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Résumé

Les plaques multicouches sont devenues de plus en plus utiles dans le domaine de l’in-
génierie, d’abord dans l’industrie, et plus récemment dans le génie civil. Qu’il s’agisse
d’un mélange complexe de polymères, de bois ou de béton, des efforts importants sont
nécessaires pour une modélisation précise de ces matériaux. En effet, des phénomènes in-
duits d’anisotropie et d’hétérogénéité sont associés à ces multi-matériaux : effets de bord,
dilatation thermique différentielle, délaminage/décollement ou non-linéarités de type vis-
cosité endommagement, plasticité en couches ou interfaces. De nombreux modèles ont été
développés ces dernières années dans le laboratoire Navier pour permettre une description
suffisamment détaillée afin de répondre aux problèmes spécifiques mentionnés ci-dessus.
En introduisant les contraintes d’interface comme des contraintes généralisées du modèle,
ces approches ont démontré leur efficacité en ce qui concerne la représentation du champ
de contrainte tridimensionnel. Ceci a permis de proposer des critères de d’endommage-
ment et de modéliser de manière efficace le délaminage ou le décollement, phénomène
très présent dans les composites multicouches. Dans cette étude nous commencerons donc
par rappeler le modèle des contraintes statiquement compatible avec des approximations
de contraintes de membrane de premier ordre par couche dans la direction de l’épaisseur
(SCLS1), qui est un modèle par couches pour plaques multicouches. Le modèle SCLS1 est
conforme exactement aux équations d’équilibre 3D et aux conditions aux limites de bord
libre. En outre, une discrétisation par éléments finis basée sur le déplacement généralisé
dual est mise en œuvre à l’aide du progiciel FEniCS et une stratégie de remaillage, basée
sur un nouvel indicateur d’erreur, est proposée . Cet indicateur d’erreur est construit sur la
base de la comparaison du champ de contraintes 3D directement déduit des contraintes gé-
néralisées par couches et d’un champ de contraintes reconstruit basé sur les déplacements
généralisés du modèle. Comme il est difficile de construire des éléments finis conformes à
base de contraintes assurant la continuité de la traction, nous considérons une stratégie
d’hybridation dans laquelle cette condition est relaxée par l’introduction d’un multiplica-
teur de Lagrange supplémentaire de type déplacement, défini sur les facettes de l’élément.
Par conséquent, cette méthode peut être utilisée pour capturer efficacement de fortes va-
riations de contraintes intra- et inter-laminaires près des bords libres ou des fissures.
Les mots clé : stratifiés, modèle de plaque par couches, éléments finis mixtes, hybridation,
bords libres.
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Abstract

In engineering, industry, and, more recently, civil engineering, multi-layered plate are
more useful today. Important efforts to model such materials accurately : a complex com-
bination of polymers, wood, or concrete are necessary. This multi-material is in actual
fact correlated with phenomena of induced anisotropy and heterogeneity : edge effects,
differential thermal expansion, viscosity-style degradation or non linearities, layer or in-
terface plasticity. In recent years in Navier Laboratory, several models were developed
which permit sufficiently detailed descriptions to address the above specific issues. These
approaches showed their effectiveness in depicting detail at inter-and intra-layer levels
by incorporating interface stresses as generalized stresses in the model. It is then simple
to provide damage laws to model delamination or debonding effectively, a very common
phenomenon in multilayered composites. A multilayered plates layer model, labeled Sta-
tically Compatible Layerwise stresses with first-order membrane stress approaches per
layer in the thickness direction (SCLS1), is therefore recalled in this analysis. The SCLS1
model complies exactly with the 3D equilibrium equations and the free-edge boundary
conditions. Also, a dual displacement-based finite-element discretization is implemented
using the FEniCS software package and a remeshing strategy is proposed based on a novel
error indicator. The error indicator is built based on the comparison of the 3D stress field
directly deduced from the layerwise generalized stresses and a reconstructed stress field
based on the model generalized displacements.
Since conforming stress-based finite-elements ensuring traction continuity are difficult to
construct, we consider a hybridization strategy in which traction continuity is relaxed by
the introduction of an additional displacement such as the Lagrange multiplier defined
on the element facets. As a result, this method can be used to capture efficiently strong
intra- and inter-laminar stress variations near free-edges or cracks.
Keywords : laminates, layerwise plate model, Mixed finite element, Hybridization, free
edges.
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1. General introduction

1 General introduction

In a process of continuous improvement, companies are developing new technological
solutions to meet the expectations of their customers or even current economic and envi-
ronmental constraints. These solutions go through the development and use of innovative
materials in the products sold. For example, in the field of transport, the weight reduction
of vehicles is at the heart of current questions on energy saving. To respond to this, the
choice of materials has turned to multilayers, especially those made of composites, allo-
wing lightness and strength to be combined. Their use has become widespread in other
fields, such as sports in order to improve the performance of athletes, or even in the ins-
trumentation sector to reduce the cost of manufacturing instruments. Multilayers are also
used in the building industry where sound insulation is an important criterion. Conven-
tional materials (concrete walls for example) have a sound reduction index proportional
to their thickness. The use of thick walls is however impossible to implement from an
economic point of view. Another form of multilayer material, called a sandwich, was then
adopted in order to achieve performance similar or superior to conventional materials for
lower wall thicknesses and reduced cost. Sandwiches are also used in the field of trans-
portation (automotive glazing, for example) or personal protection (helmets, bulletproof
vests). Figure 1 shows some applications involving multilayer materials in industry.

(a) Different types of mate-
rials used in Boeing 787

(b) Dassi brand composite
bicycle frame

(c) Roof made with sandwich
material

Figure 1 – Examples of applications of multilayer materials

The term composite encompasses all materials combining a matrix (resin, elastomer, rub-
ber, cement) with reinforcement (fabrics, sand, carbon fibers, wood, glass). The geometric
distribution of these matrices and reinforcements as well as their interactions make it
possible to create different varieties of composites. The reinforcements modify the mecha-
nical properties of the matrix by creating an orthotropy. In the case of a multilayer, the
orientation of the fibers of each of the layers makes it possible to adjust the mechanical
properties according to the required needs. Sandwiches, on the other hand, are multilaye-
red structures whose layers, glued together, have different and complementary mechanical
properties. They generally combine stiff materials (metals, wood, composites) with flexible
and damping materials (honeycombs, porous, polystyrene). Examples of multilayers are
shown in Figure 2.
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1. General introduction

(a) Carbon fiber composite
plates

(b) Wooden sandwich struc-
ture with a polystyrene core

(c) Sandwich structure in a
honeycomb with composite
skins

Figure 2 – Different varieties of multilayers

Multilayer plates are used in different branches of technology. In fact, they have very in-
teresting thermal properties and they can be rigid even for low densities. However, studies
have shown problematic behaviours of multilayered plates near free edges, because of the
differences in adjacent layers properties. Thus, the modelisation of these plates need a
development of mathematical and numerical tools, that take into account their specific
properties. In terms of memory space and computer time, the 3D models are so costly.
Many models are already proposed but they have proved ineffective in modeling the be-
haviour of multilayered plates near free edges. In view of their structures, multilayered
plates can be presented as a superposition of many anisotropic and homogeneous layers.
Multilayer materials are ultimately appreciated for their modular mechanical properties
that conventional homogeneous materials cannot offer. Knowledge of their mechanical be-
havior is however necessary to be able to fully exploit their potential. The design process
is based on the modeling of the structures and the material parameters.

However, modeling these composites using finite element (FE) three-dimensional models
is expensive in terms of computational time and memory. Consequently, this method of
calculation can be used in specific regions of the structures and give reference results for
specific configurations of the plate. The drawbacks of non-convergent results close to the
edge and interfaces between layers due to the existence of singularities were shown by (Le-
guillon and E.Sanchez-Palencia (1987) ;Ting and Chou (1981) ; Wang and Choi (1982) ;
Leguillon (1999) ; Chue and Liu (2002) ;Mittelsteda and Becker (2005)). In addition, the
differences of elastic properties between layers result into a concentrated interlaminar
stress near free edges. The mesh should be refined in order to capture the stresses, dela-
mination and damage. For these purposes, the existence of special models for composite
materials has proved to be important in view of the relatively limited thickness of multi-
layered structures.

Many 2D models have been proposed in order to model the 3D composite structures and
take into account the effects between the interfaces of layers. The theories are grouped in
two categories, the mono-layer equivalent models and the discrete layer models.

3



1. General introduction

The first category includes the Kirchhoff-Love models, Reissner-Mindlin models (First or-
der shear deformation models) and the higher order shear deformation. The theories ba-
sed on Kirchhoff-Love models, eliminate the transverse shear stresses (Yang et al. (1996) ;
Reissner and Stavsky (1961)), and are only valid for thin plates. Using Kirchhoff-Love
theory for thick multilayered plates with anisotropy leads to numerical errors and gives
wrong results. The role of shear transvese is more important in anisotropic structures then
in isotropic structures.

The Reissner-Mindlin theory (Mindlin (1951)) can model thick plates and take into consi-
dertaion the shear transverse stresses. Theory of first order postulates first degree kine-
matics in co-ordinate thickness z (Whitney and Pagano (1970) ; Reissner (1972)). Several
advances were made with the so-called first order theory of shear deformation, Daghia
et al. (2008).

Theories of the higher order were based on nonlinear 3D displacement, stress approxima-
tions in z or mixed approximation (Tarun et al. (1982) ; Reissner (1984) ; Reddy (1984)).
They are applicable to the multilayered and composite laminates. Based on Reissner-
Mindlin theory, a Bending-Gradient model was developed in Navier Laboratory (Lebée
and Sab (2011a), 2011b).

In addition, (Di Sciuva (1984) ; Di Sciuva (1986) ; Marco and Ugo (1993)) proposed a
"zig-zag" model, that takes into account the displacement fields distributions specially at
the interface between layers.

In the second group of models, the models are based on the layered approach. The fields
are linear and quadratic across each thickness of the layer (Di Sciuva (1984) ; Pagano
and Soni (1983) ; Carrera (2000), 2002, 1998, 1999a, 1999b). These models are advanced
models that allow local responses to be investigated, particularly on the layer interface.
Moreover, the number of variables and equations in those models depends on the number
of layers in the plate which increases the calculation amount.
With direct influence from Pagano’s model (Pagano (1978)), a layerwise stress model was
presented in (Chabot (1997) ; Carreria et al. (2002) ; Diaz et al. (2002) ; Nguyen and Caron
(2006) ;Dallot and Sab (2008) ;Saeedi et al. (2012a), 2012b, 2013a, 2013b ;Lerpiniere et al.
(2014)). The multi-layered material in this model is seen as an overlay of Reissner-Mindlin
plates connected by interfacial stresses which are seen as additional generalized stresses.
This model firstly named Multi-particle model for Multilayered plates (M4), was studied
by Chabot (1997). In Chabot (1997), Chabot presented many M4 models starting from
M4-7n approach similar to Pagano model till she arrived to Kirchhoff-Love theory. Many
models of M4 family were proposed by (Tran et al. (2004) ; Chabot et al. (2007) ; Chabot
et al. (2013) ; Nasser et al. (2016) ; Nasser and Chabot (2018) ; Chabot and Deep (2019) ;
Nasser et al. (2018a)) and prove their accuracy near free edges and at the interfaces bet-
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1. General introduction

ween layers by comparison to the 3D finite element calculation.

Adopting Carrera’s proposed nomenclature (Carrera (2004)) the M4-5n model was rena-
med as LS1, the first order membrane stress approximations by layer in the thickness
direction.

One of the key distinctions between the LS1 model and other current layer-wise models
is that other models have either a mixed approach or displacement approach, while the
LS1 model is only stress-based approach where there are no assumptions on displacement
fields. Although the LS1 is very successful with its refined version, they are still possible
improvement. First, such model cannot fulfill the 3D stress-free boundary conditions.
Secondly, as the number of mathematical layers per physical layer increases there is no
guarantee that the refined LS1 model converges to the 3D model.

To this purpose, an enhanced model proposed by Baroud et al. (2016) known as Statically
Compatible LS1 (SCLS1) or (M4(6n-1)) is derived from the minimum potential comple-
mentary energy theorem which ensures that its refined version converges to the exact 3D
model as the number of mathematic layers increases.

The object of this study is to find a mesh adaptation strategy for the SCLS1 model that
allows further developments including interfaces delamination propagation or damage at
the ply level. Then, we aim to make further improvements on the model using a hybrid
mixed approach.
This dissertation consists of four chapters : First, a state-of-the-art approach which refers
to the different approaches and advantages of existing multilayered plates.
The SCLS1 layerwise model is recalled in the second chapter. The Statically Compa-
tible Layerwise stresses with first-order stress approximations per layer (SCLS1) model
complies with 3D equilibrium equations and with free-edge boundary conditions. The
laminated plate is seen as an overlay of Reissner plates, combined with stresses on the
interfaces. In particular, the divergence of the interlaminar transverse shears are incor-
porated in the SCLS1 model as additional generalized stress. This model is based on the
minimum of the complementary energy theorem as opposed to the LS1 model, which
stems from Hellinger-Reissner. This ensures that the refined SCLS1 solution converges to
the exact 3D solution with an increasing number of layers per physical layer.

In the third chapter, a mesh adaptation strategy is developed which relies on the recons-
truction of 3D displacement fields from the SCLS1 model generalized displacements. Some
illustrative examples show that the method is in fact able to refine the mesh in regions
with complex 3D stress fields such as straight edges, notches or delamination fronts.

In the last chapter, an alternative finite element discretization to the conventional displacement-
based finite-element method will be examined. Then, we will consider a hybridization
strategy in which traction continuity is modified by the introduction of an additional
displacement-like Lagrange multiplier defined on the elements facets. It will be shown on

5



2. Bibliographical analysis

some examples that the proposed mixed hybridized mixed approach is more accurate than
a standard displacement approach for the same number of degrees of freedom.

Finally, we propose some conclusions and perspectives for this work.

2 Bibliographical analysis

Models of multilayered structures in the litterature

Plates are flat structures of largely small thickness used in industry and in civil enginee-
ring construction, such as car bodies, gas or liquid tanks, airplane wings. During the last
decade, composite laminates have been widely used in different branches of technology.
In fact, they have very interesting thermal properties and they can be rigid even for low
densities. The multi-layered plates are being increasingly used in the aeronautical and ae-
rospace industry. Multilayered plates, are plates formed of superposed layers where each
layer have its own properties such as materials and thickness. So, multilayered plates are
considered as a heterogeneous body consisting of homogeneous layers bounded together.
The shaping of a modern, multi-layered structure with a strong anisotropy requires refined
theory, with a good transverse shears and interlaminar stress definition in mind.
Over several years, two-dimensional models were developed to model the multilayered
structures and take into consideration the damages. These models were classified in two
categories according to the type of the adopted approach. The first category is the mono-
layer equivalent approach. The second category, is the layerwise approach.

The mono-layer equivalent approach

It is interesting for engineers that working in plate structures and the researchers working
on the creation of plates knowledge, to understand the differences between plate theories
and their application.
In the middle of 19th century, many researchers developed the plate theories. These in-
quiries led to three major categories of plate theory fields.

a) Kirchhoff-Love theory or classical plate theory (CPT), that study thin plate, and
neglected the shear effort.

b) Reissner-Mindlin theory, first order shear deformation plate theory (FSDT), that
are able to study thick plate, and take into account shear effects.

c) Higher order shear deformation plate theories (HSDT), that study composite plates,
and include shear effects.

d) Zig-zag model
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a) Kirchhoff-Love theory
Germain, Poisson, Lagrange and Kirchhoff are the first researchers that developed the

models of thin plates, by taking inspiration from the theory of beams of Euler-Bernoulli.
Based on the properties of Kirchhoff, Love stated a new model of thin plates, named
Kirchhoff-Love theory. This theory of thin plates is based on many assumptions. The
most important assumption is that the transverse fiber remains straight and perpendi-
cular to the mid-plane after deformation. So, the transverse shear strain is neglected.
The Kirchhoff-Love model is appropriate for thin plates. Using this theory gives wrong
results when considering thick plates and especially plates made of advanced composites
Liu (2011).

b) Reissner-Mindlin theory
To model thick plates, Rayleigh in 1877 and Timoshenko in 1921 show the effect of

transverse shear in the study of beams. Reissner (1945) and Uflyand (1948) proposed a
first model based on a study of beams, and that takes into account this effect. Then,
Mindlin developed his theory in Mindlin (1951).
Many of the hypothesis of the Reissner-Mindlin theory are almost the same as in Kirchhoff-
Love theory. The main difference is that the transverse fiber does not remain perpendicular
to the mid-plane after deformation. This hypothesis allows to take into consideration the
shear effects. Applying Reissner-Mindlin theory for composite laminate shows the diffi-
culty of evaluating shear stress correction factor which is the weakness of this model Shi
(2007).

c) Higher-order plate theories
In order to approximate the non-linear distribution of transverse shear stress along the

thickness of the plate, many models of higher order shear deformation were developed.
These models have been shown to apply to composite plates. Levinson (1980) and Murthy
(1981) have developed a variety of theories using polynomial of the third order to establish
displacement fields across the plate thickness and without the need for shear correcting
factors. They nevertheless used in their theory the equilibrium equations of the classical
model, which contradicts the compatibility of the displacements.
In orders, to fix this drawback, Reddy presents in Reddy (1984), the most simple higher-
order theory used for composite plate analysis. As Liu (2011) reported, in order to explain
the deformation of layered anisotropic plate, Ambartsumian (1958) developed another hi-
gher order plate theory based on a transverse shear stress function.
Shi (2007) presented a new HSDT model based on the theories of Murthy and Reddy
in 2007. He derived a new set of governing equations associated with proper boundary
conditions. In addition, both Reddy and Shi, used 3rd order polynomial to present the
displacement component across the plate thickness, leading to parabolic variations of the
transverse shear stresses. It should be noticed that it is preferable, whenever it is possible,

7



2. Bibliographical analysis

not to use, the higher-order plate theories to get the best numerical solution. Indeed,
Reddy has written in Reddy (2004), that : " Higher-order theories can represent the ki-
nematics better, may not require shear correction factors, and can yield more accurate
interlaminar stress distributions. However, they involve higher-order stress resultants that
are difficult to interpret physically and require considerably more computational effort.
Therefore, such theories should be used only when necessary. "
Figure 3, illustrates the differences between CPT, FSPT, HSDT in terms of in-plane dis-
placement (Wang et al. (2000)).

Figure 3 – The undeformed and deformed geometries of a plate in various plate theories,
where u0 denotes the in-plane displacement(Wang et al. (2000)).

Aydogdu (2006) compares the HSDT models with the three-dimensional analyses avai-
lable. This study indicated that while the exponential shear deformation theory (Karama
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et al. (1998)) predicts well the transverse displacement and stresses, the hyperbolic shear
deformation (Soldatos (1992)) and the parabolic shear deformation (Reddy (1984)) theo-
ries more suitable for the prediction of natural frequencies and the buckling loads.
Several theories and approaches solve buckling loads, such as Navier method, used to solve
laminates with simply supported edges. The Levy (1899) method solutions can be deve-
loped for plates with edges having the possibility to combine boundary conditions, and
Rayleigh-Ritz method used to calculate approximate solutions for more general boundary
conditions.
In general, higher-order models are more accurate then the first order and the classical
models. Actually, higher order models presented above are based on different in-plane
kinematic functions f(z). Table 1 presents f(z) for some higher-order plate theory.

HSDT f(z)

Shi (2007) 5
4
z
(

1− 4z2

3h2

)
Reddy (1984) 2

(
1− 4z2

3h2

)
Touratier (1991) h

π
sin
(
π z
h

)
Karama et al. (1998) ze−2( z

h)
2

Table 1 – Kinematics function f(z) for various higher-order plate theories

d) Zig-zag models
First, we will briefly discuss the zig-zag models. Zig-zag models implement functions

which take into account displacement distribution fields at layer interfaces, and because
of the difference between layer deformation, the layers are called zig-zag. The interest of
zig-zag models is that the displacement fields verify the continuity, without increasing
the number of equations. Many researchers tried to improve the zig-zag models(Cho and
Parmerter (1993) ; Averill (1994) ; He (1994) ; Incardi (2001) ; Carrera (2004)). However,
the analysis of delamination is rarely used in these zig-zag models. Moreover, when the
L/h ratio is reduced, the transverse shear prediction is less accurate (Incardi (2001)).

Layerwise approach-Discrete layers models

In order to overcome the drawbacks of the equivalent single layer (ESL), different theories
have been proposed.
In discrete layers models, each layer is studied as first-order or higher-order plate and
conditions are implemented for displacement and stress in layer interfaces. In our study
we are interested in discrete layers models.
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Many layerwise models have been proposed by (Barbero and J.N. (1991) ; S.Botello et al.
(1999) ; Carrera (1998) ;Moorthya and Reddy (1998) ;Gaudenzi et al. (1995) ;Robbins and
Reddy (1993)). In these models each layer is considered as an individual plate, hence the
number of equations depends on the number of layers. The layerwise models proved to
be a very good substitute for 3D models. The interested readers can refer to (Carrera
(2002),2004 ; Zhang and Yang (2009)).
(Crossman and Wang (1982) ; Tahari et al. (1994)) study the delamination and the micro-
cracking at the interface between layers. Mainly, these delamination and micro-cracking
are caused by the different efforts between the layers. Moreover, (Caron (1993) ; Caron
and Ehrlacher (1997)) study the transverse cracking between the layers, caused by the
shear efforts at the interfaces.

