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Titre : Co-conception de systèmes d'imagerie pour l'extension de profondeur de champ -Application à la localisation de molécule unique Mots clés : Imagerie ; Co-optimisation ; Masques de phase ; Traitement d'image ; Modélisation ; Microscopie Résumé : Une grande majorité des systèmes d'imagerie est aujourd'hui constituée à la fois d'un système optique performant et de traitements numériques des images acquises. Concevoir conjointement l'optique avec le traitement est appelé « co-conception. » Bien qu'une telle démarche soit difficile à mettre en oeuvre, il existe plusieurs problématiques dans lesquelles son efficacité a été démontrée. L'une d'entre elles, étudiée dans ce manuscrit, est l'extension de la profondeur de champ en utilisant des masques de phase binaires annulaires. On distingue ici deux types d'applications. Pour la première, le produit final est une image restaurée par un algorithme de déconvolution. Nous montrons que les masques optimaux optimisés avec un critère basé sur le filtre de Wiener ou avec un critère basé sur une méthode de déconvolution non linéaire sont pratiquement identiques. La seconde application est la microscopie par localisation de molécule unique (SMLM), où l'image acquise sert à estimer une autre information : la position ou la présence d'un marqueur fluorescent individuel. Nous proposons un critère d'optimisation des masques non plus basé sur la qualité d'une image restaurée mais sur la précision avec laquelle un marqueur peut être localisé. Avec cette méthodologie (basée sur la borne de Cramér-Rao), nous avons la capacité d'optimiser des masques d'extension de profondeur de champ dans des conditions réalistes, en tenant compte des paramètres clefs d'une expérience de SMLM, et de prédire les performances de localisation qu'ils peuvent atteindre. Nous proposons aussi un traitement approprié des images acquises afin de localiser les marqueurs fluorescents avec la précision sous-pixellique prévue par nos modèles.

Title : Co-design of imaging systems for depth-of-field extension -Application to single-molecule localization Keywords : Imaging; Co-optimization; Phase masks; Image processing; Modeling; Microscopy Abstract: Today, a large majority of imaging systems are made up of both a high-performance optical system and digital processing of the acquired images. Designing the optics jointly with the processing is called "co-design." Although such an approach is difficult to implement, there are several problems in which its effectiveness has been demonstrated. One of them, studied in this manuscript, is the extension of the depth of field using annular binary phase masks. Two types of applications can be here distinguished. For the first one, the final product is an image restored by a deconvolution algorithm. We show that the optimal masks optimized with a criterion based on the Wiener filter or with a criterion based on a nonlinear deconvolution method are practically identical. The second application is the single molecule localization microscopy (SMLM), where the acquired image is used to estimate another information: the position or presence of an individual fluorescent marker. We propose a criterion for mask optimization that is no longer based on the quality of a restored image but on the accuracy with which a marker can be localized. With this methodology (based on the Cramér-Rao bound), we have the ability to optimize depth-of-field extension masks under realistic conditions, taking into account the key parameters of an SMLM experiment, and to predict the localization performance they can achieve. We also propose an appropriate processing of the acquired images in order to localize the fluorescent markers with the sub-pixel accuracy predicted by our models. espérance mathématique FT 1D [•] transformée de Fourier 1D FT 2D [•] transformée de Fourier 2D U NE grande majorité des systèmes d'imagerie -de l'appareil photo de votre télé- phone portable aux instruments scientifiques modernes tels que les microscopes pour la biologie ou encore les télescopes pour l'astronomie -est aujourd'hui constituée à la fois d'un système optique très performant et de traitements numériques des images acquises. De par la nature très différente de ces deux domaines d'expertise, ces deux composantes -optique et traitement -sont souvent conçues et optimisées séparément : au meilleur système optique est associé le meilleur traitement numérique, pour une application donnée.

LISTE DES NOTATIONS

Cependant, rien ne garantit que l'ensemble du système d'imagerie soit le plus performant. Pour garantir la meilleure conception, il est donc nécessaire de le concevoir dans son ensemble. Concevoir conjointement l'optique avec le traitement numérique d'un système d'imagerie est appelé « co-conception ». Cette nouvelle approche, encore peu répandue, est à l'intersection entre deux disciplines phares : la conception optique et le traitement du signal. Les fondements mathématiques et conceptuels de cette approche, pour un système d'imagerie complet, ont été proposés par Stork et Robinson [2008]. * * * Tout commence à la fin du XXe siècle où les surfaces photosensibles, dont l'image était révélée chimiquement, laissent petit à petit place à une nouvelle technologie : le capteur électronique. Ce dispositif permet de capturer une image dans un format numérique. Les images peuvent alors être traitées par des algorithmes après avoir été obtenues, de manière à améliorer leur rendu : correction des couleurs, filtrage, accentuation pour augmenter la netteté, etc.

Un grand nombre de ces traitements sont aujourd'hui appliqués automatiquement une fois l'image numérique acquise. L'image finale n'est donc plus issue uniquement d'un système optique mais d'une subtile combinaison entre optique et traitement numérique. Afin d'améliorer les performances d'imagerie et / ou de réduire certaines contraintes de conception, co-concevoir le système optique avec le traitement numérique adapté est nécessaire. Bien qu'une telle démarche soit difficile à mettre en oeuvre, il 1. INTRODUCTION GÉNÉRALE existe plusieurs problématiques dans lesquelles son efficacité a été démontrée. L'une d'entre elle, que nous allons étudier dans ce manuscrit, est l'augmentation de la profondeur de champ.

LA PROFONDEUR DE CHAMP (PDC) ET SON EXTENSION

Dans l'espace objet d'un système d'imagerie, il n'existe théoriquement qu'un seul plan de netteté que l'on appelle le plan de mise au point (ou plan focal) : l'image d'un objet situé en avant ou en arrière de ce plan est considérée comme floue, on dit que l'objet est « défocalisé ». En pratique, on admet une certaine tolérance de netteté, et donc, comme l'illustre la Figure 1.1, l'existence de deux limites situées de part et d'autre de ce plan. Tout objet se trouvant entre ces deux limites conduit alors à une image considérée comme nette. On appelle « profondeur de champ (PdC) » la distance séparant le premier plan net du dernier.

L'étendue de cette zone dépend de plusieurs paramètres, notamment l'ouverture du diaphragme de l'objectif, la distance de mise au point, mais également des conditions d'observation. En pratique, la plupart de ces paramètres sont imposés par le matériel utilisé. L'ouverture est donc le principal réglage qui permet de modifier la PdC du système d'imagerie. Plus la PdC est étendue, plus elle intègre le sujet dans son environnement ; pour cela, il convient de fermer le diaphragme. A contrario, plus elle est courte, plus elle l'isole ; il faut dans ce cas ouvrir le diaphragme. La Figure 1.2, extraite du manuel d'utilisation du Nikkormat FT2, illustre ce principe.

L'objectif de cette thèse est d'étendre la PdC d'un système d'imagerie. Pour y parvenir, il faut nous munir d'un modèle physique de la variation des propriétés du système avec la défocalisation. D'autre part, il nous faut décider quels composants optiques nous allons utiliser pour réaliser cette opération. Ces deux questions font l'objet des sections suivantes.

VARIATION DE LA RÉPONSE IMPULSIONNELLE EN ÉCLAIREMENT AVEC

LA DÉFOCALISATION Dans cette section, on définit un modèle de la variation de la réponse impulsionnelle spatiale en éclairement (en anglais point spread function (PSF)) d'un système d'imagerie avec la défocalisation. Considérons le système optique complet, supposé idéal, schématisé à la Figure 1.3. L'objet A, situé à une distance z o du plan principal objet sur l'axe où α désigne l'angle orienté entre l'axe optique et le rayon sortant de la pupille qui s'en écarte le plus (voir la Figure 1.3), et n est l'indice de réfraction du milieu image. Dans ce manuscrit, n sera supposé égal à 1.

Pour une ouverture numérique image faible (i.e., NA i 1), l'optique de Fourier paraxiale classique peut être appliquée du côté image. L'expression de la PSF dans le plan d'imagerie aux coordonnées (x, y) s'écrit alors [Goodman, 2017] :

h ∆z i (x, y) ∝ q x NA i λ , y NA i λ 2 (1.2)
où λ représente la longueur d'onde dans le vide de la lumière incidente, supposée monochromatique, et h ∆z i (x, y) dx dy = 1 . (1.5) La fonction Φ ∆z i qui intervient dans l'Équation (1.3) est appelée « fonction de phase pupillaire ». Elle représente, dans la pupille de sortie du système optique, l'écart de phase entre l'onde sphérique réelle convergeant au point B et l'onde sphérique de référence qui converge en A . Elle permet de caractériser l'effet optique d'un défaut de mise au point (i.e., ∆z i dans l'espace image ou ∆z o dans l'espace objet). Un modèle couramment utilisé décrit ce défaut par une variation quadratique de l'écart de phase dans la pupille [START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7e édition[END_REF] :

q(µ, ν) = FT 2D Π Disk (a, b) exp i Φ ∆z i (a, b) (µ, ν) . ( 1 
Φ ∆z i (r ) 2π λ ψr 2 (1.6)
où r = a 2 + b 2 est la coordonnée pupillaire radiale réduite. Le paramètre ψ est l'écart normal. Il caractérise l'écart de phase 2πψ/λ en bord de pupille (i.e., r = 1). Pour calculer son expression en fonction des paramètres du système optique, considérons deux fronts d'onde sphériques tangents au plan pupillaire et centrés respectivement en A et B . Leur écart est donc nul au centre de la pupille. On montre alors géométriquement à l'aide de la Figure 1.3 -pour des avances de phase comptées positivement -que le paramètre ψ peut s'exprimer de la manière suivante :

ψ -(d + ∆z i ) 2 + R 2 + d 2 + R 2 + ∆z i avec R = NA i ×|d | 1 -NA 2 i . (1.7) 
En supposant que |∆z i | |d |, on obtient :

ψ 1 - |d | d 2 + R 2 ∆z i avec |d | d 2 + R 2 = 1 -NA 2 i (1.8)
Comme l'ouverture image est faible (i.e., NA i 1), le paramètre ψ a donc l'expression approchée suivante :

ψ 1 2 NA 2 i ∆z i .
(1.9)

Cette expression dépend de l'ouverture numérique image et du déplacement ∆z i du plan image. Or, dans la plupart des applications, on préfère caractériser la défocalisation par le déplacement ∆z o de l'objet imagé. Puisque les points B et B sont conjugués par le système optique, on a la relation suivante :

- n s z o + ∆z o + n z i + ∆z i = n f (1.10)
où f est la distance focale image du système optique 1 , n s l'indice de réfraction du milieu objet, et n celui du milieu image (supposé égal à 1). En supposant que |∆z i | |z i |, cette relation devient :

∆z i z i 1 -z i n s z o + ∆z o + 1 f . (1.11) 1. INTRODUCTION GÉNÉRALE
Ainsi, en substituant l'expression approchée de ∆z i dans l'Équation (1.9), on obtient une autre expression du paramètre ψ :

ψ (z i × NA i ) 2 2 1 z i - n s z o + ∆z o - 1 f (1.12)
Cette expression dépend maintenant de ∆z o , mais toujours de NA i , l'ouverture numérique dans l'espace image. Or, l'une des applications à laquelle nous nous intéresserons à partir du Chapitre 3 est la microscopie par localisation. Ce mode d'imagerie est souvent caractérisé par des paramètres optiques exprimés dans l'espace objet. Par commodité, on souhaite alors exprimer le paramètre ψ en fonction de paramètres optiques définis dans l'espace objet. Comme les objectifs de microscopes sont télécentriques côté objet, le grandissement transversal de l'ensemble objectif de microscope et lentille du tube, noté M , ne dépend pas de la position longitudinale de l'objet observé. De plus, comme les objectifs de microscope sont aplanétiques (i.e., corrigés à minima de l'aberration sphérique et de la coma), ils vérifient la condition des sinus d'Abbe. On peut alors relier l'ouverture numérique image (NA i ) à l'ouverture numérique objet, notée NA, par la relation suivante [START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7e édition[END_REF] : NA i = NA /|M |. Par ailleurs, le défaut de mise au point côté image ∆z i est lié à celui côté objet ∆z o par le grandissement longitudinal :

∆z i M 2 n s ∆z o (1.13)
avec n s l'indice de réfraction du milieu objet -ce qui correspond, pour la microscopie, à l'indice de réfraction du milieu biologique. Le paramètre de défocalisation ψ de l'Équation (1.9) s'exprime donc dans l'espace objet : ψ NA2 2n s ∆z o (1.14) Lorsque le système optique est parfaitement focalisé sur l'objet que l'on cherche à imager, la valeur du paramètre de défocalisation ψ est égale à 0. Si ψ ∈ [-λ/4, λ/4] alors l'image est considérée comme nette (critère de Rayleigh 2 ). Cet intervalle correspond à la PdC naturelle du système optique que nous avions définie qualitativement à la Figure 1.1.

EXTENSION DE LA PDC À L'AIDE D'UN MASQUE DE PHASE

L'objectif de cette thèse est d'étendre la PdC. La manière la plus simple d'y parvenir est de réduire le nombre d'ouverture du système. En effet, comme le montre l'Équation (1.14), si l'on souhaite atteindre une certaine PdC -définie par un déplacement ∆z o par rapport au plan de mise au point -, il suffit d'ajuster la valeur de NA pour que |ψ| soit inférieur à λ/4. Cependant, diminuer l'ouverture numérique fait baisser l'éclairement dans le plan image et diminue la résolution transverse. Cette méthode est donc 1 7 rapidement limitée par les conditions réelles de la prise de vue : luminosité, vitesse d'obturation, etc. Dans certaines applications, comme par exemple la microscopie de fluorescence, ces conditions sont si contraignantes que diminuer l'ouverture est impossible.

Une nouvelle approche a donc été proposée par [START_REF] Dowski | Extended depth of field through wave-front coding[END_REF] pour étendre la PdC d'un système d'imagerie sans en modifier l'ouverture. Elle consiste à placer, dans la pupille de sortie de ce dernier, une lame de verre dont l'épaisseur varie spatialement. Cette lame, aussi appelée « masque de phase », introduit une modulation de phase dans la pupille qui modifie la PSF pour la rendre invariante à la défocalisation. Cependant, bien que la PSF soit rendue invariante, elle est aussi plus large que celle d'un système optique sans masque et correctement focalisé. Les images obtenues sont donc floues. Il est alors nécessaire de leur appliquer un traitement numérique de déconvolution pour améliorer leur qualité.

Dans ce contexte, on appelle « optimisation » la recherche de la fonction de modulation de phase optimale du masque. Le critère d'optimalité est la qualité de l'image déconvoluée. Il dépend donc des propriétés optiques à l'origine de la formation de l'image mais aussi de l'algorithme de déconvolution : ces deux éléments sont donc optimisés simultanément.

Cette approche de co-conception a d'abord été utilisée par [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF] pour optimiser les paramètres d'un masque de phase cubique, puis généralisée à un grand nombre de fonctions de phase [START_REF] Diaz | Comparison of depth-of-focus-enhancing pupil masks based on a signalto-noise-ratio criterion after deconvolution[END_REF], comme par exemple, les masques dont la phase est logarithmique [START_REF] Sherif | Phase plate to extend the depth of field of incoherent hybrid imaging systems[END_REF], exponentielle [START_REF]Optimized phase pupil masks for extended depth of field[END_REF], ou s'exprime sous la forme de fonctions rationnelles [START_REF] Zhou | Rational phase mask to extend the depth of field in optical-digital hybrid imaging systems[END_REF]. En particulier, elle a été utilisée pour optimiser des masques de phase binaires annulaires [START_REF] Diaz | Comparison of depth-of-focus-enhancing pupil masks based on a signalto-noise-ratio criterion after deconvolution[END_REF], Falcón et al., 2017], qui présentent l'intérêt d'être simples à fabriquer 3 tout en ayant une capacité d'extension de PdC équivalente à celle des masques dont la phase varie continûment 4 . Ces masques sont composés d'anneaux concentriques, comme l'illustre la Figure 1.4. Un masque à L anneaux, de rayon d'ouverture unitaire, est défini par l'ensemble de ses L -1 rayons, tel que ρ = (ρ 1 ; • • • ; ρ L-1 ). Chaque anneau ajoute au front d'onde incident une phase de 0 ou π radians calculée à partir de la longueur d'onde nominale λ de lumière incidente.

Ainsi, en présence d'un front d'onde aberrant défocalisé, la fonction de phase pupillaire définie à l'Équation (1.6) devient :

Φ ∆z i (r, ρ) 2π λ ψr 2 + Φ mask (r, ρ) (1.15)
où Φ mask désigne la fonction de phase du masque et ρ son vecteur de paramètres illustré à la Figure 1.4(b). Nous avons supposé dans l'Équation (1.15) que la fonction Φ mask a la symétrie de révolution -elle ne dépend que de la coordonnée radiale r -car tous les 3. Ils sont obtenus au moyen d'un procédé classique de lithographie UV / gravure ICP (gravure ionique réactive assistée par couplage inductif) sur un substrat de silice fondue, au sein des installations de la Plateforme de Technologie Commune à Thales, l'Institut Optique Graduate School et l'École Polytechnique.

4. En illumination monochromatique, une simple gravure binaire dans un substrat diélectrique suffit pour garantir une modulation de phase de π radians à la longueur d'onde λ. Ce n'est pas forcément le cas en illumination polychromatique. Cependant, [START_REF] Fontbonne | François : Theoretical and experimental analysis of co-designed binary phase masks for enhancing the depth of field of panchromatic cameras[END_REF] ont montré expérimentalement qu'en imagerie les masques de phase optimisés sous l'hypothèse d'une illumination monochromatique sont robustes et peuvent être utilisés avec un éclairage à large spectre. masques utilisés dans cette thèse possèdent cette symétrie. Cependant, les méthodologies développées peuvent facilement s'étendre à des masques sans symétrie particulière.

L'efficacité de ces masques binaires annulaires a été démontrée expérimentalement sur des systèmes optroniques pour la Défense et la Surveillance, dans le domaine infrarouge [START_REF] Diaz | Real-time increase in depth of field of an uncooled thermal camera using several phase-mask technologies[END_REF] et visible [START_REF] Burcklen | Experimental demonstration of extended depth-of-field f/1.2 visible High Definition camera with jointly optimized phase mask and real-time digital processing[END_REF]. Dans l'ensemble de ces travaux, les masques ont été optimisés pour améliorer la qualité d'image sur une PdC étendue en supposant que le traitement numérique appliqué aux images est un algorithme de déconvolution linéaire. Cette hypothèse conduit à un critère dont l'expression est analytique, ce qui accélère l'étape d'optimisation. Cependant, les algorithmes de déconvolution non linéaires restaurent mieux les images que les algorithmes linéaires. La question a souvent été posée de connaître l'influence de l'algorithme de déconvolution (linéaire ou non) sur l'optimisation des masques. Une première partie de mes travaux se concentre donc sur cette question et s'efforce d'y apporter une réponse. Cette étude amène un éclairage sur la robustesse des masques vis-à-vis de l'algorithme de déconvolution utilisé.

Par ailleurs, en co-conception, le traitement à appliquer aux images n'est pas nécessairement une déconvolution mais un autre traitement plus adapté permettant d'extraire une information particulière. C'est par exemple le cas de la microscopie par localisation, en anglais single-molecule localization microscopy (SMLM), où les images acquises permettent d'estimer la position de marqueurs fluorescents. L'équipe de Laurent COGNET, basée au Laboratoire Photonique, Numérique & Nanosciences (LP2N) à Bordeaux, est spécialiste de ce mode d'imagerie et s'est intéressée à l'utilisation de la coconception pour étendre la PdC en SMLM. Elle a donc contacté notre équipe pour mettre à profit notre expertise. Dans cette application, le critère d'optimisation des masques est différent car les objectifs finaux sont différents (qualité d'image vs. précision de localisation). La suite de mes travaux, menée en collaboration avec l'équipe de Laurent CO-GNET, concerne donc l'extension de la PdC pour ces systèmes d'imagerie. La question de la sensibilité des masques co-conçus aux paramètres expérimentaux sera également abordée.

PLAN DE LA THÈSE ET CONTRIBUTIONS

Dans le Chapitre 2 de ce manuscrit, on considère que le produit final délivré par le système d'imagerie est une image restaurée par un algorithme de déconvolution. L'approche de co-optimisation peut être formulée de manière rigoureuse en définissant le critère d'optimisation de la fonction de phase du masque comme la différence quadratique entre une image idéalement nette et l'image délivrée par le système après déconvolution (voir par exemple les travaux de Stork et Robinson [2008], [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF]). Pour accélérer l'étape d'optimisation, les masques sont en général optimisés à l'aide d'un critère dont l'expression est analytique. Cela n'est possible que si on suppose que la déconvolution est réalisée à l'aide d'un filtre linéaire. [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF] ont montré que le filtre optimal est alors le filtre de Wiener moyen. Or, les algorithmes de déconvolution non linéaires sont connus pour avoir de meilleures performances. Nous cherchons donc dans ce chapitre à répondre à la question suivante : est-ce que de meilleures performances d'imagerie peuvent être obtenues avec un masque optimisé en prenant en compte un algorithme de déconvolution non linéaire dans le critère de co-conception ?

La suite du manuscrit est consacrée à l'optimisation de masques lorsque le traitement appliqué à l'image n'est pas une déconvolution. Ce cas de figure se rencontre en SMLM. Cette technique d'imagerie de molécule unique utilise l'image acquise pour estimer, avec une résolution sous-pixellique, la position de marqueurs fluorescents. La concaténation de ces positions permet d'obtenir une image finale dont la résolution est dix fois supérieure à celle imposée par la limite de diffraction (i.e., quelques dizaines de nanomètres au lieu de plusieurs centaines). Aujourd'hui, avec ce mode d'imagerie, on cherche à observer le comportement dynamique de molécules (ou de leurs ensembles) dans des environnements biologiques complexes et de plus en plus épais. Ces comportements ne sont donc pas confinés dans les deux dimensions du plan focal : la localisation doit se faire en trois dimensions.

Plusieurs approches reposant sur l'utilisation d'un masque de phase ont été proposées dans la littérature pour généraliser le concept de super-localisation à la troisième dimension. Ces masques sont conçus pour modifier la forme la PSF et la faire varier avec la profondeur. Ainsi, l'estimation de cette forme permet d'estimer la profondeur à laquelle se situe le marqueur. Bien entendu, il faut aussi veiller à ce qu'à chaque profondeur, la forme de la PSF conduise également à une estimation précise de la position latérale du fluorophore. Par exemple, Pavani et Piestun [2008a] ont proposé un masque de phase dont la PSF -dite à « double hélice » -est de forme allongée et « tourne » d'un angle proportionnel à la profondeur. Le critère d'optimisation de ce masque est basé sur des considérations heuristiques. [START_REF] Shechtman | Optimal Point Spread Function Design for 3D Imaging[END_REF] ont été les premiers à optimiser des masques de phase à l'aide d'un critère explicite et général issu de la théorie de l'information : la borne de Cramér-Rao. Cette quantité permet de caractériser la précision de localisation théorique avec laquelle un marqueur fluorescent peut être localisé. Leur masque -appelé « tétrapode » en raison de sa forme -conduit à un allongement progressif de la PSF lorsque la défocalisation augmente. [START_REF] Zhou | Precise 3D particle localization over large axial ranges using secondary astigmatism[END_REF] ont ensuite simplifié ce masque en décrivant sa fonction de phase par un nombre limité de polynômes de Zernike 5 et ont fourni une interprétation optique de ses propriétés. L'en-5. Base de polynômes orthonormés définis sur le disque unité (voir par exemple [START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7e édition[END_REF]). 1. INTRODUCTION GÉNÉRALE semble de ces masques permettant d'estimer la profondeur ont des variations de phase continues, et présentent donc des difficultés de fabrication. De plus, leur PSF a une extension spatiale importante, ce qui peut être problématique lorsque les marqueurs à localiser sont proches les uns des autres. D'autre part, des discussions avec l'équipe de Laurent COGNET nous ont permis de comprendre que dans certaines applications, il n'est pas nécessaire d'estimer les profondeurs auxquelles se situent les marqueurs, mais simplement de rendre la précision d'estimation de leur position latérale insensible à la profondeur. Cela revient à réaliser une projection axiale des positions des fluorophores sur la plus grande épaisseur d'échantillon possible. En d'autres termes, il s'agit d'« augmenter la PdC » de la microscopie par localisation. C'est à cet objectif qu'est consacrée la seconde partie de ce manuscrit.

Dans le Chapitre 3, je développe une méthode d'optimisation des masques binaires annulaires pour atteindre une PdC désirée en SMLM. Le critère d'optimisation est la borne de Cramér-Rao de l'estimation de la position latérale d'un marqueur. Les performances des masques obtenus sont caractérisées et comparées à celles d'autres masques de la littérature. Cependant, la borne de Cramér-Rao ne constitue qu'une borne (inférieure) de la variance d'estimation de la position d'un fluorophore : il reste donc à vérifier qu'elle peut être atteinte en pratique. Dans la troisième section du chapitre, je propose un algorithme de localisation basé sur le maximum de vraisemblance qui permet d'atteindre la borne de Cramér-Rao dans des conditions où le rapport signal sur bruit est favorable.

Les résultats obtenus dans le Chapitre 3 reposent sur des hypothèses qu'il est nécessaire de vérifier et de discuter pour mieux cerner la généralité de la méthode proposée. Ce travail est réalisé dans les deux chapitres suivants. Dans le Chapitre 4, je me concentre sur les hypothèses liées aux traitements numériques. Tout d'abord, j'étudie l'influence des deux sources de bruit principales en microscopie optique : le bruit de grenaille lié au signal de fluorescence émis par les marqueurs, et le bruit de fond lié à la fluorescence endogène non désirée provenant de composés naturels, tels que le tissu biologique. J'étudie les conditions expérimentales dans lesquelles chacune de ces deux sources de bruit domine, et l'influence qu'exerce un changement de la source dominante de bruit sur l'optimisation des masques. D'autre part, comme le critère d'optimisation est la borne de Cramér-Rao, il est important de déterminer dans quelles conditions cette borne est un bon indicateur de la performance réelle de localisation. Je cherche donc à spécifier de manière précise les conditions expérimentales dans lesquelles la borne de Cramér-Rao peut être effectivement atteinte par un algorithme de localisation basé sur le maximum de vraisemblance.

Dans le Chapitre 5, je revisite les hypothèses liées à la modélisation de l'aberration optique provoquée par la défocalisation. Je montre que lorsque l'ouverture numérique de l'objectif de microscope est très grande -ce qui est en général le cas pour obtenir une bonne précision de localisation -il faut mettre en oeuvre un modèle d'imagerie plus réaliste que le modèle quadratique introduit à la Section 1.1.1. Cependant, je montre aussi qu'il est possible d'établir une relation simple entre les masques optimaux obtenus dans le cadre de ces deux modèles.

Afin de préparer la mise en oeuvre pratique de cette méthode d'extension de la PdC, je m'intéresse dans le Chapitre 6 à la chaîne complète du traitement numérique d'une 1 11 image acquise. En effet, ce traitement se compose de deux étapes successives : la « prélocalisation » (aussi appelée « détection »), où l'on détermine les régions de l'image dans lesquelles se trouvent des marqueurs, puis la « localisation » sous-pixellique des marqueurs dans chacune de ces régions. Les masques optimisés jusqu'à maintenant l'ont été seulement pour l'étape de localisation. Cependant, la présence d'un masque de phase dans la pupille de l'objectif affecte également l'étape de pré-localisation. Il convient donc d'étudier l'influence que peuvent avoir ces masques sur cette étape. C'est l'objet de ce dernier chapitre où un critère basé sur la distance de Bhattacharyya est utilisé pour concevoir des masques de phase optimisant la probabilité de détection de marqueurs fluorescents sur une PdC étendue. En comparant ces masques avec ceux optimisés pour l'étape de localisation, le compromis obtenu entre probabilité de détection et précision de localisation est étudié et évalué.

