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Titre : Emission spontanée collective par des ensembles denses d’atomes à deux niveaux
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Résumé : On s’intéresse au problème de la diffu-
sion de la lumière par un ensemble dense d’atomes
froids dans le régime dit ”de Dicke”, dans lequel un
grand nombre d’atomes est contenu dans un vo-
lume dont les dimensions sont plus petites que la
longueur d’onde de la transition atomique. Quand
le milieu est dense et que la fréquence de la lumière
est proche de celle d’une transition atomique, les
dipôles induits par la lumière interagissent entre
eux. Ces interactions résonantes entre les dipôles
induits modifient la réponse collective de l’en-
semble. En particulier, elles modifient le taux au-
quel l’ensemble se désexcite par émission sponta-
née. Une désexcitation plus rapide que celle d’un
atome unique est appelée super-radiance et une
désexcitation plus lente est appelée sous-radiance.
Dans cette thèse, nous développons d’abord des
méthodes expérimentales pour l’étude de ce pro-

blème, nous permettant de préparer, d’observer
et de manipuler des nuages denses d’atomes à
deux niveaux contenant plusieurs milliers d’atomes
froids dans un régime proche du régime de Dicke.
Nous étudions ensuite les propriétés d’émission col-
lective de ces systèmes lorsqu’ils sont soumis à de
la lumière laser résonante, pendant et après l’ex-
citation. On observe les désexcitations super- et
sous-radiantes pour la première fois dans ce ré-
gime, et on montre qu’elles sont gouvernées uni-
quement par le nombre d’atomes dans le nuage.
Nous avons ensuite caractérisé les oscillations de
Rabi collectives des ensembles d’atomes pilotés
par laser. Enfin, nous démontrons un protocole
pour relâcher à la demande des excitations sto-
ckées dans des états sous-radiants, ce qui est un
prérequis pour des applications de stockage de la
lumière.

Title : Collective spontaneous emission from dense ensembles of two-level atoms
Keywords : Light scattering, Dipole-Dipole interaction, Cold atoms, Spontaneous emission, Superra-
diance, Subradiance.

Abstract : We are interested in the problem of
light scattering by dense ensembles of cold atoms
in the so-called "Dicke regime", in which many
atoms are trapped in a volume whose dimensions
are smaller than the wavelength of the atomic tran-
sition. When the medium is dense and the fre-
quency of the light is close to that of an ato-
mic transition, the light-induced dipoles interact
with each other. These resonant interactions bet-
ween the dipoles modify the collective response of
the ensemble. In particular they modify the rate
at which the energy of the ensemble decays by
spontaneous emission. A faster decay than that of
a single atom is called superradiance and a slo-
wer one is called subradiance. In this thesis, we
first develop experimental methods for the study

of this problem, allowing us to prepare, observe
and manipulate dense clouds of two-level atoms
containing several thousand cold atoms in a re-
gime close to Dicke’s regime. We then study the
collective emission properties of these systems un-
der resonant laser light, during and after driving.
We observe super- and subradiant decay for the
first time in this regime and show that they are
governed uniquely by the number of atoms in the
cloud. We have then characterized the collective
Rabi oscillations of atomic ensembles under laser
driving. Finally, we demonstrate a protocol for the
on-demand release of excitations stored in subra-
diant states, which is a prerequisite for the realiza-
tion of light storage.
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Introduction
***

The study of many-body systems is a very active field of research in physical, chemical and
mathematical sciences and it is currently booming. As an example, almost 2,000 publica-
tions published in 2020 contain ”many-body” in their title or abstract. Less than 1,000 were
published in 2010 and less than 400 in 1990 1. This attractiveness could be explained by
the incredible complexity of the problems in the presence of interactions, entanglement or
complex dynamics just to cite a few examples (Amico et al. 2008; Bloch et al. 2008; Alet and
Laflorencie 2018; Abanin et al. 2019). The development of newmethods and approaches has
allowed for a rapid progress in the past decade, and opened avenues for the study of new
paradigms such as out-of equilibrium or driven-dissipative regimes. In this manuscript, we
are particularly interested in how light interacts with driven-dissipative many-body atomic
systems.

Light is indeed a formidable tool to probe matter: from microscopy (Lawlor 2019; Licht-
man and Conchello 2005) to X-ray diffraction (Waseda et al. 2011) or ultra-fast lasers (Guo
et al. 2019), it provides information about the structure of matter and how it works. The
way light scatters on ensembles of particles can also explain a wide variety of everyday life
situations, from the blue color of the sky to the opacity of milk.

The amazing progress of the toolbox offered by atomic physics platforms allows one to
”shed new light” on this problem. The response of a classical single atom to resonant exci-
tation with light is well known (Jackson 1999). Under the effect of the electric field, the atom
polarizes and forms a driven dipole that emits light in turn. This dipole is characterized by
its resonant frequency ω0 and damping rate Γ. With several atoms, the light induced dipoles
may interact with each other: each dipole is also driven by the fields radiated by the neigh-
boring dipoles. They are thus coupled to each other. This interaction between the dipoles
is called resonant dipole-dipole interaction, and we will see in the following that the strength
of this interaction increases when the dipoles get closer, in particular when the distance be-
tween the dipoles becomes smaller than λ/2π (or equivalently when the peak density n0 isof the order or larger than k3 = (2π

λ

)3). The interaction between the dipoles strongly modifies
the response of the atoms to a resonant excitation. This response becomes collective rather
than individual. This leads to a shift of the resonance frequency and a change in the decay
rate. Light is thus used twice in our experiments: it is the basis of the interactions (because
it induces dipoles), and the way it is scattered by the atoms informs us about the physical
phenomena at play in the atomic ensemble.

1www.scopus.com



There are many motivations to understand the interaction between light and ensemble of
atoms. To beginwith, their potentially rich internal structure and external degrees of freedom
(velocity, momentum,temperature)make themperfectmodels of complex emitters, both the-
oretically and experimentally (Foot 2005). Moreover, their resonance frequency can be in the
visible or near-infrared range, allowing one to use high performance laser sources to ma-
nipulate and study them. Atoms are therefore of great interest for fundamental research.
Let us add that there are many atom-like systems (or artificial atoms) such as semiconductor
quantum dots (Solomon et al. 2001; Awschalom et al. 2002), diamond NV centers (Lenef and
Rand 1996), plasmonic oscillators (Thijssen et al. 2013) and many other which benefit from
the methods developed in atomic physics over many decades.

Then, the field also has implications for technological applications. For example in
nanophotonics, if one wants to create an intense light source by combining many emitters. If
these emitters are close enough (of the order of λ/2π), it has been shown that the emissivity
of such a system is strongly modified by the interaction between the emitters (Huang et al.
2010). Similarly, the coupling properties of quantum dots with light can be altered by the
dipole-dipole interaction. These dots can be used as single photon sources, for example.
Another application for which the study of interactions between dipoles is crucial is atomic
sensors such as optical clocks (Ludlow et al. 2015). These are the reference for ultra-precise
time measurement (they reach in 2018 a relative precision of 1.5×10−19 (Marti et al. 2018),
which means that they deviate by less than 1s in 15 billion years). Such accuracy is used
for testing fundamental theories (measurement of fundamental constants (Colaço et al.
2021), Einstein’s general relativity (Jiang et al. 2021)) and in applications like GPS positioning
(Mehlstäubler et al. 2018) or telecommunications (Riehle 2005). The principle of these clocks
is to measure the frequency of an atomic transition, called a clock transition, by sending
light onto ensemble of atoms usually trapped in optical lattices. It has been shown that the
interactions between light-induced dipoles constitutes a fundamental limit to the precision
achievable with the clocks, because this interaction introduces shifts of the resonance
frequencies (Chang, Ye, et al. 2004; Bromley et al. 2016; Campbell et al. 2017).

Finally, the interaction between dipoles does not only hinder performances. Several
works propose to use them to develop enhanced light-matter interfaces. It has for example
been proposed (Bettles et al. 2016b; Perczel et al. 2017; Shahmoon et al. 2017), and experi-
mentally demonstrated (Rui et al. 2020) that a 2D plane of atoms leads to a total reflection of
light. It has also been proposed to use subradiant states, collective states in which excitations
decay more slowly than for isolated atoms, as an efficient storage medium for quantum
memories applications (Facchinetti, Jenkins, et al. 2016; Asenjo-Garcia et al. 2017).

Several types of experimental systems are adapted to the study of the interaction between
light and atoms, allowing one to observe these interactions on a wide range of parameters
such as the number of atoms, the density or the temperature of atoms for example. Among
others, we find

• Extended and dilute clouds of cold atoms, for instance in the groups of Kaiser& Guerin
(Guerin, Araújo, et al. 2016), Havey (Roof et al. 2016) or Wilkowski (Chalony et al. 2011).
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In these systems, the low atomic density (n0 ¿ k3) is compensated by a large optical
depth, which governs the collective effects (Guerin, Rouabah, et al. 2017).

• Thermal atomic vapors, for instance in the Adams group (Keaveney et al. 2012) and
collaboration with Browaeys group (Peyrot, Y. R. Sortais, Browaeys, et al. 2018; Peyrot,
Y. R. Sortais, Greffet, et al. 2019; Peyrot, Šibalić, et al. 2019). These systems can reach a
very high density (n0 ∼ 100k3), but at the cost of phenomena that make the study more
complex : important atomic motion leading to inhomogeneous Doppler broadening,
collisions with walls...

• cold atomic clouds in microscopic traps. These systems permit to reach a sufficient
density to observe collective effects due to the dipole-dipole interactions (n0 ∼ k3) while
keeping the advantages of cold atoms: their internal and external degrees of freedom
can be manipulated by laser, which offers a very fine and versatile control.

This last option has been chosen in the QuantumOptics group of the Laboratoire Charles
Fabry. Microscopic traps are created by focusing a laser beamwith a large numerical aperture
aspheric lens placed under vacuum, a technique that has been developed and used for other
experiments in the group (Y. R. P. Sortais, Marion, et al. 2007; Browaeys, Barredo, et al. 2016;
Browaeys and Lahaye 2020). This method has made it possible to observe the response of
gaussian clouds containing between1 and800 atoms, up to densities ofn0 = 3×1014at.cm−3 ∼
0.6k3. Collective fluorescence (Pellegrino et al. 2014) and transmitted light (Jennewein, Y. R. P.
Sortais, et al. 2016; Browaeys, Jennewein, et al. 2016) have been measured and compared
to theoretical models, without reaching a better than qualitative agreement (Jenkins et al.
2016; Jennewein, Brossard, et al. 2018). Starting in 2016, a new generation of the experimen-
tal setup was built with the goals of improving the observation and manipulation of atomic
clouds, as well as preparing structured ensembles (Brossard 2019). This was the status when
I arrived in the group in 2018.

The manuscript is organized as follows. The first part, divided into four chapters, aims at
describing the theoretical and experimental tools used and/or implemented during my work.
In the first chapter, I recall the theoretical notions necessary to the understanding of the
subject and we describe the different types of numerical simulations that I will use in the rest
of the text. The second and third chapters are dedicated to the experimental system and
the methods used to prepare, observe and manipulate our atomic ensembles. The fourth
chapter is dedicated to the study of light scattering in an ordered system of atoms, the 1D
chain, using the methods described in the previous chapters.

The second part of this manuscript, divided into four chapters, is devoted to the study
of dense clouds. In a first chapter, I explain the protocol developed during my thesis for the
loading of these clouds in optical traps. This protocol is an important contribution because it
allowed us to observe effects never seen before with the previous generation of the experi-
mental system. The following chapters contain an in-depth study of these effects. Chapter 6
is dedicated to superradiance, a phenomenon predicted by Dicke in the 1950’s but for which
we report observations close to the ideal conditions. In chapter 7 , the collective response
of dense clouds under a resonant laser excitation is observed and characterized. Finally,
chapter 8 is dedicated to subradiance in our dense clouds. In particular, we demonstrate a
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protocol for the on-demand release of excitations stored in subradiant states, which would
be a prerequisite for the realization of light storage.

Finally, a synthesis of the obtained results is made and perspectives for future research
are proposed.

4
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***
The first part of this manuscript is dedicated to the presentation of the tools developed and
used during my thesis.

• Chapter 1 presents the theoretical framework for the description of light-matter inter-
action performed in this thesis, and the numerical simulations methods that are used
to solve the equations and predict our experimental results.

• In chapter 2, we present the experimental setup used to trap, manipulate and observe
the atomic ensembles. We then explain how we isolate a closed two-level transition
using magnetic fields and optical pumping.

• In chapter 3, we explain the principle of the gray molasses (GM) and their implementa-
tion on the experiment to load efficiently single atoms, highlighting that the low scatter-
ing rate of GM allows us to havemany atoms in amicroscopic dipole trap. In the second
part of the manuscript, we will exploit this experimental tool to increase the number
of trapped atoms by almost a factor of 10 compared to the previous generation of the
experiment.

• In chapter 4, we use the tools presented in the previous chapters to prepare and per-
form experiments on a 1D atomic chain, demonstrating the interest of the 1D dimen-
sion to obtain enhanced collective effects and showing that controlling the geometrical
arrangement of the sample allows us to shape its collective response.
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Theory background and
simulations methods

***
The systems we study are ensembles of atoms. The excitation by light induces dipoles which
are then driven by all neighboring dipoles, coupling them the ones to the others. We thus
obtain a complex many-body system. The purpose of this chapter is first to recall the theo-
retical notions necessary to describe the interaction between light and an atomic ensemble
such as the one produced in our experiment. Second, we explain the principle of the differ-
ent types of numerical simulations that can be performed in order to understand the physics
involved and in order to make reliable predictions about our systems, even if the models are
not analytically solvable.
Contents
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1 Theory of light-matter interaction in atomic ensembles

Most of the results presented here are textbook materials. We will first present this interac-
tion in the framework of classical electromagnetism and then in the semi-classical approxi-
mation, in which atoms are described quantum mechanically while the light field is classical.
This section also gives a first overview of the phenomena of superradiance and subradiance,
which will be studied experimentally in the following chapters of this manuscript.
1.1 Classical light-matter interaction

d

EL

Figure 1.1: A dipole d under the effect of the electric field EL.

Let us first consider an atom of mass m, consisting of a nucleus and an electron of charge
q elastically bound with a harmonic potential of frequency ω0, at distance r of the nucleus. If
an electric field EL(r,ω) is shone, the equation of motion of the electron is

r̈+ω2
0r+Γωṙ = q

EL(r,ω)

m
(1.1)

where Γω is a dissipation term due to the radiative energy losses, calculated using the Larmor
formula Γω = q2ω2

6πε0mc3 (Jackson 1999). The electron is a moving charged particle; leading to
an electric dipole d = qr, as represented in figure 1.1. Let us write EL = e Re

[
Eωe−iωt

] and
d = e Re

[
dωe−iωt

]. Here the dipole is parallel to the driving field and the dipole can thus be
considered as a scalar amplitude dω. In the quasi-resonant case ω ' ω0, one can show that
equation (1.1) implies that

ḋω =
(
i∆− Γ

2

)
dω+ i

3πε0Γ

k3
0

Eω (1.2)
where k0 = ω0/c and ∆ = ω−ω0 is the detuning of the laser with the resonance frequency
and where Γ= Γω0 =

(ω0
ω

)2
Γω. One defines the complex polarizabitlity α(ω) =α′(ω)+ iα′′(ω)

which relates the steady-state atomic dipole to the driving field, dω = ε0α(ω)Eω. Taking (1.2)in steady state we get:
α(ω) = 6πi

k3
0

1

1− 2i∆
Γ

. (1.3)
The energy transfer ∆U between the field EL and the atom during a time ∆t À 1/ω0,1/ω, is
given by (Jackson 1999)

∆U = 1

∆t

∫

∆t
qE.ṙ = 1

∆t

∫

∆t
E.ḋ = ω

2
Im

(
dωE∗

ω

)= ω

2
α′′|Eω|2.

The transfer of energy is thus proportional to the imaginary part of the polarizability α′′. As
∆U ∝ Γ, there is an exchange of energy between the atom and the field only if the system is
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dissipative.
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α
′′ (ω

)/α
”(0)

Figure 1.2: Imaginary part α′′ of the susceptibility as a function of the detuning ∆=ω−ω0

of the electric field with the potential frequency.

In the figure 1.2, we plot α′′ as a function of detuning. This is a Lorentzian function cen-
tered on ∆= 0 with a width Γ. This means that the atom exchanges energy with the field only
if its frequency is less than Γ away from the resonance.
Two interacting classical dipoles

d1

d2 = d2e

R
u

EL

Figure 1.3: N=2 coupled dipoles excited by the field EL.

Let us now consider the case of 2 dipoles illuminated by the laser field EL , as representedin the figure 1.3. The dipole d1 located at r1 sees the laser field and the field E2(r1) radiated
by the dipole d2 = d2e at the position of the first atom (Jackson 1999)

E2(r1) = k3
0d2

4πε0

e i k0R

(k0R)3

[
(3(u.e)u−e) (1− i k0R)+ (u×e)×u (k0R)2] , (1.4)

where R = |r1−r2| and u = r1−r2
R .The atoms are then coupled to each other via these radiated

fields. Inserting this in (1.2), one obtains the so-called coupled dipole equations governing the
evolution of the dipoles
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{
ḋ1 =

(
i∆− Γ

2

)
d1 + i 3πε0Γ

k3
0

[EL(r1)+E2(r1)]

ḋ2 =
(
i∆− Γ

2

)
d2 + i 3πε0Γ

k3
0

[EL(r2)+E1(r2)]
.

We project this set of equations on the complex conjugate vector e∗ and find
{

ḋ1 =
(
i∆− Γ

2

)
d1 + i 3πε0Γ

k3
0

EL(r1).e∗− i
ħV21d2

ḋ2 =
(
i∆− Γ

2

)
d2 + i 3πε0Γ

k3
0

EL(r2).e∗− i
ħV12d1

with V12 = V21 = V called dipole-dipole interaction term (see expression below). The previous
system can be solved introducing the coupled basis d± = (d1 ±d2)/

p
2. By summing the two

previous equations, one obtains

ḋ± =
(
i∆− Γ

2

)
d±+ i

3πε0Γ

k3
0

[EL(r1)±EL(r2)] .e∗p
2

∓ i

ħV d±

=
[

i (∆−ω±)−
(
Γ

2
− Γ±

2

)]
d±+ i

3πε0Γ

k3
0

[EL(r1)±EL(r2)] .e∗p
2

(1.5)

where we introduced ω± = ±Re[V ]
ħ and Γ± = ±2 Im[V ]

ħ . This shows that the coupling between
the dipoles creates two modes (in phase or out of phase) d± with their resonant frequencies
shifted by a quantityω± and their decay ratesmodified by a quantity Γ± that depends respec-tively on the strength of the real and imaginary parts of the dipole-dipole interaction potential
and thus of the inter-atomic distance R . In order to consider the importance of the coupling,
ω± and Γ± have to be compared to Γ. Indeed, we have seen that the interaction between the
field and a dipole is important when |∆| < Γ (section 1.1) and that a non-interacting dipole is
damped over a time 1/Γ. We thus compare |V | to ħΓ. Using d 2 = 3πε0ħΓ

k3
0

and equation (1.4),
we write

V =−3ħΓ
4

e i k0R
[(

1

(k0R)3 − i

(k0R)2

)(
3cos2(θ)−1

)+ sin2(θ)

k0R

]
(1.6)

where θ is the angle between u and e (see Fig 1.3). The dipole-dipole interaction term is thus
composed of terms proportional to 1/k0R ,1/(k0R)2 and 1/(k0R)3. In figure 1.4, we plot the
real and imaginary part ofV as a function of the interatomic distance, for two parallel dipoles.

Not surprisingly, we see that the terms in 1/(k0R)2 and 1/(k0R)3 of (1.6) cannot be ne-
glectedwhenR is of the order ofλ0 = 2π

k0
. WhenR <λ=λ/2π, we haveVdd ∼ħΓ. The coupling

between the light-induced dipoles becomes thus dominant over the response of independent
dipoles to the driving field. The aim of our experiment is to explore this regime, where the
interaction between the induced dipoles makes collective effects appear. The imaginary part,
responsible of the dissipation, saturates at the value ħΓ when R goes to 0. This implies that
Γ+ = Γ = −Γ− in this limit. The decay rate of d+ is thus 2Γ and the decay rate of d− is 0 . As
demontrated later in this chapter, this result is the same as the one found using a quantum
treatment of the problem, leading to phenomena of superradiance and subradiance.
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Figure 1.4: Real and imaginary part of V as a function of the interatomic distance R.
The different terms of the real part are represented. The shaded region corresponds to
the values of R for which the dipole-dipole coupling dominates over the single dipole
response (see text).

N atoms, Coupled Dipoles Equation

Let us generalize the previous reasoning to a N− atom ensemble. The dipole dm is driven by
the field emitted by the laser EL and by all other dipoles, as represented in figure 1.5:

Edriving(rm) = EL(rm)+
∑

n 6=m
En(rm).

d1
dn

d2

d3

dm

Figure 1.5: Schematic: each dipole receives the field emitted by the neighboring dipoles.

Using equation (1.2), one obtains
˙dm =

(
i∆− Γ

2

)
dm + i

3πε0Γ

k3
0

[
EL(rm)+

∑
n 6=m

G(rm − rn) dn

]
(1.7)

were we have introduced G(r) the Green’s function (Jackson 1999) such as G(rm − rn) dn =
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En(rm), given by equation (1.4). G(rm − rn) dn is therefore by definition the field emitted by
the dipole n seen at the position of the dipole m. Equation (1.7) is called the Coupled Dipoles
Equation. It actually corresponds to a set of N equations that couple the dipoles together.
Once solved, this system of equations allows to calculate the field radiated or transmitted by
the assembly of atoms. This result is at the origin of the Coupled Dipole simulations, which will
be presented in the second part of this chapter.

1.2 Semi-classical treatment of light-matter interaction

Optical Bloch Equations

Eg

Ee

ħω
0

lase
r,ħ

ω

ħ∆

∣∣g〉

|e〉

Γ

Figure 1.6: Schematic of the system: an atom has two levels
∣∣g〉

and |e〉 of energies Eg

and Ee respectively. The excited state |e〉 can be reached by using a laser at frequency
ω. The detuning is defined by ∆ = ω−ω0. The atom decays via a radiative transition
with rate Γ (in red).

The classical description of the dipole presented previously is not sufficient in the quan-
tum regime, where saturation must be taken into account: an excited atom does not absorb
any more photons. The simplest model for a quantum dipole is a two-level system. Let us
consider the interaction of a two-level atom with a quasi-resonant electric field with Rabi
frequency Ω. The atom is described by its density matrix ρ and the field is a classical elecro-
magnetic field. The equations that give the evolution of ρ in this case are the Optical Bloch
Equations (OBE), derived for example in references (Grynberg, Aspect, et al. 2010) and (Allen
and Eberly 1987).

By definition, the density matrix of a two-level atom written in the (∣∣g〉
, |e〉) basis is

ρ =
(
ρg g ρg e

ρeg ρee

)

Let us write the OBEs in the rotating wave approximation (Grynberg, Aspect, et al. 2010),
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for a closed system, with the parameters defined in the figure 1.6. We have




dρee

dt = i Ω2
(
ρeg −ρg e

)−Γρee
dρeg

dt = (i∆−Γ/2)ρeg + i Ω2
(
ρee −ρg g

)

ρg e = ρ∗
eg

ρg g +ρee = 1.

(1.8)

In addition to the rotating wave approximation, these equations are true under the assump-
tion that the relaxation of the atom is only realized by spontaneous emission. The last equa-
tion corresponds to the fact that the population is conserved. In the weak excitation case,
where Ω

Γ ¿ 1, we can make the approximation that ρee ' 0. We then recover equation (1.2) if
we define dω = 2dρeg with d = |〈g

∣∣D |e〉 | =
(

3πε0ħΓ
k3

0

)1/2 and Ω= dE
ħ .

One can consider the stationary solutions and find that
ρeg ,st =

Ω

2

∆− iΓ/2

∆2 + ∆2
ω

4

ρee,st =
1

2

Ω2

∆2 + ∆2
ω

4

.

(1.9)

The population of the excited state in steady state is ρee,st. Its lineshape as a function of
the driving frequency is a lorentzian function of central frequency ω0 (∆= 0) and with width
∆ω =

p
Γ2 +4Ω2. This is called power broadening of the transition (Citron et al. 1977). As a

matter of fact,Ω2 ∝|E|2 ∝ I . This result is quite similar to the one obtained with the classical
theory : the atom interacts strongly with the light if its frequency deviates from the resonance
frequency by less than Γ.

Let us write ρee,st = 1
2

s
1+s , defining s as the saturation parameter. This defines the sat-

uration intensity Isat in the same way, s = I
Isat

= 2
(
Ω
Γ

)2. Recall that the number of photons
emitted by a single atom per second is equal to R = Γρee . On the figure 1.7, we plot the OBE(1.8) solutions for intensities s = (1,5,50).

As a function of time, ρee (t ) starts to increase (we took ρee (t = 0) = 0 as initial condition).
For s > 2 (orΩ> Γ), we then see Rabi oscillations : the population oscillates between the states∣∣g〉 and |e〉 at the Rabi frequency Ω. The amplitude of these oscillations depends on s, thus
on Ω. The Rabi oscillations are damped in a time of some 1/Γ. At long times, the population
of the excited state reaches a stationary regime which, according to the above, also depends
on intensity. The OBEs also allow the calculation of the average dipole 〈D〉:

〈D〉 = Tr
[
ρD

]= 2dRe(ρeg ).

The evolution of the coherence as a function of the driving is plotted in figure 1.8.
When the driving is intense, the coherence of the quantum 2-level system saturates, de-

parting from the linear dipole case. Thismeans that the dipole is no longer proportional to the
exciting field, but goes to 0. This observation validates the fact that to simulate the system
when excited with an intense probe, the linear (classical) coupled dipole equations are not
sufficient and require refinement to account for the saturation of the atoms. The principle of
the nonlinear coupled dipole simulations will be explained later in this chapter.
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Figure 1.7: ρee for various saturation parameter s. As a function of time, we see the
so-called Rabi oscillations. For these calculations, we took ρee (t = 0) = 0 and ∆= 0.
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Figure 1.8: |ρeg | as a function of the driving amplitude (blue). When the driving is
intense, the coherence is different from the classical dipole case, in dashed line. In
particular, the coherence goes to zero at high intensity, while the population saturates.

Two and more interacting atoms : subradiance and superradiance

For N atoms, the full quantum description is based on the density matrix formalism and the
master equation. The system of N two-level atoms is represented by a density matrix ρ of
size 2N ×2N . The dynamics is given by the master equation (Friedberg et al. 1973)

dρ

dt
=

∑
n

[
1

iħ [Hn ,ρ]+Ln(ρ)

]
+

∑
n

∑
m 6=n

[
1

iħ [Hnm ,ρ]+Lnm(ρ)

]
. (1.10)

Here, Hn and Ln are the one atom Hamiltonian and Lindblad operators,
Hn =ħ

(
Ω+

n

2
σ+

n + Ω
−
n

2
σ−

n −∆nen

)

Ln(ρ) = Γ
2

(
2σ−

nρσ
+
n −enρ−ρen

)
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where we define
en = |en〉〈en |
σ−

n =
∣∣gn

〉〈en |
σ+

n = |en〉
〈

gn
∣∣

and Ω+
n = (Ω−

n )∗ is the complex Rabi frequency seen by the atom n and ∆n is the detuning of
the transition for the atom n. Hnm and Lnm are given by (Asenjo-Garcia et al. 2017)

Hnm =ħΩnmσ
+
nσ

−
n

and
Lnm = Γnm

2

(
2σ−

nρσ
+
m −σ+

mσ
−
nρ−ρσ+

mσ
−
n

)
.

In the previous equations, ħΩnm is the real part of the dipole-dipole interaction Vnm (eq. 1.6)
andΓnm is the collective decay, two times the imaginary part ofV (Krämer andRitsch 2015; Do
Espirito Santo et al. 2019). The Linblad operator describes a collective decay, characterized
by the matrix γ made of Γnm . This matrix is not diagonal, so the decay channels are not
independent. In the case of N = 2 atoms separed by a distance R , the matrix is written

γ=
(

Γ Γ̄(R)
Γ̄(R) Γ

)
(1.11)

where Γ is the single atom decay rate and Γ̄(R) = 2Im(V (R))/ħ. This matrix has for eigen-
vectors |±〉 = 1p

2

(∣∣e1g2
〉±

∣∣g1e2
〉) with eigenvalues Γ± Γ̄(R). These states are also eigenstates

of the Hamiltonian with the same eigenenergies than in the classical case. We find exactly
the same results than using the classical model. Moreover, we find that for infinitely close
atoms,(R = 0), Γ+ = 2Γ and Γ− = 0.

The states |+〉 and |−〉 are respectively called superradiant state and subradiant state. This
is due to their de-excitation rate, which is respectively faster and slower than that of an iso-
lated atom. Note that this result is strictly true in the limit R → 0 . Otherwise, the states are
shifted due to the distance dependent dipole-dipole interaction and their decay thus depends
on R (Figure 1.4). For k0R ≥ 1, which is the case in most experiments with cold atoms or ions,
we thus expect the decay rate to oscillate with R . Indeed, Im(V ) ∝ sink0R

k0R . Researchers have
observed the variation of the decay rate as a function of the distance between 2 ions (Devoe
and Brewer 1996). These properties of the |+〉 and |−〉 states are general and do not depend
on the studied system. Superradiance and subradiance have been observed in a very wide
range of systems, from hot atomic vapors (Pavolini et al. 1985) to cloud of cold atoms (Guerin,
Araújo, et al. 2016), atoms in hollow core fiber (Okaba et al. 2019), nanofiber (Solano et al.
2017) , Rydberg atoms (Wang et al. 2007) , molecular systems (Hettich et al. 2002; McGuyer
et al. 2015) and artificial atoms (Angerer et al. 2018) just to cite a few. This model allows
one to understand superradiance and subradiance. A thorough experimental study of these
phenomena was carried out during my thesis, and will the subject of following chapters.
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2 Numerical methods

The purpose of this second part is to explain the numerical simulations frameworks that are
used to describe the collective interaction of light with the ensembles produced in our ex-
periments. First, we will give detail about the simulations performed in the framework of the
classical model. We will then see how to take into account the effects of saturation by realiz-
ing, in themean field approximation, simulations of nonlinear coupled dipoles. Finally, wewill
discuss different possibilities to simulate problems beyond the mean field approximation.
2.1 Coupled Dipoles Simulations

This type of simulation is widely used to model linear systems of coupled dipoles, for which
the amplitude of the dipoles is proportional to that of the exciting field. The model is often
treated in the scalar case, for which the dipoles are parallel to the exciting field (see section
1.1). Otherwise, the model is said to be vectorial. Its general character allows it to be used
in many publications to simulate atomic ensembles ((Do Espirito Santo et al. 2019; Meir et al.
2014; Bromley et al. 2016; Zhu et al. 2016; Kwong et al. 2019; Bienaimé et al. 2011; Chabé
et al. 2014; Courteille et al. 2010; Sokolov and Guerin 2019), but also artificial atoms such as
superconductors (Lin et al. 2019) or nanocavities (Dobbertin et al. 2020)...

The principle of the simulation is simply to numerically solve the coupled dipoles system
(1.7). These equations can be rewritten

ḃm =
(
i∆− Γ

2

)
bm + i

(
ΩL

m + 3Γ

4

∑
n 6=m

fmn bn

)
(2.1)

with bm = dm/|D0|, ΩL
m = |D0|EL (rm )

ħ and
fmn = e i k0Rmn

(k0Rmn)3

[(
3cos2θmn −1

)
(1− i k0R)+ sin2θmn(k0R)2]

using the definitions of figure 1.3 and equation 1.6 with e.u = cosθmn . Let us write these
equations in matrix form

d

dt
b(t ) = Mb(t )+w (2.2)

with
Mmn = δmn

(
i∆− Γ

2

)
+ (1−δmn) i

3Γ

4
fmn

and wm = iΩL
m . We deduce the dipoles from it in the steady-state solution

bs =−M−1w. (2.3)
Eigenvalues

Following for example(Bettles et al. 2016a), one shows that the eigenvalues µl of M−1/i are
related to the decay rate Γl and the shift ∆ω of the collective mode l of the dipole ensemble

∆ωl =−Re[µl ]

Γl = 2Im[µl ]
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To numerically compute the eigenmodes of a system, one simply computes the M matrix
and inverts it. The number of emitters can be relatively large (typically up to a few thousand)
as the inversion of M has a polynomial cost.

Let us calculate the eigenvalues for different typical systems that we will study experi-
mentally in the following chapters. To begin, consider a pair of atoms placed at distances R
ranging from almost 0 to λ0. We plot in figure 1.9 theses eigenvalues in the (∆ω,Γ) plane. The
eigenvalues spiral around the non-interacting case (∆ω= 0,Γ= Γ0), approaching this point as
R increases. There are 2 eigenvalues for a given R , depending of the relative phase of the
dipole. The decay time of two branches of the spiral have for asymptotes Γ= 0 and Γ= 2Γ0respectively. They correspond to the decay of 2 infinitely close parallel dipoles. As the atoms
are getting closer, the shift of the resonance diverges. We recover with this simulation the
results obtained in Section 1.1 for the eigenvalues of d±.
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Figure 1.9: Collective decay and shift for a 2-atom pair for 1000 interatomic distances R
smaller than 1.5λ0. The color code indicates the values of R. The red square corresponds
to the single atom response.