Benedetti and Milazzo (2017) developed families of equivalent single layerwise and layer-
wise models for multilayered plates, taking into account the electrical magnetic fields in
the mechanical description.
Transverse anisotropy of multilayered structures make it hard to find closed forms. Hense,
it is necessary to use approach solutions in order to study the transverse anisotropy struc-
tures. Several authors (Murakami (1985) ; H. (1986) ;Toledano and Murakami (1987a) ; To-
ledano and Murakami (1987b)) used the Reissner Mixed Variational Theorem (RMVT)(
Heillgner-Reissner theory) as a tool to model multilayered structures. Carrera submitted
an overall proposal to systematically use RMVT as a way to provide a two-dimensional
class of theories for the study of multilayered plates (Carrera (1995) ; Carrera (1997) ; Car-
rera (1999)). A multilayered RMVT based platform elements that could provide a nearly
three-dimensional definition of stresses and strain fields has been developed by (Carrera
and Demasi (2002b) ; Carrera and Demasi (2002c) ; Carrera and Demasi (2002a)). Chi-
nosi et al. (2016) demonstrated that the plate elements conditions presented in Chinosi
et al. (2013), not only satisfy interlaminar conditions but they also take into account the
cross-elasticity effects of anisotropic materials providing good results in terms of trans-
verse shear stresses. Solid models or theories of higher order are needed to capture the
localized 3D stress states. However, the drawback of refined plate theories is that it has
high computational costs. The Finite Element Method (FEM) plays a dominant role in
calculation techniques for layered structural analysis. In Carrera and Zappino (2014), the
authors used the Carrera Unified Formulation (CUF) developed in Carrera (2002), Car-
rera (2003) to develop a beam model with kinematics variables and global/local features.
It allows classical to higher order theories to be automatically applied. Then, Carrera
et al. (2017) developed a methodology where FEM and Mixed Interpolations of Tensorial
Components (MITC) method are adopted (Bathe and Dvorkin (1986) ;Bathe and Brezzi
(1987) ;Bathe et al. (1989) ;Bucalem and Dvorkin (1993)). In these works it was proved
that global-local models constructed with Node-dependent Kinematics (NDK) can give
detailed local effects with fewer computational costs. Zappino et al. (2018) introduced a
novel class of 2D FE models for the global-local analysis of multilayered plates, based on
a combination of NDK with a p-refinement scheme adopting higher-order Legendre poly-
nomials. Further studies on the added benefit of RMVT for an accurate stress analysis of
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multilayered structures in Moleiro et al. (2020).

Moleiro et al. (2019) developed a new layerwise mixed model to statistically analyze multi-
layer plates with embedded functionally graded materials (FGM) subjected to transverse
mechanical loads. This model is developed as an extension of previous work on layer-
wise mixed models for analysis of multilayered plates (Moleiro et al. (2011) ; Moleiro
et al. (2010) ; Moleiro et al. (2012) ;Moleiro et al. (2015)) on layerwise mixed models for
analysis of multilayered plates. After that, Gulizzi et al. (2020) presented a novel high-
resolution formulation of multilayered composite plates. This formulation is based on
the combination of layer-wise plate theories, the discontinuous Galerkin method, and an
implicite-defined hierarchical meshing strategy, which allows tuning the resolution of the
mechanical fields of interest in suitably selected regions of composite multilayered plates.

A family of discrete layers models, previously called Multi-particle model of multilayered
materials (M4), are developed in Navier. Later on in accordance with existing terminology
in literature they will renamed layerwise stress approach with first-order membrane stress
approximation per layer in the thickness direction (LS1) model.
By taking inspiration from (Pagano (1978)) many layerwise stress models (Chabot (1997) ;
Carreria et al. (2002) ; Hadj-Ahmed et al. (2001) ; Diaz Diaz (2001) Dallot and Sab
(2008) ;Diaz et al. (2002) ;Lerpiniere et al. (2014) ;Nguyen and Caron (2006) ;Saeedi et al.
(2012a), 2012b, 2013a, 2013b ; Baroud et al. (2016)) were built from the variational formu-
lation of Hellinger-Reissner and a polynomial approximation of the stresses fields by layer.
In these models, the membrane stresses are first degree polynomials, the shear stresses
fields are quadratic by layer, and the normal stresses are cubic polynomials. A family
of a stress fields approaches has been proposed in order to develop these models. The
generalized strain dual of the generalized stress is deduced by introducing these stress
fields in the Hellinger-Reissner functional. The equilibrium equations and the boundary
conditions are obtained by considering the variations of this functional with respect to
the variation of generalized displacements fields. In addition, the constitutive laws are
obtained by considering the variations of the Hellinger-Reissner functional with respect
to generalized stresses.
These models were named Multi-particle models of multilayered plates (M4). Because
there are n particles at each geometric point of the 2D plate, where n is the number of
layers and each particle has a different kinematics.
The (M4) modelling approach avoids singularities and reduces the real model by one
dimension. These features accelerate the resolution of the system with respect to other
models.
Chabot (1997), studied the multiparticular models of multilayered plates in her PhD the-
sis. She developed six models to analyse stress at the interfaces in the multilayered plates.
The interested reader can refer to (Chabot and Ehrlacher (1998a)). In this study, Chabot
started from the model M4-7n which is similar to the Pagano model (Pagano (1978)).
By simplification and elimination of some generalized stresses, she reached a simplest
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multi-particular model M4-(2n+1)M as shown in figure 4.

Figure 4 – Derivation of multiparticulate models (M4) (Chabot (1997)) (Chabot and
Ehrlacher (1998a))

M4-(2n+1)M is a generalization of the classic-shear-lag analysis (Garett and Bailley
(1977)). However, it does not give a good prediction of the 3D stresses, and leads to
a linear pulling force at the edge of the interface, which appears to be directly related to
the rate of energy relaxation in a possible phenomenon of delamination.
On the other hand, the model labelled M4-5n (one of the M4 models) seems able to appro-
priately reproduce the stresses at the interfaces. The solutions of M4-5n equations were
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validated by comparision with the 3D finite element method by (Hun et al. (2011) ; Car-
reira (1998) ; Carreria et al. (2002)). The concept of M4-5n was generalized in Diaz Diaz
(2001),Caron et al. (2006), Diaz et al. (2007). In addition, a quasi-analytical solution of
the stress fields and energy rate has been developed Chabot et al. (2013), and validated
by a comparison with the results of Dundurs (1969) and Hun (2012). A semi-analytical
elastic solution was presented by Nasser and Chabot (2018) based on Nasser’s work pre-
sented in Nasser and Chabot (2015). It gives a parametric study of 2D cracked pavements
resting on a soil. The location of the loads on the cracks is confirmed by Nasser and
Chabot (2018) for the study of 2D paves. The authors improved soil simulation so that
the mechanical fields between the layers were better approximated. Nasser et al. (2016)
developed a M4-5n model that can be used to simulate a plate geometry with cracks and
delamination between layers. Moreover a numerical tool for computing the mechanical
response of pavements containing vertical cracks and interlayer debonding is presented by
Nasser et al. (2018a).

Furthermore, a simplified mutli-particule model of multilayered plates named M4-5nB
(Boussinesq), was proposed in (Chabot et al. (2005) ; Chabot et al. (2003), 2004 ; Chabot
et al. (2004a), 2004b, 2007). In this model the authors used a software for the 3D evolution
of cracks in pavements. The advantage of such model is that it reduces the studied model
by one dimension, and gives very accurate approximations of the stress fields near the in-
terfaces, cracks and edges when comparing with 3D finite elements calculation and is less
time consuming. (Chabot et al. (2007)) used the M4-5nB model to study the propagation
of vertical crack in pavements.
In accordance with (Deep (2017) and Chabot and Deep (2018)), Chabot and Deep (2019)
presented new developments in the M4-5nW model that allow considering a material dis-
continuity in one or several materials layers.

Even though the LS1 model and its refined version are very effective, they can still be
improved. These models cannot exactly fulfill the 3D stress-free boundary conditions.
Moreover, since these models are based on mixed Hellinger-Reissner variational theory,
there is no theoretical guarantee that the refined LS1 model will converge to the 3D
model if the number of mathematical layers increases. Baroud et al. (2016) implemented a
layerwise model called Statically Compatible LS1 (SCLS1) or M4-(6n+1) to boost the LS1
model by eliminating its disadvantages. SCLS1 is a multilayered model for linear elastic
plates. It derives from the exact 3D model by taking into account the statically compatible
stresses in the layer direction of thickness with first order membrane stress approximations
per layer. In addition to interlaminar shear and normal stress on the interfaces between
layers and variations in interlaminar shear stress, the generalized stresses of the SCLS1
model takes into account the the layer-by-layer stresses of Reissner-Mindlin plate.
The next chapter is dedicated to the detailed description on the SCLS1 model.
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Chapitre 1

The Statically Compatible Layerwise
model SCLS1
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1.1. Notations and model description

In this chapter the benefits of using the SCLS1 model will be presented, based on Baroud’s
study Baroud (2016). We will introduced the equations of the existing SCLS1 model for
elastic multilayered plates as seen in Baroud et al. (2016). We will give the definitions of the
generalized strains and stresses of this model, as well as the equilibrium equations and the
constitutive equations. The generalized stresses of the SCLS1 model are the generalized
stresses of the Reissner-Mindlin plate per layer in addition to the inter-laminar shear and
normal stresses at the interfaces between layers and the divergences of this inter-laminar
shear stresses. Moreover, we have 6n-1 equilibrium equations in terms of the generalized
stresses where the number of layers n was derived from the 3D exact equilibrium equations.
Finally, the relation between the generalized stresses and generalized strains was given by
the generalized constitutive equations deduced by using the stress energy formulation.

1.1 Notations and model description

We consider a linear elastic multilayered plate composed of n orthotropic elastic layers and
occupying the 3D domain Ω = ω×]h−1 , h

+
n [ where ω ⊂ R2 is the middle surface of the plate

and h its thickness. The plate is subjected to forces in its upper face ω+ and lower face
ω− with the distributed surface forces T+ = (T+

k ) and T− = (T−
k ). The boundary of the

domain, denoted by ∂Ω, is decomposed into two parts : a free part ∂ΩN = ∂ωN×]h−1 , h
+
n [

where T = (Tk) = (σklnl) is set to zero, and a restrained part ∂ΩD = ∂ωD×]h−1 , h
+
n [ where

the displacement u = (uk) is set to zero. The subset ∂ωN and ∂ωD are the partition of
∂ω, and n = (nk) is the outer normal of ∂ωN .

Figure 1.1 – Notations in a layer

In the following, x and y are the in-plane coordinates and z is the out-of-plane coordinate.
The following notations are introduced :
• The subscripts i and j, j + 1 indicate layer i and the interface between layers
j and j + 1 with 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, respectively. By extension, the
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1.2. Governing equations of the 3D model

superscripts 0, 1 and n, n + 1 refers to the lower face ω− = ω × h−1 and the upper
face ω+ = ω × h+

n respectively.
• In each layer i, h−i , h

+
i and hi are, respectively, the bottom, the top and the mid-

plane z coordinate of the layer, and ei = h+
i − h−i is the thickness. Thus we have

h+
i = h−i+1 for all a ≤ i ≤ n− 1, we set h+

0 = h−1 and h−n+1 = h+
n .

• Greek subscripts α, β, γ, · · · ∈ {1, 2} indicate the in-plane components.
• Latin subscripts k, l,m, n, · · · ∈ {1, 2, 3} indicate the 3D components.
• t[X] is the transpose of [X].
• (Si = (Siklmn)) is the fourth-order 3D compliance tensor of layer i with the minor

and major symmetries : Siklmn = Silkmn = Siklnm = Simnkl and it is positive definite.
Its inverse is the 3D elasticity stiffness tensor and is denoted by (Ci

klmn) for layer i.
The tensor (Ci

klmn) possesses the same symmetries as (Siklmn) and it is also positive
definite.
• Si is monoclinic in direction z : Siαβγ3 = Siα333 = 0
• σαβ(x, y, z) are the in-plane stress components, σα3(x, y, z) are the transverse shear

stresses and σ33(x, y, z) is the normal stress.
• εαβ(x, y, z) are the in-plane strain components, εα3(x, y, z) are the transverse strain

stresses and ε33(x, y, z) is the normal strain.
• uα(x, y, z) are the in-plane 3D displacement components, u3(x, y, z) is the normal

3D displacement component.

1.2 Governing equations of the 3D model

The 3D elastic problem is to find a statically compatible stress field σ = (σkl), and a
kinematically strain field ε = (εkl) which comply with the constitutive equation :

(1.1) εkl (x, y, z) = Sklmn (z) : σmn (x, y, z) on Ω,

where the stress field σ is statically compatible if it complies with the equilibrium equa-
tions :

(1.2) σkl,l = 0 on Ω,

and the stress conditions on the upper and the lower faces :

(1.3) σk3 = −T−
k on ω−, σk3 = T+

k on ω+,

and on the lateral boundary :

(1.4) σklnl = 0 on ∂ΩN .

16



1.3. The static of SCLS1 model

A strain field ε is kinematically compatible if there exists a displacement field u = (uk)
complying with the displacement conditions on the lateral boundary :

(1.5) uk = 0 on ∂ΩD,

and such that,

(1.6) εkl =
1

2
(uk,l + ul,k) on Ω.

1.3 The static of SCLS1 model

In this section, we construct an approximation of 3D stress fields, as z polynomial forms
per layer. By taking into consideration the 3D equilibrium equations, if the polynomial
degree of the membrane components σαβ of the 3D stress fields is d, then the degree of
the transverse shear stresses σα3 is at most d+1 and that of the normal stress σ33 is at
most d+2.
The SCLS1 model considers the following form of the 3D stresses in layer i, for 1 ≤ i ≤ n,
such that σαβ are layerwise linear functions of z. By integrating the first two equations
of the 3D equilibrium equations we conclude that the transverse shear stress σα3 are
layerwise quadratic functions of z. In addition, by integrating the last equation of the 3D
equilibrium equations we can find that the normal stress σ33 is a layerwise third-order
polynomial function of z. The stresses σα3 and σ33 take into account the continuity at the
interfaces between the layers. The coefficients of these polynomials are the generalized
stresses. Moreover, this from of the 3D stress field is the one and only one hypothesis of
the SCLS1 model :

(1.7) σ3D
αβ (x, y, z) = N i

αβ(x, y)
P i

0(z)

ei
+

12

ei2
M i

αβ(x, y)P i
1(z),

(1.8)
σ3D
α3 (x, y, z) = Qi

α

P i
0(z)

ei
+
(
τi,i+1
α (x, y)− τi−1,i

α (x, y)
)
P i

1(z)

+

(
Qi
α(x, y)− ei

2

(
τi,i+1
α (x, y) + τi−1,i

α (x, y)
)) P i

2(z)

ei
,
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1.3. The static of SCLS1 model

(1.9)

σ3D
33 (x, y, z) =

(
1

2

(
νi,i+1(x, y) + νi−1,i(x, y)

)
+
ei

12

(
πi,i+1(x, y)− πi−1,i(x, y)

))
P i

0(z)

+

(
6

5

(
νi,i+1(x, y)− νi−1,i(x, y)

)
+
ei

10

(
πi,i+1(x, y) + πi−1,i(x, y)

))
P i

1(z)

+

(
ei

12

(
πi,i+1(x, y)− πi−1,i(x, y)

))
P i

2(z)

+

(
ei

2

(
πi,i+1(x, y) + πi−1,i(x, y)

)
+
(
νi,i+1(x, y)− νi−1,i(x, y)

))
P i

3(z),

where P i
k, k = 0, 1, 2, 3, are the orthogonal Legendre-like polynomial basis defined on

layer i by : for h−i ≤ z ≤ h+
i ,

(1.10)



P i
0(z) = 1

P i
1(z) =

z − hi
ei

P i
2(z) = −6

(
z − hi
ei

)2

+
1

2

P i
3(z) = −2

(
z − hi
ei

)3

+
3

10

(
z − hi
ei

)
In order to facilitate the calculation of the elastic energy, these polynomials are chosen
orthogonal to each other.
We can express these polynomials using the classical Legendre polynomials :

PL
0 (x) = 1 PL

1 (x) = x PL
2 (x) =

3x2 − 1

2
PL

3 (x) =
5x3 − 3x

2
,

The orthogonal Legendre-like polynomial basis are then given by these relations :

P i
0(x) = PL

0

(
2

(
z − hi
ei

))
P i

1(x) =
1

2
PL

1

(
2

(
z − hi
ei

))
P i

2(x) = −PL
2

(
2

(
z − hi
ei

))
P i

3(x) = − 1

10
PL

3

(
2

(
z − hi
ei

))
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1.4. The equilibrium equations

and where,

• N i = (Nαβ) is the in-plane stress resultants tensor, related to the 3D local stress
(σij) in each layer i by :

N i = (N i
αβ) = 〈σ3D

αβ 〉,

where the integration through the thickness is noted 〈·〉 :

∫ h+i

h−i

f(z)dz = 〈f〉.

• M i = (Mαβ) is the moment resultants tensor expressed in terms of the 3D stress
field σ3D in each layer i as follows :

M i = (M i
αβ) = 〈(z − hi)σ3D

αβ 〉.

• Qi = (Qi
α) is the out-of-plane shear stress resultant vector, defined from the 3D

stress field σ3D in each layer i as follows :

Qi = (Qi
α) = 〈σ3D

α3 〉.

• τj,j+1
α is the interlaminar shear stress at the interface between layer j, and layer
j + 1 for 0 ≤ j ≤ n− 1 given by :

τj,j+1
α (x, y) = σ3D

α3 (x, y, h+
j ) = σ3D

α3 (x, y, h−j+1).

• νj,j+1 is the normal stress at the interface between j and j + 1, for 0 ≤ j ≤ n− 1,
given by :

νj,j+1(x, y) = σ3D
33 (x, y, h+

j ) = σ3D
33 (x, y, h−j+1).

• πj,j+1 is an additional parameter which allows to consider σ33 as a polynomial of
third degree per layer. By writing the generalized equilibrium equations we can find
that πj,j+1 is the divergence of the interlaminar shear stress vector τj,j+1 = (τj,j+1

α )
defined on the interface between layers j and j + 1 for 0 ≤ j ≤ n− 1 .

1.4 The equilibrium equations

The 3D stress field σ3D shall satisfy 3D equilibrium equations (1.2), if and only if, the
following equations hold true for all (x, y) in ω and for all i = 1, . . . , n and j = 0, . . . , n :
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1.4. The equilibrium equations

(1.11)

N i
αβ,β + τi,i+1

α − τi−1,i
α = 0.

M i
αβ,β −Qi

α +
ei

2
(τi,i+1
α + τi−1,i

α ) = 0.

Qi
β,β + νi,i+1 − νi−1,i = 0.

τj,j+1
β,β − πj,j+1 = 0.

The last equation gives the interpretation of πj,j+1 which is equal to the divergence of the
interlaminar shear stress vector τj,j+1 = (τj,j+1

α ). Now the stress boundary conditions have
also to be enforced in addition to the equations (1.11). The lateral boundary conditions
σ3D
ij nj = 0 on ∂ΩN are equivalent to the following equations for i = 1, . . . , n and j =

0, . . . , n :

(1.12) N i
αβnβ = 0, M i

αβnβ = 0, Qi
αnα = 0, τj,j+1

α nα = 0, on ∂ωN .

The boundary conditions (1.3) on the upper an the lower faces write, respectively,

(1.13)


τ0,1

1 (x, y) = −T−
1 (x, y),

τ0,1
2 (x, y) = −T−

2 (x, y),

ν0,1(x, y) = −T−
3 (x, y).

and


τn,n+1

1 (x, y) = T+
1 (x, y),

τn,n+1
2 (x, y) = T+

2 (x, y),

νn,n+1(x, y) = T+
3 (x, y).

It should be noted that the boundary conditions (1.12) and (1.13) cannot be simulta-
neously verified unless T±

α nα = 0 on ∂ωN , which will be assumed in the sequel. Moreover,
from the last equations of (1.11) for j = 0 and j = n, we see that :

(1.14) π0,1 = −T−
α,α and πn,n+1 = T+

α,α.

Finally, the stress field σ3D is statically compatible when it complies with the generalized
equilibrium equations on ω : (1.11) for i = 1, . . . , n and j = 1, . . . , n − 1, (1.13) and
(1.14), and with the generalized stress free boundary conditions on ∂ωN : (1.12) for
i = 1, . . . , n and j = 1, . . . , n− 1.

20



1.5. Generalized displacements and strains

1.5 Generalized displacements and strains

The SCLS1 generalized displacements are (U i
α, U

i
3,Φ

i
α and V j,j+1). U i

α is the two in-plane
displacements, U i

3 is the vertical displacement, Φi
α is the two bending rotations in each

layer i and V j,j+1 is a kinematical variable, having the dimension of an area, which is dual
of the static variable πj,j+1 defined on the interface j, j + 1.

(1.15) U i
α(x, y) =

∫ h+i

h−i

P i
0(z)

ei
uα(x, y, z)dz,

(1.16) Φi
α(x, y) =

∫ h+i

h−i

12

ei2
P i

1(z)uα(x, y, z)dz,

(1.17) U i
3(x, y) =

∫ h+i

h−i

(
P i

0(z)

ei
+
P i

2(z)

ei

)
u3(x, y, z)dz,

(1.18) W i
±(x, y) =

∫ h+i

h−i

(
P i

1(z)± P i
2(z)

2

)
u3(x, y, z)dz,

and,

(1.19) V j,j+1(x, y) = W j
−(x, y)−W j+1

+ (x, y).

In addition, the generalized displacement, verifies the following generalized boundary
conditions for 1 ≤ i ≤ n and 0 ≤ j ≤ n :

(1.20) U i
α = 0, U i

3 = 0, Φi
α = 0, V j,j+1 = 0, on ∂ωD.

The generalized strains dual of the generalized stresses N i
αβ,M

i
αβ, τ

j,j+1
α , νj,j+1, πj,j+1 for

i = 1, · · · , n and j = 1, · · · , n − 1 are respectively expressed in terms of the generalized
displacements as :
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1.6. The constitutive equations of SCLS1 model

(1.21)

εiαβ =
1

2

(
U i
α,β + U i

β,α

)
,

χiαβ =
1

2

(
Φi
α,β + Φi

β,α

)
,

γiα = Φi
α + U i

3,α,

Dj,j+1
α = U j+1

α − U j
α −

ej

2
Φj
α −

ej+1

2
Φj+1
α ,

Dj,j+1
ν = U j+1

3 − U j
3 ,

λj,j+1 = V j,j+1.

1.6 The constitutive equations of SCLS1 model

The 3D elastic energy of the 3D stress field σ3D was given in the following from :

W ∗
3D =

∫
Ω

1

2
Sklmn(z)σ3D

mnσ
3D
kl dxdydz

=

∫
ω

w∗
3Ddxdy

where w∗
3D is the generalized stress energy density per unit area of the plate defined by :

w∗
3D =

∫ h+n

h−1

1

2
Sklmnσ

3D
mnσ

3D
kl dz.

In Multi-particle models for multilayered plates as SCLS1 model, to construct the com-
pliance matrix, it is enough to derive the generalized energy density with respect to each
generalized stresses. We will then we obtain the generalized constitutive equations.

