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Résumé

Cette thèse se compose de trois chapitres qui traitent de l’analyse/prévision desmatières premières agricoles échangées auniveaumondial. Tous, ont utilisé desdonnées et des méthodes accessibles au public qui peuvent être reproduites etqui sont donc accessibles indépendamment de toute limitation budgétaire. Entant que telle, cette thèse propose une nouvelle méthodologie de prévision etd’analyse des prix des produits agricoles de base afin de garantir une grandeprécision de prévision, tout en étant interprétable et techniquement accessible.Nousmontrons que les prix des produits agricoles peuvent être prévus pour despériodes allant d’un mois à un an, tout en maintenant une qualité de prévisionélevée et les principes de transparence scientifique.

L’idée centrale cette étude

Transformer la théorie de la prévision des prix des produits agricoles en unoutil disponible et accessible serait socialement bénéfique, surtout pour ceuxqui n’y ont actuellement pas accès - il s’agit principalement des résidents despays à faible revenu. Si l’on considère que chaque culture a des valeurs nutri-tionnelles uniques, la consommation de plusieurs cultures de différents groupespeut créer un régime alimentaire complet et équilibré. Dans le cadre d’une al-imentation peu transformée, l’intégration de ces cultures peut permettre demettre en place un régime alimentaire sain et bon marché. En tant que sourcebon marché d’énergie et de micro-nutriments, le maïs, associé au soja commesource bonmarché de protéines, de graisses et d’autres micro-nutriments, peutpromouvoir la sécurité alimentaire des consommateurs à faibles revenus. Par-allèlement, et en combinaison avec le cacao, cultivé principalement par les petitsagriculteurs des pays en développement, peut contribuer au bien-être en tantqu’outil permettant de sauver les agriculteurs pauvres du cycle de la pauvreté.Cela a souvent été le rôle historique : le maïs, en tant que culture relative-ment durable cultivée dans des zones climatiques variées et le soja, qui est unélément important du régime alimentaire chinois depuis des milliers d’années.
17
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Cependant, contrairement à l’énorme potentiel de ces cultures et à leur capa-cité évidente à nourrir l’ensemble de la populationmondiale aujourd’hui (Helms,2004), leur offre reste limitée dans certaines régions. Bien que la production al-imentaire ait plus que triplé au cours des six dernières décennies, l’utilisationcroissante des principales cultures du monde comme source d’énergie ou d’ali-mentation du bétail a augmenté leur consommation dans les régions à hautrevenu, au détriment des régions à faible revenu. En outre, l’évolution du régimealimentairemondial entraîne une hausse de la consommation de viande, mêmedans les régions les moins riches, ce qui contribue à accroître la demande. Latendance à stocker des denrées alimentaires dans le cadre d’une stratégie (com-merciale) de sécurité alimentaire visant à protéger les populations (de gestiondes risques) en cas de fluctuations des prix des denrées alimentaires entraîneégalement une vulnérabilité relativement élevée chez les résidents des pays àfaible revenu qui ne possèdent pas de stocks alimentaires suffisants.

Malgré les demandes répétées de l’Organisation mondiale du commerce(OMC) de s’abstenir d’interventions gouvernementales qui pourraient nuire à lacompétitivité desmarchés (G20, 2020 ; OMC, 2020), la récente crise du coronavir-us a prouvé, une fois de plus, que les premiers à souffrir des fluctuations de prixsont les pays à faible PIB par habitant. En outre, la crise sanitaire (et économique)actuelle a révélé les conséquences négatives des tensions internationales, not-amment entre les grandes puissances, et du manque de coordination entre lespays commerçants (IFPRI et al., 2020). Les plus vulnérables sont les pauvres,qui n’ont pas supporté l’incertitude, notamment l’impossibilité de vendre leursproduits agricoles ou d’acheter la nourriture. Étant donné que peu de pays ontdétenu des réserves alimentaires suffisantes pour trois mois, des millions depersonnes ont rejoint celles qui souffraient déjà d’insécurité alimentaire.

Compte tenu du potentiel existant dans le commerce alimentaire interna-tional et des affirmations historiques officielles selon lesquelles il permettra d’é-quilibrer la distribution alimentaire entre tous les pays tout en garantissant unmarché compétitif et en équilibrant les fluctuations de prix, cette étude s’est con-centrée sur les prix internationaux des produits agricoles. L’ensemble de l’étudea été réalisé dans le but de promouvoir la symétrie des informations concernantles marchés mondiaux des produits agricoles, y compris les facteurs de fluctu-ation des prix, leur probabilité d’apparition dans un avenir proche (unmois à unan à l’avance) et leur quantification. J’espère que cette étude pourra faire pro-gresser le bien-être social, en particulier celui des personnes défavorisées dansles pays à faible revenu.
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Approche empirique

Cette étude est composée de trois essais qui donnent une bonne image de laperformance de l’approche empirique proposée. Dans l’ensemble, ils créent uncadre accessible pour l’analyse des marchés internationaux des produits agri-coles de base en démêlant les impacts des productions agricoles sur le prixmondial de la même culture.

Essai I: Analyse de la sensibilité du prix mondial du maïs à la
production régionale à l’aide de méthodes statistiques et
d’apprentissage automatique

Dès l’ouverture, cette thèse tente de retracer deux points essentiels: Le premierest une évaluation de l’impact des zones de production sur les fluctuations deprix dumaïs ; le second est l’établissement d’une relation empirique entre le prixmondial du maïs et la variation de la production. Cet article examine le maïs entant que marché prototype sur près de six décennies. Le caractère unique decette étude réside dans l’utilisation pionnière de modèles d’apprentissage auto-matique pour analyser les prix à moyen terme des produits agricoles de base,tout en donnant un aperçu de ce qui se cache derrière les résultats obtenus.Pour chaque modèle, des versions spécifiques à deux mois sont construites : larégression pour quantifier les variations annuelles des prix et la classification,pour évaluer la probabilité d’une baisse ou d’une hausse des prix par rapport àl’année précédente. Tous les modèles ont été évalués par une Leave-One-Out-Cross-Validation. L’étude se concentre sur le quatrième trimestre de l’année,c’est-à-dire au début de la période où le maïs nord-américain (principalementles États-Unis) est physiquement commercialisé sur le Chicago Merchandise Ex-change en tant que nouvelle récolte. Les résultats quantifient l’impact de laproduction de maïs en Amérique du Nord sur le prix mondial du maïs en oc-tobre, novembre et décembre, c’est-à-dire pendant et après la saison de récoltenord-américaine. Les résultats soulignent le potentiel d’utilisation de modèlesd’apprentissage automatique pour la prévision des prix, mais ne comparent pasla performance prédictive de cette approche avec les outils de prévision stand-ard.
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ESSAI II: PRÉVISION DES PRIXMONDIAUX DUMAÏS À PARTIR DE
LA PRODUCTION RÉGIONALE
Le deuxième essai s’inscrit directement dans la continuité du premier en se fo-calisant sur la prévision. Cet article a été motivé par deux objectifs principaux: Le premier était de prévoir le prix mondial mensuel du maïs dans un horizontemporel à moyen terme, et le second était de trouver la méthode de prévisionla plus précise pour différents mois et délais (lags).Nous comparons les outils d’apprentissage automatique à deux modèleséconométriques ; tous deux sont des outils omniprésents dans les études deprévision :TBATS - un outil auto-régressif qui traite automatiquement les caractéristiqu-es non linéaires et la multisaisonnalité. TBATS a déjà démontré des capacitésde prédiction impressionnantes dans des plages relativement courtes pour unevariété de sujets, notamment le prix quotidien de l’électricité (Karabiber et Xydis,2019), la consommationde gaz (Naimet al., 2018), etmême les précipitations (Far-heen, 2021). Cependant, en ce qui concerne la prévision des prix des matièrespremières agricoles, c’est la première fois que l’on teste TBATS.VAR - un modèle auto-régressif multivarié. Le VAR est un outil de prévisionlargement utilisé et relativement simple, qui revêt une grande importance dansl’élaboration et l’analyse des politiquesmonétaires. Les modèles VAR s’excellentdans la détection des chocs au sein des données et la combinaison de leurs ef-fets sur la variabilité des principales variables ou, dans notre cas, des prix dumaïs. Cependant, si le VAR est un outil efficace pour la prévision de variablestelles que l’inflation, la croissance du PIB, le taux de change ou les taux d’intérêt(Bjørnland,2008 ; Kapetaniosetal.,2008), son efficacité n’a pas encore été testéedans le contexte des prix des matières premières agricoles à moyen terme. Ledeuxième article compare les modèles de prévision à un benchmark corres-pondant à une prédiction naïve constante. L’évaluation des modèles comprendun processus de validation croisée glissante, qui produit une erreur de prévi-sion (RMSE) utilisée pour classer tous les modèles et une comparaison avec uneprédiction naïve représentée par une valeur moyenne de changement de prix.Au-delà de la comparaison de l’attrait des modèles pour la prévision des prixdumaïs, l’étude comprend une analyse de la nature de la relation entre le niveaude changement de la production annuelle régionale de maïs et le changementde son prix mondial ; l’identification des régions ayant le plus grand impact surle prix dumaïs, ventilé par mois. En outre, l’étude fournit une ventilation précisede la méthode préférée de prévision des prix mensuels du maïs en fonction del’horizon de prévision (par mois, avec des décalages d’un mois).L’analyse de l’importance relative, qui cherche à découvrir la pertinence glob-ale de chaque région pour la prévision des prix (König et al., 2021), a confirmé
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l’influence relative substantielle de la production de l’Amérique du Nord sur leprix mondial pendant la majeure partie de l’année, à partir du début de l’annéede marché en octobre jusqu’en mai. Cependant, l’Asie occidentale a exercé uneinfluence plus substantielle sur les changements de prix du maïs en juillet et enaoût.En outre, les valeurs de Shapley ont donnéun aperçu des principauxmoteursdes fortes et inévitables fluctuations des prix Les résultats montrent en effetque certaines régions ont influencé à l’extrême les fluctuations des prix obser-vées certaines années. Par exemple, Shapley met en lumière l’influence forte-ment positive des rendements de maïs d’Afrique de l’Est en 2006 sur le prix denovembre de cette même année. Indéniablement, 2006 a été une année desécheresse extrême dans la région (Solomon et al., 2007), ce qui a nui au sec-teur agricole (Gebrechorkos et al., 2020), et a entraîné des importations de maïsexceptionnellement élevées, notamment en provenance des États-Unis.

ESSAI III: ÉVALUATION FONDÉE SURDESDONNÉES, DE l’IMPACT
DE LA PRODUCTION AGRICOLE SUR LES PRIX MONDIAUX DU
MAÏS, SOJA ET CACAO
Le dernier article applique les connaissances accumulées dans les deux premi-ers essais en examinant l’efficacité des méthodes de prévision pour deux cul-tures supplémentaires : le soja et le cacao. Cette analyse explore le caractèregénérique de l’approche proposée et capture le caractère unique des produitsagricoles de base de trois catégories différentes, telles que déterminées par laBanque mondiale : les céréales, pour le maïs ; les huiles et farines, pour le soja; et les boissons, pour le cacao. En outre, ce chapitre évalue la sensibilité desperformances du modèle aux trois échelles géographiques considérées pourles entrées, c’est-à-dire régionale (comme dans les deux premiers essais), con-tinentale et nationale. Enfin, et pour les trois produits de base, nous avons misen œuvre chaque modèle avec deux ensembles d’entrées : (1) les variations ré-gionales de production ou de rendement ; et (2) les mêmes variables avec l’ajoutde la variation annuelle relative du prix de l’année précédente.En somme, chaque prix mensuel prévu est le résultat du modèle le plusperformant, sur 60 (5 algorithmes × 3 échelles géographiques × 4 versions, àl’exclusion de TBATS), et par rapport à la division d’échelle géographique la pluspertinente.La spécification de trois catégories de marchés de matières premières ag-ricoles et de trois échelles géographiques met en évidence l’importance de lastructure économique du marché. Les résultats révèlent l’importance capitaleque les structures de marché ont sur le niveau des productions végétales qui
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influencent les prix des produits agricoles de base au niveau mondial. En outre,l’étude montre que les changements régionaux dans la production de maïs ontindéniablement des impacts élevés sur son prix, en particulier lorsqu’ils provi-ennent d’Amérique du Nord - le premier producteur et exportateur mondial decette culture, et avec une différence considérable par rapport aux autres ré-gions.
L’autre extrême est lemarché du cacao. L’Afrique de l’Ouest et l’Amérique duSud concentrent à elles seules la majeure partie de la production de cacao dansleur région, généralement le fait de petits exploitants dans des fermes familialessituées dans des zones relativement pauvres. Contrairement aumaïs et au soja,qui sont principalement négociés sur le marché international situé et géré dansle pays du plus gros producteur, le cacao est négocié principalement du côté desimportateurs, à New-York et à Londres, c’est-à-dire loin de son pays d’origine. Cefait contribue au manque d’information sur le marché parmi les producteurs decacao et les empêche de contrôler le prix qu’ils recevront pour leur récolte ou ladate préférée pour la vendre.
De nombreuses techniques ont été appliquées pour interpréter les résultatsdes modèles ajustés : analyse de l’importance relative (Greenwell et al., 2020),valeurs de Shapley (Molnar et al., 2018 ; Tianqi et al., 2021 ; Greenwell, 2017 ;Liu et Just, 2020) et analyse de corrélation standard. Pour le cacao, aucune deces méthodes n’a indiqué une relation forte entre le volume de production duprincipal producteur (Côte d’Ivoire) et les variations de prix. Les résultats ontcependant montré une absence de pouvoir de marché absolu concentré dansune zone particulière et une distribution assez uniformede l’impactmensuel parpays sur l’année. En outre, un examen approfondi a mis en évidence une rela-tion assez complexe entre les valeurs de Shapley et les variations de rendementdes cultures en Côte d’Ivoire. En se concentrant sur des chocs de prix extrêmesspécifiques, on a constaté une forte contribution du rendement du cacao en In-donésie aux événements de hausses de prix exceptionnellement élevées. Lesrésultats ont semblé surprenants au départ, car il s’agit du marché le plus con-centré parmi les troismarchés examinés, sans compter que la part demarché del’Indonésie sur le marché mondial du cacao est nettement inférieure à celle dela Côte d’Ivoire. Cependant, une étude approfondie de la littérature sur le cacaoa révélé un système complexe dans lequel certains facteurs sapent l’équilibrenaturel du marché.
Pour la Côte d’Ivoire (Cameroun et Nigeria), très peu d’organisations localescollectent la grandemajorité de la production des petits exploitants, dont la plu-part n’ont pas accès aux informations sur le marché. De fait ils reçoivent, endébut de saison, un prix fixé par le gouvernement local en fonction des prix fu-turs et des bourses (CCI et CNUCED/OMC., 2001). Ce prix est toutefois fixé à un
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niveau suffisamment bas pour assurer un retour positif à l’organisme payeur.Au fil des années, le marché d’exportation du cacao en Côte d’Ivoire a été privat-isé, de sorte que des sociétés d’exportation privées collectent désormais la pro-duction. De ce fait, la situation des petits agriculteurs ne s’est pas encore améli-orée (Abbott et al., 2019). Dans ces conditions, les agriculteurs de Côte d’Ivoireprennent la décision critique dès le début de la saison de culture : ils visent àaugmenter leur production lorsque le prix qu’ils reçoivent de leur gouvernementaugmente et vice versa.En termes de résultats de prévision, lesméthodes d’apprentissage automati-que (RF et GBM) sont généralement plus performantes que les autres modèlespour tout horizon supérieur à trois mois dans le futur. Le GBM offre une pré-cision de prévision nettement supérieure pour lesmois de la nouvelle récolte demaïs et de soja en Amérique du Nord Dans le secteur du cacao, ces mois, à sa-voir mars, avril et mai, sont les seuls pour lesquels les modèles d’apprentissageautomatique sont pris en compte.

