interestingly, the superfluid to Mott insulator transition subsists at low temperature.
At T = 0 and at the QCP of the transition, the ground-state undergoes a macroscopic
rearrangement characterized by the apparition of critical quantum fluctuations and com-
plex correlation patterns. Importantly, the physics of the QCP affect a signficant part of
the finite temperature phase diagram as signaled by the green area on Fig.2.8. In this
region, some observables such as the momentum density indeed show critical behavior, i.e
a power law scaling with temperature with an exponent set by the critical exponents of
the QCP. While the physics of the QCP are a very interesting and trending topic, they
fall out of the scope of this thesis and we refer the reader to the works [25, 64, 135] for
more informations on this aspect.

2.2.5 The Gutzwiller method

To conclude this section, we present an approximate theoretical approach to treat the
Bose-Hubbard Hamiltonian, the Gutzwiller method. This method takes its name from
its author who introduced it in [80] to study strongly correlated Fermi systems. It was
later adapted to characterize the ground-state of the Bose-Hubbard Hamiltonian in [134].
This method is particularly useful to evaluate the density profile and therefore the size of
the lattice gas with good accuracy all across the Mott transition, apart from the region
close to the critical point. Although this is a ground-state, T = 0 method that does not
faithfully represent the reality of experiments, its predictions remain fairly accurate and
will be quite valuable to understand the correlation signals that we will present in this
thesis.

The method revolves around the Gutzwiller ansatz that consists in writing the many-
body ground-state as a product of on-site wave-functions |ϕi⟩:
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Figure 2.9: Gutzwiller density profiles for various atom numbers at s = 18 with n the
number of atoms per site and x,y the positions in units of lattice spacing.

|ΨG⟩ =
sites∏

i

|ϕi⟩ (2.31)

The on-site wave-functions are then developed on the Fock-state basis:

|ϕi⟩ =
∞∑

nj=0
f(nj) |nj⟩ (2.32)

This ansatz is motivated by the fact that it matches the exact ground-state for the
extreme cases:

• For u → 0, the ground-state is a coherent state (see equation 2.24) so that f(nj) =
Nj(αnj

j )(
√
nj !) with αj =

√
n̄ and Ni = e−|αi|2/2.

• For u → ∞, the ground-state is already a Fock state (see equation 2.28) so that
f(nj) = δnj ,n̄.

The Gutzwiller method is a variational approach, meaning that the ground-state is
determined by finding the coefficients f(nj) that minimizes the free energy defined as:

G = ⟨HBH⟩|ΨG⟩ − µ⟨N⟩|ΨG⟩ = −J
∑
⟨i,j⟩

α∗
iαj +

∑
j

∞∑
nj=0

[
U

2 nj (nj − 1) − µnj

]
|f (nj)|2

(2.33)

with the condition ⟨nj⟩ = ∑∞
nj=0 |fj (nj)|2 nj = n̄. The coefficients f(nj) can be found

through numerical calculations. Interestingly, following the arguments of 2.2.3, µ can be
replaced by the effective µeff to account for the effect of the external trapping potential
present in our experiment. We show on Fig.-2.9 wedding cake density profiles for various
atom numbers at s = 18 with our experimental parameters computed with the Gutzwiller
method.
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2.3 Accessing the in-trap momentum distribution in a Time-Of-Flight
experiment

Now that we have laid down the main elements of lattice gases physics, we need to deter-
mine the proper experimental tools to characterize the system. As developed in Chapter
1, the main focus of this thesis will be on the momentum-space correlations, requiring
us to devise a technique to effectively measure the momentum distribution of a lattice
gas. The most natural idea for momentum-space measurements is to use the well-known
and widely used Time-Of-Flight (TOF) technique. This technique consists in suddenly
turning off the trapping potential to let the atoms fall under the effect of gravity and mea-
sure their positions r after a given TOF tTOF. In a very simple picture with classical and
non-interacting particles, the position r gives information about the in-trap momentum
of the particle through the simple ballistic relation:

ℏk = mr

tTOF
(2.34)

The validity of this simple relation is however far from being obvious for the quantum
gases released from optical lattice. We will describe in this section the TOF dynamics of
an atomic gas released from an optical lattice to identify the conditions under which a
TOF measurement can be used to properly measure the in-trap momentum of the gas.

2.3.1 Expansion from the lattice and far-field regime

We start our calculations with the simplified case for which we neglect the effects of
interactions during the TOF. In this configuration, the problem is very similar to the
diffraction of a light wave by a grating in optics, in which a diffraction interference pattern
results from the coherent sum of the contribution of many source points associated to each
of the diffraction grating holes. For the lattice gas, the source points correspond to the
lattice sites associated to Wannier functions that will be able to interfere if the system is
coherent. For simplicity sake, we will only consider the 1D case from which the 3D case
can be easily obtained as the non-interacting Hamiltonian is separable.

At time t = 0, right before the lattice potential is turned off, the atomic field operator
writes (see 2.17)

Ψ̂(x) =
∑

j

w0(x− xj)b̂j (2.35)

The expression of the Wannier functions is rather complex and very hard to handle in
calculations. However, we can approximate the lattice potential near a minimum to its
second-order Taylor expansion, i.e approximate it to a harmonic potential of frequency
ωL = 2

√
s(Er/ℏ) [156]. As illustrated in Fig.-2.10, the Wannier function is well ap-

proximated by the Gaussian wave-function of the harmonic oscillator ground state for
amplitudes V0 ≳ 10 Er (note however that this does not approximate tunelling well as a
Gaussian function does not show the same small oscillations as the Wannier function):
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Figure 2.10: Comparison between the Wannier functions (blue) and and the Gaussian
wave-function of the ground state of the harmonic oscillator of frequency ωL (orange) for
various lattice depths.

w0(x) ≃ 1
π1/4√

x0
exp

(
−x2

2x2
0

)
(2.36)

with x0 =
√
ℏ/mωL.

When the lattice potential is turned off, each of the lattice sites wave-functions expand
freely following the harmonic oscillator dynamics [156]:

w (x− xj , t) = 1
π1/4

√
W (t)

exp
(

−(x− xj)2

2W (t)2

)
exp

(
−i(x− xj)2

2W (t)2
ht

mx2
0

)
(2.37)

with W (t) = x0

√
1 +

(
ℏt/mx2

0
)2 the width of the Gaussian envelope.

The far-field regime

In practice, as ωL is high (∼ 105 −106 Hz), W (t) increases very quickly. For instance, with
s = 5, W (t) is multiplied by ∼ 600 after 1 ms of expansion and is thus much larger than
the size of the lattice L. For t > 1 ms, we can make the approximation W (t) ≃ ℏt/mx0
as well as neglect the dependency on the initial site xj in the amplitude term as long as
|x| ≪ W (t) so that we can write:

exp
(

−(x− xj)2

2W (t)2

)
≃ exp

(
− x2

2W (t)2

)
(2.38)

This is equivalent to the paraxial approximation of the Fraunhofer diffraction regime in
Optics.
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Building up on the diffraction analogy, we would like to define an analog Fraunhofer
distance where the dependency of the phase factor on the quadratic analog Fresnel term in
xj can be neglected. Using W (t) ≃ ℏt/mx0, we obtain (x−xj)2

2W (t)2
ht

mx2
0

≃ (x−xj)2

2x0W (t) from which

we derive the condition x2
j

2x0W (t) ≪ 1,∀j that we rewrite [72, 156]:

t ≫ tFF = mL2

2ℏ (2.39)

This condition defines the far-field regime after which the interference pattern is well
developed, in analogy to the Fraunhofer regime of diffraction. We note the far-field regime
is accessed for smaller times for lighter particles. Using one of the lightest atom, 4He, thus
makes it easier to fulfill the far-field regime condition in the experiment.

Combining the different approximations, we simplify 2.37 to:

w (x− xj , t) =
√
m

ℏt
w̃0[Q(x, t)] exp

(
−iℏQ(x, t)2

2m

)
exp (iQ(x, t)xj) (2.40)

with Q(x, t) = mx
ℏt and w̃0 the Fourier transform of the Wannier function.

Now that we have the general expression of w (x− xj , t), we generalize it to the 3D
case and inject it in equation 2.35 to obtain the sum of the contribution of each site:

Ψ̂(r, t) =
(√

m

ℏt

)3
w̃0[Q(r, t)] exp

(
−iℏQ(r, t)2

2m

)∑
j

eiQ(r,t).rj b̂j (2.41)

From this expression, we finally obtain the atomic density ρTOF(r, t) = ⟨Ψ̂†(r, t)Ψ̂(r, t)⟩
at position r and a long TOF t:

ρTOF(r, t) =
(
m

ℏt

)3
|w̃0(Q(r, t))|2

∑
i,j

eiQ(r,t).(rj−ri)⟨b̂†
i b̂j⟩ (2.42)

The density ρTOF(r, t) then consists of a smooth envelope |w̃0(Q(r, t))|2 set by the Fourier
transform of the Wannier function and an interference term ∑

i,j e
iQ(r,t).(rj−ri)⟨b̂†

i b̂j⟩ that
characterizes the coherence properties of the system. A numerical simulation of ρTOF(r, t)
is plotted on Fig.-2.11 at various expansion time for s = 5 corresponding to the superfluid
phase, illustrating how the interference pattern develops in time.

Relation to the momentum distribution

The main purpose of the TOF technique is to obtain information on the momentum
distribution of the gas. To this end, we must find the relation between the measured
quantity ρTOF(r, t) and the in-trap momentum distribution ρ(k). To do so, we introduce
the operator âk destroying a particle in mode k:
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Figure 2.11: Numerical simulation of the atomic density ρTOF(x, t) after various expansion
times from a 1D lattice of 50 sites with s = 5. The orange dashed line serves as a
point of comparison with the asymptotic distribution for high TOF times representing the
momentum distribution.
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âk = 1√
V

∑
j

eik·rj b̂j (2.43)

where V is the quantization volume set to be the in-trap volume of the gas. The momentum
density then writes:

ρ(k) =
〈
â†

kâk

〉
= 1
V

∑
j,i

e−ik·(rj−ri)
〈
b̂†

i b̂j

〉
(2.44)

If the particle are non-interacting, the ballistic relation gives k = mr/ℏtTOF. From equa-
tion 2.42, we obtain:

ρ(k) = ρTOF(r = ℏtk/m, t)
V
(

m
ℏt

)3 |w̃0(k)|2
(2.45)

In conclusion, under the conditions that there are no interactions during the TOF
and tTOF ≫ tFF to be in the far-field regime, the TOF distribution maps the in-trap
momentum distribution.

Momentum distribution across the Mott transition

As discussed previously, the momentum distribution is strongly dependent on the coher-
ence properties of the system and in turn of the lattice depth.

• In the superfluid phase u → 0, the system is coherent G(1)(i, j) = n̄. From equation
2.44, we get that the momentum distribution consists of sharp analog diffraction
peaks located at k = jkdei with j ∈ Z and ei the unitary vector in direction
i = x, y, z. In terms of ρTOF(r, t), the amplitude of the different peaks is set by the
Fourier transform of the Wannier function.

• In the Mott insulator phase u → ∞ the system is totally incoherent G(1)(i, j) = δi,jn̄.
The momentum distribution is then constant, meaning that ρTOF(r, t) simply reflects
the Fourier transform of the Wannier function, i.e a Gaussian-like function.

• For intermediate values of u, the visibility of the interference pattern progressively
decreases as u increases. In addition, as V0 increases, the Wannier function is more
and more localized so that the width of its Fourier transform increases. As a result,
the population of the diffracted peaks increases with the lattice depth.

The experimental quantity ρTOF(r, t) is therefore a powerful tool to characterize the
phase of the system across the Mott transition. This is illustrated on Fig-2.12 of the
first experimental observation of the Mott transition with cold atoms [77], on which we
can clearly see the visibility of the interference pattern decreasing with V0 (note that
these images are not taken deep in the far-field regime, meaning that some details of the
interference pattern are not resolved).

Importantly, a characteristic of the superfluid to Mott insulator transition is that even
though the system is incoherent in the insulating phase, the coherence can be restored
by ramping down the lattice depth to the superfluid phase. The standard procedure to
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Figure 2.12: Absorption images of Rubidium atoms taken 15 ms after the atoms are
released from a 3D cubic lattice. Note that the far-field regime condition is not fulfilled
here. a) s=0. b) s=3. c) s=7. d) s=10. e) s=13. f) s=14. g) s=16. h) 20. Taken from
[77].

characterize the presence of the Mott transition is then to set V0 to be in the superfluid
region, ramp up it up to see that the interference pattern disappears, and ramp it down
to find back the interference pattern. This allows to certify that the loss of coherence is
indeed an effect of the competition between U and J and not an experimental artifact,
such as unwanted heating of the cloud.

2.3.2 Mean-field interactions

The experimental technique described in the last paragraph holds if there are no interac-
tions between the particles during the TOF. If it were otherwise, the interactions would
affect the TOF dynamics of the gas, preventing us to use the ballistic relation and to map
the TOF distribution ρTOF(r, t) to the in-trap momentum ρ(k). As interactions cannot
be effectively turned off by means of a Feshbach resonance, experimentally inaccessible for
4He∗, it is crucial to determine whether interactions during the TOF can be neglected or
not and under which conditions.

As mentioned in the introduction to this manuscript, describing the interactions be-
tween each of the individual particles would be impossible, even for numerical methods for
which the calculation time would be prohibitive. To circumvent this issue, the problem can
be simplified using the mean-field approximation (also explained in the introduction).

To quantify the effect of the interactions treated at the mean-field level, we introduce
the interaction energy Uint ∼ gn with g the strength of the interactions and n the atomic
density. To determine whether the interactions are affecting the expansion of the gas
released from the lattice, Uint must be compared to the zero point energy of the ground-
state of the approximate harmonic oscillator associated to a single lattice site, ℏωL. In
typical experimental conditions, Uint/h ≈ 103 Hz ≪ ωL/2π ≈ 105 − 106 Hz, meaning
that the initial expansion is driven by the zero point energy of the lattice site and not
the released interaction energy. In addition, after a small expansion time, the Wannier
functions of the different sites overlap as their widths become of the order of the lattice
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spacing d and might then interact. However, on this time scale, the atomic density is
reduced by a factor (x0/d)3 ≈ 102 (for s = 10), meaning that this interaction effect should
also be negligible [72], provided that the initial density is not too high. This point will be
discussed in further details in light of experimental data in Chapter 3.

As developed in [100], the interactions can also induce a dephasing between the different
sites. As a matter of fact, the time evolution of the phase of the wave-function associated
to a lattice site depends on its initial energy, and therefore of Uint. If the lattice sites
have different lattice fillings, which typically is the case in the superfluid phase where the
on-site atom number fluctuations are large, the different interfering wave-functions can be
dephased from one another, reducing the visibility of the interference pattern. This effect
is however also negligible [72, 100] in the case of our 3D lattice where as ≪ x0, provided
that the filling is not too high.

2.3.3 Beyond mean-field interactions

While the mean-field approximation is efficient to obtain a first understanding on how the
interactions might affect the TOF, it is inherently limited as it does not consider inter-
action effects between several particles. One clearly identifiable beyond mean-field effect
happening during the TOF is the presence of scattering halos between the diffraction peaks
[76]. These scattering halos signal the presence of s-wave collisions between the atoms of
the different diffraction peaks, i.e with significantly different velocities, happening during
the first moments of the TOF as they separate. This effect is analog to the scattering
halos observed between two colliding condensates [95, 123, 175].

We have conducted a thorough experimental study of the s-wave two-body collisions
during the TOF to determine whether they would affect our measurement of the momen-
tum distribution [154]. This study will be detailed in Chapter 3.

2.4 Extension of the Bogoliubov theory to lattice gases

So far, we have focused on the description of the lattice Hamiltonian under the scope of
Wannier functions, culminating in the Bose-Hubbard Hamiltonian describing the physics
of the Mott transition. We now wish to go back to the central point developed in Chapter
1, namely the k/−k correlations in the quantum depletion predicted by the Bogoliubov
theory of the weakly-interacting, homogeneous Bose gas. We concluded by saying that
using an optical lattice would be a solution to efficiently increase the interactions as a
means to reach the low temperature regime dominated by the interactions µ ≫ kBT for
which we expect the pair correlation signal to be experimentally detectable. This however
requires that we extend the method of the Bogoliubov theory to the case of the lattice gas
to identify the condition under which the k/−k pairs should be observable.

2.4.1 Effect of the lattice amplitude

As developed in 1.2.2, the central point of the Bogoliubov approximation for the weakly-
interacting homogeneous Bose gas resides in the fact that the interactions are weak. This
means that the system can be described as a BEC from which only a small fraction of
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the atoms, the depletion, are removed by the effect of interactions.

For the lattice gas, the condensed atoms correspond to the sharp diffraction peaks
of the momentum distribution, while the depleted atoms in high quasi-momentum states
correspond to the diffuse background between the diffraction peaks that increases as u
and therefore the strength of interactions increases, as illustrated by Fig.-2.12. We thus
need to be in the shallow lattice regime to use the Bogoliubov approximation, i.e at low
values of the lattice depth such as u ≪ uc. This corresponds to the superfluid phase where
the condensed fraction is close to 1 and the fraction of depleted atoms is small. We will
typically use u = 5 ≪ uc ≈ 30 for the k/−k correlations experiments presented in this
manuscript (the value of the fraction of depleted atoms will be discussed in Chapter 4).

2.4.2 Dispersion relation and effective mass

For the remainder of this section, we will assume that we are in the shallow lattice regime
so that the Bogoliubov approximation can be used. To begin, we remind the Hamiltonian
for weakly interacting atoms without the lattice potential, as first introduced in Chapter
1:

Ĥ =
∑

k

ℏ2k2

2m â†
kâk + g

2V
∑

k1,k2,k3

â†
k1+k3

â†
k2−k3

âk1 âk2 (2.46)

We now add the lattice potential but still neglect the external harmonic trapping potential
and write the new Hamiltonian in the Bloch wave basis. In fact, we have already seen the
expression of the non-interacting term in the Bloch wave basis in equation 2.10. As we
have done throughout this chapter, we consider that only the lowest energy band n = 0 is
populated. The full Hamiltonian writes [43]:

Ĥ =
∑

q

E0(q)ĉ†
q ĉq + g

2
∑

q1,q2,q′
1,q′

2

C
(
q1, q2, q

′
1, q

′
2
)
c†

q′
1
c†

q′
2
cq2cq1 (2.47)

with ĉq the operator destroying a particle in the Bloch wave ψ0,q and

C
(
q1, q2, q

′
1, q

′
2
)

=
∫ V

0
ψ∗

0,q′
1
(r)ψ∗

0,q′
2
(r)ψ0,q1(r)ψ0,q2(r)dr (2.48)

The non-interacting term ∑
q E0(q)ĉ†

q ĉq is quite similar to its equivalent in the homo-
geneous case ∑k

ℏ2k2

2m â†
kâk. In fact, as we can see on Fig-2.13, the function E0(q) can be

well approximated by a parabolic function at low values of q. We then rewrite E0(q) as:

E0(q) ≈ ℏ2q2

2m∗ , with 1
m∗ = 1

ℏ2
d2E0
dq2 (2.49)

where we have introduced the notion of effective mass m∗ defined from the curvature of
the Bloch energy band, actually very useful to study the dynamics of particles in a lattice
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Figure 2.13: Harmonic approximation of the dispersion relation of the first energy band
E0 for s = 5.

potential [43, 98]. Under this form, the non-interacting term of the lattice Hamiltonian is
then of the exact same form as for the homogeneous Hamiltonian, the effect of the lattice
being contained in the new effective mass m∗.

In the case of non-homogeneous harmonically trapped system, the trapping frequency
ω is replaced by the effective trapping frequency ω∗ as well to account for the effect of the
lattice. The effective frequency is defined from the effective mass by [98]:

ω∗ =
√
m

m∗ω (2.50)

2.4.3 The rescaled interaction strength

We turn to calculating the interaction term in equation 2.47. First, like in the homogeneous
case, the conservation of momentum gives the relation:

q1 + q2 = q′
1 + q′

2 (2.51)

allowing us to reduce the sum on q1, q2, q
′
1, q

′
2 to a sum on three quasi-momenta q1, q2 and

q3. Using the Bloch function form ψn,q(x) = eiqxun,q(x) and assuming that only the states
at the bottom of the band are populated, we can finally approximate the Hamiltonian 2.47
to [43]:

Ĥ ≈
∑

q

ℏ2q2

2m∗ ĉ
†
q ĉq + g′

2V
∑

q1,q2,q3

ĉ†
q1+q3 ĉ

†
q2−q3 ĉq1 ĉq2 (2.52)

with g′ the rescaled interaction strength defined as:



76 Chapter 2. Optical lattices and the Bose-Hubbard model

g′ = g

(
d

∫ d

0
|w0,0(x)|4dx

)3

(2.53)

that rewrites as:

g′ = g

( √
π/2s1/4

Erf
[
πs1/4/2

])3

(2.54)

As long as V0 > 0, we have g′ > g signaling that the lattice indeed increases the strength
of the interactions. Importantly, g′ increases with V0 as the atoms become increasingly
localized in smaller region of spaces, increasing the strength of the interactions.

In conclusion, we obtain an Hamiltonian of the same form than the homogeneous case,
with two notable differences:

• We have replaced the mass m by the effective mass m∗ in the dispersion relation.
• The interaction strength g has been replaced by the rescaled and higher interaction

strength g′.

We have then achieved the objective set at the beginning of this chapter, namely obtain
a system with k/−k paired quantum depleted atoms as described by the Bogoliubov theory
of the weakly-interacting Bose gas, but with increased interactions so that we should be
able to reach the low temperature regime dominated by interactions kBT ≪ µ for which
the k/−k correlation signal should be detectable.

Importantly, the predictions of the Bogoliubov theory detailled in Chapter 1 should
not be taken at face value for the much more complicated system of the inhomogeneous
lattice gas. In fact, there are no clear experimental studies testing the validity of the
Bogoliubov approach for this kind of system. It will then be of great interest to compare
the predictions of the simple homogeneous case to the experimental data as a means to
detect whether the Bogoliubov approach fails or not and under which conditions.
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measurement of lattice Bose gas

Chapter

The first chapters of this thesis have laid out the motivations to study the momentum-
space correlations between individual particles in ultracold lattice gases. To do so, we
need an experimental apparatus capable of measuring the momentum of single atoms
in 3D. As mentioned in the introduction, while it is possible to use single atom resolved
optical imaging techniques [19, 140], they are inherently limited to study systems with
small number of atoms. To overcome these limitations, we will exploit the fascinating
properties of metastable Helium for which a special electronic detection technique can
be implemented.

This chapter will be dedicated to the description of all the experimental aspects re-
quired to obtain the in-trap momentum distribution of an ultracold lattice Bose gas of
metastable Helium. First, we will describe the experimental apparatus and the sequence
used to reach quantum degeneracy before explaining how the detection part of the exper-
iment works. In a second stage, we will show how we are able to adiabatically prepare an
equilibrium state of the Bose-Hubbard Hamiltonian and experimentally study interaction
effects happening during the TOF to validate the hypotheses presented in the section 2.3
of the previous chapter.

3.1 Helium in optical lattices

3.1.1 Metastable Helium

Metastable Helium, noted He∗, is kind of an odd atom in the ensemble of species that we
know how to bring to quantum degeneracy. Its most important feature, which is actually
the reason why we chose this atom to measure correlation functions in momentum-space,
is the existence of the metastable state 2 3S1. This excited state is called metastable for its
very long lifetime of the order of 8×103 s, far larger than what is required for experiments.
Very interestingly, as Helium is a noble gas, the amount of energy required to excite
Helium into its metastable state is quite large, 19.8 eV. This large energy is sufficient
for a metastable Helium atom to extract an electron from a metallic surface. This opens
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Figure 3.1: Energy levels of the Helium atom. The metastable state is the triplet state
2 3S1 that we will call the ground state of the metastable Helium atom. Laser cooling
is performed on the optical transition 2 3S1 → 2 3P of wavelength λ0 ≃ 1083 nm. More
specifically, we address the transition to 2 3P2 or 2 3P1 depending on the cooling scheme
(respectively Doppler and sub-Doppler), as well as the transition to 2 3P0 to perform two-
photon Raman transfer as we will detail later on.

the way for electronic detection techniques that allows for single-atom detection
as we will see in this chapter. In addition, the energy levels structure (see Fig.-3.1) is
well adapted to laser cooling with a transition in the near-infrared around λ0 ≃ 1083 nm
for which reliable laser sources are available. Metastable Helium was actually amongst
the first atoms to be brought to quantum degeneracy with the first BEC of He∗ being
obtained in 2001 simultaneously at the Institut d’Optique [133] and Laboratoire Kastler
Brossel [49] in France. Helium also has the advantage to have a stable, albeit very rare
and expensive fermionic isotope 3He∗ that has also been brought to quantum degeneracy
at the Amsterdam LaserLab in 2006 [111].

In spite of all these advantages, He∗ comes with a few experimental difficulties that
explain why they are actually quite few He∗ experiments over the world. Firstly, Helium
is a very light atom and this comes with some very practical difficulties like the need to
pre-cool the atomic source with liquid nitrogen and quite long Zeeman slowers. Secondly,
He∗ is subject to Penning collisions that bring back an atom to the ground state to ionize
the other [50]:

He∗ + He∗ → He + He+ + e− (3.1)

Such a reaction thus results in the loss of two atoms and must be avoided. The proba-
bility for a Penning collision to occur is increased in presence of light [8] but is however
greatly reduced when the atomic gas is polarized in the same spin state [57]. This two
considerations add additional constraints to the design of the cooling sequence.

In the following, we will detail the different experimental steps used to bring a gas of
metastable Helium to quantum degeneracy.
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3.1.2 The source

To begin the experimental sequence, we first need to excite Helium atoms in the metastable
state. As the energy difference between the ground-state and the metastable state is very
large, it is impossible to excite the atoms optically. We therefore rather do it through
a plasma discharge. The setup is illustrated on Fig.-3.2. The plasma forms between a
metallic needle connected to a high voltage power supply (∼ 2.8 kV) and the grounded
skimmer. The needle is held in a glass tube that is glued to a Boron-Nitride (BN)
piece in which a small hole is pierced for atoms to flow through. The piece is inserted into
a larger copper piece cryogenically cooled with liquid nitrogen. The role of the Boron-
Nitride piece is twofold. First, the good thermal properties of the Boron-Nitride allow the
piece to be cooled via the contact with the copper piece, cooling down in turn the atoms.
This is necessary to preliminary reduce the speed of the atoms before laser cooling as we
will discuss in the next paragraph. Second, the piece isolates the high voltage needle from
the grounded copper to avoid plasma formation in unwanted places.

The source is a quite sensitive part of the experimental apparatus and was often subject
to problems during the span of this thesis. Here are a few things that we learned through
the different repairs that need to be checked when troubleshooting the source:

• The needle has the tendency to deteriorate over time. When this happens, some
metallic particles fall from the needle and end up clogging the small hole in Boron-
Nitride, preventing the atoms to flow through. We replaced the needle with a stan-
dard metallic cylinder, hoping that it would not deteriorate as fast. While we still
could form the plasma without the needle shape, the cylinder still deteriorates, re-
quiring regular operations every few months to unclog the Boron-Nitride piece.

• The diameter of the Boron-Nitride piece needs to be very well adapted to the inner
diameter of the copper piece to ensure a good thermal contact and to prevent the
Boron-Nitride from moving when temperature changes. This also helps to stabilize
the current of the power supply to ∼ 11 mA at which the plasma is much more
stable.

• The glue holding the glass tube in the Boron-Nitride can contract at low tempera-
tures and add mechanical constraints on the glass tube, sometimes breaking it and
causing unwanted atom leakage. The solution is to use an “elastic” glue that can
deform when temperature changes without adding too much stress on the tube.

We now move on the next experimental step, laser cooling.

3.1.3 Laser cooling

Our experimental cooling sequence uses two types of laser cooling: Doppler and sub-
Doppler cooling. Doppler cooling revolves around the absorption of resonant, counter-
propagating photons by a two-level atom, reducing its momentum. The absorbed photons
are re-emitted spontaneously in a random direction of space, meaning that after a large
number of absorption/emission cycles, the variation of momentum induced by spontaneous
emission averages out. The only contribution is thus the one of absorption contributing to
slow the atom down. The name Doppler cooling descends from the fact that the detuning
δ of the laser beam is set to compensate the Doppler effect δ = k ·v, with k the momentum
of the laser photons and v the speed of the atoms. This has the advantage that the atoms
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Figure 3.2: Metastable helium source. (a) Drawing of the source apparatus. Helium atoms
(blue arrows) are sent into a glass tube glued into a pierced boron-nitride (BN) piece. A
plasma forms between the high voltage needle and the grounded skimmer, exciting the
atoms in the metastable state (red arrows). The boron nitride is cooled by thermal contact
with a copper (Cu) piece in which liquid nitrogen flows, allowing to significantly reduce the
speed of the atoms. (b) Photograph of the source apparatus. The red square illustrates
what is represented on the drawing.
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that have already been cooled cannot resonantly absorb photons anymore, preventing
them from being re-heated. The lowest temperature accessible with Doppler cooling TD
is set by the number of absorption/emission cycles per unit of time, i.e by the linewidth
of the excited state Γ [32]:

TD = ℏΓ
2kB

(3.2)

On the other hand, sub-Doppler cooling designs a variety of cooling techniques re-
volving around multi-level atomic structures. These techniques allow to reach lower tem-
peratures than Doppler cooling, at the expense of small velocity captures, nevertheless
attainable with prior Doppler cooling.