The (3n + 3(n-1)) constitutive equations of the SCLS1 model where 3 are over the layer
i and 3 on the interfaces, expressed using the stress energy associated to σ3D are given
by : for 1 ≤ i ≤ n and for 1 ≤ j ≤ n− 1

• Membrane constitutive equation of layer i :

(1.22) εiαβ =
1

ei
SiαβγδN

i
γδ + Siαβ33

(
1

2

(
νi,i+1 + νi−1,i

)
+
ei

12

(
πi,i+1 − πi−1,i

))
.
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1.6. The constitutive equations of SCLS1 model

• Bending constitutive equations of layer i :

(1.23) χiαβ =
12

ei3
SiαβγδM

i
γδ +

1

ei
Siαβ33

(
6

5

(
νi,i+1 − νi−1,i

)
+
ei

10

(
πi,i+1 + πi−1,i

))
.

• Transverse shear constitutive equation of layer i :

(1.24) γiα =
24

5ei
Siα3β3Q

i
β −

2

5
Siα3β3

(
τi,i+1
β + τi−1,i

β

)
.

• Shear constitutive equation of interface j, j + 1 :

(1.25)
Dj,j+1
α = −2

5
Sjα3β3Q

j
β −

2

5
Sj+1
α3β3Q

j+1
β − 2

15
ejSjα3β3τ

j−1,j
β

+
8

15
τj,j+1
β

(
ejSjα3β3 + ej+1Sj+1

α3β3

)
− 2

15
ej+1Sj+1

α3β3τ
j+1,j+2
β .

• Normal constitutive equation of interface j, j + 1 :

(1.26)

Dj,j+1
ν =

9

70
ejSj3333ν

j−1,j +
13

35

(
ejSj3333 + ej+1Sj+1

3333

)
νj,j+1

+
9

70
ej+1Sj+1

3333ν
j+1,j+2 − 13

420

(
ej
)2
Sj3333π

j−1,j

+
11

210

((
ej
)2
Sj3333 −

(
ej+1

)2
Sj+1

3333

)
πj,j+1

+
13

420
(ej+1)2Sj+1

3333π
j+1,j+2 +

1

2
Sjαβ33N

j
αβ.

+
1

2
Sj+1
αβ33N

j+1
αβ +

6

5ej
Sjαβ33M

j
αβ −

6

5ej+1
Sj+1
αβ33M

j+1
αβ .

• Constitutive equation for the π generalized stress at interface j, j + 1 :

(1.27)

λj,j+1 =
1

105

(
Sj3333

(
ej
)3

+
(
ej+1

)3
Sj+1

3333

)
πj,j+1 − 1

140
Sj3333

(
ej
)3
πj−1,j

− 1

140

(
ej+1

)3
Sj+1

3333π
j+1,j+2 +

11

210
νj,j+1

((
ej
)2
Sj3333 −

(
ej+1

)2
Sj+1

3333

)
+

13

420

(
ej
)2
Sj3333ν

j−1,j − 13

420

(
ej+1

)2
Sj+1

3333ν
j+1,j+2

+
ej

12
Sjαβ33N

j
αβ −

ej+1

12
Sj+1
αβ33N

j+1
αβ +

1

10
Sjαβ33M

j
αβ +

1

10
Sj+1
αβ33N

j+1
αβ .
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1.7. Benefits of SCLS1 model

1.7 Benefits of SCLS1 model

The SCLS1 model is derived from the 3D exact model by considering Statically Compa-
tible Layerwise Stresses with first-order membrane stress approximations per layer in the
thickness direction. This model was developed to fix the drawbacks of LS1 model.As in
the LS1 model, the plate is considered as an overlay of Reissner plates connected by inter-
facial stresses. The SCLS1 model has new generalized stresses which are the divergence
of the interlamminar transverse shears at the interface between layers.

Baroud et al. (2016), showed many examples in which he studied the stress distribution.
In this paragraph, we will present the example of the rectangular laminated with a circular
hole placed in the center of the plate. Baroud studied a (90◦, 0◦, 90◦) laminated with a
circular hole and subjected to a tensile load, where the thickness of all the layers is equal
(e1 = e2 = e3 = e = 1mm). We show in figure 1.2 the laminate of three-ply of thickness
3e, a length of 2l = 160e, a width of 2b = 80e and radius of the central hole is equal
to R = 10e. In addition, this laminated is subjected to a uniform displacement in the x
direction.

Figure 1.2 – The laminate with circular hole and loading presented in (Baroud et al.
(2016))
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1.8. Finite element discretization of the SCLS1 model

Figure 1.3 – The shear stress σ13 at the interface between layers 1 and 2 presented in
(Baroud et al. (2016))

The figure 1.3 present the shear interlaminar stress σ13 for y = 0 at the interface between
layer 1 and layer 2 (90◦/0◦) for the SCLS1, the Refined version of SCLS1 and the 3D finite
element. The FE− (resp. FE+) presents the shear stress σ13 at the interface 90◦/0◦ in
the 90◦ layer (resp. in the 0◦ layer).
It is noteworthy that the 3D FE model cannot capture the boundary conditions and
strain concentrations at the free edges precisely and efficiently. In addition, (Baroud et al.
(2016)) proved the validity of the refined SCLS1 model for complicated examples. One
we must highlight that even though the refined version LS1 model does not observe the
same solution of the exact 3D boundary conditions at the free edges, it predicts the stress
concentration with good approximation (8%).

1.8 Finite element discretization of the SCLS1 model

In the last years, an in-house finite element code named MPFEAP (MultiParticle Finite
Element Analysis Program) was developed in Navier Laboratory. This code is committed
to find finite element solution of the LS1 model. A standard Fortan 77 was used to write
this code. In addition, this code is a development of the program MEF presented in (Dhatt
and Touzot (1984)).
A new version of MPFEAP code was later on developed by (Baroud et al. (2016)) to get
the finite element solution of SCLS1 model by adding a supplementary degree of freedom
per interface. Baroud used a quadrilateral geometry of the finite element mesh defined in
the (ξ, η) space as shown in the figure 1.4 :
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1.8. Finite element discretization of the SCLS1 model

Figure 1.4 – The finite element-Quadrilateral element presented by (Baroud et al. (2016))

The interpolation geometry was written as :

x(ξ, η) =
8∑
i=1

Ni(ξ, η)xi

y(ξ, η) =
8∑
i=1

Ni(ξ, η)yi

where, (xi, yi) are the coordinates of node i, i = 1, · · · , 8 and Ni(ξ, η) is the shape func-
tions for −1 ≤ ξ ≤ 1, − 1 ≤ η ≤ 1.

To modelise the SCLS1 model by finite element method, a finite-element discretization
of the SCLS1 model has been proposed by (Baroud et al. (2016)) using the MPFEAP
in-house software described in (Nguyen and Caron (2006)). In our numerical study, the
SCLS1 multilayered plate model has been implemented in the open-source finite element
FEniCS package (Alnaes et al. (2015) ;Logg et al. (2012b)). The FEniCs Project is a
collection of free and open-source software components with the common goal to enable

26



1.8. Finite element discretization of the SCLS1 model

automated solutions of differential equations. The components provide scientific compu-
ting tools for working with computational meshes, finite element variational formulations
of ordinary and partial differential equations, and numerical linear algebra. We therefore
benefit from FEniCS high-level domain-specific language for implementing the variational
formulation associated with the SCLS1 model. Building upon the FEniCS implementation
of a Reissner-Mindlin plate model (Bleyer (2018)), we define a generalized function space
for the SCLS1 generalized displacement degrees of freedom.

More precisely, the retained discretization is based on a mesh of triangular elements
with quadratic interpolation for all kinematical variables. As is the case for classical FE
discretization of Reissner-Mindlin plate models, FE discretization of the SCLS1 model
leads to shear-locking in the thin plate limit. Selective reduced integration is then used
on the shear part of the strain (Bleyer (2018)).

In (Baroud et al. (2016)), the SCLS1 model has been compared with the LS1 model and
reference 3D computations. This work showed that the SCLS1 model is as accurate as the
LS1 model and is even closer to refined 3D solutions near free edges since it can correctly
satisfy stress free boundary conditions. Besides, an intensive comparison between the LS1
model and other layerwise models derived from the Carrera Unified Formulation (CUF)
family has been performed in (Thai et al. (2013)). The main conclusion of this work was
that the LS1 model exhibits a similar accuracy to LM4 (mixed fourth-order) and LD3
(displacement third-order) layerwise models. This conclusion therefore also holds for the
SCLS1 model considered here. Moreover, in contrast with these models, LS1 and SCLS1
exhibit much fewer degrees of freedom per node. For instance for a laminate with n = 4,
LS1 has 20 (5n) dofs/node, SCLS1 has 23 (6n-1) whereas LD3 has 39 and LM4 has 102.
One important feature of LS1 and SCLS1 is that no assumption is made on the displa-
cement variations through the thickness but rather on the stress. Therefore, obtaining a
complete 3D displacement field must be performed by a post-processing procedure which
we will describe in the following chapter.
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Chapitre 2

Mesh-adapted stress analysis of
multilayered plates using a layerwise

model
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2.1. Résumé

2.1 Résumé

Ce chapitre vise à exploiter une nouvelle modélisation par éléments finis et proposer
une stratégie de remaillage pour les modèles multicouches. On présente tout d’abord la
formulation des champs de déplacements reconstruits. On passe ensuite à présenter la
stratégie de remaillage et les résultats numériques. Les résultats de ce chapitre ont fait
l’objet d’un article publié dans le journal Advanced Modeling and Simulation in
Engineering Sciences sous la référence (Salha et al. (2020)).

2.2 Abstract

This paper proposes a new finite-element modeling of a recent layerwise model for multi-
layered plates. This layerwise model is built from a specific 3D stress-field expansion along
the thickness direction and involves, in particular, interlaminar transverse shear and out-
of-plane stresses as generalized stresses. Its main feature is that 3D equilibrium equations
and free-edge boundary conditions are directly taken into account into the stress-based
construction of the model. A dual displacement-based finite-element discretization is im-
plemented using the FEniCS software package and a remeshing strategy is proposed based
on a novel error indicator. The error indicator is built based on the 3D stress field di-
rectly deduced from the layerwise generalized stresses and compared to a reconstructed
stress field based on the model generalized displacements. The proposed error indicator is
shown to identify the most critical parts of a laminate structure associated with complex
3D stress fields such as boundaries or stress concentration/singularity regions (near free-
edges or delamination fronts). Through the combination of thickness discretization and
in-plane mesh refinement in regions of interest, the proposed framework therefore offers
an attractive alternative to 3D solid finite elements for an accurate prediction of stress
states in composite laminates.

2.3 Introduction

Multilayered plates have very interesting mechanical properties that make them widely
used in aerospace, automotive, telecommunication structures and civil engineering. A
multilayered plate is represented as a pile of homogenized anisotropic plies made of fiber-
reinforced composites. However, the highly anisotropic and heterogeneous nature of such
laminates, the prediction of their overall properties is a challenging task. Free-edge effects
are a major challenge when designing and analyzing such plates. Differences in the elas-
ticity of adjacent layers have been shown to generally lead to high interlaminar stresses
close to free edges (Vekua (1985); Barbero and J.N. (1991); Carrera (1998); Leguillon
(1999); Chue and Liu (2002); Mittelsteda and Becker (2005)). Many models were de-
rived accurately capture these free-edge effects. Highly detailed three-dimensional (3D)
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2.3. Introduction

finite-element models are computationally expensive and will only result in accurate stress
predictions for sufficiently refined meshes since they rely on displacement interpolations.
Two-dimensional plate models have therefore been introduced in order to simplify these
computations while trying to keep a sufficiently accurate description of local 3D stress
fields.

Equivalent single layer (ESL) models represent the laminate as an equivalent homoge-
neous plate. Many ESL models based on higher order theories have been proposed in
literature (Wang and Choi (1982); Reddy (1984); Cho and Parmerter (1993); Cecchi
and Sab (2007); Lebée and Sab (2011a,b, 2012); Swaminathan and Ragounadin (2004);
Nguyen et al. (2008)) and are usually derived using two main approaches : asymptotic
approaches and axiomatic approaches. The first class derives the plate model from the full
3D formulation of the problem, assuming the thickness of the plate goes to zero and using
asymptotic expansion in which the leading order leads to Kirchhoff-Love plate theory
(Ciarlet and Destuynder (1979)). The second approach is based on assuming a priori 3D
fields, and the plate theory is derived by integration through the thickness and variational
tools (Touratier (1992); Altenbach (1998); Kienzler (2002)). Although ESL models can
provide acceptable results for the laminate global response, they may lead to very inac-
curate estimations of the local response especially near free-edges.

Layerwise models, in which each layer is considered as an independent plate, have there-
fore been proposed to improve the local stress representation (Barbero and J.N. (1991);
S.Botello et al. (1999); Carrera (1998); Moorthya and Reddy (1998); Gaudenzi et al.
(1995); Robbins and Reddy (1993)). Layerwise models have been proved to be a very
good alternative to 3D models since interpolation choices along the z-direction take into
account the specificities of the laminate. The interested reader can refer to (Carrera (2003,
2004)) for a general overview of such models.
Following the ideas of Pagano’s model (Pagano and Pipes (1970)), a layerwise model
named LS1 was developed in (Chabot (1997); Carreria et al. (2002); Dallot and Sab
(2008); Diaz et al. (2002); Lerpiniere et al. (2014); Nguyen and Caron (2006); Saeedi
et al. (2012a,b, 2013a,b)).

The laminate is seen in this model as an overlap between Reissner-Mindlin plates, which
are associated with interfacial stresses considered as additional generalized stresses. The
main distinction between LS1 model and other models is that LS1 is a stress-based ap-
proach and others are displacement or mixed stress/displacement approaches.
The LS1 model, however, has some conceptual disadvantages, for instance because it can-
not exactly fulfill 3D stress-free boundary conditions. Second, the LS1 model derives from
the mixed variation theory Hellinger-Reissner, therefore, as the number of mathmatical
layers by each physical layer increases, no theoretical guarantee is given to converge to
the 3D model. Generalizing upon the same ideas, a layerwise model called statically com-
patible (SCLS1), was introduced in (Baroud et al. (2016)) in which the divergence of the
interlaminar transverse shear stresses is introduced as an additional generalized stress.
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2.3. Introduction

Doing so, the SCLS1 model produces 3D stress field satisfying the local 3D balance equa-
tions and boundary conditions provided that their 2D plate counterparts are satisfied. The
model can be derived through the complementary energy minimal principle, that ensures
that the refined version converges to the exact 3D model with the increasing number of
mathematical layers per physical layer.

When using computer simulations of mechanical or physical phenomena, numericals errors
are very important to estimate in order to assess the quality of a solution. The discreti-
zation error induced by the finite-element method corresponds to the difference between
the exact and approximation solutions. There are many methods for estimating the dis-
cretization error.
The first works Aziz (1972) ; Ciarlet (1978) proposed an estimation method called a priori
estimation that is based on the data of the initial problem, especially their regularity, and
on a mathematical analysis of the underlying problem. As a result, these estimators give
good information on the convergences of the approached solutions but can only give a
rough approximation of the error.
Then, a posteriori methods have been developed, which rely on some post-processing ope-
ration performed on the computed solution to estimate the error and thus allow a more
accurate and reliable estimate. The a posteriori methods can be classified into three main
families.
The first family of a posteriori methods is introduced by Zienkiewicz and Zhu (1987).
These methods are called smoothing methods based on the defaults of regularities. The
second family is called Residual-type error estimator proposed by Babuska and Rheinboldt
(1987). These methods are based on the equilibrium defaults of the computed solution.
In addition, these Residual methods are divided into two categories : explicit and implicit
estimators. The implicit estimator is more expensive than the explicit estimator but gives
more accurate results. In our study, we are interested in the third family of a posterioiri
methods. This family has been introduced by Ladevéze (1975) consisting on reconstructing
a statically admissible solution based on the kinematic one and evaluate the constitutive
relation error. The major advantage of the error estimators based on the constitutive rela-
tion is that guaranteed upper bounds to the true error are obtained. Ainsworth and Oden
(2000) presented a reasonable summary of a posteriori error estimate methods. Moreover,
Sauter and Schwab (2011) developed and analyzed a posteriori error estimators.

Mesh generation is widely used in many engineering fields including those related to physi-
cal models described by partial differential equations (PDE). The first step in the simula-
tions is to construct a mesh for the computational domain. In general, mesh construction
for numerical simulation purposes involves many different fields and domains. Many au-
thors (Frey and George (2008) ; Nielsen et al. (2013)) gives a fluent description for meshing
and re-meshing structures.
Refinement procedures attempt at improving a solution accuracy by iteratively refining
the mesh in regions of interest based on an error indicator. First, a solution with a spe-
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cific mesh is obtained and an error is estimated. Second, mesh refinement is performed.
Finally, a new solution is obtained and a new error computed, followed by a returning
to second stage if this does not meet the requirements. We have many adaptation reme-
shing methods such as the h, r, p, hp-remeshing methods. The h-adaptation remeshing
methods are the most useful, and the mesh is refined by increasing the number of degrees
of freedom. Several possibilities of remeshing is possible in the h-remeshing method, first,
the adaptation from parent mesh, where from an initial mesh the adapted mesh is built
by subdividing the elements where the error is important by adding nodes. Second, adap-
tation with creation of a new mesh, where it is a complete remeshing of the domain, by
building a whole new mesh with a refinement in the areas where the error is important
and coarsening in the areas where the error is low. Finally, an adaptation with uniform
refinement of all the mesh, in practicing this type it used to test the rate of convergence
of the finite element method. Moreover, the r-adaptation remeshing method depends on
improving the solution by moving the position of the nodes in the mesh to the areas where
the error is important, without adding new ones and without modifying the connectivity.
The p-adaptation remeshing method, depend on increasing the degree of interpolation of
the elements while preserving the topology of the mesh. In addition, the combination of
the h-remeshing and the p-remeshing methods give us the hp-adaptation remeshing me-
thod. The object of this method is to improve the precision of the calculation by taking
advantage of the advantages of both methods. For example, we start with a refinement
by method h to distribute the error uniformly, then we continue with a refinement by
method p in order to increase the convergence rate.

Aiming at providing an operational tool for stress analysis in multilayered plates, this
paper is concerned with the development of a mesh adaptation strategy based on an error
indicator built from the local 3D stress field and a reconstructed 3D displacement field.

This chapter is organized as follows : the SCLS1 model finite-element implementation is
discussed in section 1.8. Section 2.4.1 is dedicated the reconstruction of the 3D displace-
ment and to error indicator computation used in the mesh adaptation. Finally, section 2.5
illustrate the method efficiency in capturing regions of interest in various configurations.

2.4 Mesh adaptivity based on field reconstructions

The SCLS1 model is quite expensive due to its high number of degrees of freedom per
node. It can be seen as specific, mechanically-based, discretization in the z direction and
can therefore be compared to a 3D discretization with a more accurate representation of
the stress fields in the z direction. It becomes therefore beneficial to optimize the in-plane
mesh for improved computational efficiency. The purpose of this section is to fulfil this
goal by building an error indicator for mesh adaptation.

We propose to define this indicator as follows : from the finite-element computed gene-
ralized displacements (U i

α, U
i
3,Φ

i
α, V

j,j+1) fields in the (x, y)-plane, we first aim at recons-
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2.4. Mesh adaptivity based on field reconstructions

tructing a 3D displacement field û(x, y, z). We then derive the associated 3D strain and
stresses using the local constitutive equation. The so-obtained reconstructed stress field
σ̂ is then compared to the initial 3D stress σ3D obtained from the generalized stresses
(N i

αβ,M
i
αβ, Q

i
α, τ

j,j+1
α , νj,j+1, πj,j+1) via equations (1.7)-(1.9). See the illustration of the

scheme in Figure 2.1.

(
N i
αβ,M

i
αβ, Q

i
α,

τj,j+1
α , νj,j+1, πj,j+1)

σ3D

FE solutions
Error

Indicator Ee

(U i
α,Φ

i
α, U

i
3, V

j,j+1)

û ε̂ σ̂

(1.7)−(1.9)

3D compatibility

equation

constitutive

equation

Figure 2.1 – The reconstruction scheme

2.4.1 Field reconstructions

In this section, we propose to reconstruct û by considering a continuous piecewise linear
variation of its components ûi along the z direction. This interpolation will have to be as
close as possible to satisfying equations (1.15)-(1.19). Let us mention that we tried other
interpolations (in particular of higher-order) or reconstruction strategies but the latter
gave the most satisfying results.

Let us first consider the in-plane displacement field. We first build an auxiliary in-plane
displacement

(
udα
)
, with α = 1, 2, as follows :

(2.1) udα(x, y, z) = eiΦi
α(x, y)P1(z) + U i

α(x, y), for z ∈ [h−i , h
+
i ], and i = 1, · · · , n.

udα is piecewise-linear and complies with equations (1.15),(1.16) but is not continuous at
the interfaces. To achieve our initial goal, we rebuild from udα the continuous displacement
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2.4. Mesh adaptivity based on field reconstructions

field ûα by performing an L2-projection using the Least Square Method which can be
stated as follows :
Find [qα], with t[qα] = (q1,2

α , · · · , qn−1,n
α ), that minimise∫ h+n

h−1

(
ûα(x, y, z)− udα(x, y, z)

)2
dz,

where,

ûα(x, y, z) =
n∑
j=0

qj,j+1
α (x, y)ϕj,j+1(z),

q0,1
α (x, y) = U1

α(x, y)− e1

2
Φ1
α(x, y),

qn,n+1
α (x, y) = Un

α (x, y) +
en

2
Φn
α(x, y).

Here, q0,1
α and qn,n+1

α are the displacements of the lower and upper faces of the plates,
respectively, and ϕj,j+1 are the following basis functions :

ϕj,j+1(z) =



z − h−j
h+
j − h−j

if z ∈ [h−j , h
+
j ]

z − h+
j+1

h−j+1 − h+
j+1

if z ∈ [h−j+1, h
+
j+1]

0 else

for j = 1, · · · , n− 1

and,

ϕ0,1(z) =


z − h+

1

h−1 − h+
1

if z ∈ [h−1 , h
+
1 ]

0 else

ϕn,n+1(z) =


z − h−n
h+
n − h−n

if z ∈ [h−n , h
+
n ]

0 else

The previous problem is equivalent to solving the following system :

Find [qα], such that,
[A][qα] = [Fα] for α = 1, 2,

with,
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2.4. Mesh adaptivity based on field reconstructions

Aij =

∫ h+n

h−1

ϕi,i+1(z)ϕj,j+1(z)dz, for i, j = 1, · · · , n− 1,

and,

Fα
j =

∫ h+n

h−1

(
udα(x, y, z)− q0,1

α (x, y)ϕ0,1(z)− qn,n+1
α (x, y)ϕn,n+1(z)

)
ϕj,j+1(z)dz,

for j = 1, · · · , n− 1.