CONTRIBUTIONS PRINCIPALES
Ce projet de recherche offre à la littérature plusieurs contributions sur la prévi-sion des prix. L’essai I a principalement contribué à la présentation de nouvellesméthodes analytiques pour la prévision des prix des produits agricoles de baseen identifiant les principaux facteurs de changement des prix du maïs à l’aidede plusieurs techniques économétriques et d’apprentissage automatique. Lepremier article, qui était notre première tentative à n’utiliser que des donnéesaccessibles et des modèles relativement simples, a révélé que les algorithmesd’apprentissage automatique sont un outil légitime pour la science de la prévi-sion des prix des produits agricoles de base. En outre, il a démontré que cesmodèles d’apprentissage automatique ne doivent pas nécessairement être dutype "boîte noire" et que leur comportement devient interprétable lorsqu’onutilise de puissantes techniques de visualisation. Le deuxième essai (Essai II)a poursuivi le chemin entamé dans l’essai précédent et a fourni la preuve, par lebiais de plusieurs techniques d’interprétation de modèles, suivant laquelle lesprix sur le marché du maïs réagissent fortement aux changements de la pro-duction agricole en Amérique du Nord, principalement du rendement. Cettedernière s’applique à 10 prix mensuels par an, à l’exception des deux derniersmois de l’année commerciale nord-américaine. Notre technique de classementpar importance a révélé une forte avance de l’Asie occidentale au cours de cesdeuxmois. Cependant, lorsqu’on se concentre sur des événements spécifiques,la valeur de Shapley présente des influences relativement fortes de l’Asie occi-dentale et de l’Afrique du Nord. Le troisième et dernier essai (essai III) a révélé
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des différences notables dans les approches deprévision optimales pour chaqueprix de produit agricole unique en développant le deuxième essai. Il a démon-tré que pour prévoir les prix du maïs avec la plus grande précision, par rapportaux modèles testés dans cette thèse, les rendements régionaux sont l’entrée laplus recommandée à utiliser. Pour le soja, l’impact provient pour l’essentiel dela production régionale, tandis que les prix du cacao sont grandement affectéspar le rendement local des six plus grands pays producteurs. En appliquant destechniques d’interprétationmultiples (PDP, importance relative, valeur de Shap-ley. Avec une analyse basée sur le SHAP : Shapley value and PDP) a permis demettre en évidence l’impact remarquable de chaque unité de production sur leprix mensuel mondial. Elle a ainsi fourni un outil original pour se préparer auxfluctuations extrêmes des prix.Cette étude a suivi trois principes directeurs, à savoir la concision, la com-préhensibilité, l’interopérabilité et l’accessibilité. D’une manière générale, elle acontribué aux efforts de promotion de la sécurité alimentaire mondiale.

Contribution I – OUTIL DE PRÉVISIONCONCIS ET COMPRÉHENS-
IBLE
Nous définissons un modèle idéal capable de prendre en compte les multiplesfacteurs de fluctuation des prix des produits agricoles tout en restant relative-ment succinct. Alors que la collecte de données pourrait constituer un obstacle àla réalisation d’un tel modèle, cette étude a réussi à limiter les données d’entréeaux données accessibles au public (production/rendement annuel des cultures),que l’utilisateur peut obtenir en un simple clic. L’utilisateur peut transformercette information brute en une variable groupée utilisable en téléchargeant lesdonnées dans son ordinateur personnel et en exécutant le code. La variabledépendante du modèle (prix mondiaux) est transformée en son style "adaptéau modèle" de la même manière.

Contribution II - OUTIL DE PRÉVISION INTERPRÉTABLE
Dans leur article, Coyle et Weller (2020) critiquent le choix par les chercheurs desmodèles d’apprentissage automatique comme outil d’analyse et de prévisiondes questions liées aux politiques. Ils affirment que lesmodèles d’apprentissageautomatique sont souvent non interprétables et empêchent donc leurs utilisate-urs de les comprendre et de vérifier la validité de leurs résultats. Pour sur-monter ce défi, nous avons choisi de construire les trois articles sur la basede modèles interprétables, puis d’utiliser plusieurs techniques de visualisationnon consacrées par les modèles existants (Molnar, 2019). Plus précisément, la
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première étape de la réalisation de cette recherche consistait à étudier la rela-tion causale entre les entrées et les sorties du modèle. Pour cette informationprimaire, nous avons utilisé l’indicateur de causalité de Granger (Granger, 1969).Après l’entraînement des modèles, le niveau de contribution à la précision de laprédiction (RMSE) a déterminé l’importance régionale relative séparément pourchaque algorithme et pour chaque mois. Enfin, les diagrammes de dépendancepartielle (PDP) décrivent visuellement les réponses moyennes du prix du maïsaux variations du rendement relatif du maïs dans les régions les mieux classéesen fonction de leur contribution à la précision des prédictions des modèles.

Dans le deuxième article, la technique de l’importance relative amontré, unefois encore, l’influence relative des caractéristiques. Plus tard, l’intégration dela valeur de Shapley basée sur la théorie des jeux nous a permis d’évaluer lacontribution marginale de chacune des régions productrices aux événementsspécifiques des chocs de prix les plus extrêmes, dans les deux sens, positif etnégatif. Le troisième article combine plusieurs techniques d’interprétation demodèles. Parmi celles-ci, citons les explications additives de Shapley (SHAP) deLundberg et Lee (2017). SHAP est une méthode d’interprétation par apprentis-sage automatique basée sur l’algorithme traditionnel de Shapley. Comme lesvaleurs de Shapley, SHAP mesure les contributions de chaque caractéristiqueaux prédictions du modèle. Cependant, le principal avantage de cet algorithmeinnovant découle de sa capacité à combiner un PDP adapté à Shapley pour uneinterprétation qui combine à la fois des mesures de quantification et de visual-isation.

Contribution III – OUTIL DE PRÉVISION ACCESSIBLE

Pour être accessible le modèle doit être constamment prêt à être adapté par leconcepteur stratégique de la sécurité alimentaire, à savoir le responsable poli-tique qui l’utilise. Pour atteindre cet objectif, le décideur doit avoir un accèsrégulier aux données du modèle. Un tel modèle offre à ses utilisateurs la pos-sibilité de comprendre ce qui se cache derrière et une compréhension globaledu marché auquel ils sont confrontés.
Tout d’abord, le programmede prévision comprend un outil d’évaluation deserreurs alternatives appelé "Avantage relatif". Grâce à cet outil, les utilisateurspeuvent déterminer si lemodèle de prévision est suffisamment efficace par rap-port à la prévision constante et aux autres modèles. En outre, " L’AvantageRelatif" fournit une évaluation dynamique, en fonction du mois requis et dutemps restant jusqu’à la date d’échéance. En deuxième lieu les techniques dediagnostic desmodèlesmentionnées dans la section précédente indiquent quelacteur l’utilisateur dumodèle doit examiner avec prudence. Lorsqu’ils l’utilisent,
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les décideurs peuvent concevoir leur stratégie jusqu’à un an avant l’achat/lavente des produits agricoles, puis en vérifier l’exactitude à l’approche de la dateréelle des échanges.

RECOMMANDATIONS ET TRAVAUX FUTURS
Cette thèse de doctorat fournit un outil de prévision et d’analyse des prix desmatières premières agricoles compréhensible, interprétable et accessible pourdes perspectives d’analyse de un à douze mois. En outre, il est accessible àquiconque en a besoin sous la forme d’un package R ou python prêt à l’emploi,qui exploite uniquement des données librement disponibles. À ce jour, le mod-èle examine endétail trois types de cultures différentes faisant l’objet d’échangesinternationaux. Cependant, il implique la prévision des prix de huit culturesau total et s’avère donc être un outil nettement plus performant, applicable àd’autres produits agricoles que le maïs, le soja et le cacao.Les prévisions de prix dans ce projet sont le résultat d’un seul type d’entrée(production ou rendement des cultures). En plus de présenter un résultat fi-nal, le modèle fournit une analyse d’erreur qui indique le risque estimé, corres-pondant à l’erreur de prévision approximative du modèle. La recommandationgénérale est de considérer à la fois le prix prévu et l’erreur du modèle et depréférer agir les mois où le risque d’erreur est faible. Nous utilisons notre mod-èle pour mettre en évidence les événements critiques de changement de prix,qui doivent être détectés correctement pour permettre au modèle d’être trans-parent pour ses utilisateurs. L’un des défis de la prévision des prix des produitsagricoles de base est que, si l’on se soucie surtout de prévoir les événements defluctuations extrêmes, ces événements sont relativement rares. Du point de vuede la sécurité alimentaire, le fait de ne pas identifier des événements de change-ment de prix extrêmes pourrait être un résultat pire que demanquer des événe-ments de changement de prix modérés. Des techniques telles que l’algorithmede la valeur de Shapley peuvent refléter ces priorités politiques dans le mod-èle. Notre analyse souligne l’importance de comprendre le compromis entrel’omission de certains chocs de production (rendement) dans des régions influ-entes et le fait d’accorder, par erreur, plus d’attention à l’offre mondiale totaleou même à la production des régions à faible impact. Les données sur les coûtsd’une mauvaise interprétation pourraient aider à évaluer les dommages poten-tiels de tout choc de production agricole sur le niveaude sécurité alimentaire desrégions vulnérables. Au cours de mes recherches, j’ai découvert le domaine ducommerce international des produits agricoles de base et l’apprentissage auto-matique. Au cours des dernières années, j’ai lu de nombreux articles et écoutéun nombre incalculable de conférences et d’opinions d’experts de différents do-
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maines.

Les chapitres inclus dans ce document de recherche nemontrent pas toutesles tentatives pour maximiser la contribution de notre outil au monde de la pré-visiondes prix desmatières premières agricoles. Nous avons examinédifférentesvariables explicatives, ensemble ou séparément ; nous avons analysé le pouvoirprédictif sur la base de données provenant de diverses sources d’information etnous avons même examiné la dépendance en fonction des saisons de récoltepar rapport aux dates des années commerciales locales. En outre, nous avonsexpérimenté des modèles à partir d’un large éventail de possibilités tout en ef-fectuant différentes versions de l’exécution dans les modèles que nous avons fi-nalement inclus. Pour maximiser la familiarité avec les méthodes actuellementacceptées et l’ensemble des options disponibles, une segmentation des vari-ables explicatives a également été effectuée sur la base d’un travail de rechercheapprofondi, qui comprenait l’exploration de bases de données économiques etagronomiques parallèlement à une enquête sur la littérature existante.
Cet outil de prévision peut dans l’immédiat ne pas être pertinent pour tousles pays. Les prix internationaux (Banque mondiale) examinés dans cette étudeindiquent la valeur mensuelle moyenne payée sur les marchés commerciauxmondiaux directs. Ce prix n’est pas nécessairement un bon indicateur du niveaudes prix à la consommation (partie du revenu consacrée à l’alimentation), quidétermine en fin de compte leur niveau de sécurité alimentaire. Comme nousl’avons vu à propos du cacao, ces prix ne reflètent pas toujours le prix payé àl’agriculteur qui l’a produit. C’est ici qu’intervient la grande importance de lanature de l’État importateur ou exportateur de chaque CA.
Comme démontré tout au long de la thèse, alors que de nombreux pays àhaut revenu gèrent des programmes bien planifiés pour protéger les consom-mateurs et les producteurs des fluctuations de prix, les pays à faible revenune peuvent pas toujours le faire efficacement. Le résultat de l’existence ou del’inexistence de tels programmes est le niveau auquel le prix intérieur de chaquepays fluctuera en fonction du prix mondial. Par ailleurs, en attendant que lesdonnées soient disponibles de manière suffisamment fiable et riche, il pour-rait être bénéfique d’inclure la variation annuelle des stocks de céréales commel’une des entrées du modèle. En effet, grâce à leur rôle originel, les stocks ali-mentaires importants peuvent compenser les périodes de mauvaises récoltesou de prix élevés des produits agricoles de base, et ils fonctionnent donc commeune sauvegarde sociale. Malheureusement, le stockage de nourriture est unequestion coûteuse qui n’est pas économiquement disponible pour toutes les na-tions. En outre, des stocks suffisants peuvent atténuer la concurrence pour lesproduits alimentaires. En revanche, le sur-stockage peut faire sortir les marchésmondiaux de leur phase de stabilisation naturelle, comme cela s’est produit au
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début de 2020, lorsque la Chine a reconstitué ses stocks de céréales. Indéniable-ment, les personnes les moins protégées sont aussi les plus vulnérables. Mais,malheureusement, ce sont aussi ceux qui ne disposent pas des outils néces-saires pour analyser les marchés mondiaux et prévoir le moment optimal pouracheter ou vendre des matières premières agricoles.
Dans un environnement aussi incertain, la volatilité excessive des prix desproduits de base a des répercussions négatives tant sur les producteurs quesur les consommateurs. Ce manque d’information se répercute généralementsur les revenus et la production des agriculteurs et conduit à de moins bonnesdécisions en matière d’investissement dans les intrants. Les répercussions del’instabilité des marchés des produits de base peuvent également exacerber lesproblèmes de pauvreté, notamment dans les zones rurales. C’est ainsi quele manque d’information vient s’ajouter à l’impact négatif sur la sécurité ali-mentaire dans les pays les plus vulnérables et dépendants des importations.
Une autre question importante non prise en compte ici le rapport entre lesprix des différents produits de base. Dans un modèle de prévision des prix,chaqueproduit agricole est, tout au longde la thèse, considéré comme indépend-ant des autres. Cependant, dans la pratique, comme la valeur de Shapley l’amontré très visiblement dans l’interprétation des résultats dumaïs, il existe uneforte relation entre les prix des produits de substitution.
Au niveau nutritionnel, lemaïs est un hydrate de carbone et, par conséquent,il est un substitut du blé, du riz et parfois du soja. En effet, en tant qu’alimentpour le bétail, les fluctuations de prix de ces produits agricoles reflètent égale-ment les fluctuations de prix d’autres produits agricoles sur le marché interna-tional et sont utilisés comme source de protéines : viande et produits laitiers. Ence qui concerne les prix locaux, les prix desœufs évolueront également à terme,en fonction des prix des céréales. En tant que source d’énergie, lemaïs est égale-ment utilisé comme biocarburant et donc coordonné avec d’autres produits debase, avec les prix des produits de base énergétiques : charbon, pétrole brut etgaz naturel.
Quant au cacao et au café, ces produits agricoles de base ne sont pas essen-tiels en termes de valeur nutritionnelle pour le consommateur, mais constituentune source de revenus unique ou importante pour de nombreux petits exploit-ants, notamment dans les pays en développement d’Afrique occidentale. Cesproduits agricoles de base sont cultivés principalement sous les tropiques etimportés en grande majorité par les pays à revenu élevé.
Les prix des producteurs fluctuent en fonction des cours internationaux etdéterminent souvent leur décision en matière d’allocation des terres, passantdu cacao au café (Gilbert, 2016). Au-delà de ce qui précède, les résultats obtenuspar les techniques d’ouverture de modèle ouvrent la voie à de futures études
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qui porteront sur l’amélioration des modèles. Dans ce contexte, il est possibled’explorer d’autres options d’ajout d’une variable explicative ou de conversion àune variable explicative différente, d’examiner la qualité des prévisions demod-èles supplémentaires ou de construire une prévision basée sur l’exécution deplusieurs modèles simultanément. Un autre conseil est d’analyser les possib-ilités de combiner les différents algorithmes pour créer un modèle couvrantplusieurs cultures.En conclusion, ce travail offre un outil complet et disponible pour l’analyse etla prévision des prix des produits agricoles de base dans des plages de tempsallant d’un mois à un an. S’il est utilisé correctement, le mécanisme proposépeut contribuer à la sécurité alimentaire et économique des ménages, des agri-culteurs ou d’autres entités dans le besoin. Cependant, comme déjà mentionnédans le premier paragraphe de ce travail, cet outil apportera un bénéfice max-imal s’il est incorporé dans le cadre d’un plan multidisciplinaire de sécurité ali-mentaire.