APPLICATION À LA RESTAURATION D'IMAGE

La profondeur de champ des systèmes d'imagerie peut être étendue en plaçant un masque de phase dans la pupille de leur optique et en déconvoluant l'image acquise. Ces masques permettent de produire une image intermédiaire floue, mais dont la qualité est indépendante de la position axiale de l'objet observé. Il est alors possible en appliquant une déconvolution unique de reconstruire l'objet, quelle que soit la profondeur à laquelle il se situe. Cette approche de co-optimisation peut être formulée de manière rigoureuse, en définissant le critère d'optimisation de la fonction de phase du masque comme la différence quadratique entre une image idéalement nette et l'image délivrée par le système après déconvolution. En général, on préfère optimiser les masques à l'aide d'un critère dont l'expression est analytique, ce qui accélère considérablement l'étape d'optimisation. Un grand nombre de travaux supposent donc que la déconvolution est réalisée à l'aide d'un filtre de Wiener pour définir un critère analytique. Or, les algorithmes de déconvolution non linéaires sont connus pour avoir de meilleures performances. La question se pose donc de savoir si de meilleures performances d'imagerie peuvent être obtenues avec un système optique optimisé à l'aide d'un algorithme de déconvolution non linéaire (pris en compte directement dans le critère d'optimisation), au lieu d'un algorithme linéaire.

Certaines parties de ce chapitre ont été publiées dans OSA Continuum 4 [2021b], p. 589-601. 2. APPLICATION À LA RESTAURATION D'IMAGE O PTIMISER conjointement le système optique et les algorithmes de traitement asso- ciés fait partie du domaine de l'imagerie computationnelle [START_REF] Mirani | Computational imaging systems : joint design and end-toend optimality[END_REF], Mait et al., 2018]. Cette approche peut être formulée de manière rigoureuse en définissant le critère d'optimisation à partir de l'erreur quadratique moyenne, aussi appelée mean square error (MSE), entre l'image idéalement nette de la scène et celle délivrée par le système après déconvolution [START_REF] Mirani | Optimal co-design of computational imaging system[END_REF], Robinson et Stork, 2006].

Différents types de systèmes d'imagerie, fonctionnant dans le visible et l'infrarouge, ont ainsi été co-optimisés (voir par exemple les travaux de [START_REF] Harvey | Digital image processing as an integral component of optical design[END_REF], Stork et Robinson [2008], [START_REF] Ashok | [END_REF], Trouvé et al. [2013], [START_REF] Zammit | Extended depth-of-field imaging and ranging in a snapshot[END_REF]). En particulier, les masques de phase co-conçus, visant à étendre la PdC des objectifs de caméra [Cathey et Dowski, 2002[START_REF] Ben-Eliezer | An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extended depth of field[END_REF], Falcón et al., 2017], ont été implémentés avec succès dans plusieurs applications concrètes [START_REF] Diaz | Real-time increase in depth of field of an uncooled thermal camera using several phase-mask technologies[END_REF][START_REF] Burcklen | Experimental demonstration of extended depth-of-field f/1.2 visible High Definition camera with jointly optimized phase mask and real-time digital processing[END_REF].

La plupart de ces travaux utilisent le filtre Wiener comme algorithme de déconvolution. Avec ce traitement, le critère d'optimisation est analytique [Robinson et Stork, 2006[START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF][START_REF] Sitzmann | End-to-End Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-Resolution Imaging[END_REF], ce qui accélère considérablement l'étape d'optimisation. Bien sûr, il est possible d'utiliser des algorithmes non linéaires pour restaurer les images acquises, avec un système optimisé à l'aide d'un critère basé sur le filtre de Wiener [START_REF] Portilla | Hybrid digital-optical imaging design for reducing surface asphericity cost while keeping high performance[END_REF]. C'est d'ailleurs souvent le cas en pratique, car les algorithmes de déconvolution non linéaire restaurent mieux les images que le filtre de Wiener. Mais il est aussi possible de prendre en compte un algorithme de déconvolution non linéaire directement dans le critère d'optimisation. Par exemple, cette approche a récemment été proposée par [START_REF] Elmalem | Learned phase coded aperture for the benefit of depth of field extension[END_REF] pour optimiser conjointement des masques de phase binaires destinés à étendre la PdC avec un algorithme de déconvolution basé sur un réseau neuronal artificiel. Cependant, elle se fait au prix d'une étape d'optimisation plus complexe et plus longue.

La question est de savoir si cela en vaut la peine. En d'autres termes, il est important de déterminer si de meilleures performances d'imagerie peuvent être obtenues avec un système optique optimisé en supposant que la déconvolution est réalisée à l'aide d'un algorithme non linéaire au lieu du filtre de Wiener.

Une difficulté majeure, pour répondre à cette question, est qu'il existe un très grand nombre d'algorithmes de déconvolution non linéaires différents et qu'il est impossible d'être exhaustif. Par conséquent, nous avons choisi de nous concentrer sur un seul d'entre eux : la régularisation par variation totale. Cette approche variationnelle pour la restauration d'image est bien connue, bien documentée, efficace et largement utilisée pour préserver les contours des objets dans l'image restaurée [Titterington, 1985].

De plus, nous limitons notre attention à un problème précis de co-optimisation, à savoir la conception de masques de phase binaires annulaires pour l'extension de PdC. Ce type de masques est plus facile à produire que ceux dont la phase varie continûment, comme par exemple le masque cubique [START_REF] Dowski | Extended depth of field through wave-front coding[END_REF], et il a été démontré par Falcón [2017] qu'ils ont une capacité d'amélioration de la PdC similaire.

MASQUES DE PHASE POUR ÉTENDRE LA PDC

Il existe plusieurs raisons pour lesquelles un système optique peut être défocalisé. Par exemple, les objets de la scène peuvent être situés à différentes distances, de sorte que le système ne peut être focalisé pour voir net l'ensemble de la scène. La distance focale de l'objectif du système optique peut aussi varier avec la température [Perry, 1943] ou le chromatisme [Trouvé et al., 2013]. Dans ces deux situations, le plan où se forme l'image n'est plus celui du capteur, ce qui conduit à un défaut de mise au point. Pour obtenir une image nette dans ces conditions, la PdC du système d'imagerie doit être étendue.

Comme nous l'avons évoqué au chapitre précédent, une technique bien connue consiste à placer un masque de phase dans le diaphragme d'ouverture du système optique pour augmenter sa PdC.

Supposons que l'on observe un objet, à travers un système optique idéal (comme illustré à la Figure 1.3), situé à une certaine distance z o + ∆z o du plan principal objet, et que l'on acquiert son image à l'aide d'un capteur situé à une distance fixe z i du plan principal image. Le défaut de mise au point, notée ∆z o dans l'espace objet ou ∆z i dans l'espace image, est classiquement caractérisé par le paramètre de défocalisation ψ défini par l'Équation (1.12). Pour rappel, la PdC naturelle du système optique, i.e., la profondeur pour laquelle l'image est considérée comme nette, correspond à l'intervalle : ψ ∈ [-λ/4; λ/4] (critère de Rayleigh).

Notre objectif est d'obtenir un système d'imagerie offrant une bonne qualité image sur une plus grande plage de PdC, notée [-ψ max ; ψ max ]. En utilisant des masques binaires avec une symétrie de révolution et une modulation de phase égale à π radians, cette plage est toujours symétrique puisque la PSF du système d'imagerie est identique pour ψ et -ψ [Falcón et al., 2017]. On peut donc restreindre l'optimisation des masques à l'intervalle [0; ψ max ].

Une image acquise par un système optique équipé d'un masque de phase binaire annulaire de paramètre ρ, et défocalisé d'une valeur ψ, peut être modélisée par :

y = h ρ,ψ * x 0 + n (2.1)
où le symbole * désigne le produit de convolution, y l'image observée, x 0 l'image numérique idéalement nette inconnue, n un bruit additif blanc de moyen nulle, et h ρ,ψ la PSF du système optique définie à l'Équation (1.2), qui dépend de ρ et ψ. L'estimation de l'image x 0 , notée x, est réalisée à partir de l'image y, en utilisant un algorithme de déconvolution.

CRITÈRE D'OPTIMISATION DES MASQUES

De nombreux critères ont été proposés pour optimiser le vecteur ρ de paramètres du masque. Beaucoup d'entre eux sont basés sur les propriétés de la fonction de transfert de modulation (FTM), i.e., la transformée de Fourier de h ρ,ψ . Par exemple, dans les travaux de [START_REF] Ben-Eliezer | An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extended depth of field[END_REF], le critère consiste à maximiser la fréquence de coupure effective, définie comme la plus grande fréquence pour laquelle la valeur de la FTM est supérieure à un certain seuil. Dans ce chapitre, nous utilisons une approche alternative proposée par [START_REF] Mirani | Optimal co-design of computational imaging system[END_REF], Robinson et Stork [2006] et repris dans les travaux de Stork et Robinson [2008], [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF] qui consiste à prendre directement en compte la qualité de l'image restaurée dans le critère d'optimisation. Cette qualité est définie 2. APPLICATION À LA RESTAURATION D'IMAGE comme la MSE entre l'image estimée x et l'image idéalement nette x 0 :

MSE(ψ, ρ) = 1 N x(ψ, ρ) -x 0 2 (2.2)
où le symbole • désigne la norme euclidienne et N la taille des images. Notons que ce critère est largement utilisé dans les travaux portant sur la restauration d'image, y compris pour les approches les plus récentes basées sur l'apprentissage statistique (i.e., en machine learning). Puisqu'il prend en compte la qualité de l'image restaurée, ce critère trouve un compromis entre restauration des composantes de haute fréquence spatiale de l'image et rapport signal sur bruit (RSB). Le résultat de ce compromis est étudié en détail dans les travaux de Fontbonne et al. [2019], à travers le concept de « FTM effective » après déconvolution.

Le critère MSE, défini à l'Équation (2.2), dépend des paramètres du masque ρ et du paramètre de défocalisation ψ. Nous définissons la qualité image globale comme la valeur maximale de la MSE sur l'ensemble de la plage de défocalisation : 

MMSE(ρ) = max ψ∈[0;ψ max ] MSE(ψ, ρ) . ( 2 
ρ opt = arg min ρ MMSE(ρ) . (2.4) 
Pour un algorithme de déconvolution linéaire, l'image estimée a pour expression :

x = d * y (2.5) où d est la réponse impulsionnelle du filtre de déconvolution. Dans la suite, nous utiliserons le filtre qui minimise la moyenne de la MSE sur l'ensemble de la plage de défocalisation, i.e., K k=1 MSE(ψ k , ρ). [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF] ont montré que ce filtre a pour expression dans le domaine de Fourier : 

d (ν) = S xx (ν) 1 K K k=1 h * ρ,ψ k (ν) S xx (ν) 1 K K k=1 hρ,ψ k (ν) 2 + S nn (ν) (2.
σ 2 n = R S nn (ν) dν , (2.7) 
le RSB exprimé en décibel a pour expression :

RSB = 10 log     R S xx (ν) dν σ 2 n     .
(2.8) L'avantage des filtres de déconvolution linéaire est de conduire à une expression analytique de la MSE, définie à l'Équation (2.2) [Robinson et Stork, 2006[START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF][START_REF] Vettenburg | Fidelity optimization for aberration-tolerant hybrid imaging systems[END_REF] :

MSE(ψ, ρ) = R d (ν) hρ,ψ (ν) -1 2 S xx (ν) dν + R d (ν) 2 S nn (ν) dν .
(2.9)

Cette expression de qualité image permet de résoudre très efficacement le problème d'optimisation défini à l'Équation (2.4). Par exemple, cette approche fut utilisée avec succès par [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF], [START_REF] Burcklen | Experimental demonstration of extended depth-of-field f/1.2 visible High Definition camera with jointly optimized phase mask and real-time digital processing[END_REF], Falcón et al. [2017] pour co-optimiser des masques dans plusieurs applications concrètes mises en oeuvre expérimentalement. Cependant, les algorithmes non linéaires sont connus pour mieux restaurer les images que le filtre de Wiener. Les systèmes d'imagerie co-optimisés sur la base de ces algorithmes sont donc susceptibles de conduire à de meilleures performances. Afin de vérifier cette hypothèse, nous considérons, dans la suite de ce chapitre, l'approche variationnelle suivante. La déconvolution est réalisée à l'aide d'un algorithme non linéaire avec un terme de régularisation par variation totale, de l'anglais total variation (TV) :

x = arg min x 1 2 y - 1 K K k=1 h ρ,ψ k * x 2 + µ N i =1 D i x (2.10)
où D i est un opérateur linéaire qui estime la valeur du gradient spatial de l'image x au pixel indexé par i . Cette méthode de régularisation a été introduite par [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] pour mieux préserver les contours de l'image par rapport à la régularisation quadratique implicitement utilisée par le filtre de Wiener. Notons que d'après l'Équation (2.11), μ dépend de ψ qui est inconnu dans la pratique.

On ne peut donc pas déconvoluer les images acquises à l'aide de l'Équation (2.10). Cependant, nous considérons dans la suite détenir les valeurs de μ en fonction de ψ. Les résultats obtenus majoreront donc les performances d'une mise en oeuvre réelle de l'algorithme de déconvolution TV.

COMPARAISON DES MASQUES DE PHASE OPTIMAUX

Dans cette section, nous optimisons des masques de phase avec un critère construit soit à partir du filtre de Wiener moyenné, soit à partir de l'algorithme de déconvolution TV. Nous comparons ensuite les paramètres et les performances des masques obtenus en optimisant chacun de ces deux critères.

On considère trois valeurs différentes de PdC souhaitée, à savoir ψ max = {1λ; 1, 5λ; 2λ}. Il a été montré par Falcón et al. [2017] que ces PdC peuvent être atteintes en utilisant des masques de phase binaires annulaires composés de 2 à 4 anneaux. De plus, il est évident que l'optimisation des masques dépend de l'image idéalement nette x 0 utilisée. Nous avons donc effectué plusieurs optimisations sur un ensemble d'images x 0 de caractéristiques différentes. Nous présenterons et analyserons d'abord les résultats d'optimisation obtenus lorsque l'image x 0 est celle du Papillon illustrée à la Figure 2.1(a). On considérera une valeur de RSB égale à 34 dB, ce qui correspond à un écart-type de bruit égal à σ = 2, 4 .10 -3 sur l'image Papillon (la valeur des pixels de l'image x 0 est comprise entre 0 et 1).

Pour déterminer les paramètres optimaux ρ opt du masque de phase, nous effectuons une recherche exhaustive dans l'espace des paramètres. Cette approche, déterministe, assure de trouver le minimum global, ce qui pourrait ne pas être le cas avec un algorithme d'optimisation itératif. Nous explorons l'espace des paramètres ρ n , où n ∈ [1, L -1], avec un pas tel que ∆ρ n = 5 .10 -2 . Nous affinons ensuite cette recherche, avec un pas plus petit ∆ρ n = 5 .10 -3 , autour de la position du minimum global pour l'estimer avec une meilleure précision. De plus, dans le cas du critère basé sur l'algorithme de déconvolution TV, la valeur du paramètre de régularisation μ, telle que définie à l'Équation (2.11), est estimée pour chaque valeur de ρ et de ψ avec la méthode de Nelder-Mead [START_REF] Lagarias | Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions[END_REF]. Étant donné que le processus d'optimisation exhaustif est chronophage, nous utilisons des méthodes de calcul parallèles pour accélérer cette étape.

Considérons, pour commencer, l'optimisation d'un masque à L = 2 anneaux défini par le rayon interne ρ 1 . La Figure 2.2(a) représente la valeur du critère MMSE, défini à l'Équation (2.3), en fonction du rayon ρ 1 lorsque le filtre de Wiener est utilisé. Les trois courbes correspondent aux trois valeurs considérées de PdC, à savoir ψ max = {1λ; 1, 5λ; 2λ}. La Figure 2.2(b) représente les résultats obtenus avec l'algorithme de déconvolution TV. En comparant ces deux graphes, on observe que quelle que soit la valeur ψ max considérée, les courbes obtenues avec les deux critères ont des allures similaires et atteignent leurs minima pour les mêmes valeurs ρ 1 : les masques optimaux sont donc identiques.

À présent, considérons l'optimisation d'un masque à L = 3 anneaux, défini par le couple de paramètres (ρ 1 ; ρ 2 ). Les Figures 2.2(c-d) représentent respectivement l'évolution du critère de Wiener et de TV en fonction de ces deux paramètres pour ψ max = 2λ. Nous remarquons que le paysage d'optimisation de ces deux critères est de nouveau très similaire et que leur minimum global correspond aux mêmes valeurs de paramètres, i.e., (ρ 1 ; ρ 2 ) = (0, 55; 0, 75). Les masques optimaux sont donc identiques. Nous avons également optimisé des masques à L = 4 anneaux 2 , définis par les 3 paramètres (ρ 1 ; ρ 2 ; ρ 3 ). Une fois encore, nous avons constaté que les masques optimaux, pour les deux critères, sont identiques.

Ces résultats ont été obtenus avec l'image Papillon (voir Figure 2.1(a)), comme image idéalement nette x 0 . Afin de confirmer ce résultat, nous avons effectué les mêmes optimisations sur de nombreuses autres images de scènes différentes. Nous avons observé, pour chacune d'entre elles, que les masques optimaux sont identiques quel que soit le critère d'optimisation utilisé. Par exemple, nous avons illustré, aux Figures 2.3 et 2.4, les résultats d'optimisation réalisés avec deux autres images x 0 de caractéristiques différentes. On constate que les masques optimaux à 2 et 3 anneaux obtenus avec les deux critères sont identiques.

Notons qu'en pratique, il serait préférable d'optimiser un unique masque de phase sur un grand nombre d'images correspondant à l'application souhaitée. Si on utilise le filtre de Wiener, cela revient à considérer une densité spectrale de puissance S xx , dans son expression définie à l'Équation (2.6) et dans celle de la MSE définie à l'Équation (2.9), caractérisant l'ensemble des images. En revanche, si on utilise un algorithme de déconvolution TV, chaque image doit être déconvoluée pour calculer une MSE moyenne. Cette opération est très chronophage et demande une grande puissance de calcul. Comme cette étape doit être réalisée à chaque itération de l'algorithme d'optimisation du masque, le temps d'optimisation est proportionnel à la taille de l'ensemble des images utilisées.

Afin de résumer les résultats obtenus, nous avons représenté, à la Figure 2.5(a), le Pour généraliser cette conclusion, nous avons optimisé un masque de phase à L = 2 anneaux pour une PdC telle que ψ max = 1λ et deux niveaux de bruit supplémentaires. D'après la Figure 2.5(b), les masques à 2 anneaux sont suffisants pour atteindre la plus petite valeur possible de la MMSE lorsque ψ max = 1λ. Les deux niveaux de bruit supplémentaires sélectionnés, 24 dB et 9 dB, correspondent respectivement à des écarts-types de bruit σ = 8, 0 .10 -3 et σ = 4, 3 .10 -2 sur l'image Papillon. Les résultats, synthétisés dans le Tableau 2.1, montrent que les critères d'optimisation basés sur le filtre de Wiener et l'algorithme de déconvolution TV mènent à des masques optimaux similaires quel que soit le niveau de bruit considéré. La deuxième colonne représente les images floues acquises avec un défaut de mise au point, tel que ψ = 0, 75λ, et le masque optimal à 3 anneaux pour une PdC telle que ψ max = 1λ. La troisième colonne représente les images déconvoluées avec le filtre de Wiener, et la quatrième colonne celles restaurées avec l'algorithme de déconvolution TV. Ces résultats montrent qualitativement que l'imagette A1 est restaurée avec une qualité similaire par les deux algorithmes de déconvolution. Les contours semblent légèrement « plus nets » dans la dernière colonne, en raison de l'effet « cartoon » bien connu de la régularisation TV. Cependant comme nous l'avons fait remarquer à la Figure 2.7, ils ne sont pas mieux restaurés. Globalement, cet algorithme atteint un meilleur compromis entre la restauration des contours vifs (où ses performances sont proches de celles du filtre de Wiener) et la restauration des régions lisses (où ses performances le surpassent de loin). Étant donné que ce type de régions, à faibles variations spatiales, est majoritaire dans l'image A, l'algorithme de déconvolution TV mène à une valeur de la RMSE plus petite que celle du filtre de Wiener sur l'ensemble de l'image.

INTERPRÉTATION ET DISCUSSION

Sur la base de ces observations, nous pouvons proposer la conjecture suivante. Quelle que soit la méthode de déconvolution utilisée, les mêmes caractéristiques du système optique sont nécessaires pour restaurer les détails de l'image acquise. Dans le cadre de la co-conception pour l'extension de la PdC, cette caractéristique est l'invariance de la PSF dans la PdC souhaitée. Par conséquent, les paramètres optimaux du masque de phase, qui régissent les caractéristiques de la PSF sont communs aux deux algorithmes de déconvolution. D'autre part, comme la déconvolution TV est plus adaptée aux images de scènes naturelles que le filtre de Wiener, elle offre une meilleure restauration des images acquises par le système co-conçu.

CONCLUSION

Considérant le problème d'optimisation des masques de phase binaires annulaires améliorant la PdC, nous avons montré que les approches de co-conception basées sur des méthodes de déconvolution linéaires et non linéaires produisent des masques optimaux similaires. Ce résultat a été démontré pour des masques de phase binaires annulaires avec différents nombres d'anneaux, pour différentes PdC et différentes scènes. Nous avons proposé une conjecture pour expliquer ce résultat : les mêmes caractéris-

Image vraie

Image acquise Filtre de Wiener Déconvolution TV Ce résultat est important car il justifie une pratique fréquente de co-conception qui consiste à optimiser un système d'imagerie avec un critère analytique simple, basé sur une déconvolution linéaire, et à restaurer les images acquises avec un algorithme non linéaire, pour obtenir une meilleure qualité d'image. Il sera intéressant de vérifier ce résultat sur d'autres applications et d'autres familles d'algorithmes de restauration, en particulier les méthodes à réseaux de neurones. * * * Afin de généraliser l'approche de co-conception présenté dans ce chapitre, je vais dans la suite du manuscrit m'intéresser à une autre application : l'extension de PdC pour la microscopie par localisation. Le traitement numérique appliqué aux images n'est pas une déconvolution mais un autre traitement : la localisation sous-pixélique de marqueurs fluorescents. Le critère de co-conception ne repose donc plus sur la qualité d'une image restaurée mais sur la précision avec laquelle la position d'un marqueur fluorescent peut être estimée.

CO-CONCEPTION POUR LA LOCALISATION DE MOLÉCULES UNIQUES

La microscopie par super-localisation de molécules uniques est devenue un outil incontournable pour étudier les structures et dynamiques d'échantillons biologiques avec une résolution nanométrique, bien au-delà de la limite de diffraction. Pour maximiser la précision de localisation, les objectifs de microscope utilisés doivent avoir une ouverture numérique élevée ; cependant, cette caractéristique limite fortement la profondeur de champ (PdC) des images acquises. Dans ce chapitre et les suivants, nous utilisons l'approche de « co-conception optiquetraitement », présentée aux chapitres précédents, pour optimiser et comparer des masques de phase, qui, lorsqu'ils sont placés dans la pupille de sortie de l'objectif du système d'imagerie, peuvent augmenter la PdC des techniques de microscopie par localisation. En utilisant un critère basé non plus sur la qualité d'image mais sur la précision de localisation, construit à l'aide de la borne de Cramér-Rao (BCR), nous optimisons des masques de phase binaires annulaires pour imager des échantillons biologiques épais. Nous caractérisons leurs performances et les comparons à celles présentées dans la littérature. Nous proposons ensuite un algorithme de localisation basé sur le maximum de vraisemblance, facile à mettre en oeuvre, et pouvant atteindre la précision de localisation prédite par la BCR. 3. CO-CONCEPTION POUR LA LOCALISATION DE MOLÉCULES UNIQUES

A U cours des dernières décennies, diverses techniques de microscopie super-résolue ont permis d'obtenir des images de cellules vivantes (i.e., sans la détruire, ni la figer) avec une résolution plus élevée que celle imposée par la limite de diffraction (voir la synthèse de [START_REF] Huang | Xiaowei : Super-Resolution Fluorescence Microscopy[END_REF]). Comme l'illustre la Figure 3.1, cette limite, située aux alentours de 200 nm, empêchait de visualiser l'architecture intra-cellulaire à une échelle moléculaire. Cependant, les ensembles moléculaires et la diffusion de molécules ne sont généra- lement pas confinés dans les deux dimensions du plan focal. Plusieurs approches ont donc été développées pour étendre le concept de super-localisation à la troisième dimension (voir par exemple les travaux de Hajj et al. [2014]). Elles reposent sur l'utilisation d'un masque de phase pour modifier la PSF. On peut citer deux exemples connus : les PSF à double hélice [Pavani et Piestun, 2008b] et les tétrapodes [START_REF] Shechtman | Optimal Point Spread Function Design for 3D Imaging[END_REF]. La localisation 3D de marqueurs fluorescents s'est avérée très efficace sur la plage de PdC naturelle des microscopes, et dans des échantillons biologiques épais [START_REF] Bon | Self-interference 3D super-resolution microscopy for deep tissue investigations[END_REF][START_REF] Xu | Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval[END_REF]. Mais ces techniques nécessitent des dispositifs, un étalonnage, et des traitements numériques sophistiqués.

Étendre la PdC sans chercher à localiser les marqueurs le long de l'axe optique est utile dans certaines applications comme l'imagerie à haute vitesse (avec un faible nombre de photons) ou lorsque la super-localisation dans la troisième dimension est réalisée autrement, par exemple, par modulation du signal de fluorescence [START_REF] Jouchet | Nanometric axial localization of single fluorescent molecules with modulated excitation[END_REF] ou par interférométrie [START_REF] Bon | Self-interference 3D super-resolution microscopy for deep tissue investigations[END_REF]. L'extension de la PdC en imagerie 2D peut permettre de diminuer la complexité instrumentale et le traitement numérique associé. Plusieurs travaux ont été proposés pour rendre invariante la PSF du microscope le long de l'axe optique, et ainsi générer des images volumétriques par projection 2D d'un volume imagé [START_REF] Abrahamsson | Mats : A new approach to extended focus for high-speed high-resolution biological microscopy[END_REF], Zahreddine et Cogswell, 2015[START_REF] Ren | 2.5D Microscopy : Fast, High-Throughput Imaging via Volumetric Projection for Quantitative Subcellular Analysis[END_REF]. Ce concept a également été utilisé en microscopie par excitation à deux photons pour 3. CO-CONCEPTION POUR LA LOCALISATION DE MOLÉCULES UNIQUES l'imagerie volumétrique rapide de structures cérébrales [START_REF] Lu | Na : Video-rate volumetric functional imaging of the brain at synaptic resolution[END_REF].

Dans ce chapitre, nous proposons une méthodologie alternative pour optimiser les masques de phase permettant d'étendre la PdC des microscopes par localisation. Cette approche s'inspire de la « co-conception optique -traitement », introduite au Chapitre 2, qui prend en compte à la fois le modèle d'imagerie, les propriétés du système optique et le traitement numérique appliqué aux images acquises, pour optimiser la qualité des informations finales délivrées par le système (i.e., la position des fluorophores). Nous proposons ainsi un cadre rigoureux (basé sur l'information de Fisher) pour optimiser et comparer les masques de phase améliorant la précision de localisation 2D sur une plus grande PdC. Le potentiel de cette approche est illustré, en fin de chapitre, en cooptimisant et en comparant les performances des masques de phase binaires annulaires avec ceux proposés par [START_REF] Abrahamsson | Mats : A new approach to extended focus for high-speed high-resolution biological microscopy[END_REF].