As shown on Fig.-3.1, we use the 2 3S1 → 2 3P2 transition for Doppler cooling. The
state 2 3S1 has three sub-states mJ = {−1, 0,+1} whereas the state 2 3P2 has 5 mJ =
{−2,−1, 0,+1,+2}. By using circularly polarised light allowing transitions that increase
or decrease mJ by 1, the transition between these two-states can be equated to an effective
two-level transition after a few cycles of absorption/emission, making it well suited for
Doppler cooling. For sub-Doppler cooling, we use the transition 2 3S1 → 2 3P1 where the
excited state also has three sub-states, implementing an effective 3-level lambda structure
with circularly polarized light as the transition between the sub-states with mJ = 0 is a
forbidden one. The natural line-width of the 2 3P state is Γ = 2π × 1.6 MHz .

We will not explain here all the details of how laser cooling works, but rather briefly
show the main cooling steps of the experimental sequence and give typical experimental
numbers. For further details, we refer the reader to previous theses [15, 28, 87].

Zeeman slower

As in many cold atoms experiments, the cooling sequence starts with a Zeeman slower. The
general idea is to exploit the Zeeman effect with a variating magnetic field to compensate
the Doppler shift that reduces as the atoms get slower. This procedure allows to reduce
the speed of the atoms of several order of magnitudes, from roughly 1, 200 m/s when they
exit the source to 50 m/s, a speed at which they can be captured in a Magneto-Optical
Trap. Note that as Helium is very light, our Zeeman slower is quite long compared to other
cold atom experiments with a length of ∼ 2.5 m. This also explains the need for liquid
nitrogen cooling of the source, without which we would need an absurdly long Zeeman
slower.

Magneto-Optical Trap

While reducing the speed of the atoms is necessary to reach quantum degeneracy, it is also
necessary to spatially trap the atoms and increase their density. This is achieved by adding
a quadrupole magnetic field in order to exploit the Zeeman effect combined to laser cooling.
This is the idea behind the Magneto-Optical Trap (MOT), the cornerstone of every
cold atom experiment. A MOT is made of 3 pairs of counter-propagating red-detuned
laser beams, one for each direction of space, on which we add a quadrupole magnetic
field. In our case, the magnetic field is produced by two coils centered on the x-axis in
anti-Helmoltz configuration. The current is 16 A, resulting in a gradient of 25 G/cm at
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the center of trap.

To load the MOT, we use an intensity of roughly 15 Isat per beam and a large detuning
δ = −60 MHz . This serves two purposes: it ensures a large capture velocity, making the

loading of the trap efficient, and also keeps the level of light-assisted Penning losses low.
We load typically N ≃ 2 × 109 atoms in ∼ 1.5 s. In a second stage, we compress the
gas to increase the atomic density by reducing the detuning to δ = −12 MHz . To avoid
major light-assisted Penning losses, we conjointly reduce the total intensity from 90 Isat

to 0.7 Isat . This compressed-MOT phase increases the density by a factor ∼ 10.

At the end of the MOT phase, we obtain a gas of N ≃ 2 × 109 atoms at T = 1.2 mK
of density n = 6.3 × 109 cm−3 .

Red molasses

The magnetic field is then switched off to go back to regular Doppler cooling. To further
cool the atoms, the detuning is significantly reduced to δ = −1.5 MHz (approaching the
Doppler limit), while the total intensity is reduced to 0.33 Isat to keep the rate of Penning
losses low. The goal is not to reach the lowest possible temperature, but rather to reach a
temperature inferior to that of the velocity capture of sub-Doppler cooling effects. After
5 ms of red molasses, we reach T ≃ 100 µK with N ≃ 1.8 × 109 atoms.

Grey molasses

Grey molasses are a sub-Doppler cooling scheme [40] that works in our case with 3 pairs
of σ+ − σ− polarized counter-propagating beams on the 2 3S1 → 2 3P1 transition, giving
a lambda configuration with two ground states |g1⟩ and |g2⟩ and one excited state |e⟩.
Through a change of a basis, it is possible to describe the system as a dark state, written
as a superposition of |g1⟩ and |g2⟩ that does not interact with the light, and bright state.
The name “grey” molasses comes from the mix between this two kinds of states. Because
of the interferences between the counter-propagating beams, the light shift of the bright
state is modulated. If the atoms are moving, a motional coupling allows for atoms in the
dark state to be transferred into the bright state. For positive detunings, the light shift
is positive and increases with the light intensity so that the bright and the dark state are
closer at the bottom of the potential “hill” seen be the bright state. This means that an
atom in the dark state can be transferred into the bright state at the bottom of the hill,
climb it to convert its kinetic energy into potential energy that is then dissipated when the
atom is pumped back into the dark state at the top of the hill, effectively cooling the atom
(see Fig.-3.3). The atom then goes through the same cycle, just like Sisyphus who was
condemned to relentlessly push his rock to the top of a mountain in the ancient Greece
mythology, hence the name Sisyphus cooling. Interestingly, it is possible for the atom to
be trapped indefinitely in the dark state and stop interacting with light if its speed is low
enough. This effect is called velocity-selective coherent population trapping [5].

The grey molasses stage is implemented with blue detuned δ = 8 MHz beams with a
total power of 28 Isat . This stage lasts 5 ms after which we obtain N ≃ 1.7 × 109 atoms
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Figure 3.3: Principle of the grey molasses in 1D. The energy of the bright state is modu-
lated because of the interference of the two counter-propagating beams. An atom in the
dark state (DS) can couple to the bright state (BS) near the bottom of the potential hill
that it will then climb, losing kinetic energy, before being put back in the dark state at
the top the hill, resulting in a loss of energy. Taken from [28].

at T ≃ 15 µK . While this temperature is already quite low, the cooling steps we have
described so far are not enough to reach the kinds of temperatures and densities required
to reach quantum degeneracy. Indeed, at this point, we only have λ3

dBn = 3.0 × 10−4 .
We thus need another non-optical cooling technique for the last steps of the experiment.

3.1.4 Evaporative cooling

Evaporative cooling was derived from the simple idea that if one is able to selectively
remove the more energetic particles of an ensemble, the remaining ones will thermalize
at a lower temperature (assuming that the collision rate is large enough to ensure ther-
malization). This is exactly what we do when we blow on a cup of coffee, removing the
more energetic coffee molecules vaporized above the surface to cool down the entire cup
of coffee. Evaporative cooling therefore requires to find a way to remove only the more
energetic atoms while ensuring that the collision rate amongst the remaining atoms is high
enough for a proper thermalization.

There are two main ways to implement evaporative cooling depending on the kind of
trap from which we will remove the atoms. The historical one is called radio-frequency
(RF) evaporation [50, 94, 133] and is performed with magnetic traps. Let us illustrate
it with the example of atoms with 3 magnetic sub-states, mJ = {−1, 0, 1}. If we put these
atoms inside a quadrupole magnetic field forming a magnetic gradient, we find that one of
the sub-states is trapped, let us say mJ = 1, the sub-state mJ = 0 does not interact with
the magnetic field and is therefore not trapped, just like the sub-state mJ = −1 which is
anti-trapped. Because of the Zeeman effect, the energy difference between the different
sub-states depends on the value of the magnetic field and therefore on the position of the
atoms in the trap. The hottest atoms are the ones with the larger kinetic energy and that
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Figure 3.4: Laser cooling sequence. The time t = 0 corresponds to the beginning of the
compressed MOT step, preceded by the MOT step that lasts 1.5 s. The initials RM and
GM corresponds to Red Molasses and Grey Molasses respectively. Current values are
represented in red, light frequencies in blue and light intensities in orange. Note that the
values of IMOT have been slightly modified for visibility purpose.
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therefore reach positions farther away from the center of the trap. The idea is then to
use a radio-frequency wave to drive the transition between the trapped and non-trapped
sub-states and carefully choose its frequency so that the process is resonant only for the
regions farther from the center of the trap, effectively removing the more energetic atoms.
The frequency of the RF wave is then progressively reduced to be more and more selective
on the energy for which atoms are removed, thus progressively cooling down the gas. An
important point is that the frequency must be ramped down slow enough for the gas to
have enough time to thermalize. The duration of RF evaporation is thus inherently limited
by the collisions properties of the gas, and therefore its density.

The second way to implement evaporative cooling is optical evaporation used in op-
tical traps. With high intensity, far-detuned laser beams, the electric field is strong enough
to induce a dipole moment in the atom, causing them to be attracted to the maximum
intensity of the field (for red-detuned light), effectively trapping them. The depth of the
trap is then set by the intensity of the laser light [79]. In this case, evaporation is quite
simple: decreasing the intensity decreases the depth of the trap, allowing atoms with a
high kinetic energy to escape the trap. Evaporation is then performed by ramping down
the intensity of the laser light. Interestingly, optical traps allow to reach higher trapping
frequencies than magnetic trap, resulting in higher densities and thus better collision rates,
meaning that evaporation can be done much faster. However, one significant disadvantage
of optical evaporation that must be considered is that the collision rate decreases as the
evaporation progresses since the trapping frequencies decrease with decreasing laser light
intensity. This is not the case for RF evaporation as the trapping frequencies remain con-
stant and the density increases as the gas gets colder, thus ensuring at all times a proper
thermalization of the cloud.

For our experimental purpose, we need to devise what kind of trap to use. An optical
trap would first seem to be the obvious answer as evaporation can be done way quicker,
reducing the experimental cycle time and thus making data taking more efficient. This
solution is actually used to bring different atomic species to quantum degeneracy such as
Rubidium [9], Potassium [137] or Sodium [88]. An all-optical scheme is however very hard
to implement for He∗ mainly because of Penning collisions. Indeed, during laser cooling,
the gas is unpolarized meaning that the inelastic collisions limit the accessible range of
density to values too low to ensure proper loading of an optical trap. We thus opted
for an hybrid configuration where the atoms are first loaded in a magnetic quadrupole
trap, thus polarizing the gas and reducing the Penning collision rate by several orders
of magnitude [143]. A first evaporation stage is then performed up to temperatures and
densities for which the gas can be efficiently loaded in a optical trap in which we perform
a final evaporation stage to reach Bose-Einstein condensation.

Magnetic trap

Before loading, the atomic gas is optically pumped into the trapped state mJ = 1. To
do so, we create a bias field oriented along the z-axis to set the quantification axis and
shine σ+ resonant polarized light unto the atoms for 700 µs. We then create a magnetic
quadrupole field with the same coils used for the MOT to produce an initial gradient of
∼ 5 G/cm and load N ≃ 1.7 × 109 atoms into the trap. As the Penning collision rate

is highly reduced for a spin-polarized gas, we safely go to higher densities by compressing
the trap, increasing the gradient to ∼ 35 G/cm . The evaporative cooling is performed
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Figure 3.5: Orientation of the ODT and lattice beams in the experiment. Taken from [28].

in 3 s by ramping down the frequency of a RF wave from 40 MHz to 6 MHz , reducing
the number of atoms to a typical N = 120 × 106 . The final temperature is T ≃ 70µK
and the final density n = 6.6 × 1011 cm−3 . Note that while this temperature is higher
than what we had at the end of laser cooling as the gas is heated up when loaded in the
magnetic trap, we have significantly increased the density to properly load the optical
trap. After this first evaporation stage, we obtain nλ3

dB = 7.5 × 10−4 .

Crossed Optical Dipole trap

The Optical Dipole Trap (ODT) is made with two crossing far-detuned 1550nm laser
beams whose intensity is stabilized with PID locking. We label these two beams ODT1
and ODT2, the second beam being obtained from the first one in a butterfly-like shape
(see Fig.-3.5). Their respective waists are 133 µm and 63 µm and the maximum power
for ODT1 is 18 W on the atoms. The ODT is loaded by ramping up the laser power
while ramping down the current in the quadrupole coils. The overlap between the two
traps is finely adjusted thanks to magnetic biases fields. As the ODT is very nar-
row, we typically only load N ≃ 8 × 106 but reduce the temperature by a factor 2
while increasing the density by two orders of magnitude. The final evaporation stage
is done by exponentially ramping down the laser power in 600 ms . We adapt the fi-
nal laser power to chose the number of atoms in the BEC, from a few thousands to
roughly N ≃ 106 at maximum. The trapping frequencies depend from the chosen final
power with typical values (ωx, ωy, ωz)/2π = (81, 352, 320) Hz for Nbec ≃ 6 × 105 and

(ωx, ωy, ωz)/2π = (41, 173, 180) Hz for Nbec ≃ 5 × 103 as we wish to use for the k/−k

correlations measurements.
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Figure 3.6: Condensation sequence. The red lines correspond to magnetic fields, i.e the
quadrupole trap gradient and the x and z biases (no bias along y is used), the green line
to the frequency of the RF wave used to peform the evaporation and the orange line to
the ODT power, here expressed in terms of photodiode voltage VODT.
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3.1.5 Optical imaging

While the specificity of our experiment is its electronic detection technique, we also use
more usual optical imaging techniques that are way more convenient to observe and char-
acterize the gas at the different steps of the experimental sequence.

Fluorescence imaging

The first kind of optical imaging technique that we use is fluorescence imaging. After a
time of flight of a few milliseconds, we shine for 100 µs with the MOT beams resonant light
on the atoms that absorbs the photons and re-emits them spontaneously in all directions
of space. These photons can be detected with an InGaAs camera located on top of the
science chamber with its optical axis oriented along the vertical z direction. Fluorescence
imaging is mainly used to characterize all steps prior to the loading in the optical trap
after which the gas becomes too small for the resolution of the imaging system.

Absorption imaging

To image the atoms in the ODT or the BEC itself, we use absorption imaging. We shine
a probe beam of weak intensity on resonance with the 2 3S1 → 2 3P2 transition unto the
atomic cloud and observe its “shadow” with a second InGaAs camera. The intensity of
the detected light depends directly on the quantity of light absorbed by the atoms and
therefore the density of the cloud. The camera is located on the side of the science chamber
and its optical axis forms a small angle with the horizontal direction.

While the resolution of the camera of 12 µm in the image plane is not suited to
make in-situ images, the BEC can be properly observed after a small time-of-flight of a
few milliseconds. Interestingly, we can obtain from the absorption images the number of
atoms in the BEC Nbec by measuring the Thomas-Fermi radius of the gas after a small
TOF [15].

3.1.6 3D optical lattice

We now pursue the description of our experimental apparatus with one of the key ingre-
dients of the physics we study, the 3D optical lattice. Its main characteristics are:

• The 3D lattice is made from a single narrow linewidth laser capable of delivering up
to 15 W. Its wavelength is 1550 nm, i.e far from any atomic resonance just as for
the Optical Dipole Trap, so that the atoms are trapped at the maximum values of
intensity.

• The main beam is divided into 3 independent beams, one for each direction of space,
that are sent on the science chamber to make the optical lattice as illustrated on
Fig.-3.5. One of the beam is horizontal (named H) and perpendicular to the axis
defined by the Zeeman slower, while the other two form a ±45◦ angle with the
horizontal direction, hence their name, +45 and -45. The waists of the beams are
(141, 151, 155) µm.

• Each beam is retro-reflected to create the interferences necessary for the lattice
pattern, but detuned by 20 MHz from the other directions so they do not interfere
with one another.



3.1 Helium in optical lattices 89

Figure 3.7: Calibration sequence of the lattice depth. The atoms are loaded in the lattice
by ramping down the ODT power (blue) and ramping up the lattice power (orange and
green). The beam to calibrate is then modulated while the power of the two other beams
is set to be 30% smaller to avoid excitations in directions different from the one that is
being calibrated. Finally, the atoms are loaded back in the ODT to measure the number
of remaining atoms with absorption imaging.

• In this configuration, the lattice spacing d, i.e the distance between two lattice sites
is d = λ/2 = 775 nm.

• A fraction of the power of each beam is sent on a photodiode whose signal is used
for the feedback loop of a PID controller used to lock the power on the desired value.

• Because of the Gaussian shape of the beam, the atoms feel the same external trapping
frequency ωtrap = 2π×140×

√
s s−1 in the three directions of space, with s the lattice

depth in units of recoil energy (see 2.1).

3.1.7 Calibration of the lattice depth

As we have seen in Chapter 2, the depth of the lattice potential and hence the ratio U/J
is a crucial parameter that determines the phase of the lattice gas. It is then necessary
to precisely calibrate this value prior to any experiment. The idea of the calibration is to
associate a given value of the lattice depth s to a command voltage for the PID controller.
As the power of each of the three beams are independent, the calibration must be done
for each of the three beams alike.

To do so, we modulate the amplitude of one of the lattice beam at frequency fmod for
a duration tmod = 20 ms, adding two sidebands in the lattice light spectrum f ± fmod.
When 2fmod is close to the resonance frequency fres = (E2(q = 0) − E0(q = 0)) /ℏ, it is
possible to excite the atoms from the lowest energy band to the second excited band with
a resonant two-photon process. As fres is dependent from the lattice depth, the idea is to
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Figure 3.8: Calibration of the lattice depth. (a) Variation of the atom number after the
calibration procedure as a function of the modulation frequency fmod. A clear resonance
of frequency fres = 162.8(5) kHz is observed. (b) Plot of the resonance frequency fres as
a function of the lattice depth s. The red dashed lines illustrates how the lattice depth
s = 10.08(5) is obtained from the measurement of fres on the left panel. The inset shows a
zoom on the region of interest with the red shaded area representing how the uncertainty
on fres translates to s.

scan the value of fmod to find the resonance frequency from which we deduce the value of
the lattice depth. If the amplitude of the lattice at which we perform the calibration is not
too high (we use s = 10 in practice), atoms in the second excited band are not trapped
and therefore lost. When we are perfectly at resonance, most atoms should then be lost,
an effect that we can observe via absorption imaging. To make things more convenient,
we load back the atoms into the ODT (see Fig.-3.7) before taking the absorption image
to avoid the diffraction induced by the lattice beams and properly count the atoms. We
therefore measure the number of remaining atoms in the BEC after this procedure as a
function of fmod and fit the data to find the minimum and so fres as illustrated on Fig.-3.8.
By calculating the energy bands, we obtain the relation between the lattice depth and the
value of fres that allows us to finally obtain the value of the lattice depth. We repeat this
procedure for each lattice beams, where the power of the two non-modulated beams are
lowered by 30% so that the cloud is not excited in the other directions.

3.2 Metastable Helium detection

Contrary to most cold atoms experiments that rely exclusively on optical detection tech-
niques, our experiment revolves around a single-atom resolved electronic detection
technique of which we will present the main features in this section. For a more thorough
and technical description of the He∗ detector, we refer the reader to the manuscript of
Hugo Cayla [28].
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3.2.1 Micro-Channel Plates

The first main element of the He∗ detector is the Micro-Channel Plate (MCP). A
Micro-Channel Plate is essentially a piece of metal in which an array of small holes, the
micro channels, has been drilled. If a particle falls into one of the channels and hits its
walls, it can extract one electron from the metal provided that the particle is energetic
enough (work function of the metal ∼ a few eV) [81]. While MCPs cannot be used in
most cold atoms experiment as the atoms are not energetic enough to extract this first
electron, they are suited to detect He∗ thanks to the high energy of the metastable state
≃ 19.8 eV. An electric field is applied so that the electron is accelerated downwards and
subsequently hits the walls of the channel to extract additional electrons, that will also
extract more electrons and so on, just like an avalanche process. The MCP then works
to amplify the initial discharge into a shower of a large number of electrons that can be
properly detected.

Practically speaking, we use two MCPs in a z-stack configuration forming a herringbone
pattern (see Fig.-3.9) to ensure the continuity of the electron shower [86]. They are
polarized with a voltage of 2.4 kV. Using two plates is necessary to obtain a high enough
amplification factor of 104. The channels are drilled with a 20◦ degree angle from the
surface of the MCP in order to avoid that the atoms fall right through the channels without
hitting the walls. Another important characteristics of the MCP is the open-to-air ratio,
i.e the ratio between the holes surface and the total surface of the MCP. This must be as
high as possible to avoid that atoms hit the MCP but not in a channel, thus losing the first
electron. The new generation of MCPs we are using for the experiments conducted in this
thesis (Hamamastu F9142-01 MOD6) implements a technology improving the open-to-air
ratio to 90% for the top plate and 70% for the bottom one. The size of the MCPs allows
us to detect momentum values up to 1.22 kd in the plane MCPs plane.

The MCPs by themselves would be useless as we need something to detect the electron
shower to know where a given atom has fallen. In high-energy particle physics experiments
in which MCPs are the most widely used, this is done by putting behind the MCPs a
phosphorus screen or photo-multipliers which are however not suited to our needs as they
only record a 2D information. To measure the 3D momentum of the atom, we need to
know the time of arrival of the atom in addition to the x and y coordinates at which it
fell on the MCP. To this end, we use what we call delay lines.

3.2.2 Delay lines

The delay lines consists of two metallic wires of length Lx,y = 20 m wrapped around
a hundred times around a holding board located beneath the MCPs. The electronic
shower created by the MCPs couples into the delay lines, creating an electronic pulse that
propagates at speed vg = 106 m/s in the two directions of each delay lines as illustrated
on Fig.-3.10. By recording the times of arrivals at each ends of the delay lines labelled
tx1 , tx2 , ty1 and ty2 , we reconstruct the coordinates and time of impact with:

xdet = 1
2(tx1 − tx2)vg (3.3)

ydet = 1
2(ty1 − ty2)vg (3.4)
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Figure 3.9: He∗ detector. The top left schematic illustrates how the MCP works, while the
bottom left schematic shows the entirety of the He∗ detector with the delay-lines located
underneath the two stacked MCPs. The right image is a photograph of the apparatus.
Taken from [28].

tdet = tx1 + tx2 − Lx

vg
= ty1 + ty2 − Ly

vg
(3.5)

We now need to understand how to use the values of xdet, ydet and tdet to obtain the
3D momentum k of the detected atoms. As detailled in Chapter 2, when there are no
interactions between the atoms, the density ρTOF(r, tTOF) after a TOF tTOF maps the
in-trap momentum distribution with the simple ballistic relation ℏk = mr/tTOF provided
that the TOF is long enough to access the far-field regime.

To verify this condition, the MCPs are located at a distance DMCP = 43 cm below
the atom trap, corresponding to a TOF tTOF = 297 ms for atoms with a zero vertical
momentum to reach the detector. We remind that the far-field condition writes (see
equation 2.39):

tFF = mL2

2ℏ ≃ 30 ms ≪ tTOF (3.6)

if we take the typical size of 40 lattice sites L = 40d, meaning that we are deep into the
far-field regime. Note that this condition is made easier to fulfill thanks to the small mass
of the Helium atom.

For now, we will assume that there are indeed no interactions during the TOF so that
the ballistic relation is true. This hypothesis will be verified in the next sections. We thus
need to know how to determine the position vector r where the atom is detected after the
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Figure 3.10: Schematic of the delay lines. The electronic discharge couples to the delay
lines and propagates in the two directions of the delay lines. The times of arrival are
recorded at each ends of the delay lines. Taken from [28].

TOF. While x and y are obtained directly from xdet and ydet, it is not so clear how to
obtain z from what we measure with the delay lines.

When the trapping potential is turned off, the atoms experience a free fall under the
sole effect of gravity. The vertical position z of an atom with an initial speed vz after a
time t is, taking the origin of the reference-frame at the center of the MCP and t = 0
when the trap is turned off:

z(t) = 1
2gt

2 + vzt−DMCP (3.7)

With tTOF the time necessary for atoms with vz = 0 to reach the detector, we can write:

DMCP = 1
2gt

2
TOF (3.8)

to obtain

z(t) = 1
2g(t2 − t2TOF) + vzt (3.9)

Finally, the time tdet at which an atom is detected on the detector at z = 0, which is the
quantity we experimentally measure, verifies:
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1
2g(t2TOF − t2det) = vztdet (3.10)

To use the convenient ballistic relation ℏk = mr/tdet, we then define z so that z =
1
2g(t2TOF − t2det).

3.2.3 Detection of the electronic pulses and accuracy of the detector

As we have seen in the last paragraph, the precision with which we measure the momentum
of the atoms depends directly on the precision with which we measure the arrival times
(tx1 , tx2 , ty1 , ty2). It is therefore crucial to devise a procedure to attribute to a pulse an
arrival time as precisely and reliably as possible. The main difficulty comes from the fact
that the amplitude of the pulses varies as the different electronic showers do not couple
with the same efficiency in the delay lines. If we were to attribute the arrival time by
identifying when the signal goes above a given threshold voltage, a high amplitude pulse
would be detected sooner than a low amplitude one. To circumvent this issue, we use a
constant fraction discriminator (CFD) that produces the following signal:

VCFD(t) = Vpulse (t) − fc × Vpulse (t) (t− τ) (3.11)

where fc ∈ [0, 1] and τ a delay. The resulting signal is therefore a bimodal pulse that
crosses zero, setting the reference to trigger a 0-1V with sharp raising edge signal that
is then fed to a FPGA-based Time to Digital Converter (TDC) to convert it to a digital
time. The TDC coding step is t0 = 120 ps defining an in-plane pixel of size:

x0 = y0 = 1
2 t0vg = 60 µm (3.12)

This defines an in-plane momentum pixel of size 1.4×10−3kd. The value of t0 also defines a
time pixel for the vertical direction that we can convert into a spatial pixel. As the velocity
of the center-of-mass of the cloud after the TOF is roughly vCM = 3 m/s, the vertical
spatial accuracy is then z0 = vCMt0 ≈ 0.4 nm which is far better than the in-plane accuracy.
However, as illustrated in Fig.-3.11, the vertical accuracy is actually limited by the angle
θ of the micro-channels. Because of it, two atoms separated by a distance l/ tan(θ) where
l is the diameter of the channel are actually detected simultaneously [28]. This leads to an
effective accuracy on the measurement of the vertical position of l/ tan(θ) = 33 µm with
l = 12 µm and θ = 20◦, i.e twice better than the in-plane accuracy

The numbers discussed so far actually represent a lower bound for the accuracy that
can be worsened because of the noise of the electronics or any experimental defect that
we might overlook. One possible way to experimentally evaluate the resolution of the
detector is to image on the detector an object with small structures as one would do in
Optics. This method was actually implemented to measure the in-plane resolution of an
older set of MCPs an electronics [115].

Actually, for our experimental purposes where we are detecting single atoms, we prefer
to speak of the accuracy of the detector instead of its resolution, the accuracy being the
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Figure 3.11: Vertical resolution of the detector. Because of the angle θ, the atoms A and
B are detected at the same time even though they are separated by a distance l/ tan(θ)
where l is the width of a channel. Taken from [28].

typical standard deviation of a set of measurements of a single atom momentum whose
momentum is fixed. This is obviously very hard to implement in practice and we then
need to devise an alternate method to access the accuracy of the detector. The solution
is to make use of the Hanbury Brown and Twiss effect. As explained in Chapter 1, we
expect to observe for a system with Gaussian statistics that the second-order correlation
function goes to 2, g(2)(k,k) = 2, and decays on a typical scale 1/L, L being the spatial
size of the trapped gas. If however the width of the correlation function is not much larger
than the accuracy of the detector, the second-order correlation function is broadened and
the amplitude reduced. One can then create a large system so that the second-order
correlation function is narrow enough so that the accuracy of the detector affects it, and
deduce the value of the accuracy from the observed reduction of the amplitude.

This method was applied in Hugo Cayla’s thesis [28] with a Mott insulator gas of
40 × 103 atoms to measure that the accuracy of the detector is isotropic and equal to
σMCP = 2.5(1) × 10−3 kd . However, in this case, the effect of the accuracy is not very

strong as the spatial size of the gas is not very large. We then tried to complement
these measurements by using thermal gases of ∼ 200 × 103 atoms produced in the ODT,
taking advantage of the anistropy of the trap so that the gas is large in the direction
where the trapping frequency is small. In this direction, the correlation function is then
expected to be very narrow and thus heavily affected by the accuracy of the detector. We
were indeed able to observe that the amplitude of the second-order correlation function
is reduced down to 1.33(1) from which we deduced σMCP = 2.9(3) × 10−3 kd which is
in fact quite consistent with the previous measurement. We note at this point that the
correlation function measurements that we shall present in the next chapter are conducted
with relatively low atom numbers for which the correlation functions are wide enough not
to be affected by the accuracy of the detector that we will then neglect.
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3.2.4 Reconstruction algorithm and saturation effects

As we have just seen, the position of the atoms are obtained from the quadruplet set
of times (tx1 , tx2 , ty1 , ty2) recorded at the end of the delay lines. The difficulty however
is to correctly attribute each pulse to the correct atom. To do so, the pulses are then
algorithmically sorted in quadruplets using the fact that if the arrival times of two pulses
t1 and t2 are associated to the same atom, they must verify:

|t1 − t2| ≤ Lx,y

vg
(3.13)

For a detected pulse tx1 , we thus conserve only the pulses on channels x2, y1 and y2 that
fall within the time window defined by equation 3.13. If there are still several possible
quadruplets, we compute for each quadruplet the quantity:

D = tx1 + tx2 − (ty1 + ty2) (3.14)

that should be zero according to equation 3.5 if the times of the quadruplet correspond
to the detection of an atom. We therefore select the quadruplet for which the quantity D
is the closer to zero and remove the four times from the lists of arrival times and repeat
the procedure. Note that we presented a simplified version of the algorithm for clarity
sake, we refer the reader once again the thesis of Hugo Cayla [28] for a more thorough
description accounting for the imperfections of the detector.

