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Préamble (Français)
Cette thèse s’intéresse à la modélisation et aux méthodes numériques pour la gestion
actif/passif (Asset and Liability Management ALM) en assurance. Dans la première
partie de cette thèse, nous construisons un modèle ALM synthétique qui intègre les
principales caractéristiques des contrats d’assurance-vie. Ce modèle tient compte à la
fois du bilan en book et market value pour déclencher le mécanisme de participation
aux bénéfices et introduit un mécanisme de détermination du taux servi proche de la
pratique en déterminant un compromis entre taux règlementaire, taux concurrent et la
performance générée par le portefeuille. Enfin, il considère un investissement dans un
panier d’obligations permettant une couverture statique des flux de rachats sans garder
en mémoire l’historique de gestion. Ce modèle est alors utilisé pour calculer le Solvency
Capital Requirement (SCR) avec la formule standard. La seconde partie de cette thèse
s’intéresse aux méthodes numériques efficaces pour le calcul du SCR. En particulier,
nous étudions la méthode Multilevel Monte-Carlo (MLMC) dévelopée par Giles [Gil08]
pour estimer l’espérance du maximum de plusieurs espérances conditionelles. Ce type
de calcul apparaît notamment lorsqu’on l’on compare différents stress-tests ainsi que
dans l’évaluation du module taux d’intérêt de la formule standard. Nous obtenons
un résultat de convergence qui complète les travaux récents de Giles et Goda [GG19]
et fournit un cadre d’application plus souple pour l’estimateur MLMC. Enfin, nous
utilisons ces résultats pour l’estimation du SCR à des dates futures dans le modèle
construit dans la première partie. Nous comparons les performances de l’estimateur
MLMC avec les approches type Least Square Monte Carlo (LSMC) ou réseaux de neu-
rones et démontrons la pertinence de l’approche Multilevel dans ce contexte.
Mots-clés: modèle ALM, Capital de Solvabilité Requis, Formule standard, Adosse-
ment des flux, Gap de liquidité, Risque de rachat, Book value, Participation aux béné-
fices, MLMC, LSMC, Réseaux de Neurones
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Preamble (English)
This thesis deals with the modeling and the construction of efficient numerical methods
for the Asset and Liability Management (ALM) in insurance. The first part of this
thesis introduces a synthetic ALM model that catches the key features of life insur-
ance contracts. This model keeps track of both market and book values to apply the
regulatory profit sharing rule. Second, it introduces a determination of the crediting
rate to policyholders that is close to practice and is a trade-off between the regulatory
rate, a competitor rate and the available profits. Third, it considers an investment in
bonds that enables to match a part of the cash outflow due to surrenders, while avoid-
ing to store the trading history. We use this model to evaluate the Solvency Capital
Requirement (SCR) with the standard formula. The second part copes with efficient
numerical methods to compute the SCR. More specifically, we study the Multilevel
Monte-Carlo (MLMC) method developed by Giles [Gil08] to estimate the expectation
of a maximum of conditional expectations. This problem arises naturally when con-
sidering many stress tests and appears in the calculation of the interest rate module
of the standard formula for the SCR. We obtain theoretical convergence results that
complements the recent work of Giles and Goda [GG19] and gives some additional
tractability through a parameter that somehow describes regularity properties around
the maximum. We then apply the MLMC estimator to the calculation of the SCR
at future dates with the standard formula using the model developed in the first part.
Last, we compare it with estimators obtained with Least Square Monte-Carlo or Neural
Networks and show the relevance of the MLMC method in this context.
Keywords: ALM model, Solvency capital requirement, Standard formula, Cash flow
matching, Liquidity gap, Surrender risk, Book value, Profit sharing, MLMC, LSMC,
Neural Network
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Résumé

Cette thèse se consacre à la modélisation et aux développements de méthodes numériques
pour la gestion actif/passif (Asset and Liability Management ALM) des contrats d’assurance-
vie. Ce type de produits joue un rôle fondamental dans le paysage de l’assurance-vie
et la constitution de l’épargne des ménages. Dans la presse, le fond euro constitue un
des "placements préférés des français". En 2019, les français ont déposé 11,2 milliards
d’euros sur les contrats d’assurance-vie (source: [Mei19]). Toutefois, la modélisation
de ce type de contrats est particulièrement complexe en raison d’options et garanties
financières, ainsi que de l’évolution de l’environnement prudentiel (Solvabilité II) et
comptable (IFRS).
Dans la première partie de cette thèse, nous construisons un modèle synthétique de
gestion d’un fond euro qui tient compte des principales caractéristiques du business
de l’assurance-vie. L’assuré souscrivant à une assurance-vie cherche à se constituer
une épargne. Le contrat comprend un taux de revalorisation minimal ("taux mini-
mum garanti") ainsi qu’une participation aux bénéfices additionnelle correspondant à
un pourcentage (encadré par le code des assurances) sur les rendements générés par les
investissements de l’assureurs issu du dépôt des assurés. Règlementairement, un en-
semble de normes comptables ("local GAAP") contraignent l’assureur à constituer un
ensemble de provisions techniques en face de ses engagements et de comptabiliser ses ac-
tifs en coût d’acquisitition (la "book value" ou valeur comptable) pour l’enregistrement
de ses plus values qui elles mêmes peuvent faire l’objet d’un provisionnement spécifique.
A titre d’exemple la dette de l’assureur envers l’assuré est représentée par la "provi-
sion mathématique" dans le bilan de l’assureur et correspond aux dépôts revalorisés du
taux servi par l’assureur chaque année. D’autres réserves règlementaires telles que la
Provision pour Participation aux Bénéfices (PPB) permettent un lissage du taux servi
aux assurés dans le temps avec obligation de redistribution de la réserve constituée
dans les 8 ans. La réserve de capitalisation quant à elle, encadre la redistribution des
plus-moins values obligataires dans le but de constituer un coussin de sécurité contre
les mouvements de taux.
Dans la première partie de ce manuscrit, nous proposons un modèle qui tient compte
à la fois du bilan en market et book value pour déterminer le taux de revalorisation
de l’épargne de l’assuré et développons une règle de gestion permettant un bon com-
promis entre actionnaires et assurés sous contrainte d’immobilisation de capital suff-
isant imposé par le régulateur pour que l’assureur puisse continuer ses activités. Pour
déterminer ce taux, nous considérons les plus ou moins-values réalisées lors du rebal-
ancement du portefeuille ainsi qu’un taux concurrent en fonction de l’environnement
de taux actuel. Ensuite, la compagnie effectue un pilotage de ses plus-moins values
latentes pour atteindre son taux cible défini comme le maximum entre le taux de la
concurrence, le taux minimum garanti dans le contrat et la contrainte légale de par-
ticipation aux bénéfices additionnelle. Nous intégrons également l’option de rachat du
contrat par l’assuré en fonction des conditions de marché en supposant que le taux de
rachat augmente si le taux proposé par l’assureur est trop bas par rapport au taux de
la concurrence.
Dans la litterature, les modèles de gestion actif/passif sont souvent trop simplifiés pour
être exploités directement. La pratique courante est généralement d’utiliser des mod-
èles internes qui sont des "boîtes noires", dont les détails d’implémentation ne sont
pas communiqués. Une de nos principales contributions est de proposer un modèle



8

réaliste intermédiaire, dans le sens où il comprend les principales caractéristiques de
la gestion actif/passif (book value, market value, rachat dynamique,...), tout en étant
suffisamment tractable pour effectuer des simulations Monte-Carlo dans des études
ALM et servir de benchmark. Une originalité du modèle est qu’il intègre notamment,
une stratégie de couverture statique du risque de taux permettant d’analyser l’impact
du gap de liquidité entre flux de l’actif (revenus générés par les investissements) et
les flux de passifs (paiement des prestations). En particulier, nous considérons un in-
vestissement dans un panier d’obligations de maturités allant de 1 à n, le nominal de
l’obligation 1 an servant à couvrir les flux de rachats.
Le développement des normes règlementaires européenne post crise financière de 2008
ont ajouté un niveau de complexité supplémentaire dans les modèles ALM. La directive
Solvabilité II entrée en application en janvier 2016 cherche à s’assurer que le niveau de
fonds propre détenu par la compagnie d’assurance est suffisant par rapport au risque
pris par la compagnie. La nouveauté tient au fait que ce montant à immobiliser,
le capital de solvabilité requis (Solvency Capital Requirement SCR) tient compte de
l’allocation d’actifs de l’assureur. Sous l’ancien régime (Solvabilité I), le coussin de sécu-
rité mis en place pour faire face à des pertes exceptionnelles correspondait simplement
à un montant forfaitaire proportionnel aux dépôts des assurés, i.e un pourcentage de la
Provision Mathématique. La complexité additionnelle introduite par la mise en oeuvre
de SII tient à la nouvelle méthode de valorisation du bilan de la compagnie. Doréna-
vant, les actifs mais aussi les passifs de la compagnies doivent être valorisées en valeur
de marché. Toutefois, il n’existe pas de marché liquide pour le passif de l’assureur-vie
et la valorisation des postes du bilan passe par un "Best Estimate" des engagements
de la compagnie en utilisant un modèle. Ce Best Estimate des engagements corre-
spond à la valeur actuelle (espérance conditionnelle à l’information diponible) des cash
flows de passifs (paiement des prestations). Cette valeur est supposée correspondre au
prix qu’une tierce partie serait prête à payée pour racheter le passif dans un marché
sans arbitrage. Dans la vision Solvabilité II, le Best Estimate représente la dette de
l’assureur envers ses assurés. Les fonds propres de la compagnie sont alors donnés par
l’écart entre les actifs (valorisé en valeur de marché) et cette dette mesurée par le Best
Estimate. Cette valeur sert de référence pour le calcul du SCR. Pour l’évaluation du
SCR, l’EIOPA ( European Insurance and Occupational Pensions Authority) offre deux
possibilités. Soit calculer un quantile sur les pertes du portefeuille géré par l’assureur
soit utiliser une formule standard consistant en une succession de stress-tests appliqués
sur chaque classe d’actifs puis aggrégé via une matrice de corrélation fournie par le
régulateur.
La motivation initiale du modèle ALM que nous développons dans la première partie est
de pouvoir calculer le SCR en formule standard. A partir d’investigations numériques
dans le modèle nous calculons les modules du SCR dans différents environements de
taux et analysons l’impact du modèle de taux sur l’estimation finale du SCR. Notre
étude numérique conduit également à mettre en avant certaines faiblesses de la formule
standard, notamment des discontinuités dans la méthode d’aggrégation des risques qui
peuvent conduire à des manipulations. Par ailleurs, la formule standard repose sur des
variations de moyennes pre/post choc ignorant ainsi complètement le profil de la dis-
tribution des pertes. Nous montrons également les limites du recours à la valorisation
risque-neutre dans le calcul du capital. Enfin, nous abordons un problème fondamental
dans la gestion ALM à savoir la couverture du risque de taux par matching des flux et
comment le faire optimalement dans le modèle en minimisant le SCR. Nous comparons
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notre approche avec les outils standards d’adossement par la duration.
Dans le chapitre complémentaire de cette thèse, nous poursuivons nos investigations
numériques en comparant les écarts de charge en capital en utilisant les deux méthodolo-
gies de calcul du SCR (quantile et stress-tests). Nous continuous en montrant que le
modèle construit dans la première partie de cette thèse est suffisament flexible pour
tenir compte des évolutions potentielles de solvabilité II, motivé par la parution du
dernier document de consultation de l’EIOPA [EIOa]. Actuellement, les taux d’intérêts
utilisés pour valoriser les engagements de l’assureur dans le calcul du Best Estimate
sont déduit des prix de marché (swap, obligations d’états). Toutefois, pour des en-
gagements à très long terme, le marché n’est pas suffisament liquide et une méthode
d’extrapolation (Smith-Wilson) est utilisée pour projeter la courbe des taux sans-risque
après la dernière maturité observable ("Last Liquid Point" LLP) et obtenir une conver-
gence des taux d’intérêts vers un taux ultime ("Ultimate Forward Rate" UFR) qui est
un paramètre exogène fournit par le régulateur pour pallier le manque de données de
marché observables à très long terme. Cette "Courbe EIOPA" est un input essentiel du
modèle ALM car il sert de référence à la calibration du modèle de taux et des chocs de
la formule standard. En utilisant le modèle ALM, nous quantifions les impacts d’une
modification de ces paramètres règlementaire (LLP, UFR) sur les provisions techniques
et le Best Estimate.
Dans la seconde partie de cette thèse, nous nous intéressons aux enjeux computation-
nels introduits dans SII. Un problème ouvert dans l’industrie est de pouvoir calculer
efficacement le SCR à des dates futures. D’un point de vue règlementaire, l’ORSA
(Own Risk and Solvency Assessment) défini dans le deuxième pilier de Solvabilité II
invite les assureurs à évaluer leur besoin global de solvabilité sur tout un business plan.
Cela requiert non seulement le calcul du SCR à horizon 1 an mais aussi à des dates
futures (SCRt+1, SCRt+2, . . .). Par ailleurs, le calcul du coût de capital correspondant
au montant que devra immobiliser l’actionnaire pour pouvoir continuer son activité
est un critère important pour déterminer une allocation optimale d’actifs sur les fonds
euros, l’idée étant de vérifier si les revenus futurs sont en adéquation avec les attentes
de l’actionnaires en terme de coût de capital. Mentionnons également des applications
au pricing de produits d’assurance-vie. Avant de lancer un nouveau produit, l’assureur
doit évaluer sa rentabilité par rapport au besoin en capital généré par ce nouveau busi-
ness. Actuellement, la valorisation des SCR futurs font l’objet d’estimations grossières
à partir du SCR0.
L’objectif de la seconde partie de ces travaux de thèse est de proposer des méthodes
numériques efficaces pour le calcul du SCR sur un horizon de temps pluriannuel. Con-
crètement, l’application de la formule standard nécessite la simulation (historique)
d’environnements économiques jusqu’à la date t puis d’appliquer les différents chocs
sur le portefeuille pour chacun des scénarios de marché. Toutefois, la valorisation du
portefeuille de l’assureur pour chaque scénarios nécessite elle même le recours à des
simulations car la complexité du modèle ALM ne permet pas de disposer de formules
fermées. La complexité de calcul réside dans l’imbrication des simulations appelé "sim-
ulation dans les simulations".
Des méthodes numériques efficaces pour le calcul du SCR reposent généralement sur des
méthodes de regression type Least-Square-Monte-Carlo (LSMC) ou Replicating Port-
folio qui représentent les standards de l’industrie. Cette famille de méthode propose
d’approcher l’espérance conditionelle en procédant par des régressions par moindres
carrées basées sur un très faible nombre de simulations secondaires. Le portefeuille
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de l’assureur est alors approché par une combinaison linéaire de fonctions de base
(LSMC) ou encore les cash flow de passif sont "répliqués" par des produits vanille dont
l’espérance conditionelle est calculable par formule fermée. Les avancées récentes dans
le domaine de la data science ont montré que les approches de type deep learning basée
sur des réseaux de neurones peuvent être efficaces pour approcher des fonctions non-
linéaire en grande dimension.
Dans le contexte assurantiel, la sélection de variables explicatives pertinentes dans la
prédiction des valeurs futures du portefeuille, le choix des produits dérivés dans la
construction du portefeuille répliquant comportent des problèmes opérationnels ma-
jeurs pour les compagnie d’assurance. La recherche actuarielle récente s’intéresse à
l’utilisation des réseaux de neurones pour surmonter le fléau de la dimension et la dif-
ficile étape de sélection de variables des approches par régression "classique".
Dans le chapitre 4 de cette thèse, nous appliquons la méthode Multilevel Monte-Carlo
(MLMC) dévelopée par Giles [Gil08] pour le calcul du SCR sur plusieurs pas de temps.
Le principal intérêt de cette approche est de réduire le temps de calcul sans avoir recours
à une quelconque forme d’extrapolation ou approximation fonctionnelle, mais plutôt en
s’appuyant sur une allocation "intelligente" du budget de simulation. A notre connais-
sance, il n’existe aucune application de cette méthode dans le cadre du calcul de capital
en assurance et nous contribuons à la littérature sur le sujet. Cette méthode basée
sur une décomposition des espérances imbriquées comme somme téléscopique propose
d’allouer le budget de simulations sur plusieurs niveaux et de répartir les simulations
primaires et secondaires de façon à atteindre une précision fixée. La calibration des
paramètres de l’algorithme nécessite de résoudre un problème d’optimisation sous con-
trainte afin d’atteindre le meilleur trade-off bias (erreur induite par la deuxième couche
de simulation)/variance (erreur statistique induite par le Monte-Carlo primaire).
D’un point de vue théorique, nous améliorons un résultat de Giles et Goda [GG19]
sur le sujet. Plus particulièrement nous proposons un développement du biais et de la
variance pour l’estimateur MLMC associé au maximum de plusieurs espérance condi-
tionnelles. Mathématiquement, cela revient à estimer une espérance de la forme:

I = E
[
max{E[Y 1|X], . . . ,E[Y P |X]}φ(X)

]
où φ(X) représente un changement de probabilité entre univers historique et risque-
neutre. Ce type de problème se retrouve également lorsque l’on cherche à estimer
le choc le plus sévère sur un portefeuille financier. L’originalité de ce cadre d’étude
où la régularité de la fonction payoff est intermédiaire (plus régulière qu’une indica-
trice mais moins régulière qu’ue fonction de classe C2 complémente les investigations
de [BDMGZ20] sur le sujet. Notre cadre d’étude remplace des conditions techniques
difficile à vérifier dans [GG19] pour s’assurer que plusieurs espérance conditionelles
ne sont pas trop proche du maximum simultanément par une condition d’intégrabilité
impliquant un paramètre η ∈ [0, 1) offrant une flexibilité supplémentaire pour la cal-
ibration pratique des paramètres de l’estimateur MLMC. Par exemple, dans le cas
où l’on considère le maximum entre deux chocs, problème qui intervient notamment
dans le calcul du module taux d’intérêt de la formule standard, cette condition revient
essentiellement à la condition d’integrabilité suivante:

E
[

1
|E[Y 2|X]− E[Y 1|X]|η

]
< +∞
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Ce paramètre η ∈ [0, 1) apparaît naturellement pour avoir une intégrale de Rie-
mann convergente au voisinage de 0, mettant en évidence la singularité se produisant
lorsque plusieurs éléments sont proche du maximum.
L’autre contribution de la seconde partie de ces travaux de thèse est d’appliquer la
méthode MLMC dans le modèle ALM qui intègre les principales caractéristiques de
l’assurance-vie. En particulier, la complexité de la gestion ALM (book values, mé-
canisme de participation aux bénéfices, taux minimum garanti...), implique une path-
dependence rendant les méthodes de regressions particulièrement difficile à mettre en
oeuvre (fléau de la dimension). L’estimateur MLMC évite la question de la regression et
fournit un estimateur visant une précision ε avec une complexité en O(ε−2), autrement
dit aussi efficace asymptotiquement qu’un Monte-Carlo classique où l’espérance condi-
tionelle serait connue par formule fermée.
Par ailleurs, nous comparons les performances de l’estimateur MLMC avec l’approche
LSMC et réseaux de Neurones, et montrons que même si les réseaux de neurones per-
mettent de diminuer l’erreur d’approximation observée en utilisant l’approche LSMC
avec selection de features, l’approche par réseaux de neurones nécessite de stocker
le jeu d’entraînement et d’entraîner le réseau (optimisation par descente de gradi-
ent) dont le temps de calcul est croissant avec le nombre de simulations primaires.
L’approche MLMC présente le net avantage de ne pas stocker de données et d’éviter
l’étape d’apprentissage. Ceci est particulièrement intéressant pour le contexte de la
gestion ALM qui fait intervenir tout l’historique de gestion (book values, différentes
réserves...). Enfin, la regression sur un faible nombre de variables explicatives induit
automatiquement une perte d’information. L’estimateur MLMC en revanche converg-
era toujours asymptotiquement vers la vraie valeur.
Nous appliquons ensuite la méthode MLMC pour projeter les SCR futurs jusqu’à t = 15
ans dans nos applications numériques et nous analysons l’impact du changement de
probabilité entre univers historique et risque-neutre sur chaque module des SCR futurs
calculés en formule standard.
Nous terminons par une analyse sur le rôle des chocs de taux d’intérêt sur le SCR pro-
jeté sur plusieurs pas de temps. Nous montrons en particulier que le choc à la hausse
des taux d’intérêts produit un effet "court terme" de baisse immédiate de la valeur de
marché du portefeuille alors que sur le long terme, le réinvestissement du nominal à
des taux de coupon plus élévés devient profitable pour la compagnie d’assurance. Le
choc à la baisse des taux produit l’effet inverse, puisque l’assureur dispose de plus-
value latente grâce au choc. Toutefois, il devra reinvestir ses obligations à un taux de
rendement plus faible: C’est donc un "’effet délétère à long terme". Ainsi, lorsque le
SCR est calculé à des dates t de plus en plus lointaines, l’effet "court terme" devient
dominant pour expliquer les variations de valeur du SCR.



12

List of publications
Here is a list of articles (accepted or submitted) that were written during this thesis:

- [ACIA20a](with Aurélien Alfonsi and Jose Arturo Infante Acevedo) A synthetic
model for asset-liability management in life insurance, and analysis of the SCR
with the standard formula (published in European Actuarial Journal,(2020)).

- [ACIA20b] (with Aurélien Alfonsi and Jose Arturo Infante Acevedo) Multilevel
Monte-Carlo for computing the SCR with the standard formula and other stress
tests (submitted).



CONTENTS

1 Introduction 15
1.1 Overview of the insurance sector . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Distinction between Banks and Insurance . . . . . . . . . . . . . 16
1.1.2 The Solvency II regulatory framework . . . . . . . . . . . . . . 17
1.1.3 An historical accounting scheme and a market consistent valua-

tion of the balance sheet . . . . . . . . . . . . . . . . . . . . . . 19
1.1.4 Practical issues of market consistent valuation of assets and lia-

bility in insurance . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.5 The Solvency II balance sheet . . . . . . . . . . . . . . . . . . . 21
1.1.6 Standard Techniques to monitor Asset and Liabilities interactions 23
1.1.7 Literature review on ALM model . . . . . . . . . . . . . . . . . 23

1.2 A synthetic model for the ALM . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Numerical methods for the computation of the SCR . . . . . . . . . . . 27

1.3.1 Nested Simulation Framework . . . . . . . . . . . . . . . . . . . 28
1.3.2 Nested Monte-Carlo Estimator . . . . . . . . . . . . . . . . . . . 29
1.3.3 Real world vs Risk neutral probability measure in the NS setting 30
1.3.4 Machine Learning Regression based Methods . . . . . . . . . . . 30
1.3.5 Allocation Strategies Based on fixed Computational Budget . . 32

1.4 MLMC for the computation of future SCR and other stress-tests . . . . 37

I Asset and Liability Modeling in the Solvency II Frame-
work 41

2 A synthetic model for Asset-Liability Management in life insurance 43
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 The ALM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Main variables and portfolio initialization at time t = 0 . . . . . 47
2.2.2 Reallocation, claim payment and margin at time t ∈ {1, . . . , T −1} 49
2.2.3 Closing of the strategy at time T . . . . . . . . . . . . . . . . . 59
2.2.4 Overall performance of the ALM . . . . . . . . . . . . . . . . . 60
2.2.5 Solvency Capital Requirement of the ALM with the standard

formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3 Asset Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



14 CONTENTS

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.1 Analysis of the SCR with the standard formula . . . . . . . . . 70
2.4.2 SCR for some dynamic allocation strategies . . . . . . . . . . . 73
2.4.3 Study of the cash flow matching . . . . . . . . . . . . . . . . . . 73
2.4.4 Impact of mortality risk on the cash flow matching . . . . . . . 77
2.4.5 Analysis in a low interest rate framework . . . . . . . . . . . . . 78

3 Further Numerical investigation on the ALM model 81
3.1 Solvency Capital Requirement: the quantile formulation . . . . . . . . 82
3.2 EIOPA’s construction of the interest-rate curve . . . . . . . . . . . . . 83

3.2.1 Ultimate Forward Rate (UFR) . . . . . . . . . . . . . . . . . . . 84
3.2.2 Last Liquid Point and Convergence Period . . . . . . . . . . . . 84
3.2.3 The Smith-Wilson model . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Numerical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.1 Smith-Wilson Model Calibration Result . . . . . . . . . . . . . . 87
3.3.2 Comparison of the SCR formulas . . . . . . . . . . . . . . . . . 89
3.3.3 Impact of the UFR level on the SII balance-sheet . . . . . . . . 89
3.3.4 Impact of the LLP on the SII balance sheet . . . . . . . . . . . 92

II Numerical Methods for Nested Simulation: Application
in ALM model 95

4 MLMC for the Computation of future SCR 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Mathematical analysis of Monte-Carlo estimators of I . . . . . . . . . . 102

4.2.1 Nested Monte-Carlo estimator . . . . . . . . . . . . . . . . . . . 102
4.2.2 The Multilevel Monte-Carlo estimator . . . . . . . . . . . . . . 105
4.2.3 Least-Square Monte Carlo techniques for Nested Expectations . 108
4.2.4 Numerical results on a toy example: the Butterfly Call Option

with the Black-Scholes model . . . . . . . . . . . . . . . . . . . 111
4.3 Calculation of the SCR with the Standard Formula in an ALM model . 113

4.3.1 The ALM model in a nutshell . . . . . . . . . . . . . . . . . . . 113
4.3.2 The Solvency Capital Requirement with the standard formula . 116
4.3.3 The stock and short-rate models . . . . . . . . . . . . . . . . . . 117
4.3.4 Numerical experiments I: comparison between methods to calcu-

late E[SCRint
t ] . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.5 Numerical experiments II: some insights on the ALM . . . . . . 124

A Technical proofs 129
A.1 Technical proofs for Theorems 4.1 and 4.9 . . . . . . . . . . . . . . . . 129

A.1.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.1.2 Nested Monte-Carlo estimator . . . . . . . . . . . . . . . . . . . 130
A.1.3 Antithetic MLMC estimator . . . . . . . . . . . . . . . . . . . . 132



CHAPTER 1
INTRODUCTION

Contents
1.1 Overview of the insurance sector . . . . . . . . . . . . . . . 16

1.1.1 Distinction between Banks and Insurance . . . . . . . . . . . 16
1.1.2 The Solvency II regulatory framework . . . . . . . . . . . . . 17
1.1.3 An historical accounting scheme and a market consistent val-

uation of the balance sheet . . . . . . . . . . . . . . . . . . . 19
1.1.4 Practical issues of market consistent valuation of assets and

liability in insurance . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.5 The Solvency II balance sheet . . . . . . . . . . . . . . . . . . 21
1.1.6 Standard Techniques to monitor Asset and Liabilities inter-

actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.7 Literature review on ALM model . . . . . . . . . . . . . . . . 23

1.2 A synthetic model for the ALM . . . . . . . . . . . . . . . . 24
1.3 Numerical methods for the computation of the SCR . . . 27

1.3.1 Nested Simulation Framework . . . . . . . . . . . . . . . . . . 28
1.3.2 Nested Monte-Carlo Estimator . . . . . . . . . . . . . . . . . 29
1.3.3 Real world vs Risk neutral probability measure in the NS

setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.4 Machine Learning Regression based Methods . . . . . . . . . 30
1.3.5 Allocation Strategies Based on fixed Computational Budget . 32

1.4 MLMC for the computation of future SCR and other
stress-tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



16 Chapter 1. Introduction

1.1 Overview of the insurance sector
Life insurance companies and pension funds are major institutional investors providing
funding and financing the economy. In France and United Kingdom, policyholders’
deposits on life insurance saving account exceed bank deposit (source: [Dam13] ). Ac-
cording to the ACPR, Autorité de contrôle prudentielle et de résolution (the French
supervision authority for banks and insurance companies), French life fund outstanding
represent 1700 billion euros in 2018. Much of this funding (around 80%) goes to denom-
inated saving contracts in euros (source : [Her19]). Insurance Firms use these funds to
make large scale investment in the debt market (sovereign and corporate debt), stock
market and real estate. At the end of 2014, insurance companies and pension funds
accounted for 41% of the outstanding amount of euro area sovereign debt held by euro
area resident (source :[DSS17]). Within the life insurance business, more than 80% of
premiums come from traditional saving account, whose risk is born by the insurance
company whereas the remainder come from unit-link securities which risk is born by
policyholders (source: Berdin et al. [BKP16]). Hence, traditional savings still play a
prominent role in the life insurance landscape and will be the primary focus of this the-
sis. Saving contracts are nonetheless, particularly complex products because of several
embedded options (minimum guaranteed rate, profit-sharing participation,...) as well
as legal constraints that make the valuation of these contracts particularly challenging.
The great complexity of these products as well as the lack of convergence with banking
regulation (Basel settlement) lead to adapt the prudential regulatory framework to
take into account the risk profile of the company and protect the policyholder against
the risk of an insurers’ bankruptcy. The European Solvency regime for the insurance
sector, Solvency II, while providing strong similarity with banking regulation (Basel
II/III) with a pillar approach and risk-based capital differ from the banking pruden-
tial scheme since the primary focus is to protect the policyholders against an isolated
bankruptcy of the insurance company, by enhancing financial stability of insurance
companies with an incentive to harmonize insurance legislation across EU and increase
competition and transparency [Hör13]. It does not make a particular emphasize on
systemic risk and contagion effects, which became the primary focus of Basel III set-
tlements in response to the financial crisis of 2007/2008 (see [GW12] for a comparative
study of banking and insurance European regulation). Indeed, according to [LR04] ,
insurance companies are much less interdependent unlike the banking sector and its
high liquidity need. Actually, banks and insurance companies have different economic
model and plays a different function in the economy.

1.1.1 Distinction between Banks and Insurance

Insurance core business is to allow risk transfer from one party (the insured) to an-
other (the insurer) and minimize those risks using mitigation techniques, spreading
risk among individuals that face similar exposure. In a sense, insurers transform a
risk from a single individual to one collectively supported by a large number of poli-
cyholders. The policyholder is prepared to pay the smaller premium in exchange for
protection in case of unfavorable event. There is also additional functions for life in-
surers since they provide a long-life income stream which is at least partly guaranteed
but also investment related solution (variable annuities) for those willing to accept
a higher degree of risk. The business is characterized by a reverse production cycle
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since insurance companies receive payment for a service before having to provide it. In
some sense, life insurance companies borrow money from policyholders’ deposits and
invest these amounts in long term assets. Usually, several years may pass before the
insurance company pays a claim, since fiscal and tax regime make insurance policies
advantageous after a certain time elapsed before the inception of the contract. Banks
however differ substantially by the maturity of investment, their funding opportunities
and risk profile (see [GW12] and [CHGJM15]). The core activity of the bank is to act
as intermediary between savers, who need to deposit money in accessible account and
borrowers seeking for loans. In a way, banks correct the mismatch between lender and
borrowers by engaging in maturity transformation. The typology of risk between the
banking and insurance and their role in the economy while bearing some similarities
differ quite substantially and has shaped the post-crisis regulatory landscape of both
sectors. Insurance companies are exposed to market-risk via the investment of policy-
holders deposit in the financial market but also non-financial risk (mortality, longevity
risk,...). The main objective of the ALM risk management of the insurance is to handle
the mismatch between assets and liabilities by ensuring that the values of assets that
backed the technical provisions are fully synchronized. This is the reason why ALM
focuses on duration and cash flow matching. Banks while still exposed to market risk
(change in financial variable) are heavily exposed to credit-risk (the risk that a borrower
do not repay its loan) and liquidity risk (the risk that an asset cannot be sold quickly).
Assets of a bank consist mostly of long-term loans which cannot be transformed into
cash instantaneously whereas most deposit can be withdrawn immediately, which ex-
poses banks to liquidity risk. Hence banks needs to lend or borrow money from other
bank via the interbank market which is at the heart of the interconnection in the bank-
ing sector and is the primary focus of Basel settlement. In contrast, the liquidity risk
is not much a concern in the insurance sector because they have access to a stable flow
of cash income (premiums, maturing assets and investment income). Moreover, the
counterpart of the interbank market do not exist in the insurance sector which limits
the contagion effect of liquidity issues of an insurance company to the whole financial
system. Eventually, the role both sectors have in the economy is also quite different
and shed some light to the paths that led to the Solvency II regulation that we will
describe in the next section. Insurance firms, needs to invest the cash inflows of premi-
ums to pay claims. They provide funding for government, business through investment
in sovereign, corporate bonds and equity in financial markets. From a macroeconomic
point of view, banks are the main channel for the transmission of the monetary policy
of the central bank.

1.1.2 The Solvency II regulatory framework

Let us now describe, in more detail the regulatory framework specific to the insur-
ance sector that constitute the ground basis of this thesis and motivates the need
of advanced mathematical models used in risk management and ALM department
of insurance companies. The Solvency II directive, that entered in force in January
2016 is the new supervisory framework for insurers and reinsurers in Europe. Its pri-
mary focus is to correct weaknesses of the previous solvency regime, among them the
lack of risk sensitivity, lack of convergence with banking regulation (Basel settlement)
and International standards (IASB/IFRS). It also aims at harmonizing the regulation
among member states. The implementation of the reform was preceded by a series
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of Quantitative Impact Studies (QIS) carried out by the former insurance supervisor
CEIOPS: Committee of European Insurance and Occupational Pensions Supervisors,
now EIOPA: European Insurance and Occupational Pensions Authority) from 2005.
The new regulatory framework puts demand on the economic capital (the Solvency
Capital Requirement (SCR)) to ensure that the insurance company is able to meet
its financial claim. One of the major change is the transition from a static-rule based
capital requirement to a risk based capital charge. In the former Solvency regime, the
basic formula for the required capital was a function of the premiums independently
of the assets allocation: it targeted only the liability side of the balance sheet without
taking into account the interaction between assets and liabilities. The directive share
some similarity with the banking sector (Basel settlement) since it is based upon a 3
pillar approach. It is not coincidental, since the first stage of development of the SII
directive took place during the period 2001 to 2003, coinciding roughly to the construc-
tion of the Basel II settlement in the banking sector. The first pillar tackle quantitative
requirements and introduce two major innovations in the actuarial landscape : Market-
consistent valuation of the insurer balance-sheet and risk-based capital requirements.
There are two capital requirements the SCR is the key solvency control metric for
the insurance company, the Minimal Capital Requirement is a lower requirement that
trigger the supervisory intervention, if the capital fall below this level. The second pil-
lar deals with qualitative requirements such as governance system covering Enterprise
Risk Management, internal control and compliance. It also introduces as part of the
overall internal Risk Management process the overall solvency need in an Own Risk and
Solvency Assessment (ORSA) which complements qualitative requirements of Pillar 1
and is designed to provide the insurer and its stakeholder information on the risk they
are exposed over a multi-year time frame horizon. More importantly it requires the
computation of a multi-year solvency constraint (multi-year SCR) with respect to the
firm’s risk appetite (Vedani et al. [VD12]). The computational challenges introduced
by the multi-year solvency constraint will be the main concern of this thesis. The
third pillar cover supervisory reporting and disclosure (see [San16] for a detail study
of the European Solvency System). For the computation of capital requirement, the
regulator sets out two methods: a standard formula based on stress-tests on several
risk modules (interest-rate risk, equity risk, spread risk...) and an internal model ap-
proach based on a quantile of the one-year loss distribution of the insurers’ portfolio
at a 99.5% confidence level). In the standard formula approach, the change in the own
funds of the company after marginal shocks determine the necessary amount to hold
the shock. Once the capital charge of each individual modules have been computed,
they are combined into an overall SCR according to a specific aggregation formula (see
[BSS15],[Bol]) for specific details on the standard Formula). The correlation param-
eters are provided by the supervision authority (EIOPA). The standard formula has
been adopted by medium size player of the insurance sector despite its simplified as-
sumption. A possible explanation lies in the difficult validation process of a full internal
model approach that requires the approval of the regulator and the fact that the imple-
mentation of such model is costly and complex. In practice, insurance companies may
adopt a partial internal model that substitutes the standard formula for the calculation
of a particular risk module. Let us mention that risk modules for non-financial risks
(mortality risk,...) do exist and enter in the computation of the Standard formula. In
this thesis, we will only focus on the market-risk module.



1.1. Overview of the insurance sector 19

1.1.3 An historical accounting scheme and a market consistent
valuation of the balance sheet

Even though Solvency II aimed at harmonizing valuation methodologies accross EU, the
plurality of local regulatory requirements and prudential schemes introduces significant
differences between countries even though they basically sale the same products (see
[RBB+18]) . In particular, it still remains continuation of different valuation techniques
among member states namely book or market values accounting. In fact, insurance
companies now have to deal with the simultaneous existence between two distinct
valuation regime. The book value accounting scheme is based on historical costs. It is
necessary to comply with local accounting benchmark called nationalGAAP (Generally
Accepted Accounting Principles). In this regime, asset investments are recorded at
their purchase price or amortized value for bond product. Even for solvency purposes
historical costs accounting is necessary to compute gains or losses, monitor hidden
losses (that enter in the profit distribution mechanism of saving participating policies
for instance). The market-value accounting scheme tries to align the insurance balance-
sheet item with the notion of fair-value. It introduces the risk-neutral valuation in
actuarial models. The idea is the following: in order to assess the solvency situation,
insurers needs to value their assets and liability based on objective datas. Each actor
of the financial sector must have access to the same information which are provided
by financial market data. For liquid asset, quoted market prices are available and the
asset value of the company are provided by the market, they are "marked-to-market".
However, insurance liability are not traded, and there is no liquid market for insurance
liability. In that case prices are unknown. To value these technical reserve a "best
estimate" based on the available information require to use a model. The modeled
value is called "marked-to-model". The best estimate of liabilities (BEL) corresponds
to the expected present value of future liability cash flows and is supposed to reflect the
price of a third party that will be willing to pay to take over the insurer commitments
on an arbitrage-free market. The conceptual background lies in arbitrage and option
pricing theory. Because of embedded options (surrender option, minimum guaranteed
rate) the liability portfolio can be valued as any other derivative security. In a complete
market, any payoff can be perfectly hedge by a self-financing portfolio. The amount
needed to initiate the hedging strategy is the market price of the liability claim payoff.
Under the fundamental theorem of asset pricing, in an arbitrage-free market, it exists
a unique probability measure, the risk-neutral measure under which discounted payoff
and price processes are martingales.