Now, we aim to find the reconstructed out-of-plane displacement û3 as a continuous
piecewise linear function of z which is compatible with the generalized displacements
U i

3 and V j,j+1 in the sense of the following equations :

(2.2)



∫ h+i

h−i

(
P i

0(z) + P i
2(z)

ei

)
û3(x, y, z) = U i

3(x, y),

∫ h+i

h−i

(
P i

1(z)− P i
2(z)

2

)
û3(x, y, z),

−
∫ h+i+1

h−i+1

(
P i+1

1 (z) +
P i+1

2 (z)

2

)
û3(x, y, z) = V i,i+1(x, y).

Introducing a continuous piecewise linear interpolation for û3(x, y, z) of the following
form :

(2.3) û3(x, y, z) =
n∑
j=0

q̃j,j+1(x, y)ϕj,j+1(z),

where ϕj,j+1 are linear shape functions and q̃j,j+1 are the corresponding nodal values, the
above equations become :

(2.4) [B][q̃] = [F 3],

where t[q̃] = (q̃0,1, · · · , q̃n,n+1), [B] is a matrix of dimension (2n − 1, n + 1) and [F 3]
a vector of dimension (2n − 1). The solution to the above problem is computed in the
least-squares sense and gives a direct characterization of the degrees of freedom [q̃] as a
function of the generalized displacements U i

3 and V i,i+1.

Finally, from the previously reconstructed 3D displacement field ûi, the strain field ε̂ is
computed using the 3D compatibility equations and then the reconstructed stress tensor
σ̂ is computed using the 3D constitutive equations.
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2.4.2 Error indicator and mesh adaptation

The error indicator which will be used for mesh adaptation is then computed based on
the difference between σ3D and σ̂ in terms of elastic energy. This error is computed for
each triangular element :

(2.5) Ee =

∫
Ωe

e
(
σ3D − σ̂

)
dΩ,

where e(σ) = 1
2
σ : S : σ and Ωe denotes a given element e.

Each mesh element is then ordered in a decreasing fashion based on its error value :
E1 > E2 > · · · > EN . where N is the total number of elements. We then tag the first K
elements which contribute to at least a fraction η of the total error Etot =

∑N
e=1Ee :

(2.6)
K∑
e=1

Ee > ηEtot ≥
K−1∑
e=1

Ee.

The tagged elements are then automatically refined by FEniCS mesh adaptation proce-
dures. FEniCS refines the tagged elements automatically in the following way : The tagged
elements are subdivided into 4 small triangles by adding new nodes on the triangle boun-
daries. Adjacent elements are not necessarily all tagged. In order to avoid hanging nodes
in the untagged adjacent triangles, the latter are split into 2 smaller triangles.

2.5 Illustrative applications

In this section, we investigate different illustrative applications assessing the quality of
the stress field approximation, error indicator and mesh refinement strategy. The last
examples consider more practical situations arising when designing composite laminates,
namely stress concentrations near holes with associated free-edge singularities and inter-
facial stress singularities in the presence of interface delamination.

2.5.1 Homogeneous laminate

This first example considers a homogeneous square plate of length l = 1 and thickness h =
0.2. The constitutive material is assumed to be isotropic with E = 10 GPa and ν = 0.3.
The plate is fully clamped on its boundary and subject to a uniform loading of intensity
q = 8. Calculations are performed considering a uniform discretization of n = 1, n =
3 and n = 5 layers across the thickness and have been compared to finite-element com-
putations using 3D solid elements on a very fine mesh. The initial mesh was a structured
mesh of with two triangular elements on each side of the square plate.
We start by the simple case with only one layer n = 1. The solution is of good quality
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near the plate center after only one refinement step as shown in Figure 2.2
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(b) 1st mesh refinement

Figure 2.2 – Energy densities across the plate thickness computed for σ3D and σ̂ at the
plate center (n = 1). (Energy in "GPa", z in "cm").

We now assess the quality of the computed stress field near the edge of the plate. In Figure
2.3 we plot the stress field near the left edge at the point (x = 0.01, y = 0.5). And we
compare the stress field σ3D with its reconstruction at the same point near the left edge,
that show that the reconstruction field doesn’t agree with the 3D stress.This indicates
that we should refine the plate in this region. In addition, Figure 2.3b shows that after
6 steps of refinement we get better agreement between the 3D stress field σ3D and its
reconstruction field σ̂.
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(a) Initial mesh
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(b) 6st mesh refinement

Figure 2.3 – Energy densities across the plate thickness computed for σ3D and σ̂ at the
plate edge (n = 1). (Energy in "GPa", z in "cm").

The error indicator identifies the region placed near the edges as the most critical regions
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as shown in the Figure 2.4 after 6 refinement steps.
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Figure 2.4 – Final refined meshes for the homogeneous plate for n = 1

Then, the case with n = 3 layers is considered. As expected, the multilayered plate solu-
tion is of very good quality near the plate center after only one refinement step as shown
in Figure 2.5.
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(a) Initial mesh
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(b) 1st mesh refinement

Figure 2.5 – Energy densities across the plate thickness computed for σ3D and σ̂ at the
plate center (n = 3). (Energy in "GPa", z in "cm").

We therefore investigate the quality of the computed stress field at a point of coordinate
(x = 0.01, y = 0.5) near the left edge. In Figure 2.6a, we compare the multilayered stress
field σ3D with its reconstruction as described in section 2.4.1 at the same point near the
edge. It can be observed that the reconstruction does not agree with σ3D for the initial
coarse mesh, indicating that mesh size should be refined in this region. Figures 2.6b and
2.6c illustrate the evolution of σ3D and σ̂ near the border when refining the mesh. It
can be seen that mesh refinement provides a much better agreement between both stress
fields. The error indicator therefore correctly identifies regions located near the clamped
boundaries as the most critical regions as evidenced by the final mesh layout of Figure
2.7a obtained after 6 refinement steps.

Performing the same comparison in the case when the plate thickness is discretized in
n = 5 layers shows the same behaviour (Figure 2.8). Although σ3D and σ̂ are a little
closer for the initial coarse mesh, the deviation is still significant indicating that in-plane
mesh resolution is not fine enough. The mesh refinement procedure yields a similar final
mesh layout, with fine cells concentrated along the borders (see Figure 2.7b), and better
agreement between σ3D and σ̂ at the final stage. On both Figures 2.6c and 2.8c, the
reference solid FE solution is also represented, showing a good agreement with the mul-
tilayered stress field after mesh refinement.
More insight can also be gained when observing the error indicator per individual layer.
For example, Figure 2.9, 2.10 and 2.11 plot the error contribution in the first, second, and
third layer respectively before and after re-meshing. Note that, the errors in layers 4 and
5 are, respectively, the same as in layers 2 and 1 due to the symmetry of the problem
with respect to the mid plane. In addition, it is remarkable that the error contribution is
concentrated near the borders.
The effect of mesh refinement is further illustrated when plotting the evolution of the
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total relative error indicator in Figure 2.12, defined as :

Er =
Etot
S
, with S =

∫
Ω

e(σ3D)dΩ.

It can be seen that the relative errors decrease when refining the mesh and tend to sta-
bilize after a few iterations only. Besides, relative errors are larger for n = 3 than n = 5
which may indicate that the mesh reconstruction if of higher quality for n = 5 layers
than n = 3 layers. Let us point out that the value obtained for such errors cannot be
considered neither as a guaranteed level of error with respect to an exact solution nor
as an upper bound to the true error. It is however an error indicator, as showed by the
previous results, which can be used qualitatively to assess the solution accuracy.

4 6 8 10 12 14
Energy

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

z v
al

ue
s

1e 1
e( 3D)
e( )

(a) Initial mesh

20 30 40 50 60
Energy

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

z v
al

ue
s

1e 1
e( 3D)
e( )

(b) 2nd mesh refinement
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(c) 6th mesh refinement

Figure 2.6 – Energy densities across the plate thickness computed for σ3D and σ̂ at the
plate edge for n = 3.(Energy in "GPa", z in "cm").
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Figure 2.7 – Final refined meshes for the homogeneous plate for different thickness
discretization levels
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(b) 2nd mesh refinement
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(c) 6th mesh refinement

Figure 2.8 – Energy densities across the plate thickness computed for σ3D, σ̂ and σref
at the plate edge for n = 5. (Energy in "GPa", z in "cm").
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(a) Error in first layer for initial mesh (b) Error in first layer after re-meshing

Figure 2.9 – Error indicator maps in layer 1 for initial and re-meshing mesh.

(a) Second layer error for initial mesh (b) Second layer error after re-meshing

Figure 2.10 – Error indicator maps in layer 2 for initial and re-meshing mesh.
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(a) Third layer error for initial mesh (b) Third layer error after re-meshing

Figure 2.11 – Error indicator maps in layer 3 for initial and re-meshing mesh.
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Figure 2.12 – Total relative error evolution for 3 and 5 layers discretizations

2.5.2 Triple laminate

The second example considers a heterogeneous square plate of length l = 1 and total
thickness h = 0.2 made of a triple laminate consisting of a central core of thickness
e2 = 0.12 and two symmetric skins of thickness e1 = 0.04 each. The constitutive ma-
terials are assumed to be isotropic with E = 50 GPa and ν = 0.2 for the skins and
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E = 10 GPa and ν = 0.3 for the core. Loading and boundary conditions are the same as
for the homogeneous plate. Calculations are performed considering a discretization consis-
ting of one mathematical layer in both skins and in the core (total of n = 3 layers) and
a discretization consisting of one mathematical layer per skin and 3 layers for uniformly
discretizing the core thickness (total of n = 5 layers). Again the multilayered plate model
computations have been compared to reference 3D solid finite-element computations on
a fine mesh.

First, we considered the case with n = 3 layers. As before, the solution is of lesser quality
near the supports and stress fields are therefore compared at the same (x = 0.01, y =
0.5) location as before. Figure 2.13 shows the comparison of the stress field σ3D with
its reconstruction across the plate thickness for various mesh refinement steps. It can
be observed that σ3D and its reconstruction do not match for the initial coarse mesh,
indicating that the mesh size should be refined in this region. Mesh adaptation improves
the quality of the solution in such regions as evidenced by the good agreement with the
reference 3D FE solution.

Performing the same comparison using a more refined discretization with n = 5 layers in
the thickness exhibits a similar behaviour (Figure 2.14). Although σ3D and σ̂ are a little
closer for the initial coarse mesh, the deviation is still significant indicating that in-plane
mesh resolution is not fine enough. A similar refined mesh layout is obtained with fine
cells concentrated along the borders (see Figure 2.15), and better agreement between σ3D

and σ̂ at the final stage.

Finally, the evolution of the total relative error indicator as a function of mesh refinement
steps in Figure 2.16 exhibits a similar behaviour as for the homogeneous plate.
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(b) 2nd mesh refinement
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(c) 6th mesh refinement

Figure 2.13 – Energy densities across the plate thickness computed for σ3D and σ̂ at
the plate edge for n = 3.(Energy in "GPa", z in "cm").
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(b) 2nd mesh refinement
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(c) 6th mesh refinement

Figure 2.14 – Energy densities across the plate thickness computed for σ3D, σ̂ and σref
at the plate edge for n = 5. (Energy in "GPa", z in "cm").
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Figure 2.15 – Refined meshes for the triple laminate for different thickness discretization
levels
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Figure 2.16 – Total relative error evolution for 3 and 5 layers discretizations

2.5.3 Laminate with a circular hole

The third example considers a rectangular multilayered plate of length l = 6, width w = 1
and total thickness h = 0.01. The plate is perforated by a circular hole of radius R = 0.15
in its center (Figure 2.17a). The laminate is made of a transversely isotropic material
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of elastic properties ET = 14.48 GPa, EL = 137.9 GPa, νT = 0.21, νL = 0.21, µT =
5.86 GPa and µL = 5.86 GPa with L (resp. T ) denoting the fiber longitudinal direction
(resp. the perpendicular transverse direction). The laminate consists of 6 plies (one layer
per ply) with fibers oriented at [0◦, 90◦, 45◦,−45◦, 90◦, 0◦] with respect to the horizontal
direction. A tensile loading is applied to the plate through an imposed horizontal displa-
cement U i = ±Uex for all plies i = 1, . . . , 6.
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(a) The initial mesh
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(b) The final refined mesh

Figure 2.17 – Mesh refinement for the plate with a circular hole

Applying the proposed reconstruction and error estimation on this problem yields to a
globally more refined mesh with finer regions located near the top and bottom boundaries
of the circular hole, see Figure 2.17b obtained after 4 refinement steps.

More insight can also be gained at visualizing the individual layer contributions to the
total error. For instance, Figure 2.18 plots the contribution of the 45◦ (layer 3) and −45◦

(layer 4) layers to the total error. These two contributions are the most dominant one as
regards stress concentrations near the hole. The effect of the material anisotropy on these
two contributions can also be clearly observed.
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Figure 2.18 – Error indicator maps in layers 3 and 4 (top and middle) and total error
for all layers (bottom) on the initial mesh.

2.5.4 Double-Cantilever Beam with delaminated interface

The final example we consider is that of a rectangular multilayered plate of the same
dimensions as before (without the circular hole) and the same lamination properties. We
model a portion of a delaminated interface located in the middle interface ((i, i + 1) =
(3, 4)) in the region x ≤ 1 by forcing the interface stresses ν3,4 and τ3,4

α to be zero on this
region. This results in an appropriate modification of the constitutive equations of the
SCLS1 model and the corresponding finite-element implementation.

The plate is clamped on its right boundary, and positive (resp. negative) vertical displace-
ments U i

3 = +U (resp. U i
3 = −U) are enforced on the left part for the top layers i = 4, 5, 6

(resp. bottom layers i = 1, 2, 3), simulating a Double-Cantilever Beam test (see Figure
2.19).

As expected, the mesh adaptation procedure mainly concentrates the finer cells near the
delamination front at which interface stresses are the most singular, see Figure 2.20.
The proposed procedure can therefore be considered to be coupled with a delamination
propagation model for which stresses driving the delamination front propagation will be
well resolved.
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0 1 2 3 4 5 6
0

1
delaminated interface

Figure 2.19 – The initial mesh for the DCB problem

Figure 2.20 – Top : out-of-plane interface stress σzz(z = 0) = ν3,4. Middle : final adapted
mesh. Bottom : interface shear stress σyz(z = 0) = τ3,4

y
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2.6 Conclusions and perspectives

In this chapter, a statically compatible layerwise stress model for laminated plates (SCLS1)
is considered for an accurate representation of 3D elastic fields. A mesh adaptation stra-
tegy is then developed which relies on the reconstruction of 3D displacement fields from
the model generalized displacements, the error indicator being obtained by a constitutive
error between both fields. Illustrative examples show that the method is indeed able to
refine the mesh in regions with complex 3D stress fields such as straight edges, notches
or delamination fronts. This adaptive method paves the way to further developments
including interface delamination propagation or damage at the ply level.

The proposed methodology can be further improved by pointing out that refined layerwise
models such as the one considered here is appropriate in critical regions near boundaries,
free-edges, delaminated interfaces, etc. This point is indeed properly identified by the
proposed remeshing procedure. In the bulk region away from these critical zones, it would
we sufficient to adopt an equivalent single-layer plate model based on a Love-Kirchhoff
kinematics for instance. Although the remeshing procedure favours coarse cells in such
regions, mitigating the number of unnecessary degrees of freedom, an additional gain
could then be obtained by mixing a layerwise model for critical regions with an equivalent
single-layer model for the remaining part.
A second potential line of work is concerned with the fact that, although the layerwise
model is built at the continuous level from a stress-based perspective complying with the
balance equations, its numerical resolution is performed through a displacement-based ap-
proximation for the in-plane variations. As a consequence, the resulting generalized stress
fields, and therefore, the associated 3D stress field, do not satisfy strongly the balance
equations. In order to maintain the initial philosophy of a stress-based statically com-
patible construction, developing a stress-based finite-element discretization of the model
would be an interesting approach, potentially paving the way to obtain more rigorous
error estimators than the one considered here.
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Chapitre 3

A hybridized mixed approach for
efficient stress prediction in a layerwise

plate model
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3.1. Résumé

3.1 Résumé

Ce chapitre vise à exploiter la méthode d’hybridation mixte pour le modèle SCLS1. On
présente tout d’abord la méthode hybride mixte pour le modèle 3D. Puis on passe à la
méthode d’hybridation mixte pour le modèle SCLS1. A la fin, on présente les résultats
illustartifs de cette méthode. Les résultats de ce chapitre ont fait l’objet d’un article
soumis dans un journal scientifique.

3.2 Abstract

Building upon recent works devoted to the development of a stress-based layerwise mo-
del for multilayered plates, we explore an alternative finite-element discretization to the
conventional displacement-based finite-element method. We rely on a mixed finite-element
approach where both stresses and displacements are interpolated. Since conforming stress-
based finite-elements ensuring traction continuity are difficult to construct, we consider
a hybridization strategy in which traction continuity is relaxed by the introduction of
an additional displacement-like Lagrange multiplier defined on the element facets. Such
a strategy offers the advantage of uncoupling many degrees of freedom so that static
condensation can be performed at the element level, yielding a much smaller final system
to solve. Illustrative applications demonstrate that the proposed mixed approach is free
from any shear-locking in the thin plate limit and is more accurate than a displacement
approach for the same number of degrees of freedom. As a result, this method can be used
to capture efficiently strong intra- and inter-laminar stress variations near free-edges or
cracks.

3.3 Introduction

Multilayered plates are important in structural engineering and are widely studied by
engineers during the 20th century with applications ranging from aerospace engineering
to civil engineering. The materials in each layer can be either homogeneous and isotropic
or heterogeneous and anisotropic (e.g. fiber-reinforced composites). The difficulty in stu-
dying such structures comes from the strong variations of mechanical properties between
each ply, especially when using anisotropic materials. One of the major issues in design
and analysis of such multilayered plates is related to free-edge effects. In fact, near free
edges there are highly concentrated interlaminar stresses (Ting and Chou (1981); Wang
and Choi (1982); Leguillon (1999); Chue and Liu (2002); Mittelsteda and Becker (2005)).
Such stress concentrations are important to account for since they are at the origin of
interlayer delamination and failure of the laminate. Many models have been derived to
properly describe such free-edges effects. Highly detailed three-dimensional (3D) finite-
element models are expensive and will result in accurate stress predictions only for suf-
ficiently refined meshes since they rely on displacement interpolations. Two-dimensional
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plates models attempts at simplifying these computations while trying to keep a suffi-
ciently correct description of local 3D stress fields.
Many equivalent single layer (ESL) models that represent the laminate as an equiva-
lent homogeneous plate are proposed in literature and are based on higher order theories
(Whitney (1973); Reddy (1984); Cho and Parmerter (1993); Cecchi and Sab (2007); Lebée
and Sab (2011a,b, 2012); Swaminathan and Ragounadin (2004); Vidal and Polit (2008,
2011)). Although ESL models can provide acceptable results for the laminate global res-
ponse, they may lead to very inaccurate estimations of local response especially near
free-edges.

Conversely, layerwise models, in which each layer is considered as an independent plate,
have therefore been proposed to improve the local stress representation (Barbero and
J.N. (1991); Robbins and Reddy (1993); Gaudenzi et al. (1995); Moorthya and Reddy
(1998); S.Botello et al. (1999); Carrera (1998)). They have been proved to be a very good
alternative to 3D models when using proper interpolation along the thickness direction to
take into account the laminate material distribution. The interested reader can refer to
(Carrera (2002, 2004); Zhang and Yang (2009)) for a general overview on such models.

Following Pagano’s model (Pagano and Pipes (1970)), a layerwise model named LS1 was
developed in (Chabot (1997); Carreria et al. (2002); Diaz et al. (2002); Lerpiniere et al.
(2014); Nguyen and Caron (2006); Saeedi et al. (2012a,b, 2013a,b)). In this model, the
laminate is considered as a superposition of Reissner-Mindlin plates linked together by
interfacial stresses which are considered as additional generalized stresses. A layerwise
model called statically compatible (SCLS1), has been later introduced in (Baroud et al.
(2016)) in order to generalize the LS1 model by a purely statically compatible construc-
tion. Doing so, the SCLS1 model produces a 3D stress field satisfying the local 3D balance
equations and boundary conditions provided that their 2D plate counterparts are satis-
fied. Moreover, this model is derived by means of the minimum of the complementary
potential energy ensuring the convergence of its refined version to the exact 3D model, as
the number of mathematical layers per physical layer increases.

Such models have generally been solved numerically using a classical displacement-based
finite-element approach, as in (Nguyen and Caron (2006); Baroud et al. (2016)). A notable
exception is the recent implementation of the LS1 model of (Nasser et al. (2018b)) which
relies on a mixed finite-element approach. Mixed finite-element approaches are appea-
ling since stress quantities are also interpolated, as opposed to pure displacement-based
approaches in which they are post-processed from the displacement solution. This interpo-
lation usually results in higher quality of the stress fields which are the principal quantity
of interest in engineering applications. Mixed approaches are however more difficult to
implement ; they yield a saddle point problem, and result in a much higher system dimen-
sion. This difficulty may well render mixed methods less efficient than displacement-based
methods using a much finer mesh. In the present contribution, we will explore the use of
hybridized mixed methods which not only offer similar advantages in terms of stress field

55



3.4. Finite-element displacement-based implementation

accuracy, but also result in smaller system size by using static condensation of the stress
unknowns. We will show that these methods can be more accurate than a displacement ap-
proach for the same number of degrees of freedom. The methodology of hybridized mixed
methods is general enough to be applied on a complex model as the SCLS1 layerwise
model.

This chapter is organized as follows : In 3.4 we describe the finite-element displacement-
based implementation. Hybridized mixed methods for 3D models are then reviewed in
section 3.5. Section 3.6 is then devoted to the application of hybridized mixed methods to
the SCLS1 model. Finally, section 3.7 is dedicated to numerical examples demonstrating
the efficiency of the hybridized mixed approach.

