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Abstract

The ecological state of freshwater ecosystems worldwide has deteriorated along
the past decades. Anthropogenic pressures have altered their physical and biogeo-
chemical dynamics, acting both within their watershed and on the climatic conditions.
Eutrophication and climate change contributed to the increase of algal blooms, and
in particular of toxic cyanobacteria blooms, which currently constitute one of the
main concern in the management of water resources.

With the advance of urbanization, an increasing number of lakes are located in
metropolitan areas. The high loads of nutrients and pollutants coming from the
watershed often lead urban lakes to eutrophic conditions and cyanobacteria blooms,
which cause bathing bans and restrictions for aquatic sports. Responsive surveys
and long-term climate change impact studies are essential for the management of
such sites, but rarely addressed.

In this respect, modelling tools are of central importance to better understand the
functioning of aquatic ecosystems, the factors triggering harmful algal blooms, and to
support the management of water resources. However, aquatic ecological models are
often complex and highly parametrized, and their implementation and calibration
are challenging. Automated strategies for parameter calibration are available but
are rarely applied. Furthermore, data from traditional periodical limnological survey
do not allow to test the models on dynamics quicker than the span between two
successive campaigns, and to thoroughly assess the uncertainty of their outcomes.

In this context, this PhD thesis focuses on the use of deterministic models to
reproduce the thermal dynamics and phytoplankton dynamics, notably cyanobacteria,
in a small and shallow urban lake on different time-scales. To do so, two coupled
hydrodynamic and biogeochemical three-dimensional (3D) models are implemented
and analysed. The models used here are the FLOW and BLOOM modules from
the Delft3D modelling suite, and the biogeochemical library Aquatic EcoDynamics
coupled with the hydrodynamic model TELEMAC3D. The models are applied on
Lake Champs-sur-Marne, an urban lake located in the East of Paris that suffers
from strong cyanobacterial blooms and for which an extensive data set is available.

This work aims to address in detail three strategic elements in lake ecosystem
modelling:

(i) The impact of climate change on the thermal regime of small and shallow lakes,
and its relation to cyanobacterial growth. This is assessed through long-term
3D hydrodynamic simulations that allowed to hindcast the evolution of the
study site during the past six decades.

(ii) The applicability and the benefits of automated calibration for complex bio-
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geochemical models. This is done through an innovative methodology for
parameter estimation: Approximate Bayesian Computation (ABC), tested
here for the first time on a complex, highly-parametrized model.

(iii) The coupling and the feedbacks between hydrodynamic and biogeochemical
models focusing on different time scales, and the importance of an extensive
data set, that includes continuous high-frequency observations.

The results show that the impact of climate change on small and shallow lakes
can be severe, with consequences on the stratification dynamics and that thermal
conditions increasingly favourable for cyanobacterial growth have established over
time in the study site. This suggests that cyanobacteria dominance could become
a widespread issue in the near future, if such trends are confirmed. Furthermore,
this work proves that automated calibration strategies, and ABC in particular, can
be profitably applied to complex physically-based biogeochemical models in order
to improve their results over the period chosen for calibration. Eventually, this
work also highlights the importance of an extensive data set to set-up a coupled
3D hydrodynamic / biogeochemical model, and analyse and exploit its results over
different time scales.

Key words: Lake, Hydrodynamics, Ecological Modelling, Phytoplankton, Cyanobac-
teria, Climate change, Automated calibration, Approximate Bayesian Computation



Résumé

L’état écologique des écosystèmes d’eau douce s’est détérioré au cours des
dernières décennies. Les pressions anthropiques ont modifié leurs dynamiques
physiques et biogéochimiques en agissant à la fois au sein de leur bassin versant
et sur les conditions climatiques. L’eutrophisation et le changement climatique
ont contribué à l’augmentation des proliférations phytoplanctoniques, notamment
des cyanobactéries, qui constituent aujourd’hui une préoccupation majeure pour la
gestion des ressources en eau.

Avec l’avancée de l’urbanisation, un nombre croissant de lacs se trouve dans
des zones métropolitaines, où les apports élevés de nutriments et de polluants en
provenance du bassin versant peuvent favoriser les proliférations de cyanobactéries.
Des systèmes de mesure en temps réel peuvent faciliter la surveillance à court terme
de ces milieux. Pour une gestion durable à long terme, des études d’impact du
changement climatique sont indispensables.

Les modèles déterministes sont essentiels pour améliorer la compréhension du
fonctionnement des écosystèmes aquatiques, des facteurs de contrôle des efflorescences
phytoplanctoniques et pour optimiser la gestion des ressources en eau. Cependant,
les modèles écologiques aquatiques sont souvent complexes et hautement paramétrés.
Leur mise en œuvre et leur calage sont des tâches complexes, rarement automatisées.
De plus, les données issues des suivis limnologiques traditionnels, basés sur des
campagnes de mesure périodiques, ne permettent pas de tester les modèles sur
des dynamiques rapides, ni d’évaluer de manière approfondie l’incertitude de leurs
résultats.

Dans ce contexte, cette thèse porte sur l’utilisation de modèles déterministes
pour reproduire le fonctionnement thermique et la dynamique du phytoplancton,
notamment des cyanobactéries, d’un lac urbain peu profond. Pour ce faire, deux
modèles couplés hydrodynamique et biogéochimique tridimensionnels (3D) sont mis
en œuvre et leurs résultats analysés : les modules FLOW et BLOOM de la suite
Delft3D, et la librairie biogéochimique Aquatic EcoDynamics couplée au modèle
hydrodynamique TELEMAC3D. Le site d’étude est le lac de Champs-sur-Marne,
un lac urbain situé à l’Est de Paris caractérisé par de fortes proliférations de
cyanobactéries et pour lequel un grand jeu de données est disponible.

Ce travail vise à analyser trois éléments stratégiques pour la modélisation des
écosystèmes lacustres:

(i) L’impact du changement climatique sur le régime thermique des lacs et ses
conséquences sur le développement des cyanobactéries, au travers de simulations
hydrodynamiques 3D et la reconstitution de l’évolution thermique du site
d’étude au cours des six dernières décennies.
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(ii) Les bénéfices du calage automatique pour des modèles biogéochimiques com-
plexes, par l’application d’une méthodologie innovante pour l’estimation des
paramètres: Approximate Bayesian Computation (ABC).

(iii) Les effets de différentes approches de modélisation et de couplage entre modèles
hydrodynamiques et biogéochimiques, et les avantages des observations en
continu en haute fréquence pour les évaluer sur différentes échelles temporelles.

Les résultats de ce travail montrent que l’impact du changement climatique sur
les lacs urbains sont importants, avec de fortes conséquences sur la dynamique de
stratification et des conditions thermiques de plus en plus favorables aux cyanobac-
téries. Si de telles tendances se confirment, le problème posé par la dominance
des cyanobactéries, pourrait encore s’aggraver dans un proche avenir. En outre, ce
travail illustre l’intérêt de méthodes de calage automatique, l’ABC en particulier,
pour améliorer les résultats de modèles biogéochimiques déterministes complexes
sur la période choisie pour le calage. Enfin, ce travail met également en évidence
l’importance d’un jeu de données étendu pour mettre en oeuvre un modèle couplé
hydrodynamique/biogéochimique 3D et analyser ses résultats à différentes échelles
de temps et d’espace.

Key words: Lac, Hydrodynamique, Modélisation écologique, Phytoplancton, Cyanobac-
téries, Changement climatique, Calage automatique, Approximate Bayesian Compu-
tation
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Chapter 1

Introduction

Freshwater only constitutes 2.5% of the total water volume contained in the
hydrosphere. A large fraction, around 68.7%, of the global freshwater volume is
stocked in glaciers and ice caps, or is ground water (roughly 30%, Shiklomanov &
Rodda 2004). Lakes account for around 0.26% of the global freshwater volume (or
0.007% of the total water volume, Shiklomanov & Rodda 2004), but constitute the
main stock of readily available surface freshwater on Earth. Freshwater sustains all
life on land. Lakes are therefore ecosystems of utmost importance, which goes beyond
their natural and aesthetic significance. They are an essential source of biodiversity
(Balian et al. 2008, Sayer et al. 2009, Hassall 2014) and are vital for human society,
as they serve drinking water purposes, hydropower production, industrial process
cooling and, depending on their size, transport.

Despite their importance, inland water bodies and, more broadly, estuarine/-
coastal environments have been widely deteriorating along the last decades, mainly
due to climate change and eutrophication. Eutrophication can be a natural phe-
nomenon: the geologically-slow ageing process of lakes, during which the water
body becomes nutrient-enriched, more biologically productive, and slowly fills in to
become a pond or marsh (Rast & Thornton 1996, Anderson et al. 2002). However,
eutrophication processes in freshwater bodies have been greatly accelerated in the
last decades. This is due to various anthropogenic stressors that modified lakes envi-
ronmental status and natural biogeochemical cycles of nutrients within a watershed
(Le Moal et al. 2019).

One of the main symptoms of eutrophication are harmful algal blooms (HABs).
The Encyclopedia of Aquatic Ecotoxycology defines algal blooms as “a rapid increase
or accumulation of free-floating or attached eukaryotic algae or cyanobacteria in a
surface waterbody”, while harmful algal blooms as “an algal/cyanobacterial bloom
that has harmful socioeconomic or ecological effects” (Watson & Molot 2013).

The main concern around HABs in inland waters is related to the phylum of
cyanobacteria, often predominant in this type of events and capable to produce
toxins that concern both animals and humans. In terms of their toxicological
target, cyanobacterial toxins are hepatotoxins (which affect the digestive tract, liver
and at some extent lungs in humans), neurotoxins (brain is affected), cytotoxins
(which can cause widespread necrotic injury in mammals, e.g. liver, kidneys, lungs,
spleen, intestine), dermatotoxins and irritant toxins (Codd 2000). In recognition
to this problem, the World Health Organisation (WHO) first published in 1998 a

1



2 CHAPTER 1. INTRODUCTION

provisional drinking-water guideline value of 1 µg l−1 for one very common cyanotoxin,
microcystin-LR (MCYST-LR) (WHO, 1999), from which various countries (France
included) derived national guidelines and restrictions on the amount of cyanotoxins
in water when directly related to human activities (Ibelings et al. 2015). These
restrictions may lead to bathing-bans or withdrawal prohibition and can cause
economic losses when the water body is subject to touristic or recreational activities.

The occurrence of HABs has been documented by the scientific community for
over a century (Francis, 1878), but during the last decades climate change and
nutrient enrichment have increased the frequency of HABs development on a global
scale (Hallegraeff 1993, Paerl & Paul 2012, Ho et al. 2019). Cyanobacteria in
particular, present a higher optimum temperature (>25 ◦C) when compared to other
phytoplankton groups, and the general view is that they will benefit of higher water
temperatures and enhanced stratification, with a surface layer favourable to their
dominance (Elliott 2012, Yan et al. 2017).

An increase in the occurrence of cyanobacteria blooms is documented at various
latitudes and under different lake morphologies. Lake Erie (USA) and Lake Taihu
(China) are two of the most relevant basins worldwide to have recently experienced
several strong algal blooms. Europe makes no exception to this process and even in
France various lakes are experiencing strong eutrophication conditions marked with
HABs (Briand et al. 2002, Latour et al. 2007).

Climate change is therefore expected to further deteriorate the ecological status
of a number of lakes worldwide that already suffer from eutrophication. In fact,
lakes have experienced considerable warming along the past decades (O’Reilly et al.
2015, Schmid et al. 2014, Schneider & Hook 2010, Piccolroaz et al. 2020), sometimes
even accelerated in respect to the surrounding areas (Schneider et al. 2009).

Lakes and reservoirs represent 3.7% of the Earth’s non-glaciated continental
area (Verpoorter et al. 2014). The global areal extent of lakes and impoundments is
dominated by millions of water bodies smaller than 1 km2 (Downing et al. 2006).
However, their role in climate change studies has often been overlooked in favour
of deeper larger water bodies. Urban lakes are among these small water bodies.
They are generally man-made water bodies, often formed after excavation or mining,
especially in alluvial plains (Tavernini et al. 2009). Most of them are small and
shallow and they frequently do not present any inlet or outlet, being mostly fed
by groundwater. In 2013, the European demand for sand and gravel generated an
estimated annual turnover of 15 billion euros and employment for 200 000 people.
Because of the demand for excavation materials, they are a category of water bodies
growing in number and importance. The formation of gravel-pit lakes can affect the
connected ground-water and increase evaporation. Once created they have to be
correctly managed (Søndergaard et al. 2018).

With the advance of urbanization, the presence of aquatic environments has
become a key feature for the improvement of life quality in the urban landscape
(Frumkin et al. 2017, van den Bosch & Sang 2017). Urban lakes grant valuable
ecosystem services and contribute to the preservation of biodiversity (Frumkin et al.
2017, Hill et al. 2017, Hassall 2014, Higgins et al. 2019). They also grant recreational
and educational activities and contribute to a more pleasant landscape. However,
as they are often located in vast metropolitan areas, they are particularly affected
by high loads of nutrients and pollutants coming from the watershed. In addition,
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they are characterized by particular nutrient sources such as waterbirds droppings
or sediment release that can ultimately concur in causing eutrophication (Klimaszyk
& Rzymski 2016, Naselli-Flores 2008).

The recognition of eutrophication as one of the main issues worldwide affecting
water resources and the evidence of the on-going climate change made the modelling
of thermal and biological processes in water bodies of great scientific interest. Aquatic
ecological models can be used to test the current knowledge on the biogeochemical cy-
cle, and to provide information for management policies in water resources. However,
due to the complexity of the interactions between hydrodynamic and biogeochemical
processes, numerous factors interplay to create the conditions for phytoplankton
blooms. In turn, this makes the modelling of these processes extremely challenging.
Stratification of the water column, light availability, resuspension of nutrients from
sediments, and recycling of nutrients by bacterial and phytoplankton communities,
wind-induced mixing and the morphology of the water body are some of the elements
that interplay in the occurrence of HABs.

To meet the need for simulations of biological processes, a vast range of different
biogeochemical models arose during the last two or three decades (Mooij et al. 2007),
often with similar formulations. For instance, the Ecobas Register of Ecological
Models (see: http://ecobas.org/www-server/index.html) indicated already in
2012 that “more than 100 aquatic models have been in existence in the past two
decades, many of which have similar levels of ecological complexity and intent
in terms of simulating selected components of aquatic ecosystems” (Trolle et al.
2012). Ecological models strongly evolved since their first development, going
from simplified “Nutrient-Phytoplankton-Zooplankton-Detritus“ (NPZD) models
to complex modular models that divide phytoplankton into functional groups, that
allow the user for very simple or very complex configurations depending on his needs
(Vinçon-Leite & Casenave 2019).

The outcomes and formulations of aquatic ecological libraries, however, are not
always innovative and often not deeply reliable (Anderson 2005, Li & Hipsey 2013,
Shimoda & Arhonditsis 2016). The main reason suggested by different authors for
these evidences is a general lack of data when coming to phytoplankton modelling.
Such data sets traditionally come from periodic field campaigns and laboratory
analysis. They give a reliable picture of the seasonal dynamics of a water body, but
are too coarse to capture short-term blooms, the related sudden variations in the
external forcing and the diurnal cycle.

Furthermore, biogeochemical models often rely on semi-empiric equations that
involve a number of parameters to be set and calibrated. The complex system of
interactions between biogeochemical processes usually forces these models to be
highly parameterized. Most parameters are usually difficult to measure or estimate
through laboratory experiments, and, even though estimates for their values can
be found in scientific literature, their range of variability is often wide (e.g. Hipsey
et al. 2013, Fenocchi et al. 2019). Furthermore, the use of literature values might
not be adapted to all applications. In order to optimize model results automated
calibration strategies are needed, but their implementation is often hindered by
observation datasets that are too coarse for their application. The optimization of
aquatic ecological models, in relation to their structure and parameters, remains an
issue only partially resolved.

http://ecobas.org/www-server/index.html
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Finally, the kinetics of primary production and of the biogeochemical cycle
depend on the hydrodynamic state of the environment under consideration, for
instance in terms of turbulence, water temperature, salinity, bottom friction and
water column stratification. In order to thoroughly simulate the complexity of the
biogeochemical cycle in aquatic ecosystems, ecological models need to be coupled to
a one-, two- or three-dimensional hydrodynamic driver.

Harmful algal blooms and cyanobacterial blooms are at the core of the in-
ternational French-Chinese project “Analysis of Numerical Simulations of Water
Ecosystem in Response to anthropogenic environmental changes” (ANSWER), aimed
at a deeper understanding of lake ecological functioning and more specifically of the
drivers triggering cyanobacterial blooms. The ANSWER project is funded by the
French National Research Association (ANR) and the Natural Science Foundation
of China (NSFC), and gathers various researchers with different expertises: from
applied biology to environmental engineering and numerical methods. This PhD
thesis is an integral part of the ANSWER project, and aims at contributing through
the use of mathematical models to the simulation of cyanobacterial bloom dynamics
in the context of shallow urban lakes.

The main objective of this work is to make use of modelling tools to simulate
the thermal, phytoplankton and cyanobacteria dynamics on different time-scales,
and to identify and analyse key elements that are of strategic importance for
lake ecosystem modelling in the context of climate change. This thesis focuses
on the implementation and the analysis of two coupled three-dimensional (3D)
hydrodynamic and biogeochemical models on a study site equipped with automated
in situ monitoring. The two biogeochemical models are based on different approaches.
The first one, Delft3D-BLOOM, assigns biomass concentration based on a specific
competition principle between phytoplankton groups, taking into account external
constraints. The second model is the Aquatic EcoDynamics (AED2) library, whose
coupling with the hydrodynamic driver TELEMAC3D was recently done by Energie
de France (EDF), and which is based on process-based mass-balance equations.

The models are applied on Lake Champs-sur-Marne, a small and shallow urban
lake located in the East of Paris that suffers from strong cyanobacterial blooms. This
work benefits from the extensive dataset available for the study site, that includes
high-frequency measurements of relevant physical and biological variables as well
as periodical surveys, and aims at highlighting its importance for lake ecosystem
modelling. The exploitation of the high-frequency dataset, in particular, is crucial
to this work as it allows an in depth calibration and validation of the models while
taking into account sudden changes and diurnal cycles.

In particular, three key elements for the implementation and exploitation of
aquatic ecological models are addressed in this work: (i) the use of a 3D hydrodynamic
modelling approach to characterize the thermal and stratification dynamics in shallow
lakes and highlight its spatial heterogeneity and long term evolution, (ii) the high
level of parametrization of deterministic biogeochemical models and the importance
of automated techniques to address their calibration and improve their results, and
(iii) different approaches to model the biogeochemical cycle and different grades of
coupling between hydrodynamic and biogeochemical models, and their performances
on different time-scales. Each of these elements is developed in this PhD thesis in a
dedicated chapter.
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Manuscript structure

This manuscript is divided into eight chapters. The bibliographic review (chapter
2) describes the main physical and biogeochemical dynamics of lake ecosystems
highlighting their relation with anthropogenic stressors, and discusses the main
characteristics, strengths and drawbacks of aquatic ecosystem modelling. Chapter
3 describes the study site and the tools used in this work: from the measuring
instrumentation to the hydrodynamic and biogeochemical models. The data set
collected and used for this work, as well as its processing, are presented in chapter 4.

Chapter 5 discusses the exploitation of a 3D hydrodynamic model to assess the
long-term evolution of the thermal dynamics in a small and shallow polymictic
lake, with the objective of highlighting the relation between climate change, water
temperature, stratification and biological productivity.

Chapter 6 addresses the issue of parameter estimation in the context of complex
ecological models through automated calibration strategies, and an extensive datasets
that includes high-frequency measurements. Continuous in situ high-frequency
measurements are exploited to improve the results of a complex biogeochemical
model through an innovative methodology for parameter estimation: Approximate
Bayesian Computation with random forest. This is done here focusing on short-term
simulation (weeks), in order to train the model to rapid dynamics that could not be
captured nor validated with traditional low-frequency periodical sampling.

Chapter 7 describes the set up of a model configuration capable of correctly
reproducing the thermal and phytoplankton dynamics in a small urban lake on a
short- (weeks) and mid- (seasonal) term, with particular regards to cyanobacteria and
total chlorophyll concentration, in the case of a recently coupled three-dimensional
hydrodynamic/biogeochemical model. This allows to analyse in closer detail the
approach implemented for the coupling of the two models, particularly with regard
to the feedbacks between the models, the effects of different formulations for phyto-
plankton growth and nutrient mineralization on model results, as well as the spatial
distribution of relevant physical and biological variables.

Eventually, chapter 8 closes this manuscript with the conclusions and perspectives.





Chapter 2

Bibliographical review

In this chapter, the most relevant issues concerning lake ecosystems are explored
in the light of scientific literature, and the role of mathematical models in improving
our global understanding of such ecosystems, in relation to the anthropogenic
stressors affecting them, is outlined.

The chapter is divided into two main sections. In section 2.1, the main traits of
the physiscal and biological processes in freshwater ecosystems are presented, and
the effects of eutrophication and climate change on lakes are analysed focusing in
particular on shallow urban water bodies.

The second section (2.2) revises the current knowledge on the modelling of
aquatic ecosystems. Hydrodynamic modelling and biogeochemical modelling of lakes
are reviewed separately. Eventually, the limits and drawbacks in the use of coupled
hydrodynamic-aquatic ecological models are highlighted in relation to parameter
calibration and data availability.

2.1 Lake ecosystems

Lakes worldwide vary greatly in size, depth, morphology and origin, and a precise
definition that clearly distinguishes them from marshes, ponds or lagoons is not
trivial. Following the definition given by Forel (1901), a lake is “a body of standing
water occupying a basin and lacking continuity with the sea”. While Timms (1992), in
order to avoid confusion with marshes, defines lakes as “areas where vegetation does
not protrude above the water surface”, while “swamps are areas where vegetation
dominates the surface”. Lakes can be further categorized based on their origin, size,
depth, or mixing dynamics.

Lakes are integral features of the hydrological system. Figure 2.1 shows the
main features of the hydrological cycle. In this context, lakes interact directly with
atmospheric water, surface water and groundwater (Reynolds 2006). Lakes and
reservoirs represent 3.7% of the Earth’s non-glaciated continental area (Verpoorter
et al. 2014). Small lakes, that is lakes with surface smaller than 1 km2 (Downing
et al. 2006), are the dominant part of this global areal extent (Downing et al. 2006).
Lakes are defined as shallow if light can potentially penetrate to its bottom (Meerhoff
& Jeppesen 2009).

7
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Figure 2.1 – A sketch of the hydrological cycle in a natural ecosystem (source: NOAA,
https://www.noaa.gov/education/resource-collections/freshwater/
water-cycle).

2.1.1 Physical processes in shallow lakes

2.1.1.1 Thermal stratification and mixing regime

In freshwaters, where the effect of salinity can be neglected, water density depends
on temperature. It has a maximum at 4°C and decreases with higher (or lower)
temperatures. Density gradients are usually extremely small over the water column,
but have great importance (Reynolds 2006). Together with pressure gradients and
turbulence, they determine the patterns of currents (Reynolds 2006). Taking under
examination a water column with a verticallly uniform temperature above 4°C,
when a net positive heat flux is entering the water body, the surface layer gets
heated and its density decreases. If the density of surface water decreases, either
a density gradient is built up or an existing gradient is strengthened, leading to
thermal stratification. On the other hand, if the density of surface water increases,
becoming higher than that of the deeper layers, the particles start to sink originating
convection and mixing of the surface layer (Reynolds 2006).

Direct thermal stratification (or simply stratification) occurs during warm seasons
when a positive vertical temperature gradient is created, inducing a negative density
profile. During winter, stratification can also occur under particularly cold weather
conditions, when the surface layers reach temperatures below 4°C (e.g. in the case
of ice cover), inducing negative gradients for both temperature and density. Winter
stratification (or inverse stratification) is typical of cold climates but is less frequent
in temperate climates.

During thermal stratification, the water column can be divided into three main
layers (Fig. 2.2): the epilimnion (the upper, warmer layer), the hypolimnion (the
deeper, colder portion), and the metalimnion (the middle layer with the higher

https://www.noaa.gov/education/resource-collections/freshwater/water-cycle
https://www.noaa.gov/education/resource-collections/freshwater/water-cycle
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Figure 2.2 – Sketch of a stratified water column. Red line represents water temperature;
blue line represents water density. Adapted from de Carvalho Bueno (2019).

temperature and density gradients). The thermocline is the depth corresponding
to the maximum water temperature gradient, it lies in the metalimnion and in
freshwater bodies it coincides with the pycnocline (maximum density gradient).

Most lakes alternate periods of stratification and periods of mixing. Based on
the frequency of the mixing of the water column, lakes can be divided into five main
categories: oligomictic lakes, monomictic lakes, dimictic lakes, polymictic lakes and
amictic lakes (Lewis 1983). Oligomictic lakes are deep water bodies in temperate
or warm climates that can remain stratified for a few consecutive years, where a
complete overturn of the water column occurs only occasionally. Monomictic and
dimictic lakes mix once and twice every year, respectively. Polymictic lakes are
usually shallow water bodies that keep alternating, throughout the year, periods
of thermal stratification and periods of complete mixing. Finally, amictic lakes are
usually arctic lakes constantly covered by ice.

Water depth deeply influences the hydrodynamics of a water body, particularly
in terms of thermal stratification dynamics. In temperate climates, if the water
body is sufficiently deep the water column generally remains stratified approximately
between spring and autumn, while in shallower water bodies thermal stratification
can be quickly broken down by rapid variations in the meteorological conditions
such as strong wind, precipitation or temperature drops. Shallow lakes in temperate
climates are therefore polymictic (Lewis 1983, Condie & Webster 2002, Soulignac
et al. 2017, Martinsen et al. 2019), as they keep alternating periods of complete
mixing with thermal stratification.

Daily stratification events are often observed in shallow water bodies: the water
column stratifies during daytime and breaks down at night due to convective mixing
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(Martinsen et al. 2019). However, under favourable conditions, stratification can
persist in shallow lakes for three to four consecutive weeks, or even more, before a
complete overturn (e.g. Soulignac et al. 2017). This turns, between early spring and
late autumn, into a constant alternation between periods of mixing, during which
convective and turbulent fluxes dominate vertical transport, and periods of stable
stratification, during which vertical mass transfer is inhibited.

Stratification induces a separation between the sediment and the surface layers,
influencing the distribution of nutrients, oxygen and biomass over the water column.
During stratification, deoxygenation can occur in the hypolimnion as the bacterial
decomposition of the organic matter is oxygen-consuming and exchanges with the
upper reaerated layers are inhibited by density gradients. Furthermore, due to the
desoxygenation of the lake bottom layers, nutrients (phosphate in particular) are
released from the sediment. During long periods of stratification, anoxic conditions
and accumulation of nutrients might occur.

In shallow water bodies, the sediment is easily reached by wind-induced mixing
(Bachmann et al. 2000). When mixing occurs, the replenishment of the whole water
column with the nutrients released during previous stratification can act as an
important internal nutrient source (Song et al. 2013, Wilhelm & Adrian 2008). The
alternation between periods of stratification and mixing can result as an important
internal source of nutrients.

Thermal stratification has been extensively studied throughout the 20th century,
especially in the case of deep monomictic or dimictic lakes (e.g. Ullyott & Holmes
1936, Dake & Harleman 1969, Idso 1973, Imberger 1985, Boehrer & Schultze 2008,
Sahoo et al. 2016, Liu et al. 2019). A greater attention has been drawn to the
stratification dynamics in shallow polymictic water bodies during the past decade
(Woolway et al. 2014, Hadley et al. 2014, Yang et al. 2018, Martinsen et al. 2019).
In the recent years, an increasing number of papers started to analyse the impact of
climate change on the thermal dynamics of such water bodies (Hadley et al. 2014,
Sahoo et al. 2016, Magee & Wu 2017, Moras et al. 2019, Zhang et al. 2020, e.g.).
Among shallow water bodies however, urban lakes have traditionally been mistakenly
considered as completely mixed reactors (McEnroe et al. 2013, Soulignac et al. 2017).

Only a few studies addressed the spatial distribution of thermal stratification
in shallow water bodies, showing that bathymetry and vegetation can originate
strong spatial differences in the stratification dynamics (Vilas et al. 2017, Torma &
Wu 2019). In shallow water bodies, bathymetric variations have a greater relative
importance, and even small gradients in the bottom elevation can induce a complete
switch in the local currents and stratification dynamics.

2.1.1.2 Wind-induced friction and horizontal patterns

Wind influences strongly the dynamics of a lake. It induces currents, affects the
heat exchanges at the air-water interface and, especially in shallow water bodies, it
can cause stratification breakdown, turbulent mixing and sediment resuspension.

The friction of wind over the water surface drags the surface layer causing motion.
Due to the turbulent nature of the motion of fluids, the wind field acting on a certain
region at the mesoscale, even when uniform, can cause strong local variability at
a finer scale. The friction of wind induces ripples on the water surface, whose
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amplitude depends on wind velocity, increasing in turn the shear stress of wind on
the water itself. The dragging action of wind can originate spatial heterogeneity in
floating tracers concentration, by accumulating them near shore. This is the case
for near-surface phytoplankton biomass (World Health Organization 2003).

Under thermal stratification, the presence of a wind field can originate internal
waves, that can be detected also in small and shallow lakes (Pannard et al. 2011,
Soulignac et al. 2017). In shallow water bodies, strong winds can quickly breakdown
thermal stratification if they overcome the buoyancy forces originated by the density
gradient. The subsequent turbulence can easily reach the bottom of the water
column, causing the resuspension of the sediment and of the nutrients and organic
matter encapsulated in it. Bathymetric variations can induce spatial variability in
the distribution of the sediment concerned by the action of the wind (Bachmann
et al. 2000). Furthermore, spatial patterns in the wind field acting on a water body
originated by the sheltering of the surrounding can have relevant effects even on
small lakes, locally altering current patterns (Kimura et al. 2016).

2.1.2 Biological processes in lakes

2.1.2.1 Freshwater phytoplankton assemblage

Aquatic ecosystems are among the most important sources of biodiversity world-
wide. For instance, freshwater systems were estimated to contain about 10% of all
animal species on Earth (Balian et al. 2008).

With the word phytoplankton we refer to “collective of organisms that are adapted
to spend part or all of their lives in apparent suspension in the open water of the
sea, of lakes, ponds and rivers” (Reynolds 2006); phytoplankton is the autotrophic
part of the plankton and a major primary producer of organic carbon in marine as
well as in inland waters (Reynolds 2006). Including oceans, phytoplankton account
for 1% of the photosynthetic biomass on Earth, but are nevertheless responsible for
nearly 50% of global net primary production and are the primary energy source for
aquatic ecosystems (Winder & Sommer 2012).

Phytoplankton are extremely diverse small organisms (usually 0.2 to 200 µm) that
comprise both eukaryotes and prokaryotes; most of them are unicellular organisms,
some of which form colonies and thus reach sizes visible to the naked eye. It has
been estimated that more than 4000 species of phytoplankton exist in the marine
ecosystem and a comparable amount in freshwater (Reynolds 2006). Due to this
great diversity, phytoplankton species are often grouped into macro-categories, based
either on taxonomic similarities or particular functional traits (Reynolds et al. 2002).

Phytoplankton have very low or no mobility. They are transported by the motion
of water, even though some of them present flagella or specific gas vesicles that
allow small migrations towards light (such as cyanobacteria). Their growth depends
on several factors, among which the most important ones are light and carbon
dioxide availability, water temperature and presence of nutrients like P, N and Si in
biologically available forms (e.g. NO−3 , NH

+
4 and PO3−

4 ).
The major phytoplankton taxonomic groups present in freshwater are Cyanobac-

teria, Chlorophyta (Green algae), Bacillariophyta (Diatoms), Cryptophyta, Pyrrho-
phyta (dinoflagellates), Chrysophyta, Euglenophyta, Rhadiophyta and Dinophyta
(Sheath & Wehr 2003, Watson et al. 2015).
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The taxonomic composition of phytoplankton communities varies with nutrient
levels according to the taxa nutrient uptake, growth, and respiration rates (Watson
et al. 1997).

Under favourable circumstances in terms of light, nutrients and temperature,
most phytoplankton groups can proliferate. The relation between algal growth rate
and water temperature has been extensively studied through laboratory experiments
(Lürling et al. 2013, Sherman et al. 2016, Paerl & Otten 2013). Some typical traits
can be distinguished among taxonomic groups. Figure 2.3 shows the dependence of
the growth rate from water temperature for green algae, dinoflagellates, diatoms
and cyanobacteria. Diatoms generally show maximal growth rates at the lowest
temperature of the lot (around 15◦C); dinoflagellates follow, with slightly higher
optimal temperatures (around 20◦C), while green algae and cyanobacteria show
similar optimal temperatures, close to 30◦C (Lürling et al. 2013).

In an ecosystem where multiple species are present phytoplankton species are in
competition for the available resources. The environmental conditions in terms of
nutrients, temperature and light availability, together with the specific adaptation of
each phytoplankton group, determine the composition of the phytoplankton assembly
at a given time. As the environmental conditions evolve over the year, a succession of
dominant species can develop in the phytoplankton community. However, due to the
multiple and sometimes contrasting factors at interplay, the outcome of multispecies
competition remains extremely difficult to predict (Huisman & Weissing 2001).

An attempt to describe phytoplankton succession in lakes with a step by step
conceptual model, the PEG (Plankton Ecology Group) model, was made in the
1980s (Sommer et al. 1986). According to this model, during winter phytoplankton
growth is energy-limited (by light and temperature). A first algal proliferation,
also called bloom, dominated by diatoms or Cryptophyceae occurs during spring
as water temperature increases and the water column stratifies. The spring bloom
then rapidly ceases due to grazing, sedimentation and nutrient depletion. Follows
a "clear-water" phase of equilibrium during which nutrients can be accumulated
in the water body, and that persists until inedible algal species develop in large
numbers. Under low grazing pressure and non-limiting nutrient concentrations
summer phytoplankton taxa start developing: Cryptophyceae or inedible green algae
at first, substituted later by cyanobacteria (possibly N-fixing). The model, here
briefly resumed, showed some weaknesses when tested against shallow polymictic
water bodies. Their unpredictability was linked to the mechanisms of wind-induced
mixing that might alter through sediment resuspension the seasonal patterns of
transparency and nutrient concentrations.

The importance of spring blooms for phytoplankton succession is clear both in
marine and in freshwater ecosystems (Zhao et al. 2013, Spilling et al. 2018, Browning
et al. 2020, Sommer et al. 1986, Reavie et al. 2016). In deep lakes, spring blooms
start with the onset of thermal stratification (therefore, with the transition from
strong to weak turbulent mixing) that allows algae to remain in the trophic zone for
longer amounts of times (Bleiker & Schanz 1989, Peeters et al. 2007, Kienel et al.
2017); however, stratification might not be a triggering factor in shallower lakes
where light can easily reach the bottom layer (Kong et al. 2021).
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Figure 2.3 – Comparison of the temperature dependence of the growth rate for green algae
(Chlorophytes), dinoflagellates, diatoms and cyanobacteria (source: Paerl &
Otten (2013)).

2.1.2.2 Cyanobacteria

Cyanobacteria is a phylum belonging to the domain of bacteria. They are ancient
prokaryote organisms, generally unicellular, which have adapted to colonize water
environments at every latitude. Cyanobacterium-like fossils are among the oldest
forms of life ever found on Earth (dating back to 3500 million years ago (Schopf
1993)).

They are autotrophs and synthesize the needed molecules through photosynthesis.
They are unicellular organisms and can survive as solitary free-living cells. However,
they often organize in colonies visible to the naked eye. During strong blooms
they can form floating mats covering large portions of the water surface (Newton
et al. 2011). Cyanobacteria contain photosynthetic pigments such as chlorophyll-
a. Aside chlorophyll, they also contain accessory pigments such as phycocyanin,
allophycocyanin and phycoerythrin that are specific to cyanobacteria. Namely,
phycocyanin is a pigment-protein complex that operates together with chlorophyll
in order to increase the efficiency of chlorophyll’s oxygen production under low
light conditions, and is specific to cyanobacteria (Zeece 2020). It absorbs red-
orange wavelengths and gives cyanobacteria their characteristic blue-green colour
(cyanobacteria are also known as blue-green algae). The presence of phycocynanin
is a characteristic of cyanobacteria and it can be used by optical sensors to detect
their presence and as a proxy for their abundance.

Some species of cyanobacteria have mobility capabilities, that help them to move
towards light sources. However, cyanobacteria are unicellular organisms that do
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Figure 2.4 – Model for directional light sensing in the spherical unicellular cyanobacterium
Synechocystis. The pili that remain active are at the side of the cell facing
the light source, leading to movement towards the light (Schuergers et al.
2017).

not present flagella, and the way these movements are performed remains partially
unclear (Schuergers et al. 2017).

Traditionally, cyanobacteria buoyancy is explained through the presence of
gas vesicles, hollow protein-based structures that are found in various planktonik
microorganisms, among which cyanobacteria. These gas vesicles are impermeable
to liquid water, but highly permeable to gases and air. Their relative gas content
can be regulated, allowing aquatic microbes to perform vertical migrations (Walsby
1994). With respect to other “passive” phytoplankton groups, this is a key advantage
in order to reach the upper water layers where light penetrates.

However, it has also been suggested that their motion can sometimes derive from
type IV pili, particular protein fibers exported by the polymerization pilin subunits,
and possibly also slime extrusion. Cyanobacterial mobility is partially controlled by
light; for instance, the spherical synechocystis cells (which presents type IV pili) is
suggested to act as a microscopic eyeball. As shown in Figure 2.4, light impacting
the cell is focused on the opposite side, which becomes four times brighter than the
incoming light intensity. The sharp focal point is sensed by photoreceptors, which
then transduce the signal to particular regulators (Schuergers et al. 2017). However,
the link between environmental conditions and the mobility apparatus (gas vescicles
or type IV pili) remains uncertain.

The greatest concern around cyanobacteria derives from their ability to produce
toxins that are harmful for human health. These toxins present health hazards
via several exposure routes. Several cases of animal poisoning and human health
incidents associated with the toxins are detected every year worldwide, and have
raised the profile of cyanobacterial blooms in the issues affecting water quality.

Some of the most common toxic cyanobacteria found in fresh water globally are
Microcystis spp., Cylindrospermopsis raciborskii, Planktothrix rubescens and agardhii,
Synechococcus spp., Gloeotrichia spp., Anabaena spp., Lyngbya spp., Aphanizomenon
spp., and Nostoc spp. (World Health Organization 2003, Newton et al. 2011).
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However, toxicity cannot be excluded for further species and genera.
Cyanobacteria can form a great variety of secondary metabolites, which ex-

hibit various types of biological or biochemical activities, some of which have been
identified as potent toxins (cyanotoxins). In terms of their toxicological target,
cyanobacterial toxins are hepatotoxins (which in human affect the digestive tract,
liver and at some extend lungs), neurotoxins (brain is affected), cytotoxins (which
can cause widespread necrotic injury in mammals, e.g. to liver, kidneys, lungs,
spleen, intestine), dermatotoxins and irritant toxins (Codd 2000). The main toxins
involved in cyanobacteria blooms are summed up in Figure 2.5.

Neurotoxins act by blocking neuronal signal transmission (Zaccaroni & Scaravelli
2008). The neurotoxins in cyanobacteria include anatoxin-a and homoanatoxin-a,
which are postsynaptic cholinergic nicotine agonists and neuromuscular blocking
agents. These alkaloids cause staggering, gasping, and muscle fasciculations in
animals and possibly death by respiratory arrest. Anatoxin-a(s), an organophosphate
neurotoxin, causes hypersalivation in animals with death due to the inhibition of
acetylcholinesterase. Saxitoxins (carbamate alkaloid neurotoxins) are well-known
in a marine context as products of dinoflagellates. The same family of neurotoxins
can be produced by a range of freshwater cyanobacteria and about 20 saxitoxin
variants have been described to date. Despite their high toxicity, neurotoxins are
only occasionally responsible of human intoxication, while they are more commonly
dangerous to animals, that can drink polluted water (Zaccaroni & Scaravelli 2008).

Microcystins are probably the most prevalent cyanotoxin in the environment
and they are present in high amounts in cyanobacterial biomass (Bláha et al. 2009).
They are cyclic heptapeptides and are hepatotoxic to animals, with external signs of
poisoning including weakness, pallor, cold extremities, heavy breathing, recumbency,
vomiting, and diarrhoea. Liver cells are particularly susceptible to damage by
microcystins. Disruption of liver structure and function occurs with haemorrhage
into the liver and death by respiratory arrest (Codd 2000). Microcystins have also
shown to be tumor-promoting agents, increasing the incidence of hepatic tumors in
humans as well (Zaccaroni & Scaravelli 2008).

It is not possible to distinguish toxic and non-toxic genotypes within a species
through the microscope (Kurmayer & Christiansen 2009). Furthermore, toxins
production varies in time. The conditions triggering toxins production are still poorly
understood by the scientific community (Catherine et al. 2013). It is suggested that
maximum toxin production simply occurs when growth conditions are particularly
favourable (Sivonen 1996), and that it is increased by exposure to zooplankton (Jang
et al. 2003).