1.1.4 Practical issues of market consistent valuation of assets
and liability in insurance

The market consistent valuation of an insurer portfolio, taking into account every fi-
nancial guarantee, discretionary rules, bonus mechanism and investment strategy is a
complex task that cannot be performed by closed-form solutions and requires the use
of Monte-Carlo simulations. Economic Scenario Generator (ESG) are used to produce
simulations of financial variables (stock index, interest-rate, credit spreads,...). These
scenarios are inputs for Asset and Liability Management Models (ALM) that are used
to value the balance-sheet items of the company. The Solvency Capital assessment
require the integrated use of both real-world scenarios and risk-neutral "pricing scenar-
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ios". Indeed, the SCR estimation consist of computing a risk measure on the insurers’
portfolio loss over a given time horizon. Real world scenarios are used to forecasts
an economic environment consistent with empirical facts observed in historical finan-
cial data. Risk-Neutral scenarios purpose is to provide an insurers’ portfolio valuation
consistent with the market price of derivative securities (pricing objective). Among
practical difficulties introduced by the market consistency is the double constraint im-
posed on risk neutral ESG to be both calibrated to market prices at the evaluation
date and to reproduce the term structure of interest-rate. More specifically, the com-
putation of technical provisions require to discount cash flows over long maturities
where no market data are available. The EIOPA provide a regulatory zero-coupon
curve for a wide range of currency. The financial instruments selected to construct
the risk free curve are interest-rate swaps and provided by Bloomberg. An interpola-
tion method (currently Smith-Wilson) is used to project the risk-free curve after the
Last-Liquid-Point-LLP, (i.e the last observable data point) to make the rate converge
toward an "Ultimate-Forward-Rate" (UFR) which is an exogenous parameter set to
deal with the lack of liquidity of swap rates for long maturities and the necessity for
insurers to project cash flow over very long maturities (up to 150 years!). This pa-
rameter corresponds to the sum of the long-term averages of past real rates and the
inflation target of the European Central Bank. In the Euro zone, it is assumed that
the last liquid point is 20 years. Beyond, it is necessary to extrapolate to converge
after 40 years to the UFR, so that, at the end of the convergence period (60 years), the
one-year forward rate has converged to the UFR. On top of that several adjustments
are considered when the risk-free curve is constructed, among them the Volatility ad-
justment (VA) and Credit Risk Adjustments (CRA). The VA is applied to mitigate
the effect of short-term volatility of corporate bond spread on the insurer’s economic
own funds: the relative value of high quality corporate bonds can fall importantly
compared with Government bond as investors demand more compensation for taking
the liquidity risk (as in the 2008 crisis). Consequently, the insurance company may
appear to have insufficient capital since the market value of its assets has decreased
compared to its liability, but it might not be a problem since life insurance firms buy
and hold bonds on long-term horizon, so loss of capital need not to be realized until
bonds actually default. The CRA reflects the credit-risk contained in the swap-rate
and act at a parallel downward shift of the market rates observed for maturities up
to the last liquid point to make the curve "risk-free". In this thesis, we will not deal
with this adjustment. We refer to [EIOb] for a detail description of EIOPA methodol-
ogy to construct the regulatory yield-curve. The ability of the ESG model to satisfy
the market-consistency constraint lead to an overcomplexification of financial models
used in the Insurance sector (LMM++, G2++, Black-Karasinski...) leading to several
calibration issues [VEKLP17]) and a growing literature on fair valuation of insurance
contracts under Solvency II regime ([GCFG19],[AP19],[Var11]). More generally, the
use of risk-neutral valuation and fair-value suffers from several criticism as pointed
out by [VEKLP17] and [Thé16]. Notably, insurer uses economic valuation for solvency
purposes and not for hedging. They compute capital requirement only one or two
times per year. Moreover, they do not hedge their liability they mitigate their risk. In
addition some risk factors are not financial risks (mortality, lapses...) and a large range
of insurance risks cannot be fully hedged. Therefore, the choice made by the regulator
to use the risk-neutral valuation for the SCR is questionable. We will use it however
in this thesis. Nevertheless, since we are interested in by the calculation of the SCR
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at in the future at time t = 1, 2, . . . , T we will need to handle the portfolio under both
historical and risk-neutral probabilities, respectively before and after time t.

1.1.5 The Solvency II balance sheet
We now introduce in more details a (simplified) market value balance sheet of an
insurance company under the Solvency II valuation scheme. Figure 1.1 depicts the
market-value balance sheet at time t. On the left-side MVt correspond to the assets

Assets Liabilities
MVt NAVt

RMt

BELt

Table 1.1 – SII Market-
Value Balance-sheet

of the company: all income cashed in by the firm (policyholders premiums...) are
invested in financial instruments (bonds, stock,real estate...) where market values (i.e
quoted prices) are available. The insurer now owns the customers money which creates
a liability for the company. SII regime assume that the company must be in run
off situation: to estimate the overall debt of the company, no future new business is
taken into account (for instance new policyholders entering the fund), the company
stops selling new contracts and we derive the liability towards the current client in the
insurers’ portfolio.

Best Estimate of Liabilities

The largest liability item is the Best Estimate of Liabilities (BEL). It is computed as
the present-value of future cash outflows of the company. Suppose that the company
activities are monitored each year t = 1, . . . , T where T is the so-called projection
horizon. For savings portfolio, T can be very large (up to 60 years). Denote (Lt)t≤T
the liability cash outflows that occurs at each year t (insurers claim payment...). Let
(Ω, (Ft)t≥0,Q) a filtered probability space where Q is the risk-neutral pricing measure.
Assuming that the company rely on a market consistent short-rate model (rt)t≥0 (i.e
calibrated on both the EIOPA regulatory zero-coupon curve and market prices), the
mathematical expression for the Best Estimate is

BELt = E
[
T∑
u=t

e−
∫ u
t
rsdsLu

∣∣∣∣∣Ft
]

(1.1.1)

Risk Margin

In technical document of the European Commission EIOPC/SEG/IM13/2010 (see also
Möhr [Möh10]) the risk margin corresponds to the cost of providing an amount of
eligible own funds to support the insurers obligations. More specifically, it represents
the theoretical compensation for the cost of providing future regulatory requirements.
From a shareholder standpoint, at t = 0, SCR0 is the amount the shareholder needs
to immobilize in order to pay the liability in unfavorable situations. At t = 1, the
insurers pays the expected return γ and lends from him SCR1 to continue to exercise
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its business. The procedure is repeated until the end of the business activity (time T ).
Denote PV (x) the present-value of the future cash flow x, the mathematical expression
for the risk-margin is given by:

RM = SCR0 + PV
(

T∑
t=1

SCRt − γSCRt−1

)
= (1− γ)PV

(
T−1∑
t=0

SCRt

)
(1.1.2)

The factor 1− γ is called Cost of Capital rate (CoC) and represent the cost of locking
future capital in a risk-free asset rather than just being able to invest it in any other
asset classes. In Directive 2009/138/EC CoC is constant and fixed at 6%. As suggested
in (Möhr [Möh10]) the present value is replaced by the expected discounted costs of
future required capital E[e−

∫ u
t
rsdsSCRu|Ft] which leads to the following expression

RMt = CoC × E
[
T∑
u=t

e−
∫ t
u
ruduSCRu

∣∣∣∣∣Ft
]

(1.1.3)

where SCRt denote the capital requirement for the period [t, t + 1) The projection of
future SCR is particularly challenging and even the computation of SCR0 is demanding
since it involves nested simulation. The computation of future SCR will be the main
focus of the thesis. Today, the projection of future SCR is an open problem in term
of computation time. Currently, the supervisor allow simplifications and assume that
future SCR are proportional to future Best Estimate. This assumption means basically
that the amount to hold to be solvent is a fraction of the insurer’s best estimate of its
current debt/commitments towards its customers.

Net Asset Value

The sum RM + BEL correspond to the overall insurers debt and is usually called
Technical Provisions. The difference

NAVt = MVt − (RMt +BELt) (1.1.4)

correspond to the own funds of the company. The company is declared insolvent if
NAVt becomes negative as the value of its assets are lower than its technical provisions.
A comprehensive introduction to the SII balance-sheet is provided in [Bol].
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1.1.6 Standard Techniques to monitor Asset and Liabilities
interactions

According to [EIOc],[BGK17], a representative European life insurer typically sells
traditional savings contract and invest the main part of policyholders’ deposits in debt
and other fixed income securities (91%), 56,7% of which is invested into sovereign
bonds. Hence, the main financial risk is the interest-rate risk. Only 9% of the portfolio
is invested in equity product (stocks and real estate). The following figure provide the
balance-sheet structure of a representative European life insurer based on [EIOc].

Real Estate
3.4%

Sovereign Bonds
56.7%

Stock
5.6%

Corporate Bonds
34.3%

Figure 1.1 – Asset allocation of a representative European Life insurer source: EIOPA
[EIOc] and Berdin et al. [BGK17]

Given the fact that bond products dominate the overall asset allocation of a life in-
surer, asset and liability management techniques (ALM) are important tools to manage
the interest rate risk and to monitor the liquidity risk stemming from mismatches be-
tween cash inflows (coupon payments, rent, dividend...) and outflows (claim payment).
The concept of duration, convexity and immunization are the fundamental instruments
in ALM. Immunization methods and gap analysis aims at controlling the cash flows
adjustment. Duration and convexity indicator measure how change in interest-rates
affects the market values of assets and liabilities. For a first introduction of ALM
techniques in the actuarial literature we refer to [Fer83].

1.1.7 Literature review on ALM model
As the interest rate risk represents one of the main risk in the ALM, much of the existing
literature focused on interest rate sensitivity of insurance product and their impact on
the additional distribution mechanism. Brys and De Varenne [BdV97] construct an
ALM framework in which policyholders receive a minimum guaranteed rate plus a
participating bonus on top of that, computed as a fraction of excess return generated
by the portfolio. The model is then used to analyze the risk exposure of the company
with respect to the duration of the liability. Grossen and Jørgensen [GL00], Milterssen
et al. [MP03] further investigates the bonus declaration scheme by introducing a policy
reserve (similar to the mathematical reserve) and a bonus account which serves as
a buffer to smooth future profits. The so-called average interest principle (see also
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Zaglauer et al. [ZB08]) aims at building up reserves in years of good returns while
providing stable crediting rate to policyholders in bad years. Kling et al. [KRR07]
analyze also different bonus allocation scheme to reduce the the shortfall risk of the
insurance company.

Surrender and mortality effects are analyzed in Albizzati and Geman [AG94] and
Gatzert [Gat08]. The former proposes a model framework to assess how changes in
interest rate poses a major threat for insurers that provide a surrender option in their
participating policy. The latter shows also that early death or surrenders are signifi-
cant drivers of an insurers default probability. These frameworks examine separately
some particular features of life insurance contracts but not the joint effect of con-
tract parameters. Bauer et al. [BKKR06] investigate the fair valuation of participating
contracts under German regulatory regime and integrate in the modeling some im-
portant accounting rules for building or liquidating legal reserves. They show that
this mechanism has a significant impact on the fair value of the contract. They in-
clude management decisions under legal constraints and provide sensitivity analysis of
model parameters. Fair valuation of insurance contracts are also the main focus of
the framework developed by Ballota et al. [BHW06], Bacinello [Bac01], Tanskanen et
al. [TL03]. Schmeisser and Wagner [SW12] proposes a model to evaluate the impact of
the asset allocation and interest rate level on the solvency situation. They show that
when bond portfolio returns gets closer to the guaranteed rate, the own-funds of the
company approaches zero which threaten the solvency situation. Simple ALM models
are also described in Bauer et al. [BRS12] and Floryszczak et al. [FCM16]. These are
very simplified model used as benchmark to investigate the computational challenges
of Nested simulation in the SII regime.

While most of the literature focuses on single policy contracts, Gertzner & al
[GGH+08] provide a full balance sheet model incorporating a pool of non-homogeneous
contracts. They construct a general setting incorporating a bonus allocation scheme,
dynamic allocation and stochastic market model. They study the behavior of balance
sheet items w.r.t mortality and surrender effects associated to different pool of con-
tracts called model points. Berdin and Gründl [BG15] provides a more realistic ALM
framework by incorporating a distinction between book and market values. They also
take into account an existing stock of saving products called legacy business with dif-
ferent minimum guaranteed rate. They worked under the accounting scheme in force
in Germany and investigate in two series of papers ([BG15] and [KBG19]) the impact
of low (resp. high) interest rates on the insurers’ solvency.

1.2 A synthetic model for the ALM
We now present the contribution of this thesis. In the literature, general frameworks for
the ALM of life insurance product are generally oversimplify. Most of the time, numer-
ical studies are performed under proprietary "black box" model where implementation
details on the management procedure are not communicated. The main contribution
of chapter 2 is to propose a realistic intermediate model in the sense that it comprises
the main characteristics of the ALM (book and market value regime, dynamic surren-
der...) while keeping the model tractable for Monte Carlo simulations to perform ALM
studies and be used as benchmark. The purpose of a so-called ALM study is to handle
the risk coming from the mismatch between a company’s asset and liability. The new
standards imposed by Solvency II have further increased the complexity of those model
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and the need for stochastic simulations since each item of the balance sheet must be
valued in a market consistent manner. The fair valuation of life insurance liability
is not the only issue when computing the SCR. It has already been studied in many
papers ([Bac01] [GCFG19] [BMDGL18]). In any ALM study, the firm is interested in
optimally investing the policyholders’ deposit in order to maximize the expected return
on investment (asset management) while minimizing the SCR or at least ensure that
the required capital of the selected strategy is not too high (liability management: the
SCR is the regulator’s metric to ensure that the obligations toward policyholders are
met when using the allocation strategy). In the first part of this thesis (chapter 2) we
develop a new model that both comply with the market consistent valuation of the
balance sheet and book value accounting. This important distinction between market
value and book value (namely selling price and purchase price) is necessary because it
enter in the profit sharing mechanism when computing realized gains or losses made
each year by the company. While practitioners register their gains or losses based on
granular approaches like FIFO ("First In First out") accounting rules, the complexity
involved by these methodologies introduce major computational overhead since one
must record the whole history of trading. We adopted a macroscopic scale approach
where individual contracts are not modeled individually but pooled into a group of
contracts with similar features. Portfolio allocation are made on two synthetic assets
(a stock index and an equally weighted basket of sovereign bonds). This macroscopic
point of view enable us to reduce the computational complexity while keeping track of
both book and market value buy/sell order and still maintain the model with a limited
number of variables. In the literature of ALM models, one of the first model that
goes beyond fair valuation and single policy analysis of insurance contract is proposed
by Gertzner & al [GGH+08]. They investigate the effect of pooling non-homogeneous
contract and defined management rule regarding the asset allocation and sharehold-
ers’ participation. Their approach uses the crediting rate proposed by Grossen and
Jorgensen [GL00] where the crediting rate is the maximum between the guaranteed
rate and the profit sharing rate. However it does not take into account book value
accounting scheme nor cash flow matching techniques. The investment is made on
single coupon bearing bonds. Berdin and Gründl [BG15] filled the gap in the literature
by modeling the balance sheet of a representative life insurer subject to the German
GAAP. The calibration of the bond portfolio is obtained using historical duration data
provided by EIOPA. Another original contribution brings on the computation of the
crediting rate which is closer to practice. To compute this key rate, the company takes
into account the realized gains or losses made during the reallocation procedure. A
competitor rate that model the rate given by competing insurance companies is also
considered. Then, the company tries to drive its latent gains or losses resulting from
the difference between market and book value in order to reach a target rate defined
as the maximum between the competing rate and the legal minimal profit-sharing dis-
tribution. If the target rate is not feasible, it tries to give the best rate possible while
keeping a part of the profit sharing reserve but in any case the crediting rate is above
the minimal regulatory rate. In particular, the model provides great insight on the
impact of the management rule on the solvency situation of the company because if
it credit a certain rate to a policyholder, we can identify in which of the four cases
we are. To account for dynamic lapses, the proportion of policyholders that exit the
contract is a function of the difference between the crediting rate computed using the
methodology described above and the competing rate. Such an approach can be found
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in Floryszczak et al. [FCM16]. The last original feature of the ALM model devel-
oped in this manuscript is to consider an equally weighted portfolio of bonds with
maturity ranging from 1 to n years. The dynamic of coupon rate after bond invest-
ment/divestment is also precisely described. Our method enable us to quantitatively
assess the effect of shocks on the yield curve on bond returns when computing the
SCR standard formula. In addition, the modeling of a basket of bonds instead of one
synthetic bond obligation enable us to reproduce a cash flow matching strategy used
by practitioners, where the nominal value coming from the matured 1 year bond covers
the liability cash flows from surrenders and hedges at least partially the interest-rate
risk statically. We illustrated this key feature of ALM using a proxy model when there
is no cash flow matching and the firm invest in a single at-par coupon bearing-bond.
Contrary to the work of Berdin and Gründl [BG15], we are able to calibrate the bond
portfolio optimally, without historical duration data, in order to minimize the SCR.
We compared our approach with Macaulay duration hedging methods, and assess the
impact of mortality on cash flow matching using mortality tables. The ALM model is
then used to compute the SCR using the standard formula. The result of the simu-
lations performed in the second chapter of this thesis points out some weaknesses of
the standard formula and issues related to the choice of the interest model which has
not yet been tackled in the existing literature. Firstly our findings suggest that models
that mean revert toward a parametric curve (Hull-White, Black-Karasinsky...) which
are still very popular among practitioners are not well suited for the standard formula.
The calibration of such interest rate model using the shocks provided by EIOPA leads
to poorly realistic model after shock. We also discovered that the dependency between
stocks and bonds introduced by the standard formula has a significant impact on the
SCR for market-risk SCRmkt. We observed an important variation of 50% of SCRmkt

half of which is contained in the ε-discontinuity in the aggregation formula

SCRmkt =
√
SCR2

eq + SCR2
int + 2εSCReqSCRint (1.2.1)

where the "correlation factor" ε = 0 if the interest-rate exposure is due to an upward
shock and ε = 1

2 if it is due to the downward shock. Such a discontinuity might lead
to manipulation of the SCR on the edge of that discontinuity. Our suggestion for
regulators is to use a continuous formula such as

SCRmkt = max{
√
SCR2

eq + SCR2
down + SCReqSCRdown;

√
SCR2

eq + SCR2
up} (1.2.2)

We also find out that the main driver in the standard formula is the initial allocation
since it relies on shocks at time 0. The pitfall is that standard formula mostly ignores
the dynamic features of ALM strategy and basically depends on the initial allocation.
Namely, a static allocation strategy in stocks starting from an initial allocation ws0
will lead to a SCR that is very close to a dynamic strategy that starts from ws0 but
gradually increases its allocation in stock. This suggests that the standard formula
approach poorly reflect the risk profile of the company. Another pitfall of the standard
formula is that it relies only on mean values, and does not reward if the Net Asset
Values distribution is more peaked and has less variance. In the third chapter of this
manuscript, we further investigate the properties of the ALM model by quantifying
the impact of regulatory decision on the insurer’s balance-sheet. First, we show that
the model is flexible enough to take into account both methodology of computation
of the SCR. Using the framework of Bauer et al. [BRS12], we derive the one-year
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loss distribution of the insurance company using the ALM model and compare the
solvency ratios obtained with the standard formula and the quantile approach. Next,
motivated by the recent consultation paper [EIOa] launch on the 2020 review of SII,
we show that the ALM model can easily deal with potential changes in the regulation
concerning the derivation of the interest-rate risk free curve. Currently, the EIOPA’s
construction of this curve that is given as an input of ALM models rely on the Smith-
Wilson extrapolation from the Last-Liquid-Point (LLP) toward the Ultimate-Forward-
Rate (UFR). Using the model, we discuss the impact of regulatory changes in the LLP
and the UFR on the insurers’ balance-sheet and the SCR.

1.3 Numerical methods for the computation of the
SCR

For insurance companies the Solvency II directive introduce major computational chal-
lenges. First, Pillar I requires a computation of the VaR at a one-year risk hori-
zon. Second, the ORSA framework require to own enough own-funds today to avoid
bankruptcy over a whole time-horizon (multi-year solvency). Finally, the derivation of
the risk-margin RMt involves the computation of SCR during the whole lifetime of the
insurer portfolio. In a more general setting, the problem is to compute the probability
of a large loss of a financial portfolio. This task is particularly challenging in practice
as complex financial portfolios do not admit a closed-form solution and the valuation
require heavy Monte-Carlo simulations. More formally, this problem, involving sim-
ulations in the simulations can be framed in the so called Nested valuation setting
where outer scenarios under real-world probability are used to project the risk-factors
up to the risk-horizon, then, inner simulations are required, corresponding to the val-
uation of the portfolio, conditionally on each scenario. This brute-force task is too
time-consuming to be useful and relevant for practical applications. In addition, this
method is poorly accurate if the number of nested simulation is too small. The nested
simulation literature is divided between two approaches. The first approach focuses on
the allocation of a given computational budget. The pioneer work of Gordy and Juneja
[GJ10], reveals the optimal balance between outer simulations and inner simulations
to obtain accurate estimate of the tail of the target distribution. Based on this work,
some authors propose to improve the direct nested simulation techniques in the context
of VaR estimates. Broadie et al. [BDM11] show that ingenious allocation of relatively
small computational budget can yield acceptable level of variance and bias for a given
portfolio because some scenarios may have no direct impact on the final estimator.
Their idea is to allocate more resources to scenarios that have high variance and a
high probability of misclassifications (in the neighborhood of the Var threshold). In
Devineau et al. [DL09] they construct a metric to identify adverse scenario and propose
to allocate more computational effort on these scenarios. Then the algorithm select
less and less adverse scenarios until no improvement of the VaR estimates has been
made. Alternative techniques such has the Multilevel Monte-Carlo (MLMC) method
developed by Giles [Gil08] has been applied in the context of nested expectation and
tail estimation. This method is applied in a biased simulation framework, and propose
to allocate resources, among several levels in order to minimize the MSE of the final
estimator. This method based on telescopic aims at killing the statistical error on the
first level and correct the inner bias across the different levels (see Giles et al. [GHA19],
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Pages et al. [LP17] for successful application in the context of Nested VaR), Bujok and
al [BHR15] for application in basket credit derivatives and Bourgey et al. [BDMGZ20]
for initial margin computation. The second approach tackled in the literature is to
construct a so called metamodel based on few inner simulations. The popular ap-
proach among practitioners, based on past researches on American Option Valuations
(see Longstaff et al. [LS01], Tsitsiklis et al. [TVR01]) is to regress future cash flows
of the portfolio on a set of basis function that depend on state variable known at risk
horizon. The Least-Square Monte-Carlo approach (LSMC) advantage is to use only
few inner simulations to valuate the portfolio. It combines Monte-Carlo methods with
regression techniques to approximate the pricing function. Hence, by bypassing Nested
simulations, the method has potential to significantly reduce the computational time
to produce the required estimates. However, this claim hold mostly in low dimension.
A variant of the standard LSMC method that is widely use in practice is the so-called
replicating portfolio (see Natolski et al. [NW18], Pellser and al. [PS16], Cambou et
al. [CF18]) technique where the regression basis consist of derivatives with known closed
form expression. The idea is to replicate the portfolio (unknown conditional expecta-
tion) with a combination of simple derivative product. The allocation weights of the
derivative portfolio are obtained by solving a least-square optimization problem (see
Pellser et al. [PS16] for a distinction between standard LSMC (regress-now) and portfo-
lio replication (regress-later) ). However, these approaches may lead to unsatisfactory
results. First, the calibration process of the LSMC method requires proper selection of
interaction between features as the number of regressors explodes with the dimension-
ality of the problem. Hence a careful design of the basis set of functions, well adapted
to the problem at hand is require. Furthermore, the tail estimation, which is the pri-
mary focus in risk-management is very sensitive to the choice of the basis model (see
Teuguia et al. [TRP14]). For instance, a model can predict well in the neighborhood
of points that was used to train the algorithm but perform poorly on extreme scenarios.
Recent advances in data science have shown that deep learning methods can accurately
represent even highly non-linear high dimensional function [GBCB16]. The theoretical
ground comes from the universal approximation theorem and the Kolmogorov-Arnold
representation theorem (see Kolmogorov [Tik91], Cybenko [Cyb89], Hornik [Hor91]).
Neural Networks have been successful to extract features and detect relevant patterns
from large datasets. The popularity of this method compared to linear approximation
models is that universal approximation is possible without specifying a particular func-
tional relationship between inputs and outputs. The development of massive parallel
computing on Gpus to speed up training of the Network made the methodology very
popular among practitioners. More recently, Neural Network based algorithms have
been successfully applied in financial application. Hejazi and Jackson [HJ16], Fiore
and al. [CFM+18] train neural networks to compute solvency capital requirements.
More recently Cheredito et al. [CEW20] employed importance sampling techniques in
combination with Neural Networks to compute risk capital.

1.3.1 Nested Simulation Framework

The general problem is to estimate a risk measure of a financial portfolio at some future
date τ called risk-horizon. We consider the general setting of Broadie et al. [BDM11],
Bauer and Ha[BH15]. Let V0 the current value of the portfolio (or the current level
of own-funds NAV0 in the insurance framework). The value of the portfolio at time τ
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can be expressed, under no arbitrage assumption as a conditional expectation of future
discounted cash flows. Let (Ω,F ,Ft≥0,P) a complete filtered probability space where Ω
is the space of all possible market state and P the historical real-world probability. Let
(Xt)t≥0 = (X1

t , . . . , X
d
t )t≥0, d ∈ N, a d−dimensional Markov process that model the

underlying risk factors of the portfolio. We assume that the filtration Ft that represent
all relevant market information up to time t is generated by the state process (Xt)t≥0,
hence Ft = σ((Xu)u≤t). We assume that it exists a risk-neutral probability Q under
which discounted price processes are martingales. Let D(t, u) = e−

∫ u
t
rsds, t ≤ u the

discount factor process where rs = f(Xs)s≥t the instantaneous interest rate. Denote
Z the one-dimensional random variable that model the sum of future discounted cash
flows. Hence the value of the portfolio at time τ can be express as :

Vτ = EQ [Z|Fτ ] (1.3.1)

Hence, the loss variable at time τ can be express as the change in the portfolios market-
value between 0 and τ :

Lτ = V0 − Vτ = EQ [V0 − Z|Fτ ] (1.3.2)

In what follows, we denote Y = V0−Z the discounted sum of losses until the maturity
of the portfolio. The goal is to compute risk-measures on the loss random variable Lτ ,
that quantify its risk by a scalar value ρ(L) ∈ R. In a more general setting we are
interesting in computing nested expectations of the form :

I = EP
[
g(EQ [Y |Fτ ])

]
(1.3.3)

For tail estimation taking g(u) = 1u≥0 yield the following relation:

I = P
(
EQ [Y |Fτ ]) > 0

)
= P(Lτ ≥ 0) (1.3.4)

1.3.2 Nested Monte-Carlo Estimator

The basic estimator of the Nested expectation (1.3.3) is based on approximating the
inner and outer expectation using independent Monte-Carlo samples. The conditional
inner expectation E [Y |Fτ ] (the portfolio value) is estimated for a given (x0, . . . , xτ ) ∈
(Rd)τ by a standard Monte-Carlo estimator with K simulations called inner scenarios

Êj,K = 1
K

K∑
k=1

Yj,k (1.3.5)

where (Yj,1, . . . , Yj,K) are i.i.d sample of the conditional law of Y given that (Xj
0 , . . . , X

j
τ ) =

(xj0, . . . , xjτ ). The outer expectation is then approximated using the standard Monte-
Carlo estimator, outer simulations of the risk-factors (Xj

0 , . . . , X
j
τ )j=1,...,J :

ÎJ,K = 1
J

J∑
j=1

g(Êj,K) (1.3.6)
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1.3.3 Real world vs Risk neutral probability measure in the
NS setting

We recall that in order to assess the solvency situation, the risk manager is interested in
deriving the loss distribution of its financial portfolio over a given time horizon based on
historical financial market data. To be more specific, the primary simulations of risk-
factors are designed to reflect the most probable evolution of financial markets, hence
outer scenarios models the "real" evolution of the risk-factors X ∈ Rd over a given
time-horizon. The risk-measure (outer expectation in 1.3.4) aims at identifying the
least likely scenarios that poses a threat for the solvency of the firm. The second stage
of simulation (inner scenarios) aims at re-priced the portfolio of assets and liability (i.e
estimating the conditional expectation) conditionally of the primary projected scenario.
Mathematically speaking, it implies that outer simulations are necessarily performed
under the real-world probability measure P, while inner (pricing) scenarios are used
to value the portfolio conditionally on the state of the economy Xτ (the risk-factors).
Hence, in the insurance setting, inner simulations must be performed under the risk-
neutral measure Q in order to value each item of the balance-sheet on a market-basis
as stated by SII.

1.3.4 Machine Learning Regression based Methods
The computational burden of Nested Monte-Carlo methods for risk-capital computa-
tion has led to an investigation of alternative methods. Among popular approaches to
this problem are Least-Square Monte Carlo (LSMC) and replicating portfolio methods.
These family of methods take portfolio valuation (LSMC) or cash flow payoff (Repli-
cating portfolio) as input of regression methods whose aim is to learn the conditional
expectation. These methods are classified in two groups: "regress-now" or "regress-
later" strategies. Regress-Now LSMC method was originally introduce by Longstaff-
Schwartz [LS01] and Tsitsiklis Van Roy [TVR01] in the context of American option
pricing and becomes the market standard in insurance solvency assessment involving
Nested simulations (see [TRP14]). In the LSMC approach, the idea is to approximate
the conditional expectation function via ordinary least-square regression based on one
inner simulation called fitting scenarios (see Krah et al. [KNK20] and [KNK18]). The
mathematical foundation is related to the fact that the conditional expectation is a L2

projection for L2 random variables and solves the least-square problem:

E
[
(Y − E[Y |Fτ ])2

]
= min

φ:measurable
E
[
(Y − φ(X0, . . . , Xτ ))2

]
Hence, a natural proxy of the conditional expectation is to find φ that minimizes the
following empirical least-square criteria

1
J

J∑
j=1

(
Y j − φ(Xj

0 , . . . , X
j
τ )
)2

The purpose of the training phase is to find the function φ. The replicating portfo-
lio regress-later approach focus instead on replicating liability cash flow payoff. This
approach has been popularized among practitioners by the market consistent vision
of solvency II, where the idea is to replicate the optionality of the insurance contract
using vanilla derivative that can be computed efficiently. To replicate the liability cash
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flow, a set of financial securities as basis functions is used instead. The conditional
expectation is finally derived by applying the conditional expectation operator to each
element of the basis decomposition, which require that the price of each financial in-
strument can be computed accurately very fast. For practical application in the life
insurance sector, we refer to Devineau and Chauvigny [DC10]. A general mathematical
framework for Replicating Portfolio (RP) is provided in Natolski et al. [NW18], Pellser
et al. [PS16], Cambou et al. [CF18]. The distinction between the LSMC (regress-
now) strategy is introduced in Glasserman and Yu [GY04] and further investigated in
the insurance setting by Pelsser et al. [PS16] in the insurance setting. Among the
main result in favor of the regress-later strategy is a theoretical acceleration rate of
convergence compared to the LSMC strategy, as described in Pellser et al. [PS16]
the projection error can be eliminated in the Replicating Portfolio approach but not in
LSMC. However, finding a suitable products to replicate the payoff is by no mean an
easy task, and any replicating portfolio methods will require expert judgment at some
point. In addition, financial instruments do not form a structured basis of a meaning-
ful functional space, just like orthonormal polynomial, hence feature selection involves
greater computational overhead in comparison with LSMC, if we want to increase the
complexity of the model. Hence, a direct application of the method for the ALM is
not obvious.

Difference between LSMC for option pricing and LSMC in Solvency II

The first relevant difference between option pricing and insurance solvency assessment
is that contrary to the initial application of the method, there is no early exercise
strategy, hence SCR computations involves only one level of nested simulations which
permit methods based on optimal budget allocation between inner and outer scenarios
to be viable alternative, while completely unfeasible in the option setting (multiple
inner simulations would be too costly because of the early exercise feature). Secondly,
the change of probability between inner and outer scenarios influences the rate of
convergence of the LSMC strategy. Thirdly, the insurance company that computes its
SCR is interested in the assessment of the full loss distribution: in internal model tail
estimation (SCR Value-At-Risk) is the quantity of interest or the average loss after
a shock (Standard formula in the ORSA framework). In the option setting the only
concern is to derive the price (average) of the derivatives . More generally, the problem
considered in risk management is different in the sense that the risk-manager (insurer)
is not interested only in the mean of the conditional distribution but also in the tail, but
in both cases the unknown conditional expectation causes the main difficulty. Finally,
the main practical difference between the option setting and the insurance setting
is that the dimensionality of the problem is a major concern in SCR computation
and can be significantly higher, since ALM models are path dependent. Therefore,
an insurer regression model can take as input financial variables (stock, interest-rate,
book values...) but also non financial ones (mortality rates, level of technical reserve,
its crediting rate to policyholders...) which make the problem of exploding number of
basis variable and overfitting a serious source of concern. These difficulties have played
a leading role in the development of Neural Network algorithms as viable substitute to
Ordinary Least-Square (OLS) based strategies in the insurance setting (see Hejazi and
Jackson [HJ16], Kopczyk [Kop18], Fiore & al [CFM+18], Cheredito & al [CEW20]).
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1.3.5 Allocation Strategies Based on fixed Computational Bud-
get

Now, let us describe the other main family of numerical methods to reduce the complex-
ity of Nested Monte-Carlo. Allocation strategies analyze how a fixed computational
budget can be allocated across both inner and outer scenarios to minimizes the Mean
Square Error (MSE) of the output estimator. Among the first investigation of asymp-
totic properties of Nested Estimators Lee [Lee98] (1998), Lee and Gleen [LG03] (2003)
and Gordy et al. [GJ10], Hong and Juneja [HJ09] analyzed uniform sampling strate-
gies where the computational effort is spread among a constant number of primary
scenarios and secondary simulations. Gordy and Juneja [GJ10] were able to assess
the asymptotic complexity of the Nested Estimator when g = 1[c,+∞) and characterize
the optimal allocation between inner and outer scenarios. For a given computational
budget, one look for minimizing the overall MSE of the estimator 4.2.2. One uses the
bias-variance decomposition :

MSE(ÎJ,K) = E
[
|ÎJ,K − α|2

]
= E

[
|ÎJ,K − E[ÎJ,K ]|2

]
︸ ︷︷ ︸

Var(ÎJ,K)

+
(
E
[
ÎJ,K − I

])2

︸ ︷︷ ︸
bias2(ÎJ,K)

(1.3.7)

The number of inner simulations K controls the level of bias. Allocating more inner
simulations will reduce this bias. The number of outer scenarios J controls the level
of variance. Based on asymptotic characterization of bias and variance, they proved
the existence of an asymptotic optimal allocation (J?, K?) that minimizes the MSE of
the uniform Nested estimator. There result implies that to get a Root Mean Square
Error (RMSE) of O(ε) we require J? = O(ε−2) outer scenarios and K? = O(ε−1) inner
samples leading to a overall complexity of O(ε−3) which is a computationally intensive
task and leaves the method irrelevant for practical applications.

Adaptive and Sequential allocation Strategies

For risk measure focusing on tail losses such as the VaR (i.e the SCR in an internal
model), uniform sampling methods cannot be efficient since the most relevant scenarios
concentrate on the tail of the distribution. Broadie and Moallemi [BDM11] assume
that knowing a certain number of primary outer and secondary inner scenarios have
been performed, more computational budget must be dedicated to primary scenarios
falling on the tail since these outcome have a higher probability to affect the final
estimator. The criterion they derived allocate more resources to scenarios that lies
close to the threshold c (where the probability of miss-classification is high), with a
high variance σ̂i and a low number of Ki of inner simulations. Among other Sequential
Algorithms, the NS accelerator proposed by Devineau and Loisel [DL09] focuses on
insurance application and the computation of the SCR for an internal model based
on the VaR. Their method consists in locating a priori the most adverse scenarios
(the situation here is different compared to the sampling of Broadie and Moallemie
since no inner simulation are initially performed). The method introduce an execution
region to locate the a priori extreme scenarios. The algorithm start from the worst
cases (largest norm) and select an initial level h0 such that exactly M0 points lies in
the execution region Fh0 . This is easily obtain using a root-search procedure. Then
additional inner simulations are performed for these particular scenarios. Then "less
adverse scenarios" are selected such that M0 new points are added. The procedure
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stopped when no improvement of the empirical quantile have been made (i.e we stop
if the quantile estimate based on a sample of size M0 and the quantile based on 2M0
sample points are identical).