Le critère d'optimisation des masques présenté dans ce chapitre est basé sur la borne de Cramér-Rao (BCR). Cette grandeur, couramment utilisée en théorie de l'estimation, représente la limite de précision théorique qu'un estimateur de localisation, non biaisé, peut atteindre [Kay, 1993]. La BCR a déjà été utilisée dans la littérature pour évaluer les capacités de localisation 2D ou 3D en microscopie par localisation et pour comparer les performances de différentes stratégies [START_REF] Ober | Localization Accuracy in Single-Molecule Microscopy[END_REF][START_REF] Von Diezmann | Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking[END_REF][START_REF] Badieirostami | Three-dimensional localization precision of the doublehelix point spread function versus astigmatism and biplane[END_REF]. Elle fut aussi utilisée par [START_REF] Shechtman | Optimal Point Spread Function Design for 3D Imaging[END_REF] pour optimiser un masque de phase destiné à l'imagerie 3D et défini sur la base des polynômes de Zernike. Cependant, à notre connaissance, elle n'a jamais été utilisée pour concevoir des masques de phase optimisés en imagerie 2D pour étendre la PdC des microscopes par localisation. Afin de localiser efficacement2 les marqueurs fluorescents à partir des images acquises, nous proposons également, dans ce chapitre, un algorithme de localisation basé sur l'estimateur du maximum de vraisemblance (MV) et adapté aux caractéristiques optiques des masques optimaux. Nous montrons que, contrairement aux méthodes standard basées sur le MV (voir par exemple les travaux de Ober et al. [2004]) et utilisées en SMLM sans masque (i.e., sans extension de la PdC : les marqueurs sont considérés dans le plan d'imagerie), cet algorithme nécessite, pour atteindre la BCR, de segmenter la PdC en un nombre suffisant de zones dans lesquelles la PSF varie peu.

Ce chapitre contraste avec l'étude présentée au Chapitre 2 où le problème d'extension de la PdC était étudié en imagerie classique. Le critère d'optimisation n'était donc pas une performance de localisation exprimée à l'aide de la BCR ou de l'information de Fisher. Il s'agissait de la qualité d'image obtenue après déconvolution avec un filtre de Wiener moyenné. Cette qualité s'exprimait en termes d'erreur quadratique moyenne (MSE), entre la scène idéalement nette et son image déconvoluée. Nous montrons que l'optimisation basée sur la BCR conduit à des masques optimaux différents, en structure et en performance de localisation, de ceux obtenus avec le critère MSE.

MODÈLE D'IMAGERIE POUR LA MICROSCOPIE

Utiliser la BCR comme critère d'optimisation des masques de phase nécessite de définir préalablement le modèle d'imagerie et la distribution du bruit utilisés pour simuler des images acquises en SMLM. Ce modèle décrit l'image formée sur le capteur par un marqueur fluorescent situé en-dehors du plan focal. L'aberration optique introduite par le défaut de mise au point est modélisée par un simple terme de phase quadratique dans le plan pupillaire. Un modèle plus réaliste sera proposé dans le Chapitre 5, où l'influence du choix du modèle d'imagerie sur l'optimisation des masques sera discutée. On décrit également dans cette section le critère de précision de localisation des marqueurs et la structure des masques de phase que nous optimiserons pour étendre la PdC. On y illustrera leur capacité à rendre la précision de localisation presque invariante à la défocalisation.

RÉPONSE IMPULSIONNELLE SPATIALE DE L'OBJECTIF

Un marqueur fluorescent, aussi appelé émetteur, est de taille nanométrique. Comme sa dimension est bien inférieure à sa longueur d'onde d'émission, il n'est pas résolu par l'objectif du microscope, et peut donc être considéré comme une source lumineuse ponctuelle. Notons sa position transverse dans l'échantillon biologique par les coordonnées θ = (x p , y p ), sa position longitudinale par la coordonnée z p , et la position d'un point d'observation dans le plan d'imagerie (i.e., sur le capteur) par les coordonnées (x, y). Pour rappel, on suppose que le grandissement transversal de l'objectif du microscope, noté M , ne dépend pas de la coordonnée z p (puisque l'objectif est télécentrique objet). De plus, en supposant que les aberrations de champ sont négligeables, l'image d'un marqueur fluorescent est spatialement invariante et son éclairement dans le plan image, aux coordonnées (x, y), peut s'écrire :

f z p (x, y, θ) = h z p x -M x p , y -M y p (3.1)
où h z p est la PSF de l'objectif du microscope définie à l'Équation (1.2), i.e., l'éclairement dans le plan image d'un émetteur centré sur l'axe, i.e., (x p , y p ) = (0, 0), et situé à une profondeur z p = z o + ∆z o .

Le paramètre de défocalisation ψ, défini à l'Équation (1.14), est couramment utilisé en microscopie pour décrire le défaut de mise au point ∆z o [Aguet, 2009[START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7e édition[END_REF], bien qu'il ne soit valide que pour des systèmes optiques à faible ouverture ou à ouverture modérée 3 : 

ψ NA 2 2n s z p -z focus ( 3 
f Airy (x, y, θ) ∝ J 1 2π NA |M |λ x -|M |x p 2 + y -|M |y p 2 2π NA |M |λ x -|M |x p 2 + y -|M |y p 2 2 (3.3)
où J 1 désigne la fonction de Bessel du premier ordre. Pour rappel, il est admis qu'une image est dénuée d'aberration lorsque |ψ| < λ/4 (critère de Rayleigh). 

IMAGE D'UN MARQUEUR FLUORESCENT

Considérons une région de l'image numérique délivrée par le capteur, de largeur 2P + 1 pixels avec P ∈ N + , et contenant l'image d'un seul émetteur. Cette imagette est une version de l'Équation (3.1) bruitée et pixélisée (donc filtrée et échantillonnée par une grille de pixels de taille finie). On note s i j le nombre de photo-électrons mesurés au pixel (i , j ) ∈ N 2 avec |i | et | j | ≤ P . En supposant que le bruit de mesure soit additif gaussien spatialement blanc de moyenne nulle et de variance σ 2 n , le nombre s i j de photo-électrons mesurés est une variable aléatoire dont la densité de probabilité a pour expression :

Pr s i j µ ψ,θ i j = 1 σ n 2π exp   - s i j -N 0 µ ψ,θ i j 2 2σ 2 n    (3.4)
avec N 0 le nombre total de photo-électrons attendus dans l'imagette et µ ψ,θ i j la moyenne : À cette étape du manuscrit et pour des raisons de simplicité, nous ne prenons pas en compte un bruit de grenaille lié au caractère aléatoire d'une émission de photons provenant du marqueur fluorescent et / ou de l'autofluorescence du fond. Un modèle plus réaliste de la distribution du bruit sera proposé dans le chapitre suivant.

µ ψ,θ i j = (i + 1 2 )∆ x y (i -1 2 )∆ x y ( j + 1 2 )∆ x y ( j -1 2 )∆ x y f ψ (x,

LIMITE THÉORIQUE DE LA PRÉCISION DE LOCALISATION

Localiser un marqueur fluorescent consiste à estimer précisément sa position transverse θ, à partir des mesures s i j . Il est bien connu que la plus petite variance de l'erreur d'estimation avec laquelle ce paramètre peut être estimé sans biais s'obtient à l'aide de la matrice d'information de Fisher [1925] (voir par exemple les travaux d 'Ober et al. [2004] pour une application à la localisation de molécules uniques). Cette matrice, notée I , quantifie l'information relative au vecteur de paramètres θ = (x p , y p ) contenue dans la distribution des mesures s i j . Elle est définie par :

I = P i =-P P j =-P E ∂ ∂θ ln Pr s i j µ ψ,θ i j t ∂ ∂θ ln Pr s i j µ ψ,θ i j (3.6)
où Pr s i j µ ψ,θ i j correspond à la vraisemblance des données, définie à l'Équation (3.4),

et le symbole E[•] désigne l'espérance mathématique.
Le paramètre de défocalisation ψ est supposé connu pour définir la métrique d'information de Fisher à l'Équation (3.6). En pratique, nous ne disposons d'aucune information a priori sur ce paramètre. Il faudra donc l'estimer conjointement avec le vecteur de paramètres θ. Je discuterai ce point à la Section 3.3.

Les BCR associées à l'estimation de x p et de y p sont par définition égales aux valeurs diagonales de l'inverse de la matrice de Fisher. Elles représentent une borne inférieure sur la variance d'estimation de ces paramètres (pour un estimateur de localisation sans biais). Elles permettent ainsi de caractériser la difficulté intrinsèque du problème d'estimation du vecteur θ, indépendamment de la méthode (non biaisée) utilisée pour le résoudre. On considère ici, de manière équivalente, la racine carrée de la borne de Cramér-Rao (RBCR) -homogène à une distance -comme limite théorique de la précision de localisation d'un marqueur fluorescent.

Notons que les termes non diagonaux de la matrice d'information de Fisher sont très faibles, car la PSF pixélisée est quasiment à symétrie de révolution. On peut alors considérer que les RBCR sont égales à la racine carrée de l'inverse des termes diagonaux de la matrice I :

               RBCR x (ψ) = σ n N 0 P i =-P P j =-P ( j + 1 2 )∆ x y ( j -1 2 )∆ x y ∆ x f ψ,θ i (y) dy 2 -1 2 RBCR y (ψ) = σ n N 0 P i =-P P j =-P (i + 1 2 )∆ x y (i -1 2 )∆ x y ∆ y f ψ,θ j (x) dx 2 -1 2 . (3.7)
On rappelle que N 0 désigne le nombre total de photo-électrons attendus dans l'imagette de taille (2P + 1) × (2P + 1) pixels, σ n l'écart-type du bruit de mesure, ∆ x y le pas de la grille de pixels et

∆ x f ψ,θ i (respectivement ∆ y f ψ,θ j
) la différence entre les valeurs de la PSF évaluée aux bords des pixels adjacents de la ligne i (de la colonne j ) :

       ∆ x f ψ,θ i (y) = f ψ i - 1 2 ∆ x y , y, θ -f ψ i + 1 2 ∆ x y , y, θ ∆ y f ψ,θ j (x) = f ψ x, j - 1 2 ∆ x y , θ -f ψ x, j + 1 2 ∆ x y , θ . (3.8)
On remarque à l'aide de l'Équation (3.7) que la limite fondamentale de la précision de localisation est inversement proportionnelle au RSB, défini comme :

RSB = N 0 σ n . (3.9)
On voit à l'aide de l'Équation (3.8) qu'elle dépend aussi de l'échantillonnage spatial de la PSF par la grille de pixels. Les bornes en x et en y sont donc généralement de valeurs différentes. Cependant, il existe des positions particulières illustrées à la Figure 3.4 pour lesquelles RBCR x = RBCR y : lorsque la PSF est centrée sur un pixel, par exemple, θ 0 = (0, 0) ; ou lorsqu'elle est située sur l'un des coins, par exemple, θ 0 = (∆ x y /2, ∆ x y /2). Ces positions mènent respectivement à la plus grande valeur possible de la BCR et à la plus petite. Nous considérons, dans ce chapitre, la situation la plus défavorable pour la localisation, telle que θ 0 = (0, 0), et nous noterons RBCR = RBCR x = RBCR y . De plus, nous utiliserons la RBCR normalisée afin de caractériser l'influence de la défocalisation pour n'importe quelle valeur du RSB. La RBCR normalisée est obtenue en divisant l'Équation (3.7) par sa valeur évaluée en ψ = 0 (i.e., lorsque l'émetteur est dans le plan focal). Cette grandeur normalisée est donc indépendante de la valeur du RSB.

À titre d'illustration, nous avons représenté, en lobe central s'atténue. Ces résultats ont déjà été mis en évidence par Hopkins et Burch [1955], Tao et Nicholson [1995]. Nous avons représenté, à la Figure 3.5(c), la variation de la RBCR normalisée de ce système optique en fonction de ψ (en pointillés bleus). On observe que la RBCR augmente lentement jusqu'à ψ ±λ/4 (critère de Rayleigh), puis plus rapidement lorsque |ψ| > λ/4. Par exemple, pour ψ = ±1λ, la RBCR est dix fois plus grande que pour ψ = 0. Si N 0 = 500 photo-électrons (ph.) et σ 2 n = 6 ph. 2 /pixel, la valeur de la RBCR pour ψ = 0 est égale à 0, 04 pixel, ce qui correspond à une précision de localisation de 2, 7 nm dans l'espace objet. Simuler un système avec un masque de phase, comme illustrée en Figure 3.5(b) pour un masque à L = 2 anneaux est discuté dans la section suivante. 

SIMULATION D'UN SYSTÈME AVEC UN MASQUE DE PHASE

Notre objectif est d'étendre la PdC en SMLM, en améliorant la précision de localisation 2D des marqueurs fluorescents défocalisés. Pour y parvenir, nous plaçons un masque de phase optimisé dans la pupille de sortie de l'objectif du microscope et adaptons le traitement numérique appliqué aux images acquises, comme illustré à la Figure 3.6. Il existe de nombreuses structures de masques permettant d'étendre la PdC d'un système optique. Nous considérons ici les masques de phase binaires annulaires de modulation π radians introduits précédemment, pour leur facilité de fabrication et leur efficacité à étendre la PdC [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF]. Une illustration d'un masque à 4 anneaux se trouve en Figure 1.4. La fonction de phase du masque est notée Φ mask (r, ρ) avec ρ le vecteur de paramètres du masque. Il est placé dans la pupille du système optique afin de modifier la fonction de phase pupillaire comme définie à l'Équation (1.15). La Figure 3.5(b) représente la variation du profil de la PSF en fonction du paramètre de défocalisation ψ pour un masque à L = 2 anneaux défini par le paramètre ρ 1 = 0, 59 et placé dans la pupille de sortie de l'objectif du microscope (le choix de ce paramètre sera discuté dans la section suivante). On remarque que la présence du masque modifie considérablement le profil de la PSF (voir la Figure 3.5(b)) si on le compare au profil obtenu sans masque (voir la Figure 3.5(a)). L'étalement minimum de la PSF n'est plus obtenu dans le plan focal (i.e., pour ψ = 0), mais pour ψ ±0, 7λ. Par ailleurs, pour ψ = 0, le profil de la PSF n'est pas concentré mais divisé en trois lobes principaux. On remarque également à l'aide des Figures 3.5(a-b) qu'indépendamment de la présence ou non d'un masque, la PSF est identique pour ψ et -ψ (i.e., de chaque côté du point focal). Cette propriété, déjà introduite au Chapitre 2, n'est pas vérifiée pour la plupart des masques de phase à symétrie de révolution. Il s'agit d'une propriété spécifique des masques binaires dont la modulation de phase est de π radians.

La Figure 3.5(c) (en trait plein rouge) représente la valeur de la RBCR normalisée en fonction du paramètre ψ lorsqu'on utilise ce masque. Par comparaison avec la courbe obtenue sans masque (en pointillés bleus), on constate que le masque de phase binaire annulaire permet d'obtenir des valeurs de la RBCR beaucoup plus faibles sur l'ensemble de la plage de défocalisation : la plus grande valeur est trois fois plus petite que celle obtenue sans masque. Cependant, cette valeur est aussi trois fois plus grande que celle obtenue sans masque et pour ψ = 0. Le prix à payer pour étendre la PdC est donc de dégrader légèrement la précision de localisation autour du plan focal. Il est intéressant de noter que la valeur de la RBCR pour ψ = 0 reste faible bien que la PSF soit étalée en plusieurs lobes (voir Figure 3.5(b)). Cela implique que cette forme de PSF, bien que non concentrée en un seul lobe, contient toujours suffisamment d'information pour assurer une localisation précise.

Dans la suite de ce chapitre, l'objectif sera de déterminer les paramètres du masque de phase binaire annulaire qui optimisent la RBCR, et ce pour différents nombres d'anneaux et différentes PdC désirées. On proposera aussi un traitement numérique adapté permettant d'atteindre, en pratique, la précision théorique de localisation prédite par la BCR.

CO-OPTIMISATION DES MASQUES POUR LA LOCALISATION

Dans cette section, on propose un critère d'optimisation des masques de phase pour étendre la PdC en microscopie par localisation et une méthode pour l'optimiser lorsque le masque est de structure binaire annulaire. Nous déterminons ensuite les masques de phase binaire de L = 2 à 5 anneaux optimaux pour atteindre différentes PdC souhaitées. Pour chaque masque optimisé, on évalue le compromis obtenu entre la précision de la localisation et l'extension de la PdC.

CRITÈRE D'OPTIMISATION

L'Équation (3.7) donne la précision théorique de localisation 2D d'un marqueur fluorescent défocalisé dans un volume imagé par un microscope équipé d'un masque de phase. En considérant le scénario le plus défavorable pour la localisation, tel que θ 0 = (0, 0), nous obtenons que RBCR = RBCR x = RBCR y . Un critère raisonnable pour l'optimisation du masque est donc de minimiser la plus grande valeur possible de la RBCR évaluée dans la plage de PdC souhaitée. Les paramètres optimaux du masque, désignés par le vecteur ρ opt , sont donc obtenus en résolvant le problème d'optimisation suivant :

ρ opt = arg min ρ J (ρ) avec J (ρ) = max ψ∈[0,ψ max ] RBCR(ρ, ψ) . (3.10)
Comme nous l'avons fait remarquer, la forme de la PSF est identique pour ψ et -ψ, lorsque le masque est à symétrie de révolution et de phase binaire avec une modulation de π radians. La PdC désirée, pour laquelle nous souhaitons une localisation 2D précise des fluorophores, est donc caractérisée dans l'Équation (3.10) par l'intervalle [0, ψ max ], avec ψ max la PdC désirée.

La résolution de ce problème d'optimisation, de type minimax, n'est pas simple car le critère que l'on cherche à minimiser est non convexe. Dans la Figure 3.7(a), le paysage d'optimisation (i.e., les valeurs du critère J (ρ 1 )) est représenté pour un masque à L = 2 anneaux défini par son rayon ρ 1 et pour différentes PdC ψ max désirées. Nous remarquons qu'il existe plusieurs minima locaux. À la Figure 3.7(b), le paysage d'optimisation (i.e., les valeurs du critère J (ρ 1 , ρ 2 )) pour un masque à L = 3 anneaux (défini par ses rayons ρ 1 et ρ 2 ) et ψ max = 2, 5λ présente aussi plusieurs minima locaux dont la plus petite valeur est signalée d'une croix blanche. 

PERFORMANCE ET LIMITES DES MASQUES OPTIMISÉS

En appliquant la méthode d'optimisation décrite dans la section précédente, on optimise des masques de phase binaires annulaires pour différentes PdC désirées. La performance des masques est représentée en Figure 3.8(a), où la plus grande valeur possible de la RBCR (évaluée dans l'ensemble de la PdC souhaitée) est tracée en fonction du nombre d'anneaux. Cette valeur, notée J (ρ opt ), est définie par :

J (ρ opt ) = max ψ∈[0,ψ max ] RBCR(ρ opt , ψ) . (3.11)
Chaque courbe correspond à une PdC différente désignée par le paramètre ψ max . Les points les plus à gauche correspondent à un système optique sans masque (i.e., L = 1). Pour ces configurations, on constate que J (ρ opt ) augmente à mesure que la plage de PdC classique, où le critère d'optimisation des masques permettant l'extension de la PdC est la qualité de l'image déconvoluée (voir le Chapitre 2). Cependant, comme illustré dans l'annexe A, les masques optimaux sont différents.

Afin d'approfondir les résultats obtenus, analysons comment ces masques optimaux modifient la PSF du système optique et comment ces modifications permettent d'étendre la PdC. La Figure 3.9(a) représente la variation du profil de la PSF en fonction du paramètre de défocalisation ψ pour quatre configurations différentes : sans masque et avec des masques respectivement optimisés pour ψ max = {1λ; 1, 5λ; 3λ}. On constate que l'utilisation d'un masque de phase optimisé réduit considérablement l'étalement de la PSF pour des défocalisations importantes. La Figure 3.9(b) illustre la variation de la RBCR en fonction du paramètre ψ pour ces quatre configurations. Comparer les Figures 3.9(a-b) est très instructif. On observe que les minima locaux des RBCR de la Figure 3.9(b) correspondent, quelle que soit la PdC pour laquelle le masque a été optimisé, à deux formes différentes de PSF qui permettent d'assurer une bonne précision de localisation, comme illustré en Figure 3.9(a). La première forme est caractérisée par un lobe central important. Elle se produit par exemple lorsque ψ 0, 7λ pour ψ max = 1λ ou lorsque ψ = 0 pour ψ max = 1, 5λ. La deuxième forme est caractérisée par des lobes secondaires importants. Elle se produit par exemple lorsque ψ 0 pour ψ max = 1λ ou lorsque ψ 0, 7λ pour ψ max = 1, 5λ. Les profils de la PSF correspondant à la transition entre ces deux formes conduisent à des valeurs plus élevées de la RBCR. Par exemple, pour ψ max = 1, 5λ, la plus mauvaise précision de localisation est obtenue lorsque ψ 0, 4λ. Nous constatons, dans la Figure 3.9(a), que le profil de la PSF, pour ce défaut de mise au point, est très peu contrasté, avec un lobe central très atténué et des lobes secondaires quasi inexistants.

ALGORITHMES DE LOCALISATION 2D

Une fois les masques optimisés et leurs performances de localisation caractérisées, il est alors nécessaire de spécifier, en pratique, un estimateur capable d'atteindre ces performances. L'objectif de cette section est donc de définir un estimateur sans biais de localisation 2D permettant d'atteindre les performances décrites par la RBCR, pour un système d'imagerie équipé d'un masque de phase optimisé.

Lorsqu'un fluorophore est situé dans le plan focal et que son image par l'objectif du microscope est décrite par la tache d'Airy (i.e., que le système optique sans masque n'est limité que par la diffraction), [START_REF] Ober | Localization Accuracy in Single-Molecule Microscopy[END_REF] ont montré que pour une valeur de RSB suffisante, les algorithmes du MV sont capables d'atteindre la BCR. Cependant, lorsque les fluorophores ne sont plus confinés dans les deux dimensions du plan focal et que le système optique est équipé d'un masque de phase pour étendre sa PdC, le problème d'estimation est plus complexe. Il dépend d'un paramètre inconnu : le paramètre de défocalisation ψ. Cette grandeur peut donc être considérée comme un paramètre de nuissance. Si nous n'avons à notre disposition pas suffisamment d'information a priori sur la valeur vraie de ce paramètre -notée par la suite ψ 0 -, il est alors nécessaire de l'estimer conjointement au sens du MV [Aguet, 2009] ou de l'intégrer au problème. L'estimation conjointe revient à chercher les coordonnées θ et le paramètre de défocalisation ψ qui maximisent la log-vraisemblance, définie telle que : (θ, ψ) = P i =-P P j =-P ln Pr s i j µ ψ,θ i j (3.12) où les variables s i j et µ ψ,θ i j sont définies à l'Équation (3.5), et la probabilité Pr s i j µ ψ,θ i j à l'Équation (3.4). On peut aussi intégrer le paramètre ψ au problème. Ce qui revient à chercher les coordonnées θ qui maximisent l'intégrale de la log-vraisemblance définie à l'Équation (3.12) sur l'intervalle [-ψ max , ψ max ].

Je rappelle que notre objectif est d'estimer la position 2D d'un fluorophore (i.e., sa position transverse θ 0 ) dans une PdC étendue, et non sa position 3D (i.e., θ 0 et son défaut de mise au point ψ 0 ). Je montre cependant dans la suite que pour atteindre cet objectif une estimation grossière du paramètre de défocalisation ψ est nécessaire. (3.17)

ESTIMATION BASÉE SUR UNE

La question est de savoir comment construire la « meilleure » référence. Dans la mesure où les observations s i j dépendent du défaut de mise au point du fluorophore, avec ψ 0 ∈ [0, ψ max ], une manière intuitive est de choisir la référence r i j (θ) qui minimise la moyenne des variances d'estimation évaluées sur un ensemble de valeurs ψ k=1,2,••• ,K de ψ régulièrement réparties sur la PdC souhaitée, avec ψ K = ψ max . Nous montrons, dans l'Annexe B.1, qu'il est possible (moyennant quelques approximations) d'obtenir une expression analytique de la variance de l'estimateur défini à l'Équation (3.17). Rappelons que cette variance, notée var ψ [ θ], dépend du paramètre de défocalisation ψ puisque les mesures s i j en dépendent. Afin de faciliter les calculs, nous choisissons de maximiser la moyenne de l'inverse des variances évaluées sur l'ensemble des

ψ k , avec k ∈ {1, 2, • • • , K }, i.e., k (var ψ k [ θ]) -1 /K .
Nous montrons ainsi, dans l'Annexe B.2, que le noyau de corrélation approprié est une moyenne pondérée des PSF du système optique : (3.18) où les coefficients α k sont les composantes du vecteur propre associé à la plus grande valeur propre de la matrice W : En conclusion, dans cet exemple, utiliser une référence globale (même optimale) ne permet pas de caractériser l'ensemble des PSF sur l'intervalle ψ ∈ [0; 1λ]. Il faut donc diviser cette plage en plusieurs intervalles, sur lesquels la forme de la PSF est invariante, pour pouvoir appliquer l'estimateur de la position transverse défini à l'Équation (3.17).

r i j (θ) = K k=1 α k µ ψ k ,θ i j
[W ] mn = R 2 ν x ν y h * ψ m (ν x , ν y ) hψ n (ν x , ν y ) dν x dν y , ( 3 

ESTIMATION BASÉE SUR DE MULTIPLES RÉFÉRENCES

Dans la mesure où l'estimateur θ défini à l'Équation (3.17), basé sur une référence globale, n'atteint pas les performances théoriques de localisation décrites par la BCR, nous proposons une autre approche similaire mais construite à l'aide de plusieurs références. Supposons que la PdC, définie telle que ψ ∈ [0, ψ max ], soit divisée en un nombre fini, noté M ψ , d'intervalles distincts. En utilisant la méthode décrite ci-dessus, nous définissons M ψ noyaux de corrélation adaptés à chaque intervalle. Ces noyaux sont notés empirique (points bleus) de l'estimateur défini à l'Équation (3.20), que nous comparons à la RBCR (en tirés rouges). Cette grandeur empirique est de nouveau estimée à l'aide de simulations de Monte-Carlo sur 4 000 réalisations. Nous notons, contrairement à la Figure 3.10(a), que l'écart-type empirique est très proche de la RBCR quel que soit le défaut de mise au point. Diviser la plage de PdC [0, 1λ] en M ψ = 4 intervalles permet donc ici de caractériser correctement la variabilité de la PSF.

r m i j (θ) avec l'index m ∈ {1, • • • , M ψ }.
Cependant, lorsque la plage de PdC souhaitée s'élargit, la variabilité de la PSF à l'intérieur de cette plage augmente également (voir Figure 3.9(a)). Il est donc nécessaire d'utiliser un plus grand nombre d'intervalles pour caractériser l'ensemble des PSF. Par exemple, pour une PdC telle que ψ max = 1, 5λ, nous avons utilisé M ψ = 5 intervalles. La Figure 3.12(a) compare l'écart-type empirique de l'estimateur, défini à l'Équation (3.17) et estimé avec des simulations de Monte-Carlo, avec la RBCR en fonction du paramètre de défocalisation ψ pour ψ max = 1, 5λ. On constate que l'estimateur est très proche de la RBCR. La Figure 3.12(b) représente les mêmes valeurs pour ψ max = 2λ. Dans ce cas, il faut utiliser M ψ = 6 intervalles pour atteindre la RBCR.

Nous reviendrons en détails dans le Chapitre 4 sur le léger écart qu'on peut encore observer entre les performances théoriques prédites par la BCR et les performances estimées de manière empiriques.