Chapter 1

Introduction

A person’s ability to avoid starvation
will depend both on his ownership
and on the exchange entitlement mapping
that he faces.

– Amartya Sen, Poverty and Famines (p.4)

1.1 Motivation
My voyage into higher education had begun out of a genuine desire to bringabout "Tikun Olam" - repair the world and lead it to a better place. Over time, Irealised that my capacity was limited and that my efforts were unlikely to leadto significant change. However, I also realised that if I learn and persevere, Ican take a small part in a big project, striving for the same goal. The purpose ofthis thesis is to contribute to the second Sustainable Development Goal (SDG)of "End hunger, achieve food security and improved nutrition and promote sus-tainable agriculture" through its first criteria of correcting and preventing traderestrictions and distortions in the world agricultural markets.The prevailing view amongst many economists was that the solution to thefood insecurity problem in the world lies in the existence of world trade in ag-ricultural commodities. According to them, international trade can avoid costlyfood surpluses (or deficiencies) in certain zones by transporting them to areaswith a shortage. The argument was that international tradewould helpmaintaina rich diet throughout the year and at a relatively stable price level (Costinot andRodríguez-Clare, 2018; van Meijl et al., 2017).Then, toward the end of 2019, the coronavirus pandemic erupted, and thenormal local-global food prices equilibrium distorted drastically (Schmidhuber

31



32 CHAPTER 1. INTRODUCTION

et al., 2020). If until that point, food shortage problems were the domain oflow-income countries, the COVID-19 crisis had brought, amongst other things, asharp rise in foodprices of someagricultural commodities (AC), while the price ofothers have declined due to adverse demand conditions1. These have led to anincrease in food insecurity in most of the world. Whereas the highest increaseswere in medium-low income countries, an increase is also apparent in upper-middle-income economies (see Fig 1.1).
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Figure 1.1 – Prevalence of moderate or severe food insecurity (%/population)Source: FAO (2020)
In this thesis, I have chosen to explore the possibility of improving the cred-ibility of global food price forecasts andmaking them accessible to all those whoneed them. The main drive for this work is the conclusion that agricultural com-modity price plays an essential role in food security (FAO, 2018). However, todaythere is a lack of accessible tools for forecasting their variations in the Medium
1Part of my doctoral studies has involved a monthly media monitoring on COVID-19 impactson food and agricultural products and price. All the information has been published in a news-letter format and is available at cland.lsce.ipsl.fr/covid19

https://cland.lsce.ipsl.fr/covid19-impact-on-food-security
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Term. We assume that such tools if existed at the beginning of the Covid-19 crisis,could mitigate the deteriorating quality of life of those 118 million people addedto the global hunger map in 2020 (World-Bank, 2021b). This assumption has en-couragedme to find a solution to this problem. Furthermore, given the develop-ment of the food insecurity phenomena, both levels of quantity and severity, thisproblem is now the concern of populations who, until recently, have not experi-enced food shortages. In the USA, for example, the number of households thatneeded assistance in obtaining food increased in 2020-2021 (Coleman-Jensenet al., 2021; USDA, 2021). Similarly, in Israel, the number of families who have be-come dependent on food associations has increased significantly (Mayzel, 2021;Latet, 2021).

The instability of the global AC prices is a long last common topic in bothfood policy literature (Taylor, 1919; Brorsen and Irwin, 1996) and forecasting the-ory (Allen, 1994; Brandt and Bessler, 1983). This issue is a topic of concern forseveral major international organisations such as the FAO, the OECD and theWorld Bank. However, none of the existing studies has provided amedium-termforecast that enables users to reproduce themodel and glimpse into the predic-tion algorithm’s decision-making process. Beyond that, using machine learningmodels to predict agricultural commodity prices in the non-short term (as willbe expanded below) is also pioneering in its field. This research project aims tobridge this gap by developing a novel tool to forecast AC prices. This tool wouldhopefully incorporate high reliability, accessibility and replicability.
In conclusion, this complex situation led us to ask three questions that haveconstructed this dissertation together. The research questions are:

1. Which are the main drivers to AC price fluctuations?

2. Are there differences between the market influence of each player?

3. We define improvement as a forecasting tool that provides reliability, ac-cessibility, comprehensibility and interpretability. According to this defini-tion, can we improve the existing forecasting performance of internationalAC prices up to a year ahead?

Answering these questions would enable turning price forecasting into anaccessible tool that could help improve food security worldwide.
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1.2 Background

1.2.1 TheAgricultural Problem -Anadequateagricultural pro-
duction does not guarantee access to food

For thousands of years, man has lived in the shadowof scarcity and daily worriesabout an adequate food supply. This concernwas first scientifically expressedbyMalthus (1789), who demonstrated by a simple economicmodel how, given fixedfactors of production and declining marginal output, the amount of food percapita would decrease with each increase in the number of consumers. Malthusassumed that the food production increases logistically, while the world popu-lation, i.e. the demand side, increased exponentially. Under the minimal foodrequired for human survival, the result of this model is an equilibrium, wherethe marginal amount of food produced meets the minimum amount of foodconsumed. From this point on, neither the total food supply increase nor theworld population. The clear conclusion of this theory is that man is doomed tocontinue living under food shortage while consuming the necessary minimumand that the demographic growth will come to an alt.Since the development of the Malthusian theory in the late 18th century, ag-ricultural production has utterly changed, mainly due to the shift tomechanism-based production and technological improvement, which have led to a signific-ant increase in the amount of food produced all over theworld, notably in indus-trialised countries. At the same time, the world population continued growingto a level where the production curve seemed to be reversed, as the growthrate of food production outpaced the demographic growth (Daily et al., 1998).As a result, food prices fell, and the use of agricultural output changed. Appar-ently, throughout history, maize has been cultivated and consumed as a crucialcomponent in the daily diet of Native Americans (Ranum et al., 2014). However,today only 8-10% of the maize produced in the US (the world’s largest producer)is used for human consumption, while the rest is for livestock feeding (55-60%)and ethanol (35-40%)2.Thus, although theMalthusian theory has not stood the test of time, there ex-ist populations who suffer from insufficient food or essential nutrients. Accord-ing to the World-Bank (2021b), during the year 2020, about 30% of the world’spopulation did not have access to food at an adequate nutritional level. Despitethat, 21st-century’s hunger is not due to scarcity of food supplies but due to ashortage of tools that allow access to it, that is, low-income (as demonstrated inFig 1.1).
2According to the CME Education page.source: www.cmegroup.com/education/courses.

https://www.cmegroup.com/education/courses/introduction-to-grains-and-oilseeds/learn-about-corn-production-use-and-transportation.html
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1.2.2 Agricultural Commodities

Agricultural commodities (AC) have strong links with the financial world. Theseproducts are derived from agriculture and considered necessities, and they in-clude staples such as wheat, maize, rice and soybeans, and wood, cotton, cocoaand coffee. These AC are quoted on the Chicago Mercantile Exchange (CME) orother big globalmarkets exchanges. They are also priced in future contracts andOver The Counter (OTC).As it comes, only a minor part of futures contracts are delivered physically(CME-Group, 2021), while their role is mainly to be a risk managing tool for pro-ducers andmiddle operators. At the same time, contracts reflect the situation inthe cash market rather accurately, especially when the due date comes closer.In the socio-economic aspect, changes in the agricultural commoditymarketsimpact food supply chains through production volumes. On the demand as-pect, the world population is constantly growing, especially in developing areas,where the agricultural sector is particularly vulnerable (traditional agriculturetechniques combined with worsening climatic conditions). Parallel, the growingconsumption of animal-based products has led to increased grain use, whichserves as livestock feed.Most generally, AC prices tend to be particularly volatile due to their nat-ural dependence on three unstable market elements (FAO, 2012): 1. Agriculturalsupply is subject to exogenous natural shocks (weather, water and soil qual-ity, diseases and pests), which affect both quality and quantity. Therefore, ag-
ricultural production varies greatly, not seasonally but also annually; 2. Therelatively long and limited production time causes a low price elasticity of sup-
ply, at least in the short term; and 3. most of the world trade in agriculture isconcentrated around products whose regular supply is essential anywhere andat any point in time. In the absence of an adequate alternative supply (usuallygrain stocks), the consumer will be willing to pay a high price, provided he canconsume food. That is, in the short term, the price elasticity of demand is low.In the context of international trade, the topic is perceived often as a toolfor alleviating production shocks challenges to food security. More precisely,it creates constant trade flows that may contribute to an all year balanced foodsupply and diets worldwide (Costinot and Donaldson, 2016; vanMeijl et al., 2017).Due to their high dependency on exogenous factors, the volumes of pro-duction of different regions often show abrupt variations which may impact theglobal market (Abbott et al., 2009). Circumstantially, AC prices fluctuate differ-ently from other internationally traded commodities (World-Bank, 2020a).Local factors, such as weather or national policies, do not systematically af-fect trades at a global level. However, in some cases, these local factors havesignificant impacts on commodity prices (Abbott et al., 2009). Undoubtedly, his-
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torical evidence suggests that global AC price shocks, some of which led to large-scale food crises, resulted fromchanges in local environmental or socio-economicconditions. In their studies, Headey and Fan (2008) first show how the 2005-2008food crisis came in the wake of severe climatic events and droughts that resul-ted in poor harvests of several major AC (maize, wheat and rice) in specific key-exporting countries. In a later review, Headey and Fan (2010) argue that politicalfactors in those countries were also central factors in those price increases, asChina and India grain stocks declined significantly for almost a decade beforethe crisis began. Specifically in India, the government’s decision to ban exportsand to import massive amounts of rice stemmed mainly from public pressurebefore the upcoming elections, as the country’s cereals reserves were still suf-ficiently high. Specifically to rice, prices increased by almost 300% in only threemonths (FAO, 2008). The recent trade war between the US and China, for in-stance, led to mutual tariff increases, which caused high volatility and decliningdemand from the US, mainly in grain commodities. Another example, at theheight of the first COVID-19 wave, Russia prohibited its agricultural export. Thisdecision, which was taken shortly after by 23 other countries, led to a rise inprices despite the decline in world demand at the same time (ITC, 2021). TheCOVID-19 pandemic has caused significant shocks in grain production, whichwere very apparent in vulnerable regions where agriculture is based mainly onlabour work (Schmidhuber et al., 2020). As sometimes these regions are also bigworld-producers, food prices have soared high worldwide.All the price shocks mentioned above were unpredicted; their impacts weresubstantial and have led to an increase in food insecurity and worsened dietglobally, whereas the over-whole influences are yet to come (Laborde et al.,2021). Similarly, Mundlak and Larson (1992) show that most of the changes inworld prices pass on to household (consumer) prices.To understand the ACmarkets, it is not necessary to know all the influencingfactors but, preferably, recognise the most influential ones relative to the priceforecasting horizon.

1.2.3 Food Security - Concept and Strategy

Food security is a situation where all people have regular and constant availabil-ity, stability, utilisation, and access to a healthy diet that come in hand with theirfood preferences (Ghorbani and Zou, 1996). Food insecurity, on the other hand,exists when a person lacks at least one of the four components that define foodsecurity (FAO and WFP, 2010).In general, the higher the income level, the lower the share of food expendit-ure. Indeed, in countries with a high per capita income, the average volume of
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food expenditure is lower relative to total household expenditure (6% in the US,12% in France and 16% in Israel)3. In contrast, food expenditure in countries withlow per capita income counts as a big part of the monthly expenditure (52% inKenya, 59% in Nigeria). Therefore, any change in food prices impacts the over-all living system in low-income countries, while high-income countries are lessvulnerable.Food price changes relationships with global food security levels have beenthe subject of many studies over the years. The issue of price volatility is stillcentral today for countries that still rely heavily on commodity exports (FAO,2002; UN, 2019). Although instability of international AC prices can be determ-inedbydemandfluctuations, their physical price reflects an equilibriumbetweenthe two. As such, if the price elasticity of demand is low, even small supply shockscan result in significant price fluctuations and cause profound impact in termsof food security (Smith and Subandoro, 2007; Smith et al., 2014). It is import-ant to emphasise that the measure of the food supply is a sum of the amountproduced and consumed in an agricultural year, the annual change in the cropstocks, minus the depreciation originating from the supply chain (FAO, 2021).Moreover, it is often acceptable to use a country’s food stocks level for indic-ating its food security situation (Christian and Marco, 2006) or local food prices(Gouel et al., 2016). In recent decades, several extreme changes in commoditymarkets have put both producers and consumers in dire straits. Moreover, theinternational context seems to be increasingly unfavourable to producers. Letus point out two problems:

High instability of global AC prices

Most generally, AC prices tend to be particularly volatile for several reasons.First, agricultural supply is subject to exogenous natural shocks (weather, wa-ter and soil quality, diseases and pests), which affect both quality and quantity.Therefore, it varies not only seasonally but also annually. The relatively long andlimited production time causes low production elasticity. As for the food crisisof 2008-2009, there was an exceptionally high price increase, which, in somecountries, resulted in serious hunger riots. Looking into details, both China andIndia started reducing their excessive grain stocks since the beginning of the2000s following strategic decisions. As the global grain stocks slowly went down,prices of the world’s major crops have mounted gradually (Headey, 2011). Thesedecisions and a dietary transition toward higher meat consumption (mainly inChina) triggered higher demand for oilseeds, maize, and soybean. Parallel, fuel
3According to 2017 data. For more information, visit https://ourworldindata.org/

grapher/share-of-consumer-expenditure-spent-on-food?tab=table

https://ourworldindata.org/grapher/share-of-consumer-expenditure-spent-on-food?tab=table
https://ourworldindata.org/grapher/share-of-consumer-expenditure-spent-on-food?tab=table
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prices started augmenting, which stimulated higher local bio-energy consump-tion in the USA (maize origin bio-fuel) and thus lowered maize exports, whichpushed prices even higher. Then, in 2006-2008 severe climatic conditions haveresulted inmeagre harvests globally. To copewith the challengingmarket condi-tions and protect their population from food shortage, several of the world bigexporting countries have used export bans or restrictions (Childs et al., 2009).The combination of all these problems has caused massive price soars, which,in turn, resulted in the food crisis.Similar to the crisis described earlier, in the Covid-19 crisis, too, we see aglobal process that began before the final explosion. The cease of the Africanswine fever, which started immediately after the swine flu, has forced China, theworld’s largest grain consumer, tomakemassive grain imports to refill its stocks.Towards the end of 2019, China and the United States signed an agreement onending the "trade war" under which China purchased, among other commodit-ies, American AC for about 32 billion USD, mainly grains and soybeans (Horneet al., 2020). 4 The adverse weather events, which hit both the US and Brazil,damaged grain production and thus negatively impacted the already low grainsupply. All of these things lead to a sharp price shock.Shortly after, severe floods hit several Asian countries. The extreme weatherdamaged crop yield and prevented labour access to the fields. Moreover, theparallel breakout of the COVID-19 and the low AC supply in the global marketshave triggered export restrictions by theworld biggest exporters, notably Russia,leaving big importers with limited access to their staple food. By the thirdmonthof 2020, many countries were already under extrememobility restrictions, whichhad affected the entire global trade system. Among those most affected are thebasic and essential commodities, such as foods. At that time, however, AC priceswent down. The sudden closure of most of the world’s borders and the severemobility restrictions within the countries has caused a sharp drop in demandfor fuels, which led energy prices to collapse. As explained above, a large partof the AC is also an energy source (biodiesel). Indeed, commodity prices used asan energy substitute have fallen following oil prices (World-Bank, 2020b). In thiscontext, it is maize, soybean, palm oil, and even sugar. However, this situationdid not last long, and shortly after, the agricultural commodity prices skyrock-eted. The crisis affected the whole food system abruptly, moving through theentire value chain straight up to the consumers. Moreover, from the supplyside, the strict regulations have resulted in an immediate shortage of workers
4China signed an agreement with the US in January 2020. At the beginning of 2020, therewas political tension between the Chinese and the Australian governments. This tension droveChina to import grains from the US rather than from Australia (Liangyue and Greenville, 2020).This enormous change contributed enormously to the decreased grain supply of the largestexporter (the US).
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in the agriculture industry, notably among labour-intensive sectors and areas.In addition to all these, the La Niña events that plagued large parts of the worldduring the summer and fall months caused severe damage to crops, especiallyin Northern America. The triple combination of uncertainty about the virus, pro-duction slowdown and speculation about a possible food shortage led to panicamong governments, who wanted to ensure the availability of food staples toconsumers in their countries. As a result, many governments have imposed ex-port restrictions on food products, thus preventing import-dependent countriesfrom having a regular food supply. However, those changes were local and hadvaried depending on product and country. Therefore, the normal local-globalfood prices equilibrium distorted drastically (Schmidhuber et al., 2020). Parallel,the demand side had shifted abruptly. In high-income countries, demand trans-posed from big food suppliers, such as restaurants and public distributors, toprivate households, causing a sudden increase in demand for high-quality food,such as meat, dairy, fruits and vegetables (Laborde et al., 2020). On the otherhand, in low- and middle-income societies, the vast loss of income had forcedthe poor to increase the already high staple food consumption while giving upother nutritional sources. Putting all these changes together, local scarcenessin food products, and the insurance regarding the about to come demands haddriven a global food security crisis.

Producers are not always sufficiently protected from price fluctuations

Secondly, price stabilisation mechanisms, mainly in low-income countries, arenot always sufficient for protecting producers fromextremeprice shocks (Gouel,2011, 2012). Consequently, in times of sharp price fluctuations, many farmers findthemselves financially exposed to income losses (Gilbert and Varangis, 2003).Additionally, many countries have a weak capacity tomanage the consequencesof price instability: market risk management instruments, such as sufficientlylarge food stocks, are only used in a fewdeveloping countries anddonot yet con-stitute a comprehensive solution to the price instability problem, which harmsboth producers and consumers. Given that those citizens of low-income coun-tries spend a large portion of their total income on food, the negative impact ofany price shocks on their daily life becomes a real threat. This finding leads usto examine the possibility of forecasting AC price changes in a way that wouldbe both accurate and accessible, even for users with low economic capacity.
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1.3 Approach - Science Without Borders

The doctoral thesis wasmadepossible by generous funding fromCLAND, aimingto assist the global efforts to promote food security. Being part of the CLANDproject, this study advocates the idea of open science - to be used by others.I strongly hope it will be used by those who can improve it, but most of all bythose who need it. Intrinsically, this project works under three main principles.

1.3.1 Principle I - Concise Comprehensibility

The first principle that led this work derives from three specifications stated insection 1.2.2 and 1.2.3: 1. AC prices are highly volatile due to their dependencyon unstable market conditions. In the absence of sufficient food stocks and themore basic food consumption (i.e., food that is not highly processed), sharp fluc-tuations in AC prices often cause unstable food prices; 2. In low-income coun-tries, the average volume of food expenditure is high relative to total householdexpenditure. Also, in these countries, the food reserves and the governmentaltools for food price stabilisation are relatively limited, so that imported foodprices are significantly affected by changes in AC prices in the global markets;and 3. Finally, at relatively low-income levels, consumption of staples out of thetotal diet is relatively high compared to consumption of processed or animalproducts (FAO, 2012).
This led to our perspective that food security is feasible under the condi-tions of stable food prices, especially for those of low-income levels. Further-more, machine learning models can contain numerous explanatory variablesand analyse complex situations while maintaining simplicity in their operation.As such, choosing them as the leading research method in this study was a nat-ural choice. Advances have been made in transparent ML models intended forpredicting various quantities of interest for food security (Beillouin et al., 2020;Blumenstock et al., 2015; Lentz et al., 2019). While their link to food security isunquestionable, none of them addresses AC prices directly.
This thesis restricts the independent variables to local (domestic, regionaland continental) productions and yields. These variables inform directly on thelevel of commodity supply, which is usually an unstable component of the mar-ket, and have a significant impact over AC prices (Headey and Fan, 2010). Al-though these variables can be potentially relevant for crop price predictions,they are rarely used as a sole predictor in econometric-based studies due to therisk of endogeneity.
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1.3.2 Principle II - Interpretability
The second principle that leads this study states thatMLmodels should be inter-pretable (Molnar, 2019). To date, as will be further detailed in Chapter 2, modelsthat have focused on AC price forecasts through machine learning have eitherlacked transparency or have used complex analysing methods either producedonly final results and thus kept the logic behind the algorithm decision unre-vealed.Here, we train the ML models to analyse the relationships between inputsdescribing local crop production and yield variations and outputs representingcrop price variations. The proposed models use several techniques to rank theproducing units according to their level of influence over the global market andquantify the effect that any change in the annual regional productivity has onglobal price changes.
1.3.3 Principle III - Accessibility
The third and final principle is accessibility. To benefit all policymakers, themodel must rely solely on reliable and entirely accessible data. Regular accessto data is a key to developing a flexible food security strategy that can keep upto date and adapt to any change in the field.Under this concept, this research uses only publicly available yearly produc-tion data (FAO, 2020) and monthly price data (World-Bank, 2021a) and open-access software.

1.4 Machine Learningas aprice forecastingmethod
Predicting AC prices serves essential needs for any time frame, from the shortestfew seconds to years ahead. Chapter 2, which reviews the existing price fore-casting literature, illustrates the richness of the extant economic models forforecasting prices over different time frames. In short terms, a wide range ofstatistical methods can analyse or predict AC prices at a high-reliability level.However, there seems to be a gap between the current forecasting methodsand the need to predict AC prices over time ranging from a few months and upto a year ahead, in a way that will make it possible to analyse the forecastedresults and understand their causes. Specifically, a method has not yet beenfound that will make it possible to accurately predict AC prices while relying onexogenous explanatory variables without involving economic theories.Recent developments in technology and research skills have accelerated theapplication of statistical and machine learning algorithms. These models solve
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complex problems using relatively simple methods while providing predictionresults of high accuracy, even when compared to particularly advanced mod-els (Storm et al., 2019; Lobell and Burke, 2010). As a result, these models havebecome more frequent when forecasting complicated processes.Most generally, ML can treat two types of problems:
Supervised, in which data with existing labelling or classification accompanythe model to create new observations, i.e., forecasts, based on the informationknown; And
Unsupervised, in which the objective is to divide a high-dimensional rawset of data into clusters based on similar internal structures and patterns, asidentified by the algorithm.Here, we try to predict a response variable (AC prices) as a function of severalinputs and use a set of observed input-and-output values. Therefore, we usesupervised learning techniques.In supervised learning,X is a data set of observed inputs variables, and Y isa set of the observed output variable to be predicted. The primary goal of thismethod is to find amodel that could use the explanatory variables to predict thevalue of the dependent variable. Supervised learning can generate accurate andreliable forecasting results if integrated with the appropriate model. Followingthe assumptions of independent variables and a stable data generating processacross training, and the application procedure in this thesis is as follows:
1. Define the Training-set (in-sample): a collection ofmXi’s and Yi’s observa-tions, i = 1, 2, ...,m.Where Xi is a row vector such that Xi = (xi,1, xi,2..., xi,K);
2. Train several algorithms to forecast the output (out-of-sample) from theinputs, using them observations from the training dataset. Repeating theprocess for several algorithms;
3. Compare the forecasting results based on a test dataset to select a model,aiming to minimise the forecasting error.
One of the salient advantages of ML is the ease of applying it to a wide rangeof data and researchmethods. Because themodels examined in this study havenot yet served for Medium Term AC global prices forecasts, this advantage isparticularly significant.The three ML methods considered in this study are decision-tree based al-gorithms. Tree-based approaches are embedded as data-partition predictorsof if-then forecasts. Moreover, they stratify the predictor space into simple andhomogeneous domains and use splitting rules that are easy to implement.
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1.5 Data
This project uses monthly prices data of three agricultural commodities (maize,soybean and cocoa). The prices are publicly available on theWorld-Bankwebsite(World-Bank, 2021a), starting in January 1960 to the present. This time range islarge enough to take inflation into account. Thus, the first step was to deflatethe nominal prices to bring them down to the same scale. For that, we used themonthly nominal published by the World Bank. Then, we replicated the processon 12 different price indices, searching for the index that will bring prices closestto the real AC prices, also published on theWorld Bankwebsite, but on an annualbasis.Let us define qnm,y as a nominal price relative to a month m in a year y, qm,yas the deflated prices and Inm,y as the price index, both relative to the sameperiod. Setting 2010 as the year of basis (Inm,2010 ≈ 100) the deflation was asfollows:

qm,y =
qnm,y × Inm,2010

Inm,y

(1.1)
Finally, we chose the agricultural price index to serve as the deflator. Thedecision derived from three factors: The first derives from Tadasse et al. (2016)indicating that, althoughwidely used, theUS consumer price index (CPI) could bea biased deflator when dealing in a global market that includes both developedand developing countries. The second reason is a relatively lower gap (meas-ured in terms of Root Mean Square Error) between the AC annual real prices, aspublished by the World Bank. Third, to reassure this decision, I directly askedthe World Bank’s commodities team, who approved this decision.Relative to the models’ input, we extracted annual crop yield and productiontime series from the FAO data website (FAOSTAT) for all years available (1961to 2019), relative to three geographic scales: continental, regional and national(local).

1.6 Scope of Work
This doctoral thesis examined and forecasted the monthly prices of several AC,5which are of high importance in terms of trade and food security. All along,the research relies on publicly available data of annual production, according tothree types of geographical divisions. This thesis offers a double contribution:

5The complete price forecasting tool includes three beverage commodities (cocoa, Arabicacoffee and Robusta coffee); two oils and meals commodities (soybean and palm oil); and threegrain commodities (maize, rice and wheat)
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on the academic side, it is the pioneer in performing a Medium Term price fore-casting of agricultural commodities using ML. It also detects themain drivers forAC price changes through investigation of the ML algorithms. Second, it offersa practical, non-academic contribution - it provides AC price forecasting toolsthat can benefit policymakers who lack the tools that are required for trading inthe global AC markets in an optimal manner. As such, although the thesis incor-porates diverse and advanced research approaches, the final model will supplypolicymakers with a ready for use product: it is accompanied by detailed andcomprehensive explanations, under the promise to be accessible, even for non-specialists. Moreover, as part of the transparency agenda that accompanies thiswork, all the data and techniques assisting it are accessible to the public, free ofcharge, and have a high level of reliability.

1.7 Organisation of the thesis
The current chapter presents and describes the challenges in predicting theprice of agricultural commodities. The chapter sheds light on the importance ofmaintaining stable prices and pre-prepare for extreme changes and describesthe scope and purpose of the work. Chapter 2 presents key literature referencesand past studies that all together created the basis for this thesis. Chapters 3,4 and 5 are articles written and submitted (or published) in scientific journals.Chapter 3 analyses the maize market and identifies which regions drive priceshifts in the global maizemarket through changes in their annual maize produc-tion. In addition, it offers a ranking of the relative impact of 17 market players.Chapter 4 also deals with the maize market. This article directly continues theproject presented in the third chapter. Again, it relies on its conclusions whileattempting to trace the optimalmodel for forecasting globalmaize prices in peri-ods of up to one year ahead. Here, too, all models are opened to analyse spe-cific extreme price fluctuations events and understand themain drivers for theiroccurrence. Next, Chapter 5 is a natural continuation of two previous studies.It researches and examines additional ways of applying forecasting models fortwo other major crops, each of different market characteristics - soybean andcocoa beans. All three commodities are of high global importance, and each isassociated with a different group of AC, according to the official division as doneby the World Bank. Finally, the 6th and final chapter summarises and discussesthe main finding and conclusions derived from this doctoral thesis.



Chapter 2

Literature Survey of AC Price
Fluctuations Research

The end of starvation
reflects a shift
in the entitlement system

– Amartya Sen, Poverty and Famines (p.82)
The term price fluctuations defines a change in a commodity price relativeto a given period under the research needs as defined by the researcher. Forexample, Adjemian and Irwin (2018) analyse by-minute price changes of three ACand therefore refers to price fluctuations as a single minute change (very-shortterm). Other studies define price fluctuations according to a day (Karali et al.,2019), a year (Haile et al., 2017) and even of decades, as in Fuss et al. (2015).
The literature concerning AC price fluctuations consists of numerous meth-ods. Following Popkin (1977) and Piot-Lepetit and M’Barek (2011), the AC pricesliterature had been categorised into four time-horizons: very short term (VST),for time frames of a few hours and even minutes ahead; short-term (ST), forperiods of one day to three months ahead; medium-term (MT) for periods ofup to 18 months into the future; and long-term (LT) for any further periods. Aswill be seen during the review, the longer the analysis range, the greater is thecomplexity of the model.
Beyond the time-frame differences, the richness of approaches concerningAC price fluctuations have led to the development of a wide range of methodsfor analysing them. On that account, we also distinguish between two analysisframeworks of AC price fluctuations: Statistical (non-structural) methods; andstructural methods, which are based on economic theories.