Multilevel Monte Carlo Methods (MLMC)

In order to reduce the computational cost in O(ε−3) of the uniform Nested Estima-
tor 4.2.2, Multilevel Monte-Carlo methods (MLMC) have been successfully applied to
compute general nested expectations of the form 1.3.3. Before introducing MLMC
techniques for Nested expectations, we give an overview of MLMC methods. MLMC
algorithms was introduced by Giles [Gil08] to reduce the cost of Monte-Carlo meth-
ods in a biased setting. The general task at hand is to simulate I = E[P ] where P
cannot be sampled exactly. The most common financial application correspond to
option pricing where P = φ ((Xt)t≤T ) is the payoff of some diffusion process (Xt)t≥0
that rely on biased discretization schemes. In the insurance setting and more gener-
ally for risk management applications, the bias comes from the conditional expectation
E[Y |X], i.e the portfolio value that require additional (inner) simulations conditionally
on the realization of the risk-factor vector X ∈ Rd since no closed form solution is
available. In this situation, P = g (E[Y |X]). Consequently, contrary to the standard
(crude) Monte-Carlo framework, any estimator of I carries an inner bias. The MLMC
techniques works as follows. Let P0, . . . , PL be a sequence of random variables which
approximate P with increasing accuracy but also increasing cost. The most accurate
estimator of P is at the finer (deepest) level L and we want to find an estimator such
that :

E[P ] ≈ E[PL]
The new target becomes

ÎL = E[PL] (1.3.8)
The error that comes from the approximation of P by PL is the bias (also called weak
error). The key idea of MLMC methods is that instead of estimating E[PL] directly,
it can be expanded into a telescopic sum

E[PL] = E[P0] +
L∑
l=1

E[Pl − Pl−1]

We can then approximate each expectation by a standard Monte Carlo procedure to
obtain the MLMC estimator

ÎMLMC
L,(Jl)l=0,...,L

= 1
J0

J0∑
i0=1

P
(i0)
0 +

L∑
l=1

1
Jl

Jl∑
il=1

P
(il)
l − P (il)

l−1 (1.3.9)

One key point to note is the variable number of simulation Jl on each level. At the
lowest level l = 0 the term 1

J0

∑J0
i0=1 P

(i0)
0 is doing most of the job in estimating I

and is used to kill the statistical error (also called strong error). More specifically,
Jl decreases as l increases, and most of the samples are allocated on smaller level l
where the computational cost of Pl is cheaper (recall that the cost of estimating P
increase when l increase). The terms Pl − Pl−1 aims at correcting the bias introduce
by replacing P by PL. The important remark to make is that Pl − Pl−1 is small when
l is large, if one is able to take samples that are highly correlated. So fewer samples Jl
are necessary on finer level to estimate E[Pl − Pl−1] correctly. The parameter L in the
MLMC estimator control the depth of the bias correction.
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MLMC estimators for Nested Expectations

Let J = (J0, . . . , JL) ∈ (N?)L+1 and K = (K0, . . . , KL) ∈ (N?)L+1 the vector repre-
senting the number of primary simulations used to approximate the outer expectation
(resp the inner conditional expectation) at each levels. We assume that Kl > Kl−1 and
Jl < Jl−1 for any l = 0, . . . , L. A common choice is to consider a geometric progression
on each level

Jl = J02−l and Kl = K02+l, l = 0, . . . , L

we denote ÊKl(.) the estimator of conditional expectation as in 1.3.5 by

ÊKl(x) = 1
Kl

Kl∑
j=1

Y j(x) (1.3.10)

where (Y j(x))j=1,...,Kl are i.i.d samples of Y given that X = x. The MLMC estimator
is given by

ÎMLMC = 1
J0

J0∑
i0=1

g
(
ÊK0(X i0)

)
+

L∑
l=1

1
Jl

Jl∑
il=1

g
(
ÊKl(X il)

)
− g

(
ÊKl−1(X il)

)
(1.3.11)

To make a parallel with the general setting, we reduce the variance (strong error) of
the estimator by performing most primary simulations Jl for small level values l. As
we progress in finer level, we correct the bias by performing more and more inner
simulations Kl. Remark that in that case Pl = g

(
ÊKl(X)

)
.

Variance reduction using antithetic sampling

In the definition of the MLMC estimator 1.3.11, to derive g
(
ÊKl−1(x)

)
one generates

a sample (Y j(x))j=1,...,Kl of size Kl and throw away samples from dKl−1
2 e + 1 to Kl.

Setting

Ê ′Kl−1
(x) = 1

Kl−1

Kl∑
j=
dKl−1

2 e+1

Y j(x) (1.3.12)

the empirical mean over the second part of the sample. Remarking that

E
[
g
(
ÊKl−1(X)

)]
= E

g
(
ÊKl−1(X)

)
+ g

(
Ê ′Kl−1

(X)
)

2

 (1.3.13)

It is possible to construct a better estimator using the MLMC antithetic version

ÎMLMC
A = 1

J0

J0∑
i0=1

g
(
ÊK0(X i0)

)
+

L∑
l=1

1
Jl

Jl∑
il=1

g
(
ÊKl(X il)

)
−
g
(
ÊKl−1(X il)

)
+ g

(
Ê ′Kl−1

(X il)
)

2
(1.3.14)

which reduce the variance contribution of each level (see section 9.1 of [Gil15]).
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Complexity Theorem

The complexity theorem 3.1 of Giles [Gil08], adapted in the nested simulation setting
shows that a MLMC estimator of type 1.3.14 can reduce the computational cost from
O(ε−3) (Uniform Nested Estimator complexity) to O(ε−2). The remarkable result here
is that provided that some regularity on the payoff function g the complexity of the
Antithetic MLMC estimator can be reduced to an unbiased Monte-Carlo estimation.
To be more specific, we can achieve the same complexity as if we were given a closed
formula to value the conditional expectation (portfolio value) E[Y |X].

Theorem 1.1. (Giles Theorem 3.1 [Gil08] adapted in the NS setting) Let P be a r.v
and let Pl the corresponding approximation at level l. Denote Vl = Var(Pl−Pl−1). Let
Kl is the discretization bias Parameter in the MLMC method. Assuming that it exists
positive constant α, β, c1, c2 such that α ≥ min{1,β}

2 and

(i) (bias speed of decay) |E[Pl − P ]| ≤ c1
Kα
l

(ii) (variance decay) Vl ≤ c2
Kβ
l

Then it exists a constant c3 > 0 and optimal parameters L, Jl for which the MLMC
estimator has a MSE with bound :

MSE(ÎMLMC) := E[(ÎMLMC − I)2] ≤ ε2

with a computational complexity Cost(ÎMLMC) with bound:

Cost(ÎMLMC) ≤


c3ε
−2 if β > 1

c3ε
−2 log(ε)2 if β = 1

c3ε
−2− 1−β

α if 0 < β < 1

This important result state that the MLMC method admit three possible asymp-
totic regimes. The best case β > 1 is when the dominant cost is on the coarsest level
l = 0. In this situation, the MLMC method gives a complexity similar to an unbiased
standard Monte-Carlo. The worst-case 0 < β < 1 is when the dominant cost is on the
finest level L. The dividing case β = 1 is the one for which both computational effort
and the contribution to the overall variance are spread approximately evenly across
all the levels. Thus, in order to achieve the optimal regime in the MLMC complexity
theorem, a proper control of the speed of decays of the bias and variance needs to be
determine and it mainly depend on the smoothness of the payoff function g.

Bias-Variance expansion for Nested MLMC estimators

To obtain an efficient MLMC algorithm, all efforts are devoted to the construction of a
family of estimator that enter in the first regime (β > 1) in the Complexity Theorem.
The major difficulty is to verify the hypothesis of the theorem, i.e obtain an estimate of
the bias behavior (weak error expansion) and multilevel correction variance expansion
(strong error assumption). Such results are in fact closely related to the smoothness
of the payoff function g. In the case where g is sufficiently smooth g ∈ C2(R) Giles
[Gil15] based on Taylor series approximation, prove that the MLMC estimator 1.3.11
has a complexity in O(ε−2 log(ε)2) which can be further improves to attain the optimal
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complexity O(ε−2) using antithetic sampling. However, in insurance application or
more generally in risk management, the regularity condition g ∈ C2(R) is too strong
to be relevant. Therefore, a MLMC estimator must be constructed in situation of
lower regularity. However, the approximation of the bias result in a trade-off between
smoothness of the payoff function g and condition on the underlying conditional distri-
bution. More precisely, less regularity conditions on g must be compensated by stronger
assumption on the distribution. Such results can be tracked back to the work of Gordy
and Juneja [GJ10] for crude Nested Monte Carlo estimator in the case of limited reg-
ularity, when g is an indicator function 1[c,+∞). This a framework relevant for tail risk
measurement and SCR computation using an internal model. Giles [GHA19] proved
that in that case, the standard MLMC estimator 1.3.11 provide a O(ε− 5

2 ) complexity
and that antithetic sampling does not improve the overall complexity of the estimates.
A thorough analysis of the bias is provided in [GLP20] when g is an indicator func-
tion. As mentioned previously, the lack of regularity of g do not permit to perform
straightforward Taylor expansions to characterize the bias behavior. But assumptions
such as existence of a smooth density functions for certain conditional expectations
as well as conditions on their partial derivatives permit to obtain higher order expan-
sion. Other type of function payoff g have been studied in the literature, typically
situation of intermediate regularity (less than C2 but smoother than an indicator) is
also relevant in financial applications. In Bujok et al. [BHR15], the case where g is
piecewise linear is studied for the pricing of CDO tranches. Here, Y follows a Bernoulli
distribution conditionally on a gaussian risk-factor X. This situation is interesting
since, as pointed out by Bourgey et al. [BDMGZ20], It can be easily proved that in
that case the random couple (E[Y |X], X) does not admit a density w.r.t the Lebesgue
measure. In a very recent work, Bourgey et al. [BDMGZ20], provide a general bias
expansion in a situation of intermediate regularity (smoother than indicator but less
than twice differentiable) under some mild condition on the law of the true conditional
expectation in the neighborhood of the singularity. Their result is relevant for initial
margin derivation. Another situation is tackled in Giles and Goda [GG19] where the
objective is to approximate E [maxp=1,...,P E[Y p|X]]. Under some restrictive hypothesis
that will be detailed later on, they show that the optimal complexity O(ε−2) can be
achieved using an antithetic MLMC estimator. The numerical method proposed in the
second part of the thesis is closely related to the work of Bourgey et al. [BDMGZ20]
and Giles-Goda [GG19]. Their result were published during the redaction of this thesis.
For a Multi-year SCR projection using the standard formula, we might be typically
interested in the worst loss after P shocks, i.e g(x) = maxp=1,...,P xi. For instance, the
interest-rate module in the standard formula corresponds to the worst SCR between
the upward and downward shock on the interest-rate curve. In the ORSA framework,
a shareholder might ask the amount to hold in order to cover the interest-rate risk until
the maturity of the ALM portfolio.

Improved MLMC strategies

In the MLMC landscape, improved strategies can be developped to further reduce
the bias in certain cases. In Lemaire and Pages [LP17] they combined the MLMC
approach with a Richardson-Romberg extrapolation to derive a weighted multilevel
estimator (ML2R) in the case were higher order weak expansion is available. In the
case where β < 1 (where the MLMC cost is not close to the unbiased framework in Giles’
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complexity theorem 1.1), they show that the weighted ML2R estimator outperform the
standard MLMC estimator. In the very recent work of Giles [GHA19], particular effort
has been made to improve the cost in O(ε− 5

2 ) of the standard MLMC estimator in
the case where g is an indicator function. Using the ideas of Broadie and Moallemie
[BDM11] , they proposed an adaptative MLMC strategy where the number of inner
simulations Kl does not follows a deterministic progression anymore but random, the
algorithm adaptatively select the number of inner samples at each level. Numerically,
they observe that the complexity of their strategy was close to O(ε−2 log(ε)2) for the
Value-At-Risk.

1.4 MLMC for the computation of future SCR and
other stress-tests

In the second part of this manuscript, we tackle the computational challenges intro-
duced by the Solvency II regulatory framework. Currently, an open problem in the
industry is to compute efficiently the SCR at future dates. On the regulatory side,
the ORSA framework aims at evaluating the overall solvency need related to the spe-
cific risk profile of the company. From a shareholders’ standpoint, the Cost of Capital
represents the target return expected by a shareholder that will lend future SCR’s at
each date in order to let the company pursue its activities. When assessing strategic
allocation, a feasible allocation should ensure that future gains generated by the insur-
ance portfolio meet the shareholders expectation in term of cost of capital. Chapter
4 proposes efficient numerical methods to compute the SCR at future dates using the
standard formula. More specifically, it requires to simulate, using stochastic models
economic environment up to time t and apply a set of stress-tests on the portfolio
for each of these scenarios. However, the estimated value of this portfolio require it-
self a second stage of simulation because the ALM model is too complex to derive
a closed-form solution. Efficient methods to deal with the computational burden of
nested simulations are based on LSMC or replicating portfolios. Those two methods
aims at estimating the conditional expectation (insurers’ portfolio) based on very few
inner (secondary) simulations. However, these two methodologies suffers from severe
drawbacks in practice. In the insurance setting, the number of regressors involved in
the regression step is typically high dimensional, since the ALM model is truly path-
dependent when the valuation date t gets large. We may therefore include market
variables (stock, interest rate level,...) as well as other (book values, crediting rate...)
in the regression analysis since they take into account past management decisions as
well as past policyholders’ behavior. Recent researches in actuarial science are inter-
ested in the use of Neural Networks to overcome the curse of dimensionality of standard
regression methods. In the fourth chapter of this thesis, we apply the MLMC method
developed by Giles [Gil08] to compute the SCR at future dates. To our knowledge,
there is no dedicated application of this method for SCR computation in the insurance
literature. This chapter fills the gap. From a mathematical standpoint, we propose a
bias and variance expansion for the MLMC estimator associated to the maximum of
several conditional expectations. Our mathematical framework is also relevant when
we want to compute the worst shock on a financial portfolio. The originality of this
framework where the regularity of the payoff function is intermediate (smoother than
an indicator payoff but only piecewise C2) supplements the analysis of Bourgey et
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al. [BDMGZ20] on the subject. The main mathematical contribution of the chapter is
to construct a MLMC estimator that reach the optimal complexity O(ε2) for nested
conditional expectation of the form I = E

[
max{E[Y 1|X], . . . , E[Y P |X]}

]
. Our result

improve the analysis of Giles and Goda [GG19] on this topic. It can be stated as
follows:

Theorem 1.2. Let P ≥ 2, η ∈ (0, 1]. Let X, Y be random variable defined on a
probability space (Ω,F ,P) such that the following assumptions hold

A-1 Y is a square integrable random variable taking value in RP .

A-2 φ is a measurable real-valued function such that φ(X) is square integrable.

for p ∈ {1, . . . , P}, we define σp(X) =
√

Var(Y p|X), Σ1+η
p (X) = ∑p

i=1 σ
1+η
i (X),

Σ2
p(X) = ∑p

i=1 σ
2
i (X), Ep

X = E[Y p|X],Mp
X = max{E1

X , . . . , E
p
X}, M̂

p
K = max{Ê1

K , . . . , Ê
p
K}

and
Cp(X) = 2η

p∑
p′=2

Σ1+η
p (X)

|Ep′

X −M
p′

X |η

Assuming that the following condition hold

i) ∀p = 2, . . . , P P
(
Mp−1

X = Ep
X

)
= 0

ii) Σ2 = E
[
Σ2
p(X)φ2(X)

]
< +∞ and C = E [Cp(X)|φ(X)|] < +∞ then we have

∣∣∣E[
(
M̂p

K −MX

)
φ(X)]

∣∣∣ ≤ C

K
1+η

2
and E[

(
M̂p

K −MX

)2
φ(X)2] ≤ Σ2

K

Besides if V = Var(Mp
Xφ(X)) < +∞, we get

MSE(ÎJ,K) ≤ C2

K1+η + 2V
J

+ 2Σ2

JK

. with this upper bound, taking K = O(ε−
2

1+η ) and J = O(ε−2) is an optimal choice to
get MSE(ÎJ,K) = O(ε2) while minimizing the computational cost JK.

Assumptions (i) and finiteness of C in assumption (ii) are necessary to handle the
irregularity of the maximum when two or more conditional expectations are being
equal. Our set of assumptions different from assumptions (2) and (3) in [GG19] that
require technical assumptions to control the probability that two elements are too
close to the maximum. These assumptions are replaced by an integrability condition
(assumption ii) in our analysis involving a parameter η ∈ (0, 1) that provide some
additional flexibility in the implementation of the MLMC estimator. Moreover, we get
rid of boundedness assumption(1) in [GG19] since our analysis of the error behavior uses
different arguments. The other main contribution of this chapter is to apply the MLMC
method to the ALM model developed in this thesis that takes into account the main
characteristic of the life insurance business. One of the main advantages of the MLMC
estimator is to skip the difficult task of selecting relevant regressors by computing
directly the target quantity by allocating efficiently the computational budget without
a functional approximation step. Secondly, it provides an estimator with an accuracy ε
with a complexity O(ε−2), i.e as efficient as a standard Monte-Carlo procedure without
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a second stage of simulations. We also compare the performance of the estimator with
the LSMC and Neural Network approximation. To compare with the MLMC method,
we also tackled the feature engineering problem of LSMC strategies, and we developed
a forward feature selection algorithm that iteratively search for the risk-factors that
minimize the error on validation scenarios, representing values of the true unknown
regression function. The procedure help us to rank the most relevant regressor for
the LSMC method. At the first iteration, we find the one-dimensional regressor that
minimizes this validation error. At the next iteration, we keep the first best attribute
in memory and look for the two-dimensional function that minimizes the error and so
on until we have ranked our most relevant risk-factors. To design the Neural Network
framework, we fed the network with all the risk-factors that we used to design the model
(no feature engineering) which lead to a high dimensional problem. Next, we compared
the performance of the MLMC methods with standard LSMC strategies and Neural
Network based approximation. To obtain a benchmark value, as no closed formula is
available in the model, we run a brute-force Nested simulation procedure. Our findings
suggests that on the one hand LSMC regression based methods will remain biased at
some point. On the other hand Neural Networks requires heavy computation time for
training and are less competitive than MLMC. Namely, even if we add complexity to
the the proxy function or increased the number of training sample points the error
with respect to the benchmark value will stop diminishing at some point while the
MLMC estimation will continue to converge to this "true value". By regressing on few
explanatory variables we always lose a part of the information. Another appealing
feature of MLMC is that absolutely no feature engineering is required which is a major
problem in practical application. Finally, another practical interest of MLMC methods
is that it requires far less computational storage than regression methods especially
Neural Networks. In any regression methods, we need to store the training data to
train the proxy function. To ensure convergence of the regression based approximation
a sufficient number of training instances must be generated which must fit in the in
the computer memory. The training time and the computational storage is rapidly
increasing with the number of primary simulations J . This is not a problem for the
MLMC estimator that avoid any functional approximation step since, according to
the formula 1.3.11, it does not need to keep training instances in memory, it just
update means on each level on the fly. In addition, the MLMC method permits to
compute general quantities of the form E [h (E[Y |X])] with the same scenarios for
different functions h . Taking h(x) = eiux for instance provide information on the full
conditional distribution. Our last result is connected to the change of probability, which
is required to compute the SCR, yet rarely studied in the literature. We construct in
our model an explicit change of probability for affine dynamics and projected the SCR
over 15 years for different risk premiums using the MLMC estimator. In particular,
with this method, we can construct a whole range of different change of probability
using the exact same scenarios and adjusting with the weight associated to the change
of measure.
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Chapter 2. A synthetic model for Asset-Liability Management in life

insurance

Abstract. The aim of this paper is to introduce a synthetic ALM model that
catches the key features of life insurance contracts. First, it keeps track of both market
and book values to apply the regulatory profit sharing rule. Second, it introduces a
determination of the crediting rate to policyholders that is close to practice and is
a trade-off between the regulatory rate, a competitor rate and the available profits.
Third, it considers an investment in bonds that enables to match a part of the cash
outflow due to surrenders, while avoiding to store the trading history. We use this
model to evaluate the Solvency Capital Requirement (SCR) with the standard formula,
and show that the choice of the interest rate model is important to get a meaningful
model after the regulatory shocks on the interest rate. We discuss the different values
of the SCR modules first in a framework with moderate interest rates using the shocks
of the present legislation, and then we consider a low interest framework with the
latest recommendation of the EIOPA on the shocks. In both cases, we illustrate the
importance of matching cash flows and its impact on the SCR.

Keywords: ALM model, Solvency capital requirement, Standard formula, Cash
flow matching, Liquidity gap, Surrender risk, Book value, Profit sharing.

2.1 Introduction
Life insurance contracts are very popular in the world and involve very large portfolios.
In 2017, the life insurer assets were about 7.5 trillions of euros in Europe (source:
Insurance Europe) and 7.2 trillions of dollars in the United States (source: American
Council of Life Insurers). To manage these large portfolios on a long run, insurance
companies perform what is called an Asset and Liability Management (ALM). We refer
to the recent paper [ABE+18] for an overview of the current topics and issues of ALM.
Basically, insurance companies invest the deposit of policyholders in different asset
classes (equity, sovereign bonds, corporate bonds, real estate, ...), while respecting a
performance warranty with a profit sharing mechanism for the policyholders. Thus,
insurance companies have to determine an appropriate allocation between the different
types of asset. This allocation should be a good trade-off between risk and returns,
but also with the capital requirement imposed by the regulator to handle the portfolio.
To determine a suitable allocation strategy, it is worthwhile to rely on an ALM model
that takes into account the main specifies of the life insurance business.

Many papers in the literature have dealt with the fair valuation of insurance liabili-
ties, see e.g. Briys and de Varenne [BdV97], Bacinello [Bac01] or more recently Delong
et al. [DDB19]. However, when handling large portfolios of life insurance liabilities
over a long run, the fair valuation of the contracts under a risk neutral setting is not
the only issue. The insurance company is also interested in investing the policyholders’
deposit optimally, which has to be made under the real world probability, like in the
pioneering work of Merton [Mer71]. Besides, the insurance company may also want
to minimize or at least impose an upper bound on the Solvency Capital Requirement
(SCR) related to this portfolio of liabilities. To address these questions, it is necessary
to have a reliable ALM model that describes properly the life insurance business. One
important specificity of these models is to keep track of both market and book values
in order to determine the realized gains and losses that enter in the profit sharing
mechanism. Up to our knowledge, one of the first models of this kind has been pro-
posed by Gerstner et al. [GGH+08]. They consider an insurer that invests in bonds
with a buy and hold strategy on zero-coupon bonds with a fixed maturity. The insurer
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keeps a constant allocation proportion in bonds, which leads sometimes to short-sell
bonds. The crediting rate to policyholders is the same as the one proposed by Grosen
and Jørgensen [GL00]: it is basically the maximum of the guaranteed interest rate and
the profit sharing rate. However, the book value is approximated without taking into
account neither the history of trading nor the difference between buy and sell orders
for the updating of book values. Berdin and Grundl [BG15] fill this gap and calculate
the book values according to the German GAAP (General Accepted Accounting Prin-
ciples). They also consider the investment in different asset classes and across different
bond maturities, which is then more precisely described by Berdin et al. [BKP16].

In this paper, we present a new ALM model that incorporates the main features
of life insurance business and handles both market and book values. For simplicity of
exposition, we consider only two asset classes: equity and riskless bonds, which we con-
sider as a good approximation of top-rated sovereign bonds. The first original feature
of our model is the determination of the crediting rate to policyholders. To determine
this rate, we take into account the gains and losses made during the reallocation and
the corresponding profit sharing rate. We consider also a competitor rate that models
the rate given by competing insurance companies to their policyholders. Then, the
insurance company drives its latent gain and losses and the profit sharing reserve in
order to reach the targeted crediting rate, if it is possible. Otherwise, it tries to give
the best rate possible while keeping a part of the profit sharing reserve, but in any case
the crediting rate is above the minimal regulatory rate. Interestingly, the four cases
that we distinguish to determine the crediting rate form a good indicator to monitor
the ALM business. A second original feature of our model is that it takes into account
dynamic surrenders (or lapses): their proportion is modeled as a function of the differ-
ence between the crediting and the competitor rates. Such a dynamic surrender rate
is also considered in the model proposed by Floryszczak et al. [FCM16]. The third
original point of our model is to consider an investment in an equally weighted portfo-
lio of bonds with maturity going from 1 year to n years. The dynamic of the coupon
rates of the different bonds is also precisely described. A similar but different idea is
considered in [BKP16]. The nominal value of the 1-year bonds enables essentially to
match the cash flow of the surrenders. This is very important for hedging a part of the
risk related to interest rates. Our ALM model is written with the French GAAP, but
it could quite easily be adapted to other local GAAP.

Our original motivation to design such an ALM model is to evaluate the Solvency
Capital Ratio (SCR) by using the Solvency II standard formula, which is part of
the regulation of the European Union [Com15]. Other papers have recently dealt
with the standard formula: Gatzert and Martin [GM12] and more recently Asadi and
Al Janabi [AAJ] compare the standard formula with internal models that basically
use a Value-at-Risk of the basic own funds with a level of 99.5%, Boonen [Boo17]
compares the Value-at-Risk and the Expected shortfall risk measures by looking at
the stress factor in the standard formula that would calibrate these measures. In our
numerical experiments, we evaluate the different SCR modules in our model with a
constant allocation between bonds and stocks. We first examine a case with moderate
interest rates around 2% and then a case with low interest rates where we use the latest
recommendation of EIOPA [EIOPA18] for the shocks. We interpret the different cases
corresponding to the shocks on equity and bonds. Interestingly, we find that interest
rate models like the Hull and White model that mean revert toward a parametric
curve are not really well-suited for the standard formula. They are able to fit the
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shocks but then the calibrated curve oscillates too much and the model is meaningless.
Our numerical study also points some weaknesses of the standard formula, such as:
the discontinuity of the formula between upward and downward shocks on the interest
rates, the fact that it is computed as a difference of two expectations and thus ignores
the distribution profiles, and the use of a risk-neutral valuation. Last, we illustrate the
importance of matching cash flows in ALM, and discuss how to do it optimally in our
model for minimizing the SCR requirement with the standard formula.

The paper is organized as follows. Section 2.2 introduces the main notation, presents
the ALM model and the mechanism that determines the crediting rate to policyholders.
This part is self-contained and does not rely on the model of the different assets, which
is presented in Section 2.3. We discuss in particular the choice of the interest rate
model in view of the application of the standard formula. Last, Section 2.4 presents
and discusses the different numerical simulations.

2.2 The ALM model
We consider an insurance company handling a life insurance business with many pol-
icyholders. To be precise, we consider here a General Account (GA) guaranteed with
profit contracts. We do not consider Unit-Link (UL) type of contracts where policy-
holders bear the risk due to market variations, which is clearly simpler for an insurance
company to handle. GA contracts are mainly characterized by two drivers: the mini-
mal guaranteed rate rG that triggers the minimal earnings, and the participation rate
πpr ∈ [0, 1] that forces the insurer to redistribute this proportion of gain on equity
assets. The French legislation imposes that πpr ≥ 0.85 (see [BMDGL18] p. 5). Policy-
holders do not receive intermediary payments: they are paid only when they exit the
life insurance contract.

The insurance company then has to choose a strategic asset allocation that will
enable to face up to the liabilities and provide some earnings. In particular, it is
interested to assess the Solvency Capital Requirement (SCR) needed to run its strategic
asset allocation. Typically, the insurance company invests in different asset classes
such as equity, sovereign bonds, corporate bonds, real estate. Here, we will consider
for simplicity consider two type of assets: equity and riskless bonds, the latter being
a good approximation of top-rated sovereign bonds. The possibility to include (risky)
corporate bonds in this model is discussed in Remark 2.3 below. We consider a time
horizon T ∈ N∗, usually greater than thirty years in practice. We will assume that the
insurance company only make reallocations at times t ∈ N ∩ [0, T ) in order to reach a
portfolio with respective weights wst ∈ [0, 1] and wbt = 1−wst in equity and bonds. The
portfolio is assumed to be static on (t, t+ 1), and at time T , the portfolio is liquidated.
The time unit can in practice be one year or one semester: in this paper, we take a
one year unit for our numerical investigations.

We denote by (St)t≥0 the equity asset that can be thought as a stock market index
to reflect that the insurance company invests in many different stocks. Concerning
interest rate products, we assume that there exist riskless zero-coupon bonds and bonds
of any maturity that can be bought at par. Following the notation of Brigo and
Mercurio [BM06], we denote by P (t, t′) with t ≤ t′ the price of a zero-coupon bond
at time t with maturity t′. For simplicity, we assume that the different bonds pay a
coupon at the same frequency as the portfolio reallocation: thus at time t ∈ N, the
value of a bond with maturity t + n, constant coupon c and a unit nominal value is
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given by

B(t, n, c) =
n∑
i=1

cP (t, t+ i) + P (t, t+ n), (2.2.1)

and the swap rate given by

cswap(t, n) = 1− P (t, t+ n)∑n
i=1 P (t, t+ i) (2.2.2)

is the value of the coupon leading to a unit value of the bond. For t ∈ N, n ∈ N∗ and
ct := (cit)i∈{1,...,n}, we consider a portfolio containing, for any i, 1/n bond with maturity
t+ i and coupon cit. We denote

B̄(t, n, ct) = 1
n

n∑
i=1

B(t, i, cit) (2.2.3)

the value of this combination of bonds at time t.
Before modelling the mechanism of the ALM management, we also have to specify

at which rate policyholders enter or exit. Since our purpose is to evaluate the Solvency
Capital Requirement, we will only consider (as recommended in Solvency II) the case
where policyholder contracts run off and exclude the arrival of new contracts, even
though it could be obviously added to the model. We assume that the proportion of
policyholders that exit on the period (t, t + 1) for t ∈ N is given by pet ∈ (0, 1), and
that policyholders exit uniformly on (t, t+1). This corresponds to the case of infinitely
many policyholders that exit at a continuous rate λet = − log(1−pet ) on (t, t+1). So, our
model assumes that there is a large number of policyholders that exit independently,
conditionally on the information they have at time t. We will assume that

pet ≥ p > 0, ∀t ∈ N. (2.2.4)

Thus, p quantifies the structural surrenders while pet −p is the proportion of surrenders
that evolves along the time. This includes typically the dynamic surrenders that depend
on the crediting rate and market conditions, and also the mortality variations that are
usually assumed to be deterministic and calculated by using a life table. This quantity
pet − p will be modeled afterwards in Section 2.3.

2.2.1 Main variables and portfolio initialization at time t = 0
The liability of the firm is divided into different reserves that must comply with the
local accounting standards. Even if the main principles of the Solvency II directive are
followed by most of the countries, there are some specific features from one country to
another. In our model, we will take into account the French regulation rules, and we
refer to [BMDGL18] for a recent study of the French legal prudential reserve.

The Mathematical Reserve, denoted by the process (MRt)t∈{0,...,T}, is the main
reserve in life insurance. It corresponds to the insurer’s debt towards its policyholders.
For sake of simplicity, we assume that the initial premium MR0 is paid once and for
all (single premium) by policyholders without fees. Thus, the initial value MR0 of this
reserve is given by the initial deposit of the policyholders. At the end of each year, the
mathematical reserve is reevaluated by annual benefits (the crediting rate) paid by the
insurer to the insured party.
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The Capitalization Reserve, denoted by the process (CRt)t∈{0,...,T}, is imposed by
the French legislation to buffer the capital gains obtained when selling bonds. The
purpose of this reserve is twofold. First, it dissuades insurance companies from using
interest rate movements to make profits on bonds, since it may impact negatively its
policyholders on the long-run (typically, capital gains on bonds result in lower coupons).
Second, it acts as a cushion against interest rate movements as the fund stored in the
reserve can be used later on in order to absorb capital losses coming from selling bonds.
The capitalization reserve is a part of the equity capital of the insurance company.

Last, the Profit-Sharing reserve denoted by the process (PSRt)t∈{0,...,T} is a legal
provision used as a capital buffer against stock movements in order to smooth the
crediting rate. A fraction of the capital gains obtained from selling equity are stored in
this reserve and is distributed the next years. This reserve belongs to the policyholders:
the French legislation imposes a maximum of 8 years to redistribute the accumulated
profit to policyholders.

The capital gain of the insurance company is determined by the difference between
the book value (i.e. the purchase price) and the market value of the sold assets. Thus,
we denote respectively by BV s

t , BV b
t and BVt = BV s

t + BV b
t the book values of the

equity assets, the bonds and of the whole portfolio at time t. We similarly denote
MV s

t , MV b
t and MVt = MV s

t + MV b
t the respective market values. It is clear how to

evaluate market values, and we will explain later on how book values are calculated in
our model.

All these quantities MRt, CRt, PSRt, BV s
t , BV b

t , MV b
t and MV s

t remain nonneg-
ative for all t ∈ {0, . . . , T} in our ALM model.

At inception (t = 0), the insurance company receives all the policyholders’ deposit
MR0 and invests this amount in a reference portfolio according to target proportions
ws0 in stocks and wb0 in bonds. We furthermore make the following hypothesis: the
company has no existing back book of contracts sold in the past. Thus, there are no
capitalization and profit-sharing reserves, and book values and market values coincide:

CR0 = PSR0 = 0, BV b
0 = MV b

0 = wb0MR0 and BV s
0 = MV s

0 = ws0MR0.

However, it would be easy at this stage to consider the existing back book of contracts
by initializing accordingly these values. We now specify the quantity of assets in each
class. Let us note that during all the time, the quantities held by the insurer are
nonnegative. The initial holding φs0 in the stock asset is clearly given by

φs0 = ws0MR0

S0
.

Concerning the bonds, we assume that all bonds are bought at par during the whole
strategy. We assume that the amount wb0MR0 is invested in an asset which is an equally
weighted basket (with weights 1/n) of riskless coupon bearing bonds from maturity 1
to n with unitary face value. We thus set

ci0 = cswap(0, i), i = 1, . . . , n.

From the definition of the swap rate, we have B̄(0, n, c0) = 1, with c0 = (ci0)i∈{1,...,n}
and B̄ defined by (2.2.3). Thus, the quantity of asset is simply given by

φb0 = wb0MR0

B̄(0, n, c0)
= wb0MR0.
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Here, we stress that we consider the investment in a basket of bonds with different
maturities instead of only one bond. Thus, the insurance company is able to match a
part of the cash outflows: the nominal value of the one-year bond is mainly used to
pay back the policyholders that exit during the first year. This cash flow matching is
commonly used to hedge against interest-rate risk and is known as a so-called immu-
nization technique. In order to hedge the minimal rate of surrenders p, a natural choice
is to take n =

⌈
1
p

⌉
. If one wants to take into account the additional market surrenders

pet − p, it can be relevant to take more generally n ≤
⌈

1
p

⌉
, n being roughly speaking an

average of 1/pet . The choice of n and the influence of this parameter will be discussed
in the numerical section.

2.2.2 Reallocation, claim payment and margin at time t ∈
{1, . . . , T − 1}

This subsection presents the different steps of the portfolio reallocation at time t ∈
{1, . . . , T −1}. In particular, it describes the composition of cash inflows and outflows,
the legal profit-sharing mechanism, a way to determine the crediting rate for policy-
holders and the accounting margin for shareholders. The goal of the reallocation is to
end with an asset side that is allocated according to the weights wst in equity and wbt in
an equally weighted portfolio of bonds with weights 1/n as described in (2.2.3). This
amounts to have the quantities

φst = wstMVt
St

and φbt = wbtMVt

B̄(t, n, ct)

at the end of the the reallocation procedure, where MVt is the market value of the
assets and ct = (cit)i∈{1,...,n} are coupon values that will be made precise afterwards.
Concerning book values, since the capitalization reserve is managed with a separate
accounting, the goal is to have at the end of the reallocation: BVt = MRt +PSRt, i.e.
that the liabilities exactly match the portfolio book value. The corresponding balance
sheet is given in Table 2.1. For all balance sheets, the sum of the asset book values is
equal to the sum of the liabilities.

Assets Liabilities
BV s

t MRt

BV b
t PSRt

Table 2.1 – Book value balance sheet after the reallocation at time t.

We present the whole reallocation procedure in five steps. For convenience, we set
t1 = t2 = . . . = t5 = t for the different steps of the ALM management procedure at
time t, the step i + 1 being immediately executed after the step i. Some quantities
are updated only once during the five steps, and we then use the index t for these
quantities. Other quantities, such as the book value are updated at different steps,
and we note BVti the book value after step i and BVt the book value after the last
update in the whole procedure. Note that these quantities (except market values) are
then kept constant on (t, t+ 1) until the next reallocation.
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Step 1: cash inflows

We recall that we assume that the portfolio is static on (t − 1, t) and therefore the
quantity of equity (resp. bond) assets at the beginning of the reallocation is φst−1 (resp.
φbt−1). More precisely, for all i ∈ {1, . . . , n}, the insurance company holds φbt−1/n bonds
with maturity t − 1 + i and coupon cit−1. The financial income corresponding to the
coupon payments from each bond is thus given by

FIt = φbt−1

(
1
n

n∑
i=1

cit−1

)
. (2.2.5)

Besides, the nominal value coming from the matured bond is given by φbt−1
n

. Thus, the
insurer’s overall cash inflow CIF is obtained by aggregating terms:

CIFt = FIt + φbt−1
n

. (2.2.6)

The book value in bond assets has to be updated. Following standard accounting
procedures, the nominal value of the matured bonds have to be removed from the
book value. We thus set

BV b
t1 = BV b

t−1 −
φbt−1
n

.

In order to satisfy the bookkeeping condition, the insurer must redistribute the income
FIt on the liability side. Table 2 sums up the insurer balance-sheet after Step 1.

Assets Liabilities
BV s

t−1 MRt−1
BV b

t1 PSRt−1
CIFt FIt

Table 2.2 – Book value balance sheet after Step 1.

Step 2: claim payment

Cash outflows occur when policyholders exit their contract. We recall that the pro-
portion of policyholders that exit on (t− 1, t) is given by pet−1. We assume that these
policyholders are paid with the minimum guaranteed rate rG, pro rata the time elapsed
between t− 1 and the exit. Since we assume that they exit uniformly on (t− 1, t), this
amounts to the cash outflow

COFt = pet−1MRt−1

(
1 + rG

2

)
. (2.2.7)

On the liability side, the liabilities corresponding to remaining policyholders are then
given by

MRt2 = (1− pet−1)MRt−1.



2.2. The ALM model 51

On the asset side, the difference between cash inflows CIFt and cash outflows COFt is
called the liquidity gap Gt:

Gt = CIFt − COFt = CIFt − pet−1MRt−1 −
rG

2 pet−1MRt−1.

A positive gap Gt > 0 means that asset inflows are sufficient to cover claims. A negative
gap Gt < 0 means that additional liquidity is necessary to pay claim-holders. To fill
the funding gap, the insurer must sell asset in this situation. Table 2.3 depicts the
insurer’s balance after claim payment. We thus set

Assets Liabilities
BV s

t−1 MRt2

BV b
t1 PSRt−1

Gt FIt − rG

2 p
e
t−1MRt−1

Table 2.3 – Book value balance sheet after Step 2.

F̃ I t = FIt −
rG

2 pet−1MRt−1, (2.2.8)

which represents the coupon income corrected with the part of these earnings that are
distributed to the surrendering policyholders.