Saturation

One of the principal drawbacks of the He∗ detector is its high sensitivity to saturation
effects for high flux of particles. Indeed, if two particles fall close-by in a time smaller than
the time required for the electronic charges to reload the area depleted by the detection of
the first particle, the amplification factor for the second particle is significantly reduced,
meaning that the particle might not be detected. This is notably the case for the dense
Bose-Einstein condensates. We will not spend too much describing the effects of this
“physical” saturation that have been well studied in previous works [25, 28, 52, 115] and
that will not be too much of a trouble for the experiments we wish to conduct of this
thesis. Indeed, we want to look at the correlations in the depletion of a BEC for which
the momentum density is quite low and thus not subject to saturation effects.

Our measurements might however be affected by another kind of saturation effect
related to the reconstruction algorithm. Let’s consider two atoms A and B falling on
the detector at times tA and tB for which we record 8 arrival times. We have 7 possible
combinations of these arrival times:
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• (tAx1 , t
B
x2 , t

A
y1 , t
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y2) and (tBx1 , t

A
x2 , t

B
y1 , t

A
y2)

Let us now assume that the flux of particle is high so that tA and tB are very close so
that equation 3.13 cannot be used to exclude any of the combinations. We are then only
left with the calculation of D. The problem is that the two last combinations also give
D = 0 and cannot be discriminated from the proper one. The coordinates reconstructed
from these wrong combinations write:

X1 = tAx1 − tBx2
2vg

= X + tA − tB

2vg
Y 1 =

tBy1 − tAy2
2vg

= Y + tB − tA

2vg
T1 = tA + tB

2
and

X2 = tBx1 − tAx2
2vg

= X + tB − tA

2vg
Y 2 =

tAy1 − tBy2
2vg

= Y + tA − tB

2vg
T2 = tA + tB

2

(3.15)

or

X1 = tAx1 − tBx2
2vg

= X + tA − tB

2vg
Y 1 =

tAy1 − tBy2

2vg
= Y + tA − tB

2vg
T1 = tA + tB

2
and

X2 = tBx1 − tAx2
2vg

= X + tB − tA

2vg
Y 2 =

tBy1 − tAy2
2vg

= Y + tB − tA

2vg
T2 = tA + tB

2

(3.16)

There are therefore some wrongly reconstructed atoms that end up on ±45◦ lines
as illustrated on Fig.-3.12. Moreover, if we take X ≃ 0 and Y ≃ 0, X1 ≃ −X2 and
Y 1 ≃ −Y 2. If the times T1 = T2 correspond to kz = 0, the wrongly reconstructed pair
of atoms looks exactly like a k/−k pair! Even worse, the saturation occurs mainly for
BEC atoms because of the high density, and the BEC corresponds exactly to momentum
values close to k = 0, i.e X ≃ 0 and Y ≃ 0. This is then a problem as we can artificially
create k/−k pairs because of this indeterminacy in the reconstruction algorithm. This is
something that we will need to keep in mind for the analysis of the experimental data.

3.2.5 Two-photon Raman transfer

As we have seen in the first sections of this chapter, the BEC is prepared in the magnetic-
substatemJ = 1. To make a proper measurement of the in-trap momentum of the atoms, it
is absolutely crucial that their TOF trajectories are not perturbed, notably by interactions
with magnetic fields. In that respect, it would be quite hard to shield the science chamber
from every unwanted magnetic field on the large distance of 43 cm on which we let the
atoms fall to access the far-field regime of expansion. A solution to cancel these unwanted
interactions is to transfer the atoms into the non-magnetic sub-state mJ = 0. All non-
transferred atoms are then removed by applying a strong magnetic gradient so that they
do not reach the MCPs.

When I started my PhD, we used a magnetic field bias to separate the different sub-
states with the Zeeman effect and then drive the transition between mJ = 1 and mJ = 0
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Figure 3.12: Time integrated 2D MCP image illustrating the presence of a saturation
cross at ±45◦. The third “line” is not related to saturation effects and corresponds to
evaporated atoms that can fall on the MCP at the same time than the BEC.

with a RF wave within the lowest-energy manyfold [25, 28]. However, the energy difference
between the sub-states mJ = 1 and mJ = 0 and mJ = 0 and mJ = −1 is the same.
We therefore have a 3-level system with two resonant transitions and can only achieve
a 50% population transfer to mJ = 0. This has a strong consequence: only half of
the atoms at maximum can reach the detector, thus reducing the detection efficiency
by at least a factor 2. Even worse, the effective Rabi frequencies were limited by the
highest accessible RF powers in our experiment. The pulse duration corresponding to
the maximum transfer efficiency was then too large so that the transfer was perturbed by
fluctuations of the magnetic field, forcing us to work with shorter pulse and therefore lower
detection efficiencies. This is particularly harmful for correlation measurements such as
k/−k pairing as we need to detect the two atoms of the pair: losing a factor α on the
detection efficiency reduces the probability to detect a k/−k pair by a factor α2. This
calls to change the transfer scheme to achieve a 100% (or close to) population transfer to
the mJ = 0 state.

To do so, we use an optical transfer scheme, a two-photon Raman transfer. While this
was used on our experiment a few years back on the 2 3S1 → 2 3P1, it was abandoned
as spontaneous emission effects were perturbing the measured momentum distribution to
sufficiently high levels, harming the measurements conducted at the time. Nevertheless,
our goal to detect k/−k pairs motivated us to build the required setup, with the notable
addition of a third laser source allowing us to address the remaining transition 2 3S1 →
2 3P0, better suited for Raman transfer as we will later see.

Principle of the two-photon Raman transfer

To understand what two-photon Raman transfer is, let us consider a lambda level structure
with two ground states |g1⟩,|g2⟩ and one excited state |e⟩ (see Fig.-3.13). Raman scattering
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Figure 3.13: Lambda level structure in which a two-photon Raman transfer can be used
to transfer atoms from |g1⟩ to |g2⟩.

is an inelastic process in which the atom absorbs a first photon of frequency ω1 and
re-emits a photon of frequency ω2, changing its internal state from |g1⟩ to |g2⟩. The
absorbed photon is called the pump photon and the emitted one the Stokes photon.
This process is resonant when the energy difference between the absorbed and scattered
photons corresponds to the energy difference ∆E between the two states |g1⟩ to |g2⟩. If
the modes ω1 and ω2 are populated, for instance if we shine laser light on the atom at
these two frequencies, the process can be stimulated as the probability to emit a photon
in a given mode is more likely the more photons there are in the mode. It is therefore
possible to exploit this effect to realize a population transfer from the state |g1⟩ to the
state |g2⟩.

In the rotating wave approximation [144], the 3-level Hamiltonian can be written in
the {|g1⟩ , |g2⟩ , |e⟩} basis as:

Ĥ3-level = ℏ

 0 0 Ω1/2
0 −δ2p Ω2/2

Ω1/2 Ω2/2 −∆

 (3.17)

where Ω1 and Ω2 are the Rabi frequencies associated to laser fields 1 and 2, ∆ = (ωe −
ωg1) − ω1 and δ2p = (ωg2 − ωg1) − (ω2 − ω1) (see Fig.-3.13). Importantly, ∆ must be
large to avoid one photon absorption, i.e. population of the excited state and spontaneous
emission. In these conditions, the excited level can be adiabatically eliminated to describe
the two-photon transfer as an effective two-level coupling between |g1⟩ and |g2⟩. The
corresponding Hamiltonian writes:

Ĥeff =
(

0 Ω2p
Ω2p −δ′

)
(3.18)

with Ω2p = Ω1Ω2
2∆ and δ′ = δ2p − (Ω2

1 + Ω2
2)/4∆ ≈ δ2p.

From this expression, we use the well-known results of Rabi oscillations [41] to get the
effective Rabi frequency
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Figure 3.14: Implementation of the two-photon Raman transfer with 4He∗ (right). The
situation for the RF transfer is represented on the left for comparison.

Ωeff =

√
Ω2

1Ω2
2

4∆2 + δ2
2p (3.19)

and that maximum transfer efficiency is the ratio η2p = Ω2
2p/Ω2

eff . For δ2p = 0, we get
η2p = 1 meaning that it is possible to transfer the entire population of |g1⟩ to |g2⟩.

Experimental implementation

To implement the two-photon Raman transfer, we use the transition 2 3S1 → 2 3P0
that effectively realizes the lambda structure required for Raman transfer (see Fig.-3.14).
Interestingly, the level 2 3P0 has only one sub-state meaning that only the transitions of
interest are possible, eliminating any risk of off-resonance excitations of other transitions
as it could be the case when using 2 3P1 for the excited level. The pump beam is σ−
polarized (actually linearly polarized in the experiment, see below) and the Stokes beam π
polarized. Importantly, the momentum of the atom is modified because of the absorption
of a pump photon and the emission of a Stokes photon. As we do not want to not want
to change the momentum of the atoms during the TOF to properly measure the in-trap
momentum, we opt for a configuration with co-propagating pump and Stokes beams.

The optical setup is represented in Fig.-3.15. In brief, the two beams are obtained
from a single homemade External-Cavity Diode Laser [173], locked on the 2 3S1 → 2 3P0
of frequency ν0 via saturated absorption spectroscopy. In the saturated absorption spec-
troscopy arm of the setup, the frequency of the laser is shifted by 400 MHz by a double pass
Acousto-Optic Modulator (AOM) before locking, meaning that the frequency of the laser
is ν = ν0 − 400 MHz. The main beam is then split in two beams whose respective powers
are controlled by rotating a half-wave plate in front of a polarizing beam-splitter cube. The
frequencies of each beam is set by another double pass AOM. In the end, the frequencies
are νStokes = ν0 − 800 MHz for the Stokes beam and νPump = ν0 − 813 MHz for the pump
beam. The small difference of 13 MHz is set to match the energy difference ∆E between
the sub-states mJ = 0 and mJ = 1 that we control by applying a magnetic bias field along
the x direction. The detuning to the one-photon transition is then |∆| = 800 MHz which
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Figure 3.15: Optical setup for two-photon Raman transfer. After being frequency locked
via saturated absorption spectroscopy, the laser beam is split to produce the Stokes and
pump beam. The powers are controlled with half-wave plates and polarizing beam splitter,
while the frequencies are controlled with Acousto-Optic Modulators.

is large enough to avoid spontaneous emission effects. An additional advantage of using
the 2 3S1 → 2 3P0 transition is that the level 2 3P0 is 29.9 GHz apart from the next level
2 3P1, itself only separated by 2.3 GHz from 2 3P2. Using a large detuning is then not
a problem when adressing 2 3S1 → 2 3P0 compared to 2 3S1 → 2 3P1 where we could
start exciting the 2 3S1 → 2 3P2 transition. The polarizations of the two beams are set to
be linear and orthogonal. They are finally sent on two faces of a polarizing beam-splitter
cube to be overlapped and coupled into a polarization-maintaining fiber bringing them to
the science chamber as illustrated on Fig.-3.16.

The polarization at the exit of the fiber is set by a half-wave plate so that the Stokes
beam is linearly polarized along the quantification axis x to have the π polarisation. The
pump beam is linearly polarized as well but orthogonal to the Stokes beam polarisation.
This decomposes as the sum of a σ+ and σ− polarisation for the atoms. Because of the
energy levels structure, the σ+ component does not interact with the atom, leaving only
the effect of the wanted σ− polarization. This means however than half of the power of
the pump beam is useless, requiring to put twice more power for the pump beam than for
the Stokes beam for a symmetric configuration.
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Figure 3.16: Orientation of the Raman beams in the experiment. On the right picture,
the blue arrow denotes the orientation of the magnetic bias field, setting the quantification
axis.

Measurement of the two-photon resonance

As previously discussed, the transfer efficiency is highly dependent from the detuning to
the two-photon resonance condition set by the frequency difference ∆ν = νStokes − νPump
that we adjust thanks to the pump beam AOM. It is therefore important to scan ∆ν prior
to any use of two-photon Raman transfer to set it perfectly on resonance. The procedure
is the following:

• We significantly reduce the power of the Raman beams (30 µW and 60 µW before the
fiber for the Stokes and pump beams respectively) to avoid power broadening of the
transition and to have a small Rabi frequency. The period of the Rabi oscillations
is then large, we can therefore use a pulse long enough to obtain the necessary
frequency resolution, but short enough so that we remain in the first linear increase
of the transfer when the detuning changes. We chose a pulse duration of 60 µs while
the Rabi oscillation period is ∼ 200 µs.

• We prepare a Mott insulator whose large momentum distribution prevents saturation
effects of the detector from happening.

• We perform two-photon Raman transfer for different values of ∆ν and plot the
number of detected atoms by the MCP as a function of ∆ν. We finally fit the data
to find the position of the resonance as illustrated on Fig.-3.17.

Rabi oscillations

In order to check that the two-photon Raman transfer is working as intended, we measure
Rabi oscillations for different powers and check that the square Rabi frequency indeed
scales linearly with the product of the powers of the Stokes and pump beams (note that
the scaling is different for a one photon transition). Like when we measure the two-photon
resonance, we perform the measurement on a Mott insulator to avoid saturation. The
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Figure 3.17: Number of detected atoms NMCP (equivalent to the number of transferred
atoms) as a function of the frequency difference between the Stokes and pump beams
∆ν. The maximum of NMCP signals the two-photon resonance. The Lorentzian fit gives
∆νres = 12.927(1) MHz.

results are shown on Fig.-3.18 and are consistent with our expectations.

Measuring Rabi oscillations is the second part of the procedure to properly set up the
two-photon Raman transfer prior to data taking. We set the power of the beams so that
the maximum of the first Rabi oscillation corresponds to a pulse duration tRabi ≃ 10 µs
and measure a few Rabi oscillations to check it experimentally. This time is chosen to
be as short as possible with respect to the elementary coding step of our sequencer for
two purposes. First, the transfer is less sensitive to fluctuations of the magnetic field for
shorter pulse times. Second, the bias field that we produce is not perfect, resulting in
the presence of a small gradient of 0.17 G/cm. If the transfer takes too much time to
complete, the atoms have time to travel on a significant distance so that they might see
different values of the magnetic field, hence changing the two-photon resonance condition
and reducing the overall transfer efficiency.

3.2.6 Measurement of the detection efficiency

We now look to determine the detection efficiency of the He∗ detector. In a first naive
approach, we could simply produce a BEC, measure its number of atoms Nbec through the
well-calibrated absorption imaging, use the two-photon Raman transfer to transfer all the
atoms to the mJ = 0 state, perform the TOF and count the numbers of atoms detected
on the MCP NMCP. The detection efficiency is then simply the ratio αMCP = NMCP/Nbec.
This method would however considerably underestimate the detection efficiency because
of the saturation effects occuring with the high densities of the BEC. One could then think
of using gases with more dilute distributions to avoid saturation, such as thermal gases or
Mott insulators. This method is not so easy as well as it is practically difficult to obtain
a momentum distribution wide enough so that the maximum densities values does not
saturate the detector, but not too wide to avoid that a significant fraction of the atoms
fall beyond the limits of the MCP.
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Figure 3.18: Rabi oscillations with two-photon Raman transfer. (a) Rabi oscillations at
various beam power. P is the power of the Stokes beam measured before the fiber linking
the optical table to the experiment. The solid fines correspond to a square sine function
fit with an overall exponential decay. (b) Square Rabi frequencies Ω2

eff as a function of the
square power P (the power of the Stokes and pump beams are set to be the same). We
obtain a linear relation with a small offset that might come from a slight miscalibration
of the two-photon resonance.

To circumvent these issues, we will then work with a BEC but deliberately use the
two-photon Raman transfer with a large detuning to the two-photon Raman transition to
transfer only a very small fraction of the atoms and avoid saturation. Using the results of
3.2.5, the number of detected atoms on the MCP writes:

NMCP = Nbec

(Ω2p

Ωeff

)2
sin2

(Ωeff∆t
2

)
αMCP (3.20)

with Ωeff =
√

Ω2
2p + δ2

2p and ∆t the duration of the Rabi pulse. If we measure NMCP,
Nbec, Ω2p and the value of the detuning δ2p, it is in principle possible to obtain the value
αMCP. We then devise the procedure to measure the detection efficiency to be as follows:

1. We first need to pinpoint very precisely where the two-photon resonance is. To do
so, we measure the frequency of Rabi oscillations Ωeff with a dilute gas for different
values of the frequency difference ∆ν between the Stokes and the pump beam close
to the two-photon resonance condition. At this point, we do not care about the
amplitude of the Rabi oscillations but only their frequency. Using Ωeff =

√
Ω2

2p + δ2
2p,

we fit the experimental data to find the value of ∆ν where Ωeff is minimum which
corresponds to the two-photon resonance as illustrated on Fig.-3.19 panel (a).

2. We prepare a BEC of Nbec = 2 × 105 atoms that we calibrate with absorption
imaging.

3. We set the power of the Raman beams to have Ω2p = 20 kHz.
4. We measure Rabi oscillations for various values of δ2p ∈ [300, 1000] kHz and extract

the amplitude of the square sine function Nmax
MCP. We typically transfer ∼ 1% of the

atoms.
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Figure 3.19: Measurement of the MCP detection efficiency. (a) Precise measurement of
the two-photon resonance condition. The frequency difference between the Stokes and
the pump beam is scanned to find where Ωeff is minimum. The full line is a fit using
Ωeff =

√
Ω2

2p + δ2
2p. (b) Maximum detected number on the MCP for a given value of δ2p

as a function of the expected atom number Nbec
(

Ω2p

Ωeff

)2
. The full line is the linear fit

whose slope gives αMCP.

5. We plot Nmax
MCP versus Nbec

(
Ω2p

Ωeff

)2
. We fit the data with a linear function and deduce

the value of αMCP from the slope of the fit as illustrated on Fig.-3.19 panel (b).

The final measured value is αMCP = 0.53(2) . As mentioned earlier, the open-to-air ratio
of the MCPs is around ≃ 90%, meaning that almost all atoms fall in a channel, thus
not limiting the detection efficiency. However, the first extracted electron has roughly a
1/2 probability to be ejected upwards outside of the channel, rendering the amplification
process impossible, providing us with rough estimate of detection efficiency of the order
of 50%.

3.3 Adiabatic preparation in the vicinity of the Mott transition

As developed in the first pages of this thesis, the general objective of our experiment
is to simulate quantum interacting systems too complex to treat theoretically. More
specifically, our experimental apparatus aims to simulate the equilibrium properties of
the Bose-Hubbard model as described in Chapter 2. The standard procedure is to create
a non-zero entropy state, the BEC, and progressively transform the Hamiltonian of the
system by loading the atoms in the optical lattice to reach the desired Bose-Hubbard state.
It is crucial that this transformation does not create excitations: in other terms, we want
to keep the entropy of the system constant as we load the atoms in the optical lattice, i.e
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Figure 3.20: Loading sequence of the lattice.

ensure that the preparation of the target Hamiltonian is adiabatic. In this section, we
will detail the procedure used to certify the adiabatic preparation of the Bose-Hubbard
Hamiltonian in our experiment by exploiting the 3D single-atom momentum resolution of
our apparatus as described in the beginning of this chapter.

3.3.1 Loading of the optical lattice

The crucial point of the preparation of an equilibrium state of the Bose-Hubbard Hamil-
tonian is the loading of the atoms in the optical lattice. This is done by ramping down
the power of the ODT beams while ramping up the power of the lattice beams. We use
several parameters to fine tune the loading sequence as represented on Fig.-3.20:

• The slope of the lattice ramp.
• tdown the time on which we ramp down the ODT power.
• tdelay the time delay between the beginning of the ramp of the optical lattice and

the ramp of the ODT.

In order to optimize these parameters, the atoms are loaded back in the ODT with
a symmetrical sequence to look for atom losses and heating effects to be minimized as
illustrated on Fig-3.21. This technique has the advantage of being convenient and rather
simple, but is not at all sufficient to prove that the loading is adiabatic. We tried using
linear and exponential ramps and found that it did not make a difference [25]. We then
settled for the simple linear ramps, corresponding to an almost exponential increase of
s (see Fig-2.4). Their slope was set to 0.3 Er/ms and remains constant no matter the
final target value of s, only the ramp time changes. The optimal values of the other ramp
parameters were found to be tdown = 22 ms and tdelay = 0 ms . With these parameters,
we observe typical losses of 15% of the total atom number that we attribute to the not
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Figure 3.21: Absorption imaging of the BEC after a 10 ms TOF. The left image correspond
to the BEC at the end of the evaporation sequence and the right image to the BEC loaded
into the lattice and back to the ODT. No significant heating is observed, only a small loss
of ∼ 15% of the total atom number.

perfect overlap between the ODT and the lattice (the lost atoms carrying the extra kinetic
energy obtained during the imperfect transfer), but no heating is detected.

3.3.2 Thermometry and entropy across the Mott transition

Now that we have experimentally optimized the parameters of the loading sequence, we
verify its adiabaticity by extracting the temperature and the entropy from the momentum
distribution [27].

Thermometry method

The temperature of the gas cannot be extracted directly from the density ρ(k) as we
do not have an analytical prediction for the trapped Bose-Hubbard model. The idea is
then to use ab-initio Quantum Monte Carlo (QMC) calculations simulating the momen-
tum distribution with the only adjustable parameter being the temperature (all other
experimental parameters such as atom number, atom mass, scattering length or trapping
frequencies are included in the QMC calculations). The QMC calculations were pro-
vided by Tommaso Roscilde from the Ecole Normale Supérieure de Lyon and were run
for different temperature values. To get the temperature in the experiment, we select the
QMC momentum distribution that best reproduces the experimental data as illustrated
in Fig.-3.22. Formally speaking, we compare a cut of the normalized experimental density
ρ̃exp(k) = ρ(k, 0, 0)/ρ(0) to the QMC ones ρ̃QMC(k, T ) = ρQMC(k, 0, 0, T )/ρQMC(0). We
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Figure 3.22: Comparison of experimental and QMC normalized 1D cuts of the momentum
density for different temperatures. The ratio u = 30 corresponds roughly to the location
of the critical point in the ground-state.

look to find the temperature value that minimizes the reduced chi-square quantity that
we define as:

χ2
r (T ) = 1

Np

Np∑
j=1

[ρ̄exp (kj) − ρ̄QMC (kj , T )]2

σexp (kj)2 (3.21)

We have discretized the first Brillouin zones with a uniform mesh of Np = 120 points. The
quantity σexp (kj) is the error estimate on the experimental momentum density that is
assumed to have Poissonian statistics, giving us σexp (kj) =

√
ρ̃exp (kj) /Nruns with Nruns

the number of experimental runs used to evaluate ρ̃exp(k).

Importantly, these kind of measurements rely on two specific points of our experiment
linked to our 3D single-atom resolution. Firstly, we can measure the full 3D momentum
density ρ(k) without any line-of-sight integration and thus characterize it with the finest
level of details. Secondly, we are able to detect low densities signal and thus work with
low atoms numbers Nbec ≃ 3, 000 for which QMC calculations are possible down to low
temperatures.

We show on Fig.-3.23 plots of χ2
r (TJ) as a function of the temperature of the QMC

calculations at u = 30 (see 2.1), where TJ is the reduced temperature TJ = kBT/J . We
observe a clear minimum that indicates the temperature in the experiment. Interestingly,
the minimum value χ2

r (TJ = 2.4) = 3.6 ± 3.0 is compatible with unity, meaning that the
QMC calculations indeed reproduce the experimental data within the statistical uncer-
tainty. We fit the data with a parabolic profile to identify the position of the minimum.
The error on the fit gives us an estimate of the minimal error on the evaluation of the
temperature with this technique that can be linked to the notion of Fisher information
that we will see in the next paragraph. Note however that in order not to rely on a fit for
every data sets, we will estimate the error bars by determining the temperature interval
over which distinct values of χ2

r are observed.
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Figure 3.23: χ2
r (T ) as a function of temperature in linear and logscale. We clearly identify

a minimum from which we deduce the value of T in the experiment.

Figure 3.24: (a) Experimental reduced temperature TJ = kBT/J as a function of u. The
underlying false color plot shows the theoretical map of the entropy per particle S/NbeckB
of the trapped 3D Bose-Hubbard model with the experimental parameters. The white
dashed line is the isoentropic line S/Nbec = 0.8 kB. The black dashed line represents the
line of critical temperatures for the uniform 3D Bose-Hubbard model at unit lattice filling
[24]. (b) Absolute temperature in recoil units Er as a function of u. The green dashed line
corresponds to an energy 2.2J (in units of J) that best matches the experimental data in
the range u = 5 − 20.



110 Chapter 3. Single-atom resolved momentum measurement of lattice Bose gas

Temperature and entropy as a function of u

We plot on Fig-3.24 panel (a) the extracted values of TJ (T in units of J) as a function of u
spanning the phase diagram of the Bose-Hubbard model. The experimental data is plotted
alongside to the theoretical map of entropy. Note that we choose to plot the reduced
temperature TJ to normalize the adiabatic cooling effect occurring when u increases as
illustrated on Fig-3.24 panel (b). This effect comes from the fact that the isoentropic gas
is contained in a Bloch band whose width is proportional to J and decreases with s (see
Chapter 2). For this reason, the density of states increases with s, explaining why T goes
down at constant entropy [171].

The value of the entropy is obtained from the QMC calculations giving the average
energy by particle e(T ) for various values of the temperature. The energy is then fitted
with a high-order polynomial function to compute the specific heat c(T ) = de(T )/dT to
finally obtain the entropy S(T )/Nbec =

∫ T
0 dθc(θ)/θ in a given QMC simulation. The

values of the entropy are shown in Fig-3.24 in false colors. The light white lines represent
isoentropic lines. We see that all experimental points are compatible with the isentropic
curves spanning the entropy range S/Nbec = 0.8(1) kB. These observations are consistent
with our assumption that the lattice ramps create a series of thermal equilibrium states
that we go through adiabatically conserving the entropy, thus certifying the experimental
adiabatic preparation of equilibrium states of the 3D Bose-Hubbard model.

How can we understand the evolution of the isoentropic curve with u? For the moderate
entropy values of the experiment, we observe two asymptotic regimes, the superfluid regime
(u ≤ 25) in which the isoentropic curves grow slowly with u, and the Mott insulator
regime (u ≥ 35) in which the isoentropic curves grow more rapidly. At low values of
u, the growth can be understood with Bogoliubov theory. As seen in Chapter 1, the
speed of sound depends on the strength of the interactions and therefore increases with u
(c ∝

√
u), decreasing the density of states. The temperature dependence of the entropy

is then ∼ T 3/u2 [84] so that the isoentropic curves S/NbeckB = s0 should grow as T ∼
s

1/3
0 u2/3 (this holds for the homogeneous case and low energies in which the dispersion

relation is phononic). On the other hand, in the Mott insulator regime, the entropy writes
S/NbeckB ∼ exp(−∆/T ) where ∆ ∼ u is the Mott Insulator gap, giving T ∼ u along the
isoentropic curves [70]. Explaining the plateau linking the two asymptotic regimes would
require a more detailled study that falls out of the scope of this thesis and will be the
subject of future works.

In addition, we measured the entropy per particle S0/NbeckB in the BEC before loading
it into the lattice to see if it matches the entropy measured in the lattice. To evaluate S0,
we use the relation for a non-interacting, partially-condensed Bose gas in a harmonic trap
[129]:

S0/NbeckB = 4g4(1)
η(3) (1 − fc) (3.22)

with g4(1) ≃ 1.082, η(3) ≃ 1.2026 and fc the condensed fraction. In the ODT, the thermal
energy significantly exceeds the interaction energy, kBT ∼ h×2380 Hz ≫ µ ∼ h×350 Hz,
meaning that interactions should be negligible, allowing us to use the above equation to
find S0/Nbec = 0.72(7) kB with fc = 0.80(7). We compare on Fig.-3.25 the measured
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Figure 3.25: Entropy per particle for various values of u. Almost all points are compatible
with the BEC entropy S0/Nbec = 0.72(7) kB.

BEC entropy to the one measured at the various values of u in the lattice. In the region
close to u ≃ 30 where the error bars are the smallest, we get an excellent agreement,
confirming that the loading of the lattice is adiabatic.

3.3.3 Fischer information and Cramér-Rao bound

The attentive reader would have noticed on Fig.-3.24 that the vertical error bars on the
experimental temperatures and entropies vary significantly with u and are smaller close
to the quantum critical point. This comes from the fact that the momentum distribution
is far less sensitive to the effect of the temperature deep in the Mott Insulator phase
as the opening of the energy gap ∆ in the excitation spectrum for excitations near the
center of the trap supresses thermal effects for T ≤ ∆. The variation of the error bars
is quantified by the concept of Fisher information. This quantity was introduced by
Fisher [61] as a mean to quantify the amount of information carried by the distribution
of a random variable about a given parameter. In our case, we want to know how well we
can determine the parameter temperature by looking at the momentum distribution. The
Fisher information writes [157]:

I(T ) =
∑

k

ρ̃QMC(k, T )
NT

[
∂ log (ρ̃QMC(k, T )/NT )

∂TJ

]2
(3.23)

where NT is the normalization of ρ̃QMC(k, T ) summed over all k.

The Fisher information tells us what is the minimum uncertainty δT with which we
can evaluate the temperature through the Cramér-Rao bound that writes (valid when
entanglement is not playing a role):
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Figure 3.26: Fischer information as a function of the reduced temperature TJ and u plotted
alongside the experimental temperatures. We observe that the size of the error bars is
directly linked to the value of the Fischer information and minimum at the phase transition
signaled by the yellow line.