Focusing on microcystin-LR, the most common and most toxic of microcystins,
the World Health Organization (WHO) derived a value of tolerably daily intake (TDI)
for the assessment of risks related to human health. The TDI for microcystin-LR is
0.04 µg per kg of bodyweight per day and was used by the WHO to set the guidance
value for the maximal acceptable concentration of microcystin-LR in drinking water,
1 µg L−1 (World Health Organization 1999).

Under low-N conditions, some groups of cyanobacteria also present the ability
to fix atmospheric nitrogen. Nitrogen fixation is the reduction of dissolved N2 gas
to biologically available ammonium that can be used for growth and reproduction
when the latter is not directly available. These species can play a key role in the
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Figure 2.5 – Main toxins produced by cyanobacteria (source: World Health Organization
2003).
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nutrient cycle in aquatic ecosystems, especially under N-limiting conditions. The
majority of cyanobacterial taxa that form blooms in freshwater lakes are capable
of fixing N, including Anabaena, Aphanizomenon, Cylindrospermopsis, Gloeotrichia
and Nostoc (Cottingham et al. 2015).

Moreover, some cyanobacterial taxa are able to access pools of P in the sediments
and bottom waters that are not generally available to other phytoplankton, similar
to other mobile organisms that move nutrients from the sediments into the water
column, such as benthic-feeding fish.

Cyanobacterial blooms can therefore influence lake nutrient cycling, its resilience,
and cause regime shifts by tapping into pools of nitrogen and phosphorus not usually
accessible to phytoplankton. In particular, cyanobacteria can increase available
pools of the limiting nutrients nitrogen and phosphorus.

2.1.3 Anthropogenic stressors

2.1.3.1 Climate change

Climate change is globally considered as a major concern in policy making
and development planning. In the last few decades, it has been widely studied by
the scientific community and by international organizations, and its relation with
human activities and greenhouse gases emissions is a factual evidence (Jamet &
Corfee-Morlot 2009, Gosling et al. 2011, IPCC 2014). In the Fifth Assessment Report
published by the Intergovernmental Panel on Climate Change (IPCC), it is stated
that “warming of the climate system is unequivocal”and that “human influence on
the climate system is clear, and recent anthropogenic emissions of greenhouse gases
are the highest in history, and recent climate changes have had widespread impacts
on human and natural systems” (IPCC 2014).

The public awareness of the existence of climate change and of its possible
consequences started raising in particular after the publishing of the first IPCC
assessment report (IPCC 1990). However, the idea that the global climate might
be sensitive to the concentration of gases inducing a greenhouse effect dates back
to the 19th century. It was first suggested in 1824 that the atmosphere itself could
have a warming effect on the Earth by acting like a greenhouse. A few decades later,
John Tyndall noticed that atmospheric variations of the amount of some active
components (such as H2O and CO2) could have provoked “all the mutations of
climate which the researches of geologists reveal” (Le Treut et al. 2007). At the end
of the 19th century, it was suggested by Svante Arrhenius that a 40% variation of
atmospheric CO2 concentration might trigger glacial advances and retreats. Such
hypothesis would have been confirmed later on by paleo-climatic research (Le Treut
et al. 2007).

The link between human activities and climatic changes was first made in the
20th century. In particular, in 1938 G. S. Callendar suggested a warming effect of
fossil fuel emissions on the Earth’s climate: “as man is now changing the composition
of the atmosphere at a rate which must be very exceptional on the geological time
scale, it is natural to seek for the probable effects of such a change” (Callendar
1938, Le Treut et al. 2007). Finally, in the 1970s the main factors in climate change
science were fully assessed, and all the main greenhouse gases (i.e. CO2, CH4, NO2
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and CFCs) were identified (Le Treut et al. 2007).

The general impacts of climate change on the Earth system and on human
activities have been widely studied throughout the past couple of decades (e.g.
Gosling et al. 2011, Chapman et al. 2017, Cronin et al. 2018, Venäläinen et al.
2020). The impact of climate change on aquatic ecosystems is of particular interest
because of their vital importance for human society. A wide scientific production
demonstrated that global warming is having strong effects on their biogeochemical
and physical dynamics (Paerl & Huisman 2008, Schneider & Hook 2010, Anneville
et al. 2013, Schmid et al. 2014, O’Reilly et al. 2015, Piccolroaz et al. 2020).

The scientific production dealing with lakes and climate change has traditionally
focused mainly on large deep water bodies. Climate change is analysed either through
series of observations, when sufficiently long, or through modelling approaches.
Scientific papers are focused either on the temporal evolution of the thermal structure
of water bodies or on the impact of climate change on the planktonic community.
Rarely the two issues are addressed simultaneously.

Climate change influences the thermal structure of freshwater bodies mainly
through warmer water temperatures and stronger thermal stratification and, when
present, ice-cover duration. The great interest in analysing water temperature
variations lies in the importance of water temperature for both the overall hydrody-
namics of lakes and for their ecology. Furthermore, lakes sometimes show greater
warming rates than those of the surrounding air temperature, and can be regarded
as “sentinels” of climate change (Adrian R. et al. 2009).

Large water bodies often show a long history of measurements that can be
analysed over the long term for trends. This is the case, for instance, of the
Laurentian Great Lakes and of various European alpine lakes (Livingstone 2003,
Austin & Colman 2007, Dobiesz & Lester 2009, Anneville et al. 2013). For instance,
through an analysis of a 100-years long series of data, Austin & Colman (2007) pointed
out that surface water temperature in Lake Superior increased at a considerable
rate of 0.27◦C per decade until 1980, with a consistent shift afterwards (to 1.1◦C
per decade). Summer water temperatures of lakes Ontario and Erie were found to
be warming at a slightly lower rate, of 0.84◦C and 0.48◦C per decade, respectively,
between 1968 and 2002 (Dobiesz & Lester 2009). Similar studies can be found for
various other freshwater bodies in the world (Livingstone 2003, Mooij et al. 2005,
Anneville et al. 2013).

Series of in situ observations long enough to carry out climate change trend
analysis are not common. Recently, data from satellites have been widely used to
widen the spectrum of study sites in climate change analysis (Livingstone 2003,
O’Reilly et al. 2015, Sharma et al. 2015, Pareeth et al. 2016, Winslow et al. 2018).
In particular, summer lake water temperature was analysed at a global scale (235
water bodies) using satellite data collected between 1985 and 2009 (O’Reilly et al.
2015). Most sites showed significant warming trends, with only a few instances
of negative significant trends. The warming of water temperature was found to
be geographically highly variable, with a global mean of 0.34◦C per decade and
maximum values around 1.3◦C per decade O’Reilly et al. (2015).

Climate change impacts the stratification dynamics. The evolution of thermal
stratification has been studied through in situ measurements and modelling ap-
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proaches. Climate change generally induces stronger thermal stratification for longer
periods. In deep lakes that stratify stably during summer, surface temperatures
usually show greater warming trends than hypolimnetic temperatures. With higher
epilimnion temperatures, the vertical density gradient increases leading to stronger
stratification profiles (Livingstone 2003, Vinçon-Leite et al. 2014, Butcher et al.
2015).

The onset of summer stratification arrives earlier in the year, while its breakdown
is delayed (Peeters et al. 2007). In shallow water bodies, an analogous definition
of onset and breakdown of stratification is not possible, due to their polymictic
character. However, it was recently shown that climate change induces stronger and
longer thermal stratification in shallow lakes as well (Hadley et al. 2014, Magee &
Wu 2017, Moras et al. 2019).

Water bodies located at high latitudes at the transition between temperate and
polar climates, and subject to seasonal freezing and inverted thermal stratification
might experience longer ice-free seasons in the next decades. In some cases they
even might transition to a complete absence of ice cover (Sharma et al. 2019).

The strong changes induced in the thermal regime of lakes can heavily affect
their ecological state. Climate change, in combination with additional nutrient loads
coming from various human activities can impact the biogeochemical cycle as well
as the composition of the species present in a water body. As a result of accelerated
and generalized eutrophication, the occurrence of harmful algal blooms has sensibly
increased during the past decades, and this trend is predicted to continue in the
future (Hallegraeff 1993, Paerl & Paul 2012). Numerous studies also suggest that
HABs are more and more likely to be dominated by cyanobacteria (Elliott 2012,
Yan et al. 2017).

2.1.3.2 Eutrophication

Eutrophication can be a natural phenomenon; it can be generally defined as the
process by which a water body becomes enriched in dissolved nutrients that stimulate
the growth of aquatic plants, usually resulting in the depletion of oxygen. Currently,
the term has been used to identify the cultural or accelerated eutrophication of
lakes, rivers, estuaries, and marine waters, caused by anthropogenic pressure and
non-natural nutrient enrichment (Anderson et al. 2002, Le Moal et al. 2019).

Eutrophication is strongly accelerated by certain anthropogenic stressors. Human
society has influenced water resources deeply and in numerous way, from river
rectification to dam building. One of the most direct impacts of human activities on
water quality is the release of sewage, agricultural, industrial and urban wastewater,
and the diffusion of agricultural fertilizers and chemicals in water bodies via water
run-off (Codd 2000).

The state of eutrophication of a water body can be described through the trophic
state index (Carlson 1977), that divides lakes into three categories based on their
nutrient content and biological productivity: oligotrophic, mesotrophic or eutrophic
(sometimes hypereutrophic) lakes.

The nutrients causing eutrophication are phosphorus (P) and nitrogen (N),
that are the two main nutrients necessary for the growth of phytoplankton. The
composition of phytoplankton in terms of these nutrients follows a given ratio N:P.
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For marine ecosystems this ratio is considered to be N:P ∼ 16 (Redfield ratio), while
it is more variable for freshwaters. Generally, phosphorus is the least abundant
among the two and is often considered to be the limiting nutrient of phytoplankton
in lakes (Granéli et al. 2008).

Because of the general belief that phosphorus limits primary production in lakes,
its concentration was chosen by various countries as the main (sometimes, the only)
indicator of the ecological state of water bodies. During the end of the 20th century,
most nutrient-reducing policies have therefore focused on the control of anthropogenic
phosphorus release (Poikane et al. 2019). There are evidences, however, that the
monitoring of phosphorus alone is not a sufficient criteria to determine management
policies at the watershed level, and that nitrogen limitation occurs more frequently
than it is generally expected (Abell et al. 2010, Poikane et al. 2019).

The N:P ratio in a water body often reflects the source of nutrients. The ratio
tends to be high in oligotrophic lakes that receive nutrients from natural watersheds,
while in mesotrophic and eutrophic lakes incoming nutrients derive from various
sources that have lower average N:P ratios (Downing & McCauley 1992). A water
body can generally be considered Phosphorus-limited if N:P>15:1, while it is likely
to be nitrogen limited if N:P<7:1 (Abell et al. 2010).

2.1.3.3 Algal blooms

Nutrient-rich ecosystems are usually biologically productive. Harmful algal
blooms (HABs) are the uncontrolled and rapid proliferation of potentially toxic
algae, producing toxic or harmful effects on people, animals or, more generally, to
the entire ecosystem itself. An escalation in the occurrence of algal blooms was
registered in the past decades both in coastal areas and inland waters (Anderson
et al. 2002, Heisler et al. 2008, Paerl & Paul 2012), making HABs a major issue in
marine, brackish, and freshwater systems worldwide (Hallegraeff 1993, Watson et al.
2015). HABs are usually more severe and frequent in eutrophic waters, but they
can also occur intermittently in less productive systems, especially those with some
degree of human impact such as acidification or organic loading (Watson et al. 2015,
Carey et al. 2012).

Uncontrolled algal blooms represent a threat for the structure and biodiversity of
aquatic ecosystems, for drinking and irrigation water supplies, recreational activities,
tourism, fisheries, and the agriculture and power industries. HAB species include
representatives from most major taxonomic groups: Cyanobacteria, Chlorophyta,
Diatoms (Bacillariophyta), Chrysophyta, Euglenophyta, Rhadiophyta and Dinophyta
(Hallegraeff 1993, Watson et al. 2015).

When HABs contain species able to produce toxins, they become a threat
directly for human health. Relatively few freshwater species can produce harmful
toxins, and all of those known to date are cyanobacteria. Roughly 50 cyanobacteria
species have been proved to produce such toxins, however, this number is likely
to be underestimated (Watson et al. 2015). Because of their potential toxicity,
cyanobacteria have become one of the main concerns in water resources management
worldwide (Paerl & Huisman 2008, Paerl & Paul 2012, Wagner & Erickson 2017).
Figure 2.6 shows some intense algal bloom occurred in Lake Erie in September 2017.

In temperate climates, oligotrophic environments support minimal phytoplankton
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Figure 2.6 – Photos of a harmful algal bloom occurred in Lake Erie in September 2017
(source: NOAA, https://oceanservice.noaa.gov/facts/hab-solutions.
html).

biomass and diversity and are usually dominated by Cryptophyta or by cyanobacterial
or chlorophyte picoplankton. Mesotrophic systems show a higher diversity. Most
algal taxonomic groups are represented over the growing season (e.g. diatoms,
green algae, Cryptophyta, Dinophyta and Cyanobacteria). Finally, eutrophic and
hypereutrophic lakes can sustain very high algal biomass, and are often dominated
by very few taxa, such as Cyanobacteria, diatoms or dinoflagellates (Watson et al.
1997).

Under favourable circumstances in terms of light, nutrients and temperature,
most phytoplankton groups can proliferate causing HABs. In freshwater ecosystems,
HABs are mostly lead by cyanobacteria or, less frequently, by diatoms or green algae.
Dinoflagellates are mostly dominant in marine waters (salinity > 5%), and usually a
minor component of phytoplankton assemblies in freshwater (Sheath & Wehr 2003).
In marine ecosystems, dinoflagellates can develop blooms with significant impacts
on both economy and human health as they are able to induce human intoxication
(via vectors such as molluscs) having lethal effects in some cases. However, toxic
dinoflagellate species have not been recorded in freshwater ecosystems to date
(Fachini & Vasconcelos 2006).

HABs are symptomatic of ecosystem imbalances. Their recent augmentation is
generally linked to the expanding human footprint on natural ecosystems, and to the
deep environmental changes caused by anthropogenic stressors such as urbanization,
cultural nutrient enrichment and climate change (Paerl & Huisman 2008, Sommer
& Lengfellner 2008, Wagner & Adrian 2009). Watershed development, including
changes in land-use, deforestation, and rerouting of rivers, can modify the timing
and volumes of compounds entering a water body (e.g., nutrients, sediment, and
pollutants), and alter its species composition by introducing aquatic invasive species.
Furthermore, the timing and magnitude of hydrologic events (e.g., severe storms
causing flooding or higher spring runoff, extended periods of low or no inflow) can
also impact the incoming discharges in a water body (Watson et al. 2015). Climate-
related changes can also affect the duration of ice cover and of the growing season,
as well as the stratification and mixing dynamics, with effects on the circulation
patterns, on the spatial distribution of dissolved and particulate materials and on the
resuspension of sediment-released nutrients (Watson et al. 2015, Song et al. 2013).

An augmentation in the frequency of blooms dominated by cyanobacteria has
been observed globally during the last couple of decades (Huisman et al. 2018).

https://oceanservice.noaa.gov/facts/hab-solutions.html
https://oceanservice.noaa.gov/facts/hab-solutions.html
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Cyanobacteria have high optimum temperatures (>25 °C) and therefore benefit of
warmer water temperatures induced by climate change (Elliott 2012). Cyanobacterial
blooms may even locally increase water temperatures through the intense absorption
of light. For instance, the temperatures of surface blooms in the Baltic Sea and in Lake
IJsselmeer (NL) can be around 1.5°C above those of the surrounding ambient waters
(Paerl & Huisman 2008). The effect of raising CO2 atmosphere concentrations is likely
to be negated by the increased bloom activity, which enhances CO2 consumption and
elevates pH levels (Paerl & Paul 2012). Furthermore, cyanobacteria are advantaged
under stratified conditions due to their motion capability that allows them to float
towards the surface layer, where higher water temperatures and more light are
available (Carey et al. 2012, O’Neil et al. 2012).

Spring blooms are thought to be favoured by climate change, mainly through
earlier stratification and warmer water temperatures (Peeters et al. 2007, Kienel et al.
2017). However the impact of climate change on these events is rarely addressed.
Most climate change impact studies that deal with the ecological state of freshwater
bodies focus on toxic cyanobacterial summer blooms, and do not take into account
the influence of early blooms on the subsequent phytoplankton dynamics, including
cyanobacteria (Huber et al. 2008).

2.1.3.4 Water bodies in urban areas

Lakes and reservoirs represent 3.7% of the Earth’s non-glaciated continental
area (Verpoorter et al. 2014). The global areal extent of lakes and impoundments is
dominated by millions of water bodies smaller than 1 km2 (Downing et al. 2006).
However, small water bodies are often overlooked in scientific literature. For instance,
the Europaen Water Framework Directive sets to 0.5 km2 of surface area the limit
to include a lake in their statistics (Lyche Solheim et al. 2019).

With the advance of urbanization, the presence of small aquatic environments
has become a key feature for the improvement of life quality in the urban landscape
(Frumkin et al. 2017, van den Bosch & Sang 2017). An ever-increasing number of
small water bodies is either incorporated into the expanding metropolitan areas or
is artificially created for aesthetic or recreational purposes.

Urban lakes are generally man-made water bodies, often formed after excavation
or mining, especially in alluvial plains (Tavernini et al. 2009). In 2013, the European
demand for sand and gravel generated an estimated annual turnover of 15 billion
euros and employment for 200000 people (Søndergaard et al. 2018). Most urban
lakes are small and shallow and they frequently do not present any inlet or outlet,
being mostly fed by groundwater. These lakes provide inhabitants with various
ecosystem services that can sensibly increase life quality. They grant recreational
and educational activities and they contribute to a more pleasant landscape (Naselli-
Flores 2008). Furthermore, they are an important source of biodiversity in strongly
anthropogenized environments (Frumkin et al. 2017, Hill et al. 2017, Hassall 2014,
Higgins et al. 2019).

Despite their value, urban water bodies are often in a poor ecological state
(Moore et al. 2003, Noble & Hassall 2015, Søndergaard et al. 2018). Temperatures
in urban areas are higher than the surrounding rural areas. The combined effect of
climate change and urbanization can strongly increase the heat stress on ecosystems
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located in metropolitan areas (Chapman et al. 2017). Furthermore, due to the
land use of their surroundings, these water bodies are affected by high loads of
nutrients and pollutants coming from the watershed (Putt et al. 2019). Moreover,
wind induced mixing is often sufficient to regularly refill the water column with
nutrients recycled in the sediment (Bachmann et al. 2000, Song et al. 2013). The
frequent lack of inlets and outlets makes the water in these lakes rather stagnant.
The combination of nutrient enrichment and high retention times lead to eutrophic
conditions and favour harmful algal blooms. In particular, stagnant waters can be
especially favourable to cyanobacterial growth.

However, urban lakes cannot be simply considered as completely mixed reactors
(McEnroe et al. 2013). Their hydrodynamics is far more articulate than it might
appear. They are polymictic water bodies with complex patterns of mixing and
stratification, highly dependent on local meteorological conditions. The thermal
regime is among the main drivers of phytoplankton growth and harmful algal blooms
in lakes (Wilkinson et al. 2016, Paerl & Huisman 2008). As all aquatic ecosystems,
urban lakes are subject to climate change. However, its impact on these ecosystems
still needs to be assessed.

More generally, the role of small lakes in climate change studies has so far been
overlooked. On the first hand, they might be relevant on a global scale in elemental
budgets, such as the carbon budget (Mendonça et al. 2017), and should be taken
into account in large-scale climate change analysis (Downing et al. 2006). On the
other hand, the impact of climate change on small and shallow water bodies has
rarely been quantitatively assessed, even though they play an important role for
biodiversity and are prone to harmful algal blooms (Biggs et al. 2016, Wilkinson
et al. 2020).

To preserve the ecological value of small urban lakes, it is crucial to better
understand how these ecosystems are evolving over time and how they react to
changes in external forcing. The thermal regime and the hydrodynamics of lakes
are among the main drivers of phytoplankton growth and harmful algal blooms
(e.g. Wilkinson et al. 2016, Paerl & Huisman 2008) and are intimately related to
eutrophication. It is therefore crucial to evaluate how climate change is impacting
the thermal regime in urban lakes.
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2.2 Modelling of aquatic ecosystems

Lakes and, more in general, all aquatic ecosystems are under great climatic and
anthropogenic pressure. The demand of model simulations for current and future
scenarios in environmental management is ever-increasing.

A model is any conceptual or mathematical representation of a system that serves
to understand and quantify it (Torres & Santos 2015). Mathematical models describe
a system through a set of equations. Broadly speaking, mathematical models can
be divided into two main categories: empirical and mechanistic models (Biggs et al.
2016, Vinçon-Leite & Casenave 2019). Empirical models are data-driven and derive
from observations and probability considerations. They mainly consist in statistical
relationships (transfer functions) between the predictor and the response variables of
interest. Mechanistic models are process-based and entail a physical interpretation
and a mathematical description of the processes of interest (Vinçon-Leite & Casenave
2019). Both empirical and mechanistic approaches have been widely used for the
modelling of aquatic ecosystems.

Aquatic ecological models are extremely valuable to test our knowledge and
understanding of the relevant processes in the biogeochemical cycle. They are of
particular interest for the scientific community and for policy makers as tools to
simulate eutrophication, harmful algal blooms and their sensibility to environmental
changes. However, models can never take into account every feature of the real
system and, even though accurate, they always give an approximation of reality that
introduces a certain rate of uncertainty (Uusitalo et al. 2015).

The construction of an aquatic ecological model requires a strongly multidis-
ciplinary approach. State variables describing the motion of fluids, such as water
temperature, density, and the velocity field are usually obtained through process-
based hydrodynamic models. On the other hand, the processes relevant to the
biogeochemical cycle and biomass production can either be modelled through data-
driven empirical approaches, or through process-based kinetics and mass balances
that entail a wide biological and chemical knowledge. Finally, programming skills
are needed for the actual implementation of the model and the coupling between
hydrodynamic and ecological models.

However, the study of hydrodynamics and biogeochemistry proceeded separately
and on different timelines. As a result, hydrodynamic and ecological models were
developed independently from one another. However, to acurately represent the
ecosystem dynamic, these two models need to be coupled, with the ecological
model representing the biochemical reaction processes and the hydrodynamic driver
simulating currents, water temperature, and managing the transport and diffusion of
the biochemical variables. The hydrodynamic driver is usually process-based, and its
spatial dimension can vary from zero (box models, representing water temperature)
to three (3D hydrodynamic models). The coupled ecological model can be either a
statistical/empirical model or a mechanistic one (Vinçon-Leite & Casenave 2019).

The following sections describe the main characteristics of hydrodynamic and
ecological models, focusing on their approaches, interactions, and their current limits
and range of applicability. Concerning hydrodynamic models, only the mechanistic
approach will be discussed, while the state of the art of a wider range of ecological
models will be reviewed.
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2.2.1 Hydrodynamic modelling

2.2.1.1 Governing equations

Hydrodynamics is the branch of physics that deals with the motion of fluids. The
mathematical description of fluids motion was consolidated throughout centuries of
studies and research. The next paragraphs give a brief insight on the theoretical and
mathematical background that constitutes the basis of most hydrodynamic models,
while pointing out its strengths and weaknesses.

Raynolds-Averaged Navier-Stokes equations
In physics, the motion of a viscous fluid is described by a system of partial dif-
ferential equations known as the Navier-Stokes equations, that express the mass
(equation (2.1)) and momentum (equation (2.2)) conservation for a control volume
in a Newtonian fluid. Following the Einstein summation convention (with i=1,2,3
and j=1,2,3), their differential form can be written as:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0 (2.1)
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∂ui
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∂xj
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= − ∂p
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Pressure forces
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∂xi

(
∂uj
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)
+ µ

∂2ui
∂x2

j︸ ︷︷ ︸
Viscous forces

+ ρfi︸︷︷︸
External forces

(2.2)
where u is the fluid velocity, ρ is its density, µ and λ are respectively the dynamic
and bulk viscosity, p is pressure, g is the acceleration of gravity and f generally
represents external forces.

The left-hand side of equation (2.2) represents inertial forces, the first addendum
on the right-hand side represents the pressure forces, the final one represents the
external forces applied to the fluid (e.g. the gravitational forces), and the remaining
terms represent the viscous forces.

However, the mathematical understanding of this complex system of equations
is still incomplete, as it has not yet been proven whether smooth solutions of
the Navier-Stockes equations always exist in three dimensions. Hydrodynamic
model therefore rely on approximated solution (or, in strongly simplified cases, even
analytical solutions) obtained through numerical methods under certain assumptions
and hypothesis.

Namely, in the applications of interest for this work, it is reasonable to as-
sume (i) an incompressible Newtonian fluid with (ii) a vertical hydrostatic pressure
distribution and to (iii) neglect density variations in the gravity term of the mo-
mentum equation (i.e. Boussinesq approximation, Deltares (2014)). Under the first
hypothesis, equations (2.1) and (2.2) become respectively:
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= 0 (2.3)
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and the hydrostatic pressure (p) can be expressed as a function of atmospheric
pressure (patm), water density (ρ) and free surface elevation (Zs):

p = patm + ρg(Zs − z) (2.5)

Furthermore, in order to overcome the difficulty of describing the chaotic turbulent
nature of fluid motion, Osborne Reynolds suggested to decompose turbulent instan-
taneous quantities into the sum of their time-averages and fluctuating turbulent
quantities. Following the Reynolds decomposition the dependent variables in (2.4)
can be decomposed into a mean (x) and a fluctuating (x′) part:

ui = ui + u′, p = p+ p′ (2.6)

and the momentum conservation equation becomes:

∂ui
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+ ∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ fi (2.7)

From the properties of a Reynolds operator (see, for instance, Alfonsi 2009), we
moreover have:

uiuj = (ui + u′i)(uj + u′j) = uiuj + uiu′j + u′iuj + u′iu
′
j = uiuj + u′iu

′
j (2.8)

After substituting in (2.7), we obtain:
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The Reynolds-stress term (τij = u′iu
′
j) raises from the Reynolds averaging process

and incorporates the effects of turbulent stresses.
Finally, we obtain the Reynolds-Averaged Navier-Stokes equations (RANS) for

mass (equation (2.10)) and momentum (equation (2.11)) conservation, that are at
the core of most 3D hydrodynamic models (de Goede 2020):

∂ui
∂xi

= 0 (2.10)
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However, system (2.10) and (2.11) is not a closed system in terms of the four de-
pendent variables ui and p, as the Reynolds-stress term introduces six additional
independent unknowns. The closure of the system is obtained through the imple-
mentation of specific turbulence models that express the Reynold-stress term as a
function of the mean field and/or other variables (Alfonsi 2009).

Heat exchange at the water surface
Lakes are integral features of the hydrological system (Fig. 2.1). They interact
directly with atmospheric water, surface water and groundwater (Reynolds 2006).
The areal extent of lakes bottom is considerably larger than their surface area. Their
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Figure 2.7 – Heat fluxes that affect water surface temperature (source: Piccolroaz et al.
2013).

interface with external systems is much larger through the bottom than through
the surface. Groundwater infiltration, runoff discharge and evaporation are major
components in lakes heat and mass balances. However, their contribution is highly
uncertain (Winter 1981, Trask et al. 2017). In particular, due to their uncertainty,
exchanges of mass and energy through the bottom are often neglected in linmological
studies (Krabbenhoft et al. 1990, Shaw et al. 1990).

For this reason, lakes bottom is often assumed to be impermeable and adiabatic.
In this case, surface water temperature is the result of the incoming and outgoing
heat fluxes at the air-water interface, that include direct exchanges with atmosphere
and deeper waters, latent and sensible energy transfers via inflows and outflows and
evaporation (Fig. 2.7). The complete heat budget at the water-air interface for the
calculation of the net heat flux (Hnet) is given by (Piccolroaz et al. 2013):

Hnet = (1− rs)Hs + (1− ra)Ha +HW +He +Hc +Hp +Hi +Hd (2.12)

where Hs is the net shortwave solar radiation, Ha is the net longwave radiation
emitted from the atmosphere toward the lake and HW is that emitted from the water
itself, with rs and ra appropriate reflection coefficients; He represents the latent heat
fluxes due to evaporation and condensation, Hc is the convection heat transfer, Hp

and Hi take into account precipitation and inlet/outlet effects respectively and Hd

represents the heat exchanges with deeper waters. Fluxes are considered positive
when entering the surface layer and negative otherwise.

Some of the terms included in the complete heat budget (2.12) are difficult to
measure or retrieve. In order to meet the needs of the user, most hydrodynamic
models include various simplified formulations of the heat budget at the water surface.

Advection and diffusion
The dispersion of tracers occurs through advection and diffusion processes. Water
temperature (T ) is often treated as a tracer in hydrodynamic models. The heat
entering the water body through the heat-budget (2.12) is transferred within the
water body through an advection-diffusion equation:
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+ ui

∂T

∂xi
= ∂
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∂xi

)
+ S (2.13)
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where S represents the source/sink term, and νM and νT are respectively the molec-
ular and turbulent diffusion coefficients. Equation (2.13), here written for water
temperature, applies to any tracer in a hydrodynamic model.

2.2.1.2 Model dimension

Hydrodynamic models are used in extremely diverse contexts and with very
different objectives. Depending on the context, the spatial dimension of the model
might vary. Zero-dimensional (0D) models can be used to focus on the heat budget
at the air-water interface and simulate the average surface temperature evolution of
a water body (Piccolroaz et al. 2013). 1D models simulate the evolution of currents
and the distribution of water temperature over the water column, but do not give
any information on heterogeneities in the horizontal plane. Bi-dimensional (2D)
models reproduce spatial heterogeneities but do not resolve the differences on the
vertical axis. Three-dimensional (3D) models take into account both the horizontal
and vertical variabilities, and their mathematical approach entails the least grade of
approximation.

The computational cost of hydrodynamic models increases with their spatial
dimension. However, the computational cost of 3D models has been strongly reduced
in recent years. Despite their computational cost being higher, 3D model have the
considerable advantage to be as accurate as 1D models in the simulation of the
vertical dynamics, while reproducing spatial variability as well (e.g. Polli et al. 2019).

2.2.1.3 Applications in climate change studies

Modelling approaches to climate change studies have several advantages. Provided
that observations are available for their calibration and validation, models can be
used to simulate the behaviour of a water body outside of the monitoring period as
far as meteorological input data are available. This opens to an extremely wide range
of applications. Our knowledge of water bodies with only short series of observations
can be extended both in the past, when long-term meteorological data are available,
and in the future, if models are forced with climate change scenarios. Depending on
the input data, their response to changes in the climate can be reconstructed in the
past, and simulated in the future.

Such modelling approaches have grown substantially in the last decade (e.g.
Vinçon-Leite et al. 2014, Piccolroaz et al. 2018, Shatwell et al. 2019, Piccolroaz et al.
2020). A large portion of the dedicated scientific production focuses on large and
deep lakes (Perroud & Goyette 2010, Vinçon-Leite et al. 2014, Piccolroaz et al. 2018).
However, the interest in smaller and shallower lakes has risen in the recent years
(Magee & Wu 2017, Moras et al. 2019, Zhang et al. 2020, Stetler et al. 2020). Most
publications make use of 0D (Piccolroaz et al. 2018) or 1D models (e.g. Vinçon-Leite
et al. 2014, Magee & Wu 2017, Moras et al. 2019, Soares et al. 2021) to simulate
lakes dynamics under climate change, or of satellite measurements to reconstruct
their long-term surface temperature evolution (e.g. Zhang et al. 2020, Stetler et al.
2020). 1D models have the great advantage of a low computational cost, with the
advantage of being very accurate, especially in terms of water temperature vertical
distribution (Piccolroaz et al. 2013, Polli et al. 2019). However, such models are
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inherently incapable of directly resolving a number of physical processes crucial for
lakes dynamics that take place on the horizontal plane. These processes can only be
directly taken into account by 3D models, and are necessarily strongly approximated
in 0D or 1D models (Romero et al. 2002, Piccolroaz et al. 2013, Xue et al. 2017).

2.2.2 Ecological modelling

Ecology, as the study of the interactions between organisms and their surrounding
ecosystems, is a relatively new term when compared to other classical physical,
biological or chemical disciplines. The idea of modelling ecological processes through
a mathematical approach draws back to the 1920s, with the Lotka-Volterra equation
for prey and predator interactions. However, ecological modelling finds a considerable
acceleration only starting from the 1970s, due to: (i) the development of computer
technology and computational capacity, (ii) the urgency linked to some environmental
problems such as eutrophication and (iii) a deeper knowledge of the relationships
between ecological properties and environmental factors.

Triggered by compelling issues such as eutrophication and harmful algal blooms,
the request for simulating ecological and biological processes in water environments
is ever increasing. To meet the need for simulations of biological processes, a vast
range of different biogeochemical models has been developed in the last two to
three decades, often with very similar formulations (Mooij et al. 2007, Trolle et al.
2012). Mooij et al. (2007) suggested that, this way, a high effort is misused in
the process of ’reinventing the wheel’. The Ecobas Register of Ecological Models
(http://ecobas.org/www-server/index.html) indicated, in 2012, the existence of
more than 100 aquatic models, often with similar levels of ecological complexity and
modelling objectives (Trolle et al. 2012). This trend was accompanied by a strong
increase in the annual number of scientific publications dealing with the modelling of
aquatic ecosystems (Trolle et al. 2012, Vinçon-Leite & Casenave 2019), that confirms
the strong interest for ecological modelling found in the scientific community, and the
need of ecological simulations to validate management policies in water resources.

The following sections contain a brief review of the main traits and approaches
in aquatic ecological modelling.

2.2.2.1 Empirical models

Aquatic ecological modelling developed mainly in relation to eutrophication and
eutrophication management policies. The main objective of an aquatic ecological
model is therefore to reproduce the most relevant processes of the biogeochemical
cycle, relative to the variables of interest.

Two main approaches can be distinguished in aquatic ecological modelling: the
empirical one and the mechanistic one. Empirical models are data-driven and
derive from observations through probability considerations. They mainly consist in
statistical relationships (transfer functions) between the predictor and the response
variables of interest. These models require very little understanding of the actual
physical processes happening in the modelled system (Vinçon-Leite & Casenave
2019). Their formulation is avoided and the descriptive power of the model is
transferred to statistical considerations. These models are quite generic and are
often applied to groups of lakes. Their great advantage is their simplicity of set up.

http://ecobas.org/www-server/index.html
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They can be built using few data of sporadic time series of sampling. However, their
results bear a high rate of uncertainty (Vinçon-Leite & Casenave 2019).

During the last couple of years, empirical models based on machine learning
techniques (such as neural network or random forests) also found a considerable
development, due to their capability of predicting highly non-linear and complex
responses (Fornarelli et al. 2013). Contrary to the more traditional statistical
approaches, models based on machine learning need a very high amount of data to
reduce their uncertainty, and benefit greatly from the availability of high-frequency
in situ data. These approaches showed some promising results especially in short
term forecasting of harmful algal blooms, and could be of particular value for the
water resources management in recreational areas (Vinçon-Leite & Casenave 2019).

2.2.2.2 Mechanistic models

Mechanistic models are process-based and entail a physical interpretation and a
mathematical description of the driving processes of the ecosystem. They usually
consist of a set of differential equations and mass balances, solved through numerical
methods, that describe in detail the biogeochemical cycle (Vinçon-Leite & Casenave
2019).

One of the first mechanistic ecological models was proposed by Chen (1970),
with the objective of addressing eutrophication through computer simulations. In
this conceptualization, the aquatic system is divided into four major interrelated
components:

1. Abiotic substances (H2O, CO2, NO3, PO4, Fe and so on)

2. Producers

3. Consumers

4. Decomposers

In the model, the variation of the phytoplankton concentration Pi (where i stands
for a specific algal group) over time is described by:

d(V Pi)
dt

= T +AE
dPi
dx

+ (µi − r − s)V Pi −
1
Yz
gpfizV (2.14)

where V is the volume of the considered element, T is the total advective mass
transfer, E is the effective diffusion coefficient, µi is the specific growth rate of the
algal group, A is the area of the element, x is a distance (this model was developed
for rivers, in the case of lakes it would become the vertical length of the element), r
is the percentage of mass lost by respiration per unit of time, s is the percentage of
mass settling per unit time, Yz the yield coefficient of zooplankton, g the specific
growth rate of zooplankton, pfi the preference factor for the algal group, and z is
the zooplankton biomass concentration.

The model also includes limiting factors for growth, as the growth rate of
phytoplankton depends on environmental conditions and may vary in time. The
limiting-factor are here modelled through specific coefficients k1,2,3,4:
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Figure 2.8 – Schematic representation of NPZD models (source: Li & Hipsey 2013).
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(2.15)

where L, C, N and P , are, respectively, light intensity, carbon dioxide, nitrate and
phosphate concentrations. Similarly, a series of differential equations was formulated
to describe the changing rates of zooplankton, fish, detritus, BOD, nutrients and DO.
This model achieves a high level of complexity in its description of the interactions in
an ecosystem and still constitutes the core of the current generation of mechanistic
aquatic biogeochemical models (Shimoda & Arhonditsis 2016).

Throughout the decades, the structure of ecological models has become more
complex. However, most of the current dynamic ecological models are still rooted
in the early ideas of modified prey-predator models and ‘Nutrient-Phytoplankton-
Zooplankton-Detritus’ (NPZD) models (Li & Hipsey 2013). In NPZD models,
similarly to what proposed by Chen (1970), the biogeochemical cycle is modelled
through four main interacting players (Fig. 2.8). Pure NPZD models can be
considered of medium complexity (Heinle & Slawig 2013). They have already been
widely applied for aquatic ecosystem research in both regional and global modelling
studies (e.g. Anderson 2005, Hipsey et al. 2013), and they still represent a valid
choice for specific modelling tasks.

Modern ecological models are dynamic. They are built with a modular structure
that allows the user to achieve the desired level of complexity in its configuration.
These complex dynamic models include a high number of variables and processes
and are designed to be used as a virtual reality for the simulation of the whole
aquatic ecosystem, from microbial decomposition to primary production, predation
and vegetation (Mooij et al. 2010, Vinçon-Leite & Casenave 2019). Various complex
dynamic models are currently available. They differ in terms of the hydrodynamic
driver, but share a similar overall modular structure. The models CAEDYM, Aquatic
EcoDynamics (AED), PCLake and DELWAQ are among the most used in scientific
literature (Mooij et al. 2010, Vinçon-Leite & Casenave 2019).

Figure 2.9 shows the typical set of modules available in a current complex
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dynamic ecological model (namely, AED) and their interactions. These models look
at the ecosystem as a whole. Little remains of the simplicity of NPZD models, with
their four compartments here divided into sub-modules. The grade of complexity
can then be chosen by the user according to the data and knowledge available for a
given application.

In each module, the variables are usually subject to a mass balance of the
following type (for the generic variable C, of concentration [C]):

d[C]
dt

=
∑
i

f C
prodi −

∑
j

f C
consj (2.16)

where f C
prod and f C

cons respectively represent all fluxes producing and consuming C.
Each separate flux constituting the producing and consuming terms are modelled
specifically according to the process they represent, often through modified Michaelis-
Menten kinetics:

f C
prodi = Rprodi

[C]
Kprodi + [C]θ

T−20
prodi

[C] (2.17)

where: Rprodi is the maximum rate of production (consumption), Kprodi is the
half-saturation constant and θprodi is a factor for temperature dependence. The set
of differential equations such as (2.16) are solved through numerical methods. The
number of fluxes taken into account in the mass balances depends on the activated
modules in the configuration.

Some modules appear to be more commonly included in the applications of these
models for eutrophication modelling.

Oxygen
In complex dynamic models, oxygen dynamics are generally modelled through a ded-
icated module. Oxygen concentration is usually modelled as a function of exchanges
with atmosphere, consumption from respiration, production from photosynthetic
organisms and exchanges with the sediment. When sediment interaction with the
water column is not explicitly simulated, oxygen flux through the sediment can still
be included, through the sediment oxygen demand (Mooij et al. 2010, Vinçon-Leite
& Casenave 2019).

Inorganic nutrients
Inorganic nutrients such as nitrate (NO−3 ) and phosphate (PO3−

4 ) are directly
available for primary producers. They are therefore crucial for eutrophication
modelling. In complex dynamic models, they are usually separated into different
sub-modules for nitrogen (NH+

4 and NO−3 ), phosphorus and silica.
Phosphorus is largely believed to be the main limiting nutrient for phytoplank-

ton growth (Granéli et al. 2008, Vinçon-Leite & Casenave 2019). For this reason
restoration policies of eutrophic environments focused for decades on phosphorus
reduction. Phosphorus concentration was often used as the only indicator of the
ecological state of rivers and water bodies (Poikane et al. 2019). However, nitrogen
limitation occurs quite frequently (Abell et al. 2010, Poikane et al. 2019). In the
nitrogen module, nitrate (NO−3 ) and ammonium (NH+

4 ) are usually separated and
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subject to the processes of nitrification and denitrification.

Organic matter
Organic matter constitutes the main pool for dead biomass. Most dynamic models
distinguish between dissolved and particulate organic matter (Vinçon-Leite & Case-
nave 2019). Organic matter gets mineralized by bacteria and partially refilling the
inorganic nutrient pools. When bacteria modules are not included, mineralization is
usually modelled through dedicated Michaelis-Menten style equations. In shallow
water bodies, wind-induced sediment resuspension is quite frequent and the replen-
ishment of the water column with nutrients mineralized in the sediment can become
an important internal source of nutrients (Song et al. 2013).