Step 3: reallocation

We assume that the insurer follows a static investment strategy on (t, t+1) and allocates
its capital according to the portfolio weights wst between stocks and bonds wbt at time t.
The available capital, which is also the market value of the portfolio MVt, is given by
the sum of the liquidity gap Gt and the market value of each asset classes:

MVt = Gt + φst−1St + φbt−1
n

n−1∑
i=1

B(t, t+ i, ci+1
t−1), (2.2.9)

where the function B is defined by (2.2.1). The term φst−1St is the market value of the
equity and φbt−1

(
1
n

∑n−1
i=1 B(t, t+ i, ci+1

t−1)
)
is the market-value of the bonds that have

not reached maturity. Note that before the reallocation, the bond portfolio is made
with bonds with maturity i ∈ {1, . . . , n− 1} and coupon ci+1

t−1.
In what follows, we assume thatMVt > 0 and calculate the new quantities invested

in each asset class and derive the procedure to update the book values of each asset
class. The case MVt ≤ 0 is very unlikely but may theoretically happen, for example
if the surrendering proportion pet−1 is high, the stock value has strongly decreased
(St/St−1 << 1) and interest rates have strongly increased on (t − 1, t). In this case
we assume that the shareholders of the insurance company directly pay back COFt
to the surrenders. Then, COFt does not enter in the market value, and we have
MVt = CIFt +φst−1St +

φbt−1
n

∑n−1
i=1 B(t, t+ i, ci+1

t−1) > 0. We then continue the procedure
as in the case MVt > 0. It is certainly excessive to assume that all the COFt is paid
by the shareholders when MVt ≤ 0. Since this case MVt ≤ 0 never happens in usual
conditions and in our simulations, we do not consider it necessary to model it more
carefully.
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We first consider the equity, where the target is to achieve a proportion wst of the
market value MVt. This leads to a new position in stock given by

φst3 = wstMVt
St

> 0.

We note ∆φst = φst3 − φst−1 the variation of the number of equity assets held by the
insurer. If ∆φst ≥ 0 (buy order), the book value in equity is increased by the quantity
of stocks that was purchased at the market-value St:

BV s
t3 = BV s

t−1 + ∆φstSt.

If ∆φst < 0, the insurer sells the quantity −∆φst of equity assets. In accounting, a
standard inventory valuation method used by practitioners is the First In First Out
(FIFO) method where the oldest goods purchased are sold in priority. The realized
Capital Gain or Loss (CGL) is then calculated accordingly. However, this procedure
requires to record the entire history of all purchases and is computationally demanding.
Here, we consider the approximation

BV s
t3 = BV s

t−1

(
1 + ∆φst

φst−1

)
=

φst3
φst−1

BV s
t−1,

which amounts to say that all the equity asset units held in the portfolio have the
same book value. The proportional reduction factor ∆φst

φst−1
∈] − 1, 0] represents the

proportion of sold stock. The capital gain or loss made by the sale is then given by
CGLst = −∆φst(St −BV s

t−1/φ
s
t−1).

Let us recall that for x ∈ R, x+ = max(x, 0) and x− = max(−x, 0). We sum up
the equity book value and the capital gain or loss (regardless whether it is a sale or a
purchase):

BV s
t3 = BV s

t−1 + (∆φst)
+ St −

(∆φst)
−

φst−1
BV s

t−1, (2.2.10)

CGLst = (∆φst)−
(
St −

BV s
t−1

φst−1

)
. (2.2.11)

We now focus on the reallocation in bonds and recall that we assume that the
insurer only buys bonds at par. Before the reallocation, the bond portfolio is made
with bonds with time to maturity going from 1 to n − 1. In order to continue the
strategy of matching the cash flows coming from the structural surrenders, the insurer
needs to invest in a basket of bonds with longest time to maturity equal to n. Thus, the
insurer always has to buy the bond with longest time to maturity n. Let us introduce
the following reference market value

M̂V
b

t = φbt−1

(
1
n

n−1∑
i=1

B(t, t+ i, ci+1
t−1) + 1

n
B(t, t+ n, cswap(t, n))

)
. (2.2.12)

This is the market value of the bond portfolio, if the insurer would buy exactly the
same quantity φbt−1/n of bonds with time to maturity n. If wbtMVt = M̂V

b

t , the insurer
thus only buys φbt−1/n bonds with time to maturity n to reach the target allocation. If
wbtMVt > M̂V

b

t , he has to buy more bonds and if wbtMVt < M̂V
b

t he has to sell some
bonds. In what follows, we describe how to do it, while keeping an equally weighted
basket of bonds with time to maturity going from 1 to n.
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Purchase of bonds (wbtMVt ≥ M̂V
b

t)

In this case, the insurer needs to buy more bonds to satisfy the target wbt . We note
cswapt = (cswap(t, i))∈{1,...,n} and have B̄(t, n, cswapt ) = 1 from (2.2.3). We then define

δbt = wbtMVt − M̂V
b

t ≥ 0, (2.2.13)

so that wbtMVt = M̂V
b

t + δbt B̄(t, n, cswapt ). The insurer will then

• buy δb

n
at par bonds for each time to maturity i ∈ {1, . . . , n − 1} with coupon

ciswap(t),

• buy δb+φbt−1
n

at par bonds with time to maturity n and coupon cnswap(t).

Let us recall now that holding α > 0 bonds with coupon c and α′ ≥ 0 bonds with
coupon c′ and the same payment schedule is equivalent to hold α + α′ bonds with
coupon αc+α′c

α+α′ . Therefore, after the bond reallocation, the insurance company holds for
each i ∈ {1, . . . , n}, (δb + φbt−1)/n bonds with time to maturity i and coupon

cit = 1i≤n−1
φbt−1c

i+1
t−1 + δbciswap(t)
φbt−1 + δb

+ 1i=ncnswap(t). (2.2.14)

We can therefore write the market value of the bond portfolio as

MV b
t = φbt3B̄(t, n, ct), with φbt3 = δb + φbt−1, (2.2.15)

and in particular we have φbt3 ≥ φbt−1.
We now have to update the book value of bonds. Since there are only purchases,

the book value of the bought bonds is their market value. We thus set

BV b
t3 = BV b

t1 + δb

n

n−1∑
i=1

B(t, t+ i, ciswap(t)) + δb + φbt−1
n

B(t, t+ n, cnswap(t))

= BV b
t1 + δb + φbt−1

n
.

Sale of bonds (wbtMVt < M̂V
b

t)

When wbtMVt < M̂V
b

t , the insurer still has to buy bonds with time to maturity n, but
he has to sell the other bonds to get an equally weighted bond portfolio. Thus, he has
to find a position such that

wbtMVt = φbt3

(
1
n

n−1∑
i=1

B(t, t+ i, ci+1
t−1) + 1

n
B(t, t+ n, cnswap(t))

)
.

Note that we necessarily have φbt3 < φbt−1, since the right-hand side corresponds to M̂V
b

t

for φbt3 = φbt−1. This gives

φbt3 = wbtMVt
1
n

∑n−1
i=1 B(t, t+ i, ci+1

t−1) + 1
n
B(t, t+ n, cnswap(t))

> 0,
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and the market value of the bond portfolio can be written as

MV b
t = φbt3B̄(t, n, ct), with cit = 1i≤n−1c

i+1
t−1 + 1i=ncnswap(t) for i = 1, . . . , n.

Let ∆φbt = φbt3 − φ
b
t−1 < 0. The insurer has thus to buy φbt3

n
at par bonds with time to

maturity n and to sell, for each time to maturity i ∈ {1, . . . , n − 1}, ∆φbt
n

bonds with
coupon ci+1

t−1.
We now have to update the book values. We use the same approximation method

as for the equity to evaluate the book value of the sold bonds. We thus set

BV b
t3 = BV b

t1

(
1 + ∆φbt

φbt−1

)
+
φbt3
n
B(t, t+ n, cnswap(t)) = BV b

t1

(
1 + ∆φbt

φbt−1

)
+
φbt3
n
,

and the capital gain or loss on bond products is then given by

CGLbt = −∆φbt
(

1
n

n−1∑
i=1

B(t, t+ i, ci+1
t−1)−

BV b
t1

φbt−1

)

In the two following formulas, we sum up the book value update and the capital
gain and loss on bonds in both selling and buying cases

BV b
t3 = BV b

t1

(
1− (∆φbt)−

φbt−1

)
+ n− 1

n
(∆φbt)+ +

φbt3
n
, (2.2.16)

CGLbt = (∆φbt)−
(

1
n

n−1∑
i=1

B(t, t+ i, ci+1
t−1)−

BV b
t1

φbt−1

)
, (2.2.17)

since ∆φbt = δb and φbt3 = φbt−1 + δb in the buying case.
The capital gain or loss on equity CGLst is directly taken into account for the profit

sharing mechanism. Instead, the capital gain and loss on bonds CGLbt is handled
separately in the French legislation and supply the capitalization reserve. Precisely,
the capitalization reserve at time t is defined by

CRt =
(
CRt−1 + CGLbt

)+
. (2.2.18)

If CRt−1 + CGLbt < 0, this quantity reduces the insurer’s return of the period. Since
the capitalization reserve is managed with a separate accounting, only

∆CRt = CRt − CRt−1 (2.2.19)

appears in the balance sheet at Step 3, see Table 2.4.

Step 4: determination of the crediting rate

In order to determine the policyholder’s earning rate rph(t) on the period (t − 1, t),
we propose a management decision that follows the regulatory constraints and is a
reasonable trade-off between policyholders’ and shareholders’ interests. Most of the
existing ALM model use a crediting rate that has been proposed by Grosen and Jør-
gensen [GL00] which is the minimal regulatory rate. Here, we propose a more sophisti-
cated model for the crediting rate that we believe to be closer to practice. It involves a
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Assets Liabilities
BV s

t3 MRt2

BV b
t3 PSRt−1

CGLst ∆CRt

CGLbt

Gt F̃ I t + CGLst −
(
CRt−1 + CGLbt

)−
Table 2.4 – Book value balance sheet after step 3.

competitor rate and a control of the Latent Gain or Loss (LGP) and the Profit Sharing
Reserve.

The existence of LGL, sometimes also called hidden reserve, results from the dif-
ference between market and book values. Formally they can be realized by selling and
buying instantly the same amount of assets, but in practice this is just an account
entry. It is a variable that the insurer can use as a control to determine the crediting
rate for policyholders. In what follows we consider only LGL for stock assets since CGL
on bond are constrained by the capitalization reserve and cannot be redistributed to
policyholders nor shareholders. Let MV s

t = wstMVt the current market value of equity
assets. The range of latent gain or loss can be described by the following interval

[−(MV s
t −BV s

t3)−, (MV s
t −BV s

t3)+].

There is a latent gain if MV s
t > BV s

t3 , and a latent loss if MV s
t < BV s

t3 . We define the
latent gain or loss function by

LGLst(α) = − (1− α) (MV s
t −BV s

t3)− + α(MV s
t −BV s

t3)+, α ∈ [0, 1]. (2.2.20)

This function determines the amount of hidden reserve to distribute. Let us note that
LGLst(α) is non-decreasing with respect to α. The control α ∈ [0, 1] models the fraction
of LGL to register on the balance-sheet. The choice α = 1 amounts to take all the gain
or zero loss. The control α = 0 takes all the loss or zero gain.

Remark 2.1. We have CGLstLGLst(α) ≥ 0, i.e. CGLst and LGLst(α) have the same
sign. If ∆φst ≥ 0, this is true since CGLst = 0. If ∆φst < 0, one has to notice that we
have

BV s
t−1

φst−1
=
BV s

t3

φst3

from (2.2.10). Therefore St −
BV st−1
φst−1

is equal to St −
BV st3
φst3

= (MV s
t − BV s

t3)/φst3, and
these quantities have the same sign.

Another control for the insurer is the proportion ρ ∈ (0, 1] of profit sharing reserve
to distribute. For simplicity, we will assume here that

ρ ∈ {ρ̄, 1},

where ρ̄ ∈ (0, 1] is fixed. The insurer has then two possible choices: to use all the profit
sharing reserve (ρ = 1) or to use only a part of it. Let us note that in our model,
taking ρ̄ = 1 amounts to have no profit sharing reserve.
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Remark 2.2. Since (1/2)8 ≈ 0.004, we take in our experiments ρ̄ = 1/2 to be in line
with the French legislation that requires to redistribute all the profit within 8 years.
This is also the choice made by Berdin and Grundl [BG15] (see Equation (22) therein)
who work under the German rule.

Due to the participation rate, the minimal crediting rate depends on α and ρ. In
case of latent gain (MV s

t ≥ BV s
t3), we note

TDt(α, ρ) = F̃ I t −
(
CRt−1 + CGLbt

)−
+ ρ (PSRt−1 + CGLst + LGLst(α))) (2.2.21)

which is the amount that has to be redistributed to policyholders according to the
participation rate πpr. The first term corresponds to the coupon payment (2.2.8). The
second term is the loss on the bonds that exceeds the capital reserve. The third term
corresponds to the aggregated gains on equity and is nonnegative by Remark 2.1.

In case of a latent loss (MV s
t ≥ BV s

t3), we define

TDt(α, ρ) = F̃ I t −
(
CRt−1 + CGLbt

)−
+ ρPSRt−1 + CGLst + LGLst(α) (2.2.22)

the amount to be redistributed with the participation rate. From Remark 2.1, CGLst
and LGLst(α) are nonpositive. Contrary to the gains, the insurer does not smooth the
losses with a factor ρ.

We now sum up the amount to distribute (2.2.21) by the following formula that
covers both capital gain or loss cases:

TDt(α, ρ) = F̃ I t −
(
CRt−1 + CGLbt

)−
+ ρ (PSRt−1 + CGLst + LGLst(α)) (2.2.23)

− (1− ρ) (CGLst + LGLst(α))− .

We have the following straightforward but important property.

Lemma 2.2.1. The function (α, ρ) ∈ [0, 1]2 7→ TDt(α, ρ) is continuous and nonde-
creasing with respect to α and ρ. It is constant with respect to α if St = BV s

t−1/φ
s
t−1,

otherwise it is increasing and affine with respect to α.

We are now able to define the minimal distribution of returns that the insurer has
to give to the (remaining) policyholders. The minimum guaranteed amount RG

t (α, ρ)
is defined by

RG
t (α, ρ) = max

{
RG
t , πprTDt(α, ρ)

}
, with RG

t = rG(MRt2 + PSRt−1). (2.2.24)

Note that the part of the profit sharing reserve has to be credited exactly as the
mathematical reserve, since this reserve belongs to policyholders. Here, RG

t is the
minimum regulatory amount corresponding to the minimum rate rG. Note that, in
practice, the minimum regulatory rate is the maximum of rG and of 60% of a technical
rate called “taux moyen des emprunts d’Etat” that is an average of French sovereign
bond rates, see for example paragraph A.6.2 of [BKP16]. Here, we assume for simplicity
that rG remains above this technical rate.

Beyond the minimum rate, the insurance company wants to credit at least the
same rate as the other insurance companies in order to keep its policyholders. In fact,
the surrender proportion pet on (t, t + 1) usually depends on the difference between
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the crediting rate and the one of the other insurers. Thus, we assume that rcompt is a
competitor rate. Typical choices can be

rcompt = rt or rcompt = max(rt, ηrph(t− 1)) with η ∈ (0, 1), (2.2.25)

where rph(t−1) is the crediting rate of the past period and rt is the short interest rate.
We define the target crediting amount by

Rσ
t (α, ρ) = max

{
RG
t (α, ρ);Rcomp

t

}
, with Rcomp

t = rcompt (MRt2 + PSRt−1). (2.2.26)

This is the amount that the insurance company tries to distribute if possible, which
we discuss now.

We now determine αt, ρt and the amount Rph
t to be credited to policyholders. By

Lemma 2.2.1, we know that we are in one of the following four distinct cases, going from
the more to the less favorable case for the insurance company and the policyholder.

Case A: πprTDt(0, ρ̄) ≥ max
{
RG
t ;Rcomp

t

}
.

This means that the target amount can be credited to policyholders without
dissolving unrealized gains if any or by realizing all the latent losses. The insurer
decides then to take

αt = 0, ρt = ρ̄,

and credit the target amount Rph
t = Rσ

t (αt, ρt) = πprTDt(αt, ρt) to policyholders.

Case B: πprTDt(1, ρ̄) ≥ max
{
RG
t ;Rcomp

t

}
and πprTDt(0, ρ̄) < max

{
RG
t ;Rcomp

t

}
.

This means that the target amount can be credited to policyholders, but the
insurer has to realize some latent gain or cannot realize all the latent loss. We
assume that the insurer decides to realize as little (resp. much) as possible latent
gains (resp. losses). Note that by Lemma 2.2.1, the function α 7→ TDt(α, ρ̄)
cannot be constant in Case B, and the insurer has to find the value α such that
πprTDt(α, ρ̄) = max

{
RG
t ;Rcomp

t

}
. Lemma 2.2.1 gives that the function is affine

with respect to α, and therefore

αt =
1
πpr

max
{
RG;Rcomp

}
− TDt(0, ρ̄)

TDt(1, ρ̄)− TDt(0, ρ̄) .

The insurer also takes ρt = ρ̄ and credits then Rph
t = Rσ

t (αt, ρt) = πprTDt(αt, ρt)
to policyholders.

Case C: RG
t ≤ πprTDt(1, ρ̄) < max

{
RG
t ;Rcomp

t

}
The target amount cannot be reached with the available latent resources, but the
minimal guaranteed rate can be reached. We assume then that the insurer makes
its best effort on the latent gains or losses by taking

αt = 1 and ρt = ρ̄.

The amount Rph
t = πprTDt(1, ρ̄) is thus credited to policyholders.

Case D: πprTDt(1, ρ̄) < RG
t .

In this case, the insurance company uses the whole profit sharing reserve and
takes ρt = 1. It also takes αt = 1 and credits then Rph

t = max(πprTDt(1, 1), RG
t )

to the policyholders.
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Thus, in all cases, the minimum guaranteed amount RG
t (αt, ρt) is given to policyholders.

We define then the crediting rate and update the mathematical and profit sharing
reserves as follows:

rph(t) = Rph
t

MRt2 + PSRt−1
, (2.2.27)

MRt = MRt2 (1 + rph(t)) , (2.2.28)
PSRt = PSRt−1rph(t) + (1− ρ)

(
PSRt−1 + (CGLst + LGLst(α))+

)
. (2.2.29)

The profit sharing reserve at time t is thus obtained as the proportion 1 − ρ of the
realized gains and of the updated profit sharing reserve. We also update the book value
of stock assets to take into account the realized gain or loss:

BV s
t4 = BV s

t3 + LGL(αt).

The shareholder’s margin comprises a percentage 1 − πpr on the amount to be dis-
tributed TDt(αt, ρt) minus its contribution to bail out the company when the minimal
amount cannot be met:

AMt = (1− πpr)TDt(αt, ρt)− (RG
t (αt, ρt)− πprTDt(αt, ρt))+. (2.2.30)

Note that this contribution is only needed in Case D when RG
t > πprTDt(1, 1).

Table 5 details the composition of the Book value Balance sheet after the crediting
operation. As mentioned previously, the capitalization reserve is managed separately

Assets Liabilities
MRt

BV s
t4 PSRt

BV b
t3 ∆CRt

AMt

Table 2.5 – Book value balance sheet after Step 4.

from other technical reserves. While the mathematical provision and the profit sharing
reserve are linked to the performance of the portfolio, regulatory constraints require to
invest the capitalization reserve in sovereign bonds Here, we assume that it is invested
in a one period zero-coupon bond. Since the capitalization reserve belongs to the equity
capital of the insurance company, the interests coming from the capitalization reserve
are given to shareholders. Their cash flow is then the sum of the accounting margin
AMt and the yield of the capitalization reserve:

P&Lt = AMt + CRt−1

(
1

P (t− 1, t) − 1
)
. (2.2.31)

Step 5: externalization of the shareholders’ margin and of the capitalization
reserve from the accounting

The margin AMt that determines the accounting return on capital invested by share-
holders on (t − 1, t) must be removed from the balance sheet. The same has to be
done for the capitalization reserve movement ∆CRt, since the capitalization reserve is
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handled separately. One then has to clear the amount AMt + ∆CRt from the balance
sheet. If this amount were externalized in cash, one would have to calculate the capital
gains made on it: the gain on equity assets should then be distributed to policyholders
with the participation rate πpr and the gain on bonds should modify the capitalization
reserve. Thus, one would have to repeat the previous steps indefinitely. To avoid this
difficulty, we assume if AMt + CRt > 0 that a fraction of the assets corresponding to
the accounting value AMt + CRt is removed. This amounts to fund the shareholders’
margin and the capitalization reserve with a fraction of the portfolio instead of cash.
If AMt + CRt < 0, we simply buy the quantity of assets and bonds with weights wst
and wbt that corresponds to this book value.

This procedure leads to the following update of the stock book value

BV s
t = BV s

t4

(
1− (AMt + ∆CRt)+

BVt4

)
+ wst (AMt + ∆CRt)−,

where BVt4 = BV s
t4 + BV b

t3 since the bond book value is unchanged at Step 4. The
corresponding position is

φst = φst3

(
1− (AMt + ∆CRt)+

BVt4

)
+ wst (AMt + ∆CRt)−

St

We do the same for the bonds and have

BV b
t = BV b

t3

(
1− (AMt + ∆CRt)+

BVt4

)
+ wbt (AMt + ∆CRt)−

with the corresponding position

φbt = φbt4

(
1− (AMt + ∆CRt)+

BV G
t4

)
+ wbt (AMt + ∆CRt)−

B̄(t, n, ct)
.

Note that for simplicity, we assume here that we can buy (when AMt+CRt < 0) bonds
with time to maturity i and coupon cit. It would have been possible to buy bonds at
par, but this would require then to modify again the coupon rates accordingly, similarly
to Step 3. Table 2.1 represents the balance sheet at the end of Step 5 and thus at the
and of the whole reallocation procedure.

2.2.3 Closing of the strategy at time T
We now describe how the ALM portfolio is closed at time T . The insurance company
starts with the implementation of Step 1 described in Section 2.2.2. Things change then
since the insurer has to liquidate the portfolio. Since the insurer closes its portfolio, we
consider the policyholders that exit on (T − 1, T ) and the others that exit at time T in
the same way. All the assets are sold and all the capital gains or losses are realized, and
the profit sharing reserve is released. The capital gain or loss realized when liquidating
the stock portfolio is given by:

CGLsT = φsT−1

(
ST −

BV s
T−1

φsT−1

)
.
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We now focus on the equally weighted basket of bonds. Keeping in mind that the bond
with shortest time to maturity has come due, the bond portfolio comprises bonds from
maturity 1 to n− 1, and the capital gain or loss is therefore given by:

CGLbT = φbT−1

(
1
n

n−1∑
i=1

B(T, T + i, ci+1
T−1)

)
−
(
BV b

T−1 −
φbT−1
n

)
.

This quantity impacts the capitalization reserve level as follows

CRT = (CRT−1 + CGLbT )+.

The terminal bonus declaration is rather simple. The insurer must liquidate the profit
sharing reserve since it belongs to its policyholders and comply with the minimum
guaranteed rate of return rG. Let us define

TDT = FIT − (CRT−1 + CGLbT )− + PSRT−1 + CGLsT , (2.2.32)

the amount to distribute to policyholders. The credited amount to policyholders is:

RG
T = max

{
πprTDT , r

G(MRT−1 + PSRT−1)
}
. (2.2.33)

Note that we do not consider for the final date a competitor rate since all the contracts
terminate. We then define the crediting rate rph(T ) = RGT

MRT−1+PSRT−1
, the mathemat-

ical reserve MRT = MRT−1(1 + rph(T )) and PSRT = rph(T )PSRT−1, exactly as in
Equations (2.2.27), (2.2.28) and (2.2.29).

We define then the final accounting margin of the shareholders by

AMT = (1− πpr)TDT − (RG
T − πprTDT )+.

Since the capitalization reserve RCT is a part of the equity of the insurance company,
it is given to shareholders. The terminal shareholders P&L is then:

P&LT = AMT + CRT−1

(
1

B(T − 1, T ) − 1
)

+ CRT . (2.2.34)

At the maturity of the contract, the mathematical and profit sharing reserves MRT

must be paid to policyholders. The terminal cash outflow is thus

COFT = MRT + PSRT . (2.2.35)

2.2.4 Overall performance of the ALM
To assess the solvency situation, Solvency II regulation requires to value assets and
liabilities on a market-consistent basis. It prescribes to use the Best Estimates Liabil-
ities and the Basic Own-Funds (also called Net Asset Value) to value the liability of
the company. We explicit these key quantities in our framework.

The Basic Own-Funds (BOF) corresponds to the market-consistent valuation of the
equity capital of the firm. It is determined as the present value of future shareholders
P&L cash flows under the pricing measure Q. If we consider a short-rate model (rt, t ≥
0), the BOF is given as follows:

BOF0 = EQ
[
T∑
t=1

e−
∫ t

0 rsdsP&Lt
]
. (2.2.36)
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More generally, if (Ft, t ≥ 0) is the filtration representing the market information, we
can define the Basic Own-Funds at time t ∈ {0, . . . , T − 1} as

BOFt = EQ
[

T∑
u=t+1

e−
∫ u
t
rsds(P&Lu)

∣∣∣∣∣Ft
]

.
The Best Estimates Liability (BEL) represents the total debt of the insurer. It

corresponds to the discounted sum (present-value) of future surrender cash outflows
and terminal liability payment

BEL0 = EQ
[
T∑
t=1

e−
∫ t

0 rsdsCOFt

]
. (2.2.37)

We more generally define

BELt = EQ
[

T∑
u=t+1

e−
∫ u
t
rsdsCOFu

∣∣∣∣∣Ft
]
for t ∈ {0, . . . , T − 1}

Since we are considering a pool of policyholders running off, all these cash flows
are generated from the initial Mathematical Reserve. We therefore get the so-called
"no-leakage" condition:

MR0 = BOF0 +BEL0.

More generally, we have

∀t ∈ {0, . . . , T − 1}, MRt + PSRt + CRt = BOFt +BELt.

2.2.5 Solvency Capital Requirement of the ALM with the
standard formula

To determine the Solvency Capital Requirement (SCR), the supervision authority pro-
vides a standard formula that consists in various stress tests for different type of risks.
The risks are divided between modules and sub-modules and combined into a global
SCR for market risk according to an aggregation formula. The detailed description of
the SCR calculation can be found in the note written by the European Insurance and
Occupational Pensions Authority (EIOPA), Section 2 of [EIOPA12]. Short descriptions
of the standard formula can be found in the appendix of [BSS15] or in Subsection 3.2
of [Boo17]. In our model that takes into account equity and riskless bonds, we only
have to consider the equity and interest rate modules, and we briefly explain how to
use the standard formula in our framework.

Remark 2.3. Besides equity and interest rate modules, there are many other SCR
risk modules that take part into the SCR for market risk. Among them, the spread
risk module that deals with credit risk is perhaps the most important one in practice.
In principle, it is possible to extend our model and to add corporate bonds. Thus, the
insurance company targets to invest the portfolio according to the nonnegative weights
wst , wbt and wcbt that describe respectively the proportion invested in stocks, sovereign
bonds and corporate bonds. One has then to precise the portfolio of corporate bonds,
and the difficulty is to keep the model tractable. A simple choice would be to consider
a pool of Ncb ∈ N∗ different companies with the same credit grade and to assume that
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the corporate bonds are uniformly invested among these companies, i.e. each corporate
bond has a relative weight 1/Ncb. Let denote by µ > 0 their common default intensity
and define Bµ(t, n, c) = ∑n

i=1 ce
−µiP (t, t + i) + e−µnP (t, t + n) the price at time t of a

corporate bond with coupon c and maturity t + n, and B̄µ(t, n, c̃t) = 1
n

∑n
i=1B(t, i, c̃it)

for c̃t = (c̃it)i∈{1,...,n}. The reallocation procedure described in Subsection 2.2.2 can then
be adapted to have

φst = wstMVt
St

, φbt = wbtMVt

B̄(t, n, ct)
, and φcbt = wcbt MVt

B̄µ(t, n, c̃t)

but it requires to model a few other issues:

• The number of defaults between t−1 and t. If we assume independence, it follows
a binomial distribution with parameters Ncb and 1− e−µ.

• The recovery value of defaulted bonds. It can be taken equal to zero or to a
deterministic proportion of the nominal value.

Last, the standard formula for the SCR spread module can then be implemented by
applying a stress on µ. Clearly, the spread module is directly affected by the model
chosen for the recovery value and for the dependence between defaults. This is left for
future research. Since the description of the ALM model is already quite complex, we
have made the choice for clarity to only consider equity and riskless bonds.

Equity module

The SCR for equity risk SCReq is determined by the variation of the Basic Own-Funds
BOF0 after a negative shock on the equity asset class that occurs immediately after
time 0, i.e. after the first asset allocation. The negative shock seq ∈ (−1, 0) assumes
that the value of stock assets decreases with a certain percentage. The shock prescribed
by the EIOPA may differ according to the type of equity, see [EIOPA12] p. 140 and
Section 3 of [GM12]. Here, we recall that S should be seen as a weighted average of
stocks (like indices) in which the insurance company invests. Thus, we assume that

Sshock0+ = S0 (1 + seq) ,

where seq is the corresponding average of the shocks prescribed by the EIOPA. We note
BOF eq_shock

0 the Basic Own-Funds calculated with this shock. The SCR for equity risk
is then defined by:

SCReq = (BOF eq_shock
0 −BOF0)− = (BOF0 −BOF eq_shock

0 )+ (2.2.38)

Interest rate module

To estimate the solvency capital for the risk on interest rates, the EIOPA provides
upward and downward shocks to the initial term structure. As for the equity, the
shocks are assumed to occur immediately after the first allocation at time 0. Let us
suppose that we observe at time 0 market prices of zero-coupon bonds t 7→ Pmkt(0, t)
and we note Rmkt(0, t) = −1

t
log(Pmkt(0, t)) the corresponding yield curve. The shifted

yield curves are then given by:

Rup/down(0, t) = (1 + s
up/down
t )Rmkt(0, t), (2.2.39)
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where supt (resp. sdownt ) is the upward (resp. downward) shock to the yield with
maturity t. These coefficients have been recommended in p. 137 of [EIOPA12] and
implemented by the European Commission in the Articles 166 and 167 of the Delegated
Regulation [Com15]1. They are summarized in the Table 2.6 below.

t 1 2 3 4 5 6 7 8 9 10
supt 70% 70% 64% 59% 55% 52% 49% 47% 44% 42%
sdownt −75% −65% -56% -50% -46% -42% 39% -36% -33% -31%
t 11 12 13 14 15 16 17 18 19 20
supt 39% 37% 35% 34% 33% 31% 30% 29% 27% 26%
sdownt −30% −29% -28% -27% -28% -28% -28% -28% -29% -29%

Table 2.6 – Stress factors of the standard formula given by the EIOPA [EIOPA12] in
December 2012

For years t ≥ 90, the regulator prescribes the shocks supt = 0.2 and sdownt = −0.2.
Between ta = 20 and tb = 90 years, a the linear interpolation method has to be used
to get the shocks:

∀t ∈ [ta, tb], sup/downt = s
up/down
ta + (sup/downtb − sup/downta ) t− ta

tb − ta
. (2.2.40)

The SCR for up and down shock are determined by the variation of the basic own-
funds if the stressed yield-curve is used instead of the initial term-structure. Namely,
we set SCRup = (BOF0 −BOF up

0 )+ and SCRdown = (BOF0−BOF down
0 )+. The SCR

for the risk on interest rates is defined as the worst one of the two shocks:

SCRint = max(SCRup, SCRdown). (2.2.41)

Remark 2.4. Let us note fmkt(0, t) = − log
(
Pmkt(0,t+1)
Pmkt(0,t)

)
= (t + 1)Rmkt(0, t + 1) −

tRmkt(0, t), that can be seen as a forward rate on (t, t + 1). Let (st)t∈N∗ be prescribed
(deterministic) shocks and Rshock(0, t) = Rmkt(0, t)(1 + st). Let f shock(0, t) = (t +
1)Rshock(0, t+ 1)− tRshock(0, t) the stressed forward rate. We then have

f shock(0, t)− fmkt(0, t) = (t+ 1)st+1R
mkt(0, t+ 1)− tstRmkt(0, t).

For large maturity t, it is likely to have Rmkt(0, t+ 1) ≈ Rmkt(0, t), which gives

f shock(0, t)− fmkt(0, t) ≈ st+1R
mkt(0, t+ 1) + t(st+1 − st)Rmkt(0, t).

Due to the multiplication by t, even small variations of the stress factor (and also of
st+1−st) may lead to important variations of the shocked forward rate. For example, if
we assume for simplicity Rmkt(0, t) = r for all t, the downward shock of Table 2.6 gives
fdown(0, 13) = r − 27

100r + 13
100r = 86

100r and fdown(0, 14) = 58
100r, leading to an important

variation of the downward shocked forward rate between maturities 13 and 14. The
same is observed with fdown(0, 18) = r − 28

100r + 18
100r = 90

100r and fdown(0, 19) = 71
100r.

1Besides, a minimal increase (resp. decrease) of 1% is assumed for Rup(0, t) (resp. Rdown(0, t)),
see also Boonen [Boo17], p. 411.
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This methodology has been set up when the interest rates were around 2% or 3%,
but is no longer relevant for very low or even negative interest rates. If we suppose
for simplicity that Rmkt(0, t) = 0, then the multiplicative stress rule (2.2.39) leaves
rates unchanged and therefore leads to a null SCR. Also, for negative rates, the for-
mula (2.2.39) inverts the sign of the stress: the upward stress factor leads to a decrease
of the interest rate and conversely. To bypass this issue, the EIOPA has recently
recommended in 2018 [EIOPA18] to add an additive factor, i.e. to replace (2.2.39) by

Rup/down(0, t) = (1 + s
up/down
t )Rmkt(0, t) + b

up/down
t . (2.2.42)

Between ta = 20 and tb = 90 years, the interpolation formula (2.2.40) is kept for st.
An analogous formula is used for bup/downt :

∀t ∈ [ta, t̃b], bup/downt = b
up/down
ta + (bup/down

t̃b
− bup/downta ) t− ta

t̃b − ta
,

with ta = 20, t̃b = 60 years and bup/downt = 0 for t ≥ t̃b.

t 1 2 3 4 5 6 7 8 9 10
supt 61% 53% 49% 46% 45% 41% 37% 34% 32% 30%
sdownt -58% -51% -44% -40% -40% -38% -37% -38% -39% -40%
bupt 2.14% 1.86% 1.72% 1.61% 1.58% 1.44% 1.30% 1.19% 1.12% 1.05%
bdownt -1.16% -0.99% -0.83% -0.74% -0.71% -0.67% -0.63% -0.62% -0.61% -0.61%
t 11 12 13 14 15 16 17 18 19 20
supt 30% 30% 30% 29% 28% 28% 27% 26% 26% 25%
sdownt -41% -42% -43% -44% -45% -47% -48% -49% -49% -50%
bupt 1.05% 1.05% 1.05% 1.02% 0.98% 0.98% 0.95% 0.91% 0.91% 0.88%
bdownt -0.60% -0.60% -0.59% -0.58% -0.57% -0.56% -0.55% -0.54% -0.52% -0.50%

Table 2.7 – Stress factors of the standard formula given by the EIOPA [EIOPA18] in
February 2018.

Aggregation Formula

The SCR for market risk is a combination between the equity and interest rate risk in
our framework. It is defined as follows (see Articles 164 and 165 of [Com15]):

SCRmkt =
√
SCR2

eq + SCR2
int + 2εSCReqSCRint (2.2.43)

where the “correlation factor” ε = 0 if the interest rate exposure is due to the upward
shock and ε = 1

2 if it is due to the downward shock.

2.3 Asset Model
The insurance company invests policyholders’ deposits between two asset classes: risk-
less bonds and stocks. Therefore, we have to model the equity asset St and the interest
rates, for which we choose a short-rate model (rt, t ≥ 0). Since we are considering a
portfolio on a long run with a low rebalancing frequency, we chose (as it is usually
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done for ALM, see e.g. [BG15], [BKP16] or [GGH+08]) simple models with a clear
parametrization. Of course, more sophisticated models exist for hedging and pricing
purposes for shorter time horizon, but they are not really suited for ALM purposes. We
denote (Ω,F ,Q) a risk-neutral probability space and (Ft, t ≥ 0) the filtration that rep-
resents market information. Let (Wt, Zt)t≥0 be a standard two-dimensional Brownian
motion under Q and we set

Zγ
t = γWt +

√
1− γ2Zt, for γ ∈ [−1, 1]. (2.3.1)

Since we will mainly focus in this paper on the SCR valuation with the standard
formula that has to be made under a risk-neutral measure, we will not model the asset
dynamics under the real world probability. However, modeling for both risk-neutral
and real world probabilities is relevant for ALM to determine, for example, an optimal
asset allocation under SCR constraints. This is however beyond the scope of the paper.