δTJ = kBδT

J
≥ (δTJ)min = 1√

I(T )Nruns
(3.24)

Translating the equations into words, the Fisher information tells us how sensitive the
momentum density is to variations of the temperature and consequently how precisely
we can estimate the temperature by measuring ρ̃QMC(k, T ) with finite statistics. We
computed the Fisher information across the phase diagram as shown in Fig.-3.26. We see
that the Fisher information varies quite a lot, over 4 orders of magnitude. It takes its lower
value in the deep Mott region, while it is at its maximum for temperatures where the gas
undergoes its transition to a normal gas (yellow line), consistently with our error bars that
we can now compare to the Cramér-Rao bound. We estimated that the typical uncertainty
on the reduced temperature is δTJ ∼ 0.3 in the superfluid regime and δTJ ∼ 1.5 in the
deep Mott regime. The former corresponds to I(T ) ∼ 1 and (δTJ)min ∼ 0.4 and the
latter to I(T ) ∼ 10−3 and (δTJ)min ∼ 1.3. Close to the Mott transition, I(T ) ∼ 7 and
(δTJ)min ∼ 0.02. With the parabolic fit method of Fig.3.23, we evaluate (δTJ) = 0.03
at u = 30, thus nearly reaching the Cramér-Rao bound. We are thus always close to
saturating the limit set by the Fisher information, meaning that we essentially extract
all the possible information on the temperature from the measurement of the momentum
density.
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3.4 Characterisation of two-body collisions in the time-of-flight dy-
namics

Before using our experimental setup to look for the k/−k correlations of the quan-
tum depletion, it is crucial to benchmark it and test whether the measured distribution
ρTOF(r, tTOF) indeed maps the in-trap momentum distribution ρ(k) or is perturbed by
interactions effects occuring during the TOF. In Chapter 2, we have seen that the inter-
actions can be conveniently treated thanks to the mean-field approximation. Under this
approximation, the effects of interactions are expected to be negligible. This hypothe-
sis was verified by comparing the experimental data to QMC calculations of the in-trap
momentum distribution, obtaining a very good agreement [29]. For more details on this
measurement, we refer the reader to the previous manuscripts [25, 28].

The precision set by this kind of benchmarking procedure is totally suited for experi-
ments aiming to measure the in-trap momentum density of the gas, e.g. to extract the
temperature of the gas as described in the previous section. However, to measure corre-
lations between individual particles, we need to be more precise and look for interaction
effects that cannot be described by the mean-field approximation. The only likely inter-
action effects of the kind in our experiment are two-body collisions. This section will
detail how these collisions occur and how to experimentally characterize them to determine
whether they perturb significantly the measured distribution or not.

3.4.1 Presentation of the problem

As we have seen in Chapter 2, the momentum distribution of the lattice gas in the super-
fluid region of the phase diagram is made of copies of the BEC of momentum jkdei with
j ∈ Z and i = x, y, z. During the TOF, it is possible to observe s-wave collisions between
the atoms of these different BEC copies [76]. Let us then for instance consider the case of
a collision between an atom in the copy j = 0 with initial momentum ki1 = 0 and one in
the x copy j = 1 with initial momentum ki2 = kd ex. If we write these momenta in the
center-of-mass reference frame, we rather get ki1 = −kd/2 ex and ki2 = kd/2 ex. As the
collision is elastic, the momentum and kinetic energy are conserved so that the momenta
of the atoms kf1 and kf2 after the collision write:

ki1 + ki2 = kf1 + kf2 = 0 (3.25)

ℏ2k2
1f

2m +
ℏ2k2

2f

2m = ℏ2k2
d

2m (3.26)

This means that k1f and k2f must have equal norms kd/2 and be antiparallel. Their
direction is a priori random. After the collision, the atoms then end up on a sphere
of diameter kd in momentum-space as illustrated on Fig.-3.27. For a large number of
collisions, all the atoms that underwent a collision form a spherical halo that we can
observe experimentally.

We understand that this effect is detrimental to our measurement, as the collision
process changes the momentum distribution of the gas during the TOF, meaning that we
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Figure 3.27: Elastic collisions between copies of the condensate. (a) Sketch of the ex-
periment along one axis. During the TOF, diffracted copies of the BEC form as a result
of the lattice trapping potential. Two-body collisions can occur between these different
diffracted copies and manifest themselves as spherical halos. (b) Illustration of the mo-
mentum conservation rule explaining the spherical shape of the scattering halos.

do not measure the true in-trap momentum distribution. However, the scattering halos
are not visible for the low atom numbers we wish to work with for the observation of the
k/−k pairs of the quantum depletion. While this is a good sign, we would like to know
precisely how likely it is for a two-body collision to happen in these conditions so that
we can safely apply the ballistic relation. We will then deliberately load a large number
of atoms in the optical lattice to observe clear scattering halos and count the number
of atoms inside of them in order to validate a simple classical model that we will use to
predict the number of collisions at the low atom numbers we wish to use.

3.4.2 Classical model

We will start our study by devising a simple classical model to evaluate the number of
collisions before checking its validity experimentally. To illustrate the idea behind it, we
compute the number of collisions between the condensate copies j = 0 and j = 1. The
first step is to evaluate the collision rate of one atom at position r at time t belonging to
the j = 0 BEC copy with all the atoms in the copy j = 1. This rate writes [36, 122]:

Γcoll = n1(r, t) × σ × v0,1 (3.27)

where n1 is density of the copy j = 1, v0,1 = vd = ℏkd/m the relative velocity of the two
copies and σ = 8πa2

s the scattering cross-section, with as the s-wave scattering length (we
remind that as = 7.5 nm for 4He∗). To obtain the total number of collisions, we integrate
over all particles of the copy j = 0 and over the time interval during which the copies
spatially overlap. If we wish to obtain the number of collisions for all first order copies,
we can simply multiply this number by 6 to finally obtain:
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Ncoll = 6
∫
dt

∫
dr σvdn0(r, t)n1(r, t) (3.28)

To evaluate this quantity, we need to determine the density profiles nj(r, t). While a
full description of the TOF dynamics would be way too complicated in the frame set by this
simple model, the densities can be evaluated by considering the different energies and time
scales of the problem. The shortest time scale is set by the frequency of a lattice site ωsite
to which we associate the corresponding harmonic oscillator length ah.o. =

√
ℏ/mωsite .

From this, we compute the time scale t0 ≃ mdah.o. /h ≃ 1 µs on which the wave-functions
of the different sites overlap. After a few t0, the overall density profile is smoothed with
a total size hardly larger than the in-trap size L and a lower density than that in the
trap. In turn, the densities profile are then well described by the Thomas-Fermi parabolic
profile of the BEC nBEC(r).

We also need to consider other timescales, much larger than t0 and associated with:

• The spatial separation of two copies tsep ∼ 2L/vd ∼ 0.1 ms.
• The expansion of the BEC driven by its kinetic energy tkin ∼ mL/ℏ∆k ∼ 10 ms

where ∆k is the momentum width of the BEC.
• The expansion of the BEC under the effect of the mean-field potential tMF.

We note that when the size of the trapped gas is much larger than the lattice spacing
L ≫ d (which is typically the case in our experiment), we get ∆k ≪ kd explaining why
we obtain tsep ≪ tkin. Things are more complicated for tMF as it depends on the number
of atoms and can be of the order of tsep. From this, we consider two scenarios: one where
the number of atoms is small enough so that mean-field effects can safely be neglected,
and one where they must be accounted for.

Scenario 1: mean-field effects are negligible

In this scenario, the size of the BEC copies increases in time only through the effect of
kinetic energy. As we have seen that tsep ≪ tkin, we understand that the size of the density
profiles hardly changes during the interaction time, i.e before separation of the different
BEC copies. We can therefore safely assume that the shape of the density profiles does
not change during the interaction time, allowing us to evaluate analytically equation 3.28
to obtain:

Ncoll = 48α0α1
315

(15Nbec as

L

)2
(3.29)

where we have introduced the coefficients αj denoting the fraction of the total atom number
in one of the copies j. The scaling Ncoll ∝ a2

sN
2
bec /L

2 is identical to what was found in
previous works describing the collisions between two BECs [174, 175].

Scenario 2: mean-fields effects are not negligible

In this scenario, it is not possible anymore to assume that the shape of the density profiles
does not change during the interaction time, making the calculation of equation 3.28 much
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more complicated and beyond the scope of this thesis. This is however not really important
as the goal of this experiment is to determine the number of collisions at low atom number.
If we are able to find atom numbers for which the collisions spheres are visible while the
mean-field effects are negligible, we will be able to validate our simple model and use
it to predict the number of collisions at low atom numbers. We must however keep in
mind that the analytical model of equation 3.29 should fail at high atom numbers. The
expansion of the BEC copies induced by the mean-field effects implies a decrease of the
density compared to Scenario 1, meaning that we should observe less collisions that what
is predicted from equation 3.29.

Actually, it is possible to discriminate between the two scenarios by looking at the
width of the collision spheres. When the expansion is ballistic, i.e in Scenario 1, the
width of the collision sphere that we will note δks is equal to the in-trap momentum
width ∆k ∝ 1/L and should therefore decrease when the total number of atoms increases.
On the contrary, δks is increased in Scenario 2 because of the additional kinetic energy
resulting from the mean-field interaction potential, meaning that δks increases when the
strength of mean-field effects increases, i.e when the atom number increases. We therefore
expect the variations of δks with the total atom number Nbec to show a minimum that
signals the crossover between Scenarios 1 and 2.

3.4.3 Data analysis

We show on Fig.-3.28 the typical detected momentum distribution on which we can see
clear scattering halos. We produce a variety of data sets to test the effect of the atom
number and of the lattice amplitude. The procedure to count the number of collisions is
as follows:

1. For each scattering halo, we restrict the analysis to a small slice so that we exclude
the region where the halo intersects with the condensate peaks or other scattering
halos as illustrated on the inset of the Fig.-3.29.

2. We calculate for each atom in the slice the momentum distance to the center of the
sphere kr and compute the histogram N (kr) of the number of atoms located at a
distance kr. The size of the bins is 0.01 kd.

3. We account for the efficiency of our detection process αD by multiplying the value of
each bin of the histogram by 1/αD. Careful, as this experiment was done before the
implementation of the Raman transfer, the efficiency was lower than measured in
3.2.6. A full calibration as the one previously described was not possible as we could
not observe clean Rabi oscillations because of the much smaller Rabi frequencies.
We therefore measured αD by recording diluted distributions of Mott insulators to
avoid saturation effects and comparing them to absorption images for which we can
precisely know the number of atoms. We obtained 1/αD = 15.5(1.0).

4. We obtain histograms such as represented on Fig.-3.29 in which we observe a peak at
kr = 0.5 kd signalling the presence of the scattering halo. We remove the contribution
of the background that corresponds to the quantum and thermal depletion and fit
the peak with a Gaussian function to obtain the width of the halo δks and the
number of atoms in the slice of scattering halo.

5. Assuming spherical symmetry, the total number of scattered atoms is obtained by
integrating the value measured in the slice over the entire sphere.

6. We finally obtain the number of detected collisions N exp
coll by summing the number of
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Figure 3.28: 3D momentum distribution of a superfluid lattice gas. The s-wave scattering
halos are clearly visible (the BEC peaks are saturated for the scattering halos to be visible).

scattered atoms measured in the different halos. Note that we use only 5 of the 6
first order halos as one of them is partially falling out of the MCP.

Width of the scattering halos

We show on Fig.-3.30 the measured RMS widths of the scattering halos δs as a function
of the atom number. The error bars are obtained from the error on the Gaussian fit. We
observe a minimum around N0 ≃ 1.7 × 105 at which the mean-field effects start playing
a significant role. This first result is consistent with the simple picture drawn previously
where we identified two regimes distinguished by the different roles played by the mean-
field potential during the TOF.

Evolution with total atom number

We plot on Fig.-3.31 panel (a) the evolution of the number of collisions with the total
atom number at a fixed lattice amplitude s = 5. The vertical error bars account for the
standard error of the mean on N exp

coll and the uncertainty on the detection efficiency. The
horizontal error bars depict the standard deviation on Nbec. The dashed line represents
the analytical model of equation 3.29 where the effect of the atom number is contained
in the term (Nbec/L)2 giving in the Thomas-Fermi approximation Ncoll ∝ N

8/5
bec . While

we find a good agreement with the experimental data at low atom number and without
any adjustable parameters, we find that the analytical model overestimates the number of
collisions for Nbec > N0. Once again, these results are in line with our simple model even
at the quantitative level when the mean-field potential does not affect the TOF dynamics
(Nbec < 2×105). In addition, we plot the probability of collision per atom η1 = N exp

coll /Nbec
in panel (b) of Fig.-3.31.
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Figure 3.29: Atom numbers histograms as a function of the momentum distance kr to
the center of the scattering halo. We show histograms for different total atom numbers
Nbec for a fixed lattice amplitude s = 5. Inset: two-dimensional cut at kx = 0 through
the 3D distribution. The orange region indicates where the number of scattered atoms is
calculated.

Figure 3.30: RMS width δks of the scattering halos as a function of Nbec. The red dashed
line is a guide-to-the-eye. The red shaded area signals the crossover between the two
scenarios described in the main text.
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Figure 3.31: (a) Experimental number of collisions N exp
coll between the copies j = 0 and

j = 1 as a function of the atom number Nbec at a fixed lattice amplitude s = 5. The
dashed line is the analytical model of equation 3.29. (b) Probability of collision per atom
η1 = N exp

coll /Nbec. The inset shows a zoom for low atom numbers.

Evolution with lattice depth

We plot on Fig.-3.32 the evolution of the probability of collision per atom η1 with the
lattice amplitude s at a fixed total number of atoms Nbec = 3.9(4) × 105. As we have
seen in Chapter 2, the lattice amplitude changes the population of the BEC copies and
therefore the coefficients α0 and α1 appearing in 3.29. At very low lattice amplitudes, the
population in the diffracted peaks is very small, α0 ≃ 1, α1 ≃ 0, meaning that the number
of collisions is very low. As s increases, the number of collisions increases as α1 increases.
With s > 5, we start populating higher orders of diffraction, thus reducing the number of
collisions between the copies j = 0 and j = 1. This explains the non-monotonic behavior
of the analytical model that is well reproduced by the experimental data. Once again, the
model overestimates the number of collisions as Nbec > N0.

3.4.4 Conclusion

Now that we have validated that our simple model properly works for low atom number,
we can extrapolate the probability of collision per atom for the typical atom numbers (a
few 103) that we wish to use for the k/−k correlation experiment. For Nbec ∼ 5 × 103,
we find as shown on the inset of panel (b) of Fig-3.31 that the probability for an atom
to collide during the TOF is η1 ∼ 10−3 which is extremely low. Before reaching our final
conclusion, we need to discuss the contribution of other possible scattering halos, such
as the one involving higher order copies j ≥ 2 or between two first order copies. These
halos are more diluted because of a lower number of collisions and larger volume and are
in turn not visible in the experiment, but might contribute significantly at high values of
s. We can evaluate their contribution by setting the appropriate values of αj in equation
3.29. We obtain an upper bound by considering the extreme situation where the number
of copies would be as large as the number of atoms and find that this increases η1 by only
a factor 3, meaning that the measured probability η1 gives a good estimate of the total
probability of collisions. We can therefore safely conclude that two-body collisions will be
negligible in our k/−k pair experiment where only a few 103 atoms are loaded into the
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Figure 3.32: Probability of collision per atom η1 as a function of the lattice depth s at a
fixed atom number Nbec = 3.9(4) × 105. The blue dashed line is the analytical model of
equation 3.29.

3D lattice. This results completes the previous benchmarking experiments [29], proving
that the ballistic relation applies in our experiment.

3.5 Conclusion

We have seen in this chapter how metastable Helium 4He∗ can be brought to quantum
degeneracy and how to make use of the properties of the metastable state to implement
a 3D single-atom resolved momentum detection technique. Importantly, the population
transfer method to decouple the atoms from the magnetic field before the TOF was im-
proved by replacing the former RF transfer by an optical two-photon Raman transfer with
two advantages: (i) contrary to the RF transfer where the transfer efficiency is limited
to 50% because of the three sub-levels structure of the 23S1 state, we can achieve full
population transfer with two-photon Raman transfer, (ii) we can reach much higher effec-
tive Rabi frequencies and use shorter pulse durations for which the transfer is unaffected
by fluctuations of the magnetic field. We thus improved the detection efficiency by more
than a factor ∼ 4. This improvement is of primary importance for k/−k correlations
measurement as it enhances the probabilty to detect a k/−k pair by a factor 16. Finally,
we have certified our ability to adiabatically prepare the gas in the optical lattice in the
vicinity of the Mott transition and studied the effects of TOF s-wave two body collisions
to ensure that the momentum distribution is not perturbed during the TOF at the single
atom level, so that the measured distribution indeed reveals the in-trap distribution. All
the lights are then green to proceed with the actual measurement of k/−k correlations as
we will now see.
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Chapter

The weakly interacting Bose gas has been the subject of a large variety of experimental
studies, both aiming at measuring the Bogoliubov spectrum of excitations [63, 112, 119,
150] as well as the quantum depletion [33, 106, 166]. However, even though there have been
experimental measurements of the Lee, Huang and Yang beyond-mean field correction to
the ground-state energy [114, 145], an experimental study of the correlations in the many-
body ground-state, and more precisely the observation of the k/−k pairs, is yet to be done
more than 60 years after their prediction [103]. As we have seen through the different
chapters of this thesis, our experimental setup is perfectly suited for such an investigation.

We will present in this chapter the main result of this thesis, namely the observation of
the k/−k pairs of the quantum depletion [155]. We will detail the numerical procedure and
the analysis method used to extract the correlation signals and present the experimental
results. With the theoretical developments of Chapter 1, we will show how we can link
the measured anomalous correlation signal to the k/−k pairs of the quantum depletion
by studying the effect of temperature, the widths and amplitudes of the correlation peaks,
as well as the fluctuations of the atom number difference between modes k and −k. In
addition, we will show how our measurement constitutes a first step towards showing the
presence of momentum-space entanglement in many-body equilibrium states. We will
finally discuss some preliminary results on the evolution of the correlation signals with the
region of momentum-space they are probed in.

4.1 Numerical procedure to extract two-body correlations

As seen in the previous chapter, we are capable for each experimental run of reconstructing
the 3D momentum coordinates of every atom detected by the He∗ detector. We must
now devise a numerical procedure to extract the two-body correlation signals from this
raw data. Our goal is then to compute the general normalized second-order correlation
function:
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g(2)(k,k′) = ⟨â†
kâ

†
k′ âkâk′⟩

⟨â†
kâk⟩⟨â†

k′ âk′⟩
(4.1)

We recognize that ⟨â†
kâk⟩ is the momentum density ρ(k) in mode k. We remind the result

of Chapter 1 for weakly-interacting bosons that the g(2) function will take values different
from 1 in two cases:

• For k′ ≃ k, the normal correlations corresponding to the Hanbury Brown and Twiss
effect also known as bosonic bunching.

• For k′ ≃ −k, the anomalous correlations signalling k/−k pairs in the quantum
depletion.

In practice, plotting the g(2) function is not straightforward. On the one hand, the
function here is 6D and thus hard to plot in an intelligible way. On the other hand,
obtaining a sufficient signal-to-noise ratio for correlation measurements between single
modes k and k′ whose volume is typically (1/LBEC)3, with LBEC the size of the BEC, is
hardly possible. The idea is then to average the g(2) function over a large volume Ωk of
the momentum-space and introduce a new parameter δk to write:

g
(2)
A (δk) =

∫
Ωk

⟨â†
kâ

†
δk−kâkâδk−k⟩dk∫
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Ωk
ρ(k)ρ(δk + k)dk

(4.3)

With this definition, we see that for δk = 0, we are either looking at anomalous k/−k
correlations (equation 4.2) or normal k/k correlations (equation 4.3). Note that the ab-
sence of a subscript (N,A) in the following denotes a general calculation valid for both
normal and anomalous correlation functions. We reduced the 6D function to a 3D function
of the parameter δk which equals 0 when the correlation condition k′ = ±k is fulfilled.
This gives us a natural way to evaluate g(2)(δk) with the experimental data: we com-
pute the values of the parameter δk for every detected atom pairs in an experimental
run by calculating their momentum sum or difference for anomalous and normal correla-
tions respectively. By computing the histogram of these values and averaging over many
experimental runs, we evaluate the numerator of equation 4.2 or 4.3 respectively.

4.1.1 Description of the algorithm

The algorithm described here is similar to the one used in our previous works [26, 30]
and detailed in [25, 28]. This previous version was mainly designed for the observation of
bosonic bunching. I adapted the algorithm to make it suitable for the calculation of k/−k
correlations as well, as we will discuss now.
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Numerator calculation

The first step is to compute the numerator of equations 4.2 or 4.3 that we denote G(2)(δk).
We note Nruns the number of experimental runs and Ni the number of atoms in the i-th
shot. The procedure is as follows:

Algorithm 1 G(2) calculation
for i = 1 : Nruns do

for j = 1 : Ni do
for p = 1 : Ni do

Compute δk = kj ± kp

Increment the corresponding voxel in 3D histogram G(2)

end for
end for

end for

We end up with a 3D histogram where each voxel is associated to a value of δk =
(δkx, δky, δkz) and records how many atom pairs have this specific momentum sum or
difference, depending on the kind of the correlations probe. The voxels are set to be
cubic of dimension ∆k∥. The value of ∆k∥ is adapted so that we can properly resolve
the correlation peaks while ensuring a proper signal-to-noise ratio. In practice, we use
∆k∥ = 1.2 × 10−2 kd for k/−k correlations and ∆k∥ = 6 × 10−3 kd for k/k correlations as
the correlation peak is narrower than the anomalous one (see 1.4).

The major difference with the previous version of the algorithm (see Appendix of [26])
is that we record here the full 3D histogram of calculated δk on every pair of atoms. The
procedure was originally made simpler by calculating three one-dimensional histograms,
one for each direction of space. Each of these histograms represents a one-dimensional cut
of the general 3D correlation function G(2)(δk). For instance, to obtain the x direction
histogram, for the atom j in run i, we calculate δkx only for atoms p close enough in
momentum-space to find a k/k correlation, i.e with |k(j)

y −k
(p)
y | ≤ ∆k⊥ and |k(j)

z −k
(p)
z | ≤

∆k⊥, where ∆k⊥ defines a transverse integration (see later). This method obviously saves
computing time and RAM space, but is not suited to look for k/−k correlations.

At this point, we record in the central voxels associated to δk ≃ 0 what we call
true coincidences, namely two atoms detected conjointly as a result of k/−k pairing
or bosonic bunching. However, we also record accidental coincidences that do not
represent correlations but result from the momentum distribution of the atoms. We then
need a normalization process to get rid of the contribution of accidental coincidences, i.e
a method to compute the denominator of equation 4.2 or 4.3.

Denominator calculation

We now compute the denominator of equation 4.2 or 4.3, representing the effect of acciden-
tal coincidences. To perform this calculation, we would like to use a sample of uncorrelated
atoms with the same momentum density than our experimental data. This can be done
by merging all experimental shots together, each shot being uncorrelated with one an-
other. We then apply the procedure we have just described to this data set. However,
the correlations present within single shots remain in this large file. In the end, the total
number of correlations in the numerator is ∑iN

2
i whereas the number of coincidences in
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the merged file is (∑iNi)2. With N̄ the mean number of atoms per shot, we see that:

∑
iN

2
i

(∑iNi)2 = NrunsN̄
2

N2
runsN̄

2 = 1
Nruns

(4.4)

Therefore, with enough shots (we use Nruns = 2×103 in the experiment), the contribution
of residual coincidences is negligible and the normalization procedure valid.

In the end, the integrated g(2) function is obtained by dividing the numerator histogram
by the denominator and multiplying by the normalization factor (

∑
i

Ni)2∑
i

N2
i

that takes into
account the number of coincidences of the numerator and denominator. Note that it is
possible to take a fraction of all atoms for the denominator calculation to avoid large
computation time. This is particularly handy to have quick first results before launching
longer calculations for a nicer signal-to-noise ratio.

4.1.2 Saturation of the detector and reconstruction errors

As we have seen in 3.2.4, the algorithm reconstructing the positions at which the atoms fall
on the MCP can give wrong results when the atomic flux is too high, which is typically the
case with the very dense condensed diffraction peaks. This effect is particularly detrimental
to the measurements described in this chapter as it artificially creates k/−k pairs. To
circumvent this issue, we remove from the analysis the momentum region where |kz| <
0.05 kd which corresponds to the region where the wrongly reconstructed BEC atoms
are, at the expense of losing some possible “true” pairs located in this region. We check
that the wrongly reconstructed atoms have been correctly removed from the analysis by
watching the saturation cross disappear as illustrated on Fig.-4.1.

4.1.3 Transverse integration

Now that we know how to numerically obtain the 3D histogram of the g(2) function,
we must discuss how to represent the data. One of the most natural and intelligible
way to do so is to plot 1D cuts of the g(2) function along the three direction of space
to properly visualize the 3D correlation peak located in δk = 0. To extract a 1D cut
along the x direction for instance, we could simply take the line of voxels verifying δky =
δkz = 0. However, this is often not sufficient to have a proper signal-to-noise ratio. We
therefore rather average the values of several voxels lines associated to δk values verifying
|δky, δkz| ≤ ∆k⊥ as illustrated on Fig-4.2, where ∆k⊥ defines the transverse integration.
Note that this procedure applies for both normal and anomalous correlation functions.

We now write what is the signal that is plotted when this process is applied. The
theoretical, normalized and integrated two-body correlation function is well modelled in
first approximation by a 3D Gaussian function:

g(2)(δk) = 1 + η0
∏

i=x,y,z

exp
(

−δk2
i

2σ2
i

)
(4.5)
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Figure 4.1: Correction of software saturation. (a) Time integrated 2D MCP image, un-
corrected, with the saturation cross as already shown in 3.2.4. (b) Same image where the
region |kz| < 0.05 kd has been removed. The saturation cross has disappeared.

Figure 4.2: Illustration of the transverse integration. Every voxel contains the value of the
g(2) function for a given value of δk = (δkx, δky, δkz). The figure illustrates the procedure
to take a 1D cut in the x direction: we average over several pixel lines to increase the
signal-to-noise ratio. This is the transverse integration ∆k⊥ as defined on the schematic.
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where we introduce η0 the amplitude of the correlation peak and σi the RMS width of the
correlation peak in direction i = x, y, z. Importantly, we have assumed that the different
correlation axes are separable. We re-write this equation to account for the transverse
integration process, with the example of a cut along the x direction:

g(2) (δkx) = 1
(2∆k⊥)2

∫∫ ∆k⊥

−∆k⊥

1 + η0
∏

i=x,y,z

exp
(

−δk2
i

2σ2
i

)
dδkydδkz

 (4.6)

This expression can be analytically evaluated and writes:

g(2) (δkx) = 1 + η0
2πσyσz

(2∆k⊥)2 exp
(

−δk2
x

2σ2
z

)
erf
(

∆k⊥√
2σy

)
erf
( ∆k⊥√

2σz

)
(4.7)

Note that we have here neglected the small longitudinal integration induced by the
size of the voxel, which is typically 3 times smaller than the RMS width of the correlation
peaks in our experimental data. In addition, we assume that the correlation peaks are
isotropic as the lattice potential and then the spatial size of the gas are isotropic, giving
σx = σy = σz = σ. We thus see that when measuring any correlation peak amplitude with
a Gaussian fit on a 1D cut of the g(2) function, we get a reduced amplitude η that writes:

η(∆k⊥) = η0 × 2πσ2

(2∆k⊥)2

[
erf
(∆k⊥√

2σ

)]2
(4.8)

The idea is then to measure η for several values of ∆k⊥ and fit the data with equation
4.8 with η0 and σ as free parameters. This is illustrated on Fig-4.3 and Fig.-4.4 for k/k
and k/−k correlations respectively. For a single value of the transverse integration, η is
obtained by averaging the 3 amplitudes fitted on the 1D cuts along the 3 directions of
space. The uncertainty on the parameters of the fit defines the error bars on the amplitude.

In addition, we have checked that the transverse integration process does not signif-
icantly change the width of the correlation peak as shown on the inset of Fig.-4.4. The
extracted width is therefore the fitted width at the lowest transverse integration for which
we get a satisfactory signal to noise ratio.

4.1.4 Benchmarking of the algorithm with two-body scattering spheres

Before using the algorithm to look for k/−k pairing signal in the depletion of a weakly-
interacting Bose gas, it was crucial to test it on a data set with a large number of k/−k
pairs to certify that it was working properly. Luckily, we could re-use the data taken for
measuring two-body collisions during the time-of flight described in Chapter 3. Indeed,
because of the elastic character of the collision, every atom on a scattering sphere is
correlated with a partner on the other side of the sphere, yielding k/−k correlations in
the reference frame of the center of mass of the colliding BECs [85, 123]. In addition to
the 3D diffraction data that we already presented, we also acquired data in a single lattice
beam configuration to induce 1D diffraction and obtain only two scattering spheres (see
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Figure 4.3: Fitted amplitude of the normal correlation peak ηN as a function of the
transverse integration ∆k⊥ for data sets with different condensed fraction. The data is
fitted with model defined in equation 4.8 with η0 and σ as free parameters. This method
allows us to extract the amplitude at zero transverse integration η0,N .