Phytoplankton
The phytoplankton module is at the core of many applications of ecological models
(Vinçon-Leite & Casenave 2019). In most complex dynamic models the phytoplankton
community is divided into different groups. The phytoplankton groups available
are customizable through a series of parameters that define their characteristics in
terms of growth, mortality, and temperature, light and nutrient requirements.

Traditionally, the phytoplankton community is divided into taxonomic groups
that separate phytoplankton into filogenetic classes (e.g. diatoms, cyanobacteria
or green algae). However, different species belonging to the same class might have
characteristics that are radically different. The concept of functional groups was
introduced by Reynolds et al. (2002), and aims at resolving the problems arising from
filogenetic classification, by regrouping phytoplankton into new cross-species cate-
gories with similar adaptative responses to environmental characteristics (Reynolds
et al. 2002, Shimoda & Arhonditsis 2016). Models purely based on functional
grouping are promising but still under development (Anderson 2005, Shimoda &
Arhonditsis 2016, Di Maggio et al. 2016). However, a mixed approach is some-
times used, where functional traits are introduced in the definition of phytoplankton
taxonomic groups, in order to better model their responses to environmental changes.

The phytoplankton succession in a natural environment is the result of com-
petition for resources. However, multispecies competition is often regarded as
fundamentally unpredictable (Huisman & Weissing 2001). In most multispecies
models, the competition for resources is mimicked through the definition for each
group of different characteristics and requirements that lead, under the same envi-
ronmental conditions, to different limiting factors. The model BLOOM (Deltares
2014) includes a competition principle and constitutes an exception. The compe-
tition principle is based on the ration between the growth rates and the resource
requirements for each phytoplankton group, in relation with local environmental
conditions (Los 2009). The competition principle works through an optimization
algorithm, according to which at each time step the biomass is distributed among
the phytoplankton groups and net primary production is maximized consistently
with the environmental conditions and existing biomass levels.

Cyanobacteria
According to numerous studies climate change and eutrophication promote harmful
algal blooms and cyanobacteria blooms in particular (Paerl & Huisman 2008, Wagner
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Figure 2.9 – Schematic representation of dynamic models, specifically for the model
Aquatic EcoDynamics (source: Hipsey et al. 2013).

& Adrian 2009, O’Neil et al. 2012, Paerl 2014). Cyanobacteria are therefore an
important feature of aquatic ecological models. They show some peculiar traits that
distinguish them from other phytoplankton groups and that are accounted for in
most dynamic ecological models. Various models (e.g. CAEDYM, BLOOM or AED)
include options for nitrogen-fixing cyanobacteria. Their buoyancy capabilities as
well as their toxin production are not explicitly modelled in most ecological models,
due to the poor theoretical understanding of these process (Walsby 1994, Schuergers
et al. 2017, Sivonen 1996, Catherine et al. 2013).

2.2.3 Applicability of ecological models: the need for data

A high number of aquatic ecological models are available, with a great variety of
approaches and complexity. The choice of the model to use should depend on the
focus of the study and on the available knowledge and data. With little knowledge
about the ecosystem, empirical models should be preferred (Vinçon-Leite & Casenave
2019). Models based on machine learning need a high amount of data to be effective,
but require little knowledge of the ecosystem. Finally, the choice should fall upon
mechanistic models if sufficient knowledge about the key processes of the ecosystem
is available (Vinçon-Leite & Casenave 2019). Once a model is chosen, data are
required for the calibration of the model parameters, as well as for validation.

While empirical models require only a few parameters, mechanistic models are
often over-parametrized (Reichert & Omlin 1997, Makler-Pick et al. 2011, Rigosi
et al. 2011). Parameter values for mechanistic models are often deduced from



2.2. MODELLING OF AQUATIC ECOSYSTEMS 35

the literature (Romero et al. 2004, Gal et al. 2009, Lürling et al. 2013, Fenocchi
et al. 2019). However, values found in literature might be derived from controlled
environments (e.g. laboratory experiments or mesocosms) or from different study
site, and might not be appropriate for the ecosystem under consideration. A great
range of values might be found in literature for the same parameter (Fenocchi et al.
2019). Furthermore, in most studies the calibration of the parameters is done without
any sensitivity analysis through a trial and error procedure. Automated calibration
is only rarely applied and usually confined to 0D or 1D models (Vinçon-Leite &
Casenave 2019).

Results from ecological models often bear a high rate of uncertainty (Arhonditsis
et al. 2006, Vinçon-Leite & Casenave 2019). This is caused by three main reasons:
(i) the complexity of the biogeochemical cycle and the still incomplete theoretical un-
derstanding of some of its key processes, (ii) the difficulties in parameters calibration,
and (iii) the lack of data to perform calibration and validation.

Empirical models usually require only a few parameters to be calibrated, however
uncertainty is inherent to their empirical, data-driven approach. On the contrary,
in the case of process-based models, the general lack of calibration and validation
strongly contributes to their uncertainty. Traditionally, data relevant for ecological
models (e.g. nutrient and phytoplankton concentration) derive from field sampling
and subsequent laboratory analysis. These analysis are accurate but require certain
amount of time to be carried out. Field trips might also be problematic for remote
study sites. Such data are therefore traditionally taken on a monthly or weekly basis.
This low frequence does not facilitate the implementation of automated calibration
strategies, and does not allow to validate the modelling of the processes occurring at
a lower frequency than that of the sampling.

High-frequency in situ measuring systems can measure relevant physical and
chemical variables such as water temperature, pH, oxygen and dissolved nutrient
concentration. Furthermore, through optical sensors, they can give reliable estimates
of total chlorophyll and phycocyanin concentration, and in some cases also of the
phytoplankton assembly (Tran Khac et al. 2018). These instruments as well, however,
need a correct calibration and validation that can be obtained through sampling and
laboratory analysis. Accompanied by a traditional field monitoring, high-frequency
in situ monitoring can give new and important insights on the ecology of aquatic
ecosystems. Furthermore, consistent high-frequency data could help reducing models
uncertainty by applying sensitivity analysis, automated calibration and more accurate
validation.

2.2.4 Parameter optimization

The biogeochemical cycle is extremely complex. Its mathematical description
often involves parameters that need to be empirically estimated. In the effort of
including all of its processes and interactions, mechanistic ecological models are
often highly complex and over-parameterized (Reichert & Omlin 1997, Makler-Pick
et al. 2011, Rigosi et al. 2011, Vinçon-Leite & Casenave 2019, Luo et al. 2018).
Most parameters are difficult to measure directly through observations or laboratory
experiments. Reference values can be found in scientific literature but are uncertain
and often have a wide range of variability (Makler-Pick et al. 2011, Fenocchi et al.



36 CHAPTER 2. BIBLIOGRAPHICAL REVIEW

2019). The uncertainty on the values of these parameters affects models reliability.
For these reasons, calibrating and validating an ecological model is an important

task. However, some studies showed that a proper calibration stage or a sensitivity
analysis are not commonly performed (roughly in half of the publications found in
scientific literature), and that automated calibration strategies are rarely employed,
in favour of trial and error procedures (e.g. Arhonditsis & Brett 2004, Shimoda &
Arhonditsis 2016).

In the case of trial and error calibrations, their outcome is highly dependent on
the modeller’s skills and knowledge (Luo et al. 2018). Automated calibration can
reduce models uncertainty and simultaneously allow to carry out a sensitivity analysis
of the model parameters. However, it is rarely applied for ecological models: very
few papers make use of automated calibration for mechanistic ecological models. In
literature, automated calibration is only applied on 0D or 1D models, mostly through
optimization or Monte Carlo and Bayesian inference (Vinçon-Leite & Casenave 2019).

Automated calibration strategies are generally computationally costly. They
often need a large number of model runs and their computational cost increases with
the number of parameters to be estimated, hindering their application to complex
ecological models. Furthermore, in limnological studies, data traditionally come
from field campaigns that, even though regular, lead at best to sparse datasets that
are not adapted for automated calibration strategies.

A vast range of approaches and techniques are available for automated parameter
optimization, from Newton and quasi-Newton algorithms, to genetic algorithms (e.g.
Particle Swarm Optimization) and Bayesian parameter inference (Mahevas et al.
2019).

Classic Bayesian parameter inference is often problematic for complex mechanistic
models. For such models, the likelihood function is analytically intractable and its
evaluation through computational methods is extremely computationally demanding.
Approximate Bayesian Computation (ABC) is an innovative and promising technique
for parameter inference, rooted in Bayesian statistic, that has the great advantage
of bypassing the computation of the likelihood function. ABC exploits a large
number of model runs obtained through user-defined prior distributions of the
model parameters, as a training data set to approximate of the parameters posterior
probability distribution function. The approximation of the posterior distribution can
be obtained through various methodologies, among which the use of machine learning
techniques was recently proposed and appears to be particularly advantageous
(Raynal et al. 2019).



Chapter 3

Materials and methods

This chapter describes the materials and methods used in this PhD thesis.
First, the study site, the measuring system, the field campaigns and the data
collected and used in this work are presented in section 3.1. Following, in section 3.2,
the four models deployed in this work (namely, Delft3D-FOW, Delft3D-BLOOM,
TELEMAC3D and Aqutic Ecodynamics) are described. The description of the models
is limited to their most relevant characterisitcs in relation to their applications in this
thesis, and covers: the computational domain built for the study site, the structure
implemented for the models, and a mathematical description of the processes of
relevance for this work.

3.1 Study site and data set

In the following sections, I will present: (i) the study site Lake Champs-sur-
Marne, (ii) the measuring instrumentation deployed on the lake, as well as (iii) the
meteorological data used in the modelling of the study site. The data set collected
on the study site during my PhD is presented in chapter 4.

3.1.1 Study site

The study site is Lake Champs-sur-Marne. It is a sand-pit lake located in the
eastern suburbs of the Great Paris region (latitude: 48°51’50” N, longitude: 2°35’52”
E), next to the Marne River (see Figure 3.1). It is a small and shallow water body
with a surface of 0.12 km2, mean depth of 2.5 m and maximum depth of around
3.5 m. The bathymetry of the lake was measured in 2016 by the research team
at LEESU through an echo-sounder. The southern part of the lake is the deepest
one, while depth decreases below two meters around the small island and in the
northern part of the lake. Lake Champs-sur-Marne has no inflow or outflow and is
fed primarily by groundwater and occasionally by rainfall runoff. Its water level is
therefore mainly influenced by the presence of the Marne River, that flows from East
to West right north of the pond, and varies weakly during the year, with monthly
oscillations lower than 0.2 m on average.

The lake was originated in the 1940s by excavation and represents now a valuable
and demanded recreational area for the population of the surrounding departments.
However, it suffers from strong eutrophic conditions and experiences severe harmful

37
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Figure 3.1 – Satellite picture of lake Champs-sur-Marne (source: geoportail.fr) and sketch
of the measuring system at the three locations (A, B, P). Water temperature
(red squares) is measured at the surface, bottom and middle layers, while the
remaining variables are only measured at the middle layer.

algal blooms, especially between early spring and autumn. These blooms are often
dominated by potentially toxic species of cyanobacteria. This regularly leads to a
bathing ban and to restrictions in the access to the lake.

Given its shallowness, lake Champs-sur-Marne is polymyctic and its thermal
behavior is strongly influenced by meteorological conditions. Between Spring and
Autumn, periods of stable thermal stratification that can last up to three or four
continuous weeks alternate with complete mixing and overturn of the water column.

3.1.2 Measuring instrumentation

Lake Champs-sur-Marne is monitored by the Water, Environment and Urban
Systems Laboratory (Laboratoire Eau Environnement et Systèmes Urbains: LEESU)
through sampling and laboratory analysis, profiling, and the deployment of auto-
mated high-frequency in situ measurements. The survey carried out during this PhD
was funded by the ANR projects OSS-Cyano and ANSWER. The field campaigns are
organised with a different frequency depending on the season: the survey is monthly
from the months of October to March, and biweekly from April to September.

The lake is monitored at three different locations (Fig. 3.1). Sites A and B are
representative of the deepest portion of the study site, while site P is located close
to the bathing area. The dataset collected during each field campaign at the three
locations includes: water depth and Secchi depth measurements, profiles of relevant
variables and water samples.
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The profiles are taken via two separate instruments. The multi-parametric probe
Seabird (SBE 19™) gathers profiles of water temperature, conductivity, dissolved oxy-
gen, pH and conductivity; the spectrofluorometer Fluoroprobe (BBE Moldaenke™)
uses optical sensors to record profiles of the abundance of four phytoplankton groups
(green algae, diatoms, cryptophyceae and cyanobacteria). Eventually, the Algae-
Torch profiler (BBE Moldaenke™) was also occasionally employed on the study site.
The AlgaeTorch gives measures of total chlorophyll and cyanobacteria chlorophyll
concentration.

Water samples are taken at the three sites at a 1.5 m depth via a Niskin bottle, to
allow a direct comparison with the high-frequency data recorded at the same depth.
The samples are subsequently analysed in laboratory, to obtain the concentration
values for: the main inorganic nutrients (NO3, PO4, Ntot, Ptot), total chlorophyll
and, starting from 2019, dissolved organic carbon (DOC). Finally, starting from
2019, the samples are also analysed for phytoplankton species identification and
abundance.

The automated high-frequency instruments are installed on the study site at the
same three locations shown in Figure 3.1. Each measuring site is equipped with
sensors at three depths: below the surface at 0.5 m depth, at the middle of the
water column at 1.5 m and close to the bottom at 2.5 m. The structure of the
measuring system is shown in Figure 3.2 and is repeated at all locations: water
temperature is measured at all three depths, while at the middle of the water column
a multi-parameters sensor is able to capture also electrical conductivity, dissolved
oxygen, Chlorophyll-a and (only at site B) phycocyanin concentration (see Figure
3.1). Measurements started in spring 2015 at site A, followed closely by those at
site B (December 2015), while the third measuring site (site P) was set up in March
2017. A detailed description of the automated measuring system can be found in
Tran Khac et al. (2018). In addition, a sensor measuring nitrate at high-frequency
(i.e. ten minutes) was installed at site B in winter 2019.

3.1.3 Organisation of the field campaigns and data collection

The monitoring of Lake Champs-sur-Marne by LEESU started in May 2015
with the installation at measuring site A of in situ sensors at the surface, middle
and bottom layers, recording data at high-frequency. The sensors at sites B and P
were installed respectively in December 2015 and in March 2017, and a near-real
time automated transmission system was activated in spring of 2016 for all the data
recorded at the middle layer at site B. High-frequency in situ measurements are
accompanied by periodic field campaigns, that started for sites A and B in September
2015, and in April 2017 for site P.

During the field campaigns, for the three measuring sites shown in Figure 3.1,
the following tasks are performed: (i) maintenance, cleaning and data retrieval of
the high-frequency sensors, (ii) deployment of the profiling instruments (Seabird and
BBE Fluoroprobe, described in section 3.1.2), (iii) measurement of the water column
and Secchi depths, and (iv) water sampling through a Niskin bottle. Namely, water
samples were collected starting from June 2017. Further details on the data set and
its collection are given in chapter 4.

A few photos taken on Lake Champs-sur-Marne during my PhD are presented in
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Figure 3.2 – Sketch of the automated in situ measuring system at site B (from: Tran Khac
et al. 2018).

Figure 3.3 to better describe the study site itself and the measuring instrumentation
used during the field campaigns.

3.1.4 Meteorological data

The thermal and ecological dynamics of lakes depend greatly on the meteorology,
in particular for a small and shallow water body such as Lake Champs-sur-Marne.
In this work, meteorological data are retrieved here from two different sources: (i)
the Meteofrance meteorological station at the Orly airport, which is the closest
meteorological station to the study site and is located roughly 20 km far South-West
of Lake Champs-sur-Marne, and (ii) the spatialized SAFRAN reanalysis, produced
by Meteofrance.

Meteorological data from the Orly Meteofrance station were downloaded in terms
of relative humidity [-], air temperature [◦C], net solar radiation [J s−1 m−2], sky
cloudiness [-], as well as wind speed [m s−1] and direction [◦N] between the years
2015 and 2019. All data were downloaded with a hourly time step.

The second source of meteorological data is the SAFRAN meteorological reanal-
ysis, produced by Meteofrance. The Système d’Analyse Fournissant des Renseigne-
ments Atmosphériques à la Neige (SAFRAN) is a spatialized meteorological analysis
system that offers, at present, validated meteorological data between 1959 and 2017
over the entire French territory (Durand et al. 1993).

SAFRAN is part of the SAFRAN-ISBA-MODCOU chain of reanalysis that covers
the hydrological cycle over France, from meteorology to snow and ice formation
to hydrology, respectively (Habets et al. 2008). SAFRAN integrates spatialized
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a) b)

c) d)

e) f)

Figure 3.3 – Photos of Lake Champs. Panel a: view from the western shore of the lake
towards site P; panel b: view from the western shore of the lake towards
site B; panel c: field campaign instrumentation; panel d: a maintenance
campaign in December 2019; panel e: an example of the bird population in
Lake Champs-sur-Marne; panel f: a thick phytoplankton bloom in October
2018.
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data from meteorological models with various sources of observations through data
assimilation techniques, in order to create a consistent and spatially detailed record
of meteorological data over the French territory. Its outcomes have been thoroughly
validated against observed series (Quintana-Seguí et al. 2008), and tested as inputs
to hydrological models (Raimonet et al. 2017). The data are spatialized on a regular
square grid (8 km between each cell centre) that covers the entire French Territory.
The location of Lake Champs-sur-Marne falls midway on the axis connecting the
centres of SAFRAN cells number 1457 (North of the lake) and 1566 (South of the
lake). The average of these two cells was therefore considered representative of the
conditions over the study site.

Data were downloaded from the SAFRAN suite for the complete available period,
that is between 1959 and 2017, in terms of air temperature [◦C], specific humidity
[-], solar radiation (direct and diffused) [W m−1] and wind speed [m s−1]. All these
variables are well reproduced by SAFRAN (Quintana-Seguí et al. 2008). Data were
downloaded at a hourly time step.

SAFRAN Specific humidity (SH) was converted into relative humidity (RH)
through the following formula:

RH = 100 · w
ws
≈ 100 · SH

ws
(3.1)

where w is the mixing ratio of water with dry air [kg kg−1], the subscript s stands
for saturation conditions and SH is the specific humidity, numerically very close to
the mixing ratio value. The saturation mixing ratio can be calculated as follows:

ws = Ra
Rv
· es
patm − es

(3.2)

where the atmospheric pressure (patm) was considered to be constant and equal to
the global average: patm =1013 hPa. The ratio between the air and vapor ideal gas
constants (Ra and Rv, respectively) is equal to 0.622. The partial vapour pressure
at saturation (es) is temperature dependent and can be estimated (in hPa) through
the Magnus equation:

es = 6.1094 · exp
( 17.625 · T
T + 243.04

)
(3.3)

where T is air temperature, measured in °C. The numerical coefficients in Eq. (3.3)
are issued from Alduchov & Eskridge (1997).

Wind direction data were not available from the SAFRAN reanalysis. They were
therefore downloaded over the same period of time from the MétéoFrance station
located in Trappes (ID: 78621001, roughly 60 km West of the study site) at a daily
time step through the INRAE CLIMATIK platform (https://intranet.inrae.
fr/climatik/, in French) managed by the AgroClim laboratory of Avignon, France.

https://intranet.inrae.fr/climatik/
https://intranet.inrae.fr/climatik/
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3.2 The models

Two coupled hydrodynamic - biogeochemical 3D models were applied to the
study site, with the objective to simulate its thermal and planktonic dynamics.
Namely, these models are: (i) the coupled hydrodynamic and biogeochemical models
FLOW and BLOOM of the Delft3D modelling suite, and (ii) the TELEMAC3D
hydrodynamic model coupled with the biogeochemical model Aquatic EcoDynamics
2 (AED2).

This section gathers a general description of the models, in relation to their
implementation for the study site. However, the models have been applied in several
studies that differ in terms of objectives, computational effort and time-horizon.
For this reason, their configuration is not unique but might vary slightly between
different applications.

Some of the specificities related to each single application are already highlighted
in the following sections, and are further detailed in the chapters 5, 6 and 7, which
are dedicated to each specific application.

3.2.1 Delft3D-FLOW

Delft3D-FLOW is a well known and robust hydrodynamic model that has been
applied in various contexts, from estuaries to rivers, lakes and reservoirs (Chanudet
et al. 2012, McCombs et al. 2014, Wahl & Peeters 2014, Piccolroaz et al. 2019).
In particular, it has proved to correctly reproduce the stratification dynamics
in shallow water bodies (Soulignac et al. 2017). FLOW is the hydrodynamic
module of the broader Delft3D modelling suite, an open source software developed
by Deltares (https://oss.deltares.nl/web/delft3d) that allows to investigate
hydrodynamics, sediment transport and morphology and water quality for fluvial,
estuarine and coastal environments. Version 4.01.01.rc.03 (2014) was used in this
work.

Delft3D-FLOW was used in two main applications in this work: for the long-term
reconstruction of the thermal dynamics of the study site (described in chapter 5),
and for the automated calibration of a complex biogeochemical model (see chapter
6). The model set up differs slightly between the two applications, in particular in
terms of the computational domain and of the heat-exchange module.

The specificities of the model configurations used for each of the above-mentioned
studies are detailed in chapters 5 and 6. The following paragraphs describe the main
characteristic of the hydrodynamic model itself, in relation to its set up for the study
site.

3.2.1.1 Numerical aspects and computational domain

Delft3D-FLOW solves the Reynolds averaged Navier-Stokes equations for an
incompressible fluid under the shallow water and the Boussinesq assumptions. The
time integration of the partial differential equations is done through an Alternate
Direction Implicit method (Deltares 2014, Leendertse 1967). For the spatial dis-
cretization of the horizontal advection terms the Cyclic scheme was selected (Stelling
& Leendertse 1992). The computation is based on finite volumes. Detailed infor-
mation on the numerical methods implemented in FLOW for the integration of

https://oss.deltares.nl/web/delft3d
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a) b)

Figure 3.4 – Comparison of the two computational grids implemented in Delft3D-FLOW
for Lake Champs-sur-Marne. Panel a: finer 10 m × 10 m grid; panel b:
coarser 20 m × 20 m grid. Bathymetric data are shown through a colour
chart.

the momentum and mass conservation equations can be found in the user manual
(Deltares 2014).

The three dimensional computational domain for the study site is based on a
Cartesian grid on the x-y plan and on a regular discretization of the vertical axis.

The horizontal mesh is built through the dedicated tools implemented in the
Delft3D modelling suit. Namely, two computational grids with different definitions
were built and used in different applications of the model. Namely, the less refined
mesh is constituted of 255 20 m× 20 m cells, and was used for the long-term climate
change study, in order to save computational time; this application is described in
chapter 5. The other mesh is constituted of 813 10 m × 10 m square cells and is
used in all other applications of the Delft3D suite. The bathymetry of the study site
was interpolated from in situ measurements taken with echo-sounder by the research
team at LEESU in 2016. The two computational grids are shown in Figure 3.4.

The discretization of the vertical axis was done through a series of 12 fixed parallel
horizontal layers of 30 cm thickness (the so-called Z-model). When compared to
the σ-model (i.e. layers with thickness varying according to the bathymetry), it is
generally accepted that horizontal layers help avoiding artificial mixing, improving
model results in terms of thermal stratification (Hodges 2014).

3.2.1.2 Turbulence closure

In most applications of 3D hydrodynamic models, the computational grid is too
coarse and the time step too large to resolve the turbulent scales of motion: the
turbulent processes are “sub-grid”. In FLOW, the vertical turbulent eddy viscosity
and diffusivity are directly computed through a turbulence closure model:

νV = νmol +max
(
ν3D, ν

back
3D

)
(3.4)

DV = νmol/σmol +max
(
D3D, D

back
3D

)
(3.5)

where νV and DV are respectively the vertical eddy viscosity and diffusivity (m2

s−1), νmol is the molecular viscosity, σmol is the Prandtl-Schmidt number (0.7), ν3D
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is the eddy viscosity computed by the turbulence model, and νbackV and Dback
V are

the background values for vertical eddy viscosity and diffusivity. In this work, the
k-ε turbulence closure model was activated. The background values were set to zero
[m2 s−1] for vertical viscosity and diffusivity.

The horizontal turbulent eddy viscosity and diffusivity are modelled as:

νH = νV + νbackH (3.6)

DH = DV +Dback
H (3.7)

where νH and DH are respectively the horizontal eddy viscosity and diffusivity,
and νbackH and Dback

H are the background values for horizontal eddy viscosity and
diffusivity. Eddy viscosity and diffusivity are usually much larger on the horizontal
than on the vertical axis (DH � DV and νH � νV , Deltares 2014). Because of the
“sub-grid” nature of turbulence, the background values for horizontal eddy viscosity
and diffusivity in eq. (3.6) and (3.7) have to be estimated on the basis of grid size
(Okubo 1971, Deltares 2014, Piccolroaz et al. 2019).

For this reason different values were implemented for the constant horizontal
background eddy viscosity and diffusivity. Namely, after Soulignac et al. (2017) and
according to the grid size (Okubo 1971), they were set to 0.01 m2 s−1 for the coarser
grid (see chapter 5), and to 0.0025 m2 s−1 for the finer grid (application in chapter
6).

3.2.1.3 Heat exchange with the atmosphere

Coupling the 3D model with climatic variables is crucial in order to correctly
simulate the stratification and thermal dynamics in a water body. Different heat-flux
models are implemented in FLOW to model energy exchanges at the air-water
interface. They differ in terms of the number of meteorological variables required
and therefore in the complexity of their formulations. In FLOW, the heat budget
at the air-water interface is computed by taking into account the net incident solar
radiation (Qs), the heat losses due to back radiation (long wave, Qb) and evaporation
(latent heat flux, Qe), and the sensible convective heat flux (Qc). The various models
differ in the way such terms are calculated or approximated (Deltares 2014). The
total upward heat flux through the air-water interface (Q) is therefore:

Q = −Qs +Qb +Qe +Qc (3.8)

Among the heat-flux models available in FLOW, the “Ocean” model and Murakami’s
model are the most complex ones, and in respect to equation (3.8) they present the
lower number of approximated terms (Murakami et al. 1985, Deltares 2014). Both
these models were used in this work, for different applications.

The Ocean model is the more widely used in scientific literature (Chanudet et al.
2012, McCombs et al. 2014, Soulignac et al. 2017, Piccolroaz et al. 2019). Here,
it was used for the study described in chapter 6. It requires as inputs time series
of relative humidity [-], air temperature [◦C], net solar radiation [J s−1 m−2], sky
cloudiness [-], as well as wind speed [m s−1] and direction [◦N]. The Dalton and
Stanton numbers can be set by the user. After (Soulignac et al. 2017), their values
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were respectively set to 0.0015 and 0.00145. The “Ocean” model represents the go-to
choice when all the required variables are available or can be easily estimated.

For the long-term climate change study (see chapter 5 for further details), the
Murakami’s model was used. This choice was motivated by the unavailability of sky
cloudiness data covering the complete simulation period, and by the high uncertainty
that affects ground-based cloud cover observations in any case (Silva & Souza-Echer
2016, Zelinka et al. 2017). As the implementation of the Murakami’s model in
FLOW does not require such data, it was preferred for this study to the “Ocean”
model. Namely, Murakami’s model requires as input time series of relative humidity
[-], air temperature [◦C], net solar radiation [J s−1 m−2], wind speed [m s−1] and
direction [°N].

Both heat-exchange models explicitly require values for Secchi depth (HS), which
is the parameter that defines water transparency. It is correlated with the penetration
of solar radiation in water through the light extinction coefficient (γ = 1.7/HS , Poole
& Atkins 1929) and therefore plays an important role on the stratification of the
water column. In situ data show that the Secchi depth in Lake Champs-sur-Marne
can vary suddenly between 0.8 m and the whole water column depth according
to phytoplankton bloom events. For this reason, its value was calibrated for each
application of Delft3D-FLOW, in order to optimize results in terms of thermal
stratification.

Following Soulignac et al. (2017), a constant wind drag coefficient was applied
to Lake Champs-sur-Marne. Its value was calibrated to 0.0013. Bottom roughness
was computed through Chézy’s formulation with the default value for the Chézy
coefficient of 65 m1/2 s−1.

Finally, in all applications of FLOW, evaporative mass flux is neglected and
water volume and depth are therefore considered as constant.

3.2.2 Delft3D-BLOOM

In the Delft3D modelling suite, BLOOM is part of water quality module (WAQ),
and is designed to model phytoplankton growth through a specific competition
principle among different phytoplankton functional groups.

The model BLOOM was used for one of the applications in this work: the
implementation of Approximate Bayesian Computation for the automated calibration
of a complex biogeochemical model (described in detail in chapter 6). The following
paragraphs illustrate the main characteristic of the biogeochemical model itself, in
relation to its set up for the study site.

3.2.2.1 General structure of the model

Differently from other hydro-biogeochemical models, BLOOM is not fully coupled
with its hydrodynamic driver FLOW. The hydrodynamic simulation is run previously,
independently from the biological counterpart. BLOOM shares with FLOW the
computational grid and uses hydrodynamic results in terms of velocity fields and other
environmental state variables such as water temperature for transport and growth.
Biological processes therefore do not have any feedback on the hydrodynamics.

In BLOOM, the mass conservation of the substances included in the physical
and biogeochemical processes is modelled on the basis of the advection-diffusion
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equation. For each state variable and computational cell, the advection-diffusion
equation is represented through:

M t+∆t
i = M t

i + ∆t ·
[(∆Mi

∆t

)
Tr

+
(∆Mi

∆t

)
P

+
(∆Mi

∆t

)
S

]
(3.9)

With:

M t
i : mass at the beginning of a time step.

M t+∆t
i : mass at the end of a time step.(

∆Mi
∆t

)
Tr
: changes by transport.

(
∆Mi
∆t

)
P
: changes by physical or biogeochemical processes.

(
∆Mi
∆t

)
S
: changes by sources (e.g. river discharges or waste loads).

∆t: time step duration of Delft3D-WAQ.

The different terms in eq. (3.9) are calculated based on the processes and substances
activated in BLOOM, while the transport term is derived from the previously run
hydrodynamic simulation (e.g. in terms of velocity field and turbulent dispersion).
Point-source terms are not present in Lake Champs-sur-Marne and were therefore
not modelled.

A high number of processes from the biogeochemical cycle are included in
BLOOM, which is built with a modular structure that allows the user to activate or
deactivate them. Namely, following the nomenclature used in BLOOM, its structure
is based on a few very general “groups” to be chosen by the user. Each group then
incorporates various substances, and for each substance various processes can be
taken into account. A complex series of interdependences among the processes,
that mirrors the complexity of a real ecosystem, is implemented in BLOOM and is
automatically managed through the Delft3D graphical user interface.

A sketch of the substances included in the configuration implemented for Lake
Champs-sur-Marne is shown in Figure 3.5. In the Figure, the substances are not
strictly organized according to the groups available in Delft3D-BLOOM, but are
rather arranged in order to show their main interactions. The activated groups
activated in Delft3D-BLOOM are:

• Oxygen-BOD

• Particulate inorganic matter

• Dissolved inorganic matter (nutrients)

• Organic matter (Particulate and dissolved)

• Algae
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Table 3.1 – Modules and variables activated in the configuration of the biogeochemical
model Delft3D-BLOOM.

Group Substances
Oxygen-BOD Dissolved oxygen
Particulate and dissolved Inorganic matter (IM1)
inorganic matter Ammonium

Nitrate
Ortho-phosphate
Adsorbed ortho-phosphate (AAP)
Dissolved Silica
Opal-Si

Organic matter POC, fractions 1,2,3,4
PON, fractions 1,2,3,4
POP, fractions 1,2,3,4
DOC
DON
DOP

Algae Cyanobacteria
Freshwater diatoms
Freshwater flagellates
Green algae

BLOOM includes a set of 23 phytoplankton groups. Four of these were included
in the configuration for Lake Champs-sur-Marne, based on the available observations.
Namely they are: cyanobacteria, green algae, flagellates and diatoms. Exchanges
with atmosphere are activated, while benthic processes in the sediment layer are not
taken into account. A complete list of the groups and substances implemented for
the modelling of Lake Champs-sur-Marne is given in table 3.1.

Processes in BLOOM are highly parametrized. Default values of the parameters
are derived from a years-long calibration process operated by the developers (Deltares
2018). However, such parameters still need to be calibrated on the specific study
site. As it will be further explained in the following sections, BLOOM parameters
were first calibrated by trial and error, while afterwards an automated calibration
methodology is applied. This procedure is detailed in chapter 6.

A complete description of the groups and substances implemented in BLOOM can
be found on the Delft3D-WAQ user manual (Deltares 2018). Only the mathematical
representation of the processes more relevant for phytoplankton growth and organic
matter mineralization will be briefly described in the next two sections.

3.2.2.2 Mathematical representation of phytoplankton growth

In BLOOM, phytoplankton dynamics are simulated through a competition
principle that is able to choose, at every time step and each grid point, the best
adapted phytoplankton group consistently with the available resources and the
existing biomass level (Los 2009). This is a particular characteristic of BLOOM and
it differentiates it from most other ecological models for aquatic ecosystems.
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Figure 3.5 – Sketch of the substances activated in Delft3D-BLOOM and their main inter-
actions.

The competition principle is based on the ratios between growth rates and
nutrient demand. These ratios are calculated at all time steps for each activated
phytoplankton group included in the model configuration. The ratios are then
compared: the greater is the ratio, the more competitive a group is under the given
conditions. The biomass is subsequently allocated among the different functional
types through a specific linear programming algorithm, in order to maximize the
total biomass. This way BLOOM is able to distribute biomass dynamically among
the activated algal groups over time and space.

More precisely, the linear programming algorithm implemented in BLOOM opti-
mizes total biomass while respecting four constraints in terms of nutrients, energy,
growth and mortality.

Nutrient constraints
The solution of the linear programming algorithm must satisfy the following nutrient
balance:

Ctot,k = Ck +
N∑
i=1

Rk,i/C × Calg,i − Cmin,k (3.10)

where Ctot,k stands for the total available concentration of the nutrient k, Ck is the
dissolved form of nutrient k, Rk,i/C is the ratio between the nutrient k and carbon
content in algal group i, Calg,i is the biomass concentration for algal group i, Cmin
indicates a threshold for uptake by algae, and the index k runs over the number
of activated nutrients. The ratios Rk,i/C (e.g. N:C, P:C and Si:C), specific to each
phytoplankton group, therefore play a significant role in the allocation of biomass
done by the competition principle.

Energy constraint
Phytoplankton growth depends on light availability. The penetration of solar
radiation from the surface through the water column depends on the concentration
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of dissolved and suspended matter in the water. Light extinction is modelled in
BLOOM through a series of light-extinction coefficients (ei), specific to each algal
group i. Luminous energy becomes limiting for a phytoplankton group when the
total extinction (etot) exceeds the maximum (emax,i) at which growth is just balanced
by respiration and mortality (Deltares 2018). Furthermore, the total extinction
coefficient cannot be lower than a certain minimum value (emin,i) given by the
background extinction of light due to water and to the minimum algae concentration
defined by the user. For each phytoplankton group i, the following constraint has
therefore to be satisfied in order to have a net growth:

emin,i ≤ etot ≤ emax,i (3.11)
with:

etot =
N∑
i=1

(ei · Calg,i) (3.12)

where Calg,i is the concentration of algal group i.

Growth and mortality constraints
The maximal growth allowed by the optimization algorithm for the algal group i is
subject to the following constraint:

C t+∆t
M,alg,i ≤ C

t
alg,i · exp(Rg,i · Efi −Rr,i) ·∆t (3.13)

where C t+∆t
M,alg,i is the maximum concentration of algal group i at the end of a time

step, C t
alg,i is the concentration of algal group i at the previous time step, Rg,i is

its potential specific growth rate, Rr,i is its specific respiration rate, Efi is the light
efficiency factor of phytoplankton i, and ∆t is the BLOOM time step.

Similarly to growth, the mortality of a phytoplankton group is also constrained
in order to prevent a complete removal within a single time step (Deltares 2018).
The maximum biomass decrease of an algal group is obtained when there is no
production, but only mortality. In this case the constraint reads:

C t+∆t
m,alg,i = C t

alg,i · exp(Rm,i ·∆t) (3.14)

where C t+∆t
m,alg,i is the minimum concentration of algal group i at the end of a time

step, C t
alg,i is the concentration of algal group i at the previous time step, Rm,i is

its potential specific mortality rate, and ∆t is the BLOOM time step.
Potential growth and mortality rates therefore influence the outcome of the

competition principle, which ultimately distributes the biomass among the phyto-
plankton groups at each time step. Either a linear or an exponential law can be
chosen in BLOOM for the dependence of growth and mortality rates from water
temperature. The latter was implemented in our configuration for all phytoplankton
groups:

R = k0◦C θT (3.15)
where R is here the potential growth (respectively, mortality) rate, k0◦C is the growth
(respectively, mortality) rate at 0◦C, θ is a coefficient for temperature dependence,
and T is water temperature.
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Figure 3.6 – Sketch of the nitrogen and phosphorus cycles in aquatic ecosystems (adapted
from: Kadlec & Knight 1996).

Furthermore, another peculiar trait of the model BLOOM is the concept of
“phenotypes”. Each algal group is modelled at each time step as one of three
phenotypes, depending on the external conditions, or, more precisely, on the current
limiting factor. Algal groups can therefore be (i) energy limited (limitation by light),
(ii) nitrogen limited, or (iii) phosphorus limited. The phenotypes of a single algal
group respond to the same mathematical laws, but might be parametrized differently
from one another. Further details on how the four constraints of the optimization
algorithm are implemented in order to take into account for the possible transitions
between phenotypes can be found on the BLOOM user manual (Deltares 2018).

3.2.2.3 Nutrient cycles and organic matter mineralization

Three nutrient cycles are considered in BLOOM: nitrogen, phosphorus and
silicon, while the carbon cycle is indirectly modelled through the mass balance
of all components containing organic carbon. Some processes in these cycles are
of particular importance for primary production in aquatic ecosystems, and were
therefore included in the configuration implemented for Lake Champs-sur-Marne: (i)
nitrification, i.e. the microbial oxidation of ammonium (NH4) to nitrate (NO3, more
readily available for uptake by phytoplankton), (ii) denitrification, the reduction
of nitrate into elemental nitrogen under anoxic conditions, and (iii) adsorption of
dissolved phosphate (mainly ortho-phosphate) onto suspended sediment. Figure 3.6
shows a sketch of the nitrogen and phosphorus cycles in aquatic ecosystems.

In a water body without any inlet or outlet as Lake Champs-sur-Marne, dissolved
and particulate organic matter is mainly produced when algae and higher plants die
off. The microbial decomposition of organic matter into its basic inorganic compounds



52 CHAPTER 3. MATERIALS AND METHODS

Figure 3.7 – Phases of the mineralization process as modelled in BLOOM, for the case of
POC (source: Deltares 2018).

such as carbon dioxide, ammonium, phosphate and sulfide is called mineralization,
and is modelled in BLOOM as a first order kinetic (Deltares 2018). During the
decomposition process, while dissolved organic matter is quickly mineralized, the
particulate fraction is gradually converted into forms that are more resistant to
microbial breakdown (Deltares 2018). For this reason, the particulate fraction of
organic matter is divided in BLOOM into five categories:

- POX1: fast decomposing fraction

- POX2: medium-slow decomposing fraction

- POX3: slow decomposing fraction

- POX4: particulate refractory fraction

- POX5: organic matter contained in stems and roots

where POX generically stands for particulate organic nitrogen (PON), phosphorus
(POP) and carbon (POC). Only fraction form one to four are considered in the
configuration implemented for the study site. Figure 3.7 shows the phases of the
degradation process as modelled in BLOOM for the case of POC.
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3.2.3 TELEMAC 3D

TELEMAC3D is an open-source three-dimensional hydrodynamic model devel-
oped by Electricité de France (EDF) and a group of partners (further information
at: http://www.opentelemac.org/index.php/presentation?id=18). It can be
downloaded, together with its two- and one-dimensional counterparts (TELEMAC2D
and Mascaret, respectively) from: http://www.opentelemac.org/. TELEMAC3D
has been applied and validated in river and coastal environments as well as lagoons
or reservoirs (e.g. Laurent et al. 2010, Villaret et al. 2013, Feng & Jodeau 2016,
Cooper et al. 2017).

Its code solves through numerical methods based on finite elements the three-
dimensional free surface Navier-Stokes equations under the Boussinesq, hydrostatic
pressure and incompressible fluid assumptions (Telemac modelling system 2016). A
detailed description of the model’s mathematical and computational approach can
be found in Hervouet (2007) and in the user manual (Telemac modelling system
2016).

TELEMAC3D has been coupled with the biogeochemical library Aquatic EcoDy-
namics library (AED2) by Laboratoire Nationale d’Hydraulique et Environnement
(EDF R&D) and Laboratoire Hydraulique Saint-Venant (EDF R&D / ENPC /
CEREMA) enabling the modelling of the biogeochemical cycle in the Telemac-
Mascaret system. However, the coupling between the models is recent (started
in 2015), and the works on the coupling technique remain in progress. This has
influenced the implementation both of the hydrodynamic and biogeochemical models.
For example, at present, the Z-model, the phytoplankton uptake of Silica or the
fixation of Nitrogen are not currently implemented in the coupled version of the
models. The present study represents one of the first tests of the coupled models in
a natural environment.