45
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Structuralmethods assumea theory that correctly describes the actual eco-nomic behaviour of prices and serve for non-short periods analysis. We classifythis group into two:
• Equilibrium models: These economic models represent market equilib-rium in various determinants. Equilibrium models vary by complexity, asdetailed in this literature survey. Thesemodels rarely serve for direct fore-casting but are mainly used for price analysis (Deaton and Laroque, 1992)or in counterfactual simulations, which indicate the role of each variable(e.g., changes in policy, climate, etc.) on the price behaviour. Although con-sidered too complex for direct forecasting, equilibrium models can serveas an indirect forecasting tool after calibration on different sources (Valinet al., 2014; Kan et al., 2018).
• Statistical methods: Structural Vector Autoregressive (SVAR) models arebased on a statistical estimate of several series, assuming long-term andshort-term relationships derived from economic theory. When estimat-ing price fluctuations using SVAR, the researcher assumes that shocks ina particular explanatory variable are neutral in the long run. In this sense,shocks in other explanatory variables and the explanatory variable itself(price) are the ones that ultimately determine the potential price.
The non-structural methods group includes all the analysis models basedon a particular statistical process rather than an explicit economic theory. Thesemodels are used concerning price fluctuations ranging from a few minutes andmay reach time horizons of up to about a year and a half ahead. As before, wedistinguish between two non-structural approaches:
• Causal inference methods: This type of literature usually aims to estimatethe causal effects of certain variables on price fluctuations. The estimationof the causal effects ismadeby observed prices, using directmeasurementusing relatively simple linear or smoothed trends. In the short term, thecrop production, the total supply and demand for agricultural productsare given and fixed. Then, assuming they are a function of a wide rangeof constraints, i.e., production, policies, transportation costs and suchlike,the researcher calculates the observed price directly, using a time seriesof affecting variables. As such, these models mainly serve for relativelyshort-term analysis, such as future prices (Colling et al., 1996), spot prices(Weymar, 1965) or price in practice (Jichlinski, 1983).
• Forecasting methods: These methods serve for forecasts in periods ran-ging from a fewminutes up to relatively one year. They include time seriesmodels, regression and classificationbasedmethods. During the last years,
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forecasting models have become common in forecasting different topicssuch as yield (Laudien et al., 2020), production (Beillouin et al., 2020) andeven nutritional needs (Zeevi et al., 2015). However, concerning prices,these are only short-term forecasts studies that have applied thesemodelsup to this day.

Despite this precise distinction between structural and non-structural ap-proaches, there are models, such as WASDE SAP, which combine in their fore-casts several methods from the two groups (Frederic and Gerald, 1999; Hoffmanet al., 2018).Whilst the thesis aims to forecast AC prices; this survey covers bothmodels ofprediction and models of causal inference. Indeed, although forecasting is veryuseful, economists mainly study causal inferences: how oil price affects worldfood prices (Abdoulkarim and Zainab, 2011); what is the effect of global AC priceson local agricultural production (Haile et al., 2016); or how wine prices react tochanges in wine stocks (Bukenya and Labys, 2007)?

2.1 Very short termand short termagricultural com-
modity price research

Despite the dissimilarity between some of the analyses regarding price valu-ation in the VST (of about up to one-day intervals) and ST (time intervals of upto three months), it is sometimes difficult to differentiate between them. There-fore, this section surveys methods of both time frames while indicating to whichof them each method belongs. In very-short terms, any data regarding sup-ply and demand is unchanged, so that AC prices are analysed using relativelysimple non-structural methods and can be forecasted directly from historicaldata. Most generally, any period added to the analysis model enables the ex-amination of higher complexity and added relationships or inter-relationshipsat different levels. However, it comes with the price of a decrease in the analysisability of the model.AC are soft commodities but, like other goods traded in international mar-kets, are often traded according to contracts and priced "Real-time", with nobreaks. AC are known for their high volatility and thus subjected as risky assets(Clapp and Isakson, 2018). One of the major factors for AC price change is unex-pected drastic fluctuations that, although not frequent, has a critical role in ACtrade (ITC and UNCTAD/WTO., 2001).The literature aims to analyse AC prices in the VST studies the causal effectof certain variables on AC prices, i.e., to analyse them. One of the questions of
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interest in this literature is if and how USDA announcements affect AC futuresprices.
Adjemian and Irwin (2018), for example, analyse the impact of the USDA re-ports on the prices of maize, soybean and wheat in the Chicago Mercantile Ex-change (CME). They compare AC price fluctuations before and after May 2012,i.e., during the period in which trading ceased on themorning of the publicationof the government report, as opposed to a period inwhich trading is continuous.To do this, they examine the minute fluctuations according to three versions ofprice fluctuations, all three of which use the observed price by the minute. Inaddition, they test the price volatility according to three equations: the max-imum daily difference according to log (first equation), an average daily differ-ence (second equation) or the difference between the last price observed beforethe publication of the report (third equation). Nevertheless, the price patternsanalysis always directly estimates one variable - price fluctuations explained bythe number of contracts issued per minute.
Another study conducted in recent years (Karali et al., 2019) also questionsthe impact of US government reports on the daily price of the same commod-ities, i.e., maize, soybeans and wheat. In this study, the researchers used USDAreports on yields and crop projections and compared them to forecasts pub-lished by private analysts. The definition for the difference between them (inper cent) is the degree of surprise of the market. Hence, the higher is the differ-ence between the forecasts, the higher is the relevance of the USDA forecasts(as aforementioned, the process of all USDA reports is done under a cloak ofsecrecy). Moreover, Karali et al. (2019) performed their analysis for a slightlylonger time frame compared to Adjemian and Irwin (2018) and thus investigatedthe AC prices with somewhat higher complexity.
Finally, for VST, a relatively modernmethod of analysing commodity prices isa machine learning-based approach of data clustering, i.e. unsupervised learn-ing. When used by financial institutions and entities, or governments, the re-searcher obtains the information from selected sources (usually for a fee). Itreaches millions of records a year to create a rich and detailed database - BigData. As unsupervised learning is more flexible than supervised learning, in thesense that it does not require pre-definition of explanatory variables, it is a con-venient tool for VST and ST price analysis. The researcher defines several mainvariables or points within the dataset to analyse the data. Next, the algorithmcreates new variables according to shared characteristics it identifies throughthe learning process. This set of variables can express almost 90% of the totalexisting variance (Hativ and Mazouz, 2021). According to the data’s centres ofgravity, a further division of the information using the k-Means method (an un-supervised learning model) can create even more efficient learning. This type of
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learning is considered particularly effective for detecting market opportunitiesand players associated with the market. k-Means is also efficient in identifyingoutliers activities in the studied sector. However, on the downside, it demandshigh acquaintance with the learned market and careful data organisation andfiltration. Also, handling Big-Data requires using cloud tools to store and pro-cess this amount of data. That is, a machine strong enough to support theserequirements, as well as a budget for maintaining a cloud with large memory.Analysis of agriculturalmarkets throughunsupervised learning exists in shortterm analysis in the scientific literature, although it is somewhat rare. Kim andDharmasena (2018), for example, analysed the US pecan price by identifying in-teractions between four leading countries in this market. First, to define themost relevant variables, they apply the graphical-based detection algorithm dir-ected acyclic graph (DAG) (Pearl, 2009). Next, an autoregressive model capturedthe causality structures that best determine bi-weekly price fluctuations’ drivers.Another academic study, Deng and Yǔ (2019) explored patterns and internalrelationships over slightly longer time frames in another academic study. Usinga time series of production costs per acre from all fields in the Chinese Heilongji-ang province, the researchers explained price fluctuations in soybean prices.In the first stage of identifying the factors for the price fluctuations, a DynamicProgramming (DP) algorithm runs in iterations on the time series data. Next, theToeplitz Inverse Covariance-based Clustering (TICC)model analyses the data, us-ing these variables to find the proper inter-connectionswithin the price. All in all,the researchers discovered four patterns over monthly time frames. AlthoughST is relatively short (up to three months intervals), it is a long enough time toaccount for the impacts of external factors variation on the price of AC. Suchfluctuations are frequently related to one or more of the following:

1. Adverse weather events;
2. Export bans or restrictions, notably when posed by big exporters;
3. Enormous purchases (e.g, the 32 billion USD purchase made by China inearly 2020 (Horne et al., 2020)) or panic buying behaviour of numerous im-porters/consumers, especially of staples (Hobbs, 2020; Wright, 2008) ; and
4. Rapid and sharp changes in currency, usually the USD (Headey and Fan,2010).
To enable the performanceof causal inference but also of forecasting. Moreover,this time frame allows the application of structural models and non-structuralanalysis.
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2.1.1 Non-structural models
When forecasting AC prices for short terms (ST), which are slightly longer thanthe VST, non-structural big-data analysis is again prevalent for decision making.The data are usually presented as time-series (TS), reflecting the development ofactivity over time (Mantzura, 2016). As here time frames are a bit longer, analysisfor food prices, which do not change by theminute, become relevant, along withAC.Li et al. (2010) compared the forecasting accuracy of an Artificial Neural Net-work (ANN)model and ARIMAmodel on the tomato price in China for three fore-casting horizons: daily, weekly, and monthly. Both ANN and ARIMA have beenproved to provide good ST time series forecasting (Zhang, 2003; Ratnayaka et al.,2015). They successfully obtained high forecasting accuracy when using the AR-IMA model for a forecast period of one day to one week. The authors showsignificant rapid growth in the relative error, and indeed, for a price forecast forthe term of onemonth ahead and further, ANN had become a preferable modelto use.The use of several time-series based models also serves the European dairymarket. In their study, O’Connor and Keane (2011) have applied Conditional Het-eroscedasticity Models (ARCH and GARCH) and Time Series Models (ARMA andARIMA) on the price of dairy products in Europe. Rather than declaring the bestforecastingmodel, the authors point out the strong influence of government de-cisions over many agricultural markets. According to this study, government de-cisions undermine the normalisation that guides many of today’s models. Thatis, market-related predictions might become more realistic if a model is usedthat does not require forced research assumptions.Similar to them, many more studies have been examining AC price fluctu-ations in the short term. The common point of these studies is the integration ofTS orMLmodels with big-data information. However, while these works presentlow forecasting errors, they do not explain the source of those price fluctuations,i.e., they do not diagnose the results obtained by the forecasting algorithms.

2.1.2 Structural models
All themodels presented have operated in a purely statistical method. However,for not VST, structural methods that assume that a particular theory describ-ing the actual economic behaviour are also possible. In relatively short terms,SVAR (Blanchard and Quah, 1988) is considered a reliable method. Althoughoriginally presented concerning the labour market and Gross National Product(GNP), SVAR is now a widespread tool in other contexts, agricultural commodityprices among them. These models assume that long-term and short-term re-
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lationships stem from economic theory. The central concept of SVAR is that allthe shocks in the economy affect all the variables. If, for example, the depend-ent variable is price and the explanatory variables are the regional production,SVAR assumes that the price is affected by changes in all variables, including it-self. Similarly, the regional productions affect each other and are affected bythe price. The model assumes that the effects of the explanatory variables onthe dependent variable reset in the long run.An excellent example would be the study conducted by Hao et al. (2017) onthe relationship between US ethanol prices and corn prices in developing coun-tries. Beyond the obvious fact that prices in the US market are stable relative toprices in emergingmarkets (see explanation in the Discussion 6.4), the research-ers found that most of the effect of ethanol price fluctuations onmaize prices inthe countries surveyed occurred within a period of up to three months.

2.2 Long termagricultural commodity price research
In the long run, AC prices fluctuate primarily as a function of trends or long-time changes in trade markets, the natural environment (climate), or politicsand society. Long-term AC price forecasts play an important role when build-ing long-term strategies. These could be global cross-sectorial, such as the Sus-tainable Development Goals of the UN (2021); IFPRI’s food strategy (IFPRI, 2018)or even local land allocations between agricultural activities (Zelingher et al.,2019). Due to the high variability and number of possible scenarios, long-termstrategies tend to be highly flexible and usually change over time to adapt toactual changes. Following Headey and Fan (2010) and Swinnen and McDermott(2020), the main factors for long-term price shocks are:

1. Economic growth, mainly in developing countries;2. Price increase of substitutes (food or other commodities);3. Change in utilisation of AC, such as for energy or livestock feed;4. Energy/Fertilisers price spikes;5. Gradual and continuous decrease in AC stocks; and6. Technological growth recession, especially concerning the sharp rise incrop yields, as has occurred in recent decades.
An example of a demand-side market that significantly affects the prices of ag-ricultural commodities, in the long run, could be the rise in the income level indeveloping economies. The recent rapid price rise observed inmany developingcountries is a serious concern, especially when food prices are concerned. Foodprices in emerging economies have risen sharply over the past decade, as seenin the local consumer food price index compiled by FAO (2020) in Fig 2.1.
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Figure 2.1 – Consumer Prices, Food Indices (2015 = 100 %)Source: FAO (2020)
In the long term, a key driver to the rapid surge in food prices is the rise inrevenues in emerging economies, notably China, which accounts for about one-fifth of the world population. The increase in revenue has allowed consumers toreduce their traditional grain-based diets in favour of a more expensive menu,containing higher rates of animal source products, fruits and vegetables. Thistrend has, of course, affected the rise in world food prices (World-Bank, 2014).Nonetheless, in developing countries, a high proportion of the population hasa low-income capacity and thus spend a large portion of their income on foodpurchases. As a result, a local rise in food prices is much more significant thana similar rise in high-income countries, i.e. the US or the EU. The growing con-sumption of animal-based food leads to price increases of livestock feed, includ-ing maize and soybean. In the long term, this inflation is an incentive to expandthe growing areas of these crops, often at the expense of less rewarding grains,such as rice, which are consumed only by humans (Childs et al., 2009; Headeyand Fan, 2010).An example of a variable that affects AC prices in the long run, this time onthe supply side, is energy price increment (World-Bank, 2016). Although not agri-
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cultural products, fuels are involved in the entire agricultural supply chain, fromthe early stage of the purchase/transportation of inputs until the final deliveryto the point of sale. Farmers who irrigate their crops are particularly affectedby high pumping costs, while those who use modern seeds face higher prices offertilisers 1. Moreover, the fact that many countries subsidise fuels for their res-idents, or local farmers (Nwachukwu and Chike, 2011), causes a non-reduction inthe use of the same inputs by farmers, which places an economic burden on theentire country. As will be seen in the case of an increase in the general incomelevel in China, here too, an increase in the demand for petroleum-basedmateri-als or oil has a worldwide effect on the prices of agricultural produce in the longrun. Another side-effect of the rise in fuel prices impacts international trade.As aforementioned, rising fuel prices increase the transportation of agriculturalcommodities, making their final price for importing countries to elevate: thehigher is the price of energy, the higher is the additional price importing coun-tries must pay for their imports. Facing such situations, governments of import-ing countries may try to lessen imports by encouraging local farmers to producemore of the imported crop through subsidies, reduced producer taxes or othersupports (Nidhiprabha, 2019). In this respect, the cost of all production will in-crease, as importing efficient producers (e.g., the USA for maize, Thailand forrice or non-agricultural products) will become less and less cost-effective whenimported. The primary way to deal with this dependence is to use crops as asource of bio-fuels, the most common of which are ethanol (made from maize,sugar beet or sugar cane) and bio-diesel (made from canola, soy or palm oil).Indeed, over the last few decades, the use of biofuels has been steadily rising,pushing the prices of those goods up and shifting their use even further fromtheir most basic purpose, as food for humans (HLPE, 2013). Moreover, given thatthese crops also make up the bulk of the livestock nutrition, feed costs also rise,leading to increased dairy, meat and eggs prices. As expected, the high com-modity prices are an incentive for farmers to allocate more significant parts oftheir land in the long run. This land reallocation comes in favour of growingfuel-substitution plants, at the expense of products usedmainly for human con-sumption, such as wheat and rice (Abdoulkarim and Zainab, 2011; Tadasse et al.,2016).