Fig.-4.5). The advantage is that we have a large number of atoms in these scattering
spheres, making the analysis easier.

Contrary to the k/−k correlations of the quantum depletion, we de not expect a
correlation peak at δk = 0. If we consider for instance collisions between the 0th and
1st orders of diffraction along z, the overall momentum before and after the collision is
kdez (ez is the unitary vector of the z axis), so that the sum of the momenta of the two
correlated atoms after the collision must be kdez. We thus expect a correlation peak for
each sphere, one at δk = (0, 0,+1 kd) and one at δk = (0, 0,−1 kd).

We run the algorithm on the experimental data and obtain the results shown in Fig.-
4.6. We observe two correlation peaks at the expected locations! We can now extract the
widths and amplitudes of the peaks with a Gaussian fit and see if they match with the
results of [154] detailled in Chapter 3. We find RMS widths of σA = 2.3(9) × 10−2 kd and
σA = 2.7(8) × 10−2 kd for the spheres centered on −kd and +kd respectively, the error
bars being given by the uncertainty on the fit coefficients. This is consistent with the
measured widths of the scattering halos presented in 3.4.3, namely δks = 2.1(9) × 10−2

for Nbec = 1.25 × 105 close to the total number of atoms used here. The prediction
of the amplitude is rather straightforward in this configuration as we know that every
atom on the sphere has a momentum correlated partner, allowing us to compare it to the
experiment. To count the experimental number of detected pairs, we use the following
procedure:

1. The voxel size is increased to ∆k∥ = 0.25 kd so that a single voxel contains the
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Figure 4.4: Fitted amplitude of the anomalous correlation peak ηA as a function of the
transverse integration ∆k⊥ for data sets with various average densities ρ̄Ωk

(see later).
The inset represents the fitted width σA as a function of the transverse integration ∆k⊥.
No significant effect can be observed within the error bars.

Figure 4.5: 1D diffraction and associated scattering spheres. Note that while the condensed
peaks are shown here, they are removed before calculating the correlations.
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correlation peak entirely to count all true correlations.
2. We count the number of coincidences Nnumerator in the voxel centered on a correlation

peak of the numerator histogram of equation 4.2.
3. We count the number of coincidences Ndenominator in the same voxel of the denomi-

nator of equation 4.2 to evaluate the number of accidental coincidences.
4. As the numerator contains both true and accidental coincidences, we evaluate the

number of true coincidences by subtracting the number of accidental coincidences
and taking into account the normalization factor:

2Npairs =
(
Nnumerator −Ndenominator

)
×

∑
iN

2
i

(∑iNi)2 (4.9)

where the factor 2 is added as we define Npairs as the number of pairs and we rather
obtain the number of paired atoms with this formula.

We find that the average number of detected pairs per run is Npairs/Nruns = 6.25. This
number must be compared to the number of pairs that we expect from the number of
atoms in the spheres that we evaluate using the following procedure:

• Writing Ntot the total atom number in a given sphere, we know that we should
detect Ntotα

2
MCP/2 correlated pairs, where αMCP is the detection efficiency of the

He∗ detector.
• The number of detected atoms in the considered sphere is simply NtotαMCP. Mul-

tiplying this measured number by αMCP/2, we thus obtain the expected number of
correlated pairs.

We find that we expect to detect 8.5(5) pairs per run which is rather consistent with
the number of detected pairs per run. The uncertainty is given by the uncertainty on
the detection efficiency. Note that as this experiment was done before the implemention
the two-photon Raman transfer scheme, the detection efficiency was lower than what was
calibrated in Chapter 3 and was equal to αMCP = 6.5(4)%.

4.2 Observation of the pair correlation signal

Now that we have determined the numerical procedure to extract the correlation signals
from the raw data, we look to apply it on our experimental data. In this section, we will
present the measured k/−k correlation signal of which we will try to understand the main
features. Our goal is to first identify clear arguments linking this signal to the quantum
depletion, before going into quantitative details that will be the subject of the next section.

4.2.1 Accessing the BEC depletion

In order to detect k/−k pairs in the depletion, it is absolutely crucial to remove from the
analysis all atoms belonging to the BEC and its diffracted copies as explained in Chapter
1 1.5.1. For each recorded data set and before running the algorithm, we remove all atoms
outside the volume Ωk that we design to exclude momentum regions with condensed atoms
as illustrated on Fig-4.7. We set Ωk to have a cubic symmetry that matches the symmetry
of the momentum distribution in a cubic lattice. We remove all atoms with |ki| < kmin
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Figure 4.6: 1D cut of the anomalous correlation function g(2)
A along the z axis. We observe

two correlation peaks, one for each correlation sphere. The longitudinal size of the voxels
is ∆k∥ = 2 × 10−2 and the transverse integration ∆k⊥ = 9 × 10−2.

and |ki| > kmax where ki is the momentum projection along an axis i = x, y, z. We use
kmin = 0.15 kd, corresponding to ∼ 6 times the RMS width of the BEC peaks, in order to
ensure that all condensed atoms have been removed. The high limit is set to kmax = 0.85 kd

to exclude higher order peaks and is slightly smaller than the momentum range probed
by the He∗ detector. In terms of healing length, this corresponds to 0.85 ≤ |k|ξ ≤ 1.15, i.e
the region where the phononic character of the Bogoliubov quasi-particles is negligible and
thus where finite temperature excitations do not contribute to the anomalous correlations
(see 1.3).

4.2.2 First characterization of the pair correlation signal

We now look to observe the k/−k pairs of the quantum depletion. We prepare a BEC with
a target number of Nbec = 5 × 103 atoms in an optical lattice of amplitude V = 7.75 Er.
With this lattice amplitude, we are in the superfluid regime of the phase diagram in which
we expect the k/−k correlations: we measure a condensed fraction of 84% corresponding
to a depletion level for which the Bogoliubov theory is expected to hold (see Supp. Mat.
of [106]). In order to have sufficient statistics, we repeat the experiment ∼ 4, 000 times.
In practice, we cannot prepare BECs with the exact same number of atoms at each shot.
Note that the atom number fluctuations of large BECs of Nbec = 5 × 105 atoms are
below 10% but when we attempt to work with only Nbec = 5 × 103 atoms, shot-to-shot
fluctuations are much larger. We then need to post-select the data and remove runs with a
detected atom number falling too far from the target number. This is one of the strengths
of our experiment: as each atom has the same probability of being detected, we can select
shots with the good total atom number a posteriori with a precision unattainable with
optical imaging measuring densities. This must however be mitigated by the fact that
saturation effects reduce the number of detected atoms in a way that can be hard to
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Figure 4.7: 1D cut of the momentum density illustrating the integration volume Ωk. The
central peak corresponds to the BEC and the lateral peaks at ± kd to diffraction peaks
induced by the presence of the optical lattice. The green area shows the volume Ωk

containing the depleted atoms selected for the correlation measurement. While barely
visible in linear scale, they can be seen in the log scale plot shown in inset.

Figure 4.8: Number of detected atoms NMCP for each experimental runs of a data set. The
full red line represents the target detected atom number. The red shaded area between
the dashed lines illustrate the allowed fluctuations of the detected atom number. All runs
outside of the red area are rejected.
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predict precisely. We allow for 30% fluctuations around the target number (see Fig.-4.8)
and end up conserving around ∼ 2, 000 runs on which we run the algorithm.

Figure 4.9: 1D cuts through the anomalous correlation function g(2)
A along the axis of the

3D optical lattice. The transverse integration is ∆k⊥ = 3 × 10−2 kd and the longitudinal
voxel size is ∆k∥ = 1.2 × 10−2 kd. The data is fitted by Gaussian functions (solid lines).
The nice correlation peaks signal the presence of k/−k pairs. The error bars are obtained
from the inverse square root of the number of counts in the voxels.

We have plotted on Fig-4.9 1D cuts through the calculated g
(2)
A function on which we

see clear correlation peaks standing out from the noise! This is the kind of signal we were
aiming to obtain and constitutes the central result of this thesis. Before analyzing the
features of this correlation signal in more details, we conduct a first series of experimental
checks. First, we extend the range of δk on which we plot the g

(2)
A function to find

correlation peaks at δk = ±kd as shown on Fig.-4.10. This is something that we expected
from Bloch theorem (see 2.1) as the lattice is a periodic potential.

Furthermore, we check that there are no correlations in the coherent BEC state. We
do so by selecting atoms with |ki| < 0.04 kd with i = x, y, z. We show on Fig.-4.11
the calculated normal and anomalous correlation functions for the mode of the BEC. As
expected, both correlation functions are flat, except for a small modulation of the order of
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Figure 4.10: 1D cut of the anomalous correlation function g
(2)
A . Because of the lattice

periodic potential, we observe additional correlation peaks at ±kd.

1% that is an artifact of the normalization procedure caused by shot-to-shot fluctuations
of the width of the BEC (see [28]).

Now that we have observed an anomalous correlation signal, we must ask whether its
origin is indeed the one we expect, namely k/−k pairing in the quantum depletion as a
result of the interplay between interactions and quantum fluctuations. For starters, one of
the key specificity of the k/−k pairs of the quantum depletion is that they exist in an at-
equilibrium system. This is in strong contrast with out-of-equilibrium configurations
where non-linearities efficiently drive resonant processes. In these cases, both momentum
and energy are conserved. In fact, k/−k pairing in such out-of-equilibrium systems has
already been observed on various experimental platforms such as:

• Parametric down conversion in quantum optics [21].
• Dissociation of diatomic molecules in atomic physics [78].
• Elastic collisions in high energy physics [3] or with ultracold atoms [123] as we have

seen earlier (see Fig.-4.6).

A main difference with the k/−k correlation signal obtained in the scattering spheres
is that we observe here a peak located at δk = 0. This signals that the total momentum
of the atom pair is 0. As our system consists of an at-rest BEC, the pairing process could
not have resulted from an out-of-equilibrium effect. We remind here an important point of
1.2.5, which is that if we isolate a single collision, we find that the energy is not conserved
as the two colliding atoms acquire momenta k and −k meaning that the total kinetic
energy is 2(ℏ2k2/2m) ̸= 0. This shows that this effect cannot be explained classically
because of the origin of the pairs, namely the quantum fluctuations. The pairs cannot be
isolated as they form a single quantum state with the BEC, the many-body ground-state.
This point constitutes the novelty of our experimental observation.

While these first observations seem to point towards the fact that we are indeed seeing
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Figure 4.11: Normal and anomalous correlation functions in the BEC. The correlation
functions are flat, except for a small-amplitude modulation that is due to normalisation
issues induced by shot-to-shot fluctuations of the BEC width in momentum-space.

the k/−k pairing of the quantum depletion, we look to further characterize the correla-
tion signal and determine whether our observations are consistent with the results of the
Bogoliubov theory to prove this point. To this end, we will first study the effect of tem-
perature that is supposed to destroy the k/−k correlation signal linked to T = 0 quantum
coherences, as explained in Chapter 1 1.5.2.

4.2.3 Effect of temperature

The temperature can be increased in a rather simple manner by holding the atoms at the
final amplitude of the lattice for a longer duration, the gas being continuously heated over
time (attributed to imperfections such as spontaneous emission or mechanical vibrations).
We repeat the experiment with a holding time of 500 ms corresponding to hundreds of
tunneling times 225 × h/J . The increase in temperature can be seen by looking at the
momentum density profile as shown in the panel (b) of Fig-4.12: the thermal depletion has
increased, increasing the momentum density in the depletion region by a factor ∼ 4. Note
however that we did not increase the temperature too much to keep a significant condensed
fraction of the order of fc = 29% (in the absence of BEC there is no quantum depletion).
As the thermally depleted atoms show no k/−k correlations, only the denominator of
equation 4.2 increases as both ρ(k) and ρ(−k) increases each by a factor 4, thus reducing
the amplitude of the anomalous correlation function by at least a factor 16, bringing it
under the experimental noise as we see on Fig-4.12 panel (a). Note that this reduction
factor could in fact be even larger as the condensed fraction is small, meaning that the
Bogoliubov approximation should not hold anymore.

We also repeated the experiment for an intermediate temperature obtained with a
holding time of 200 ms corresponding to 90×h/J tunneling time. The condensed fraction
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Figure 4.12: Atom-atom correlations in weakly-interacting BECs at two different temper-
atures. The data for the low-temperature BEC (fc = 84%), resp. for the heated BEC
(fc = 29%), are depicted in blue, resp. in red. (a) Anomalous correlations g(2)

A (δk) at
opposite momenta. The k/−k peak disappears as the temperature increases. (b) 1D
cut of the normalized density ρ(k) in semilog scale. The depletion density increases with
temperature. (c) Normal correlations g(2)

N (δk) for the same datasets and Ωk. The peak
amplitude shows no significant change as the temperature increases. Note that the trans-
verse integration ∆k⊥ = 1.5 × 10−2 kd used here reduces the amplitude of the peaks.

is then fc = 55% and we observe a peak of intermediate amplitude as shown on Fig-4.13.

We thus observe that the k/−k correlation signal is extremely sensitive to temperature,
hinting to the fact that it is related to a T = 0 ground-state effect. It is also quite
illuminating to compare the k/−k correlations to the bosonic bunching k/k correlations.
As explained in Chapter 1 1.3, the bosonic bunching effect is the consequence of the chaotic
statistics of bosons, a property shared by the thermal and quantum depletion. Therefore,
changing the temperature and thus the balance between thermal and quantum depletion
should have no effect on bosonic bunching. This is what we observe experimentally as
shown on Fig-4.12 panel (c).

In conclusion, we have on the same experimental data two very different behaviours
with temperature that illustrate nicely the natures of the correlation signals. On the
one hand, k/k correlations unaffected by temperature, reveal the chaotic statistics of the
system. On the other hand, k/−k correlations are lost when temperature increases and
reveal the quantum coherences in the many-body equilibrium state. These observations
constitute a rather convincing argument that we are indeed observing a k/−k correlation
signal caused by the quantum depletion and not some other effect that we could have
overlooked.

In the following, we study in quantitative details these correlation signals.
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Figure 4.13: Anomalous correlation function for data sets with different temperatures and
condensed fractions. The amplitude of the k/−k correlation signal is progressively lost
as the temperature rises and the condensed fraction diminishes. Inset: amplitude of the
correlation peak g(2

A (0) as a function of the condensed fraction fc.

4.3 Study of the width of the correlation peaks

In a first stage, we study the width of the correlation peak, a quantity that actually
contains meaningful information about the many-body equilibrium state. The key aspect
is the same used by Hanbury Brown and Twiss in their seminal paper to measure the size
of Sirius through the measurement of the second order correlation function in far-field,
namely the width of the correlation peak is inversely proportional to the spatial size of
the source.

This subject has been discussed in 1.4 in light of the results of the theoretical work [23].
We remind that as the anomalous correlations are exclusively caused by quantum depleted
atoms whose spatial extent is the one of the BEC, the width of the anomalous correlation
peak σA is inversely proportional to the size of the BEC LBEC. On the other hand, the
normal correlations are caused by quantum depleted atoms but also thermally depleted
atoms whose spatial size extends beyond the BEC because of the increased kinetic energy.
This tells us that the width of the normal correlations peak σN should be smaller than
that for anomalous correlations.

We plot on Fig.-4.14 the experimental correlation peaks widths for different total atom
numbers. The horizontal error bars correspond to the standard deviation of the total atom
number, while the vertical error bars correspond to the standard deviation of the mean
over the three directions of the momentum-space. With this first analysis, we observe
that for all atom numbers, σA > σN . In addition, one would expect to see both widths
decrease with the total atom number as the size of the system grows with Nbec. This is
more or less what the experimental data suggests but the error bar are too large to make
a definite statement on this point. Note that in the Thomas-Fermi regime, the size of the
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Figure 4.14: RMS widths of the anomalous (green) and normal (blue) correlation peaks.
As expected from Bogoliubov theory, we get σA > σN for each data set. The green area
represents an estimation from the BEC width σBEC (see main text).

BEC changes slowly with the total atom number LBEC ∝ N
1/5
bec , translating in a change

of ∼ 30% of the width of the correlation peaks from the data with N = 2.5 × 103 to
N = 10 × 103 that is hard to resolve within our error bars.

We now look at the quantitative value of σA that can be numerically evaluated. The
calculations have been performed by S. Butera and I. Carusotto from the BEC center in
Trento, Italy, with the Bogoliubov theory for a trapped 1D system [23]. They evaluate
σA,theo = 0.94σBEC, with σBEC the RMS width in momentum-space of the condensate.
This relation is not modified in presence of a lattice as the size LBEC does not change
when the ratio µ/ℏω is fixed. This is explained by the equality mω2 = m∗ω∗2 with m∗

the effective mass in the lattice and ω∗ the corresponding effective frequency as defined in
2.4.3.

We can therefore measure σBEC to exploit this result. To do so, we need to account
for deviations induced by the saturation of the detector. Indeed, the BEC is very dense
resulting in a high flux of atoms saturating the detector. If we plot 1D cuts of the momen-
tum density, the BEC momentum profile is then flattened at the top and fitting with a
Gaussian function over-evaluates the momentum width of the condensate. To circumvent
this issue, we adapt the parameters of the Raman transfer (see 3.2.5) to reduce drastically
the flux of detected atoms and avoid saturating the detector to ensure proper fitting.

Center-of-mass fluctuations

During our first analysis, we noticed that the anomalous correlation peak was larger than
that of the BEC, contrary to what we would have expected. We also noticed that the
momentum width of the BEC was larger than what we obtained applying the Gutzwiller
variational approach (see 2.2.5) with our calibrated atom numbers. We attribute this to
an imperfection in our experiment, the shot-to-shot fluctuations of the center-of-mass of
the atomic distribution. When averaging over many experimental runs, these fluctuations
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enlarge artificially the measured width of the BEC, as well as the width of the anoma-
lous correlation peak. These fluctuations can nevertheless be characterized by comparing
the experimental momentum width of the BEC to the one predicted by the Gutzwiller
variational approach.

When accounting for center-of-mass fluctuations, the measured momentum density
results from the convolution with the distribution of center-of-mass displacements and has
a RMS width:

σBEC =
√
σ2

BEC,0 + ∆k2
com (4.10)

where σBEC,0 is the “true” BEC momentum width with σBEC,0 ∝ 1/LBEC. For instance,
the Gutzwiller variational approach gives σBEC,0 ≃ 1.7 × 10−2 kd for a total atom number
Nbec = 5 × 105 and we measure σBEC = 2.00(4) × 10−2 kd. From this we deduce ∆kcom =
1.05(2) × 10−2 kd. Note that such fluctuations are small, corresponding to 1% of the
distance between the diffraction peaks. We repeat the procedure to evaluate ∆kcom for all
of the data sets of Fig.-4.14.

For a k/−k pair of atoms, a center-of-mass displacement dk induces a momentum
difference δk = 2dk. The effect of the fluctuations are thus twice larger for the width of
the anomalous correlations peak than for the BEC momentum width:

σA =
√
σ2

A,0 + 4∆k2
com (4.11)

Combining this with the numerical evaluation and the measured values of ∆kcom, we obtain
a corrected estimate of σA that is represented as the green area in Fig.-4.14. The width of
the area represent the uncertainty given by the uncertainty on the measurement of σBEC
and the uncertainty on the determination of LBEC caused by fluctuations of the total atom
number. We find that our experimental data matches the numerical calculations of [23],
even if our experimental configuration is different (3D with an optical lattice contrary to
1D with a regular harmonic trap [23]).

We note that the fluctuations of the center-of-mass have however no effect on the
normal correlation signal. Within a given shot, the center-of-mass fluctuations simply
manifest as a global displacement of all the atoms of this shot by a quantity that we note
kCOM. As a result, the momentum difference δk = k1 −k2 between two atoms of this shot
is not affected by the center-of-mass fluctuations, (k1 + kCOM) − (k2 + kCOM) = k1 − k2.
In turn, the normal correlation function g

(2)
N (δk) remains unchanged.

We then plot again the data of Fig.-4.14 accounting for the effect of center-of-mass
fluctuations on Fig.-4.15. We observe that we cannot clearly state that σA > σN with the
experimental error bars, contrary to what we observed with our first incomplete analysis.
This is most likely due to the fact that the temperature is too low to impact the width of
the normal correlation function in a way that can be resolved in our experiment.
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Figure 4.15: RMS widths of the anomalous (green) and normal (blue) correlation peaks
corrected of the center-of-mass fluctuations. The widths σA and σN are no longer distin-
guishable within error bars, indicating that the temperature is too low to observe a clear
separation of the anomalous and normal widths.

4.4 Study of the amplitude of the correlation peaks

We now move on to the study of the amplitude of the correlation peaks. Our objective will
be to test how the predictions of Bogoliubov theory for the homogeneous case detailled in
Chapter 1 hold for our experimental system with an optical lattice, as well as to provide
further evidence of the quantum nature of the anomalous correlation signal.

4.4.1 Normal correlations

The prediction of the amplitude of the normal correlation peak is straightforward: as the
statistics of the system are chaotic, we should observe a perfect bunching g

(2)
N (0) = 2.

Coming back to the normal correlations plot of Fig-4.12, we observe that the amplitude is
around 1.8, i.e slightly lower than 2. This is because of the transverse integration effects
described in 4.1.3. We fit the dependency of the observed amplitude with transverse
integration to extract the corrected amplitude value as explained in 4.1.3 and illustrated
in Fig.-4.3. We obtain g

(2)
N (0) = 2.05(6) and g

(2)
N (0) = 2.09(5) for the high and low

condensed fraction data sets respectively, consistently with Bogoliubov theory showing
that the statistics of the system are chaotic. Note that our team conducted a thorough
study of k/k correlations in the depletion of a lattice gas in [30], notably showing that
we observe perfect bunching independently of the value of temperature as illustrated on
Fig.-4.16.
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Figure 4.16: Bunching amplitude g(2)(0) − 1 as a function of the reduced temperature
kBT/µ. The measurements are consistent with g(2)(0) = 2 at any temperature. The blue
dashed line signals the temperature of the BEC TBEC.

4.4.2 Anomalous correlations

We now turn to analyzing the amplitude of the anomalous correlation peaks. As we have
seen with the calculations developed in section 1.1.4, we can draw an analogy between
the Bogoliubov weakly-interacting Bose gas and the non-degenerate parametric amplifier
in Quantum Optics. While this analogy is direct if we were to work at zero temperature
and have a fully quantum depletion where all atoms are correlated, we expect in our case
that the amplitude of the anomalous correlation peak is reduced because of the presence
of uncorrelated thermally depleted atoms.

We showed in 1.1.4 that the amplitude of the anomalous correlation peak of the non-
degenerate parametric amplifier is expected to scale linearly with the inverse of what is
called the average mode occupancy, i.e. the average number of photons per mode. In
atomic physics, the analog to the average mode occupancy is the momentum density,
i.e. the average number of atoms in a certain mode k that we can control by changing
the total number of atoms Nbec. As changing Nbec should not significantly affect the
balance between the quantum and thermal depletion, we should be able to observe that
the amplitude of the anomalous correlation peak scales linearly with the inverse momentum
density, despite not being at T = 0.

Actually, as explained in 4.2.1, we measure correlation functions averaged over many
modes in the momentum volume Ωk. The parameter setting the amplitude we observe is
then the average momentum density ρ̄Ωk

defined as:

ρ̄Ωk
=
∫

Ωk

ρ(k)dk (4.12)

We have several possibilities to change the value of ρ̄Ωk
:

• Change the experimental parameters to load a different target total atom number
Nbec in the optical lattice.
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Figure 4.17: Amplitude of the correlation peaks versus the inverse average density ρ̄Ωk
.

We observe a linear scaling for anomalous correlations, while normal correlations stay
constant and compatible with g

(2)
N (0) = 2.

• Change the total atom number Nbec in the post-selection (see 4.2.2).
• Change the bounds of the integration volume Ωk.

We prepare 4 data sets using a combination of these 3 possibilities. We perform the
experiment with a target loaded atom number Nbec = [2.5, 5, 10] × 103, and extract an
additional set with Nbec = 3.5×103 from the data intended for Nbec = 5×103 by changing
the post-selection criterion. We also reduce Ωk to momenta between kmin = 0.3 kd and
kmax = 0.7 kd, i.e. to a region where the depletion is lower. We thus reduce ρ̄Ωk

to
observe higher amplitude values in hope of observing a clear violation of the Cauchy-
Schwarz inequality (see 1.1.5).

The results are plotted on Fig.-4.17 alongside the normal correlations amplitude for
comparison. The horizontal error bars are the same as for Fig.-4.14 while the vertical
error bars are obtained from the fit error. We observe a linear scaling of the anomalous
amplitude with the inverse average momentum density. On the other side, changing 1/ρ̄Ωk

does not change the chaotic nature of the system statistics, we thus observe g(2)
N (0) = 2

independently of the value of ρ̄Ωk
. Once again, the amplitudes were corrected of transverse

integration effects as shown on Fig.-4.4. Note that the normal correlations amplitude is
not shown for the point at the lowest average density as the amplitude does not increase
at lower densities, resulting in a decrease of the signal-to-noise ratio.

If we were at T = 0, we remind from 1.1.4 that the absolute value of the amplitude of
the anomalous correlation peak should be g(2)

A (0) = 2+1/ρ̄Ωk
. Because of the temperature,

we rather expect that the limit of g(2)
A (0) when ρ̄Ωk

goes to infinity is a number between
1 and 2 whose value is determined by the balance between the quantum and thermal
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depletion. In the experiment, we found that a linear fit of g(2)
A (0) − 1 versus 1/ρ̄Ωk

with
a zero intercept well matches the data, suggesting that the fraction of quantum depletion
is actually very small. In fact, this quantity can be determined more precisely as we will
now see.

Discussion on the detected number of atom pairs

The absolute value of the amplitude can be used to extract the number of detected k/−k
pairs, following the procedure previously described in 4.1.4. For the data setNbec = 5×103,
fc = 84%, we find that we detect on average 0.5 pairs per shot, for roughly NΩk

= 100
atoms detected in Ωk. This number can be used to calculate the fraction of quantum
depleted atoms in the overall depletion condensate that we will write αQ. We first assume
that all atoms in the quantum depletion form a k/−k pair and that atoms forming a
k/−k pair necessarily belong to the quantum depletion. We then have:

2Npairs = NΩk
αMCPαQ (4.13)

This equation can be understood as follows. We initially have a given number of depleted
atoms in Ωk that we detect only a fraction of because of the MCP detection efficiency.
This number is NΩk

which already includes the detection efficiency per atom αMCP. In
all these atoms, only the fraction of quantum depleted ones αQ will be k/−k paired. In
addition, we miss some pairs when detecting only one atom of the pair because of the
detection efficiency, hence the addition of αMCP in the formula.

We use equation 4.13 to evaluate αQ and find αQ ≃ 1.6%. Using a T = 0 Gutzwiller
approach (see 2.2.5), we estimate the quantum depletion to be 5% and infer that the
thermal depletion must then be ≃ 10% as the overall condensed fraction is fc = 84%. This
would mean that we should rather have αQ ≃ 33%, so more than an order of magnitude
larger than our experimental measurement. We perform the same measurements for data
sets with different total atom numbers with the results shown in Table-4.1, and observe
that the value of αQ does not significantly change. While this is consistent with the fact
that we are able to observe a linear scaling of g(2)

A (0) − 1 with 1/ρ̄Ωk
and that g(2)

A (0) − 1
tends to almost zero when ρ̄Ωk

goes to infinity, there is significant discrepancy with the
estimation of the Gutzwiller approach. Finding a clear explanation for this discrepancy
remains an open question and would require an extensive theoretical work far beyond the
scope of this thesis. We can however suggests a few possible explanations:

• While we estimate the total quantum depletion, we cannot count all the pairs as
some of them are located in the region of the BEC removed from the analysis. At
the moment, we do not have the theoretical tools necessary to determine how many
pairs are removed that way.

• Some of the pairs that we detect are located close to the edge of the first Brillouin
where the relation dispersion becomes flat (see 2.4.2). It is then not so clear whether
Bogoliubov’s theory predictions for an homogeneous gas should quantitatively hold,
as the Bogoliubov dispersion relation is an increasing function of the momentum.

In conclusion, the observed linear scaling is consistent with what is predicted by Bo-
goliubov theory and gives us another argument showing that the observed anomalous
correlation signal is linked to the quantum depletion. The absolute value of the amplitude
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Nbec Npairs/Nruns αQ

2.5 × 103 0.15 1.5%
5 × 103 0.5 1.6%
10 × 103 0.9 1.2%

Table 4.1: Average number of detected k/−k pairs per experimental run and fraction of
quantum depleted atoms in the depletion for different total atom numbers.

cannot however be understood in the framework of the Bogoliubov theory [23] that does
not account for all the specificities of our experiment, such as the presence of the lattice.
In fact, evaluating this number is currently beyond what is possible to calculate, making
our experiment an example of quantum simulation.

4.5 Towards measuring entanglement

As we underlined in the first chapter of this thesis, it would be of great interest to char-
acterize how entanglement emerges in at-equilibrium many-body systems such as the one
we are working with here. Although we do not have all the experimental tools to claim
that we are indeed seeing entanglement in our experiment yet, we nevertheless observe
clear signatures of quantum phenomena that hints towards it as we will discuss now.