Before specifying the equity and interest rate dynamics, we first describe the sur-
render rate model for policyholders. We consider that the surrender rate is the sum
of a component p ∈ (0, 1) quantifying structural surrenders and a market contingent
surrender rate DSR(∆t), where ∆t = rph(t)−rcompt is the spread between the crediting
rate to policyholders rph(t) defined in (2.2.27) and the competitor rate rcompt defined
by (2.2.25). The function DSR is defined as follows

DSR(∆) =


DSRmax for ∆ < α,

DSRmax
β −∆
β − α

for α ≤ ∆ ≤ β, (2.3.2)

0 for ∆ > β,

where DSRmax ∈ (0, 1 − p) is the maximum surrender rate, α the massive surrender
threshold and β the triggering surrender threshold. Therefore, surrenders occur with
a proportion pet also called exit rate:

pet = p+DSR(∆t). (2.3.3)

We assume that the equity asset follows a Black-Scholes model:

St = S0 exp
(∫ t

0
rsds+ σSWt −

σ2
S

2 t

)
, (2.3.4)

where σS > 0 is the volatility. Concerning interest rates, we consider a priori two
different models: the shifted Vasicek model (called Vasicek++ later on, see Brigo and
Mercurio [BM06] Sections 3.2.1 and 3.8) and the Hull and White model (see e.g. [BM06]
Section 3.3), that allow for negative interest rates. The Vasicek++ model assumes that

rt = xt + ϕ(t), (2.3.5)

xt = x0 +
∫ t

0
k(θ − xs)ds+ σrZ

γ
t , (2.3.6)

for some parameters x0, θ ∈ R, k, σr > 0, and ϕ : R+ → R. The Hull and White model
assumes that

rt = r0 +
∫ t

0
k(ϑ(s)− rs)ds+ σrZ

γ
t , (2.3.7)

with parameters r0 ∈ R, k, σr > 0, and ϑ : R+ → R. Both models have very similar
properties: these are Gaussian models with explicit zero-coupon bond prices and closed
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formula for caplets, and we refer to [BM06] for further details and for examples of
calibration to market data. In fact, as noticed by Brigo and Mercurio ([BM06], p. 101)
the two models are identical if we take

ϑ(t) = θ + ϕ(t) + 1
k
ϕ′(t). (2.3.8)

Let us note however that the Vasicek++ parametrization offers a slightly larger class of
dynamics: for any piecewise continuous function ϑ, we can find a piecewise C1 function
ϕ such that (2.3.8) holds. Instead, there is no ϑ satisfying (2.3.8) when ϕ is piecewise
continuous and not differentiable. We just recall the zero-coupon bond prices at time t
with maturity T ≥ t in the Vasicek++ model:

P V++(rt, t, T ) = A(T − t) exp
(
−
∫ T

t
ϕ(s)ds− (rt − ϕ(t))gk(T − t)− θ(T − t− gk(T − t))

)
,

gk(t) = 1− e−kt
k

, A(t) = exp
(
σ2
r

2k2 gk(t)−
σ2
r

4kg
2
k(t)

)

and in the Hull and White model:

PHW (rt, t, T ) = A(T − t) exp
(
−rtgk(T − t)−

∫ T

t
(1− e−k(T−s))ϑ(s)ds

)
.

The methodology to calibrate these models to market data (as required by the
regulation, see e.g. [VEKLP17] p.8) is the same. For each parameter set (x0, θ, k, σr)
(resp. (r0, k, σr)), there exists a unique deterministic function ϕ (resp. ϑ) that perfectly
fits the zero-coupon bond prices Pmkt(0, t) observed in the market (or deduced from
market data). Therefore, one tries to find the parameters that better fit the market
data on options such as caplet or swaption prices, and then pick the corresponding
function ϕ or ϑ. These models comply with the Solvency II regulation that imposes to
fit the initial term structure of interest rates and to approximate well market prices of
the options. To perform the perfect fit of the zero-coupon bond prices, one typically
assumes some parametrization of the functions ϕ and ϑ. A typical choice is to assume
these functions to be piecewise constant or piecewise linear. Once parameterizations
are chosen for ϕ and ϑ, the Vasicek++ and Hull and White model may no longer be
the same: the Vasicek++ model with piecewise constant ϕ is not a Hull and White
model with piecewise constant ϑ, and conversely. In what follows, we argue that the
parametrization of the Vasicek++ model is much more convenient for dealing with the
standard formula.

To implement the standard formula described in Section 2.2.5, one has to re-
calibrate the models to the stressed zero-coupon curve. Since the stressed factors
given in Tables 2.6 and 2.7 are given on an annual basis, it is rather natural to consider
piecewise constant shapes for ϕ(t) and ϑ(t):

ϕ(t) =
∞∑
i=0

ϕi1t∈[i,i+1[, ϑ(t) =
∞∑
i=0

ϑi1t∈[i,i+1[.

We denote by ϕmkt (resp. ϑmkt) the function calibrated in the Vasicek++ (resp. Hull
and White) model to Pmkt(0, t) and ϕshock (resp. ϑshock) the function calibrated to
exp

(
−t[(1 + st)Rmkt(0, t) + bt]

)
. We keep the parameters (x0, θ, k, σr) constant (i.e.

as before the shock) for the Vasicek++ model, and the shock is then entirely absorbed



2.3. Asset Model 67

by the shift function ϕ. For the Hull and White model, a first idea would be to keep
the parameters (r0, k, σr) constant and change the function ϑ. However, this leads to
unreasonable large or low values of ϑ, as well as unrealistic oscillations, which are due
to the mean reversion. Let us take for example the case of the upward shock. Since rt
starts from r0, ϑ0 has to be very high to reproduce the shock. Then, the value of r1 is
likely to be very high and one has to take ϑ1 very low to fit the shock, and so on. To
reduce these fluctuations, we take (1 + s1)r0 + b1 as the initial short rate value after
the shock and keep the parameters (k, σr) constant. This reduces the fluctuations, but
we already observe in ϑshock in Figure 2.1 that they remain quite significant. From the
zero-coupon bond price formulas, we easily get:

exp
(
−t[stRmkt(0, t) + bt]

)
= exp

(∫ t

0
ϕmkt(s)− ϕshock(s)ds

)
= exp

(
−(s1r0 + b1)gk(t) +

∫ t

0
(1− e−k(t−s))(ϑmkt(s)− ϑshock(s))ds

)
.
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Figure 2.1 – Calibrated piecewise constant functions t 7→ ϕshock(t) (left) and t 7→
ϑshock(t) (right) after the upward and downward shocks specified in Table 2.6 with no
additive shock (i.e. bt = 0), r0 = 0.02 and k = 0.2.

Figure 2.1 illustrates the calibrated functions. We have considered the case where
the zero-coupon bond prices Pmkt(0, t) are given by a Vasicek model with r0 = θ = 0.02,
k = 0.2 and σ = 0.01. We assume rcompt = rt and constant allocation targets wbt = 0.95
and wst = 0.05. The first striking point is the oscillations of ϑshock, making the Hull and
White model poorly realistic after the shock. Instead, the variations of ϕshock are much
more reasonable. We still observe some unlikely moves between years 10 and years 20:
as explained in Remark 2.4, this is due to small variations of the stress factors that are
amplified by the maturity. Thus, the Vasicek++ model has much more meaning after
the shock than the Hull and White model. We have plotted in Figure 2.2 the crediting
rate to policyholders, as well as the empirical distribution of the cases A, B, C and D
described in Step 4 that determines the crediting rate to policyholders. We observe
significant oscillations of the mean crediting rate for the Hull and White model, that
can be seen also from the important oscillations between the proportions of case A
and case C. These oscillations come from the fluctuations of rt, which is taken as the
competitor rate. In contrast, the mean crediting rate and the distribution of the cases
A, B, C and D is much more regular in the Vasicek++ model. We have also done
the same analysis for the downward shocks: oscillations again appear in the Hull and
White model, but they are less marked because of the minimum guaranteed rate.
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Figure 2.2 – Simulations after the upward shock on interest rates described in Table 2.6.
Left: mean of the crediting rate rph(t) defined in (2.2.27) with the 95% confidence in-
terval. Middle (resp. Right): proportions of the cases A, B, C and D in the Vasicek++
(resp. Hull and White) model.

We now focus on SCRint defined by (2.2.41). Figure 2.3 shows the value of the
SCR in function of k when the central model is a Vasicek model with r0 = θ = 0.02,
σ = 0.01 and k. We observe almost the same value for SCRdown when comparing the
Vasicek++ model and the Hull and White model, but there is a significant difference
for SCRup in favor of the Vasicek++ model, which then affects then SCRint when the
upward shock has a greater contribution than the downward shock.
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Figure 2.3 – SCR values with Vasicek++ and Hull and White models in function of k
for SCRdown (left), SCRup (middle) and SCRint (right).

Last, we have plotted in Figure 2.4 the functions ϕshock and ϑshock after the upward
and downward shocks with the new recommendations of the EIOPA given in Table 2.7.
Here, the zero-coupon bond prices Pmkt(0, t) are given by a Vasicek model with r0 =
θ = 0.005, k = 0.2 and σ = 0.01. We observe even more oscillations with the Hull and
White models, which makes this model irrelevant after the shocks. Surprisingly, for
the Vasicek++ model, we notice that the shifted functions cross after 30 years: ϕup
(resp. ϕdown) becomes negative (resp. positive). Thus, the upward (resp. downward)
shock on the risk-free interest rates leads to a downward (resp. upward) shock on the
spot rate after approximately year 35, which is puzzling. This behavior is mostly due
to the phasing out of the additive term that is less innocuous as one may think. In the
simplest constant rate model, we observe that stopping the phasing out of b at time 60
has a significant effect.

This study tends to show that shifted models such as Vasicek++ or CIR++ have
much more meaning after the shocks prescribed by the EIOPA than mean-reverting
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Figure 2.4 – Calibrated piecewise constant functions t 7→ ϕshock(t) (left) and t 7→
ϑshock(t) (middle) after the upward and downward shocks specified in Table 2.7. Right:
calibrated piecewise constant functions t 7→ ϕshock(t) for a constant rate model (Vasicek
model with r0 = θ = 0.005 and σ = 0).

curve models such as Hull and White or Black and Karasinski models. In shifted mod-
els, the shock is translated in the shifted functions ϕ that directly affects rt. Instead,
for mean-reverting models, the variations of ϑ only impacts rt (and thus R(0, t)) after
some time (typically 1/k), it is necessary to have strong variations of ϑ to follow the
variations of R(0, t) at each year t. This explains heuristically why oscillations are
observed to fit the shocked curve. Thus, in our numerical experiments, we will work
with the Vasicek++ model.

2.4 Numerical results
In this section, we provide numerical results for different model parameters. We com-
pute the solvency capital requirement of the insurance company for an ALM portfolio
over T = 30 years by using the standard formula. We study and discuss the impact of
the shocks prescribed by the standard formula, and the corresponding values of the SCR
modules. In our simulations, we sample exactly N paths (rit,

∫ t
t−1 r

i
sds, S

i
t)t∈{1,...,T}, for

1 ≤ i ≤ N , and use the same simulations for the central and shocked frameworks: this
gives a fair comparison between different settings and models. More precisely, given xt
and Wt, we know from (2.3.6) and (2.3.1) that

(
xt+∆,

∫ t+∆
t xsds,Wt+∆

)
follows a mul-

tivariate normal distribution with mean (xte−k∆ +θ(1−e−k∆), (xt−θ)1−e−k∆

k
+θ∆,Wt)

and covariance
σ2 1−e−2k∆

2k
σ2

2

(
1−e−k∆

k

)2
σγ 1−e−k∆

k

σ2

2

(
1−e−k∆

k

)2
σ2

k2

(
∆− 1−e−k∆

k

)
− 1

2k

(
1−e−k∆

k

)2
σγ k∆−1+e−k∆

k2

σγ 1−e−k∆

k
σγ k∆−1+e−k∆

k2 ∆

 .

From (2.3.5) and (2.3.4), we then obtain N independent paths (rit,
∫ t
t−1 r

i
sds, S

i
t)t∈{1,...,T}

, 1 ≤ i ≤ N , and can calculate the BOF estimator

1
N

N∑
i=1

T∑
t=1

e−
∫ t

0 r
i
sdsP&Lit (2.4.1)

of (2.2.36) in the central and shocked frameworks. In the first subsection, we present
general results with the shocks given by the present regulation in Europe [Com15]
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and with interest rates around 2%. Then, we analyze in the second subsection the
importance of the cash flow matching in the ALM, and discuss its impact on the SCR.
In the third subsection, we do a similar analysis with low interest rates around 0.5%
using the last table of shocks recommended by the EIOPA (Table 2.7).

2.4.1 Analysis of the SCR with the standard formula
We work with the parameters describes in Tables 4.1 and 4.2: the interest rate model
follows a Vasicek model mean-reverting around 2% while the minimum guaranteed
rate is set at rG = 1.5%. Thus, this is a setting somehow well balanced, in the
sense that all the cases A, B, C and D that determine the crediting rate occur with a
significant proportion. This is confirmed by the empirical distribution plotted at the
left in Figure 2.5. If rG were higher (resp. lower) we would observe mostly cases C and
D (resp. A and B).

To determine the constant allocation in stock and bond that we consider in our
simulations, we have drawn in the right of Figure 2.5 the different SCR components
as a function of ws, as well as the global SCR given by formula (4.3.3). We use the
shocks given by Table 2.6. In our simulations, we are looking for an allocation that
makes the SCR on equity and the SCR on interest rates of the same order, since
the aggregation formula (4.3.3) somehow encourages to diversify the risk components.
This is achieved by ws = 0.05. Note that in this case, this is also the allocation that
minimizes the SCR. As one may expect, the SCR on equity is increasing with respect
to ws. The risk-neutral valuation dissuades from taking risk and is questionable in the
life insurance context, as pointed out by Vedani et al. [VEKLP17], while it is required
for the standard formula. The monotonicity is also observed for the downward (resp.
upward) shock on the equity: the higher ws, the less the insurance company has capital
gains (resp. loss) from the downward shocks. Here, the curves of SCRup and SCRdown

cross also around ws = 0.05.

Stock model Short-rate model
S0 = 1 r0 = θ = 0.02
σS = 0.1 σr = 0.01
γ = 0 k = 0.2

Table 2.8 – Market-model parameters

Management Parameters Liability Parameters
Allocation in stock ws = 0.05 Lapse triggering threshold β = −0.01
Allocation in bond wb = 0.95 Massive lapse triggering threshold α = −0.05
Participation rate πpr = 0.9 Maximum lapse dynamic lapse rate DSRmax = 0.3
Minimum guaranteed rate rG = 0.015 Static lapse rate p = 0.05
Competitor rate rcompt = rt
Smoothing coefficient of the PSR: ρ̄ = 0.5
Bond portfolio maximal maturity n = 20

Table 2.9 – Liability and management parameters



2.4. Numerical results 71

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6
Case A
Case B
Case C
Case D

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
SCR Global
SCR equity
SCR down
SCR up

Figure 2.5 – Left: Empirical distribution of the cases A, B, C, and D determining the
crediting rate, in function of the time t. Right: the SCR modules in function of the
constant allocation weight in equity ws.

We now analyze the shocks. In Figure 2.6, we have plotted the empirical means of
the crediting rate and of the exit rate after the equity shock seq = −0.39. We have also
indicated with a plus sign (resp. a dotted line) the upper (resp. lower) bound of the
95% confidence interval. As one may expect, the equity shock gives an important loss
resulting in a lower crediting rate and thus a higher exit rate. Nonetheless, the effects on
these rates are moderate due to the guaranteed rate: on average, the maximal difference
between the competitor rate rt is about 0.5%, and therefore only few scenarios are at
some time above the surrender triggering threshold β. The shocks on the interest rate,
illustrated in Figure 2.7 mix different effects. The downward shock gives an important
gain at the beginning, but in the long run it makes it harder for the insurance company
to credit the minimal guaranteed rate. This is known as the reinvestment risk in
the literature. This fact is confirmed by the plot of the mean value of the average
coupon rate 1

n

∑n
i=1 c

i
t, that is even slightly below rG = 1.5% after 20 years. This

plot of the average coupon rate also illustrates the rolling mechanism described in
Equation (2.2.14). Conversely, the upward shock gives an important initial loss, but in
the long run it makes it much easier for the insurance company to credit the minimal
guaranteed rate. Also, because of the initial loss, the insurer tends to credit at the
beginning rather low rates to policyholders while the competitor rate rt is high: this
has an important effect on the surrender rate.
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Figure 2.6 – Before and after the equity shock of 39%. Evolution of the mean crediting
rate E[rph(t)] (left) and of the mean exit rate E[pet ] (right) in function of the time t.
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Figure 2.7 – Before and after the downward and upward shocks on interest rates.
Evolution of the mean crediting rate E[rph(t)] (left), of the mean exit rate E[pet ] (middle)
and of the average coupon in the Bond portfolio (right)in function of the time t.

Let us mention here that we have also run the same ALM strategy when the com-
petitor rate is rcompt = max(rt, 0.9rph(t − 1)). We have observed rather minor dif-
ferences with the case rcompt = rt. Therefore for the simplicity of the exposition,
we have preferred to keep rcompt = rt in this numerical section. Before going fur-
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Figure 2.8 – Values of the different SCR modules as a function of γ, the correlation
between bonds and stocks.

ther with the analysis of the importance of the cash flow matching, we have drawn
the dependence of the different SCR modules as a function of γ that tunes the cor-
relation between the equity and the interest rate. This is the kind of quantitative
study an ALM model may help for. We observe that SCReq and SCRdown are de-
creasing and SCRup is increasing with respect to γ. The aggregated SCR (4.3.3) is
first slightly decreasing when SCRdown < SCRup and then increasing. We notice an
important discontinuity at SCRdown = SCRup which is due to the ε coefficient in
formula (4.3.3) that goes from 0 to 1/2 when SCRdown goes above SCRup. In the
range [−0.5, 0.5] usually observed for the correlation between stocks and sovereign
bonds (see e.g. Pericoli [Per18] or Rankin and Shah Idil [RI14]), we observe an im-
portant variation of 50% of SCRmkt, half of which is contained by the discontinuity.
Such a discontinuity in the SCR formula is unfair and may encourage the insurer
to be at the edge of this discontinuity: a continuous formula for SCRmkt such as
max(

√
SCR2

eq + SCR2
up,
√
SCR2

eq + SCR2
down + SCReqSCRdown) would avoid this.
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2.4.2 SCR for some dynamic allocation strategies
We analyze briefly in few simple examples how the SCR valuation with the standard
formula may be impacted by considering dynamic strategies. Namely, we consider the
four following strategies for t ∈ {0, 1, . . . , T}:

wS,0t = 5
100 , wS,1t = t+ 5

100 1t≤5 + 10
1001t>5, wS,2t = 10− t

100 1t≤5 + 5
1001t>5 wS,3t = 10

100 .
(2.4.2)

Strategy 1 (resp. 2) starts from an initial 5% (resp. 10%) proportion of stocks that
is gradually increased up to 10% (resp. decreased down to 5%) after 5 years. As a
comparison, we consider Strategies 0 and 3 with respective constant allocations 5%
and 10% in stocks. In Table 2.10, the mean values of the Basic-Own-Funds and of the
different modules of the SCR are displayed. Figure 2.9 shows the empirical distributions
(kernel density estimation with Gaussian kernel) of the Basic-Own-Funds variation
after the shock on equity for the four strategies.

BOF SCRrate SCReq SCRmkt

Strategy 0 0.0209 0.0076 0.0072 0.0129
Strategy 1 0.0186 0.0089 0.0079 0.0146
Strategy 2 0.0199 0.0098 0.0221 0.0283
Strategy 3 0.0176 0.0109 0.0209 0.0280

Table 2.10 – Different values of the SCR modules of the strategies (2.4.2).

As one may expect, the main driver when using the standard formula is the initial
allocation since it relies on different shocks at time t = 0. Thus, the SCRmkt mean val-
ues and the distributions of BOF eq_shock

0 −BOF0 are rather close between Strategies 0
and 1 (resp. 2 and 3). This indicates that the standard formula mostly ignores the
dynamic feature of the strategy and basically depends on the initial asset allocation.
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Figure 2.9 – Empirical distribution of BOF eq_shock
0 −BOF0 for the different allocation

strategies (2.4.2).

2.4.3 Study of the cash flow matching
In this paragraph, we want to assess the relevance of an original feature of our ALM
model: the cash flow matching between the bond assets and the liabilities. This feature
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reproduces a common practice of insurance companies. In order to have an idea of a
good choice of n (the maximal maturity of the bond combination (2.2.3)), we have
plotted on the left of Figure 2.10 the Basic Own-Funds defined in (2.2.36) as a function
of n for the central and shocked settings. Thus, the difference between the curve of
the central case and the shocked cases gives the values of SCRup and SCRdown. We
use here the same parameters as in Tables 4.1 and 4.2. We see that in the central
case, the BOF is maximized around n = 20, but is anyway rather flat between n = 15
and n = 30. As one may expect, the BOF is increasing with respect to n in the
downward shocked scenario: the more the insurer invests in long maturity bonds, the
more he benefits from the decrease of the interest rates. For the upward shocks, two
effects are mixed. On the one hand, the longer is the bond maturity, the greater is the
loss due to the shock. On the other hand, the insurer has interest to match well the
bond assets and the liabilities in order to keep as many policyholders as possible, since
the high interest rates will be profitable in the long run. Thus, the higher BOF are
obtained for n = 7 and n = 8. If the insurance company wants to have the minimal
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Figure 2.10 – Left: mean value of the Basic Own-Funds in function of n (defining the
bond combination (2.2.3) in which bonds are invested) in the central framework and
with the upward and downward shocks on interest rates. Right: Macaulay durations
of the assets (∂r0MV b

0 ) and of the liabilities (∂r0BEL0) in function of n.

SCRint = max(SCRup, SCRdown) with the standard formula, it has to choose n around
where the curves cross. Thus, n = 20 appears to be the choice that minimizes SCRint.
Note that due to the discontinuity of formula (4.3.3), this is also a very good choice
since we have also SCRup > SCRdown : with n = 21, we would have SCRup < SCRdown

and thus ε = 1/2, leading to a greater SCRmkt. Thus, we can tune the value of n to
satisfy SCRup > SCRdown and benefit from a better diversification coefficient of the
standard formula. In comparison, we have also considered the Macaulay duration of
the assets and of the liabilities after the initial allocation, i.e. ∂r0MV b

0 and ∂r0BEL0.
They are plotted in the right of Figure 2.10, as a function of n. The curves cross around
n = 10, which means that to be hedged against small variations of the interest rate at
time 0, the insurance company should take n = 10. Note that from the graph on the
left, this choice leads to a lower BOF in the central framework and to a much higher
SCR with the standard formula. This demonstrates if it were necessary that hedging
small variations is not the same as hedging shocks.
A proxy model. The discussion above already shows the importance of the choice
of n. To go further, we would like now to compare with a simpler model where there
is no cash flow matching. This proxy model works as follows. At time 0, the insurer
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invests in a single at-par coupon bearing bond with yield to maturity np and unitary
market-value given by:

M̄V
b

0 = B(np, cnpswap(0)) = 1

At each time t ∈ {1, . . . , T}, the insurance company re-balances it according to target
weights. The available capital now is reinvested in a single bond with duration np.
However, to approximate the full model, we do not consider that the company sells all
of its current bond of maturity np−1 to buy new bonds with longer term np: this would
imply a tremendous realization of capital gains or losses, leading to important changes
in book values. To deal with this issue and make a fair comparison with the original
model, we propose the following approximation. Before reallocating his portfolio, the
insurer adjusts his holding in bonds and compute φbt2 such that

φbt−1B(np − 1, cbt−1) = φbt2B(np, c̃nt ),

where

c̃nt = 1
n
cnswap(t) + (1− 1

n
)cbt−1,

and we assume that this procedure does not lead to a realization of CGL. The purpose
of this approximation is to adjust the holding in bonds in order to leave the current
market-value φbt−1B(np − 1, cbt−1) of the bond portfolio unchanged while taking into
account the reinvestment risk of the original model. In particular, the original model
reinvests the nominal value at the swap rate, which justifies the term 1

n
cnswap(t), and

keeps a fraction 1− 1
n
of bonds with unchanged coupons.

To determine the maturity np of the bond used in the proxy model, we choose the
maturity np in order to keep approximately the same gain or loss between both models
after the downward or upward shock:

∆MV0 ≈ ∆MV proxy
0 (np) (2.4.3)

After numerical investigation, the choice np = n
2 is satisfactory in practice. Then, to

obtain exactly the same size of shocks in terms of loss or gain, we adjust then the
position in bonds in the proxy model:

φb,proxy0+ MV b,proxy
0+ = φb0+MV b

0+. (2.4.4)

This adjustment is important to compare the models in a fair way: thus, the shocks
induces the same initial loss or gain. Figure 2.11 illustrates the difference between
the original and the proxy models on the Basic Own-Funds distribution in the central
setting and after the interest rate shocks. Table 2.11 indicates the corresponding BOF
mean values, and Table 2.12 the associated SCR values. We observe two effects. In
all cases, we observe that the BOF distribution has less variance and is more peaked
in the original model. This is expected: the basket of bonds allows a good cash
flow matching between the nominal value of the expiring bonds and the surrendering
policyholders. The second effect concerns the interest rate shocks. In both cases, the
original model performs much better than the proxy model. This is again due to the
cash flow matching. These shocks induce large latent gains or losses on bonds: with the
proxy model, the insurer is forced to realize a part of it since he pays policyholders by
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Figure 2.11 – Empirical BOF distributions with the proxy model and the original
(Basket) model with a basket of bonds, after the downward shock (left), the upward
shock (right) and in the central framework (middle).

selling a fraction of his portfolio. For the central setting and the shock on equity, there
is no longer important latent gains or losses on bonds, and the mean BOF values are
roughly the same between both models. Note that this is clear for the upward shock
since realizing losses reduce the yearly P&L, but the interpretation for the downward
shock is less obvious. Besides, on this second effect, we notice that the upward shock is
even more expensive than the downward shock for the proxy model: from Table 2.11,
the difference with the original basket model is equal to 0.0036 for the downward
shock, versus 0.0092 for the upward shock. This difference is due to the massive rate of
surrenders in the upward shock (see Figure 2.7), which is caused by the increase of the
competitor rate rt. Thus, these increased surrenders have again to be paid by selling a
greater fraction of portfolio, leading to realize even more losses. This effect has already
been noticed in the literature, see [KBG19].

Basket Proxy
Central 0.0208 [0.0206,0.02010] 0.0207 [0.0203,0.0210]
Equity shock 0.0136 [0.0134, 0.0139] 0.0134 [0.0130, 0.0137]
Downward shock 0.0130 [0.0128, 0.0133] 0.0094 [ 0.0091, 0.0096]
Upward shock 0.0145 [0.0142, 0.0147] 0.0053 [0.0049, 0.0056]

Table 2.11 – Mean value of the BOF in the original and the proxy models with 95%
confidence interval, under the central and shocked settings.

Let us now comment quickly on the different SCR values in Table 2.12. An obvious
remark is that the standard formula that relies on mean values is not sensitive to the
BOF distributions and does not reward if they are more peaked with less variance.
This is a clear weakness of the standard formula. Thus, the first effect described just
above has no impact on the SCR, and for example the values of SCReq are the same
under both models. In contrast, the second effect has some impact on the interest
rate modules of the SCR, leading to some improvement of SCRmkt. Note that the
improvement is nonetheless tamed by the fact that in the aggregated formula (4.3.3),
we use ε = 0 for the proxy model and ε = 1/2 for the original model with a basket of
bonds.
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Basket Proxy
SCReq 0.0072 0.0073
SCRdown 0.0078 0.0113
SCRup 0.0063 0.0154
SCRmkt 0.0119 0.0170

Table 2.12 – Different values of the SCR modules.

2.4.4 Impact of mortality risk on the cash flow matching
We investigate the impact of mortality on the cash flow matching strategy in bonds.
More precisely, we are interested in the optimal choice of n that minimizes SCRmkt, as
in the previous section. For simplicity, we assume that all the policyholders have the
same age x at time 0 and that we know for all t ∈ {0, . . . , T − 1} the probability qx+t
that a policyholder alive at age x+ t dies before age x+ t+ 1. Then, we assume that
the overall exit rate of the portfolio is given by:

pet = qx+t +DSR(∆t), (2.4.5)

which replaces Equation (2.3.3). We use otherwise the same parameters. We have run
our simulations with the life table given in Table 2.13 and we consider three different
cohorts: x = 50, x = 60 and x = 70. We refer to Subsection 2.4.3 for a discussion
on the optimal choice of n to minimize SCRmkt. Following this analysis, we observe
from Figure 2.12 that the younger the cohort, the larger is the optimal maturity of
investment in bonds. This is expected since the maturity of bonds has to match the
surrenders as well as possible. The optimal values are n = 37 for x = 50, n = 30 for
x = 60 and n = 20 for x = 70 (as for the example of Figure 2.10).
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Figure 2.12 – Mean value of the Basic-Own-Funds in function of n in central the
framework and with upward and downward shock on interest rates. Left: 50 years-old
cohort at inception, Middle: 60 years-old cohort, Right: 70 years-old cohort.

This numerical example shows the ability of the model to deal with time varying
structural surrenders, in particular to determine the optimal maturity of the investment
of bonds for the SCR. Nonetheless, a possible improvement of our model would be to
allow for a dynamic choice of n. Typically, one would like to decrease n (i.e. the
maturity of bonds) slowly as long as the portfolio is aging in order to better match
the cash flows. Changing n would also be relevant to hedge the dynamic surrenders.
However, changing the value n along the time implies also movements of book values,
which may be suboptimal if the changes are too frequent. The study of this trade-off
between cash flow matching and book value movements is left for futher research.
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Age qx Age qx Age qx Age qx Age qx
50 0.004740 60 0.006115 70 0.014742 80 0.049067 90 0.140516
51 0.004915 61 0.006422 71 0.016640 81 0.054883 91 0.155380
52 0.005065 62 0.006808 72 0.018813 82 0.061269 92 0.171816
53 0.005187 63 0.007286 73 0.021284 83 0.068274 93 0.190025
54 0.005279 64 0.007874 74 0.024077 84 0.075952 94 0.210235
55 0.005348 65 0.008587 75 0.027218 85 0.084366 95 0.232303
56 0.005430 66 0.009446 76 0.030731 86 0.093590 96 0.254792
57 0.005540 67 0.010470 77 0.034643 87 0.103710 97 0.277225
58 0.005685 68 0.011680 78 0.038982 88 0.114824 98 0.299489
59 0.005873 69 0.013096 79 0.043779 89 0.127049 99 0.321487

Table 2.13 – The probability qx that a person aged exactly x dies before ex-
act age x + 1, extracted from the S1PFL mortality table (All pensioners, Fe-
male, Lives) produced by the Institute of Actuaries and Faculty of Actuaries. It
is available on the link https://www.actuaries.org.uk/learn-and-develop/continuous-
mortality-investigation/cmi-mortality-and-morbidity-tables/s1-series-tables

2.4.5 Analysis in a low interest rate framework

In this paragraph, we investigate our model in a framework where interest rates are
low (around 0.5%) to be closer to the current interest rates. This was the rate observed
for the 10Y bonds issued by France (OAT) at the beginning of 2019. As explained in
Section 2.2.5, the multiplicative shocks are no longer relevant in this context and we
have applied the last recommendation of the EIOPA given in Table 2.7. The model
parameters are specified in Tables 2.14 and 2.15. Note that we have considered here a
higher structural surrender rate of 10%, and therefore a smaller value of n, the maximal
maturity of the basket of bonds. Again, we have taken a constant allocation in equity
ws that is such that the SCReq and SCRint are approximately of the same order.

Stock model Short-rate model
S0 = 1 r0 = θ = 0.005
σS = 0.1 σr = 0.01
γ = 0 k = 0.2

Table 2.14 – Market-model parameters in the low yield framework.

Management Parameters Liability Parameters
Allocation in stock ws = 0.08 Lapse triggering threshold β = −0.01
Allocation in bond wb = 0.92 Massive lapse triggering threshold α = −0.05
Participation rate πpr = 0.9 Maximum lapse dynamic lapse rate DSRmax = 0.3
Minimum guaranteed rate rG = 0 Static lapse rate p = 0.1
Competitor rate rcompt = rt
Smoothing coefficient of the PSR: ρ̄ = 0.5
Bond portfolio maximal maturity n = 10

Table 2.15 – Liability and management parameters in the low yield framework.
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We have plotted in Figure 2.13 the crediting rate, the surrending proportion and
the average coupon rate. The behavior is roughly the same as the one observed in
Figure 2.7 for higher interest rates, and we do not repeat the interpretation. We also
observe that on the downward shock, we get negative average coupon values. The
small differences between both cases can be explained by the change of method for
the shocks. First, we notice in our examples that the additive term in the shocks
makes the shocks stronger at the beginning. For example, the spread on the mean
exit rate between the upward shock and the central framework is about 0.09 at year 2
instead of 0.05 in Figure 2.7 for a 2% interest rate. Of course, the multiplicative shock
would have been stronger for a higher interest rate, but a simple calculation made on
constant interest rates indicates that the 1Y shock obtained with zero interest rates and
Table 2.7 (2.14%) is almost the same as the one obtained with 3% interest rates and
Table 2.6 (2.1%). Another difference is that the crediting rates change of monotonicity
after 10-15 years in the shocked frameworks: it is first increasing (resp. decreasing)
and then decreasing (resp. increasing) for the upward (resp. downward) shock. This
is mostly due to the fact that the shift functions (left of Figure 2.4) have opposite
monotonicity after year 20, while they remain essentially parallel (left of Figure 2.1)
with the shocks of Table 2.6. Since n = 10, this has an effect on the coupon rates
from year 10 and on the competitor rate from year 20. Another interesting plot is the
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Figure 2.13 – Before and after the downward and upward shocks on interest rates.
Evolution of the mean crediting rate E[rph(t)] (left), of the mean exit rate E[pet ] (middle)
and of the average coupon in the Bond portfolio (right) in function of the time t.

calculation of the BOF in function of n, the maximum maturity of the basket of bonds,
which is displayed in Figure 2.14. The behavior is very similar to the one observed on
the left of Figure 2.10. Nonetheless, we see here that the SCRup and SCRdown cross
around n = 12, making this choice optimal for the minimization of the SCRint and
even SCRmkt since we then have SCRup > SCRdown. Thus, contrary to the previous
case, the best choice of n to minimize SCRint is not 1/p. More suprisingly, it does not
also satisfy n ≤ 1/p, as one should take to have the nominal values of expiring bonds
greater than the value of the surrending contracts. This shows anyway that our model
can be a useful tool to determine the investment in different bond maturities.
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Figure 2.14 – Mean value of the Basic Own-Funds in function of n (defining the bond
combination (2.2.3) in which bonds are invested) in the central framework and with
the upward and downward shocks on interest rates.
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In this chapter, we supplement the analysis of the ALM model and quantify the
impact of regulatory decisions on the insurer’s balance sheet. This study is motivated
by the very recent consultation paper [EIOa] that EIOPA launch on the 2020 review of
Solvency II. We investigates an extrapolation method of the yield curve (Smith Wilson)
different from the methodology used in chapter 2 which is closer to practice. In this
chapter only, we rely on the Smith Wilson method required by the EIOPA to construct
the yield curve which is given as input of the ALM model. The aim of this part is not
to discuss potential pitfall of the current regulation but rather to show that the model
is flexible and can be adapted to the different methodology of computation of the SCR.
Furthermore, we show that it can also deal with potential changes in the regulation that
are currently considered by EIOPA, especially concerning the derivation of the interest
rate risk-free curve. The core of this chapter is devoted to investigation of the impact
of extrapolation methods of the term structure of interest-rate on the overall capital
charge. It becomes a hot topic among insurers and contributes to the debate around
market consistency and fair valuation approach in insurance, therefore having a model
that is able to incorporate these potential changes is of primary importance, especially
to measure the impact of these changes. Currently, the industry standard extrapola-
tion procedure needs exogenous parameters that are provided by the regulator which
may lead to significant impact on the insurers’ balance sheet and the overall solvency
capital. While insurance companies can at least partially hedge the interest-rate risk,
they cannot hedge regulatory decision on external parameter, therefore analyzing the
sensitivities to this parameter are of primary importance for life insurers. In SII, for
the fair valuation of the insurer’s balance sheet, discount factors extracted from mar-
ket financial instrument (Government Bonds and Swaps) appears to be essential input
for ALM models. For insurance companies where commitments toward policyholders
spread over several decades, no market data are available and extrapolation methods
are used to determine discount-factors for maturities where no liquid market-values are
available. From [EIOb], The interest-rate curve used to discount future cash flows in
SII must comprise a relevant interest-rate term structure extracted from liquid inter-
est rate instrument and several adjustment (volatility and matching adjustments) are
used to mitigate the effect of pro cyclicality induced by large financial shocks on the
insurers’ balance-sheet and act as shifts on the yield curve. The chapter proceed as
follows. In the first section, we describe the procedure to derive the SCR quantile in
the ALM model. In the next section, we describe the EIOPA’s methodology to de-
rive the risk-free yield curve. The section includes calibration result of the fitted yield
curve using artificial market data. The final section of this chapter present numerical
application and estimation outcome. SCR comparison between the standard formula
and the quantile approach are summarized. Next, we assess the impact of regulatory
parameters (UFR, LLP, convergence period) on the SCR.

3.1 Solvency Capital Requirement: the quantile for-
mulation

In this paragraph, we describe the procedure to compute the SCR quantile in the
ALM model. As pointed out in [CN+14], the definition of the SCR is provided only in
a descriptive form (Article 101 of the SII directive) which allows for different mathe-
matical interpretation. A general mathematical framework and several mathematical
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formulations are provided in their article. In our framework, we will follow the intu-
itive definition of Bauer et al.[BRS12]. Let us consider an insurance firm with current
own-fund level BOFt at time t. To ensure that the firm will remain solvent one-year
ahead with some very high confidence level 1−α, the company may need to hold today
an extra-amount x? as a buffer against the risks faced by the firm. Assuming that the
amount x? is locked and invested in a bank saving account providing a yield e

∫ t+1
t

rsds,
the extra-amount should satisfy

x? = inf{x ∈ R, P
(
BOFt+1 + xe

∫ t+1
t

rsds ≥ 0|Ft
)
≥ 1− α} (3.1.1)

Intuitively, the extra-amount to hold is the smallest amount that need to be added
to the current own-funds in order to avoid the "bankruptcy event" with a 1− α prob-
ability. The previous formula can be written as stated by the SII directive in term of
one-year loss distribution

x? = inf{x ∈ R, P
(
BOFt −BOFt+1e

−
∫ t+1
t

rsds ≤ x+BOFt|Ft
)
≥ 1− α} (3.1.2)

which implies that
BOFt + x? = qα(Lt+1) (3.1.3)

where qα(Lt+1) is the α-quantile of the t+ 1-year loss distribution

Lt+1 = BOFt −BOFt+1e
−
∫ t+1
t

rsds (3.1.4)

Hence
SCRt = BOFt + x? = qα(Lt+1) (3.1.5)

A metrics that is monitored in the ALM, related to the SCR is the so-called the so-
called solvency ratio as follows

SRt = BOFt
SCRt

(3.1.6)

We should compute both of these quantities (SCR and Solvency ratio) in the ALM
model in 3.3 using both definition of the SCR.