Another important factor is long-term exchange rate fluctuations. Most ofthe AC global trade prices are of USD units. As each country has to convertits currency into USD, each fluctuation in the USD-local currency ratio will havea strong influence over the real-price value of the commodity (FAO et al., 2020).
1Modern seeds produce high yields but also require the use of fertilisers (Hamzei and Seyyedi,2016). The production process of fertilisers involves the use of fuels. Therefore, fuel price in-crease leads to elevation production costs of fertilisers and hence to higher prices.
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This factor, of course, is of decisive influence on the prices of other commodities.Compared with Euro, changes in the USD value have influenced AC prices athigher levels Gilbert (1989); Mitchell (2008).Owing to the nature of the possible changes over long periods, models thatanalyse AC price changes tend to be more complex compared to short-termforecasting models (Piot-Lepetit and M’Barek, 2011). Generally speaking, twotypes of models aremost known to serve for long-run AC price predictions, bothare structural: partial equilibrium (PE) models and computable general equilib-rium (CGE) models (Thomsen, 2021).

2.2.1 Partial Equilibrium (PE)

PE models traditionally describe a single or few market(s) while excluding in-come effects and feedback from other markets. However, the chosen market(s)can include many commodities. PE models use observed data to produce anoutcome from a series of individual equations. As such, PE models generate amathematical equilibrium in the desired market.One could distinct betweenPEmodels by differentiation of the production/demandspatial resolution units of the production/demand units (e.g., countries, regions,grids); term of demand (e.g., caloric consumption, price and income elasticity,bio-fuels demand), and by the type of explanatory variables for the dependentprice factor. The latter varies greatly and could include many variables - landand non-land inputs, yields, investment in agricultural R&D amongst them.The Global Biosphere Management (GLOBIOM) model (Havlík et al., 2011) isan example of a global PE economic model. The principal data sources used aremainly from FAO. GLOBIOM provides policy analysis on global issues related toland-use competition between vegetative farming (18 major crops globally + 9crops for the EU), grassland (as livestock feed of 7 animals), bioenergy crops(short-rotation crops) and managed forest. The model considers relationshipsbetween all products and land use and enables changing land allocation con-cerning exogenous factors such as price and productivity changes. The regionalcoverage consists of 37 regions (globally), which represent the global trade anddemand. The demand side representation in GLOBIOM acts as an endogen-ous system specified by price elasticity increasing functions, relative to grossdomestic product (GDP) per capita, population (exogenous variables) and a pricefor each product (endogenous). On the other hand, the supply side of themodelis the productivity of three land-use sectors: agriculture, forestry and bioenergy,presented by production functions, along with related environmental paramet-ers such as greenhouse gases (GHG) emissions and production/supply costs.The overall equilibrium of the agricultural and forestry markets is the maxim-

https://iiasa.github.io/GLOBIOM/index.html
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isation of the total producer and consumer surpluses under constraints of re-sources, technology and policy. A detailed description of the GLOBIOM is avail-able at Havlík et al. (2018).

2.2.2 Computable General Equilibrium (CGE)

While basedon the samemathematical equilibriumas PE, CGE are cross-sectorialmodels, which are commonly used in macro-economic research to take into ac-count a large number of factors and parameters. As such, the price elasticityof demand in CGE models is relatively high, whereas price responses to supplyshocks are comparably low (Burfisher, 2021; Valenzuela et al., 2007). The de-mand side in CGE is an aggregation of several factors like GDP, oil price, andeven governmental policies (Hertel et al., 2016).
When talking about global trade in agriculture, one of the leading CGEmodelsis the Global Trade Analysis Project (GTAP), initially developed by Hertel (1997). Itfunctions as a framework for many other works and models, including the Agri-cultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweiget al., 2013), the global Modular Applied General Equilibrium Tool (MAGNET) (vanMeijl and Woltjer, 2012) and local models such as the Israeli General EquilibriumModel (IGEM) of Palatnik and Shechter (2008). GTAP is a general equilibriumframework applied at the global level. By definition, it captures all economiesand under the assumption of free trade flows (perfectly competitive) betweenthem, including interactions between sectors and markets (Corong et al., 2017).GTAP consists of a large set of data, counting 114 countries, where each one hasits local industries and products, and based on publicly available information.In addition, it recognises five national income levels and represents economicbehaviour within economies (forms of production and preference functions, orcalibration of elasticities) This greatness is also the drawback of the framework,making it highly complex. Specifically for agriculture, GTAP, on its GTAP-Agr ver-sion, is a static model.
The model seeks an equilibrium point: The producers (firms) are profit max-imisers under the constraints of production technology (given prices) and inputof labour, capital and intermediate deliveries. On the other hand, the demandside aggregates all the private households (as a single consumer), whichmaxim-ise their present value of current and future utility under a limited budget andgiven prices. They are considered as having the initial endowments, and thus,they own all the production factors and consume the final products, accordingto a consumption function. As GTAP-Agr is static, technology is assumed to befixed in the short term.
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2.3 MediumTermagricultural commodity price re-
search

Medium Term AC price changes (time intervals of three to 18 months) are mostoften associated with shocks in commodity markets; local changes, especiallythose that have a high impact on themarket (Hertel et al., 2016); or catastropheson a global scale. On the scientific side, it is customary to examine a change inAC prices mainly in the context of price cycles in the AC itself or as a result ofchanges in the prices of other commodities. Consistent with Labys (2003) argu-ment, the in-depth literature review conducted throughout the making processof this research project shows that most of today’s studies use one or a com-bination of non-structural techniques. e.g., TS based models, including vectorautoregression (VAR), exponential smoothing or models of heteroscedasticity.However, structural models, too, are widely used in the academic literature, al-beit for price analysis, as will be described below.
When dealing with the analysis or forecasting of AC prices in Medium Terms,it is possible to usemodels based on time series, as was done for the short term.In this case, the option to apply interpretablemodels, i.e. techniques that are notnecessarily "black box", is also open. Despite the rich academic literature, whenit comes to AC price studies using machine-based methods, the vast majorityof them adhere to a relatively limited number of models, those that are not in-terpretable. A unique work conducted by Xiong et al. (2018) predicted vegetableprices in the Chinesemarket in time frames ranging from amonth to six monthsahead, based on monthly price series of up to 12 years. The uniqueness of thisstudy stems from the attempt to understand the nature of themarkets in-depthbefore operating the forecasting model. As part of this approach, the authorscombine several seasonal-trend decomposition procedures and extreme learn-ing machines (ELM), where each comes at a different stage with a different role.At the first step of the learning process, the input data (prices) are loaded intoa seasonal-trend decomposition time series algorithm, based on a smoothingtechnique that deals with missing data: STL (Cleveland et al., 1990). STL decom-poses all five price series into detailed seasonal, trend and remainder (residual)components. This step is of great significance since, in the next step, an EMLperforms the forecasting task. EML is a neural network fast machine learningtechnique, which is known for its high forecasting accuracy (Huang et al., 2006).However, these models cannot be opened and thus are not interpretable. Theinitial data decomposition allows a separate prediction of each of the three com-ponents to predict that it is both more accurate and more understandable interms of the composition of the result. While there is no significant opening upof the "black box", this study represents a breakthrough in attempting to inter-
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pret AC price prediction results through machine learning.

Although somehow limited in the academic aspect, AC price forecasting inthe non-academic world is very developed. Currently, several international or-ganisations periodically publish Medium Term AC price forecasts. The WorldBank, for example, publishes price forecasts (medium and long period) of 20AC, including three animal-based products. The forecast is published twice ayear, and the results are publicly available. However, an in-depth search has notyielded up-to-date publications regarding the technique used to predict thoseprices. Existing publication regarding the sugar market (Vries, 1980b) presents aCGE model that is probably no use for today’s Medium Term forecasts. Anotherpublication presents the banana market (Vries, 1980a) in a manner that couldindicate the current forecasting methodology. The Commodity Price Index ispublished once a month by the World Bank in two days lag of the month meas-ured. Twice a year (every April and October), the World Bank produces generalprice indices forecast along with the price of each commodity. The purpose ofwhich is to enable the analysis of the information. The agricultural commoditiesitem (accounts for almost 65% of the non-energy commodity index), consists ofthree groups (beverages, food and raw materials), is highly volatile. As such, itspotential contribution to the forecast error is significant. Themonthly prices andindices are built based on commodity prices, collected regularly from the worldlargest international markets. In the case of bananas, these are the markets inHamburg and US Gulf, under the guiding assumption of pure competition. Theglobal AC price is an aggregation of the prices obtained from each producingcountry, according to its weight from all weights in the relevant month. For eachsuchmarket, the price (in USD terms) is a function of the local yield (extrapolatedbased on their historical growth rate), an international price index and relativemarket pressure in the US market (defined by export criteria). The model alsoaccounts for trends and seasonality.
TheUSDAuses theWorld Agricultural Supply andDemandEstimates (WASDE)model to forecast the future prices of numerous grains, meals and oils, sugars,animal-based products (milk and meat). The forecasts results are made publicevery month for up to 18 months ahead. However highly used by governmentsand policymakers (US-HR, 2009), these models are not only complex (Hoffmanet al., 2018) but are also un-interpretable, as their developers keep the method-ology and the market data under "Lock-up Conditions" (Mallory, 2021).
To summarise this survey, as of today, variousmodels provide price forecastsof AC in the Medium Term, which is the most critical for the determination of animmediate food security strategy. However, these models do not provide suffi-cient information about the factors that led to the final forecast results. Thus,these models do not allow policymakers to assess the risks they are facing nor
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understand the market in which they operate.In order to fill this research gap, this doctoral dissertation provides AC priceforecasts in the Medium Term. Unlike current models, price forecasts are madesolely in a way that will also allow for minimal forecasting error. At the sametime, they also provide the users with a glimpse of the model decision process.If will follow the detailed and comprehensible instructions, even non-specialisedusers will be able to replicate the forecasting process and understand the forcesoperating in each relevant market.



Chapter 3

Assessing the sensitivity of global
maize price to regional productions
using statistical and machine
learning methods

Co-authors: David Makowski, Thierry Brunelle 1

Abstract
Agricultural price shocks strongly affect farmers’ incomeand food security. There-fore, it is essential to understand and anticipate their origins and occurrence,particularly for the world’s primary agricultural commodities. This study as-sesses the impacts of yearly variations in regional maize productions and yieldson global maize prices using several statistical and machine learning (ML) meth-ods. Our results show that Northern America is by far the most influential of allregions considered. More specifically, our models reveal that a yearly yield gainof +8% in Northern America negatively impacts the global maize price by about -7%, while a decrease of -0.1% is expected to increase global maize price by morethan +7%. Our classification models show that a slight decrease in the maizeyield in Northern America can inflate the probability of a global maize price in-crease. Themaize productions in the other regions have amuch lower influenceon the global price. Among the tested methods, random forest and gradientboosting perform better than linear models. Our results highlight the interest

1Chapter published in the Frontiers in Sustainable Food Systems journal (DOI:10.3389/fsufs.2021.655206)
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of ML in analysing global prices of major commodities and reveal the strongsensitivity of maize prices to minor variations of maize production in NorthernAmerica.

3.1 Introduction
Over the past decade, the four components of food security - availability, sta-bility, utilisation, and access - have become significant sources of concern. Atthe turn of 2010, prices of main food crops in the international markets haveshown high variability, sometimes doubling in a short time frame (Headey andFan, 2010). For example, the price of maize increased by 75% from September2007 to May 2008 (Headey, 2011). Poor harvests and rising prices of agriculturalcommodities had contributed to triggering the hunger riots of 2007-2008 andthe Arab Spring of 2011 (Headey and Martin, 2016). High levels of volatility in thefood prices are now recognised to affect food security for a growing number ofhouseholds (Rosenzweig et al., 2001; Schmidhuber and Tubiello, 2007).Several reasons can further explain the food crises at the turn of the dec-ade: low levels of food stocks, rising prices of inputs - particularly fertilisers -and growing demand for bio-fuel (Headey and Fan, 2008). One of the most fre-quently cited is idiosyncratic shocks on agricultural production at the regionallevel. In 2007 and 2010, for example, extreme local environmental conditions(e.g., droughts in Russia and extensive wildfires in Australia) and resultant de-clines in regional production significantly contributed to the spike in global foodprices (Tadasse et al., 2016). For example, the heatwave in Russia in the summerof 2007 and 2010 led to a significant drop in local wheat production, which res-ulted in export restrictions and subsequent tensions on international markets(Wegren, 2011). Restrictions on rice exports in India and Vietnam in 2007/2008also led to substantial price increases on international markets (Headey, 2011).Increased inter-connectivity in global food markets can be a source of resi-lience, as seen in the recent Covid-19 outbreak, but also of vulnerability, partic-ularly when the agricultural production of a major exporter is affected. Leastdeveloped countries are particularly vulnerable as they may suffer more sig-nificant import losses through their strong dependence on imports for staplefoods (Puma et al., 2015). In this case, we speak of teleconnected supply shocks(Bren d’Amour et al., 2016). Bren d’Amour et al. (2016) find that the Middle East ismost sensitive to teleconnected supply shocks in wheat, Central America to sup-ply shocks in maize, and Western Africa to supply shocks in rice. In the future,climate change and the increasing frequency of extreme weather events couldmake the food system evenmore vulnerable to such teleconnected shocks. Sev-eral works study the transmission of prices and price volatility from international
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to domestic markets (Baquedano and Liefert, 2014; Kalkuhl, 2016). However,to our knowledge, no article has so far attempted to quantify the inverse link,namely the sensitivity of the world price to supply shocks at the regional level.

The internationalmaizemarket is a highly relevant case study becausemaizeis one of the most traded crops and plays an essential role in food security inmany countries. Accurate identification of the most influential maize producingregions would potentially be helpful for decision-makers who need to optimiseboth their dates of commodity purchases and their stock usages (World-Bank,2005). Although maize is the most widely traded crop globally, only a few coun-tries export their maize productions, suggesting that the production of a smallnumber of regions might impact maize prices. As some countries rely heav-ily on maize imports to ensure food security (Wu and Guclu, 2013; Rouf Shahet al., 2016), it is essential to be able to anticipate price shocks for this commod-ity. Models that provide relatively short-term maize price projections are relev-ant to many stakeholders. For example, the WASDE forecasts are helpful forrisk calculation and for designing the federal US crop insurance program (US-HR, 2009). However, these models were criticised because of their complexity(Hoffman et al., 2018) and, sometimes, because of their lack of accuracy (Hoff-man, 2011; Warr, 1990; Hoffman et al., 2015; Lusk, 2016). Other forecasting mod-els serve private institutions, particularly companies specialising in commoditytrading. Auto-regressive methods are widely known to forecast food prices inthe academic literature (Li et al., 2010; Shively, 1996). Although all these tools areundoubtedly helpful for forecasting maize prices, they provide little insight intothe effects of regional maize production variations on global maize prices.
Although it is difficult to predict precisely the extent to which global scaleprice variations could affect local prices, it has been previously shown that shiftsin international prices can transmit into regional domestic prices (Headey andFan, 2010). Inmore recent research, Kalkuhl (2016) suggests that there is a strongrelationship between international prices and domestic ones, even when theglobal market trades with futures.
The objective of our study is (i) to identify themaize-producing regions havingthemost significant influence on the global price of maize through their produc-tion and (ii) to quantify the effects of regional production changes on global pricechanges. Under the assumption that regional production shifts primarily driveshifts in maize prices (Hertel et al., 2016), we train several statistical and ma-chine learning models using publicly available regional yearly production dataand monthly price data. Monthly price data are pertinent because maize pricesdo not tend to change on a daily or weekly basis but rather monthly (Ochiengand Baulch, 2019; Dorosh et al., 2004). Furthermore, our input variables, i.e. re-gional maize productions or yields, directly inform on the level of commodity
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supply, which is usually an unstable component of the market. Therefore, thetrained models are used to analyse the relationships between regional maizeproduction (or yield) and global prices, to identify the most and least influentialproducing regions in the global maize market, and finally to quantify the effectof regional production (or yield) changes on global price changes.In our study, we chose to use various statistical and machine learning meth-ods. The use of different methods has several advantages. First, it allows us tostudy the robustness of themain conclusions to the data analysismethod imple-mented. Second, it makes it possible to compare different methods’ precisionand determine the most efficient ones. Third, our comparison of models thuscontributes to improving our understanding of maize price determinants anddeveloping operational and accessible predictive tools. In this way, our study isrelevant for designing food security policies.