4.5.1 Relative number squeezing

If we were in the perfect situation T = 0 were the depletion is fully quantum, the popula-
tions in modes k and −k would be totally correlated so that the quantity N(k) −N(−k)
is non-fluctuating and always equal to 0. This is obviously not the case in our finite
temperature experiment where a significant fraction of the depletion is thermal and thus
uncorrelated. However, we expect the k/−k correlations to reduce the fluctuations of
N(k)−N(−k). This is what we call relative number squeezing, similar to –but not to
be confused with– regular squeezing [161] that denotes the reduction of the fluctuations
of an operator (e.g momentum) under the Heisenberg limit at the expense of increased
fluctuations for the conjugate operator (e.g position).

The idea is then to measure the statistics of the difference of atom numbers in modes k
and −k that we will refer to as N(k) and N(−k). For one of the modes, the fluctuations of
the number of atoms are set by the shot noise and follow a Poisson law. The particularity
of the Poisson law for a random variable is that the variance of the variable is equal to its
mean, giving for instance for mode k:

σ2
N(k) = ⟨N(k)2⟩ − ⟨N(k)⟩2 = ⟨N(k)⟩ (4.14)

What can we tell of the statistics of the number difference in two modes k and k′,
N(k)−N(k′)? If the populations in the two modes are totally uncorrelated, the difference
of two independent Poissonian random variables is Poissonian as well and we then get:



144
Chapter 4. Experimental observation of k/-k correlations in the depletion of a

weakly-interacting Bose gas

σ2
N(k)−N(k′) = ⟨N(k) −N(k′)⟩ (4.15)

If we now chose k′ = −k, we expect the k/−k correlations present in the depletion to
reduce the fluctuations of the number difference, yielding what is called a sub-Poissonian
law. Just like the k/−k correlation signal is lost with temperature, we expect that the re-
duction of the number difference fluctuations becomes smaller and smaller as temperature
increases, increasing the fraction of thermally, uncorrelated, depleted atoms.

Our goal is then to measure σN(k)−N(−k) and see whether it is smaller than the expected
value for a Poisson law. To this end, we define a convenient quantity that we call the
squeezing parameter ξ:

ξ2
k,k′ = ⟨(Nk −Nk′)2⟩ − ⟨Nk −Nk′⟩2

⟨Nk⟩ + ⟨Nk′⟩
(4.16)

This squeezing parameter to the square is simply the standard deviation of the num-
ber difference normalized by the expected standard deviation for uncorrelated variables.
Therefore, we expect ξ2

k,k′ = 1 if there are no correlations between modes k and k′, and
ξ2

k,k′ < 1 if the modes populations are correlated.

To evaluate ξ2, we record for each experimental shots the number of detected atoms in
cubic boxes paving the entire integration volume Ωk. Intuitively, we could set the size of the
boxes to match that of a mode. If we define the volume of a mode as the volume of a sphere
whose radius is the two-particle correlation length lc obtained from the normal correlation
function width with lc =

√
2σN [26], we obtain that there are Nmode = 1.5 × 104 modes in

Ωk, i.e on average ∼ 0.01 atoms/mode/run (for Nbec = 5 × 103) which is way too small to
have proper statistics to evaluate ξ2. We then chose a size of (0.3 kd)3 for a total number
of 53 = 125 boxes paving the volume Ωk, minus the central box corresponding to the BEC
leaving us with 124 boxes. The average numbers of detected atoms per shot are ∼ 100,
∼ 240 and ∼ 360 for the data sets with fc = 84%, fc = 55% and fc = 29% respectively,
meaning that the average number of atom per box are 0.8, 1.92 and 2.88 respectively.
Having access to the atom number for each of the ∼ 2000 runs at various values of k,
we compute the squeezing parameter between different pairs of boxes as illustrated on
Fig.-4.18, either correlated or uncorrelated for reference. The measured values of ξ2 are
averaged over all possible pairs of boxes for a given configuration. The uncertainty on ξ2

is evaluated statistically on all the ξ2 values obtained on the 62 different pairs of boxes
and defined as the standard error.

The results are summarized in Table 4.2 and Fig.-4.19. For the low-temperature, high
condensed fraction data, we are indeed able to observe a small relative number squeezing
within the errorbars. Note that this number squeezing is small compared to that found in
discrete (spin) variables experiments [20, 54, 126] as it is inherently limited by the uncorre-
lated thermally depleted atoms and the detection efficiency. For uncorrelated modes, the
squeezing parameter is very slightly above 1, highlighting that the correlations indeed re-
duce the fluctuations of the number difference. For higher temperatures (lower condensed
fraction), no relative number squeezing is observed as the correlations are drowned out. In
addition, we see that the squeezing parameter increases as we increase the temperature.
This is due to global atom number fluctuations of the order of 15% in our experiment. At
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Figure 4.18: Relative number squeezing measurement. The number of detected atoms in
cubic boxes are recorded for each experimental run. We compute the squeezing parameter
ξ between correlated (orange) boxes as illustrated on the right, or uncorrelated (blue)
boxes on the left. The central black box corresponds to the BEC, removed from the
analysis.
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Figure 4.19: Squeezing parameter ξ2 as a function of the condensed fraction fc for cor-
related and uncorrelated modes. The red line indicates the expected value ξ2 = 1 for
Poissonian number difference fluctuations. At fc = 0.84, a clear difference is observed
between ξ2

k,−k and ξ2
k,k′ and relative number squeezing is observed as ξ2

k,−k < 1. The
difference between ξ2

k,−k and ξ2
k,k′ disappears as fc decreases as the effect of k/−k correla-

tions gets drowned out. The global increase in the value of ξ2 when fc decreases is caused
by total atom number fluctuations (see main text).

low temperature, there are few detected atoms per box and the shot noise is thus large and
dominating the total atom number fluctuations. On the opposite, at higher temperatures,
the number of depleted atoms increases, reducing the shot noise. The contribution of total
atom number fluctuations is then not negligible anymore and increase the fluctuations of
the number difference, higher than what is expected for a Poisson law, explaining why we
observe ξ2 > 1.

fc ξ2
k,−k ξ2

k,k′

0.84 0.992(3) 1.004(3)
0.55 1.017(4) 1.017(3)
0.29 1.040(5) 1.045(5)

Table 4.2: Experimental values of the squeezing parameter for correlated and uncorrelated
modes and different condensed fractions.

4.5.2 Experimental violation of the Cauchy-Schwarz inequality

We have previously shown in 1.1.5 how the Cauchy-Schwarz inequality writes with creation
and annihilation operators and translated it in terms of correlation functions. Translated
to anomalous and normal correlations function discussed in this chapter, the Cauchy-
Schwarz inequality writes:

g
(2)
A (k,−k) ≤ g

(2)
N (k,k) (4.17)
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We thus have a clear violation of the Cauchy-Schwarz inequality with our experimental
data on 3 different data points, with a maximum violation of 5.27(8) > 2.09(5) (Fig.-4.17).
This adds up to the list of quantum signatures in the anomalous correlation signal.

As discussed in 1.1.5, violating the Cauchy-Schwarz inequality equals fulfilling the
Busch-Parentani criterion to prove entanglement, provided that certain conditions are ful-
filled. The first one is that the statistics of the system must be thermal chaotic. This
is something that we have experimentally verified by measuring g(2)

N (0) = 2. The second
condition is to have ⟨a†

ka−k⟩ = 0. While this is true in Bogoliubov theory and would be
reasonable to assume in our experiment, this is not something that we have experimen-
tally measured and that therefore forbids us to claim that we observe entanglement in
momentum-space. This correlator could be measured using an atomic inteferometer setup
[51, 90, 105] using Bragg diffraction [109] to produce atom mirrors and beam splitters. This
would however require that we upgrade our experimental apparatus to have the required
lattice beam to implement the proper Bragg diffraction scheme. Nevertheless, proving the
presence of entanglement in momentum-space in many-body equilibrium systems would
be a significant result that motivates such experimental work in the near future.

4.6 Preliminary study: dependency of the correlation signals with k

As we have seen throughout this chapter, the balance between the quantum and thermal
depletion and thus the temperature plays an important role in both the amplitude of the
anomalous correlation function (see 4.2.3) as well as the width of the normal correlation
function (see 1.4). Interestingly, the ratio of the quantum and thermal depletion changes
with the momentum value k as they have different momentum scales set by the strength
of the interactions and the temperature respectively. Whereas we have until now kept
the integration volume Ωk as large as possible, it would be then be interesting to reduce
it and move it around momentum-space to see whether we can observe variations of the
characteristics of the correlation signals depending on the momentum value around which
Ωk is centered. Note that the study presented in this section is preliminary and still an
on-going work.

4.6.1 Evolution of the amplitude of the anomalous correlations with k

As far as the amplitudes of the correlation signals are concerned, there is not much too
learn studying the dependency of the amplitude of the normal correlation signal with k as
it only reveals the chaotic statistics of the system that are unaffected by temperature and
are thus independent of k. We will then focus solely on the amplitude of the anomalous
correlation function.

We repeat the analysis procedure described before for various integration volumes
Ωk that we set by changing its boundaries kmin and kmax (see 4.2.1). In practice, we
chose the couples [kmin, kmax] = [0.15, 0.3], [0.2, 0.35], ..., [0.35, 0.5] kd, scanning the first
Brillouin zone. As Ωk is smaller than for previous analyses showed in this chapter, the
signal-to-noise ratio is not sufficient to extract a value of the amplitude for a large panel of
transverse integration values to extract the amplitude corrected from transverse integration
as described in 4.1.3. We will then rather plot the raw amplitude ηA for a fixed transverse
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Figure 4.20: Raw amplitude ηA mutiplied by the average density ρ̄Ωk
as a function of

kcenter for two data sets at different temperatures.

integration ∆k⊥ = 3 × 10−2 kd. In addition, when changing Ωk, we also change the
value of ρ̄Ωk

that affects the amplitude of the anomalous correlation peak. We therefore
“normalize” this effect by plotting the quantity ηA × ρ̄Ωk

that should only reveal the effect
of the variations of the balance between the quantum and the thermal depletion.

We plot on Fig.-4.20 ηA × ρ̄Ωk
as a function of kcenter = (kmin + kmax)/2 for the data

sets with Nbec = 5 × 103 and holding times 5 ms and 200 ms. We observe that for the
coldest data set, ηA × ρ̄Ωk

increases with k, indicating that the ratio of the quantum
depletion to the thermal depletion increases with k in the momentum range that we
probe. When the temperature increases (orange points of Fig.-4.20), the thermal depletion
increases and populates higher momentum modes, meaning that the ratio of the quantum
depletion to thermal depletion should not increase as fast or even possibly decrease with
k if the temperature is high enough. This is what we observe on the experimental data
for which ηA × ρ̄Ωk

increases much slower for the heated data. We note that as the
overall density of the depletion is higher at low k reducing the amplitude of the anomalous
correlation function, we were not able to observe the correlation signal for [kmin, kmax] =
[0.15, 0.3], [0.2, 0.35] with the 200 ms holding data.

While this kind of data could in principle be used to find the temperature of the
experiment, we must for the moment only restrict ourselves to the qualitative description
we have just given for lack of a precise theory of the correlations in an optical lattice.
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Figure 4.21: Normal correlation peak width σN as a function of kcenter for various data
sets at different temperatures.

4.6.2 Evolution of the width of the normal correlations with k

As seen in 1.4.2, the width of the anomalous correlation peak is essentially constant
with k and therefore does not bring much additional information. On the contrary, in
analogy with the amplitude of the anomalous correlation peak, the width of the nor-
mal correlation peak σN is strongly dependent from the balance between the quan-
tum and thermal depletion (see 1.4.1). As described in the previous paragraph, we
measure σN for different integration volumes Ωk. This time, we choose [kmin, kmax] =
[0.15, 0.25], [0.2, 0.3], ..., [0.4, 0.5] kd.

We plot on Fig.-4.21 σN as a function of kcenter for 3 data sets: the first one with
Nbec = 10 × 103 and a holding time of 5 ms and the other two with Nbec = 5 × 103

and holding times 200 ms and 500 ms respectively to increase the temperature. We
note that we deliberately chose a data set with a higher atom number for the lowest
holding times to increase the number of depleted atoms and have a proper signal to noise
ratio. Unfortunately, we observe that the error bars are too large to capture any possible
variations of σN . It then seems after this preliminary that g(2)

A (0) is a better suited probe
than σN to understand the variations of the balance between the quantum and thermal
depletion with k in our experiment.

As mentioned in the introduction to this section, the results presented here are still
quite preliminary and there are quite a few points that need further investigation, notably
why the number of detected pair is lower than expected which is directly connected to
the balance between the quantum and the thermal depletion, constituting an interesting
prospect for the near future.
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4.7 Conclusion

We have reached the end of our investigation of two-body correlations in the depletion of
weakly interacting Bose gases. To sum things up, let us remind the main steps of the work
conducted during this thesis and its main results.

• We decided to try to detect experimentally the k/−k pairs of the quantum de-
pletion predicted by the Bogoliubov theory of the weakly-interacting Bose gas, as
this phenomenon is one of the conceptually simplest non-trivial, many-body, quan-
tum correlation effect. By conducting this study, we hope to better understand
the physics of many-body equilibrium states and how correlations and entanglement
emerge through the combined effects of interactions and quantum fluctuations.

• We based our experimental procedure on an experimental setup producing He∗ BECs
implementing a 3D single-atom resolved electronic detection technique. We decided
to use an optical lattice to enter the low-temperature regime dominated by interac-
tions to ensure a sufficient level of quantum depletion so that the k/−k pairs can
be properly detected.

• We completed previous benchmarking measurements [29] by measuring two-body
time-of-flight collisions with large number of atoms in the lattice. From this, we
were able to conclude that two-body collisions are negligible for the typical number of
atoms used in our correlation measurement experiments. This validates the ballistic
relation linking the momentum of the in-trap to their detected position after the
TOF.

• We measured the temperature of the gas at different amplitudes of the lattice po-
tential to certify the adiabatic preparation of the system.

• We implemented a two-photon Raman transfer scheme to replace the previous RF
transfer, improving the detection efficiency by a factor ∼ 4.

• We adapted an existing algorithm to make it suited to extract the k/−k correlation
signal from the experimental data and benchmarked it with scattering spheres data.

• We were able to successfully observe anomalous and normal correlation signals in
various data sets with different total atom numbers. We validated that the observed
anomalous correlation signal is linked to the k/−k pairs of the quantum depletion
with the following points:

– The signal is lost with temperature, contrary to the normal correlation signal
that reveal the chaotic statistics of the system, unaffected by temperature.

– The width of the anomalous correlation peak matches the numerical calculations
of [23] when accounting for center-of-mass fluctuations.

– g
(2)
A (0) scales linearly with the inverse average momentum density ρ̄Ωk

, while
g

(2)
N (0) remains constant.

– Relative number squeezing between correlated boxes at opposite momenta is
observed.

– A violation of the Cauchy-Schwarz inequality g(2)
A (0) ≫ g

(2)
N (0) is reported.

This experimental observations are an encouraging first step towards more ambitious
correlation measurements. One of our short term objective is to study the Mott transition
and look for complex correlation patterns involving several particles not predicted by
simple theoretical treatment such as Bogoliubov theory. As there is currently no theory
describing this kind of physics, this represents quite a fascinating prospect that would
really put our experiment in the field of quantum simulation. In addition, a more long term
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prospect would be to improve our experimental setup to bring the fermionic isotope 3He∗

to quantum degeneracy to perform momentum correlations measurements with fermions
and study BEC-BCS crossover physics. A notably important result would be to observe
the k/−k pairing of a Cooper pair [42]. Observing the k/−k pairing of the quantum
depletion shows us that we are indeed capable of seeing k/−k pairing with our experiment
and constitutes a small step towards this result.
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Chapter

For the last chapter of this thesis, we will depart from the main line set by the k/−k
correlations of the quantum depletion and shift our attention to a different topic that
exploits another feature of the single-atom resolution of our experiment. While we have
used it so far to look for correlations between individual particles, another strong advantage
of our apparatus is the possibility to detect very low densities signals inaccessible with
optical measurements. An example of such a signal is the k−4 tails in the momentum
density of 1D gases, also known as Tan’s contact [153].

As we will see in the first section of this chapter, Tan’s contact is a fascinating and
promising universal quantity that can be used to characterize many different systems,
especially 1D gases, in level of details inaccessible with more common experimental tech-
niques. We will then quickly summarize the main points of the theoretical work [170]
on which we will rely to interpret our experimental data. We will next explain how 1D
physics can be effectively implemented with our experimental apparatus and detail the
procedure used to measure Tan’s contact, before discussing the first preliminary results.

5.1 Tan’s contact

5.1.1 Definition from the large momentum tails

To understand what Tan’s contact is, we consider two atoms with contact interactions
in the ultracold regime in 1D. The two-body wave-function then only depends from the
inter-particle distance r and the s-wave scattering length as [160]:

ψ(r) = − r

as
e−r/as (5.1)

The Fourier transform of this expression is rather easy to compute and writes:
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ψ̃(k) =
∫ ∞

0
ψ(r) e2πikr dr ∝ 1

(i2πk − 1/as)2 (5.2)

from which we obtain the momentum density:

ρ(k) = |ψ̃(k)|2 ∝ 1
2(2πkas)4 − 2(2πkas)2 + 1 (5.3)

Interestingly, if we look at the asymptotic behavior at large k we find that:

ρ(k) ∼
k→∞

1
k4 (5.4)

The presence of contact interactions translates into a k−4 scaling of the momentum distri-
bution at large k. Importantly, this signature holds for higher dimensions, independently of
temperature, interaction strength or quantum statistics making it a universal relation.
From equation 5.4, we define the Tan’s Contact C as:

C = lim
k→∞

k4ρ(k) (5.5)

Importantly, we will take in this chapter the convention:

∫
dk

2πρ(k) = Nbec (5.6)

where Nbec is the total number of atoms, with the notable addition of the factor 1/2π to
match the definition of the theoretical work [170] to which we will compare the experi-
mental data.

5.1.2 Connection to thermodynamic quantities

While the k−4 scaling is universal, the value of C depends on the physical characteristics
of the system such as the number of particles, temperature, dimension etc. and thus
contains meaningful information that would otherwise be hard to measure with standard
experimental techniques. This was first theorized by Shina Tan in 2008 [153] who showed
that C is a thermodynamic quantity revealing how the total energy of a two component
Fermi gas changes when adiabatically tuning the inverse scattering length as:

− dE

d(1/as) = h2C

2πm (5.7)

This result is known as Tan’s adiabatic sweep theorem and can be adapted to the 1D
bosonic case [10] to obtain:



5.1 Tan’s contact 155

C = 4m
ℏ2

∂Ω
∂a1D

∣∣∣∣
T,µ

(5.8)

with Ω the grand potential and a1D the 1D scattering length whose expression will be
discussed later. This result can also be rewritten [169] to include the interaction energy
of the system ⟨Hint⟩ that we have often encountered throughout this thesis and that is
usually hard to measure separately from the total energy:

C = 2g1Dm
2

ℏ4 ⟨Hint ⟩ (5.9)

with g1D the 1D coupling constant that is defined from the 1D scattering length by [116]:

g1D = − 2ℏ2

ma1D
(5.10)

5.1.3 Characterization of 1D Lieb-Liniger regimes

Another significant motivation to measure Tan’s contact is to characterize the different
regimes of Lieb-Liniger 1D systems of interacting bosons as a function of temperature and
of the strength of the interactions. Tan’s contact is indeed particularly suited to study
the Lieb-Liniger model [104] as it revolves around the approximation that the interactions
between the atoms are repulsive, contact interactions:

Ĥ =
∑

j

[
− ℏ2

2m
∂2

∂2xj
2 + V (xj)

]
+ g1D

∑
j<l

δ(xj − xl) (5.11)

with V an external trapping potential.

These different regimes have been widely investigated [125] and are illustrated on the
state diagram of Fig.5.1. The lower right part of the diagram corresponds to the strongly
interacting or Tonks-Girardeau regime where the repulsive interactions are so strong that
they mimic the Pauli exclusion principle for fermions. The gas is then said to fermionize.
As the strength of the interactions decreases, the gas progressively goes to a weakly-
interacting quasi-condensate phase characterized by suppressed density fluctuations but
fluctuating phase, contrary to the true condensate. The weakly-degenerate ideal bosons
region refers to the region where the effect of interactions are negligible compared to
temperature.

The main difficulty to experimentally characterize those regimes resides in the fact that
most quantities show a smooth and monotonic behavior when crossing the transition points
between the different regimes. This motivated theoretical studies of the dependency of
the Tan’s contact with the strength of interactions and temperature to determine if C can
be used as a probe to characterize these different regimes. Previous works have conducted
such studies for homogeneous bosons at finite temperature [96, 97], trapped bosons at
zero temperature [113, 117] or for the trapped finite temperature Tonks-Girardeau regime
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Figure 5.1: State diagram of trapped 1D Bose gases with repulsive interactions as a
function of the reduced temperature ξT and the reduced interaction strength ξγ for trapped
1D gases. The solid lines indicate smooth crossovers between the different regimes. Taken
from [169].

[158]. They were recently completed by [170], characterizing trapped Lieb-Liniger bosons
for arbitrary values of the temperature and the interaction parameter.

There have been many experiments aiming at measuring Tan’s contact in strongly
interacting systems for both bosons and fermions, using a variety of methods such as RF
spectroscopy [136, 165], Ramsey interferometry [62, 176], structure factor measurement
with Bragg spectroscopy [99] or measurements of the momentum distribution [107, 152].
One of the main experimental difficulties for measuring Tan’s contact from the momentum
density ρ(k) when the gas is not strongly interacting comes from the fact that the high
momentum k−4 tails correspond to very low density values that are hard to detect with
usual optical imaging techniques. This problem is however solved with the He∗ detector
thanks to his large dynamic momentum range. Interestingly, our experimental apparatus
can be adapted to study 1D physics by transforming our 3D optical lattice into a 2D one
as we will see in 5.3, making it a good candidate to verify the predictions of [170].

5.2 Theoretical study

Before going into the experimental details, we start our discussion by summarizing the
main results of [170]. In this theoretical work, the external trapping potential V of equation
5.11 is taken to be harmonic like in most experiment, including ours. We will write the
trapping frequency ω1D.
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5.2.1 Two-parameter scaling

At first glance, the physics of the system and in turn Tan’s contact should depend from 4
parameters:

• The total number of particles Nbec.
• The temperature T .
• The trapping frequency ω1D.
• The coupling constant g1D.

The first result of [170] is to show that C actually depends from only two parameters, the
first one being the reduced interaction strength:

ξγ = −aho/a1D
√
N (5.12)

with aho =
√
ℏ/mω1D the harmonic oscillator length and a1D the 1D scattering length.

The second one is the reduced temperature:

ξT = −a1D/λT (5.13)

with λT =
√

2πℏ2/mkBT . The contact can then be written as a function of ξγ and ξT :

C = N5/2

a3
ho

f(ξγ , ξT ) (5.14)

The goal is then to determine the variations of f(ξγ , ξT ). To do so, the authors of [170]
follow two complementary approaches. The first one consists in using the Bethe Ansatz
which is the exact solution of the Yang-Yang equations [168] of the 1D homogeneous gas.
The results are then adapted to the trapped case by using the Local Density Approximation
(LDA) in the same fashion of what we did in 2.2.3. The validity of this approach is checked
by comparing its prediction to ab-initio QMC calculations as shown on Fig-5.2.

5.2.2 Maximum contact versus temperature

A striking and unexpected feature of Fig.-5.2 panel (b) is that the contact shows a non-
monotonous dependency with ξT with a maximum, contrary to the monotonous increase
in the Tonks-Girardeau regime predicted by [158]. While the maximum exists for any
value of ξγ , the effect is more pronounced in the strongly-interacting regime.

Strongly-interacting regime

In this regime, the contact can be determined analytically via a virial expansion [158] and
writes:

C = 2N5/2

πa3
ho

ξγ

ξT

(
√

2 − e1/2πξ2
T

ξT
Erfc(1/

√
2πξT )

)
(5.15)



158 Chapter 5. Towards measuring Tan’s contact in 1D gases

Figure 5.2: Reduced contact a3
hoC/N

5/2 as a function of ξT and ξγ as predicted from
the LDA approach (solid lines) and QMC calculations (points). The different symbols
correspond to various parameters for the QMC calculations (see [170] for further details).
(a) Reduced contact versus ξγ at fixed temperatures corresponding to ξT = 0.0085 (blue),
0.28 (green), and 18.8 (red). (b) Reduced contact versus ξT at fixed interaction strengths
corresponding to ξγ = 10−2 (blue), 1.58 × 10−1 (green), and 4.47 (red). The black dashed,
red dotted, and red dash-dotted lines correspond to equations 5.15, 5.16 and 5.17 respec-
tively.

In the asymptotic regime of low-temperature limit ξ−1
γ ≤ ξT ≤ 1, this expression

simplifies to:

C = 2
√

2 N
5/2

a3
ho

ξγ ξT (5.16)

In the opposite regime of high-temperature (ξ−1
γ , 1) ≤

√
ξT , we rather get:

C ≃ 2
√

2 N
5/2

πa3
ho

ξγ

ξT
(5.17)

We thus clearly see the non-monotonic behavior of the contact with temperature. These 3
expressions are plotted on Fig-5.2. We see that the full analytical expression of 5.15 (black
dashed line) well matches the LDA predictions, except for low-temperatures for which the
virial expansion is not suited.

The existence of a maximum value of the contact can be understood by the competi-
tion between the effect of temperature and interactions. While interaction dominates, the
gas is fermionized and the contact increases with temperature [158], whereas it decreases
as thermal fluctuations take over and fermionization disappears. The location of the max-
imum of the contact thus provides a way to characterize the crossover to fermionization.

Weakly-interacting regime

In the weakly-interacting regime, the interactions are not strong enough to fermionize the
gas. In the low-temperature regime (1, ξT ) ≤ ξ−1

γ , the gas forms a quasi-condensate and



5.3 Experimental realisation of 1D gases with the optical lattice 159

the contact is obtained from equation 5.9 with the mean-field expression of ⟨Hint⟩ and
writes:

C = η
N5/2

a3
ho

ξ5/3
γ (5.18)

with η = 4 × 32/3/5. We see that C does not depend from temperature here. At high
temperatures ξ−1

γ ≤ ξT ≤ ξ−2
γ , interactions become negligible so that the gas is nearly

ideal and the contact writes:

C =
(

16
√
π
N5/2

a3
ho

ξ5
γ ξ

3
T

)
G(α) , (5.19)

with G(α) decreasing at least in λ4
T (see [170] for the explicit expression), making C

decrease with temperature. Once again, identifying the temperature at which C starts to
decay allows to characterize the crossover between the quasi-condensate regime and the
nearly ideal Bose gas regime.

5.3 Experimental realisation of 1D gases with the optical lattice

5.3.1 2D Lattice

Now that we have seen what Tan’s contact is and how it could be used to characterize
the regimes of Lieb-Liniger 1D gases, we show how our experimental apparatus can be
adapted to study 1D physics with the objective of testing experimentally the predictions
of [170]. The main idea to obtain an experimental 1D system is to “freeze” the degrees
of freedom of the atoms in two directions of space. To do so, the easiest solution is to
use a harmonic trapping potential with trapping frequencies ω⊥ large enough so that the
energy difference ∆E = ℏω⊥ between the ground-state and the first excited state is much
larger than the typical energy of the atoms ∆E ≫ kBT, µ as illustrated on Fig-5.3. Such
high trapping frequencies are accessible in our experiment thanks to the optical lattice.
Instead of using the 3 pairs of countra-propagating beam as we did so far, we use only 2
such pairs to produce a 2D lattice. Interestingly, the total laser power is divided amongst
2 pair of beams instead of 3, meaning that we can reach much higher values of the lattice
depth, typically up to s = 30. In the direction where there is no lattice, the trapping
potential results from the Gaussian shape of the beams and has a trapping frequency
ω1D = 2π × 140

√
s = 2π × 713 Hz for s = 26. In the other 2 directions, the trapping

frequency is on the contrary very large as a result of the lattice interference pattern
ω⊥ ≃ 2π×200 kHz, which is much larger than the energy of the atoms kBT, µ ≃ h×25 kHz
with typical experimental parameters.

Using the optical lattice in this configuration then allows us to emulate 1D physics.
The main drawback of this method is that we end up with an array of 1D gases rather
than a single one, complicating the comparison with theory.
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Figure 5.3: Configuration of the optical lattice to produce 1D tubes. In the transverse
direction, the lattice interference pattern creates a confining potential that can be approx-
imated to a harmonic potential near the center of the site. The trapping frequency is high
enough so that the degree of freedom of the atoms in these directions is “frozen”. On the
other hand, the lattice is absent in the longitudinal direction and the trapping frequency
only results from the Gaussian shape of the beams. This is the 1D direction.

5.3.2 Characterization of the 1D tubes

Number of atoms

One major difficulty of working with our array of 1D gases comes from the fact the atom
number varies from one 1D tube to another. To determine the atom number distribution,
we first need to determine the density profile of the cloud in the 2D lattice.