In the coupling, the hydrodynamic model manages the main “physical” processes
(e.g. transport, velocity field and heat exchange with the atmosphere), while AED2
simulates the biogeochemical cycle. Differently from the Delft3D suite, where the
hydrodynamic simulations are independent from the results of the biogeochemical
model, TELEMAC3D and AED2 are fully coupled. This means that the equation
from both models are computed at each time step, evolving together. As it will
be further explained in the following sections, this implies a potential feedback of
AED2 on the hydrodynamic results. For this reason, the general description of the
two models given in the following sections cannot be completely disentangled.

3.2.3.1 Numerical aspects and computational domain

In TELEMAC3D, the Navier-Stokes equations are solved in three subsequent
stages. First (advection step), the advected velocity are estimated taking into
account only the convective terms in the momentum equations (see eq. (2.11)).
The resulting velocity field is then used to obtain the new velocity field taking into
account both diffusive and source terms in the momentum equations (diffusion step).
Finally (propagation step), water depth is computed from the vertical integration
of the continuity and momentum equations (see equations (2.10) and (2.11)), only
including the pressure-continuity terms (Telemac modelling system 2016).

The numerical scheme chosen here for the advection step is the MURD-PSI

http://www.opentelemac.org/index.php/presentation?id=18
http://www.opentelemac.org/
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(Multidimensional Upwind Residual Distribution - Positive Streamwise Implicit)
with an explicit time discretization. This configuration is suitable for tracers as it is
conservative and monotonic, and introduces limited numerical diffusion (Telemac
modelling system 2016, Malcherek 2000). The default implicit method was used for
the diffusion step. All linear systems associated with the numerical resolution of the
Navier-Stokes equations are addressed with the default conjugate gradient method,
except for the propagation step, for which the Generalised Minimum RESidual
(GMRES) method was activated.

The open-source software BlueKenue™ (Canadian Hydraulic Centre 2011) was
used to create the 2D triangular mesh used both in TELEMAC3D and AED2. The
triangular mesh is shown in Fig. 3.8, and is built with an average distance between
the nodes of 20 m, and a refined zone around the narrower portion of the water
body.

The bathymetric data available form the echo-sounder campaign of 2016 were
here translated according to the local elevation and used to represent the bottom of
the lake (see Fig. 3.8). The raw data were interpolated through the BlueKenue™
software, and a constant elevation of 39.5 m a.s.l. was imposed along all the solid
boundaries of the model.

Eventually, the 3D computational domain is obtained from the 2D mesh in
Figure 3.8, through the discretization of the vertical axis, done by TELEMAC3D.
Differently from the Delft3D configuration, where the Z-model was implemented
for the discretization along the vertical axis, for TELEMAC3D/AED2 the standard
σ-transformation is activated. The Z-model is available in TELEMAC3D. However,
at present, this option is not yet correctly coupled with the biogeochemical model
AED2. Some preliminary tests were run on the stand-alone version of TELEMAC3D
in order to test the effect of the two discretization models on model results in terms
of thermal stratification, and did not show considerable differences in the water
temperature results.

Finally, the grid shown in Figure 3.8 is composed of 404 nodes (661 triangular
elements), and 10 σ-layers of varying thickness along the vertical axis.

3.2.3.2 Turbulence closure

A mixing length turbulence closure model was activated for all applications
with TELEMAC3D. Preliminary tests showed that the k-ε turbulence model was
considerably more diffusive than the mixing length model. In a shallow lake such
as Lake Champs-sur-Marne, the mixing length model performed better in terms
of thermal stratification, especially when it was coupled with a dumping function.
Mixing length models express turbulent viscosity (ν) as a function of the mean
velocity gradient and of the mixing length (Lm) (Telemac modelling system 2016):

ν = L2
m

√
2DijDij (3.16)

where the strain rate Dij is expressed a function of the mean velocities of the fluid
(U i,j):

Dij = 1
2

(
∂U i
∂xj

+ ∂U j
∂xi

)
(3.17)
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Figure 3.8 – Example of the computational domain for Lake Champs-sur-Marne in
TELEMAC3D and AED2 (mean distance between elements: 20 m). The
colour chart shows the elevation of each point of the grid in meters above sea
level.

For the definition of the mixing length, the formulation proposed by Nezu and
Nakagawa was activated (Nezu & Nakagawa 1994, Telemac modelling system 2016).

Damping functions can be introduced into a mixing length model expressly to
take into account the reduced mixing under stratified conditions. In the presence
of vertical density gradients, the exchanges of mass and momentum are hindered
(respectively enhanced) by water column stability (instability) (Telemac modelling
system 2016). The Richardson’s number (Ri = g∇ρ

ρ∇u2 ) is a local property of the
fluid and represents the ratio between the buoyancy and the flow shear terms. It is
commonly used to quantify the effects of the gravity terms in the turbulent power
balance. Damping functions are usually formulated depending on its local value.
Namely, Viollet’s formulation was adopted here (Viollet 1988, Telemac modelling
system 2016):

f(Ri) = (1 + 14Ri)0.75 (3.18)

In TELEMAC3D, activating the mixing length model for vertical turbulence implies
the use of constant values for horizontal viscosity and diffusivity. For this reason,
the value of the horizontal viscosity and diffusivity of velocities were considered as
parameters to be calibrated based on model results and grid size (Okubo 1971).

3.2.3.3 Heat exchange with the atmosphere

The effects of wind and meteorological conditions at the air-water interface
were activated. The TELEMAC system offers two models of different complexity
to account for the heat exchange at the air-water interface. The simpler one is
a linearised formulation to be calibrated based on the available data. The more
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comprehensive formulation was activated in this work. It takes explicitly into account
the following terms:

Q = −Qs +Qb +Qe +Qc +Qp (3.19)

where, using the same notation used in section 3.2.1.3, Q is the total upward heat
flux through the air-water interface, Qs is the net incident solar radiation, Qb is the
effective back radiation, and Qe, Qc and Qp are the heat transfer due to evaporation,
convection and precipitation, respectively (Bourban & Huang 2018).

The meteorological variables needed to simulate the heat exchanges at the
air/water interface are: relative humidity [-], air temperature [◦C], cloud cover
[-], net solar radiation [J s−1 m−2], wind speed [m s−1] and direction [°N]. The
contribution of precipitation was neglected in this work both in terms of energy and
mass.

TELEMAC allows to take into account the fact that meteorological forcing data
might not be available in situ and might be recorded far from the study site. This
is done through a wind correction function:

f(U2) = b(1 + U2) (3.20)

where U2 is the wind speed at 2 m altitude (converted from wind speed at 10 m
altitude through: U2 = 0.85U10), and b is a parameter to be calibrated by the
user (the “coefficient to calibrate the atmosphere-water heat exchange”), which
constitutes the main parameter to calibrate for the whole heat exchange module
(Telemac modelling system 2016).

Similarly to Delft3D-FLOW, the light extinction coefficient (γ) in TELEMAC3D
stand-alone is calculated based on a constant Secchi depth value defined by the
user (γ = 1.7/HS , Poole & Atkins 1929). However, when the coupling with AED2
is activated, this is not the case any more. As it will be further explained in the
following sections, AED2 estimates the water light extinction coefficient dynamically
based on the concentration of the various dissolved and particulate fractions activated
and on their specific light extinction coefficient values. In such case the computation
of the light extinction coefficient is therefore transferred to the biogeochemical library,
and its calibration is indirectly obtained by setting the values of the specific light
extinction coefficients.

3.2.4 Aquatic EcoDynamics

This section contains a general description of the mathematical approach at the
basis of the model, and of the configuration set up for Lake Champs-sur-Marne.
As it will be further detailed in chapter 7, AED2 was applied focusing on different
time scales: from short-term simulations of a few weeks, to a year-long simulation.
Such applications required slightly different configurations. However, the following
paragraphs will be as general as possible. When necessary, additional and specific
details will be given for each application in chapter 7.
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Figure 3.9 – Sketch of the some of the most commonly used modules in AED2. Those
framed with colours are activated in the configuration for Lake Champs-sur-
Marne (adapted from: Hipsey et al. 2013).

3.2.4.1 General structure of the model

Aquatic EcoDynamics is a modular biogeochemical library, developed by the
University of Western Australia (https://aquatic.science.uwa.edu.au/), that
potentially allows the user to take into account all the processes playing a role in
the biogeochemical cycle in an aquatic ecosystem, from benthic fluxes and microbial
decomposition to primary production, micro- and macro-grazing, and macrophytes.

It solves a series of ordinary differential equations that model cycles of the
main nutrients (N, P and Si), oxygen and carbon, including phytoplankton and
zooplankton groups. When coupled with a hydrodynamic model, AED calculates
these functions at each time step, passing the calculated terms to the hydrodynamic
counterpart, which handles transport.

Its main modules are similar to those discussed for Delft3D-BLOOM. They are
shown in Figure 3.9, where those activated for this work are framed in colours. In
Figure 3.9, the model variables are not strictly grouped as in the AED2 modules
listed above. For instance, particulate and dissolved fractions of organic matter are
represented separately in Figure 3.9, but are actually part of the same “organic
matter” module in AED2. In Figure 3.9, the model variables are reorganised based
on their roles in the biogeochemical cycle, in order to show their interdependences.

Namely, the modules activated are:

• Dissolved Oxygen

• Particulate organic matter

• Dissolved organic matter

https://aquatic.science.uwa.edu.au/
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• Dissolved inorganic matter (Carbon, Phosphorus and Nitrogen)

• Phytoplankton

As for Delft3D-BLOOM, benthic processes in the sediment layer are not explicitly
taken into account.

According to the modules activated in the configuration for Lake Champs-
sur-Marne, the total concentration of five main chemical elements must remain
constant in the system at each time step: oxygen, carbon, nitrogen, phosphorus and
silica. Their total amount is distributed among multiple biological and chemical
compounds, whose concentration varies in time and space. AED2 calculates the
evolution in time of all the variables activated (e.g. the concentration of biological
or chemical compounds) based on a series of mass balances, generally expressed
through partial differential equations. The variations of their concentrations due to
transport (advection or diffusion), are handled by the hydrodynamic model.

A detailed description of all the equations used in the model can be found in the
user manual (Hipsey et al. 2013). Here, the case of nitrogen is briefly described as
an example: this will allow to illustrate the formulation of important processes such
as organic matter mineralization and phytoplankton uptake and growth. The total
nitrogen concentration (TN) is given by:

TN = NO3 +NH4 +DON + PON +
NPHY∑

i

PHYNi (3.21)

where DON and PON are respectively the dissolved and particulate fraction of organic
nitrogen, PHYNi is the nitrogen concentration in the i-th phytoplankton group,
NPHY is the total number of active phytoplankton groups, and the zooplankton
contribution was neglected.

Each compound in eq. (3.21) is modelled through a mass balance that takes
into account the different processes influencing its concentration. For instance, the
mass balances for the two main nitrogen-based inorganic nutrients, ammonium and
nitrate (expressed through their concentrations [NH4] and [NO3]) are:

d[NH4]
dt

= fNH4
sed − f

NH4
nitrif + fDONminer −

NPHY∑
i

piNH4 · f
PHYNi
uptake (3.22)

d[NO3]
dt

= −fNO3
sed + fNH4

nitrif − f
NO3
denit −

NPHY∑
i

piNO3 · f
PHYNi
uptake (3.23)

where p is a preference factor for the substance under consideration specific to each
phytoplankton group, and all fluxes (fYX ) represent the contribution of process X to
variable Y . Furthermore, the mass balance for dissolved organic nitrogen (DON) is:

d[DON ]
dt

= fPONdecom + fDONsed − fDONminer −
NPHY∑

i

fPHYNiexcr (3.24)

with similar symbols meaning. The fluxes in equations (3.22), (3.23) and (3.24) show
us the processes considered in AED2 for the concentration of three variables examined
here (NH4, NO3 and DON), and how they might affect multiple variables. Namely,
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such processes are: sediment release or demand, nitrification of NH4, denitrification
of NO3, mineralization of DON, decomposition of PON, uptake and excretion by
phytoplankton. Their formulation is often based on Michaelis-Menten-like kinetics.
This is the case, for instance, of the nitrification flux:

fNH4
nitrif = Rnitrif

[O2]
Knitrif + [O2]θ

T−20
nitrif [NH4] (3.25)

where Rnitrif represents the maximum nitrification rate, Knitrif its half-saturation
constant, and θnitrif is a factor for temperature (T ) scaling.

An equivalent formulation is also adopted for the fluxes of dissolved organic
matter mineralization and particulate organic matter decomposition, that intervene
in eq. (3.22) and (3.24). In the case of nitrogen, the mineralization flux of DON is:

fDONminer = Rminer
[O2]

Kminer + [O2]θ
T−20
miner[DON ] (3.26)

where Rminer represents the maximum mineralization rate, Kminer its half-saturation
constant, and θminer is a factor for temperature (T ) scaling. The formulation for
PON decomposition into DON is equivalent and can be found in Hipsey et al. (2013).

3.2.4.2 Mathematical representation of phytoplankton growth

Similarly to what discussed for ammonium, nitrate and DON, phytoplankton
concentration is also modelled through mass balances. Namely, in AED2 the
concentration of each phytoplankton group is split into the contributions of the
basic chemical elements composing the group under consideration (i.e. C, N, P and,
possibly, Si). A mass balance is implemented for each element contribution. For the
case of carbon:

d[PHYCi ]
dt

= f
PHYCi
uptake − f

PHYCi
excr − fPHYCimort − fPHYCiresp − fPHYCisett (3.27)

where [PHYCi ] is the carbon concentration of the i-th phytoplankton group. The
fluxes f respectively represent the following processes: uptake, excretion, mortality,
respiration, sedimentation, and the zooplankton contribution was neglected. Similar
partial differential equations are implemented for the phytoplankton concentrations
of the remaining elements (N, P, Si). The expressions of the excretion, mortality,
respiration and settling fluxes can be found in Hipsey et al. (2013). The carbon
phytoplankton uptake flux embodies the photosynthetic processes and is therefore
described here in more detail.

Phytoplankton carbon uptake defines phytoplankton growth and depends, for
each algal group, on the local environmental conditions in terms of water temperature
and nutrient and light availability. A temperature scaling function is always taken
into account, while only one limiting factor is considered relatively to light and
nutrients. The carbon uptake is modelled through the following equation:
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f
PHYCi
uptake = RPHYigrowth[PHYCi] (1− kPHYipr )︸ ︷︷ ︸

photorespiratory
loss

ΦPHYi
tem (T )︸ ︷︷ ︸

temperature
scaling

ΦPHYi
str (T )︸ ︷︷ ︸

metabolic
stress

×min
{

ΦPHYi
light (I)︸ ︷︷ ︸

light
limitation

,ΦPHYi
N (NO3, NH4, PHYNi)︸ ︷︷ ︸

N
limitation

,ΦPHYi
P (PO3, PHYPi)︸ ︷︷ ︸

P
limitation

,ΦPHYi
Si (Si)︸ ︷︷ ︸

Si
limitation

}

(3.28)

where [PHYCi] is the carbon concentration of phytoplankton group i, and RPHYigrowth is
the maximum growth rate of phytoplankton group i at 20◦C. Specific functions (here
generically labelled Φ) are implemented in the model to calculate each limiting factor,
as well as the photorespiratory loss, the metabolic stress and the temperature scaling.
Their formulation is available in the user manual (Hipsey et al. 2013). The nitrogen
and phosphorus fluxes due to phytoplankton uptake (that appear in equations (3.22)
and (3.23)) are simply modelled as a constant fraction of the phytoplankton carbon
uptake.

3.2.4.3 Dynamic calculation of the light extinction coefficient

The light extinction coefficient plays an important role in the availability of
light over the water column. Incident shortwave radiation is supplied to AED2 by
the hydrodynamic driver. For primary production, AED2 converts the incident
shortwave radiation into its photosynthetically active portion (PAR, roughly 45%).
PAR than penetrates into the water column according to the Beer-Lambert law
(Hipsey et al. 2013), which can be expressed as:

ln(Iz) = ln(I0)−Kdz (3.29)
where I0 is PAR at the surface, Iz is the downwelling irradiance at depth z, and Kd

is the light extinction coefficient (Weiskerger et al. 2018).
The light extinction coefficient also plays an important role in the vertical

distribution of heat, and therefore for thermal stratification, which is managed
by the hydrodynamic model TELEMAC3D. Through AED2, the light extinction
coefficient is calculated dynamically based on the concentrations of phytoplankton
and dissolved and particulate fractions of organic carbon.

Namely, it is computed through the following equation:

Kd = Kw +Ke,DOCDOC +Ke,POCPOC +
NPHY∑

i

KeiPHYCi (3.30)

where Kw is the base light extinction coefficient associated with water, and Ke,DOC ,
Ke,POC and Kei represent respectively the specific light extinction coefficient for
dissolved organic carbon, particulate organic carbon and for the phytoplankton
group i.

In terms of thermal stratification, the dynamic calculation of Kd induces a
considerable feedback of AED2 on the outcomes of the hydrodynamic model, which
is absent in the partial coupling of the models from the Delft3D suite.



Chapter 4

Collected data set

This chapter describes the data set collected on the study site used in this
work. Section 4.1 describes my participation to the field campaigns and sums up
the complete data set available for the study site used in this work. Section 4.2
describes the high-frequency data were post-processed. Finally, the main physical
and biological characteristics of Lake Champs-sur-Marne are described, through the
available data, in section 4.3.

4.1 Field work and available data set

The measuring instruments and the field campaigns are described in sections 3.1.2
and 3.1.3. The monitoring of Lake Champs-sur-Marne includes in situ high-frequency
measurements, profiling and water samples analysis from the field campaigns. Tables
4.1, 4.2 and 4.3 sum up the data collected on the study site at sites A, B, and
P by LEESU between 2015 and 2020. In particular, table 4.1 is relative to the
measurements recorded at high-frequency, table 4.2 to the measurements recorded
through profiling instruments and Secchi disk, and table 4.3 covers the analysis done
on the water samples.

My participation to the field campaigns and to the data collection started in
November 2017 and continued until April 2021. However, during the whole period
of my PhD, the monitoring of the study site was shared with the technical staff
at LEESU, with other fellow PhD students and occasionally with interns. My
contribution to the collection of the data concerned the participation to the field
campaigns and the storage, post processing and analysis of the collected data.
Laboratory analysis of the water samples were carried out by specialized researchers
at LEESU. The water samples were analysed for total chlorophyll, phycocyanin,
total nitrogen, total phosphorus, nitrate and phosphate concentrations, dissolved
organic carbon and algal species identification. Further details on the water samples
analysis (e.g. location and depth of the water samples, period during which the
analysis were carried out) can be found in table 4.3.
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Table 4.1 – List of variables recorded at high-frequency at the three measuring sites (A,
B and C), depth and date of installation of the corresponding sensor. All
variables were measured with a five minutes frequency until March 2018, and
with a ten minutes frequency since.

Variables measured at high-frequency
Site Depth Temperature Oxygen Total chl. Phycocyanin Conductivity NO3

0.5 m !

A 1.5 m ! ! ! !

2.5 m !

Start: May 2015
0.5 m !

B 1.5 m ! ! ! ! ! !

2.5 m !

Start: Dec. 2015 Nov. 2018
0.5 m !

P 1.5 m ! ! ! !

2.5 m !

Start: Mar. 2017

Table 4.2 – List of variables recorded in situ during the field campaigns with the two
profiling instruments, location and date of first utilisation.

Seabird
Site Depth Temperature Oxygen pH Conductivity Start
A ! ! ! ! ! Sept. 2015
B ! ! ! ! ! Sept. 2015
P ! ! ! ! ! Apr. 2017

Fluoroprobe
Site Total chl. Green algae Cyanobacteria Diatoms Cryptophyceae Start
A ! ! ! ! ! Sept. 2015
B ! ! ! ! ! Sept. 2015
P ! ! ! ! ! Apr. 2017

Table 4.3 – List of variables analysed from the water samples; location and depth of the
water samples and date of first laboratory analysis for each variable.

Water samples
Site Depth Total N Total P NO3 PO4 Total chl. Phyco. DOC Alg. Count.
A 1.5 m ! ! ! ! !

B 1.5 m ! ! ! ! ! ! ! !

P 1.5 m ! ! ! ! !

Start: Jun. 2017 Sep. 2018 Apr. 2019
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4.2 High-frequency data treatment

The data set available (resumed in tables 4.1, 4.2 and 4.3) covers a wide range
of variables crucial for the biogeochemical cycle, and was extremely important to
analyse and understand the thermal and biogeochemical dynamics of the study site.
Furthermore, the high-frequency data set was particularly exploited in this work for
the calibration and validation of the deployed models, and, more generally, to test
their performances. Before doing so, the high-frequency observations were verified by
comparison with the other data sources coming from the field campaigns. In the case
of persistent discrepancies, the stock of unreliable high-frequency data was detected
and was either discarded or adjusted through correction factors (as described for
total chlorophyll later in this section).

The raw high-frequency data set presents considerable scattering. For this
reason, such data needed to be smoothed and cleaned from the outliers originated by
periodic sensors maintenance during field campaigns. Furthermore, when the data
needed to be compared with model outputs, they were further averaged in order
to match the model output time step. Among the high-frequency data set, water
temperature is the variable presenting the lowest scattering. For this reason, such
data were not smoothed but only cleaned from the outliers. The latter were defined
as sudden water temperature variations (> 1°C) over the 10 minutes separating
two successive measurements, and consequently erased. All other variables were
smoothed with a four-hours moving average window, and the outliers originated
during the field campaigns were detected and manually erased from the data set.
The high-frequency data set smoothed and cleaned from the outliers is shown in
Figure 4.1 for site B between 2016 and 2019, in terms of water temperature, total
chlorophyll, cyanobacteria concentration (in the raw measuring unit), dissolved
oxygen and nitrate (NO3). In Figure 4.1, data are only shown for site B.

Starting from 2017, total chlorophyll measurements were available from three
different data sources: high-frequency observations, BBE Fluoroprobe periodic
profiles, and analysis of water samples. The comparison of the three data set showed
a general underestimation by the chlorophyll fluerescence in situ sensors, in particular
during cyanobacteria dominated blooms. In order to address this issue, the available
data set was used to implement correction factors to be applied to the high-frequency
measurements. Such correction factors evolved through time together with the
expansion of the available data set.

A first correction factor (Chlcorr = 1.93 · Chlraw) was initially implemented in
2018 using the BBE Fluoroprobe profile series, which are available since 2015 on
the study site. A linear regression model was set up between total chlorophyll data
from the Fluoroprobe profiles and the corresponding high-frequency measurements.
For both data sources, the data used to build the linear model are relative to 1.5 m
of depth at site B. Only a few data from water samples analysis were available at
this time, and were therefore not included in this initial analysis. This correction
factor was used for short-term applications (see chapters 6 and 7). Later, in 2020, a
multi-linear regression model was built exploiting the complete available data set in
terms of chlorophyll and phycocyanin fluorescence and laboratory analysis, with the
objective to achieve a more robust correction of the high-frequency total chlorophyll
measurements. In this thesis, such model was applied to the data of the year 2019,
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Figure 4.1 – High-frequency data set at site B between 2016 and 2020, smoothed and
cleaned from the outliers for dissolved oxygen (panel a), total chlorophyll
(panel b), cyanobacteria (panel c) and nitrate concentrations (panel d).

used for the seasonal application described in chapter 7.
High-frequency measurements of cyanobacteria are given by the sensor in cells/ml.

Their conversion into chlorophyll equivalents is done exploiting the BBE Fluoroprobe
profiles and data from laboratory analysis. Similarly to what was discussed above
for total chlorophyll, the conversion factor evolved through time together with the
expansion of the available data set. A proportional factor of 0.001 was initially
implemented for the short-term simulation of 2018 using the BBE Fluoroprobe
profile series to convert high-frequency measurements into equivalent of chlorophyll
[µg Chl./l]; this is also the same conversion factor implemented in the two BBE
Moldaenke™profilers used on the study site (Fluoroprobe and AlgaeTorch). In 2020,
a multi-linear regression model was built exploiting profiles and laboratory analysis
and was applied to the high-frequency data of cyanobacteria for the year 2019.

The result of the treatment and correction described above are shown for total
chlorophyll and cyanobacteria chlorophyll in panels b and c of Figure 4.2, for the
year 2019, along with the corresponding laboratory analysis from water samples and
BBE Fluoroprobe profiles measurements. The Figure also shows the comparison
between high-frequency nitrate data and water samples laboratory analysis (panel d),
as well as high-frequency data for surface and bottom water temperatures (panel a).
All the data in Figure 4.2 are relative to measuring site B. Figure 4.2b shows a very
good agreement between the corrected high-frequency data of total chlorophyll and
both the water samples analysis and the Fluoroprobe profiles. The only exception
being the Fluoroprobe profile of 13/03/2019. Similar considerations can be made for
cyanobacteria (Figure 4.2c). Eventually, high-frequency observations of nitrate also
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Figure 4.2 – Treated and corrected high-frequency data set at site B for the year 2019
for: water temperature (panel a), total chlorophyll (panel b), cyanobacteria
(panel c) and nitrate (panel d) concentrations. When available, data from
water sample analysis and periodic Fluoroprobe profiles are also shown.

match very closely with data from water samples (Figure 4.2d).

4.3 Physical and biogeochemical characteristics of the
study site

The data shown in Figure 4.2 can be further analysed in order to highlight
the main hydrodynamic and biogeochemical traits characterizing the study site.
Exploiting the data from 2019, the following paragraphs contain a general description
of the overall characteristics of the study site in terms of thermal, phytoplankton
and nutrient dynamics.

Lake Champs-sur-Marne is a polymictic water body that alternates mixing and
periods of strong and stable thermal stratification (i.e. thermal stratification lasting
for at least two consecutive days without breakup at night). Figure 4.2a shows
bottom and surface water temperature at site B for the year 2019. Strong differences
in water temperature between the surface and the bottom layers (respectively located
at 0.5 and 2.5 m of depth) can be seen between the months of March and October.
Maximum temperature differences between the surface and bottom layers can reach
up to roughly 6°C and stable thermal stratification can last up to two or three
consecutive weeks.

The phytoplankton and nitrate dynamics observed in 2019 are exemplary of the
general evolution of phytoplankton biomass on the study site along the span of a
whole year. The lake is usually characterized by very low phytoplankton biomass
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Figure 4.3 – Evolution of the phytoplankton assembly in Lake Champs-sur-Marne for the
year 2019, after the identification analysis from water samples carried out by
Nicolas Clercin.

during the colder winter months, which are accompanied by an increase in nitrate
concentration. With increasing water temperature and day length, a first and strong
phytoplankton bloom usually occurs in early Spring. During this bloom the highest
phytoplankton concentrations are recorded. The bloom usually spans three or four
weeks and consumes the available nitrate. During the following months until the
end of the growing season (i.e. around the end of October), the biomass on the
study site is therefore controlled by nitrogen and light availability (nitrogen- and
light-limitation). Such behaviour can be seen in panels b, c and d of Figure 4.2 for
2019. A similar pattern was also observed in 2016, 2018 and 2020.

Even though this pattern characterizes four of the six years during which Lake
Champ-sur-Marne was monitored by LEESU, interannual variability is present. For
instance, the data collected in 2021 showed a considerably different pattern compared
to the one so-far described. The data for 2021 were not fully analysed and will not
be discussed in detail. However, they were characterized by a strong and persistent
algal bloom between the months of January and February, that caused a weaker
nitrate accumulation. This could have strong effects on the following phytoplankton
succession. However, further analysis should be carried out in order to understand
the factors that triggered this anticipated winter bloom.

The evolution of the phytoplankton assembly was analysed through laboratory
analysis of water samples starting from April 2019 by Nicolas Clercin. Preliminary
results of this analysis are shown in Figure 4.3 for the months between April
and November of 2019, and show the distribution of biomass among the different
phytoplankton classes present on the study site. Five main phytoplankton classes
were detected: chlorophytes, cyanobateria, cryptophytes, diatoms and dinophytes.
In 2019, cyanobacteria were the dominant group in the months from July to October,
while green algae were dominant roughly between April and June. During 2019,
the main species detected for each phytoplankton class shown in Fig. 4.3 are:
Sphaerocystis and Volvox (chlorophytes), Aphanizomenon (cyanobacteria), Ceratium
(dinophytes), Cryptomonas (cryptophytes) and Aulacoseira (diatoms).

Broadly speaking, in Lake Champs-sur-Marne, blooms dominated by cyanobac-
teria are observed not only during the summer months, but are also frequent during
colder months (e.g. March, February, October and November). The main cyanobac-
teria observed on the study site are Aphanizomenon and Microcystis.



Chapter 5

Hindcast of the thermal
response of a small and shallow
lake to climate change

In this chapter the results of the long-term climate change impact study carried
out on the study site are presented. The aim of this analysis is to hindcast the long-
term dynamics of a small and shallow urban lake, such as Lake Champs-sur-Marne,
in order to test the influence of climate change on such ecosystems, in relation to
water temperature, stratification dynamics and potential primary production.

To do so, the thermal dynamics of a small urban lake over the past six decades
was reconstructed (from 1960 to 2017) through the 3D hydrodynamic model Delft3D-
FLOW, forced with meteorological data from the SAFRAN reanalysis.

A series of indices are defined to characterize and analyse the time and spatial
evolution of the thermal regime of the study site in terms of stratification dynamics
and impact on cyanobacteria growth. The presence of long-term trends and the
evolution of spatial heterogeneity of these indices are also assessed.

The results presented in this chapter were published in the scientific journal
Earth System Dynamics (Piccioni et al. 2021, DOI: https://doi.org/10.5194/
esd-12-439-2021).

5.1 Model configuration

The hydrodynamics of the study site were simulated with the FLOW module of
the Delft3D modelling suite (Deltares 2014), as described in section 3.2.1.

The bathymetry and the two-dimensional mesh of the domain representing the
study site are shown in Fig. 3.4b. The surface of the lake is divided in 255 20 m× 20
m cells. The Z-model was implemented for the discretization of the vertical axis, with
12 fixed parallel horizontal layers of 30 cm thickness. Turbulent eddy viscosity and
diffusivity were computed through the k-ε turbulence closure model. Background
values were set to zero [m2 s−1] for vertical viscosity and diffusivity, while they
were set to 0.01 m2 s−1, after Soulignac et al. (2017) and according to the grid size,
for horizontal viscosity and diffusivity. Bottom roughness was computed through
Chézy’s formulation with the default value for the Chézy coefficient of 65 m1/2 s−1.
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The computation of the heat exchange at the air-water interface is done through
Murakami’s model (Murakami et al. 1985). It requires, as inputs, time series of
relative humidity [-], air temperature [◦C], net solar radiation [J s−1 m−2], wind
speed [m s−1] and direction [°N], as well as constant values for sky cloudiness [-] and
Secchi depth [m]. Meteorological data used for this study come from the SAFRAN
metorological reanalysis and are described in section 3.1.4.

Finally, evaporative mass flux is here neglected and water volume and depth
are therefore considered as constant. This assumption makes it possible to analyse
exclusively the impact of changes in the climatic forcing.

5.2 Indices for the characterization of the lake thermal
regime

The thermal regime of the lake is assessed directly through the analysis of model
results in terms of water temperature and through a series of indices that explore
the phenology of stratification and highlight the relation between temperature and
cyanobacteria production, which are described hereafter. All indices are computed
both on an annual and on a seasonal basis, according to the following definitions for
the four seasons: (i) January, February and March (winter), (ii) April, May, June
(spring), (iii) July, August, September (summer), (iv) October, November, December
(autumn).

5.2.1 Stratification indices

In order to thoroughly characterize the phenology of stratification in Lake
Champs-sur-Marne, two indices for the stability of the water column have been
calculated: the Schmidt stability index and an index based on temperature difference
between surface and bottom layers. The Schmidt stability index is a parameter often
used in limnological studies to estimate the resistance of a water body to mixing,
and therefore its stability. It has been extensively used in scientific literature to
describe the strength of stratification in lakes and, more recently, to analyse its
evolution over time in relation to climate change (Vinçon-Leite et al. 2014, Niedrist
et al. 2018, Kraemer et al. 2015, Livingstone 2003) and algal blooms (Wagner &
Adrian 2009). The Schmidt stability index (S) represents the amount of work per
unit area that would be required to mix the lake water column at one time instant.
It has been here calculated following Idso’s formulation (Idso 1973), in which the
vertical axis z is considered positive downwards from the surface to the maximum
lake depth zM [m]:

S = g

A0

∫ zM

0
(zv − z)(ρi − ρv)A(z)dz [J m−2] (5.1)

where:
zv = 1

V

∫ zM

0
zA(z)dz (5.2)

is the depth of the center of volume of the lake, ρv [kg m−3] is water density at
the depth of the centre of volume zv, ρi is the mean uniform density, g [m s−2] is
the acceleration of gravity, V [m3] and A0 [m2] are respectively the volume and the
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surface area of the lake, and A(z) is the surface of the horizontal section of the lake
at depth z. Computed for each time step, the Schmidt stability can also be averaged
over each year or season.

Water resistance to mixing as estimated by the Schmidt stability index is closely
correlated to temperature stratification. However, universal thresholds for the onset
and breakdown of stratification are difficult to define based on this index and cannot
be found in the literature, especially for shallow polymictic lakes. In order to assess
the succession of stratification events in a polymictic water body, after Kerimoglu &
Rinke (2013) and Magee & Wu (2017), the lake was considered to be stably stratified
during a day if the minimum temperature difference between the surface and bottom
layers (∆T ) is greater than 1°C. This allows to identify all stably stratified days
(SSD) and to compute their total number over a year (annual SSD), or over a season
(seasonal SSD), as defined in section 5.2.

5.2.2 Growth rate and growing degree days

Changes in the thermal regime might impact primary production. Here, we
make use of two indices as proxies of the potential growth of phytoplankton species:
the thermal growth rate (GR) and the growing degree days (GDD). Under the
assumption of nutrient and light availability, phytoplankton growth rate can be
modelled, for different species, as a function of temperature (T ) as in Bernard &
Rémond (2012). ∀ T ∈ [Tmin, Tmax]:

GR(T ) = kopt(T − Tmax)(T − Tmin)2

(Topt − Tmin)[(Topt − Tmin)(T − Topt)− (Topt − Tmax)(Topt + Tmin − 2T )]
(5.3)

where kopt is the optimal growth rate, Tmin the minimal temperature, Topt the
optimal temperature and Tmax the maximal temperature. The model parameters
were calibrated by You et al. (2018) through experimental data to describe the
response to water temperature of Microcystis aeruginosa, a species of cyanobacteria
present in Lake Champs-sur-Marne and often dominant in freshwater bodies globally.
The same values are used in this work:

kopt = 0.74 d−1, Tmin = 0◦C, Topt = 27.5◦C, Tmax = 38.4◦C. (5.4)

Microcystis aeruginosa is thought to be favoured by the warmer water tempera-
tures induced by climate change. However, the curve obtained from eq. (5.3) and
(5.4) (shown in figure 5.1), is here more generally intended to be representative
of the typical thermal response of cyanobacteria with high optimum temperature.
Mean annual and seasonal (according to section 5.2) growth rates are here calculated
through eq. (5.3) using simulated surface water temperature, and analysed over
time and space respectively in sections 5.4 and 5.5.

The growing degree days are a weather based indicator for biological growth,
widely used in the field of agronomy. Based on air temperature, it gives an estimate
of the rate of development and of the span of the growing season for terrestrial
plants and insects. It is a useful indicator capable to link global warming and biology
(Grigorieva et al. 2010, Schlenker et al. 2007). Approaches based on GDD have
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Figure 5.1 – Thermal growth rate calculated after equation (5.3). The horizontal dashed
line for GR=0.2 d−1 meets the curve at the temperature limits for the
calculation of the GDD (10°C and 37°C, respectively).

been increasingly applied to phytoplankton communities and fisheries (e.g. Gillooly
2000, Neuheimer & Taggart 2007, Ralston et al. 2014, Dupuis & Hann 2009), in
order to correlate water temperature and phytoplankton growth while taking into
account interannual variability. After Dupuis & Hann (2009), GDD were calculated
as follows:

GDD(t) =
t∑

i=t0
ai · (Ti − Tbase) ·∆t, with ai =

{
1 if Tbase < Ti < Tsup
0 elsewhere (5.5)

where t is the time (here in days) with t0 the reference day to start the calculation,
∆t is the time step (equal to 1 day), Ti is the daily average of the modelled surface
water temperature of day i and Tbase (respectively Tsup) is a physiological threshold
below which (respectively above which) growth does not occur. Compared to
the formulation found in Dupuis & Hann (2009), an upper limit for growth was
introduced here (Tsup) to take into account high temperature stress. Our focus here
is, as for the GR, on cyanobacteria. After Thomas et al. (2016) and based on the
latitude of the study site, we set the base temperature at 10°C and the upper limit
for growth at 37°C. This results in considering, for the calculation of the GDD, only
temperatures that yield to a GR above 0.2 d−1 (see figure 5.1).

GDD can be calculated on an annual or a seasonal basis by adjusting the values
of t0 and t. Annual GDD are calculated from the first of January until the 31st of
December. Seasonal GDD are obtained according to the definitions of section 5.2.

5.3 Model calibration and validation

Delft3D-FLOW stands on a robust mathematical and physical structure and
only few parameters have to be calibrated. In this work, only those directly involved
in the heat-flux model and in the wind module were calibrated: the Secchi depth
[m], the mean cloud cover [-] and the wind drag coefficient [-]. In order to get a first
estimate for the sky cloudiness parameter, cloud cover data from the MétéoFrance
station in Trappes (ID: 78621001) were averaged over the calibration period. The
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wind drag coefficient was calibrated in order to take into account the presence of
tall trees surrounding the contour of the lake, locally reducing wind speed.

The calibration of the FLOW model was done by trial and error, based on high-
frequency water temperature data at the surface, middle and bottom layers (0.5, 1.5
and 2.5 m depth, respectively). Model results were compared to water temperature
at the three layers and two different locations (A and B). The root mean square
error (RMSE) was calculated to evaluate model performances. For this purpose,
high-frequency data were first averaged every hour to match the model output time
step and cleaned from the outliers originated by periodic sensor maintenance. The
latter were defined as sudden water temperature variations (> 1°C) over the 10
minutes separating two successive measurements, and consequently erased.

The model was calibrated on the year 2016 and validated on two other periods:
from May to December 2015, and during the whole year 2017. Field values for
the Secchi depth in Lake Champs-sur-Marne vary between 0.5 and 3 m; using this
range, the Secchi depth parameter was calibrated and finally set to 1.2 m. Based on
meteorological data downloaded from the Orly meteorological station, a mean value
for sky cloudiness was set to 80%, and a uniform wind drag coefficient was set to
0.005 [-].

Model performance during calibration and validation is shown in figure 5.2
relatively to site A. Parity diagrams between observed and simulated water tem-
perature are plotted for the surface, middle and bottom layers (see panels a, b and
c, respectively) and show an excellent agreement between observations and model
results. A slight underestimation of surface water temperature can be noticed for
the surface layer during the colder winter months, as well as a slight overestimation
of the highest values of water temperature by the model, especially for the middle
and surface layers (see also Fig. 5.2d). However, overall model performances are
satisfactory for all three layers, with RMSE values between simulated and observed
water temperature of 0.85°C, 0.78°C and 0.81°C at site A during calibration, respec-
tively for the surface (0.5 m), middle (1.5 m) and bottom (2.5 m) layers. Model
results are spatially robust and satisfactory also for the validation periods, with
similar RMSE values for sites A (surface:1.0°C, middle:0.96°C and bottom:0.96°C)
and B (surface:1.0°C, middle:0.96°C, bottom:0.99°C).

Furthermore, the observed (blue) and simulated (orange) temperature difference
between the surface and bottom layers is plotted in figure 5.2e, with a dashed lined
representing the 1°C threshold for the definition of the SSD. Panels f and g of
figure 5.2 show the succession of stable stratification events as defined in section
5.2.1 calculated through observations and model simulations, respectively. Some
discrepancy is present, notably in spring 2016, which can be explained by a slight
overestimation of surface temperature, combined with the threshold effect of the
definition of SSD. However, the model correctly captures the succession of stable
stratification events both in terms of frequency and timing over the considered
three-years period.

Overall, the model results fit very well the high-frequency water temperature
data, and accurately reproduce the water temperature dynamics, including the
diurnal cycle, as well as the stratification regime.
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Figure 5.2 – Model performance during validation at site A. Panels a, b and c: parity
diagrams between simulations and observations for the surface, middle and
bottom layers, respectively. Panel d: visual comparison of simulated and
observed water temperature at the middle layer. Panel e: modelled (orange)
vs. observed (blue) temperature difference between surface and bottom layer
and relative comparison between the timing of observed and modelled stable
stratification events (panels f and g, respectively).
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5.4 Long-term trend analysis

In the present study we hindcast the long-term dynamics of a small and shallow
urban lake between 1960 and 2017, in order to test the influence of climate change
on such ecosystems.