3.2 Materials and method

3.2.1 Data
Historical annual yield (hectograms per hectare) and production (tonnes) datawere obtained from the FAO data website (FAOSTAT) for all years available (1961to 2018) for 19 regional entities (defined by FAO) covering 242 countries. For fur-ther data definitions and the sources of the variables included in our models,see tables 3.2 and 3.3 in Appendix 3.A.We extracted data on maize global monthly prices from the World Bank’scommodity markets database as the U.S. No. 2 yellow free on board (FOB) Gulfof Mexico, U.S. nominal price, per metric tonne units. Although this price is thetraditional representative price for themaize produced in theU.S., this quotationis today’s leading benchmark price for the internationalmaize trade (FAO, 2021).2The time series summarises themonthly price of maize, as globally traded inFOB U.S. Gulf ports, from January 1960 to December 2019. We converted theseprices into real 2010 U.S. Dollars, using the monthly agricultural index of theWorld-Bank3 (Fig 3.1).

2We found a strong correlation between the series of relative yearlymaize price changes usedin this paper and the relative maize price changes of other countries. For example, ArgentinaUkraine correlation is about 0.75, according to the data made available in the GIEWS databaseof the FAO.3Although themost frequently use price index is the American CPI, we chose to use theWorld-Bank monthly agricultural price index. We base our decision on two factors: The first derivesfrom Tadasse et al. (2016) indicating that the U.S. CPI could be a biased deflator when dealing ina global market that includes both developed and developing countries. The second reason is arelatively lower gap (RMSE) between the maize annual real prices published by the World Bank
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Figure 3.1 – Time series of globalmaize price. (a) Real terms in 2010 USDollars. (b)Real terms in relative change from the same month of the previous year (ratio)
Thedeflatedprices are further denoted as qm,y, wherem and y are themonthsand year indices, respectively. Exportablemaize is usually harvested once a year,during the main harvest season, and levels of maize production can thus po-tentially have substantial effects on yearly price changes. For this reason, thedependent variable in our analysis is defined as the relative price difference ofmaize expressed relatively to the samemonth of the previous year. It is definedas

pm,y =
qm,y − qm,y−1

qm,y−1

(3.1)
and their values are shown in fig 3.1.b. From the series of pm,y, we define abinary variable pbm,y equal to one in case of price increase (pm,y > 0) and to zerootherwise.Maize prices for month m in year y are estimated as a function of relativeproduction (or yield) changes between the month m in year y and the same

to the deflated maize global monthly price calculated for this study.
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month in year y − 1. To accomplish this, we transformed regional yield (grainweight per unit of the cropping area, in hectograms per hectare) and production(total regional grain weight, in tons) data into relative changes compared to theprevious year, as follows:
xk,y =

zk,y − zk,y−1

zk,y−1

(3.2)
Where zk,y is the production (or yield) in a region k (k=1, . . . , 19) and year y,and xk,y is the relative production (or yield) change in the same region and thesame year.We predict prices during the last quarter of each year, that is, in October,November, andDecember (m ∈10,11,12), i.e., when all regions have finished (or al-most finished) their maize harvest and reported the yearly production and yieldobtained. For a given year, it is indeed possible to obtain accurate estimates ofmaize yield and production from October onward and to use them to predictprice shocks of the same year.4In the next sections, we present and compare several methods to estimate

pm,y and pbm,y at m ∈10,11,12 as a function of xk,y, k ∈1,. . . ,19. Each method isimplemented twice; first using relative changes in regional productions as inputvariables and then using relative yield changes.
3.2.2 Linear and generalised linear models
Although the relationships between price and production or yield changes maybe non-linear, we use a linear regression model as a benchmark to estimateprice fluctuation as a function of changes in regional productions or yields. Ourlinear model (LM) is defined as follows:

pm,y = α +
19∑
k=1

βkxk,y + εm,y (3.3)
whereα and βk are regression parameters and εm,y is the residuals. Addition-ally, we define a variant of thismodel including the price change of year y−1 (i.e.,

pm,y−1) as a supplementary input. This serves for investigating Granger causalrelation between pm,y and xk,y (Granger, 1969). The significance of the effectsof xk,y are tested with and without using pm,y−1 as an additional input in the re-gression model. If some of the xk,y are still significant while taking pm,y−1 intoaccount, one can be considered that there is a Granger causal relation between
pm,y and these xk,y.

4http://www.amis-outlook.org/amis-about/calendars/maizecal/en/, retrieved 23March 2020

http://www.amis-outlook.org/amis-about/calendars/maizecal/en/
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For classification, we use a generalised linear model (GLM) with a binomialfamily and a logit link. This model computes the probability that pbm,y=1 (i.e.,price increase), given the values of the regional production (or yield) changes

xk,y, k ∈1,...,19.
Both models are implemented with the GLM function of R (R-Core-Team,2020). As done with the other methods, we fit linear models for eachmonth (Oc-tober, November, December) using production and yield changes as inputs. Themost influential inputs were selected using a stepwise procedure implementedwith the AIC (step function of R).

3.2.3 CART

The threeMLmethods considered in this study are decision-tree based algorithms:Classification and regression trees (CART), random forests (RF), and gradientboosting machine (GBM). None of these methods makes any strong assump-tion about the functional form of the relationship between the dependent vari-able and the explanatory variables, neither about the data distribution. Theycan thus capture nonlinear relationships between the inputs (regional produc-tion or yield changes) and the output (global price change). We shortly presentour implementation of CART here, while RF and GBM are presented in the nextsections.
The purpose of CART is to build a binary decision tree. Let pm,y be a de-pendent variable and x1,y, xk,y, ..., xK,y a series of explanatory variables. The treeis constructed by repeatedly distributing the observations into homogeneousgroups relative to pm,y. The partitioning criteria is monotonous in the explanat-ory variable, xk, which defines a cross-section of xk. In contrast, higher valuedobservations belong to the right and lower-valued to the left branches. Addi-tional partitions based on the same variable canbemade, but one cut-offpoint isdetermined at each stage. The subgroups that define the tree are called nodes.CART performs recursive partitioning, and searches for splits that minimise thetest error rate in the chosen objective function. The choice of the objective func-tion depends on whether the output is continuous (pm,y) or categorical (pbm,y). Inthe former case, i.e. for predicting pm,y, CART is implemented using the resid-ual sum of squares (RSS). To predict pbm,y (classification), the objective functionis a purity index based on the Gini index. Here, CART was implemented with thepackage rpart of the R software (Therneau et al., 2019) (rpart function).
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3.2.4 Random Forest and Gradient Boosting

Although simple to visualise and interpret, CART results are usually unstableand tend to be sensitive to small data changes. Their price predictions are notalways accurate (Kuhn and Johnson, 2013). For these reasons, ensemble learningalgorithms based on bagging (for "bootstrap aggregating") and boosting meth-ods are frequently used instead of CART trees (Breiman, 2000). In this study,we use random forests (RF) (Liaw et al., 2002) as a bagging-based algorithm andgradient boosting machine (GBM) as a boosting-based method.
The RF algorithm builds an ensemble of trees, each relying on a small subsetof inputs (i.e., a subset of all regional productions or yields). Each tree is fittedto a randomly chosen training set generated using a bootstrap procedure. Thisapproach reduces the effects of correlations between variables while allowingdifferent input variables to be selected. In RF, predictions are derived by com-puting the average of all trees. Here, we find that 500 trees lead to stable res-ults. RF can rank the inputs according to their predictive powers and, here, theresulting ranking can be used to identify the regions whose maize productions(or yields) show the strongest influence on global maize price. In this study, RFis implemented with the randomForest function of the package randomForest(Breiman et al., 2018), both for quantitative predictions and for classification.
The method GBM is also based on an ensemble of trees (Efron and Hastie,2016). At each iteration, GBM builds a simple tree (weak-learner), each of whichis learning from the prediction errors of all the trees built so far. The final pre-diction is the sum of all the models calculated earlier. As RF, GBM is able to rankthe inputs according to their predictive powers. In our case, we fit GBM usingthe gbm function of the gbm package (Friedman, 2001) both for regression andclassification based predictions. Here, we find that the most accurate resultsare obtained with 100 trees for GBM.
Neither RF nor GBM has analytical expressions. However, standard meth-ods can be used to rank their inputs according to their importance and visualisetheir effects on the output on price changes. Using these methods, we rank themodel inputs xk,y from the most influential to the least by computing the meandecrease accuracy criterion (Calle and Urrea, 2010) for each input (i.e. each re-gional production or yield changes). This criterion measures the extent to whichthe accuracy of model predictions or classifications decreases when each inputvariable is set to a randomvalue. Lastly, we use partial dependence plots (Green-well, 2017) to visualise the response of the model outputs to the most influentialinputs, averaging the overall values of the other inputs. These plots allow usto analyse the shapes of the responses and detect non-linearity. The same ap-proaches were applied to LM and CART to compare the input rankings and thedependence plots of all methods on the same basis.



3.3. RESULTS 67
3.2.5 Models Evaluation

The accuracy of the quantitative price-estimation is assessedby rootmean squarederror (RMSE), whichwe estimate using a leave-one-out cross-validation (LOOCV).In each step, one year of price (pm,y,m=10,11,12) and production/yield (xk,y) is ex-tracted from the original data set. Then, the four models (CART, RF, GBM, andGLM) are trained using the remaining 55 years, to estimate the removed value of
pm,y using the trained models. For each year, the procedure is performed to ob-tain a set of 56 estimations for each tested model and each month (m=10,11,12).Finally, we calculate a value RMSE for eachmodel and each predictedmonth. Werepeat thewhole procedure twice, using regionalmaize production and regionalmaize yields as inputs, successively.

To evaluate the accuracy of the classification models, we apply the sameLOOCV procedure, this time to calculate the area under the ROC curve (AUC).This criterion is commonly used to evaluate the performance of classificationalgorithms (Hernández-Orallo et al., 2012). An AUC higher than 0.5 indicates bet-ter performance than random classification. An AUC equal to 1 reveals a perfectclassification.

3.3 Results

3.3.1 Quantitative effects of regional productionsonprice changes

Table 3.1 – Comparison of RMSE values for the four types of models (lm: linearmodel; cart: regression tree; rf: random forest; gbm: gradient boosting model).RMSE values (expressed in the sameunit as a relative price change, i.e. in relativechange ratio compared to the same month the previous year), were computedby cross-validation for predicting yearly price changes in October, November,and December using two types of inputs: relative regional production (left) oryield (right) changes. The lowest values obtained for each month are in red
Production Yield

LM CART RF GBM LM CART RF GBM
October 0.169 0.140 0.137 0.135 0.132 0.136 0.122 0.128
November 0.153 0.148 0.140 0.135 0.163 0.147 0.139 0.158
December 0.144 0.148 0.130 0.129 0.139 0.129 0.129 0.147
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Table 3.1 shows that the best methods are either RF or GBM, depending on theconsidered month. For example, the most accurate predictions of global pricechanges in October (p10,y) are obtained by RF with an RMSE equal to 0.12. Theleast accurate results (i.e., the highest RMSE) are obtained either with the linearmodel (LM) or with CART, depending on the month considered.

The importance ranking of the regionalmaize yields is shown in Fig 3.2 for thethree months considered and the four different statistical and machine learn-ing methods. The ranking obtained when using regional production changesas inputs is shown in the supplementary materials (Fig 3.15). We determine thecontribution to the prediction accuracy (RMSE) of the price as the relative im-portance of each region in a given month. We consider a region to be influentialif a random choice of its corresponding input value (i.e., a yield change or pro-duction change chosen at random) leads to a substantial increase of the RMSEof the price change predictions. On the other hand, a region would be non-influential if a random choice of its corresponding input value does not affectthe RMSE. Results clearly show that Northern America is by far themost influen-tial region according to the four methods, with both types of inputs (productionor yield changes), and for the three months considered. The only exception isthe linear model (with yield change inputs) in November, but this model has lowpredictive power compared to others in November (Table 3.1). Considering themost accuratemethods (GBMandRF), yield and production changes inNorthernAmerica have themost substantial influence on global price changes. Moreover,according to the linear models, the effects of yield and production change inNorthern America on global price change are statistically significant (p<0.01) inOctober, November, and December, with and without the price change in year
y-1 included as an additional explanatory input. This result indicates a Grangercausality of yield and production changes in Northern America on global maizeprice. Furthermore, it reveals that yield and production changes are helpful inforecasting price changes, even when previous price changes were taken intoaccount.
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Figure 3.2 – Importance levels of regional yield changes for predicting the globalmaize price in October (10), November (11) and December (12). Importance levelsare computed using the RMSE criterion and measure the extent to which themodel accuracy decreases with a random permutation of each input.
The partial dependence plot (PDP) shown in Fig 3.3 presents the average re-sponse of price changes in October (10), November (11), and December (12) tovariations of maize yield compared to the previous year in the most influentialregion, i.e., Northern America (similar PDPs are shown in the supplementaryFig 3.17 using production instead of yield). The PDPs obtained using the fourmodels consistently show that an increase (decrease) of yield in Northern Amer-ica leads to a decrease (increase) of global price. In October, for example, an 8%rise of relative maize yield in Northern America leads to a reduction of maizeprice of 7% according to the GBMmodel, while a 0.1% decrease of relative maizeyield in Northern America is expected to increase the global price by 7% accord-ing to the same model. This result confirms the strong influence of NorthernAmerican yield on global maize prices. The PDPs obtained using the productionand yield changes in other regions show much weaker trends and much flattercurves (see, for example, the PDPs obtained for the region Southern Africa, insupplementary Fig 3.16, Fig 3.18).
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Figure 3.3 – Partial dependence plots obtained with LM, CART, rf and GBM show-ing the average response of relative price change in October (10), November (11)and December (12) to relative yield change in Northern America. The points in-dicate price variations as observed over the period of 1961-2019. The plot showsthat, according to all models, any increase (decrease) of yield in Northern Amer-ica compared to the previous year leads to a decrease (increase) of global price.