To do so, we first remind that under the Thomas-Fermi approximation [124], the
density profile of a BEC in a 3D harmonic potential writes:

n(r) = µ

g

1 −
(
x

Rx

)2
−
(
y

Ry

)2

−
(
z

Rz

)2
 (5.20)

where Ri =
√

2µ
mω2

i
is the Thomas-Fermi radius in direction i and g the 3D coupling

constant already encountered a few times in this manuscript. Under the mean-field ap-
proximation, the chemical potential is:

µ = ℏω̄
2

(
15Nbec

as

a3D
ho

)2/5

(5.21)

with ω̄ = ωxωyωz/3 the average trapping frequency with a3D
ho =

√
ℏ/mω̄

Similarly to the method developed in 2.4.3, we rescale the coupling constant g [98] to
account for the presence of the 2D lattice:

g′ = g

( √
π/2s1/4

Erf
[
πs1/4/2

])2

(5.22)
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Figure 5.4: Atom number distribution in a 2D lattice of amplitude s = 26 for Nbec =
30 × 103.

with the notable difference that we are using here a power 2 instead of power 3 in 2.4.3
as we use here a 2D lattice. We then obtain the rescaled chemical potential:

µ′ = ℏω1D

2

(
15Ntot

as

aho
g′2
)2/5

(5.23)

from which we finally obtain the new Thomas-Fermi radius in the transverse directions:

RTF = 1
d

√
2µ′

mω2
⊥

(5.24)

that we express in units of lattice spacing d for convenience. The number of atoms in the
tube indexed j, l then writes (see Fig.-5.4 and Fig.-5.5):

Nj,l = N00

(
1 − j2 + l2

R2
TF

)
. (5.25)

where N00 is the number of atoms in the central tube. We deduce N00 from the total atom
number Nbec with the normalization condition Nbec = ∑

j,l Nj,l giving:

N00 = 5
2π

Nbec
RTF2

(5.26)

Density and interaction parameter

Knowing the number of atom in each tube, it is interesting to determine the density and
reduced interaction strength parameter ξγ in each of the tubes. To do so, we first rewrite
the 1D interaction strength g1D = 2ℏω⊥as [116] from the transverse trapping frequency
and the 3D scattering length which are our known experimental parameters. We then
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Figure 5.5: Schematic of the array of 1D tubes. The large blue circle denotes the parabolic
density profile of the BEC that determines which of the lattice sites contain atoms (blue
dots).

write the 1D chemical potential and 1D density for the different tubes, both functions of
the number of atoms in the tube:

µj,l
1D =

( 3
4
√

2
Nj,l g1D ω1D

√
m

)2/3
(5.27)

ρj,l
1D(x) = µ1D

g1D
− 1

2 mω2
1D x2 (5.28)

In practice, the second term of equation 5.28 can be neglected because of the small size
of the 1D gases ∼ µm and the weak confinement ω1D ≈ 2π × 700Hz so that ρj,l

1D(x) is
constant and well approximated by its value at the center of the trap ρj,l

1D(0). We then
simply write ρj,l

1D.

The reduced interaction strength ξγ is rather straightforward to obtain from the atom
number distribution:

ξj,l
γ = −aho/a1D

√
Nj,l (5.29)

with a1D that can be written from the 3D scattering length as with a1D = ℏ/mω⊥as.

Weighted average

The values of ξj,l
γ for each of the 1D tubes are however not very meaningful in practice

as the distribution that we measure results from the contribution of every lattice tubes.
It is therefore more convenient to define a single averaged value of ξ̄γ to approximately
describe the entire ensemble of 1D gases. One could first simply think of using a simple
average:
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ξ̄γ = 1
Ntubes

∑
j,l

ξj,l
γ (5.30)

This kind of averaging is however too strong of an approximation as it assumes that each
of the tubes contribute equally to the total measured distribution which is wrong as the
contribution of the tubes with more atoms will be more significant. We then choose to
weight the contribution of each of the tubes in the average by its fraction of the total atom
number:

ξ̄γ =
∑
j,l

Nj,l

Nbec
ξj,l

γ (5.31)

Note that this kind of weighted averaging can be done for all relevant quantities that vary
from one 1D tube to another.

Temperature

We have proven in 3.3 that the loading of the 3D lattice is adiabatic up to lattice depths
of s = 18. As we keep the same loading sequence for the 2D lattice preparing the 1D
tubes, it is rather reasonable to assume that the loading is here adiabatic as well even
though we go to higher amplitudes and the geometry of the lattice is different. Under this
assumption, we then expect the temperature to be the same amongst all the 1D tubes.
We will see later how information on the temperature can be obtained from the measured
momentum distribution.

Independence of the tubes

In order to properly observe 1D physics, it is crucial that all the 1D tubes are indepen-
dent from one another, i.e no coherence subsists in the transverse directions. This is in
principle true when the typical loading time of the lattice set by the slope of the lattice
ramps of 0.3 Er/ms (see 3.3.1) is longer that the decoherence time of the cloud. Practi-
cally speaking, we can determine whether the 1D tubes are indeed incoherent or not by
looking for diffraction peaks in the transverse directions, as their presence reveals coherent
interferences between the different tubes. While we indeed observed no diffraction peaks
in most data sets, there were a few occasions where they could be seen, especially for the
coldest data sets and lower lattice amplitudes s ≃ 22. This calls for a proper study of
the decoherence mechanisms happening during the loading of the lattice that has not yet
been conducted at the moment where this manuscript is being written. We will for the
remainder of this chapter assume that the tubes are indeed independent as the data was
taken for relatively high lattice amplitudes s = 26 at which we observed no diffraction
peaks in the transverse direction.

5.4 Detection of large momentum components

While the great sensitivity of the He∗ detector is perfectly suited to detect the very low
density k−4 momentum tails, its range is inherently limited by the size of the MCPs. This
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Figure 5.6: Orientation of the lattice beams in the experiment, illustrating the possible
1D directions. Taken from [28].

is a major drawback as the k−4 decay only happens for large values of k that might fall out
of the range of the He∗ detector. One solution could be to have the 1D direction vertical
as the He∗ detector range is not limited in this direction, but this is not possible due to
the layout of the lattice beams (see 5.6). The most advantageous solution is then to set
the 1D direction along the direction set by the +45◦ beam (the 2D lattice is then made by
the −45◦ and horizontal beams), increasing the effective range of the detector by a factor√

2. The maximum detectable momentum is then kmax ≃ 14 µm−1.

Actually, we can use the results of [167] that show that the k−4 decay should start
around k0 ∼ 1.6 × ρ̄1D to determine whether the tails should be detectable or not. For
Nbec ≃ 100 × 103, we find that k0 ≃ 10 µm−1, meaning that even though we could see
the beginning of the k−4 decay, the range is too small to observe it on a sufficiently large
momentum range. We therefore need a solution to effectively increase the momentum
range of the He∗ detector.

5.4.1 Magnetic gradient and displacement procedure

One solution to this issue is to give the entire cloud a momentum kick in the first instants
of the TOF to artificially shift the momentum range of the He∗ detector towards high
momenta. With our experimental setup, the easiest way to do so is to create a magnetic
gradient to apply a magnetic force on the atoms during a time tgrad before transferring
them to the mj = 0 sub-state.

New population transfer technique

This technique however brings some experimental complications as the population transfer
cannot be done immediately after turning off the trap. As a matter of fact, the atoms starts
moving during the time tgrad and will therefore be at different positions when the transfer
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is performed. The problem comes from the fact that there is a slight inhomogeneity in
the bias field along direction x used to set the energy difference between the sub-states
mJ = 0 and mJ = 1, resulting in a small gradient of 0.17 G/cm as already mentioned in
3.2.5. This means that the resonance condition for a Raman or RF transfer depends on
the initial momentum of the atoms, with the consequence that we cannot properly transfer
the whole cloud to mJ = 0 with a simple single frequency Rabi pulse.

To solve this issue, we make use of the Landau-Zener effect that describes the prob-
ability for a transition between two levels to occur when the coupling frequency varies
linearly in time. As the experiments described in this chapter were performed before the
implementation of the two-photon Raman transfer described in Chapter 3, this was done
by linearly sweeping the frequency νRF of a RF wave with a span ∆νRF around the central
resonance frequency νres ≃ 12.93 MHz (see 3.2.5) in a time ∆tsweep. The values of ∆νRF
and ∆tsweep are set according to three constraints.

• The initial and final detunings must be much larger than the RF Rabi frequency
ΩRF so that ∆νRF ≫ 2ΩRF ≃ 20kHz

• The fraction of transferred atom depends from the rate α = ∆νRF/∆tsweep at which
νRF(t) changes. The transfer is more efficient as α is low.

• ∆νRF must be large enough to encapsulate all resonance frequencies shifted because
of the residual magnetic gradient to properly transfer all relevant momentum classes.
For an initial momentum k = −kd = −8.1 µm−1, the resonance shift with respect
to k = 0 atoms is around 75 kHz with tgrad = 13 ms.

We then decide to set ∆νRF = 2MHz to make sure that no momentum class is excluded,
and set tsweep = 3 ms so that α/Ω2

RF = 6.7, yielding a total detection efficiency ηsweep =
0.10(1). We remind that this number accounts for the transfer efficiency which is limited
to 50% because of the three level structure of 23S1 and the efficiency of the detector itself.

Generation of the magnetic gradient

The procedure to create the magnetic gradient was mainly designed to fit the constraints
set by the design of our experimental apparatus. As a matter of fact, the geometry of the
science chamber makes it quite hard to install coils capable of producing a strong enough
gradient along the direction of the +45◦ or −45◦ beams which are the best choice for the
1D direction in terms of momentum range of the detector. On the other hand, there is a
gradient coil quite close to the atoms capable of producing a strong enough gradient along
the horizontal beam direction that we will denote as the x direction, as well as the MOT
coils capable of producing a strong gradient 4 times stronger along x. We then decided
to set the 1D direction along x. While this reduces the momentum range by a factor

√
2,

this is not a big issue as we will use the gradient to compensate for it.

After quite a bit of testing, we decided to use the MOT coils instead of the x gradient
coils as the former is capable of producing a stronger gradient, effectively reducing the
time during which the gradient must be applied. This has the advantage of reducing the
spatial spread of the atoms before the transfer to mJ = 0 and thus the inhomogeneity in
resonance frequencies because of the residual gradient.



166 Chapter 5. Towards measuring Tan’s contact in 1D gases

Displacement procedure

The procedure is represented on Fig.-5.7. Right after the lattice is turned off, we increase
the current in the MOT coils to produce the magnetic gradient. However, the current in
the MOT coils typically needs around 10 ms to reach the highest possible values, which
is already quite long. We then set the command voltage Vc to be close to the highest
possible value, let the current increase for t1 = 1 ms and then set the command to 0 and
let the current decay for t2 − t1 = 13 ms until it is fully turned off. After that, we finally
perform the population transfer and let the atoms fall unto the MCP. The momentum
displacement of the cloud can be set by changing the command voltage Vc.

Calculation of the induced displacement

The effect of the magnetic gradient on the TOF trajectories of the atoms can be calculated
rather easily. For simplicity sake, we will assume that the gradient is constant in time and
write B′ its value along the x axis. The atoms feel a force Fx = 2µBB

′ for the time tgrad
during which the gradient is on, with µB the Bohr magneton and the factor 2 being the
Landé factor. Taking t = 0 when we start turning on the gradient, the speed of atoms
with a zero initial velocity at the center of the trap after tgrad writes:

vx(tgrad) = 2µBB
′

m
tgrad (5.32)

In turn, their position writes:

x(tgrad) = µBB
′

m
t2grad (5.33)

The final position after the full TOF is linked to x(tgrad) by

x(tTOF) − x(tgrad) = vx(tgrad)(tTOF − tgrad) (5.34)

The calculations can be simplified by considering that (i) tgrad = 13 ms ≪ tTOF =
296 ms and consequently (ii) x(tgrad) ≪ x(tTOF). As a result, the position at the end of
the TOF is simply:

x(tTOF) = 2µBB
′

m
tgradtTOF (5.35)

The effect of the gradient is then simply to shift the position of the entire cloud at the
end of the TOF without distorting it, with a simple linear relation between the intensity
of the gradient and the value of the position shift.

5.4.2 Transverse integration effects and range limitations

As in 4.1.3, the transverse size of the voxels that we will use to compute the momentum
density (see 5.5.2) defines a transverse integration ∆k⊥ that needs to be sufficiently large ≃
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Figure 5.7: Experimental sequence to shift the entire momentum distribution so that
the k−4 tails fall onto the He∗ detector. The lattice power is represented in orange, the
MOT coils current in red and the RF wave power and frequency in green and light green
respectively.
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Figure 5.8: Gravity integrated 2D image of the distribution of the 1D lattice gas illustrating
the effect of the transverse integration. The red shaded area indicated the region where
the geometry of the detector affects the measurement of n1D(k).

0.8 µm−1 to ensure a proper signal-to-noise ratio. As illustrated on Fig.5.8, the transverse
integration however effectively reduces the momentum range in the 1D direction because
of the circular shape of the detector that cuts out a part of the integration volume. The
transverse integration must then be kept as low as possible and the distorted edges of the
distribution ignored in the analysis.

5.4.3 Benchmarking with 3D lattice gases momentum distribution

To check that our method does not induce any distortion of the momentum distribution, we
benchmark it with 3D lattice gas momentum distribution for different displacements. The
lattice amplitude is set to s = 15, i.e high enough so that the momentum distribution has
a wide background but still sharp diffraction peaks. We can check the overlap of the data
sets for different displacements with the wide background while precisely characterizing
distortion effects by looking at the location of the diffraction peaks.

The data is plotted on Fig-5.9 and Fig-5.10. These two figures illustrate several crucial
points:

• Even though we get an almost perfect agreement between the blue (non-displaced)
and the orange curve on Fig.-5.9, the orange peak at k = kd is lower than expected.
This is an effect that we attribute to the transverse integration that causes the
measured distribution to decay faster than we would expect on the edges of the MCPs
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Figure 5.9: Test of the displacement sequence on a 3D lattice s = 15 momentum distri-
bution. The blue curve corresponds to no displacement gradient, while the orange, and
green curves corresponds to displaced data with a command voltage Vc = 450 mV for the
orange curve and Vc = 1000 mV for the green one. The time tgrad before the RF transfer
consists 1 ms during which the current in the MOT coils is set to increase, and 8 ms where
it is left to decrease for the orange curve. This time is extended to 14 ms for the green
curve.
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Figure 5.10: Distortion of the distribution. The parameters are the same than for Fig.-5.9
with the addition of the red curve corresponding to a command voltage Vc = 1000 mV and
tgrad of 1 ms during which the current in the MOT coils is set to increase and 8 ms where
it is left to decrease. As this time is too small for the strong gradient too be properly
turned off, the distribution is distorted explaining why the diffraction peak appears at
lower k value.
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as explained in the previous paragraph. The green curve however well reproduces
the shape of the −1 kd peak.

• The red curve of Fig-5.10 illustrates an important caveat of the displacement proce-
dure. While we still let the current in the MOT coils increase for 1 ms, we perform
the RF transfer only 8 ms after this step which is too short for the gradient to
properly turn off, contrary to the green curve where this time is increased to 14 ms.
Because of the distance travelled by the atoms before the RF sweep and the pres-
ence of a gradient, the atoms see different magnetic fields and thus have different
resonance frequencies depending on their initial momentum. When the RF sweep
is performed, some atoms will then be transferred later than others and will thus
interact longer with the magnetic field, resulting in a larger displacement and a dis-
tortion of the distribution. This effect is striking on the red curve for which the
diffraction peak appears at a lower k than expected. On the other hand, if we wait
long enough for the displacement gradient to be turned off, this effect disappear as
illustrated by the diffraction peak of the green curve well centered on k = kd.

Overall, we get a nice overlap between the different properly displaced data sets and
therefore conclude that our displacement method does not induce any distortion of the
measured momentum distribution.

5.5 Experimental study

Having described the experimental procedure to collect the data, we detail in this section
the techniques and crucial points to properly analyze the experimental data.

5.5.1 Analysis of the transverse shape

The first point that we need to check is the transverse shape of the 3D distribution to
know whether we can fully decouple what is happening in the 1D direction from what is
happening in the other two transverse directions. The transverse momentum distribution
is supposed to be a Gaussian distribution whose width depends on the transverse trapping
frequency. If the atoms are in the harmonic oscillator ground state of the transverse
direction, the RMS width of the distribution in momentum-space is σtheo =

√
mω⊥

2ℏ(1+4asρ1D)
[69].

On Fig.-5.11, we plot the transverse distribution along gravity at different positions
along the 1D direction and normalize it to 1. We observe that we get the same RMS
size for every k1D at which the cut is done meaning that the 1D direction is fully de-
coupled from what is happening in the transverse direction. We extract its RMS width
σexp = 5.96(2) µm−1 . This data set was taken with s = 26, meaning that ω⊥ = 1.33(3)×

106 s−1 (see 2.3.1 for the detailled formula), giving σtheo = 5.8(1) µm−1 in agreement with
the experimental value.
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Figure 5.11: Normalized 1D cut along gravity of the experimental distribution at various
k along the 1D direction. The Gaussian shape remains unchanged, meaning that the 1D
direction is fully decoupled from the transverse directions.

5.5.2 Calculation of the momentum density

In order to compare the experimental values of the Tan’s contact to theory, it is crucial
to obtain the absolute value of the 1D density ρ1D(k) from the experimental data. To
do so, we exploit the fact that the transverse distribution shape is the same along the
1D direction as we have just seen. Under the effect of the fast transverse expansion,
some atoms fall beyond the MCPs and are therefore not detected. However, knowing the
transverse profile, we can do as if everything was only happening in one direction and
integrate over the transverse profile. The procedure is the following:

• We plot the transverse distribution ρ⊥(k) (in the vertical direction where it is not
cut out by the finite size of the He∗ detector) and extract its RMS width σexp.

• For one voxel of size ∆k1D ×∆k2
⊥, we have (keeping in mind normalization condition

with the factor 2π):

ρ1D(k) = 2π × Nvox(k)
ηsweep∆k1D∆k2

⊥

(∫
ρ⊥(k⊥)dk⊥

)2
(5.36)

(5.37)

ηsweep being the detection efficiency and Nvox(k) the number of atoms in the voxel
at a given k. From this, we obtain the expression of ρ1D(k) that depends only on
measured experimental values:

ρ1D(k) = 4π2 × Nvox(k)
ηsweep∆k1D∆k2

⊥
σ2

exp (5.38)
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5.5.3 Measurement of the temperature

As we want to study the dependency of the Tan’s contact with temperature and compare
with ab-initio QMC calculations, we first need to extract the temperature from the ex-
perimental data. Actually, the width of the momentum distribution contains information
about the temperature under certain conditions that we will now discuss.

We need to look at the properties of the first order spatial correlation function which
are directly reflected in the momentum distribution. In 1D gases at T = 0, the inter-
actions induce an algebraic decay of the first order correlation function that translates
into an algebraic decay of the momentum distribution [65, 128]. However, at T ̸= 0,
the temperature creates phase fluctuations that induce an exponential decay of the first
order correlation function. In the weakly-interacting regime where (1, ξT ) ≤ ξ−1

γ , this
decay happens on shorter length scales than the one induced by interactions. This means
that at low k, the momentum distribution is Lorentzian (Fourier transform of a damped
exponential) [31, 55, 68]:

ρ1D(k) = 2ρ̄1D(0)/δk
1 + (k/δk)2 (5.39)

with ρ̄1D(0) the average central density over the tubes weighted by the number of atoms
in the tube. Its width δk is linked to the coherence length of the gas Lϕ:

δk = αfit
Lϕ

(5.40)

itself linked to temperature by:

Lϕ = ℏ2ρ̄1D(0)
mkBT

(5.41)

where αfit is a coefficient that depends from the 1D trapping frequency ω1D and the inter-
action parameter. It is not entirely clear whether this picture should hold for our typical
experimental parameters putting us near the frontier between the weakly-interacting and
strongly interacting regimes. However, numerical QMC calculations performed by Hepeng
Yao from Centre de Physique Théorique at Ecole Polytechnique have shown that this de-
scription works, provided that the proper αfit is used. Its value has been calibrated with
the QMC calculations and is typically equal to αfit = [0.78, 0.79] for the data sets presented
here. The temperature of the system can then easily be extracted with a Lorentzian fit of
the measured momentum distribution at low k as illustrated on Fig-5.12.

In practice, the temperature can be increased in the same fashion than described in
4.2.3 by increasing the holding time in the lattice. This effect is clearly visible in Fig-5.12
where we see that the width of the Lorenztian increases when the holding time is increased.
Table 5.1 shows the temperatures, lattice holding times and reduced temperatures of the
3 data sets presented in this chapter.
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Figure 5.12: Normalized 1D momentum distribution ρ1D(k) for lattice holding times
thold = 5 ms and thold = 200 ms. The Lorentzian fit well matches the data at low k.
The increase in the width of the distribution signals the increase in temperature induced
by the increased holding time in the lattice. We measure T = 800 nK for thold = 5 ms and
T = 1.5 µK for thold = 200 ms.
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thold (ms) T (µK) ξT

5 0.8 1.57
200 1.5 2.09
600 2.9 2.91

Table 5.1: Temperature of the system for 3 lattice holding times thold and corresponding
reduced temperature ξT .

5.5.4 Interaction parameter

The other relevant parameter affecting the value of Tan’s contact besides temperature is
the reduced interaction strength as defined in equation 5.12 which we control by changing
the total number of atoms Nbec loaded in the 2D optical lattice. Table 5.2 shows its
weighted average values versus the total atom number Nbec for the 3 data sets that will
be discussed here.

Nbec N̄ ξ̄γ

3.1 ×104 58 0.167
1.1 ×105 125 0.113
2.3 ×105 192 0.092

Table 5.2: Weighted average number of atoms per tube and average reduced interaction
strength for 3 different total atom numbers Nbec.

5.5.5 Experimental procedure and first extracted values of the Tan’s contact

The procedure to measure Tan’s contact for a given data set is as follows:

• We prepare the parameters of the experiment to reach the desired values of temper-
ature and atom number. The latter is calibrated via absorption imaging while the
former is set by changing the holding time in the lattice and checking that the width
of the 1D distribution increases.

• We start by taking ∼ 100 experimental shots with no gradient to measure the low
k distribution from which we can extract the temperature as explained in 5.5.3. We
do not need to take a large number of shots as the signal is quite high and we do
not require a very high signal-to-noise ratio to obtain the temperature.

• We set the gradient to shift the momentum distribution to access the momentum
region where the k−4 tails are supposed to be present as explained in 5.4. Usually,
the displacement is not too high so that the momentum range overlaps the natural
momentum range of the He∗ detector where no gradient is used, allowing to check
that the displaced data matches nicely the non-displaced data in the region of the
overlap as shown on Fig.-5.13 panels (a) and (b). In the following for clarity sake,
we will plot one single curve obtained by merging the low and high momentum data.

• After computing the 1D distribution ρ1D(k) with the method detailed in 5.5.2, we
plot the quantity ρ1D(k) × k4. The presence of k−4 tails is signaled by a flat zone
that we can fit with a constant function to extract the bare value of the contact C
as illustrated on Fig.-5.13.

Coming back to the predictions of [170], we have already seen that the contact can be
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Figure 5.13: Plots of ρ1D(k) for s = 26, N = 3.1(3) × 104 and thold = 5 ms. (a) Linear
scale plot of the normalized ρ1D(k) for two momentum ranges. (b) Same data in log scale.
The red line indicates a k−4 fit. (c) k4ρ1D(k) at high momentum. The red shaded area
indicates the flat zone of the k−4 tail.
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written:

C = N5/2

a3
ho

f(ξγ , ξT ) (5.42)

We can then define a rescaled contact:

C̃ = C
a3

ho
N5/2 (5.43)

as plotted on Fig-5.2. In the following, we will then plot C̃ instead of the bare value C for
convenience.

5.6 Discussion of the preliminary results

5.6.1 Qualitative evolution with temperature

We plot on Fig.-5.14 the experimental rescaled contact C̃ as a function of ξT for a fixed
atom number N = 1.1(1)×105 corresponding to ξγ = 0.113. The error bars corresponds to
the standard deviation over the data points averaged to obtain the value of the contact. As
we only have 3 data points at the moment, it is rather hard to see a clear trend appearing,
but the point at high temperature is clearly lower than the other 2. This qualitative
behavior is consistent with the predictions of [170]: with the reduced interaction strength
ξγ = 0.113, we should be somewhere close to the green curve of 5.2 panel (b) in the region
of ξT where C̃ is decreasing. It seems however that we should increase ξγ to observe the
non-monotonic behavior of the contact with the current error bars of the experiment.

5.6.2 Qualitative evolution with the interaction strength

We plot on Fig.-5.15 the experimental bare contact C as a function of N̄ and the ex-
perimental rescaled contact C̃ as a function of ξγ for a fixed temperature T = 0.8 µK
corresponding to ξT = 1.57. Interestingly, C and C̃ behave very differently: while C in-
creases by roughly an order of magnitude because of the dependency in N5/2, C̃ is found to
be close to constant. This is rather reassuring as we are able to observe strong variations
of the bare experimental contact that nevertheless look to be qualitatively consistent with
theory. According to Fig.-5.2, C̃ should indeed be slowly increasing with ξγ as we may
observe here.

5.6.3 Comparison with QMC calculations

So far, we have only discussed the qualitative evolution of C̃ with ξT and ξγ which seems
encouraging and consistent with theory. We now push our study one step further by
comparing the experimental data to ab-initio QMC calculations simulating our experiment.
The calculations were once again performed by Hepeng Yao and simulate the distribution
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Figure 5.14: Rescaled contact C̃ as a function ξT for a fixed ξγ = 0.113. The qualitative
behavior is consistent with the predictions of [170] as C̃ decreases with λT .

Figure 5.15: Contact for various interaction strengths at a fixed temperature ξT = 1.57
(a) Bare contact as a function of the weighted average number of atoms per tube N̄ . (b)
Rescaled contact C̃ as a function of the reduced temperature ξT .
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Figure 5.16: Comparison between the normalized experimental data and QMC calculations
for two different total atom numbers Nbec = 110 × 103 (left) and Nbec = 31 × 103 (right).

of tubes to match the experiment as precisely as possible. The results are plotted on
Fig.-5.16 for two interaction parameters ξγ = 0.113 and ξγ = 0.167 corresponding to
Nbec = 1.1(1) × 105 and Nbec = 3.1(3) × 104 for a fixed temperature ξT = 1.57. The
agreement for the low k part is slightly off for the Nbec = 1.1(1) × 105 data set, possibly
due to a slight misevaluation of the temperature, but very good for the Nbec = 3.1(3)×104

data set, meaning that the method we use to describe the entire 2D array of 1D tubes and
to determine the temperature is rather accurate, at least for low atom numbers. There is
however a very clear disagreement by two orders of magnitude in the high k part where
the k−4 tails are supposed to be.

Possible explanations

It is actually not the first time that our team tried to measure a k−4 scaling as we already
attempted to measure this kind of scaling in the quantum depletion of a Bose-Einstein
condensate. In [34], we actually measured a k−4 scaling that was first attributed to
Tan’s contact but with too high of an amplitude, like in the case of the data presented
here. Further investigations [28] revealed that this scaling was in fact caused by mJ = 0
impurities in the condensate that cannot be prevented from falling unto the MCPs as they
do not interact with magnetic fields. It was then the first hypothesis that we thought of
to explain this discrepancy with the QMC calculations.

We then decided to characterize the effect of these mJ = 0 atoms as well as the non-
transferred mJ = 1 that are not properly kicked that we will name “background” atoms by
preparing the gases as we usually would and using the same displacement sequence, but not
performing the population transfer in the beginning of the TOF. We performed a first test
of the kind by preparing a gas with a deliberately low atom number Nbec = 26(3) × 103,
taking low and high momentum data as usual, and then measuring the distribution of
mJ = 0 for the same experimental sequence than used for the high momentum data. Even
though the mJ = 0 are unaffected by the magnetic field, we plot the distribution as if
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it were displaced to clearly compare it to the “true” displaced 1D distribution plotted in
log-scale, as shown on Fig-5.17. We repeated this experiment for two different methods
of removing the remaining non-transferred mJ = 1 atoms, the first one being the usual
method of using the x gradient coil and the second one consisting in abruptly ramping up
the current in the y and z bias coils to effectively create a gradient in time and push the
atoms by doing so. We learn several things from these measurements:

• The background density is higher when using the y and z bias coils than the x
gradient coil for the magnetic removal kick. This is rather reassuring has it had
always been our preferred method so far. However, the shape of the two profiles are
also slightly different. As these two data sets have been taken on the same day, this
cannot be explained by day-to-day fluctuations of the state of the experiment. This
could then mean that the mJ = 0 atoms are not fully decoupled from the mJ = 1
atoms during the TOF and that there could be some interactions affecting the shape
of the background density. In addition, as the magnetic bias used to separate the
magnetic sub-levels for the population transfer is along the x direction, the kick
using the y and z bias coils is not oriented along the quantification axis. This could
result in some uncontrolled population transfer between the mJ = 1 and the mJ = 0
sub-states.

• The background density is however very close to the measured 1D distribution,
especially with the y, z removal kick where they overlap. Even worse, the background
density seems to show a k−4 decay as observed in the past.

• Contrary to the background density, the magnetic removal kick method does not
affect the 1D momentum distribution. This could be explained using the argument
stated earlier that using the y and z bias coils for the magnetic kick induces some
population transfer from mJ = 1 and mJ = 0. While this effect is significant when
no RF sweep population transfer is performed, we can expect that it does not play
any role when a large portion of the atoms have already been transferred to mJ = 0
with the RF sweep.

• The plateau region that does not appear in the QMC data cannot however be ex-
plained by the effect of the background density which is roughly one order of mag-
nitude lower in this momentum region.