En résumé, si ψ 0 est inconnu, la RBCR des systèmes dotés d'une PdC étendue ne peut pas être atteinte avec un estimateur constitué d'un seul noyau de corrélation. Cela est dû au fait que même avec les masques optimaux, la PSF varie dans la plage de défocalisation. Il y a donc un prix à payer en matière de complexité calculatoire pour localiser la position transverse d'un fluorophore dans un volume imagé. Nous avons proposé une méthode basée sur la subdivision de la plage de défocalisation en un nombre suffisant 

COMPARAISON AVEC UN MASQUE DE LA LITTÉRATURE

La méthodologie pour optimiser des masques de phase, présentée dans ce chapitre, est basée sur un critère explicite et général, issu de la théorie de l'information : la BCR. Elle permet donc de comparer (quantitativement) tout type de masque d'extension de la PdC en microscopie par localisation. Afin d'illustrer le potentiel de cette approche, nous comparons dans cette section les masques de phase proposé par [START_REF] Abrahamsson | Mats : A new approach to extended focus for high-speed high-resolution biological microscopy[END_REF] avec ceux co-optimisés précédemment. Ces masques sont constitués de régions annulaires concentriques introduisant une différence de chemin optique bien supérieure à la longueur de cohérence du faisceau d'illumination (voir Figure 3.13(a)). Ainsi, les rayons lumineux traversant chaque région sont mutuellement incohérents. La PSF d'un système optique équipé de ce type de masque est donc obtenue par l'addition incohérente des PSF produites par chaque région annulaire. Nous désignons ces masques par l'acronyme IPP, de l'anglais Incoherently Partitioned Pupil (IPP). Leurs paramètres ρ, que nous chercherons à optimiser, correspondent aux rayons des régions annulaires.

Pour comparer les performances de ces deux types de masques, nous optimisons le critère minimax introduit à l'Équation (3.10) critère J (ρ opt ), définie à l'Équation (3.11), en fonction de ψ max (avec un pas de 0, 1λ). La courbe en trait plein noir correspond à J (ρ) avec ρ = 0 (sans masque) où le système optique est uniquement limité par la diffraction. Cette courbe servira de référence pour la comparaison. La courbe en pointillés bleus est obtenue avec les masques de phase binaires annulaires optimisés pour chaque valeur de ψ max . Celle en tirets rouges est obtenue avec les masques IPP optimaux pour ces mêmes PdC. Pour chaque PdC (i.e., valeur de ψ max ), les masques binaires et IPP sont ré-optimisés et peuvent donc être différents. On remarque que si les fluorophores sont faiblement défocalisés, i.e., ψ max < 0, 4λ, les masques de phase n'améliorent pas les performances de localisation, et ce quel que soit le type de masque utilisé (les courbes du graphe se superposent). Cependant, lorsque les fluorophores sont davantage défocalisés, les masques de phase améliorent significativement les performances de localisation. On remarque d'ailleurs que cette amélioration est plus importante avec les masques de phase binaires annulaires qu'avec les masques IPP, quelle que soit la profondeur ψ max . Par exemple, lorsque la PdC est telle que ψ max = 1λ, le masque de phase binaire annulaire optimal mène à une valeur de J (ρ opt ) trois fois plus petite que celle obtenue sans masque, tandis que le masque IPP optimal ne réduit J (ρ opt ) que d'un facteur 2.

Ce résultat illustre une manière de comparer les stratégies d'extension de PdC en s'appuyant sur les outils développés dans ce chapitre. Bien entendu, la précision de la localisation peut ne pas être le seul critère pour choisir (ou optimiser) ces stratégies. Par exemple, la facilité avec laquelle les masques peuvent être fabriqués est également un critère important. À ce sujet, les masques de phase binaires annulaires peuvent être plus faciles à fabriquer avec les techniques de photolithographie car ils ne nécessitent qu'un seul niveau de gravure peu profond alors que les masques IPP nécessitent des niveaux différents et profonds entre chaque région annulaire.

CONCLUSION

Dans ce chapitre, nous avons formalisé le problème de co-conception lié à l'extension de la PdC en microscopie par localisation de molécule unique. Nous avons montré que placer un masque de phase optimisé dans la pupille de sortie du microscope, et utiliser un algorithme de traitement numérique adapté, permet d'améliorer significativement les performances de localisation sur une profondeur d'imagerie étendue. Nous avons ainsi optimisé la fonction de modulation de phase des masques binaires annulaires pour atteindre les PdC désirées. Cela se fait au prix d'une précision de la localisation dégradée pour les marqueurs situés dans le plan de focal (ψ = 0) par rapport à celle obtenue avec un système optique sans aberration de défocalisation et uniquement limité par la diffraction.

L'un des avantages de la méthode d'optimisation proposée est qu'elle s'appuie sur un critère fondé sur la BCR. Il s'agit donc d'un critère explicite et général qui permet de comparer quantitativement tout type de masque permettant d'étendre la PdC. Nous l'avons illustré en comparant nos masques de phase binaires annulaires optimisés avec ceux proposés par [START_REF] Abrahamsson | Mats : A new approach to extended focus for high-speed high-resolution biological microscopy[END_REF]. * * * Notre étude est basée sur un modèle d'imagerie simplifié : l'aberration optique introduite par le défaut de mise au point est modélisée par un simple terme quadratique dans le plan pupillaire et le bruit de grenaille lié au caractère aléatoire d'émission des photons (venant du fluorophore et / ou du fond autofluorescent) n'est pas pris en compte. Ces hypothèses vont être discutées dans les deux chapitres suivants. Dans le Chapitre 4, nous étudierons l'influence de la prise en compte d'un modèle de bruit plus complet. Dans le Chapitre 5, nous considérerons un modèle d'imagerie optique plus réaliste dans le contexte de la microscopie à forte ouverture numérique.

MODÈLE DE BRUIT

Nous venons de montrer que la profondeur de champ des microscopes par localisation peut être étendue en plaçant un masque de phase dans la pupille de leur objectif et en appliquant un traitement numérique approprié aux images acquises. Pour optimiser ces masques et caractériser leurs performances, nous avons fait deux hypothèses importantes. La première porte sur le modèle de bruit utilisé. Nous avons supposé que les images acquises en single-molecule localization microscopy (SMLM) étaient perturbées par un bruit additif de distribution gaussienne. Cependant, il existe en microscopie de fluorescence d'autres types de bruits qui peuvent être dominants dans certaines situations. Nous proposons dans ce chapitre d'évaluer l'influence de ces différents modèles sur l'optimisation des masques de phase. Conduisent-ils tous aux mêmes masques optimaux ou à des masques différents ? La seconde hypothèse porte sur l'utilisation de la borne de Cramér-Rao (BCR) comme critère pour évaluer la précision de localisation. Il est admis en pratique que l'estimateur du maximum de vraisemblance peut atteindre la BCR, mais il s'agit en réalité d'une approximation dont on souhaite déterminer ici précisément le domaine de validité. Nous cherchons donc à savoir dans quelles conditions la BCR reflète fidèlement le précision d'estimation en SMLM. J 'AI formalisé, au Chapitre 3, le problème de co-conception lié à l'extension de la PdC en microscopie par localisation de molécule unique : un masque de phase, placé dans la pupille du microscope et optimisé conjointement avec le traitement numérique, permet d'améliorer significativement les performances de localisation sur une profondeur d'imagerie étendue. La méthode d'optimisation proposée s'appuie sur la BCR.

Cependant, ces travaux reposent sur deux hypothèses qui n'ont pas été vérifiées. La première concerne le modèle de bruit utilisé : il existe, en fonction des situations, différentes sources de bruit dominantes en microscopie de fluorescence. La prise en compte de ces bruits dans la modélisation stochastique des données acquises modifie l'expression de la BCR, et donc aussi celle du critère d'optimisation des masques de phase. Je propose, dans la première partie de ce chapitre, d'évaluer l'influence qu'a cette modélisation sur l'optimisation des masques.

La seconde hypothèse porte sur l'utilisation de la BCR comme critère pour évaluer la précision de localisation. Bien qu'il soit admis qu'elle peut être atteinte dans la pratique en utilisant l'estimateur du MV (voir par exemple les travaux d 'Ober et al. [2004]), il s'agit en réalité d'une approximation dont nous proposons d'établir précisément le domaine de validité . Nous chercherons donc, dans la seconde moité de ce chapitre, à répondre à la question suivante : dans quelles conditions la BCR reflète-t-elle fidèlement le précision de localisation en SMLM ? Nous pourrons ainsi définir les conditions expérimentales pour lesquelles un microscope équipé d'un masque de phase optimal et d'un traitement numérique adapté peut imager dans une plage de PdC étendue.

SOURCES DE BRUITS EN MICROSCOPIE DE FLUORESCENCE

Depuis leur invention en 1969, les capteurs photographiques CCD ont été utilisés pour détecter la faible fluorescence de marqueurs en microscopie optique. Au cours des quatre dernières décennies, ces dispositifs à transfert de charge, ou en anglais charge coupled device (CCD), ont été améliorés pour faciliter l'acquisition d'images à faible luminosité. Les principales caractéristiques qui ont contribué à ce progrès sont une efficacité quantique supérieure à 90%, un bruit de lecture avec un faible écart-type, un facteur de remplissage au voisinage de 100% et une excellente efficacité de transfert de charge [START_REF] Vettenburg | Fidelity optimization for aberration-tolerant hybrid imaging systems[END_REF].

Cependant, les images numériques acquises à l'aide de ces détecteurs restent bruitées. Ces bruits viennent de différentes sources dont certaines sont liées au signal d'intérêt que l'on cherche à mesurer, d'autres n'en dépendent pas. Il est difficile de dresser une liste exhaustive des sources de bruits qui altèrent les images numériques acquises en microscopie optique. Cependant, les sources de bruits les plus courantes sont les suivantes.

Le bruit de photons (aussi appelé bruit de grenaille) est une source de bruit inhérente à toute source lumineuse. Le signal de fluorescence mesuré, émis par un fluorophore après excitation, est une grandeur physique composée d'événements discrets : les détections de photons. Par sa nature, ce signal est donc aléatoire et peut être caractérisé par une loi de Poisson dont l'espérance mathématique et la variance sont proportionnelles à l'intensité du signal de fluorescence.
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Le bruit de fond est un signal de fluorescence endogène non désiré provenant de composés naturels, tels que le tissu biologique. Cette autofluorescence se caractérise par un spectre d'émission large par rapport à ceux des fluorophores généralement étroits. Il est donc difficile, par des filtrages traditionnels, de la séparer du signal de fluorescence. Le bruit de fond se caractérise aussi par une loi de Poisson mais dont l'espérance mathématique et la variance ne dépendent pas du signal utile émis par le fluorophore.

Le courant d'obscurité correspond au signal mesuré alors qu'aucune source n'éclaire le détecteur. Pendant la mesure, des porteurs de charges se créent par simple agitation thermique. Le signal à temps discret résultant de cette agitation est aléatoire et perturbe la mesure. Il peut être caractérisé par une loi de Poisson dont l'espérance mathématique et la variance ne dépendent pas du signal utile.

Le bruit de lecture est une incertitude sur la mesure du courant électrique (image du flux lumineux). Il intervient lors de la conversion des électrons en une tension mesurable. Il est souvent modélisé par un bruit additif gaussien dont les paramètres sont indépendants du signal utile. De plus, pour une caméra CCD, ses caractéristiques sont identiques en chaque pixel.

Le bruit de quantification intervient lors de la conversion analogique -numérique que subit le signal mesuré. On passe d'une tension analogique continue à un signal numérique avec un nombre fini de valeurs. Cette quantification introduit une erreur (ou un bruit) entre le signal quantifié et le signal source. Cette erreur est modélisée par une distribution uniforme qui dépend de la taille du buffer de quantification. Avec l'émergence de nouveaux détecteurs capables de réduire considérablement le courant d'obscurité, le bruit de lecture et le bruit de quantification, les sources de bruits dominantes en SMLM proviennent principalement du bruit de photons et du fond.

APPROXIMATIONS DU CRITÈRE D'OPTIMISATION DES MASQUES

Les images acquises sont ainsi décrites par un bruit de grenaille provenant du signal utile (i.e., la fluorescence de l'émetteur) et d'un fond constant de niveau moyen b (i.e., l'autofluorescence du milieu biologique). Le bruit total résultant est alors modélisé par une loi de Poisson dont la moyenne est la somme des moyennes de ces deux bruits :

Pr s i j µ ψ,θ i j = N 0 µ ψ,θ i j + b s i j s i j ! exp -N 0 µ ψ,θ i j + b (4.1)
où b désigne la valeur moyenne spatialement constante du fond par pixel. On rappelle que N 0 µ ψ,θ i j désigne la valeur moyenne du signal de fluorescence attendu au pixel (i , j ) (voir l'Équation (3.5)) et que s i j correspond au nombre de photo-électrons mesurés au pixel (i , j ).

Ce modèle conduit à une matrice d'information de Fisher, définie à l'Équation (3.6) 

                                     RBCR x (ψ) = b N 0        P i =-P P j =-P ( j + 1 2 )∆ x y ( j -1 2 )∆ x y ∆ x f ψ,θ i (y) dy 2 N 0 b µ ψ,θ i j + 1        -1 2 RBCR y (ψ) = b N 0        P i =-P P j =-P (i + 1 2 )∆ x y (i -1 2 )∆ x y ∆ y f ψ,θ j (x) dx 2 N 0 b µ ψ,θ i j + 1        -1 2 (4.2)
où l'on rappelle que ∆ x y désigne le pas de la grille de pixels de taille (2P + 1)

× (2P + 1) et que ∆ x f ψ,θ i (respectivement ∆ y f ψ,θ j
) est la différence entre les valeurs de la PSF évaluée aux bords des pixels adjacents de la ligne i (de la colonne j ) comme définie à l'Équation (3.8). Nous reproduisons ci-dessous leur expression :

       ∆ x f ψ,θ i (y) = f ψ i - 1 2 ∆ x y , y, θ -f ψ i + 1 2 ∆ x y , y, θ ∆ y f ψ,θ j (x) = f ψ x, j - 1 2 ∆ x y , θ -f ψ x, j + 1 2 ∆ x y , θ . ( 4.3) 
Notons que contrairement au chapitre précédent, il est difficile de définir à partir de l'Équation (4.2) un RSB puisque le bruit provient de deux sources distinctes. Considérons, comme au Chapitre 3, la position θ 0 = (0, 0). On a alors RBCR = RBCR x = RBCR y . La valeur moyenne b du fond qui intervient dans l'Équation (4.2) dépend de l'application. On considère alors dans ce chapitre les deux scénarios suivants. Dans le Scénario A, le bruit de photons provenant de la fluorescence de l'émetteur est la source dominante de bruit, ce qui conduit à supposer que b = 0. L'expression de la RBCR dans ce scénario devient :

RBCR A = 1 N 0        P i =-P P j =-P ( j + 1 2 )∆ x y ( j -1 2 )∆ x y ∆ f ψ,θ 0 i (y) dy 2 µ ψ,θ 0 i j        -1 2 . (4.4)
On peut alors définir un RSB égal à N 0 . Dans le Scénario B, le fond est la source dominante de bruit, donc on néglige les fluctuations dues au signal utile de fluorescence. Ceci conduit à supposer que N 0 µ ψ,θ 0 i j b, ce qui donne pour l'expression de la RBCR : L'ensemble des niveaux de bruit de fond possibles se situent donc entre ces deux scénarios. Les paramètres optimaux du masque, désignés par le vecteur de paramètres ρ opt , sont obtenus en résolvant le problème d'optimisation de l'Équation (3.10). Puisque l'expression de la RBCR, définie à l'Équation (4.2), dépend de N 0 et b, les paramètres optimaux du masque en dépendent aussi. Compte tenu de l'expression de la RBCR dans l'Équation (4.2), le vecteur ρ opt ne dépend de N 0 que par le rapport N 0 /b. Ce rapport est appelé le « bilan photonique ».

RBCR B = b N 0   P i =-P P j =-P ( j + 1 2 )∆ x y ( j -1 2 )∆ x y ∆ f ψ,θ 0 i (y) dy 2   -1 2 . ( 4 
A contrario, pour les deux Scénarios A et B, on peut factoriser la RBCR pour que les paramètres optimaux du masque ne dépendent plus de N 0 et b. C'est une propriété intéressante pour concevoir des masques de phase génériques indépendants de l'intensité des marqueurs fluorescents et du fond. La question est donc de savoir si en pratique ces scénarios sont réalistes et peuvent être utilisés pour l'optimisation des masques.

MASQUES DE PHASE BINAIRES ANNULAIRES OPTIMAUX

Considérons pour commencer, une plage de PdC telle que ψ max = 1λ. Nous optimisons par une recherche exhaustive des masques de phase binaires à L = 2 anneauxcaractérisés par un seul paramètre ρ 1 -en fonction du rapport N 0 /b ∈ [8, 33; 400]. La Figure 4.1(a) représente le paysage d'optimisation des masques, i.e., les valeurs du critère J (ρ 1 ) normalisé, en fonction du rayon ρ 1 et du bilan photonique. Pour rappel, le critère est normalisé en divisant J (ρ 1 ) par la valeur de la RBCR évaluée en ψ = 0 et ρ = 0. Sur ce paysage, nous remarquons qu'il existe, pour toutes les valeurs de N 0 /b, deux minima locaux qui évoluent respectivement autour de ρ 1 = 0, 6 et 0, 8. La ligne blanche sur la Figure 4.1(a) représente le rayon ρ opt du masque optimal en fonction du bilan photonique. On distingue clairement deux régimes différents. Le premier correspond aux valeurs de N 0 /b < 85, où la valeur optimale est ρ 1 0, 56. Cette valeur est très similaire à celle obtenue avec le Scénario B : ρ opt = 0, 55 (i.e., lorsque N 0 /b 1 : tout à gauche du graphe). Le second régime correspond aux valeurs de N 0 /b > 85 : la valeur optimale y évolue entre ρ 1 = 0, 81 et 0, 78. Ces valeurs sont similaires à celle obtenue dans le Scénario A : ρ opt = 0, 76 (i.e., lorsque b = 0, pour de très grandes valeurs de N 0 /b sur la [Kennedy et Eberhart, 1995] présenté au Chapitre 3. Comme je l'ai mis en évidence au chapitre précédent, les performances des masques optimaux peuvent se stabiliser pour une valeur plus petite de L, auquel cas le masque optimal a moins de 5 anneaux. Sur la Figure 4.2(a), chaque rayon est représenté par un point. Ainsi, un ensemble vertical de points correspond aux rayons des anneaux du masque optimal pour une valeur de N 0 /b. Les performances des masques, i.e. la valeur du critère J (ρ opt ) normalisé, sont reportées à la En conclusion, les masques de phase optimisés avec le critère minimax de l'Équation (3.10) et la RBCR définie à l'Équation (4.2) dépendent du bilan photonique. Cependant, on peut définir deux scénarios pour lesquels la RBCR a une expression indépendante de N 0 et b. Dans le Scénario A, on considère uniquement le bruit de photons provenant de la fluorescence de l'émetteur, et dans le Scénario B, on considère que le fond est la source dominante de bruit. Ainsi pour ces deux scénarios, les paramètres optimaux du masque ne dépendent plus que de l'échantillonnage de la PSF par la grille de pixels. Cette propriété permet de concevoir des masques de phase génériques indépendants de l'intensité des marqueurs fluorescents et du bruit de fond. En pratique, nous montrons que le Scénario B correspond à des applications pour lesquelles N 0 /b < 85 pour ψ max = 1λ et N 0 /b < 380 pour ψ max = 1, 5λ. Comme nous l'avons mis en évidence au Chapitre 3, plus la plage de PdC est grande, plus la PSF s'étale le long de l'axe optique. Ainsi pour une même valeur de RSB, la PSF se « noie » dans le bruit de fond à mesure que ψ max augmente. Cela explique pourquoi le Scénario B est valide pour de plus grandes valeurs de N 0 /b à mesure que ψ max augmente. 

EFFICACITÉ DES ESTIMATEURS DE LOCALISATION

Les résultats obtenus jusqu'à présent reposent sur l'hypothèse que la BCR est un indicateur fidèle de la précision de localisation obtenue en pratique. Autrement dit, que nous sommes en mesure de spécifier un estimateur dit « efficace » -sans biais et dont la variance atteint la BCR. Un tel estimateur est donc caractérisé par la plus petite variance (ou erreur quadratique moyenne) possible, indiquant une faible déviation entre la valeur estimée et la valeur réelle. Il est largement admis qu'en SMLM la BCR peut être atteinte dans la pratique en utilisant l'estimateur du MV. Nous avons montré dans le Chapitre 3 que c'est le cas dans une configuration donnée. Cependant, il s'agit d'une approximation dont nous établissons précisément dans cette section le domaine de validité.

CAS FOCALISÉ

Considérons pour commencer des émetteurs situés dans le plan de mise au point, i.e., dont la position longitudinale z p est confondue avec celle du plan focal z focus . On a alors ∆z o = z pz focus = 0 ou encore ψ = 0.

ESTIMATEUR DU MAXIMUM DE VRAISEMBLANCE (MV )

Pour estimer la position d'un émetteur avec une précision sous-pixellique, un algorithme de localisation doit être mis en oeuvre. Différentes méthodes basées sur l'estimation du centre de masse, l'ajustement de gabarit ou la déconvolution avec des contraintes de parcimonie sont proposées dans la littérature (voir la synthèse de [START_REF] Sage | Super-resolution fight club : assessment of 2D and 3D single-molecule localization microscopy software[END_REF]). Cependant, l'algorithme le plus couramment utilisé est celui du MV, que nous avons utilisé dans le Chapitre 3 et qui tire parti des connaissances a priori sur la nature des sources de bruit qui corrompent les images observées (voir par exemple les travaux d 'Ober et al. [2004]). Cet algorithme estime le vecteur de coordonnées θ en maximisant la log-vraisemblance définie à l'Équation (3.12). On a montré à la Section 3.3 que pour un modèle de bruit additif gaussien, cet estimateur peut s'écrire sous la forme d'un produit de corrélation. Ce résultat se généralise facilement pour un modèle de bruit de Poisson avec fond tel qu'étudié dans la section 4.1. Dans ce cas, l'estimateur du MV s'écrit : 

θ = arg max θ P i =-P P j =-P s i j q i j (θ) (4.6) avec q i j (θ) = log N 0 µ ψ,θ i j + b . ( 4 
i j puisque log[1 + N 0 µ ψ,θ i j /b] N 0 µ ψ,θ
i j /b. Ainsi dans le Scénario B, bien que le bruit suive une distribution de Poisson, l'estimateur du MV peut être approché par le filtre adapté. Ce filtrage est aussi optimal en présence de bruit additif gaussien [Kay, 1993] et a été utilisé dans le Chapitre 3 à l'Équation (3.16). [START_REF] Ober | Localization Accuracy in Single-Molecule Microscopy[END_REF] ont montré que pour un bon RSB et pour des émetteurs situés dans le plan focal (i.e., tel que ψ = 0), l'estimateur du MV est efficace. Pour délimiter le domaine de validité de cet estimateuri.e., le domaine sur lequel il est efficaceavec plus de précision, je vais supposer tout d'abord que l'émetteur observé est centré sur un pixel de sorte que, par exemple, θ 0 = (0; 0). Dans cette configuration, la valeur de la RBCR est égale dans les deux directions du plan d'imagerie. On note alors RBCR = RBCR x = RBCR y . Bien entendu, le biais E[ θ] -θ 0 de l'estimateur du MV (où E[•] désigne l'espérance mathématique et θ 0 est la position réelle de l'émetteur) et son écarttype σ[ θ] sont aussi égaux dans les deux directions x et y. Pour délimiter le domaine de validité de l'estimateur, nous les normalisons : En pratique, les valeurs croissantes de la RBCR sont obtenues en réduisant le RSB dont l'expression dépend du scénario. Dans le Scénario A, le RSB est défini comme étant N 0 (voir l'Équation (4.4)) et varie de 75, 9 à 1, 1 quand la RBCR va de 1, 7 à 166, 7 nm. Dans le Scénario B, il est défini comme étant N 0 / b (voir l'Équation (4.5)) et varie de 303 à 4, 4. Représenter le biais et l'écart-type en fonction de la RBCR au lieu du RSB permet de visualiser les deux scénarios sur le même graphe.

DOMAINE DE VALIDITÉ

nBias = E[ θ] -θ 0 RBCR et nSTD = σ[ θ] RBCR . ( 4 
Avec cette représentation, si l'estimateur du MV est efficace, son biais normalisé est proche de 0 et son écart-type normalisé proche de 1. On remarque sur la Figure 4.3(a) que, pour les deux Scénarios A et B, le biais est proche de 0 et l'écart-type normalisé proche de 1 tant que RBCR ≤ 20 nm. Pour ces valeurs de RBCR, l'estimateur du MV est donc efficace. Lorsque RBCR > 20 nm, l'écart-type commence à diverger tandis que le biais reste proche de 0 avant de diverger à son tour lorsque RBCR > 40 nm. Pour ces valeurs de RBCR, l'estimateur du MV n'est donc pas efficace.

Afin de vérifier que ces conclusions restent identiques si θ 0 n'est pas centré sur un pixel, considérons également la situation où la position réelle θ 0 de la PSF est située sur le coin d'un pixel, par exemple, θ 0 = (∆ x y /2; ∆ x y /2). Une fois encore, la symétrie du problème est telle que le biais, l'écart-type et la RBCR ont la même valeur dans les deux directions du plan d'imagerie x et y. J'ai représenté en Cette conclusion est donc indépendante de la position de la PSF par rapport à la grille de pixels.

En résumé, dans des conditions de faible RSB, la précision de localisation réelle est moins bonne que celle prédite par la BCR. Heureusement, ce problème n'affecte pas les situations où le RSB est suffisamment élevé : pour les paramètres expérimentaux standards que nous avons considérés, l'estimateur du MV reste efficace tant que la RBCR reste inférieure à 20 nm. Des précautions doivent donc être prises lorsque les expériences sont menées dans des conditions de faible RSB -ou plutôt de forte RBCRcar dans ce cas l'écart-type de l'estimateur du MV n'atteint pas la RBCR.

Pour quantifier l'écart entre l'erreur d'estimation réelle et la BCR, les Figures 4.3 

CAS NON FOCALISÉ

Considérons maintenant des émetteurs situés en-dehors du plan de mise au point, i.e., dont la position longitudinale z p est éloignée de celle du plan focal z focus . On dit alors que le marqueur fluorescent est défocalisé. Le paramètre ψ, défini à l'Équation (3.2), quantifie cette défocalisation : l'expression de la PSF, et donc de la RBCR, dépend de ce paramètre. 

s i j q m i j (θ) (4.9) où q m i j (θ) = log[r m i j (θ)] dans le Scénario A et q m i j (θ) = r m i j (θ) dans le Scénario B.
On rappelle que notre objectif est l'estimation de la localisation 2D sur une plage de PdC étendue et que les masques ne sont donc pas optimisés pour estimer la position des émetteurs dans la profondeur. Notre seul paramètre d'intérêt reste donc la position transverse θ. Cependant, pour l'estimer correctement, il est nécessaire d'estimer le paramètre de nuisance m. Nous avons montré dans le Chapitre 3 qu'un nombre limité de M ψ noyaux était suffisant pour donner des résultats acceptables en pratique. Le prix (modeste) à payer sur les performances de localisation pour cette approximation sera discuté à la fin de la section.

De plus, puisque les noyaux r m i j (θ) ne correspondent pas aux « véritables » PSF, no- 

INTERPRÉTATION DES RÉSULTATS

Pour mieux comprendre comment la distribution statistique des estimées θ évolue lorsque la RBCR est supérieure à 20 nm, j'ai tracé sur la Figure 4.8 l'histogramme de (E[ θ] -θ 0 )/ RBCR (avec RBCR = RBCR x = RBCR y ) en fonction de la RBCR. On remarque que les histogrammes s'élargissent progressivement à mesure que le RSB décroît. L'augmentation de la variance n'est donc pas due à la présence de quelques valeurs aberrantes isolées.