3.2 EIOPA’s construction of the interest-rate curve
In this section, we review some key elements of the methodology proposed by the su-
pervision authority (EIOPA) to construct a regulatory interest rate curve that will be
used as input of the ALM model. For a comparison to the asset-side of the balance-
sheet and the computation of the SCR, the liability of the insurance company should
be valued market consistently. This value shall be derived using "a relevant risk-free
interest rate structure" (Article 75 of Directive 2009/38/EC). EIOPA proposed to spec-
ify the curve using observed interest rate instrument comprising European investment
grade bonds or swap contracts. However, the discounting approach require discount
factors when no market data or not sufficiently liquid traded instrument are available.
Therefore, an extrapolation procedure is needed to extend the interest-rate curve be-
yond the last observable point. In SII, the industry standard yield curve extrapolation
method is a technique developed by Smith and Wilson (2001). The method uses the
available market data to exactly fit bond or swap prices and extrapolate them for non
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observable maturities using a weighted average of the last observable point to a pre-
determined long-term equilibrium called Ultimate Forward Rate (UFR). The speed of
convergence to this level is control by a mean reversion parameter. The method is
based on additional exogenous parameter which are the Last-Liquid Point (LLP) and
the convergence period after the LLP until the equilibrium is reached. In what follows,
we review some key element of the method and describe in more detail the exogenous
parameter given by EIOPA that plays a fundamental role in the fitting methodology.
The investigation of these parameter will motivate our numerical study.

3.2.1 Ultimate Forward Rate (UFR)
In order to exclude "artificial volatility", further mitigate effect of pro-cyclicality, and
deal with the lack of liquid instrument for long-term maturities, EIOPA introduce an
exogenous fixed parameter, the Ultimate Forward rate (Delegated Act 2014/51/EU of
the European Commission), which is supposed to reflect market expectation on interest-
rate. It consists of a combination between historical estimates of the expected inflation
and short term real rates. To be more specific, EIOPA suggests that the introduction
of the UFR will make solvency ratio less susceptible to potential market disturbance
by putting less weight on the liquid part of the yield curve and making the illiquid
part of the yield curve less prone to shock on supply and demand. This parameter has
prompted several discussion in the current low interest-rate environment, which lead
EIOPA to reduce its current level. The applicable UFR for 2021 is fixed at 3.6%. In
2017, the UFR was set to 4.2%.

3.2.2 Last Liquid Point and Convergence Period
The Last-Liquid-Point (LLP) correspond to the last data point where interest rate
market instruments are considered sufficiently liquid to enter in the construction of
the interest-rate curve. An important point of critique is the position of the LLP
which is currently set to 20 years. Market participants argue that the EU interest-
rate market is still liquid beyond 20 years ([KOP12]), the amounts of government
bonds with maturities 20 to 30 years is higher than maturities 10 to 20 years (Chief
Risk Officer Forum 2010 [For10]). Recently, EIOPA published a consultation paper
(2019/2020) which opens up the possibility to extend the Last Liquid Point for the
Risk Free Rate to 30 years or even 50 years for the Euro curve. Once the LLP and the
UFR are determined, a convergence period until the UFR is reached is set to 40 years
by EIOPA. This convergence period is also subject to debate, and EIOPA indicates
in [EIOa] that it would consider new values for the convergence periods in order to
make it more consistent with market curves. Currently, EIOPA is exploring several
solutions, among them an extension of the convergence period from 40 to 100 years in
order to reduce the weight of the UFR and increase the weight of the liquid part of the
yield curve.

3.2.3 The Smith-Wilson model
In this paragraph, we provide a brief description of the Smith-Wilson extrapolation
method with a particular emphasize on the EIOPA’s adaptation of the method pro-
vided in its technical published documentation. The reference document is "technical
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documentation of the methodology to derive EIOPA’s risk free interest rate term struc-
ture" [EIOb]. Roughly speaking, the method aims at constructing a zero coupon curve
t 7→ P (0, t) that exactly fit the market prices of all observable market instruments.
The key property of the approach is that extrapolated forward interest will converge
toward a long forward interest-rate (the UFR) that is a given input of the model. It uses
the available market data to exactly fit the observed bond instrument and extrapolate
them for non observable maturities using a weighted average of the last observable data
point and the long-term equilibrium. Let us now introduce the general Smith-Wilson
model framework. It is assumed that the market price of a certain number N of fixed
income instrument is observed at time 0. For clarity of the presentation, we assume
that the market data comprises only zero-coupon bonds. Let t1, . . . , tN their observed
maturities where tN is the LLP in the EIOPA’s terminology. The Smith-Wilson model
model the discount factor function as

P (0, t) = e−UFRt +
N∑
j=1

ξjKj(t) (3.2.1)

where (ξj)j=1,...,N are N parameters to be fitted and the function t 7→ Kj(t) are Kernel
functions called Wilson function which are defined as

Kj(t) = W (t, tj) t > 0 (3.2.2)

Where (u, v) 7→ W (u, v) is a symmetric function defined as

W (u, v) = e−UFR(u+v)
(
αmin{u, v} − e−αmax{u,v}sinh(αmin{u, v})

)
(3.2.3)

The Smith-Wilson function is a result of an optimization procedure related to ex-
ponential tension spline method. It corresponds to the solution to an optimization
problem that seeks to interpolate the data under the constraint that a set of given
market data points must be fitted exactly. The optimization procedure aims at mak-
ing both the first (slope) and second order (the convexity) derivative small in order to
minimize the integral of their squared value. The α parameter controls the speed of
convergence toward the UFR. It also controls the smoothness of the curve. A higher α
leads to faster convergence toward the UFR whereas lower α value will give more weight
to market data (see Figure 3.1). Observe also that the Wilson function t 7→ Kj(t) con-
verges to 0 when t −→ +∞.

Hence, the Smith-Wilson extrapolated price can be viewed as as a sum of a long-
term discount factor (with UFR) and a "correction term" that tends to 0 as t−→ +∞.

Calibration to Market Data

From now on, we assume that the market price ofN zero coupon bond (Pmkt(0, tj))j=1,...,N
with maturities t1, . . . , tN are observed. The matching equation of the market price
leads to the following linear system of equations

Pmkt(0, t1) = e−UFRt1 +∑N
j=1 ξjW (t1, tj)

...
Pmkt(0, tN) = e−UFRtN +∑N

j=1 ξjW (tN , tj)
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Figure 3.1 – Wilson function v 7→ W (u, v) for different speed
α parameters and u = 1

which can be written in matrix form :

Pmkt = bUFR +Wαξ (3.2.4)

where:

Pmkt =
(
Pmkt(0, t1), . . . , Pmkt(0, tN)

)>
bUFR =

(
e−UFRt1 , . . . , e−UFRtN

)>
ξ = (ξ1, . . . , ξN)>

and

W =


Wα(t1, t1) · · · Wα(t1, tN)

... . . . ...
Wα(tN , t1) · · · Wα(tN , tN)


The solution of the linear system is given by

ξ̂ = W−1
(
Pmkt − bUFR

)
(3.2.5)

and the calibrated Smith Wilson curve is

P̂ (0, t) = e−UFRt +
N∑
j=1

ξ̂jKj(t) (3.2.6)

Using the relationship between zero coupon prices and yield/ Forward-rate, the fitted
interest-rate term structure can be deduced from the map t 7→ P̂ (0, t) as follows

R̂(0, t) =
− log

(
P̂ (0, t)

)
t

F̂ (0, t) = −∂t log
(
P̂ (0, t)

)
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Optimization of the speed parameter α

The convergence procedure toward the UFR, materialized by the α parameter is also
regulated by EIOPA. In this section we describe the EIOPA’s approach described in
the technical document ([EIOb] p.46) to derive α. It is determine as the smallest value
α̂, which however must be above a lower bound 0.05 in order to ensure convergence at
the convergence point T∞ = max{LLP + 40 years; 60 years} in the sense that the gap
function between extrapolated forward prices t 7→ F̂ (0, t) and the UFR do not exceed
0.01%

α̂ = inf{α ≥ 0.05, |UFR− F̂ (0, T∞)| ≤ 0.01%} (3.2.7)

Let us mention that the optimization can be trouble some as pointed out in [LL16]
as the gap function can have singularities.

3.3 Numerical Application
We now illustrate the application of the calibrated Smith-Wilson yield curve using
the EIOPA’s implementation instruction in the ALM model. Once the risk-free term
structure is derived, it is given as an input of the ALM model. In particular, the
short rate model is calibrated on this EIOPA yield curve (shifts stress factor in the
Vasicek++ model are calibrated using the methodology described 2.3). In all this
section, we use the ALM model described in chapter 2 with parameters given in Table
2.6, 4.1 and 4.2. The confidence interval for the quantile estimates is fixed at 95%. In
order to assess the impact of the UFR on long-term liabilities, we projected the ALM
portfolio up to T = 65 years. Firstly, we present our calibration result and discuss
the impact of changes in parameters that are currently discussed on the shape of the
yield-curve. Next, we show that our SCR estimation using the standard formula based
on shocks and the quantile approach. Then we discuss how changes in regulatory
parameters (UFR level, position of the last-liquid point, convergence period) affect
the technical provisions (Best Estimate BEL0, Basic-Own-Funds BOF0, SCR) in our
ALM framework.

3.3.1 Smith-Wilson Model Calibration Result
The market data considered for our numerical experiment correspond to artificial zero-
coupon bond t 7→ Pmkt(0, t) that were generated with the parameter provided in 4.1 up
to the LLP which is set to 20 years in the base case situation. Based on these data, we
are left with aN = 20 dimensional random vector Pmkt =

(
Pmkt(0, t1), . . . , Pmkt(0, tN)

)T
.

The UFR considered in the numerical application is equal to 4.2%, which was the UFR
specified by EIOPA until 2018. The next step is to specify the velocity of convergence
α. In the present illustration, we used the optimization procedure 3.2.7 which lead
to a value α̂ = 0.1304 with our market data. Finally, the calibration of the model
involves finding the vector ξ̂ ∈ RN as solution of 3.2.5. Figure 3.2 plots the calibrated
Smith-Wilson yield curve t 7→ R(0, t) and Figure 3.3 displays the forward-rate curve
t 7→ F (0, t) from 1 to 120 years. Observed that at T∞ = 60 years, the forward-rate
has converged toward the UFR. In Figure 3.2 we have also displayed the central and
shocked yield curve using the EIOPA stress factor provided in 2.6. We next displays
in Figure 3.4 the plot representing the fitted SW yield curve for varying UFR values
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to highlight the sensitivity w.r.t the UFR. We see that lower UFR values implies zero-
coupon bond yield that are lowered in the extrapolated zone. We shall quantify the
impact of these lowered yield on the SCR in next sections.

Figure 3.2 – Calibrated SW yield
curve t 7→ R(0, t) in central and
shocked framework

Figure 3.3 – Calibrated SW curve
Forward-rate t 7→ F (0, t) with
T∞ = 60 years

Figure 3.4 – Calibrated SW yield
curve t 7→ R(0, t) for different UFR
values

Figure 3.5 – Calibrated SW yield
curve t 7→ R(0, t) for different LLP
values
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3.3.2 Comparison of the SCR formulas
In this paragraph, we analyze the SCR estimation obtained using the standard formula
based on the aggregation of marginal shocks and the quantile formulation. To estimate
the SCR with the standard formula, we use the estimator 2.4.1 with N = 5000 scenar-
ios. In order to reduce the variance of the aggregated SCR, we use the same scenarios
to derive the the shocked version of the Basic Own funds. The overall SCRmkt is
obtained using the aggregation formula in 4.3.3. For the quantile approach, we fix a
computational budget of 106 simulations. We followed the optimal allocation provided
in Broadie et al. [BDM11], Gordy and Juneja [GJ10] to obtain M = 104 primary sce-
narios and K = 100 inner simulations. The ALM market value balance sheet items
(BEL0, BOF0) and the SCR using both approaches are summarized in Table 3.1.

BOF0 BEL0 SCRstd
0 SCRqtl

0
BOF0
SCRmkt

BOF0
SCRqtl0

SCRstd0 −SCR
qtl
0

SCRqtl0

0.0295 0.9695 0.0109 0.0103 2.7040 2.8760 5.83%

Table 3.1 – ALM model output using the EIOPA yield risk-free yield curve

We observe that both SCR are rather close with this setting, however, the standard
formula requires about 6% more capital than the quantile approach. Hence the solvency
ratio obtained with the quantile SCR are higher than the one obtain with the Standard
formula. At the scale of an insurance company, the difference is actually quite high. In
addition, observe that our setting, the EIOPA curve leads to a very favorable situation
for the company which explains this high solvency ratio (higher than 270%). The use of
UFR equal to 4.2% means that bond yield will keep increasing which is then translated
in the shift factors. As time goes by, the minimum guaranteed rate is easier to fund
which implies higher shareholders’ P&L and lower SCR. Even if the SCR quantile value
is lower than the standard formula in our setting, let us mention that sometimes, it can
be profitable to use the Standard formula in a partial internal model. An obvious case
is if the current interest rate level is low, using the multiplicative shock proposed by the
EIOPA [EIOPA18], would lead to lower values of SCR than the quantile approach. To
overcome this issue additive shocks on the yield curve have been proposed by EIOPA
in [EIOPA18].

One year loss distribution

To complete our numerical investigation on the SCR quantile, we displayed the one-
year loss distribution function L1 = BOF0−BOF1e

−
∫ 1

0 rsds using Nested Monte-Carlo
simulations. From Figure 3.6, we see that the distribution is fat-tail and asymmetric.
The average number of observation above the quantile is estimated to 0.0141. As
suggested in Boonen [Boo17], Expected Shortfall is more appropriate in this case to
take into account extreme events.

3.3.3 Impact of the UFR level on the SII balance-sheet
In this section, we describe the impact of the UFR level on SCR modules and Solvency
Ratios. In Figure 3.8, the solvency ratio SR0 is an increasing function of the UFR
level. From Figure 3.9, we see that for low UFR values the main contribution to the
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Figure 3.6 – one year loss distribution L1 = BOF0 −
BOF1e

−
∫ 1

0 rsds, and SCR quantile ( SCRα value in red)

Solvency ratios comes from the SCR component. When the UFR is too low, bond yield
in the EIOPA yield curve will get closer to the minimum guaranteed rate rG = 1.5%
which becomes more expensive to fund. As another side effect, the competition rate
which is given by the short-rate that is calibrated on the EIOPA UFR curve also
diminishes. As a consequence policyholders are less prone to surrender their contract
and a larger proportion of the policyholder will remain in the portfolio. We also observe
a discontinuity in the SCR function when the UFR level reaches a certain threshold.
As already pointed out in 2.4.1, this is because of the ε discontinuity introduced in the
Standard formula. In Figure 3.9, the discontinuity occurs when the upward shock is the
worst shock in the SCRint component. Another interesting point is that for large values
of the UFR, the aggregated SCRstd

0 does not vary too much whereas the level of basic-
own funds BOF0 keep increasing. Therefore, the main contributor in the improved
Solvency Ratios comes from higher BOF0 values when the UFR level is large enough.
To summarize, up to a certain threshold, SCR values decrease faster than BOF0, after
that quite the opposite occurs, BOF0 values keep increasing and SCR values do not
change very much. From the balance sheet condition, since MV0 = BEL0 + BOF0,
increasing BOF0 leads to lower BEL0 values (see 3.8). Hence BEL0 will decrease when
the UFR increase, because the target-rate which is given by the short-rate calibrated
on the EIOPA curve is easier to fund.
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Figure 3.7 – SCR modules in function of the UFR level

Figure 3.8 – Left: SR0, Middle: BOF0, Right: BEL0 in function of the UFR level

SCR values for different maturities

We now study how the SCR values is sensitive w.r.t the UFR level when different
portfolio maturity T are considered. We considered three portfolios that matures re-
spectively in 30 and 65 years. We shall denote the respective portfolios P30 and P65. In
any case, we work with the parameters described in Table 4.1 and 4.2. The portfolio
P30 is associated to the oldest age cohort while P65 represent a portfolio of liability
associated to a young age cohort. The aim of this section is to quantify the exposure of
the insurance company for long-term and shorter term liabilities. In Tables 3.2, 3.3 and
3.4 we see that the effect of the UFR level is smaller for portfolio P30. In particular,
the Best Estimate for P30 is practically unaffected by the level of the UFR. The reason
is that the UFR will only affect the discounted cash flows for maturity 20 years or
longer. For portfolio P65, the activation period of the UFR is the longest (20 years to
65 years) which result in a higher impact on the balance sheet.
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UFR T = 30 T = 65
2% 0.0208 0.0228
4% 0.0209 0.0272
6% 0.0215 0.0296

Table 3.2 – Estimate of BOF0 in function of the portfolio maturity T and the UFR

UFR T = 30 T = 65
2% 0.9780 0.9755
4% 0.9782 0.9714
6% 0.09779 0.9694

Table 3.3 – Estimate of BEL0 in function of the portfolio maturity T and the UFR

UFR T = 30 T = 65
2% 0.0126 0.0166
4% 0.0095 0.0105
6% 0.0090 0.0110

Table 3.4 – Estimate of SCRmkt in function of the portfolio maturity T and the UFR

3.3.4 Impact of the LLP on the SII balance sheet
We next present a pair of plots that provide insight of the effect of the Last-Liquid-
Point on SII technical reserves. In our numerical setting, increasing the LLP will
increase the effect of the liquid part of the yield curve which comprises bond yield
around 2%. Consequently, the period where bond yield increases toward the UFR level
UFR = 4.2% is reduce when the LLP increase. This result in deteriorated solvency
situations for large values of the LLP since the company benefits from increasing bond
in a shorter period. It result in lower BOF0 and SCRmkt values.
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Figure 3.9 – SCR modules in function of the LLP

Figure 3.10 – SR0 = BOF0
SCRstd0

in
function of LLP

Figure 3.11 – BOF0 in function of
LLP
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Abstract. This paper studies the multilevel Monte-Carlo estimator for the expec-
tation of a maximum of conditional expectations. This problem arises naturally when
considering many stress tests and appears in the calculation of the interest rate module
of the standard formula for the SCR. We obtain theoretical convergence results that
complements the recent work of Giles and Goda [GG19] and gives some additional
tractability through a parameter that somehow describes regularity properties around
the maximum. We then apply the MLMC estimator to the calculation of the SCR at
future dates with the standard formula for an ALM savings business on life insurance.
We compare it with estimators obtained with Least Square Monte-Carlo or Neural
Networks. We find that the MLMC estimator is computationally more efficient and
has the main advantage to avoid regression issues, which is particularly significant in
the context of projection of a balance sheet by an insurer due to the path dependency.
Last, we discuss the potentiality of this numerical method and analyse in particular
the effect of the portfolio allocation on the SCR at future dates.

4.1 Introduction
Solvency II is a regulatory framework introduced in Europe in the period post-financial
crisis of 2008. Solvency II establishes the requirements to be met to exercise the
insurance or reinsurance activity in Europe and aims to protect policyholders and to
give stability in the financial sector of the European Union.

One of the advantages of the Solvency II directive is that the computation required
to evaluate the Solvency Required Capital (SCR) considers the specific risks borne by
the insurers in comparison to the previous rules where the need of own funds ignored,
for example, part of risks embedded in the asset side of the balance sheet. Indeed, under
Solvency II the evaluation of the SCR amounts either to use the standard formula by
applying shocks to each asset class or to calculate a quantile of the conditional law of
the profits and losses for variations of the initial state of the market, given a portfolio
of contracts.

Today, the SCR indicator is one of the most important Key Performance Indicator
used by companies to monitor the activity. In particular, the so-called Solvency II ratio
computed as the ratio between the “Eligible Own Fund” (EOF) and the SCR measures
the solvency capacity of the insurers and it is followed by analysts to evaluate them in
financial markets. Nevertheless, it is important to remark that the SCR corresponds
to the amount of required capital in a 1 year horizon. Then, at time t to have an idea
of the total amount of required capital during the life of a product or over the duration
of the business, it is not only necessary to compute the SCRt but also to estimate the
SCR in future dates (SCRt+1, SCRt+2, etc).

The aim of this work is to deal with the problem of computing SCR at future dates
which has several practical applications to real problems that arise in the insurance
industry. One of the first applications that should be cited comes from the regulatory
side and is called ORSA (Own Risk and Solvency Assessment) process which aims to
evaluate from a prospective point of view the solvency needs related to the specific risk
profile of the insurance companies. In order to do that, the computations of the SCR
at future dates is necessary to ensure that the insurer is able to integrate the regulatory
constraints in terms of solvency during the strategic plan horizon.

Other important applications appear when the notion of cost of capital is concerned.
In general, the cost of capital refers to the desired return on the immobilized capital
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during the life of a product or over the duration of the business and can be written
under the following form:

Targeted return× Immobilized Capital

where Targeted return represents an expected return, for example, from a shareholder
standpoint. It is possible to exhibit a relation between the Immobilized Capital and
the SCR computed at futures dates by considering the simple following reasoning. At
t = 0, the SCR0 is the amount the shareholder needs to immobilize at inception in
order to pay its liabilities in unfavorable cases. At t = 1, the insurance company pays
the expected return to the shareholder on SCR0 and lends from him the amount SCR1
to continue to exercise the insurance activity. By repeating this mechanism at each
time step until the end of the business or the product maturity (time T ), the total
immobilized capital at t = 0 corresponds to

Immobilized Capital0 = SCR0 + PV (
T∑
t=1

SCRt − Targeted return× SCRt−1)

= (1− Targeted return)PV (
T∑
t=1

SCRt−1),

where PV (x) stands for the present value of x and given that SCRT = 0 (it is assumed
that the company closes its business at the end of the year T and then there is no need
of capital between T and T + 1). Thus, among the applications related to the cost of
capital, one can mention:

(i) Applications for ALM (Asset Liability Management) when a Strategic Asset Al-
location needs to be computed for a given portfolio: to evaluate the optimality
of an asset allocation, a criterion based on the sum of the present values of
shareholder margins minus the amount of cost of capital generated by the asset
allocation is usually studied. The idea of this approach is to analyse if the future
gains generated by the portfolio meet the shareholder’s expectations in terms of
cost of capital.

(ii) Applications for pricing, when evaluating if future margins pay the return ex-
pected by the shareholders. Before launching a new product, the insurers evaluate
the profitability of that product and then compare expected future shareholder
margins with the need of capital generated by the new business.

Finally, the computation of future SCR can be used as a tool for studying the solvency
of the company under different economic scenarios. For example, the current low
interest rates environment yields in several questions on the solvency of the insurance
companies and on the sustainability of the Savings business. In addition, the SCR
computation at future dates allows to better understand the pattern of cash-flows
generated by a product during the lifetime of the business. In particular, the approach
based on shocks employed in this work as, for example, the shocks on the market
conditions is useful to study the evolution of the balance sheet and the policyholder
behavior under those shocked conditions.

In general, today, the computations where SCR at futures dates are needed are
based on rough estimations from the initial SCR which can ignore the evolution of
the risk profile of the insurer and may lead to bad decisions impacting the business.
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Thus, the goal of the present work is to develop numerical methods for the calculation
of the SCR required in the future. We focus here on the calculation of SCR with the
standard formula, which is fully described by the documents of the European Insurance
and Occupational Pensions Authority (EIOPA) [EIOPA12, EIOPA18]. Basically, this
standard formula consists in applying different shocks on the different market sectors:
the impact on the portfolio of each shock is evaluated in a risk-neutral world, and the
SCR is then evaluated by using an aggregation formula from these impacts.

Many works in the literature deals with the numerical computation of the SCR so
that we cannot be exhaustive. Devineau and Loisel [DL09], Bauer et al. [BRS12] have
investigated numerical methods based on nested simulations. Bauer et al. [BMBR09],
Krah et al. [KNK18] and Floryszczak et al. [FCM16] have used Least Square Monte-
Carlo (regress now) methods for the risk while Pelsser and Schweizer [PS16], Cambou
and Filipović have developed the replicating portfolio (or regress later) approach. Re-
cently, Cheredito et al. [CEW20] and Fernandez-Arjona and Filipović [FAF20] have
proposed to use neural networks to approximate the conditional expectation. Up to our
knowledge, there are however no dedicated study on the use of multilevel Monte-Carlo
estimators for the calculation of the SCR with practical application in an insurance
context. This paper fills this gap. Besides, most of the paper deals with the quantile
formulation of the SCR and focus on the calculation of the current value of the SCR
(there are few exceptions such as Vedani and Devineau [VD12]). Here, we consider
instead the calculation of the SCR with the standard formula at future dates. Last,
most of the literature either use simple Markovian underlying models or consider in-
stead models from insurance companies that are black boxes, which makes difficult the
reproducibility of the results. Here, we are in between and make our experiments on
a synthetic ALM model that we recently developed and fully presented in [ACIA20a]
which takes into account many path-dependent features of the ALM for life insurance.

We now describe the formal mathematical framework and consider a probability
space (Ω,F ,P). Let X and Y be two random variables such that X takes values in
a general measurable space (G,G) and Y takes values in RP , P ∈ N∗. We make the
following assumptions:

(A.1) Y is square integrable RP -valued random variable,

(A.2) φ : G → R is a measurable real-valued function φ such that φ(X) is square
integrable.

For the financial application that we consider in this paper, X generally represents
the market information up to some time, and therefore may be the realization of asset
paths. For example, we may take G = C([0, t],Rd) if we consider a market with d ∈ N∗
continuous assets up to time t > 0. However, under some Markovian assumption, the
market information at time t may simply be sum up by the current value of the assets,
in which case we may take G = Rd. We are interested in the problem of computing
nested expectations of the form :

I = E
[
h
(
E
[
Y 1|X

]
, . . . ,E

[
Y P |X

])
φ(X)

]
, (4.1.1)

where h : RP → R is a measurable function with sublinear growth (i.e. ∃C > 0,∀x ∈
RP , |h(x)| ≤ C(1 + |x|)), which ensures by Assumptions (A.1) and (A.2) that I is well
defined. In Formula (4.1.1), E[Y i|X] typically represents the expected loss at time t
if one implements the shock (or stress test) number i ∈ {1, . . . , P} immediately after
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time t. The function h describes the aggregation of the shocks in terms of own funds
while the function φ weights the different events up to t.

The calculation of I is usually made by using a nested Monte-Carlo method: one
simulates J independent samples of X called primary scenarios and then, for each pri-
mary scenarios, one simulates independently K independent samples of Y to approx-
imate the conditional expectations involved in (4.1.1) by the corresponding empirical
mean. This method has been investigated by Gordy and Juneja [GJ10] and Broadie et.
al [BDM11] to calculate the probability of large losses and the Value-at-Risk. Under
mild assumptions, the optimal tuning to approximate I with a precision of ε > 0 is
to take J = O(ε−2) primary scenarios and K = O(ε−1) secondary scenarios. Thus,
the overall complexity is in O(ε−3). The multilevel Monte-Carlo method (MLMC) de-
veloped by Giles [Gil08] has been applied to the calculation of nested expectations by
Haji-Ali [HA12], Bujok et al. [BHR15] and Giorgi et al. [GLP20]. Under some reg-
ularity assumptions on h, they show that the antithetic MLMC estimator achieves a
precision ε > 0 with a computational cost of O(ε−2). Under additional regularity as-
sumptions on h or on the probability density function of (X, Y ), Giorgi et al. [GLP20]
have applied the Richardson-Romberg Multilevel method developed by Lemaire and
Pagès [LP17] that improves the convergence of the MLMC estimator.

In this work, we focus on the case where h is the maximum function that is sublinear,
but does not satisfy the standard regularity assumptions. We are thus interested in
the problem of computing nested expectations of the form

I = E
[
max

{
E
[
Y 1|X

]
, . . . ,E

[
Y P |X

]}
φ(X)

]
. (4.1.2)

Such kind of expectation arises in the standard formula for the calculation of the interest
rate module of the SCR. More generally, the problem of computing (4.1.2) occurs when
one has to determine the worst of a set of P shocks (or stress tests) on a portfolio of
securities at some future time t called risk horizon. For the interest rate module
of the SCR, one rather has to compute E

[
max

{
E [Y 1|X] , . . . ,E

[
Y P |X

]
, 0
}
φ(X)

]
,

which amounts to add a zero coordinate to Y . When the function φ is nonnegative
and such that E[φ(X)] = 1, φ(X) can be seen as a change of probability on the
different events up to time t. The function φ(X) does not add any technical difficulty
in our study, but it enables us to perform the evolution up to time t under the real
probability and the evaluation of the losses under the risk-neutral probability, as it is
recommended by Solvency II. Studies of MLMC estimators for nested expectations for
irregular functions h with applications to risk management have recently been made
by Giles and Haji-Ali [GHA19], Bourgey et al. [BDMGZ20] and Giorgi et al. [GLP20].
In a very recent work, Giles and Goda [GG19] have studied precisely the problem of
computing (4.1.2) with the MLMC method.

The contribution of this paper is twofold. First, we provide an original mathematical
analysis of the MLMC estimator for the calculation of (4.1.2) that completes the result
obtained by Giles and Goda [GG19]. Our analysis relies on different arguments and
the required assumptions are therefore also different. In particular, Giles and Goda
make some technical assumptions to control the probability of two elements being close
to the maximum. These assumptions are replaced in our analysis by an integrability
assumption involving a parameter η ∈ (0, 1) that gives some additional flexibility in the
application of the MLMC estimator. Our second contribution is to apply this method
to an ALM model for life insurance that takes into account the main characteristic of
the business: book values, profit-sharing mechanism, minimum guaranteed rate, etc.
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Thus, the model is truly path-dependent so that the conditional expectation at time t
really involves the past dynamics making the use of regression techniques more delicate.
One of the main advantage of the MLMC estimator is to calculate directly I and skip
the question of regression. The second main advantage is that it provides an estimator
with accuracy ε and with a computational cost in O(ε−2): it is thus asymptotically as
efficient as a Monte-Carlo method for plain expectations. In our numerical study, we
compare the estimation of I with MLMC, Least Square Monte-Carlo (LSMC) estimator
and the use of Neural Networks (NN), and demonstrate the main advantages of the
MLMC estimator.

The paper is organized as follows. Section 4.2 presents the mathematical results
on the estimation of I with nested Monte-Carlo and MLMC. Technical proofs are
postponed to Appendix A.1. Section 4.3 then deals with the application to ALM.
Subsections 4.3.1 and 4.3.3 present the ALM model for life insurance business that we
developed in [ACIA20a] while Subsection 4.3.2 recalls the calculation of the SCR with
the standard formula. Subsection 4.3.4 compares the numerical performance of the
MLMC estimator with estimators obtained with LSMC or NN. Last, Subsection 4.3.5
shows the interest of analysing the SCR at future dates, exhibiting some interesting
properties such as the dependence of the SCR on the portfolio allocation or on the
market risk premia.

4.2 Mathematical analysis of Monte-Carlo estima-
tors of I

4.2.1 Nested Monte-Carlo estimator
In order to compute I defined by (4.1.2), the classical approach is to approximate the
inner and outer expectation using Monte-Carlo estimators. The procedure consists in
generating an i.i.d sample (X1, . . . , XJ) of X called outer (or primary) scenarios. Then,
conditionally on Xi, we sample (Yi,1, . . . , Yi,K) called inner (or secondary scenarios)
following the conditional law of Y given X = Xi and approximate the conditional
expectation E [Y p|X = Xi], for p ∈ {1, . . . , P}, by

Êp
i,K = 1

K

K∑
k=1

Y p
i,k (4.2.1)

The outer expectation is then approximated using the standard MC estimator :

ÎJ,K = 1
J

J∑
j=1

max
{
Ê1
j,K , . . . , Ê

P
j,K

}
φ(Xj) (4.2.2)

This estimator has been studied for example by Gordy and Juneja [GJ10] in the context
of portfolio risk measurement. The nested simulation procedure introduces two level
of error since we combine the estimates from the outer and inner levels of simulation
to compute I. In a standard way, we analyse the Mean-Square Error (MSE) of the
estimate MSE(ÎJ,K) = E

[
|ÎJ,K − I|2

]
and use the bias-variance decomposition:

MSE(ÎJ,K) = bias2(ÎJ,K) + Var(ÎJ,K),

where bias(ÎJ,K) = E[ÎJ,K ]− I.
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Notation. • We set Ep
X := E[Y p|X] for p ∈ {1, . . . , P} and Mp

X = max{E[Y 1|X], . . . ,E[Y p|X]}.

• Let K ∈ N∗ and Y1, . . . , YK be an i.i.d. sample following the conditional law of Y
given X. Then, we set

∀p = 1, . . . , P, Êp
K = 1

K

K∑
k=1

Y p
k and M̂p

K = max{Ê1
K , . . . , Ê

p
K}. (4.2.3)

• Besides, when K is even, we define

∀p = 1, . . . , P, Êp,′
K/2 = 2

K

K∑
k=K/2+1

Y p
k and M̂p,′

K/2 = max{Ê1,′
K/2, . . . , Ê

p,′
K/2}.

(4.2.4)

From the LLN, we have Êp
K → Ep

X and M̂p
K → Mp

X almost surely as K → +∞. The
next theorem analyses the MSE of the nested estimator and provides estimates that
will be then useful for the analysis of the MLMC estimator.

Theorem 4.1. Let P ≥ 2 and η ∈ (0, 1]. Let X, Y be random variables defined on a
probability space (Ω,F ,P). We assume that (A.1) and (A.2) hold, and we define, for
p ∈ {1, . . . , P}, σp(X) =

√
Var(Y p|X), Σ1+η

p (X) = ∑p
i=1 σ

1+η
i (X) and

Cp(X) = 2ηΣ1+η
p (X)

p∑
p′=2

1
|Ep′

X −M
p′−1
X |η

.

Assume that the following condition holds:

(i) ∀ p = 2, . . . , P, P
(
Mp−1

X = Ep
X

)
= 0,

(ii) Σ2 = E[Σ2
P (X)φ2(X)] <∞ and C = E[CP (X)|φ(X)|] <∞.

Then, we have∣∣∣E ((M̂P
K −MP

X

)
φ(X)

)∣∣∣ ≤ C

K
1+η

2
and E

((
M̂P

K −MP
X

)2
φ2(X)

)
≤ Σ2

K
. (4.2.5)

Besides, if V = Var(MP
Xφ(X)) <∞, we get

MSE(ÎJ,K) ≤ C2

K1+η + 2V
J

+ 2Σ2

JK
. (4.2.6)

With this upper bound, taking K = O(ε−
2

1+η ) and J = O(ε−2) is an asymptotically
optimal choice to get MSE(ÎJ,K) = O(ε2) while minimizing the computation cost JK.

Remark 4.2. Let us note that the assumptions (i) and C < ∞ of Theorem 4.1 are
only needed to improve the upper bound on the bias. If it does not hold, we still have∣∣∣E ((M̂P

K −MP
X

)
φ(X)

)∣∣∣ ≤ E
(∣∣∣(M̂P

K −MP
X

)
φ(X)

∣∣∣) ≤ Σ√
K
.

Note that the speed in O(K−1/2) is optimal. Consider the example where Y = (Y 1, Y 2)
and, given X, Y 1 and Y 2 are independent normal distribution with unit variance and
the same mean m(X). Then, M2

X = m(X) and, given X, M̂2
K −M2

X has the same law
as 1√

K
max(G1, G2) where G1 and G2 are independent standard normal variables.
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Remark 4.3. For practical applications such as the standard formula for the SCR
interest rate module, one usually considers the positive part of the maximum. This
amounts to add the coordinate Y P+1 = 0 in our framework. Thus, if we assume in
addition that P(MP

X = 0) = 0 and C̃ = E
[(
CP (X) + 2ηΣ1+η

P (X)
MP
X

)
|φ(X)|

]
<∞, then

∣∣∣E (((M̂P
K)+ − (MP

X)+
)
φ(X)

)∣∣∣ ≤ C̃

K
1+η

2
and E

((
(M̂P

K)+ − (MP
X)+

)2
φ2(X)

)
≤ Σ2

K
.

Remark 4.4. Let us assume for simplicity that φ ≡ 1 and there exists σ, σ ∈ R∗+ such
that for all p ∈ {1, . . . , P},

σ ≤ σp(X) ≤ σ, a.s.

Then, the integrability condition (ii) of Theorem 4.1 is equivalent to have E[|Ep
X −

Mp−1
X |−η] <∞ for all p ∈ {2, . . . , P}. Suppose now that Ep

X−M
p−1
X admits a probability

density fp(x) that is continuous and does not vanish at 0. Then, the integrability
condition near 0 gives ∫ ε

−ε
|x|−ηfp(x)dx <∞ ⇐⇒ η < 1.

This indicates that, in a quite general framework, condition (ii) of Theorem 4.1 is not
satisfied for η = 1 but may be satisfied for any 0 < η < 1.

The proof of Theorem 4.1 is a consequence of the next lemma, whose proof is
postponed to Appendix A.1.2. The analysis is rather standard, but the difficulty is
to handle in the bias analysis the irregularity of the maximum when two (or more)
arguments equal. This is why we need Assumption (i) and the finiteness of C in
Assumption (ii). These assumptions are different from Assumptions 2 and 3 that are
used by Giles and Goda [GG19] in a similar context. With their assumptions, they
obtain a bias in O(1/K1−δ) for any arbitrary 0 < δ < 1. Here, we directly see the link
between the integrability assumption and the bias in O(1/K 1+η

2 ). Besides, let us note
that we do need to assume the boundedness of any moments of Y pφ(X), p ∈ {1, . . . , P}
(Assumption 1 of [GG19]) since we are using a different approach that does not make
use of the Burkholder-Davis-Gundy inequality.