Unfortunately, these first tests seem to indicate that the mJ = 0 impurities could
indeed be playing a role, at least for low total atom numbers. We reproduced the same
kind of experiment (this time leaving out the y, z removal kick method) for a higher number
of atoms N = 1.1(1)×105 with the results show in Fig-5.18. The data is strikingly different
as the 1D density is about one order of magnitude higher than the background density
in the k−4 decay region! The mJ = 0 impurities cannot then explain the discrepancy
between the experimental and QMC data of the right panel of Fig-5.16 where the total
atom number is similar.

5.7 Conclusion

In conclusion, we observed qualitative behaviors of the amplitude of the k−4 tails that seem
to point towards the fact that we are measuring Tan’s contact. However, the discrepancy
with theory and QMC calculations is large and remains so far unexplained and an open
question. While the first tests to quantify the effect of the mJ = 0 impurities seem
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Figure 5.17: Effect of the background mJ = 0 impurities for a total atom number Nbec =
26(3) × 103. The experiment is done twice with two different methods of removing the
non-transferred mJ = 1 atoms in the beginning of the TOF, one using a gradient along x
(labelled as x kick), one abruptly ramping up the current in the y and z bias coils (labelled
as y, z kick).

Figure 5.18: Effect of the background mJ = 0 impurities for a total atom number Nbec =
1.1(1) × 105
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to indicate that they could partly explain the discrepancy at low atom numbers, this
explanation does not hold for higher atom numbers. One of the principal questions to
elucidate would be to understand what the intermediate algebraically decaying region
means. We could indeed think that this is a physical feature related to the algebraic decay
of the first order correlation function under the effect of interactions as explained in 5.5.3,
but this is contradicted by the QMC calculations. We could however imagine that there
is something that we did not properly understand in the way that the different 1D tubes
contribute to the total distribution that the QMC calculations fail to reproduce. On the
contrary, this could be the signature of some experimental defect that we have overlooked.

In the near future, we plan to reproduce these experiments using the newly imple-
mented two-photon Raman transfer. We hope that the increased detection efficiency will
help us to separate more clearly the signal from the background effects and maybe help
us identify more clearly what the problem sources are to find new paths to explore.



Conclusion

The central result of this thesis is the observation of k/−k pairs in the quantum depletion
of a weakly-interacting lattice Bose gas. Most of the work I did during my PhD was
oriented towards that goal. This measurement was the next step in our task of fully
characterizing the correlations across the superfluid to Mott insulator transition after the
first two works [26, 30] conducted by the former PhD students Hugo Cayla and Cécile
Carcy that focused on the local correlations, respectively deep in the Mott regime and in
the superfluid region.

The first work that I conducted during my PhD is the study the two-body scattering
halos [154] as a means to complete the previous benchmarking work [29] to certify that
the measured atomic distribution faithfully represents the in-trap momentum distribution
at the level of individual atoms. We devised a simple theoretical model predicting the
number of atoms in the collision halos that we validated experimentally by measuring this
number for large number of atoms loaded in the lattice. Extrapolating the predictions of
the simple model to the low atom numbers usually used in our experiments, we could show
that two-body collisions can be safely neglected, proving that our experiment is suited to
probe correlations between individual particles. A second work aimed at studying the
adiabatic preparation of the gas in the vicinity of the Mott transition [27]. Led by Cécile
Carcy in collaboration with the theoretician Tommaso Roscilde, it has been completed
around the middle of my PhD, concluding the series of experiments aiming to prove that
our experiment properly simulates the Bose-Hubbard model. In particular, this work
showed that it is possible to adiabatically approach the Quantum Critical Point of the
superfluid to Mott insulator transition at finite entropy, i.e without creating excitations,
contrary to the T = 0 case where this is expected to be impossible. This work then sets
the ground for the study of correlations across the superfluid to Mott insulator transition
that we defined as one of our main point of interest in the introduction to this manuscript.

Our team had attempted before at revealing the pairing mechanism associated to the
quantum depletion without success. We identified the low detection efficiency (∼ 10−15%)
as a central issue and thus we decided to implement a two-photon Raman transfer to
improve it. Building and testing the Raman transfer was the second main project of my
PhD.
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It was more or less at this time that the Covid-19 pandemic hit, forcing us to leave the
lab and stay at home. I used this period away from the lab room to develop the algorithm
to compute the anomalous correlation function g

(2)
A (to look for the k/−k correlations).

I tested and troubleshot this algorithm at first with simulated data and in a second time
with the data from the earlier project on the scattering halos (in which classical k/−k
correlations can be observed in the frame of the center of mass of each halo).

We started the measurement campaign for the k/−k correlations a few months after
the end of first lockdown and were able to observe first experimental signals. We then
performed experiments to investigate the role of temperature and of atoms number on the
pairing signal and to compare pair correlations with the bunching effect. These measure-
ments provided strong evidences that the observed k/−k correlations were the expected
signature of quantum coherences built by atom pairs as a result of interactions. Several
features associated with T = 0 quantum coherences induced by the pairs could be observed
and we propose an interpretation in analogy with two-mode squeezed states in Quantum
Optics.

In addition, we observed g
(2)
A (0) ≫ g

(2)
N (0), violating the Cauchy-Schwarz inequality,

once again signaling the quantum nature of the correlation signal, and finally measured
relative number squeezing between modes k and −k. These last two measurements con-
stitute a first step towards demonstrating the presence of entanglement in the many-body
equilibrium state of our system. This notably opens the way to characterizing squeez-
ing and entanglement with continuous variables (here the momentum), extending such
studies beyond discrete spin variables as mostly done so far.

In a nutshell, we were able to report the first observation of k/−k correlations in
an at-equilibrium system, resulting from the interplay between quantum fluctuations
and interactions, confirming the 60 years old prediction of Bogoliubov and Lee-Huang-
Yang. Interestingly, one of the motivations to observe this signal laid in its conceptual
simplicity and the existence of the well-rounded Bogoliubov theory describing it, giving
us a general frame to interpret the experimental data. However, the presence of the
optical lattice represents an already significant change from the homogeneous Bogoliubov
theory and makes theoretical approaches much more complicated and to this day missing.
While many of our observations are consistent with Bogoliubov theory, we observed that
it notably fails to quantitatively explain the number of detected pairs. This means that
our experiment starts to qualify as a quantum simulator as defined in the introduction,
even though new theories might emerge in the near future to explain these results as the
complexity of the system is still manageable.

Building up on the quantum simulation aspect, this result is also of great importance
for our future experiments as it shows that our experiment is capable of detecting non-
local k/−k correlations (we had only observed close-by k/k correlations before), hinting
at a possible detection of more complex and hard to predict correlation patterns, notably
close the Quantum Critical Point of the Mott transition, that would be a big step towards
understanding the physics of strongly interacting many-body systems. This also confirms
that we could detect k/−k correlations in Cooper pairs and help understanding the physics
of superconductivity with future experiments with fermionic 3He∗.

In parallel, I also spent a significant amount of time working on the project of mea-
suring Tan’s contact in 1D gases, in collaboration with Hepeng Yao and his supervisor
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Laurent–Sanchez Palencia from Centre de Physique Théorique at Ecole Polytechnique.
This work also falls into the general goal of studying many-body interacting systems with
a complementary approach to correlation functions, i.e measuring high momentum tails
revealing the presence of contact interactions. We implemented a solution to increase the
momentum range of the detector by using a magnetic gradient to shift the entire momen-
tum distribution and access the high momentum region, and were able to observe a k−4

decay on various data sets. While the qualitative evolution of the contact with tempera-
ture and interaction strength is consistent with theory, there is a large discrepancy with
the QMC calculations that remains to this day unexplained and should be the subject of
future experiments. Obtaining an agreement with theory would be of primary importance
to show that the momentum density at high k can be used to properly characterize the
different regimes and crossovers between them in interacting 1D gases.

Outlooks

Our measurements of k/−k correlations have voluntarily left constant the lattice depth.
An immediate way of pushing these measurements further (that we have already started
working on) is to monitor the pairing while progressively increasing the lattice depth. As
U/J increases, and with it the strength of the interactions, we should reach a point at
which the Bogoliubov approximation is not valid anymore. It would then be interesting
to see how this effect translates to the k/−k correlation signal. As mentioned earlier, we
notably expect that more complex correlation patterns may appear as the strength of the
interactions increases, effectively involving more than 2 particles. These kind of complex
correlations are expected to be particularly important at the Quantum Critical Point of
the superfluid-to-Mott insulator transition. A short-mid range prospect would then be to
develop new data analysis techniques to measure higher order correlation functions, test
them in simple cases like by measuring bosononic bunching with more than 2 particles,
and finally use them in experimental data progressively closer to the Quantum Critical
Point. As obtaining a good enough signal to noise ratio to measure a n-th order correlation
function gets increasingly difficult as n increases, we would need to take large amount of
data at the Quantum Critical Point. This prospect is particularly exciting as no theory
predicts what should happen in terms of momentum-space correlations at the Quantum
Critical Point, making this measurement a true quantum simulation.

In addition, our observation of the violation of the Cauchy-Schwarz inequality would
be enough to obtain the important result of proving the presence of entanglement in
momentum-space in many-body equilibrium systems if we were able to measure the cor-
relator ⟨a†

ka−k⟩ and show that it is negligible, as in Bogoliubov theory. Improving our
experimental setup to have the lattice beams required to perform atomic interferometry
and measure this correlator then constitutes another interesting outlook.

Another short term objective is to further investigate the discrepancy between the ex-
perimental data and the QMC calculations for the measurement of Tan’s contact, notably
by taking additional data using the newly added two-photon Raman transfer. We hope
that the increased detection efficiency would help us being less sensitive to possible effects
of the mJ = 0 impurities while reducing the number of non-transferred mJ = 1 atoms.
While these atoms are supposed to be prevented from falling on the detector thanks to a
strong magnetic gradient kick, we observed that there could be unwanted dynamics such
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as uncontrolled transfer to the mJ = 0 state that could perturb our measurement. This
measurements might then help us to identify eventual problems in the experiment or in
the way that we compare our data to the theory.

Finally, a more long term prospect would be to improve the experimental setup to
bring the fermionic isotope of Helium, 3He∗, to quantum degeneracy. This would open
the way to study a whole new kind of physics with the great momentum-space resolution
of our detector. It would be particularly interesting to study the physics of the BEC-BCS
transition and directly measure k/−k correlations in a Cooper pair. To do so, we would
first need to identify a usable Feshbach resonance to create the Cooper pairs as there have
currently not been a proper investigation of the existence of Feshbach resonance in 3He∗.

Figure 1: The new experiment room. (a) Before moving in, with only a few optical tables
left by the previous occupants of the room. (b) After moving in.

Actually, the lab room in which all the experiments of this thesis were conducted was
starting to get packed, and adding the new equipment to cool down a new atomic species
would have barely left enough space in the room for a PhD student. This last year, we
took a first (but big!) step towards the installation of 3He∗ in our experiment by moving
the entire apparatus to a new bigger room a few steps down the corridor (see Fig.-1),
giving us plenty of additional space. At the moment that I am writing this manuscript,
we managed to get the experiment back to its working state and were able to produce
BECs and should be able to resume taking data soon. I would like to end this manuscript
with one last figure (2) which is one of my favorite picture of my time as a PhD student,
showing the Helium Lattice team in the perilous process of moving the science chamber
to the new room, in which I hope it will serve to make many beautiful experiments in the
years to come.
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Figure 2: The Helium Lattice team with the Science Chamber, moving from the old room
to the new one.





List of Figures

1 Momentum distribution across Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . 16

1.1 Principle of the Michelson interferometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Intensity pattern for a light source with two monochromatic components of frequencies
ω1 and ω2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Diagram of the historical Hanbury Brown and Twiss apparatus . . . . . . . . . . . . . . . . 25

1.4 Schematic of an extended light source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Second-order normalized correlation function for the Hanbury Brown and Twiss effect 28

1.6 Quantum interpretation of the Hanbury Brown and Twiss effect . . . . . . . . . . . . . . . 29

1.7 Probability distribution of photon numbers for coherent and chaotic light sources . 32

1.8 Experimental observation of the Bogoliubov excitation spectrum . . . . . . . . . . . . . . 43

1.9 Illustration of the k/−k pairing of the quantum depleted atoms in the BEC . . . . . 44

1.10 Second order correlation function for normal k/k correlations and anomalous k/−k
correlations with quantum and thermally depleted atoms . . . . . . . . . . . . . . . . . . . . . . . . 47

1.11 Evolution of normal correlations width with k for different values of the temperature 49

1.12 Evolution of the anomalous correlations width with k for different values of the temper-
ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.13 Illustration of the different momentum extents of the BEC and the depletion . . . . 51

2.1 First five Bloch energy bands for various lattice amplitudes V0 . . . . . . . . . . . . . . . . 55

2.2 Real parts of the Bloch and Wannier functions for various lattice depths . . . . . . . . 56

2.3 Representation of the Bose-Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Evolution of U , J and the ratio U/J as a function of the lattice depth in log-scale 59

2.5 Schematic of the superfluid to Mott insulator transition . . . . . . . . . . . . . . . . . . . . . 62



190 List of Figures

2.6 Homogeneous phase diagram as a function of µ/U and J/U and wedding-cake structure
for the trapped gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Visualisation of the wedding cake structure with a quantum microscope experiment 64

2.8 Bose-Hubbard phase diagram function of T/J and U/J . . . . . . . . . . . . . . . . . . . . . 65

2.9 2D Gutzwiller density profiles for various atom numbers at s = 18 . . . . . . . . . . . . . 66

2.10 Comparison between the Wannier functions and and the Gaussian wave-function of the
harmonic oscillator of frequency ωL for various lattice depths. . . . . . . . . . . . . . . . . . . . . 68

2.11 Numerical simulation of the atomic density ρTOF(x, t) after various expansion times
from a 1D lattice of 50 sites with s = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.12 Absorption images of Rubidium atoms across the Mott transition . . . . . . . . . . . . . 72

2.13 Harmonic approximation of the dispersion relation of the first energy band . . . . . . 75

3.1 Energy levels of the Helium atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Metastable helium source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Principle of the grey molasses in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Laser cooling sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Orientation of the ODT and lattice beams in the experiment . . . . . . . . . . . . . . . . . 86

3.6 Condensation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Calibration sequence of the lattice depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8 Calibration of the lattice depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.9 He∗ detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.10 Schematic of the delay lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.11 Vertical accuracy of the detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.12 Saturation cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.13 Lambda level structure for two-photon Raman transfer . . . . . . . . . . . . . . . . . . . . . 99

3.14 Implementation of the two-photon Raman transfer with 4He∗ . . . . . . . . . . . . . . . 100

3.15 Optical setup for two-photon Raman transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.16 Orientation of the Raman beams in the experiment . . . . . . . . . . . . . . . . . . . . . . 102

3.17 Two-photon Raman transfer resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.18 Rabi oscillations with two-photon Raman transfer . . . . . . . . . . . . . . . . . . . . . . . . 104

3.19 Measurement of the MCP detection efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.20 Loading sequence of the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.21 Characterisation of the lattice ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.22 Comparison of experimental and QMC normalized 1D cuts of the momentum density
for different temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.23 χ2
r (T ) as a function of temperature in linear and logscale . . . . . . . . . . . . . . . . . . 109



List of Figures 191

3.24 Experimental reduced temperature TJ = kBT/J as a function of u and absolute tem-
perature in recoil units Er as a function of u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.25 Entropy per particle for various values of u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.26 Fischer information as a function of the reduced temperature TJ and u . . . . . . . 112

3.27 Elastic collisions between copies of the condensate . . . . . . . . . . . . . . . . . . . . . . . 114

3.28 Scattering halos in the 3D momentum distribution of a superfluid lattice gas . . . 117

3.29 Atom numbers histograms as a function of the momentum distance kr to the center of
the scattering halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.30 RMS width δks of the scattering halos as a function of Nbec . . . . . . . . . . . . . . . 118

3.31 Experimental number of collisions and probability of collision per atom as a function of
the atom number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.32 Probability of collision per atom as a function of the lattice depth . . . . . . . . . . . 120

4.1 Correction of software saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Illustration of the transverse integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Fitted amplitude of the normal correlation peak ηN as a function of the transverse inte-
gration ∆k⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Fitted amplitude of the anomalous correlation peak ηA as a function of the transverse
integration ∆k⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 1D diffraction and associated scattering spheres . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 1D cut of the anomalous correlation function g(2)
A along the z axis . . . . . . . . . . . . 130

4.7 1D normalized cut of the momentum density illustrating the integration volume Ωk 131

4.8 Number of detected atoms NMCP for each experimental runs of a data set . . . . . 131

4.9 1D cuts through the anomalous correlation function g(2)
A along the axis of the 3D optical

lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.10 1D cut of the anomalous correlation function g(2)
A illustrating its periodicity . . . . 133

4.11 Normal and anomalous correlation functions in the BEC . . . . . . . . . . . . . . . . . . . 134

4.12 Atom-atom correlations in weakly-interacting BECs at two different temperatures 135

4.13 Anomalous correlation function for data sets with different temperatures and condensed
fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.14 RMS widths of the anomalous and normal correlation peaks . . . . . . . . . . . . . . . . 137

4.15 Corrected RMS widths of the anomalous and normal correlation peaks . . . . . . . . 139

4.16 Bunching amplitude g(2)(0) − 1 as a function of the reduced temperature kBT/µ 140

4.17 Amplitude of the correlation peaks versus the inverse average density ρ̄Ωk
. . . . . 141

4.18 Relative number squeezing measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.19 Squeezing parameter ξ2 as a function of the condensed fraction fc for correlated and
uncorrelated modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



192 List of Figures

4.20 Evolution of the anomalous correlations amplitudes with k . . . . . . . . . . . . . . . . . 148

4.21 Evolution of the normal correlation peak width σN with k . . . . . . . . . . . . . . . . . 149

5.1 State diagram of trapped 1D Bose gases with repulsive interactions as a function of the
reduced temperature ξT and the reduced interaction strength ξγ for trapped 1D gases . 156

5.2 Reduced contact a3
hoC/N

5/2 as a function of ξT and ξγ as predicted from the LDA
approach and QMC calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3 Configuration of the optical lattice to produce 1D tubes . . . . . . . . . . . . . . . . . . . . 160

5.4 Atom number distribution in a 2D lattice of amplitude s = 26 for Nbec = 30 × 103 161

5.5 Schematic of the array of 1D tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.6 Orientation of the lattice beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.7 Experimental sequence to shift the entire momentum distribution so that the k−4 tails
fall unto the He∗ detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.8 Effect of the transverse integration of 1D gases data . . . . . . . . . . . . . . . . . . . . . . 168

5.9 Test of the displacement sequence on a 3D lattice s = 15 momentum distribution 169

5.10 Distortion of the momentum distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.11 Normalized 1D cut along gravity of the experimental distribution at various k along the
1D direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.12 Normalized 1D momentum distribution ρ1D(k) for lattice holding times thold = 5 ms
and thold = 200 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.13 Plots of ρ1D(k) for s = 26, N = 3.1(3) × 104 and thold = 5 ms . . . . . . . . . . . . . 176

5.14 Rescaled contact C̃ as a function ξT for a fixed ξγ = 0.113 . . . . . . . . . . . . . . . . 178

5.15 Contact for various interaction strengths at a fixed temperature ξT = 1.57 . . . . . 178

5.16 Comparison between the normalized experimental data and QMC calculations for two
different total atom numbers Nbec = 110 × 103 and Nbec = 31 × 103 . . . . . . . . . . . . . 179

5.17 Effect of the background mJ = 0 impurities for Nbec = 26(3) × 103 . . . . . . . . . 181

5.18 Effect of the background mJ = 0 impurities for Nbec = 1.1(1) × 105 . . . . . . . . . 181

1 The new experiment room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

2 The Helium Lattice team with the Science Chamber, moving from the old room to the
new one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



List of Tables

4.1 Average number of detected k/−k pairs per experimental run and fraction of quantum
depleted atoms in the depletion for different total atom numbers. . . . . . . . . . . . . . . . . . 143

4.2 Experimental values of the squeezing parameter for correlated and uncorrelated modes
and different condensed fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1 Temperature of the system for 3 lattice holding times thold and corresponding reduced
temperature ξT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2 Weighted average number of atoms per tube and average reduced interaction strength
for 3 different total atom numbers Nbec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175





Publications

• C. Carcy, H. Cayla, A. Tenart, A. Aspect, M. Mancini, and D. Clément. Momentum-
space atom correlations in a mott insulator. Physical Review X, 9(4):041028,
2019. Used as reference [26] in this manuscript.

• A. Tenart, C. Carcy, H. Cayla, T. Bourdel, M. Mancini, and D. Clément. Two-body
collisions in the time-of-flight dynamics of lattice bose superfluids. Physical
Review Research, 2(1):013017, 2020. Used as reference [154] in this manuscript.

• H. Cayla, S. Butera, C. Carcy, A. Tenart, G. Hercé, M. Mancini, A. Aspect, I.
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Résumé

Ce manuscrit a pour objectif général l’étude de systèmes quantiques composés de nom-
breuses particules en interaction, plus connus sous le nom de systèmes à N-corps. La diffi-
culté majeure dans l’étude de ces systèmes réside dans la présence d’un très grand nombre
de degrés de liberté, rendant très difficile toute approche théorique exacte. Néanmoins, di-
verses méthodes approchées ont pu être utilisées pour étudier ces systèmes à N-corps. C’est
notamment le cas de la thermodynamique qui consiste à étudier des propriétés moyennes
d’ensemble du système, ainsi que de l’approche dite de champ moyen qui considère que
les particules du systèmes sont indépendantes les unes des autres mais plongées dans un
potentiel représentant l’action moyennée des autres particules du système. Bien qu’ayant
fourni de nombreux résultats importants, ces approches ne sont pas adaptées à l’étude
de systèmes fortement interagissants. Dans ce cas, il est alors nécessaires de prendre un
compte les corrélations présentes entre les composantes individuelles du système, non
décrites par les approches champ moyen.

Ces travaux de thèses se sont concentrés sur un exemple emblématique et conceptuelle-
ment simple de système à N-corps, le gaz de Bose homogène en interaction faible. Malgré
son apparente simplicité, ce système présente en effet des phénomènes quantiques non
triviaux ne pouvant être décrits par des approches champ moyen. C’est le cas de la
déplétion quantique. A température nulle et pour un système non interagissant, la
statistique de Bose-Einstein prédit que tous les bosons du système occupent l’état fonda-
mental du système. C’est ce qu’on appelle un condensat de Bose-Einstein. Si l’on ajoute
maintenant des interactions de contact entre particules, l’effet conjoint de ces interactions
et des fluctuations quantiques va promouvoir des particules en dehors du condensat vers
des états excités. Le terme déplétion quantique désigne la fraction d’atomes retirés du
condensat de la sorte.

Il est possible de former une image microscopique de la déplétion quantique en s’appuyant
sur la théorie de Bogoliubov dont l’idée centrale est de faire l’approximation que les inter-
actions sont faibles pour les traiter de manière perturbative. La fraction d’atomes retirés
du condensat par les interactions est considérée comme faible et l’on ne considère donc que
les processus d’interactions impliquant deux particules du condensat. Comme l’impulsion
des particules du condensat est nulle, l’impulsion initiale totale est nulle et doit l’être après
le processus d’interaction en vertu de la conservation de l’impulsion. De ce fait, les im-
pulsions des deux particules retirées du condensat doivent être de mêmes normes, mêmes
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directions, mais de sens opposés. On observe donc la formation de paires d’atomes corrélés
d’impulsions opposées k/-k. La particularité de ce phénomène vient du fait que les paires
d’atomes d’impulsions opposées sont ici produites à partir d’un système à l’équilibre et
ne peut ainsi être expliqué que dans le cadre d’une théorie quantique. Bien que prédit en
1957 par Lee, Huang et Yang, la signature microscopique de ce phénomène n’avait jamais
été observée auparavant. En utilisant les capacités de détection à l’atome unique dans
l’espace des impulsions du dispositif expérimental utilisé dans ces travaux de thèse, nous
avons pu observer pour la première fois ce signal de corrélation.

Chapitre 1
Le premier chapitre présente le formalisme nécessaire à l’étude des corrélations quantiques.
Il est introduit au travers du prisme de l’optique quantique pour lequel il a été initiale-
ment développé, avant d’être étendu à la physique atomique. Nous détaillons ensuite les
éléments essentiels de la théorie de Bogoliubov du gaz de Bose homogène faiblement in-
teragissant pour comprendre les caractéristiques principales du signal de corrélation k/-k
de la déplétion quantique et mettre en évidence les contraintes expérimentales pour son
observation.

Chapitre 2
Afin de s’assurer que l’effet des interaction est suffisant par rapport à celui de la température
dans notre expérience, il est nécessaire d’utiliser un réseau optique de façon à augmenter
la force des interactions. Ce chapitre présente le modèle de Bose-Hubbard décrivant la
physique de bosons sur réseaux et comment une mesure en temps de vol permet d’accéder
expérimentalement à la distribution en impulsion du système.

Chapitre 3
Ce chapitre décrit le dispositif expérimental utilisé et comment l’utilisation d’hélium
métastable et de détecteur à micro-canaux permet une détection résolue à l’atome unique.
Nous présentons également plusieurs expériences visant à certifier l’exactitude de notre
mesure.

Chapitre 4
Ce chapitre détaille l’observation expérimentale du signal de corrélation k/-k. Nous
étudions ses principales caractéristiques : largeur, amplitude et dépendance à la température,
interprétées au regard de la théorie de Bogoliubov. Nous démontrons également l’observation
de la violation de l’inégalité de Cauchy-Schwarz classique et une réduction des fluctuations
du nombre d’atomes entre mode d’impulsions opposés, prouvant la nature quantique de
notre signal de corrélation.

Chapitre 5
Nous présentons dans ce chapitre un autre projet conduit pendant cette thèse, à savoir la
mesure du contact de Tan dans un gaz de bosons uni-dimensionnel. Après une introduction
théorique, nous présentons la procédure expérimentale utilisée pour extraire le valeur du
contact de Tan des données expérimentales avant de discuter des premiers résultats et de
leur désaccord avec la théorie.
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Résumé: Ce travail de thèse est centré sur l’étude
d’un exemple emblématique de système quantique en
interaction, le gaz de Bose en interaction faible. A
température nulle, la théorie de Bogoliubov prévoit
que l’effet conjoint des interactions et des fluctu-
ations quantiques retire une fraction des atomes
du condensat de Bose-Einstein. Cette fraction est
nommée déplétion quantique. Elle consiste en une
superposition cohérente de paires d’atomes à impul-
sions opposées. La présence de ces paires découle
du processus microscopique d’interaction à deux
particules. Bien que cette prédiction date de 60
ans, ce manuscrit rapporte la première observa-
tion de ces corrélations entre impulsions opposées
dans la déplétion d’un gaz de Bose en interaction
faible. Pour ce faire, nous produisons des conden-
sats de Bose-Einstein d’Hélium-4 métastable chargés
dans des réseaux optiques. L’utilisation d’Hélium
métastable rend possible la détection d’atomes in-

dividuels en trois dimensions après un long temps
de vol, aspect essentiel à la mesure des corrélations
entre particules individuelles dans l’espace des im-
pulsions. Après avoir exposé plusieurs résultats
visant à démontrer que notre technique de détection
mesure fidèlement l’impulsion d’atomes individu-
els, nous présentons nos signaux de corrélations.
Nous en étudions les principales caractéristiques
(amplitude, largeur, évolution avec la température)
afin d’illustrer la nature quantique du mécanisme
de paire. Au delà de confirmer une prédiction
théorique, ces résultats constituent un premier pas
dans l’étude des systèmes quantiques à N corps
à l’équilibre au travers des corrélations en impul-
sion et ouvrent la voie à des études de systèmes
plus fortement corrélés. Pour finir, nous présentons
des résultats préliminaires sur un sujet différent, la
mesure du contact de Tan via la densité en impulsion
dans des gaz de Bose unidimensionnels.
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Abstract: This thesis work is focused on the
study of the emblematic example of an interacting
quantum system, the weakly-interacting Bose gas.
At zero temperature, a fraction of the atoms is re-
moved from the Bose-Einstein condensate through
the interplay between the inter-particle interactions
and the quantum fluctuations. This fraction is called
the quantum depletion. It consists in a coherent
superposition of pairs of atoms with opposite mo-
menta, or put in other words momentum correlated
atom pairs. The presence of these pairs is explained
by the microscopic process of interaction between
two particles. While this prediction is more than
60 years old, this manuscript reports the first obser-
vation of these opposite momentum correlations in
the depletion of a weakly-interacting Bose gas. To
do so, we produce metastable Helium-4 condensates
loaded in optical lattices. Using metastable Helium

makes possible the detection of individual atoms in
three dimensions after a long time-of-flight, an es-
sential aspect to measure correlations between indi-
vidual particles in momentum space. After exposing
several results proving that our detection technique
faithfully measures the the momentum of individual
atoms, we present our correlation signals. We study
their main characteristics (amplitude, width, evolu-
tion with temperature) to illustrate the quantum na-
ture of the pairing mechanism. More than confirm-
ing a theoretical prediction, these results constitute
a first step in the study of many-body quantum sys-
tems at equilibrium and open the way to the study
of more strongly correlated systems. In addition, we
also present some preliminary results on a different
project, namely the measure of Tan’s contact using
the momentum density in 1D Bose gases.
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