5.4.1 Approach

The long-term hydrodynamic simulation starts on the first of January 1960. No
data were available to set the initial conditions of the model, neither in terms of
water temperature, nor in terms of current velocities. However, the model is strongly
driven by the meteorological data and the influence of the initial condition vanishes
after only a few days (Piccolroaz et al. 2019). Indeed, small perturbations in water
temperature initial conditions (± 2°C) were tested and resulted to vanish in 5 to
7 days. The model was therefore initialized with water at rest and with a uniform
water temperature of 7◦C, the average of the water temperature recorded on the
lake on the first of January in 2016, 2017, 2018 and 2019. Model results are stored
at a hourly time step on every element of the mesh.

Model results at site A are analysed on an annual and seasonal basis for long-
term trends, in terms of water temperature (averaged over the water column) and
through the indices defined in section 5.2. The presence of long-term trends is
tested (with a threshold for significance α = 0.05) through the Mann-Kendall test
(Mann 1945, Kendall 1975), a non-parametric test for the individuation of overall
monotonic trends performed here through the MATLAB software (Burkey 2020).
The Mann-Kendall test is often preferred to simple linear regression in the analysis
of meteorological and hydrological time series, as it does not require any assumption
on the distribution of the analysed dataset (Tímea et al. 2017, Wang et al. 2020).
Once a trend is detected, its strength is evaluated through the Sen’s slope estimator,
that uses a linear model to evaluate the intensity of the trend (Sen 1968).

Meteorological forcing is crucial for this work, as it drives the hydrodynamic
model and represents the only source of variability in our modelling configuration.
The presence of long-term trends in the meteorological dataset was also evaluated
by applying the Mann-Kendall test and the Sen’s slope estimator to their annual
averages.

5.4.2 Trends on meteorological input data

Annual averages of the SAFRAN dataset used as input to the Delft3D model
were calculated from 1960 to 2017 and tested with the Mann-Kendall test. Strongly
significant monotonic trends (p� 0.05) were found for the air temperature, solar
radiation and wind speed, as shown in Fig. 5.3. The Sen’s slope estimator was used
to test the intensity of the significant monotonic trends. Air temperature displays a
considerable warming trend of 0.3°C dec−1; solar radiation also shows a significant
increasing trend, with an overall intensity of 3.5 W m−2 dec−1. Wind speed decreases
quite sharply over time, at an overall estimated rate of 0.2 m s−1 dec−1. While the
increase in air temperature appears extremely linear (see Fig. 5.3a), a sharp shift in
the behaviour of both solar radiation and wind speed appears around the year 1988
(Fig. 5.3b and c, respectively). A change-point detection was therefore performed on
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Figure 5.3 – Annual averages of the three meteorological variables which exhibit significant
monotonic trends, that is a) air temperature, b) solar radiation, c) wind
speed. The relative overall trend intensity has been evaluated through Sen’s
slope estimator for air temperature (orange dashed line, panel a) whereas
a piecewise trend has been calculated after change-point detection for solar
radiation and wind speed (black dashed lines, panels b and c).

the latter two series, and showed for both variables the existence of two significant
sub-trends separated by a drastic shift towards the end of the 1980s. Both variables
are characterized by a mild increase until 1987 (1988 for solar radiation), followed
by a considerable decrease until the end of the available series. However, despite
this piecewise linear behaviour, the presence of overall monotonic increasing (for
solar radiation) or decreasing (for wind speed) trends is confirmed by the very low
p-values obtained for these variables through the Mann-Kendall test.

Finally, no significant trend was found for relative humidity and wind direction.
The two variables appear to be stationary, the former fluctuating around an annual
average of roughly 80% and the latter around an annual prevailing wind direction
of 200°N (South-West). Three of the five meteorological variables forcing the
hydrodynamic model were therefore characterized by strongly significant monotonic
trends along the past six decades, confirming changes in the climate of the region
around the study site.

5.4.3 Trends on simulated indices

Long-term monotonic trends have been researched at site A on an annual and
seasonal basis for: mean water temperature (vertically averaged), number of stably
stratified days (SSD), mean Schmidt stability index, mean growth rate (GR) and
growing degree days (GDD). Figure 5.4 shows all the significant monotonic trends
found from this analysis. On an annual basis, the Mann-Kendall test highlighted
the presence of strongly significant increasing trends (p� 0.05) for all variables.

Mean annual water temperature shows a very sharp warming tendency of 0.6°C
dec−1 (see Fig. 5.4a), even greater than what was found for air temperature
(0.3°C dec−1). The Pearson correlation coefficient (r) was calculated between water
temperature and the five meteorological input variables in terms of annual averages
in order to explain this behaviour. Modelled water temperature is strongly correlated
with air temperature, solar radiation and wind speed, with correlation coefficients
of 0.8 for solar radiation and air temperature and -0.9 for wind speed. Water
temperature shows significant increase during all seasons, with higher slopes during
spring and summer (0.8 and 0.7°C dec−1, respectively), and a lower yet considerable
intensity during autumn and winter (respectively 0.4 and 0.5°C dec−1).
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The warming trend is accompanied by reinforced stratification. An increase in
water column stability is highlighted on an annual basis by both stratification indices:
the annual number of SSD increased on average of around two days per decade,
while the Schmidt stability index increased of 0.9 J m−2 dec−1 (Fig. 5.4b and c,
respectively). Despite a warming trend being present in all seasons, both stratification
related indices show significant increasing trends only during winter (1 d dec−1 and
0.4 J m−2 dec−1) and spring (sharper trends of 1.8 d dec−1 and 2.6 J m−2 dec−1,
for the seasonal SSD and the Schmidt index, respectively). Furthermore, the number
of stable stratification events (i.e. the count of the slots of consecutive SSD during
a year) was calculated to characterize the frequency of stable stratification. It
did not show significant trends over time, varying between a minimum value of 8
to a maximum of 16 around an overall average of 12 stable stratification events.
Similarly, the duration of the longest stable stratification event (i.e. the longest slot
of consecutive SSD in a year) did not show significant trends, but a high interannual
variability. It varies around an average value of 11 d, between a minimum value of 5
d and a maximum of 15 d.

The analysis of the growing degree days and of the mean growth rate shows the
progressive improvement of conditions for cyanobacteria. The pattern of the mean
annual GR is highly correlated to that of water temperature and shows a significant
trend of 0.02 d−1 dec−1 (black line in Fig. 5.4d). However, the stronger intensity of
the trend for the GR during spring (0.03 d−1 dec−1) indicates an amplified effect
of water temperature on the potential growth of cyanobacteria during this season.
Annual GDD (see figure 5.4e) shows a considerable increasing rate of 157°C d dec−1,
with a strong shift around the year 1989. This behaviour cannot be regarded as
linear and is highly influenced by the piece-wise behaviour of mean annual solar
radiation and wind speed. However, it corroborates the idea of a greater amount of
thermal energy reaching the ecosystem, at different rates but consistently throughout
the four seasons.

The changes in the meteorological forcing clearly had an impact on the dynamics
of the study site. The lake has sensibly warmed, its tendency to thermal stratification
has increased, and the thermal conditions for cyanobacterial growth have improved.
Spring shows the sharpest trends for all indices, and might ultimately be the season
suffering the strongest changes in terms of primary production and algal blooms.

5.5 Spatial analysis

5.5.1 Approach

The long-term evolution and the spatial variability of the thermal regime of Lake
Champs-sur-Marne was further analysed exploiting the three-dimensional model
simulations. Mean annual surface water temperature, annual SSD, mean annual
GR and annual GDD were computed on the whole computational domain, with the
objective of investigating the relation between climate change and time evolution
of the spatial distribution of these variables. For each variable x, the overall mean
annual value xm (averaged over the complete domain) and the deviation from the
mean value (x − xm) have then been computed. In order to quantify the spatial
heterogeneity of these variables, the probability distribution of the deviation from
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Figure 5.4 – Statistically significant climate change trends at monitoring site A for the
five indices, both on an annual (black) and seasonal (other colours) basis. a)
Water temperature (averaged on the water column); b) Number of stably
stratified days (SSD); c) Schmidt stability. d) Growth rate; e) Growing degree
days (GDD). Blue lines represent the winter season, green lines represent
spring, red lines are for summer trends and yellow lines for autumn; black
lines represent annual values.

the mean value of each variable was finally calculated on the computational domain
and fitted, for each year, with a non-parametric Kernel probability distribution
through the Matlab pdf function. The resulting probability density function (PDF)
was plotted over time as a heat map and the mean value as a simple line plot. This
allows to visualize both the time and the spatial evolution of the variable under
consideration, by looking at the mean value and at the range of values characterized
by a non-zero probability.

During stably stratified periods, cyanobacteria are favoured over other algal
groups because of their ability to move within the water column and possibly float
towards the water surface (Humphries & Lyne 1988, Wagner & Adrian 2009, You
et al. 2018). For this reason, the spatial analysis of the GR and GDD was completed,
by calculating these two indices only on stable stratified days during each year. The
obtained GR were further averaged for each cell over the local number of stably
stratified days. Cells that showed an annual number of SSD<10 where discarded from
this analysis. Finally, the resulting modified indices were analysed over space and
time as described above by using a non-parametric Kernel probability distribution
as an approximation of the PDF for each simulated year.

5.5.2 Analysis of model results

Lakes are not spatially homogeneous systems. Heterogeneity can be generated
by the interplay between bathymetric and morphological features, or by particular
meteorological conditions, especially in terms of wind direction.

In order to quantify the level of spatial variability in the lake, the deviations
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between local annual values (calculated for each computational cell) and their overall
annual mean value (calculated on the complete domain) were calculated and fitted
with a probability density function (PDF). As shown in figure 5.5a (top panel),
mean annual surface water temperature is rather uniform over the study site. The
difference between the maximum and minimum values if of roughly 0.1°C (around
1% of variability relative to the overall mean) and does not vary substantially over
time. During the first half of the simulation period, and in particular between the
years 1967 and 1987, the width for the PDFs (i.e. the domain on which PDFs are
greater than 0) is narrower, reflecting a higher annual spatial uniformity than what
can be observed after 1990. After 1990, the width of PDFs is indeed wider, with
only a few exceptions where the PDFs are on the contrary quite sharp. This change
in the spatial distribution of annual surface water temperature before and after 1990
is accompanied by a sharp increase in the overall mean value (bottom panel in Fig.
5.5a), which is indeed greater (around 14.5°C) after 1990 than before (around 12°C).

The annual number of SSD shows greater spatial heterogeneity (see Fig. 5.5b).
The difference between the maximum and minimum values of SSD varies between
approximately 45 and 90 days. The spatial heterogeneity is mainly induced by
bathymetry. Stable stratification only occurs in the deeper portion of the basin,
while the northern part of the study site, namely the portion with depth lower
than 1.8 m (see Fig. 3.1b), remains constantly mixed according to our definition of
SSD. The PDF is dissymmetric, with the most probable value for the annual SSD
higher than the overall annual mean, by 10 to 15 days. As for the surface water
temperature, the spatial heterogeneity of SSD is higher after 1990 than before. In
fact, a rather high correlation is present between the spatial distribution of mean
annual surface water temperature and SSD. The correlation coefficient between the
two variables in each simulated year varies between 0.4 and 0.8, with an overall
mean of 0.62 and p-values always lower than the threshold for significance (p=0.05).
This suggests that surface water temperature tends to be slightly warmer in areas
characterized by longer periods of stable stratification.

The thermal growth rate and the GDD were analysed over the domain during
stably stratified days, which are particularly favourable to the growth of cyanobacte-
ria.

The thermal GR shows a low spatial heterogeneity that does not vary over time,
as confirmed both by the PDF in figure 5.6a (top panel) and by the maps in figure
5.6b. The difference between minimum and maximum values for the GR is around
0.03 d−1 (around 5% of the overall mean value), always rather centred around the
overall mean. Calculated during stratification, the overall mean thermal GR takes
high values (around 0.6 d−1), comparable to those found at site A for the summer
season (see the bottom panel of fig. 5.6a and fig. 5.4d).

The overall mean annual GDD increases over time (bottom panel of Figure
5.6c), from around 400 d·°C before 1980 to 650 d·°C after. The PDF of the GDD
displays a clear increase in spatial heterogeneity (Fig. 5.6c). Its range increases
substantially starting from the 1980s, roughly doubling: from 100 d·°C before 1980
to around 200 d·°C afterwards. This is due to the concurring effects of warmer water
temperature and higher number of stably stratified days in the calculation of the
GDD as defined in section 5.2.2. In particular, part of the heterogeneity is induced
by shallow areas of the water body that only account for a low number of SSD
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Figure 5.5 – Top panels: Time evolution of the probability density function of the anomalies
(i.e. the spatial deviations of a variable to its annual mean over the lake).
Bottom panels: Time evolution of the annual mean calculated over the lake.
a) Mean annual surface water temperature; b) annual SSD.

and therefore for low values of GDD. The corresponding computational cells, not
affected by stable stratification during the 1960s, are evermore likely to show stable
stratification in the 2000s (see the maps in fig. 5.6d). However, the maps for the
years 2017 and 2005 also show a high heterogeneity in the deeper part of the water
body.

5.6 Discussion

In the present chapter, the thermal regime of a shallow urban lake was reconsti-
tuted over six decades (between 1960 and 2017) with a 3D thermal-hydrodynamic
model. Simulation results were analysed over time (for long-term monotonic trends),
and space (for spatial heterogeneity), through a series of indices that characterize
the stratification and highlight the relation between temperature and cyanobacteria
production.

Meteorological forcing data
The model was forced with data from the SAFRAN meteorological reanalysis. Air
temperature and solar radiation showed increasing monotonic trends (0.3°C dec−1

and 3.5 W m−2 dec−1, respectively), while wind speed showed a decreasing monotonic
trend of -0.2 m s−1 dec−1. A shift was observed during the studied period around
1987, especially in the data series of solar radiation and wind speed, and was
confirmed by a change-point detection analysis. The existence of such shift in global
climate during the 1980s has been highlighted by a number of studies using different
data sources (Reid et al. 2016, Mariani et al. 2012, Gallagher et al. 2013).

Climate change in the Paris region has been assessed in literature mainly in
terms of air temperature (Perrier et al. 2005, Lemonsu et al. 2013). Compared to
our result, a milder increasing trend of 0.1°C dec−1 was found based on ground
measurements, between 1900 to 1987, with a steeper increment of 0.7°C dec−1

later on until 2005 (Perrier et al. 2005). Similarly, we also find a steeper trend of
0.55 °C dec−1 on the years from 1987 to 2005. Less information can be found in
literature for solar radiation and wind speed. A decrease in wind speed on land was
found over Europe since 1980 (around -0.1 m s−1 dec−1) as part of a large-scale
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Figure 5.6 – Spatial analysis of stratification. a) Probability density function (PDF) for
mean GR during stratification over the computational domain and over time;
b) Four examples of spatial distribution for mean GR during stratification
over the lake; c) PDF for GDD during stratification over the computational
domain and over the years; d) Four examples of spatial distribution for annual
GDD during stratification over the lake. Grey cells in panels b and d do not
stratify longer than 10 days over a year.



80 CHAPTER 5. LONG-TERM HINDCAST STUDY

analysis of observations in the northern hemisphere (Vautard et al. 2010). At a
global scale, an overall decreasing trend in wind speed was found over land in the
period 1985-2015 through meteorological reanalysis, principally over Europe, India
and western Africa (Torralba et al. 2017). In South-East China, in the Lake Chaohu
region, a strong decline in wind speed (China Meteorological station) was also found
in the period 1980-2016 (Zhang et al. 2020). An overall increase in surface solar
radiation was recently found for Europe between 1983 and 2015, specifically of
3 W m−2 dec−1 for western Europe (Pfeifroth et al. 2018).

Meteorological reanalyses usually cover multi-decadal periods and have the great
benefit of being spatialized over vast portions of the globe. Even though their use in
limnological studies is quite recent, they have already been used to simulate water
temperature (Layden et al. 2016, Piccolroaz et al. 2020), stratification dynamics
(Frassl et al. 2018) and phytoplankton distribution (Soulignac et al. 2018). As shown
in this work, their use as external forcing to thermal-hydrodynamic models can
yield, provided that observations are available for calibration and validation, to
accurate simulations of the behaviour of water bodies even in the absence of local
meteorological observations. This could open to a great range of applications in
limnology and paleolimnology (Jenny et al. 2016, Maier et al. 2019). The proposed
methodology allows to thoroughly reconstruct the behaviour of any water body both
in time and space, independently of its proximity to meteorological stations. This is
particularly interesting for small or remote water bodies that often lack long-term
measurements.

Water temperature and stratification
Based on the 3D model results found for Lake Champs-sur-Marne, long-term trends
were analysed in detail at site A. Significant increasing trends were detected for water
temperature both on an annual and seasonal basis. The highest seasonal warming
was found during spring and summer (0.8 and 0.7°C dec−1 respectively). These
trends are particularly intense and could have strong impacts on the ecosystem
under examination. In particular, the intensity of these trends is greater than that
suggested for summer water temperature in a large-scale analysis (0.53°C dec−1)
for lakes with similar changes in the meteorological forcing (O’Reilly et al. 2015).
Furthermore, mean annual depth-averaged water temperature also increased at a
considerable rate of 0.6°C dec−1, greater than the rate found for air temperature, a
behaviour also highlighted for other water bodies (Austin & Colman 2007, Schneider
et al. 2009). The piecewise linear behaviour of mean annual water temperature,
is induced by that of solar radiation and wind speed. In fact, similarly to what
was found by Magee & Wu (2017), mean annual water temperature was highly
correlated (i.e. |r| > 0.8) with air temperature, solar radiation and wind speed. This
suggests that meteorological variables have additive effects that concur to enhance
the response of the dependent variables. These effects might be particularly intense
for wind over small and shallow lakes, due to their low volume to surface ratio.

Both stratification related indices (SSD and Schmidt stability) showed a signif-
icant mean annual increasing trend (3 d dec−1 and 1 J m−2 dec−1, respectively).
Similar values were recently found for shallow water bodies in other long-term studies
(Magee & Wu 2017, Moras et al. 2019). However, despite a strong augmentation in
water temperature, stratification did not show a significant increase during summer.
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In shallow polymictic lakes the water column is mixed frequently also during the
warmer seasons. Summer surface and bottom water temperature increased at a very
similar rate (0.7°C dec−1) in the study site, resulting in small changes in Schmidt
stability and number of SSD. This result marks a strong difference with the behaviour
of deeper monomictic or dimictic lakes, where the summer Schmidt stability often
shows an increasing trend (e.g. Niedrist et al. 2018, Flaim et al. 2016), but it is
not uncommon for shallow water bodies, where Schmidt stability can even show
decreasing summer trends (Fu et al. 2020).

Stratification induces a separation between the sediment and the surface layers,
influencing the distribution of nutrients and biomass over the water column. During
stratification, due to the desoxygenation of the lake bottom layers, nutrients (phos-
phate in particular) are released from the sediment. In polymictic water bodies, when
mixing occurs, a replenishment of the whole water column with the nutrients released
during previous stratification has been observed (Song et al. 2013, Wilhelm & Adrian
2008). In Lake Champs-sur-Marne, neither the frequency nor the duration of the
stable stratification events show a significant trend during the past decades. However,
with a mean value of 12 annual separated stable stratification events, lasting up
to two consecutive weeks, the replenishment of the water column with nutrients is
ensured. The multiple pulses associated with the alternation between mixing and
stratification events are an important internal source of nutrients, especially in a
lake such as the study site, whose water inflow is limited to underground waters.

The thermal regime was further characterized over the computational domain
by analysing the spatial distribution of surface water temperature. While annual
averages of surface water temperature are rather uniform over the domain, with
around 0.1°C of difference between maximal and minimal values, the bathymetric
variations induced greater variability in the distribution of SSD. The stratification
regime drastically changes between the deeper portion of the water body and the
shallower northern part. According to the definition of the SSD, stable stratifica-
tion never occurs in cells with water depth lower than 1.8 m. In shallow water
bodies, even small bathymetric variations can cause drastic differences in the ther-
mal regime. Different regimes of mixing and stratification between shallower and
deeper areas can result in considerable differences in the spatial distribution of
nutrients, with effects on bloom initiation and phytoplankton growth, as well as on
the resulting oxygen concentration. However, spatial heterogeneity of the mixing
and stratification regime inside a water body is rarely addressed in scientific lit-
erature, especially with regard to small and shallow lakes (e.g. Bachmann et al. 2000).

Indices for primary production
The thermal regime is a key factor in the regulation of the biogeochemical cycle and
in the development of algal blooms. The worldwide intensification of harmful algal
blooms over the past decades (Paerl & Huisman 2008, Paerl & Paul 2012, Wagner
& Erickson 2017) is often associated with climate change and nutrient enrichment
(Zou et al. 2020, Huisman et al. 2018).

Due to their potential toxicity, cyanobacteria are of particular concern in fresh-
water management. Warmer water temperature can favour their growth because
of their high optimal temperatures. However, they can proliferate under a wide
range of temperatures (Lürling et al. 2013, Carey et al. 2012). The expression of the
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growth rate proposed by Bernard & Rémond (2012) (see eq. 5.3) accounts for this
dependence from water temperature. Based on this expression, the mean annual
thermal growth rate of cyanobacteria showed a significant increasing monotonic
trend of 0.02 d−1 dec−1. Compared to the initial annual value of roughly 0.3 d−1

at the beginning of the 1960s, this results in a considerable +40% increase in the
growth rate at the end of the sutdied period. Significant trends were also found
during the four seasons, the highest being during spring (0.03 d−1 dec−1, or +45% of
the initial value). The growing degree days (GDD) of cyanobacteria were analysed
here for a range of temperatures comprised between 10°C and 37°C, corresponding
to thermal growth rates higher than 0.2 d−1. However, given the temperate climate
of the region under examination, the upper limit for growth did not have any effect
on the results, whilst it could be an important parameter for species with lower
optimum temperatures such as diatoms.

Whereas the growth rate gives an estimation of the mean value of cyanobacteria
growth, that can be computed on a seasonal and an annual basis, the GDD is a
cumulative index that gives a measure of the amount of time and degrees available
during a year for photosynthetic growth. Originating from the field of agronomy
and forestry, it represents a “thermal time” and is considered as a better descriptor
of vegetal phenology than the simple Julian days (McMaster & Wilhelm 1997).
Under an appropriate temperature range, it can be considered as representative for
organism developmental time (Dupuis & Hann 2009). The highest trend for GDD
was found on an annual basis (157 d·°C dec−1), denoting that the temperatures
favourable to cyanobacteria growth are more and more frequently reached. Seasonal
trends varied greatly in intensity. The highest was found for spring (73 d·°C dec−1)
and represents, relative to the values in the early 1960s, a substantial increase of
90% during the six decades under consideration. The trends found for winter and
autumn are mild but denote an increased tendency to overpass the base temperature
during these two seasons, and therefore a dilatation of the season favourable to
cyanobacteria growth.

Harmful algal blooms and phytoplankton dynamics depend on factors such as
the settling or buoyancy rate of phytoplankton, the availability of nutrients over the
water column, which can be enhanced by the release from the sediment, and the
resuspension of particulate organic matter. In polymictic water bodies, the processes
of sedimentation and resuspension are strongly influenced by the alternation between
mixing and stratification (Song et al. 2013). Because of their ability to migrate within
the water column, stratified environments are favourable to cyanobacteria (e.g. Carey
et al. 2012, Aparicio Medrano, Uittenbogaard, Van de Wiel, Dionisio Pires & Clercx
2016). The increase of water temperature and of stable stratification could concur
resulting in frequent cyanobacteria blooms. However, stratified conditions do not
occur uniformly. The calculation of the thermal GR and of the GDD quantifies the
potential effect of water temperature on cyanobacteria growth, under the hypothesis
of nutrient and light availability. Their calculation during stratification allows to
address the combined effect of water temperature during a particularly favourable
environmental conditions.

During stratification cyanobacteria GR was characterized by high values (around
0.6 d−1), with a variability quite uniform over time of ±5% over the study site.
These values are comparable, or even higher (until the 1990s) than those obtained



5.6. DISCUSSION 83

during the summer season. The GDD give a deeper insight on the interplay between
temperature and stratification. The strong augmentation in the overall mean value
of GDD during stratification confirms a concurring positive effect of the increase
of water temperature and of the duration of stable stratification on the growth of
cyanobacteria. Moreover, the greater spatial variability of GDD values during the
second half of the simulation indicates that some parts of the lake will be more
affected than others by the variation of water temperature and stratification. In
particular we observe the development over time of certain areas in the study site,
especially the deeper part, with very high values of GDD under stratified conditions,
and that are therefore particularly favourable to cyanobacteria dominance and bloom
initiation.

The combination of increasing trends for water temperature, stable stratifica-
tion and the widening of the growing season can favour the occurrence of harmful
cyanobacterial blooms (Winder & Sommer 2012, Jones & Brett 2014, Noble & Hassall
2015). If these trends are confirmed, during the decades to come cyanobacteria could
become the dominant species in the study site, seriously affecting the lake ecological
network and its biodiversity (Rasconi et al. 2017, Toporowska & Pawlik-Skowronska
2014).

Model-based approach
Through our modelling approach it was possible to reconstruct the thermal dynamics
of a small and shallow lake and to thoroughly analyse its evolution over time and
space. The use of an extensive data set of high-frequency observations allowed to test
the model not only against the general seasonal water temperature pattern, but also
against daily and sub-daily dynamics of stratification and mixing, at two locations.
Other works have focused on the hindcast of lakes thermal regime, successfully
reconstructing their dynamics in order to analyse their evolution over time (e.g.
Magee & Wu 2017, Moras et al. 2019, Zhang et al. 2020, Stetler et al. 2020). Most
of these studies, however, make use of a 1D approach. By means of a 3D model it is
possible to aggregate information on both time and space (horizontal and vertical)
through the use of appropriate indices. Our work demonstrates that even on a small
water body spatial variations can be important, and that their influence on the
thermal and biological regime must be considered. It provides additional evidence
that supports the hypothesis of a positive effect of climate change over cyanobacteria
blooms.

Hydro- and thermal dynamics are at the core of the biogeochemical cycles, influ-
encing transport, sediment resuspension, organic matter mineralization in addition
to primary production. In this work, we focus on water temperature, quantifying
its impact for stratification and primary production. The proposed methodology
allows to focus solely on the role of the meteorological forcing, addressing its direct
impact on the thermal regime and on primary production. However, other factors
could have even a stronger impact: nutrient and light limitation or grazing could
offset temperature-derived advantages (Elliott et al. 2006). These factors are not
taken into account in this work, since it is focused on the impact of climate change
from a thermal standpoint, all other factors being equal. This work opens to a wide
range of additional analysis and further research. In particular, the coupling with a
biogeochemical model could give further insight on the impact of climate change
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on the ecological state of a water body. Such a study, however, would introduce
additional sources of uncertainties, especially regarding the evolution of nutrient
sources over time and could only be profitably if performed after a thorough analysis
of the hydrodynamic and thermal regime.

5.7 Conclusion
In this work, the long-term thermal regime of a shallow urban lake is reconstructed

through model simulations from 1960 to 2017. A series of indices are proposed
with the objective of thoroughly describing the thermal regime of shallow water
bodies, in relation with stratification dynamics and cyanobacterial production.
The meteorological data set is derived from the SAFRAN reanalysis and shows a
significant increase in air temperature and solar radiation and a significant decrease
in wind speed, with a regime shift in the late 1980s. Simulation results show that
small urban lakes react rapidly and strongly to external meteorological conditions,
with only limited resilience to climatic shifts. The additive effect of increasing
solar radiation and air temperature and decreasing wind speed acts on different
terms of the heat budget at the lake surface, enhancing the changes found in the
lake. The mean water warming of 0.6°C dec−1 represents an increase of 32% in
water temperature values between 1960 and 2017 and is much stronger than the
air warming (0.3°C dec−1, i.e. an increase of 18% during the same period). The
impact on stratification and cyanobacteria production is even more alarming, with
an increase of over 30% of the stability indices and over 60% of the growing degree
days during the six past decades. Spring shows the sharpest trends in terms of
water temperature, water column stability (Schmidt and SSD) and growing degree
days, and might ultimately be the season suffering the strongest changes in terms of
primary production and algal blooms. The spatial heterogeneity found for thermal
stratification and growing degree days might also concur to locally create conditions
particularly favourable for cyanobacteria blooms. These tendencies could favour
early phytoplankton blooms (during late winter or spring) and contribute to the
proliferation of cyanobacteria, and ultimately to the degradation of the whole aquatic
ecosystem. Our results highlight the importance of a three-dimensional approach
to thoroughly infer the dynamics of a water body. Horizontal patterns can be
particularly strong for shallow lakes due to the relative importance of bathymetric
variations.

Small and shallow lakes are extremely widespread ecosystems. Our results suggest
that such systems experience considerable thermal stress caused by climate change
and that, in nutrient-enriched systems, cyanobacteria dominance could become a
widespread issue in the future decades.



Chapter 6

Automated calibration of a
complex ecological model

In this chapter, an innovative method for automated parameter inference is
proposed and applied on the complex biogeochemical model Delft3D-BLOOM. This
method (called ABC-RF with SA in the sequel) is based on the Approximate
Bayesian Computation (ABC) and combines the machine learning technique called
“Random Forest” (RF) with a sensitivity analysis (SA) of the model parameters.
Three target variables are considered in this calibration procedure: total chlorophyll,
phycocyanin and dissolved oxygen, and 133 parameters are calibrated. The method
ABC-RF with SA is first validated through an application on simulated observations,
in order to test its capability to reproduce both the simulated observations and
the parameters values. Then it is applied on a real observation dataset of the
lake Champs-sur-Marne. The standard ABC method and the ABC-Random Forest
(ABC-RF) method are also applied for comparison.

6.1 Model configuration

A 3D hydrodynamic model was set up for Lake Champs-sur-Marne with the
Deltf3D-FLOW module. The bathymetry was interpolated from in situ measure-
ments. The horizontal mesh is composed of 813 10 m × 10 m square cells. Twelve
horizontal layers with a fixed thickness of 27 cm were used for the discretization of
the vertical axis. The k-ε turbulence closure model was used for the computation of
turbulent eddy viscosity and diffusivity. Background values for horizontal viscosity
and diffusivity were set to 0.0025 m2 s−1, according to literature values (Soulignac
et al. 2017) and to the grid size. Background values were set to zero [m2 s−1] for
vertical viscosity and diffusivity. The heat budget at the air-water interface was
computed through the Ocean model. It requires as inputs time series of relative
humidity [-], air temperature [◦C], net solar radiation [J s−1 m−2], sky cloudiness
[-], as well as wind speed [m s−1] and direction [◦N], that were downloaded for this
study from the Meteofrance station at the Orly airport as described in section 3.1.4.

The module BLOOM makes use of the results from the FLOW simulation
(e.g. in terms of velocity field, friction, diffusivity, water temperature), but is run
separately. Four main modules are activated in the configuration set up for BLOOM
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in this study: oxygen and Biological Oxygen Demand (BOD), dissolved inorganic
matter, organic matter and algae. Each module contains numerous variables, that
are listed in table 3.1. In particular, the phytoplankton module includes four
algal groups commonly present in Lake Champs-sur-Marne: green algae, diatoms,
flagellates and cyanobacteria. In the biogeochemical cycle, all the variables activated
are interdependent through a large number of processes, simulated by BLOOM. A
complete description of these processes can be found in the related manuals (Deltares
2018). Biogeochemical models often include a large number of parameters, possibly
site-dependent. In our case study, the processes and variables activated lead to a set
of 144 editable parameters.

6.2 Formulation of the calibration problem
In this work, we are interested in the automated calibration of the complex

biogeochemical model BLOOM on the case of the Lake Champs-sur-Marne. The
objective is to find one or several sets of model parameters that lead to simulated
values of the variables of interest that are close to the observed data on a chosen
period of time.

Processes in BLOOM are highly parametrized. The default values of the param-
eters are derived from a years-long calibration process operated by the developers
(Deltares 2018). However, most of the parameters in the model remain site-dependent
and still need to be calibrated case by case. The calibration of the parameters in
BLOOM was performed in two steps. First, a trial and error calibration was imple-
mented to obtain a first estimate of the parameters values adapted to the study site
for the simulated period. The results from this initial calibration are described in
section 6.3, and were used as a starting point to implement, in a second step, the
automated calibration methodology described in sections 6.4 and 6.5.

Among the 144 parameters included in the BLOOM configuration presented
in section 6.1, 114 were selected to be included in the calibration, together with
19 initial conditions. Ultimately, this leads to 133 model parameters and initial
conditions considered for calibration purposes. The remaining values for parameters
and initial conditions were either considered to be known with a sufficiently low
uncertainty or showed from previous tests to have a negligible influence on the model
outcomes and are therefore not included in the calibration.

A period of 16 days of high-frequency observations going from the 25th of
July to the 10th of August 2018 was chosen for the automated calibration of the
biogeochemical model. The variables of interest considered for the calibration are
total chlorophyll, phycocyanin and dissolved oxygen. These variables are highly
representative of biological processes in aquatic ecosystems. Total chlorophyll is a
proxy for total biomass growth and is the variable on which most alert guidelines for
harmful algal blooms monitoring are based; phycocyanin, being a pigment proper
of cyanobacteria can be considered as an indicator of their presence. Finally, the
concentration of dissolved oxygen, especially in an eutrophic environment, can be
considered as one of the result of the processes of growth, mortality, organic matter
decomposition and nutrient recycling.

In order to make the data set suitable for the application of the automated
calibration, raw measurements of the three variables needed to be converted in the
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appropriate units used in model simulations, namely: [g C m−3] for cyanobacteria
and [g O m−3] for oxygen concentration, while total chlorophyll is one of the
outputs of the model. Observed dissolved oxygen concentration was converted from
percentage of saturation into [g O m−3] using the empirical equation proposed by
Weiss (1970), together with high-frequency water temperature data. Phycocyanin
was first converted into equivalent of chlorophyll through a conversion factor deduced
by comparison with monthly profiles taken in situ with the BBE FluoroProbe profiler,
and finally to carbon content using the stoichiometric ratio C/Chl. value of 0.03,
typically found in scientific literature. Furthermore, profiles taken on the 25th of
July with the BBE FluoroProbe were used to set and validate the initial conditions
of the model in terms of [µg Chl-a l−1].

The methodology used for the automated calibration are based on a recently
developed approach combining Approximate Bayesian Computation (ABC) and
Random Forests (RF) denoted ABC-RF in the sequel. This approach is described in
section 6.4. In section 6.5, we then introduce a calibration procedure that is based
both on the ABC-RF and on a sensitivity analysis of the model outputs.

6.3 Short-term trial and error calibration
The hydrodynamic model Delft3D-FLOW was calibrated based on high-frequency

water temperature values at the surface and bottom layers at site B. Three paramters
were included in the calibration: the Secchi depth, and the Stanton and Dalton
numbers. They were respectively set to 1 m, 0.00145 [-] and 0.0015 [-]. RMSE values
were satisfying for both the surface and bottom layers (respectively: 0.6 and 0.5 °C,
see Figure 6.1a).

Delft3D-BLOOM was first calibrate through trial and error procedure by com-
parison with high-frequency observations of dissolved oxygen, total chlorophyll and
cyanobacteria concentration. This was done to understand the behavior of the model
when its parameters are varied, to detect parameters with very low influence on the
models results relatively to the target variables and ultimately to gain the expertise
necessary to set up and implement the automated calibration through Approximate
Bayesian Computation. Most of the parameters included in the model configuration
were varied. However, only a reduced number of the model parameters was actually
calibrated. Such parameters deal directly with phytoplankton growth and mortality
and are listed in table 6.1, together with their calibrated values.

The main objective of this initial calibration was to tune the model parameters to
roughly reproduce the timing of growth and mortality recorded by the high-frequency
observations, focusing in particular on total chlorophyll data. This was done to
ensure that the model was capable of reproducing such dynamics in a short period
of time of only a few days, before the application of the automated calibration
methodology.

Model results after this preliminary calibration are shown in panels b, c and d
of Figure 6.1. The model correctly reproduces the timing of the chlorophyll peak
and the overall dynamics of growth and mortality. However, the results are not
satisfactory: total chlorophyll (Fig. 6.1c) is strongly overestimated, as are oxygen
consumption (Fig. 6.1b) and cyanobacteria concentration (Fig. 6.1d). Given the
parameters in table 6.1 and the environmental conditions, the competition principle
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Table 6.1 – Values of the parameters resulting after the trial and error calibration of
the model Delft3D-BLOOM. In the first column, the different phenotypes of
the four activated phytoplankton groups are indicated as: E (energy limited
phenotype), P (phosphorus limited phenotype), and N (phosphorus limited
phenotype).

Growth Temperature Mortality Temperature
rate coeff. growth rate coeff. mort. N/C P/C Chl-a/C

[1 d−1] [1 d−1]
Diat. (E) 0.45 1.06 0.035 1.08 0.21 0.018 0.04
Diat. (P) 0.45 1.06 0.045 1.085 0.188 0.0113 0.025
Flag. (E) 0.45 1.06 0.035 1.08 0.275 0.018 0.029
Flag. (P) 0.45 1.06 0.045 1.08 0.275 0.018 0.029
Greens (E) 0.45 1.06 0.035 1.08 0.275 0.0238 0.033
Greens (N) 0.45 1.06 0.045 1.085 0.175 0.015 0.025
Greens (P) 0.45 1.06 0.045 1.085 0.2 0.0125 0.025
BG (E) 0.3 1.06 0.035 1.08 0.225 0.0188 0.033
BG (N) 0.3 1.06 0.045 1.085 0.125 0.0188 0.02
BG (P) 0.3 1.06 0.045 1.085 0.15 0.015 0.02

at the basis of primary production in BLOOM does not manage to distribute the
biomass correctly, at least in terms of cyanobacteria.

Results from this preliminary calibration tests show that the model is able to
simulate rapid dynamics of growth and mortality spanning a few days, and that
its results still need to be improved through further calibration. Eventually, this
configuration was used as a starting point for the implementation of the Approximate
Bayesian Computation.

6.4 Approximate Bayesian Computation

6.4.1 General framework

Approximate Bayesian Computation (ABC) is a class of computational methods
rooted in Bayesian statistics first proposed by Beaumont in 2002 (Beaumont et al.
2002). It allows for parameter inference without the need to explicitly compute
the likelihood function (Sunnåker et al. 2013). Developed in the field of population
genetics, it has quickly grown as a solid alternative to likelihood-based methods
for model calibration and it has already been applied in evolutionary biology and
ecology (Csilléry et al. 2010). Given a model M(x, θ) where x are the variables
and θ the parameters, and a data set D that is composed of the observed values of
the variables x, the posterior probability of the model parameters can be obtained
through the Bayes’ theorem:

π(θ|D) = π(D|θ)π(θ)
π(D) (6.1)

where π(θ|D) is the conditional probability of the model parameters given the
observations D (the posterior probability), π(D|θ) is the conditional probability of
the observations given the parameter values (the likelihood function), π(θ) is the prior
distribution of θ, and π(D) is the marginal probability of the data. The marginal
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a)

b)

c)

d)

Figure 6.1 – Comparison of model results (solid lines) and high-frequency observations
(dotted lines) for water temperature (a), dissolved oxygen (b), total chlorophyll
(c) and cyanobacteria (d) concentration relatively to the calibration period in
the summer of 2018. In panel a, blue lines represent surface water temperature,
and red lines bottom water temperature; in the remaining panels, both
observations and model results are relative to the middle layer of the water
column at site B.
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probability can be considered as a normalizing constant and is often neglected in
applications where model intercomparison is not involved. In Bayesian inference, the
desired posterior probability can therefore be described through the prior distribution
and the likelihood function.

The evaluation of the likelihood function, however, represents the real challenge.
It is analytically intractable for most applications, and its estimation through
standard computational methods (such as Markov Chain Monte Carlo algorithms) is
computationally highly expensive, especially when the dimension of the considered
model grows (Csilléry et al. 2010, Sunnåker et al. 2013). The idea at the core of
ABC is to bypass the explicit evaluation of the likelihood function, directly obtaining
an approximation of the posterior probability distribution.

To do so, prior probability distributions are first defined for the model parameters.
The modelM is then used to generate a large set of simulations by randomly sampling
the parameters values, according to their priors (van der Vaart et al. 2015). The
posterior distributions can eventually be estimated through the application of a
rejection algorithm or of machine learning techniques.

6.4.2 Standard ABC

In its standard form, the ABC usually consists of three main steps: (i) sample
parameter values from the prior distribution, (ii) obtain a simulated data set D̂
by running the model M for each sampled value of θ, and (iii) retain a fraction of
the sampled parameters by comparison of D̂ with the observed data D, in order to
approximate their posterior distribution (Burr & Skurikhin 2013). Namely, the rejec-
tion algorithm discards a sampled parameter set if the distance (ρ) between D̂ and
the observations D exceeds a certain threshold (ε). However, as the dimensionality
of the data increases, the probability of satisfying the acceptance condition decreases.
Both observations (D) and simulated data (D̂) are therefore replaced with a set
of lower dimensional summary statistics (S(D), S(D̂)) (Stumpf 2014), that will be
more accurately described in section 6.4.4. The rejection criteria therefore writes:

ρ(S(D), S(D̂)) ≥ ε (6.2)

When repeated a sufficient number of times, the outcome of this procedure is
a sample of parameter values approximately distributed according to the desired
posterior distribution (Sunnåker et al. 2013). Note that a large number of sampled
parameters θ and therefore an equal number of simulations D̂ are necessary to obtain
a robust posterior distribution.