En analysant plus en détail les résultats des Figures 4.6(b) et 4.7(b), on remarque deux points intéressants. Premièrement, pour certaines valeurs de ψ max et ψ, les performances de localisation ne sont pas exactement égales à la RBCR même lorsque RBCR < 20 nm. On remarque en effet que l'écart-type normalisé est légèrement supérieur à 1, d'un facteur pouvant aller jusqu'à 5%. Deuxièmement, lorsque la RBCR est supérieure à 20 nm, les performances de localisation s'écartent de la RBCR beaucoup plus rapidement en présence d'un masque de phase, que sans masque (points noirs et étoiles violettes).

Pour expliquer ces résultats, la Figure 4.9 compare, pour une configuration donnée -à savoir, ψ max = 1, 5λ et ψ 0 = 0, 55λ -, les valeurs de nBias et nSTD obtenues avec trois algorithmes de localisation différents basés sur le MV en fonction de la RBCR.

Le premier algorithme est l'estimateur défini à l'Équation (4.9) (triangles jaunes).

Pour le second, on suppose connaître le bon intervalle de défocalisation m 0 = 2 dans lequel se trouve l'émetteur, et on applique l'estimateur défini à l'Équation (4.6) avec le noyau de corrélation r i j = r m 0 i j (croix rouges). Pour le dernier, on utilise l'estimateur défini à l'Équation (4.6) avec le noyau de corrélation µ ψ 0 ,θ 0 i j correspondant à la « vraie » PSF calculée pour ψ 0 = 0, 55λ (ronds bleus).

On constate que les courbes obtenues avec le premier et le deuxième algorithme sont très similaires, avec un écart-type légèrement supérieur à 1 pour RBCR < 20 nm et une augmentation rapide après RBCR > 20 nm. L'estimation de l'intervalle m pour l'estimateur défini à l'Équation (4.9) est donc correcte, puisque supposer connaître a priori le bon noyau n'améliore pas les performances. En revanche, l'écart-type obtenu avec le troisième algorithme est très proche de 1 lorsque RBCR < 20 nm et a une augmentation beaucoup plus lente, similaire à celle observée dans le cas focalisé (voir la Figure 4.4). Les écarts observés entre les deux premiers algorithmes et le dernier proviennent donc des dissimilarités entre le noyau de corrélation utilisé et la « vraie » PSF. Ces écarts pourraient être réduits en augmentant le nombre M ψ d'intervalles considérés. Cependant, le coût des calculs pour estimer θ 0 augmenterait linéairement avec M ψ .

Il est important aussi de préciser qu'en pratique, d'autres facteurs tels que des aberrations optiques ou un étalonnage imprécis de la PSF peuvent être à l'origine de la dissimilarité entre la « vraie » PSF et le noyau de corrélation utilisé. [START_REF] Thorsen | Impact of optical aberrations on axial position determination by photometry[END_REF], [START_REF] Siemons | High precision wavefront control in point spread function engineering for single emitter localization[END_REF], [START_REF] Mazidi | Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy[END_REF] ont récemment étudié la sensibilité des algorithmes de localisation basés sur l'ajustement de gabarit pour quantifier la perte de précision amenée par cette dissimilarité.

CONCLUSION

L'objectif de ce chapitre était d'étudier plus en détail les modèles de bruit utilisés pour optimiser les masques et de valider l'utilisation de la BCR comme critère d'optimisation.

Nous avons tout d'abord mis en évidence que lorsque les sources de bruit dominantes sont les bruits de photon provenant respectivement du fluorophore (de moyenne N 0 ) et du fond diffus (de moyenne b), les masques optimaux dépendent en général du bilan photonique. Cependant, on peut définir deux scénarios dans lesquels ils n'en dépendent pas : le Scénario A, où l'on considère uniquement le bruit de photons provenant du fluorophore, et le Scénario B, où le fond est la source de bruit dominante. L'intérêt de ces scénarios est qu'ils permettent de concevoir des masques de phase génériques indépendants de l'intensité des marqueurs fluorescents et du bruit de fond. Nous avons donc étudié les domaines de valeurs de N 0 /b pour lesquels les masques optimisés dans ces deux scénarios restent proches de l'optimalité. La principale conclusion est que le domaine d'optimalité du Scénario B est d'autant plus étendu que la plage de PdC visée est grande. En effet, nous avons vu dans le Chapitre 3 que dans ce cas, la PSF s'étale le long de l'axe optique. Elle se « noie » alors dans le bruit de fond, qui devient la source de bruit prépondérante. En particulier, cette étude montre que les paramètres expérimentaux considérés dans le Chapitre 3 correspondent au domaine d'optimalité du Scénario B. Il était donc légitime d'optimiser les masques dans le cadre d'un modèle de bruit additif gaussien, car ce modèle conduit à un critère d'optimisation identique à celui du Scénario B.

Dans la seconde partie de ce chapitre, l'objectif a été de définir précisément les conditions dans lesquelles la BCR est un indicateur fiable de la précision de localisation qui peut être atteinte dans les expériences SMLM. On a montré que l'estimateur du MV est efficace (i.e., sans biais et atteignant la BCR) lorsque les paramètres de l'expérience sont tels que la RBCR est inférieure à 20 nm. Cette limite est identique en présence et en l'absence de masque d'extension de la PdC, mais lorsqu'un masque est présent, les performances de l'estimateur du MV divergent beaucoup plus rapidement quand les valeurs de la RBCR deviennent supérieures à 20 nm. D'autre part, dans certains scénarios où la PdC est étendue, on peut observer un écart-type légèrement supérieur à la RBCR même lorsque RBCR < 20 nm. Cet écart vient de la différence entre la PSF réelle et le noyau de corrélation utilisé dans l'algorithme de localisation.

Comme de nombreuses expériences de SMLM sont menées dans des conditions où la RBCR est inférieure à 20 nm, la pratique courante consistant à évaluer et / ou optimiser la précision de localisation à l'aide de la BCR et à employer l'estimateur du MV pour atteindre cette précision est donc justifiée. Cependant, lorsque les conditions expérimentales sont telles que RBCR > 20 nm, il faut tenir compte du fait que la BCR ne représente plus fidèlement les performances de l'estimateur du MV.

MODÈLE D'IMAGERIE

La méthode d'optimisation des masques présentée au Chapitre 3 s'appuie sur un modèle d'imagerie où la défocalisation est modélisée par un simple terme de phase quadratique dans le plan pupillaire. Cependant, ce modèle ne prend pas en compte deux caractéristiques essentielles des configurations de microscopie par localisation : une ouverture numérique élevée et une différence entre les indices de réfraction nominaux du liquide d'immersion et de l'échantillon biologique étudié. Il existe des modèles scalaires ou vectoriels bien plus précis qui prennent mieux en compte ces caractéristiques d'imagerie. Une question importante se pose donc : quelle influence peut avoir le modèle d'imagerie sur l'optimisation des masques de phase pour augmenter la profondeur de champ ?

Certaines parties de ce chapitre ont été publiées dans J. Opt. Soc. Am. A 38 [2021a], p. 1380-1390.

5. INFLUENCE DU MODÈLE D'IMAGERIE

L ES objectifs de microscopes modernes offrent des conditions d'imagerie optimales pour une source lumineuse ponctuelle située immédiatement sous la lamelle couvreobjet (i.e., z p = z focus = 0). Cependant, lorsque la source est située à quelques micromètres sous la lamelle, par exemple, dans le cas d'un émetteur situé en profondeur dans l'échantillon et en dehors du plan focal, ces conditions ne sont plus réunies. Une forte ouverture numérique et un indice de réfraction élevé du milieu d'immersion peuvent alors conduire à des aberrations sphériques -du troisième ordre ou plus -non négligeables.

Les objectifs de microscope sont conçus avec une ouverture numérique et un indice de réfraction élevés pour améliorer leur résolution latérale. Il existe de nombreux modèles scalaires ou vectoriels, plus précis que celui introduit au Chapitre 3, qui tiennent compte de ces caractéristiques d'imagerie pour mieux décrire l'image d'un émetteur dans toute la plage de PdC. Nous pouvons donc nous interroger sur l'influence que pourrait avoir un modèle d'imagerie plus réaliste que celui utilisé jusqu'à présent sur l'optimisation des masques de phase.

MODÈLES SCALAIRES ET VECTORIELS

Comme en témoignent les travaux de thèse d 'Aguet [2009], la modélisation des PSF fait l'objet de nombreuses recherches. La Figure 5.1 hiérarchise les modèles les plus connus pour décrire la formation d'une image par un système optique en fonction de leur degré de précision (ou d'approximation). Nous avons : la tache d'Airy ; le modèle d'approximation quadratique (AQ) ; le modèle de Gibson & Lanni (GL) ; celui de Richards et al. [1959] ; et les équations de Maxwell. Nous distinguons ainsi deux catégories de modèles. Ceux dits « scalaires » (en bleu) qui s'appuient sur l'optique de Fourier pour calculer la réponse impulsionnelle spatiale du système d'imagerie, et les autres dits « vectoriels » (en vert) qui tiennent compte de la nature vectorielle du champ électrique.

Les modèles scalaires décrivent généralement la PSF à l'aide des Équations (1.2) et (1.3) dont je rappelle ici l'expression1 :

h z p (x, y) ∝ FT 2D Π Disk exp i Φ z p x NA |M |λ , y NA |M |λ 2 (5.1)
avec λ la longueur d'onde de la lumière incidente, NA l'ouverture numérique objet du système d'imagerie et M le grandissement traversal. La fonction de phase pupillaire Φ z p est donnée par :

Φ z p (r ) = 2π λ W z p (r ) (5.2) 
où W z p (r ) correspond à la différence de chemin optique, mesurée dans la pupille de sortie à la coordonnée radiale (normalisée) r ∈ [0; 1], entre la surface d'onde sphérique de référence et la surface d'onde réelle défocalisée. Ainsi les trois modèles scalaires mentionnés dans la Figure 5.1 correspondent à différentes expressions de W z p (r ).

Ces modèles ne prennent pas en compte la polarisation de la lumière. Or à des ouvertures élevés, les rayons entrant dans l'objectif sont très inclinés et il peut donc être nécessaire, pour certaines applications, de tenir compte du caractère vectoriel du champ électrique pour calculer la PSF. Les fondements de cette approche ont été proposés par [START_REF] Richards | Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[END_REF] sur la base des équations de Maxwell, puis développés par [START_REF] Hell | Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index[END_REF] et [START_REF] Török | Electromagnetic diffraction of light focused through a stratified medium[END_REF]. Cependant, comme l'a montré Aguet [2009], pour de nombreuses applications -y compris celle de la super-localisation de molécules uniques -le modèle scalaire de Gibson et Lanni [1992] est suffisamment précis pour décrire la formation des images.

Le modèle le plus simple est celui de la tache d'Airy. Il permet de décrire la réponse impulsionnelle spatiale d'un instrument optique d'ouverture circulaire et uniquement limité par la diffraction (i.e., sans défaut de mise au point). La différence de chemin optique W z p (r ) est donc nulle et le système est entièrement décrit par l'Équation (3.3). En présence d'un défaut de mise au point (i.e., une aberration supplémentaire de défocalisation pure), l'approximation quadratique (AQ) introduite au Chapitre 1 à l'Équation (1.14) est couramment utilisée pour décrire la formation de l'image par le système optique. Nous rappelons ci-dessous l'expression de ce modèle, formulée comme la différence des chemins optiques A'C (trajet de référence) et B'C (trajet réel) illustrée à la Figure 1.3 [Goodman, 2017] : Le modèle GL, proposé par Gibson et Lanni [1992], permet de mieux décrire l'évolution réelle de la PSF avec la défocalisation que le modèle AQ. Ce modèle suppose que les conditions d'imagerie sont dénuées d'aberration si l'émetteur est situé juste en dessous de la lamelle et que les paramètres optiques -dont l'épaisseur et l'indice de réfraction de la lamelle -correspondent à leurs valeurs nominales. La Figure 5.2 (partie haute) correspond à cette configuration. Le chemin optique de référence est représenté par le trajet ABC. Ainsi toutes les aberrations observées proviennent de facteurs extérieurs à l'objectif du microscope, tels que le déplacement de l'émetteur ou la variation des paramètres optiques. Dans cette section, nous supposons que les valeurs des indices de réfraction et les réglages du microscope sont parfaitement connus, et que la lamelle possède ses propriétés nominales. Le chemin optique réel est représenté en Figure 5.2 (partie basse) par le trajet PQRS. Sous ces hypothèses, la différence entre les chemins optiques ABC et PQRS illustrés à la Figure 5.2 a pour expression [Gibson et Lanni, 1992] :

W AQ (r ) NA 2 2n s z p -z focus ψ r 2 (5.
W GL (r ) = z p n s   1 - NA r n s 2 -1   -d n i   1 - NA r n i 2 -1   , (5.4) 
avec n s (respectivement n i ) l'indice de réfraction de l'échantillon (respectivement du milieu d'immersion), d le paramètre permettant d'ajuster la distance de travail du microscope, z p et r ∈ [0; 1] décrits à l'équation précédente. Notons que si z p = 0 et d = 0 (i.e., l'émetteur est situé juste en dessous de la lamelle et dans le plan focal), alors W GL (r ) = 0 et la PSF est décrite par la tache d'Airy. De plus, si n i = n s et NA 1, le modèle GL défini par l'Équation (5.4) peut être approximé par le modèle AQ sous la forme suivante :

W GL (r ) = (z p -d )n s   1 - NA r n s 2 -1   NA 2 2n s (z p -d ) ψ r 2 .
(5.5)

Nous nous concentrerons, dans la suite du manuscrit, sur la comparaison de ce modèle avec le modèle AQ, utilisé au Chapitre 3.

DISTANCE DE TRAVAIL OPTIMALE

Pour correctement imager les fluorophores, il est nécessaire d'ajuster la distance de travail du microscope en fonction de la profondeur d'imagerie que l'on souhaite atteindre, et ce afin d'avoir une PSF la plus concentrée possible dans tout le volume imagé. Ce réglage est caractérisé dans le modèle AQ par la position longitudinale du plan focal, notée z focus (voir l'Équation (5.3)), et dans le modèle GL par le paramètre d (voir l'Équation (5.4)). Ces deux grandeurs sont illustrées à la Figure 5.2. Notons [z min , z max ] l'intervalle caractérisant la PdC souhaitée du système d'imagerie.

MODÈLE D'APPROXIMATION QUADRATIQUE (AQ)

Avec le modèle AQ, l'évolution de la PSF en fonction de la défocalisation est entièrement caractérisée par le paramètre réduit ψ. Ajuster correctement la distance de travail du microscope revient donc à choisir la valeur de z focus qui minimise la valeur La valeur maximale de |ψ|, notée ψ max , est donc atteinte en z max et z min et vaut :

ψ max = NA 2 4n s (z max -z min ) . (5.7) 
Le paramètre de défocalisation ψ appartient donc à l'intervalle [-ψ max , ψ max ] lorsque z p ∈ [z min , z max ]. À titre d'illustration, la Figure 5.3(a) représente la variation du profil de la PSF en fonction de ψ, pour la configuration expérimentale décrite dans le Tableau 5.1. On note que par symétrie, une section transversale de la PSF le long de toute ligne passant par son centre est suffisante pour représenter l'ensemble de ses propriétés. L'axe vertical à gauche de la 

MODÈLE DE GIBSON & LANNI (GL)

Avec le modèle GL, l'évolution de la PSF n'est plus caractérisée par un unique paramètre. Il est donc plus difficile d'ajuster la distance de travail du microscope en fonction de la profondeur d'imagerie que l'on souhaite atteindre. Pour contourner cette difficulté, la variation de chemin optique W GL (r ) peut être caractérisée par une grandeur scalaire : sa dispersion quadratique autour de sa moyenne, notée σ 2 GL . De manière générale, la dispersion quadratique de l'écart entre la surface d'onde de référence et celle réelle défocalisée, notée W z p (r ) dans l'Équation (5.2), est définie par :

σ 2 = 1 1 0 r dr 1 0 W z p (r ) -W 2 r dr = 2 1 0 W z p (r ) -W 2 r dr , (5.8) 
où la valeur moyenne W a pour expression :

W = 1 1 0 r dr 1 0 W z p (r )r dr = 2 1 0
W z p (r )r dr .

(5.9)

Pour le modèle GL, la dispersion quadratique de W GL (r ) définie à l'Équation (5.4) a donc l'expression polynomiale suivante :

σ 2 GL (z p , d ) = z 2 p κ 2 s + d 2 κ 2 i -2 z p d c 2 si (5.10) où les coefficients κ 2 s , κ 2 i et c 2 si sont définis par                κ 2 s = 2 1 0 h s (r ) -h s 2 r dr κ 2 i = 2 1 0 h i (r ) -h i 2 r dr c 2 si = 2 1 0 h s (r ) -h s h i (r ) -h i r dr (5.11) avec h k = 2 1 0 h k (r )r dr et h k (r ) = n 2 k -NA 2 r 2 , (5.12) 
où k représente les indices "s" ou "i" utilisés à l'Équation (5.11). Le paramètre d qui intervient dans l'Équation (5.10), et illustré à la Figure 5.2, permet indirectement de déplacer le plan focal à la position longitudinale z focus de son choix.

Pour garantir que la PSF soit la plus concentrée possible dans tout le volume imagé, le paramètre d doit être choisi de manière à minimiser la valeur maximale de σ 2 GL lorsque la position longitudinale de l'émetteur z p varie dans l'intervalle [z min , z max ]. Cela conduit à résoudre :

d opt = arg min d max z p ∈[z min ,z max ] σ 2 GL (z p , d ) .
(5.13) Puisque l'on montre à l'Équation (5.10) que σ 2 GL (z p , d ) est un polynôme du second degré en z p dont le coefficient du terme z 2 p est positif, sa valeur maximale -pour une valeur de paramètre d donnée -est atteinte aux extrémités z p = z min ou z max . On a alors : 

σ 2 GL (z min , d opt ) = σ 2 GL (z max , d opt ) . ( 5 
z opt focus = z max + z min 2 .
(5.17)

On constate qu'il s'agit de la même que celle obtenue pour le modèle AQ (voir l'Équation (5.6)) : la position de focalisation optimale est à mi-distance entre z min et z max . Par ailleurs, on montre que lorsque d = d focus , la valeur de la dispersion quadratique pour une position z p quelconque est égale à : (5.19) On peut vérifier qu'elle est minimale pour z p = z opt focus , mais non nulle si α = 0.

σ 2 GL (z p , d opt ) = κ 2 s z p -z opt focus 2 + α z opt focus 2 (5.18) avec α = κ 2 s κ 2 i c 4 si - 1 . 

CONDITIONS D'ÉQUIVALENCE DES MODÈLES GL ET AQ

Nous avons représenté à la Figure 5.4(b) la variation du profil de la PSF en fonction de la position longitudinale z p de l'émetteur lorsque d = d opt . La configuration du microscope et les paramètres de simulation sont décrits dans le Tableau 5.1, où n i = n s = 1, 33. On remarque que la Figure 5.4(b) est très similaire à la Figure 5.4(a) obtenue avec le modèle AQ (il s'agit de la Figure 5.3(a) reproduite ici pour faciliter la comparaison). La principale différence que l'on observe entre ces deux modèles est une « contraction » longitudinale de la PSF. Cela signifie que la PdC naturelle prédite par le modèle GL semble être plus petite que celle prédite par le modèle AQ.

Pour confirmer ce résultat, nous avons représenté à la Figure 5.4(d) le rapport de Strehl obtenu avec le modèle AQ (en trait plein rouge) et le modèle GL (en trait plein bleu). Ce rapport, noté S, correspond à la plus grande valeur de la PSF évaluée à la profondeur z p divisée par celle de la tache d'Airy :

S = max (x,y) h z p (x, y)
f Airy (0, 0) .

(5.20) Considérons maintenant le cas où n i = n s . Nous avons tracé à la Figure 5.5 le même type de graphes qu'à la , mais pour n i = 1, 52 et n s = 1, 33. Nous remarquons, de nouveau, que les rapports de Strehl des modèles GL (en trait plein bleu) et AQ mis à l'échelle (en trait plein rouge), illustrés à la Figure 5.5(c), sont très similaires. Cependant, le fait que n i = n s introduit deux différences supplémentaires importantes. Premièrement, le rapport de Strehl obtenu avec le modèle GL au meilleur point focal n'est plus égal à 1 (voir la courbe en trait plein bleu de la Figure 5.5(c)). En effet, la dispersion quadratique de l'écart de front d'onde ne peut s'annuler si n i = n s , même pour z p = z opt focus (voir l'Équation (5.18)). Pour prendre en compte le fait que n i = n s dans le modèle AQ, un facteur de correction sur le rapport de Strehl, noté β, est donné dans l'Annexe C.1 à l'Équation (C.7). Deuxièmement, la variation du profil de la PSF est dissymétrique autour du plan focal. En effet, lorsque les indices optiques ne sont plus égaux, l'erreur de front d'onde W GL (r ) sur la pupille, définie à l'Équation (5.4), n'est plus symétrique autour du point z focus même si la dispersion quadratique reste parfaitement symétrique, comme le montre l'Équation (5.18).

Nous avons illustré à la En conclusion, le principal avantage du passage du modèle AQ au modèle GL est de mieux prédire la PdC dans des configurations réelles avec une ouverture élevée. Cela évite de surestimer la plage de PdC avec un modèle d'imagerie trop optimiste.

CONDITIONS D'ÉQUIVALENCE DES DEUX MODÈLES EN PRÉ-SENCE D'UN MASQUE

Considérons à présent qu'un masque de phase est placé dans le diaphragme d'ouverture du microscope pour améliorer la PdC. Comme décrit à l'Équation (1.15), cela revient à ajouter à la fonction pupillaire la fonction de phase du masque Φ mask (r ). On peut noter que la fonction de phase du masque est indépendante de la position longitudinale z p de l'émetteur. Par conséquent, si une configuration correspondant à z p dans le modèle GL est équivalente à une configuration correspondant à ψ * dans le modèle AQi.e., elles produisent une aberration « équivalente » au sens de la dispersion quadratique de W z p -, la surface d'onde aberrante décrite par les deux modèles reste équivalente si l'on utilise un masque de phase. On peut donc s'attendre à ce que les conclusions obtenues à la section précédente (sans masque) soient également valides en présence d'un masque de phase.

Pour vérifier cette conjecture, nous avons tracé en Figure 5.6 les mêmes types de graphes que ceux présentés en -c). On constate que même en utilisant un masque de phase, les variations de la PSF et du rapport de Strehl en fonction du paramètre équivalent ψ * restent assez proches de celles obtenues avec le modèle GL.

COMPARAISONS DES MASQUES DE PHASE OPTIMAUX

La méthode d'optimisation d'un masque basée sur la BCR est définie à l'Équation (3.10). Elle consiste à minimiser le critère J (ρ) correspondant à la plus grande valeur de la BCR sur la plage de défocalisation visée. Puisque l'expression de la PSF est différente dans les modèles AQ et GL, la valeur de la RBCR l'est aussi. Il faut donc définir pour chacun des modèles un critère d'optimisation distinct :

J AQ (ρ) = max ψ∈[-ψ max ,ψ max ]
RBCR AQ (ρ, ψ) ,

J GL (ρ) = max z p ∈[z min ,z max ]
RBCR GL (ρ, z p ) , (5.24) Considérons pour commencer une plage de PdC telle que ψ max = 1λ. Comme nous l'avons vu à la Figure 3.8(a), les masques binaires à L = 2 anneaux -caractérisés par un seul paramètre noté ρ 1 -sont presque suffisants pour atteindre les performances optimales sur cette PdC. La Figure 5.7 représente les valeurs de J AQ (ρ 1 ) (en trait plein bleu), et de J GL (ρ 1 ) avec n i = n s (en trait plein rouge) ou avec n i = n s (en trait plein jaune), en fonction de ρ 1 . Les masques optimisés sont ceux dont le rayon ρ 1 correspond au minimum global du paysage d'optimisation. On observe que ces paysages sont très similaires et que les minima globaux se produisent quasiment aux mêmes positions. On peut donc en conclure que les masques de phase binaires à L = 2 anneaux optimisés dans le cadre des modèles AQ et GL sont quasi-identiques.

Ce résultat se vérifie aussi pour de plus grandes plages de PdC. Comme j'ai pu le montrer au Chapitre 3, un plus grand nombre d'anneaux est nécessaire pour atteindre une précision de localisation optimale sur de grandes plages de PdC. Je vais donc considérer, pour l'optimisation des masques, des structures annulaires composées au maxi- mum de L = 5 anneaux 2 . Notons, cependant, que les performances des masques optimaux peuvent se stabiliser pour une valeur plus petite de L, auquel cas le masque optimal a moins de cinq anneaux. On considère trois plages de PdC : ψ max = 1λ, 1, 5λ et 2λ.

L'ensemble des résultats obtenus est résumé dans le Tableau 5.2 pour les différentes valeurs de ψ max (première colonne) et d'indices optiques (deuxième colonne : n i = n s ou n i = n s ). Les masques optimaux obtenus avec le modèle GL, désignés par le vecteur ρ GL opt , sont illustrés dans la troisième colonne avec la valeur correspondante du critère J GL (ρ GL opt ). On remarque que lorsque ψ max augmente, J GL (ρ GL opt ) augmente aussi : étendre la PdC devient plus difficile. On constate également que le critère J GL (ρ GL opt ) est légèrement plus grand lorsque n i = n s . La quatrième colonne du Tableau 5.2 représente les masques optimaux pour le modèle AQ, désignés par le vecteur ρ AQ opt avec la valeur correspondante du critère J AQ (ρ AQ opt ). Par comparaison, on observe que les masques optimaux pour les modèles AQ et GL, bien que différents, présentent certaines similitudes. En particulier, leurs anneaux principaux ont les mêmes rayons. La question est donc de savoir si ces masques sont équivalents en termes de performances d'extension de la PdC.

Pour répondre à cette question, considérons un masque de phase, optimisé avec le modèle AQ pour atteindre la PdC ψ max , placé dans un microscope optique où les paramètres -ouverture numérique, indices optiques, distance de travail, etc. -sont tels que ψ * max = ψ max . La valeur du critère de localisation obtenue dans ce cas, J GL (ρ AQ opt ), est donnée à la cinquième colonne du Tableau 5.2. En comparant les valeurs de la troisième et de la cinquième colonne, on remarque que J GL (ρ AQ opt ) > J GL (ρ GL opt ). Ce résultat était attendu puisque le masque ρ AQ opt n'est pas optimal pour le modèle GL. Cependant, les valeurs de J GL (ρ AQ opt ) et J GL (ρ GL opt ) sont proches, ce qui signifie que même si le masque a été optimisé avec le modèle AQ, il reste quasi-optimal avec le modèle GL. On remarque aussi dans le Tableau 5.2 que plus la valeur de ψ max et l'écart d'indices optiques augmentent, plus le masque s'éloigne de l'optimalité avec le modèle GL. Cependant, même dans le pire cas où ψ max = 2λ et n i = n s , on a J GL (ρ GL opt ) = 10, 25 nm et J GL (ρ AQ opt ) = 11, 45 nm. Cela correspond à une différence relative de seulement 12%. Cette différence est faible 2. Pour optimiser les critères qui sont fortement non convexes, j'utilise l'algorithme d'optimisation globale par essaim de particules (particle swarm) proposé par Kennedy et Eberhart [1995] En résumé, les masques de phase optimisés avec le modèle AQ sont similaires à ceux obtenus avec le modèle GL, à condition que la PdC souhaitée soit spécifiée par le paramètre ψ * max défini à l'Équation (5.23). Ce résultat est important car il permet l'usage de masques génériques calculés pour une plage de PdC sans avoir besoin de connaître précisément les paramètres optiques du microscope (i.e., NA, n i et n s ). En effet, considérons différentes configurations de microscopes ayant des indices de réfraction, une ouverture numérique et une profondeur d'imagerie différentes, mais correspondant à la même valeur du paramètre réduit de défocalisation ψ * max . Les masques optimaux obtenus avec le modèle GL pour toutes ces configurations offrent des performances très similaires, et sont quasi-identiques au masque optimal obtenu avec le modèle AQ pour une plage de PdC égale à [-ψ * max , ψ * max ].