Lemma 4.5. Let (Ω,F ,P) a probability space and η ∈ (0, 1]. Besides the random
variable X, we consider real valued random variables θ̂iK and functions ϕi(X), with
i ∈ {1, 2} that satisfy the following conditions :

(i) θ̂iK −−−→
K→∞

ϕi(X) a.s

(ii) There are nonnegative measurable functions Ci and σ2
i such that for all K ∈ N∗:

∣∣∣E [θ̂iK − ϕi(X)|X
]∣∣∣ ≤ Ci(X)

K
1+η

2
, (4.2.7)

E
[∣∣∣θ̂iK − ϕi(X)

∣∣∣2 |X] ≤ σ2
i (X)
K

. (4.2.8)

(iii) Setting ϕ21(X) = ϕ2(X)− ϕ1(X), we have P (|ϕ12(X)| = 0) = 0.
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Then, we have with

C(X) = 1ϕ21(X)<0C1(X) + 1ϕ21(X)>0C2(X) + 2ησ
1+η
1 (X) + σ1+η

2 (X)
|ϕ21(X)| , (4.2.9)

σ2(X) = σ2
1(X) + σ2

2(X), (4.2.10)

the following estimates:
∣∣∣E [max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}|X

]∣∣∣ ≤ C(X)
K

1+η
2
, (4.2.11)

E
[∣∣∣max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}

∣∣∣2 |X] ≤ σ2(X)
K

. (4.2.12)

Proof of Theorem 4.1. We first prove by induction on P ≥ 2 that∣∣∣∣∣E
(
M̂P

K −MP
X

∣∣∣∣∣X
)∣∣∣∣∣ ≤ CP (X)

K
1+η

2
and E

((
M̂P

K −MP
X

)2
∣∣∣∣∣X
)
≤ Σ2

P (X)
K

. (4.2.13)

We apply Lemma 4.5 noticing that E[Êp
K −E

p
X |X] = 0 and E[(Êp

K −E
p
X)2|X] = σ2

p(X)
K

,
for p ∈ {1, . . . , P}. First, this gives the result for P = 2. Second, with the induction
hypothesis for P , Lemma 4.5 gives that (4.2.13) is satisfied for P + 1 with

CP+1(X) = CP (X) + 2ηΣ1+η
P (X) + σ1+η

P+1(X)
|ÊP+1

K −MP
X |η

and Σ2
P+1(X) = Σ2

P (X) + σ2
P+1(X),

which gives the claim.
Since bias(ÎJ,K) = E

[(
M̂P

K −MP
X

)
φ(X)

]
, we get |bias(ÎJ,K)| ≤ E[CP (X)|φ(X)|]

K
1+η

2
= C

K
.

Similarly, we have

Var(ÎJ,K) = 1
J

Var[M̂P
Kφ(X)] ≤ 2

J
Var

[(
M̂P

K −MP
X

)
φ(X)

]
+ 2
J

Var[MP
Xφ(X)]

≤ 2
J
E
[(
M̂P

K −MP
X

)2
φ2(X)

]
+ 2
J

Var[MP
Xφ(X)],

which leads to (4.2.6).
Last, we notice that for c1, c2 > 0, the minimization of JK given c1

K1+η + c2
J

= ε2

leads to J = c2
(1+η)c1K

1+η and thus K = O(ε−
2

1+η ) and J = O(ε−2). Since 1
JK
≤ 1

J
and

1
JK

= O(ε2+ 2
1+η ) is negligible with respect to 1

K2 and 1
J
, this choice is asymptotically

optimal: it gives MSE(ÎJ,K) = O(ε2) with a computational cost in O(ε−3− 1−η
1+η ).

4.2.2 The Multilevel Monte-Carlo estimator
We now present the Multilevel Monte-Carlo (MLMC) estimator of I. We consider
L ∈ N that represents the number of levels. Let J0, . . . , JL ∈ N∗ and K0, . . . , KL ∈ N∗
be such that

∀l ∈ {1, . . . , L}, Kl = K02l. (4.2.14)
For each level l ∈ {0, . . . , L}, we consider (Xl,j, 1 ≤ j ≤ Jl) i.i.d. random variables
having the same distribution asX, and random variables (Yl,j,k, 1 ≤ j ≤ Jl, 1 ≤ k ≤ Kl)
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that are independent given (Xl,j, 1 ≤ j ≤ Jl) and such that Yl,j,k follows the distribution
of Y given X = Xl,j. These random variables are assumed to be independent between
levels, i.e. (Xl,j, Yl,j,k, 1 ≤ j ≤ Jl, 1 ≤ k ≤ Kl)l∈0,...,L are independent. Then, we define
for l ∈ {0, . . . , L} and p ∈ {1, . . . , P}:

Êp
l,j,K = 1

K

K∑
k=1

Y p
l,j,k, K ∈ {1, . . . , Kl} (4.2.15)

M̂p
l,j,K = max(Ê1

l,j,K , . . . , Ê
p
l,j,K) (4.2.16)

Then, the MLMC estimator of I is defined by

ÎMLMC = 1
J0

J0∑
j=1

M̂P
0,j,K0φ(X0,j) +

L∑
l=1

1
Jl

Jl∑
j=1

(M̂P
l,j,Kl

− M̂P
l,j,Kl−1

)φ(Xl,j). (4.2.17)

Let us assume that the assumptions of Theorem 4.1 hold. We have bias(ÎMLMC) =
E
[(
M̂P

KL
−MP

X

)
φ(X)

]
= O(K−

1+η
2

L ) = O(2− 1+η
2 L). Besides, we have

Var
((
M̂P

Kl
− M̂P

Kl−1

)
φ(X)

)
≤ 2Var

((
M̂P

Kl
−MP

X

)
φ(X)

)
+ 2Var

((
M̂P

Kl−1
−MP

X

)
φ(X)

)
= O(K−1

l ) = O(2−l)

and the computational cost of (M̂P
l,j,Kl

− M̂P
l,j,Kl−1

)φ(Xl,j) is O(Kl) = O(2l). We can
thus apply Theorem 1 [Gil15], which leads to the following result.

Proposition 4.6. Let us assume that the assumptions of Theorem 4.1 hold for some
η ∈ (0, 1]. Then, by taking when ε→ 0

L =
⌈

2
1 + η

| log(ε)|
log(2)

⌉
, J0 = 2d

2| log(ε)|+| log(| log(ε)|)|
log(2) e = O(ε−2| log(ε)|) and Jl = J02−l, l ∈ {1, . . . L},

(4.2.18)
we have MSE(ÎMLMC) = E[(ÎMLMC − I)2] = O(ε2) with a computational cost in
O(ε−2 log2(ε)).

If only the assumption Σ2 <∞ of Theorem 4.1 holds, the same conclusion holds by
taking η = 0 in (4.2.18).

Proof. We just check that the parameters achieve the claim. From the bias-variance
decomposition, we get by using Theorem 4.1, (4.2.14) and (4.2.18) that there is a
positive constant C such that

MSE(ÎMLMC) ≤ C

(
1

K1+η
L

+ 1
J 0

+
L∑
l=1

1
JlKl

)
= C

(
2−(1+η)L

K1+η
0

+ 1
J 0

+ L

J0K0

)
.

The choice of L gives 2−(1+η)L ≤ ε2 and the choice of J0 then gives L
J0

= O(ε2). Last
the computational cost is given by ∑L

l=0 JlKl = LJ0K0 = O(ε−2 log2(ε)). In the case
where we only know Σ2 <∞, only the second statement of Equation (4.2.5) holds, and
we get ∣∣∣E [(M̂P

KL
−MP

X

)
φ(X)

]∣∣∣ ≤ Σ√
KL

= Σ√
K0

2−L/2,

which gives the second claim with the same arguments.
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Remark 4.7. Let us note that the analysis of the computational cost gives that it is
asymptotically bounded by Cε2 log2(ε) for some constant C > 0, but it does not analyse
precisely this constant. Nonetheless, since this cost is LJ0K0, this constant can be
chosen to be proportional to the number of levels.

Thus, the analysis of the bias given by Theorem 4.1 under the integrability assump-
tion E[CP (X)|φ(X)|] < ∞ enables to reduce the number of levels and then to reduce
this constant.

It is however possible to construct a better estimator using the MLMC antithetic
estimator

ÎMLMC
A = 1

J0

J0∑
j=1

M̂P
0,j,K0φ(X0,j) +

L∑
l=1

1
Jl

Jl∑
j=1

M̂P
l,j,Kl

−
M̂P

l,j,Kl−1
+ M̂P,′

l,j,Kl−1

2

φ(Xl,j),

(4.2.19)
where we set for p ∈ {1, . . . , P},

Êp,′
l,j,Kl−1

= 1
Kl−1

Kl∑
k=Kl−1+1

Y p
l,j,k and M̂p,′

l,j,Kl−1
= max(Ê1,′

l,j,Kl−1
, . . . , Êp,′

l,j,Kl−1
). (4.2.20)

This is a rather natural idea to reduce the variance contribution of each level, see
Section 9.1 of [Gil15]. However, the irregularity of the maximum function makes the
analysis of the variance more delicate as if it were a smooth function. Giles and
Goda [GG19] give an analysis of the variance that require again the boundedness of
any moments of Y pφ(X), p ∈ {1, . . . , P} (Assumption 1 of [GG19]) and assumptions
to control the probability that another component is close to the maximum (Assump-
tions 2 and 3 of [GG19]). Here, our proof relies on a different argument and only
requires a moment condition that quantifies in a different way the probability that two
or more arguments in the maximum are close to the maximum. Details are in the
Appendix (see Proposition A.7).

Remark 4.8. For the calculation of (4.1.1) with a general function h, the antithetic
MLMC estimator is defined by

1
J0

J0∑
j=1

h(Ê1
0,j,K0 , . . . , Ê

P
0,j,K0)φ(X0,j)

+
L∑
l=1

1
Jl

Jl∑
j=1

h(Ê1
l,j,Kl

, . . . , ÊP
l,j,Kl

)−
h(Ê1

l,j,Kl−1
, . . . , ÊP

l,j,Kl−1
) + h(Ê1,′

l,j,Kl−1
, . . . , ÊP,′

l,j,Kl−1
)

2

φ(Xl,j).

In particular, it is possible to estimate by MLMC the value of (4.1.1) for different
functions h with the same simulations.

Theorem 4.9. Let η ∈ (0, 1]. We assume that the assumptions of Theorem 4.1 hold
and besides that

∀p ∈ {2, . . . , P}, E
[

D2+η(X)
|Ep

X −M
p−1
X |η

φ2(X)
]
<∞,

where Dp
2+η(X) = E[|Y p − E[Y p|X]|2+η|X]. Then, by taking when ε→ 0

L =
⌈

2
1 + η

| log(ε)|
log(2)

⌉
, J0 = 2d

2| log(ε)|
log(2) e = O(ε−2) and Jl = dJ02−(1+ η

4 )le, l ∈ {1, . . . L},

(4.2.21)
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we have MSE(ÎMLMC
A ) = E[(ÎMLMC

A − I)2] = O(ε2) with a computational cost in
O(ε−2).

Proof. We have bias(ÎMLMC
A ) = bias(ÎMLMC) = O(2− 1+η

2 L). By Proposition A.7, the
variance of each level satisfies

Var
M̂P

Kl
−
M̂P

Kl−1
+ M̂P,′

Kl−1

2

φ(X)
 = O(K−(1+ η

2 )
l ) = O(2−l(1+ η

2 )),

and the computational cost of
(
M̂P

Kl
−

M̂P
Kl−1

+M̂P,′
Kl−1

2

)
φ(X) is in O(Kl) = O(2l). We

are thus in the framework of Theorem 1 of [Gil15], and we just check that the choice
of parameters (4.2.21) gives the claim. By using the bias variance decomposition, we
have

MSE(ÎMLMC
A ) ≤ C

2−(1+η)L + 1
J 0

+
L∑
l=1

1
JlK

1+ η
2

l

 ≤ C

(
ε2 + ε2

L∑
l=0

2−
η
4 l

)
.

Since ∑L
l=0 2− η4 l ≤ ∑∞

l=0 2− η4 l = 1
1−2−

η
4
, we indeed have MSE(ÎMLMC

A ) = O(ε2). Ob-

serving that for ε ∈ R∗+ small enough, we have J02−(1+ η
4 )L ≥ 1 and thus Jl ≤

2J0 × 2−(1+ η
4 )l for l ∈ {0, . . . , L}, we can upper bound the computational cost as

follows
L∑
l=0

JlKl ≤ 2J0K0

L∑
l=0

2−
η
4 l ≤ 4K0ε

−2

1− 2− η4
.

Remark 4.10. We can easily extend Theorem 4.9 if we assume that the assumption
of Theorem 4.1 is true for some η1 ∈ (0, 1] and that

∀p ∈ {2, . . . , P}, E
[

Dp
2+η2(X)

|Ep
X −M

p−1
X |η2

φ2(X)
]
<∞,

for some η2 > 0. If we then take

L =
⌈

2
1 + η1

| log(ε)|
log(2)

⌉
, J0 = 2d

2| log(ε)|
log(2) e = O(ε−2) and Jl = dJ02−(1+ η2

4 )le, l ∈ {1, . . . L},

we get in the same way that MSE(ÎMLMC
A ) = O(ε2) with a computational cost in

O(ε−2). However, roughly speaking, the integrability assumption of Theorem 4.1 for
the bias deals with the integrability of 1

|EpX−M
p−1
X |η1 when |Ep

X − Mp−1
X | is close to 0,

similarly as the assumption for the variance estimate. Thus, it is rather natural to
consider η1 = η2, and we state Theorem 4.9 in this case for sake of simplicity.

4.2.3 Least-Square Monte Carlo techniques for Nested Expec-
tations

In this paragraph, we aim at presenting briefly the classical technique of regression in
our context, i.e. for the calculation of I. For simplicity, we only consider here regressors
that are indicator functions.
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Let Nr ∈ N∗ be the number of regressors. We consider B1, . . . , BNr ∈ G disjoint
measurable sets of the space where X takes values, and we define for n ∈ {1, . . . , Nr}
and p ∈ {1, . . . , P},

αpn = E[Y p|X ∈ Bn] = E[Y p1X∈Bn ]
P(X ∈ Bn) (with the convention 0/0 = 0).

Then we have

∀p ∈ {1, . . . , P}, E
(Y p −

Nr∑
n=1

αpn1X∈Bn

)2 = min
α1,...,αNr∈R

E

(Y p −
Nr∑
n=1

αn1X∈Bn

)2 ,
i.e. ∑Nr

n=1 α
p
n1X∈Bn is the L2 projection of Y p on {∑Nr

n=1 αn1X∈Bn : α1, . . . , αNr ∈
R}. It is a natural proxy of Ep

X , which is the L2 projection on the larger space
of σ(X)-measurable random variables. We then define γPn = maxp=1,...,P α

p
n, so that∑Nr

n=1 γ
P
n 1X∈Bn approximates MP

X .
Let us consider (Xj, Yj)1≤j≤J an i.i.d. sample following the distribution of (X, Y ).

We define

α̂pn,J =
∑J
j=1 Y

p
j 1Xj∈Bn∑J

j=1 1Xj∈Bn
(with the same convention 0/0 = 0)

and have similarly

∀p ∈ {1, . . . , P}, 1
J

J∑
j=1

(
Y p
j −

Nr∑
n=1

α̂pn,J1Xj∈Bn

)2

= min
α1,...,αNr∈R

1
J

J∑
j=1

(
Y p
j −

Nr∑
n=1

αn1Xj∈Bn

)2

.

We define γ̂Pn,J = maxp=1,...,P α̂
p
n,J , so that ∑Nr

n=1 γ̂
P
n,J1Xj∈Bn approximates MP

Xj
. Thus,

we define the Least Square Monte-Carlo estimator of I by

ÎLSMC = 1
J

J∑
j=1

φ(Xj)
Nr∑
n=1

γ̂Pn,J1Xj∈Bn . (4.2.22)

We are interested in estimating the MSE of this estimator. The next proposition gives
a framework to analyse it, which is useful to determine asymptotically the number of
regressors and the number of Monte-Carlo samples to reach a given precision ε > 0.

Proposition 4.11. For p = 1, . . . , P , we set σp(x) = Var(Y p|X = x), and assume
that there exists σ, φ ∈ R∗+ such that for all x ∈ G, σ2

p(x) ≤ σ2 and |φ(x)| ≤ φ. Then,
we have

E[(ÎLSMC − I)2] ≤ 2φ2
σ2NrP + E[(MP

X)2]
J

+
P∑
p=1

E

(Ep
X −

Nr∑
n=1

αpn1X∈Bn

)2 .
We now suppose in addition that:

1. G = [0, 1]d, Nr = ndr and for any n ∈ {1, . . . , Nr},

Bn =
[
i1
nr
,
i1 + 1
nr

)
× · · · ×

[
id
nr
,
id + 1
nr

)
.

where i1, . . . , id ∈ {0, . . . , nr − 1} are the unique integers determined by the de-
composition in base nr of n− 1, i.e. n− 1 = ∑d

k=1 ikn
k−1
r ,
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2. for any p ∈ {1, . . . , P}, the function G 3 x 7→ Ep
x = E[Y p|X = x] is Lipschitz

continuous with constant L for the ‖‖∞ norm on Rd.

Then, we have

E[(ÎLSMC − I)2] ≤ 2φ2
(
σ2NrP

J
+ PL2

N
2/d
r

)
.

With this upper bound, taking J ∼ cε−d−2 and Nr ∼ c′ε−d for some constants c, c′ > 0
is an asymptotic optimal choice to have E[(ÎLSMC − I)2] = O(ε2), with an overall
computational cost in O(ε−d−2).

In comparison with the MLMC estimator, it is worth to notice that ÎLSMC suffers from
the curse of dimensionality. The larger is the dimension of G (the space where X takes
values), the more it requires computational effort. As we will see, for the problem of
the calculation of the SCR for ALM management, this is particularly detrimental.

Proof. From the definition of ÎLSMC (4.2.22), we get by using (a+ b)2 ≤ 2a2 + 2b2 and
Jensen’s inequality:

E[(ÎLSMC − I)2] = E


ÎLSMC − 1

J

J∑
j=1

φ(Xj)MP
Xj

+ 1
J

J∑
j=1

φ(Xj)MP
Xj
− I

2


≤ E

 2
J

J∑
j=1

φ2(Xj)
(
Nr∑
n=1

γ̂Pn,J1Xj∈Bn −MP
Xj

)2+ 2Var(φ(X)MP
X)

J

≤ 2φ2
E

 1
J

J∑
j=1

(
Nr∑
n=1

γ̂Pn,J1Xj∈Bn −MP
Xj

)2+ E[(MP
X)2]
J

 .
Now, Theorem 8.2.4 [Gob16] gives

E

 1
J

J∑
j=1

(
Ep
Xj
−

Nr∑
n=1

α̂pn,J1Xj∈Bn

)2 ≤ σ2Nr

J
+ E

(Ep
X −

Nr∑
n=1

αpn1X∈Bn

)2 .
We recall that γ̂Pn,J = maxp=1,...,P α̂

p
n,J and observe that for Xj ∈ Bn, we have

(MP
Xj
− max

p=1,...,P
α̂pn,J)2 ≤ max

p=1,...,P
(Ep

Xj
− α̂pn,J)2 ≤

P∑
p=1

(Ep
Xj
− α̂pn,J)2

since |maxp=1,...,P ap − maxp=1,...,P bp| ≤ maxp=1,...,P |ap − bp| for any a, b ∈ RP . This
gives the first upper bound.

We now consider the case G = [0, 1]d with the related assumptions. Then, for
X ∈ Bn, we have for any p

|Ep
X − αpn| =

∣∣∣∣Ep
X −

∫
x∈Bn

Ep
xP(X ∈ dx|X ∈ Bn)

∣∣∣∣
≤
∫
x∈Bn

|Ep
X − Ep

x|P(X ∈ dx|X ∈ Bn) ≤ L

nr
= L

N
1/d
r

,

since ‖X − x‖∞ ≤ 1
nr

for X, x ∈ Bn. This gives the second bound. To have this upper
bound smaller than Cε2 for some constant C > 0, one must at least have Nr ≥ c1ε

−d
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and J ≥ c2Nrε
−2 for some constants c1, c2 > 0, which leads to take Nr ∼ c′ε−d and

J ∼ ε−d−2.
Last, we observe that the computational cost to find n such that x ∈ Bn is constant

since ik = bnrxkc and n = 1 + ∑d
k=1 ikn

k−1
r . Therefore, computing all the 2Nr sums∑J

j=1 Y
p
j 1Xj∈Bn and ∑J

j=1 1Xj∈Bn that define can be achieved with a computational
cost of O(J), and the calculation of (4.2.22) costs similarly O(J). Since J ∼ cε−d−2,
we get the claim.

4.2.4 Numerical results on a toy example: the Butterfly Call
Option with the Black-Scholes model

The goal of this section is to illustrate the theoretical results on a simple case where
the conditional expectations are known explicitly. Thus, we consider an asset following
the Black-Scholes model:

St = S0 exp
(
σWt −

σ2

2 t
)
, t ≥ 0,

where W is a standard Brownian motion and σ > 0 is the volatility. We consider a
butterfly option with payoff at time T > 0:

ψ(ST ) = (ST −K1)+ + (ST −K2)+ − 2
(
ST −

K1 +K2

2

)+
,

where 0 < K1 < K2. The price of this butterfly option at time t ∈ [0, T ] is given by

E[ψ(ST )|St] = CallBS(T − t, St, K1) + CallBS(T − t, St, K2)− 2CallBS(T − t, St, K1 +K2)
=: Butterfly(T − t, St)

with CallBS(t, s,K) = sN ( 1
σ
√
t
ln(s/K) + σ

2

√
t)−KN ( 1

σ
√
t
ln(s/K)− σ

2

√
t), where N is

the cumulative distribution function of the standard normal distribution.
Now, we consider multiplicative upward and downward shocks sup/down that occur

instantaneously at time t, we want to compute the worst loss between these shocks
when it is positive. Since the Black-Scholes model is multiplicative with respect to the
spot value, this shocks amounts to multiply the asset by (1± sup/down). Hence, setting
X = St, Y 1 = (ψ(ST )− ψ((1 + sup)ST )) and Y 2 =

(
ψ(ST )− ψ((1 + sdown)ST )

)
we

want to compute the following quantity :

I = E
[
max

{
E[Y 1|X],E[Y 2|X], 0

}]
.

We are thus indeed in our general framework with P = 3 and Y 3 = 0 and φ(x) = 1,
and we have

M3
X = max

{
Butterfly(T − t, (1 + sup)X),Butterfly(T − t, (1 + sdown)X), 0

}
.

Since X follows a log-normal distribution, the exact value of I can be thus obtained
by numerical integration



112 Chapter 4. MLMC for the Computation of future SCR

Numerical values. In all our numerical experiments, we consider the initial price
S0 = 100, the volatility σ = 0.3, the strikes K1 = S0 + a and K2 = S0− a with a = 50,
the option maturity T = 2 years and perform the shocks at t = 1 year. In our tests,
we take sup = 0.2 and sdown = −0.2.

Figure 4.1 illustrates the bias E[M̂3
K −M3

X ] in function of K with a log-scale. The
expectation is approximated by the Nested Monte-Carlo with J = 104 to get a negligible
statistical error. As a comparison, the functionK 7→ 1/K is drawn, and we observe that
two curves are quite parallel, which indicates that the bias behaves asymptotically like

c/K. Also, we have drawn in Figure 4.2 the variance of M̂3
Kl
−

M̂3
Kl−1

+M̂3,′
Kl−1

2 in function
of Kl, and we observe a behaviour in K−3/2

l . Thus, it is reasonable to apply then the
Multilevel method with η = 1 to determine the parameters in Equation (4.2.21). We
have drawn in Figure 4.3 the RMSE in function of the computational cost (defined by∑L
l=0 JlKl) for different values of η ≤ 1. We observe a behaviour in ε−2, which is in

line with Theorem 4.9. The RMSE is calculated empirically by running many times
the Multilevel method.

Figure 4.1 – Bias behaviour of the nested
estimator Figure 4.2 – Var

(
M̂3

Kl
−

M̂3
Kl−1

+M̂3,′
Kl−1

2

)
in

function of Kl

We now present the implementation of LSMC estimator. We note that X ′ =
1
σ

log(X)+σ/2 is a standard normal distribution and therefore takes with a probability
greater than 99% its values in [−3, 3]. We notice that E[Y p|X] = E[Y p|X ′] and take
the following regressors

1X′∈[−3+6j/Nr,−3+6(j+1)/Nr], j = 0, . . . Nr − 1.

Up to a translation, we are thus in the framework of Proposition 4.11. In Figure 4.4,
we have plotted the RMSE as a function of the number of samples J , which is also the
computational cost of the method. The behaviour is in line with the theoretical result
given by Proposition 4.11.

We already see on this one-dimensional example that the MLMC estimator has
some benefit in terms of convergence with respect to the LSMC estimator. As we will
see in the next section for the SCR estimation, this benefit is much more important
when X takes values in a high-dimensional space.
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Figure 4.3 – Empirical RMSE of the
MLMC antithetic estimator as a function
of the cost (log-scale) for different values
of η.

Figure 4.4 – Empirical RMSE of the
LSMC estimator as a function of the num-
ber of samples J (log-scale)

4.3 Calculation of the SCR with the Standard For-
mula in an ALM model

In this section, we want to illustrate to compare the MLMC and LSMC methods on a
more realistic example for the application in insurance. Namely, we consider the case of
Asset Liability Management (ALM) for life insurance contracts and are interested with
the calculation of the SCR with the standard formula after t years. This example is of
practical interest and the conditional expectations that are at stake are typically high-
dimensional. In fact, the process that determines the strategy is really path-dependent
and involves book values, market values, crediting rates, etc. Here, we will use the
recent ALM model that we have developed in [ACIA20a], and we focus on the interest
rate module of the SCR with the standard formula.

4.3.1 The ALM model in a nutshell
In this section, we briefly present the ALM model developed in [ACIA20a] and refer
to this paper for the full details. We consider an insurance company that handles a
life insurance, namely a General Account guaranteed with participation contracts. We
consider a runoff portfolio with an initial Mathematical ReserveMR0 corresponding to
policyholders’ deposit. The Capitalization Reserve (a buffer for capital gains on bonds
imposed by the French legislation) and the Profit Sharing Reserve (a buffer for capital
gains on stocks to smooth the crediting rate) are empty at time 0, i.e. CR0 = 0 and
PSR0 = 0. At time 0, the insurance company invests MR0 in two asset classes, stocks
and riskless bonds, with respective weights wS0 ∈ [0, 1] and wb0 = 1 − wS0 . Thus the
initial Market Value and Book Value in stock (resp. in bonds) is given by

MV S
0 = BV S

0 = wS0MR0 (resp. MV b
0 = BV b

0 = wb0MR0).

During all the ALM strategy, the insurance company invests in an equity asset (St)t≥0
that may be a stock index or more generally an average of stocks with weights corre-
sponding to the investment of the insurance company. It therefore has φS0 = MV S

0 /φ
S
0

equity assets at time 0. The insurance company also invests in bonds, and we assume
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that this investment is made with an equally weighted portfolio of bonds with maturities
1, . . . , n. We introduce some notation to precise this: we denote P (t, t+i) the price of a
Zero-Coupon bond at time t with maturity t+i, B(t, n, c) = ∑n

i=1 cP (t, t+i)+P (t, t+n)
the price at time t of a bond with constant coupon c ∈ R, unit nominal value and ma-
turity n and for c = (ci)i∈{1,...,n} ∈ Rn we denote by

B̄(t, n, c) = 1
n

n∑
i=1

B(t, i, ci)

the value of an equally weighted portfolio of bonds with coupons c. During all the
ALM strategy, we assume that bonds are bought at par with the swap rate cswap(t, n) =

1−P (t,t+n)∑n

i=1 P (t,t+i) . We set c0 = (cswap(0, i))i∈{1,...,n} and have B̄(0, n, c0) = 1. At time 0, the
insurance company has then φb0 = MV b

0 = MV b
0 /B̄(0, n, c0) assets B̄(0, n, c0).

We assume that the portfolio is handled up to time T ∈ N∗ and that it is static on
each period (t− 1, t), t ∈ {1, . . . , T}. At each time t, it is reallocated in such a way to
have at the end of the reallocation

φSt = wSt MVt
St

, φbt = wbtMVt

B̄(t, n, ct)

quantities of equity assets and bonds, where MVt denotes the market value of the
portfolio at time t and wSt = 1 − wbt ∈ [0, 1] is the target weight decided for ALM
strategy. The coupons ct ∈ Rn are determined by the reallocation procedure that we
describe now and takes into account the specificities of life insurance contracts. We
decompose this reallocation in five steps:

1. Calculation of the cash inflows and book value movements related to the bonds.
Since the portfolio composition is unchanged on (t − 1, t), the insurer receives
φbt−1
n

(
1 +∑n

i=1 c
i
t−1

)
corresponding to the nominal value of the expiring bonds

and the coupons. The value of the matured bonds φbt−1
n

is removed from the book
value of bonds BV b

t .

2. Payment of the policyholders that exit their contract. The proportion of policy-
holders that exit on [t − 1, t] is denoted by pet−1. It is modelled as the sum of a
deterministic part related to the relevant life table and of a dynamic part mod-
elling surrenders DSR(∆t−1) = DSRmax1∆t≤α + DSRmax

β−∆t

β−α 1α<∆t<β, where
∆t−1 is the difference between the crediting rate to policyholders rph(t− 1) and a
competitor rate rcompt−1 . We assume that policyholders exit uniformly on [t− 1, t],
and the amount to pay is thus pet−1MRt−1(1 + rG/2), where rG is the minimum
guaranteed rate. This means that they are remunerated with this rate on the
last period.

3. Reallocation step. At this step, the market value of the portfolio is given by

MVt = Gt + φSt−1St + φbt−1
n

n−1∑
i=1

B(t, i, ci+1
t−1),

where Gt is the liquidity gap that corresponds to the difference between the cash
inflows and outflows of the two first steps. The second term φSt−1St represents the
market value of equity assets, and the last term the market value of bond assets.
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Note that a bond at time t− 1 with maturity i+ 1 and coupon ci+1
t−1 becomes at

time t a bond with maturity i with the same coupon.
The portfolio is reallocated with the prescribed weights wSt ∈ [0, 1] and wbt =
1− wSt given by the ALM strategy. The amount of equity assets to hold is thus
given by φSt = wSt MVt/St. If this quantity is greater than φSt−1, there is a purchase
of φSt − φSt−1 equity assets which increases the book value BV S

t by (φSt − φSt−1)St.
If this quantity is lower than φSt−1, there is a sell of φSt−1−φSt equity assets which
decreases the book value BV S

t by the factor φSt /φSt−1. This generates capital gain
or loss on stocks that is registered, since capital gain has to be redistributed to
policyholders with a participation rate πpr ∈ [0, 1].
The reallocation in bonds follows the same principles but is more involved. At
the end of this step, the portfolio in bonds is made with φbt combinations of
bonds B̄(t, n, ct). Since the bonds are bought at par, there is a precise relation
between ct, ct−1 and the swap rates at time t. According to the French legislation
rules, the capital gain or loss on bonds is stored in the Capitalization Reserve
and is separated from the ALM portfolio. Details can be found in [ACIA20a].

4. Determination of the crediting rate. This step determines the policyholders’ earn-
ing rate rph(t) on the period (t− 1, t). Due to regulatory constraint, it has to be
greater than the minimum guaranteed rate rG and the amount distributed to pol-
icyholders has to be greater than the proportion πpr of the gains (participation
rate). Besides the insurance company compares rph(t) with a competitor rate
rcompt (typically the market short rate) and tries at best to have rph(t) ≥ rcompt

to avoid dynamic surrenders. We call “target rate”, the maximum rate given by
these three constraints.
The amount to distribute is typically made with the coupons, the capital gain
or loss on stocks and possibly dividends. To smooth these gains along the years,
the insurance company uses a Profit Sharing Reserve. In addition, the insurance
company may also want to realize a part of latent gain or loss on stocks. In the
model developed in [ACIA20a], the amount to distribute depends on all these
quantities. We distinguish four cases (from the best to the worst).

(A) The target rate can be distributed without using latent gain or by realizing
all the latent loss on stocks.

(B) The target rate can be distributed by using latent gain or without realizing
all the latent loss on stocks. The proportion of gain or loss is determined
accordingly.

(C) The target rate cannot be reached with the available amount, but the mini-
mum guaranteed rate can be distributed. The insurance company then uses
all the latent gain in order to serve the best possible rate.

(D) The minimum guaranteed rate cannot be reached with the available amount.
Then, the insurance company clears out the Profit Sharing Reserve and
credit the policyholders with the lowest rate above rG that also satisfies
participation rate constraints.

Once rph(t) is determined, the Mathematical Reserve of the remaining policy-
holders is updated accordingly: MRt = MRt−1(1− pet−1)(1 + rph(t)). The Profit
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Sharing Reserve and the book value of stocks are also modified according to the
case. The shareholder’s margin can be calculated as well as the profit and loss
P&Lt generated on the period (t−1, t), which is defined as the sum of the share-
holder’s margin and the interest generated by the Capitalization Reserve. Again,
all the details can be found in [ACIA20a].

5. Externalization of the Capitalization Reserve and of Shareholders’ margin from
the accounting. This last step is a technical accounting operation that slightly
change the quantities of assets and the book values, while keeping unchanged the
target weights wSt and wbt .

The last step at the final time T follows the same lines: instead of being reallocated,
the portfolio is cleared and policyholders get back the remaining Mathematical Reserve
MRT .

4.3.2 The Solvency Capital Requirement with the standard
formula

We now present the main lines of the SCR calculation with the standard formula
as indicated by the EIOPA [EIOPA12, EIOPA18]. Let us denote by (Ft, t ≥ 0) the
filtration representing the market information at time t ≥ 0 and Q the pricing measure.
We consider a short-rate model (rt, t ≥ 0) for interest rates and define at time t ∈
{0, . . . , T − 1} the Basic Own Funds by

BOFt = EQ
[

T∑
u=t+1

e−
∫ u
t
rsdsP&Lu

∣∣∣∣∣Ft
]
,

i.e. the expected value of the discounted future profits and losses. The principle of
the standard formula is to apply shocks on each asset class (equity, interest rate, etc.)
and evaluate the variation of Basic Own Funds. Then, the SCR on market risk is
obtained by using a given formula that aggregates all risk modules. In this paper, we
focus on the interest rate module, where upward and downward shocks are prescribed
by the regulator. The methodology to apply these shocks is described in Section 2.5
of [ACIA20a]. We have used in our simulations the shocks specified in [EIOPA12]. At
time t, the SCR value of the interest module is then defined by

SCRint
t = max{BOFt −BOF upward shock

t , BOFt −BOF downward shock
t , 0},

where shocks are applied at time t on the interest-rate curve. We also set

SCRup
t = max{BOFt−BOF upward shock

t , 0} and SCRdown
t = max{BOFt−BOF downward shock

t , 0},

so that SCRint
t = max(SCRdown

t , SCRup
t ). At time t = 0, SCRint

0 is a number that
can be calculated by Monte-Carlo. This has been investigated in [ACIA20a]. However,
for the ALM strategy, it may be useful to have quantitative insights on the evolution
of the SCR along the time to asses the cost of capital. Thus, in this paper we are
interested with the valuation of

I = EP[max{BOFt −BOF upward shock
t , BOFt −BOF downward shock

t , 0}], (4.3.1)
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the average value under the historical (or real) probability of the SCR at time t. If we

denote by dP
dQ

∣∣∣∣∣
Ft

the change of probability, we have

I = EQ
[
dP
dQ

∣∣∣∣∣
Ft

max{BOFt −BOF upward shock
t , BOFt −BOF downward shock

t , 0}
]
,

(4.3.2)
and we are precisely in the framework of Section 4.2 if X denotes a random variable
that represents all the market information up to time t (i.e. σ(X) = Ft). The equity
module of the SCR is similarly defined by

SCReq
t = max{BOFt −BOF equity shock

t , 0},

where the equity shock amounts to a strong decrease of S immediately after t. Usually,
the maximum with zero is useless since the shock is always negative. Last the standard
formula that defines the SCR on market risk as follows (see Articles 164 and 165
of [Com15]):

SCRmkt
t =

√
(SCReq

t )2
t + (SCRint)2

t + 2εSCReq
t SCR

int
t (4.3.3)

where ε = 0 if the interest-rate exposure is due to the upward-shock on interest rates
and ε = 1

2 if it is due to the downward shock of the interest rate module. Thus, the
expected value of the SCR is given by:

EP[SCRmkt
t ] = EQ

[
dP
dQ

∣∣∣∣∣
Ft

√
(SCReq

t )2
t + (SCRint)2

t + 2εSCReq
t SCR

int
t

]
.

4.3.3 The stock and short-rate models
We consider (Wt, Zt)t≥0 a standard two-dimensional Brownian motion under Q. Fol-
lowing [ACIA20a], we assume that the equity assets follows a Black-Scholes model and
that the short interest rate follows a Vasicek++ (or Hull and White) model:

dSt
St

= rtdt+ σSdWt (4.3.4)

rt = xt + ϕ(t), with dxt = k(θ − xt)dt+ σr(γdWt +
√

1− γ2dZt), (4.3.5)

where γ ∈ [−1, 1] tunes the dependence between equity and interest rates. We assume
k, θ, σS, σr > 0. As explained in [ACIA20a], the shift function ϕ : R+ → R is partic-
ularly convenient to implement the shocks prescribed by the EIOPA. Mainly, shocks
amounts to modify the shift, leaving the dynamics of x unchanged, which makes easy
to calculate the ALM strategies in both normal and shocked cases on each sample.

A new feature with respect to [ACIA20a] is that we now also consider the dynamics
under the real probability P. We assume here for simplicity the following basic change
of probability

dP
dQ

∣∣∣∣∣
Ft

= exp
(
λWWt + λZZt −

1
2((λW )2 + (λZ)2 + 2γλWλZ)t

)
=: Lt, (4.3.6)
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with λW , λZ ∈ R. By the Cameron-Martin theorem, dW P
t = dWt − λWt dt and dZP

t =
dZt − λZdt are independent Brownian motions under P. We then have the following
dynamics under P:
dSt
St

= (rt + λWσS)dt+ σSdW
P
t

rt = xt + ϕ(t), with dxt = k

(
θ + σr

γλW +
√

1− γ2λZ

k
− xt

)
dt+ σr(γdW P

t +
√

1− γ2dZP
t ),

To run this asset model with the ALM model described in Subsection 4.3.1, we have
to be able to sample St, rt and the change of probability Lt at each time t ∈ N. It is
possible to do it exactly by using the following recurrence formula

St = St−1 exp
(∫ t

t−1
xudu+

∫ t

t−1
ϕ(u)du+ σS(Wt −Wt−1)− σ2

S

2

)
,

xt = xt−1e
−k + θ(1− e−k) + σr

∫ t

t−1
e−k(t−u)(γdWu +

√
1− γ2dZu),

Lt = Lt−1 exp
(
λW (Wt −Wt−1) + λZ(Zt − Zt−1)− 1

2((λW )2 + (λZ)2 + 2γλWλZ)
)
,

and ∫ t

t−1
xudu = 1

k
(xt−1 − xt) + θ + σr

k
[γ(Wt −Wt−1) +

√
1− γ2(Zt − Zt−1)].