The next example of interest is the 1D chain of dipoles equally spaced with a distance
0.6λ0 as represented in the figure 1.10. There the eigenvalues are arranged along two
branches that are not centered on the values without interactions. This would indicate
an average shift in the resonance and a variation in the average decay rate due to the
interactions when all modes are excited. We will verify this experimentally in the following
chapters.

The last interesting example is a disordered gaussian cloud, figure 1.11. The eigenvalues
are quite spread out in this case. We observe that the range of ∆ω is small with respect to
the range of Γ.

The analysis of the modes gives information about the collective response of the system
to an excitation, in particular the mean frequency shift and linewidth (Schilder et al. 2016;
Goetschy and Skipetrov 2011; Skipetrov andGoetschy 2011). As thematrixM is not Hermitian
but is complex symmetric, the eigenvectors ml are not orthogonal and they do not form a
basis. Using reference (Ruostekoski and Javanainen 2017), we introduce the effective weight
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Figure 1.10: Collective decay and shift of a defect-free 1D chain of N = 100 atoms with
interatomic distance 0.6λ0. The red square corresponds to the weighted average response
(see text below).
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Figure 1.11: Collective decay and shift of a gaussian cloud of N = 500 atoms with sizes σr

and σz . The red square corresponds to the weighted average response (see text below).

of the eigenvector ml in the state b as follows :
wl =

|m∗
l .b|2

∑
l ′ |m∗

l ′ .b|2

We deduce a decomposition of the bs vectors as superpositions of the ml ,
bs =

∑
l

wl ml

This decomposition depends on the driving w via bs . All modes are thus not necessarily ex-
cited. We therefore deduce the collective response (frequency shift and linewidth) of the
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ensemble by calculating the average decay and the average shift of the resonance . For the
examples above and considering a uniform excitation w, the average collective response is
plotted with a red square in the figures 1.9,1.10 and 1.11. In the case of the chain, this re-
sponse is quite different than the non-interacting ( single atom) response, indicating that the
collective effects are strong in this system.
Time dependent scattered light intensity

From the dipoles, we calculate the light emitted by a cloud of any number of atoms and di-
mension in the low driving regime, where the dipoles can be described classically. Indeed,
the electric field at a position r from the cloud is in far field (Jackson 1999)

E(r, t ) ∝ e−iω0(t−r /c)

r

N∑
m=1

e−i k0
r.rm

r bm(t )

where rm is the position of the atom m and bm is the dipole. The scattered intensity is thus
given by

I (r, t ) ∝ 1

r 2

∣∣∣∣∣
N∑

m=1
e−i k0

r.rm
r bm(t )

∣∣∣∣∣
2

This formula allows us to calculate the angular- and time-dependent response during the
driving ((Araújo, Guerin, et al. 2018)) and after. This allows us to simulate the collective decay
of a cold atom ensemble (Zhu et al. 2016), showing for example the presence of subradiance
(Guerin, Araújo, et al. 2016).
Spectrum of the scattered light
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Figure 1.12: Fluorescence spectrum of a spherical gaussian cloud with density ρ = 0.1/k3
0

containing N = 100 atoms illuminated with a plane wave perpendicularly to the direction
of observation. The signal is averaged over 500 random atomic positions. The error
bars correspond to the standard errors. The solid line is a lorentzian fit. We plot the
fluorescence spectrum of a single atom with a dashed line.
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In this manuscript, the spectrum of the emitted light corresponds to the total scattered
intensity as a function of the frequency of the driving. In particular, this is not the frequency
of the scattered light. In the figure 1.12, we plot the spectrum of a spherical gaussian cloud.
Even if in this case the cloud is dilute (density ρ = 0.1/k3

0 ) , we have to average over 500 times
to reduce the effect of the close pairs of atoms. Indeed, their interaction is large and the
numerics are very sensitive to their exact value. Some works use an exclusion volume in the
simulations to avoid this effect (Araújo, Guerin, et al. 2018). In the figure 1.12, we see that
the fluorescence spectrum of the cloud is shifted compared to the single atom case and its
width is larger due to the interactions. The shape is still a lorentzian in this case but this
is not necessarily the case. In other situation, when the density and thus the interactions
increase, the shape evolves and becomes asymmetric. In the same way, one evaluates the
field transmitted by the cloud: the total field is then the sum of the fields radiated by the
dipoles and the driving field.

The coupled dipole predictions, while correct in dilute ensembles for which the interac-
tions are weak, become largely incompatible with experiments in dense clouds, even when
s ¿ 1 (Jennewein, Y. R. P. Sortais, et al. 2016; Browaeys, Jennewein, et al. 2016). The disagree-
ment remains even when one refines the model by taking into account the internal structure
of the atoms ( 12 levels for the D2 transition of rubidium, (Jennewein, Brossard, et al. 2018))
and the atomic motion due to the non-zero temperature of the atoms.

In the simulations described above, we did not take into account the saturation effects
which appear when s is no longer negligible with respect to 1. To account for the saturation,
we use for this the nonlinear coupled dipoles equations (NLCD).

2.2 Nonlinear Coupled Dipoles Simulations

The principle of this method is to include the coupled dipoles into the Optical Bloch Equations
(see section 1.2). For the dipole m, they are

{dρee,m

dt =−Γρee,m + iρeg ,m
Ωm

2 − iρg e,m
Ω∗

m
2

dρeg ,m

dt = (i∆−Γ/2)ρeg ,m + i Ωm
2

(
ρee,m −ρg g ,m

) . (2.4)

where Ωm is now the Rabi frequency due to the total field experienced by the atom m,
Ωm

2
= dm .

[
EL(rm)+

∑
n 6=m

G(rm − rn) dn

]

were we have introduced G(r) the Green’s function as in section 1.1 and dm is the dipole m.
We define the population inversion zn = ρee,m −ρg g ,m , following (Glicenstein, Ferioli, Šibalić,
et al. 2020), and dm = 2|D0|ρeg ,m = bm |D0| with |D0| the dipole matrix element between |e〉mand ∣∣g〉

m . From the equations above, we obtain the following equations

{
dzm
dt =−Γ(1+ zm)+ i Im

[
bmΩ

∗
m

]
dbm
dt = i (∆−Γ/2)bm − i zmΩm

. (2.5)
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The first equation is thus about the population, and the second about the dipole. In steady
state, solving (2.5) is equivalent to solve the coupled system

dm =αNL

(
E(rm)+

∑
n 6=m

G(rm − rn) dn

)

where
αNL(∆,Ω) = 6πi

k3
0

1+2i∆/Γ

1+ (2∆
Γ

)2 + 2Ω2

Γ2

is the nonlinear expression of the atomic polarizability (Grynberg, Aspect, et al. 2010) given
by the solution of the optical Bloch Equations (1.8).

If we neglect the population of the excited state, ρee,m ¿ 1, then z = −1,we recover the
(classical) coupled dipoles equation (1.7). NLCD allow the simulation of coupled dipoles driven
with s > 1, taking into account the saturation of the dipoles. However, we will see in the
next section that this model contains a mean-field approximation that does not account for
the quantum correlations between atoms. For this, a quantum treatment of the problem is
required.

2.3 Fully quantummodels

The full quantum description, described in section 1.2 , is generally not solvable analytically
and is numerically limited to a small number of atoms. Because of the 2N size of the Hilbert
space, a full time-dependent resolution of these equations is indeed computationally hard
and limited to a small number of atoms (Daley 2014). The numerical resolution based on a
quantum Monte carlo (QMC),(Carmichael 1993) allows one to reduce the number of oper-
ation to calculate, but remains very demanding. There are efficient numerical frameworks
to compute the solutions, for example in the MATLAB programming language (Tan 1999) or
open source, coded in Python (Johansson et al. 2012). One can recover the NLCD from the full
density matrix using a mean-field product state ansatz (Do Espirito Santo et al. 2019)

ρ =
m⊗
ρm

where the ρm is the local density matrix of the atom m. Taking the partial trace, we obtain
the governing equations for all ρm

dρm

dt
= Trn 6=m

(
dρ

dt

)

Following (Do Espirito Santo et al. 2019), we can recover the equations (2.5) by defining bm =〈
σ−

m

〉, zm = 〈
σ+

mσ
−
m −σ−

mσ
+
m

〉 and using
ρm = (

1+2b∗
mσ

−
m +2bmσ

+
m + zmσ

z
m

)
.

The mean-field approximation mean physically that two-particle expectations can be factor-
ized, that is for an observable O and two atoms n and m,

〈OmOm〉 ' 〈Om〉〈Om〉 . (2.6)
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This approximation gives good results when the interparticle interactions are weak (Krämer
and Ritsch 2015). As an example, we show on figure 1.13 the results of NLCD and QMC done
byNikola Šibalić for a half-filled 1D chainwith interatomic distance 0.6λ0. The two simulations
are in reasonable agreement. As explained before, this comparison is only possible for a small
atom number, here N = 6.
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Figure 1.13: Global resonance shift as a function of the driving for a N -atoms chain
(see text). Comparison between nonlinear coupled dipoles (NLCD) and Quantum Monte
Carlo (QMC).

However, the mean-field approximation is not sufficient to calculate pair correlations. It
can be extended to higher order of correlations using the so-called cumulants method.
Cumulant method

The main idea is to still perform approximations but including the expectation values of one
operator (standard mean-field), two operators, three operators... This is understood as a
"higher ordermean-field". At each step, the level of accuracy increases, but the computational
cost increases rapidly. The number of operations necessary to compute the mean-field is N 2

according to equation (2.6). We can calculate the higher order particule correlations using
the cumulant expansion (Kubo 1962). The joint cumulant of a product of n operators is by
definition (Plankensteiner, Hotter, et al. 2021)

〈O1O2...On〉c =
∑

p∈P (I )
(|p|−1)!(−1)|p|−1

∏
B∈p

〈∏
i∈B

Oi

〉
. (2.7)

where I = {1,2, ..,n}, P (I ) is the set of all partitions of I and |p| is the length of partition p. As
an example, let us consider n = 3,

〈O1O2O3〉c = 〈O1O2O3〉−〈O1O2〉〈O3〉−〈O1O3〉〈O2〉 −〈O1〉〈O2O3〉+2〈O1〉〈O2〉〈O3〉 .

Importantly the cumulant of order n is composed of averages of order n or lower. The key
argument of the cumulant method is a theorem (Kubo 1962) that says that the cumulant is
equal to zero if any one of the operator that is inside is statistically independent of the others.
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The principle of the calculations is thus to assume that the cumulant of a given order n is zero.
The averages of order n can thus be expanded in terms of only lower order averages. It is
clear that assuming this for n = 2 in equation (2.7) gives 〈O1O2〉 = 〈O1〉〈O2〉, that is the usualmean-field hypothesis. Depending of the complexity of the problem, one can increase the
order n. This method has been used at the third order for example to simulate the dynamics
of an open spin ensemble (Krämer and Ritsch 2015) or the superradiance in inverted multi-
level atomic clouds (Sutherland and Robicheaux 2017). Some cases where the third order is
not sufficient, for example to calculate the intensity correlation function g 2(τ), are detailed in
(Robicheaux and Suresh 2021). Recently a Jul i a framework was developed to calculate the
cumulant expansion (Plankensteiner, Hotter, et al. 2021).

3 Conclusion

In this chaper, we have first recall the theoretical notions necessary to describe the interaction
between light and an atomic ensemble. In the second part, we have explained the different
types of numerical simulations that can be performed to make reliable predictions about our
systems, even if the models are not analytically solvable.
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Experimental setup
***

In this chapter, we first explain how to optically trap cold atoms. The experimental setup
is then described in its main parts. In the last section, we present how a closed two-level
transition is isolated using optical pumping and magnetic fields.
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1 Trapping and observing cold atoms

1.1 Trapping cold atoms in an Optical Dipole Trap

Dipolar potential

|g 〉

|e〉

ω

∆

Γ

Figure 2.1: Parameters of the
problem. The 2-level atom is
driven by an electric field of fre-
quency ω with detuning ∆.

As seen in the first chapter, an electric field E with fre-
quency ω applied on an atom induces an atomic dipole

d =αE (ω)

where α is the complex polarizability. The interaction po-
tential of the induced dipole moment in the driving field is
given by the time average

Udip =−1

2
〈d.E〉 =−1

2
Re(α)|〈E〉|2 ' ħΩ2

4∆

where we have introduced the Rabi frequencyΩ= |d.E|/ħ,
used the expression of the polarizability (eq. (1.3)) and ∆
the detuning, as represented in figure 2.1. The formula
above is valid under the assumption of low saturation and
large detuning ∆À Γ.

The saturation intensity Isat is defined by
I

Isat
= 2

(
Ω

Γ

)2

.

For the D2 line of 87Rb, Isat = 1.67mWcm−2. One writes the potential as a function of the field
intensity,

Udip = ħΓ2

8∆

I

Isat
.

Considering the D1 and D2 lines of 87Rb, one notices that ΓD1 = 2π×5.7MHz ' ΓD2 = 2π×
6.1MHz, and that I D1

sat ' I D2
sat . We write ∆1 the detuning to the exited state (5P1/2) and ∆2the detuning to the exited state (5P3/2), as represented in figure 2.2. With the appropriate

Clebsch-Gordan coefficients, for a π-polarized electric field, one shows that
Udip = ħΓ2

8

I

Isat

(
1

3∆1
+ 2

3∆2

)
. (1.1)

Amore detailed description of the potential for arbitrary light polarization is given in the thesis
(Fuhrmanek 2011).

From the expressions above, it appears that light can be used to create a potential whose
depth is proportional to the intensity of the light. Experimentally, the focused laser beams
used to create optical traps are Gaussian beams. Their intensity dependence will determine
the trapping potential landscape. The following part proposes some reminders on such traps,
as in (Brossard 2019).
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Figure 2.2: Hyperfine structure and transitions considered for the D1 and D2 lines. The
laser light (polarization π) can coupled different Zeeman sublevels with each other. We
call ∆1 and ∆2 the detunning with respect to the D1 and D2 line, respectively.
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Figure 2.3: Parameters of a Gaussian beam.

The electric field of a Gaussian beam E(r, z) (under the paraxial approximation) has for
expression, assuming a polarization in the x-direction and apropagation along the z-direction,

E(r, z) = E0
w0

w(z)
exp

( −r 2

w(z)2

)
exp

(
−i kz − i k

r 2

2R(z)
+ iψ(z)

)
ex .

In the expression above, r is the radial distance from the center axis of the beam, z is the
axial distance from the focus, k = 2π/λ, E0 is the electric field amplitude. We define the waist
w , the radius of curvature R and the Gouy phase ψ by
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w(z) = w0

√
1+

(
z

zR

)2

,

R(z) = z

[
1+

( zR

z

)2
]

,

ψ(z) = arctan

(
z

zR

)
,

as represented in the figure 2.3. w0 is the radius of the beam at the focus and zR = πw 2
0

λ is the
Rayleigh range. The light intensity can be computed from this, using I = 1

2ε0c|E|2. It gives
I (r, z) = I0

1+ (z/zR )2 exp

(
− 2r 2

w(z)2

)
.

The intensity at focus I0 is related to the beam power P by I0 = 2P
πw 2

0
. Using equation (1.1), the

trapping potential has the same shape than the beam:
U (r, z) =− U0

1+ (z/zR )2 exp

(
− 2r 2

w(z)2

)
. (1.2)

where U0 = −ħΓ2

8∆
I0

Isat
> 0 when ∆ < 0. Given expression (1.2), the potential is attractive (re-

pulsive) for a red- (blue-) detuned trapping laser. When Γ¿ ∆, the spontaeous emission is
negligible and the potential is conservative, creating an optical dipole trap. In the attractive
case, near the trap center, the potential is approximated by a harmonic potential whose radial
and axial oscillation frequencies are

ωr =
√

4U0

mw2
0

ωz =
√

2U0

mz2
R

.

(1.3)

Using the equipartition theorem, one determines the size of the cloud of the temperature T
inside the trap as a function of the trap parameters,

σr = w0

√
kBT

4U0

σz = zR

√
kBT

2U0
.

(1.4)

In most of the current experiments using cold atoms, they are first cooled (Phillips and
Metcalf 1982; Joffe et al. 1993) and trapped in amagneto-optical trap (Lett et al. 1988; Helmer-
son et al. 1992). This trap is then used as a reservoir of atom to load dipole traps (Grimm et al.
2000; Kuppens et al. 2000). Let us now present the experimental system in its broad outline.
1.2 Brief overview of the setup

The general architecture of the experiment is relatively usual for a cold atom experiment.
The principle of the different parts necessary for the cooling of a rubidium vapor: oven, Zee-
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man slower, magneto-optical trap (MOT) can be found for example in (Foot 2005) and is not
detailed here. This part aims at showing briefly the layout of the experiment and its specifici-
ties. In the experiment, theMOT ismade of three perpendicular pairs of counter-propagating
maser beams with diameter 1cm and a magnetic gradient created by a pair of vertical coils
in anti-Helmholtz configuration. The cold atoms, slowed down at the oven exit by a Zeeman
slower, are captured by the MOT. The MOT is then used as a reservoir of atoms to load the
dipole trap, which is created by strongly focusing an off-resonant laser via aspheric lenses.
In-vacuum system

to EMCCD
Axial imaging

to EMCCDTransverse imaging

to APD ⊥to APD ‖
zTrap

rTrap

yMOT

xMOT

zMOT ∥ g

MOT

Trap
A.L

D.M

Vacuum
chamber

Z.S

Figure 2.4: Schematic of the experimental setup. See description in the text. A.L stands
for aspherical lens, D.M for dichroic mirror and Z.S for Zeeman slower. The plane that
contains xMOT, yMOT and zTrap is horizontal, therefore perpendicular to gravity g. zMOT

is parallel to g and the axis formed by the last 2 aspherical lenses rTrap is at 45° from the
horizontal and the vertical.

As shown in figure 2.4, our experimental system is composed of four aspherical lenses
in the "maltese cross" configuration (Bruno et al. 2019). This configuration consists of two
pairs of confocal lenses whose axes intersect at 90°. These lenses are placed under vacuum
so as to be as close as possible to the atoms and to avoid optical aberrations that would be
introduced by the viewports (Y. R. P. Sortais, Marion, et al. 2007). The high numerical aperture
diffraction-limited lenses (N A = 0.44) allows us to focus the trap beams on diameters of a few
micrometers (Glicenstein, Ferioli, Brossard, et al. 2021) in order to realize tight optical tweez-
ers. The performances of the optics have been carefully tested and the results are detailed
in the thesis (Brossard 2019). The lenses are manufactured by Asphericon ®1. Their diam-
eter is 2cm, making the working distance (15mm) sufficient for the horizontal beams of the

1part number AHL25-20-S-U



Ch. 2- Experimental setup

36

magneto-optical trap to cross at 90° (see figure 2.4). The purpose of this configuration is to
facilitate the alignment and stability of the MOT, while limiting the amount of stray light scat-
tered by the elements inside the chamber: lenses, lens holders, coils, RF antenna,etc. even
using beams with a diameter of 1cm. In the other experiments based on two confocal as-
pheric lenses operated by our group, past (Fuhrmanek 2011) and present (Béguin 2014; K.-N.
Schymik et al. 2021), the horizontal MOT beams cross each other with an angle of about 50°
and have a much smaller diameter, less than 5mm, making the alignment more tedious and
less stable. Contrary to these setups, we almost never have to re-align the MOT beams, and
the position of theMOT is only controlled via the power balance between the different beams
and the bias magnetic field, tuned by the compensation coils (not represented in fig.2.4).

The vacuum chamber, manufactured by Kimball Physics is a truncated sphere of diameter
20cm and height approximately 15cm which comprises 9 CF40 viewports and one 20cm hor-
izontal window on top, offering high optical access for trap, MOT and Zeeman slower beams
(Brossard 2019) .

The system also contains a pair of in-vacuum coils whose axis is parallel to the vertical
axis of the MOT The purpose of these coils is to generate the magnetic field gradient of the
MOT but also to be able to generate a homogeneous magnetic field strong enough to lift the
degeneracy of the Zeeman structure of the atoms and to place them in a regime where they
can be considered as two-level atoms, according to a method that will be explained later in
this chapter. The advantage of placing the coils in vacuum is to reduce their inductance, allow-
ing them to commute as fast as possible between Helmoltz and anti-Helmoltz configurations.
However, heating induced by the high current (typically 20A) leads to possible displacements
of the lens supports due to the change of temperature, which would cause a defocus of the
aspherical lenses. The characterization of the coils is in (Brossard 2019).

Finally, the vacuum chamber is also equipped with a microwave antenna 1. This antenna
is intended to addressmore efficiently the atomic hyperfine transitions than if it were outside
the chamber. Indeed, placing it inside reduces the distance to the atoms and avoid possible
shielding by the metallic chamber and lens holder.

The ultra-high vacuum environment, under a pressure of some 5×10−11 mbar, is main-
tained by one ion pump and a titanium sublimator.

Laser intensities

The experimental system requires several lasers of different power and wavelength. The goal
of this part is to give orders of magnitude of the laser powers necessary for our experiment.
Lasers are first needed for atom cooling and magneto-optical trapping.

The cooling beams come from a tapered-amplifier laser 2 whose frequency is controlled
by saturated absorption on the D2 transition of wavelength λ0 = 780nm. The exact frequency
of the different beams is adjusted using acousto-optical modulators. The pumping beams
come from a laser diode 3, whose frequency is also fixed on the D2 transition. The cooling
and pumping beams are then coupled into fibers before being fed into the science chamber.
After shaping the beams, their diameters and polarizations, the typical intensities of the (1cm)
beams when they arrive on the atoms are :

1Allectra® 380-SMA-MX-5002Toptica® TA pro3Toptica® DL100
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MOT/beam Zeeman
Cooling (mW) 2 6

I /Isat 3 10
Repumper (mW) 0.7 3

I /Isat 1 5
An extra laser diode1 of wavelength λ0 is used to probe (drive) the system for light scatter-

ing experiments. Depending on the configuration, in particular whether this beam is strongly
focused through an aspherical lens or not, saturation parameters up to several thousand are
obtainable. Unlike the other diodes in our experiment, one arm of the saturated absorption
spectroscopy is modulated via an AOM. This allows us to operate with a reduced spectral
width from about 1MHz to 100kHz with respect to the case where the current of the laser is
modulated. The light used for saturated absorption is shifted by a double-pass AOM (offset-
lock) allowing to tune the laser frequency on tens of MHz without power variation. A last
diode with a wavelength of 795nm, on the D1 transition, is used for optical pumping and
grey molasses (see chapter 3). In summary, cooling and trapping atoms in the MOT, while it
requires several lasers, does not require laser power higher than a few mW.

Now that the experimental setup is outlined, we will then look in detail at two of its main
parts: the high-resolution imaging system and the trapping system, whose size is dynamically
variable.
1.3 The imaging systems

As explained in the previous section,the atomic ensembles are observed along two perpen-
dicular axes noted zTrap and rTrap in figure 2.4. These axes correspond to four possible di-
rections of observation thanks to the 4 aspheric lenses. Among these directions, we choose
to use for each axis one direction for spatial imaging, using a camera, and the opposite di-
rection to align an avalanche photodiode (APD), allowing to record the time dependence of
fluorescence from the atoms. The two different APDs are noted APD ∥ and APD ⊥ accord-
ing to whether it is placed along the trapping axis or at 90°. The fluorescence lights collected
along the two axis are combined for both axes on the same CCD camera2. This camera is an
electron-multiplying CCD (EMCCD) whose high gain and low noise ensures single photon sen-
sitivity. The fluorescence emitted by the atoms is separated from the dipole trap light(along
the zTrap axis) by means of dichroic mirrors. A standard CCD camera is also available for the
observation of the MOT through the top window.

Let us now discuss in more detail the imaging systems. These are designed to observe
single atoms in both directions. Indeed, a tool often used by our group for nearly 20 years
is the trapping of single neutral atoms (Schlosser et al. 2001) in dipole traps and their use to
characterize these traps (Y. R. P. Sortais, Marion, et al. 2007; Tuchendler et al. 2008).
Trapping single atoms using light-assisted collisions

Near-resonant light shone on atoms trapped in an optical tweezer induces an interaction and
collisions, which lead to the loss of the trapped atoms. Let us first consider two atoms in their
internal ground state. As represented in figure 2.5, their interaction potential as a function of

1Toptica® DL1002Andor® iXonEM+ 897 (back-illuminated)
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the interatomic distance is given by U (R) =UIA(R)+UCB(R) where UIA(R) is the interatomic
Lennard-Joes potential, composed of a repulsive hard-core potential plus an attractive longer
range van-der-Walls contribution (Cohen-Tannoudji et al. 2012), UIA(R) = C12/r 12 −C6/r 6.
UCB(R) = ħ2l (l+1)

2mR2 is the centrifugal barrier. For l > 0, this barrier prevents the atoms from
colliding.

UIA(R) =C12/r 12 −C6/r 6

Interatomic distance, R

∼−C6/r 6

U (R)

Interatomic distance, R

barrier

Figure 2.5: Left pannel : interatomic potential UIA(R) as a function of R. This potential
has bound states. Right pannel : an atom with l > 0 does not collide with another atom
if its kinetic energy is lower than the centrifugal barrier.

The atoms trapped in our dipole traps have a temperature below 1mK. In this regime,
the s-wave collisions, for which l = 0, are dominant (represented on the left panel of the previ-
ous figure). However, as we will see when we are interested in our densest clouds, d −w ave
scattering must also be taken into account (Buggle et al. 2004). Let us now consider colli-
sions in the presence of quasi-resonant light, following (Gallagher and Pritchard 1989; Fung
et al. 2016). The scattering potential between two atoms in their ground state (S+S) 52S1/2 is
Ug (R) '−C6/R6. In the presence of light, the pair can absorb a photon and wemust consider
the first excited molecular state 52S1/2 +52P3/2 (D2 line), denoted S +P . In that case, the po-
tential isUe (R) 'ħω0 ±C3/R3, where ħω0 is the energy of the transition and CR is a constant
that quantifies the resonant dipole interaction (Fuhrmanek 2011). This potential can there-
fore be repulsive or attractive depending on the relative phase of the two dipoles. When the
driving light is red-detuned (∆ = ω−ω0 < 0), the pair is thus resonantly excited towards the
attractive potential, see figure 2.6.

When the interatomic distance R approaches the Condon point Rc =
(

C3
ħ∆

)1/3, the driving
light is resonant with the transition, step 1) in figure 2.6. The two atoms then accelerate
towards each other due to the attractive potential (step 2)). At position Rs , a spontaneousemission occurs, resulting in a gain in kinetic energy ∆E (step 3). If the gain ∆E is larger than
the trap depth, the atoms are expelled from the trap. This effect is known as radiative escape.
The collision loss rate can be large and is not adjustable. Indeed, the energy gain depends
on the difference Rc −Rs (see figure 2.6), which is random as it is dictated by spontaneous
emission. Our group has quantified the light-assisted two-body losses, finding a two-body
losses coefficient β = 3×10−8 cm3 s−1. The high losses due to light assisted collisions lead
to the phenomenon of collisional blockade in micro-meter scale optical tweezers (Schlosser
et al. 2001; Y. R. P. Sortais, Fuhrmanek, et al. 2012). By this process, in a trap of volume
V ∼ 1µm3, on average τ = 1

nβ ∼ 100µs after a second trapped atoms enters a trap that is
already occupied, the atoms experience an inelastic collision whose energy gain ejects both
out of the trap. τ¿ 20ms, which is the typical time needed to acquire enough fluorescence
signal to determine if one atom is trapped or not ( see next section). An optical tweezer thus
contains either 1, or zero atoms. The loading efficiency of a single atom in the tweezer is thus
limited to 50%.
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Ug (R)

Ue (R) ħω0

S +P

S +S

ħ∆
∆E

Interatomic distance, R
RcRs

1)
2)

3)

Figure 2.6: Light-assisted collision for the attractive part of the excited state potential.
A photon may be absorbed when the interatomic distance is Rc (1). The atoms are then
attracted each other due to the potential (2), before the photon is spontaneously emitted
at R = Rs(3). The kinetic energy gain ∆E can be sufficient to expel the two atoms from
the trap.

Observing single atoms along 2 directions

Being able to observe a single atom requires a proper design of the imaging system (Y. R. P.
Sortais, Fuhrmanek, et al. 2012), with a large numerical aperture to collect the maximum
number of photons. The systemmust act (in photometric terms) as a flux collector, i.e. all the
photons collected must arrive on the same pixel of the camera. Indeed, this does not dilute
the flux on several pixels and therefore maximizes the signal to noise ratio, the noise being
essentially identical for all pixels (mainly due to the read-out noise of the EMCCD). Assuming
that the system is limited by diffraction, the radius of the Airy spot imposed by the finite
aperture of the lenses is

rAiry =
1.22λ0

2N A
∼ 1µm

using λ0 = 780nm and ON = 0.44. One typically fixes as starting criterion that the image of
one Airy spot in the plane of the atoms is conjugated with one pixel (size p2 = 16µm×16µm).
The transverse resolution of the imaging system will thus be 2dy’' 1µm.

This resolution is satisfactory, but experience shows that to find the atomic signal in the
first place, it is easier to observe a slightly larger field on each pixel, say 2dy’ = 2.5µm. We
choose this resolution on the horizontal axis and a resolution of 1µm on the transverse axis
(see figure 2.4).

We therefore choose themagnifications g y = p/dy’ along the two axes where p is the pixel
size and 2dy’ is the image of one pixel on the atom’s plane. Actually, one pixel receives the
light from 2dy’ and the light coming from the small distance dε, as represented in figure 2.7.
This corresponds to the depth of field of the imaging system. It is clear that

tan
(
α′)= tan(0.44) = dy′

dε
.
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dy’
dε

F’.

Figure 2.7: Schematic representation of the relation between resolution dy’ and depth of
field dε.

It gives
Axial Transverse

Magnification g y 6.4 16
Resolution 2dy’ (µm) 2.5 1
Depth of field dε (µm) 2.7 1.1

In the rest of this manuscript, the "axial" and "transverse" axes correspond to the axes
along zTrap and rTrap respectively. To verify the magnification values, calibrated pinholes
placed in a plane conjugate to that of the atoms are used (the atoms being inaccessible be-
cause inside the vacuum chamber). The values obtained are then compared to those pre-
dicted by the design and an error of 6% is found.

Another test performed is to measure the relative displacement of the horizontal axis
with respect to the transverse axis. The same atom is thus observed in both directions. By
moving the trap, one measures the relative displacement of one imaging axis with respect to
the other. This measurement is plotted in figure 2.8. A linear fit yields a slope of 3 instead
of 2.5, which corresponds to an error of 20%. We do not take into account here the optical
aberrations related to the limited fields of the two imaging systems.

The measurement above requires to trap single atoms, to be sure that the same object is
observed on the two directions. In order to verify that one atom and one atom only is in the
trap, the fluorescence emitted by this atom is collected. Typically, we distinguish this signal
from the noise, which is mostly due to the light of the MOT beams scattered in the science
chamber and to the atoms trapped in the MOT, when illuminating the atom with the MOT
beams, detuned by −3Γ with respect to the transition, during 20 to 50ms.

Over time, the received signal has the form of a ”square” wave. An example is given in
figure 2.9, panel a). A high signal indicates that an atom is trapped. When the level is low,
the background is measured (there is no atom in the trap). If one plots the histogram of the
data (panel b), one see the two levels and can determine a threshold, represented in dotted
lines, above which an atom is trapped. As expected in the blockade regime, there are never
two atoms trapped at the same time, which translates into the absence of a second level on
the histogram. So it is known at any time if an atom is in the trap. This is done along both
axes. We verify that the signals are correlated. Measuring the fluorescence along both axes,
the same atom is thus observed in both directions.
Atom number calibration

An important parameter for our experiments with many atoms is the number of atoms
N in the trap. For a cloud with N > 2, it becomes complicated to use histograms as ex-
plained previously. The method we rather use is that we divide the fluorescence of the
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Figure 2.8: Measurement of the relative displacement of the imaging systems. This gives
the ratio of the magnifications. By fitting with a line, we find gtransverse

gaxial
= 3, which is close

to the theoretical value of 2.5.

cloud by the fluorescence signal of a single atom. A precise measurement relies on a
precise calibration of the signal emitted by an atom, as we will now explain. Moreover,
in the general case, the fluorescence emitted by an atomic cloud containing N atoms is
not equal to the sum of the fluorescence emitted by N independent atoms. If the cloud
has a high optical density, the effect of the absorption in the cloud cannot be neglected.
When the cloud is dense, as is the case for the systems we study, the atoms interact by
dipole-dipole interaction. This leads to a shift in the frequency of the resonance, and
a strong suppression of the scattered light (Pellegrino et al. 2014; Jenkins et al. 2016).

20ms control image 10µs image//
EMCCD

// Probe
// Trap

10µs Tof t

Figure 2.10: Chronogram of the calibration from the
atom number measurement, using the fluorescence of
a single atom. The MOT beams, used for the control
image, are not represented.