CONCLUSION

Dans ce chapitre, nous avons comparé les performances d'extension de la PdC des masques de phase optimisés avec le modèle AQ et le modèle GL. Ce dernier caractérise de manière plus précise la formation d'image dans un microscope optique avec une forte ouverture numérique et un écart important entre les indices de réfraction du milieu biologique et du milieu d'immersion. Nous avons tout d'abord montré que la validité du modèle AQ peut être étendue en modifiant la définition du paramètre de défocalisation ψ. Cette nouvelle définition repose sur une équivalence en termes de dispersion quadratique des écarts de surface d'onde entre le modèle AQ et le modèle GL. Nous avons ensuite montré que pour ces configurations équivalentes, les masques optimaux obtenus avec les deux modèles sont similaires et conduisent à des performances de localisation proches. Ce résultat est important car il permet l'utilisation de masques génériques qui peuvent être optimisés sans connaître précisément les paramètres optiques du microscope. J USQU'à présent, je me suis intéressé à la précision avec laquelle la position transverse d'un fluorophore peut être déterminée dans un volume imagé. J'ai montré qu'avec une configuration expérimentale adaptée, la précision de localisation de l'estimateur du MV est entièrement caractérisée par la BCR. En plaçant dans la pupille de l'objectif un masque de phase binaire annulaire optimisé selon ce critère, il est possible de modifier la réponse impulsionnelle du système d'imagerie afin d'étendre la PdC des techniques SMLM.
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Cependant, le traitement numérique complet d'une image se compose de deux étapes successives. La première, nommée « pré-localisation » ou « détection », consiste à déterminer grossièrement la position des régions de l'image dans lesquelles se trouve un fluorophore. La seconde étape consiste à localiser le fluorophore, dans chacune des régions pré-détectées, avec une précision sous-pixellique (bien inférieure à la limite de diffraction) en utilisant les algorithmes décrits dans les chapitres 3 et 4.

Les masques de phase binaires annulaires déterminés dans les chapitres précédents ont été optimisés uniquement pour cette seconde étape : ils permettent de maximiser la précision de super-localisation d'un marqueur fluorescent sur une plage de PdC étendue. Or on ignore l'influence que peuvent avoir ces masques sur l'étape de prélocalisation. L'objectif de ce chapitre est de répondre à cette question. Pour cela, nous allons tout d'abord construire un critère basé sur la distance de Bhattacharyya pour discriminer un fluorophore du fond diffus. Nous utiliserons ensuite ce critère pour optimiser des masques de phase binaires annulaires adaptés à la détection. Nous comparerons enfin les masques obtenus à ceux optimisés précédemment pour la localisation, afin de déterminer s'il existe des masques efficaces à la fois pour la détection et la localisation.

DÉTECTABILITÉ D'UN MARQUEUR FLUORESCENT

L'étape de pré-localisation (ou de détection) de marqueurs fluorescents peut être formulée comme un problème de classification, où l'on distingue automatiquement les données acquises selon qu'elles contiennent l'image d'un fluorophore ou qu'elles n'en contiennent pas. Pour évaluer la difficulté de ce problème de classification, nous proposons dans cette section d'utiliser la distance de Bhattacharyya 1 . Cette distance permettra de définir un critère pour optimiser des masques de phase, afin d'augmenter la capacité à détecter un marqueur -en d'autres termes, sa détectabilité -dans un volume imagé.

TEST D'HYPOTHÈSES

On définit deux hypothèses, aussi appelées classes, pour caractériser la présence ou non d'un signal de fluorescence provenant du marqueur à détecter dans une imagette de taille (2P + 1) × (2P + 1) pixels.

Hypothèse H1 : un fluorophore est présent dans la scène. Le signal mesuré au pixel (i , j ), noté s i j , est alors décrit par un bruit de grenaille provenant du signal de fluorescence du marqueur et d'un fond constant de niveau moyen b provenant de l'autofluorescence du milieu biologique. La loi de probabilité de la variable aléatoire discrète s i j , 87 sous l'Hypothèse H1, est une loi de Poisson dont l'expression est :

P 1,i j [k] = λ k 1,i j k! exp -λ 1,i j . (6.1)
Cette loi, de moyenne

λ 1,i j = N 0 µ ψ,θ i j + b , (6.2) 
dépend du pixel (i , j ) avec N 0 le nombre moyen de photo-électrons mesurés, émis par le marqueur. La variable µ ψ,θ i j correspond à la PSF du système d'imagerie intégrée sur la grille de pixels et évaluée au pixel (i , j ). Elle est définie à l'Équation (3.5). Les paramètres ψ et θ sont supposés connus.

Hypothèse H0 : il n'y a pas de fluorophore dans la scène. Seule la fluorescence du fond est alors mesurée. La loi de probabilité de la variable aléatoire discrète s i j , sous l'Hypothèse H0, est notée P 0 [k]. Il s'agit à nouveau d'une loi de Poisson, comme définie à l'Équation (6.1), mais dont la moyenne est indépendante du pixel (i , j ) :

λ 0 = b . (6.3)
Pour illustrer ces deux hypothèses, nous avons simulé en Figure 6.1 un ensemble d'acquisitions pour lesquelles l'image d'un fluorophore est soit absente (comme illustré à la Figure 6.1(a)), soit présente (comme illustré aux . La Figure 6.1(e) représente l'histogramme de la valeur du pixel central construit à partir de 8 000 réalisations différentes de bruit. Ces simulations numériques sont réalisées avec les paramètres décrits dans le Tableau 5.1 et pour trois valeurs du paramètre de défocalisation ψ, à savoir ψ = {0; 0, 25λ; 0, 5λ}. Comme nous l'avions mis en évidence au Chapitre 3, on remarque qu'en présence d'un fluorophore, plus le paramètre ψ est important, plus la PSF s'étale et disparaît dans la fluorescence du fond. À l'oeil nu, il semble de plus en plus difficile de déterminer si l'image d'un fluorophore est présente ou non. C'est aussi ce que l'on constate à la Figure 6.1(e), où l'histogramme associé au pixel central P 1,44 [k] se rapproche de P 0 [k] à mesure que le paramètre ψ augmente. On dit alors que les Hypothèses H1 et H0 sont de moins en moins discernables.

Un algorithme de décision consiste à classer automatiquement les données acquises s = (s i j ) (i , j )∈[-P,P ] 2 en distinguant celles contenant un signal de fluorescence (i.e., celles vérifiant l'Hypothèse H1) et celles n'en contenant pas (i.e., celles vérifiant l'Hypothèse H0). Cette classification est communément appelée un « test d'hypothèses ». [START_REF] Neyman | IX. On the problem of the most efficient tests of statistical hypotheses[END_REF] ont montré que l'algorithme optimal, i.e., le plus efficace, consiste à comparer le rapport de vraisemblance à un seuil.

DISTANCE DE BHATTACHARYYA

Aucun test, même optimal, ne peut conduire à une classification parfaite. De plus, comme en témoigne la Figure 6.1, il est légitime de penser que plus un fluorophore est éloigné du plan focal (i.e., |ψ| grand), moins les Hypothèses H1 et H0 sont discernables, et plus difficile alors est la classification. Afin d'évaluer la performance d'un algorithme de décision, nous pouvons calculer sa probabilité d'erreur, i.e., la probabilité qu'une imagette s soit affectée à la mauvaise classe. avec p 1 , respectivement p 0 , la probabilité a priori des Hypothèses H1 respectivement H0. Le symbole désigne les sommes sur les réalisations de bruit des (2P + 1) 2 pixels, telles que

s i j = {0, 1, • • • , +∞}. En utilisant l'inégalité min{a; b} ≤ a γ b 1-γ (où a, b ≥ 0 et 0 ≤ γ ≤ 1)
, on montre que l'Équation (6.4) peut être majorée par : Lorsque les lois de probabilité P 1,i j [k] et P 0 [k] suivent respectivement des distributions de Poisson de moyennes λ 1,i j et λ 0 telles que définies aux Équations (6.2) et ( 6.3), la distance de Chernoff C i j (γ) a l'expression analytique suivante :

u = p γ 1 p 1-γ 0 P i =-P P j =-P +∞ k=1 P 1,i j [k] γ P 0 [k] 1-γ e -C i j (γ) (6.5) avec 0 ≤ γ ≤ 1. La fonction C i j (γ)
C i j (γ) = γλ 1,i j + (1 -γ)λ 0 -λ γ 1,i j λ 1-γ 0 . ( 6.7) 
D'après l'inégalité exprimée à l'Équation (6.6), la plus petite borne sur -aussi appelée la borne d'information de Chernoff -est obtenue avec la valeur de γ qui maximise la somme des C i j (γ). Cette valeur dite « optimale » dépend des moyennes λ 1,i j et λ 0 , et n'a pas de forme analytique. Cependant, [START_REF] Jain | Informationtheoretic bounds on target recognition performance based on degraded image data[END_REF] ont montré que pour de nombreuses applications, la valeur optimale de γ est proche de 1/2. C'est d'ailleurs ce que l'on observe à la Figure 6.2 où la valeur optimale du paramètre γ est représentée en fonction du paramètre de défocalisation ψ : la somme des distances de Chernoff atteint son maximum pour une valeur de γ proche de 1/2. La distance :

B i j (ρ, ψ) = C i j (1/2) = -ln +∞ k=1 P 1,i j [k]P 0 [k] = 1 2 λ 1,i j -λ 0 2 (6.8)
calculée au pixel (i , j ) est appelée « distance de Bhattacharyya [1943] ». La dépendance de B i j à ρ et ψ provient de la moyenne λ 1,i j définie à l'Équation (6.2). De même que nous avons utilisé la BCR pour caractériser la précision de la localisation, nous aimerions disposer d'un critère ou d'une mesure de contraste simple et analytique permettant de caractériser la détectabilité d'un fluorophore. La somme des distances de Bhattacharyya, notée B, est une bonne candidate puisqu'elle permet de définir une borne proche de celle d'information de Chernoff. Son expression : évalue la difficulté intrinsèque d'un problème de détection en présence d'un bruit de Poisson spatialement non corrélé. [START_REF] Goudail | Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images[END_REF] ont montré l'intérêt d'utiliser l'Équation (6.9) comme mesure de contraste. La distance B peut être interprétée comme une mesure de similarité (ou de séparabilité) entre l'Hypothèse H1 (la présence d'un flurophore) et l'Hypothèse H0 (son absence). Ainsi, l'Équation (6.9) sera utilisée pour évaluer la capacité intrinsèque avec laquelle le signal de fluorescence d'un marqueur peut être détecté dans une image mesurée. À titre d'illustration, la Figure 6.3 représente l'évolution de la distance B (que nous appellerons dans la suite distance de Bhattacharyya), définie à l'Équation (6.9), pour un système optique sans masque de phase (i.e., ρ = 0) en fonction du paramètre de défocalisation ψ. On constate qu'elle diminue à mesure que ψ augmente. Autrement dit, les Hypothèses H1 et H0 sont de moins en moins discernables. Ce résultat confirme l'intuition que nous avions au préalable : un fluorophore éloigné du plan focal est plus difficile à détecter qu'un fluorophore situé dans le plan de mise au point (i.e., pour ψ = 0).

B(ρ, ψ) = P i =-P P j =-P B i j (ρ, ψ) = b 2 P i =-P P j =-P N 0 b µ ψ,θ i j + 1 -1 2 (6.9)

CO-OPTIMISATION DES MASQUES POUR LA DÉTECTION

Pour étendre la profondeur sur laquelle les marqueurs fluorescents peuvent être détectés, nous proposons d'optimiser des masques de phase à l'aide d'un critère basé sur la distance de Bhattacharyya définie à l'Équation (6.9). Un critère raisonnable pour l'optimisation du masque est de maximiser la plus petite valeur possible de la distance de Bhattacharyya évaluée sur l'ensemble de la plage de PdC souhaitée. Les paramètres optimaux du masque, désignés par le vecteur ρ opt , sont donc obtenus en résolvant le problème d'optimisation suivant :

ρ opt = arg max ρ J det (ρ) avec J det (ρ) = min ψ∈[-ψ max ,ψ max ]
B(ρ, ψ) (6.10) où nous avons explicitement indiqué la dépendance de B par rapport au vecteur de paramètres du masque ρ et au paramètre de défocalisation ψ.

Compte tenu de l'expression de B dans l'Équation (6.9), le vecteur de paramètres optimal du masque ρ opt ne dépend de N 0 que par le rapport N 0 /b (i.e., le bilan photonique). Comme la fonction de coût J det (ρ) est non convexe, l'Équation (6.10) On observe par ailleurs que J det (ρ opt ) tend asymptotiquement vers J det (0) à mesure que le bilan photonique augmente. Ainsi pour de grandes valeurs de N 0 /b, l'usage d'un masque de phase n'améliore plus la détection des fluorophores. Cette situation correspond à celle du Scénario A (aussi introduit au Chapitre 4) où la source de bruit dominante est le bruit de photons provenant du signal de fluorescence. Dans ce scénario, le contraste entre l'image du fluorophore et le fond est suffisant pour une détection correcte sans l'aide d'un masque sur la profondeur ψ max = 1λ.

Lorsque ψ max augmente, les masques optimaux sont composés d'un plus grand nombre d'anneaux : pour ψ max = 1λ, on compte L = 2 anneaux ; tandis que pour ψ max = 1, 5λ ou 2λ, L = 3 anneaux. Cette augmentation traduit la difficulté croissante d'optimiser un masque pour atteindre une plus grande PdC. Ce résultat est similaire à celui que nous avions établi pour la localisation au Chapitre 3 où le nombre d'anneaux du masque optimal augmentait avec ψ max (voir la Figure 3.8).

Par ailleurs, les conclusions établies précédemment à partir de la Figure 6.4(b) avec ψ max = 1λ restent similaires lorsque ψ max ∈ {1, 5λ; 2λ} : l'écart de performance entre les cas avec et sans masque est maximum pour N 0 /b = 8 puis décroît à mesure que le bilan photonique augmente. On remarque que J det (ρ opt ) tend vers J det (0) lorsque N 0 /b augmente. On peut montrer que cette convergence est asymptotique. En effet, si le signal de fluorescence est tel que N 0 µ ψ,θ 0 i j b, alors la distance de Bhattacharyya B définie à l'Équation (6.9) devient : .11) Cette expression approchée ne dépend plus des paramètres ρ et ψ puisque la conservation de l'énergie par un masque de phase impose :

B N 0 2 P i =-P P j =-P µ ψ,θ 0 i j . ( 6 
P i =-P P j =-P µ ψ,θ 0 i j = constante . (6.12)
Ainsi, le critère J det (ρ opt ) défini à l'Équation (6.10) tend asymptotiquement vers J det (0).

On remarque aussi sur la Pour conclure, l'usage d'un masque optimal pour la détection n'est nécessaire que pour des conditions expérimentales où l'hypothèse du Scénario B est vérifiée. Pour les autres conditions expérimentales, l'image du fluorophore est suffisamment contrastée et l'usage du masque de phase pour la détection n'est plus indispensable.

DÉTECTION VS. LOCALISATION

En comparant les résultats de la Figure 6.4(a) à la seconde ligne du Tableau 4.1, on remarque lorsque la source de bruit dominante est principalement due aux fluctuations du fond (hypothèse du Scénario B : N 0 µ ψ,θ 0 i j b) que les masques optimisés pour la détection sont similaires à ceux optimisés pour la localisation. Par exemple, lorsque ψ max = 1λ et N 0 /b = 8, on observe que le masque de phase binaire optimal pour la détection est composé de 2 anneaux tel que ρ opt = 0, 56 (voir la Figure 6.4(a)) ; et que celui optimisé pour la localisation est un masque à 2 anneaux tel que ρ opt = 0, 55 (voir la seconde ligne première colonne du Tableau 4.1). Ces deux masques sont très similaires. Lorsque ψ max = 1, 5λ et N 0 /b = 8, on montre à la Figure 6.4(a) que le masque de phase binaire optimal pour la détection est un masque à 3 anneaux avec ρ opt = (0, 72; 0, 90). Celui optimisé pour la localisation, et illustré à la seconde ligne deuxième colonne du Tableau 4.1, est aussi composé de 3 anneaux avec ρ opt = (0, 74; 0, 92). À nouveau, ces deux masques sont très similaires. On retrouve le même résultat lorsque ψ max = 2λ et N 0 /b = 8. Le masque de phase optimal pour la détection est caractérisé par le vecteur de paramètre ρ opt = (0, 66; 0, 84) (voir la Figure 6.4(a)) et celui pour la localisation par ρ opt = (0, 68; 0, 84) (voir la seconde ligne troisième colonne du Tableau 4.1).

Ce constat se comprend en analysant les critères d'optimisation pour la détection et la localisation définis respectivement aux Équations (6.10) et (3.10). Lorsque le bilan photonique est faible, les fluctuations du signal utile sont négligeables par rapport à celles du fond autofluorescent. En supposant que N 0 µ ψ,θ 0 i j b, on montre que ces critères peuvent être respectivement approchés par la maximisation des fonctions suivantes :

J det (ρ) min Pour rappel, cette contrainte provient de la conservation de l'énergie par un masque de phase. On remarque que la maximisation de chacun des deux critères (6.14) et (6.15) conduit à rechercher un masque de phase produisant des PSF les plus concentrées possibles sur un nombre restreint de pixels. Cela permet de comprendre pourquoi les masques optimaux sont très similaires. Pour vérifier cette conjecture, j'ai tracé aux Figures 6.5 On en conclut que dans les conditions expérimentales où l'usage d'un masque est nécessaire pour améliorer la détection des fluorophores (i.e., où l'hypothèse du Scénario B est vérifiée), les masques optimaux correspondent à ceux optimisés pour la localisation. Ce résultat est très intéressant car il montre que la méthode d'optimisation des masques de phase pour étendre la PdC en SMLM, utilisée jusqu'à maintenant, optimise à la fois la probabilité de détection et la précision de localisation.

CONCLUSION

L'étude menée dans ce chapitre nous a permis de montrer que dans la situation où la pré-localisation des marqueurs est la plus difficile, i.e., lorsque le bilan photonique (le rapport N 0 /b entre le signal du fluorophore et le niveau du fond) est faible, les masques binaires annulaires optimisant la détection sont identiques aux masques optimisant la précision de localisation sous-pixellique. Ce résultat est important car il permet de simplifier l'optimisation de ces masques pour la chaîne complète de traitement des images des techniques SMLM. De plus, ce résultat peut s'interpréter par la similarité des critères pour la détection et pour la localisation (voir respectivement les Équations (6.14) et (6.15)). Cette similarité est indépendante du modèle de masque utilisé, elle laisse donc présager que ce résultat peut se généraliser à d'autres structures de masques. Une perspective intéressante serait donc de vérifier la validité de ce résultat pour d'autres modèles de masques augmentant la PdC et également en imagerie 3D.

CONCLUSION GÉNÉRALE ET PERSPECTIVES

C E manuscrit de thèse est consacré à l'extension de la profondeur de champ (PdC) d'un système d'imagerie en utilisant des masques de phase binaires annulaires placés dans la pupille. La méthodologie d'optimisation de ces masques, introduite par [START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF], repose sur un critère défini par la différence quadratique entre une image idéalement nette et celle délivrée par le système après déconvolution par un filtre linéaire (le filtre de Wiener). Mes travaux m'ont conduit à considérer d'autres types de critères : ceux où le produit final est une image restaurée par un algorithme de déconvolution non linéaire, et ceux où le produit final est une information plus simple, comme la position ou la présence d'un marqueur individuel.

Pour la restauration d'image, j'ai montré au Chapitre 2 que les masques optimaux obtenus avec un critère basé sur le filtre de Wiener et ceux issus d'un critère basé sur une méthode de déconvolution non linéaire (la régularisation TV) sont pratiquement identiques. Ce résultat justifie une pratique fréquente consistant à optimiser un système d'imagerie avec un critère analytique basé sur une déconvolution linéaire et à restaurer les images acquises avec un algorithme non linéaire, afin d'obtenir une meilleure qualité d'image. J'ai proposé une conjecture pour expliquer ce fait : le masque de phase doit produire des PSF presque invariante à la défocalisation, et ce quel que soit l'algorithme utilisé pour réaliser la déconvolution. Cette conjecture sera bien évidement à vérifier sur d'autres applications et d'autres familles d'algorithmes de restauration.

Dans le cadre de la collaboration avec l'équipe de Laurent COGNET, basée au LP2N, j'ai exporé la problématique de co-conception pour la microscopie par localisation de molécule unique (SMLM). Le critère repose non plus sur la qualité d'une image restaurée mais sur la précision avec laquelle la position d'un marqueur fluorescent peut être estimée. Cette précision est exprimée à l'aide de la borne de Cramér-Rao (BCR). Le critère d'optimisation consiste donc à minimiser la BCR sur une plage de PdC spécifiée. En plaçant un masque de phase binaire annulaire optimisé dans la pupille de l'objectif du microscope et en appliquant un algorithme de localisation sous-pixellique adapté 97 7. CONCLUSION GÉNÉRALE ET PERSPECTIVES aux images acquises, il est possible d'étendre de manière significative la PdC des techniques SMLM. Par exemple, pour une plage de PdC visée de ψ max = 1λ, je montre au Chapitre 3 qu'un masque optimal permet d'obtenir une précision trois fois meilleure en bord de plage au prix d'une légère dégradation autour du plan focal. Les masques optimaux obtenus pour la localisation sont significativement différents de ceux obtenus pour la déconvolution d'image, ce qui était attendu puisque les critères d'optimisation n'induisent pas les mêmes contraintes sur la PSF.

Les expériences de SMLM dépendent d'un certain nombre de paramètres optiques. Il est donc important d'analyser l'influence de ces paramètres sur la précision de localisation, afin de délimiter le domaine de valeurs de ces paramètres dans lequel les techniques d'extension de la PdC peuvent être utilisées efficacement. Dans ce but, j'ai tout d'abord étudié au Chapitre 4 l'influence des sources de bruit dominantes sur l'optimisation des masques. Tout dépend d'un paramètre réduit appelé « bilan photonique », noté N 0 /b dans le manuscrit, qui correspond au rapport entre le nombre total N 0 de photons provenant du marqueur fluorescent et le nombre b de photons provenant de la fluorescence du fond (par pixel). J'ai montré que dans des conditions expérimentales telles que le bilan photonique est faible -ce qui est fréquemment le cas car les masques de phase atténuent le signal de fluorescence -les masques optimisés en supposant le bruit additif et gaussien ont des performances proches de l'optimalité. J'ai également vérifié que, dans la majorité des conditions expérimentales rencontrées en pratique, la BCR est un indicateur fiable de la précision de localisation effectivement obtenue. En effet, j'ai montré que si les conditions expérimentales sont telles que la RBCR est inférieure à 20 nm, alors l'estimateur du MV atteint la précision de localisation prédite par la BCR, que ce soit pour un marqueur situé dans le plan focal en utilisant un algorithme standard, ou pour des marqueurs situés hors du plan focal en utilisant l'estimateur adapté aux masques d'extension de PdC proposé au Chapitre 3. Dans le cas où les conditions expérimentales ne permettent pas d'obtenir une RBCR inférieure à 20 nm, les Figures 4.6 Afin de se rapprocher des conditions réelles d'une expérience de SMLM, et ainsi de préparer une validation expérimentale des masques d'extension de la PdC, j'ai ensuite amélioré au Chapitre 5 l'environnement de simulation en prenant en compte un modèle de formation d'image plus réaliste que l'approximation quadratique (AQ) couramment utilisée dans la littérature pour représenter un défaut de mise au point. Pour cela, j'ai utilisé le modèle de Gibson et Lanni [1992] (GL) qui prend en compte de manière plus précise les aberrations optiques provenant de la forte ouverture numérique des objectifs de microscope et de l'écart entre les indices de réfraction du milieu biologique et du milieu d'immersion. L'utilisation de ce modèle a une influence importante sur l'optimisation des masques, mais j'ai pu établir une relation d'équivalence simple entre les masques optimaux obtenus dans le cadre du modèle GL et ceux obtenus à partir du modèle AQ. Ce résultat est important car il permet d'optimiser des masques génériques sans avoir besoin de spécifier de manière très précise les paramètres optiques du microscope.

Pour finir, je me suis intéressé au Chapitre 6 à l'étude de la chaîne de traitement complète des images SMLM afin de déterminer l'influence des masques de phase sur l'étape de détection (pré-localisation des marqueurs fluorescents), qui précède toujours l'étape de localisation sous-pixellique. J'ai tout d'abord construit un nouveau critère basé sur la distance de Bhattacharrya pour déterminer des masques de phase optimisant la probabilité de détection d'un fluorophore dans un volume imagé. Cette étude a révélé que lorsque le bilan photonique est faible, l'usage d'un masque optimal et d'un traitement adapté permet d'améliorer la détection des marqueurs sur une plage de PdC étendue. De plus, j'ai montré que dans cette situation, les masques optimaux pour la détection et pour la localisation sous-pixellique sont similaires. Autrement dit, les masques optimisés à partir de la BCR optimisent à la fois la probabilité de détection et la précision de localisation. Ce résultat établi, à la Section 6.3, peut s'expliquer par la ressemblance des critères d'optimisation sous l'hypothèse d'un bilan photonique faible. Dans les deux cas, les masques optimaux produisent des PSF les plus concentrées possible sur un nombre restreint de pixels pour les extraire du bruit de fond. À l'inverse, si le bilan photonique est important, l'usage d'un masque optimisé pour la détection n'est pas nécessaire et celui optimisé pour la localisation ne dégrade que très peu la probabilité de détection. * * * À l'issue de ces travaux, nous avons donc la capacité d'optimiser des masques d'extension de la PdC dans des conditions réalistes, en tenant compte des paramètres clefs d'une expérience de SMLM, et de prédire les performances de localisation qu'ils peuvent atteindre. Nous savons également comment traiter les images afin de localiser les fluorophores avec la précision prévue par ces modèles. Ces résultats nous permettent de dégager plusieurs perspectives intéressantes.

La première est de valider expérimentalement l'extension de la PdC qu'apporte un masque de phase binaire annulaire en imagerie de molécule unique. Comme nous avons pu le mettre en évidence, tout est prêt pour commencer les expériences. Malgré les contraintes et le retard liés à la crise sanitaire, nous avons déjà amorcé ce travail. Des masques ont été fabriqués par Anne-Lise COUTROT, ingénieure de recherche CNRS au Laboratoire Charles Fabry, au sein des installations de la Plateforme de Technologie Commune à Thales, l'Institut Optique Graduate School et l'École Polytechnique (hébergée par Thales Research & Technology). Ils sont obtenus au moyen d'un procédé classique de lithographie UV / gravure ICP (gravure ionique réactive assistée par couplage inductif ) sur un substrat de silice fondue. Grâce à la collaboration avec l'équipe du LP2N, l'extension de la PdC apportée par ces masques a commencé à être testée sur un Nikon Ti Eclipse (microscope optique inversé) équipé d'un objectif Nikon Plan Apo TIRF ×60 d'ouverture numérique 1, 45 à immersion dans l'huile. L'échantillon analysé est réalisé avec des micro-sphères fluorescentes (des TetraSpeck ™ T7279) sédimentés dans une solution tampon de phosphate salin. Les résultats sont actuellement en cours d'analyse. C'est la raison pour laquelle ces travaux n'ont pas pu être présentés dans ce manuscrit. S'ils sont suffisamment aboutis, ils feront l'objet d'une présentation le jour de ma soutenance.