The law of (Wt − Wt−1, Zt − Zt−1,
∫ t
t−1 e

−k(t−u)(γdWu +
√

1− γ2dZu)) is a centered
Normal distribution with covariance

1 0 γ 1−e−k
k

0 1
√

1− γ2 1−e−k
k

γ 1−e−k
k

√
1− γ2 1−e−k

k
1−e−2k

2k

 .

This is the same law as
(
G1, G2, γ

1−e−k
k

G1 +
√

1− γ2 1−e−k
k

G2 +
√

1−e−2k

2k −
(

1−e−k
k

)2
G3

)
,

where G1, G2, G3 are independent standard Normal variables. Once this triplet is sam-
pled exactly, we can calculate easily (St, xt, Lt) using the formulas above.

4.3.4 Numerical experiments I: comparison between methods
to calculate E[SCRint

t ]
We now present numerical results on the calculation of I defined by (4.3.1). We use the
following parameters for the ALMmodel and for the asset model. They are summarized
in Tables 4.1 and 4.2. Unless specified, we also consider P = Q, i.e. that the real and
risk-neutral probability are the same. We will discuss however later on the impact of
this change of probability for the SCR.

Stock model Short-rate model
S0 = 1 r0 = θ = 0.02
σS = 0.1 σr = 0.01
γ = 0 k = 0.2

Table 4.1 – Market-model parameters
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Management Parameters Liability Parameters
Target allocation in stock wst = 0.05 Dynamic surrenders triggering thresholds β = −0.01 and α = −0.05
Target allocation in bond wbt = 0.95 Maximum lapse dynamic surrender rate DSRmax = 0.3
Participation rate πpr = 0.9 Deterministic constant exit rate p = 0.05
Minimum guaranteed rate rG = 0.015 Time horizon: T = 30 years
Competitor rate rcompt = rt
Smoothing coefficient of the PSR: ρ̄ = 0.5
Bond portfolio maximal maturity n = 20
Projection Horizon T = 30

Table 4.2 – Liability and management parameters

The implementation of the MLMC antithetic estimator is easily made by using (4.2.21).
Instead, the implementation of the LSMC raises some issues. The main one is to
choose the regressors. In fact, the ALM model presented in Subsection is truly path-
dependent, and one needs to know (rt′ , St′)t′∈{1,...,t} to determine the book values, the
different reserves and the Bond portfolio at time t. Thus, SCRint

t depends on all the
past before t. For t = 1 the dimension of the regression space is equal to 2 and the
choice of the regressors r1 and S1 is obvious. When t gets larger, this is no longer the
case and in view of the theoretical complexity result of Proposition 4.11 one cannot
afford to use all the 2t regressors. It is then important to select few regressors. We
explain now the procedure that we have used.

Selection of the regressors for the LSMC estimator

In Table 4.3 we have listed 12 relevant risk-factors for the insurance company. We
will select the most relevant ones for the SCR interest rate module by using a forward
selection procedure.

Attribute Risk-factor description
X1
t = St Equity asset value

X2
t = rt Short rate

X3
t = φSt Position in Stock

X4
t = φbt Position in bonds

X5
t = BV b

t Book value of bonds
X6
t = BV S

t Book value of equity assets
X7
t = MRt Mathematical Reserve

X8
t = PSRt Profit sharing reserve

X9
t = CRt Capitalization Reserve

X10
t = MVt Portfolio market value

X11
t = φbtB̄(t, n, ct) Market value of bonds

X12
t = φSt St Market value of equity assets

Table 4.3 – Non exhaustive list of risk factors

To do so, we sample Jv scenarios up to time t of the ALM model. This produces
in particular Jv samples of (X1,j

t , . . . , X12,j
t )j=1,...,Jv . Then, we approximate for each
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scenario the value of the interest rate module of the SCR, SCRint,j
t , by using a Nested

Monte-Carlo withK of secondary scenarios. We note ŜCR
Nested,j

t these approximations
(we drop for readability the superscript “int” in Paragraph 4.3.4). In our numerical
application, we have taken Jv = 2000 validation scenarios and K = 104 inner scenarios.
Let ŜCR : R12 → R be a function approximating the SCR from the values of X. We
now consider the empirical RMSE, i.e.√√√√ 1

Jv

Jv∑
i=1

(ŜCR
Nested,j

t − ŜCR(Xj
t ))2

as a criterion to assess the accuracy of the regression function ŜCR.
We start by selecting the first variable. Up to a linear rescaling of the sample we

may assume without loss of generality that all the variables are in [0, 1]. We consider
the 12 possible regressor functions for l ∈ {1, . . . , 12},

nr−1∑
i=0

α̂li1Xl
t∈[i/nr,(i+1)/nr), with α̂

l
i =

∑Jv
j=1 ŜCR

Nested,j

t 1Xl,j
t ∈[i/nr,(i+1)/nr)∑Jv

j=1 1Xl,j
t ∈[i/nr,(i+1)/nr)

,

and select l∗1 ∈ {1, . . . , 12} that achieves the lowest RMSE. Once l1 is selected, we
consider the following 11 regressor functions for l ∈ {1, . . . , 12} \ {l1}:

nr−1∑
i1,i2=0

α̂l1,li1,i21Xl1
t ∈[i1/nr,(i1+1)/nr)

1Xl
t∈[i2/nr,(i2+1)/nr),

with α̂l1,li1,i2 =
∑Jv
j=1 ŜCR

Nested,j

t 1
X
l1,j
t ∈[i1/nr,(i1+1)/nr)

1Xl,j
t ∈[i2/nr,(i2+1)/nr)∑Jv

j=1 1Xl1,j
t ∈[i1/nr,(i1+1)/nr)

1Xl,j
t ∈[i2/nr,(i2+1)/nr)

.

We then select the regressor l2 ∈ {1, . . . , 12} \ {l1} that gives the smallest RMSE.
We then proceed similarly to select the next variables. We have run this selection for
t = 10 with nr = 5. Table 4.4 shows the result of this algorithm and indicate the Book
values of bonds as the more significant variable to approximate the SCR module on
interest rates. We notice that the RMSE is significantly reduced by using the second
variable. In contrast, the third variable moderately improves the criterion. Since the
number of variables is also a limitation then for the use of the LSMC estimator, we do
not go further in the selection procedure. Figure 4.5 illustrates the approximation of
the values of ŜCR

Nested,j

t by the regression function with the two first regressors.

Best attribute RMSE
First variable BV b

t (l1 = 5) 0.8739
Second variable rt (l2 = 2) 0.5292
Third variable St (l3 = 1) 0.5084

Table 4.4 – Result of the Forward selection procedure for SCRint
t with t = 10.
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Figure 4.5 – Plot of the points ŜCR
Nested,j

t and of the estimated regression function
with the two first selected regressors.

Comparison between MLMC and LSMC estimators

We focus on the calculation of E[SCRint
t ] with t = 10 years. We now compare and

test numerically the MLMC antithetic estimator ÎMLMC
A defined by (4.2.19) with the

LSMC estimator ÎLSMC defined by (4.2.22) using the local cube basis and the regressors
selected by the procedure described in Paragraph 4.3.4.

In Figure 4.6, we have drawn the Root Mean Square Error of the estimator ÎMLMC
A

and of the estimators ÎLSMC using the first, the two first and the three first selected
regressors. In order to derive the RMSE of the different estimators, as no closed
formulas is available in this framework, we rely on a full nested Monte-Carlo proce-
dure based on a fixed simulation budget of Γ = 108 sample paths to approximate the
true value of I. The allocation between primary and secondary scenarios correspond
to M ≈ Γ 2

3 primary samples and K ≈ Γ 1
3 inner scenarios, as prescribed by Theo-

rem 4.1 for η = 1. To compute the RMSE of the different estimators, we produce
Nbatch = 10 independent simulations (Î∗j )j=1,...,Nbatch and indicate the empirical RMSE√

1
Nbatch

∑Nbatch
j=1 |Î∗j − I|2. We plot the empirical RMSE’s of the different estimators as

a function J (with J := ∑L
l=0 JlKl for the MLMC estimator). This represents the

number of samples, as well as the computational cost (in log-scale) that is in O(J) for
both estimators.

Concerning the LSMC estimators, we notice that the estimators with two regressors
does much better with the estimator with one regressor. Instead, the interest of using
a third regressor is tiny. We also observe that the RMSE does not really decrease after
104 samples on our example. This is due to the regression error: since we approximate
SCRint

t by a function of two or three variables, there is no way to go beyond a certain
level of precision. This is particularly noticeable for t ≥ 10 years: the projection of the
balance sheet through the ALM model is truly non-Markovian and the history up to
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Figure 4.6 – Empirical RMSE’s of the LSMC and MLMC estimators in function of
the computational effort J (with J := ∑L

l=0 JlKl for the MLMC estimator). The
computational time needed for the forward selection used by the LSMC estimator is
not taken into account in this plot.

time t cannot be summed up by two or three variables. In comparison, the convergence
of the MLMC antithetic estimator is in line with Theorem 4.9 and is asymptotically
more accurate than the LSMC estimator. Besides, the MLMC estimator avoids the
step of selecting regressors that requires computational time and may be determinant
for the accuracy of the LSMC estimator. Last, we notice that for a same level of
precision, the computational time required by the MLMC is slightly smaller than the
one required by the LSMC estimator. More precisely, the computational time needed
for J = 2 × 105 (where the three estimators have quite the same accuracy) are 9950
seconds for ÎMLMC

A , 11230 seconds for ÎLSMC with two regressors (nr = 23) and 12650
seconds for ÎLSMC with three regressors (nr = 13).

We now make a comment on the choice of the parameter η for the MLMC antithetic
estimator. We recall that η is, roughly speaking, related to the probability that two (or
more) arguments of the maximum function are close to the maximum, see Theorems 4.1
and 4.9. Heuristically, the smaller is this probability, the larger can be η, which then
reduces the number of levels and then the computational cost. In Figure 4.7, we have
plotted the convergence of the MLMC antithetic estimator for η ∈ {1/2, 3/4, 1} in
function of the theoretical computational cost∑L

l=0 JlKl. Basically, the three estimators
converge, but the one obtained with η = 1 does not seem to be asymptotically in O(ε−2)
while the two others are in line with the theoretical convergence in O(ε−2). This shows
the interest of the parameter η in a practical application and explains why we have
chosen to take η = 3/4 is our experiments in Figure 4.6.

Comparison between LSMC and the use of Neural Network

In Paragraph 4.3.4, we have noticed that a significant drawback of the LSMC estimator
with respect to the MLMC antithetic estimator is that it requires first to select regres-
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Figure 4.7 – Convergence of the MLMC estimator for different values of η in function
of the computational cost ∑L

l=0 JlKl.

sors. Beyond the computational time needed by this selection, there is a significant
regression error. A natural idea to skip the selection step in the regression is to use

Input Feature
X1
t Bond Book-Value BV b

t

X2
t Stock Book-value BV s

t

X3
t Position in bond φbt

X4
t Position in stock φst

X5
t Profit-Sharing Reserve level PSRt

X6
t Mathematical Reserve level MRt

X7
t Capitalization Reserve level CRt

X8
t Spread crediting rate/competing rate ∆t

X9
t Stock price St

X10
t Interest-rate rt

Table 4.5 – Input feature of the Neural Network Algorithm

Neural Networks (NN). We have implemented a feedforward neural network with one
hidden-layer. The hidden-layer is made with 10 or 50

neurons. The activation function used is the sigmoid function. To train the net-
work, we generate J number of primary outer scenarios (Xt,j)1≤j≤J for which only one
inner simulation is performed to obtain Zj that represents the maximal variation of
the discounted P&L due to the shocks . Then, one minimizes

1
J

J∑
j=1

(Zj − NN(Xt,j))2, (4.3.7)

where NN is the function generated by the neural network, so that it approximates the
desired conditional expectation. The input features of the network have not been pre-
processed: the optimization above has to be enough for detecting the relevant variables
for the approximation of the conditional expectation. Once the NN has been obtained,
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we then estimate E[SCRint
t ] simply by the empirical mean ÎNN := 1

J

∑J
j=1 NN(Xt,j).

Since we only use the NN on the training sample, the standard problem of overfitting
is not an issue for our application. We compare the RMSE of this estimator with the
RMSE obtained with the LSMC method. The aim of our procedure is to assess if a
Neural Network feeding with a whole range of input features is able to select relevant
attributes and to compare with the LSMC method with well-chosen features.

J LSMC dim 1 LSMC dim 2 LSMC dim 3 NN: 10 neurons NN: 50 neurons
500 1.0e-3 3.36e-4 3.50e-4 7.075e-4 7.56e-4
103 1.0e-3 3.75e-4 4.28e-4 6.46e-4 3.017e-4
5× 103 9.52e-4 1.23e-4 1.46e-4 1.63e-4 1.8153e-4
5× 104 1.0e-3 1.12e-4 1.24e-4 6.60e-5 7.29e-5
105 9.97e-4 1.068e-4 1.19e-4 6.32e-5 6.92e-5
106 9.86e-4 8.67e-5 8.06e-5 4.22e-5 4.50e-5

Table 4.6 – RMSE of E[SCRint
t ] for t = 10 given by the Neural Network (one hidden

layer with the indicated number of neurons) and the LSMC in function of J

Table 4.6 indicates the RMSE of the estimator with the different methods. First,
we notice that there is no need on our example to consider many neurons: a simple
layer with 10 neurons in enough and do as well as the NN with 50 neurons in terms of
RMSE. We notice also that the estimator given by the NN is slightly better than the
one obtained with the LSMC with two or three regressors when the training sample
gets large. However, the use of neural networks present serious drawbacks. First, it
requires to store all the samples to achieve the minimization of (4.3.7) while the LSMC
(and also MLMC) estimator only uses once each sample. Second, the time needed by
the minimization (indicated in Table 4.7) is important, making at the end this method
less competitive than MLMC. Note that one could be then tempted to train the NN on
a smaller size of samples and then use it for large J : one would then face the problem
of overfitting, which we want to avoid.

J 500 103 5× 103 5× 104 105

Time (s) 18.8 30.4 50.5 273.1 1693

Table 4.7 – Time required in seconds for the optimization of (4.3.7) for a neural
network with 10 neurons.

To sum up, the use of NN can indeed be useful to reduce the approximation error
observed by using LSMC estimators. However, it both demands memory and compu-
tational time, making the gain with respect to the LSMC not obvious. The MLMC
estimator presents the clear advantage to avoid this issue of function approximation,
and to avoid any storage of data.

4.3.5 Numerical experiments II: some insights on the ALM
We now present some applications of the MLMC antithetic estimator for the ALM.
One of the major issue in ALM is to determine the optimal asset allocation between
the different asset class backed to the insurance portfolio. For that reason, it is crucial
to evaluate precisely the amount of SCR required by the strategy. We are interested in
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calculating E[SCRmkt
t ], E[SCReq

t ] and E[SCRint
t ], see Subsection 4.3.2 for the definition

of these modules. Note that at time t > 0, the SCReq
t and SCRint

t are random
variables so that we cannot use the aggregation formula to get directly E[SCRmkt

t ]
from E[SCReq

t ] and E[SCRint
t ]. Note that by using the MLMC Antithetic estimator,

it possible and easy to calculate at the same time these expectations: see Remark 4.8
for the general expression of these estimators that we use for different functions h.
At each level l, one simulates Jl primary scenarios up to time t. Then, one simulates
for each primary scenario Kl secondary scenarios, on which we perform four different
evolutions: the first one without any shock, the second one with the equity shock, the
third one with the upward shock on interest rates and the last one with the downward
shock on interest rates. Then, one computes the corresponding empirical means related
to the calculation of SCReq

t and SCRint
t and use the aggregation formula (4.3.3) for

SCRmkt
t . Let us note that the discontinuity induced by the coefficient εmay in principle

deteriorate the MLMC estimation. However, we have thus run the MLMC estimator
with a regularization of this coefficient and noticed a tiny impact of the regularization
. This can be heuristically understood from Figure 4.11: the activation of ε may occur
on a wide range (perhaps the whole range) of values of SCRint, which smooths the
phenomenon.

Figures 4.8, 4.9 and 4.10 illustrate respectively the different values of the SCR
modules E[SCRmod

t ] for mod ∈ {mkt, eq, int, up, down} in function of the constant
allocation weight wS in equity for t = 0, t = 10 and t = 20 years (at t = 0, we
can remove the expectation). As one may expect, these values globally decrease with
respect to the time since we are considering a run-off portfolio with an exit rate greater
than 5%. We notice several interesting points.

• At time t = 10, E[SCRint
t ] is significantly larger than max(E[SCRup

t ],E[SCRdown
t ]),

which shows that deterministic proxy values of SCR modules may induce errors.
We no longer observe this phenomenon at time t = 20 because the greater shock
is always given by the upward shock and we have then SCRint

20 ≈ SCRdown
20 (the

green and blue curves coincide). This is explained in the next point.

• The main effects of the shocks on the interest rate are the following. The upward
(resp. downward) shock leads to an immediate decrease (resp. increase) of the
portfolio market value, but on the long run higher (resp lower) rates gives a better
(resp. worse) profitability. Here, we are considering a run-off portfolio with final
maturity T = 30. Thus, as t increases, the effect on the long run of this shocks
get less important making the immediate effect on market value dominant. Thus,
at t = 20 the downward shock is harmless while the upward shock gets painful.
This explains why we observe SCRint

20 ≈ SCRdown
20 .

• The aggregation formula (4.3.3) somehow encourages to have SCRint and SCReq

of the same order: if SCRint >> SCReq it is possible to invest more in eq-
uity to have a better average return with a moderate increase of SCRmkt, and
if SCRint << SCReq, one should reduce the investment in equity to reduce
SCRmkt. Therefore, it is interesting to look at the allocation that is such that
E[SCRint

t ] = E[SCReq
t ]. We see from Figures 4.8, 4.9 and 4.10 that the corre-

sponding weight wS evolves slightly. We get wS ≈ 0.05 for t = 0, wS ≈ 0.06 for
t = 10 and wS ≈ 0.05 for t = 20, which is still a relative variation of 20%. This
shows that a better evaluation of the SCR along the time may lead to significant
adjustments on the investment strategy.
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Figure 4.8 – Values of the SCR modules in
function of the constant allocation weight
wS in equity for t = 0.

Figure 4.9 – Expected values of the SCR
modules in function of the constant allo-
cation weight wS in equity for t = 10.

Figure 4.10 – Expected values of the SCR
modules in function of the constant allo-
cation weight wS in equity for t = 20.

Figure 4.11 – Sample of 1000 approxi-
mated values of SCRint

10 given by a nested
estimator: in red (resp. blue) are the val-
ues obtained when the downward shock is
greater (resp. smaller) than the upward
shock on interest rates.

Besides the calculation of the SCR, we can also use of the MLMC Antithetic estima-
tor to calculate the sensitivity of the SCR with respect to some variations of parameters
or market prices. These sensitivities are interesting information for management and
they can also be useful to calculate quickly the a proxy value of the SCR. For example,
suppose that we have computed the value of E[SCRmkt

10 ] and, after few days, we want to
estimate the new value of E[SCRmkt

10 ] by taking into account the small variation on the
equity and on the interest rates. Then, we can do this easily if one has computed the
values of the sensitivities E[SCRmkt10 (r0+δr0)−SCRmkt10 (r0)]

δr0
and E[SCRmkt10 (S0+δS0)−SCRmkt10 (S0)]

δS0
,

where implicitly all values are kept constant but respectively r0 and S0. Note that
these sensitivities can be computed with the MLMC antithetic estimator with the
same samples that are needed for the estimation of SCRmkt. Table (4.8) indicates the
sensitivities obtained with our parameters with δr0 = 0.001 and δS0 = 0.01.

Last, the MLMC estimation is a tool for example to analyse how the SCR depends
on the risk premia of stocks and interest rates. If the evaluation of the SCR has to be
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E[SCRmkt10 (S0+δS0)−SCRmkt10 (S0)]
δS0

E[SCRmkt10 (r0+δr0)−SCRmkt10 (r0)]
δr0

0.0228 -0.0845

Table 4.8 – Sensitivities of the SCRmkt
10 with wS = 0.05.

performed for regulatory reasons under a risk neutral framework, it is more relevant
for ALM to calculate EP[SCRmod

t ] under the real probability, which corresponds to the
average value of the own funds that will be necessary at time t. From equations (4.3.2)
(generalized to any other SCR module) and (4.3.6), it is possible to see the impact
of the risk premia λW and λZ on each SCR module. In Figures 4.12 and 4.13, we
have indicated the more remarkable ones: the dependence of EP[SCRint

t ] on λZ and
of EP[SCReq

t ] on λW . We notice that the larger is λZ , the larger is EP[SCRint
t ]. This

can be understood as follows. A higher λZ leads to a higher mean reverting level
for the short rate r. Thus, under the real probability measure (on time [0, t]), bonds
are better remunerated and at time t the amount of savings (mathematical reserve)
is higher. Since the evaluation of SCRint

t is risk neutral, λZ has then no incidence
on this evaluation. Thus, we observe a higher value of EP[SCRint

t ] simply because
the mathematical reserve at time t is higher because of better returns. The same
interpretation holds for EP[SCReq

t ]: the higher is λW , the higher is the amount of
savings at time t and therefore the higher is EP[SCReq

t ].

Figure 4.12 – Estimated values
of EP[SCRint

t ] in function of t for
different risk premia λZ .

Figure 4.13 – Estimated values
of EP[SCReq

t ] in function of t for
different risk premia λW .





APPENDIX A
TECHNICAL PROOFS

A.1 Technical proofs for Theorems 4.1 and 4.9

A.1.1 Preliminary results
In this section, we gather elementary but useful results for the analysis of the nested
and the multilevel Monte-Carlo estimators.

Proposition A.1. Let g0(u) = max{u, 0} and, for ε > 0, gε(u) = u2

2ε1u∈[0,ε] + (u −
ε
2)1u>ε. The function gε is C1 and piecewise C2 with

g′ε(u) = u

ε
1u∈[0,ε] + 1u>ε, g

′′
ε (u) = 1

ε
1u∈[0,ε]

Moreover, gε is 1-Lipschitz and we have

gε ≤ g0 ≤ gε + ε

2 .

In addition, for any θ, θ̂ such that θ ≤ θ̂ ∈ R we have:

∀a ∈ R, 0 ≤
∫ θ̂

θ
g′′ε (t+ a)dt ≤

∫
R
g′′ε (t)dt = 1. (A.1.1)

Finally, the following asymptotic properties holds : ∀ u ∈ R gε(u) −−→
ε→0

g0(u), ∀ u ∈
R g′ε(u) −−→

ε→0
1u>0 and

∫
R g
′′
ε (u)ϕ(u)du −−→

ε→0
ϕ(0) for any function ϕ : R → R that is

right-continuous at 0.

Lemma A.2. Let θ, θ̂ ∈ R and {aε} an arbitrary function that converges to a as ε→ 0,
then:

lim sup
ε→0

∣∣∣∣∣
∫ θ̂

θ
g′′ε (t+ aε)dt

∣∣∣∣∣ ≤ ∣∣∣1θ≤−a≤θ̂ − 1
θ̂≤−a≤θ

∣∣∣ (A.1.2)

Proof of Lemma A.2. Without loss of generality, we assume that θ < θ̂. First we have
that : ∫ θ̂

θ
g′′ε (t+ aε)dt = 1

ε

∫
Aε

1dt
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where Aε = [θ, θ̂]∩ [−aε, ε− aε]. Hence, if −a < θ or θ̂ < −a, it exists ε0 > 0 such that
∀ε ∈ [0, ε0], Aε = ∅. In this case:

lim sup
ε→0

∣∣∣∣∣
∫ θ̂

θ
g′′ε (t+ aε)dt

∣∣∣∣∣ = 0

Otherwise (i.e if θ ≤ −a ≤ θ̂) we always have: Aε ⊂ [−aε, ε− aε]. Therefore, we have
lim supε→0

∣∣∣∣∫ θ̂θ g′′ε (t+ aε)dt
∣∣∣∣ ≤ 1 by (A.1.1). Thus we obtain

lim sup
ε→0

∣∣∣∣∣
∫ θ̂

θ
g′′ε (t+ aε)dt

∣∣∣∣∣ ≤ 1{θ≤−a≤θ̂}.

Lemma A.3. Let θ, θ̂ ∈ R. Then, we have∣∣∣1
θ≤0≤θ̂ − 1

θ̂≤0≤θ

∣∣∣ ≤ 1
θθ̂≤0, (A.1.3)

1
θθ̂≤0 ≤

|θ̂ − θ|
|θ|

for θ 6= 0. (A.1.4)

Proof. Inequality (A.1.3) is an equality when θ 6= 0 or θ = 0, θ̂ 6= 0 and an obvious
inequality when θ = θ̂ = 0. The right hand side of (A.1.4) is nonnegative. When θ < 0
and θ̂ ≥ 0 (resp. θ > 0 and θ̂ ≤ 0) , we have |θ̂ − θ| = θ̂ − θ ≥ −θ = |θ| (resp.
|θ̂ − θ| = −θ̂ + θ ≥ θ = |θ|).

Lemma A.4. Let (Zk)k∈N∗ be an i.i.d. sequence of square integrable real valued random
variables. Let µ = E[Z1] and σ =

√
Var[Z1]. For γ ∈ [1, 2], we define Dγ = σγ and for

γ > 2, Dγ = E[|Z1 − µ|γ] ∈ [0,+∞]. Then, we have

E

∣∣∣∣∣ 1
K

K∑
k=1

Zk − µ
∣∣∣∣∣
γ
 ≤ Cγ

Dγ

Kγ/2 ,

with Cγ = 1 for γ ∈ [1, 2] and Cγ = (2
√
γ − 1)γ for γ > 2.

Proof. For γ ∈ [1, 2], We have from Jensen inequality

E

∣∣∣∣∣ 1
K

K∑
k=1

Zk − µ
∣∣∣∣∣
γ
 ≤ E

∣∣∣∣∣ 1
K

K∑
k=1

Zk − µ
∣∣∣∣∣
2γ/2 = σγ/Kγ/2

. For γ > 2, this result is stated in Corollary 2.5 [GHJvW18]

A.1.2 Nested Monte-Carlo estimator
Proof of Lemma 4.5. Let b̄(X) = E

[
max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}|X

]
. Since

max{a, b} = a+ g0(b− a) for a, b ∈ R, we get

b̄(X) = E
[
θ̂1
K − ϕ1(X) + g0(θ̂21

K )− g0(ϕ21(X))|X
]

(A.1.5)

Now, we observe that

b̄(X) = lim
ε→0

b̄ε(X) with b̄ε(X) = E
[
θ̂1
K − ϕ1(X) + gε(θ̂21

K )− gε(ϕ21(X))|X
]
. (A.1.6)
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Since gε is 1-Lipschitz, we have

|gε(θ̂21
K )− gε(ϕ21(X))| ≤ |θ̂21

K − ϕ21(X)| ≤ |θ̂1
K − ϕ1(X)|+ |θ̂2

K − ϕ2(X)|.

Then, we get (A.1.6) by using the integrability assumption (ii) and Lebesgue’s dom-
inated convergence theorem. Since gε is C1 and piecewise C2, we can make a Taylor
expansion to obtain:

b̄ε(X) = E
[
θ̂1
K − ϕ1(X) + g′ε(ϕ21(X))

(
θ̂21
K − ϕ21(X)

)
+
∫ θ̂21

K

ϕ21(X)

(
θ̂21
K − t

)
g′′ε (t)dt|X

]

Then, since g′ε(ϕ21(X)) is σ(X)-measurable, using Proposition A.1 we get

lim
ε→0

E
[
θ̂1

K − ϕ1(X) + g′ε(ϕ21(X))
(
θ̂21

K − ϕ21(X)
)
|X
]

= E
[
θ̂1

K − ϕ1(X) + 1ϕ21(X)>0

(
θ̂21

K − ϕ21(X)
)
|X
]

= E
[
1ϕ21(X)≤0

(
θ̂1

K − ϕ1(X)
)

+ 1ϕ21(X)>0

(
θ̂2

K − ϕ2(X)
)
|X
]

Using condition (ii) we get :∣∣∣E [1ϕ21(X)≤0
(
θ̂1
K − ϕ1(X)

)
+ 1ϕ21(X)>0

(
θ̂2
K − ϕ2(X)

)
|X
]∣∣∣ ≤ 1ϕ21(X)≤0C1(X) + 1ϕ21(X)>0C2(X)

K
1+η

2

(A.1.7)
Now we focus on the remainder in the Taylor decomposition. Using Lemma A.2 and
the dominated convergence theorem and then Lemma A.3 with ϕ21(X) 6= 0 a.s. (As-
sumption (iii)), we get

lim
ε→0

∣∣∣∣∣E
[∫ θ̂21

K

ϕ21(X)

(
θ̂21
K − t

)
g′′ε (t)dt|X

]∣∣∣∣∣ ≤ E
[
|θ̂21
K − ϕ21(X)| lim sup

ε→0

∣∣∣∣∣
∫ θ̂21

K

ϕ21(X)
g′′ε (t)dt

∣∣∣∣∣ |X
]

≤ E
[
|θ̂21
K − ϕ21(X)||1

ϕ21(X)≤0≤θ̂21
K
− 1

θ̂21
K≤0≤ϕ21(X)||X

]
≤ E

[
|θ̂21
K − ϕ21(X)|1

θ̂21
K ϕ21(X)≤0|X

]

≤ E
[
|θ̂21
K − ϕ21(X)|1+η

|ϕ21(X)|η |X
]

=
E
[
|θ̂21
K − ϕ21(X)|1+η|X

]
|ϕ21(X)|η

Now, we use the norm inequality E
[
|θ̂21
K − ϕ21(X)|1+η|X

] 1
1+η ≤ E

[
|θ̂1
K − ϕ1(X)|1+η|X

] 1
1+η+

E
[
|θ̂2
K − ϕ2(X)|1+η|X

] 1
1+η and the convexity of x 7→ x1+η to get

E
[
|θ̂21
K − ϕ21(X)|1+η|X

]
≤ 2η

(
E
[
|θ̂1
K − ϕ1(X)|1+η|X

]
+ E

[
|θ̂2
K − ϕ2(X)|1+η|X

])
≤ 2ησ

1+η
1 (X) + σ1+η

2 (X)
K

1+η
2

(A.1.8)

With (A.1.6), equations (A.1.7) and (A.1.8) give the bias estimate (4.2.11).
We now focus on the variance. The proof is straightforward using condition (ii)

and the inequality |max{a1, a2} −max{b1, b2}| ≤ max{|a1 − b1|, |a2 − b2|} :

E
[∣∣∣max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}

∣∣∣2 |X] ≤ E
[
max{|θ̂1

K − ϕ1(X)|2, |θ̂2
K − ϕ2(X)|2}|X

]
≤ E

[
|θ̂1
K − ϕ1(X)|2|X

]
+ E

[
|θ̂2
K − ϕ2(X)|2|X

]
≤ σ2

1(X) + σ2
2(X)

K
= σ2(X)

K
.
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A.1.3 Antithetic MLMC estimator
In this section we prepare the proof of Theorem 4.9 and start with a useful preliminary
lemma.

Lemma A.5. Let p ≥ 2 and K ∈ 2N∗. With the notation introduced in (4.2.3)
and (4.2.4), the following property holds:

E


∣∣∣∣∣∣M̂p

K −
M̂p

K/2 + M̂p,′
K/2

2

∣∣∣∣∣∣
2

|X

 ≤ 2E


∣∣∣∣∣∣M̂p−1

K −
M̂p−1

K/2 + M̂p−1,′
K/2

2

∣∣∣∣∣∣
2

|X


+ 2E

[
h2
(
M̂p−1

K − Êp
K/2, M̂

p−1,′
K/2 − Ê

p,′
K/2

)
|X
]
,

where h(x, y) =
(
x+y

2

)+
− (x)++(y)+

2 .

Proof of Lemma A.5. Observing that ∀a, b ∈ R, max{a, b} = a + (b− a)+, we deduce
that

M̂p
K −

M̂p
K/2 + M̂p,′

K/2

2 = max{Êp
K , M̂

p−1
K } −

max{Êp
K/2, M̂

p−1
K/2}+ max{Êp,′

K/2, M̂
p−1,′
K/2 }

2

= Êp
K + (M̂p−1

K − Êp
K)+ −

Êp
K/2 + (M̂p−1

K/2 − Ê
p
K/2)+ + Êp,′

K/2 + (M̂p−1,′
K/2 − Ê

p,′
K/2)+

2

= (M̂p−1
K − Êp

K)+ −
(M̂p−1

K/2 − Ê
p
K/2)+ + (M̂p−1,′

K/2 − Ê
p,′
K/2)+

2

= (M̂p−1
K − Êp

K)+ −

M̂p−1
K/2 + M̂p−1,′

K/2

2 − Êp
K

+

+ h
(
M̂p−1

K − Êp
K/2, M̂

p−1,′
K/2 − Ê

p,′
K/2

)
,

using that Êp
K =

Êp
K/2+Êp,′

K/2
2 for the third and fourth equality. We conclude using that

(a+ b)2 ≤ 2(a2 + b2).

The following lemmas gives a bound on h

Lemma A.6. Let h(x, y) =
(
x+y

2

)+
− (x)++(y)+

2 for x, y ∈ R. Then, we have h(x, y) =
− |x|∧|y|2 1xy≤0.

Proof. By distinguishing the cases as follows, we get the claim:

h(x, y) =



y/2 if x+ y ≥ 0, x > 0, y < 0,
x/2 if x+ y ≥ 0, x < 0, y > 0,
−x/2 if x+ y < 0, x > 0, y < 0,
−y/2 if x+ y < 0, x < 0, y > 0,
0 otherwise.

Proposition A.7. We use the notation introduced in (4.2.3) and (4.2.4). Let η > 0
and Dp

2+η(X) = E[|Y p − E[Y p|X]|2+η|X]. We assume that P(Ep
X = Mp−1

X ) = 0 for all
p ∈ {2, . . . , P} and

∀p ∈ {2, . . . , P}, E
[

Dp
2+η(X)

|Ep
X −M

p−1
X |η

φ2(X)
]
<∞.
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Then, there exist a constant C ∈ R∗+ such that

Var
M̂P

K −
M̂P

K/2 + M̂p,′
K/2

2

φ(X)
 ≤ C

K1+η/2 .

Proof. Let us define for p = 1, . . . , P ,

Up
K = E


∣∣∣∣∣∣M̂p

K −
M̂p

K/2 + M̂p,′
K/2

2

∣∣∣∣∣∣
2 ∣∣∣∣∣X


εpK = E

[
h2
(
M̂p−1

K − Êp
K/2, M̂

p−1,′
K/2 − Ê

p,′
K/2,

)
|X
]
.

We notice that U1
K = 0, and Lemma A.5 gives Up

K ≤ 2(Up−1
K + εpK) for p = 2, . . . , P . A

straightforward induction leads to

UP
K ≤

P∑
p=2

2P+1−pεpK . (A.1.9)

The variance being smaller than the expectation of the square, we get by using the
tower property of the conditional expectation

Var
M̂P

K −
M̂P

K/2 + M̂p,′
K/2

2

φ(X)
 ≤ P∑

p=2
2P+1−pE[εpKφ2(X)]. (A.1.10)

For p = 2, . . . , P , we define the following random variables
Hp
X = Mp−1

X − Ep
X , Ĥ

p
K/2 = M̂p−1

K/2 − Ê
p
K/2, Ĥ

p,′
K/2 = M̂p−1,′

K/2 − Ê
p,′
K/2.

We now use Lemma A.6 and the equality 1
Ĥp
K/2Ĥ

p,′
K/2<0 = 1

Ĥp
K/2Ĥ

p,′
K/2<01Ĥp

K/2H
p
X<0 +

1
Ĥp
K/2Ĥ

p,′
K/2<01Ĥp,′

K/2H
p
X<0 that is true a.s. since P(Hp

X = 0) = 0 to get

E[εpKφ2(X)] = 1
4E

[(
min

(
|Ĥp

K/2|, |Ĥ
p,′
K/2|

)2
)
φ2(X)1

Ĥp
K/2Ĥ

p,′
K/2<01Ĥp

K/2H
p
X<0

]
+ 1

4E
[(

min
(
|Ĥp

K/2|, |Ĥ
p,′
K/2|

)2
)
φ2(X)1

Ĥp
K/2Ĥ

p,′
K/2<01Ĥp,′

K/2H
p
X<0

]
≤ 1

4

(
E
[
|Ĥp

K/2|
2φ2(X)1

Ĥp
K/2H

p
X<0

]
+ E

[
|Ĥp,′

K/2|
2φ2(X)1

Ĥp,′
K/2H

p
X<0

])
= 1

2E
[
|Ĥp

K/2|
2φ2(X)1

Ĥp
K/2H

p
X<0

]
,

since Ĥp
K/2 and Ĥp,′

K/2 have the same law given X. Now, we use that |Ĥp
K/2| ≤ |Ĥ

p
K/2 −

Hp
X | on {Ĥ

p
K/2H

p
X < 0} and Lemma A.3 gives 1

Ĥp
K/2H

p
X<0 ≤

|Ĥp
K/2−H

p
X |
η

|HP
X |η

for η > 0. This
leads to

E[εpKφ2(X)] ≤ 1
2E

 |Ĥp
K/2 −H

p
X |2+η

|HP
X |η

φ2(X)
 .

We now use Lemma A.4 and get E[|Ĥp
K/2 −H

p
X |2+η|X] ≤ C2+η

Dp2+η(X)
(K/2)1+η/2 , and therefore

E[εpKφ2(X)] ≤ 2η/2C2+ηE
[
Dp

2+η(X)
|Hp

X |η
φ2(X)

]
.

Using this bound in (A.1.10), we get the claim with C = 2η/2C2+η
∑P
p=2 2P+1−pE[D

p
2+η(X)
|Hp
X |η

φ2(X)].
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