To count the number of atoms,
one must therefore ensure the
atomic cloud is very dilute to avoid
these systematic effects. This is
done by letting the cloud spread in
free flight, without a trap. A time-
of-flight (Tof) of 10µs is choosen,
which ensures both that the cloud
is sufficiently dilute. Starting from
our densest cloud containing 2500
atoms at a temperature of 700µK,
with peak density n0/k3

0 ∼ 2 (see
chapter 5), the density drops by
one order of magnitude and we
have verify that the obtained atom
number is the same as the one ob-
tained with a five-time-longer time
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Figure 2.9: a) Fluorescence from a single atom collected on the horizontal axis as a
function of time with the EMCCD. All light emitted by the atom arrives on the same
pixel (insert). b) Histogram of the data from panel a). In both pannel, the threshold to
determine the presence of a single atom is plotted as a dashed line.

of flight, after which the cloud is even more dilute (n0/k3
0 ¿ 1). In 10µs, the cloud has spread

by less than 3µm, which ensures it remains in the field of view of the imaging systems.
The collection efficiency of our entire imaging system is calibrated using the fluorescence

of a single atom. Using experimental signal as the one shown in figure 2.9, the sequence starts
when an atom is in the trap (the signal is then above the threshold). The MOT cooling beams
and magnetic gradient are then turned off. We then take a "control" image by turning on
only the MOT beams for 20ms (see Fig.2.10). This image is used to post-select the sequences
in which an atom was trapped (despite the triggering on the atomic signal, it may be lost
before being used in the sequence). Resonant light for 10µs is then sent, trap off, after 10µs
of free flight and record the image. This sequence is repeated many times ( more than 10000
times), until, keeping only the sequences where an atom was actually present in the trap, a
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standard error of 10% on the signal is obtained. We find that the signal of an atom observed
along the horizontal axis with the protocol described above is 175 counts on the EMCCD.
This corresponds, according to the camera specs, to 5 photons received during ∆t = 10µs. A
strong and resonant probe is used, the number of emitted photons is thus

nphot =
Γ

2
∆t ' 188.

This corresponds to a collection efficiency of about 2.5%. The efficiency of the transverse axis
is a bit lower, around 2%. This number is well explained by the collection angle of aspherical
lenses

dΩ

4π
= 1−cos(N A)

2
∼ 5%,

the quantum efficiency of the EMCCD (85% at λ0) and the transmission of the optical ele-
ments: mirrors, lenses, dichroic mirrors, interferometric filters, etc.

To conclude, the originality of our imaging system is the possibility to observe in two per-
pendicular directions, and thus to perform in-situ measurements of the size of our atomic
ensembles. This will be used in the next chapters of this manuscript.

1.4 The OptoTelescope

The dipole trap is realized using a titanium-sapphire laser 1 pumped by a Verdi 2 of maximum
power 18W at a wavelength of 532nm. The chosen wavelength is λTrap = 940nm in order to
limit the Raman scattering by the trap photons(Brossard 2019). The output power of the laser
is about 1W, and about 280mW on the atoms. Using the results of Section 1.1 and taking a
wait at focus w0 = 1.8µm, this results in traps with a maximum depth

U0 ' kB ×12mK ' h ×270MHz

This depth is high enough to capture relatively hot atoms with a limited laser power. We
will see that the temperature of our densest clouds is about 700µK. As a comparison, the
temperature of the single atoms trapped from theMOT is about 100µK,requiring trap depths
around 1mK.

Our experimental setup includes a telescope with a controllable magnification in the
dipole trap beampath, that we name in the following OptoTelescope (OT) (Glicenstein, Ferioli,
Brossard, et al. 2021). This telescope is composed of two 1-in. lenses whose focal length
is controlled by a current. The lenses are manufactured by OptoTune®3. This telescope
is used to dynamically change the waist of dipole traps (Léonard et al. 2014). To do this,
we change the size of the incident beam on the aspherical lens, which serves to focus it
and form the trap. At the input, a beam of diameter about 1mm is used, which allows
us to limit the aberrations in the OT. The lenses are subjected to gravity as they consists
of a container which is filled with an optical fluid and sealed off with an elastic polymer
membrane. The deflection of the lens is proportional to the pressure in the fluid, controlled
by an electromagnetic actuator. The aberrations due to gravity are minimized by placing
the lenses vertically. The OT is designed to allow varying magnification between 1 and 3.5.

1Coherent® MBR2Coherent® G183Part No. EL-10-30 Series
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This choice results from a compromise between a high dynamical range of magnification,
and trying to have the smallest possible trap waist. The OT is followed by a 4×-telescope to
obtain the correct beam sizes at the input of the asphere. We measure a total transmission
of 75% at λTrap = 940nm (measured up to 700mW in input). The focal length of the lenses
can be controlled via a driver, which includes a temperature correction. The variation of the
focal length as a function of temperature is pre-calibrated by the manufacturer over a range
from 10 to 50°C, which allows us to compensate for the heating of the laser and the control
power.
OT characterization using trap depth measurement

As seen in equation (1.1), the depth of an optical trap scales as U0 ∝ P/w2
0 . This means

that one can measure the waist by measuring the trap depth. A trapped atom is used for
this purpose. For a given power of the trapping beam, we measure the shift of the atomic
transition compared to the case without trap. The transition from (5S1/2,F = 2,mF =+2) to(
5P3/2,F ′ = 3,mF =+3

) is used because it can be shown that in this case, the excited level
is not light-shifted by a π-polarized trap. The measured shift is therefore directly the trap
depth. To measure the frequency of the resonance, the sequence represented in figure 2.11
is applied. It starts with a trapped atom and ramp the trap power to a low value. This ensures
that atoms are easily lost from the trap when excited with resonant light. A probe whose
frequency is controlled is then sent. When the probe is resonant with the atom in the trap,
the atom is pushed out of the trap. An image is then taken to measure the probability of
keeping the atom in the trap, called "recapture probability", as a function of the push-out
beam frequency. As seen in figure 2.12 a), we find that this probability is well fitted by a
Lorentzian function, centered on the frequency of the shifted resonance. This sequence is
repeated 50 times for each frequency.
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Figure 2.12: a) Loss spectrum for a given trap beam power, with a lorentzian fit of the
data. b) Shift of the resonance as a function of the trap beam power, with a linear fit of
the data.
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Figure 2.11: Chronogram of the trap depth
measurement. The control and recapture im-
ages are done using the MOT beams for 20ms.

Using equation (2.7), we have
U0 =

ħΓ2

8

2P

πw2
0 Isat

(
1

3∆1
+ 2

3∆2

)
∝ P. (1.5)

By fitting the resonance shift as a function of
the beam power, 2.12b) with a linear func-
tion, one can thus determine the waist w0.The obtained value can be confirmed by the
measurement of the radial oscillation fre-
quency, ωr . Indeed, we have (1.3)

w0 =
√

4U0

mω2
r

.

The principle of this measurement is ex-
plained in (Brossard 2019).The described

method is used to measure the waist of the trap as a function of the OT magnification, as
shown in figure 2.13.
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Figure 2.13: Dipole trap waist as a function of the OT magnification. The diffraction limit
1.22λTrap/2N A ' 1.15µm is indicated as the smallest trap achievable with the apparatus.
The solid line corresponds to the expected size.

We are thus able to dynamically change the size of our trap between from 1.6µm to about
4.3µm, in agreement with the theoretical values calculated using gaussian optics. Figure 2.13
is replotted from (Glicenstein, Ferioli, Brossard, et al. 2021).

Limitations

One limitation of the OT comes from the step response of the lenses. Depending on the
step amplitude, this time is between 2 and 4ms, and it takes about 15ms for the lens to be
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stabilized. We plot in figure 2.14 the values given by the manufacturer1.

Figure 2.14: Typical optical response of the EL-10-30 a current step, from OptoTune®

website.

This requires to be careful with the choice of steps when trying to dynamically change
the size of the trap with atoms in it. The number of steps and their amplitude result from
a compromise between speed ( to minimize the losses due to collisions, see chapter 5) and
smoothness ( to limit losses due to the overshoots of the step response, see figure 2.14).
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Figure 2.15: Axial displacement of the center of the trap as a function of the OT
magnification.

Another important limitation is the longitudinal displacement induced by the change of
magnification. Indeed, the output beam of the OT is not perfectly collimated for all the mag-
nifications. That implies that the position of the waist after the aspherical lens is not exactly
in the focal plane resulting into a longitudinal displacement. Figure 2.15 shows the displace-
ment of the center of the trap measured using the transverse imaging system described in
section 1.3. This might be corrected for by adaptating slightly the focal length of the second
OT lens to adjust the beam divergence. When compressing the beam dynamically to load

1https://www.optotune.com/el-10-30-tc-lens
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dense traps, as explained in chapter 5, we don’t use waists larger than 2.5µm to avoid signif-
icant heating and thus atom losses due to the trap displacement.
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2 Preparation and characterization of a 1D atomic chain

In chapter 4, we will study the collective interferences in a 1D atomic chain. This section is
devoted to the preparation and the characterization of this chain.
2.1 Preparation of the chain

zTrap

Excitation (λ0)

λtrap = 940nm

Figure 2.16: Schematic of the experimental setup. The 1D optical lattice is produced by
retroreflecting the trapping beam. The light at wavelength λ0 = 780nm is separated from
the light at wavelength λtrap using a dichroic mirror, and is therefore not retroreflected.
The axis zTrap refers to figure 2.4.

To prepare a chain, a 1D optical lattice is produced by retroreflecting a trapping beam
(λTrap = 940nm) using the second aspherical lens of the same axis (see figure 2.16). The ob-
tained lattice has an intersite spacing λtrap/2 = 470nm. The radial confinement is ensured by
the tight focusing of the beams (w0 ∼ 3µm). The mirror used for the retroreflection is placed
in a plane conjugated to the waist of the incoming beam such that the two beams focus at
the same position. The retroreflected beam intensity is 50% of the intensity of the forward
propagating beam due to the transmission of optical elements. It creates an optical lattice
with an inhomogeneous depth, as represented in figure 2.16.

10µm

Figure 2.17: Average image of the fluorescence collected by the transverse imaging axis.

The chain is loaded from a 3D MOT superimposed to the lattice and then using a 200ms
pulse ofΛ-enhanced gray molasses on the D1 line (see Chapter 3), the MOT beams and mag-
netic gradient being switched off. At this stage, the lattice is filled with more than one atom
per trap. We then switch back on the MOT beams for 5ms to induce light-assisted collisions.
After this step, one or zero atom remains in each site. This also eject the atoms out of the
shallowest traps. At the end of the loading sequence (at most) the 200 central lattice sites
are loaded, with an average filling η = 0.5±0.1 measured by comparing the fluorescence of
the chain with that of a single atom (section 1.3). The interatomic distance is thus on aver-
age 〈rmn〉 ' λtrap ' 1.2λ0 with λ0 = 780nm. The atoms are then optically pumped in the
(5S1/2,F = 2,mF ) state (section 3.2) with the quantization axis aligned with the chain with an
efficiency larger than 99% . The quantization axis is set by a 0.5G magnetic field. This value is
much smaller than the 50G used for the 3D study (section 3.2), but is however large enough
to isolate the two level transition in the 1D geometry.

We find that the loading efficiency is improved compared to the direct loading from the
MOT ( ∼ 0.25), as explained in chapter 3, section 1. The loading is also more robust to mis-



Section 2 Preparation and characterization of a 1D atomic chain

49

alignment and daily fluctuations than when using the MOT. The fluorescence emitted by the
chain under a 20ms excitation of the MOT beams is collected using an aspherical lens in the
transverse direction, rTrap in figure 2.4. A typical example of atomic chain is shown figure
2.17. In this figure, 50 images have been summed to average over the random filling. As the
resolution of the imaging system is ∼ 1µm > λtrap/2 (see section 1.3), the individual sites are
not resolved.

2.2 Controllable length
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Figure 2.18: Cuts of fluorescence along the chain, for various chain lengths (for various
w0).

The length of the chain is set by the Rayleigh range zR = πw2
0/λtrap, which is the range

where the beam intensity is large enough to trap atoms. As shown in Section 1.4, we are able
to vary w0 using the OptoTelescope. This leads to chains with different lengths and atom
number. The trapping beam power is adapted to keep the depth at the center of the chain
at U0/kB ∼ 1mK. In figure 2.18 are shown cuts of fluorescence along the chain for various
lengths, the longest having length of ∼ 100µm, corresponding to ∼ 200 sites.

2.3 Oscillation frequencies

control recapture

Imaging

Trap
t

Figure 2.19: Chronogram of the oscilla-
tion frequencies measurement. The con-
trol and recapture images are done using
the MOT beams for 20ms.

To characterize the chain, radial and longitudinal
trapping frequencies ωr and ωz are measured
using parametric heating. The sequence is rep-
resented figure 2.19. Starting with a filled chain,
the trapping beam intensity is modulated with
a relative amplitude of 5% during 100ms using
an arbitrary waveform generator. When the fre-
quency of the modulation is equal to 2ωr or 2ωz ,losses are induced.Since the waist varies along
the chain, the oscillations frequencies depend on
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the position. Two fluorescence images are taken (one before modulating and the second af-
ter) to estimate the losses. For each modulation frequency, this sequence is repeated 50
times to average over the chain filling. The atomic losses as a function of the modulation
frequency are shown figure 2.20. The oscillations frequencies can be calculated using the
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Figure 2.20: Parametric losses along the chain, exciting the axial oscillation ωz (a)
and the radial oscillation ωr (b). The solid lines are the calculated values using the
experimental parameters (see text).

experimental parameters: the trap beam has a power P = 140mW (the retroreflected beam
thus has a power P = 70mW) and its waist is w0 = 3.3µm. The trap depth at the center of the
chain is given by U0 =− ħΓ2

8∆Trap

I0
Isat

with I0 = 2P
πw 2

0
and ∆Trap = 2πc

(
1
λ0

− 1
λTrap

) (section 1.1). With
theses parameters, one expects

ωz =
2

ħ
√

U0ER ' 2π×1MHz

where ER = ħ2k2

2m is the recoil energy and

ωr =
√

4U0

mw2
0

' 2π×70kHz

at the center of the chain. The trap depth is then calculated for every position z using
equation (1.2) and the oscillation frequencies using equations (1.3). The results are plotted
figure 2.20 and are in very good agreement with the measured values.

The different lines reported in panel a) are given by 2ωz /p with p integer. Losses are
observed at these frequencies since the amplitudemodulation is not perfectly sinusoidal and
thus contains higher-order harmonics at ω, 2ω, ... pω. One thus observes parametric losses
when pω= 2ωz . The losses on the chain edges (where the trap is the shallowest) are due tothe imaging light during the first image, which expel the atoms.
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The perfect agreement between calculations andmeasurements shows that the prepared
system is well controlled. The radial confinement (waist) and the trap depths are in particular
well-known along the chain.

2.4 Temperature and radial extension

The temperature T of the atoms is obtained by time-of-flight. One obtains T = 80(20)µK,
yielding a transverse widthσr,0 ' 300nm ' 0.38λ0. During the sequences, atoms are released
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Figure 2.21: Effect of pulsing on the radial distribution a) using a single 10µs pulse in
free flight b) using the 50×200ns release and recapture sequence. The initial distribution
is plotted in blue.

in free flight for imaging and then recaptured. We typically apply 50 pulses of 200ns between
which we recapture the atoms for 200ns by switching the trapping beams on. This ensures
to collect a sufficient signal and that the chain does not expand significantly. The effect of the
pulsing on the radial size of the cloud is investigated by running simulations of the atomic
motion during the sequence.

In the simulations we consider only the release and recapture of the atoms, not the heat-
ing induced by the resonant light. Indeed, the total recoil heating during ∆t = 10µs is

∆T = Γ
2

s

1+ s
Tr∆t ∼ 2µK ¿ T

using s = 0.3 and the recoil temperature Tr = ħ2k2

mkB
.

For the simulations, we first chose randomly the position and velocity of an atom accord-
ing to a thermal distribution of temperature T = 80µK in a harmonic trap of depth 2.5mK
and with trapping frequencies ωz and ωr . In the first case, we let the atom in free flight for
10µs and record its position. The sequence is repeated 1000 times to obtain the distribution
shown in figure 2.21a). In a second case, we simulate the sequence of 50 times 200ns pulses.
During the pulses, the atom is released in free flight. Between each pulse, the atom is recap-
tured (the displacement of the atoms during the free-flight is about 20nm, thusmuch smaller
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than w0 = 3.3µm, so they are all recaptured at each pulse) and it oscillates in the trap during
200ns. By repeating this sequence 1000 times, one obtains the distribution figure 2.21b) .

We see that the radial ditribution of the cloud doesn’t vary over the usual release and
recapture sequence, contrary to the 10µs continuous sequence. The parametric heating in-
duced by the pulse train is negligible (less than 5% of atom lost) thanks to its high frequency.

3 Control of the atomic internal state

Once the atoms are trapped, we are interested in controlling their internal state, for instance
to isolate a closed two-level transition. This control is realized by applying an external mag-
netic field, and carefully setting the light polarization. The Zeeman effect lifts the degeneracy
of magnetic sublevels (Foot 2005). The objective is to isolate an optical transition between
two Zeeman levels.

3.1 Compensation of the stray magnetic fields

The first thing to do to precisely control the magnetic field on the atoms is to cancel the static
stray fields, mainly due to the Earth magnetic field.

Microwave Rabi oscillations

control image recapture image

EMCCD

Push-out

RF

tMW

t

Figure 2.22: Chronogram of the MW Rabi os-
cillations. The control and recapture images
are done using the MOT beams for 20ms. The
push-out beam is optimized to eject an atom
in the F = 2 state from the trap while an atom
in F = 1 remains unchanged.

The in-vacuummicrowave antenna ( Section
1.2) is used to drive microwave transitions
betweenhyperfine levels of the ground state
5S1/2, F = 1 and F = 2. The goal is then
to use these transitions, which are sensitive
to magnetic fields, to measure and cancel
the residual fields. To determine the hyper-
fine state of a trapped atom, a recapture
sequence is performed based on the use
of an intense push-out beam in resonance
with the (5S1/2,F = 2) to (

5P3/2,F ′ = 3
) tran-

sition. If the atom is in the F = 2 state, it
is ejected from the trap when the push-out
beam is switched on. If the atom is in the
F = 1 state, the beam is far detuned and
the atom is not perturbed. We then take an
image with the MOT beams (cooling and re-
pumper beam) to determine if the atom is
still present (atom in F = 1) or not (in F = 2).
To prepare an atom in F = 1, we shine the

cooling MOT beams without a repumper. The atoms are pumped in F = 1 in a few ms. If
the MOT repumping beams only are turned on, the atom is found in F = 2. The antenna
is then used to induce microwave transitions. The coupling between an atom and the field
radiated by the antenna is measured by performing Rabi oscillations (see fig.2.22). An atom
is loaded in the tweezer, then placed in the F = 1 state as explained above. The antenna is
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then switched on for a time tMW. We send the maximum power available at the desired fre-
quency, ν0 ' 6.834GHz , equal to the energy splitting between the two ground state levels
(Steck 2001). This power is provided by a RF generator and by a 2W amplifier. The exact
microwave power on the atoms is hard to estimate because the emission pattern inside the
science chamber is complex and impedance matching of the amplifier with the antenna is
not fulfilled. The probability of finding the atom in F = 1 as a function of time with the mi-
crowave on tMW is shown in figure 2.23, and shows the expected Rabi oscillations between
the Zeeman sublevels (F = 1,mF = 0) and (F = 2,mF = 0).
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Figure 2.23: Recapture probability, proportional to the probability of finding the atom in
F = 1 as a function of the microwave duration. The data are fitted by a cosine square
and an exponential decay in order to determine the Rabi frequency.

The data are fitted by the phenomenological function
Ae−t/τ cos2

(
2π

fRabi

2
t +φ

)
(3.1)

to extract the Rabi frequency fRabi = 774Hz and the decay time τ= 29ms, indicating a quality
factor Q = τ fRabi = 22. The Rabi frequency corresponds to the coupling between the RF field
and the atom. The decrease is due to the loss of coherence coming from the fluctuations
of the magnetic field. The contrast is reduced by the detection efficiency and by the loss of
atoms during the control and recapture images. To conclude, this measurement shows that
we are able to perform good hyperfine spectroscopy.
Compensation of the stray magnetic fields

Three pairs of "compensation" coils are placed around the science chamber to cancel out
stray magnetic fields. They allow us to create static bias homogeneous fields in all directions.
Let us showcase the optimization for the z direction, using spectroscopy on the hyperfine
ground states with microwaves transitions. The shift of the energy states depends on the
magnetic field amplitude, in particular, there is aminimum shift when the field is atminimum.
For a given current IZ in the coil, the ”loss spectrum” when scanning the MW frequency is
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measured using the recapture sequence. During this sequence, the field is applied for a fixed
time tMW so that the recapture probability is minimal at resonance to optimize the contrast.
We obtain a set of spectra, figure 2.24 a). If we plot the position of the resonance as a function
of the current applied in the coil, we obtain the curve figure 2.24b).
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Figure 2.24: a) Loss spectra for different values of the bias field along z, with lorentzian
fits (dashed lines). b) Shift of the resonance frequency ∆ν as a function of the current
in the bias coil, with a parabolic fit (dashed line) to determine the minimum.

The current to be applied to compensate for the stray fields is thus deduced. By doing
the same with the other two directions ( optimization of IX and IY ), the stray magnetic field
is minimized. However, we have experimentally found that it is not possible to cancel it com-
pletely. Based on the shift from the resonance (fig 2.25), we deduce a residual field of about
B ' 100mG of unknown origin, maybe due to magnetization of an element in vacuum.
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3.2 Preparing a two-level system

Once the magnetic environment is controlled, a 2-level system is prepared by applying a ho-
mogeneous magnetic field and optically pumping the atoms to the Zeeman sub-level of in-
terest in the ground state. The states of interest and the closed transition are represented
Figure 2.25.

266,65MHz

mF ′×0,93MHzG−1

F ′ = 3

F ′ = 2

ν0 = 6,834GHz

mF ×0,70MHzG−1

F = 2

F = 1

−2 −1 0 +1 +2 +3mF ′ = −3

−1 0 +1 +2mF ′ = −3

σ−

5S1/2

5P3/2

Figure 2.25: Zeeman structure and splitting due to magnetic field. The combination of
large magnetic field a σ− polarization allows one to isolate a closed two-level transition.

Optical pumping

We first want as many atoms as possible in the Zeeman sublevel (5S1/2,F = 2,mF =−2) (see
figure 2.25). The optical pumping is two-fold, it repumps atoms from F = 1 to F = 2 (hy-
perfine pumping), and pumps into F = 2,mF = −2 (Zeeman pumping). Zeeman pumping is
performed with a beam resonant with the D1 transition. The repumping beam is on the D2
transition (figure 2.26). Both beams are coupled in the same optical fiber and have the same
polarization. We typically use I = 10Isat for the pumping beamand I = 5Isat for the repumper.
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Figure 2.26: States and transitions used for the optical pumping to
(5S1/2,F = 2,mF =−2). The solid arrows correspond to the stimulated σ− transi-
tions. The curved ones correspond to the other transitions. ZOP : Zeeman Optical
Pumping
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Figure 2.27: Chronogram of the optimization
of the optical pumping.

The efficiency of optical pumping de-
pends strongly on the purity of the polariza-
tion, the power of the different beams and
the magnetic field. Here will be presented
the general method for optimizing these pa-
rameters. For more clarity, the beam tuned
on the transition F = 2 to F ′ = 2, in other
words the pumping beam, is called in the fol-
lowing the Zeeman optical pumping beam
(ZOP). The other beam is called the repump-
ing beam. The optimization sequence is
the following (fig 2.27). After loading one or
more atoms into the optical tweezer, we try
to bring them into the desired state by vary-
ing a set of parameters. For this the two
beams are used, ZOP and repumper. The re-

pumper is then turned off and the ZOP is kept for a time tdepump. During this time, there
are two possibilities. If the process is perfectly optimized, the atoms are in the desired
(5S1/2,F = 2,mF =−2) state which is a dark state for the ZOP, whose polarization is thus per-
fectlyσ−. They remain in this state. If the process is not perfect, for example if the polarization
of the ZOP is not perfectly σ−, the atoms are not in a dark state and after a certain time, they
end up in F = 1, where they stay since the repumping is turned off. The measurement of the
time it takes for the atoms to fall into F = 1 under the effect of the ZOP alone thus tells us
about the quality of the pumping and the polarization. We measure if the atom is in F = 1
using the push-out beam described in the previous paragraphs.
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Figure 2.28: Recapture probability, proportional to the probability of finding the atom
in F = 1 as a function of tdepump for the case of the atoms are optically pumped in
(5S1/2,F = 2,mF =−2) using OP+repumper and the case of all the levels of F = 2 are
equally filled, using the repumper only. The dashed lines are phenomenological fits used
to determine the pumping efficiency (see text).

In figure 2.28 is plotted in two cases the recapture probability after the push-out, which is
proportional to the ratio of atoms in F = 1. In one case, both the repumper and the ZOP are
used and we observe that all the atoms are initially in F = 2 and that it is necessary to apply
the ZOP formore than 350µs to depump half of them. Thismeans that the atoms are in fact in
a very dark state. In the case where only the repumper is used in the preparation, the atoms
are uniformly distributed in all mF states. We observe that when the ZOP is applied, half of
them are quickly depumped, in less than 1µs( see inset). The other half is depumped over a
much longer time, these are atoms that are initially in or pumped into mF =−2 by the ZOP.

The optical pumping is modeled by the evolution of the population P of the desired state
(Walker and Saffman 2012),

dP

d t
= Rop (1−P )−RdepumpP.

The final population is thus given by
P∞ = Rop

Rop +Rdepump
= τdepump

τdepump +τop

defining τdepump = 1/Rdepump and τop = 1/Rop. To quantify the efficiency of pumping, we
measure the time it takes to pump ,τop, and the time it takes to depump, τdepump. The first isless than 10µs for the used beam intensities. It is limited by the time needed to repump the
atoms from F = 1. The second is the time extracted from the figure 2.28 by fitting the datawith
a phenomenological function. Indeed, these measurements correspond to the time it takes
to depump the atoms in the absence of the repumper beam. We find τdepump ' 350µs. We
thus have a very good quality pumping with an efficiency of more than 97%. The pumping is
performed with a homogeneous field of 50G. We observed that the pumping efficiency could
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be better by using lower fields, but this field is necessary to isolate the two levels. The quality
of the pumping is satisfactory.
Bias magnetic field

As shown in Figure 2.25), two Zeeman sublevels can be isolated by applying a bias magnetic
field. In the experiment, it is in the zMOT direction, which gives the quantization axis (see
figure 2.4). To isolate a transition,the frequency of this transitionmust be sufficiently detuned
from other transitions. The criterion that we take is that the transition must be at least 10
Γ = 2π× 6MHz away from all other transitions to be sure to neglect the effects of dipole-
dipole interaction and of the power broadening (Brossard 2019; Jennewein 2017).

Ignoring the quadratic effect to gain an intuition, the Hamiltonian for the interaction be-
tween an atom and an external field B is

H = gFµBF.B

where
gF = F (F +1)+ J (J +1)− I (I +1)

2F (F +1)
g J .

and µB ' h × 1.4MHzG−1 is the Bohr magneton and g J is the fine structure Landé g-factor(Foot 2005). The Zeeman energy is thus
E = gFµBBmF . (3.2)

We deduce the energy splitting given on figure 2.25 for the states of interest F ′ = 3 (gF ′ =
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Figure 2.29: Resonance shift from the transitions σ−,π and σ+ starting from the state
(5S1/2,F = 2,mF =−2). The dotted line are the weak field model (see text), the solid
lines are the full calculation.

2/3) and F = 2 (gF = 1/2). The transition that we want to isolate is the σ− transition from
(5S1/2,F = 2,mF =−2) to (

5P3/2,F ′ = 3,mF =−3
), as represented figure 2.25. We thus calcu-

late the energy shifts starting from these states, for the three types of transitions σ−,π and
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σ+, figure 2.29. The transitions starting from the other mF are avoided by preparing the sys-
tem in the correct state using optical pumping. Equation (3.2) gives ∆E = 5

6µBB between the
transitions σ− and π ( which are the closest). The condition ∆E > 10Γ gives roughly B ≥ 50G.
In figure 2.29 are shown the results described above with dashed lines and the result of the
full diagonalization of the interaction Hamiltonian with solid lines (Foot 2005). They are iden-
tical for the σ− transition and quite close for the other two, the real shift being slightly larger.We see that for a field B = 50G, the σ− transition is detuned by more than 10 Γ compared
to the π transition. To verify that we isolate a closed two-level system, we measure the shift
of the resonance of fluorescence spectra as a function of the current applied in the coil. This
measurement is performed in a dilute cloud containing a few hundred atoms.
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Figure 2.30: Resonance shift of the fluorescence spectrum as a function of the in-vacuum
coil current. The dashed line is a linear fit of the data.

Figure 2.30 shows that the resonance varies linearly with the current in the coils I , as
expected. From this, we obtain the calibration

B(G) = 2.5I (A),

as expected knowing the number of coils and its dimensions. We therefore circulate a current
of 20A to create the desired field of 50G. This is large and leads to a heating of the vacuum
chamber and to a vacuum pressure increase. As an example, we observe that the pressure
increases from 5×10−11 mbar to 1×10−10 mbar after a few hours of continuous current. We
thus opted for a solution where the current is increased only when needed. Moreover, we
use the same coils to create the magnetic field gradient of the MOT. We therefore switch the
coils from anti-Helmoltz configuration to the Helmoltz configuration during the sequence, by
changing the direction of the current in one of the coils.
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4 Conclusion

In this chapter, we have given a brief overview of the experimental setup and explained how
we trap and observe atomic clouds. In the last part, we have presented how to isolate a closed
two-level transition using magnetic fields and optical pumping.



3Ch
ap

te
r

61

Single atoms in optical tweezers
using Λ-enhanced gray molasses

***
Gray-molasses (GM) are used formore than 20 years to achieve sub-Doppler cooling of atoms
(Weidemüller et al. 1994; Grynberg and Courtois 1994; Esslinger et al. 1996; Boiron et al.
1995). Recently, C. Regal’s group at JILA (Brown et al. 2019) has s explored the loading single
atoms in optical tweezers from a GM-cooled sample, and reported a single atom loading
probability as high as 89%, much higher than the usual 50% obtained by collisional blockade
with red-detuned laser cooling. GM should allow to explore higher loading probability of
single atoms, which is a key point for the experiments of our group (Browaeys and Lahaye
2020; K. N. Schymik et al. 2020). Moreover, the loaded atoms should be cooler than when
loaded from the MOT. This technique has however never been implemented in the team.

In GM, light assisted collisions are partially suppressed. Thus, the density of atomic en-
sembles that can be achieved in a dipole trap is increased with respect to the direct loading
from the MOT. The number of trapped atoms is in our case ten times larger than when using
previous techniques, for similar traps (Bourgain et al. 2013). This will be described in the last
part of this chapter.
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1 Principles of Λ-enhanced GM

Λ-enhanced gray molasses (Grier et al. 2013) are the combination of a gray molasses cool-
ing scheme on a F → F ′ = F transition and a phase coherent addressing of the F − 1 → F ′

transition, creating velocity-selective coherent population trapping (VSCPT)-like dark states .
1.1 Dark states
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Figure 3.1: a) The atom interacts with σ+, σ− and π polarized light. In each case, there
exists a state that can not be excited by the light. For the 0 → 0 transition, the Clebsh-
Gordan coefficient is zero. b) Dark state in a Λ-type atomic system. An additional dark
exists when the Raman condition δ= δ2 −δ1 = 0 is fulfilled.

Dark states exist on any F → F ′ ≤ F transition. For simplicity, we consider as an example
the transition 1 → 1 in one dimension. For each polarization, it exists a state that can not be
excited by the light, as represented figure 3.1 a). For the 0 → 0 transition, the Clebsh-Gordan
coefficient is zero. These states are called dark states.
Dark state in a Λ-type atomic system

To show the existence of a dark state in a Λ-type atomic system, one starts by writing
the HamiltonianHt of the system submitted to a phase coherent field E = E1e i (k1r−ω1t ) +
E2e i (k2r−ω2t ) in the (

e, g1, g2
) basis, using notations of figure 3.1 b). One writes ħωe , ħωg 2 and

ħωg 2 the energies associated to the states and Ωi = di Ei
ħ the Rabi frequency associated to

the transition gi → e.

Ht =




ωe
Ω1
2 e−iω1t +c.c Ω2

2 e−iω2t +c.c
Ω1
2 e iω1t +c.c ωg 1 0
Ω2
2 e iω2t +c.c 0 ωg 2


 .

In the rotating wave approximation (Grynberg, Aspect, et al. 2010), one does the change of
basis (

g1 → e−iω1t g1, g2 → e−iω2t g2,e → e
) and obtains the time independent Hamiltonian H ,

H =




0 Ω1
2

Ω2
2

Ω1
2 δ1 0
Ω2
2 0 δ2


 ,
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where δi =ωg i +ωi −ωe . We write Ω=
√
Ω2

1 +Ω2
2 and define the states

|D〉 = 1

Ω

(
Ω2

∣∣g1
〉−Ω1

∣∣g2
〉) (1.1)

and
|B〉 = 1

Ω

(
Ω2

∣∣g1
〉+Ω1

∣∣g2
〉)

. (1.2)
One easily express H in the (e,B ,D) basis:

Hdb =




0 Ω
2 0

Ω2
1δ1+Ω2

2δ2

Ω2 ωg 1
Ω1Ω2
2Ω2 (δ1 −δ2)

0 Ω1Ω2
2Ω2 (δ1 −δ2)

Ω2
1δ1+Ω2

2δ2

2Ω2


 . (1.3)

Using equation (1.1), one sees that the state |D〉 is not coupled to the light field E due
to destructive interference between the transition amplitudes. It does not depend on the
polarization. One sees in equation (1.3) that |D〉 and |B〉 are decoupled if δ1 = δ2, that is whenthe Raman transition is fulfilled (fig. 3.1 b). The electric fields E1 and E2 must be coherent.
In practice, the same laser is used to create the two beams. E2 is created from E1 and its
frequency is shifted using an electro-optical modulator. The Λ configuration enhances the
cooling efficiency by a factor 3 compared to the standard GM scheme (Grier et al. 2013). In
the following, GM will stands for Λ-enhanced gray molasses.
1.2 Cooling mechanism

|B〉

|D〉
z

E

•
Figure 3.2: Gray-molasses scheme. On a F → F ′ ≤ F transition with positive detuning,
the ground state splits into a dark state |D〉 and a bright state |B〉. The bright state
energy is spatially modulated in presence of a polarization gradient. From (Rio Fernandes
et al. 2012).