3.4 Finite-element displacement-based implementation

The numerical study of the SCLS1 multilayered plate model has been proposed by (Baroud
et al. (2016)) using the MPFEAP in-house described in (Nguyen and Caron (2006)), and
in (Salha et al. (2020)) using the open-source finite element FEniCS package (Logg et al.
(2012b); Alnaes et al. (2015)). This implementation follows a classical displacement-based
finite-element discretization using a continuous quadratic interpolation for all generalized
kinematical variables U i

α, U
i
3,Φ

i
α and V j,j+1 on a triangular 2D mesh. As discussed in

(Logg et al. (2012b); Baroud et al. (2016)), the finite-element discretization suffers from
shear-locking issues in the thin plate limit which is alleviated using selective reduced
integration.

3.5 Hybridized mixed methods for 3D continua

Mixed approaches for 3D continua consist in considering a simultaneous interpolation
for the stress variable σ and the displacement u (Fraeijs de Veubeke (1965); Arnold and
Brezzi (1985); Cockburn et al. (2009); Brezzi and Fortin (2012)). The interpolation space
for σ is often chosen to satisfy the traction continuity condition. If choosing such spaces is
feasible when u is a scalar (e.g. in the case of antiplane elasticity), this is much harder for
the general vectorial case of 2D/3D elasticity (Arnold and Winther (2002); Arnold et al.
(2007); Gong et al. (2019)). Hybridized mixed methods therefore consist in relaxing the
a priori traction continuity requirement and including it in the variational formulation
(Gibson et al. (2020)). They are therefore easier to formulate, especially regarding the
choice of the stress interpolation space, and offer computational advantages as it will be
seen in the following section.
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3.5. Hybridized mixed methods for 3D continua

3.5.1 Continuous variational formulation

Let us consider a domain Ω with imposed displacements ui = u0
i on a Dirichlet part

∂ΩD of the boundary and imposed tractions σijnj = T 0
i on the remaining Neumann part

∂ΩN = ∂Ω \ ∂ΩD. Let us also denote by Γ the set of internal lines of stress discontinuities
(typically inner edges of a finite-element mesh) and introduce the jump operator through
Γ as follows : [[v]] = v+ + v− where ± are arbitrarily defined sides of Γ. n+ (resp. n−) will
denote the unit normal of Γ pointing outwards of the + (resp. −) side.
Let us start with the complementarity energy principle which states that the solution
(in terms of stresses) minimizes the following complementarity energy under static equi-
librium conditions :

(3.1)

min
σ

∫
Ω

1

2
σijSijklσkldΩ−

∫
∂ΩD

σijnju
0
i dS,

s.t. σij,j + fi = 0 in Ω,

[[σijnj]] = 0 on Γ,

σijnj = T 0
i on ∂ΩN .

Introducing a Lagrange multiplier u defined on Ω associated with the first constraint, and
another Lagrange multiplier v defined on Γ∪∂ΩN associated with the last two constraints,
the above minimization problem is equivalent to the following saddle point problem :

(3.2) max
u,v

min
σ
L(σ, u, v),

where the system Lagrangian is given by :

L(σ, u, v) =

∫
Ω

1

2
σijSijklσkldΩ−

∫
∂ΩD

σijnju
0
i dS

+

∫
Ω

(σij,j + fi)uidΩ(3.3)

+

∫
Γ

[[σijnj]]vidS +

∫
∂ΩN

(σijnj − T 0
i )vidS.

The first-order optimality conditions of this min/max result in the following mixed varia-
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tional formulation : Find (σ, u, v) ∈ Vσ × Vu × Vv such that :∫
Ω

σ̂ijSijklσkldΩ +

∫
Ω

σij,juidΩ

+

∫
Γ

[[σ̂ijnj]]vidS +

∫
∂ΩN

σ̂ijnjvidS =

∫
∂ΩD

σ̂ijnju
0
i dS ∀σ̂ ∈ Vσ,(3.4) ∫

Ω

σij,jûidΩ = −
∫

Ω

fiûidΩ ∀û ∈ Vu,(3.5) ∫
Γ

[[σijnj]]v̂idS +

∫
∂ΩN

σijnj v̂idS =

∫
∂ΩN

T 0
i v̂idS ∀v̂ ∈ Vv,(3.6)

where Vσ, Vu and Vv are appropriate function spaces for the corresponding variable.

Let us introduce the following notations for the different bilinear forms :

a(σ̂, σ) :=

∫
Ω

σ̂ijSijklσkldΩ,

b(σ̂, u) :=

∫
Ω

σ̂ij,juidΩ,

c(σ̂, v) :=

∫
Γ

[[σ̂ijnj]]vidS +

∫
∂ΩN

σ̂ijnjvidS,

and :

`1(σ̂) :=

∫
∂ΩD

σ̂ijnju
0
i dS,

`2(û) := −
∫

Ω

fiûidΩ,

`3(v̂) :=

∫
∂ΩN

T 0
i v̂idS,

for the different linear forms, such that the variational formulation can be rewritten as :

(3.7)

a(σ̂, σ) + b(σ̂, u) + c(σ̂, v) = `1(σ̂) ∀σ̂ ∈ Vσ,
b(σ, û) = `2(û) ∀û ∈ Vu,
c(σ, v̂) = `3(v̂) ∀v̂ ∈ Vv.

The above symmetric block-like structure is typical of hybrid mixed methods. Let us note
that, from a mechanical stand point, u and v can both be interpreted as displacements,
defined either in Ω or on Γ∪ ∂ΩN . Finally, no continuity conditions across Γ are required
for both σ and u.
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3.5. Hybridized mixed methods for 3D continua

3.5.2 Finite-element discretization

Let us now consider a discretization of Ω into a mesh of triangular/tetrahedral cells K
and with Γ denoting now the inner facets (segments in 2D, triangles in 3D) of this mesh.
It is important to point out that no continuity conditions have to be enforced on the stress
variable σ and the Lagrange multiplier u across the mesh cells. They are both defined
cell-wise. The Lagrange multiplier v lives on the mesh facets and is not defined inside the
cells. No continuity at the mesh vertices (in 2D) or edges (in 3D) linking different facets
are required.

Figure 3.1 – Left : geometrical 2D mesh. Middle : mixed approach with p = 1. Right :
mixed approach with p = 2

As a result, let us consider a discretization of the stress field σ using discontinuous La-
grange elements of degree p for p ≥ 1 (see also Figure 3.1). Enforcing the local balance
equation will therefore require an interpolation of the Lagrange multiplier field u using
discontinuous Lagrange elements of degree p−1. Similarly, stress continuity can be achie-
ved using discontinuous Lagrange elements on the facets of degree p for the multiplier
field v.

Using standard finite-element technology, the various bilinear/linear forms involved in
(3.7) are assembled into global matrices/vectors forming the following final linear system :

(3.8)


A B C

BT 0 0

CT 0 0




Σ

U

V

 =


L1

L2

L3


The main feature of hybridizable mixed methods is that operators A and B have a block
structure since their assembly on each cell involves only stress σ and displacement u
variables associated with the cell itself. Both σ and u can therefore be eliminated by local
static condensation at the cell level by inverting a small-size matrix. Doing so, the final
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3.6. Hybridization of a mixed method for the SCLS1 model

system is of much smaller size than (3.8) since it involves only the vector of unknowns V
corresponding to the Lagrange multiplier v :

(3.9) ÃV = L,

where Ã and L are assembled from the corresponding local contribution of cell K :

ÃK = −
[
CT
K 0

]AK BK

BT
K 0

−1 CK

0

(3.10)

LK = (L3)K −
[
CT
K 0

]AK BK

BT
K 0

−1 (L1)K

(L2)K

(3.11)

A last interesting feature of hybridized mixed solutions is related to the reconstruction of a
displacement field. One simple strategy is to exploit the Lagrange multiplier field u which
gives a piecewise polynomial approximation of the real displacement. Projection of u onto a
suitable continuous functional space will therefore give a continuous approximation of the
displacement. However, as discussed in (Arnold and Brezzi (1985)), the facet Lagrange
multiplier v can also be used to derive an even more accurate approximation of the
displacement. Such a reconstruction requires the resolution of local problems at the cell-
level, the so-obtained displacement being usually non-conforming with continuity at the
edge Gauss points. This more advanced reconstruction procedure will not be investigated
in this work.

3.6 Hybridization of a mixed method for the SCLS1
model

In this section, we transpose the hybridization of mixed methods as described in the 3D
continuum case to the SCLS1 model.

3.6.1 Continuous formulation

Let us first denote by Σ the vector of generalized stresses of the SCLS1 model as described
in section 1.3.

The set of equilibrium equations (1.11) will be denoted by DΣ = f where D is the
corresponding linear differential operator and f is related to the imposed values T±

α , T
±
3

of τα and ν on the top and bottom interfaces as in (1.20). Similarly to the 3D continuum,
two Lagrange multiplier fields will be introduced. These fields are denoted by U and V and
will be respectively used to enforce the generalized equilibrium equations (1.11) and the
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continuity and stress boundary conditions associated with (1.12). The latter conditions
will be denoted as follows :

[[T Σ]] = 0 on Γ,(3.12)
T Σ = 0 on ∂ωN .(3.13)

Finally, introducing S the generalized compliance matrix involved in the generalized
constitutive equations (1.16)-(1.22), the complementarity energy principle characterizing
the solution to the elastic SCLS1 model can be stated as :

(3.14)

min
Σ

∫
ω

1

2
ΣTSΣdω,

s.t. DΣ = f in ω,

[[T Σ]] = 0 on Γ,

T Σ = 0 on ∂ΩN ,

in which we considered purely homogeneous Dirichlet and Neumann boundary conditions
for simplicity.

The SCLS1 mixed approach will be therefore given by :

(3.15)

a(Σ̂,Σ) + b(Σ̂, U) + c(Σ̂, V ) = 0 ∀Σ̂ ∈ VΣ,

b(Σ, Û) = `(Û) ∀Û ∈ VU ,
c(Σ, V̂ ) = 0 ∀V̂ ∈ VV ,

where :

a(Σ̂,Σ) :=

∫
ω

Σ̂TSΣdω,

b(Σ̂, U) :=

∫
ω

(DΣ̂)TUdω,

c(Σ̂, V ) :=

∫
Γ

([[T Σ̂]])TV dS +

∫
∂ΩN

(T Σ̂)TV dS,

`(Û) :=

∫
ω

fT Ûdω.

3.6.2 Finite-element implementation

Throughout this study, we will consider the following discretization strategy for the hy-
bridizable mixed approach on a triangular mesh :

— discontinuous Lagrange interpolation of degree p for Σ
— discontinuous Lagrange interpolation of degree p− 1 for U
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3.6. Hybridization of a mixed method for the SCLS1 model

— discontinuous Lagrange interpolation of degree p on edges for V
with either p = 1 or p = 2 in the subsequent numerical examples.

This choice is similar to the 3D continuum case although it is not obvious that this choice
will be numerically stable. Let us mention that we will not necessarily expect similar
stability results as in the 3D continuum case since the generalized differential operator D
couples the various generalized stress fields of Σ through first-order and zero-order deri-
vatives as seen in equation (1.11). Numerical analysis of the chosen discretization for the
SCLS1 model is out of the scope of the present work and stability will only be assessed
numerically in the next section.

However, the discontinuous nature of the chosen interpolations will make it possible to
reduce the system at the cell level through local static condensation as discussed in the 3D
case. The final reduced system also involves only the Lagrange multiplier field V . Table
3.1 enumerates the total number of degrees of freedom per triangular cell with and wi-
thout static condensation. We also compare the resulting size with a displacement-based
interpolation using continuous quadratic Lagrange triangles for the generalized displace-
ment field as in (Baroud et al. (2016); Salha et al. (2020)). Clearly, static condensation
is absolutely necessary to obtain a reasonable dof count for the mixed approach. For
example, for p = 2 and for 5 layers, without static condensation there would be around
600 dofs/triangle against 135 with static condensation. It can also be observed that both
mixed approaches with static condensation are more expensive than the quadratic displa-
cement approach of (Baroud et al. (2016); Salha et al. (2020)).

Let us recall that solving the full system of the mixed approach or the reduced system with
static condensation yields exactly the same results. The only difference lies in the numeri-
cal resolution which is more efficient in the reduced system with static condensation since
the final system involves less degrees of freedom. One can however always back-substitute
the reduced solution to recover the initial degrees of freedom of the mixed approach. In
the subsequent part of this manuscript, when referring to results of the mixed approach,
computations will always be performed by solving the reduced system after condensation.
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Discretization Σ U V Total Condensed

Mixed (p = 1) 3(12n− 4) 6n− 1 23
2
(6n− 1) ≈ 60n ≈ 18n

Mixed (p = 2) 6(12n− 4) 3(6n− 1) 33
2
(6n− 1) ≈ 117n ≈ 27n

Displacement – – – 2(6n− 1) ≈ 12n

Table 3.1 – Number of degrees of freedom per cell for both mixed discretizations and
a pure displacement approach. Each vertex dof counts for 1

6
in a cell and each edge

dof for 1
2
in the asymptotic fine mesh regime. Total and condensed numbers of dofs are

approximated for large values of n.

Finally, we compare the number of degrees of freedom between two finite elements discre-
tization : the quadratic mixed discretization applied to the LS1 model (M4-5n approach)
and the finite element discretization considered by (Nasser et al. (2018a)) for the M4-5n
model as shown in Figure 3.2.

Figure 3.2 – M4-5n mixed finite element with multiple nodes in Nasser et al. (2018a)
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Discretization Σ U V Total Condensed

LS1 (Mixed p = 2) 6(11n− 3) 3(5n) 23
2
(5n) ≈ 103n ≈ 22n

Nasser(Figure 3.2) 86n− 16 32n – ≈ 118n –

Nasser(P1-bubble/P1) – – – ≈ 59n ≈ 48n

Table 3.2 – Number of degrees of freedom per cell for mixed discretization and both
discretizations used by (Nasser et al. (2018a)).

The previous Table 3.2 shows the difference in the number of degrees of freedom between
our quadratic mixed discretization and the one used by Nasser. Our discretization allows
us to condense the dof, and by comparison we found that the number of dof per cell in
our study is much lower than the one obtained by [Nasser et al. (2018a)].

Numerical implementation has been performed using the Firedrake software package (Ra-
thgeber et al. (2016)). The local static condensation operations are performed automati-
cally using the Slate domain-specific language (Gibson et al. (2020)). We used a recent
version of Firedrake which relies on Loopy (Klöckner (2014)) for an optimized assembly
of matrix-free local finite-element kernels (Kirby and Mitchell (2018); Sun et al. (2019)).
The main advantage of using finite-element softwares like FEniCS, Firedrake or Free-
Fem++ is that the user only has to formulate the corresponding variational formulation
and select the appropriate discretization spaces. There is no need to write elementary
stiffness matrices for instance, as such computations are taken care of by the software
using C functions which are automatically generated and compiled on the fly.

3.7 Illustrative applications

In this section, we investigate different illustrative applications assessing the quality of
the hybridized mixed approach.

3.7.1 Homogeneous laminate

This first example considers a homogeneous thin (resp. thick) square plate of length l = 1
and thickness h = 0.01 (resp. h = 0.2). The constitutive material is assumed to be isotropic
with E = 10 GPa and ν = 0.3. The plate is fully clamped on its boundary and subjected
to a uniform vertical loading of density q = 8. Calculations are performed considering
a subdivision of the plate thickness in n = 2 layers. To compare the performance of the
mixed approach with the more standard displacement-based FE interpolation, we monitor
the evolution of the total elastic energy (1

2
a(Σ,Σ) for the present mixed approach) with

mesh refinement.
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3.7. Illustrative applications

In the thick plate case (h = 0.2), convergence of the total energy has been represented in
Figure 3.3 in terms of total number of degrees of freedom. One can observe that conver-
gence of the quadratic mixed approach (p = 2) is faster than the linear mixed approach
(p = 1) and the displacement approach. In particular, the total energy is already well ap-
proximated with the coarsest mesh (2 elements/side) unlike the displacement approach.
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Figure 3.3 – Total energy convergence for the clamped thick plate case

The corresponding results in the thin plate case (h = 0.01) have been presented in Figure
3.4. In this case, the quadratic mixed approach still exhibits a faster convergence than
the displacement approach. However, in this case, the linear mixed approach shows an
extremely slow convergence rate. This may be attributed to a lack of stability of the retai-
ned discretization choice which would require more in-depth mathematical analysis. As a
result, only the mixed approach with p = 2 will be retained in the remaining part of the
chapter. Finally, we can remark that, unlike the displacement approach, the quadratic
mixed approach exhibits no shear-locking effect in the thin plate limit. Specific treat-
ment such as selective reduced integration as in the displacement approach is therefore
unnecessary.
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Figure 3.4 – Total energy convergence for the clamped thin plate case

Figures 3.5 and 3.6 represent respectively the results of the linear mixed approach (p = 1)
and the quadratic mixed approach (p = 2) for three different thicknesses (h = 0.001, h =
0.01), h = 0.2). The case of linear mixed approach shows clearly the shear-locking for the
thin plate, while the quadratic mixed approach demonstrates and shows the no shear-
locking effect in the thin plate. Finally, we can also observe that the quadratic mixed
approach, although exhibiting good convergence irrespective of the plate thickness, tends
to converge from above for thick plates and from below for thinner plates. This is a
confirmation that our approach is of mixed nature : it is neither a pure displacement
(which would always converge from above) nor a pure static approach (which would
always converge from below). We can postulate that in the thin plate case, shear effects
become negligible and our mixed approach almost satisfies exactly the equilibrium and
traction continuity conditions related to the bending part which results in a static-like
convergence behaviour.
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Figure 3.5 – Total energy for quadratic mixed approach (p=1) for different thicknesses.
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Figure 3.6 – Total energy for quadratic mixed approach (p=2) for different thicknesses.
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Let us now compare the values of the vertical deflection U3 along the plate middle line
0 ≤ x ≤ 1, y = 0.5 for the thin plate h = 0.01. In the displacement approach, U3 is
one of the primal unknowns whereas in the quadratic mixed approach the deflection is
computed from an L2-projection of the corresponding cell Lagrange multiplier U on the
space of piecewise linear Lagrange polynomials. We represent on Figure 3.7 the deflection
of the first layer (in this case, both layers have the same deflection) on a coarse (10
elements/side) and fine (70 elements/side) mesh. It can clearly be observed that, for a
coarse mesh, the projected deflection obtained from the mixed approach is more accurate
than the deflection computed from the displacement approach. For a fine mesh, both
solutions coincide as expected.

Figure 3.7 – Vertical deflection U3 for the thin plate case (both solutions in the fine
mesh case are superimposed)

Finally, a similar comparison is performed regarding the horizontal membrane force N11

in the first layer along the same middle line. As regards the displacement approach, the
membrane force computed from the FE displacement solution will, a priori, be disconti-
nuous across cells. We therefore represent, for the coarse mesh, a discontinuous version
N11 projected over a piecewise constant space as well as a "smoothed" version obtained by
projection N11 over a continuous piecewise linear space. Such stress fields obtained from
a displacement FE approach are not very accurate for a coarse mesh contrary to their
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counterpart obtained with a mixed approach. The projecting over a continuous space even
deteriorates the quality of the approximation of the discontinuous version. This is a clear
advantage of mixed methods since stress fields are usually the quantities of interest used
by the engineer to design mechanical systems. Obtaining more accurate estimations of
stresses on a coarse mesh is thus extremely valuable.
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Figure 3.8 – Horizontal membrane force N11 for the thin plate case

3.7.2 Laminate with a circular hole

The second example considers a rectangular multilayered plate of length L = 6, width
W = 1 and total thickness h = 0.2. The plate is perforated by a circular hole of ra-
dius R = 0.15 in its center. The laminate is made of a transversely isotropic material
of elastic properties ET = 14.48GPa, EL = 137.9GPa, νT = 0.21, νL = 0.21, µT =
5.86GPa and µL = 5.86GPa with L (resp. T ) denoting the fiber longitudinal direction
(resp. the perpendicular transverse direction). The laminate consists of 5 plies (one layer
per ply) with fiber oriented at [90◦, 45◦, 0◦,−45◦, 90◦] with respect to the horizontal di-
rection. The plate is clamped on the left boundary, free on the top, bottom and on the
hole boundaries. A uniform traction is applied to the 3rd layer on the right boundary
while the other layers remain free as shown in Figure 3.9. Due to the laminate anisotropic
layout, strong stress concentrations are expected at the hole boundary. Similarly, applying
a traction only on the third layer will induce a boundary layer effect along which stress
transfers will occur between the third layer and its adjacent ones.
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3.7. Illustrative applications

Figure 3.9 – Laminate with a circular hole under tension

As expected, Figure 3.10 shows that each individual layer experiences strong stress concen-
trations near the hole boundary. The resulting stress fields clearly illustrate the material
anisotropy between the first, second and third layer.

Figure 3.10 – Magnitude of Nαβ in layers 1, 2, and 3

In addition, we compare the N11 membrane force in the first three layers along the y = 0,
x ≥ R line on Figure 3.11 for both mixed and displacement approaches for a coarse and
a fine mesh. Clearly, the mixed approach succeeds in satisfying the stress-free boundary
condition on the right boundary in layers 1 and 2, even with a coarse mesh (dotted line).
The edge effects near the boundary are therefore much better represented than using a
displacement approach, even with a fine mesh. This feature is particularly beneficial in
order to accurately predict the occurrence of delamination in composite laminates for
instance.
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(a) N11 with the mixed (p = 2) approach
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(b) N11 with the displacement approach

Figure 3.11 – Evolution of N11 along the plate length for a coarse (dotted line) and a
fine (solid line) mesh

3.7.3 Bending of a laminate with multi-cracking

The final example (Figure 3.12) considers a rectangular multilayered plate having the
same dimensions as previously 3.7.2(without the circular hole). The laminate consists
of 5 plies (one layer per ply) with fiber oriented at [0◦, 90◦, 0◦, 90◦, 0◦] with respect to
the horizontal direction and with the same lamination properties. The second layer is
weakened by the introduction of 5 cracks through the ply thickness. The plate is clamped
at the left border, free on its lateral sides and a uniform vertical force is applied on the
right border for all layers i.e. Qi

1 = 1 for i = 1, . . . , 5.