Une fois que les modèles d'imagerie, la méthode d'optimisation des masques et les performances de localisation ont été validés par l'expérience, il sera possible d'étendre la PdC des expériences de SMLM en s'adaptant aux besoins applicatifs. En effet, ces masques dépendent des exigences spécifiques aux conditions de l'expérience. Leur optimisation est un compromis entre profondeur d'exploration, précision de localisation, 100

7. CONCLUSION GÉNÉRALE ET PERSPECTIVES et bilan photonique -ce dernier étant lié à la fréquence d'imagerie, aux propriétés du fluorophore et aux problèmes de phototoxicité. Nous serons donc en mesure de « dimensionner » un problème d'extension de PdC en SMLM et ainsi de proposer un masque co-conçu adapté à un type d'expérimentation précis pour lequel les performances attendues sont spécifiées. Une perspective également très intéressante est de généraliser la démarche d'extension de la PdC développée dans ce manuscrit à des applications où la position 3D des marqueurs fluorescents est estimée. Pour cela, il faudra prendre en compte la BCR dans les trois dimensions de l'espace pour optimiser les masques et un compromis entre précision de localisation latérale et longitudinale devra être déterminé. Comme les conclusions établies autour du bilan photonique au Chapitre 4, du modèle GL au Chapitre 5 et de l'optimisation des masques pour la détection au Chapitre 6 restent valide, nous disposons de la méthodologie et des outils nécessaires pour explorer cette problématique. D'autres structures de masque devront évidemment être envisagées, car l'orientation ou l'élongation de la PSF doivent varier avec la défocalisation pour pouvoir estimer la profondeur à laquelle se trouve un marqueur. Les masques dont la fonction de phase est décrite par des modes de Laguerre-Gauss (voir les travaux de Piestun et al. [2000]) ont par exemple cette propriété. L'étude de cette structure de masque est donc un bon point de départ pour généraliser la démarche d'extension de la PdC développée dans ce manuscrit à la 3D. , varie plus fortement en fonction de la défocalisation. On distingue deux régimes : l'un entre ψ = -0, 4λ et 0, 4λ où la PSF est étalée ; l'autre (partout ailleurs) où la PSF est concentrée en un seul lobe. Comme nous l'avons expliqué à la section 3.2.2, ces deux régimes conduisent à de bonnes performances de localisation (i.e., à de faibles valeurs de la RBCR).

Pour comparer les performances de localisation de systèmes d'imagerie équipés avec les masques illustrés à la malisées en divisant la RBCR par celle obtenue pour ψ = 0 et ρ = 0 (i.e., sans masque de phase). On constate que les masques optimaux ne conduisent pas aux mêmes performances de localisation. Les masques optimisés avec le critère BCR ont de meilleures performances de localisation que ceux optimisés avec le critère MSE.

B ALGORITHME DE LOCALISATION B.1. EXPRESSION ANALYTIQUE DE LA VARIANCE D'ESTIMATION

On montre qu'il est possible, moyennant quelques approximations, d'obtenir une expression analytique de la variance d'estimation, notée var ψ [ θ], de l'estimateur θ défini à l'Équation (3.17). Pour alléger les notations, on modélise dans cette annexe le problème de localisation de molécule unique, introduit au Chapitre 3, par un modèle continu unidimensionnel. Cependant, les résultats et les conclusions obtenus seront facilement généralisables au problème de localisation 2D.

On suppose que le signal observé s(x) est continu. Son expression est :

s(x) = N 0 h ψ (x -θ 0 ) + n(x) (B.1)
où θ 0 est la position de l'émetteur dans le plan d'imagerie (espace objet), N 0 est le nombre total de photo-électrons attendus sur l'ensemble du signal 1D, n(x) est un bruit blanc gaussien de moyenne nulle et de DSP S nn (ν) = q. La PSF du système d'imagerie, notée h ψ (x), dépend du paramètre de défocalisation ψ défini à l'Équation (3.2). On estime la position θ 0 de l'émetteur dans le plan d'imagerie en maximisant : Pour illustrer les effets de ces deux différences, considérons le rapport de Strehl noté S et défini à l'Équation (5.20). Mahajan [1983] a montré que si la dispersion quadratique σ 2 de l'écart entre la surface d'onde de référence et celle défocalisée n'est pas trop grande, le rapport de Strehl peut être approché par : 

θ = arg max θ R s(x)r (x -θ) dx (B.
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 11 FIGURE 1.1 -Schéma de principe illustrant la PdC d'un système d'imagerie.
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 12 FIGURE 1.2 -Influence de l'ouverture sur la PdC d'un système d'imagerie. (a) Ouverture f /4. Faible PdC : seul le sujet principal est net. (b) Diaphragme fermé à f /8. La PdC est accrue. (c) Diaphragme fermé au maximum. On obtient une grande PdC avec le premier plan, le sujet et l'arrière plan nets. Source : Mode d'emploi du Nikkormat FT2 (p. 20-21)
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 313 FIGURE 1.3 -Construction associée à la définition du paramètre de défocalisation ψ.
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 14 FIGURE 1.4 -Exemple d'un masque de phase binaire à L = 4 anneaux représenté (a) en 3D et (b) en 2D.
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 21 FIGURE 2.1 -(a) Image originale x 0 en niveaux de gris utilisée dans nos simulations, que nous nommerons « Image A ». (b) Deux imagettes avec des variations spatiales très différentes : des détails haute fréquence (A1) et des variations spatiales lisses (A2).
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 22 FIGURE 2.2 -Valeur de la qualité image globale, notée MMSE, en fonction du rayon ρ 1 d'un masque à 2 anneaux pour 3 valeurs de PdC : ψ max ∈ {1λ; 1, 5λ; 2λ}. L'image y est restaurée soit (a) avec le filtre de Wiener, (b) soit avec l'algorithme de déconvolution TV. Valeur de la MMSE en fonction des deux rayons (ρ 1 ; ρ 2 ) d'un masque à 3 anneaux pour ψ max = 2λ. L'algorithme utilisé est soit (c) le filtre de Wiener, soit (d) la déconvolution TV.
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 232425 FIGURE 2.3 -(a) Image originale x 0 en niveaux de gris utilisée dans cette simulation. Valeur de la qualité image globale, notée MMSE, en fonction du rayon ρ 1 d'un masque à 2 anneaux pour 3 valeurs de PdC : ψ max ∈ {1λ; 1, 5λ; 2λ}. L'image y est restaurée soit (b) avec le filtre de Wiener, (c) soit avec l'algorithme de déconvolution TV. Valeur de la MMSE en fonction des deux rayons (ρ 1 ; ρ 2 ) d'un masque à 3 anneaux pour ψ max = 2λ. L'algorithme utilisé est soit (d) le filtre de Wiener, soit (e) la déconvolution TV.
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 26 FIGURE 2.6 -Évolution du profil de la PSF en fonction du paramètre de défocalisation ψ pour (a) un système optique standard sans masque ou (b) un système optique co-conçu utilisant un masque de phase binaire à 3 anneaux optimisé pour une PdC de ψ max = 1λ.
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 2 FIGURE 2.7 -Valeurs de la (a) RMSE, de (b) la norme L1, et du (c) DSSIM calculée sur l'image A, A1, A2 de la Figure 2.1, où l'image A est restaurée avec le filtre de Wiener ou la déconvolution TV. Paramètres de simulation : RSB = 34 dB, ψ = 0, 75λ, ψ max = 1λ, µ = 8, 5625.10 -5 et ρ = (0, 75; 0, 9) (masque à 3 anneaux optimal)

FIGURE 2 .

 2 FIGURE 2.8 -Première rangée, de gauche à droite : image A idéalement nette du Papillon, image acquise convoluée et bruitée, image déconvoluée avec filtre de Wiener, image restaurée avec l'algorithme de déconvolution TV. Deuxième rangée : même description pour l'imagette A1 de la Figure 2.1. Troisième rangée : même description pour l'imagette A2. La valeur de la RMSE est affichée sur les images déconvoluées. Paramètres de simulation : RSB = 34 dB, ψ = 0, 75λ, ψ max = 1λ, µ = 8, 5625.10 -5 et ρ = (0, 75; 0, 9) (masque à 3 anneaux optimal).

FIGURE 3 .

 3 FIGURE 3.1 -L'échelle du vivant. La diffraction limite le pouvoir de résolution des microscopes optiques. C'est pourquoi les virus, les macro-molécules et autres composants nanométriques ne sont pas directement observables avec cette technique d'imagerie. Vers la fin du XIXe siècle, Abbe [1873] et Rayleigh [1896] formulent ce que l'on appelle communément aujourd'hui la « limite de diffraction » pour la microscopie.
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 32 FIGURE 3.2 -Schéma de principe de la microscope PALM. (a) Une impulsion lumineuse active aléatoirement une partie des marqueurs fluorescents fixés à l'objet d'intérêt (ici la membrane d'une bactérie). La distance entre les marqueurs activés est supérieure (en moyenne) à la limite de diffraction. (b) L'image de chaque marqueur est une tache dont on estime la position avec une très grande précision. (c) L'ensemble des positions estimées est concaténé pour obtenir une image en haute résolution de l'objet d'intérêt. Source des images PALM : Antony Lee, University of California, Berkeley.

. 2 )

 2 avec z p la position longitudinale du marqueur fluorescent et z focus = z o la position longitudinale nominale pour laquelle le système d'imagerie est focalisé. Si l'émetteur est dans le plan d'imagerie, alors z p = z focus et ψ = 0. L'erreur de front d'onde définie à l'Équation (1.6) disparaît et la PSF est décrite par la tache d'Airy :

3 .

 3 Je reviendrai en détails sur ce point au Chapitre 5.
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 33 FIGURE 3.3 -PSF de l'objectif du microscope simulée, telle que : ψ = ±0, 4λ, N 0 = 500 photo-électrons (ph.), et σ 2 n = 6 ph. 2 /pixel. Les autres paramètres de simulation sont définis dans le Tableau 3.1. (a) Éclairement dans le plan image d'un émetteur centré sur la position θ 0 (voir Équation (3.1)). (b) Nombre de photo-électrons attendus sur la grille de pixels du capteur (voir Équation (3.5)). (c) Nombre s i j de photo-électrons mesurés sur la grille de pixels du capteur.

  y, θ) dx dy(3.5) où ∆ x y correspond à la largeur d'un pixel. Nous avons remplacé la dépendance de la PSF en la coordonnée z p , définie à l'Équation(3.1), par le paramètre de défocalisation ψ. Dans toute la suite, on supposera que le facteur de remplissage des pixels est de 100%.Afin d'illustrer l'image d'un fluorophore -situé en dehors du plan focal -formée par un microscope optique tel que ψ = ±0, 4λ, nous avons représenté : à laFigure 3.3(a), la PSF continue f ψ (x, y, θ) de l'objectif du microscope décrite par l'Équation(3.1) ; à la

Figure 3 .

 3 Figure 3.3(b), sa version pixélisée µ ψ,θ i j décrite par l'Équation(3.5) ; et à laFigure 3.3(c) sa version pixélisée et bruitée s i j où la distribution statistique est définie à l'Équation(3.4). Les paramètres de simulations sont définis dans le Tableau 3.1.À cette étape du manuscrit et pour des raisons de simplicité, nous ne prenons pas en compte un bruit de grenaille lié au caractère aléatoire d'une émission de photons
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 34 FIGURE 3.4 -Positions particulières de la PSF pour lesquelles RBCR x = RBCR y : (a) le centre d'un pixel ou (b) l'un des coins. La simulation est réalisée avec une tache d'Airy et les paramètres définis dans le Tableau 3.1
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 1 Figure 3.5(a) la variation du profil de la PSF en fonction du paramètre de défocalisation ψ (exprimé en fraction de la longueur d'onde d'émission λ), pour la configuration de microscope décrite dans le Tableau 3.1. Puisque la PSF est à symétrie de révolution, une section transversale le long d'un axe passant par son centre est suffisante pour représenter l'ensemble de ses propriétés. Nous remarquons que plus le paramètre de défocalisation ψ est grand, plus la PSF s'étale et son Configuration du microscope et paramètres de simulation utilisés dans ce chapitre.
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 35 FIGURE 3.5 -Variation du profil de la PSF en fonction du paramètre de défocalisation ψ (exprimé en fraction de la longueur d'onde λ d'émission), pour la configuration décrite dans le Tableau 3.1. (a) Système optique limité par la diffraction et muni d'une ouverture circulaire. (b) Même système optique doté d'un masque de phase binaire annulaire, tel que ρ 1 = 0, 59. (c) Variation de la RBCR normalisée de ces deux systèmes optiques en fonction du paramètre de défocalisation ψ.
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 36 FIGURE 3.6 -Schéma de principe d'un microscope dont la PdC a été étendue en plaçant un masque de phase optimisé dans le diaphragme d'ouverture de son objectif. Nous optimiserons, dans ce manuscrit, des masques de phase binaires annulaires.

FIGURE 3

 3 FIGURE 3.7 -Paysage d'optimisation (i.e., valeurs du critère J (ρ)) pour (a) un masque à 2 anneaux tel que ψ max = {1λ, 2λ, 3λ} ou (b) un masque à 3 anneaux tel que ψ max = 2, 5λ. La croix blanche correspond au minimum global du critère. Les paramètres de simulation sont définis dans le Tableau 3.1.

FIGURE 3 .

 3 FIGURE 3.8 -(a) Performance de localisation des masques de phase binaire annulaires optimaux (définie à l'Équation (3.11)) en fonction du nombre d'anneaux pour différentes PdC telle que ψ max ∈ {1λ; 1, 5λ; 2λ; 2, 5λ; 3λ}. (b) Profils des masques optimaux pour ψ max = 3λ et différents nombres d'anneaux. Les paramètres de simulation sont définis dans le Tableau 3.1.

  RÉFÉRENCE GLOBALENotons ψ 0 le défaut de mise au point de l'image acquise (s i j ) d'un fluorophore défocalisé par l'objectif du microscope. Lorsque ce paramètre est connu, l'estimateur du MV 3. CO-CONCEPTION POUR LA LOCALISATION DE MOLÉCULES UNIQUES peut être approximé par un produit de corrélation : paramètre vrai ψ 0 est nécessaire pour calculer le nombre de photoélectrons µ ψ 0 ,θ i j attendu au pixel (i , j ). En pratique, nous ne connaissons pas la valeur vraie de ce paramètre. Une solution simple est d'estimer conjointement θ et ψ. Cette approche est cependant très coûteuse d'un point de vue calculatoire et seule l'estimation des coordonnées θ nous intéresse. Un moyen de contourner cette difficulté est donc d'intégrer le paramètre ψ au problème. Cela revient à remplacer la variable µ ψ 0 ,θ i j dans l'Équation(3.16) par une référence invariante à la défocalisation, et donc indépendante du paramètre ψ 0 . Cette référence, appelée noyau de corrélation et notée r i j (θ), permet de définir l'estimateur de la position transverse suivant :

FIGURE 3 .

 3 FIGURE 3.10 -(a) Comparaison entre l'écart-type empirique de l'estimateur, défini à l'Équation (3.17), avec la RBCR en fonction du paramètre de défocalisation ψ. (b) Noyau de corrélation optimal qui maximise k (var ψ k [ θ]) -1 pour ψ k ∈ [0; 1λ] avec un pas de 0, 2λ. Le nombre attendu de photo-électrons, sur la grille de pixels du capteur, est représenté pour (c) ψ = 0λ et (d) ψ = 0, 7λ. Le système optique est simulé avec les paramètres suivants : N 0 = 500 photo-électrons (ph.), σ 2 n = 6 ph. 2 /pixel et ρ 1 = 0, 59. Les autres paramètres de simulation sont définis dans le Tableau 3.1.

FIGURE 3 .

 3 FIGURE 3.11 -(a) Comparaison entre l'écart-type empirique de l'estimateur, défini à l'Équation (3.17), avec la RBCR en fonction du paramètre de défocalisation ψ. Sur la partie droite sont illustrés les noyaux de corrélation optimaux qui maximisent k (var ψ k [ θ]) -1 pour (b) ψ k ∈ [0; 0, 2λ], (c) ψ k ∈ [0, 2λ; 0, 35λ], (d) ψ k ∈ [0, 35λ; 0, 5λ], (e) ψ k ∈ [0, 5λ; 1λ]. Pour chacun de ces intervalles, K = 6. Le système optique est simulé avec les paramètres suivants : N 0 = 500 photo-électrons (ph.), σ 2 n = 6 ph. 2 /pixel et ρ 1 = 0, 59. Les autres paramètres de simulation sont définis dans le Tableau 3.1.

FIGURE 3 .

 3 FIGURE 3.12 -Comparaison entre l'écart-type empirique de l'estimateur, défini à l'Équation (3.17), avec la RBCR en fonction du paramètre de défocalisation ψ pour (a) ψ max = 1, 5λ avec ρ = (0, 4709; 0, 6782) et pour (b) ψ max = 2λ avec ρ = (0, 7436; 0, 8974). Le système optique est simulé avec les paramètres suivants : N 0 = 500 photo-électrons (ph.) et σ 2 n = 6 ph. 2 /pixel. Les autres paramètres de simulation sont définis dans le Tableau 3.1.

  avec chacun des masques pour différentes PdC désirées, à savoir ψ max ∈ [0, 1λ]. La Figure 3.13(c) représente la valeur du (a) Masque IPP (b) Masque binaire

FIGURE 3 .

 3 FIGURE 3.13 -Profil générique (a) du masque de phase binaire annulaire et (b) du masque IPP (proposé par Abrahamsson et al. [2006]). (c) Performance de localisation des masques J (ρ opt ) en fonction de la PdC ψ max désirée. Les paramètres de simulation sont définis dans le Tableau 3.1.
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 44 INFLUENCE DU MODÈLE DE BRUIT

  définir une autre expression du RSB égale à N 0 / b. L'expression du RSB est différente puisque le bruit provient d'une source différente. On note que l'expression de la RBCR B est la même qu'à l'Équation (3.7) avec σ n = b. Le Scénario B correspond alors à celui utilisé au Chapitre 3.

  Figure 4.1(a)). Afin de mieux visualiser le paysage d'optimisation et son évolution en fonction du bilan photonique, la Figure 4.1(b) représente le critère J (ρ 1 ) normalisé en fonction de ρ 1 pour les Scénarios A, B (en trait plein) et différentes valeurs de N 0 /b (en pointillés). On remarque que ce paysage évolue continûment du Scénario B vers le Scénario A à mesure que le bilan photonique augmente. Notons par ailleurs que plus N 0 /b est grand, plus le paysage d'optimisation est plat, et les minima locaux principaux proches des uns des autres. L'effet de cet aplatissement sera discuté ultérieurement.Les premières conclusions liées à ces résultats sont que le Scénario B est suffisant pour caractériser les applications où le bilan photonique est faible : dans cet exemple N 0 /b doit être inférieur à 85. À l'inverse le Scénario A caractérise les applications où le bilan photonique est grand : N 0 /b doit être supérieur à 85. Notons cependant que la convergence du paysage d'optimisation J (ρ 1 ) (en pointillés) vers celui du Scénario A (en

FIGURE 4 . 1 -

 41 FIGURE 4.1 -Paysage d'optimisation (i.e., valeurs du critère J (ρ 1 ) normalisé) pour un masque à 2 anneaux tel que ψ max = 1λ (a) tracé en fonction de ρ 1 et du bilan photonique N 0 /b et (b) tracé en fonction de ρ 1 pour quelques valeurs de N 0 /b. La ligne blanche représente le rayon du masque optimal ρ opt en fonction du bilan photonique (elle correspond donc au minimum global du critère). Les paramètres de simulations utilisés sont : θ 0 = (0; 0) µm ∆ x y = 10 µm, 2P + 1 = 21 pixels, NA = 1, 3, λ = 700 nm, M = 60 (grandissement).

  Figure 4.2(c). On remarque que pour N 0 /b < 85 et ψ max = 1λ, les masques optimaux sont inchangés et correspondent à ceux de la Figure 4.1(a) : ils n'ont que 2 anneaux, ce qui signifie que même si on autorise un nombre d'anneaux supérieur, l'optimum reste un masque à 2 anneaux. À l'inverse, pour N 0 /b > 85, les masques optimaux sont différents : on constate que l'optimisation converge vers des structures annulaires différentes composées de L = 3 ou 4 anneaux. Sur la Figure 4.2(c), on a représenté les performances de ces masques (points bleus) ainsi que celles des masques à L = 2 anneaux (en trait plein noir) : on constate qu'elles sont légèrement supérieures. Considérons à présent une plus grande plage de PdC. Les performances des masques sont illustrées à la Figure 4.2(c) (croix rouges). La Figure 4.2(b) représente les paramètres optimaux des masques optimisés pour une plage de PdC telle que ψ max = 1, 5λ en fonc-
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 42 FIGURE 4.2 -Rayons optimaux des masques de phase binaires optimisés sur une plage de PdC telle que (a) ψ max = 1λ et (b) ψ max = 1, 5λ en fonction du bilan photonique N 0 /b. (c) Performances de ces masques. Les paramètres de simulation sont ceux de la Figure 4.1.

  Par ailleurs, rappelons qu'au Chapitre 3, nous avions considéré N 0 = 500 et b = σ 2 n = 6, ce qui correspond à N 0 /b 14. D'après les résultats que nous venons d'établir, il était donc légitime d'utiliser, comme nous l'avons fait, un modèle de bruit additif gaussien. En effet, ce modèle conduit à une RBCR proportionnelle à celle du Scénario B et donc à 58 4. INFLUENCE DU MODÈLE DE BRUIT des masques optimaux identiques.

  (a) et (b), pour le Scénario A (ronds noirs) et le Scénario B (croix rouges). Ces valeurs sont tracées en fonction de la RBCR. La RBCR des Équations (4.4) et (4.5) est inversement proportionnelle au RSB, les valeurs du RSB sont donc grandes lorsque celles de la RBCR sont petites et décroissent à mesure que la RBCR augmente. Les paramètres optiques pris en compte dans cette simulation sont typiques des configurations de SMLM standard : ∆ x y = 10 µm ; NA = 1, 3 ; λ = 700 nm et M = 60 (grandissement).

Figure 4 .

 4 4 les valeurs de nBias et nSTD pour cette configuration. Les réalisations de bruit ne sont pas les mêmes que celles utilisées à la Figure 4.3. On remarque que les graphes sont très similaires à ceux présentés à la Figure 4.3. En particulier, l'estimateur du MV est efficace lorsque RBCR < 20 nm.
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 43 FIGURE 4.3 -Caractérisation de l'estimateur du MV lorsque l'émetteur fluorescent est focalisé et situé au centre d'un pixel. (a) Biais normalisé (nBias) et (b) écart-type normalisé (nSTD) sont tracés en fonction de la RBCR pour les Scénarios A (en points noirs) et B (en croix rouges). Les paramètres de simulation sont ceux de la Figure 4.1.

  et 4.4 peuvent être utilisées comme des abaques. En effet, pour une application donnée, quel que soit le type de bruit, la valeur du RSB et des autres paramètres optiques, la RBCR peut être calculée en utilisant l'Équation (4.2). Si elle est inférieure à 20 nm, elle peut être considérée comme une évaluation correcte de la précision de localisation pouvant être atteinte en pratique avec l'estimateur du MV. Si elle est plus grande, ce n'est plus le cas et l'erreur d'estimation réelle est fournie par les Figures 4.3

  et 4.4. 
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 4445 FIGURE 4.4 -Caractérisation de l'estimateur du MV lorsque l'émetteur fluorescent est focalisé et situé sur l'un des coins d'un pixel. (a) Biais normalisé (nBias) et (b) écart-type normalisé (nSTD) sont tracés en fonction de la RBCR pour les Scénarios A (en points noirs) et B (en croix rouges). Les paramètres de simulation sont ceux de la Figure 4.1 excepté θ 0 = (5; 5) µm.

FIGURE 4 . 6 - 4

 464 FIGURE 4.6 -Caractérisation de l'estimateur du MV défini à l'Équation (4.9). (a) Biais (nBias) et (b) écart-type (nSTD) sont tracés en fonction de la RBCR pour le Scénario A avec ψ max = {1λ; 1, 5λ; 2λ}. Les émetteurs sont soit dans le plan d'imagerie (i.e., ψ = 0), soit en dehors (i.e., ψ = 0). Les paramètres de simulation sont ceux de la Figure 4.1.

  (a-b) pour le Scénario A et 4.7(a-b) pour le Scénario B. Les courbes obtenues sans masque de phase pour un émetteur situé dans le plan focal (i.e., ψ = 0) ont été ajoutées comme références. Elles correspondent à celles illustrées en Figure 4.3.Les courbes obtenues sans masque pour un émetteur défocalisé -tel que ψ = 0, 5λ lorsque θ 0 est estimé avec l'estimateur du MV de l'Équation (4.6) -ont aussi été ajoutées. On observe que quels que soient le masque et la PdC considérés, l'estimateur du MV est sans biais et son écart-type atteint la RBCR lorsque RBCR ≤ 20 nm. Le domaine dans lequel l'estimateur du MV atteint la RBCR est donc comparable pour les configurations sans et avec masque, bien que dans ce dernier cas, la mise en oeuvre de l'estimateur est plus complexe car elle nécessite l'estimation conjointe de la position transverse θ et de l'intervalle m (voir l'Équation (4.9)).

1 -

 1 Masques de phase binaires annulaires de modulation π radians qui optimisent la RBCR dans le Scénario A ou le Scénario B sur une plage de PdC telle que ψ max = {1λ; 1, 5λ; 2λ}. Les paramètres de simulation sont ceux de la Figure 4.1.
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 47 FIGURE 4.7 -Caractérisation de l'estimateur du MV défini à l'Équation (4.9). (a) Biais (nBias) et (b) écart-type (nSTD) sont tracés en fonction de la RBCR pour le Scénario B avec ψ max = {1λ; 1, 5λ; 2λ}. Les émetteurs sont soit dans le plan d'imagerie (i.e., ψ = 0), soit en dehors (i.e., ψ = 0). Les paramètres de simulation sont ceux de la Figure 4.1.

FIGURE 4 .

 4 FIGURE 4.8 -Histogrammes de (E[ θ] -θ 0 )/ RBCR en fonction de la RBCR lorsque (a) ψ max = 1λ, ψ = 0, 2λ avec le Scénario A et (b) ψ max = 1, 5λ, ψ = 0, 4λ avec le Scénario B. Les paramètres de simulation sont ceux de la Figure 4.1.

FIGURE 4 .

 4 FIGURE 4.9 -Comparaison et caractérisation des estimateurs du MV, lorsque ψ max = 1, 5λ et ψ = 0, 55λ. Le (a) biais et (b) l'écart-type sont tracés en fonction de la RBCR. L'estimateur du MV défini à l'Équation (4.9) est mise en oeuvre soit en estimant conjointement le noyau de corrélation (marqueurs triangulaires jaunes), soit en le sélectionnant manuellement (marqueurs en croix rouges), soit en utilisant la vraie PSF (marqueurs circulaires bleus). Les paramètres de simulation sont ceux de la Figure 4.1.
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 51 FIGURE 5.1 -Modèles les plus connus pour décrire la formation d'une image par un système optique en fonction de leur degré de précision ou d'approximation. Cette figure s'inspire de celle présentée dans les travaux de thèse d'Aguet [2009].

3 )

 3 où NA désigne l'ouverture numérique objet de l'objectif de microscope, n s l'indice de réfraction de l'échantillon biologique, z p la position longitudinale du marqueur fluorescent et z focus la position longitudinale du plan focal (i.e., plan de mise au point). Cette approximation, souvent utilisée en microscopie, permet de décrire l'image d'un fluorophore en dehors du plan focal, mais elle n'est valide que pour des systèmes optiques à ouverture faible ou modérée. D'autre part, les indices de réfraction de l'échantillon et du 5. INFLUENCE DU MODÈLE D'IMAGERIE milieu d'immersion sont supposés égaux.