Let us consider an atom with two ground states, a dark state|D〉 and a bright state |B〉
propagating in a one dimensional lin⊥lin configuration. If the incident light is blue detuned,
∆ = ω−ω0 > 0 where ω is the laser frequency and ω0 is the transition frequency, the bright
state energy is light-shifted at higher energy and depends on the position, as represented
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figure 3.2. As in Sisyphus cooling (Foot 2005), energy is lost when an atom in |B〉 climbs a po-
tential hill before being pumped back to the dark state. The pumping out of the bright states
occurs mostly at intensity maxima. Motional (non adiabatic) coupling and optical excitation
to off-resonant hyperfine states complete the cooling cycle (figure 3.2), most likely at the bot-
tom of the potential hills where the energy difference between the states is the smallest. This
process results in a sub-Doppler cooling.

GM have to main features :
• they are based on blue detuned light
• atoms are in dark states, so the scattering rate is low.

We will see that the first feature may lead to loading optical tweezers with high efficiency.
The second feature leads to the possibility of significantly increasing the density compared to
a cloud of atoms loaded from bright molasses. This will be discussed in the last part of this
chapter.
1.3 Use of GM to load optical tweezer with high efficiency

Let us consider the case of light-assisted collisions described in section 1.3 but for a blue-
detuned driving light (∆=ω−ω0 > 0) where ω is the laser frequency and ω0 is the transitionfrequency. In this case, the cooling laser excites the atoms to a state with a repulsive inter-
atomic potential (fig. 3.3). The atoms then repel each other. By going down the potential hill,
they gain an energy ħ∆, assuming the excited state lifetime is long enough.

The light frequency can thus be tuned such that the energy gain is large enough for one
atom to leave the trap (depth U0), but not for two of them: U0 < ħ∆ < 2U0. Only one atomof the pair is then expelled from the trap (Fung et al. 2016). The Andersen group in New
Zealand reported a loading efficiency of more than 90% by adding an intense blue-detuned
laser beam to the red-detuned molasses (Grünzweig et al. 2010).

Ue (R)

Ug (R)

ħω0

S +P

S +S

ħ∆

Interatomic distance, RRc

Figure 3.3: Light assisted collision for the repulsive part of the excite potential. A photon
may be absorbed when the interatomic distance is Rc . The collision may be inelastic,
resulting in an energy gain ħ∆.

One limitation of this method is that it requires deep traps, about 3mK against 1mK for
traps loaded with red detuned beams (Grünzweig et al. 2010). Another limitation is that it still
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requires red-detuned light for cooling. The strategy developed in the Regal group is based
on Λ-enhanced gray molasses to do both cooling and single atom loading, in shallower traps
(red-detuned molasses are used only after this stage, to image the atoms). The principle is
the following. The collisional energy gain isħ∆. If ħ∆¿ 2U0, losses due to GM are weak, likely
leading to N À 1 atoms in the trap, but then there will be light-assisted collision during the
imaging and one recovers the 50% loading probability of red-detuned light-induced collisions
(see section 1.3). If ħ∆À 2U0, two-body losses will occur during the GM phase, but the re-
leased energy is high enough to expel both atoms, leading to 50% loading efficiency. At the
transition ħ∆' 2U0, only one atomwill be lost during the GM pulse and the imaging pulse will
not expel the remaining atom. As noticed in (Brown et al. 2019), the transition is at ħ∆< 2U0because of the finite atomic temperature.

2 Implementation

2.1 Setup

First we chose for simplicity to implement GM on the D2 line, using the same laser as the one
used for theMOT. It has indeed been shown recently that the D2 line of 87Rb results in similar
cooling performances in free space as obtainedwith the D1 line (Rosi et al. 2018), even though
a blue detuned beam from for the F = 2 to F ′ = 2 transition is automatically red-detuned from
the F = 2 to F ′ = 3 transition, leading to light-induced collisions.

The cooling beam is blue-detuned from the (5S1/2,F = 2) to (
5P3/2,F ′ = 2

) transition and
is superimposed on the 6MOT beams. The intensity per beam is I ∼ Isat = 1.67mWcm−2. The
intensity balance between the beams is tuned using half-wave plates and polarization beam
splitters. The coherent repumper is created from the same laser using an electro-optical
modulator 1 with frequency ν = 6834.68MHz, equal to the ground state hyperfine splitting.
The intensity of the repumper is I ∼ Isat/10, given by the sideband amplitude. The RF signal
is generated by a RF generator 2 and a 3W-amplifier.

The goal of the study is to find the best parameters to optimize both the loading proba-
bility and the temperature of the atoms. The temperature of a single atom is measured using
the release and recapturemethod (Tuchendler et al. 2008), described below.

1Qubig ® PM - Rb 6.82Anritsu ® MG3691A
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2.2 Temperature measurement

control image recapture image

EMCCD
Trap∆t

t
Figure 3.4: Chronogram of the single atom
temperature measurement. The control and
recapture images are done using the MOT
beams for 20ms.

The concept of temperature defined for en-
sembles of particles is here extended to
a single atom. Repeated experiments on
single laser cooled atoms yield an energy
distribution given by a Maxwell-Boltzmann
law with a well defined temperature. The
chronogram of the experimental sequence
used to measure this temperature is repre-
sented in figure 3.4. The sequence starts
with a single trapped atom. The trap is then
switched off during a finite time ∆t (release)
and then turned back on to determine if the
atom has been recaptured.

The effect of the release and recapture is
described in figure 3.5. When ∆t = 0, the atom is always trapped. The caracteristic size of the
trap is given by its waist w0, in dashed line. When ∆t > 0, the atom is released in free-flight.
The distanceσ(∆t ) that the atom travels during the free flight depends on its thermal velocity
vT :

σ (∆t ) = vT∆t =
√

kBT

m
∆t .

When the trap is switched back on, the atom is recaptured if it remained in the trap region
during the flight: σ< w0. Otherwise, the atom is lost ( represented in black figure 3.5).

w0

∆t = 0

σ(∆t )

∆t > 0

Figure 3.5: Principle of the release and recapture method. The various positions at
∆t > 0 correspond to repetitions of the experiment for the same atom.

To illustrate the method, we show the recapture probability of a single atom loaded from
the MOT in a dipole trap of waist w0 = 2µm and of depth U0/kB ∼ 1mK as a function of the
release time, figure 3.6. As expected, the atom is always recaptured when ∆t < w0/vT . Dataare then compared with Monte-Carlo simulations in order to estimate the temperature. In
the case of figure 3.6,. These simulations are done for several temperatures, each averaged
over 2000 trials.
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Figure 3.6: Temperature estimation by comparison with Monte-Carlo simulations. The
temperature that minimizes the χ2 test is plotted in orange (T = 78µK).

The temperature and its uncertainty are extracted by a χ2 test (Bevington et al. 1993). In
the case of figure 3.6, we obtain T0 = 78(7)µK, which is typically the temperature of a single
atom in our ∼ 1mK dipole trap loaded from the MOT.

3 Experimental results

3.1 Single atom loading and temperature

control recaptureloading

EMCCD
Trap∆t

U0

GM
t

Figure 3.7: Chronogram of the GM optimiza-
tion. A GM pulse is applied. A first image is
taken to estimate the trap loading. The tem-
perature is then measured used the sequence
of figure 3.4. All images are done using the
MOT beams for 20ms

Having described how T is measured, we
can now turn into the optimization of the
loading probability and the temperature of
the atoms as a function of two key param-
eters: the trap depth at focus U0 (with a
fixed waist w0 = 1.6µm) and the detuning ∆
of the GM with respect to the (5S1/2,F = 2)
to (

5P3/2,F ′ = 2
) transition. The other pa-

rameters (beam powers, duration etc.) are
optimized in the same way. From section
1, we expect to find an optimal loading for
2U0 =ħ∆.

The experimental sequence is repre-
sented in figure 3.7. After loading the MOT,
the magnetic field gradient and MOT beams
are switchedoff. A cooling pulsewith theGM
is then applied, for a duration of 200ms. An

image is then taken with the (red detuned) MOT beams, to determine whether an atom is
loaded in the trap. The number of trapped atoms after this image is necessarily 0 or 1 be-
cause of red-detuned light induced collisions. The method described in section 2.2 is then
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used to measure the atom temperature. The temperature as a function of ∆ and U0 is plot-ted figure 3.8.
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Figure 3.8: Temperature of the atom as a function of the trap depth U0 and of the GM
detuning ∆. The colorbar indicates the temperature. The dashed ellipse indicates a large
sweet spot of parameters that give the same temperature.

We find that using the GM results in atoms cooler than using the MOT, ∼ 20µK instead
of 80µK. The parameters used do not change the temperature over a large range, repre-
sented by a dashed ellipse in figure 3.8. The cooling by GM appears to be very robust over a
broad range of parameters. When the cooling laser becomes resonant with the(5S1/2,F = 2)
to (

5P3/2,F ′ = 2
) transition, the atom is heated up. This is the case either when the GM fre-

quency is reduced, or when the trap power is increased, light-shifting the transition. This is
what we observe in the regions ∆ < 80MHz ,or U0/kB > 1mK. The loading efficiency mea-
sured in the same conditions is plotted in figure 3.9.

We succeed in trapping atoms in traps with depth U0/kB ∼ 200µK, which is in itself an
improvement over direct loading from the MOT (U0/kB ∼ 1mK). However, there is no sig-
nificant improvement over 50% over the entire range of parameters explored. There is in
particular no improvement in the region (ħ∆ ' 2U0). This might be due to the fact that the
blue-detuned beam on the (5S1/2,F = 2) to (

5P3/2,F ′ = 2
) transition is detuned to the red of

the (5S1/2,F = 2) to (
5P3/2,F ′ = 3

) transition. This transition is 267MHz above in energy and
may cause red-detuned light-induced collision.

Hoping to improve these results and reproduce the performances claimed in (Brown et
al. 2019) of >50% loading rates, we implemented gray molasses on the D1 line to avoid this
effect. In contrast to (Brown et al. 2019), we were not able to obtain individual atoms with a
probability larger than 50%. This result might be explained by the fact that the volume of our
trap is more than 10 times larger, reducing the collision rate. This loss rate might be too low
to induce the selective losses during the time of the cooling pulse (200ms). Another group
has recently tried to use GM to load optical tweezers, without reaching the 90% (Ang’ong’a
et al. 2021).
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Figure 3.9: Single-atom loading probability as a function of the trap depth U0 and of the
GM detuning ∆.

3.2 1D chain loading

Aswehave explained in the previous chapter, we canprepare a chain of atoms in an 1Doptical
lattice. The volume of individual sites can be smaller than for a single optical tweezer because
the axial dimension is now given byλtrap/2 = 470nm. We perform the same experiments than
above, varying the trapping depth at the center of the chainU0 and the detuning∆ of the GM.
Exploiting the high resolution transverse imaging system, we can observe the average filling
along the chain. Figure 3.10 shows the obtained loading probability as a function of U0 and
∆ for two positions in the chain : at the center, where the traps are the deepest and smallest
because the radial confinement is the strongest, and at one side of the chain, where the traps
are shallower.

In the figure above, we show with a dashed line the light shift ∆trap at the center of the
chain, to show the limit where GM are indeed blue detuned. In the same figure, we plot
∆trap+ 2

U0
h. We observe an enhanced loading around this line, showing a strong effect of the

GM. The loading efficiency is not significantly larger than 50%, but this is an improvement
compared to the direct loading obtained from the MOT ( ∼ 25%). The loading of atoms in the
chain is still not totally understood. In the right panel, we consider the side of the chain, were
the traps are less confined radially. The loading here is quite similar to that of a single optical
tweezer and does not depend on the parameters.

We have found that the loading is alsomore robust tomisalignment and daily fluctuations
than when using the MOT.

3.3 Many atoms in the tweezer

Results of the previous section suggest that the low scattering rate of the GM, preventing
light assisted collisions, allows us to have much more than one atom in the trap. At first sign,
we compare the absolute fluorescence after loading using the GM on the D1 line with the
after direct loading from the MOT, in the collisional blockage regime. In the case of the MOT
loading, when sending near-resonant light for imaging (during 20ms), two clear fluorescence
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Figure 3.10: Single-atom loading probability as a function of the trap depth U0 and of
the GM detuning ∆ at the center of the chain (left) and at one side of the chain (right).

levels are observed corresponding to either zero or one atoms in the trap (see figure 2.9 and
section 1.3). In the other case, a 200ms GMpulse is applied to load the trap, an then an image
is taken as before. A broad fluorescence histogram is observed, as shown in figure 3.11 . This
is a signature of the presence of many atoms in the trap.
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Figure 3.11: Histogram of the collected fluorescence of atoms in a trap loaded with the
GM (blue) in comparison with a trap loaded with a single atom (orange).



Section 4 Conclusion

71

The imaging light induces collisions and thus strong losses during the 20ms , so that the
atoms fluoresce in a much shorter (uncontrolled) time. Atoms thus cannot be counted in this
measurement. We will see in chapter 5 that GM allows us to load more than 6000 atoms in a
micrometric trap, reaching peak densities n0/k3

0 > 1.

4 Conclusion

In this chapter, we have briefly explained the principle of the gray molasses and their im-
plementation on the experiment to load efficiently single atoms. In contrast to (Brown et al.
2019), we were not able to obtain individual atoms with a probability larger than 50%. In the
last part, we have observed that the low scattering rate of GM allows us to have many atoms
in a microscopic dipole trap. This feature will be exploited in chapter 5 to reach high peak
densities. During my thesis, we increased the number of trapped atoms by almost a factor of
10 compared to the previous generation of the experiment (Bourgain et al. 2013), for similar
dipole traps, exploiting GM. Reaching this number of atoms has allowed us to observe pre-
viously elusive effects, in particular subradiance and superradiance, which will be studied in
the next chapters.
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Collective shift in a 1D atomic
chain

***
In an ensemble of atoms, the excitation by light induces dipoles which are then driven by
the fields radiated by all neighboring dipoles. In a disordered ensemble containing many
emitters, the random relative phases of the radiated fields lead to destructive interferences
suppressing the effect of interactions. Structuring the sample could instead enhance the
interactions by forcing the radiated field to interfere constructively, and provide strong light-
matter coupling .

For example, it has been recently predicted (Bettles et al. 2016b; Shahmoon et al. 2017;
Facchinetti and Ruostekoski 2018) and demonstrated (Rui et al. 2020) that interactions can
lead to an enhanced reflectivity for single atomic layer. This subject has also been very active
in recent years in 1D systems, theoretically (Plankensteiner, Ostermann, et al. 2015; Chui et
al. 2015; Asenjo-Garcia et al. 2017; Needham et al. 2019) and experimentally. It has been
studied in various systems: with atoms trapped near nano-photonic waveguides (Yu et al.
2014; Corzo et al. 2019), nanofibers (Vetsch et al. 2010; Solano et al. 2017; Prasad et al. 2019)
and with a small chain of ions (Meir et al. 2014).

This chapter presents the experimental realization of a 1D atomic chain (Glicenstein, Fe-
rioli, Brossard, et al. 2021) and the observation of collective interferences in resonant dipole-
dipole interaction in this chain (Glicenstein, Ferioli, Šibalić, et al. 2020). This system is disor-
dered but the 1D dimensionality strongly enhances the interactions.
Contents
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1 Motivations

Let us first illustrate how the dimensionality of the ensemble may enhance the interactions
between the emitters. Consider a disordered 1D chain of atoms excited by a plane wave
propagating along the chain axis z with frequency ω= kc = 2π

λ c , as represented in figure 4.1.

z

e i k(z+φ)

e i kz1

e i kz2

e i k(z−z1)

e i k(z−z2)

e iφ

e iφ

Excitation

Figure 4.1: Schematic of an atomic chain under axial excitation. The total phase accu-
mulated by propagation and a single scattering event is the same in the forward direction,
irrespective of the atomic positions.

By propagating along z, the driving field accumulates a phase kzn on atom n (position zn ).Under a weak excitation, the induced dipoles scatters a field with an amplitude proportional
to the amplitude of the driving field and with a phase shifted by φ = Arg(α) (Aljunid et al.
2009), where α is the atomic polarizability (see Section 1.1). Atom n also sees the field scat-
tered by other atoms. The scattered field then accumulates a phase k|z−zn | by propagation.For simplicity, we first consider that the field is scattered once. Therefore, as represented in
figure 4.1, the phase at position z accumulated by a scattered field propagating in the for-
ward direction (z > zn ), k(z − zn)+ kzn = kz , is independent of the atomic position zn . Atthis first order (with a single scattering event), the fields scattered in the forward direction
thus interfere constructively. This argument is only valid if the atoms are aligned along the
propagation axis of the driving field. Otherwise, the accumulated phase is random (because
it depends on the random position of the atoms) and does not lead to constructive interfer-
ence. In particular, this is also the case if the driving field propagates perpendicularly to the
chain. In general, the fields scattered in the backward direction are also not constructive.

Due to the 1D dimensionality, one thus expects an enhancement of the interactions. Note
that the equal spacing of the atoms is not necessary here.
Growth of the excitation along a chain

Following (Sutherland and Robicheaux 2016) and (Brossard 2019), let us detail the case of
a defect-free ordered 1D chain, with interatomic distance a. For a weak driving, the dipoles
induced by a fieldEL(rm) = E0e i krm propagating along the chain are treated classically (section
2.2) and are modeled by the coupled dipole equation (1.7). In steady state, this equation for
atom m is, in the scalar approximation,

0 = (2iδ−1)Em −EL(rm)−
∑

n 6=m
G(rn − rm) En (1.1)
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where Em = bm
ħΓ
2i d is the field scattered by atom m (d being the dipole matrix element and

bm the induced dipole), δ = ∆/Γ is the normalized detuning of the laser with the resonance
frequency and G(r) is the Green function (see section 1.1). We consider a perfectly ordered
chain such that rm = ma, the Green function becomes

G(rn − rm) = 3e i ka|n−m|

2i ka|n −m|

[
1+ i

ka|n −m| −
1

(ka|n −m|)2

]
= 3e i ka|n−m|

2i ka|n −m| fn−m

and equation (1.1) becomes
(2iδ−1)Em = E0e i kma +

∑
n 6=m

3e i ka|n−m|

2i ka|n −m| fn−mEn . (1.2)
Assuming that ka À 1 (large interparticle distance), one can solve perturbatively equation
(1.2) a finds at zeroth order (corresponding to no interaction),

E (0)
m = E0e i kma

2iδ−1

and at first order (one scattering)
E (1)

m = E0e i kma

2iδ−1
+

∑
n 6=m

3e i ka|n−m|

2i ka|n −m| fn−m
E0e i kna

2iδ−1
.

Factorizing the global phase e i kma and splitting the sum into two parts leads to

E (1)
m = E0e i kma

2iδ−1





1+ 3

2i (2iδ−1)




∑
n<m

fn−m

ka(m −n)︸ ︷︷ ︸
forward scattering

+
∑

n>m

fn−m

ka(n −m)
e2i ka(n−m)

︸ ︷︷ ︸
backward scattering








(1.3)

Equation (1.3) shows that all forward scattering terms add constructively at long distance
because they have the samephase factor. This comes from the fact that the atoms are aligned
along the chain axis ( as we saw above, the fact that they are equally spaced does not play
a role here). The backward scattering does not build constructively at long range because of
this phase factor if a 6= j λ2 , where j ∈N.

We consider the case a 6= j λ2 . Keeping only the forward scattering term and assuming
fn−m = 1 for simplicity, the field intensity at atom m is thus given by

|E (1)
m |2 = |E0|2

1+4δ2

∣∣∣∣1+
3

2i (2iδ−1)

∑
n<m

1

ka(m −n)

∣∣∣∣
2

which gives at lowest order in 1
ka ,

|E (1)
m |2 = |E0|2

1+4δ2

{
1− 6δ

1+4δ2

∑
n<m

1

ka(m −n)

}
. (1.4)

This result shows that, depending on the sign of δ, the scattered field intensity increases
(δ < 0) or decreases (δ > 0) along the chain. The excitation probability is Pm = |d (1)

m (δ)|2 ∝
|E (1)

m |2/
[
1+4δ2

]. Using |dm |2 = 4d 2

ħ2Γ2 |Em |2, one obtains (Sutherland and Robicheaux 2016) with
p = m −n,
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Pm = (dE0/ħΓ)2

δ2 +1/4

{
1− 3δ

2ka
(
δ2 +1/4

)
n−1∑
p=1

1

p

}
. (1.5)

The excitation probability is plotted figure 4.2 for ∆ = ±Γ and a = 1.2λ. The excitation
probability increases (decreases) for a red (blue) detuned excitation, with a logarithmic be-
havior. This is a signature of the enhancement of the interactions, that add coherently along
the chain even at large interatomic distance.

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

m

Exc
itat

ion
pro

bab
ility

,P m
/P 1

δ=−1
δ=+1

Figure 4.2: Probability of excitation of atom m divided by the single atom excitation
probability for δ=±1 and a = 1.2λ.

We compare the analytic solution (1.5) with the full numerical calculation (1.1). As shown
in figure 4.3, the model is only accurate in the regime ka À 1 ( which is the approximation
done). Otherwise, the agreement is only qualitative. The oscillations in the full numerical
solution are due to reflections at the end of the chain.
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Figure 4.3: Comparison between the analytic solution (green) and the full numerical
solution (red), for δ=−1.
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The description above holds only for values of a 6= j λ2 . When a = j λ2 , the backward
scattered fields also add constructively and Pm has a mirror symmetry (Sutherland and Ro-
bicheaux 2016). Moreover, equation (1.5) is based on the approximation of large interparticle
distance (ka À 1 ) and are not valid for a < λ/2, where the behavior of the system may be
dominated by subradiant modes.

The increase of the excitation probability is spectrally translated by a shift of the reso-
nance frequency. Using equation (1.5), we see that this shift is towards the red. We calculate
the shift using the full numerical solution for a perfect 100 atom-chain with interatomic spac-
ing a = 1.2λ. Figure 4.4 shows this (local) shift of the resonance as a function of the atom
position in the chain. One sees that, as expected, the shift increases along the chain. The
global (mean) resonance frequency over the chain is also shifted, as described using the nu-
merical methods in the first chapter (figure 1.10). As seen in chapter 1, the frequency is much
more shifted for a (disordered) chain than in 3D systems, which reflects the importance of
interactions in the chain.
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Figure 4.4: Local resonance shift δωloc(m) as a function of the position in the chain.
The global (mean) shift δω is plotted as a dashed line.

The resonance shifts are the experimental observables that we will measure to study the
collective effects.
Conclusion

Due to this spectacular enhancement, the 1D chain is a good candidate to observe collective
effects even at large interatomic distance (larger than the light wavelength). The rest of the
chapter is dedicated to the experimental study of this system.
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2 Collective resonance shift

The goal of this section is to observe the collective shift predicted in the first part of this
chapter, compared to that of a single atom.

As explained in chapter 2 (section 44), we prepare a 1D chain of 100 atoms in a 1D optical
lattice. The average filling η = 0.5± 0.1 of the lattice, exploiting Λ-enhanced Gray molasses
(chapter 3), results in an interatomic distance 〈rmn〉 = 1.2λ0 where λ0 = 780nm. The atoms
are then optically pumped in the (5S1/2,F = 2,mF ) state (section 3.2) with the quantization
axis aligned with the chain with an efficiency larger than 99%.

The temperature T of the atoms is obtained by time-of-flight. One obtains T = 80(20)µK,
yielding a transverse width σr,0 ' 300nm ' 0.38λ0. The transverse confinement is ensure
by a tight focusing of the trapping beam (w0 = 3.3µm). The atoms are excited along the
chain axis by applying 200ns pulses of a σ+-polarized probe (at wavelength λ0 = 780nm) in
free space with an intensity I /Isat = 0.3. The probe waist is wprobe = 20µm (Rayleigh range
zR = 1.6mm) such that it approximates a plane wave. 50 pulses are sent, between which
atoms are recaptured by switching the trap beams on (see section 2.4). We vary the probe
detuning in order tomeasure fluorescence spectra. For a given probe detuning, the sequence
is repeated over 300 samples to obtain sufficient statistics.

The scattered light is collected perpendicularly to the chain, as in figure 2.17. The intensity
spectrum is extracted by repeating this measurement at different detunings between ∆ =
−3Γ and 3Γ, where Γ = 2π× 6.1MHz is the natural linewidth of the D2 line. The profiles
are fitted by a Lorentzian function, from which the global (mean) shifts δω of the resonance
are extracted. Note that there is no distortion of the spectra, which remains Lorentzian for
all parameters tested. This is numerically predicted by the coupled dipoles simulations for
interatomic distances larger than λ0 . We show examples of shifted spectra in figure 4.5.
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Figure 4.5: Example of shift measurement using fluorescence spectra. Data are fitted by
lorentzian function (dashed lines). These spectra are used in figure 4.8 using the same
colors, see text.

In figure 4.5, one sees that the width of the spectra is larger than the natural linewidth Γ.
This is due to the Fourier width of the 200ns probe pulses.
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Reference of the shifts

In figure 4.5 and following, the reference of the measured shifts is given by the resonance of
non interacting atoms (∆= 0). It is measured using a dilute 3D cloud, so that the interactions
are negligible.

2.1 Local shift along the chain
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Figure 4.6: Local shift δωloc(z) as a function of the position along the chain. The blue
circles (red squares) correspond to the axial (transverse) excitation. Each data point is
the resonance frequency of a 10µm segment around z. The vertical error bars are from
the fits. The results are compared to coupled dipoles simulations (solid lines), the shaded
area corresponding to the experimental uncertainty in chain filling (see text).

Figure 4.5 shows a global collective shift, but we showed in the first part of this chapter
that it is due to the enhancement of the interactions along the chain. To observe it, we divide
the chain into 10µm segments, as represented in figure 4.6. On each of these segments, the
intensity spectrum is fitted by a lorentzian function, allowing to determine a local shift of the
resonance δωloc(z), shown figure 4.6.

One sees in figure 4.6 that the resonance is redshifted compared to the single-atom res-
onance. This can be understood using equation (1.4). For red detunings (∆< 0), the scattered
fields and the driving field are in phase such that constructive interferences increase the total
field intensity. For blue detunings (∆> 0), destructive interferences reduce the field. The local
shift increases along the chain for an axial excitation (blue circles), indicating a buildup of the
interactions. The resonance is shifted by more than Γ/4. Such a shift has been obtained in
disordered 2D and 3D samples but for ten times smaller interatomic distances (Jennewein,
Y. R. P. Sortais, et al. 2016; Corman et al. 2017). This confirms that the collective response is
strongly enhanced, as explained section 1.
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To demonstrate the cumulative effect, we perform a second experiment where we apply
an identical excitation procedure but with a plane wave probe sent perpendicularly to the
chain (wprobe⊥ ' 1.5mm). The result is plotted figure 4.6 (red squares). We do not observe
any shift, in agreement with the discussion section 1 (and fig. 4.1). In this case, the scattered
fields have a random phase relation along the chain, leading to no cumulative effect. We thus
obtain the response of independent atoms.

While the perturbative model allows for an intuitive picture, the results are compared to
coupled dipoles simulations (section 2.1) including all experimental parameters. We take into
account the random filling and the atomic motion is negligible during the excitation pulse.
Simulations give spectra which are well fitted by a lorentzian line shape, allowing to extract a
resonance shift. The results are plotted as solid lines figure 4.6, for fillings η = 0.5±0.1. We
obtain a good agreement between the data and the model, without any adjustable parame-
ter.

2.2 Shift reduction due to transverse disorder

As explained in introduction of this chapter, the collective enhancement relies on the 1D ge-
ometry and thus should be reduced by adding transverse disorder. To quantify the reduction
due to transverse disorder, consider an atom at distance ρn from the chain axis, as repre-
sented in figure 4.7. The phase factor of the field scattered by this atom at position r, (ρ = 0)
is

k|r− rn | ' k|z − zn |+
kρ2

n

2|z − zn |

zTrap

ρn

zn z∆z

Figure 4.7: Schematic : condition to have con-
structive interferences away from 1D.

assuming that the atom is slightly off axis
(ρn ¿ |z − zn |). To have interferences with
the field scattered by an atom on the axis at
a distance∆z, onemust have kρ2

n/2∆z ¿ 2π
that is ρ2

n/λ0∆z ¿ 1. This shows that when
σr /λ0 À 1, where σr is the radial extend
of the chain, interferences should disappear
thus the shift.

We verify this prediction experimentally
by changing the radial size of the atomic dis-
tribution. The radial size of the cloud is di-
rectly measured using the transverse imag-
ing system (section 1.3) by a 2D gaussian fit

of the fluorescence image. To change the radial distribution, we let the cloud expand in free
flight during a time tof. The radial size is then given by

σr (tof) =
√
σ2

r,0 +
kBT

m
t 2

of.

As σz,0 À kBT
m t 2

of, the axial size of the chain does not change during the free flight. For
a given time-of-flight, a fluorescence spectrum is measured sending a near-resonant probe
pulse for 10µs for detunings between−3Γ and 3Γ. The global resonance shift is then extracted
using a lorentzian fit of the data. The shift as a function ofσr is shown figure 4.8. As expected,we observe that the shift vanishes when the atoms are not in 1D geometry (σr

λ0
& 1). The
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Figure 4.8: Global shift δω as a function of the radial size σr of the cloud after a time
of flight. The vertical error bars correspond to the fit standard errors, the horizontal
error bars correspond to the size variation during the probe pulse. Data are compared to
coupled dipoles simulations (solid line).The reference of the shifts is given by the diamond
point, corresponding to the resonance frequency of non-interacting atoms.

solid line corresponds to coupled dipoles simulations, which are in good agreement with the
experimental data. In figure 4.8, the blue circle and the orange diamond correspond to the
resonances extracted from the spectra of figure 4.5, with the same color code.
2.3 Shift reduction due to interatomic distance

In this part, we demonstrate the importance of the 1D geometry. We increase the interatomic
distancewhile keeping the 1D geometry. This distance is changedby tuning the filling fraction,
using the following method. A chain is first loaded as before. A fraction of the atoms are then
optically pumped in (5S1/2,F = 2) before being ejected from the trap using a state-selective
push out beam. The number of remaining atoms is thus controlled by tuning the duration of
the optical pumping pulse. The remaining atoms are assumed to form a uniformly filled chain
with reduced density. The filling is measured by comparing the fluorescence of the chain with
that of a single atom. The global shift as a function of the filling η is shown figure 4.9, together
with coupled dipoles simulations. A reduction of the shift is observed in agreement with the
simulations, but not a clear linear dependence as predicted in the simulations. The horizontal
error bars are quite large. They are provided by the (single shot) filling measured using a 5ms
imagewith theMOTbeams. The discrepancy between the data and the simulations could also
be enhanced by a non-uniform filling along the chain.

To compare the 1D and 1D+transverse disorder situations, we plot the two datasets of
figures 4.8 and 4.9 as a function of the interatomic nearest-neighbour distance k〈rnn〉 in figure4.10. For the disordered measurement of figure 4.8, the average distance is simulated by
choosing randomly the atomic positions uniformly along the chain and with a gaussian low
with variance σr in the radial direction.The results shown in figure 4.10, confirm that the shift (so the interactions) is much
stronger for a 1D sample, at a given k〈rnn〉. By plotting (dashed line) the result measured in
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Figure 4.9: Global shift δω as a function of the filling fraction η. Data are compared to
coupled dipoles simulations (solid line), with the error area accounting for the uncertainty
in temperature. The reference of the shifts is the intercept of a linear fit of the data.
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Figure 4.10: Comparison of data from fig. 4.8 and 4.9 as a function of the nearest-
neighbor distance. The dashed line corresponds to the result of (Pellegrino et al. 2014)
in a 3D gaussian cloud.

a 3D gaussian cloud (Pellegrino et al. 2014), one sees that the interactions are much stronger
in the chain. Indeed, the same shift is obtained for interatomic distances that are ten times
smaller.
2.4 Beyond the low-intensity limit

We finally explore beyond the regime beyond the low-intensity excitation, where the satura-
tion effects appear and the data must be modelled by the nonlinear coupled dipoles equa-
tions (section 2.2). The intensity of the driving field is increased up to I ∼ 20Isat (ΩL/Γ' 3.1),
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Figure 4.11: Global resonance shift δω as a function of the laser Rabi frequency ΩL.
Vertical error bars are from the fits and the horizontal error bars correspond to the 10%
uncertainty on the probe intensity. Data are compared to Nonlinear Coupled Dipoles
simulations (solid lines) done by N.Šibalić including the experimental parameters.

while ensuring that it does not lead to extra atom losses and heating. When increasing the
intensity, we observe a shift of the resonance frequency, as shown figure 4.11 . This can be
understood by the fact that the dipole vanishes when increasing the driving intensity (the co-
herence ρeg goes to zero, as shown in the first chapter section 1.2). The simulations are in
good agreement with the experiment but predict a more gradual reduction of the resonance
shift, due to saturation of individual quantum emitters. This might be explained by some
mechanisms that pump atoms out of the two-level system for strong driving fields.