The formulation for the distance ρ, the threshold ε and the summary statistics
are choices that the modeller has to take when applying this procedure.

6.4.3 ABC random forest

In its standard form, ABC retrieves the posterior parameters distribution starting
from the set of model simulations through a rejection algorithm (Burr & Skurikhin
2013). This entails the definition of a tolerance level separating acceptance from
rejection. However, such threshold is arbitrary and should be calibrated for each
particular application (Simola et al. 2021). To overcome this issue, Raynal et al.
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(2019) proposed to substitute the distance-based rejection algorithm with a machine
learning technique, namely the random forests (RF). At the expense of introducing a
few parameters defining the structure of a RF, this allows to overcome the definition
of the tolerance level.

A regression tree is a structure made of binary nodes, that are of two types: the
internal nodes and the terminal nodes (the leaves). It can be automatically built by
iteratively dividing a training dataset into subsets of increasing uniformity, until a
certain condition is satisfied. Namely, the process of growth of the tree continues
until all terminal nodes either (a) have less than n data points (with n possibly
equal to 1), or (b) are “pure”, that is all elements in a node have (almost) the same
outcome.

With such a process, we can build a regression tree to get an estimation of the
value of θi ∈ R, the ith component of the model parameters vector θ. This tree will
be trained on a training set of k summary statistics X(k) (see section 6.4.4), which
are computed from the set of model simulations. Once the tree is trained, we can
apply it on the observed dataset D and get the estimated value of the parameter θi.

A random forest consists in aggregating (or bagging) randomized regression trees.
A large number of trees (ntree) are trained each on a different bootstrap subsample
taken from the complete available training dataset. Furthermore, only a subset of
mtry summary statistics among the k available are randomly considered at each node
for splitting (Raynal et al. 2019). The estimations obtained by the ntree regression
trees can be treated and used to obtained a posterior probability distribution for the
parameters θi. Eventually, once the random forest is grown, different choices can be
made for the inference of the parameter value (see section 6.4.6). For example, the
final calibrated value of θi can be determined by averaging all the ntree predictions
obtained in the random forest, or by taking the most probable value from the
posterior distribution.

In the present study, we tested a first calibration procedure that relies on the
assumption that the model parameters can be considered independent of each other.
In that case, the ABC-RF method is applied separately once for each parameter
of the model. This way, one RF is built for each parameter and the associated
approximate posterior distributions can be plotted, from which an estimate value of
the parameters are deduced (see section 6.4.6). The different steps of this calibration
procedure are summarized in Algorithm 1. In the sequel, this calibration procedure
will be referred as ABC-RF.

For the implementation of the ABC-RF, we make use of a specific R package
(regAbcrf ), developed by Raynal et al. (Raynal et al. 2019) for ABC-RF parameter
inference. The configuration of the ABC-RF only needs the definition of two main
arguments: (i) the number of trees to grow in the random forest (ntree), and (ii)
the number of variables among which to choose for splitting at each node (mtry).
For the former, different values have been tested (see section 6.6.1) while the latter
was set to its default value, which is the maximum between 1 and the number of
variables divided by 3.
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Algorithm 1: ABC-RF
Data: N: number of parameters to be calibrated

M: number of summary statistics
Xk: summary statistics (k = 1:M)

Result: estimated value θ̂i of θi for i = 1:N

1 for i=1:N do
2 Application of ABC-RF to estimate the parameter θi from the set of

summary statistics {Xk, k = 1 : M} → approximate posterior
distribution of θi

3 Determination of the estimated value θ̂i of θi from the approximate
posterior distribution of θi

4 end

6.4.4 Prior distributions and summary statistics

The number of model runs used here to test ABC (standard and RF) on the
Delft3D-BLOOM was set to 30000. The model was run 30000 times drawing
parameters randomly from the user-assigned prior distributions. Depending on
previous knowledge, for each parameter either a uniform or a gamma distribution
was chosen. Gamma distributions were defined for most of the parameters, using
their default value as mean of the distribution and setting a standard deviation of
20%. The choice of the gamma distribution is motivated by the fact that, unlike
normal distributions, it is defined only on positive values through the equation:

f(x) = xk−1e−
x
θ

Γ(k)θk (6.3)

where k and θ can be deduced once the mean value (m) and the standard deviation
(σ) are defined by the user, through:

m = k × θ, σ2 = k × θ2 (6.4)

A uniform density function was assigned to the parameters (such as the initial
conditions) for which very little information was available from literature or previous
studies, through the following equation:

f(x) = 1
b− a

I[a,b](x) (6.5)

where a and b represent the lower and upper bounds, respectively. The values of the
bounds a and b were set separately for the parameters based on the knowledge from
previous trial and error calibrations. For parameters with default values very close
to 0, the upper limit was set to 1.

Figure 6.2 shows, as an example, the prior distributions for four of the model
parameters included in the calibration routine. Gamma distributions were assigned
to the two parameters in panels a and b (TcPMxGRE_N and PPMaxGRE_N,
respectively the temperature coefficient for growth, and the growth rate for green
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algae under nitrogen limiting conditions), while uniform distributions were chosen
for the two parameters in Fig. 6.2c and 6.2d.

In the case two parameters depend directly on each other’s value through a
known mathematical equation, a prior probability distribution was assigned to one of
the two parameters, and the remaining one was computed through the appropriate
equation. This is the case, for instance, of the parameters in panels c and d of
Figure 6.2, namely: the fraction of POC1 converted into DOC (b_poc1doc), and
the fraction POC1 converted to POC2 (b_poc1poc2), whose sum should be equal
to 1. A uniform probability distribution was assigned to the parameter b_poc1doc;
consequently, the remaining one also varied through a uniform distribution, via the
equation: b_poc1poc2 = 1− b_poc1doc.

Figure 6.2 – Examples of a priori distributions for four parameters. Panals a and b
illustrate the gamma distribution, while panels c and d illustrate the uni-
form distribution. Blue vertical line represent the reference values for the
parameters around which the distributions are built.

The use of summary statistics constitutes one significant advantage of ABC. The
most relevant aspects and traits of model runs and observations are summarized
into a set of user-chosen low-dimensional summary statistics, in order to gain
computational time and avoid the so-called curse of dimensionality (Prangle 2015).
Each of the 30000 model runs originated by the model M according to the prior
distributions is resumed through the summary statistics, and eventually stored in the
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so-called reference table, together with the corresponding parameter set. Ultimately,
the reference table constitutes the training data set on which ABC is applied.

The definition of the summary statistics is therefore crucial, as they replace
the model runs in the calibration procedure. Summary statistics should minimize
information loss and maximize dimension reduction (Csilléry et al. 2010). However,
their choice is also closely correlated to the processes subject of the study. Here,
we are mainly interested in the time evolution of a phytoplankton community,
in particular in terms of total population, cyanobacterial population and oxygen
consumption and production. Summary statistics are calculated on the complete
set of model runs as well as on the observed data for the three variables considered
for calibration: total chlorophyll, cyanobacteria and oxygen concentrations. Two
different summary statistics were tested: (i) the normalized square of residuals
between each model run (D̂) and the observation series (D) and (ii) the normalized
mean square error (NMSE) between D̂ and D. The summary statistics are used
here similarly to objective functions to be minimized. They have the particularity to
be dependent on the observation series D. This choice will be discussed in section
6.8.4.

The normalized square of residuals (R) is defined as follows:

R =
∑ ∫

(D̂ −D)2dt∫
D2dt

(6.6)

and was numerically approximated by use of numerical quadrature (function inte-
grate.xy of the R package sfsmisc).

The normalized mean square error (NMSE) was computed as defined in (Poli &
Cirillo 1993), and normalized via the product between the mean of model runs ¯̂

D
and that of the observations D̄:

NMSE = 1
N

∑
i

(D̂i −Di)2 ·
( ¯̂
D · D̄

)−1
(6.7)

6.4.5 Preselection of a subset of simulations

The ABC-RF method can be applied to the whole set of 30000 simulations or
on a subset of simulations. Such subset can be chosen in different ways. Here, our
objective is to minimize the error between model results and observation series.
For this reason, we decided to select the simulations that are the closest to the
observations. The preselection of a subset of simulations also reduces the dimension
of the reference table and, consequently, the computational time. For this purpose,
we calculated for each simulation the sum of the summary statistics (that is the sum
of the R or NMSE values of the variables): this value will be called “total R” or
“total NMSE” in the sequel. The set of simulations with the smallest values of total
R or total NMSE were selected for the subset.

6.4.6 Selection of parameter value from posterior distribution

The calibrated values of the parameters have to be determined from the obtained
posterior probability distributions. These distributions might present various local
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maxima which makes the selection of an optimal value for the parameters difficult.
Three options were therefore considered and tested in this study. Given an approx-
imate posterior distribution π(θ) for a parameter θ, the calibrated value θ̂ of the
parameter can be chosen as follows:
• option Pmax: the calibrated value is the one corresponding to the maximal

value of the approximate posterior probability distribution:

θ̂ = argmax(π) (6.8)

• option Pmed: the parameter is the median of the approximate posterior
probability distribution:

θ̂ = median(π) (6.9)

• option Pmix,k: it is a compromise between the two first options. Depending
on a criterion, θ̂ will be equal either to the most probable value (option Pmax) or
the median (option Pmed):

θ̂ =
{
argmax(π) if max(π) > k

θmax−θmin
median(π) elsewhere (6.10)

where θmin and θmax are the lower and upper bounds of the support of the approxi-
mate posterior distribution π (which is determined numerically and has therefore a
finite support), and k is a constant value that has to be chosen. In this study, we
will test the values k = 2, 3.

The option Pmax is well adapted to the case where the function π is sharp,
whereas the option Pmed is more suitable for flat functions (see Figure 6.6 as an
example). The option Pmix,k introduces a threshold to switch between the two first
options depending on the shape of the function π.

6.5 Combining ABC random forest and sensitivity anal-
ysis

If the model parameters can be considered independent from each other, the
ABC-RF can be applied to each parameter indepently from each other as it is done
in algorithm 1. However, the value of some of the model parameters might have a
non negligible influence on the remaining ones. In order to take into account the
possible mutual influence, we set up a different calibration procedure, that includes
a sensitivity analysis of the model outputs to the model parameters.

6.5.1 General procedure

Before applying the ABC-RF to the model parameters, a sensitivity analysis is
performed using the set of 30000 simulations that is available. This allows to estimate
which parameters have the greatest influence on the outcomes of the simulations
and to sort the parameters in a chart from the most to the least important. We can
then apply the ABC-RF method in a sequence starting from the most important
one, adding at each iteration the previously calibrated parameters to the set of
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summary statistics. The different steps of this calibration procedure are summarized
in Algorithm 2 and will be discussed in the paragraphs 6.5.2 and 6.5.3.

In the sequel, this calibration procedure will be referred as ABC-RF with SA or
ABC-RF SA.

Algorithm 2: ABC-RF with SA
Data: N: number of parameters to be calibrated

M: number of summary statistics
Xk: summary statistics (k = 1:M)
Si,k: sensitivity indices (i = 1:N, k = 1:M)

Result: estimated value θ̂i of θi for i = 1:N

1 Sorting the parameters according to the values of the sensitivity indices Si,k
→ vector σ of sorted sensitivity indices

2 for i=1:N do
3 Selection of a subset Y of summary statistics Xk

4 Application of ABC-RF to estimate the parameter θσ(i) from the set of
summary statistics

{
Y, θσ(1:i−1)

}
→ approximate posterior distribution

of θσ(i)
5 Determination of the estimated value θ̂σ(i) of θσ(i) from the approximate

posterior distribution of θσ(i)
6 end

6.5.2 Sensitivity indices and sorting

Performing a standard sensitivity analysis (based on Sobol or FAST methods)
directly to our set of 30000 simulations was not possible because the model param-
eters are possibly not independent from one another. To overcome this issue, the
methodology proposed in (Veiga et al. 2009) for models with correlated inputs was
adopted. Following this methodology, a sensitivity index was calculated for each of
the 133 parameters and for each summary statistic (namely the R and the NMSE
values) of the three variables (chlorophyll-a, phycocyanin and dissolved oxygen).
These indices represent the sensibility of the summary statistic of the variable to the
variation of the parameter. For each summary statistic and each parameter, three
sensitivity indices have therefore been obtained, one for each variable.

For a given summary statistic, two options were then tested to sort the parameters
based on the sensitivity indices obtained for the 133 parameters and the three
variables (step 1 of Algorithm 2):

• option “Max”: sort the parameters following the value of the greatest
sensitivity index among the three;

• option “Sum”: sort the parameters following the value of the sum of the
three sensitivity indices.
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6.5.3 Selection of a subset of summary statistics

In Algorithm 2, at each iteration of the loop on the model parameters to be
calibrated, we can choose a subset of summary statistics on which the calibration
will be applied (step 3 of Algorithm 2). If the parameters are sorted following the
values of the sum of the sensitivity indices, we chose to apply the calibration on the
whole set of summary statistics at each iteration. In the case where the parameters
are sorted following the value of the greatest sensitivity index, two options were
considered: the calibration was performed (i) either on the whole set of summary
statistics, (ii) or only on the summary statistic of the variable for which the sensitivity
index of the current parameter is the greatest.

6.6 Validation of the methodology

6.6.1 Preliminary tests

The calibration methodology was first applied to a set of simulated observations,
that is some data issued from a model simulation. The use of simulated observations
instead of real observations ensures the existence of a known parameter set with
which the model will reproduce the data correctly. This allows to test the capability
of the calibration methodology to reproduce both the simulated observations and
the parameter value in an ideal case where the model is exact.

Here, the simulation with the lowest total NMSE (i.e. the closest one to the
real observations, see section 6.4.5) among the 30000 model runs was selected,
and its results in terms of total chlorophyll, dissolved oxygen and cyanobacteria
concentration were used as simulated observations. Namely, the best simulation
is simulation number 4022, and was discarded from the reference table before the
application of the calibration methodology.

In order to choose the main characteristics of the ABC-RF (e.g. the number
of simulations constituting the training data set, and the number of trees used to
build the random forests), a series of preliminary tests were performed. Such tests
only regarded the classic ABC-RF formulation (see Algorithm 1). Namely, the tests
investigated the influence on the calibration outcomes of: the number of simulations,
the randomness inherent to the ABC-RF procedure, the use of a preselected subset
of simulations (according to section 6.4.5), the number of trees in the random forests,
and the different options for the selection of the parameters values from the posterior
distribution (see section 6.4.6). For these preliminary tests, only one summary
statistic was considered (NMSE). The tests are detailed here-after.

In order to test the influence of the number of simulations used in the ABC-RF,
various calibrations were carried out using subsets of increasing size of the complete
set of simulations. Namely, the number of simulations was varied between 2000 and
30000, with a 2000 step. The subsets were chosen in two ways. Either the elements
of each subset were chosen randomly or only the best simulations (in terms of values
of total NMSE) were selected as proposed in section 6.4.5. For these tests, the
number of trees was set to 500, and each calibration was performed ten times (with
the same parameters configuration) to test the variability of the results inherent to
the randomness of the method.
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Table 6.2 – Summary of the calibration runs performed for the preliminary tests, the
validation on simulated observations, and the application on real data.

a) Preliminary tests
Method of Summary Training Simulation Number Repetition Parameter
calibration statistic dataset size preselection of trees number value selection
ABC-RF NMSE 2000:2000:30000 random & closest 500 10 Pmax, Pmed, Pmix,2, Pmix,3
ABC-RF NMSE 2000:2000:30000 random & closest 250:250:2000 1 Pmax, Pmed, Pmix,2, Pmix,3

b) Application on simulated and real observations with
(i) preselection of the closest simulations for the training
dataset, (ii) 500 trees per random forest, (iii) no repetition
Method of Summary Training Parameter Sensitivity index Variables Number of
calibration statistic dataset size value selection based sorting used in calib. calib. runs

with the three variables
ABC-RF NMSE & R 10000 & 25000 Pmax, Pmed, Pmix,2, Pmix,3 - - 16

ABC-RF SA NMSE & R 10000 & 25000 Pmax, Pmed, Pmix,2, Pmix,3
Max One

48Max All
Sum All

with only real chlorophyll data
ABC-RF SA R 10000 & 25000 Pmax, Pmed, Pmix,2, Pmix,3 Max=Sum One=All 8

Similarly, eight calibrations were carried out with an increasing value of number
of trees. The number of trees was varied from 250 to 2000 with a 250 step and tested
for all simulation subsets. Each calibration was performed only one time.

For each of these tests, once the posterior distribution was obtained for each
model parameter, the four options defined in section 6.4.6 (options Pmax, Pmed,
Pmix,2 and Pmix,3) were applied. This provided several sets of estimated parameter
values. For each of these estimated parameter sets, the model was then run. The
so-obtained simulations were finally compared with one another by calculating the
total NMSE between model results and simulated observations.

A summary of all the calibration runs performed for the preliminary tests is
given in Table 6.2a.

The most relevant results of the tests that investigate the influence on the
calibrated model output of (i) the number of simulations used as training dataset,
(ii) the uncertainty deriving from the inherent randomness of the ABC-RF, and
(iii) the use of preselected simulations as training dataset are highlighted in Fig.
6.3. The Figure shows the evolution of the total NMSE between calibrated model
outcomes and simulated observations, according to the size of the simulations subset
used for the calibration. Panel a), is relative to subsets with randomly selected
simulations, while panel b) is relative to preselected simulations (see section 6.4.5).
For each subset size, ten calibration runs were carried out. The resulting values
of total NMSE are plotted in Fig. 6.3 as a series of box-plots. On the box-plots,
the red “minus” and “plus” symbols indicate the median and the mean values of
the ensemble, respectively; the bottom and top edges of the box respectively mark
the 25th and 75th percentiles. Eventually, the maximal and minimal values of the
ensemble are marked through the whiskers extent. Fig. 6.3 shows the calibration
results obtained with the option Pmix,2 only; similar results have been obtained for
the other options of parameters values selection.

The results in Fig. 6.3 show that in the case of randomly selected simulations
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Figure 6.3 – Total NMSE between the simulated observations and the model results
calibrated through the ABC-RF calibration, according to the size of the
simulations training subset. Panel a): randomly selected subsets; panel b):
subsets of preselected simulations. The box-plots represent relevant statistical
characteristics of the ensembles of ten equivalent runs of ABC-RF calibration.
The red “minus” and “plus” symbols indicate the median and the mean
values of the ensemble, respectively. The bottom and top edges of the boxes
respectively mark the 25th and 75th percentiles, and the maximal and minimal
values of the ensemble are marked through the whiskers extent. Eventually,
the red solid line in panel a) represents, for a direct comparison, the mean
values of the box-plots in panel b). Vice-versa for the red solid line in panel
b). The number of trees was set to 500 and the option for parameters values
selection is Pmix,2.
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(panel a) both the average error and the variability of the calibration runs (i.e. the
extent of the box-plots) decrease strongly for subsets of at least 20000 simulations.
In particular a minimum of both the total NMSE value and the variability was
detected for the case of 24000 simulations. Panel b) of the same figure, shows that
the pre-selection of the best simulations largely improves the results of the calibration
procedure, both in terms of average total NMSE and of variability. In the case of
preselected subsets, both the average error and the variability appear to be rather
independent from the number of simulations used for the calibration, as they do
not vary strongly with the increase of the subset size (except for the cases of 18
and 22 thousand simulations where the mean values and the variability are greater,
perhaps because of the randomness of the method and of the number of repetitions
not high enough). Minima can be found for ten and twelve thousand simulations.
With randomly selected subsets, in order to obtain performances comparable to the
case of preselected subsets in terms of total NMSE and variability, at least 20000
simulations are needed as training dataset.

The tests carried out on the number of trees used to build the random forests
did not show any particular influence on the calibration outcomes, that did not
consistently improve as the number of trees was increased, neither in terms of total
NMSE nor in terms of variability.

The options for the choice of the parameters values from the posterior distribution
did influence the outcomes of the model. However, in this regard the preliminary
tests did not show clear and concluding results, and it was not possible to identify
one option that performed consistently better than the others for the three variables
at the same time. For this reason, all four options (Pmax, Pmed, Pmix,2 and Pmix,3)
will be tested in the subsequent applications.

To conclude, the tests described above indicate that, for the model under consid-
eration, a training set of at least 24000 randomized simulations is required in order
to minimize the error and the variability of the ABC-RF methodology. In the case
of preselected simulations, comparable results can be obtained with a smaller set of
around 10000 simulations. The number of trees didn’t show a strong effect on the
outcomes of the calibration procedure, and none of the four options implemented
for the choice of the parameters values could be preferred over the others.

6.6.2 Application on simulated observations

Following the results of the preliminary tests presented in section 6.6.1, the
ABC-RF (algorithm 1) and the ABC-RF with SA (algorithm 2) were tested and
compared under two configurations: using a subset of either (i) 10000 or (ii) 25000
preselected simulations. In both cases, the number of trees used to build the random
forests was set to 500, and both R and NMSE were tested as summary statistic. In
the case of ABC-RF with SA, the three possible combinations of parameters sorting
options (section 6.5.2) and options of selection of a subset of summary statistics
(section 6.5.3) were tested. Furthermore, the four options for the choice of the
parameters values (options Pmax, Pmed, Pmix,2 and Pmix,3) described in section 6.4.6
were also examined for each calibration.

The combination of all the methodologies (ABC-RF and ABC-RF with SA),
configurations and above-described options results, for each summary statistic, in
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a set of eight calibration runs with the ABC-RF, and 24 calibration runs with the
ABC-RF with SA (i.e., 64 calibration runs overall) that are summarized in Table 6.2
b). Model simulations were then carried out with the 64 estimated parameters sets,
and their outcomes were compared to the appropriate set of observations through
the value of total R or total NMSE, coherently with the choice of the summary
statistic.

The ABC-RF (algorithm 1) and ABC-RF with SA (algorithm 2) were first tested
using the set of simulated observations (as described in section 6.6.1).

In that case, the estimated parameter values were also compared with the known
parameter values used to generate the simulated observations. To do so, the error
(e) between calibrated and known parameters was calculated, normalized over the
range of variability allowed for each parameter, and converted into a percentage:

e = |θcalib − θtrue|
θmax − θmin

· 100 (6.11)

where θcalib is the value of the calibrated parameter, θtrue is the known parameter
value used to generate the simulated observations, and θmax and θmin are the values
of θ above and below which the prior distribution takes values smaller than 0.05.

Broadly speaking, the results of the calibration procedure in terms of model
outcomes were similar whether R or NMSE are used as a summary statistic. The
overall best calibration being obtained with R as summary statistic, results using
NMSE will not be discussed.

The eight best calibration runs (in terms of total R value) for the ABC-RF with
SA with R as summary statistic are listed in table 6.3, along with the two best
calibration runs for the ABC-RF without SA. In the table, for each calibration run
are given the number of preselected simulations (10000 or 25000), the name of the
method (ABC-RF or ABC-RF with SA), the options used for the calibration, and
the value of the total R. The definition of the different options of the ABC-RF
with SA are given in section 6.5.2, 6.5.3 and 6.4.6. The calibration runs are sorted
according to the total R value.

The best overall calibration run (the one with the lowest value of total R) is
obtained with the larger set of 25000 simulations. Its total R value (0.057), is
sensibly lower than all the remaining calibration runs. However, the remaining
seven calibration runs presented in table 6.3 for the ABC-RF with SA also show
good model performances. In particular, the use of the smaller preselected training
data set does not deteriorate model performances. Notably, the second best overall
calibration (total R=0.109) is obtained with the 10000 preselected simulations.

The implementation of the sensitivity analysis in the ABC-RF methodology
strongly improves model outcomes when compared both to the ABC-RF. All calibra-
tion runs included in table 6.3 that make use of the SA show total R values five to ten
times lower than those obtained through the classic ABC-RF. The implementation of
the SA in the ABC-RF framework therefore appears to be crucial for the application
of ABC to a complex process-based model.

The two best calibration runs are plotted for the three variables of interest in
Fig. 6.4, along with the simulated observations. Total chlorophyll (Fig. 6.4a) shows
the strongest differences among model runs. The best overall calibration run (red
line) follows very closely the simulated observations, correctly reproducing the daily
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Table 6.3 – Application to the simulated observations. List of the calibration runs with the
lowest total R values for the ABC-RF with SA (eight best runs) and without
SA (two best runs), sorted according to the total R value. The characteristics
of each calibration run are detailed in terms of: size of training data set,
calibration method, sorting of the sensitivity indices, variables used in the
calibration, and option for selecting the parameter value (see sections 6.5.2,
6.5.3 and 6.4.6).

Training Method of Sensitivity index Variables Parameter Total
data set size calibration based sorting used in calib. value selection R

25000 ABC-RF SA Max One Pmax 0.057
10000 ABC-RF SA Sum All Pmix,3 0.109
25000 ABC-RF SA Sum All Pmed 0.115
10000 ABC-RF SA Max All Pmax 0.125
10000 ABC-RF SA Sum All Pmix,2 0.127
25000 ABC-RF SA Sum All Pmax 0.137
10000 ABC-RF SA Max All Pmix,2 0.137
25000 ABC-RF SA Max All Pmax 0.138
25000 ABC-RF - - Pmed 0.594
10000 ABC-RF - - Pmed 0.671

Figure 6.4 – Time series of total chlorophyll (a), cyanobacteria (b) and dissolved oxygen (c)
concentrations for the two best calibration runs and the simulated observations
(dashed grey lines). The best overall calibration run (red lines) is obtained
with a set of 25000 simulations, while the second best (blue lines) with a set
of 10000 preselected simulations.
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oscillations. The second best calibration (blue line) shows an anticipated and slightly
overestimated peak of chlorophyll.

Both the calibration runs plotted in the Figure give good results in terms of
cyanobacteria (Fig. 6.4b), with a slight underestimation of the second best calibration
(blue line) in the last days of the bloom event, and oxygen concentration (Fig. 6.4c).

As shown by the attributes featured in Table 6.3, the two best calibration runs
plotted in Fig. 6.4 are obtained through different configurations of the ABC-RF
with SA. Namely, the overall best calibration run, which is performed on the set of
25000 simulations, was obtained by sorting the parameters based on the value of
the greatest sensitivity index among the three variables of interest (option “Max” in
section 6.5.2), and by calibrating each parameter only using the summary statistic
of the corresponding most influential variable (see section 6.5.3). The second overall
best calibration (subset of 10000 simulations) is obtained by using the opposite
options for the parameters sorting and the selection of summary statistics used for
the calibration (see sections 6.5.2 and 6.5.3). The options for the selection of the
parameter values from the posterior distribution are also different for these two
calibrations runs (Pmax and Pmix,3).

The use of simulated observations assures the existence of a known parameter
set that yields to a correct reproduction of the data. The difference between the
calibrated parameters sets and the original one of the two best calibration runs (i.e.
those plotted in Fig. 6.4) have been quantified by means of the error e defined in
equation (6.11). Panels a and c of Fig. 6.5 show the values of the error e for the
parameters of the two best calibration runs: the second best calibration (obtained
with a subset of 10000 simulations, Fig. 6.5a), and the best overall calibration
(obtained with a subset of 25000 simulations, Fig. 6.5c).

The error bars in panels a and c of Fig. 6.5 are sorted according to the sensitivity
indices calculated for the parameters in the corresponding calibration run (see section
6.5.2 and table 6.3 for details). Only the 30 most relevant parameters (in terms of
values of sensitivity index) are shown. The sensitivity indices used for sorting the
parameters are plotted through a heat chart in figures 6.5b (second best calibration
run), and 6.5d (overall best calibration run). Their values are here normalized over
the sum of the indices and converted into a percentage of importance.

As shown by figures 6.5b and 6.5d, the order of importance of the parameters
varies only slightly between the two calibration runs. In particular, concerning the
ten most important parameters, the main differences between the two calibration
runs are the permutation of the second and third most important parameters and a
ninth parameter, which changes from a flagellate’s growth rate (for the run with
10000 preselected simulations), to the Chl:C ratio for flagellates (for the run with
25000 simulations). Panels b and d also show that the percentage of importance
of the parameters decreases rapidly: for both calibration runs it is around 20% for
the most important parameter, and drops under 5% after the parameter in tenth
position.

In terms of error, the two calibration runs from Fig. 6.5 show different behaviours.
The second best run (panel a) has rather low errors for the ten most important
parameters, smaller than 25%. The errors grow over 40% only for parameters with
very low impact on the model outcomes.

On the other hand, the overall best calibration run (panel c), shows considerable
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Figure 6.5 – Normalized error e (see equation (6.11)) between the estimated parameters
set and the one used to generate the simulated observations (a and c) and
associated color chart showing the sensitivity indices for the 30 most influential
parameters (b and d). Panels a) and b) are relative to the best calibration
run with a subsample of 10000 simulations. Panels c) and d) are relative to
the best calibration run with 25000 simulations. Both color charts are plotted
with a logaritmic scale.

errors for the most important parameters (around 60% for the most important
one, and around 30% for the second and third). Low errors are then found for the
remaining parameters up to the tenth position. After the tenth position, the errors
increase without a specific pattern, similarly to what found in panel a. Despite such
large errors in the estimation of the most relevant parameters, the ABC calibration
represented in Fig. 6.5c eventually manages to give the overall best results.

The application of ABC-RF with SA influences the parameters posterior distri-
butions. As the number of summary statistics used for the calibration increases at
each iteration of the algorithm 2, the resulting posterior distributions tend to be
smoother and less irregular compared to those obtained through the classic ABC
RF, for which the same summary statistics are used for the calibrations of all the
parameters, that are independent from each other. This smoothing effect increases
with the number of iterations of algorithm 2, but can already be noticed after only
a few iterations and therefore on most of the parameters.

Figure 6.6 shows, as an example, the posterior distribution estimated by a run of
the ABC-RF (panels a and c) and of the ABC-RF with SA (panel b and d) for the
two parameters, namely the seventh (panels a and b) and the 80th (panels c and
d) in order of importance according to the sensitivity analysis shown in Fig. 6.5d.
Already at the seventh iteration, the posterior distribution appears to be sensibly
smoother in the case of the ABC with SA (Fig. 6.6b). This is even more striking for
parameters further on in the calibration loop, such as that of figures 6.6c and 6.6d.

In particular, such smoothing has a strong impact in the choice of the parameter
values. In Fig. 6.6a, at least four parameter values sensibly different correspond
to local maxima with similar probability density. In Fig. 6.6b, even though local
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Figure 6.6 – Examples of posterior probability density for two parameters: PPMaxBLU N
(growth rate of cyanobacteria under Nitrogen-limiting conditions, panels a
and b) and ExtVIFFL E (specific light extinction coefficient for flagellates
under light-limiting conditions, panels c and d). The corresponding values for
Pmax, Pmed, Pmix,2, Pmix,3 are also compared. Panels a and c are relative
to the aplication of the ABC-RF to a subset of 25000 simulations. Panels
b and d are relative to the ABC-RF with SA, applied to a subset of 25000
simulations.
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maxima are still present, the most probable parameter value is more simply detectable
from the estimated posterior distribution.

The shape of the posterior distribution also affects the outcomes of the four
options described in section 6.4.6. For the posterior distribution of Fig. 6.6b (ABC-
RF with SA), Pmix,2 and Pmix,3 both coincide with Pmax, while in the case of the
classic ABC-RF (Fig. 6.6a) Pmix,3 coincides with Pmax, and Pmix,2 with Pmed.

6.7 Application on real data
After validation of the calibration procedures on the simulated observations, the

ABC-RF (algorithm 1) and ABC-RF with SA (algorithm 2) were tested using the
set of real data as observations. The 64 calibration runs described in section 6.6.2 in
the case of simulated observations (and summarized in Table 6.2 b)) were applied to
the real data set.

Finally, we tested the ABC-RF with SA using only one of the three variables
(i.e. as if observations were recorded for only one variable). To do so, we decided
to focus on total chlorophyll, one of the variables most commonly measured in the
framework of freshwater ecological studies. This was done with two main objectives:
(i) to assess the quality of the calibration when only one variable is targeted; (ii) to
test the capacity of the calibrated model to simulate the two remaining variables
when they are not included in the calibration. For this test, only the ABC-RF with
SA was applied and the summary statistic relative to total chlorophyll was the only
one used. Similarly to the previous calibration runs, two preselected subsets of
10000 and 25000 simulations were tested, but the selection was based on the total R
values of the total chlorophyll a only. The four options described in section 6.4.6 for
parameter values selection were considered. The two options for parameters sorting
(see section 6.5.2) and the two options for selection of a subset of summary statistics
(see section 6.5.3) being the same when only one variable is considered, we eventually
performed eight calibration runs that are summarized in Table 6.2b.

Similarly to the application to the simulated observations, also when applied
to the real observations the two summary statistics (R and NMSE) lead to similar
results. As the best overall calibration is obtained with R in the application to real
observations, only the results obtained with this summary statistic will be presented
in the following.

Table 6.4 sums up the best calibration runs obtained with the ABC-RF with SA
(eight runs) and the ABC-RF without SA (two runs) applied to the real observations,
using R as summary statistic. In the table, the calibration runs are sorted according
to the total R value, which is also given in the table, as well as the characteristics of
each calibration run. The R value for the closest simulation to the real observations
(simulation number 4022, see section 6.6.1) is also provided as a benchmark.

As it was already highlighted in section 6.6.2, the use of the sensitivity analysis
through the implementation of the ABC-RF with SA (algorithm 2) is crucial for
making the ABC suitable to a complex model such as the one under examination.
Indeed, only the calibration runs with ABC-RF with SA lead to values of total R
smaller than the one of the best simulation (simulation number 4022). The best
calibration runs of the ABC-RF without SA are reported in table 6.4 for the cases
of 10000 and 25000 simulations subsets, and show considerable poor performances,
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Table 6.4 – Application to the real observations. List of the calibration runs with the
lowest total R values for the ABC-RF with SA (first eight runs) and without
SA (first two runs), sorted according to the total R value. The characteristics
of each calibration run are detailed in terms of: size of training data set,
calibration method, sorting of the sensitivity indices, variables used in the
calibration, and option for selecting the parameter value (see sections 6.5.2,
6.5.3 and 6.4.6). The total R value for the closest simulation to the simulated
observations is also provided as a benchmark.

Training Method of Sensitivity index Variables Parameter Total
data set size calibration based sorting used in calib. value selection R

10000 ABC-RF with SA Sum All Pmix,3 0.282
25000 ABC-RF with SA Sum All Pmax 0.327
10000 ABC-RF with SA Sum All Pmax 0.341
10000 ABC-RF with SA Sum All Pmix,2 0.342
25000 ABC-RF with SA Sum All Pmix,2 0.343
10000 ABC-RF with SA Max All Pmax 0.344
25000 ABC-RF with SA Max All Pmix,2 0.345
10000 ABC-RF with SA Max All Pmix,2 0.346
25000 ABC-RF - - Pmed 0.594
10000 ABC-RF - - Pmed 0.671

Sim. number
Best simulation: 4022 0.368

with a total R around two times greater than the one of the best overall calibration
run.

The best overall calibration run is here obtained with the smaller set of 10000
simulations, and through the implementation of algorithm 2 (ABC-RF with SA).
With a total R value of 0.282, it is sensibly better than the other calibration runs.
Namely, results from the second overall best calibration run, obtained through the
larger set of 25000 simulations, lead to a total R value 16% greater (R=0.327). This
total R value is 21% greater for the third best calibration run.

In terms of characteristics, the five best calibration runs are all obtained by
sorting the parameters based on the value of the sum of the sensitivity indices
over the three variables (option “Sum” in section 6.5.2). However, none of the four
options for the selection of parameter values from the posterior distribution appears
to be preferable compared to the others.

The best overall calibration run is shown in Figure 6.7 (red lines), along with the
observation series (dashed grey lines) and the closest simulation to the observation
from the training dataset (simulation number 4022, black lines). When compared to
simulation 4022, model performances improve after the calibration with the ABC RF
and SA of around 24%. Namely, the peak of chlorophyll is more correctly modelled
by the best calibration run, both in terms of timing and of maximal concentration;
cyanobacteria concentration is also more precisely simulated, especially during the
growing phase. Concerning oxygen concentration, the calibration of the initial
condition allows to avoid underestimation in the second half of the simulations.
After calibration with the ABC-RF with SA, the model seems therefore to be able
to correctly reproduce the general behaviour for all three variables. However, the
amplitude of the observed daily variations is strongly reduced in the model results,
in particular in terms of total chlorophyll and oxygen concentration.

The ABC-RF with SA analysis was eventually applied using only the total
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chlorophyll dataset. Several calibration runs with different options and configurations
were performed as introduced at the beginning of the present section. The best
calibration run, that was selected on the basis of the R value for total chlorophyll
only, was obtained with a subset of 10000 preselected simulations. It is plotted in
Fig. 6.7 (purple lines). In terms of total chlorophyll (panel a), the performance of
this calibration run is better than the best calibration obtained on the complete
dataset (red lines), with R values (of total chlorophyll) respectively equal to 0.0764
and 0.0929. However, the improvement obtained by focusing only on one variable
is marginal (roughly 15%), especially when results in terms of the two remaining
variables are considered. Panels b and c of Fig. 6.7 show how the phytoplankton
growth is attributed to species other than cyanobacteria, and how erroneous anoxic
conditions are simulated in this case by the model. Namely the total R of the
simulation calibrated only on total chlorophyll is equal to 1.377, whereas that of
the overall best calibration run is equal to 0.282. Finally, in this application the
alternatives for parameter selection Pmix,2 and Pmix,3 always coincided with Pmax,
suggesting particularly peaked posterior distributions.

The calibration using only total chlorophyll data was not sensibly improved by
the use of a larger subset of 25000 simulations, with R equal to 0.0761 for total
chlorophyll and a total R on the three variables of 1.377.

6.8 Discussion

In this study, Approximate Bayesian Computation with random forest (ABC-RF)
was tested for the calibration of a complex highly-parametrized biogeochemical
model. The calibration procedure focuses on three variables: total chlorophyll,
cyanobacteria and dissolved oxygen concentrations, that are particularly relevant in
aquatic ecology and for the management of water resources.

6.8.1 A novel approach for parameter inference

Approximate Bayesian computation is a methodology that quickly became a
standard technique for parameter inference (Beaumont et al. 2002, Toni et al. 2009,
Raynal et al. 2019). Even though ABC theoretically enables Bayesian inference for
models of almost arbitrary complexity (van der Vaart et al. 2015, Beaumont 2010,
Csilléry et al. 2010), both deterministic and non-deterministic (Toni et al. 2009), the
ensemble of ABC methodologies has not yet been tested against highly-parametrized
deterministic models. To the best of our knowledge, our application to the biogeo-
chemical model Delft3D-BLOOM is the first to test any ABC-based methodology
for the calibration of a complex physically-based model with so many parameters to
be calibrated.

Novelty of the work
To date, most applications of ABC for parameter inference in scientific literature
either make use of its standard formulation, in which the posterior distribution is
estimated through a rejection algorithm (e.g. Lagarrigues et al. 2015, van der Vaart
et al. 2015, Dominguez Almela et al. 2020), or focus on methods that improve the
robustness and efficiency of the rejection algorithm (e.g. Markov chain Monte Carlo
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Figure 6.7 – Time series of total chlorophyll (a), cyanobacteria (b) and dissolved oxygen
(c) concentrations for: real observations (dashed grey lines), closest simulation
to the data (simulation n. 4022, black lines), best overall calibration run
(red lines), and the best calibration considering only total chlorophyll (purple
lines).
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(Marjoram et al. 2003) or sequential Monte Carlo methods (Sisson et al. 2007, Toni
et al. 2009, Beaumont et al. 2009)).

The ABC random forest, proposed in 2019, allows to surpass the rejection
algorithm in favour of machine learning techniques (Raynal et al. 2019). Only a
few applications of this recent methodology can be found at present in scientific
literature outside of (Raynal et al. 2019) (e.g.(Chapuis et al. 2020, Estoup et al.
2018)). The ABC-RF was tested here in its original form as proposed by Raynal
et al. (2019), and in a novel framework where results from a sensitivity analysis are
integrated in the calibration procedure to take into account the mutual influence
between the model parameters and their relative importance with respect to the
model outputs.

Preliminary tests were carried out on the ABC-RF in order to define a robust
configuration in terms of the size of the training data set and of the number of
trees in the random forests. These tests show that at least 25000 simulations are
needed as a training data set to obtain a good calibration of the three variables
under consideration. A comparable value of 20000 simulations was found in a
similar application for a model with less parameters (Lagarrigues et al. 2015). In
(Estoup et al. 2018), where the authors applied the ABC-RF not for parameter
inference, but for model choice, a dataset of 100000 simulations was used. In our
application, we also found that the number of simulations can be reduced to 10000
without deteriorating the overall calibration performance, by preselecting the closest
simulations to the observations. On the other hand, the test performed on the
influence of the number of trees show that this variable has not a great impact on
the calibration results: it was therefore set to its default value as preconized in
(Estoup et al. 2018).

Due to the novelty of the methodologies, the ABC-RF and ABC-RF with SA
were tested under different configurations. The two methodologies were subsequently
tested against both simulated and observed data.