Figure 3.12 – cracked plate problem
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Cracks are modeled by adding to the variational formulation (3.15) an additional elastic
energy of the corresponding generalized tractions on the crack interface Γcrack, i.e. the
bilinear form a representing the elastic energy is replaced by :

ã(Σ̂,Σ) = a(Σ̂,Σ) + acrack(Σ̂,Σ),(3.16)

acrack(Σ̂,Σ) =
1

Kint

∫
Γcrack

(
N̂2
α1N

2
α1 + M̂2

α1M
2
α1 + Q̂2

1Q
2
1 + τ̂ 1,2

1 τ 1,2
1 + τ̂ 2,3

1 τ 2,3
1

)
dS,(3.17)

where the associated interface stiffness is assumed to be very small Kint � 1 (note that
we did not pay attention to physical units in this penalized term).

Figure 3.13 represents the variations of the generalized stresses N2
11, Q2

1, τ
2,3
1 and the

vertical displacement U2
3 in layer 2. As expected, the stress fields exhibit strong variations

around the cracks. Indeed, these fields must vanish at the crack stress-free interface, but
due to the bonding exerted by adjacent layers, stress transfers occur between the different
cracked regions. The stress fields recover a value similar to what it would be without the
cracks. On the contrary, the vertical displacement field remains continuous whereas the
in-plane displacement U2

1 in layer 2 exhibits weak discontinuities due to the bonding of
adjacent layers. As a result, a mixed approach is extremely advantageous in such situations
where stresses are much more singular than displacements.
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Figure 3.13 – Generalized stresses and vertical displacement fields in layer 2

The variation of the axial force N11 in layers 2, 3 and 4 for a coarse mesh (5 elements
between cracks) is represented in Figure 3.14a. When compared to the solution on a much
finer mesh (Figure 3.14b), we notice that the strong variations near the cracks are already
well captured.
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Figure 3.14 – Axial force N11 along the plate length in layers 2, 3 and 4

73



3.8. Conclusion and perspectives

Finally, the variations of the interfacial shear stress field τ1 at the interfaces (1, 2), (2, 3),
(3, 4) and (4, 5) are represented in Figure 3.15. Such strong variations are harder to cap-
ture by the coarse mesh, especially when looking at the maximum values which are the
quantities of interest that will drive the occurrence of interface delamination in such si-
tuations. However, we observe that coarse meshes can be used with the mixed approach
to obtain an accurate estimation of such interfacial stresses.

(a) Coarse mesh (b) Fine mesh

Figure 3.15 – Interfacial stress τ1 along the plate length at all interfaces

3.8 Conclusion and perspectives

In this chapter, a mixed finite-element discretization has been considered as an alternative
to the conventional displacement-based finite-element method. A hybridization strategy
has been considered in which traction continuity is enforced explicitly through the use
of an additional displacement-like Lagrange multiplier defined on the elements facets.
Such a strategy offers the advantages of uncoupling many degrees of freedom. Local sta-
tic condensation can be performed to yield a much smaller final system to solve. This
static condensation operation on such a complex mechanical model has been made pos-
sible by recent developments in automated code-generating finite-element solvers such as
Firedrake. Finally, some illustrative applications demonstrate that the proposed mixed
approach is free from any shear-locking in the thin plate limit and is more accurate than
a displacement approach for the same number of freedom degrees. This mixed-method is
therefore particularly well suited to capture strong intra-laminar and inter-laminar stress
variations near free edges and cracks. Further developments might be interesting to pur-
sue. For instance, it is clear that such a complex layerwise model is efficient and relevant in
regions of strong stress variations (near cracks, holes, loading application, etc.). However,
in the bulk region, i.e. far from these regions, it is known that an equivalent single-layer
model might be enough to describe the behavior of the laminate. An interesting perspec-
tive would then to couple a detailed layerwise model in the previously mentioned critical
regions with an ESL model in the bulk region. In this respect, the approach of (Vidal
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et al. (2013)) using the Proper Generalized Decomposition seems promising.

Finally, another natural extension of the present work is to model delamination pheno-
mena between the different layers and simulate their propagation. A specific attention
should therefore be paid to how delamination might impact the efficiency of the static
condensation procedure.
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Conclusions and perspectives

The good implementation of multi-layered structures involves numerical tools that comply
with their specific heterogeneity. The multi-layered plate is conveniently represented as a
uniform, anisotropic bundle by the structural engineer. The free-edges effects are one of
the key problems with the design and study of this plate. The variations in elastic charac-
teristics of the adjoining layers have been demonstrated to produce high concentrations of
interlaminar stresses close to open borders. This can lead to delaminations that can cause
the multilayered structure to fail globally. Given the industry’s strong interest in reliable
models, several suggestions were made. The main aim is to simplify the computationally
heavy 3D model into a 2D plate model without losing the precision of local 3D fields.
First of all, it should be easy to use plate theory with a regular finite element program
and a good relocation of the 3D fields to measure local stresses, unlimited from the local
material symmetries to a good estimating of the macroscopic strain.

In this dissertation, first, we recalled the Statically compatible Layerwise model with
first-order membrane stress approximations per layer in thickness direction (SCLS1). The
SCLS1 model is proposed in order to enhance the LS1 model by eliminating its disadvan-
tages. The plate is still used in the SCLS1 model as an overlay of Reissner plates with
interfacial stresses. The variations between the transverse interlaminar shears are there-
fore introduced as new general stresses. Then, we developed a mesh adaptation strategy
which relies on the reconstruction of 3D displacement fields from the model generalized
displacements. In addition, some examples show that this adaptive method paves the way
to further developments including interface delamination propagation or damage at the
ply level. A second line of work is related with this fact. Although the layerwise model
is built at the continuous level form a stress-based perspective complying with the equi-
librium equations, its numerical resolution is performed through a displacement-based
approximation for the in-plane variations. As a consequence, the resulting generalized
stress fields, and therefore, the associated 3D stress field, do not satisfy strongly the equi-
librium equations. In order to maintain the initial philosophy of a stress-based statically
compatible construction, an alternative finite element discritization to the conventional
displacement-based finite-element method was examined. Then, a hybridization strategy
in which traction continuity is modified by introducing an additional displacement such as
Lagrange multiplier defined on the elements facets was considered. Finally, some examples
show that the proposed mixed approach is more exact than the displacement approach,
and can be used to capture the strong intra-laminar and inter-laminar stress values va-
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riations near free edges and cracks.
An interesting perspective would then couple a detailed layerwise model in the previously
mentioned critical regions with an ESL model in the bulk region. Finally, another na-
tural extension of the present work is to model delamination phenomena between the
different layers and simulate its propagation. So we should give specific attention to how
delamination might impact the efficiency of the static condensation procedure.
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1 Annex A

The FEniCS Project is a research and software project aimed at creating mathematical
methods and software for automated computational mathematical modeling. This means
creating easy, intuitive, efficient, and flexible software for solving partial differential equa-
tions (PDEs) using finite element methods. FEniCS was initially created in 2003 and is
developed in collaboration between researchers from a number of universities and research
institutes around the world. For more information about FEniCS and the latest updates
of the FEniCS software visit the FEniCS web page at https ://fenicsproject.org.

FEniCS consists of a number of building blocks (software components) that together
form the FEniCS software : DOLFIN [101], FFC [88], FIAT [87], UFL [3], mshr, and a
few others as shown in Figure 1.

Figure 1 – A schematic overview of the FEniCS components and their interplay

Where, the core components are :
• UFL (Unified Form Language), a domain-specific language embedded in Python for

specifying finite element discretizations of differential equations in terms of finite
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element variational forms. UFL implements the abstract mathematical laguage by
which users may express variational problems.
• FIAT (Finite element Automatic Tabulator), the finite element backend of FEniCS,

a Python module for generation of arbitrary order finite element basis functions
on simplices.
• FFC (FEniCS Form Compiler), a compiler for finite element variational forms

taking UFL code as input and generating UFC output. FFC is responsible for
generating efficient C++ code from high-level mathematical abstractions.
• UFC (Unified Form-assembly Code), a C++ interface consisting of low-level func-

tions for evaluating and assembling finite element variational forms.
• Instant, a Python module for inlining C and C++ code in Python.
• DOLFIN, a C++/Python library providing data structures and algorithms for

finite element meshes, automated finite element assembly, and numerical linear al-
gebra. DOLFIN, the computational high-performance C++ backend of FEniCS.
DOLFIN implements data structures such as meshes, function spaces and func-
tions, compute-intensive algorithms such as finite element assembly and mesh refi-
nement, and interfaces to linear algebra solvers and data structures such as PETSc.
DOLFIN also implements the FEniCS problem-solving environment in both C++
and Python. Its functionality integrates the other FEniCS components and handles
communication with external libraries such as PETSc, Trilinos and Eigen for nu-
merical linear algebra, ParMETIS and SCOTCH for mesh partitioning, and MPI
and OpenMP for distributed computing.

For an overview, see [102]. FEniCS users rarely need to think about this internal orga-
nization of FEniCS, but since even casual users may sometimes encounter the names of
various FEniCS components, we briefly list the components and their main roles in FE-
niCS.
FEniCS is a user-friendly tool for solving partial differential equations(PDEs). The ma-
thematics of the illustrations is kept simple to better focus on FEniCS functionality and
syntax. This means that we mostly use the Poisson equation and the time-dependent dif-
fusion equation as model problems, often with input data adjusted such that we get a very
simple solution that can be exactly reproduced by any standard finite element method
over a uniform, structured mesh. This latter property greatly simplifies the verification of
the implementations. Occasionally we insert a physically more relevant example to remind
the reader that the step from solving a simple model problem to a challenge real-world
problem is often quite short and easy with FEniCS.

Using FEniCS to solve PDEs may seem to require a thorough understanding of the abs-
tract mathematical framework of the finite element method as well as expertise in Python
programming. Nevertheless, it turns out that many users are able to pick up the funda-
mentals of finite elements and Python programming. You will be amazed at how easy it
is to solve PDEs with FEniCS !
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2 Annex B

In this annex we presents our code that we used to solve the generalized system of SCLS1
model. This code studies the SCLS1 model and applies our Re-mesh strategy to the 4
illustrative examples shown in 2.5.

#Variables

TOL = 5e-4 #Tolerance error
REFINE_RATIO = 0.50 #To Refine 50% of the cells in each iteration
MAX_ITER = 7 #Maximal number of iterations (Homogenoues, Triple laminate
and Double-Cantilever Beam with delaminated interface)
# MAX_ITER = 4 (Plate with circular hole).
iteration = 0

In all the examples we begin with coarse mesh. When we use ”crossed” that means
that the mesh is a structured mesh.

###########################################################################
# The mesh structure for Homogeneous and Triple laminate
###########################################################################
N = 2
new_mesh = UnitSquareMesh(N, N, "crossed")# do not lock for continuous

###########################################################################
# The mesh structure for laminate with a circular hole
###########################################################################
L, W = 6, 1
R = 0.15
N1 = 10

domain =Rectangle(Point(-L/2, -W/2), Point(L/2, W/2))-Circle(Point(0., 0.), R)
new_mesh = generate_mesh(domain, N1)

###########################################################################
# The mesh structure for Double-Cantilever Beam with delaminated interface
###########################################################################
n = 6
L, W = 6, 1
new_mesh = RectangleMesh(Point(0.,0.), Point(L, W), 12, 2, "crossed")

###########################################################################
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# The number of layers
###########################################################################
n = 3 or n = 5 for Homogeneoues and Triple laminate
n = 6 for Laminate with circular hole and DCB with delaminated interface

###########################################################################
# The total thickness of plate is h
###########################################################################
In the homogeneous laminate :

h = 0.2

In the Triple laminate :
h2 = 0.12
h1 = 0.04
h = h2 + 2*h1

In the laminate with circular hole :
h = 0.01

In the DCB with delaminated interface :
h = 0.01

###########################################################################
# The thickness discretization
###########################################################################
For Triple laminate :
e = [h1]
for i in range(n-2):

e.append(h2/(n-2))
e.append(h1)

For other examples
e = []
for i in range(n):

e.append(h/n)

###########################################################################
# The values of h−i and h+

i through thickness
(We start by -h/2 to center the plate at 0)
###########################################################################

hb = [-h/2]
for i in range(n):
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hb.append(hb[i] + e[i])

###########################################################################
# The values of hi
###########################################################################

mh = []
for i in range(n):

mh.append((hb[i] + hb[i+1])/2)

###########################################################################
# The constitutive materials values and the transveral load
###########################################################################

f = 1e3*h**3
load = np.array([0, 0, 0, 0, -f/2, -f/2])

The Constitutive materials values for Homogeneous laminate
E = [10.]*n
nu = [0.3]*n

The Constitutive materials values for triple laminate
E = [50.]
for i in range(n-2):

E.append(10.)
E.append(50.)

nu = [0.2]
for i in range(n-2):

nu.append(0.3)
nu.append(0.2)

The Constitutive materials values and the orientation angles
for laminate with circular hole and DCB with laminated interface

angle =[0*pi/180., 90*pi/180., 45*pi/180., -45*pi/180., 90*pi/180., 0*pi/180.]
EL = 137.9e3
ET = 14.48e3
nuL = 0.21
nuT = 0.21
muL = 5.86e3
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muT = 5.86e3

mu = []
for i in range(n):

mu.append(E[i]/2/(1+nu[i]))

###########################################################################
The functions that give the indices of the generalized displacement in
the total vector of the generalized displacements [δ].
Where, [δ] =

(
U1

1 , U
1
2 , U

1
3 , Φ1

1, Φ1
2, · · · , Un

1 , U
n
2 , U

n
3 , Φn

1 , Φn
2 , V

1,2, · · · , V n−1, n
)
.

###########################################################################

def iUa(n):
indice_U_alpha = []
for i in range(n):

indice_U_alpha.append(3*i)
return indice_U_alpha

def iU3(n):
indice_U_3 = []
for i in range(n):

indice_U_3.append(3*i+1)
return indice_U_3

def iP(n):
indice_Phi_alpha = []
for i in range(n):

indice_Phi_alpha.append(3*i+2)
return indice_Phi_alpha

indice_Vi = []
def iV(n):

for j in range(n-1):
indice_Vi.append(j+3*n)

return indice_Vi

###########################################################################
# The flexibility matrix
###########################################################################
For Homogeneous and Triple laminate
lS_klmn =[]
lS_abgd = []
lS_ab33 = []
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lS_a3b3 = []
lS3333 = []
for i in range(n):

lS_abgd.append(np.array([[1/E[i], -nu[i]/E[i], 0], [-nu[i]/E[i], 1/E[i], 0],
[0, 0, 1/mu[i]]]))

lS_ab33.append(np.array([[-nu[i]/E[i]], [-nu[i]/E[i]], [0]]))
lS_a3b3.append(np.array([[1/(4*mu[i]), 0], [0, 1/(4*mu[i])]]))
lS3333.append(1/E[i])
lS_klmn.append(np.array([[1/E[i], -nu[i]/E[i], -nu[i]/E[i], 0, 0, 0],

[-nu[i]/E[i], 1/E[i], -nu[i]/E[i], 0, 0, 0],
[-nu[i]/E[i], -nu[i]/E[i], 1/E[i], 0, 0, 0],
[0, 0, 0, 1/mu[i], 0, 0], [0, 0, 0, 0, 1/mu[i], 0],
[0, 0, 0, 0, 0, 1/mu[i]]]))

For Laminate with circular hole and DCB with delaminated interfaces
def rotate(mat, alpha):
new_mat = copy.deepcopy(mat)
new_mat.rotate(alpha)
return new_mat

class ElasticStiffness:

def __init__(self,dim=3,C=[[0]]):
self.dim = dim
self.C = C

def rotate(self, alpha):
""" Rotate elasticity matrix in the 1-2 plane by an angle alpha """
c = cos(alpha)
s = sin(alpha)
R = np.array([[c**2, s**2, 0, 2*s*c, 0, 0],

[s**2, c**2, 0, -2*s*c, 0, 0],
[0, 0, 1, 0, 0, 0],
[-c*s, c*s, 0, c**2 - s**2, 0, 0],
[0, 0, 0, 0, c, s],
[0, 0, 0, 0, -s, c]])

if self.dim == 2:
R = R[np.ix_([0, 1, 3], [0, 1, 3])]

self.C = R.dot(self.C.dot(R.T))
self.S = R.T.dot(self.S.dot(R))

class TransverseIsotropic(ElasticStiffness):
def __init__(self, ET, EL, nuT, nuL, muT, muL, dim=3):
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self.dim = dim
self.ET = ET
self.EL = EL
self.nuT = nuT
self.nuL = nuL
self.muT = muT
self.muL = muL
Splan = np.array([[1./self.EL, -self.nuL/self.EL, -self.nuL/self.EL],

[-self.nuL/self.EL, 1./self.ET, -self.nuT/self.ET],
[-self.nuL/self.EL, -self.nuT/self.ET, 1./self.ET]])

self.S = scipy.linalg.block_diag(Splan, np.diag([1/self.muL, 1/self.muL,
1/self.muT]))

self.C = np.linalg.inv(self.S)

def S_abgd(self):
return self.S[np.ix_([0, 1, 3], [0, 1, 3])]

def S_a3b3(self):
return np.diag((self.S[4, 4]/4., self.S[5, 5]/4.))

def S_ab33(self):
return np.array([self.S[0, 2], self.S[1, 2], 0])

def S_3333(self):
return self.S[2, 2]

class Isotropic(TransverseIsotropic):
def __init__(self, E, nu, dim=2):

self.E = E
self.nu = nu
self.mu = self.E/2./(1+self.nu)
self.lmbda = self.E*self.nu/(1-2*self.nu)/(1+self.nu)
self.M = self.lmbda+2*self.mu
TransverseIsotropic.__init__(self, E, E, nu, nu, self.mu, self.mu, dim)

mat = TransverseIsotropic(ET, EL, nuT, nuL, muT, muL)
lS_abgd = []
lS_ab33 = []
lS_a3b3 = []
lS3333 = []
lS_klmn = []
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lC_klmn = []
for i in range(n):

mat_rotate = rotate(mat, angle[i])
lS_abgd.append(mat_rotate.S_abgd())
lS_ab33.append(mat_rotate.S_ab33())
lS_a3b3.append(mat_rotate.S_a3b3())
lS3333.append(mat_rotate.S_3333())
lS_klmn.append(mat_rotate.S)
lC_klmn.append(mat_rotate.C)

###########################################################################
# The generalized matrix [S] of dimension (12n− 4) × (12n− 4).
###########################################################################
#The generalized matrix blocks
S_k = np.zeros((6*n, 6*n))
S_knu = np.zeros((6*n, n-1))
S_kpi = np.zeros((6*n, n-1))
S_nu = np.zeros((n-1, n-1))
S_nupi = np.zeros((n-1, n-1))
S_Q = np.zeros((4*n-2, 4*n-2))
S_pi = np.zeros((n-1, n-1))

###########################################################################
# Fill of S_k
###########################################################################

for i1 in range(n):
li = range(i1*6, (i1+1)*6)
for j1 in range(n):

lj = range(j1*6, (j1+1)*6)
if li == lj:

S_k[np.ix_(li, lj)] = np.vstack((np.hstack((lS_abgd[i1]/e[i1],
np.zeros((3, 3)))),

np.hstack((np.zeros((3, 3)),
(12/(e[i1])**3)*lS_abgd[i1]))))

else:
continue

###########################################################################
# Fill of S_knu and S_kpi
###########################################################################
j1 = int(0)
for i1 in range(n):
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li = range(i1*6, (i1+1)*6)

if j1 == 0:
S_knu[np.ix_(li, [j1])] = np.vstack(((1/2)*lS_ab33[i1],

(6/(5*e[i1]))*lS_ab33[i1]))
S_kpi[np.ix_(li, [j1])] = np.vstack(((e[i1])/12*lS_ab33[i1],

1/10*lS_ab33[i1]))

elif j1 == n-1:
S_knu[np.ix_(li, [j1-1])] = np.vstack(((1/2)*lS_ab33[i1],

(-6/(5*e[i1]))*lS_ab33[i1]))
S_kpi[np.ix_(li, [j1-1])] = np.vstack((-(e[i1])/12*lS_ab33[i1],

1/10*lS_ab33[i1]))

else:
S_knu[np.ix_(li, [j1-1, j1])] = np.vstack((np.hstack(((1/2)*lS_ab33[i1],

(1/2)*lS_ab33[i1])),
np.hstack(((-6/(5*e[i1]))*lS_ab33[i1], (6/(5*e[i1]))*lS_ab33[i1]))))

S_kpi[np.ix_(li, [j1-1, j1])]=np.vstack((np.hstack(((-e[i1])/12*lS_ab33[i1],
(e[i1])/12*lS_ab33[i1])),

np.hstack((1/10*lS_ab33[i1],
1/10*lS_ab33[i1]))))

j1 += 1

###########################################################################
# Fill of S_nu, S_pi and S_nupi
###########################################################################

for i in range(n-1):
for j in range(n-1):

if i == j:
S_nu[i, j] = 13/35.*((e[i])*lS3333[i] + (e[i+1])*lS3333[i+1])
S_nupi[i, j] = 11/210.*((e[i])**2*lS3333[i]

- (e[i+1])**2*lS3333[i+1])
S_pi[i, j] = 1/105.*((e[i])**3*lS3333[i]

+ (e[i+1])**3*lS3333[i+1])
elif j -i == 1:

S_nu[i, j] = S_nu[j, i] = (9/70.*(e[j]))*lS3333[j]
S_nupi[i, j] = 13/420.*(e[j])**2*lS3333[j]
S_nupi[j, i] = -13/420.*(e[j])**2*lS3333[j]
S_pi[i, j] = S_pi[j, i] = -1/140.*(e[j])**3*lS3333[j]

else:
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continue

###########################################################################
# Fill of S_Q
###########################################################################

ie = int(0)
ie1 = int(0)
ie2 = int(0)
je = int(1)
for i in range(2*n-1):

li = range(2*i, (i+1)*2)
for j in range(2*n-1):

lj = range(2*j, (j+1)*2)
if i == j and i % 2 == 0:

S_Q[np.ix_(li, lj)] = (24/(5*e[ie]))*lS_a3b3[ie]
ie += 1

elif i == j:
S_Q[np.ix_(li, lj)] = 8/15*((e[ie1])*lS_a3b3[ie1]