3 Conclusion

In this chapter, we have prepared and characterized a 1D atomic chain. Experiments have
then been performed on this chain and have demonstrated the interest of the 1D dimension
to obtain enhanced collective effects. The measurements presented here show that control-
ling the geometrical arrangement of the sample allows us to shape its collective response.

The studied chain has an average interatomic distance of 1.2λ0, which makes the interac-
tions between the induced dipoles weak. An extension of this work will be to realize a chain
with a smaller intersite spacing, for example by using a laser at wavelength 532nm (the inter-
site spacing would be 532nm assuming a filling fraction of 0.5).

Another promising perspective is the prospect of a tunable distance atomic ‘Fabry Perot’.
Indeed, in the motivations given section 1, we have only considered the case where the inter-
site distance a is not a multiple of λ/2. On the other case, the probability of excitation has a
mirror symmetry (instead of only increase along the chain), as shown figure 4.12. The chain
thus act as an atomic ‘cavity’ (Sutherland and Robicheaux 2016).
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Figure 4.12: Probability of excitation of atom m divided by the single atom excitation
probability for δ=−1 and a = 2.5λ, a = 2.4λ and a = 2.6λ.

By varying the distance between the atoms around multiples of λ/2, one could thus
change the behavior of the chain to a resonant excitation.
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***
In 1954, Dicke predicted that the radiation emitted by a dense ensemble of atoms should
be dramatically different from the emission from independent atoms (Dicke 1954). In par-
ticular, he predicted the presence of collective states whose decay is faster than that of an
isolated atom (superradiance), and others whose decay is slower or even zero (subradiance).
The subject has been intensively studied since the 1970s both theoretically and experimen-
tally (Gross and Haroche 1982; Scully, Fry, et al. 2006; Scully and Svidzinsky 2009). Due to the
general character of the subject, it attracted a broad interest and has been investigated on
many platforms ranging from hot atomic vapors (Pavolini et al. 1985) to cloud of cold atoms
(Guerin, Araújo, et al. 2016; Roof et al. 2016), atoms in hollow core fiber (Okaba et al. 2019),
nanofiber (Solano et al. 2017) , Rydberg atoms (Wang et al. 2007) , molecular systems (Hettich
et al. 2002; McGuyer et al. 2015) and artificial atoms (Angerer et al. 2018; Mlynek et al. 2014)
just to cite a few but also in the context of relativity and astrophysics (Brito et al. 2020).

Recently, the subject has regained interest in the context of quantum technologies. In-
deed, it has been proposed for example to use sub-radiant states as a storage medium
(Facchinetti, Jenkins, et al. 2016; H. H. Jen et al. 2020; Asenjo-Garcia et al. 2017) or as a tool for
quantum information processing (Shahmoon et al. 2017) and for metrology (Plankensteiner,
Ostermann, et al. 2015; Krämer, Ostermann, et al. 2016).

The second part of this manuscript is dedicated to the experimental study of superradi-
ance and subradiance in a dense ensemble of two-level atoms in a regime close to Dicke’s
regime, in which the emitters are much closer than the wavelength of the emitted light.

• Chapter 5 is devoted to the description of the preparation and characterization of a
dense cloud of two-level atoms.

• In chapter 6, a qualitative analysis of superradiance and of its main features is pre-
sented, before describing their experimental observation.

• In chapter 7, we extend our study of superradiance to the driven regime, during Rabi
oscillations and in the steady state.

• Chapter 8 is devoted to the study of subradiance in our system. In particular, we
demonstrate a protocol for the storage and release of subradiant excitations.



In the next chapters, the following experimental setup is used for the observation of
super- and subradiance.
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Figure 1: Experimental setup for the observation of super- and subradiance in chapters 6
to 8. AL : Aspheric Lens, Vp: CF40 Viewport, DM: Dichroic Mirror, FC: Fiber Coupler,
APD: Avalanche PhotoDiode.

As it will be explained in chapter 5, a dense cloud is loaded in a dipole trap. In chapters
6 to 8, unless explicitly stated, this atomic cloud is excited using a resonant probe along the
quantization axis given by the magnetic field B, perpendicular to the long axis of the cloud,
as represented in Figure 1. The probe has a σ− polarization in order to isolate a two-level
transition, as explained in Chapter 2 (section 3). The fluorescence emitted by the cloud is
then collected along the cloud’s main axis, thus perpendicularly to the excitation direction
(APD ∥) or radially (APD ⊥). This direction is not parallel to the probe direction, but at 45°,
as represented figure 2.4. It is detected by a fiber-coupled avalanche photodiode1 (APD) and
then counted digitally with a counting module2.

1Perkin Elmer® SPCM-AQRH2Swabian Instruments ® Time Tagger 20
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Preparation of dense clouds of
2-level atoms

***
As seen in the first chapter, collective effects due to the light-induced dipole-dipoleinteraction appear when the interatomic distance is of the order of the light wavelength λ0.The purpose of this chapter is to present how we prepare and characterize atomic cloudscontaining thousands of atoms with a peak density n0/k3 ∼ 1 where k = 2π

λ0
.
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1 Preparation and characterization of a dense cloud.

1.1 Loading sequence

In order to obtain the highest atomic density, the main idea is to load as many atoms as
possible into a large dipole trap using Λ-enhanced gray molasses (GM, see chapter 3), and,
similarly to (Kinoshita et al. 2005), compress the cloud by dynamically reducing the beam
waist, using the OptoTelescope (OT,see section 1.4). The loading sequence is shown figure
5.1.

Trap power
30ms

Compression

kB ×7,6mK

Magnetic fieldcoil currentHelmoltzanti-Helmoltz
11Gcm−1

0Gcm−1

50G

Gray molasses light

200ms

Optical pumping light

20µs

Probe & Imaging light

MOT
CMOT

Time
Figure 5.1: Chronogram of the sequence to load dense clouds.

We start from a 3DMOT (withmagnetic gradient 11Gcm−1), which is compressed in 15ms
by red-detuning the MOT beams from −3Γ to −5Γ, where Γ= 6.1MHz is the line with of the
87Rb D2 transition. The magnetic field gradient is then decreased by 50% from 11Gcm−1 to
5.5Gcm−1. The MOT beams and magnetic field are then switched off and GM are applied for
200ms. The dipole trap is kept on during all these steps. Its depth is U0/kB ' 4.2mK and its
waist is w0 ' 2.5µm. In this configuration, up to 6000 atoms can be trapped at a temperature
of 625µK, corresponding to a peak density n0 ' 1.6×1014 at/cm3 ' 0.3k3, assuming a gaus-
sian thermal distribution of the positions. Using GM instead of directly loading from the MOT
allows us to trap much more atoms. We typically gain a factor 5 in the atom number. The
procedure to measure the atom number is given section 1.3.

Folllowing the loading, the in-vacuum coils (see fig. 2.4) are changed to the Helmoltz con-
figuration to create a homogenous magnetic field B = 50G in 10ms.

The trap is then compressed to a waist w0 = 1.8µm by changing the magnification of



Section 1 Preparation and characterization of a dense cloud.

91

the OT, keeping the power constant. After that, the trap depth is increased up to 7.6mK in
10ms. The duration of the compression has been optimized to be short enough to minimize
the three-body losses (see next section) but long enough compared to the response time of
the OT (see section 1.4). The atoms are finally optically pumped in the (5S1/2,F = 2,mF =−2)
state in 20µs (section 3.2) in presence of a strong magnetic field to avoid depumping by the
scattered fields. This step is realized less than 1µs before sending the resonant light on the
system in order to minize the depumping due to collisions. After this stage, we obtain a cloud
of about 2500 atoms in the trap at temperature of 700µK, which corresponds to a cloud peak
density n0 ' 1×1015 at/cm3 or equivalently n0/k3 = 1.7±0.3 (Glicenstein, Ferioli, Brossard, et
al. 2021). This density is three time larger than the one reported with our previous apparatus,
using a large dipole trap as a reservoir for a small tweezer (Bourgain et al. 2013; Pellegrino
et al. 2014).

The repetition rate of the experiment is about 2Hz, limited by the MOT loading time.
Peak density

The peak density of the cloud is
n0 =

N

Vth
(1.1)

where N is the atom number and
Vth =

(
2πkBT

mω̄2

)3/2

it the thermal volume, assuming a harmonic trap. In this equation, ω̄= (
ω2

rωz
)1/3 is the mean

oscillation frequency of the trap. A precise measurement of the density thus relies on a pre-
cise measurement of the atom number (explained in section 1.3), of the cloud temperature
T and of its trapping frequencies, which I now present.
1.2 Trapping frequencies

This measurement has been described in chapter 4 to characterize the atomic chain (section
2.3). It is based on the parametric heating induced by the modulation of the trap beam inten-
sity. Figure 5.2 shows as an example the evolution of the radial trapping frequency ωr as afunction of the trap power for two different trap waist (w0 = 1.8µm and w0 = 3.2µm). These
measurements are used either to determine the value of w0, using equation 1.3, or to use
directly the measured values of ωr and ωz .
1.3 In-situ size and temperature

In-situ size & radiation pressure explosion

Using equations (1.4), equation (1.1) can be written (here using time-dependent variables)
n0(t ) = N

(2π)3/2σ2
r (t )σz (t )

(1.2)
where σr (t ) and σz (t ) are the radial and axial size of the cloud (we assume here a cigar-
shaped cloud). To estimate the density, one can thus directly measure the cloud size in the
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Figure 5.2: Radial trapping frequency ωr as a function of the trap beam power, for
two trapping beam waists. The dashed lines correspond to fits based on equation 1.3 to
determine w0 knowing the trap power. The error bars are from the fits used to determine
the resonances.

trap, using imaging. For the compressed cloud, σr = 280nm and σz = 2.3µm. The radial size
is thus smaller than the resolution of the imaging system (∼ 1µm) but not the axial size. It
should thus be measurable.

In a dense cloud (n0/k3 ∼ 1) , the radiation pressure due to the probe pulse increases
significantly the size of the cloud, making the measurement of the in-situ size difficult. One
obtains physical intuition by considering the atomic equations of motion. For saturating res-
onant light, the (radial) force acting on atom j is given by (Steane et al. 1992)

∇F j (r ) =ħk
Γ

2
σR n(r )

where
n(r ) = n0e

−m(ω2
r r 2+ω2

z z2)
2kBT

is the atomic density and σR ∼ 3λ2

2π
1

1+s is the light absorption cross-section.We solve the equation ofmotion usingMonte-Carlo simulations. Let us consider a cloudof
N = 2500 atoms at temperature 700µKwith a peak densityn0 = 1.7k3. Tomake the discussion
simpler, we assume that the cloud is spherical. Tomodel it, we assign to each atom a position
r j according to a gaussian distribution with width σ0 = 1p

2π

(
N
n0

)1/3
' 560nm and a velocity v jaccording to Maxwell-Boltzmann ditribution. The simulation is then performed using time

steps of 10ns. At each step, the new values of the force, atomic positions and velocities are
computed. The distribution of the atomic radial positions is then fitted by a gaussian function,
from which the width σ(t ) is extracted. Simulations are averaged over 100 clouds. In figure
5.3 we show σ(t ) as a function of the probe pulse time, for a probe intensity s = 1.

As a comparison, we plot in figure 5.3 the calculated cloud size neglecting the radiation
pressure force (F = 0, in free flight) and calculated neglecting the thermal motion of the cloud
(T = 1nK). As seen in the figure, the cloud is almost two times bigger when sending resonant
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Figure 5.3: Cloud width as a function of the time (sending resonant light). The ”realistic”
case is compared to the case neglecting the radiation pressure (F = 0) and to the case
neglecting the thermal motion (T = 1nK).

light for 1µs than in free-flight. Radiation pressure acts mostly at early times of the probe
pulse, triggering an explosion, after which the expansion is ballistic. The thermal expansion
(T 6= 0) leads to a reduction of the density at initial times, thus reducing the radiation pressure.

0 100 200
8

8.5

9

9.5

10

10.5

Pulse duration (ns)

Clo
ud

len
gth

,σ z
(µm

)

0 25 50 75 100 125

0

20
σz ∼ 10µm

z(µm)

Figure 5.4: Left : Experimental average in-situ image of the cloud under 230ns of
resonant light (averaged over 20 images). Right: σz for various pulse duration, showing
the effect of radiation pressure. The orange dotted line represents the length extracted
from an image using a far off-resonant light . The error bars are from the fits.

Wemeasure the in-situ size of a cigar-shaped cloud for various probe pulse duration using
resonant light. The cloud contains 2500 atoms and has a peak density of n0 = 1.7k3 (extracted
independently). The experimental images, averaged over 20 repetitions of the sequence, are
fitted using a 2D gaussian fit. The radial size of the cloud does not show a significant variation
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as it is smaller than the resolution of the imaging system. The measured value of the length
σz are shown figure 5.4. We observe that the size increases strongly with the pulse duration,
as expected from the simulations figure 5.3. We perform the same measurement using far
detuned light (we use the repumper beam, detuned by 6.8GHz). We observe that in that case
the size is smaller than using the resonant light, because the radiation pressure force is much
smaller. However, the measured value is still about three times larger than the expected size
from a thermal cloud in a harmonic trap with our trapping frequencies. This might be due
to some imperfections of the trapping beam. Moreover, we have neglected in this study the
effects of the light-induced collisions on the cloud size.
Temperature
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Figure 5.5: T as a function of the used pulse
duration, showing the effect of the radiation
pressure in the dense cloud.

The temperature of the atoms is measured
using the time-of-flight method. The cloud
with initial size σ0 is released in free-flight
during a time tof. After this time, the size is

σ(tof) =
√
σ2

0 + v2
tht 2

of (1.3)
with vth =

√
kBT

m .
One thus obtains the temperature T by

repeating the measurement of σ for differ-
ent tof. We assume that the atoms move
only due to their temperature. As seen in the
previous section, this is not the case when
sending resonant light in a dense cloud.
However, the probe light cannot be far from
resonance because the scattered signal is
too weak when the time of flight becomes
large. We must therefore use a pulse as
short as possible (as shown in figure 5.5).
In figure 5.6, we show the measured σz forthe two clouds described in section 1.1, for
various tof, using 1µs pulses of resonant
light. This duration is a compromise be-
tween minimizing the radiation pressure ef-

fect and maximizing the signal. Data are fitted using a linear function, as σ2 ∝ T t 2
of to deter-mine the temperature.
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Figure 5.6: Cloud size (along z) as a function of tof before and after compression (section
1.1). Data are fitted by a linear function to extract the temperature (dashed lines).

2 Density estimation using the cloud dynamics

As seen in the previous section, a precise estimation of the density is difficult because it is
based on the measurement of the cloud size, which is biased by the effects described above.
In this section, we confirm the value that we have extracted from the previousmeasurements
by studying the cloud dynamics. Indeed, such a high density results in large one-, two- and
three-body losses and high collision rates, which offer a probe for estimating the density of
the cloud.

2.1 Inelastic collisions in the absence of light

The relevant loss process in our experimental conditions are the inelastic losses due to one-
,two- and three-body collisions. They lead to a decrease of the local density n as a function
of time given by

dn

dt
=−γn −βn2 −L3n3 (2.1)

with γ,β and L3 the coefficients for the one-,two- and three-body losses (inelastic collisions)
respectively.

One-body losses do not depend on the number of atoms trapped. Indeed, they aremainly
due to collisions with the residual atoms in the science chamber. This chamber is under ultra-
high vacuum (P ∼ 5×10−11 mbar) but it contains hydrogen molecules at room temperature
T = 300K or atoms which are outside the trap. These collisions limit the lifetime τ of a single
atom in the trap when all beams except for the laser used to trap are turned off. The precise
measurement of this lifetime varies with the exact pressure and temperature of the oven but
we find τ ' 20s which corresponds to γ = 5×10−2 s−1. The principle of this measurement
is detailed in the thesis (Brossard 2019). Other effects that can limit the lifetime, such as
fluctuations in the intensity of the trapping beam or heating due to the absorption of photons
from the trap are estimated to be negligible. The duration of a typical experimental sequence
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is shorter than 1s, so one-body losses are not a limitation.
Two-body losses depend on the number of atoms in the trap. In the absence of resonant

light, these losses are mainly due to hyperfine-changing collisions (Gensemer et al. 1997).
In order to explain this, let us briefly recall the hyperfine structure of rubidium 87Rb. The
52S1/2 ground state has two hyperfine levels F = 1 and F = 2, separated by 6.8GHz. During a
collision, a spin-flip can occur and an atom in the 52S1/2F = 2 level finds itself in the 52S1/2F = 1
level. The energy released is very large compared to the typical depth of our traps, which is
a few kB ×mK or equivalently a few tens of h ×MHz. Atoms that experience this type of
collision are therefore ejected from the dipole trap. The β rate for our clouds is of the order
of 1×10−11 cm3 s−1 (Gensemer et al. 1997). This rate can be strongly reduced by preparing all
atoms in the F = 1 manifold or in the F = 2 manifold . In this case, the collisions involve only
the spin-dipolar mechanism and have rate coefficients on the order of β = 1×10−15 cm3 s−1

(Julienne et al. 1997). In our experiment, we optical pump all the atoms in the (F = 2,mF =−2)
state.

The three-body losses are due to recombination of three atoms into a dimer and one
free atom. Two-body collisions can not result in the production of a dimer since it can not
conserve both the energy and the momentum. It is possible for a three-body collision, where
the binding energy is transferred into kinetic energy to the dimer and to the third atom. This
large energy gain leads to the loss of the three atoms. Three body losses become dominant
when the density reaches values on the order of n ∼ 1×1015 cm−3. This also corresponds to
n ∼ 1/k3

0 for the 87Rb D2 line, which is the regime we want to explore to study the effects of
the interaction between light-induced dipoles (see section 1.1). Typical L3 rates of three-bodylosses for rubidium are on the order of L3 ∼ 1×10−29 cm6/s (Söding et al. 1999; Burt et al.
2008).
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Figure 5.7: Collision rate as a function of the atomic density n, for the one-,two- and
three-body losses, in the density range typically reached in our dipole traps. The one-
body losses (rate γ) can be neglected for the duration of the sequence (∼ 0.5s), drawn
with the dotted line. When the density approaches n ∼ 1×1015 cm−3, the 3-body losses
dominant over the other types of collisions.

We plot the different collisions rates as a function of density in figure 5.7. We observe
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that 3-body losses dominate when the density is important. They constitute a limitation on
the achievable densities in our optical tweezers. We will use them to confirm our density
measurements in the dense traps.
2.2 Temporal evolution of N and T

We will measure the cloud atom number N and the temperature of the atoms T after the
loading. The temporal evolution of these quantities are given by (Luiten et al. 1996; Eismann
et al. 2016)

Ṅ =−γ3
N 3

T 5 −γ2(σ(T ),T )
N 2

T
(2.2)

Ṫ = T

3

[
5

3
γ3

N 2

T 5 − γ̃2(σ(T ),T )
N

T

]
(2.3)

where γ3 depends on the trap geometry and is proportional to the three-body losses coeffi-
cient L3. The coefficients γ2 and γ̃2 depend on the temperature, the trap geometry, and on
the two-body elastic cross section σ(T ), whose temperature dependence takes into account
the d-wave resonance at 350µK. For the temperature of our cloud, the correction is signifi-
cant (a factor 3, as shown in figure 5.8). We use data of (Buggle et al. 2004), figure 5.8, to find
a functional form of σ(T ).

Figure 5.8: s-wave (dashed line), d-wave (dotted line) and total (full black line) elastic
cross sections as a function of collision energy. From (Buggle et al. 2004).

The atom number is measured as a function of the time, after the end of the loading
sequence (section1.1). The result is shown figure 5.9. The decay of the atom number is fitted
using equations (2.2) and (2.3), with L3 as a free parameter. We obtain L3 = 4(1)×10−28 cm6/s.
In the litterature, one finds the value L3 = 1.8(10)×10−29 cm6/s (Söding et al. 1999). It was
measured for a Bose-Einstein condensate, for which the losses are reduced by a factor 6. The
value that we have obtained is still to large. However, there exists no prediction for the effect
of the d -wave resonance on the three-body losses and the literature values are measured
only in the s-wave regime (Burt et al. 2008).
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Figure 5.9: Time evolution of the atom number in the dense cloud. The dashed line
corresponds to a fit using equations (2.2) and (2.3).

The solution from equations (2.2) and (2.3) extracted from the fit of the data of figure
5.9 predicts the evolution of the temperature. We therefore measure the temperature as a
function of time and compare it to the predictions in figure 5.10 without any fit, showing a
reasonable agreement and therefore indicating the consistency of our model.
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Figure 5.10: Time evolution of the temperature in the dense cloud. The dashed line
corresponds to the prediction made using the fit figure 5.9 and equation (2.3).

2.3 Estimation of the density

We now combine the measurements of figure 5.9 and 5.10 to estimate the density, using
equation (1.1). Its evolution is plotted figure 5.11.

We are thus able to produce cloud containing up to a few thousand atoms at densities
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Figure 5.11: Time evolution of the density in the dense cloud. The dashed line corre-
sponds to a fit using equations (2.2) and (2.3).

n0 ∼ k3. The dynamics of the evolution confirms the extracted value of the density.



Ch. 5- Preparation of dense clouds of 2-level atoms

100

3 Control of the internal state

The purpose of this section is to illustrate the manipulation of the internal state of the cloud.
To avoid the collective effects that will be studied in the following chapters and to first char-
acterize the single atom response, we now consider a dilute cloud (n0/k3 < 1). It can be for
example loaded directly from the MOT or reducing the atom number of a dense cloud (see
section 3).

The cloud is excited using 20 pulses of high intensity resonant light along the quantization
axis, with polarization σ−. As we have isolated a closed two-level transition (see section 3.2),we observe Rabi oscillations (section 1.2) in the fluorescence collected using an avalanche
photodiode (APD), as shown figure 5.12.

For all the data shown in this section, light is collected along the long axis of the cloud,
thus perpendicularly to the direction of the driving pulse. We have checked that the single
atom response is independent of the driving and observation directions (APD ∥ and APD⊥ in
figure 1. We repeat each measurement on 1000 clouds to acquire enough statistics.
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Figure 5.12: Fluorescence collected on an APD during resonant excitation of the cloud.
The signal is fitted using the Optical Bloch Equations (dashed line).

Data of figure 5.12 are well fitted by a solution of the Optical Bloch Equations: this is a
signature of the single atom response.

3.1 Rabi Oscillations as a function of the driving intensity

We first confirm the dependence of the Rabi frequency Ω as a function of the driving light
intensity. To determineΩ, we calculate the Fourier transform of the measured signal, during
the oscillations. Figure 5.13 shows the result of this Fourier transform, each column corre-
sponding to a fixed intensity I /Isat.We observe a good agreement between the obtained spectra and the theoretical value
Ω= Γ

√
s
2 (section 1.2) where s = I

Isat
. For this particular measurement, s is determined inde-

pendently using the atomic fluorescence in steady-state. In the following, we use the fit with
solutions of the OBE to determine the light intensity on the atoms.
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Figure 5.13: Rabi frequency Ω as a function of the driving light intensity s = I
Isat

. Each
column is the Fourier transform of the fluorescence trace for the corresponding intensity.
The solid line corresponds to the theoretical value Ω= Γ

√
s
2 .

3.2 Optimization of the preparation of a 2 level system

Magnetic field

Isolating a two-level system is necessary to observe a good contrast in Rabi oscillations. If it
is not the case, multiple transitions are possible, leading to different Rabi frequencies, which
blurs the oscillations. In this section, the goal is thus to optimize the magnetic field used to
isolate the two-level transition, optimizing the contrast of the oscillations. We measure the
fluorescence collected during the pulse in the case where the optical pumping was applied
(see section 3.2) and in the case without optical pumping, as shown figure 5.14, left panel. In
the latter, the system is thus prepared as mixture of Zeeman levels. As expected, we observe
that the oscillations are quickly damped because of the frequency shift between the differ-
ent possible transitions. Isolating two levels allows us to improve the contrast of the Rabi
oscillations, and thus the control of the internal state of the atoms.

We calculate the fourier transform of the measured signal during the oscillations. In the
case of the 2-level system, we observe a large peak. In the other case, the peak disappears:
we cannot distinguish any oscillation. We are then interested in the evolution of the ampli-
tude of the peak as a function of the magnetic field during the pumping. On figure 5.14, we
show that the amplitude of the peak increases for B < 20G and then saturates. This result
is consistent with the observed fact that the pumping efficiency increases until about 20G
and then saturates (see chapter 2). We don’t observe any variation on Ω as a function of the
magnetic field.
Polarization

We then study the effect of the polarization of the optical pumping beams and of the probe on
the Rabi oscillations, using a biasmagnetic fieldB = 50G. The two beams use the same optical
path. Their polarization is tuned by rotating a λ/4 waveplate. We have shown that when the
polarization is σ−, we isolate a closed 2-level system. In that case, we should observe highly
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Figure 5.14: Left : Fluorescence collected on an APD during a resonant excitation of
the cloud, using the two-level transition and without isolating the transition, using a 2ns
moving average. Right: FFT peak amplitude as a function of the magnetic field applied
during the optical pumping. The error bars correspond to the uncertainty on the peak
position.

contrasted Rabi oscillations. This is characterized by calculating the Fourier transform of the
fluorescence signal during the probe pulse, as before, for various angles of the polarization
plate (with an arbitrary origin).
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Figure 5.15: Rabi frequency Ω as a function of the angle of the polarization waveplate.
Each column is the Fourier transform of the fluorescence signal for a given angle of the
waveplate. The origin of the angles on x-axis is arbitrary. The white solid line is a guide
for the eyes.

In Figure 5.15, we show that for a waveplate angle of about 50°, the contrast of the Rabi
oscillations is good. The contrast then decreases as the polarization of the optical pumping
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beams and the probe becomes different fromσ−, highlighting the crucial importance of finely
tune the polarization to isolate a two-level transition.

The observation of the Rabi oscillations is a confirmation that we are able to prepare a
closed 2-level system, and to manipulate the internal state of the atoms.

4 Control of the atom number

To study dense clouds, one must control both the number of atoms and the volume of the
cloud (thus its temperature). We have set up an empirical protocol to vary the number of
atoms without significantly changing their temperature.

To adjust the atom number N , we first load a dense cloud as explained section 1.1. The
cloud is then released from the trap and recaptured after a variable time. The number of
atoms as a function of the release time is calibrated at least every day, to take into account
daily fluctuations. One example is shown figure 5.16.
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Figure 5.16: Atom number (dots) and temperature (squares) as a function of the release
time.

We estimate the temperature as done in section 1.3, using 1µs pulse of resonant light. In
figure 5.16, we show that the release and recapture protocol does not change significantly the
cloud’s temperature. It seems that the cloud quickly thermalizes with possibly some evapo-
ration.

Releasing the cloud is thus an experimental knob to change the density only by chang-
ing the atom number. The size of the cloud, given by its temperature and by the trapping
parameters, is not modified during the protocol.

5 Crossed dipole trap

Up to now, we have only considered "cigar" shaped traps, formed by focusing of a single
laser beam. Now, we are interested in the implementation of a spherical trap, based on two
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crossed traps. For this, we use the two high resolution axes formed by the aspherical lenses,
as represented figure 5.17.

zTrap

rTrap

λTrap = 940nm

λCrossed = 850nm

wCrossed = 2,2µm

wTrap = 2,4µm

Figure 5.17: Schematic of the setup of the crossed dipole trap. The axes are defined in
figure 2.4.

One of the traps is formed by focusing a laser beam at a wavelength 940nm along the
zTrap-axis (called horizontal trap) with a waist of 2.4µm, the other using a laser at a wavelength
of 850nm along the rTrap-axis with a waist of 2.2µm, called transverse trap.
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Figure 5.18: Radial oscillation: Recapture probability as a function of the trap modulation
frequency for the horizontal trap, for the transverse trap and for the crossed trap . Data
are fitted by the sum of two gaussian functions (dashed lines).
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To characterize the trap thus formed, wemeasure the oscillation frequencies. As in chap-
ter 4 (section 2.3), we modulate the intensity of the laser beams with a relative amplitude of
5% during 100ms once atoms are loaded in the trap. We then measure the probability of
keeping the atoms in the trap as a function of the modulation frequency. This measurement
is made for the horizontal trap alone, the transverse trap alone and then for the crossed
trap, as shown figure 5.18 for the radial oscillation frequencies. Data are fitted by the sum of
two Gaussian functions to account for resonances at 2ωz /p , where p is an integer. In Figure
5.18, one of the oscillation frequencies of the cross trap is measured. It is however difficult
to deduce its value from those of the individual traps.

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

Trap modulation frequency (kHz)

Rec
apt

ure
pro

bab
ility

HorizontalTransverseCrossed

Figure 5.19: Axial oscillation: Recapture probability as a function of the trap modulation
frequency for the horizontal trap, for the transverse trap and for the crossed trap. Data
are fitted by the sum of two gaussian functions (dashed lines).

We then consider the axial trapping frequencies. We observe that the resonances present
for the single traps have disappeared for the crossed trap. This is an indication of a much
tighter axial trapping thanks to the transverse trap.

Wemeasure the in-situ size of a cloud in the crossed trap. Based on the analysis in Section
1.3, a 2µs pulse is used to limit the effect of radiation pressure. We collect the fluorescence
along the transverse axis and fit the obtained images to deduce the cloud’s size. By increasing
the power in the beam of the transverse trap, we observe that the axial dimension (according
tozTrap-axis) decreases, as shown figure 5.20. We are thus creating amore spherical trap. The
other dimension is not changed (measurement limited by diffraction). We have not reached
a perfect isotropic trapping. This is probably due to the fact that the radial trap is not deep
enough such that atoms can still explore a relatively large region axially.
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Figure 5.20: In situ size of the cloud along the axis zTrap as a function of the power in
the transverse trap beam.

6 Conclusion

In this chapter, we have shown howwe prepare and characterize dense clouds of atoms, with
density reaching n0/k3 ∼ 1. In a second part, we have used Rabi oscillations to control the
cloud’s internal state. The last part was devoted to the experimental realization of a crossed
dipole trap. In addition to the density, these clouds have the particular feature of containing
several thousand atoms, which is a crucial improvement compare to the previous generations
of the experiment. We will show in the following chapters that this ability to load high atom
number has allowed us to observe super- and subradiance with our system.
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Superradiance in a dense
ensemble of 2-level atoms

***
Superradiance as described by Dicke is the collective spontaneous emission of photons from
a fully excited atomic ensemble with dimensions smaller than the light wavelength (Dicke
1954). This emission happens in amuch shorter time than the natural lifetime of a single atom
τ. One can gain a qualitative interpretation of the phenomenon using the following classical
picture. Consider each atom as an antenna which emits light: if all antennas radiate in phase,
the total electromagnetic field is proportional to N , thus the intensity is proportional to N 2.
To conserve the energy, atoms must radiate N times faster than for incoherent emission (N
time faster than independent atoms), the superradiant lifetime is thus given by τs = τ/N .

This simple picture is not complete because it predicts an exponential decay, but Dicke’s
theory, which describes the decay to the ground state of atoms that are all excited, predicts
a flash: the photon emission rates increases even if the driving is switched off. Moreover, the
initial total dipole of the system is zero and there is no phase relation between the dipoles.
The complexity of the phenomenon lies in the phasing of the dipoles during the spontaneous
decay of the system. This paradoxical situation where atomic dipole get progressively phased
is at the origin of the interest in the phenomena.

In this chapter, we will first present a qualitative description of superradiance and its fea-
tures and we will introduce Dicke’s classification of the Hilbert space. This will allow us to
show, in a second time, how we experimentally observe Dicke superradiance.
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1 Qualitative description of Dicke superradiance

1.1 Collective spontaneous emission of N two-level systems

Case N = 1

Let us start the reasoning with the spontaneous emission from a single two-level atom. The
ground ∣∣g〉 and excited |e〉 states are coupled via a dipolar transition. If initially in the state
|e〉, the atom de-excites spontaneously in a characteristic time τ= 1/Γ, where Γ is the natural
linewidth of the transition ∣∣g〉 → |e〉. During all the process, the mean value of the dipole
operator D+ = Dx + i Dy = (D−)† is equal to zero :

〈D+〉 = 0.

The intuitive picture is that the vacuum induced dipole has a random phase, thus the
average dipole vanishes. Themean value of the intensity 〈I 〉 is proportional to 〈D2〉 = 〈D+D−〉,which is different from zero:

〈I (t )〉∝ e−Γt .

〈I (t )〉 is thus maximal at t = 0 and decays exponentially in a characteristic time τ.
Case N = 2

Following (Gross 2006), let us now consider two identical excited atoms at a distance |x12 ¿
λ0|. The mean radiated intensity at t = 0 is

〈I (t = 0)〉∝ 〈D2〉 = 〈(D1 +D2)2〉 = 〈D2
1〉+〈D2

2〉

because the correlations between the two atoms are equal to zero at t = 0. The spontaneous
emission starts as if the two atoms were independent, with a characteristic time τ.

After the emission of one photon, since the atoms are at a distance much shorter than
λ0, it is impossible to determine which atom emitted the photon, even by measuring it. The
system thus remains in a state invariant under the permutation of the two atoms. The state∣∣ψ〉 of the system is thus the symmetric superposition

∣∣ψ〉= 1p
2

(∣∣e1g2
〉+

∣∣g1e2
〉)

.

The correlations between the dipoles are then
〈ψ|D1D2|ψ〉 = 〈e1|D1|g1〉〈e2|D2|g2〉 6= 0.