FIGURE 5 . 2 -

 52 FIGURE 5.2 -Construction associé à la définition du paramètre d . La position longitudinale du plan focal, notée z focus , est ajusté en diminuant la distance entre l'objectif et la lamelle. La configuration nominale est telle que z focus = 0. Pour obtenir z focus > 0, il est nécessaire de s'écarter de cette configuration. Le paramètre d ≥ 0 caractérise cet écart.

Figure 5 .

 5 3(a) représente le paramètre de défocalisation ψ exprimé en unités de longueur d'onde λ de la lumière collectée, le graphique étant tracé pour ψ ∈ [-1, 5λ; 1, 5λ]. L'axe vertical à droite représente la position longitudinale z p de l'émetteur. La relation entre ψ et z p est celle exprimée à l'Équation (3.2) avec z focus = z opt focus . On retrouve les résultats décrits au Chapitre 3, à savoir que plus l'émetteur est éloigné du plan focal (i.e., plus |ψ| est grand), plus la PSF s'étale et son lobe principal s'atténue. Cela limite considérablement la précision de localisation des émetteurs fluorescents éloignés du plan focal.
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 53 FIGURE 5.3 -Variation du profil de la PSF, simulée avec le modèle AQ, en fonction du paramètre de défocalisation ψ ∈ [-1, 5λ; 1, 5λ] ou de la position longitudinale de l'émetteur z p (a) pour un système d'ouverture circulaire limité uniquement par la diffraction, (b) pour le même système optique utilisant un masque de phase binaire annulaire optimisé tel que ψ max = 1, 5λ. (c) Variations de la RBCR sans masque de phase (en trait plein bleu) et avec (en tirets rouges). La configuration du microscope et les paramètres de simulation utilisés sont définis dans le Tableau 5.1 (avec n i = n s = 1, 33).

  .14) 5. INFLUENCE DU MODÈLE D'IMAGERIE En utilisant l'Équation (5.10), on montre que l'Équation (5.14) conduit à : focal correspond cette valeur optimale de d = d opt . Par définition, la position du plan focal correspond à la valeur de z p pour laquelle la dispersion quadratique est minimale. Ainsi, la relation liant d opt à z
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 54 FIGURE 5.4 -Variation du profil de la PSF en fonction du paramètre de défocalisation ψ, de la position longitudinale z p de l'émetteur ou du paramètre équivalent ψ * respectivement simulée (a) avec le modèle AQ, (b) avec le modèle GL (n i = n s = 1, 33) et (c) avec le modèle AQ mis à l'échelle. La Figure 5.3(a) est reproduite à gauche pour faciliter la comparaison. (d) Variation du rapport de Strehl associé aux PSF illustrées. La configuration du microscope et les paramètres de simulation sont définis dans le Tableau 5.1.
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 55 FIGURE 5.5 -Variation du profil de la PSF en fonction de la position longitudinale z p ou du paramètre équivalent ψ * respectivement simulée (a) avec le modèle GL (n i = 1, 52 et n s = 1, 33) et (b) avec le modèle AQ mis à l'échelle multiplié par le facteur de correction β. (c) Variation du rapport de Strehl associée aux PSF illustrées. La configuration du miscroscope et les paramètres de simulations sont définis dans le Tableau 5.1.

Figure 5 .

 5 5(b) la variation du profil de la PSF obtenue avec le modèle AQ en fonction du paramètre équivalent ψ * et multipliée par le facteur de correction β, égal à β = 0, 89 dans notre cas. Nous avons également tracé à la Figure 5.5(c) la valeur correspondante du rapport de Strehl multipliée par β (en tirets rouges). Nous constatons que les variations de la PSF et du rapport de Strehl multipliés par β sont quasi-identiques à celles obtenues avec le modèle GL, hormis cette légère dissymétrie de part et d'autre du plan focal. Si l'on évalue l'Équation (5.21) en z max (ou z min ), la plage de PdC définie par l'intervalle [z min , z max ] du modèle GL correspond donc à la plage [-ψ * max , peut noter que cette expression ne dépend pas de l'indice de réfraction n i du milieu d'immersion. Cela signifie que la dilatation longitudinale observée entre les modèles AQ et GL aux Figures 5.5(a-b) provient de la forte ouverture numérique et de l'indice de 79 réfraction n s et non de l'écart entre les indices de réfraction du milieu d'immersion et de l'échantillon. Cet écart explique en revanche l'atténuation du rapport de Strehl dans le plan focal et la dissymétrie de la PSF par rapport à celui-ci.
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 54 Le microscope optique simulé est équipé d'un masque de phase, n i = 1, 52 et n s = 1, 33. Le masque utilisé est celui optimisé pour ψ max = 1, 5λ avec le Scénario A. Il est illustré dans le Tableau 4.1 (première ligne et deuxième colonne). Nous pouvons dresser les mêmes conclusions : la principale différence entre les Figures 5.6(a) (modèle AQ) et 5.6(b) (modèle GL) est une « contraction » de l'axe longitudinal. La Figure 5.6(c) représente la variation du profil de la PSF obtenue avec le modèle AQ en fonction du paramètre équivalent ψ * défini à l'Équation (5.21), et la Figure 5.6(d) représente les variations du rapport de Strehl pour les configurations illustrées aux Figures 5.6(a
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 56 FIGURE 5.6 -Variation du profil de la PSF en fonction du paramètre de défocalisation ψ, de la position longitudinale z p de l'émetteur ou du paramètre équivalent ψ * respectivement simulée (a) avec le modèle AQ, (b) avec le modèle GL (n i = 1, 52 et n s = 1, 33) et (c) avec le modèle AQ mis à l'échelle. (d) Variation du rapport de Strehl associée aux PSF illustrées. Le microscope est équipé du masque de phase illustré dans le Tableau 4.1 (première ligne, deuxième colonne). Sa configuration et les paramètres de simulation sont définis dans le Tableau 5.1.

FIGURE 5 .

 5 FIGURE 5.7 -Paysage d'optimisation des masques de phase binaires à 2 anneaux optimisés pour ψ max = 1λ. La configuration du microscope et les paramètres de simulation utilisés sont définis dans le Tableau 5.1.

  .

  5. INFLUENCE DU MODÈLE D'IMAGERIE et correspond par exemple en ordre de grandeur à l'écart entre les deux minima locaux principaux du paysage d'optimisation représenté à la Figure 4.1(b).

TABLEAU 5 . 2 -

 52 Masques de phase binaires optimisés à l'aide des critères définis à l'Équation(5.24). Les configurations du microscope et les paramètres de simulation utilisés sont décrits dans le Tableau 5.1.
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 611 FIGURE 6.1 -(a-d) Simulations d'imagettes s vérifiant l'Hypothèse H0 ou H1 pour des microscopes optiques sans masque de phase et pour plusieurs valeurs du paramètre de défocalisation ψ. (e) Histogramme de la valeur du pixel central (i , j ) = (4, 4) réalisé sur 8 000 réalisations de bruit. La configuration du microscope et les paramètres de simulation utilisés sont définis dans le Tableau 5.1.
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 62 FIGURE 6.2 -Valeur optimale du paramètre γ, qui maximise la somme des distances de Chernoff définies à l'Équation (6.7). Cette valeur est tracée en fonction du paramètre de défocalisation ψ pour différentes valeurs du vecteur de paramètres ρ. La configuration du microscope et les paramètres de simulation sont donnés dans le Tableau 5.1.
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 63 FIGURE 6.3 -Évolution de la distance de Bhattacharyya pour un système optique sans masque de phase en fonction du paramètre de défocalisation ψ. La configuration du microscope et les paramètres de simulation utilisés sont définis dans le Tableau 5.1.
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 6 4(b) que les masques optimisés sur la plage N 0 /b ∈ [8; 500] varient de moins en moins en fonction du bilan photonique lorsque ψ max augmente. Ce résultat s'explique par une conjecture établie au Chapitre 4 : pour une même valeur de N 0 /b, la PSF se noie dans le bruit de fond à mesure que ψ max augmente. On a alors N 0 µ ψ,θ 0 i j b (hypothèse du Scénario B) et la distance de Bhattacharyya B a pour 6vecteur de paramètres ρ opt du masque optimal qui minimise le critère J det (ρ) ne dépend plus du bilan photonique N 0 /b. Les masques optimisés sur la plage N 0 /b ∈ [8; 500] et illustrés à la Figure6.4(a) varient donc de moins en moins lorsque ψ max augmente.
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 65 FIGURE 6.5 -Paysages d'optimisation d'un masque de phase binaire à 2 anneaux pour la détection (en trait plein bleu) et la localisation (en trait pointillé rouge) lorsque ψ max = 1λ. Les valeurs du critère J det (ρ) défini à l'Équation (6.10) et du critère J (ρ) défini à l'Équation (3.10) sont normalisées en les divisant respectivement par J det (0) et RBCR(0, 0). Les paramètres de simulation sont donnés dans le Tableau 5.1 avec b = 30 ph.e -.

  et 6.6 le paysage d'optimisation des fonctions de coût J det (ρ) et J (ρ) respectivement définies aux Équations (6.10) et(3.10) en fonction du vecteur de paramètres ρ du masque. Les conditions expérimentales utilisées pour la simulation sont celles décrites au Tableau 5.1 avec b = 30 ph.e -, soit N 0 /b = 16, 7. Comme nous l'avons évoqué plus haut, les masques optimaux, obtenus avec ψ max ∈ {1λ; 1, 5λ} et N 0 µ ψ,θ 0 i j b (hypothèse du Scénario B), sont composés aux plus de 3 anneaux. Une représentation graphique en 2D du paysage d'optimisation est donc possible. La Figure 6.5 représente les paysages d'optimisation pour la détection (en trait plein bleu) et pour la localisation (en trait pointillé rouge) d'un masque binaire composé de 2 anneaux défini par son rayon ρ 1 , pour ψ max = 1λ et N 0 /b = 16, 7. On remarque que ces deux paysages d'optimisation ont des reliefs similaires et atteignent leurs extremums locaux pour la même valeur de paramètre ρ 1 . Pour ψ max = 1, 5λ et N 0 /b = 16, 7, nous avons représenté à la Figure 6.6(a) le paysage d'optimisation pour la détection d'un masque binaire composé de 2 anneaux défini par ses rayons (ρ 1 ; ρ 2 ) et à la Figure 6.6(b) le paysage d'optimisation pour la localisation. On remarque à nouveau que ces deux paysages d'optimisation ont des reliefs similaires dont l'extremum est signalé d'une croix blanche.
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 66 FIGURE 6.6 -Paysages d'optimisation d'un masque de phase binaire à 3 anneaux pour (a) la détection et (b) la localisation lorsque ψ max = 1, 5λ. Les valeurs du critère J det (ρ) défini à l'Équation (6.10) et du critère J (ρ) défini à l'Équation (3.10) sont normalisées en les divisant respectivement par J det (0) et RBCR(0, 0). La croix blanche correspond au minimum global du critère. Les paramètres de simulation sont donnés dans le Tableau 5.1 avec b = 30 ph.e -.

  et 4.7 du Chapitre 4 peuvent être utilisées comme des abaques pour caractériser l'écart entre les performances des estimateurs et la BCR.

  Le critère MSE, présenté au Chapitre 2 et défini à l'Équation(2.4), permet d'optimiser des masques de phase placés dans la pupille d'un système d'imagerie dont le produit final est une image restaurée à l'aide d'un algorithme de déconvolution. Le critère BCR, présenté au Chapitre 3 et défini à l'Équation (3.10), permet d'optimiser des masques de phase placés dans la pupille d'un microscope optique mais dont l'image acquise permet, cette fois-ci, d'estimer la position transverse d'un fluorophore. Ces critères sont différents et conduisent à des masques différents. Pour l'illustrer, nous comparons dans cette annexe deux masques de phase binaires annulaires optimisés pour ψ max = 1λ : l'un avec le critère MSE représenté à la Figure A.1(a) ; l'autre avec le critère BCR représenté à la Figure A.1(b). Nous montrerons qu'ils ne conduisent pas aux mêmes performances de localisation. Les Figures A.2(a-b) représentent l'évolution du profil de la PSF d'un système d'imagerie, équipé avec les masques de phase illustrés à la Figure A.1, en fonction du paramètre de défocalisation ψ. On constate que l'évolution de ces profils sont bien différents. Le premier, obtenu avec un masque optimisé à l'aide du critère MSE (voir la Figure A.2(a)), est lisse, presque invariant à la défocalisation. Ce résultat, mis en évidence au Chapitre 2, est une propriété essentielle que doit avoir la PSF pour garantir une bonne restauration de l'image par un algorithme utilisant un noyau unique de déconvolution. A contrario, le second profil, obtenu avec un masque optimisé à l'aide du critère BCR (voir la Figure A.2(b))
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 1 FIGURE A.1 -Masques de phase binaires annulaires optimisés pour ψ max = 1λ (a) en imagerie classique (critère basé sur le MSE) et (b) en microscopie de localisation (critère basé sur la BCR).
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 2 FIGURE A.2 -Variation du profil de la PSF en fonction du paramètre de défocalisation ψ, pour la configuration décrite dans le Tableau 3.1. (a) Système optique doté du masque de phase binaire annulaire illustré à la Figure A.1(a). (b) Le même système optique mais utilisant le masque illustré à la Figure A.1(b). (c) Variation de la RBCR normalisée de ces deux systèmes optiques en fonction du paramètre de défocalisation ψ.
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 2221 où r (x) est un noyau de corrélation supposé invariant à la défocalisation.Pour quantifier la performance de cet estimateur, nous calculons son biais et sa variance. En utilisant l'Équation (B.1), l'estimateur peut s'écrire :θ = arg max θ N 0 Ω(θ) + n (θ) (B.3)où Ω(θ) = R h ψ (x -θ 0 )r (x -θ) dx est un produit de corrélation et n (θ) = R n(x)r (xθ) dx un bruit filtré. Avec un développement limité au second ordre de Ω(θ) lorsque θ est proche de la vraie valeur θ 0 (i.e., lorsque la variance d'estimation est faible), on obtient :Ω(θ) Ω(θ 0 ) + (θ -θ 0 ) Équations (B.3) et (B.4) et le fait que la fonction de corrélation Ω(θ) atteint son maximum pour θ = θ 0 , on montre que : θ = θ 0θ de l'émetteur est donc une variable aléatoire fluctuant autour de θ 0 . En utilisant le théorème de dérivation sous le signe somme, on obtient : défini à l'Équation (B.6) est de moyenne nulle, l'estimateur θ est donc sans biais. De plus, la DSP du bruit filtré n (θ) est par définition égale à |i 2πν r (ν)| 2 S nn (ν) où S nn (ν) = q est constant car le bruit est blanc et le symbole ∼ désigne la transformée de Fourier. Cela conduit à part, on sait que la transformée de Fourier de ∂ 2 Ω(θ) ∂θ 2 est égale à :TF 1D ∂ 2 Ω(θ) ∂θ 2 (ν) = (i 2πν) 2 TF 1D h ψ (x -θ 0 ) * (ν) r (ν) (B.8)où l'opérateur TF 1D désigne la transformée de Fourier 1D et l'exposant * désigne le complexe conjugué. En écrivant explicitement sa transformée de Fourier inverse, on obtient : tenant compte des simplifications précédentes, nous obtenons l'expression analytique suivante de l'approximation de la variance var ψ [ θ] pour une valeur donnée du paramètre de défocalisation ψ :var ψ [ θNOYAU DE CORRÉLATION OPTIMALOn détermine dans cette annexe l'expression du noyau de corrélation optimal de l'Équation (B.2), noté r (x), qui minimise la variance d'estimation var ψ [ θ] définie à l'Équation (B.11). Considérons un ensemble discret de valeurs ψ k , tel que k ∈ {1, 2, • • • , K }, le noyau de corrélation optimal est alors défini comme celui qui maximise : bien qu'arbitraire -a l'avantage d'avoir une forme analytique simple, et lemaximiser revient à maximiser la fonction k R ν 2 h * ψ k (ν) r (ν) dν 2 sous contrainte que R ν 2 | r (ν)| 2 dν = A avec A une constante.Le lagrangien associé à ce problème a pour expression :L ( r , λ) = | r (ν)| 2 dν -A (B.13)avec λ un multiplicateur de Lagrange. En annulant ses dérivées partielles par rapport à r et λ, on montre que la transformée de Fourier du noyau r (x) est une combinaison linéaire des fonctions hψ k (ν), i.e.,r (ν) = K k=1 α k hψ k (ν) avec α k = R ν 2 h * ψ k (ν) r (ν) dν . (B.14)En substituant dans l'Équation (B.12) l'expression du noyau r (ν) donnée par l'Équation (B.14), la somme k (var ψ k [ θ]) -1 s'exprime comme un quotient de Rayleigh généralisé : α = (α 1 ; α 2 ; . . . ; α k ) est le vecteur de coefficients de la combinaison linéaire (B.14) et W est une matrice dont les composantes sont définies par W mn = R ν 2 h * ψ m (ν) hψ n (ν) dν. Ainsi, le noyau r (x) optimal qui maximise k (var ψ k [ θ]) -1 est une combinaison linéaire des fonctions h ψ k (x) dont les coefficients sont les composantes du vecteur propre associé à la plus grande valeur propre de la matrice W . COMPARAISON DES MODÈLES GL ET AQ L'Équation(5.18), que nous reproduisons ci-dessous, exprime la dispersion quadratique autour de sa moyenne de l'écart entre la surface d'onde de référence (sphérique) et la surface d'onde défocalisée décrite par le modèle GL : σ 2 GL (z p , d opt ) = κ 2 s z pz focus 2 + α (z focus ) 2 . (C.1)L'objectif de cette annexe est de comparer cette expression à celle de la dispersion quadratique correspondant au modèle AQ. Cette dernière est obtenue à l'aide des Équations (
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 22 n i = n s , l'évolution de rapport du Strehl évalué avec le modèle GL et comparé avec celle du modèle AQ devrait présenter un rétrécissement longitudinal proportionnel à η et une atténuation globale égale à : PARAMÈTRE DE DÉFOCALISATION « ÉQUIVALENT » On peut noter que même si n s = n i , le terme additif α κ 2 s z 2 focus , dans l'expression de σ 2 GL définie à l'Équation (C.1), reste souvent très faible. Par exemple, les conditions expérimentales décrites dans le Tableau 5.1 conduisent à α = 0, 0062. Comme les fluorophores se situent à seulement quelques micromètres sous la lamelle, z focus est petit. Ainsi le terme additif est négligé, et l'Équation (C.1) devient : σ 2 GL (z p , d opt ) κ 2 s z pz focus expression à celle de σ 2 AQ définie à l'Équation (C.2), on peut définir un paramètre de défocalisation « équivalent » ψ * du modèle AQ correspondant à une position longitudinale z p du fluorophore dans le modèle GL : ψ * = κ ψ z pz focus . z p par z max ou z min dans l'Équation (C.9), on peut aussi définir une plage de PdC « équivalente », telle que : (C.11) permet d'établir une correspondance simple entre les modèles GL et AQ.

  

  

  On suppose que h ∆z i est normalisée de sorte que

	1.1. LA PROFONDEUR DE CHAMP (PDC) ET SON EXTENSION	5
		1
	R 2	

IMAGE RSB Image x 0 Filtre de Wiener Déconvolution TV

  2. APPLICATION À LA RESTAURATION D'

			ρ	opt 1	MMSE(ρ	opt 1 )	ρ	opt 1	MMSE(ρ	opt 1 )
		Papillon	0,830	1, 12 .10 -3	0,830	8, 34 .10 -4
	34 dB	Éléphants 0,850	4, 58 .10 -3	0,865	5, 04 .10 -3
		Zèbres	0,840	2, 61 .10 -3	0,865	3, 14 .10 -3
		Papillon	0,825	1, 38 .10 -3	0,840	1, 59 .10 -3
	24 dB	Éléphants 0,855	4, 35 .10 -3	0,880	4, 87 .10 -3
		Zèbres	0,830	3, 00 .10 -3	0,855	3, 45 .10 -3
		Papillon	0,825	2, 58 .10 -3	0,835	2, 39 .10 -3
	9 dB	Éléphants 0.825	7, 76 .10 -3	0,830	7, 71 .10 -3
		Zèbres	0,825	4, 82 .10 -3	0,835	4, 67 .10 -3
	TABLEAU 2.1 -Résultats d'optimisation d'un masque de phase binaire à 2 anneaux pour une PdC de ψ max = 1λ.
	Les simulations sont réalisées pour 3 images x 0 différentes et 3 niveaux de bruit (RSB) différents : 34 dB (faible
	niveau de bruit), 24 dB (niveau de bruit moyen) et 9 dB (niveau de bruit élevé).

  , dont le développement est différent du Chapitre 3. L'expression de la BCR qui en dérive 54 4. INFLUENCE DU MODÈLE DE BRUIT est donc tout aussi différente. Son expression est la suivante :

  .8) Ces deux grandeurs sont estimées à partir de simulations de Monte Carlo comprenant 4 000 réalisations de bruit. J'ai vérifié qu'utiliser plus de réalisations ne change pas les résultats.Les valeurs de nBias et de nSTD sont illustrées respectivement dans les Figures 4.3

  est résolue 92 6. CO-CONCEPTION POUR LA DÉTECTION DE MOLÉCULES UNIQUES à celle sans masque. C'est pour de faibles valeurs de N 0 /b que l'on observe à la Figure 6.4(b) que l'écart de performance entre les cas avec et sans masque est le plus important. Par exemple, lorsque N 0 /b = 8, on obtient J det (ρ opt ) = 1, 78 × J det (0). L'usage d'un masque de phase permet donc d'améliorer significativement la détection des fluorophores. Cette situation correspond à celle du Scénario B (introduit au Chapitre 4) où la source de bruit dominante est due aux fluctuations du fond. Dans ce scénario, la PSF du système d'imagerie sans masque est noyée dans le bruit de fond. Le masque modifie alors la PSF pour améliorer le contraste entre l'image du fluorophore et le fond.

  1) et (C.2), on constate que σ 2 GL et σ 2 AQ dépendent de ∆z 2 o = (z p -z focus ) 2 , mais comportent deux différences importantes. La première porte sur le coefficient du terme ∆z 2 o qui est différent dans les deux expressions. Pour le modèle AQ, ce coefficient vaut κ AQ (voir l'Équation (C.3)), et pour le modèle GL, il vaut κ s dont l'expression est donnée dans l'Équation (5.11). Avec l'aide de la Symbolic Math Tool-box™ de MATLAB ® , on montre que les premiers termes du développement limité de la variable κ 2 s en (NA /n s ) 2 sont : On remarque que le premier terme est égal à κ 2 AQ . Ce résultat montre que pour une faible ouverture, les deux modèles prédisent le même comportement. Cependant, dans le cas général, c'est pour des profondeurs ∆z o différentes que les modèles GL et AQ conduisent à des dispersions quadratiques identiques. Notons ∆z GL et ∆z AQ les profondeurs telles que : κ 2 AQ ∆z 2 AQ = κ 2 s ∆z 2 GL . On définit alors le facteur suivant : On remarque que ce facteur est proche de 1 pour une faible ouverture et croît significativement à mesure que NA augmente. Ainsi, pour de fortes ouvertures, le modèle AQ conduit à surestimer la profondeur ∆z o . Il est donc nécessaire de la diviser par η lorsque NA augmente. C'est ce que l'on observe, par exemple, aux Figures 5.4(a-b). Par ailleurs, il est intéressant de noter que le facteur η ne dépend que de n s (au travers de la variable κ s ), et non de n i . Il est donc indépendant de la différence des indices de réfraction qui peut exister entre le milieu d'immersion et celui de l'échantillon : le facteur η provient uniquement d'une valeur élevée de NA dans un milieu d'indice n s . La seconde différence entre les Équations (C.1) et (C.2) est la présence d'un terme additif égal à α κ 2 s z 2 focus dans l'expression de σ 2 GL . D'après l'inégalité de Cauchy-Schwartz appliquée à l'Équation (5.11) : κ s κ i ≥ c 2 si . Ainsi, le facteur α, dont l'expression est donnée à l'Équation (5.19), est positif ou nul. Le terme additif disparaît alors lorsque n i = n s (puisque α = 0) et augmente avec la différence des indices de réfraction et la distance z focus .

	η =	∆z AQ ∆z GL	=	κ s κ AQ	1 +	1 4	NA n s	2	+	11 96	NA n s	4	+	25 384	NA n s	6	(C.5)
	κ 2 s	NA 4 48n 2 s	1 +	NA 2 2n 2 s	+	7 NA 4 24n 4 s	+	3 NA 6 s 16n 6	.				(C.4)

John William Strutt Rayleigh établit en 1879 qu'un écart aberrant de λ/4 en différence de marche au bord de la pupille provoque une baisse d'éclairement de 20% au centre de la réponse impulsionnelle spatiale du système d'imagerie (i.e., un rapport de Strehl de 0, 8) et une déformation pratiquement négligeable de la tache de diffraction d'Airy. Il adopte alors arbitrairement cette valeur comme le minimum admissible pour qu'une image soit déclarée pratiquement limitée par la diffraction (i.e., pratiquement dénuée d'aberration).

Le code source est publié sur https://github.com/Biomedical-Imaging-Group/GlobalBioIm

Ces résultats ne sont pas illustrés dans ce chapitre.

(a)

Comment expliquer cette similitude des masques optimisés sur des critères différents ? Une première interprétation peut être trouvée à l'aide de la Figure2.6, où le profil de la PSF est représenté en fonction du paramètre de défocalisation ψ. Notons que puisque la PSF est de symétrie circulaire, une coupe transversale le long d'un axe passant par son centre est suffisante pour représenter l'ensemble de ses propriétés. La Figure 2.6(a) représente les profils des PSF obtenues sans masque de phase, sur la plage de défocalisation ψ ∈ [0, 1λ], tandis que la Figure2.6(b) correspond aux profils obtenus avec le masque optimal à L = 3 anneaux pour ψ max = 1λ. Nous remarquons que la PSF 3D obtenue avec le masque de phase optimal est moins sensible au défaut de mise au point que celle obtenue sans masque. L'invariance de la PSF en fonction de ψ est une propriété essentielle pour assurer une bonne restauration de l'image acquise par le système co-conçu. En effet, nous pouvons remarquer que l'expression du filtre de Wiener (voir l'Équation (2.6)) et de l'algorithme de déconvolution TV (voir l'Équation (2.10)) dépendent tous deux de la PSF (ou de la FTM) moyennée sur les valeurs de ψ appartenant à la PdC ciblée, i.e., 1/K K k=1 h ρ,ψ k . Pour que la restauration par déconvolution d'une image acquise soit efficace, cette PSF moyenne doit être représentative de toutes les PSF comprises dans la PdC ciblée. Autrement dit, ces PSF doivent être similaires. Il a été montré par[START_REF] Diaz | Increase in depth of field taking into account deconvolution by optimization of pupil mask[END_REF] que l'optimisation des masques d'extension de la PdC conduit à un compromis entre maximiser la similarité des PSF (aux différentes valeurs de ψ) et minimiser leur largeur (i.e., maximiser le niveau de la FTM correspondante) pour limiter le rehaussement du bruit par déconvolution.Pour mieux comprendre le comportement des algorithmes de déconvolution en fonc-

Certaines parties de ce chapitre ont été publiées dans Opt. Express 28[2020], p. 32426-32446. 

Source : https://www.nobelprize.org/prizes/chemistry/2014/

Au sens d'un estimateur efficace (i.e., non biaisé et caractérisé par une faible variance).

CO-CONCEPTION POUR LA LOCALISATION DE MOLÉCULES UNIQUES

Certaines parties de ce chapitre ont été publiées dans J. Opt. Soc. Am. A 39, p.37-43 [2022].

L'indice ∆z i a été remplacé par z p et l'ouverture numérique image NA i a été remplacée par NA /|M | (condition des sinus d'Abbe[START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7e édition[END_REF] 

Certaines parties de ce chapitre ont été présentées dans OSA Imaging and Applied Optics Congress 2021c (COSI), paper CF4B.5.

travaux est aussi disponible sur http