+ (e[ie1+1])*lS_a3b3[ie1+1])
ie1 += 1

elif abs(i-j) == 1 and j > i:
S_Q[np.ix_(li, lj)] = S_Q[np.ix_(lj, li)] = -2/5*lS_a3b3[ie2]
if j % 2 != 0:

ie2 += 1
elif abs(i - j) == 2 and i % 2 != 0 and j > i:

S_Q[np.ix_(li, lj)] = S_Q[np.ix_(lj, li)] = -2/15*(e[je])*lS_a3b3[je]
je += 1

else:
continue

S_F = np.vstack((np.hstack((S_k, S_knu, S_kpi)),
np.hstack((S_knu.T, S_nu, S_nupi)),
np.hstack((S_kpi.T, S_nupi.T, S_pi))))

IS_F and IS_C are the inerve matrix of S_F and S_Q respectively
IS_F = np.linalg.inv(S_F)
IS_C = np.linalg.inv(S_Q)

###########################################################################
# The orthogonal Legendre-like polynomial basis defined on layer i.
We used later in the construction of the 3D stress fields σ3D

kl .
###########################################################################
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def base(z):
P0 = []
P1 = []
P2 = []
P3 = []
for i in range(n):

P0.append(1)
P1.append((z-mh[i])/e[i])
P2.append(-6*((z-mh[i])/e[i])**2 + 1./2)
P3.append(-2*((z-mh[i])/e[i])**3 + 3/10 * ((z-mh[i])/e[i]))

return (P0, P1, P2, P3)

###########################################################################
# The linear and quadratic hat functions and their derivative functions.
We use those functions in the reconstruction of the 3D displacement fields
###########################################################################

def N(z):
N1 = []
N2 = []
for i in range(n):

N1.append((hb[i+1] - z)/e[i])
N1.append((z-hb[i])/e[i])
N2.append((2/(e[i]**2)) * (z - mh[i])*(z - hb[i+1]))
N2.append((-4/(e[i]**2))*(z - hb[i])*(z - hb[i+1]))
N2.append((2/(e[i]**2))*(z - mh[i])*(z - hb[i]))

return (N1, N2)

def deriveN(z):
DN1 = []
DN2 = []
for i in range(n):

DN1.append(-1/e[i])
DN1.append(1/e[i])
DN2.append((2/(e[i]**2))*(2*z - mh[i] - hb[i+1]))
DN2.append((-4/(e[i]**2))*(2*z - hb[i] - hb[i+1]))
DN2.append((2/(e[i]**2))*(2*z - mh[i] - hb[i]))

return(DN1, DN2)
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while iteration < MAX_ITER:
mesh = new_mesh

########################################################################
# The Functional space for the generalized displacements
########################################################################

U_3 = FiniteElement("CG", mesh.ufl_cell(), 2)
U_alpha = VectorElement("CG", mesh.ufl_cell(), 2)
Phi_alpha = VectorElement("CG", mesh.ufl_cell(), 2)
Vi = FiniteElement("CG", mesh.ufl_cell(), 2)

list_3 = []
for i in range(n):

list_3.append(U_alpha)
list_3.append(U_3)
list_3.append(Phi_alpha)

for i in range(n-1):
list_3.append(Vi)

V = FunctionSpace(mesh, MixedElement(list_3))
VD = VectorFunctionSpace(mesh, ’Lagrange’, 1)
P1 = FunctionSpace(mesh, ’CG’, 1) # pour le gradient
P2 = VectorFunctionSpace(mesh, ’CG’, 1)
P3 = TensorFunctionSpace(mesh, ’CG’, 1)
P1_d = FunctionSpace(mesh, ’DG’, 0)
P2_d = VectorFunctionSpace(mesh, ’DG’, 0)
P3_d = TensorFunctionSpace(mesh, ’DG’, 0)

To interpolate the values of load on the meshe we do the following :
f1 = interpolate(Expression("l", l=load[0], element=P1._ufl_element), P1)
f2 = interpolate(Expression("l", l=load[1], element=P1._ufl_element), P1)
f3 = interpolate(Expression("l", l=load[2], element=P1._ufl_element), P1)
f4 = interpolate(Expression("l", l=load[3], element=P1._ufl_element), P1)

########################################################################
# Limits conditions
########################################################################

def border(x, on_boundary):
return on_boundary

We consider the plates totally clamped for the Homogeneous and Triple laminated
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j = 1
bc = []
for i in range(n):

bc += [DirichletBC(V.sub(iUa(n)[i]), Constant((0.,0.)), border),
DirichletBC(V.sub(iP(n)[i]), Constant((0.,0.)), border),
DirichletBC(V.sub(iU3(n)[i]), Constant(0.), border),
DirichletBC(V.sub(iV(n)[j-1]), Constant(0.), border)]

j += 1

For the laminate with a circular hole, a tensile loading is applied to
the plate through an imposed horizontal displacement U i = ± Uex for all plies i

def left(x, on_boundary):
return near(x[0], -L/2) and on_boundary

def right(x, on_boundary):
return near(x[0], L/2) and on_boundary

bc = []
for i in range(n):

bc += [DirichletBC(V.sub(iUa(n)[i]).sub(0), Constant(-u_t), left),
DirichletBC(V.sub(iUa(n)[i]).sub(0), Constant(u_t), right),
DirichletBC(V.sub(iUa(n)[i]).sub(1), Constant(0.), left),
DirichletBC(V.sub(iUa(n)[i]).sub(1), Constant(0.), right),
DirichletBC(V.sub(iU3(n)[i]), Constant(0.), left),
DirichletBC(V.sub(iU3(n)[i]), Constant(0.), right)]

For the DCB with delaminated interface, the plate is clamped on its right
boundary, and positive (resp. negative) displacements U i

3 = +U (resp. U i
3 =

−U) are enforced on the left part for the top layers i = 4; 5; 6
(resp. bottom layers i = 1; 2; 3)

def left(x, on_boundary):
return near(x[0], 0.) and on_boundary

def right(x, on_boundary):
return near(x[0], L) and on_boundary

u_t = 1
bc = []
for i in range(3):

bc += [DirichletBC(V.sub(iU3(n)[i]), Constant(-u_t), left),
DirichletBC(V.sub(iU3(n)[i+3]), Constant(u_t), left)]
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for i in range(n):
bc += [DirichletBC(V.sub(iUa(n)[i]), Constant((0.,0.)), right),

DirichletBC(V.sub(iP(n)[i]), Constant((0.,0.)), right),
DirichletBC(V.sub(iU3(n)[i]), Constant(0.), right)]

for j in range(n-1):
bc+= [DirichletBC(V.sub(iV(n)[j-1]), Constant(0.), right)]

########################################################################
# The generalized displacement vector [δ]
########################################################################

def generalized_displ(x):
list_u = []
Dg = split(x)
for i in range(n):

list_u.append(Dg[iUa(n)[i]][0])
list_u.append(Dg[iUa(n)[i]][1])
list_u.append(Dg[iU3(n)[i]])
list_u.append(Dg[iP(n)[i]][0])
list_u.append(Dg[iP(n)[i]][1])

for j in range(n-1):
list_u.append(Dg[iV(n)[j]])

return as_vector(list_u)

########################################################################
# Function that give us the deformations tensor
########################################################################

def generalized_deformation(x):
list_epsilon_Chi = []
list_D_nu = []
list_Gamma_D = []
list_lambda = []
DG = split(x)
for i in range(n):

list_epsilon_Chi.append(sym(grad(DG[iUa(n)[i]])))
list_epsilon_Chi.append(sym(grad(DG[iP(n)[i]])))
list_Gamma_D.append(DG[iP(n)[i]] + grad(DG[iU3(n)[i]]))
if i < n-1:

list_Gamma_D.append(DG[iUa(n)[i+1]] - DG[iUa(n)[i]]
-e[i]/2 * DG[iP(n)[i]] -e[i+1]/2 *DG[iP(n)[i+1]]
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+ grad(DG[iV(n)[i]]))
list_D_nu.append(DG[iU3(n)[i+1]] - DG[iU3(n)[i]])
list_lambda.append(DG[iV(n)[i]])

return (list_epsilon_Chi, list_D_nu, list_Gamma_D, list_lambda)

########################################################################
# function that convert the deformation tensor into deformation vector: [E]
########################################################################
def deformation2voigt(x):

list_epsilon_Chi, list_D_nu, list_Gamma_D, list_lambda = x
list_E = []
list_G = []

for i in range(2*n):
list_E.append(list_epsilon_Chi[i][0,0])
list_E.append(list_epsilon_Chi[i][1,1])
list_E.append(2*list_epsilon_Chi[i][0,1])

for j in range(n):
list_G.append(list_Gamma_D[2*j][0])
list_G.append(list_Gamma_D[2*j][1])
if j < n-1:

list_G.append(list_Gamma_D[2*j+1][0])
list_G.append(list_Gamma_D[2*j+1][1])

list_total_deformation = list_E + list_D_nu + list_lambda
return (as_vector(list_total_deformation), as_vector(list_G))

#####################################################################
# The function that give us the values of [S]−1[E]
#####################################################################

def generalized_stress(x):
C = [as_tensor(IS_F), as_tensor(IS_C)]
EE = deformation2voigt(generalized_deformation(x))
return dot(C[0], EE[0]), dot(C[1], EE[1])

######################################################################
# function to calculate the generalized prestrain vector [EP ]
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######################################################################

def EP(load):
Ep_ec = []
Ep_dnu = []
Ep_l = []
Ep_Gd = []
Z3 = [0]*(4*n - 10)
Z1 = [0]*(6*n - 12)
Z2 = [0]*(n - 3)
pim = grad(f2)[0]+grad(f4)[1]
pip = grad(f1)[0]+grad(f3)[1]
t = as_vector(lS_ab33[0][:,0])*(-1/2*(load[5])+(e[0])/12*(pim))
Ep_ec += [t[0], t[1], t[2]]
t = as_vector(lS_ab33[0][:,0])*(6/(5*(e[0]))*(load[5]) - 1/10*(pim))
Ep_ec += [t[0], t[1], t[2]]
Ep_ec += Z1
t = as_vector(lS_ab33[n-1][:,0])*(1/2*(load[4]) + (e[n-1])/12*(pip))
Ep_ec += [t[0], t[1], t[2]]
t = as_vector(lS_ab33[n-1][:,0])*(6/(5*(e[n-1]))*(load[4])+1/10*(pip))
Ep_ec += [t[0], t[1], t[2]]

Ep_Gd += (2/5*np.dot(lS_a3b3[0], np.array([load[1], load[3]]))).tolist()

if n > 2:
Ep_dnu.append(-9/70*(e[0])*lS3333[0]*(load[5])

+ 13/420*(e[0])**2*lS3333[0]*(pim))
Ep_dnu += Z2
Ep_dnu.append(9/70*(e[n-1])*(lS3333[n-1])*(load[4])

+ 13/420*(e[n-1])**2*(lS3333[n-1])*(pip))
Ep_l.append(-13/420*(e[0])**2*lS3333[0]*(load[5])

+ 1/140*(e[0])**3*lS3333[0]*(pim))
Ep_l += Z2
Ep_l.append(-13/420*(e[n-1])**2*lS3333[n-1]*(load[4])

- 1/140*(e[n-1])**3*lS3333[n-1]*(pip))

Ep_Gd += ((2/15)*e[0]*np.dot(lS_a3b3[0],
np.array([load[1] , load[3]]))).tolist()

Ep_Gd += Z3
Ep_Gd += (-(2/15)*(e[n-1])*np.dot(lS_a3b3[n-1],

np.array([load[0] , load[2]]))).tolist()

elif n == 2:
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Ep_dnu.append(-9/70*(e[0])*lS3333[0]*(load[5])
+ 13/420*(e[0])**2*lS3333[0]*(pim)
+ 9/70*(e[n-1])*(lS3333[n-1])*(load[4])
+ 13/420*(e[n-1])**2*(lS3333[n-1])*(pip))

Ep_l.append(-13/420*(e[0])**2*lS3333[0]*(load[5])
+ 1/140*(e[0])**3*lS3333[0]*(pim)
- 13/420*(e[n-1])**2*lS3333[n-1]*(load[4])
-1/140*(e[n-1])**3*lS3333[n-1]*(pip))

Ep_Gd += ((2/15)*(e[0])*np.dot(lS_a3b3[0],
np.array([load[1] , load[3]]))

- (2/15)*(e[n-1])*np.dot(lS_a3b3[1],
np.array([load[0] , load[2]]))).tolist()

Ep_Gd += (-2/5*np.dot(lS_a3b3[n-1],
np.array([load[0], load[2]]))).tolist()

Ep = Ep_ec + Ep_dnu + Ep_l
return as_vector(Ep), as_vector(Ep_Gd)

#########################################################################
# Function to calculate the generalized forces vector F
#########################################################################

def generalized_forces(load):
F = []
Z = [0]*(n-1)
Z1 = [0]*(5*n -10)
F.append(load[1])
F.append(load[3])
F.append(load[5])
F.append(-(e[0])/2*(load[1]))
F.append(-(e[0])/2*(load[3]))
F += Z1
F.append((load[0]))
F.append((load[2]))
F.append((load[4]))
F.append(e[n-1]/2*(load[0]))
F.append(e[n-1]/2*(load[2]))
F = F + Z
return as_vector(F)
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#########################################################################
#Function that calculate the generalized stresses [Σ]
Where [Σ] = [S]−1

(
[E] − [EP ]

)
#########################################################################

def generalized_STRESS(x):
C = [as_tensor(IS_F), as_tensor(IS_C)]
EE = deformation2voigt(generalized_deformation(x))
return dot(C[0], EE[0] - EP(load)[0]), dot(C[1], EE[1] - EP(load)[1])

#########################################################################
# Solver of linear and bi-linear forms
#########################################################################

u = Function(V)
DG = split(u)
u_ = TestFunction(V)
du = TrialFunction(V)

We used dx_shear to provide the shear locking
dx_shear = dx(metadata="quadrature_degree": 2)

l = dot(generalized_stress(u_)[0], EP(load)[0])*dx
+dot(generalized_forces(load), generalized_displ(u_))*dx

a = inner(generalized_stress(u_)[0], deformation2voigt(
generalized_deformation(du))[0])*dx

+ inner(generalized_stress(u_)[1], deformation2voigt(
generalized_deformation(du))[1])*dx_shear

solve(a == l, u, bc, solver_parameters="linear_solver": "mumps")

#########################################################################
# Extract the values of the generalized stresses as a lists
#########################################################################
Sig_F = generalized_STRESS(u)[0]
Sig_C = generalized_STRESS(u)[1]
List_N = []
List_M = []
List_Q = []
List_tau = []
List_pi = []
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List_nu = []
ln = 1
lm = 1

def voigt2NM(S, i):
return as_tensor([[S[3*i], S[3*i + 2]], [S[3*i + 2], S[3*i + 1]]])

def voigt2n(S, j):
return S[6*n + j]

def voigt2p(S, j):
return S[7*n - 1 + j]

def voigt2QT(S, i):
return as_vector([S[2*i], S[2*i + 1]])

for i in range(2*n):
if i % 2 == 0:

Ni = Function(P3, name = "N - layer "+str(ln))
Ni.assign(project(voigt2NM(Sig_F, i), P3_d))
List_N.append(Ni)

Qi = Function(P2, name = "Q - layer"+str(ln))
Qi.assign(project(voigt2QT(Sig_C, i), P2_d))
List_Q.append(Qi)
ln+= 1

else:
Mi = Function(P3, name = "M - layer "+str(lm))
Mi.assign(project(voigt2NM(Sig_F, i), P3_d))
List_M.append(Mi)
if i < 2*n - 1:

Ti = Function(P2, name = "Tau - interfaces"+str(lm) + str(lm+1))
Ti.assign(project(voigt2QT(Sig_C, i), P2_d))
List_tau.append(Ti)

lm+= 1
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for j in range(n-1):
ni = Function(P1, name = "Nu- interfaces"+str(j+1) + str(j+2))
ni.assign(project(voigt2n(Sig_F, j), P1_d))
List_nu.append(ni)

PI = Function(P1, name = "Pi - interfaces"+str(j+1) + str(j+2))
PI.assign(project(voigt2p(Sig_F, j), P1_d))
List_pi.append(PI)

############################################################################
# Function to calculate the 3D stress field σ
############################################################################

def sigma_3D(z, con):
tauzm = [-load[1], -load[3]]
taunp = [load[0], load[2]]
nuzm = - load[5]
nunp = load[4]
pim = grad(f2)[0]+grad(f4)[1]
pip = grad(f1)[0]+grad(f3)[1]

sig_ab = (base(z)[0][con - 1]/e[con - 1])*List_N[con-1]
+ 12/(e[con - 1])**2 *base(z)[1][con - 1]* List_M[con - 1]

if con > 1 and con < n:
sig_a3 = List_Q[con - 1]*base(z)[0][con - 1]/e[con - 1]

+ (List_tau[con - 1] - List_tau[con - 2])*base(z)[1][con - 1]
+ (List_Q[con - 1] - e[con - 1]/2*(List_tau[con - 1]
+ List_tau[con - 2]))*base(z)[2][con - 1]/e[con - 1]

sig_33 = (1/2 * (List_nu[con - 1] + List_nu[con - 2])
+ e[con - 1]/12 * (List_pi[con - 1]

- List_pi[con - 2]))*base(z)[0][con - 1]
+ (e[con - 1]/10 * (List_pi[con - 1] + List_pi[con - 2])

+ 6/5 * (List_nu[con - 1]
- List_nu[con - 2]))*base(z)[1][con - 1]

+ e[con - 1]/12 * (List_pi[con- 1]
- List_pi[con - 2]) * base(z)[2][con - 1]

+ (e[con - 1]/2 * (List_pi[con - 1] + List_pi[con - 2])
+ (List_nu[con - 1] - List_nu[con - 2]))*base(z)[3][con - 1]

elif con == 1:
sig_a3 = List_Q[con - 1]*base(z)[0][con - 1]/e[con - 1]

+ (List_tau[con - 1] - as_vector(tauzm))*base(z)[1][con - 1]
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+ (List_Q[con - 1] - e[con - 1]/2*(List_tau[con - 1]
+ as_vector(tauzm)))*base(z)[2][con - 1]/e[con - 1]

sig_33 = (1/2 * (List_nu[con - 1] + nuzm)
+ e[con - 1]/12 * (List_pi[con - 1] + pim))*base(z)[0][con - 1]
+ (e[con - 1]/10 * (List_pi[con - 1] - pim)
+ 6/5 * (List_nu[con - 1] - nuzm))*base(z)[1][con - 1]
+ e[con - 1]/12 * (List_pi[con -1] + pim) * base(z)[2][con - 1]
+ (e[con - 1]/2 * (List_pi[con - 1] - pim)
+ (List_nu[con - 1] - nuzm))*base(z)[3][con - 1]

elif con == n:
sig_a3 = List_Q[con - 1]*base(z)[0][con - 1]/e[con - 1]

+ (as_vector(taunp) - List_tau[con - 2])*base(z)[1][con - 1]
+ (List_Q[con - 1] - e[con - 1]/2*(as_vector(taunp)

+ List_tau[con - 2]))*base(z)[2][con - 1]/e[con - 1]
sig_33 = (1/2 * (nunp + List_nu[con - 2])

+ e[con - 1]/12 * (pip - List_pi[con - 2]))*base(z)[0][con - 1]
+ (e[con-1]/10 * (pip + List_pi[con - 2])
+ 6/5 * (nunp - List_nu[con - 2]))*base(z)[1][con - 1]
+ e[con - 1]/12 * (pip - List_pi[con - 2]) * base(z)[2][con - 1]
+ (e[con - 1]/2 * (pip + List_pi[con - 2])
+ (nunp - List_nu[con - 2]))*base(z)[3][con - 1]

return (sig_ab[0,0], sig_ab[1,1], sig_33, sig_ab[0,1], sig_a3[0], sig_a3[1])

############################################################################
# Here we calculate the reconstructed displacement
############################################################################
Calculate of Ualpha :

A = np.zeros((n+1, n+1))
for i in range(n+1):

for j in range(n+1):
if i == j:

if i != 0 and i != n:
A[i, j] = (e[i-1] + e[i])/3

elif i == 0:
A[i, j] = e[0]/3

elif i == n:
A[i, j] = e[n-1]/3

elif j - i == 1:
A[i, j] = A[j, i] = e[i]/6

A[0,:] = 0
A[0,0] = 1
A[-1,:] = 0
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A[-1,-1] =1

A1 = np.kron(A, np.eye(2))
IA = np.linalg.inv(A1)

def Fa(x):
list_Fa = []
Dg = split(x)
t = as_vector(Dg[iUa(n)[0]] - e[0]/2 * Dg[iP(n)[0]])
list_Fa += [t[0], t[1]]
for i in range(n-1):

t = as_vector(e[i]/2 * Dg[iUa(n)[i]] + e[i+1]/2 * Dg[iUa(n)[i+1]]
+ (e[i]**2)/12 * Dg[iP(n)[i]]
- (e[i+1]**2)/12 * Dg[iP(n)[i+1]])

list_Fa += [t[0], t[1]]
t = as_vector(Dg[iUa(n)[n-1]] + e[n-1]/2 * Dg[iP(n)[n-1]])
list_Fa += [t[0], t[1]]
return as_vector(list_Fa)

def deplacement_alpha_Chapeau(x):
return dot(as_tensor(IA), Fa(x))

Calculate of U3 :

B2 = np.zeros((2*n-1, n+1))
indice = 0
c = 0
for i in range(2*n -1):

if i % 2 == 0:
i1 = indice
i2 =indice + 1
B2[i, i1] = B2[i, i2] = 1/2

if i % 2 != 0:
i1 = indice
i2 =indice + 1
i3 =indice + 2
B2[i, i1] = -e[c]/12
B2[i, i2] = (e[c]+e[c+1])/12
B2[i, i3] = -e[c+1]/12
indice += 1
c +=1
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B2T = np.transpose(B2)
MB = B2T.dot(B2)
B2F = np.linalg.inv(MB)

def Fb(x):
list_Fb = []
Dg = split(x)
for i in range(n-1):

list_Fb.append(Dg[iU3(n)[i]])
list_Fb.append(Dg[iV(n)[i]])

list_Fb.append(Dg[iU3(n)[n-1]])
return as_vector(list_Fb)

def deplacement_3_Chapeau(x):
return dot(as_tensor(B2F), dot(as_tensor(B2T), Fb(x)))