The square of the total dipole, 〈D2〉 = 〈D2
1〉+〈D2

2〉+2〈D1D2〉 is larger than the one of uncorre-lated atoms. Light emission is thus stronger:
〈I 〉 > 〈I1〉+〈I2〉.
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These equations mean that even if the two dipoles have individually a random phase,
〈D1〉 = 〈D2〉 = 0, the decay has created a phase relation between them. Superradiance results
fromconstructive interference between the fields radiatedby the correlateddipoles. It should
also be noted that the total dipole of the system is still equal to zero, which is true for all Dicke
states as we will discuss later. Let us now look at the Hilbert space of Dicke states in order to
describe some features of superradiance.
1.2 Dicke super- and subradiant states

With an analogy to spin 1/2 quantum system, superradiance is described in terms of Dicke
ladder states (Dicke 1954). The states can be written using their total angular momentum J
(0 ≤ J ≤ N /2, where N is the atom number) and the magnetic moment (−J ≤ M ≤ J ), which
are good quantum numbers and common eigenstates of the operators Jz and J2 (Cohen-
Tannoudji et al. 2012).

We first classify the states by their value of M . For a given M , the energy (= Mħω0) hasa degeneracy N !
(N /2+M)!(N /2−M)! . We then classify the states by their J . As examples, we repre-

sent in figure 6.1 the classified states for for N = 2 and N = 4. States for which J = N /2 are
symmetrical by permutations of the atoms. These states form the Dicke ladder. For other J ,
there is no particular symmetry.

|g g 〉

|g e〉−|eg 〉p
2

|g e〉+|eg 〉p
2

|ee〉
2Γ

2Γ

0Γ

0Γ

a) N = 2

|g g g g 〉−2

−1

0

1

2 |eeee〉

b) N = 4

M =

J = 2 J = 1 J = 0

Dicke Ladder

Figure 6.1: Dicke Hilbert space for a) N = 2 and b) N = 4. States are order by total
angular momenta J and magnetic moments M . Dicke ladder of symmetric states, J =
N /2, are identified for the case b). Decay from M = 0 to M = 1 in this ladder leads to
the most superradiant emission.

The rate of photoemission ΓJ M from the state |J M〉 is proportional to 〈J+J−〉 where J± =
Jx ± i Jy . One obtains

ΓJ M ∝〈J , M |J+J−|J , M〉∝ (J +M)(J −M +1)

This gives a maximal rate N 2/4 for J = N /2 and M = 0 ( if N À 1). The decay from the
fully excited state is a cascade of the ladder down to the ground state and does not involve
the other states (Dicke 1954). Qualitatively, as explained for the N = 2 case, since the atoms
are at a distance much shorter than λ0, it is impossible to determine which atom has emitted
the photon, even by measuring it. The systems thus remains in a permutationally symmetric
state during the decay of the excitation. The N 2 enhancement of the light intensity is one of
the main features of superradiance.
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To illustrate the superradiant emission, we calculate the time evolution of the population
ΠM of the Dicke Ladder states |J = N /2, M〉. This time evolution is given by

Π̇M =





ΓM+1ΠM+1 −ΓMΠM if −N
2 < M < N

2

−ΓMΠM if M = N
2

ΓM+1ΠM+1 if M =−N
2

where ΓM = Γ( N
2 +M

)( N
2 −M

). Starting from a fully inverted system (ΠN /2 = 1,ΠM 6=N /2 =
0) and following (Gross and Haroche 1982), we then compute the rate of photon emission per
atom

WN = 1

N

∑
ΓMΠM .

The rate for two atoms (W2) and for four atoms (W4) are shown figure 6.2 and compared
to the decay of independent atoms (W1).
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Figure 6.2: Photon emission rate per atom as a function of the time for two-atom
superradiance (W2), four atom superradiance (W4) and for independent atoms (W1,
dashed line).

In figure 6.2, one sees the typical features of superradiance. First, the number of photons
emitted per atom is larger than for a single atom (W4,W2 > W1) and the initial slope of the
photon rate is positive in the decay. Then, a peak is observed with an amplitude proportional
to N 2. Finally, the photon emission rate decays faster than the decay rate of a single atom
W1. This decay is inversely proportional to the atom number.

Dicke states are the symmetrical states with momentum J = N /2. One can show (H.-H.
Jen 2020) that these states are highly correlated and that their collective dipole moment 〈J+〉vanishes. Superradiance is thus related to the quantum coherences in the system. On the
contrary, a product state of N coherent quantum emitters,

∣∣ψ〉=
( ∣∣g〉+|e〉p

2

)⊗N
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also presents an enhanced emission rate but has a large dipole moment. This product state
does not show entanglement and it behaves more classicaly. Some authors distinguish its
decay, calling it superfluorescence (Mandel and Wolf 1995).

We generalize Dicke’s theory to a system whose dimensions are larger than the wave-
length, in order to get closer to the conditions of our experiment.
Generalization to a cylinder of finite size and superradiant threshold

Dicke’s original theory takes place in a cloud with dimensions smaller than the light wave-
length. To make it applicable in our experimental system, we generalize the previous para-
graph in the case of N atoms in a cylindrical cloud with an axial dimension larger than the
wavelength, following (Gross 2006), and we will show that it implies a threshold in the mini-
mal atom number to observe superradiance (the radial dimension is smaller than the wave-
length). After the emission of the first photons, the system is in the superposition of the states
|e〉m and e−i k0rm

∣∣g〉
n where k0 is the mean wavevector of the emitted photons and rm is the

position of atom m. This leads to correlations between the dipoles:
〈DmDn〉∝ d 2e−i k0(rm−rn )

where d = |〈e|D|g 〉|.
The light emitted by the system is thus the sum of an isotropic incoherent part Iincoh ∝∑

m〈Dm〉2 and a coherent part due to the interference between the fields emitted by different
atoms :

Icoh ∝
∑

m 6=n
〈DmDn〉e−i k0(rm−rn ). (1.1)

The general theory of superradiance involves a summation over all atoms and all elec-
tromagnetic field modes. These sums are not independent because according to the laws of
diffraction, the modes to which the atoms are coupled depend on the size and geometry of
the cloud. Light emitted by the cloud in the direction k0 is proportional to |SN (k0)|2 where

SN (k0) = 1

N

N∑
m=1

e−i k0.rm

is the structure factor of the atomic cloud. We approximate this sum by
SN (k0) ∼ 1

N

∫
n(r)e−i k0.rm dr

where n(r) is the atomic density. Assuming an ellipsoidal gaussian density
n(r) = n0e

− x2+y2

2σ2
r

− z2

2σ2
z ,

one obtains for N →∞(Courteille et al. 2010), in spherical coordinates
S∞(k0,θ,φ) = e−k2

0σ
2
r [sin2(θ)+η2(cos(θ−1)2]/2

where η = σz /σr is the aspect ratio of the cloud. This means that the intensity is mostly
emitted in a small angle θg = 1/η = σr /σz ' 0.03rad. To calculate the radiated intensity, we
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therefore perform the summation only on the modes contained in a solid angle ∆Ω around
the cylinder axis, for which the fields interfere constructively. It is given by

∆Ω= 2×2π
(
1−cos

(
θg

))

where the factor 2 comes from not favoring a direction along the axis of the cyclinder.
In the case of the cylindrical cloud that we consider, the radiated fields vary essentially

along the axis of the cylinder and negligibly in the radial direction. Following (Gross and
Haroche 1982), the description of superradiance depends of the Fresnel number:

F = πσ2
r

λσz

In our case, F ' 0.05, so the emission occurs in a single mode. The counterpart is that this
mode strongly diverges with a diffraction angle θd = λ/σr = 2rad, but the coupling mode is
actually reduced by the geometry of the cloud to the angle θg . Experimentally, this allows us
to observe superradiance using our large NA lenses, as represented figure 6.3.

θg θd

σz

σr

Figure 6.3: Schematic representation of the geometry. Because of the Fresnel number
F ¿ 1, a single mode is sustained by the emission (angle θd). It is limited by the
geometrical angle θg , with is smaller than the field of view of the detection system
(NA=0.5).

One obtains
Icoh ∝ N 2∆Ω

and
Iincoh ∝ 4πN .

The superradiant emission is thus larger than the emission of independent atoms if N >
4π
∆Ω . This geometrical condition is often written

Nµ> 1 (1.2)
where µ= ∆Ω

4π . The physical interpretation of the geometrical factor µ is given in (Gross and
Haroche 1982). The spontaneous emission rateΓ is reduced toΓµ and only the photons in the
diffraction solid angle (proportional to µ) are ”useful” for the superradiant emission process.
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With our experimental parameters, µ ' 1/1800. We thus expect superradiance to dominate
for N > 1800.

Conclusion

Superradiance is a phenomenon described by classical theory in the sense that it results from
the constructive interference between fields emitted by dipoles. However, quantum theory
is necessary to explain the initial phasing of atomic dipoles, starting from a totally inverted
system. Superradiance depends on the geometry of the system and the number of emitters
via the threshold condition Nµ > 1 (assuming that there is no other source of dephasing
between the dipoles than the geometry of the system).

The rest of this chapter is dedicated to the experimental observation of superradiance.

2 Observation of superradiant emission of an inverted atomic
cloud

As explained in the beginning of this part, all the measurements presented in this chapter
have been obtained on the experimental setup represented figure 1.

2.1 Realization of a π-pulse

Pulse shape

To observe superradiance, one first needs to invert the atomic system, that is to prepare the
N -atom state |ee...e〉. As we have seen in chapter 5 (section 3), we are able to perform Rabi
oscillations to control the internal state of the cloud. To obtain an inverted system, one must
control the driving pulse after a duration π/Ω, where Ω is the Rabi frequency (assuming a
square driving pulse). Experimentally, the pulse is shaped using two acousto-optical modu-
lators (AOM) in series and a fiber electro-optical modulator (EOM). The EOM has a rising and
falling time shorter than 1ns, but its extinction is only of the order of 10−2. We use light inten-
sities corresponding to saturation parameters s = I /Isat ∼ 85. Because of this high intensity,
AOMs are thus needed to ensure a sufficient extinction. One of the AOM is in double-pass
configuration and the other is in single pass configuration.

In figure 6.4 a), we show the pulse measured using a APD, for different pulse durations.
We observe first a slow start (∼ 50ns), controlled by the AOMs. This relatively long time results
from favouring a good extinction ratio over speed. At t = 0, the EOM is switched on in a time
shorter than 1ns. At the end of the pulse, the EOM is first switched off faster than 1ns, but
it takes about 20ns to switch off the AOMs. As shown in panel b), we observe a rebound in
the extinction of the pulse, after a time that depends on the duration of the pulse. This is
due to the transient response of the EOM. By optimizing the delays between the AOMs and
the EOM, we minimize this bounce as much as possible without distorting the pulse. Delays
are controlled using a delay generator 1 with an accuracy of 1ns. We obtain an extinction of
10−3 in less than 5ns, which is enough to make the residual driving negligible after the end of
pulse for the study of superradiance.

1Standford Research System ® DG645
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Figure 6.4: Excitation pulses of various durations, measured using an Avalanche photo-
diode (APD). b) Zoom on the 12ns pulse used for the experiments.

The high extinction of the drive at longer times allows us to also study subradiance in
the same experimental sequence. To the best of our knowledge, this has never been done
before. This will be detailed in chapter 8.

The optimal (minimal) pulse duration is limited by the rising and falling times of the AOMs.
With our experimental apparatus, this duration is τopt = 12ns. For durations shorter than
this, the shape of the pulse if distorted and the pulse intensity varies over time because of
thermal effects. The shape of this pulse does not depend on the intensity within the range
we explored (s ≤ 100).

Intensity optimization

Wewant to apply a pulse as intense as possible and as short as possible, allowing an efficient
population inversion before decoherence occurs. We therefore would useΩopt =π/τopt suchas the shortest (12ns) pulse realises a π pulse. However, it is difficult to calculate precisely
the intensity actually applied on the atoms during the real pulse because the pulse is not a
perfect square function. We thus find experimentally the optimal Rabi frequency using the
following protocol.

There are two conditions to be fulfilled: the maximum of the population in the excited
state must be as high as possible (Pe (Ω) maximum for a pulse of fixed duration τopt) andthis maximum must be reached at t = τopt. In order to explain the method, we calculate the
solutions of the single atomoptical Bloch equations for several values ofΩ, as shown in figure
6.5. The photon rate is proportional to the population of the excited state ρee . We want to
find experimentally the intensity of the light that gives us the curve in black, which verifies the
conditions above.

Using these curves, we deduce the population inversion at τopt, shown in figure 6.6 panela). For τopt = 12ns, we obtain ρee,max ' 0.85 at the end of the pulse. This value could be larger
for higher probe intensity (but we cannot realize the pulse experimentally) and is smaller for
lower intensities. The maximum for any pulse duration is represented by the dashed line.
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Figure 6.5: Calculated photon rates as a function of the time, for various Rabi frequencies
around Ωopt. The shortest pulse (duration τopt = 12ns) is shown with a dashed line.
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Figure 6.6: a) Population if the excited state at the end of the pulse as a function of the
Rabi frequency. The maximum for any pulse duration is represented by the dashed line.
b) Position of the maximum of the emission rate for t < τopt as a function of the Rabi
frequency. The colors are the same than in figure 6.5.

In panel b), we plot the position of the population maximum for t ∈ [
0,τopt

]. This curve can
be explained in the following way. If Ω>Ωopt, the first peak of the oscillations is before τopt,so τmax < 12ns. If Ω < Ωopt, the first peak is after τopt, so the maximum on the considered
interval (before the end of the pulse) is in τmax = τopt. The Rabi frequency obtained at the
intersection of the two asymptotes is the optimal frequency Ωopt .

We perform this measurement on a dilute cloud (n0/k3 ¿ 1, to avoid any effect of the
interactions) for pulses of durationτopt . We also checked the method with an arbitrary pulse
duration τopt +10 = 22ns, as shown figure 6.7.
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Figure 6.7: Measured maximum position of the photon emission for pulses of duration
τopt and 22ns as a function of the Rabi frequency of the driving pulse. Rabi frequencies
are normalized by the value Ωopt found with a fit of the data.

In figure 6.7, we observe the expected behaviour as a function of Ω. By fitting the data
for the pulse of duration τopt , one obtains the value of Ωopt.We use a long (200ns) pulse to estimate the value of Rabi frequency Ωopt using a fit ofthe collected fluorescence by the solution of the optical Bloch equations, as done in chapter
5 (section 3). Expressed in terms of saturation parameter, we obtain sopt ' 85. If we had
assumed a square pulse, wewould have obtained s = 93. The above protocol therefore allows
for a more accurate π pulse by taking into account the exact shape of the pulse.

The solution of the Bloch equations knowing the excitation pulse also allows to deduce
the population of the excited state.With our experimental parameters, we find that about
ρee,max ' 0.85, which means that 85% of the atoms are in their excited state at the end of the
π-pulse.
2.2 Superradiant flash

We now apply a π-pulse in a dense cloud in order to observe the superradiant flash in pho-
ton emission. In the Dicke model, the cloud is smaller than the light wavelength and the good
parameter to describe the effects is the atom number N . In order to increase Nµ, as ex-
plained in section 1.2, we load as many atoms as possible in a tight cloud. To do so, we apply
the protocol explained in chapter 5 (section 1.1). The dimensions of the resulting cloud are
radially 0.5λ0 and 15λ0 along the axis of the trap with λ0 = 780nm. The cloud is excited per-
pendicularly to its long axis with a probe resonant with the two-level atoms transition, with
polarizationσ− and a power of s = 85, realizing a π-pulse as described in the previous section.
The probe has a diameter of about 500µm so that the cloud is excited homogeneously: the
Rabi frequency is the same for all atoms.

We collect the fluorescence emitted by the cloud along the cloud axis with an APD. We
apply the same excitation 20 times on the same cloud (less than 10% of the atoms are lost
during these pulses). We repeat this sequence on 3000 different clouds to acquire enough
signal. We then consider the histogram of arrival times, using 1ns bins.
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Figure 6.8: Normalized photon rate as a function of time. For N = 250, the decay rate
per atom is similar to the decay of a single atom, as shown with a dashed line (e−Γt ).
For N = 6000, a superradiant flash is observed.

The result strongly depends on the atom number. For a small atom number (we will
explain in the following what ’small’ means), the decay of the cloud matches the decay of
independent atoms. In figure 6.8, we plot the number of photons emitted per atom from a
cloud containing N = 250 atoms normalized to the initial fluorescence. It is very well fitted by
e−Γt , where 1/Γ= 26.4ns is the natural decay time of the rubidium D2 line.

For N = 6000 (‘large’ atom number regime), we observe a superradiant flash. The number
of photons first increases until amaximum. It then decays faster than for independent atoms.
This is the typical behaviour of superradiance, as described in the first section of this chapter
(figure 6.2).

Let us now describe quantitatively the superradiant decay.

3 Analysis of the superradiant decay

In this section, we analyse the features of the observed superradiance, following (Ferioli, Gli-
censtein, Robicheaux, et al. 2021). These features depend of the number of atoms in the trap.
The excitation scheme is the same as in the previous section, and we vary the atom number
in the trap (see section 4). Fluorescence photons are collected along the cloud’s main axis, as
represented in figure 1. Examples of experimental traces are shown figure 6.9, normalized
by the atom number N so that we plot the fluorescence per atom.

We observe that the photon emission rate switches from an exponential decay to a short
burst as N increases. In the ideal Dicke scenario, the intensity emitted per atom at the end
of the pulse should be independent of N . This would be the case if the π-pulse was much
faster than the superradiant emission. In our case, superradiance starts before the end of
the excitation pulse. However, we still observe that the emission increases after the end of
the pulse (flash). This effect increases as N increases. It is also clear that the timescale τsdecreases as N increases.
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Figure 6.9: Examples of photon rates, normalized by the atom number N . The superra-
diant decay time τs is defined as the time required for the emission rate to be reduced to
1/e of its maximum, as represented. The end of the excitation pulse (gray are) is located
at t = 0.

3.1 Theoretical model

Despite knowing the microscopic details of our clouds, the application of exact numerics is
not possible due to the large number of atoms. Our data will be compared to simulations
based on a truncated treatment of the problem (Robicheaux and Suresh 2021). As explained
in the first chapter (section 2.3), it consists in replacing the third order operator expectations
by products of one and two operator expectations, assuming that the cumulants for the three
operators are zero (Kubo 1962).

Theses simulations, called mean-field 2 (MF2), are performed by F. Robicheaux and R.
Sutherland and account for dipole-dipole interactions between emitters. This approach dif-
fers from "traditional" treatments of the problem in that it does not impose any a priori co-
herence in themany-body wavefunction, as opposed to, in particular, (Allen and Eberly 1987).

The simulations are solved for fixed positions of the atoms in a thermal cloud with the
same size as the clouds produced in the experiment. They are averaged up to 1000 times
over random configurations.

F. Robicheaux has verified for a small number of atoms (<80) that the emission rate calcu-
lated with MF2 differs by less than 5% compared to the rate calculated with MF3 (truncation
of the cumulants to the higher order). The CPU andmemory requirement of MF3 are to large
to estimate the error induced by the MF2 in our experimental conditions. The number of
operation for one time step of MF2 is proportional to 32N 3, and is proportional to 33N 4 for
MF3 (Robicheaux and Suresh 2021).

MF2 simulations are ab-initio simulations, without any free parameters. They are only
based on measured values, such as the cloud’s size and depth, the atom number and the
temperature.
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3.2 Initial photon rate

In this section, we study the evolution of the initial slope of the photon rate as a function of
the atom number. The initial emission rate is extracted using a linear fit in a 5ns window after
the end of the pulse. We show the results in figure 6.10, compared to the single atom case
(shown with a dashed line) and to the MF2 simulations.

At low atom number (N ≤ 1350), we observe a normal exponential decay (negative initial
slope, equal to −Γ). For N ≥ 1350, the initial slope of the photon emission rate is positive,
meaning that the number of photon emitted increases even if the driving is switched off :
this is the superradiant flash. The slope increases with the atom number. Simulations results
agree qualitatively with the data.
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Figure 6.10: Initial slope of the photon emission rate as a function of the atom number
N . The rates are compared to that of a single atom (dashed line) and to ab-initio MF2
simulations (filled dots), as explained in the text. The horizontal error bars correspond
to the calibration of the atom number. The vertical error bars are from the fit of the
initial slope.

In the figure above, we see a threshold above which superradiance is observed. As ex-
plained qualitatively section 1.2, the threshold is due to the fact that the axial size of the cloud
is larger than the wavelength. The value of the threshold depends on the cloud geometry and
is quite well reproduced by the simulations. The threshold value is also quite close to the one
found qualitatively in section 1.2, which shows that the picture works.

3.3 Peak of the photon emission

We now investigate the scaling law of the peak amplitude of the photon emission rate as a
function of the atom number. The result is shown figure 6.11.

In figure 6.11, we see that the peak intensity is constant for N & Nt = 1350 and then
increases linearly. This means that the light emitted along the main axis of the cloud scales
as N 2 for large N , which is a feature of superradiance. Data are compared to ab-intio MF2
simulations, and show again a good qualitative agreement without any free parameter. This
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Figure 6.11: Peak photon emission in the axial direction normalized by N . The horizontal
error bars correspond to the calibration of the atom number. The vertical error bars are
calculated from the error on the peak position and the error on N . The dashed line shows
the single atom behaviour and the solid red line shows as a guide the N 2 scaling of the
emission above the threshold Nt . Data are compared to MF2 simulations (filled dots).

result can be compared to those obtained by (Norcia et al. 2016) with laser-cooled Sr in a high-
finesse cavity. They also have observed a N 2 scaling of the peak of the photon emission rate
above aminimumatomnumber. They found a threshold of 33,000, much higher than the one
we obtained in free space. This shows that the collective enhancement of the emission rate is
more important in our system, although the cavity allows them to force the electromagnetic
mode of the photons.

3.4 Decay time

The N 2 scaling of the peak intensity implies that the decay occurs in a duration shorter by a
factor N compared to a single atom. The superradiant decay time τs is defined as the time
required for the emission rate to be reduced to 1/e of its maximum. In figure 6.12, we plot τsas a function of N . In the figure above, one sees the expected behaviour. Below the threshold
Nt , the system acts a an ensemble of independent atoms. Above the threshold, we observe
that the decay scales as 1/(N −Nt ).

The observed scaling, as well as the existence of the threshold are typical features of Dicke
superradiance.

3.5 Influence of the trap geometry

The measurements above report the superradiant emission from an elongated cloud (σz =
15λ0) with radial dimension smaller than the emission wavelength ( σr = 0.5λ0), as depictedfigure 1.

Without making a quantitative study of the evolution of the threshold as a function of the
cloud geometry, we perform the same measurements as before in the crossed dipole trap
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presented in chapter 5 (section 5). The radial dimension is still σr but the new axial extension
is σz ∼ 2λ0 (figure 5.20). The peak amplitude obtained is shown figure 6.13.
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Figure 6.13: Peak photon emission in the axial direction normalized by N for the elon-
gated cloud and for the crossed trap. The horizontal error bars correspond to the cali-
bration of the atom number. The vertical error bars are calculated from the error on the
peak position and the error on N .

In figure 6.13, one sees that the threshold for superradiance is reduced in the crossed
trap. This can be understood by the fact that the cloud is nowmore spherical, so the emission
(diffraction) angle∆Ω is increases. Using the qualitative argument of section 1.2 and equation
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(1.2), the threshold is thus reduced. Note that the slope above the threshold is also different
for the two traps. It also depends on the geometry of the cloud.

4 Conclusion

In this chapter, we have first given a qualitative description of Dicke superradiance and of
its features. In the second part, we have explained how we excite the system, realizing a
π-pulse. We finally observe the typical features of Dicke superradiance in our disordered
cloud of two-level atoms, allowed by the experimental progress on the number of trapped
atoms. MF2 ab-initio simulations have been performed by our collaborators F. Robicheaux
and R.T. Sutherland and show a good agreement with the experimental data without any free
parameter.

The next chapter will be devoted to a more in-depth study of superradiance while our
system is driven, as well as when the population steady state is reached.
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Driven superradiance
***

In the previous chapter, we have studied the collective decay of an initially (almost) fully in-
verted system, showing Dicke superradiance. The purpose of this chapter is to investigate the
presence of superradiance while the system is externally laser driven. We will first investigate
the influence of superradiance on collective Rabi oscillations. In a second part, we will focus
on superradiance when the steady-state under driving is reached, that is when the system is
prepared in a mixed state.

Unless explicitly stated, each measurement presented in this chapter was performed us-
ing the configuration shown in Figure 1.
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1 Laser driven collective oscillations

We first investigate the influence of superradiance on Rabi oscillations. For this, we excite the
cloud with a longer pulse than in the previous chapter. We chose a duration of 150ns ' 6/Γ,
which is sufficiently long to reach the steady state, and an intensity I /Isat ' 85.

As shown in the previous chapter, in the low atom regime (below a threshold of N ' 1350),
the cloud behaves as an ensemble of independent atoms, and the dynamics is well described
by the optical Bloch equations (OBE). As N increases, we observe two different behaviors
depending on the direction of observation.
1.1 Directionality

For this particular measurement, we measure the fluorescence emitted axially (along the
main axis of the cloud, APD∥) and radially (perpendicularly to the long axis of the cloud, APD⊥)
exploiting the two high resolution imaging axes (chapter 2, section 1.3).

In the low atom number regime, the time dependence of the fluorescence is independent
of the direction of observation. The cloud behaves as an ensemble of independent atoms,
and its response is well modeled by the OBE, as shown in figure 7.1. In this figure, we show
only the data collected along the axis because the collection efficiency is much higher on this
axis (we choose a large field of view of about 20µm on the transverse axis to collect the light
emitted by the whole cloud, at the expense of a lower collection).

When increasing the atom number in the cloud, we observe two different regimes de-
pending on the observation direction. Radially, we observe a response similar to that of a
single atom (the dynamics follows accurately the prediction of the OBEs). Along themain axis
however, we observe very large peaks at the maxima of the Rabi oscillations.

To explain these peaks, we compare data to ab-initioMF2 calculations (see previous chap-
ter, section 3.1), shown with solid line in figure 7.1. These simulations have been done by F.
Robicheaux using the experimental parameters, and show a good agreement with the data
without any free parameter. Themismatchmight be due to a concatenation of various factors
that individually would be negligible, including a non-perfect knowledge of the density distri-
bution of the cloud, depumping effects, effects of the atomicmotion, atomic losses during the
excitation protocol, and fluctuations in the intensity of the driving field (Ferioli, Glicenstein,
Robicheaux, et al. 2021).
1.2 Peak over Steady-state value

As shown in figure 7.2, the interplay between superradiance and driving enhances the emis-
sion peaks during the Rabi oscillations only in the axial direction. In the radial direction, the
clouds acts as an assembly of independent atoms (described by the OBEs) : the amplitude
of the first peak of the oscillations is independent of N . MF2 simulations also qualitatively
predict these two different behaviours. It is important to note that a standard mean-field
treatment of the problem, neglecting two-atoms correlations, is unable to reproduce our data
even qualitatively. Higher-order MF2 simulations are thus needed.

To explain the observed behaviours, we specify the quantity measured experimentally by
the APD: the (scaled) rate of photon emission in a given direction k (Allen and Eberly 1987):

γ̄(t ,k) = 1

N

∑
n

[
〈ên〉(t )+

∑
m 6=n

e i k.(Rm−Rn )〈σ̂+
mσ̂

−
n 〉(t )

]
(1.1)
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Figure 7.1: Photon rate as a function of time, recorded along the trap axis (APD ∥) and
radially (APD ⊥) during the same experiment. In the low atom number regime, the cloud
is well modeled by the Optical Bloch Equations (OBEs, dashed line) and the response
is isotropic. In the large atom number regime, one observes collective Rabi oscillations
only along the cloud main axis. In this regime, data are compared with ab-initio MF2
simulations (solid line).

where Rm is the position of atom m, ên = |en〉〈en | and σ̂−
n =

∣∣gn
〉〈en |.

The first term of equation (1.1) is proportional to the population inversion of each atom.
This term thus represents the spontaneous emission of independent atoms.The second term
is responsible for superradiance.
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Figure 7.2: Peak over steady state as a function of the atom number, along the two
observation directions. Data (empty points) are compared with ab-initio MF2 simulations
(filled points). The vertical error bars represent the standard error in the estimation of
the steady state (smaller than symbols).

Indeed, let us assume that (as in the Dicke regime), |Rm −Rn |¿λ. In that case, the phase
factor of the second term of equation (1.1) is equal to 1. If the two-atoms correlations are
different from zero at a time t0, let us assume that 〈σ̂+

mσ̂
−
n 〉(t0) = K for all atoms n and m to

get an intuition, K being a constant. Since all atoms are indistinguishable in the Dicke regime,
this is a good assumption. The photon rate becomes

γ̄(t0,k) = 1

N

∑
n

[〈ên〉(t0)+ (N 2 −N )K
] (1.2)

One thus recovers the N 2 scaling. Note that in this case the emission is isotropic.
It is clear from figure 7.2 that the peak over steady-state value cannot be explained by the

first term of equation (1.1). This indicates the presence of correlations along the main axis of
the cloud. Interestingly, the coherence is not imposed by the driving laser, since the direction
of superradiance is perpendicular to it. Ignoring spontaneous emission (assuming ΩÀ Γ),
the laser creates the state

∣∣ψlas
〉=

⊗
n

(cosθ
∣∣gn

〉+e i klas.Rn sinθ |en〉)

for which the second term of equation (1.1) averages to 0. The phase relation responsible for
superradiance thus emerges during emission, and is imposed by the cloud geometry.

As explained in the previous chapter (section 1.2) , the condition to observe superradiance
can be expressed in terms of the Fresnel number F . In our cloud,

Fax = πσ2
r

λ0σz
= 0.05 ¿ 1

using σz = 15λ0 and σr = 0.5λ0 (see figure 1). There exists thus one spatial mode that is cou-
pled to all atoms (that is the gaussian mode with zR ∼σz ). In the radial direction however,F >
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1, so the second term of equation (1.1) averages to zero and we observe a single atom-like
behavior.

2 Collective properties of the driven system

In this section, we characterize experimentally the collective properties of the density matrix
that we prepare during the pulse and we demonstrate the presence of superradiant states.
For this, we measure several observables: the Rabi frequency of the oscillations, the rate of
photon emission after the end of the excitation and the decay time of the excitation. The
underlying (highly non-trivial) question is whether one can deduce the atomic correlations
leading to superradiance from the study of the properties of the light scattered by the cloud.
2.1 Decay time

The first observable we use is the decay time of the excitation after the end of the pulse.
Indeed, this allows us to determine the superradiant character of the produced state.

A crucial improvement of our experimental setup is the precise control of the driving pulse
duration. Indeed, by tuning the parameters of the delay generator controlling the electro-
optical modulator (see chapter 6, section 2.1) , one can realize short pulses of controllable
duration with an extinction of about 1/100 in less than 1ns. There is of course a limit on the
shortest pulse that we can send (about 5ns), as explained section 2.1 for optimizating of the
π-pulse.

With this, one can stop the driving pulse at a precise time t0 during the Rabi oscillationsand then measure the fluorescence emitted by the cloud after the end of the pulse. The
superradiant decay time is then extracted by fitting with a single exponential decay the tem-
poral traces in a time window of 50ns that starts 5ns after the end of the pulse (to avoid any
parasite effect due to the superradiant burst described in the previous chapter). In the low
atom number regime (N = 120 in figure 7.3), one sees that the decay is always compatible
with that of a single atom.

In the large atom number however (N = 4500 in figure 7.3), we observe a superradiant
decay, faster than 1/Γ. Moreover, τs oscillates with the same frequency as the Rabi oscil-
lation but in quadrature with respect to it. To highlight this behavior, we report in Fig. 7.3
also a temporal trace acquired in the low atom number regime which, properly normalized,
represents the population of the excited state. This observation suggests that the superradi-
ant properties of the systems depends mostly on the population of the exited state, thus the
superradiance is stronger when the population is largely inverted and vice-versa.

This conclusion is supported by the fact that a states with a population inversion such
that half of the atoms are excited but prepared driving the system for a time shorter than 1/Γ
so that the coherence is still preserved, decays in the same way as the incoherent mixture
achieved in the steady state (pulse ≥ 100ns). This behavior is consistent with Dicke’s picture,
according towhich the coherence is built up during the spontaneous emission, independently
from the exact initial state in which the system is cast.