Independently from the size of the training dataset, the standard formulation of
the ABC-RF was not successful in calibrating the model parameters. In this case
the calibrated model performance would not justify the computational effort of the
methodology. However, the calibration procedure benefits greatly from the coupling
with the sensibility analysis proposed here through algorithm 2. Through the ABC-
RF with SA, the performances of the calibrated model improve considerably, fully
justifying the use of this methodology.

6.8.2 Computational effort

The stock of simulations
The main computational cost in ABC is the generation of the reference table. The
preliminary tests showed that, for the model BLOOM, a set of at least 25000
simulations allows to drastically reduce both the overall error and the uncertainty
of model outcomes. Depending on the model under consideration, this might be a
relatively high number of model runs.

However, differently from other popular techniques for automated calibration
(e.g. Newton or genetic algorithms), the computational cost of the methods based
on ABC resides mainly in the generation of the simulation dataset. Once this task is
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completed, the calibration itself is usually computationally inexpensive. This allowed
for instance to carry out numerous calibration runs under different configurations.
This represents a great advantage, especially in relation to a young methodology
such as ABC that still lacks a structured working framework.

The computational impact of coupling ABC-RF and SA
With the implementation of algorithm 2 (ABC-RF with SA), the computation cost
has increased: at each iteration the number of summary statistics is incremented,
inducing a persistent increase of the computational time. Furthermore, as the
parameters are interdependent in their determination, their computation cannot be
parallelized. Broadly speaking, run on the same computer and with a set of 25000
simulations, the ABC-RF with SA can take up to ten times longer than the ABC-RF
to complete the estimation of all 133 parameters.

In this respect, the use of a preselected set of simulations as training data set
can considerably reduce the computational time required by the ABC-RF with
SA. Our results showed that the use of a smaller set of preselected simulations
(namely, the 10000 runs closest to the observation data set) did not deteriorate the
outcomes of the calibration procedure. In our application, the use of preselected
simulations reduced of about 2/3 the computational time of the ABC-RF with SA
when compared to the larger set of 25000 simulations.

Finally, results from the sensitivity analysis could be exploited to select a
reduced number of parameters to be included in the calibration, further reducing the
computational cost of the ABC-RF with SA. Such approach was not yet tested in this
work. In this framework, a threshold for the significance of the parameters should
be set based on their sensitivity index, and the parameters with lower importance
could be subsequently dismissed.

6.8.3 Parameter selection is improved by coupling ABC-RF and
SA

The uncertainty in parameter selection
In Bayesian parameter inference, once the posterior probability is retrieved, the
selection of the parameter value is not straightforward (Kruschke 2018). Parameters
that are particularly consistent with the training data set will have peaked posterior
distributions. However, the posterior distributions of some parameters might be
uncertain, showing multiple local maxima or being particularly spread out over
the parameter space (Kruschke 2018). The options Pmix,2 and Pmix,3 described
in section 6.4.6 were designed to automatically discriminate between peaked and
spread out distributions, facilitating the selection of the parameter value. Among
the four options tested for the choice of the parameter values, the results from the
application to both the simulated and real observations showed that option Pmed
was the less adapted one.

Through algorithm 2, new information is added at every iteration of the calibra-
tion routine (namely, the values of the previously calibrated parameters). After only
a few iterations, this has a sharp effect on the shape of the posterior distributions
that appear smoother when compared to the standard ABC-RF. This clearly reduces
the uncertainty in parameter selection and ultimately represents a clear advantage
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for the calibration procedure.

Equifinality
The advantage of reducing uncertainty in parameter selection, however, is negligible
during the very first iterations of the algorithm, that deal with the most relevant
parameters. This is evident when looking at Fig. 6.5a and 6.5c, that show the error
between the real and the estimated parameters in the application to the simulated
observations. For some parameters, a considerable error is done. Errors are very low
for parameters with medium-high importance (roughly between the 3rd and the 10th
positions), while they increase again for various parameters with a low sensibility
index. Despite the strong differences between the parameter sets associated to the
three model runs (the one originating the simulated observations, and the parameter
sets of the two calibration runs in Fig. 6.5), their overall model performances are
comparable. Tables 6.3 and 6.4 also show that different parameters sets, originated
by calibration runs with different characteristics, can lead to comparable model
performances.

The objective of this calibration work was not to retrieve the real values of the
model parameters, but rather to identify some parameter sets that drive the model
to match the observations in terms of the three variables of interest. Our results
suggest that several distinct parameters sets can fit the data equally well. This is
known as equifinality: because the model inputs are linked to each other through
complex relationships in the model, different sets of model inputs might result in
equally plausible behaviours and produce equivalent model outputs (Arhonditsis
et al. 2008, Hipsey et al. 2020).

The non-uniqueness of the model solutions in complex ecological models is a
known issue (Beck 1987, Arhonditsis et al. 2008, Hipsey et al. 2020). It derives
from the fact that the dimensions of the observations D are much smaller than
those of the state and parameter vectors (x, θ) (Beck 1987). Automated calibration
procedures therefore seek to optimize some dynamics that are of a substantially
higher order than what can be observed to describe the system (Beck 1987, Hipsey
et al. 2020).

The possibility of running multiple calibration runs, thanks to the rather low
computational cost of the ABC methodologies, once the reference table is built,
allowed to highlight the existence of multiple parameters sets with equivalent model
outputs. This could be ultimately related to the complex structure of the model
rather than to the proposed calibration methodology, partly questioning the idea of
seeking the optimal parameter set for a biogeochemical model.

6.8.4 A specific working framework

The ABC-RF was applied here to a specific working framework, particularly in
terms of the available data set, the parameters to be calibrated and the summary
statistics.

Use of high-frequency data
High-frequency data of three variables relevant to aquatic ecology and environmental
modelling were available for this work. This allowed to concentrate the computational
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effort on a period of roughly two weeks, relatively short for the typical aquatic
ecological modelling applications, that often span a few months at least. The main
objective was here to test the ability of a complex biogeochemical model to correctly
reproduce a specific bloom event, possibly discriminating the biomass between
cyanobacteria and other algal species.

Events of this temporal span are often completely missed by traditional limnolog-
ical monitoring, that is based on periodical sampling or profiling. However, they are
extremely important: on the first hand, to test the formulations of biogeochemical
models in between subsequent field campaigns, and, on the other hand, for the
management of water resources in general and of our study site in particular, where
bathing bans need to be issued rapidly in case of presence of cyanobacteria. Reliable
short-term model simulations could represent a great advantage in this regard.

Furthermore, the choice of a short simulation period also allowed to contain the
computational cost of each model simulation, lightening greatly the application of
ABC-based methods from a computational point of view.

Choice of the parameters
A set of 133 parameters are considered in this work for calibration. Namely, they
include 114 model parameters and 19 initial conditions. The model configuration
implemented for this study includes a total number of parameters that is considerably
higher. Previous trial and error tests showed that a large portion of these parameters
had a low influence on model results, at least in terms of the three target variables.
This could be the case, for instance, of parameters involved in processes not directly
affecting the target variables. Three main physical processes were targeted in this
calibration: algal physiology (e.g. growth, mortality and sedimentation), oxygen
consumption, and nutrient and organic matter evolution. The 114 parameters
included in the calibration were selected based on their physical meaning and direct
association with processes of interest, and on previous tests that gave a first estimate
of their importance for the model.

The choice of including some initial conditions in the calibration is motivated
by the fact that all of the 34 variables listed in table 3.1 need to be initialized.
However, some of them, such as the four fractions of particulate organic matter, are
extremely difficult to measure or estimate, despite their importance in the model.
The presence of nutrients in readily available forms or in less accessible compounds
clearly influences the outcomes of the model in terms of phytoplankton dynamics
and, subsequently, in terms of oxygen concentration.

In our application, the available data did not allow to estimate without un-
certainty the concentrations of the different fractions of nutrients as modelled by
BLOOM, that were therefore included in the calibration. Furthermore, even when
measurements are available, they might be affected by a grade of uncertainty that jus-
tifies their calibration. For instance, the scattering that characterizes high-frequency
measurements of oxygen and cyanobacteria concentrations introduces a rate of
uncertainty in the estimation of a single initial value. For this reason these two
initial conditions were also included in the list of parameters to be calibrated.

The sensitivity analysis shows, however, that most of the parameters under
consideration have a negligible influence on the model outcomes, with 10 (20,
respectively) parameters accounting for around 70% (80%, respectively) of the
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overall variability. From the sensitivity analysis, nitrogen is the most important
nutrient in the system. In particular, its distribution among the dissolved and fast-
decomposing particulate organic fractions was of particular importance for model
results. The calibration of the initial conditions, when their values are uncertain,
can sensibly improve model results, and, in the light of the model formulation, give
new insights on the functioning of the system.

The physiological parameters with greater importance were those directly involved
in the equation modelling growth (i.e. the coefficients for temperature dependence
of growth and the potential growth rates).

Choice of the summary statistics
The choice of the summary statistics is crucial to ABC. To the best of our knowledge,
in all applications of ABC, the summary statistics do not depend on the observations.
Generally, the set of simulations is used by the ABC approaches to generate an
inverse model which is intended to be applied to several sets of observations to
estimate the associated parameters. This is a great advantage of the ABC approaches.
However, this does not apply to any model. In our case for instance, the set of
simulations depends on the meteorological conditions forcing the model, that are
specific to the period under consideration. In such case, the inverse model generated
by the ABC method is indeed specific and remains valid only for the period under
consideration.

It was therefore possible in our case to use summary statistics that directly
depend on the observations, such as R and NMSE, without loss of generality. In
our application, the summary statistics ultimately serve as objective functions to
be minimized through the ABC. Other options, independent from the observations,
for the summary statistics were tested to describe the time series (e.g. series of
successive means, splines projection coefficients). However, the use of error metrics
as summary statistics proved to be the most effective.

Finally, this particular framework also justifies the use of a preselected subset of
simulations to run the ABC, that we suggested. As the simulation subset can only be
used to calibrate the model on a specific series of observations, it is possible to rule
out simulations that deviated from the target behaviour without loss of generality.

6.8.5 Analysis of the performance of the model BLOOM

The model calibrated on the real observation data set reproduces the general
behaviour of the observations very well in terms of all the three target variables on
the selected period. However, the observations show strong daily cycles that are not
fully reproduced by the model. This is probably due to the model structure, rather
than to the calibration methodology.

On the one hand, complex biogeochemical models are conceived focusing on
dynamics that span longer periods than the one simulated here (i.e., monthly to
seasonal). Moreover, the configuration set up for this work, that is the ensemble of
substances and processes activated in the model, might not be the optimal one.

Very complex and very simple models are available to describe the biogeochemical
cycle in aquatic ecosystems, a system that cannot be fully validated due to the lack of
data (Ward et al. 2013, Kriest 2017). A broad literature has already addressed their
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advantages and drawbacks (e.g. Anderson 2005, Raick et al. 2006, Ward et al. 2013,
Kriest 2017). In this respect, our configuration, even though complex, only describes
a portion of the real natural ecosystem. For instance, benthic processes, macrophytes
and zooplankton are not explicitly included. However, as in all modelling works,
the challenge is to find the good level of complexity to explain the dynamics under
consideration.

In this work, the comparison with three variables recorded at high-frequency
shows that short-term phytoplankton bloom can be simulated by a model with
relatively basic processes that can be easily measured (i.e. growth, mortality, nutrient
uptake, oxygen production and organic matter decomposition). However, without
additional data it is not possible to evaluate the correctness of other important
simulated processes such as the mineralization of organic matter. This issue was
highlighted to some extent by calibrating the model using only one variable: the
total chlorophyll, which was chosen because of its importance for the management
of aquatic ecosystems (World Health Organization 2003). After calibration with
total chlorophyll data only, model results were only slightly improved in terms of
the target variable in respect to the best calibration run using all the three variables
available. On the other hand, the dynamics in terms of oxygen and cyanobacteria
concentration were extremely inaccurate. This result highlights the importance
of gathering the widest possible range of data to evaluate the performance of a
model that aims at describing a complex natural system. Only the comparison with
multiple variables make it possible to determine if the global functioning of the
system under consideration is captured as a whole and not only in terms of a few
single variables (e.g. Ward et al. 2013, Kriest 2017).

6.9 Conclusion
Biogeochemical models are often highly parametrized and complex. Their calibra-

tion is challenging and often overlooked in scientific literature. Our study shows that,
among the various techniques available for automated calibration, ABC-RF can be
successfully applied to calibrate a complex and highly-parametrized biogeochemical
model. Our work focuses on a short-term algal bloom, an event that would possibly
be missed by traditional periodical survey. After calibration, the model was able
to reproduce biogeochemical dynamics that span a relatively short period. The
overall phytoplankton growth and mortality were correctly simulated, as well as
cyanobacteria and oxygen concentration. However, daily cycles and other dynamics
at shorter time-scale were not fully reproduced.

To obtain such results, the coupling of ABC-RF with sensitivity analysis through
algorithm 2 was crucial, so as the availability of high-frequency data. Indeed, the
main computational effort required by ABC is for the generation of the reference
table, that should be of at least 25000 simulations for the optimization of more
than 100 parameters. The computational cost of the ABC algorithm itself (once the
simulations were performed) can be reduced by preselecting 10000 simulations from
the complete stock.

The summary statistics were defined here based on the modeller expertise, an
approach shared with most applications of ABC so far (e.g. Lagarrigues et al. 2015,
Dominguez Almela et al. 2020). This highlights the importance of the modeller’s
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experience and knowledge, that remains an essential feature in the Bayesian approach
to parameter inference, and that should not be dismissed also when applying
automated calibration strategies.

In optimization techniques such as local gradient-based methods or global opti-
mization algorithms, the exploration of the parameters space depends on the initial
conditions. This is not the case for ABC, where the parameters space is explored
based on the prior distributions defined by the user. In this respect, ABC could also
be a useful technique to define appropriate initial conditions for the application of
other calibration algorithms (e.g. seeking the parameters optimum).

Finally, care should also be taken when approaching the calibration of a complex
aquatic ecological model in evaluating the data available for the procedure. The use
of multiple variables considerably improves the overall performance of the model.



Chapter 7

Implementation of a newly
coupled hydro-biogeochemical
model through short-term and
seasonal simulations

This chapter describes the implementation and calibration of the recently coupled
models TELEMAC3D and Aquatic EcoDynamics (AED2) on the study site. This
work has two main objectives: (i) to test the coupling and the feedbacks between the
two models in a natural ecosystem against in situ observations, and (ii) to analyse
the performance of a second and different approach to biogeochemical modelling
over different time-scales.

The applications presented in this chapter are among the first ones to test the
coupling between this two models in a natural environment. In fact, the coding of the
coupling between the models started in 2015, and is currently still evolving. All the
results shown in this chapter are obtained through the version 8.1.2 of TELEMAC
for Linux, which was released in October 2020 and includes the coupling with AED2
(http://svn.opentelemac.org/svn/opentelemac/tags/v8p1r2).

The implementation and calibration of the two coupled models for Lake Champs-
sur-Marne proceeded through successive stages. First, the hydrodynamic model was
tested in its stand-alone version in order to examine its ability to reproduce the
dynamics of water temperature, mixing and stratification of a shallow polymictic
lake. High-frequency temperature data allowed to carry out such tests on short-term
simulations of two-weeks representative periods. Secondly, the coupling with the
biogeochemical library was activated and a first calibration of the AED2 parameters
was performed on short periods of roughly two weeks. Once a robust configuration
was achieved, the coupled models were applied to a longer period and the parameters
recalibrated, with the objective to simulate the seasonal phytoplanktonic dynamics
recorded in the study site between late winter and summer.
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Table 7.1 – Short-term calibration and validation periods, and list of variables used to
evaluate model performances.

Year Start End Use H.F. data set Layer Site
Water temp. Surf., Bott.

2015 13 Jul. 27 Jul. Valid. Dissolved oxygen Mid. B
Total chl. Mid.

Water temp. Surf., Bott.
2016 14 Jul. 30 Jul. Valid. Dissolved oxygen Mid. B

Total chl. Mid.

2018 25 Jul. 8 Aug. Calib.

Water temp. Surf., Bott.

BDissolved oxygen Mid.
Total chl. Mid.

Cyanobacteria Mid.

7.1 Short-term applications

In this section, the first set-up of the hydrodynamic and biogeochemical models
on the study site is described. This work was carried out on short-term periods of
roughly two weeks (described in section 7.1.1), in order to reduce the computational
time while adjustng the models configurations. Namely, the hydrodynamic 3D model
TELEMAC3D was first tested and calibrated in its stand-alone version. This is
described in section 7.1.2. Afterwards, the coupling with the biogeochemical model
AED2 was activated. The set up and the calibration of AED2 is described in section
7.1.3.

7.1.1 Simulation periods and dataset

The tests described in this section were carried out on three distinct periods
of roughly two weeks in the Summer of the years 2015, 2016 and 2018. The three
periods are described in table 7.1, together with the high-frequency data available to
evaluate model performances. The three periods listed in table 7.1 were used for the
calibration and validation of both TELEMAC3D in its stand-alone version (using
only water temperature data, see section 7.1.2), and TELEMAC3D coupled with
AED2 (using all the variables listed in table 7.1, see section 7.1.3).

The selection of the simulation periods was done based on two main factors:
(i) all periods are characterised by the presence of thermal stratification, and (ii)
all periods show an increase in total chlorophyll concentration, even though with
different rates. The period going from the 25 of July to the 10th of August 2018 was
used for the calibration of the model parameters. This is the same simulation period
analysed in chapter 6 and used for the automated calibration of the Delft3D-BLOOM
model. The remaining two periods were used for validation.

High-frequency observations of water temperature constituted the data set used
to initialize and evaluate thermal performance of the model TELEMAC3D, both in
its stand-alone and in its coupled version. The biogeochemical model was tested and
initialized in terms of dissolved oxygen and total chlorophyll concentration based on
the high-frequency observations recorded at site B for the calibration period, and at
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Table 7.2 – Short-term simulations: initial conditions for the inorganic nutrients.

Summer Summer Summer
2015 2016 2018

(validation) (validation) (calibration)
NH4 [mmol m−3] 8.0 8.0 2.0
NO3 [mmol m−3] 10.0 15.0 5.5
PO4 [mmol m−3] 2.3 2.3 0.3

site A for the two validation periods. Cyanobacteria concentration data were only
available for the calibration period (i.e. 2018) via the phycocyanin sensor at site B.

Water samples were taken on Lake Champs-sur-Marne at site B on the initial
day of the calibration period. The subsequent laboratory analysis allowed to directly
set the initial condition of the three inorganic nutrients (ammonium, nitrate and
phosphate, table 7.2), and to obtain the concentrations of total nitrogen and phos-
phorus (in dissolved inorganic and organic form) in the study site. This allowed to
set the initial conditions for dissolved nitrogen and phosphorus, that were also used
as a first approximation of the relative particulate forms.

Previous studies carried out at LEESU already analysed the two validation
periods through model simulations with Delft3D-BLOOM (Plec et al. 2017). Such
work was used as a reference to set the initial conditions of the three inorganic
nutrients (ammonium, nitrate and phosphate), which are listed in table 7.2.

7.1.2 Set up of the stand-alone hydrodynamic model

This section describes the first set-up, calibration and validation of TELEMAC3D
for the study site. The main objective is the calibration and validation of the thermo-
hydrodynamic model in terms of water temperature and thermal stratification. This
was done in order to set up a configuration for TELEMAC3D accurate enough to
allow the activation of the coupling with the biogeochemical model.

7.1.2.1 Model configuration

The computational domain for the study site was built with the open-source
software BlueKenue™ (Canadian Hydraulic Centre 2011), and is represented in
Figure 7.1. It consists of a triangular grid with an average distance between the
nodes of 20 m, and a refined zone around the narrower portion of the water body.
The raw bathymetric data available from the 2014’s echo-sounder campaign were
here translated according to the local elevation. The mesh is composed of 404 nodes
(661 elements), with 10 σ-layers for the discretization on the vertical axis and a
uniform water level set at an elevation of 40 m a.s.l..

In the heat budget, the contribution of precipitation was neglected both in
terms of energy and mass, while for evaporation only the mass flux was neglected.
Preliminary tests showed that the thermal stratification of a polymyctic water body
as the study site was better modelled through a mixing length turbulence model
than through the k-ε turbulence model. After such preliminary tests, Nezu and
Nakagawa’s formulation of the mixing length model with Viollet’s damping function
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Figure 7.1 – Computational domain for Lake Champs-sur-Marne used for the first cali-
bration and validation tests with the coupled TELEMAC3D - AED2. The
triangular mesh is obtained through the software BlueKenue™ (Canadian
Hydraulic Centre 2011). The mean distance between its elements is of 20 m
and the bathymetric data were automatically interpolated by the software.
The elevation of the lake bottom as interpolated by BlueKenue™ is repre-
sented through a colour chart. The mesh was refined around the narrower
portion of the study site.

was implemented for vertical turbulence closure (Nezu & Nakagawa 1994, Viollet
1988, Telemac modelling system 2016). The molecular diffusivity of water is used on
the vertical as a background value by the model, and was set to 10−6 m2 s−1. The
choice of the mixing length model entails a constant model for horizontal turbulence.

Among the two heat-exchange models available in TELEMAC3D to compute
the heat transfer at the air-water interface, the more detailed one was selected (see
section 3.2.3.3). The model is forced with six meteorological variables: relative
humidity [-], air temperature [◦C], cloud cover [-], net solar radiation [J s−1 m−2],
wind speed [m s−1] and direction [°N]. Their values were downloaded from the closest
meteorological station, located at the Orly airport and described in section 3.1.4.
Finally, the model was run with a 60 s time step, and its outputs were saved with a
one-hour time step.

Data measured at site B were used to initialize the model in terms of water
temperature. No data were available to set the initial velocity field, and the model
was therefore initialized with water at rest.

7.1.2.2 Model calibration and validation

The calibration of TELEMAC3D was done by trial and error, based on high-
frequency water temperature data at the surface and bottom layers (0.5 and 2.5 m
depth, respectively), at measuring site B (see section 3.1.1). The root mean square
error (RMSE) was calculated between model results and observations to evaluate
model performances during both calibration and validation. For this purpose, high-
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frequency data were first averaged hourly according the model output time step,
and cleaned from the potential outliers originated by periodic sensor maintenance.
The latter were defined as sudden water temperature variations (> 1°C) over the
ten minutes separating two successive measurements, and consequently erased.

Preliminary tests allowed to set the model configuration described in section
7.1.2.1. The calibration of the model was further pursued focusing mainly on three
parameters: (i) the constant horizontal diffusivity defining the horizontal turbulence
model, (ii) water transparency (via the parameter Secchi depth [m]), and (iii) the
coefficient b [-] of the wind correction function (see equation (3.20)) involved in the
atmosphere-water heat exchange.

7.1.2.3 Model results

Multiple calibration runs were carried out varying the values for the Secchi depth
and the coefficient b [-]. Field values for the Secchi depth in Lake Champs-sur-Marne
are available since 2015. They vary between 0.5 and 3 m with a mean value of 1.17
m in July-August 2018; using this range, the Secchi depth parameter was calibrated
and finally set to 0.85 m. The suggested range of variability for coefficient b is
between 0.0017 and 0.0035 (Telemac modelling system 2016). Here, b was eventually
set to 0.00135. The constant horizontal diffusivity was calibrated based on the
computational mesh size and on model results, and was finally set to 0.1 m2 s−1.

Model performances were evaluated in terms of water temperature at the surface
and bottom layers through the RMSE with observations at site B. RMSE values are
presented in table 7.3. During the calibration period, the model correctly simulated
water temperature both for the surface and bottom layers, with RMSE values of
0.6°C for both layers.

The first validation period (summer 2015) shows the lowest RMSE values (namely,
0.3°C for the surface layer and 0.6°C for the bottom layer). The highest error made
by the model was detected for the bottom layer during the second validation period
(2016, RMSE=1.4°C), while the surface layers was correctly simulated also in this
case (RMSE=0.7°C).

The results of the calibrated model are shown in Figure 7.2 for the three simulation
periods: panel c is relative to the calibration period, while panels a and b are relative
to the two validation periods. Surface (blue) and bottom (red) water temperatures
are plotted for both simulation results (solid lines) and high frequency observations
(dotted lines). The Figure shows that surface water temperature is very accurately
simulated by TELEMAC3D, as confirmed by the low RMSE values in table 7.3,
while bottom water temperature is often overestimated.

This impacts the ability of the model to correctly reproduce the alternation
between mixing and thermal stratification in a shallow water body. Through a
constant Secchi depth value, the model fails to fully reproduce the strength of thermal
stratification during the periods under consideration. Furthermore, exchanges with
ground water are neglected in the model configuration but could also sensibly impact
bottom water temperature in the real system. Their effect therefore is not taken
into acount by the model. In particular, as shown in Figure 7.2b, for the validation
period in 2016 surface water temperature is correctly simulated, while bottom water
temperature is overestimated by the model. This causes an anticipated breakdown
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Table 7.3 – RMSE values between TELEMAC3D stand-alone and high-frequency observa-
tions of water temperature for the three simulation periods.

Summer Summer Summer
2015 2016 2018

(validation) (validation) (calibration)
RMSE surface [◦C] 0.3 0.7 0.6
RMSE bottom [◦C] 0.6 1.4 0.6

of thermal stratification when compared to high-frequency observations. However,
daily stratification events (i.e. water column stratified during the day and overturned
at night) are correctly reproduced by the configuration set up for TELEMAC3D.
This could also be partially due to an excessive numerical diffusion introduced by
the numerical schemes implemented in TELEMAC3D.

During the three simulation periods, the overall behaviour of water temperature
in the study site is correctly reproduced by the model, with low RMSE values
(generally < 1°C), close to those found in the literature. For this reason, the
configuration described in this section was considered adapted to test the coupling
with the biogeochemical model.

The calibration period (25/07/2018 − 10/08/2018) was also simulated with the
hydrodynamic model Delft3D-FLOW in the context of the automated calibration
of the biogeochemical model Delft3D-BLOOM (see chapter 6, and section 6.3 in
particular). The outcomes of Delft3D-FLOW in terms of surface and bottom water
temperature are shown in Figure 6.1a, and are repeated here in panel d of Figure 7.2
for an easier comparison with the results obtained with TELEMAC3D (Fig. 7.2c).
The performances of the two models are very close for both the surface (RMSE
values of 0.6°C for both models) and bottom (RMSE of 0.6°C for TELEMAC3D,
and of 0.5°C for Delft3D) layers.
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a)

b)

c)

d)

Figure 7.2 – Panels a, b and c: model results (solid lines) and high-frequency observations
(dotted lines) of surface and bottom water temperature at site B during
the calibration and validation periods of the TELEMAC3D hydrodynamic
model. Panel c is relative to the calibration period, and panels a and b to
the validation periods. Panel d is visually separated by an orange line and
shows, for comparison, the results obtained with Delft3D-FLOW over the 2018
simulation period; this is the same graph shown in Figure 6.1a. Blue lines
represent surface water temperature, red lines bottom water temperature.
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7.1.3 Coupling with the biogeochemical model

The same simulation periods presented in section 7.1.1 were selected for the
initial set up of the coupled models. In particular, the period in the Summer of
2018 (25/07/2018 − 10/08/2018) was used for calibration, and the remaining two
simulation periods for validation.

Here the calibration only concerned the biogeochemical model parameters. The
tests carried out for the calibration were done through trial and error, and involved
variations both on the structure of the model (i.e. the activated modules) and on
the parameters values.

7.1.3.1 Model configuration

Hydrodynamic model and computational domain
The configuration of the hydrodynamic model TELEMAC3D is the one described
in section 7.1.2.1. The coupled models TELEMAC3D and AED2 share the same
computational grid (see Figure 7.1), computational time step (60 s) and output time
step (1 h).

Due to the dynamic calculation of the light extinction coefficient included in
the coupled models (see section 3.2.4.3), here the Secchi depth does not need to be
defined by the user.

Biogeochemical model
Aquatic EcoDynamics (AED2) is a modular biogeochemical library, whose grade of
complexity can be set by the user through the activation of the desired modules. Its
general description can be found in section 3.2.4. For the application described in
this section, six modules were activated:

• Phytoplankton

• Oxygen

• Phosphorus

• Nitrogen

• Organic matter (particulate and dissolved)

• Sediment fluxes

Two phytoplankton groups typically present in the study site during the summer
season are activated in the phytoplankton module: green algae and cyanobacteria.
According to the modules activated, the 12 variables listed in table 7.4 are simulated
by the model. Such configuration includes a total of 75 parameters.

7.1.3.2 Model calibration and validation

The calibration of the coupled TELEMAC3D and AED2 was based on high-
frequency measurements at site B. Water temperature data at the surface and
bottom layers were used to calibrate and validate the simulated thermal dynamics.
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Table 7.4 – Modules and variables activated in the configuration of the biogeochemical
model AED2 for the short-term tests.

Module Variables
Oxygen Dissolved oxygen
Phosphorus Ortho-phosphate
Nitrogen Ammonium

Nitrate
Organic matter POC

PON
POP
DOC
DON
DOP

Phytoplankton Cyanobacteria
Green algae

The light extinction coefficient used in the hydrodynamic model is computed at each
time step by AED2. Therefore, the feedback of the biogeochemical model on the
hydrodynamic model was also evaluated. High-frequency data of dissolved oxygen,
total chlorophyll and, when available (i.e. summer of 2018) phycocyanin, were used
to calibrate and validate the biogeochemical model.

The root mean square error (RMSE) was calculated between model results and
observations to evaluate model performances. For this purpose, high-frequency
data were smoothed and cleaned from the outliers originated by periodic sensor
maintenance as described in section 4.2, and averaged hourly to match the model
output time step.

During the initial calibration tests, most of the 75 paramters activated in the
biogeochemical model were varied in order to gain knowledge of their importance for
the simulation results. Eventually, the calibration effort mainly focused on a reduced
number of parameters, the most sensitive for the model in terms of the variables of
interest. These parameters are: the phytoplankton potential growth rates at 20°C,
the optimum and maximum temperatures, the half saturation constant for light
limitation of growth and specific light attenuation coefficients, the sediment oxygen
demand, and the specific light attenuation coefficients of particulate and dissolved
organic carbon. Such parameters, listed in table 7.5, were calibrated through trial
and error based on literature values (e.g. Hipsey et al. 2013, Fenocchi et al. 2019).

In the stand-alone version of TELEMAC3D, the light extinction coefficient Kd is
calculated based on the Secchi depth (S) defined by the user through the equation:

Kd = 1.7/S (7.1)

The calibration of the stand-alone version of TELEMAC3D (section 7.1.2) lead
to an optimal value for the Secchi depth of 0.85 m (i.e., through equation (7.1),
KdT3D = 2 m−1).

When the coupling with AED2 is activated, Kd is calculated dynamically, through
the following equation (see section 3.2.4.3 for further details):
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Table 7.5 – List of the most sensitive AED2 parameters, and corresponding calibrated
values (relatively to the short-term tests).

Parameter Value Unit
Sediment
O2 demand 100 mmol O m−2 d−1

DOC light
ext. coeff. 0.0003 m2 mmolC−1

POC light
ext. coeff. 0.003 m2 mmolC−1

Water light
ext. coeff. 0.5 m−1

Green Cyanobacteria Unit
algae

Growth
rate at 20°C 1.5 1.2 d−1

Optimum
water temp. 25 28 °C
Maximum
water temp. 35 36 °C
Specific light
ext. coeff. 0.005 0.005 m2 mmol C−1

Half saturation
constant 10 10 µE m−2 s−1

light limitation

Kd = Kw +Ke,DOCDOC +Ke,POCPOC +
NPHY∑

i

KeiPHYCi (7.2)

In this respect, the concentrations of phytoplankton and dissolved (DOC) and
particulate organic carbon (POC) have a strong feedback on the hydrodynamic model,
and in particular on the way heat is transferred over the water column. However,
at this stage of the work with the coupled models TELEMAC3D and AED2, no
data were available on the study site to set the initial conditions for particulate and
dissolved organic carbon. Their initial concentrations were here estimated in order
to obtain, through equation (7.2), an initial value of the light extinction coefficient
of 2 m−1, equal to the one used in the stand-alone version of TELEMAC3D. This
was done based on the initial conditions set for the two phytoplankton groups, and
on the values set for the specific light extinction coefficients (listed in table 7.5).

The obtained initial conditions values for dissolved and particulate organic carbon
are, respectively, of 9.6 and 4.8 mg C l−3, and were used for both the calibration
and validation periods. DOC measurements were later available on the study site
starting from the end of 2018. DOC concentration is discussed, for the year 2019, in
section 7.2. The value estimated here for DOC is only slightly overestimated when
compared to the values observed in the summer of 2019 (around 8 mg C l−3).
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Table 7.6 – RMSE values between observations and results of the coupled models
TELEMAC3D and AED2; calibration period, summer 2018.

Water Dissolved Cyanobacteria Total
Temp. [◦C] Oxygen [g O m−3] [µg Chl l−1] Chl. [µg Chl l−1]

Surface 0.7 - - -
Middle 0.6 1.8 3.1 3.7
Bottom 0.6 - - -

7.1.3.3 Model results

Calibration period
Numerous model runs were carried out on the calibration period to test the sensitivity
of the AED2 parameters and calibrate their values. The results of the model during
the calibration period are shown for measuring site B in Figure 7.3, along with
high-frequency observations. RMSE values were calculated for water temperature at
the surface and bottom layers, and for dissolved oxygen, cyanobacteria and total
chlorophyll concentrations at the middle layer (7.6).

As shown by Figure 7.3a, surface and bottom water temperature are very well
reproduced by the model, with RMSE values of respectively 0.7 and 0.6°C. Such
values are very close to those found in section 7.1.2 for the hydrodynamic model alone,
which were of 0.6°C for both the surface and bottom layers. Water temperature at
the middle layer is also well reproduced by the model (green line in Fig. 7.3a), with
an RMSE of 0.6°C. The slight underestimation of water temperature between the
28/07/2018 and the 31/08/2018 can be explained by the presence of strong peaks of
wind speed relatively to the mean wind speed over the period. With the exception
of the period between the 28th and the 31st of July, the timing and the values of
the daily temperature maxima in the surface layer are correctly reproduced, as are
the nighttime mixing events. Overall, the coupled models capture very well the
alternation between stable stratification, mixing, and daily stratification.

Also the three remaining variables that could be compared with high-frequency
data are well simulated by the model. The RMSE for dissolved oxygen is of
1.8 mg O m−3. Figure 7.3b shows that the model reproduces correctly the overall
order of magnitude of dissolved oxygen concentration, even though some discrep-
ancies are present between observations and model results in the daily cycle. Such
differences can be associated with the strongly stratified profile simulated by the
model for dissolved oxygen (shown in Figure 7.4). Under such stratified conditions,
a small error in the water depth at which model results are extracted can result in
an amplified bias with high-frequency observations recorded at 1.5 m depth. Total
chlorophyll is well captured by the model (Fig. 7.3d). The corresponding RMSE
between model results and high-frequency observations is of 3.7 µg Chl. l−1, or, in
terms of relative RMSE (RRMSE): 32% of the average total chlorophyll observed
over the period. RRMSE values lower than 100% are usually considered satisfactory.
In particular, the growing phase, as well as the timing and the concentration of
the peak of total chlorophyll are very well reproduced. During the descending
phase, total chlorophyll concentration is slightly overestimated. Biomass is also
correctly distributed among the two simulated phytoplankton groups. Cyanobacteria
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a)

b)

c)

d)

Figure 7.3 – Model results (solid lines) and high-frequency observations (dotted lines) at
site B for water temperature (a), dissolved oxygen (b), cyanobacteria (c), and
total chlorophyll (d), relatively to the calibration period in the summer of
2018. In panel a, blue lines represent surface water temperature, green lines
middle water temperature, and red lines bottom water temperature; in the
remaining panels, both observations and model results are relatively to the
middle layer of the water column at site B.
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Figure 7.4 – Simulated dissolved oxygen concentration during the calibration period (sum-
mer 2018) along the water column at site B.

concentration is very well reproduced, with an RMSE value of 3.1 µg Chl. l−1.

Validation periods
The calibrated model was then tested on the two validation periods: between the
13th and the 27th of July 2015, and between the 14th and the 30th of July 2016.
Its results in terms of surface and bottom water temperature, dissolved oxygen and
total chlorophyll concentrations are presented in Figure 7.5 for the first validation
period in 2015, and in Figure 7.6 for the second validation period in 2016. The
figures show both model results (solid lines) and high-frequency observations (dotted
lines) at site A.

Figures 7.5a and 7.6a show that both surface and bottom water temperatures
are well reproduced by the model. In particular, for the year 2016, both bottom
and surface water temperatures are slightly better simulated when compared to
the results obtained with the stand-alone version of the hydrodynamic model (Fig.
7.2b). Concerning the validation run in 2015 (Fig. 7.5), both total chlorophyll
and dissolved oxygen concentrations are very well simulated by the model, even
though the daily oscillation recorded by the high-frequency observation are not fully
reproduced by the biogeochemical model.

The total chlorophyll concentration recorded at high-frequency during the vali-
dation period in 2016 is sensibly weaker than for 2015. In the validation run, total
chlorophyll concentration is largely overestimated by the model with respect to the
high-frequency observations (see Figure 7.6c). Conversely, observations of dissolved
oxygen are well reproduced by the model (Figure 7.6b). The strong increase observed
for dissolved oxygen during the simulation period might indicate that a stronger phy-
toplankton growth was actually occurring on the study site, without being correctly
captured by the chlorophyll optical sensor. This hypothesis is confirmed by total
chlorophyll data from two profiles recorded at site A during the simulation period,
namely on the 18th and 27th of July 2016. The profiles were averaged between
the 1 m and 2 m of depth in order to compare their data with the high-frequency
observation at 1.5 m of depth. Such data are also plotted in panel c of Figure 7.6
and match closely with the simulation results.
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a)

b)

c)

Figure 7.5 – Model results (solid lines) and high-frequency observations (dotted lines) at
site A for water temperature (a), dissolved oxygen (b), and total chlorophyll
(c), relatively to the first validation period in the summer of 2015. In panel
a, blue lines represent surface water temperature, green lines middle water
temperature, and red lines bottom water temperature; in the remaining
panels, both observations and model results are relatively to the middle layer
of the water column.
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a)

b)

c)

Figure 7.6 – Comparison of model results (solid lines) and high-frequency observations
(dotted lines) at site A for water temperature (a), dissolved oxygen (b), and
total chlorophyll (c), relatively to the second validation period in the summer
of 2016. In panel a, blue lines represent surface water temperature, green
lines middle water temperature, and red lines bottom water temperature;
in the remaining panels, both observations and model results are relatively
to the middle layer of the water column. Profiles data at 1.5 m depth are
reported in panel c for total chlorophyll.
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7.1.3.4 Spatial analysis

Model results from the calibration period were further analysed based on their
spatial distribution over the study site. This analysis focused on two variables: surface
total chlorophyll concentration, and water temperature difference between the surface
and bottom layers (∆T ). The latter was calculated on the whole computational
domain using the first and the last layers of the vertical σ discretization. Similarly
to what discussed in chapter 3, the temperature difference between the lake surface
and bottom layers is used here as a proxy of the strength of thermal stratification.

The results of this analysis are shown in Figure 7.7 for thermal stratification
and in figure 7.8 for total chlorophyll. Both figures are constituted of 15 panels
(from “a” to “o”), each of which represents the variable under consideration over the
computational domain at midday (i.e. 12 a.m.) for all the 15 days of simulation.
Each panel in figures 7.7 and 7.8 therefore represents one time step of model results.
The panels in Figure 7.8 have different scale limits, as the main focus of this Figure
is to discuss the spatial patterns, rather then to show the overall time-evolution of
total chlorophyll (already presented in Figure 7.3d).

As shown in Figure 7.7, thermal stratification (i.e. ∆T>1°C, similarly to chapter
3) at midday is largely present on the study site during most of the simulation
period. The overall ∆T at midday averaged spatially over the whole domain is
comprised between 0.2°C (on simulation day five) and 1.2°C (on simulation day
three). During all simulated days, thermal stratification is present at midday at least
in the deeper south-eastern portion of the lake, the only exception being day four
(Fig. 7.7d). Similarly to what was discussed in chapter 3, strong spatial variability in
the distribution of water temperature difference is induced by the bathymetry. This
is true both when thermal stratification is strong (panels a, b, c and m of Figure
7.7), and when the overall average ∆T is the lower (panels d, e, f and o).

The concentration of total chlorophyll on the surface layer shows a lower spatial
variability than thermal stratification. The normalized standard deviation associated
with the spatial distribution of surface total chlorophyll from the panels in Figure
7.8 is comprised between 0.6% and 5.8% of the corresponding instantaneous overall
spatial average. The highest concentrations of total chlorophyll are usually found
in the northern shallower and mixed part of the basin, that appears particularly
favourable for the phytoplankton growth and accumulation in the model. The
spatial distribution of total chlorophyll on the surface layer is mainly induced by the
velocity field over the lake surface. During the simulation period, simulated surface
horizontal currents are weak but present (around 1 cm/s on average). The prevailing
wind direction during the simulated period is a northern wind, in particular for the
simulation days one to three (panels a to c in Figure 7.8) and seven to 14 (panels g to
n). This creates a pattern of surface currents similar to the one shown in Figure 7.9a
for simulation day ten. Figure 7.9 represents the spatial distribution of surface total
chlorophyll concentration at midday over the domain (as for Figure 7.8), together
with the vectors representing the velocity field at the surface layer at the same time
step. Only simulation days ten (panel a) and 15 (panel b) are represented in Figure
7.9. The value of the strongest vectors in Figure 7.9 is of the order of a few cm s−1.