############################################################################
# Construction of the reconstructed deformation fields εkl
############################################################################

def epsilon_alpbeta(z, con):

eps_ab = sym(grad(vecQa(dep_a, con)))*N(z)[0][2*(con - 1)]
+ sym(grad(vecQa(dep_a, con + 1)))*N(z)[0][2*(con - 1) + 1]

eps_33 = deplacement_3_Chapeau(u)[con -1] * deriveN(z)[0][2*(con - 1)]
+ deplacement_3_Chapeau(u)[con]*deriveN(z)[0][2*(con - 1) + 1]

eps_a3 = 1/2*(vecQa(dep_a, con) * deriveN(z)[0][2*(con - 1)]
+ vecQa(dep_a, con + 1) * deriveN(z)[0][2*(con - 1) + 1]
+ grad(deplacement_3_Chapeau(u)[con - 1])
* N(z)[0][2*(con - 1)] + grad(deplacement_3_Chapeau(u)[con])
* N(z)[0][2*(con - 1) + 1])

return eps_ab[0, 0], eps_ab[1, 1], eps_33,
2*eps_ab[0, 1], 2*eps_a3[0], 2*eps_a3[1]

#############################################################################
# Calculate of the reconstructed stress field
#############################################################################
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def sigma_chap(z, con):
C1 = as_tensor(lC_klmn[con - 1])
P = dot(C1, as_vector(epsilon_alpbeta(z, con)))
return P

############################################################################
# The Re-mesh strategy and the estimator error
############################################################################

poids = [(18 + sqrt(30))/36, (18 - sqrt(30))/36]
zg = [-sqrt(3/7 - 2/7 * sqrt(6/5)), sqrt(3/7 - 2/7 * sqrt(6/5)),

-sqrt(3/7 + 2/7 * sqrt(6/5)), sqrt(3/7 + 2/7 * sqrt(6/5))]

# function to calculate the estimator error
def estimateurerreur(poids, zg):

estimateur = 0
for i in range(n):

S = as_tensor(lS_klmn[i])
p = 0
Sum = 0
for g in range(4):

diff = as_vector(sigma_3D(e[i]/2 * zg[g] + mh[i], i+1))
- as_vector(sigma_chap(e[i]/2 * zg[g] + mh[i], i+1))

Sum += poids[p] * inner(diff, dot(S,diff))
if g % 2 != 0:

p += 1
estimateur += (e[i]/4 * Sum)

return estimateur

K = CellVolume(mesh)
cell_markers = MeshFunction("bool", mesh, mesh.topology().dim())
V0 = FunctionSpace(mesh, "DG", 0)
gamma = project(K*estimateurerreur(poids, zg), V0).vector().get_local()
index_sort = np.argsort(gamma)[::-1]
cum_sum = np.cumsum(gamma[index_sort])
for c in cells(mesh):

cell_markers[c] = cum_sum[np.where(c.index()==index_sort)]
< REFINE_RATIO*sum(gamma)

new_mesh = refine(mesh, cell_markers)
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iteration +=1

3 Annex C

In this Annex we presents the code that apply and solve the hybridization of a mixed
method for the SCLS1 using Firedrake.
Firedrake is a new tool for automating the numerical solution of partial differential equa-
tions. Firedrake adopts the domain-specific language for the finite element method of the
FEniCS project, but with a pure Python runtime-only implementation centered on the
composition of several existing and new abstractions for particular aspects of scientific
computing. The result is a more complete separation of concerns that eases the incorpo-
ration of separate contributions from computer scientists, numerical analysts, and appli-
cation specialists. These contributions may add functionality or improve performance.

Firedrake benefits from automatically applying new optimizations. This includes facto-
rizing mixed function spaces, transforming and vectorizing inner loops, and intrinsically
supporting block matrix operations. Importantly, Firedrake presents a simple public API
for escaping the UFL abstraction. This allows users to implement common operations
that fall outside of pure variational formulations, such as flux limiters.
As we show in 3.7, we have 3 illustration examples. In the code below we show the mo-
deling of each examples.

##################################################################
# For the Homogeneous laminate
##################################################################
# interpolation degree
interp = 1

# Nombre of layer
n = 2

# The mesh
L = 1
Ne = 70
assert (Ne % 2 == 0), "Number of elements should be even"
subprocess.call(["gmsh", "-2", "-format", "msh2", "-setnumber", "N", str(Ne),

"square_plate.geo"])
mesh = Mesh("square_plate.msh")

# The thickness
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h = 0.01

#The constittive materials
E = 10.
nu = 0.3
mu = E/2./(1+nu)

##################################################################
# For the laminate with a circular hole
##################################################################
# element sizes
dplate = 0.1
dhole = 0.025

# Radius
R = 0.15

# interpolation degree
interp = 2

# The mesh
subprocess.call(["gmsh", "-2", "-format", "msh2", "-setnumber", "d", str(dplate),

"-setnumber", "d2", str(dhole), "-setnumber", "R", str(R),
"plate_hole.geo"])

logging.set_level(DEBUG)

mesh = Mesh("plate_hole.msh")

#Fiber orientation angles
angle = [90*pi/180., 45*pi/180., 0*pi/180., 45*pi/180., 90*pi/180.]

# Nombre of layer
n = len(angle)

#The constittive materials
EL = 137.9e3
ET = 14.48e3
nuL = 0.21
nuT = 0.21
muL = 5.86e3
muT = 5.86e3
##################################################################
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# For the Bending of a laminate with multi-cracking
##################################################################
# Number of elements along x and y
nx = 35
ny = 5

#The mesh
subprocess.call(["gmsh", "-2", "-format", "msh2", "-setnumber", "nx", str(nx+1),

"-setnumber", "ny", str(ny+1), "plate_cracks.geo"])

mesh = Mesh("plate_cracks.msh")

#interpolation degree
interp = 2

#orientation angles
angle = [0*pi/180., 90*pi/180., 0*pi/180, 90*pi/180., 0*pi/180.]

#Nomber of layers
n = len(angle)

#The constittive materials
EL = 137.9e3
ET = 14.48e3
nuL = 0.21
nuT = 0.21
muL = 5.86e3
muT = 5.86e3

Note that we used the same functions in Annex B to discritize the thickness
and to calculate the values of h−i , h

+
i and hi. Also we used the same functions as

in the annexe B to determinate the flexibility, the generalized matrix and the
function that give us the orthogonal bases and the linear and quadratique hat
functions and their derivatives

##################################################################
# Functional Spaces for the generalized stresses, displacement,
and the Lagrange multipliers to the three illustrative exepmles
##################################################################

C_e = VectorFunctionSpace(mesh, "DG", interp, dim=12*n-4)
D_e = VectorFunctionSpace(mesh, "DG", interp-1, dim=6*n-1)
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M_e = VectorFunctionSpace(mesh, "Discontinuous Lagrange Trace", interp, dim=6*n-1)
V = C_e * D_e * M_e

##################################################################
# Functions that gives us the values of the generalized stresses,
displacements and the Lagrange multipliers
##################################################################

def N_alphabeta(x):
Dg = split(x)
List_N = []
for i in range(n):

List_N1 = []
List_N1.append(Dg[0][6*i])
List_N1.append(Dg[0][6*i + 1])
List_N1.append(Dg[0][6*i + 2])
List_N.append(as_vector(List_N1))

return List_N

def M_alphabeta(x):
Dg = split(x)
List_M = []
for i in range(n):

List_M1 = []
List_M1.append(Dg[0][6*i + 3])
List_M1.append(Dg[0][6*i + 4])
List_M1.append(Dg[0][6*i + 5])
List_M.append(as_vector(List_M1))

return List_M

def nu(x):
Dg = split(x)
List_nu = []
for j in range(n-1):

List_nu.append(Dg[0][6*n + j])
return List_nu

def Q_alpha(x):
Dg = split(x)
List_Q = []
for i in range(n):

List_Q1 = []
List_Q1.append(Dg[0][7*n - 1 + 4*i])
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List_Q1.append(Dg[0][7*n -1 + 4*i + 1])
List_Q.append(as_vector(List_Q1))

return List_Q

def tau_alpha(x):
Dg = split(x)
List_tau = []
for j in range(n-1):

List_tau1 = []
List_tau1.append(Dg[0][7*n - 1 + 4*j + 2])
List_tau1.append(Dg[0][7*n - 1 + 4*j + 3])
List_tau.append(as_vector(List_tau1))

return List_tau

def pi(x):
Dg = split(x)
List_pi = []
for j in range(n-1):

List_pi.append(Dg[0][11*n - 3 + j])
return List_pi

def u_alpha(x):
Dg = split(x)
List_u =[]
for i in range(n):

List_u1 = []
List_u1.append(Dg[1][5*i])
List_u1.append(Dg[1][5*i + 1])
List_u.append(as_vector(List_u1))

return List_u

def u_3(x):
Dg = split(x)
List_u3 = []
for i in range(n):

List_u3.append(Dg[1][5*i + 2])
return List_u3

def phi_alpha(x):
Dg = split(x)
List_phi = []
for i in range(n):

List_phi1 = []
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List_phi1.append(Dg[1][5*i + 3])
List_phi1.append(Dg[1][5*i + 4])
List_phi.append(as_vector(List_phi1))

return List_phi

def V_j(x):
Dg = split(x)
List_v = []
for j in range(n-1):

List_v.append(Dg[1][5*n + j])
return List_v

def v_N_alpha(x):
Dg = split(x)
List_vN_alpha =[]
for i in range(n):

List_vN_alpha2 = []
List_vN_alpha2.append(Dg[2][4*i])
List_vN_alpha2.append(Dg[2][4*i + 1])
List_vN_alpha.append(as_vector(List_vN_alpha2))

return List_vN_alpha

def v_M_alpha(x):
Dg = split(x)
List_vM_alpha =[]
for i in range(n):

List_vM_alpha2 = []
List_vM_alpha2.append(Dg[2][4*i + 2])
List_vM_alpha2.append(Dg[2][4*i + 3])
List_vM_alpha.append(as_vector(List_vM_alpha2))

return List_vM_alpha

def w_q(x):
Dg = split(x)
List_wq =[]
for i in range(n):

List_wq.append(Dg[2][4*n + 2*i])
return List_wq

def w_t(x):
Dg = split(x)
List_wt = []
for j in range(n-1):
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List_wt.append(Dg[2][4*n + 2*j + 1])
return List_wt

##################################################################
# Function that organise the generalized displacements as a list
##################################################################

def generalized_displ(x):
list_u = []
for i in range(n):

list_u.append(u_alpha(x)[i][0])
list_u.append(u_alpha(x)[i][1])
list_u.append(u_3(x)[i])
list_u.append(phi_alpha(x)[i][0])
list_u.append(phi_alpha(x)[i][1])

for j in range(n-1):
list_u.append(V_j(x)[j])

return list_u

##################################################################
# Function that organise generalized stresses as a list
##################################################################

def generalized_stress(x):
list_NM = []
list_nu = []
list_QT = []
list_pi = []
for i in range(n):

list_NM.append(N_alphabeta(x)[i][0])
list_NM.append(N_alphabeta(x)[i][1])
list_NM.append(N_alphabeta(x)[i][2])
list_NM.append(M_alphabeta(x)[i][0])
list_NM.append(M_alphabeta(x)[i][1])
list_NM.append(M_alphabeta(x)[i][2])
list_QT.append(Q_alpha(x)[i][0])
list_QT.append(Q_alpha(x)[i][1])
if i<n-1:

list_QT.append(tau_alpha(x)[i][0])
list_QT.append(tau_alpha(x)[i][1])

for j in range(n-1):
list_nu.append(nu(x)[j])
list_pi.append(pi(x)[j])

110



3. Annex C

list_total_stress = list_NM + list_nu + list_QT + list_pi
return list_total_stress

##################################################################
# Function that organise the Lagrange multipliers as a list
##################################################################

def multplicateur_Lagrange(x):
List_VNM = []
List_VQT = []
for i in range(n):

List_VNM.append(v_N_alpha(x)[i][0])
List_VNM.append(v_N_alpha(x)[i][1])
List_VNM.append(v_M_alpha(x)[i][0])
List_VNM.append(v_M_alpha(x)[i][1])
List_VQT.append(w_q(x)[i])
if i <n-1:

List_VQT.append(w_t(x)[i])
list_total_lagrange = List_VNM + List_VQT
return as_vector(list_total_lagrange)

In addition, we uses the same function as before to calculate [EP ] and [F ]

##################################################################
# Function that convert from vector to tensor
##################################################################

def totensor(x):
return as_tensor([[x[0], x[2]], [x[2], x[1]]])

##################################################################
# Functions that calculate the derivatives of the generalized stresses
N, M, Q, τ
##################################################################

def DN(x):
List_DN = []
for i in range(n):

List_DN1 = []
List_DN1.append(div(totensor(N_alphabeta(x)[i]))[0])
List_DN1.append(div(totensor(N_alphabeta(x)[i]))[1])
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List_DN.append(as_vector(List_DN1))
return List_DN

def DM(x):
List_DM = []
for i in range(n):

List_DM1 = []
List_DM1.append(div(totensor(M_alphabeta(x)[i]))[0])
List_DM1.append(div(totensor(M_alphabeta(x)[i]))[1])
List_DM.append(as_vector(List_DM1))

return List_DM

def DQ(x):
List_DQ = []
for i in range(n):

List_DQ.append(div(Q_alpha(x)[i]))
return List_DQ

def DT(x):
List_DT = []
for i in range(n-1):

List_DT.append(div(tau_alpha(x)[i]))
return List_DT

##################################################################
# Function that present the equilibrium equations 1.11.
and second a function that convert the equilibrium equations into list
##################################################################

def EDE1(x):
E1 = [0]*n
E2 = [0]*n
E3 = [0]*n
E4 = [0]*(n-1)

E1[0] = DN(x)[0] + tau_alpha(x)[0]
E2[0] = DQ(x)[0] + nu(x)[0]
E3[0] = DM(x)[0] - Q_alpha(x)[0] + (e[0]/2) * (tau_alpha(x)[0])
E4[0] = DT(x)[0] - pi(x)[0]
for i in range(1, n-1):

E1[i] = DN(x)[i] + tau_alpha(x)[i] - tau_alpha(x)[i-1]
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E2[i] = DQ(x)[i] + nu(x)[i] - nu(x)[i-1]
E3[i] = DM(x)[i] - Q_alpha(x)[i] + (e[i]/2)*(tau_alpha(x)[i] + tau_alpha(x)[i-1])
E4[i] = DT(x)[i] - pi(x)[i]

E1[n-1] = DN(x)[n-1] - tau_alpha(x)[n-2]
E2[n-1] = DQ(x)[n-1] - nu(x)[n-2]
E3[n-1] = DM(x)[n-1] - Q_alpha(x)[n-1] + e[n-1]/2 *(tau_alpha(x)[n-2])

return (E1, E2, E3, E4)

def EDE_tovec(x):
List = [0]*(6*n - 1)
for i in range(n):

List[5*i] = EDE1(x)[0][i][0]
List[5*i + 1] = EDE1(x)[0][i][1]
List[5*i + 2] = EDE1(x)[1][i]
List[5*i + 3] = EDE1(x)[2][i][0]
List[5*i + 4] = EDE1(x)[2][i][1]

for j in range(n-1):
List[5*n + j] = EDE1(x)[3][j]

return List

##################################################################
# Function that calculate the average
##################################################################

def List_avg(x):
List =[]
for i in range(n):

List.append(avg(v_N_alpha(x)[i]))
List.append(avg(v_M_alpha(x)[i]))
List.append(avg(w_q(x)[i]))
if i<n-1:

List.append(avg(w_t(x)[i]))
return List

##################################################################
# Function that calculate the jump(x) = (x+ − x−) n
##################################################################

def List_jump(x):
List = []
for i in range(n):

List.append(jump(totensor(N_alphabeta(x)[i]),n1))
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List.append(jump(totensor(M_alphabeta(x)[i]),n1))
List.append(jump(Q_alpha(x)[i],n1))
if i<n-1:

List.append(jump(tau_alpha(x)[i], n1))
return List

##################################################################
# Function used to convert to a vector
##################################################################

def to_vec(x, slice=None):
if slice is None:

slice = range(n)
List = []
for i in slice:

List.append(x[4*i][0])
List.append(x[4*i][1])
List.append(x[4*i+1][0])
List.append(x[4*i+1][1])
List.append(x[4*i+2])
if i < n-1:

List.append(x[4*i+3])
return List

##################################################################
# The Functions : Test, Trial
##################################################################

u = Function(V)
DG = split(u)
u_ = TestFunction(V)
du = TrialFunction(V)
n1 = FacetNormal(mesh)

##################################################################
# The linear, bilinear forms and the boundary conditions for
the Homogeneous laminate
##################################################################
bc = []
bc += [DirichletBC(V[2], Constant((0.,)*(6*n - 1)), 1),

DirichletBC(V[2], Constant((0.,)*(6*n - 1)), 2),
DirichletBC(V[2], Constant((0.,)*(6*n - 1)), 3),
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DirichletBC(V[2], Constant((0.,)*(6*n - 1)), 4)]

a = dot(as_vector(generalized_stress(u_)),
as_matrix(S_G)*as_vector(generalized_stress(du)))*dx

a += inner(as_vector(EDE_tovec(u_)), as_vector(generalized_displ(du)))*dx
+inner(as_vector(EDE_tovec(du)), as_vector(generalized_displ(u_)))*dx

a += dot(as_vector(to_vec(List_jump(u_))), as_vector(to_vec(List_avg(du))))*dS
+dot(as_vector(to_vec(List_jump(du))), as_vector(to_vec(List_avg(u_))))*dS

l = Constant(1)*(dot(as_vector(generalized_displ(u_)), generalized_forces(load))*dx
+dot(as_vector(generalized_stress(u_)), EP(load))*dx)

##################################################################
# The linear, bilinear forms and the boundary conditions for the
laminate with a circular hole and it’s boundary conditions
##################################################################

Neumann_bc = (11, 13, 14)
bc = [DirichletBC(V[2], Constant((0.,)*(6*n - 1)), 12)]

a = dot(as_vector(generalized_stress(u_)), dot(as_tensor(S_G),
as_vector(generalized_stress(du))))*dx

+ inner(as_vector(EDE_tovec(u_)), as_vector(generalized_displ(du)))*dx
+inner(as_vector(EDE_tovec(du)), as_vector(generalized_displ(u_)))*dx
+dot(as_vector(to_vec(List_jump(u_))), as_vector(to_vec(List_avg(du))))*dS
+dot(as_vector(to_vec(List_jump(du))), as_vector(to_vec(List_avg(u_))))*dS

l = Constant(0)*(dot(as_vector(generalized_displ(u_)), generalized_forces(load))*dx
+ dot(as_vector(generalized_stress(u_)), EP(load))*dx)

for i in range(n):
a += (dot(dot(totensor(M_alphabeta(u_)[i]), n1), as_vector(v_M_alpha(du)[i]))

+dot(dot(totensor(M_alphabeta(du)[i]), n1), as_vector(v_M_alpha(u_)[i]))
+dot(dot(totensor(N_alphabeta(u_)[i]), n1), as_vector(v_N_alpha(du)[i]))
+dot(dot(totensor(N_alphabeta(du)[i]), n1), as_vector(v_N_alpha(u_)[i]))
+ dot(dot(as_vector(Q_alpha(u_)[i]), n1), w_q(du)[i])
+dot(dot(as_vector(Q_alpha(du)[i]), n1), w_q(u_)[i]))*ds(Neumann_bc)

layer = 2
l += dot(as_vector(v_N_alpha(u_)[layer]), Constant((1., 0.)))*ds(13)
for j in range(n-1):

a += (dot(dot(as_vector(tau_alpha(u_)[j]), n1), w_t(du)[j])
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+dot(dot(as_vector(tau_alpha(du)[j]), n1), w_t(u_)[j]))*ds(Neumann_bc)

##################################################################
# The linear, bilinear forms and the boundary conditions for Bending
of a laminate with multi-cracking
##################################################################
Neumann_bc = (2, 4)
bc = [DirichletBC(V[2], Constant((0.,)*(6*n - 1)), 1)]

crack = [1]
Kint = Constant(1e-8)
a = dot(as_vector(generalized_stress(u_)), dot(as_tensor(S_G),

as_vector(generalized_stress(du))))*dx
+ inner(as_vector(EDE_tovec(u_)), as_vector(generalized_displ(du)))*dx
+inner(as_vector(EDE_tovec(du)), as_vector(generalized_displ(u_)))*dx
+dot(as_vector(to_vec(List_jump(u_))), as_vector(to_vec(List_avg(du))))*dS
+dot(as_vector(to_vec(List_jump(du))), as_vector(to_vec(List_avg(u_))))*dS
+1/2/Kint*dot(as_vector(to_vec(List_dot(u_), slice=crack))("+"),

as_vector(to_vec(List_dot(du), slice=crack))("+"))*dS(3)

l = Constant(0)*(dot(as_vector(generalized_displ(u_)), generalized_forces(load))*dx
+ dot(as_vector(generalized_stress(u_)), EP(load))*dx)

for i in range(n):
a += (dot(dot(totensor(M_alphabeta(u_)[i]), n1), as_vector(v_M_alpha(du)[i]))

+dot(dot(totensor(M_alphabeta(du)[i]), n1), as_vector(v_M_alpha(u_)[i]))
+dot(dot(totensor(N_alphabeta(u_)[i]), n1), as_vector(v_N_alpha(du)[i]))
+dot(dot(totensor(N_alphabeta(du)[i]), n1), as_vector(v_N_alpha(u_)[i]))
+dot(dot(as_vector(Q_alpha(u_)[i]), n1), w_q(du)[i])
+dot(dot(as_vector(Q_alpha(du)[i]), n1), w_q(u_)[i]))*ds(Neumann_bc)

l += dot(w_q(u_)[i], Constant(1.))*ds(2)

for j in range(n-1):
a += (dot(dot(as_vector(tau_alpha(u_)[j]), n1), w_t(du)[j])

+dot(dot(as_vector(tau_alpha(du)[j]), n1), w_t(u_)[j]))*ds(Neumann_bc)

##################################################################
# The problem solver
##################################################################

ref_problem = LinearVariationalProblem(a, l, u, bcs=bc)
ref_solver = LinearVariationalSolver(ref_problem, solver_parameters=params)
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3. Annex C

ref_solver.solve()

##################################################################
# The Total energy
##################################################################
energy = assemble(0.5*action(action(a,u),u)- action(l,u))
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