In the low atom number regime, one can fit the data by the solutions of the optical Bloch
equations (OBE). They allow to obtain the population ρee as a function of time, as shown in
panel a) of figure 7.4. We therefore plot the superradiant decay time in the large atomnumber
regime as a function of the population of the excited state at t0, in figure 7.4 b). Note that it
is assumed here that the time evolution of the population does not depend on the number
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Figure 7.3: Superradiant decay time as a function of the pulse duration for N = 120
atoms (green dots) and N = 4500 atoms (red dots). The fluorescence collected as a
function of the time (for N = 120) is plotted with an arbitrary scale in transparency of
the red dots to show the phase opposition between the two. The horizontal dashed line
corresponds to the decay time of a single atom, 1/Γ by definition. The vertical error bars
are from the fit of the exponential decay of the fluorescence (see text).

of atoms. This assumption is justified by the fact that in the large atom number regime, we
have observed both with APD⊥ a response that matches that of a single atom andwith APD ∥
collective oscillations (see figure 7.1). This suggests that the Rabi frequency does not depend
on the regime studied, and is therefore independent of the atom number. We will verify this
in the next section.
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Figure 7.4: a) Fit of the (N = 120) trace by the OBE to extract the excited state
population ρee (t0). b) Superradiant decay time as a function of ρee (for N = 4500). The
time t0 is represented by the color.
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In figure 7.4, we see that τs and ρee are correlated, but the data not collapse perfectly. Itseems that the decay is faster when the driving stops during a downward slope of the Rabi
oscillations than if it stops during an upward slope. In particular, τs is identical for two equalvalues of ρee separated by one period of the Rabi oscillations .
2.2 Rabi frequency

The next observable we consider is the Rabi frequency Ω of the signal measured along the
cloud’s main axis (where superradiance is observed). Along the radial direction, we recall
that the cloud’s response is that of a single atom, independently of the atom number. The
Rabi frequency is determined by calculating the Fourier transform of the experimental traces
during the oscillations, and fitting the obtained peak by a Gaussian function. The results are
shown figure 7.5.
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Figure 7.5: Rabi frequency as a function of the atom number, for two driving intensities.
The error bars from the fit of the Fourier transform of the data (see text) are smaller
than the dots. The shaded area represents the expected value for the single atom Rabi
frequency, including the experimental error on the intensity of the excitation beam.

Although we observe a strong enhancement of the amount of light emitted in the ax-
ial direction, one sees in figure 7.5 that the measured Rabi frequency is independent of N
within the experimental uncertainty on the excitation intensity. The fact that we also observe
unchanged Rabi oscillations in the radial direction seems to indicates that, in our regime, su-
perradiance very weakly modifies the population dynamics. This dynamics is controlled by
the timescales hierarchy in our system : Ω ≥ τ−1

s > Γ, where τs is the typical superradiancetime. As shown in figure 7.5, we did the samemeasurement at a lower probe intensity (s = 39)
, giving the same result. As we will see later in this chapter, reducing s here increases τs (lesssuperradiance), so we have still the timescale hierarchy Ω≥ τs even in this case.In order to explain our observations, we recall that the Dicke model is qualitatively equiv-
alent to imposing a spontaneous decay rate that depends on the population of the excited
state:

ΓD = Γ[
1−aρee

(
ρee −1

)] (2.1)



Ch. 7- Driven superradiance

130

where a is a parameter related to the strength of superradiance (which dominates if a À 1).
OBEs can be solved with this decay rates.
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Figure 7.6: Solution of the OBE using the heuristic decay rate ΓD (equation (2.1)) for
various values of a.

In figure 7.6, one sees that the oscillations are damped when a increases, but that the
Rabi frequency does not change. The argument is that superradiance only affects decay, not
driving.
2.3 Photon rate in the early decay

The presence of superradiant states should lead to a modification of the photon emission
rate just after the end of the driving pulse. To measure the number of excitations stored in
the superradiant states, we consider the number of photons collected in the first 26.4ns = 1/Γ
after the end of the pulse (early decay), as shown figure 7.7.

One sees that the emission rate per atom is strongly enhanced in the large atom number
regime, where superradiance occurs. The data of figure 7.7 have been measured along the
long axis of the cloud. The enhancement of the photon emission rate in this direction could
be related to a diminution in another. To answer this question, F. Robicheaux has performed
numerical calculations of the total emisison rate (in 4π), using (Robicheaux and Suresh 2021),
as reported in figure 7.8. It shows that the scattering rate is effectively enhanced, not redis-
tributed over the space.

Thus, superradiance indeed leads to stronger emission even when driven. However in
our case, this effect occurs only in one direction so that the enhancement is weak. It explains
why we do not observe a modification of the population dynamics.
2.4 Influence of the internal structure

In chapter 5 (section 3.2) , we have shown that isolating a two-level system allows us to obtain
a good contrast in the Rabi oscillations, which means to have a good control of the internal
state of the atoms. We are now interested in the importance of isolating these levels to ob-
serve collective oscillations (in the high atomic number regime, where superradiance plays a
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Figure 7.7: Photon number collected along the main (∥) axis between the end to the pulse
and 1/Γ= 26.4ns after, for N = 4500 and N = 120. The vertical error bars correspond to
the standard errors. Fluorescence during driving (N = 120) is shown in transparency with
an arbitrary scale.
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Figure 7.8: Total photon emission rate (in a 4π solid angle) per atom, calculated with
MF2, for small and large N .

role). We shine a resonant pulse of light for 200ns in the presence or in absence of the 50G
magnetic field (section 3.2) and we collect the fluorescence emitted by the atoms along the
main direction of the cloud. In both situations, we perform optical pumping and the atom
number is roughly the same (N ∼ 6000). In the first case, shown in figure 7.9, the system
undergoes Rabi oscillations that are visible for more than 50ns > 1/Γ. In the second case
however, the photons emitted by an excited atom can drive transition to other internal lev-
els. Thus the system possesses different Rabi frequencies and the fluorescence emitted by
the cloud is the result of the beat note between them, washing out the oscillations.

The coherence does not seem to depend on the internal structure, as the two curves in
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Figure 7.9: Effect of the internal structure on the collective oscillations.

figure 7.9 are damped over the same time scale.
Conclusion

The observation of the collective oscillations, the decay and the emission rate shows that
superradiance takes place in our driven atomic cloud. The resonant drive is strong enough to
impose a population inversion, which seems to be the key criterion to generate superradiance
during the decay of the excitation, independently of the exact state generated and without
any initial coherence in the system. As shown in figure 7.3, superradiance is still observed
when the steady state is reached. In the next section, we will characterize more precisely the
superradiance in this regime.

3 Superradiance in steady-state

3.1 Observation of the steady-state superradiance

In the experiments described in this section, the atomic cloud is excited by a 200ns pulse,
which is long enough to reach the steady state of the driven-dissipative regime. Under the
approximation that the interactions have no effect (ħΩÀ Vdd), we prepare an incoherent
mixture described by its density matrix

ρ̂N = 1

2N

N⊗
i

(∣∣gi
〉〈

gi
∣∣+|ei 〉〈ei |

)
.

After the end of the pulse, we observe that the fluorescence decreases with time. In par-
ticular, there is no flash. As shown figure 7.10, wemeasure the superradiant decay time τs byfitting the collected photon rate during the first 26.4ns = 1/Γ of the decay by an exponential
function, where Γ is the single-atom lifetime. The decay is well fitted by a single exponential
function over this range. At larger times, the decay is no longer exponential, a signature of
subradiance studied in the next chapter.
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Figure 7.10: Observation of steady-state superradiance and fitting of the superradiant
decay time τs . The atom number is N = 4500 and the origin of times is at the end of
the driving pulse.

3.2 Directionality

We first study the evolution of the superradiant behavior as a function of the atom number,
as shown figure 7.11. As done in section 1.1, we compare the data collected along the cloud’s
main axis (APD ∥) and perpendicularly to it (APD ⊥).
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Figure 7.11: Superradiant decay time as a function of the atom number, along the cloud’s
axis (APD ∥) and perpendicularly to it (APD ⊥).

As observed before, the cloud behaves as an ensemble of independent atoms when look-
ing radially, but shows superradiance along its axis. The fluorescence decay becomes faster
as N increases.

Let us compare thesemeasurements with those in Figure 6.11, of the decay time after a π
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pulse. The first thing we see is that in the steady-state case, there is no threshold : superradi-
ance is observed even with a small number of atoms. At first sight, this is surprising because
as explained section 1.2, the threshold comes from the geometry of the cloud, which is the
same in both cases.

Our observation can be explained by the fact that we have directly populated the superra-
diant stateswith the pulse. Indeed, the densitymatrix ρ̂ can be decomposed in a superradiant
and subradiant states. For example, for N = 2, we have

ρ̂2 =
(∣∣g g

〉〈
g g

∣∣+|+〉〈+|+ |−〉〈−|+ |ee〉〈ee|)/2

where |±〉 = 1p
2

(∣∣g e
〉±〈

eg
∣∣) are the 2-atom super and subradiant state.

If we consider the decay time at 1/e of the excitation (as for figure 6.11), we obtain that this
time is shorter when starting from the steady-state than when starting from the fully excited
state, because in the latter case, the photon rate first increases (flash) before decaying. To
illustrate this, we calculate the populations ΠM in the Dicke Ladder (as in chapter 6, section
1.2):

Π̇M =





ΓM+1ΠM+1 −ΓMΠM if −N
2 < M < N

2

−ΓMΠM if M = N
2

ΓM+1ΠM+1 if M =−N
2

where ΓM = Γ( N
2 +M

)( N
2 −M

) is the photon emission rate from the state |J = N /2, M〉.
Figure 7.12, we show the total rate of emission
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Figure 7.12: Photon emission rate per atom as a function of the time for two-atom
superradiance (W2), four atom superradiance (W4), four atom in steady-state (W4,st)
and for independent atoms (W1, dashed line).

for N = 4 starting froma fully excited state (W4) andwhere all states are equally populatedinitially (W4,st). As shown figure 7.12, the 1/e decay time are close to 1/Γ forW4 andW2, but it
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is much smaller for W4,st. For the steady-state case, as the fluorescence is only exponentiallydecaying, there is no difference between the 1/2 decay time and the superradiant decay time
τs . The decay time is also longer than the ones observed in 6.11 at high atom number. This
is due to the fact that superradiance depends on the number of excited atoms, and not on
the number of atoms present in the trap, as observed in figure 7.3.

3.3 Cooperativity parameter

The cooperativity parameter C is defined as the ratio between the atom number N and the
number of modes efficiently coupled to the system M . In a sample of finite size R radiating
in free space (in 3D), M ∝ (kR)2 (Guerin, Rouabah, et al. 2017). In a extended cloud, the
cooperativity parameter is thus proportional to the on-resonance optical depth b0 = 3N

(kR)2 . Inthe Dicke limit, R ¿λ0, M = 1 so the cooperativity parameter should be the atom number.
Up to now, we have always considered that the parameter that governs the cooperativity

is indeed the atom number. However, our clouds have a finite size and one could suggest
that the governing parameter is rather the cloud density

n0 =
N

(2π)3/2σzσ
2
r

as it will be for example in a infinite medium. However, one could notice that the density is a
local density and thus cannot render the long-range character of the dipole dipole interaction.
Another possibility could be to define as cooperativity parameter the optical depth

b0 = n0σz
p

2πσsc

as it is in the dilute systems (Guerin, Araújo, et al. 2016), where σsc = 2λ2
0

2π is the resonant
scattering cross-section. To determine experimentally what is the cooperativity parameter
for our conditions, we acquire three sets of data in three different trapping geometries. We
use the same protocol as the one used in section 3.1 to extract the superradiant decay time .
Trapping geometries

The three trapping geometries are represented figure 7.13: the first one has dimensions (σr '
0.7λ0,σz ' 7.7λ0). In the second one, we increase the power of the trapping beam by about
60% to gain a factor 2 in density without losing atoms (σr ' 0.5λ0,σz ' 6λ0). To create the
third one, we compress the trap using the OptoTelescope (see section 1.4) to obtain a waist
w0 = 1.8µm. The atom number is reduced (N ≤ 1500) but the density is large due to the
reduced trapping volume (σr ' 0.4λ0,σz ' 2.9λ0).
As a function of the density

We first show in figure 7.14 the data taken in the three traps, plotted as a function of the
peak density n0. From trap 1 to trap 3, it is clear that we increase the density for a given atom
number (because the volume is reduced).

In the figure above, we see that the density is not a good parameter to describe the su-
perradiance in our system, as the decay can be very different for the same density.
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Figure 7.13: Trapping geometries used to determine the cooperativity parameter.
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Figure 7.14: Superradiant decay time as a function of the peak density, for the three
trapping geometries.

As a function of the optical depth

We then plot the same data but now as a function of the optical depth, which is the relevant
quantity in extended dilute clouds (Araújo, Krešić, et al. 2016). In figure 7.15, one can see that
the optical depth is not the good parameter either.
As a function of the atom number

As shown in 7.16, the data nearly collapse when plotted as a function of the atom number,
which is thus the parameter governing the collective properties.
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Figure 7.15: Superradiant decay time as a function of the optical depth, for the three
trapping geometries.
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Figure 7.16: Superradiant decay time as a function of the atom number, for the three
trapping geometries.

This validates the fact that our system approaches the Dicke limit. The imperfect collapse
of the experimental data in figure 7.16 might be due to the fact that our system is still larger
than λ0.We have performed the same analysis for the peak over steady-state value (peak ampli-
tude of the Rabi oscillation divided by the steady-state value of the fluorescence) with the
same result, as shown figure 7.17. It indicates that the collective driven regime is also gov-
erned by the atomnumber in the cloud. Moreover, there is no visible threshold, in agreement
with the discussion section 3.1.
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Figure 7.17: Peak over steady-state as a function of b0, n0 and N , for the three trapping
geometries. The vertical error bars represent the standard error in the estimation of the
steady state.

4 Superradiance as a function of the probe intensity

In this section, we investigate the influence of the probe intensity on the coherent dynamics.
For this study, we use the trap number 2 (see figure 7.13), containing 6000 atoms. We scan the
saturation parameter s = I

Isat
between s ' 0.1 and s ' 200 with a 10% shot-to-shot uncertainty

(which gives the horizontal error bars in figures 7.18. For all the measurements below (as
before), the cloud is excited using a resonant probewith polarizationσ− and the fluorescenceis collected with the APD ∥ along the cloud’s main axis, as presented in figure 1. We now use
a 200ns pulse, which is long enough to reach the steady state.

4.1 Peak over steady-state

The first observable for the system dynamics is the peak over steady-state value. As shown
before, this value measured along the axial direction is related to the interplay between su-
perradiance and driving. For s ≤ 5, the system does not show any oscillation and the peak
over steady-state ratio is thus equal to 1.

When the intensity increases, the ratio becomes very different from that expected for
a single atom (solution of the Optical Bloch Equations), which is shown with a dashed line in
figure 7.18. The observed behavior could be explained by the fact that the collective response
depends on the atom number N (as shown figure 7.2) and more precisely on the number of
excited atoms in the system (figure 7.3). In the low intensity regime, the fraction of atoms
in the excited state is negligible and thus the system does not manifest any superradiant
flash. Conversely, as the driving strength increases, the number of atoms in the excited state
grows and the system enters in the superradiant regime, showing a large enhancement in
the photon emission rate.
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Figure 7.18: Peak over steady-state as a function of the saturation parameter s = I
Isat

.
The vertical error bars are the standard error in the estimation of the steady state. The
dashed line is the solution of the OBE (for a single atom).
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Figure 7.19: Decay time as a function of the saturation parameter s = I
Isat

, after steady-
state. The dashed line is the solution of the OBE (for a single atom).

4.2 Decay time

A direct signature of superradiance is in the decay time, after the end of the pulse. As we
have observed in section 3.1, the superradiant states are populated when the system has
reached its steady state. When increasing the number of excitations, one expects to populate
more superradiant states so for the decay time to become shorter. We use the same analysis
protocol than in section 3.1, with an exponential fit of the decay after the end of the pulse.

In figure 7.19, we indeed observe that the superradiant behavior increases (the decay
time decreases) when increasing the probe intensity. In this figure, we cannot determine
if the superradiance has a threshold, that is if a minimum number of excitation is needed.
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However, one can see a saturation at high intensity, which indicates that the population of
the superradiant states saturates.
4.3 Steady-state fluorescence

In order study more precisely the saturation, we plot in figure 7.20 the steady-state fluores-
cence averaged over 50ns for different saturation parameters.
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Figure 7.20: Steady-state fluorescence as a function of the saturation parameter s = I
Isat

.
The black dashed line is the single atom behavior, the red dashed line is a phenomeno-
logical fit of the data.

In general, the excited state cannot be expressed as a superposition of single-atom ex-
cited states. However, a phenomenological fit with the functionαs/(1+αs) gives a acceptable
agreement. α= 1 is the single-atom case, represented with a black dashed line in figure 7.20.
We observe that the system saturates at larger intensity,α= 0.19±4 < 1, showing that the sin-
gle atom transition is broadened by superradiance. Indeed, α< 1 means that the saturation
intensity is larger than that of a single atom, I s

sat > I s
sat. This implies that ΓsΓ. This conclusionis in agreement with the observation (fig. 7.7) and the simulation (fig. 7.8) that superradiance

allows to emit more photons than independent atoms.

5 Conclusion

In this chapter, we have observed laser driven collective oscillations and their properties of
directionality, enhanced photon emission rate, Rabi frequency and the influence of the inter-
nal structure. We have shown that superradiance takes place in our system and is revealed
by the light emitted along the axis. In the second part of this chapter, we have explored the
steady-state regime. The presence of superradiance also in this case, parametrized by the
atom number, suggests that it is based on the population of the excited state rather than on
the precise state in which the system is cast. The last part of the chapter was devoted to the
effect of the driving intensity, confirming that the number of excitation in the system is the
parameter that governs the superradiant dynamics.
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Storage and Release of
subradiant excitations

***
In the previous chapters, we have studied superradiance in our dense cloud, i.e the decay
of excitations at a rate faster than the single-atom one. This chapter is devoted to the study
of its counterpart, the subradiance. Most of the results are published in (Ferioli, Glicenstein,
Henriet, et al. 2021).

Subradiance has been much less observed than superradiance because of the weak cou-
pling of the subradiant states to the environment, but direct observations were reported in
a pair of ions (Devoe and Brewer 1996), in molecular systems (Takasu et al. 2012; McGuyer
et al. 2015), in dilute atomic cloud (Guerin, Araújo, et al. 2016) and as a line-narrowing in
an ordered 2D layer of atoms (Rui et al. 2020). Recently, the subject has regained interest
in the context of quantum technologies. Indeed, it has been proposed for example to use
sub-radiant states as a storage medium (Facchinetti, Jenkins, et al. 2016; H. H. Jen et al. 2020;
Asenjo-Garcia et al. 2017) or as a tool for quantum information processing (Shahmoon et al.
2017) and for metrology (Plankensteiner, Ostermann, et al. 2015; Krämer, Ostermann, et al.
2016).

In this chapter, we observe subradiance in a steady-state cloud operating near Dicke’s
regime. Varying the number of excitations in the system, we will then characterize the
multiply-excited subradiant states, with a slower decay rate than the single atom one, but
with more than one photon stored. Motivated by the possibility of using subradiant states
as a light storage medium, we will then demonstrate a protocol for storing and on demand
releasing subradiant excitation. Finally, we will study how the long-lived states are populated,
exploring the Dicke ladder.As in chapters 6 and 7, unless explicitly stated, each measurement presented in thischapter was performed using the configuration shown in Figure 1.
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1 Observation of subradiance

For all the measurements presented in this chapter, we use the configuration represented
in figure 1. A high-intensity 200ns pulse of resonant light is sent on the cloud, reaching the
steady-state (I /Isat ∼ 27). Themain difference with the experiments described in the previous
chapters is that the experimental signal we now consider is very small. Indeed, as we will see
later in this chapter, only about 10% of the excitations remain in the long-lived states. Even
with the largest atom number and at high intensity, given that we collect typically 0.01 photon
per pulse in a 1ns bin in steady-state, we need to repeat many times the sequences to obtain
sufficient signal. We repeat the same sequence up to 20 times on the same cloud (with less
than 10% of atom losses), repeating the experiment from 3000 to 10000 clouds depending on
the atom number. The experimental rate is 2Hz, it therefore takes about an hour to acquire
each trace shown in this chapter.

We now consider the fluorescence emitted by the cloud after the end of the pulse. In
figure 8.1, we plot the counts recorded by the APD along the cloud’s main axis (APD ∥).
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Figure 8.1: Photon rate as a function of time, recorded along the trap axis (APD ∥). In
the low atom number regime, the cloud is well modeled by the optical Bloch equations
(OBEs, dashed line). In the large atom number regime, one observes first a superradiant
behavior and then a subradiant behavior. All curves have been normalized to their steady-
state value (before the end of the pulse).

We have shown in chapter 7 (section 1.1) that in this case, if the atom number is large
enough, we observe superradiance, that is a decay faster than that of a single atom (given by
the Optical Bloch Equations). At later time, we observe a subradiant regime, where the decay
is slower than that of a single atom. To show that the long-lived decay is not due to some
residual driving, we plot the pulse used and the solution of the optical Bloch equations (OBE)
for this pulse in the same figure.
1.1 Directionality

As for superradiance (section 1.1), we study the directionality of the subradiant emission in
our system exploiting the two high-resolution imaging axes. In the case of superradiance, it
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had been observed that it took place only in the main (long) direction of the cloud, imposed
by its geometry. In figure 8.2, we see that subradiance is observed in both directions.
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Figure 8.2: Time traces collected using APD ∥ (along the cloud’s axis) and perpendic-
ularly (APD ⊥). The dashed line shows the solution of the OBE. All curves have been
normalized to their steady-state value (before the end of the pulse).

Moreover, the subradiant decay is isotropic (the slopes during the late decay are the same
along the two observation directions). This shows that superradiance and subradiance are
by nature different phenomena.
1.2 Nonlinear coupled dipoles (NLCD) simulations

In chapter 6, we have seen that superradiance results from the correlations between the
dipoles. In particular, a classical simulation of nonlinear coupled dipoles (NLCD) as presented
in section 2.2 (we are interested here in the strong driving regime so we must take into ac-
count the saturation of the atoms) does not show superradiance. However, this model qual-
itatively reproduces our experimental data on subradiance.

To illustrate this, we show in figure 8.3 a NLCD simulation in an ensemble of 200 atoms
with density n0 = 0.3k3, under a resonant excitation of intensity s = I /Isat ' 27, after the
end of the driving pulse ( which is long enough to reach the steady state). This situation
reproduces our experimental conditions. The result is close to the one observed in figure 8.2,
when observing radially (APD⊥). At short time, we observe a bit of superradiance (because s
is not much larger than 1), but the behavior is mostly compatible with OBEs. At later time, we
observe a slow decay.
1.3 Detuning

The slow decay of the excitation might be due to radiation trapping rather than subradiance.
In this phenomenon, photons are absorbed and then re-emitted spontaneously a large num-
ber of times by the medium in random directions, which results in a diffusion of photons fol-
lowing a randomwalk (Labeyrie et al. 2003). Contrarily to subradiance, thismultiple-scattering
effect depends strongly on the detuning (Guerin, Araújo, et al. 2016). We have thus aquired
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Figure 8.3: NLCD simulation of an ensemble of 200 atoms with density n0 = 0.3k3, under
a resonant excitation of intensity s = I /Isat ' 27, after the end of the driving pulse. Black
dashed line : solution of the OBE.

sets of data for various detuning of the excitation laser. In figure 8.4, we report these mea-
surements at resonance (∆= 0) and for detunings of ∆=+Γ and ∆=+3Γ.
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Figure 8.4: Photon count traces as a function of the driving frequency for ∆= 0, ∆= Γ
and ∆= 3Γ.

As the detuning increases, a reduction in fluorescence is observed, but the slope of the
decay does not depend on frequency. This demonstrates experimentally that we observe
subradiance and not radiation trapping.

Note that the radiation trapping hypothesis was not really plausible in our conditions
anyway: considering the scattering mean-free path lsc = 1/(n0σsc), with n0 the peak density
andσsc = 3λ2

0
2π the resonant cross-section. In our dense clouds, n0/k3 ∼ 1 so lsc ismuch smaller

than the average interatomic distance l̄ = λ0
2π , so the picture of photons scattering randomly
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from atom to atom therefore does not hold.
In the rest of this chapter, we have performed all measurements on resonance.

1.4 Polarization and internal structure

Unless otherwise specified, subradiance measurements have been performed with a linearly
polarized light and without any optical pumping. One may wonder how the polarization and
multi-level structure impacts subradiance. We compare the case where the polarization is
linear with the case where we isolated a two-level transition by applying a magnetic field of
20G and using a σ− polarization. As seen in chapter 2 (section 3.2), this allows us to isolate a
closed two-level transition, the other transitions being detuned by more than 5Γ.
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Figure 8.5: Photon count decay with : linear polarization, no magnetic field (multi-level)
in blue. In orange : σ− polarization and 20G magnetic field (two-level). The traces have
been normalized to the steady-state value, at t=0.

In figure 8.5, we observe that the traces are very similar in the late decay (this is not the
case in the early superradiant decay). We conclude that the internal structure does not play
a role within our dynamic range of observation.

2 Subradiance near Dicke’s regime

In this part, we characterize the subradiance observed in our clouds. These clouds have a
prolate shape, with a radial dimension smaller than the wavelength (∼ 0.5λ) and an rms axial
dimension of about 5λ. We thus approachDicke’s regime, inwhichmany emitters are trapped
in a volume comparable to the wavelength of the transition. Our observations thus amount
to the first observation of subradiance near Dicke’s regime.
2.1 Tail ratio

To quantify subradiance, we first introduce the tail ratio as a relative fluorescence observed
in the long-lived tail relative to the total fluorescence recorded after the end of the pulse:
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T R =
∫ ∞

4/Γ I (t )dt∫ ∞
0 I (t )dt

where I (t ) is the time-resolved fluorescence emitted after the end of the pulse (t = 0).
This parameter estimates the fraction of excitation hosted in the cloud 4/Γ' 100ns after the
switching off. For a single atom, the tail ratio would be equal to e−4 ' 2%.

2.2 Cooperativity parameter

In the same way as in section 3.3for the study of superradiance, we determine the param-
eter that governs the collective effects during the late decay. For this purpose, we use the
three trap geometries presented in section 3.3 and figure 7.13. We vary the number of atoms
(which is the cooperativity parameter for superradiance, see previous chapter) for these three
geometries . In figure 8.6, we show the tail ratio as a function of the atom number. The inset
recalls the trapping geometries.
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Figure 8.6: Tail ratio as a function of the atom number for the three trapping geometries
represented in the inset. The single atom TR value is shown with the dashed line. Colors
correspond to the trapping geometries.

In figure 8.6, we see that the data collapse as a function of the atomnumber, whichmeans
that N seems to be the governing parameter. The agreement is not perfect probably due to
the fact that the clouds are larger than λ in the axial direction. We are thus not perfectly in
Dicke’s regime, as observed for superradiance (section 3.3). However, the fact that subradi-
ance is nearly governed by the atom number shows that we approach Dicke’s regime.

As we did for superradiance (figures 7.14 and 7.15), we then plot the same data as a
function of the peak density n0 = N

(2π)3/2σzσ
2
r
and of the optical depth b0 = n0σz

p
2πσsc. We

see in figure 8.7 that the data do not collapse as a function of n0 or b0, indicating that N
is indeed the cooperativity parameter. Looking at figure 8.6, it appears that subradiance is
observed when the number of atoms is large enough, similarly to superradiance in inverted
system described in previous chapters.

One also observes that up to 10% of the excitations are stored in the long-lived states. For
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Figure 8.7: Tail ratio as a function of a) peak density n0 b) optical depth b0 for the three
trapping geometries. The single atom TR value is shown with the dashed line.

N = 5000 and a fully-saturated cloud (1/2 excitation per atom). This corresponds to several
hundreds of excitations.

In order to study subradiance quantitatively, we will now detail the procedure we used to
extract the subradiant lifetime τsub.

2.3 Fitting procedure

In this section we provide more details about the fitting procedure used to analyze the ex-
perimental data. Two regimes of decay can be distinguished. When the number of atoms is
smaller than the threshold, the decay is qualitatively exponential. Above the threshold, we
fit the decay by the sum of two exponential functions. As an example, we show in figure 8.8,
panel a) an example of decay in the regime of low atom number (under the threshold, here
N ∼ 300) fitted by a single exponential. On panel b), we show an example in the regime of the
large number of atoms. The decay is obviously not exponential. We use the two-exponential
model, which gives the characteristic times of superradiance and subradiance.

In order to discriminate the fitting regime, we calculate the mean square distance to a
single exponential fit:

χ2 = 1

Kbin

∑
i

(Nfit(ti )−Ni )2

Nfit(ti )

where Kbin is the number of time bins in the data set, Ni is the number of counts recorded
during the bin centered on time ti and Nfit(ti ) is the value of the fitting function at this time.
This definition assumes a poissonian distribution of the counts in each bin. We take as a
criterion that if χ2 > 1, the fit no longer corresponds to the model and we must use the sum
of the two exponential functions to reproduce the dynamics.

Figure 8.9, we plot χ2 as a function of the number of atoms. For the geometry of the trap
used here, we see that subradiance appears for a number of atoms higher than about 1500.
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Figure 8.8: a) Example of decay in the small atom number regime (N ' 300) fitted by
a single exponential decay. b) Example of decay in the large atom number regime (N '
4500) showing superradiance and subradiance. The solid line is the phenomenological fit
with the sum of two exponential functions, and the dashed lines are the extreme regimes.
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Figure 8.9: χ2 as a function of the atom number. When χ2 > 1 using a single exponential
function, we use a sum of two exponential decays to account for the dynamics.

Thanks to this procedure, it is possible to discriminate the presence or not of sub-
radiance. Above the threshold, it allows to determine the lifetime of the long-lived states.

2.4 Subradiant lifetime

The lifetime obtained by the method described above is an average lifetime. Indeed, there
is a priori a great number of states which intervene, each one having its own lifetime. We
showed in section 2.2 that the parameter that characterizes the subradiance is the number
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of atoms in the trap. We now study the subradiant lifetime as a function of the number of
atoms. For this, we use once again the three trap geometries shown in the inset of figure 8.6.
The results are shown figure 8.10.
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Figure 8.10: Subradiant decay times as a function of the atom number, obtained with
the fitting procedure presented in section 2.3. Error bars on the decay time are standard
errors from the fits. The colors refer to trap geometries given in section 3.3.

In figure 8.10, we observe once again that the curves collapse if they are plotted as a
function of the number of trapped atoms. Similarly as for the tail ratio, the cloud acts as an
assembly of independent atoms if the atom number is low, leading to a single-atom-like be-
haviour. When the atomnumber increases above the threshold, one sees that the subradiant
lifetime increases.

When we increase the number of atoms, we increase the number of excitations stored in
the subradiant states. This is a prerequisite for the application of multiple excitation storage.
In the following part, we will focus on these long-lived multiply excited states.

3 Study of multiply-excited subradiant states

In this section, we investigate themultiply-excited subradiant states experimentally by varying
the intensity of the excitation laser.

3.1 Single mode approximation

For N ' 4500 atoms in a cloud, we vary the intensity of the driving pulse. The duration is
still 200ns. We vary the intensity s = I /Isat between s ' 0.01 and s ' 30. For each trace,
the subradiant lifetime is extracted using the procedure described in the previous sections.
In addition, we calculate the tail fluorescence as the number of detected photons for times
larger than 4/Γ after the end of the pulse.

In figure 8.11, we observe that the subradiant decay time is constant over three orders of
magnitude of the excitation intensity. This constant lifetime suggests a first naive description



Section 3 Study of multiply-excited subradiant states

151

10−2 10−1 100 101
0

1

2

3

τ

single atom

s = I
Isat

Dec
ayt

ime
,Γτ

su
b

Figure 8.11: Subradiant decay times as a function of the saturation parameter of the
excitation laser, obtained with the fitting procedure presented in section 2.3. Error bars
on the decay time are standard errors from the fits. Black dashed line: single atom decay
time.

of the data as the excitation of a single mode. The tail fluorescence (figure 8.12) increases
with s before saturating at an intensity smaller than Isat.
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Figure 8.12: Total number of counts recorded in the subradiant tail (normalized to the
maximum value). The blue dashed line is a fit by a phenomenological function, the black
dashed line is the single atom response.

We use a single mode approximation to describe the population of the subradiant states
psub as a function of the saturation parameter:

psub ∝ αs

1+αs
.
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For a single atom, α = 1. By fitting the data of figure 8.12, one obtains α = 3.4± 5. If we
assume that the lifetime τ of a given mode dictates its saturation intensity ( 1

τ ∝ Isat as for asingle atom), we obtain
Isat,sub = Isat/α

hence
τsub =ατ= 3.4/Γ.

This time, represented by a solid line in figure 8.11, matches well the lifetime measured di-
rectly, confirming that a single-mode approximation seems to encompass well our observa-
tions.

However, we have shown before (figure 8.6) that about 10% of the total excitations are
hosted in the long-lived states. For a fully saturated cloud of 5000 atoms (1/2 excitation per
atom), it corresponds to several hundreds of excitations. A large number of modes are ac-
tually excited. Despite this large number of excitations, the decay rate remains the same
demonstrating that, in the subradiant tail, the rate at which excitations decay is independent
of the density of excitations in the system. This finding is consistent with multiply-excited
states constructed from a large population of singly-excited subradiant states with similar
decay time which decay independently.

In the case of ordered 1D array, it has been shown that subradiant states containingnexc >
1 excitations are built from a superposition of subradiant states of single excitation manifold
which decay independently (Asenjo-Garcia et al. 2017; Henriet et al. 2019). The decay of an
nexc state is thus

Rexc ∝
nexc∑
n=1

cne−Γ
(1)
n t

where Γ(1)
n is the lifetime of a superadiant state in the single excitation manifold . The interest

of this ansatz is that the Γ(1)
n can be calculated from the classical coupled dipole model (chap-

ter 1, section 2.1). Our experimental discovery is that this simple picture is also valid in our
disordered clouds (Ferioli, Glicenstein, Henriet, et al. 2021).
3.2 Limits of NLCD

Up to now, we have used non-linear coupled dipole simulations to describe subradiance.
NLCD simulations are based on a mean-field approximation : it assumes that the density
matrix is factorizable and that the coupling between atoms is due to their dipole moment
(proportional to the coherence ρeg ). However, as shown in chapter 1 (figure 1.8 ), the coher-ence goes to zero at high intensity and the dipole vanishes. The mean-field model thus pre-
dicts that the atoms decouple from each other. When s increases, NLCD simulations should
therefore recover the behavior of an assembly of independent atoms (lifetime 1/Γ).