Figure 7.9a shows how the higher biomass produced in the northern portion
of the lake gets transported following the simulated surface velocity field. During
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the last day of the simulation, the prevailing wind direction changes to a South or
South-West wind. This originates a different field of currents (see Figure 7.9b), that
reinforces the accumulation of higher biomass towards the northern part of the lake.

Figure 7.7 – Simulated spatial distribution of water temperature difference between the
surface and bottom layers, during the calibration run in 2018. Each panel
represents the temperature difference calculated from model results at midday
(i.e. 12 a.m.) for each successive day in the simulation: from day one (panel
a) to day 15 (panel o).
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Figure 7.8 – Simulated spatial distribution of total chlorophyll concentration for the surface
layer, during the calibration run in 2018. Each panel represents model results
at midday (i.e. 12 a.m.) for each successive day in the simulation: from day
one (panel a) to day 15 (panel o).

Figure 7.9 – Simulated spatial distribution of total chlorophyll concentration and velocity
field for the surface layer at midday (i.e. 12 a.m.), during the calibration
run in 2018. Panel a represents simulation day 10, and panel b represents
simulation day 15. The value of the strongest vectors in the two panels is of
the order of a few cm s−1.
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7.2 Seasonal application
After the short-term calibration runs, the coupled TELEMAC3D and AED2

were run over a longer amount of time, in order to test their ability to reproduce the
seasonal dynamics in terms of water temperature and primary production. To do so,
the configuration of the biogeochemical model was extended to species adapted to
lower water temperatures and recalibrated.

For this application, the work was focused on the year 2019, for which an extensive
data set is available both in terms of high-frequency observations and of laboratory
analysis of water samples.

7.2.1 Model configuration

7.2.1.1 Hydrodynamic model and computational domain

The configuration of the hydrodynamic model TELEMAC3D is the same as the
one described in section 7.1.2.1 in terms of turbulence closure, heat exchange model
and numerical schemes. However, in this application the parameters of the heat
exchange model were recalibrated, in order to match water temperature data during
winter. The coupled models TELEMAC3D and AED2 share the same computational
grid (see Figure 7.1), computational time step (60 s) and output time step, which
was set to 4h for this application in order to reduce the size of the resulting files.
Due to the dynamic calculation of the light extinction coefficient implemented in
the coupled models, the Secchi depth does not need to be defined by the user.

7.2.1.2 Biogeochemical model

The configuration of the biogeochemical model implemented for the seasonal
simulation of lake Champs-sur-Marne is largely based on that described in section
7.1.3.1, with the only changes being the addition of two phytoplankton groups to
the configuration: diatoms and flagellates. They are introduced here as species
respectively adapted to cold and medium temperatures, and lower light intensities
than green algae and cyanobacteria, with the objective of reproducing the year-long
evolution of total chlorophyll in the study site.

The uptake of Silica by phytoplankton groups is currently not implemented in
the coupled TELEMAC3D and AED2 and couldn’t therefore be activated for the
diatoms group. For this reason, the AED2 module for Silica was not added to this
configuration. The modules activated and the variables simulated by the model in
this configuration are listed in table 7.7. Such configuration includes a total of 115
parameters.

7.2.2 Simulation period and dataset

The analysis of the data set collected on the study site (see chapter 4) showed
that in Lake Champs-sur-Marne phytoplankton blooms do not occur only during the
warmer summer months. On the contrary, the highest peak of total chlorophyll is
often recorded in late winter or early spring. The simulation was therefore conducted
with the configuration described in section 7.2.1 and table 7.7, from the beginning
of February until the end of November of 2019. The simulation therefore covers
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Table 7.7 – Modules and variables activated in the configuration of the biogeochemical
model AED2 for the seasonal application in 2019.

Module Variables
Oxygen Dissolved oxygen
Phosphorus Ortho-phosphate
Nitrogen Ammonium

Nitrate
Organic matter POC

PON
POP
DOC
DON
DOP

Phytoplankton Cyanobacteria
Green algae
Flagellates
Diatoms

11 months. The first six months (from the beginning of February until the end of
July) were used for the calibration of the coupled models, while the remaining four
months were run for validation.

The year 2019 was selected for the simulation because of the exhaustive data
set available that covers: high-frequency observations of water temperature, total
chlorophyll, dissolved oxygen, cyanobacteria and nitrate concentrations, as well as
concentrations of total nitrogen, nitrate, total phosphorus, phosphate, and dissolved
organic carbon obtained through the laboratory analysis of periodical in situ water
samples.

Initial conditions
The amount of phytoplankton present on the study site at the beginning of the
simulation is very low, with high-frequency observations of total chlorophyll close
to zero (see Fig. 7.12a). In the model, the initial biomass was equallly dispatched
among the four phytoplankton groups, so to match the total chlorophyll values
recorded by the high-frequency sensor at site B. High-frequency observations were
also used to initialize dissolved oxygen, nitrate and water temperature. As for the
other simulations discussed in the previous sections, the hydrodynamic model was
initialized with water at rest.

Two field campaigns were carried out on the 16th of January 2019 and on the
13th of February of 2019 and granted data for the concentrations of total nitrogen,
nitrate, total phosphorus, phosphate, and dissolved organic carbon, which were used
to initialize the remaining variables of the model. As the beginning of the simulation
period falls midway between the two campaigns, their data were averaged to obtain
the initial conditions.

The data from the field campaigns allowed to directly set the initial conditions for
phosphate, and dissolved organic carbon. Values of total nitrogen and phosphorus
allowed to obtain estimates for the remaining variables. Since Lake Champs-sur-
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Marne has no tributaries, it was assumed that the inorganic fractions of dissolved
and particulate phosphorus and nitrogen could be considered negligible compared
to their organic forms. An estimate of dissolved organic phosphorus (DOP) was
therefore obtained by subtraction of phosphate from total phosphorus concentration.
The concentration for dissolved organic nitrogen (DON) was estimated on the basis
of the DOP concentration through the Redfield ratio (i.e. N/P ∼ 16, Redfield 1934).
The ammonium concentration was then calculated by subtracting nitrate and DON
concentrations from the amount of total dissolved nitrogen.

7.2.3 Model calibration and validation

The calibration of the coupled models for the seasonal simulation was done by
trial and error, based on high-frequency measurements at site B. Water temperature
data at the surface and bottom layers were used to calibrate and validate the
simulated thermal dynamics and evaluate the feedback of the biogeochemical model
on the hydrodynamic model results induced by the dynamic calculation of the
light extinction coefficient. High-frequency observations of dissolved oxygen, total
chlorophyll, cyanobacteria, and nitrate were used to calibrate and validate the
biogeochemical model.

The root mean square error (RMSE) was calculated between model results and
observations to evaluate model performances during both calibration and validation.
For this purpose, high-frequency data were treated and averaged every four hours,
according to the model output time step, as described in chapter 4.

The parameters resulting from the short-term calibrations of the hydrodynamic
(section 7.1.2) and biogeochemical (section 7.1.3) models were used here as a reference.
The calibration effort was mainly focused on the biogeochemical model AED2.
However, the set of parameters calibrated in section 7.1.2 for the hydrodynamic
model, lead to an underestimation of water temperature during the winter months.
For this reason a few parameters from the heat-exchange model of TELEMAC3D
were here recalibrated.

Most of the AED2 parameters were varied in order to test their impact on the
year-long dynamics of stratification, oxygen, phytoplankton and nutrients in the
study site. After such tests and based on values found in similar applications in
scientific literature (e.g. Hipsey et al. 2013, Fenocchi et al. 2019), only a reduced
number of parameters were finally calibrated. They are listed in table 7.8, along
with their calibrated values.

7.2.4 Model results

The results of the calibrated model are presented in this section, separately for
water temperature (section 7.2.4.1) and biogeochemical variables (section 7.2.4.2).

7.2.4.1 Thermal dynamics

Water temperature is analysed here at site B for the complete simulation period
(from February to November 2019), at the surface and bottom layers. Over the
calibration period (i.e. between the months of February and July), the evolution of
water temperature is correctly reproduced by the coupled models for both the surface
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Table 7.8 – List of the calibrated parameters relatively to the seasonal application of the
coupled TELEMAC3D and AED2, and corresponding calibrated values.

Model Parameter Parameter Unit
name value

T3D Coefficient
for atmospheric 0.89 -
radiation
Coefficient
for surf. 0.93 -
water rad.
Coefficient
for atm.-wat. 0.0017 -
heat exc.

AED2 Sediment
O2 demand 200 mmol O m−2 d−1

Nitrification
rate 0.05 d−1

DOC mineral.
rate 0.01 d−1

POC mineral.
rate 0.007 d−1

DON mineral.
rate 0.01 d−1

PON mineral.
rate 0.01 d−1

DOP mineral.
rate 0.005 d−1

POP mineral.
rate 0.005 d−1

DOM light
ext. coeff. 0.002 m2 mmolC−1

POM light
ext. coeff. 0.002 m2 mmolC−1

Water light
ext. coeff. 0.5 m−1

Green Cyanobacteria Flagell. Diat. Unit
algae

Growth
rate at 20°C 1.4 1.2 1.6 3.7 d−1

Temp. coeff.
for growth 1.08 1.08 1.08 1.05 -
Standard
water temp. 20 20 18 4 °C
Optimum
water temp. 25 28 23 9 °C
Maximum
water temp. 35 36 30 18 °C
Specific light
ext. coeff. 0.005 0.005 0.01 0.005 m2 mmol C−1

Half saturation
constant 28 25 28 10 µE m−2 s−1

light limitation
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and bottom layers, as shown in Figure 7.10. The RMSE values with high-frequency
measurements are rather low and comparable to those found with the hydrodynamic
model Delft3D-FLOW in chapter 5. The RMSE is of 1.08°C for the surface layer
and 0.91°C for the bottom layer.

Model performances in terms of water temperature deteriorate during the fol-
lowing period, and in particular between the months of October and November.
The total RMSE calculated over the whole simulation period (i.e. calibration and
validation) increases, especially for the bottom layer. In fact, for surface water tem-
perature, high-frequency data at site B were available only until the 22nd of October
2019 and therefore model performances could not be compared to observations after
this date. For the surface layer, the RMSE calculated during the simulated period
where data were available is of 1.18°C. For the middle and bottom layers, data were
available at site B until the end of the simulation. In this case the corresponding
RMSE for the whole simulation period are, respectively, of 1.39°C and 1.49°C. This
behaviour was further analysed by comparing observed and simulated bottom water
temperature at site B with the air temperature values used to force the model.
Such comparison is presented in Figure 7.11 and shows how, between the months of
October and November, simulated water temperature follows closely the data of air
temperature used to force the model.

Furthermore, the parity diagrams in panels a, b and c of Fig. 7.10 show a slight
overestimation of the highest values of water temperature. Looking at figures 7.10d,
7.10e and 7.10f, the overestimation of water temperature by the model is present
between the months of June and August, and is particularly strong for the bottom
layer. During summer, the strength of thermal stratification is therefore not correctly
simulated by the coupled models. This could be caused by an underestimation of
the light extinction computed by AED2. To test this hypothesis, the light extinction
coefficient (Kd) was calculated over the whole simulation period following equation
(7.2) , and using the values listed in table 7.8 for the specific light extinction
coefficients and model results for the concentrations of phytoplankton, DOC and
POC. Finally, the light extinction coefficient was converted into its corresponding
simulated Secchi depth S (S = 1.7/Kd, equation (7.1)).

The simulated and measured Secchi depth at site B are shown in Figure 7.10e.
The simulated values match closely with the observetions, with only four main
exceptions (namely in the months of April, June and October). During the months
of July and August the simulated Secchi depth is comprised between 1.2 and 2 m.
Such values match very well with the observations, but are considerably higher than
the Secchi depth calibrated in the short-term application of the hydrodynamic model
(section 7.1.2), which was of 0.85 m. Ultimately, the underestimation of summer
thermal stratification could be linked not only with some simplifications made in the
model configuration, such as the constant water level and the absence of exchanges
with groundwater (as suggested in section 7.1.2.3), but also to an excessive numerical
diffusion introduced by the computational schemes of the hydrodynamic model.

7.2.4.2 Biogeochemical model

The calibration of the model was done by trial and error, comparing its results
with high-frequency observations of total chlorophyll, cyanobacteria, dissolved oxygen
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Figure 7.10 – Results of the nine months-long simulation in 2019 with
TELEMAC3D/AED2. Top panels: parity diagrams for water tem-
perature at the surface, middle and bottom layers (respectively panels a, b
and c). Panels d, e and f: observations and simulation results in terms of
water temperature respectively for the surface, middle and bottom layers.
Panel g shows the simulated and observed values for Secchi depth. All
figures are referred to measuring site B. The red vertical line in panels d, e
and f separate the period used for calibration to the one run for validation.
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Figure 7.11 – Water temperature and air temperature data for the whole simulation period
in 2019. The dotted blue line represents observed bottom water temperature
at site B; black solid line represents simulated bottom water temperature at
site B; green line represents the air temperature data used as input to the
model.

and nitrate concentration.
The analysis of such data set, as described in chapter 4, shows the presence of

a first strong peak of phytoplankton biomass around the beginning of March. It
constitutes the strongest bloom of the simulated period and completely consumes the
stock of nitrate present in the water column, influencing the subsequent availability
of nutrients (and nitrate in particular) to sustain phytoplankton growth during the
remaining growing season.

The results of the calibrated model are shown in Figure 7.12, in terms of total
chlorophyll (panel a), cyanobacteria (panel b), dissolved oxygen (panel c) and nitrate
concentration (panel d). In terms of total chlorophyll (Fig. 7.10a), the model
reproduces correctly the overall behaviour recorded by the high frequency sensor.
The first algal bloom is correctly simulated, both in terms of timing and intensity.
Following, the model correctly reproduces the decrease of phytoplankton biomass, as
well as the span and overall concentration magnitude of the phytoplankton during
the summer months. Eventually, the end of the growing season is also well captured
by the model around the end of October.

The year 2019 was not characterized by particularly strong cyanobacterial blooms.
As shown by Fig. 7.10b, their maximal concentration reaches roughly 40 µg Chl. l−1

in four separate occasions: once during the late winter bloom, and the remaining
times during sudden growth peaks between the end of August and the beginning of
October. However, in the present configuration, the group representing cyanobacteria
is adapted to warm water temperatures (i.e. optimum temperature of 28°C, see
table 7.8), and is therefore not capable to reproduce their winter growth. In this
configuration in fact, winter growth completely deputed to the diatoms group.
Similarly to what was discussed for total chlorophyll, during Summer the model
manages to correctly simulate the span of the growing season for the group of
cyanobacteria, as well as their overall concentration magnitude. However, the model
fails to reproduce the succession of short term peaks detected by the high-frequency
observations.

The dynamics of dissolved oxygen simulated by the model fits very closely that
recorded by the high-frequency measurements. Figure 7.8c shows that the model
overestimates slightly the concentration of dissolved oxygen, in particular during
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the colder months of the simulation: during the strong algal bloom of February
and March, as well as during the month of November. In the remaining months of
simulation dissolved oxygen concentration is correctly reproduced.

Figure 7.8d shows the comparison between high-frequency observations and
model results at site B in terms of nitrate concentration. The model correctly
reproduces the observed nitrate dynamics before and during the late-winter algal
bloom. The initial increase in nitrate concentration is modelled here solely through
the processes of mineralization of organic matter and nitrification of ammonium.
The rapid consumption of all the available nitrate during the late winter algal bloom
is also correctly simulated.

Right after the late-winter bloom, during the months of April and May, the
phytoplankton observations are very low and correspond to an increase in the
observed nitrate concentrations. The nitrate accumulated in the water column
during this period is then quickly consumed at the beginning of the second blooming
period around the month of June. The lake appears to be nitrogen limited from this
point until the end of the growing season. These dynamics are not fully reproduced
by the model. At the end of the late-winter bloom the simulated phytoplankton
concentration is higher than the observed one, causing, in the model, a stronger
consumption of nitrate by the phytoplankton, and ultimately delaying the simulated
accumulation of nitrate. Such accumulation of nitrate is necessary to the model in
order to sustain phytoplankton growth during the subsequent summer and autumn
months. Eventually, at the end of the growing season, around the end of October, a
strong increase of nitrate concentration is recorded in the study site, that returns to
values similar to the initial ones before the end of December. The increase of nitrate
concentration reproduced by the model shows a lower rate, roughly one third of the
one of detected in the observations. In the model, such increase is obtained solely
through the processes of organic matter mineralization and nitrification.

Eventually, the concentration of dissolved organic carbon simulated by the model
was compared with data from the laboratory analysis of the periodic water samples
taken at site B. Such comparison is shown in Figure 7.13. The increase of DOC
observed on the study between the months of March and April, following the initial
algal bloom is overestimated in the model simulation, as is the rate of mineralization
of DOC and its decrease during the months of May and June. However, the overall
concentration and dynamics of DOC is adequately simulated by the model.

7.3 Discussion
The hydrodynamic model TELEMAC3D and the biogeochemical model Aquatic

EcoDynamics (AED2) were implemented on Lake Champs-sur-Marne and simulation
results. In their own fields of application, they are both well established models
that, separately, have been employed in various contexts (e.g., for TELEMAC3D:
Villaret et al. 2013, Feng & Jodeau 2016, Merkel 2019) (e.g., for AED2: Zhang et al.
2017, Fenocchi et al. 2019, Krinos et al. 2019). The coupling of the two models
introduces the possibility of modelling the biogeochemical cycle directly through the
TELEMAC modelling system. The coupling between the models is recent, and, to
the best of my knowledge, no applications can be found in scientific literature. In
this work, it was possible to test the behaviour of the coupled models in a natural
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a)

b)

c)

d)

Figure 7.12 – Results of a nine-months long simulation in 2019 with TELEMAC3D/AED2.
Coloured lines represent model results and grey dotted lines the observation
series; all figures are referred to site B. Panel a: observed and simulated total
chlorophyll and chlorophyll content of the four simulated phytoplankton
groups; panel b: cyanobacteria concentration; panel c: dissolved oxygen
concentration; panel d: nitrate concentration.
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Figure 7.13 – Results of a nine-months long simulation in 2019 with
TELEMAC3D/AED2in terms of dissolved organic carbon (DOC,
purple line), and results of the laboratory analysis of periodic water samples
for DOC.

lake ecosystem. The use of high-frequency data allowed to evaluate the performance
of the models both on short-term and on seasonal dynamics.

7.3.1 Short-term simulations and the dynamic calculation of the
light extinction coefficient

The stand-alone hydrodynamic model TELEMAC3D was calibrated and validated
on short-term simulations in order to reproduce at best the thermal and stratification
dynamics of a small and shallow water body such as Lake Champs-sur-Marne. The
model performed well against high-frequency water temperature observations (RMSE
generally lower than 1°C) and thermal stratification was overall well captured by the
model (Fig. 7.2). However, the model shows the tendency to overestimate bottom
water temperature (as in particular in the validation period during 2016) causing the
simulated stratification in some instances to be weaker than the observed one. This
can be linked, on the first hand, to an excessive numerical diffusion introduced by
the computational schemes of the hydrodynamic model and, on the other hand, to
some of the simplifications included in the model configuration. In particular, water
level variations and exchanges with ground water are here neglected, but could also
sensibly impact bottom water temperature in the real system.

The performance of TELEMAC3D during the short-term calibration period of
2018 was very similar to that of the hydrodynamic model Delft3D-FLOW during the
same period (see section 6.3). This shows the soundness of the two hydrodynamic
models, that manage to achieve similar performances in terms of thermal stratifica-
tion in a shallow water body despite the differences in their mathematical structure
and numerical approach (such as: the formulation of the heat-exchange model, or,
more generally, the approach to the resolution of the systems of partial differential
equations). Furthermore, the configurations implemented here for the two models
differed in a few important aspects and a direct and generalized comparison of the
models results is not straightforward. In particular, both the horizontal (Cartesian
mesh for Delft3D, triangular mesh for TELEMAC3D) and vertical discretization
(Z-model for Delft3D-FLOW, and σ-layers for TELEMAC3D), the turbulence clo-
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sure model (k-ε for Delft3D-FLOW, and mixing length with damping function for
TELEMAC3D), the calibrated value of the Secchi depth (1 m for Delft3D-FLOW,
and 0.85 m TELEMAC3D), and the formulations of the heat-exchange models were
different in the two approaches. In order to thoroughly compare the performance
of the two models further tests would be needed, and should feature configurations
as similar as possible, in terms at least of average distance among the nodes of the
computational mesh, vertical discretization, and turbulence model.

The same short-term simulation periods were then simulated to first test the
coupled models TELEMAC3D and AED2. In terms of surface and bottom water
temperature, the coupled models showed performances comparable to those of the
stand-alone TELEMAC3D during both calibration and validation. In the coupled
models, the vertical distribution of water temperature is strongly influenced by
the dynamic calculation of the light extinction coefficient, which is computed by
AED2 at each time step. The values of the specific light extinction coefficients
for phytoplankton and dissolved and particulate organic carbon, as well as their
concentrations, are crucial for the thermal response of the models on the vertical
axis. The feedback of AED2 on TELEMAC3D needs to be carefully taken into
account when calibrating the heat-exchange budget at the water-air interface.

The dynamic calculation of the light extinction coefficient also influences light
availability for biomass growth. In this respect, the parameter half saturation
constant for light limitation, that acts on the light limitation factor for phytoplankton
growth (see section 3.2.4.2, equation (3.28)), has a strong importance in the relation
between light availability and phytoplankton biomass production. The configuration
implemented for the short-term simulations included two phytoplankton groups:
green algae and cyanobacteria. Such configuration, despite being basic, proved to
be able to correctly simulate biomass growth and oxygen dynamics in a natural
ecosystem over short periods spanning roughly two weeks during the summer season.
During the simulation in 2016, the model overestimated observed high-frequency
total chlorophyll, while correctly simulating dissolved oxygen concentraiton. The
analysis of two profiles taken with the BBE Fluoroprobe indicates an underestimation
of total chlorophyll by the optical sensor measuring at high-frequency, rather then
an overestimation of phytoplankton concentration by the model. According to
the profiles, at the begginning of the simulaiton the bloom was dominated by
cyanobacteria, while green algae became dominant towards the end of the simulaiton.
Cyanobacteria chlorophyll therefore seems to be hardly detected, in this instance,
by the high-frequency intrument. This highlights the advantage of having access to
multiple sources of observations in order to validate the data, and reinforces the idea,
already presented in chapter 4 and applied here for the year 2019, of implementing
regression models to correct, when necessary, the data series.

7.3.2 Spatial variability

The presence of spatial patterns was analysed for the short-term simulation
in 2018, for thermal stratification and total chlorophyll. In the model, the strong
horizontal patterns shown in Figure 7.7 for the difference between surface and bottom
water temperature are induced by the bathymetry and are consistent with the results
of the spatial analysis of stratification carried out with the model Delft3D-FLOW
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in the context of the climate change analysis of chapter 5. In section 5.5.2, it was
highlighted how the shallower northern portion (i.e. depth < 0.8 m) of the study
site did not stratify (i.e. temperature difference between surface and bottom layers
>1°C) for at least 24 consecutive hours (i.e. one stable stratified day, see for instance
Figure 5.6). The same result was found here with TELEMAC3D. However, Figure
7.7, which plots model results at 12 a.m., shows how water temperature differences
between the surface and bottom layers can be considerably greater than 1°C, even
in some of the shallowest areas at least during the day.

Horizontal gradients in the distribution of biomass in the surface layer were weak
but present on the study site. As shown in figures 7.8 and 7.9, total chlorophyll
behaved similarly to an active tracer and its spatial distribution was mainly influenced
by the velocity field. Extremely similar patterns were found for cyanobacteria. This
shows how, in the present model configuration, some of the factors supposed to be
important for biomass growth, and particularly favourable for that of cyanobacteria,
are not fully reproduced by the model. Some of these factors were discussed in
chapter 5 for cyanobacteria, and include their ability to migrate towards the surface
of the water in stratified environments, and the process of nutrient accumulation
in the sediment during stratification followed by a replenishment of the water
column with such nutrients during subsequent mixing events. However, the latter
process is only partially taken into account in this model configuration through the
alternation between mixing and thermal stratification. The motion capabilities of
cyanobacteria and biogeochemical processes taking place in the sediments are not
explicitly considered.

From these first model applications, thermal stratification and mixing events seem
to influence principally the vertical distribution of phytoplankton concentration, and
less its horizontal patterns. In the short term simulations discussed in section 7.1.3,
slightly higher concentrations of phytoplankton were simulated during stratification
towards the surface layer, which is characterized by more penetrating light and
warmer temperature. During subsequent overnight mixing, the phytoplankton
concentration was levelled over the water column. Further tests would be necessary
to analyse the importance of stratification and mixing for horizontal patterns and
bloom initiation in models simulations, with a more complete model configuration
possibly including the migration capabilities of cyanobacteria, their nitrogen-fixation
abilities, and an explicit description of the sediment layer.

7.3.3 The coupling and the performances of the biogeochemical
model

During the seasonal simulation of 2019, the coupled models reproduced well the
overall water temperature dynamics at all three layers. The underestimation of
water temperature found for the months of October an November, as well as the
slight overestimation of summer water temperature, could be linked with the absence
in the model configuration of exchanges with groundwater, that could somewhat
moderate the seasonal variations of water temperature in the real system. Despite
this underestimation of water temperature, the overall RMSE values between model
and observations were lower than 1.5°C. Furthermore, starting in particular from
the month of November until the end of January, very low phytoplankton biomass
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is usually detected on the study site. In this respect, the bias found for water
temperature during autumn should have a reduced impact on the outcomes of the
coupled biogeochemical model.

The biogeochemical model reproduced well the biogeochemical cycle in the study
site, both on a short term and on a seasonal term. The availability of an extensive
high-frequency data set allowed to test the model thoroughly, against multiple
variables that characterize the biogeochemical cycle exhaustively. On the short term,
the calibrated model was able to reproduce adequately rapid phytoplankton and
cyanobacteria growth and decline occurring over a period of only two weeks, with the
implementation of only two phytoplankton groups (green algae and cyanobacteria).

For the seasonal simulation of 2019, the availability of additional measured vari-
ables, dissolved organic carbon (DOC) and nitrate in particular, allowed for a more
accurate initialization of the model. This fact, together with the need to reproduce
dynamics occurring at a wider range of water temperatures and daylight durations,
lead to a recalibration of the coupled models. The introduction of two additional
phytoplankton groups, adapted to cold (diatoms) and medium (flagellates) water
temperatures, allowed to correctly reproduce the overall phytoplankton dynamics
observed in the study site for the year 2019. Similarly, the overall dynamics of
oxygen, nitrate, DOC and Secchi depth were adequately reproduced by the model
for 2019.

Some discrepancies were detected when comparing model results to high-frequency
observations. Notably, in the context of a seasonal simulation such as that of
2019, the model did not fully reproduce the sudden peaks of growth and decline
observed during spring and summer. This could be explained by the absence, in the
models configuration, of: (i) nitrogen-fixing cyanobacteria such as Aphanizomenon,
both present on the study site, that should be advantaged under nitrogen-limited
conditions, (ii) predation by zooplankton or competition for nutrients and light
with other organisms, such as macrophytes, and (iii) by the absence in the model
configuration of external nutrient sources, that might locally boost phytoplankton
growth over a short period of time.

The model underestimates the accumulation of nitrate observed in the study
site during the months of October and November 2019. This is partially due to the
slight overestimation of the phytoplankton population in the study site during the
same period, which consumes the mineralized nitrate at a faster rate. However, such
accumulation is obtained in the model solely through the processes of mineralization
of organic matter and nitrification of ammonium. This suggests that a non negligible
external source of nutrients (N in particular), probably coming from underground
water exchanges with the Marne river, droppings from the vast local population
of waterbirds, or, in a smaller measure, rainfall run-off, is acting on the study site
and should be estimated and introduced in the model configuration. Alternatively,
the underestimation of nitrate during autumn could be simply originated by an
underestimation of the mineralization rate of organic matter. In the latter case,
however, if the mineralization rate was to be increased, other competitors (e.g.
macrophytes) for nutrients, and nitrate in particular, should be introduced in the
model configuration in order to prevent an overestimation of nitrate concentration
during spring and summer.

In fact, since lake Champs-sur-Marne has no direct surface inlets, in the simu-
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lations discussed in this chapter, no external sources of nutrients are introduced,
and the mineralization of organic matter constitutes the only “source” of nutrients
sustaining primary production during the entire simulation. The mathematical
formulation of organic matter mineralization in AED2, substantially different from
that of Delft3D-BLOOM (see chapter 3 for further details), was particularly adapted
for such an approximation. In particular, on a seasonal term and using organic
matter mineralization as the only source of nutrients, similar results could not be
obtained with Delft3D-BLOOM. In deflt3D-BLOOM organic matter mineralization
was not rapid enough for this purpose, and the inorganic nutrient supply to the
system could not sustain phytoplankton growth over periods longer than roughly a
month.

The coupling of Aquatic EcoDynamics with TELEMAC3D is recent and the work
on the coupling remain in progress. For instance, during this PhD, two successive
versions of the coupling between the models were tested, until version 8.1.2 was
released in October 2020 and was used to obtain the results presented in this chapter.
Some functions available in AED2 are currently not fully implemented in the coupling
with TELEMAC3D, and have forced some of the choices made while building the
model configuration: for instance, the choice of the σ-layers over the Z-model for the
discretization of the vertical axis, and the non-activation of the Silica module despite
the presence of the diatoms phytoplankton group. However, this model configuration
has proved that the coupled models are stable, robust and that allow to take into
account and simulate the main characteristics of primary production, cyanobacteria
production and, more generally, of the biogeochemical cycle in a lake.

At this first stage of the utilization of the coupled models, their calibration
was done by trial and error. However, thanks to a collaboration with Laboratoire
Hydraulique Saint-Venant (LHSV) that granted access to computational server
CRONOS owned by Elecrticité de France (EDF), it was possible to start the
application of Approximate Bayesian computation (ABC, see chapter 5 for further
details), for the automated calibration of the coupled models. The objective was
to apply the same methodology developed in chapter 5 for the model Delft3D-
BLOOM, for the calibration of the coupled TELEMAC3D and AED2. However,
differently from what was done in chapter 5 for Delft3D-BLOOM, the calibration
period is of six months (from the 1st of February 2019 to the 31st of July 2019) for
TELEMAC3D/AED2.

Thanks to the access to the CRONOS computational server, the 30000 model
simulations necessary to create the training data set for the ABC calibration were
carried out. However, the calibration procedure through ABC is still to be analysed.
This work is at present in an early stage but should be pursued through future
research projects.



Chapter 8

Conclusions and perspectives

Lake ecosystems are vital for the biosphere, and are of crucial importance for
human society. However, during the past decades, they have been deteriorating
at an increasing pace, and the occurrence of harmful algal blooms has aggravated
worldwide. This is principally caused by eutrophication and climate change. In this
context, the importance of small urban lakes has been recognized only recently, and
such ecosystems have so far received less attention by the scientific community in
comparison with deeper and larger water bodies.

The response of lake ecosystems to changing climatic and eutrophication condi-
tions can be simulated through coupled hydrodynamic and biogeochemical models. A
vast range of models is available to address this issue, and they might differ strongly
in terms of dimensionality (1D, 2D or 3D), coupling and formulation. Moreover,
biogeochemical models are often complex and highly parametrized. Their calibra-
tion is a challenging task, further complicated by the low-frequency of traditional
limnological monitoring, and is often overlooked in scientific literature.

This PhD thesis is an integral part of the ANSWER research project, funded by
the French National Research Agency (ANR) and the Natural Science Foundation
of China (NSFC), that seeks a deeper understanding of the triggering factors for
algal blooms and cyanobacteria blooms in freshwater bodies, and gathers different
expertises to carry out both laboratory experiments and numerical simulations.

In this framework, the main objectives of this PhD thesis are to make use of
modelling tools to simulate the thermal, phytoplankton and cyanobacteria dynamics
on different time-scales in a small and shallow urban lake, and to identify and analyse
key elements that are of strategic importance for lake ecosystem modelling in the
context of climate change. Through the use of two different coupled hydrodynamic
and biogeochemical models, three crucial aspects of aquatic ecological modelling
were analysed: (i) the hydrodynamic model and its ability to simulate the thermal
dynamics of a small and shallow lake in a context of climate change, (ii) the high
level of parametrization of deterministic biogeochemical models and the importance
of automated techniques to address their calibration, and (iii) different formulations
and approaches to the coupling between hydrodynamic and biogeochemical models,
and the feedbacks between the models.

In particular, three key elements for the implementation and exploitation of
aquatic ecological models are addressed in this work: (i) the use of a 3D hydrodynamic
modelling approach to characterize the thermal and stratification dynamics in shallow
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lakes and highlight its spatial heterogeneity and long term evolution, (ii) the high
level of parametrization of deterministic biogeochemical models and the importance
of sensitivity analysis and automated techniques to address their calibration and
improve their results, and (iii) different approaches to model the biogeochemical
cycle and different grades of coupling between 3D hydrodynamic and biogeochemical
models.

The availability of an extensive data set of high-frequency measurements allowed
the models to be tested on different time frames: from short-term (a few weeks), to
seasonal-term and long-term (decades) simulations.

The aquatic ecological models used in this work are complex three-dimensional
deterministic models constituted of a purely hydrodynamic model coupled with a
biogeochemical model. Namely, the models used for this work are Delft3D-FLOW
and Delft3D-BLOOM from the Delft3D modelling suite, and TELEMAC3D coupled
with Aquatic EcoDynamics (AED2).

The hydrodynamic model Delft3D-FLOW was used to test the impact of climate
change on a small urban lake, by reconstructing the long-term thermal regime of
lake Champs-sur-Marne from 1960 to 2017. To do so, the SAFRAN meteorological
reanalysis were used to force the model, and a series of indices describing the
dynamics of stratification and cyanobacterial production were defined to characterize
the thermal regime.

Small and shallow lakes are extremely widespread ecosystems. The results of
this study suggest that such systems experience considerable thermal stress caused
by climate change that could have favoured cyanobacteria dominance, especially in
nutrient-enriched systems. More precisely, the results obtained in this work showed
that climate change had a strong impact on the study site during the past six decades,
and that small urban lakes react rapidly to the external meteorological conditions,
with only limited resilience to climatic shifts. The additive effect of increasing solar
radiation and air temperature and decreasing wind speed enhances the changes
found in the lake. The simulated average annual water warming (0.6°C.dec−1,
or an increase of 32% in annual water temperature between 1960 and 2017) was
stronger than that found for air temperature (0.3°C.dec−1). The impact found for
stratification and cyanobacteria production was even more alarming, with an increase
of over 30% of the stratification indices and over 60% of the cyanobacteria average
growing degree days during the six past decades. Spring shows the sharpest trends
in terms of water temperature, water column stability and cyanobacteria growing
degree days, and might ultimately be the season suffering the strongest changes.
Eventually, the strong spatial heterogeneity found in the study site for thermal
stratification and growing degree days might locally create conditions particularly
favourable for cyanobacteria blooms. Horizontal patterns can be particularly strong
for shallow lakes due to the relative importance of bathymetric variations, and can
only be detected through a 3D approach.

The tendencies found for water temperature, stratification and cyanobacteria
production could favour early phytoplankton blooms, contribute to the proliferation
of cyanobacteria, and ultimately enhance the degradation of the whole aquatic
ecosystem. The computation of the thermal growth rate and of the growing degree
days for cyanobacteria demonstrated how the use of thermal-hydrodynamic simu-
lations can allow to quantitatively estimate tendency to biomass production. The
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approach in this study is general and could be extended to any water body, as long
as meteorological forcing and data for calibration are available. It could also be used
to obtain future projections of the thermal regime of the study site, if the model is
forced with climate change scenarios.

Furthermore, by activating the coupling with a biogeochemical model, such study
could constitute the basis for long-term quantitative simulations of the biogeochemical
cycle. However, in order to do so, the uncertainty affecting the biogeochemical model
parameters values, and the data describing the long-term evolution of the nutrient
supplies to a water body should be carefully analysed and minimized.

In fact, deterministic biogeochemical models are often complex and highly
parametrized, and their calibration is often overlooked in scientific literature. Au-
tomated calibration strategies can help estimating parameters values, therefore
reducing the uncertainty of the outcomes of a model. In this work, an innovative
technique for automated parameter inference (Approximate Bayesian Computation,
or ABC) was tested on the biogeochemical model Delft3D-BLOOM. This technique
(ABC-RF with SA) is based on the Approximate Bayesian Computation (ABC) wich
is combined with the machine learning technique called “Random Forest” (RF) and
a sensitivity analysis (SA) of the model parameters.

The results of this study show that, without a preliminary sensitivity analysis,
the standard formulations of ABC and ABC-RF are not suited for the calibration of a
complex biogeochemical model. However, the new algorithm proposed here (ABC-RF
with SA) was successfully applied for the calibration of the Delft3D-BLOOM model.
The use of high-frequency data allowed to focus the work on a short-term algal bloom,
an event that would possibly be missed by traditional periodical survey, also reducing
computational time. After the automated calibration, the overall phytoplankton
growth and mortality were correctly simulated, as well as cyanobacteria and oxygen
concentration. Eventually, this work confirms the importance and the advantages
of implementing automated calibration strategies in the context of biogeochemical
models, showing that this allows on the one hand to improve model results while
reducing their uncertainty, and on the second hand to gain new insights both on the
optimal values for the parameters, and on their importance relatively to the model
results.

This study constitutes a first and successful application of the ABC-RF with SA
for parameter inference, and opens to a wide range of possible future applications.
The calibrated model could be tested on short-term extreme meteorological events,
such as heat-waves. More generally, i the context of aquatic ecological modelling,
ABC-RF with SA could be applied to different models, and for simulations covering a
longer period of time. Furthermore, the parameters obtained through this calibration
technique could be tested for validation over multiple periods of time. Finally, ABC
could also be used to define appropriate initial conditions for the application of other
calibration algorithms, such as local gradient-based methods or global optimization
algorithms, with the objective to seek the parameters optimum.

The set up of a second coupled hydrodynamic / biogeochemical model for Lake
Champs-sur-Marne, via TELEMAC3D and AED2, allowed to test their recent
coupling on a natural ecosystem and to analyse a different mathematical approach
from that of Delft3D-BLOOM. The use of high-frequency data was crucial to test
the model both on short-term and seasonal simulations.
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The results of this study showed that the coupling between the two models is
robust and stable. Even though not all the features of the two models are currently
implemented in their coupling, the biogeochemical cycle is correctly simulated by
TELEMAC3D coupled with AED2, both on the short term and on the seasonal term.
In particular, the results show a correct simulation of the light extinction coefficient
and highlight the feedback of its dynamic calculation on the hydrodynamic model.
Furthermore, the results of the seasonal simulations carried out with TELEMAC3D
and AED2 show the importance of the modelling approach describing organic
matter mineralization for simulating phytoplankton growth over an annual cycle,
in particular in an ecosystem without direct surface inlets. More broadly, this also
highlights the importance of testing different modelling approaches for improving
simulation performances.

At this early stage, the calibration of the coupled models was done by trial
and error. However, thanks to a collaboration with Laboratoire Hydraulique Saint-
Venant (LHSV) that granted access to computational server owned by Elecrticité
de France (EDF) its was possible to start the application of ABC-RF with SA, for
the automation of the calibration of the model parameters. This work is still in an
early stage and should be pursued in the future, via research collaborations between
LEESU and LHSV.

This work highlights elements of strategic importance for the reliability of lake
ecosystem modelling, especially in a context of climate change. Hydrodynamic
models are at the basis of the modelling chain and need to be thoroughly calibrated
and validated. They can be then used to gain new insights on the past or future
evolution of a water body, and to quantitatively link thermal dynamics and primary
production. In this regard, their performances are solid and the use of 3D models
is beneficial for the identification of spatial heterogeneity also at the scale of a
small and shallow urban lake. Similar long-term studies are far more challenging
when the biogeochemical cycle is introduced in the modelling chain, as new sources
of uncertainty are introduced (e.g. model parameters and nutrient input). This
work shows the importance of the calibration step in biogeochemical modelling
and highlights the potential of automated calibration strategies, in particular by
proposing an innovative algorithm for Approximate Bayesian Computation and
sensitivity analysis. Moreover, this work puts emphasis on the relevance of an
extensive data set that includes laboratory analyses and continuous measurements.
This is crucial to ensure that the collected data are reliable and that models are
able to reproduce the biogeochemical cycle on different time-frames. Finally, the
implementation of two different coupled 3D hydrodynamic/biogeochemical models
allowed to analyse and highlight in closer detail the effect on model results of
different approaches for hydrodynamic and biogeochemical modelling, as well as for
the coupling between the models.

Managing the effects of anthropogenic stressors such as climate change and
eutrophication on aquatic ecosystems will be one of the greatest challenges of the
upcoming decades. This work has proven that, given the right forcing, models can
be reliable tools to simulate the past, present and, possibly, the future conditions
of aquatic ecosystems. This work also highlights the importance of an extensive
data set to thoroughly assess a model performance, and the benefits of automated
calibration strategies in improving model results and enhance their reliability.
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