In figure 8.13, we show NLCD simulations for various saturation parameters (using 100
atoms in a gaussian cloud with a peak density n0/k3 = 0.3). Each trace is the result of 10 re-
alizations of the same numerical experiment. One sees that subradiance is indeed predicted
by the NLCD to disappear as the excitation strength is increased.

In figure 8.14, we report the data acquired for driving intensities reaching s ' 250, with
N ∼ 6000. Experimentally, the system still host subradiant excitations at a very large intensity.
This shows that the density matrix of the system cannot be factorized throughout the decay,
although it can be factorized initially. Indeed, as seen in chapter 7, we prepare in steady-state
the state described by the density matrix
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Figure 8.13: NLCD simulations, using 100 atoms at density n0/k3 = 0.3, normalized to
the steady state value of the measurement at the largest intensity.
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Figure 8.14: Photon count decays, for various excitation intensities. Data are shown
with a moving average in a 10ns window.

ρ̂N = 1

2N

N⊗
i

(∣∣gi
〉〈

gi
∣∣+|ei 〉〈ei |

)
.

The NLCD model is thus not sufficient to describe subradiance when the driving pulse is
intense. One must therefore use methods including (at-least) two-atoms correlations, such
as MF2 described in chapters 1 and 6. This has not been performed yet and could be an
interesting perspective for a future study.
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4 Release of subradiant excitations

4.1 Release of light stored in subradiant excitations

In this section, inspired by theoretical proposals (Facchinetti, Jenkins, et al. 2016; Asenjo-
Garcia et al. 2017; Manzoni et al. 2018), we demonstrate the on-demand release of light
stored in subradiant excitation. The principle is to apply a position-dependent detuning. The
resulting inhomogeneous broadening makes the interaction between atoms no longer reso-
nant: the ensemble now consists of independent atoms efficiently radiating, thus releasing
the subradiant excitation.

4.2 Two dipoles toy model

Following (Ferioli, Glicenstein, Henriet, et al. 2021), one obtains an intuition with the following
toy-model. We consider two classical dipoles d1 and d2 at distance r12 with a decay rate Γ.
The time evolution of the system is (setting ħ= 1):

(
ḋ1

ḋ2

)
=

( −Γ
2 iV (r12)

iV (r12) i∆− Γ
2

)(
d1

d2

)
(4.1)

where∆ is the difference between the transition frequencies of the two atoms andV (r12)
is the dipole dipole interaction potential (see chapter 1, section 1.1). As shown in the first
chapter, this system for ∆ = 0 has two eigenmodes v± ∝ (1,±1) with decay rates Γ± = Γ±
2Im[V (r12)]. These modes are the super- and subradiant modes.

Let us assume that ∆ = 0 (no-inhomogeneous broadening) and that we prepare the
dipoles in v− at t = 0. The system then decays with the subradiant lifetime Γ−. At a time t0,we turn on the inhomogeneous broadening, ∆ 6= 0. The projection on the superradiant mode
becomes different from zero and the dipoles are now expressed as the eigenstates of the
matrix in equation (4.1) v1 = (1,0) and v2 = (0,1).

The evolution of the two-atom dipole is given by
v(t ) ∝ e−Γt/2

(
v1 −e i∆t v2

)
. (4.2)

In the limit ∆À|V (r12)|, we recover the single atom decay rate of the radiated power
v2(t ) ∝ e−Γt .

To illustrate this, we calculate the dipoles d1,2 as a function of time with Γ+ = 1.9Γ (or
Γ− = 0.1Γ). In the example shown figure 8.15 a), before t0 = 3/Γ, d+ = 0 and the system decay
with the rate Γ−. At t = t0, we apply ∆ = 10Γ. We see that d± are coupled and exchange
energy. The system is now better expressed with d1,2. In panel b), we show the two-atom
dipole computed with equation (4.2). Before t0, the slope is given by Γ−. For t > t0, we recover(on average) the single atom decay rate Γ. The residual oscillation is due to the fact that ∆ is
not infinitely larger than |V (r12)| in this case.

This two-dipole toy model thus shows that applying a atom-dependent detuning places
the atoms out of resonance and makes the system radiate as an assembly of independent
emitters.
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Figure 8.15: a) Time evolution of two dipoles prepared in d− at t=0 when brutally
applying an inhomogeneous broadening ∆ = 10Γ at t0 = 3Γ. b) Time evolution of the
two-atom dipole (equation (4.2)), compared to a single dipole (dashed line).

4.3 Experimental demonstration

To apply the inhomogenous broadening experimentally, we turn on the trap light at different
times after the extinction of the excitation laser (represented with vertical arrows in figure
8.16). The far off-resonant light induces a position dependent detuning given by

∆i (xi , yi , zi ) = ∆0

1+ ( zi
zR

)2
exp

[
−

2(x2
i + y2

i )

w2
0(1+ ( zi

zR
)2

]

where ∆0 ' 32Γ is the light-shift induced by the trap light at the center, w0 = 2.5µm is the
waist and zR = πw 2

0
λtrap

is the Rayleigh range. The standard deviation of the trap induced detuning
is thus about 4Γ. In our clouds, |Vdd| ∼ ħΓ (for the nearest-neighbour atoms), so ∆0 À|Vdd|.

As shown figure 8.16, a pulse of light is observed when we apply the inhomogeneous
broadening. This can be understood using the toy model: when the broadening is applied,
the atoms start to radiate at a rate faster than the subradiant decay rate. The intensity emit-
ted thus increases (before decaying). We observe that, after the release of the subradiant
excitations, the decay rate is close to that of a single atom (a decay rate of 1.3±1Γ is obtained
by fitting all the data sets). Themeasurement figure 8.16 have been performedwith N = 5000
atoms. We have verified that in the low atom number regime no pulse is observed.

Moreover, it is interesting to note that the release is obtained with a light-shift that varies
slowly in space. This indicates that subradiant excitations are not stored in pairs of close
atoms but rather delocalized over all the atoms of the cloud (Schilder et al. 2016). This is ex-
pected for a near-resonant excitation of the cloud, as delocalized excitations corresponds to
states with small interaction frequency shift Re[Vdd ] (see chapter 1, section 2.1) and localized
ones with a high Vdd are not excited.
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Figure 8.16: Experimental realization of release of the light stored in subradiant excita-
tions.

4.4 Analysis using eigenmodes and NLCD simulations

As discussed in Section 3, the multiply-excited subradiant modes are fabricated as super-
positions of independently decaying modes containing one excitation. The study of these
modes therefore allows a qualitative description of the situation. We calculate these modes
and their decay rate by evaluating the eigenvalues of the interaction matrix for N = 5000
classical dipoles using the inhomogenous broadening ∆i (xi , yi , zi ). Results are shown figure
8.17. They indicate that in the presence of the inhomogenous broadening, the distribution
of decay rates is much narrower than in free space. In particular, a significant fraction of the
subradiant modes is suppressed. This confirms that subradiance is supressed.
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Figure 8.17: Histogram of the eigenmodes decay times, for N = 5000 and the experimen-
tal density distribution in free space and with inhomogeneous broadening. Average over
10 realizations to take into account the randomness of the atomic positions.
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We now perform NLCD simulations of the dynamics. Figure 8.18, we present results of
simulations computed by I. Ferrier-Barbut for a cloud containing N = 200 atoms with a peak
density n0 = 0.3k3. The trap is turned on during the decay at t0 = 12.5/Γ with a finite rising
time of 25ns to mach our experimental parameters. In figure 8.18, we show the time evolu-
tion of the population of the excited state p(t ) =∑N

i=1ρ
(i )
ee (t ) (dashed lines) and the evolution

of the intensity in a 4π solid angle, which is the quantity measured experimentally and is
proportional to −dp(t )

dt ( solid lines).
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Figure 8.18: Results of NLCD simulations. The evolution of the excited state population
p(t ) is shown with dashed lines with and without the release (applied at t = t0). The
resulting intensity in 4π is shown with solid lines.

We see that when the inhomogenous broadening is applied, the population presents a
change of slope corresponding to an intensity peak. These simulations confirm our interpre-
tations of the experimental observations.

4.5 Role of internal structure and magnetic field

Finally, we investigated the directionality of the pulse emitted by the release sequence and
the effect of the internal atomic structure (two- or multi-level) and of the polarization of the
excitation light. We have already shown that they do not modify significantly the subradiant
properties (section 1.4).

As shown in figure 8.19, we observed that the enhancement of the emission is stronger
along the cloud axis, possibly due to the coupling to superradiant states in this direction.
This could lead to a better control of the photons retrieved after the release. As in section
1.4, changing polarization and the internal structure of atoms does not lead to significant
difference in the released pulse.

In this section, a protocol for the release of subradiant excitations stored in a cloud has
been demonstrated. We have observed that in the best case, about 10% of the excitations
brought into the system are stored in the long-lived states when the system is prepared in
the driven steady-state (figure 8.6). In the following section, we focus on the population of
subradiant states during driving. Understanding how subradiant states are populated is a
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Figure 8.19: Directionality of the released pulse, observed with APD ⊥ and APD ∥. We
compare experiment done with a linear polarization, either parallel or perpendicular to
the cloud and with a circular polarization in presence of magnetic field (two-level).

prerequisite for storage applications, for entanglement generation...
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5 Exploring the Dicke ladder : population of the long lived-states
from the superradiant states

In Chapter 7, we have studied how superradiant states are populated and evolve when the
system is driven. In particular, we have shown that population inversion (the number of exci-
tations in the system) is the main parameter that governs superradiance. In this chapter, we
have reported subradiance observed when the driven steady-state is reached. Under the ap-
proximation that there is no effect of interactions (ħΩÀVdd), the system is in an incoherent
mixture described by its density matrix

ρ̂N = 1

2N

N⊗
i

(∣∣gi
〉〈

gi
∣∣+|ei 〉〈ei |

)
. (5.1)

which contains superradiant and subradiant terms. For example, for N = 2, we have
ρ̂2 =

1

4

(∣∣g g
〉〈

g g
∣∣+|+〉〈+|+ |−〉〈−|+ |ee〉〈ee|)

where |±〉 = 1p
2

(∣∣g e
〉±

∣∣eg
〉) are the 2-atom super and subradiant state.

The question is now to determine experimentally if subradiance is also observed during
the Rabi oscillations. AssumingΩÀ Γ, the system is then prepared in the coherent superpo-
sition

∣∣ψlas
〉=

∏
⊗

n

(cos(Ωt )
∣∣gn

〉+e i klas.Rn sin(Ωt ) |en〉). (5.2)
In the Dicke limit (klas.Rn ¿ 1), this state is only coupled to superadiant states since it is

invariant under exchange of two atoms (see chapter 6, section 1.2).
However, our system is not perfectly in the Dicke regime because the length of our clouds

is a few wavelength. Superradiance and subradiance are hence not perfect anymore. For
exemple for N = 2, Γ− 6= 0 so the subradiant state is coupled to the ground and excited states
and so this state can be driven by the laser (see inset figure 8.20). Moreover, the presence of
interactions between the dipoles leads to a coupling between the states. In the many-atoms
case, it is possible for the superradiant states to decay through the subradiant states. There
are thus several possible ways to populate the subradiant states, as represented in figure
8.20. We will now study experimentally which ones play a role in our system.

As shown in previous chapters, a crucial improvement of our experimental setup is the pre-
cise control of the driving pulse duration. We use a fiber electro-optical modulator (EOM) and
two acousto-optical modulators (AOM) in series. The EOMhas a rising and falling time shorter
than 1ns and an extinction of the order of 10−2. Using the AOMs, we obtain an extinction of
10−4 in about 25ns, which allows us to observe subradiance.

Resonant light is send with an intensity s = I
Isat

' 75, corresponding to a Rabi frequency
Ω ' 6.5Γ). We then stop the driving pulse at a precise time t0 during the Rabi oscillations
and then measure the fluorescence emitted by the cloud after the end of the pulse. We
characterize subradiance by measuring the decay rate and the rate of photon emission in
the late decay.
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Figure 8.20: Schematic representation of the various ways to populate the subradiant
states : direct laser driving or decay from superradiant states. Inset : Dicke states for
N = 2 near Dicke’s regime (Γ− 6= 0).

5.1 Decay time

To analyze how subradiance emerges during the driving, we first extract the subradiant decay
time τsub using an exponential fit for t ≥ t0 +4/Γ. The results are plotted figure 8.21 a).

Contrarily to superradiance (figure 7.3), the decay time does not vary with the population
of the excited state. We show it by plotting in the same figure the fluorescence acquired
during the Rabi oscillations in the low atom number regime, which is proportional to the
population of the excited state (it is well fitted by the solutions of the optical Bloch equations,
see for example 7.4 a)). The characteristic decay time is similar to the onemeasured in steady
state for the same atom number (figure 8.10). The same dataset was used for Figure 8.21 as
for determining the superradiant decay time τs in Figure 7.3. Thus, τsub can be plotted as a
function of τs . As shown in figure 8.21 b), the two decay times seem uncorrelated. This goes
in the direction of saying that the super- and subradiant states are independent. To further
investigate, we now consider the photon emission rate.
5.2 Photon in the late decay

We now estimate the population in the long-lived states summing the photons recorded after
t0 +4Γ, as shown figure 8.22.

We see that the population of the subradiant states increases with time during Rabi oscil-
lations, saturating when the system reaches the steady state. Several Rabi cycles are needed
to reach the maximum population of subradiant states. The subradiant states are slowly
populated by direct laser driving or with an optical pumping mechanism via the superradi-
ant states (Masson et al. 2020). This mechanism has been suggested in dilute clouds of cold
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Figure 8.21: a) subradiant decay time τsub as a function of the pulse duration. The
fluorescence collected as a function of the time during the driving is plotted with an
arbitrary scale as a background. The horizontal dashed line corresponds to the decay
time of a single atom, 1/Γ by definition. The vertical error bars are from the fit of the
exponential decay of the fluorescence.b) τsub as a function of the superradiant decay
time τs ( figure 7.3), showing no correlation.
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Figure 8.22: Photon collected in the late decay (t ≥ t0 +4Γ) as a function of the pulse
duration. The vertical errorbar is calculated taking t ≥ t0 +5Γ instead.

atoms (Cipris et al. 2020). In a two atom systems, the rate of bothmechanisms is Γ− (see insetfigure 8.20).
We fit the experimental data with a phenomenological function ∝ (1−exp[−t/τ]) to ex-

tract the timescale within which subradiance is build, as shown with a dashed line in figure
8.22. It gives a time constant of about 20ns, which is similar to the damping time of the Rabi
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oscillations.
To conclude, there are several processes that populate the subradiant states. The highest

population of subradiant states is obtained when the system is prepared in an incoherent
mixture, with a long pulse that allows the system to reach the driven steady-state.

5.3 Master equation

To gain a better intuition on the above observations, we solve the master equation for N = 2
(section 1.2). We consider two dipoles separated by a distance 〈r 〉 = λ/3, which is the mean
nearest neighbour interatomic distance in our experiment. As represented in the inset figure
8.23, we vary the relative angle θ between the dipoles, keeping the distance constant. Dipoles
are driven by a coherent field with Rabi frequencyΩ= 6.5Γ and with polarization z. This fields
has a wavevector klas = 2π

λ y. The effect on the populations of the different angles can thus be
observed.

For different times, we evaluate the excited state population 〈ee|ρ(t )|ee〉 and the popula-
tions of the sub- and superadiant states 〈±|ρ(t )|±〉 where |±〉 = 1p

2

(∣∣eg
〉±

∣∣g e
〉). Results are

shown figure 8.23.
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Figure 8.23: Population of the states as a function of time calculated with the master
equation for N = 2,Ω= 6.5Γ and R12 = λ/3. The relative angle θ is averaged over 1000
realizations, giving the solid lines.

By varying θ, we see that the populations of |±〉 depends strongly on θ. This was expected
as we prepare (according to equation (5.2))

∣∣ψ〉= 1p
2

(
cos(Ωt )

∣∣g〉+ sin(Ωt )e iφ |e〉
)

with φ= klas.〈r〉 = 2π
3 cos(θ). This state is close to |−〉 or |+〉 depending the value of θ. As

a function of time (for a well chosen θ), we also see that the laser can drive selectively |+〉
or |−〉. The simulations shown in figure 8.23 reproduce qualitatively well our experimental
observations of subradiance.



In figure 8.23, we see that the subradiant state is slowly populated during the Rabi os-
cillations. At certain times (for a given θ), we see that |−〉 is directly driven by the excitation
laser, leading to large peaks in the population. We see it for example before the first peak
of the Rabi oscillation. We also see the optical pumping mechanism from |+〉: the excitation
is pumped to |−〉 via the state |ee〉 and a decay with rate Γ−. As observed experimentally,
the simulations using two atoms show that the population of the subradiant state is maximal
when the steady state is reached, that is when the system is prepared in a mixed state.

Another possibility to populate the long-lived states is to decay from the other states.
To better understand the processes at play, we calculate the populations of the states when
we perform a π pulse, as shown figure 8.24. We turn off the pulse at a time t0 for which
〈ee|ρ(t0)|ee〉 is maximum.
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Figure 8.24: Population of the states as a function of time calculated with the master
equation when realizing a π-pulse for N = 2,Ω= 6.5Γ and R12 =λ/3. Driving is switched
off at t = t0. The relative angle θ is averaged over 1000 realizations, giving the solid
lines. Inset : comparison with the decay using rates equations.

We switch off the driving,Ω(t ≥ t0) = 0 and we observe that the populations of |+〉 and |−〉
increase before they decay. As in the two atom case, |+〉 and |−〉 are not coupled, the decay
is obtained by solving the rates equations

Π̇m =





−Γ+Πee −Γ−Πee if m = |ee〉
Γ+Πee −Γ+Π+ if m = |+〉
Γ−Πee −Γ−Π− if m = |−〉
Γ+Π++Γ−Π− if m =

∣∣g g
〉.

The results of these equations during the decay is shown in inset figure 8.24 and overlap
with the solutions of the master equation. They indicates that |−〉 is populated via the decay
fromstate |ee〉. ForN À 2, it is therefore expected that the subradiant states are populated by
decay from the excited state. Since no correlation between the population of superradiant
and subradiant states was observed, the possible decay from superradiant to subradiant
states is not very efficient to populate the subradiant states.
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6 Conclusion

In this chapter, we have observed subradiance in a steady-state cloud operating near Dicke’s
regime. We have charaterize the multy-excited subradiant states and shown that the coop-
erativity parameter is the atom number. In a second part, we have demonstrated a protocol
for storing and releasing subradiant excitations. Finally, we have studied the population of
the subradiant states in the driven regime and explored the interplay with the superradiant
states. We thus have shown that subradiant states are better populated when the system is
prepared in an incoherent mixture.
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Conclusion and perspectives
***

After having presented the work done during my thesis, I present here a summary of it and
then focus on possible future works and perspectives of studies, also based on preliminary
data.

In the first part of this manuscript, I gave a description of the tools we have developed
and used during my work. the basic theoretical notions necessary to understand the rest of
the manuscript, as well as the different types of numerical simulations used to understand
the physics involved are presented. The framework and the limits of each type of simulation
is summarized in figure 1.

Quantum Master Equation MFN

Nonlinear Coupled Dipoles (NLCD)

Classical Coupled Dipoles (CD)

s ¿ 1

Cumulants
MF1

Figure 1: Schematic of the framework of the simulations. The approximations used to
go from one to the other are represented by arrows.

Themost general method is the direct solution of the master equation (section 1.2), but it
is very expensive in computation time because the size of the Hilbert space to consider is 2N ,
where N is the atom number. It is however useful to perform complete simulations without
approximation on a small atom number N to gain intuition. For example, it was used in
chapter 8, section 5.3, for the study of the population of subradiant and superradiant states.

In order to reduce the calculation time, approximations are used. The cumulants approx-
imation MFN (section 2.3), consists in truncating the correlations between the operators at a
certain order while keeping all orders up to N amounts to a complete solution of the master
equation. This method has been used at order 2 (MF2, i.e. keeping only the two-operators



correlations) to study superradiance in chapters 6 and 7 (for example section 3.1) by our col-
laborators F. Robicheaux and R.T. Sutherland. Neglecting all correlations between operators
(MF1), one obtains a model often called "mean field" consisting in treating all the dipoles as
quantum dipoles coupled via the mean field radiated by the other dipoles. This model is
equivalent to the non-linear coupled dipoles (NLCD, section 2.2). It has been used for exam-
ple in the study of subradiance in chapter 8 (for example figure 8.3). By reducing the intensity
of the excitation laser , s = I

Isat
¿ 1, one can neglect the saturation of the dipoles. Their am-

plitude is therefore proportional to s. The dipoles are in this case well modeled by classical
coupled dipoles simulations (section 2.1). We have used these simulations for example in the
study of the 1D chain in chapter 4.

I then described the experimental system (chapter 2). This system was designed and as-
sembled during the thesis of L. Brossard (Brossard 2019) for its vacuum part and the aspher-
ical lenses. However, the elements presented in this chapter were realized during my thesis,
in particular the trapping and observation of single atoms along the two axes as well as the
control of the internal state of the atoms (sections 1.3 and 3.2 ). An important part was also
dedicated to the preparation and characterization of the 1D chain of atoms whose collective
properties are studied in chapter 4. I devoted a special chapter (3) to a particularly important
improvement of the setup, which required a longwork. Indeed, the implementation ofΛ-gray
molasses (GM) , initially with the aim of improving the loading of single optical tweezers or
the chain (section 3.2), has allowed us to load a large number of atoms in microscopic traps
(section 3.3). The last chapter of the first part, chapter 4 was about the study of the collective
scattering of light in a 1D atomic chain. In particular, it showed that this geometry allows us
to obtain large collective effects with a small number of atoms. This study was made possi-
ble by the two high resolution axes and by the use of GM to efficiently load the chain, and
demonstrated the possibilities of the experimental system.

Perspectives of experimental improvemements

The great advancesmade duringmy PhDweremainly due to an increase in N and a decrease
of the interatomic distance 〈r 〉. This opens interesting perspectives for future, as represented
figure 2. The first direction of study is to load a chain with a smaller spacing than in chapter
4, for which there are two possibilities. Either we improve the loading efficiency (η = 0.5 for
the moment using GM) or we change the wavelength of the trapping beam. Indeed, the dis-
tance between two sites is λtrap/2, so the distance between two atoms is λtrap

2η . The other way,
to which we give our favor, is to use a laser of wavelength λtrap = 532nm (which creates a
repulsive trap, so the infrared laser is still needed to create an attractive trapping potential,
as shown figure 2 a) ) or a laser of wavelength λtrap = 420nm. The second one (figure 2 b)) is
more interesting because it allows to obtain a smaller inter-site spacing.

Another direction of study is to realize a chain of controllable spacing, as represented
figure 2 c) . With the use of an acousto-optical deflector (AOD), one can vary the distance a
between atoms in individual tweezers by changing the RF frequencies seeded in the AOD.
It has been shown that this allows to prepare selectively superradiant or subradiant states
when a varies around amultiple ofλ/2 (Masson et al. 2020; Sutherland andRobicheaux 2016).
The experimental challenge will be then to reduce the distance, for instance by loading an
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532/2nma)
940/2nm

420/2nmb)

AOD
a(ωAOD)

ωAOD

c)
Figure 2: Perspectives of futures studies of the 1D chain a) Using a green laser and the
infrared laser b) Using a blue laser c) Controllable spacing using several beams displaced
by an AOD.

accordion lattice (Ville et al. 2017).
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Collective light-matter interaction in dense atomic clouds

The secondpart of thismanuscriptwas dedicated to the study of collective effects in densemi-
croscopic clouds approaching Dicke regime, where the cloud’s dimensions are smaller than
the wavelength. I have first explained (chapter 5) how we prepare and characterize dense
clouds of atoms, reaching a peak density n0/k3 ∼ 1. The prepared cloud contains several
thousands of atoms, exploiting the efficient GM loading. This is a crucial improvement com-
pared to the previous generations of the experiments, where the atom number was limited
to a few hundreds in the same traps. This allowed us to observe for the first time in the group
the phenomena of superradiance and subradiance, which we found to be governed by the
number of atoms in the cloud. We have compared our experimental data on Dicke superradi-
ance to ab-initio MF2 simulations, showing good agreement. In chapter 7, we have observed
laser driven collective oscillations and explored the steady state-regime and we have found
that superradiance is based in the population of the excited state, rather than on the precise
state in which the system is prepared. In the last chapter of this part, chapter 8, we reported
the first observation of subradiance nearDicke’s regime anddemonstrated a protocol to store
and on-demand releasing subradiant excitations. Finally, we have studied the population of
the long-lived states in the driven regime and explored their interplay with the superradiant
states.
Population of super- and subradiant states

A large part of this work was devoted to the experimental study of the population of super-
and subradiant states in a dense cloud approaching Dicke’s regime. The following figures
summarize the obtained results. Figures 3 a) and b) represent the different states of the
Hilbert space, the superradiant Dicke ladder and the long-lived states for which the decay rate
is smaller than that of a single atom Γ. In panel a) and b), we represent the different possible
ways to populate the superradiant and subradiant states. Superradiant states may be driven
directly by the laser (dashed blue arrow), or by decay from the fully excited state |ee..ee〉. We
have shown that the superradiant behavior ismainly given by the number of excitations in the
system, in other words the population of the excited state (obtained during Rabi oscillations).
Superradiant states are thus populatedmostly by the decay from the fully excited state (figure
3 a)), as predicted in Dicke’s scenario.

Subradiant states may be populated either directly (dashed blue arrow), or by sponta-
neous decay from the superradiant states (figure 3 b). Moreover, we have shown that subra-
diant states are better populated when the system has reached its driven steady-state, that
is when it is prepared in an incoherent mixture.
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Figure 3: a) Superradiant states are populated mostly be decay from the fully-excited
state. b) Long-lived(subradiant) states are populated by direct driving and decay from
|ee..ee〉.

Future work

During my thesis, we started to address another aspect of collective effects in dense clouds:
the generation of non-classical states of light. Indeed, there are proposals that suggest to use
atomic ensembles as non-linear medium (Chang, Vuletić, et al. 2014; Prasad et al. 2019). The
principle is represented figure 4 using N = 2 atoms. The resonant dipole-dipole interaction
Vdd leads to a shift of the energy levels by δ=±Re[Vdd ]. If one addresses the superradiant
state |+〉 by setting the laser frequency to ω0 + δ (where ω0 is the single atom resonance
frequency), the frequency shift prevents one to populate |ee〉. Thus, if a first photon of the
laser is absorbed by the medium, the medium will be transparent for a second photon with
the same frequency (Cidrim et al. 2020).

E

0

ω0

2ω0

∣∣g g
〉

|ee〉

|+〉

|−〉
δ= Re

[
Vdd

]

Figure 4: Non-linearity induced by the dipole-dipole interaction. If one photon of fre-
quency ω0 +δ is absorbed by the system, the system becomes transparent for other
photons with the same frequency.

We therefore started tomeasure correlation functions of the fluorescence emitted by the
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cloud. The intensity correlation function
g (2)(τ) = 〈E(r, t )E(r, t +τ)E†(r, t +τ)E†(r, t )〉

〈I (r, t )〉〈I (r, t +τ)〉

where I (r, t ) = E(r, t )E†(r, t ) allows one to identify the quantum nature of light. Indeed,
g (2)(0) < 1 (antibunching) is a signature of non-classical light.

We have first measured g (2) of light emitted by a dilute system containing N = 4000 atoms
with a peak density n0 ' 0.04k3. In this case, g (2)(τ) is given by the Siegert relation (Ferreira
et al. 2020)

g (2)(τ, N ) = 1

N

[
g (2)(τ,1)+ (N −1)(1+|g (1)(τ,1)|2)

] (6.1)
where g (2)(τ,1) and g (1)(τ,1) are the intensity and field correlation functions of a single atom.
Expressions for these functions in steady-state and on resonance can be found in (Loudon
1983) or (Scully and Zubairy 1997).

Figure 5 shows our measurements of g (2) for several saturation parameter s = I
Isat

. To
obtain these data, we split the collected fluorescence into two parts using a 50/50 beamsplit-
ter. We then record the arrival time of the photons on each path, allowing us to reconstruct
the intensity correlation function g 2(t1 − t2) for every t1, t2. We then select only the times
corresponding to the steady-state regime and obtain g 2(τ= t1 − t2).
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Figure 5: Intensity correlation g (2)(τ) for various values of s, with N = 4000 atoms but
low atomic density. Data are compared with theoretical values obtained from equation
(6.1) (solid line).

In figure 5, we compare the experimental data to the theoretical prediction using equa-
tion (6.1) (solid line) for several values of the saturation parameter. We obtain a very good
agreement without any free parameters (we only assume N À 1).

We then perform the same measurement in a dense cloud (n0 ∼ k3) with s ' 50. Results
are shown in figure 6. With the largest atomnumber, we see a violation of Siegert relation. We
observe some ”antibunching” (g (τ) < 1) in the minima of the oscillations. Moreover, g (2)(0, N )
decreases with N . In the low atom number, we recover a reasonable agreement between
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the theory and the experiment, except for g (2)(0) which is smaller than 2 also for the smallest
atom number. We do not have an explanation for these results at this time but they allow us
to hope for interesting results on the generation of non-classical states of light using dense
clouds of atoms.
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Figure 6: Intensity correlation g (2)(τ) for various values of N , with s ' 50. Data are
compared with theoretical values obtained from equation (6.1) (solid line).

To conclude, we have observed many interesting collective effects in our dense clouds of
cold atoms. However, this system is far from having shown all its facets, and the perspectives
of future work are many.
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Résumé: Ce manuscrit est divisé en deux parties. La première partie porte sur les outils
théoriques et expérimentaux développés et utilisés pour cette thèse. Dans cette partie sont
d’abord détaillés les modèles théoriques et les méthodes numériques nécessaires à l’étude
de la diffusion de la lumière dans des ensembles atomiques. Ensuite est présenté le dispositif
expérimental développé par l’équipe pour cette étude, utilisant des nuages d’atomes froids
de Rubidium dans des pièges optiques. Une attention particulière est donnée à la prépa-
ration d’ensembles d’atomes à deux niveaux, réalisés grâce à un fort champ magnétique et
au pompage optique dans les sous-niveaux Zeeman. Un chapitre est ensuite dédié à une
technique expérimentale, les mélasses grises, dont la mise en place a été un travail impor-
tant de cette thèse. Le résultat est significatif car ces mélasses ont permis d’augmenter le
nombre d’atomes piégés d’un facteur dix, ce qui a ensuite permis d’observer les effets col-
lectifs décrits dans la seconde partie du manuscrit. Le dernier chapitre de la première partie
présente des résultats obtenus dans le régime classique avec une chaine d’atomes. Un dé-
calage de la résonance atomique est observé en raison de l’interaction collective entre les
atomes de la chaîne. Dans ce chapitre, nous démontrons l’intérêt de structurer les ensem-
bles d’atomes dans l’espace pour renforcer les interactions entre les dipôles induits par la
lumière et modeler la réponse collective de l’ensemble.

La deuxième partie de ce manuscrit aborde les propriétés d’émission collective
d’ensembles denses d’atomes froids dans un régime proche du régime de Dicke, pour
lequel un grand nombre d’atomes est contenu dans un volume dont les dimensions sont
plus petites que la longueur d’onde de la transition atomique, λ. Nous étudions l’émission
spontanée de ces systèmes lorsqu’ils sont soumis à de la lumière laser résonante, pendant
et après l’excitation. On observe ainsi les désexcitations superradiantes (plus rapides que
celle d’un atome unique) et sous-radiantes (plus lentes que celle d’un atome unique). Dans
le premier chapitre de cette partie est présentée la préparation et la caractérisation des
nuages d’atomes. Le grand nombre d’atomes piégés (environ 6000), associé aux dimensions
microscopiques des ensembles (de l’ordre de la longueur d’onde) permettent d’obtenir des
densités de l’ordre de k3, où k = 2π

λ . Une telle densité rend importantes les interactions
entre les dipôles en champ proche. Les deux chapitres suivants sont dédiés à l’étude de la
superradiance. En mesurant l’émission de fluorescence lors de la désexcitation d’un ensem-
ble totalement excité, nous retrouvons les lois d’échelles prédites par le modèle de Dicke.
Nous caractérisons la superradiance dans nos ensembles, au-delà du modèle idéal de Dicke,
et on montre qu’elle est gouvernée par le nombre d’atomes mais aussi par la géométrie du
nuage. Nous étudions ensuite la superradiance dans le régime « piloté », pendant l’excitation
résonante, et on observe une émission collective de lumière. Dans le dernier chapitre, nous
caractérisons la sous-radiance dans nos ensembles, et on montre qu’elle est gouvernée par
le nombre d’atomes. La dynamique de la population des états sous-radiants est étudiée
grâce à des mesures résolues en temps. Enfin, nous démontrons un protocole pour relâcher
à la demande des excitations stockées dans ces états sous-radiants, ce qui est un prérequis
pour des applications de stockage de la lumière.

En conclusion, nous donnons des perspectives pour des recherches futures, en incluant
des résultats préliminaires sur les corrélations d’intensité de la lumière diffusée. Cesmesures
ont pour but de démontrer la génération d’états non-classiques de la lumière par des nuages
denses d’atomes froids.
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