3.3.2 Classification of price increase vs. decrease

Fig 3.4 shows the results that ROC analyses for the classification models for thethreemonths considered. The results are in favour of GBM and RF with AUC fall-ing in the range of 0.7-0.8 for these methods in most cases. The 95%CI are rel-atively large, but those obtained with RF and GBM never include the benchmarkvalue 0.5, characterising a random classification. On the contrary, the 95%CI ofCART and the linearmodel sometimes include 0.5, revealing that thesemethodsdo not systematically perform better than a random classification. For a givenmonth and a given type of input, the lowest AUC is obtained by the linear modelor CART. The two types of inputs did not lead to any systematic difference inAUC values.
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Figure 3.4 – AUC values obtained for the classification models predicting priceincrease vs. price decrease in October (10), November (11) and December (12).The horizontal red line indicates AUC=0.5, i.e random classification. Vertical barsindicate the 95% confidence intervals (CI). When these bars do not include 0.5,the AUC is significantly higher than 0.5 (p<0.05)
As already noticed in the case of regression, the importance ranking of theregional production and yield inputs of the classification models reveals thatNorthern America is themost influential region, in particular for themodel GBMwhich has a good classification power. For more details, see figure 3.19 andfigure 3.20 in the Appendix 3.A.Fig 3.5 shows the PDPs of the classification models. These PDPs repres-ent the average responses of the probability of price increase to relative yieldchanges in Northern America (PDPs obtained with regional production inputsare shown in Supplementary F). Theprobability of a global price increase stronglydecreases below 0.5 as soon as the yield change is positive in Northern Amer-ica compared to the previous year. In contrast, it increases above 0.5 whenthe yield change is negative. The effect is powerful with the model GBM. Asalready noticed for quantitative price changes, the PDPs obtained with the clas-sification models showmuch weaker trends andmuch flatter curves for regions
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other than Northern America (see, for example, the PDPs obtained for the re-gion Southern Africa, in supplementary Fig 3.21 and Fig 3.23).
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Figure 3.5 – Partial dependence plots showing the probability of price increasein October, November and December as a function of relative yield change inNorthern America, for the four models considered. The points indicate pricevariations (on the y-axis, 1=price increase, 0=price decrease) as observed overthe period of 1961-2019.

3.4 Discussion

Using regional maize production data and global maize prices, we assessed theeffects of regional production and yield variations on late-season global maizeprices. Because of the existing relationship between the global price and do-mestic prices, especially in the least developed countries (Caracciolo et al., 2014),the topic is essential to dealing with food security issues in vulnerable regions.Our study is the first to address this question using various statistical andmachine learning methods. Overall, all models consistently show that Northern
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America is the most influential region, and both maize yields and maize produc-tions seem to be equally influential. However, this result is somewhat trivial asNorthern America (and,more specifically, theUSA) is the leadingmaize producerand exporter at a global scale and as the USA is known to have a strong influenceon the agricultural trademarket (Chatzopoulos et al. (2019)). However, our mod-els can provide data-driven quantitative information on the effect of regionalproduction variations on global maize prices. Our analysis provides real addedvalue because it allows us to quantify the effect of an increase or decrease in theannual production of maize in this region on the global price of this commodity.All methods reveal that a slight increase (decrease) of maize production or yieldin Northern America would lead to a decrease (increase) of the global maizeprice by a few per cent compared to the previous year. When considering themost accurate methods, an increase of maize yield relative to the previous yearof +8% in Northern America negatively affects the global maize price by about-7%, while a decrease of yield in Northern America as low as -0.1% will cause theglobal maize price to increase by more than 7%. The strong impact of maizeproduction in Northern America is confirmed by the results obtained with theclassification methods. Indeed, these methods indicate that the slight increase(decrease) in maize yield or production in Northern America has a strong negat-ive (positive) effect on the probability of maize price increase compared to theprevious year. Even a minimal decrease in maize production in Northern Amer-ica can inflate the probability of a price increase.

Among all the considered modelling techniques, ensemble tree-based tech-niques (random forest and gradient boosting) show the lowest RMSE andhighestAUC values, revealing that these methods were the best for both quantitat-ive price prediction and classification. Indeed, in addition to predicting pricechanges quantitatively, the methods tested in this paper can be used to clas-sify relative price increase vs decrease situations. The principle is to computethe probability of price change increase (or decrease) as a function of regionalproduction (or yield) changes. The tree-based models tend to outperform thesimpler GLM. Still, the rate of misclassification is approximately 25% with GBMand RF, which is relatively high but better than a random classification. As no-ticed for quantitative predictions, the production change in Northern America is,by far, themost meaningful input for classifying price increase vs price decreasesituations. All these results concur in showing that maize production change inNorthern America is a highly relevant indicator for assessing the risk of globalmaize price increase or decrease.
The nature of the inputs (i.e., production vs yield changes) has amarginal im-pact on the methods’ performance. Thus, surprisingly, both GBM and RF do notperform better when regional production variations are used as inputs instead
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of yield. However, production data combine two types of information, i.e., yieldsand cropping areas, whether yield variations alone do not account for possiblevariance in the regional maize cultivated areas.
Although the main purpose of our study is not to propose new forecast-ing tools, our models could potentially be used to predict global maize prices.Compared to other types of forecasting models, GBM and RF have several ad-vantages but also a few disadvantages. Our models rely on public data andcan be easily implemented using standard modelling open-source software. Onthe contrary, private forecasting techniques are usually unpublished, not freelyavailable, and not transparent. Structuralmodels constitute another category ofmodels that can predict the prices of agricultural commodities. These modelsrely on theories describing economic systems and are developed by interna-tional organisations such as FAO, OECD, and IFPRI. They simulate price fluctu-ations using a series of functions describing partial or general market equilib-rium. Although these models are used to predict product prices in the long run,they are not usually implemented tomake short-term predictions. They are alsocomplex and cannot be easily run by non-specialists. The WASDE model is an-other example of an operational tool formaize price predictions. Similarly to ourmodels, WASDE can forecast maize price at a monthly time step. According toHoffman et al. (2015), WASDE relies on a combination of nine different structuraland non-structural sub-models while GBM and RF can be easily implementedusing free R packages and publicly accessible data. They could be thus easilyrun by any interested stakeholder and updated every year based on the mostrecent data.
Our models could serve to predict price changes for other agricultural com-modities from regional crop productions in the future. From a practical pointof view, a disadvantage of the ML tree-based models is that they rely on yearlyregional production input data. In principle, these data are only available afterharvest, but relatively accurate values can be estimated shortly before harvestfrom local expert knowledge and model predictions. However, considering themaize growing season, it is not realistic to get reliable regional production databefore the end of summer, especially regarding regions located in the Northernhemisphere, particularly Northern America, which is a key region for predictingglobal maize price. For this reason, all models were used here to predict globalmaize prices at the end of the year, more specifically in October, November, andDecember.
In this study, we analysed the effect of regional productions on global maizeprices during the last three months of the year. We made this choice to be con-sistent with the harvest date for maize in the central maize-producing region -North America - which takes place in the very late summer and fall. Although we
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did not carry out a detailed analysis for earlier months, we did perform a sens-itivity analysis of the influence of North America depending on the month con-sidered. As a result, we found that this region retained a significant but lesserinfluence in the months preceding the harvest, probably due to the influenceof the harvest forecasts anticipated by the maize market players. In the future,however, it would be beneficial to deepen this analysis to identifymore preciselythe influence of the different producers on prices during the first months of theyear.Our approach could potentially be replicated for other crops whose produc-tion is less geographically concentrated. Such flexibility would allow us to assessthe world food price sensitivity to production shocks or an export ban in a givencountry.

3.5 Conclusions
This study demonstrates that it is possible to assess the impact of regionalmaizeproduction variations on the global price of maize using machine learning tech-niques on publicly available regional production and price data. As these meth-ods can be easily implemented using only freely available packages and publicinformation, our results contribute to forecasting the global price of maizemoreaccessible. As such, our price prediction technique can be included food secur-ity management programs and policies and possibly serve as a price forecaster.Furthermore, the methods considered can rank regional producers accordingto their influence on global maize prices. Our results show that Northern Amer-ica is the most influential out of all regions. More specifically, our results revealthat, for maize, small positive production changes relative to the previous yearin Northern America have a strong and negative impact on global maize prices.Our study highlights the potential interest of ML for predicting global prices ofmajor commodities from regional production and assessing price sensitivity toregional crop producers.
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3.A Appendix
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(b) Inputs=relative regional yield changes
Figure 3.6 – Relative change in the global maize price versus relative regionalproduction (a) and yield (b) changes, for three biggest maize producing regions
Regression based analysis

Fig 3.75 shows the CART tree fitted to predict pm,y in October as a function ofthe regional production (or yield) changes. This tree has four (fig 3.7a) or five(fig 3.7b) final nodes, defined by three or four inputs corresponding to differentregions. The tree root (the upper rectangle in the diagram centre) includes 56observations (i.e., the whole dataset) with an average p10,y of 0.59%. Referringto Fig 3.7a, after the algorithm examines all possible partitions according to theset of input variables, the optimisation function of CART finds that themaximumreduction of RSS. This result is achieved by splitting the 56 price data into twogroups, defined by the maize production in Northern America, at a cut-off pointof 1.9%. All regions with production change more significant than 1.9% are in-cluded in the right branch (no.2). On the contrary, when production change inNorthern America is lower than 1.9%, the right branch of the tree (no.3) is used.The second partition is done based on the Caribbean (if xNA ≥1.9%) or South-ern Africa (if xNA <1.9%). The final nodes at the bottom of the diagram include
5app 3.7 - fig 3.12 were implemented with the package Rattle of the R software (Williams,2011) (fancyRpartPlot function)
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the average observed price change corresponding to five different production(or yield) situations. These results correspond to the average price changes re-ported in the final nodes. Here, the fitted tree produces four different priceestimations determined by the values of three inputs.

(a) Inputs=relative regional productionchanges (b) Inputs=relative regional yield changes
Figure 3.7 – CART models computing p10,y of maize (i.e., relative price change inOctober) as a function of relative regional production changes (a) and relativeregional yield changes (b). All nodes of each tree include three numbers; theaverage relative price change value over all data falling in the considered node,the number of data in each node (n), the % of data in each node. The terminalnodes (at the bottom) report the relative price changes predicted by the CARTmodels
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(a) Inputs = relative regional productionchanges (b) Inputs = relative regional yield changes
Figure 3.8 – CART models computing p11,y of maize (i.e., relative price change inNovember) as a function of relative regional production changes (a) and relativeregional yield changes (b)

(a) Inputs=relative regional productionchanges (b) Inputs=relative regional yield changes
Figure 3.9 – CART models computing p12,y of maize (i.e., relative price change inDecember) as a function of relative regional production changes (a) and relativeregional yield changes (b)
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Figure 3.10 – Observed relative price change vs. Predicted relative price change,October (10) November (11) andDecember (12), with yield changes used as inputs.
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Figure 3.11 – Observed relative price change vs. Predicted relative price change,October (10) November (11) and December (12), with production changes used asinputs.
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Figure 3.12 – Importance ranking of changes in production on the global maizeOctober (10), November (11) and December (12) price. Importance levels are com-puted using the RMSE criterion and the permutation technique.
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Figure 3.13 – Partial dependence plots obtained with LM, CART, RF and GBMshowing the average response of relative price change in October (10), Novem-ber (11) and December (12) to relative yield change in Southern Africa.
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Figure 3.14 – Partial dependence plots obtained with LM, CART, RF and GBMshowing the average response of relative price change in October (10), Novem-ber (11) and December (12) to relative production change in Northern America.
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Figure 3.15 – Partial dependence plots obtained with LM, CART, RF and GBMshowing the average response of relative price change in October (10), Novem-ber (11) and December (12) to relative production change in Southern Africa.

Classification based analysis

Fig 3.16 shows the tree obtained for classifying October price into two categor-ies: price increase or decrease. Here, also, themost influential input is NorthernAmerica. According to the fitted tree, the highest chance of price decline in Oc-tober occurs when the annual North-American production increases by morethan 5.2%.
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(a) Inputs=relative regional productionchanges (b) Inputs=relative regional yield changes
Figure 3.16 – CART models computing the probability of relative maize price in-crease in October as a function of relative regional production changes (a) andrelative regional yield changes (b). Each node of each tree includes three num-bers; the proportion of data showing a price increase among the data fallingin the considered node, the number of data in each node (n), the % of data ineach node. The terminal nodes (at the bottom) reports the probabilities of priceincrease computed by the CART models

(a) Inputs=relative regional productionchanges (b) Inputs=relative regional yield changes
Figure 3.17 – CART models computing the probability of relative maize price in-crease in November as a function of relative regional production changes (a) andrelative regional yield changes (b).
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(a) Inputs=relative regional productionchanges (b) Inputs=relative regional yield changes
Figure 3.18 – CART models computing the probability of relative maize price in-crease in December as a function of relative regional production changes (a) andrelative regional yield changes (b).
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Figure 3.19 – Importance ranking of changes in yield on the global maize October(10), November (11) and December (12) price. Importance levels are computedusing the cross-entropy loss (CE) with the permutation technique.
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Figure 3.20 – Importance ranking of changes in production on the global maizeOctober (10), November (11) and December (12) price. Importance levels are com-puted using the cross-entropy loss (CE) indicator with the permutation tech-nique.
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Figure 3.21 – Partial dependence plots showing the probability of price increasein October, November and December as a function of relative yield change inSouthern Africa.
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Figure 3.22 – Partial dependence plots showing the probability of price in-crease in October, November and December as a function of relative productionchange in Northern America.



3.A. APPENDIX I 91
10 11 12

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

0

1

Relative production change in Southern Africa

P
ro

ba
bi

lit
y 

of
 p

ric
e 

in
cr

ea
se

model

cart

gbm

glm

rf

Figure 3.23 – Partial dependence plots obtained with LM, CART, RF and GBMshowing the average response of relative price change in October (10), Novem-ber (11) and December (12) to relative production change in Southern Africa.

Tables

Regression based analysis

Tables 3.4 and 3.5 show the summary statistics of multivariate linear regressionmodels predicting relative price changes as a function of relative regional pro-duction changes (table 3.4) and relative regional yield changes (table 3.4). Inthe first row of each region are the estimated coefficients, βk, namely, relativechange in p10,y, p11,y and p12,y induced by a one percent increase in regional pro-duction, xk,y, where all other variables are fixed. The values in brackets showthe levels of significance (p-value) of all estimated coefficients. The region withthe strongest (and significant) impact is Northern-America.
Tables 3.6 and 3.7 show a summary statistics of the classification linearmod-els, GLM, which compute the probability of relative maize price increase in Oc-tober, November and December as a function of relative regional production
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changes (tables 3.6) and relative regional yield changes (tables 3.7). The tablesshow the change in the logit of the probability of global maize price increase in-duced by each regional input, and the significance of the estimated coefficients(between brackets).
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Table 3.2 – Summary statistics for regional data over 1961-2018.
Production data (FAOSTAT)

(1000 tonnes)
Regions %/total AverageCaribbean 0.08% 460
Central America 3.27% 17,825
Central Asia* 0.11% 1,251
Eastern Africa 2.64% 14,395
Eastern Asia 19.03% 103,592
Eastern Europe 6.23% 33,925
Middle Africa 0.47% 2,563
Northern Africa 0.91% 4,974
Northern America 40.59% 220,940
Northern Europe* 0.00% 38
Oceania 0.08% 424
South America 9.75% 53,066
South-eastern Asia 3.52% 19,186
Southern Africa 1.68% 9,170
Southern Asia 2.95% 16,037
Southern Europe 3.83% 20,845
Western Africa 1.47% 7,975
Western Asia 0.56% 3,069
Western Europe 2.80% 15,264
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Table 3.3 – Summary statistics for regional data over 1961-2018.
Production data (FAOSTAT)

Yield (1000 hg/ha)
Regions Average Min. (year) Max. (year)Caribbean 11.13 8.54 (1993) 14.78 (2004)
Central America 20.13 9.74 (1961) 34.41 (2018)
Central Asia* 47.74 25.63 (1997) 65.72 (2018)
Eastern Africa 13.54 9.52 (1965) 19.44 (2014)
Eastern Asia 39.01 12.28 (1961) 60.89 (2017)
Eastern Europe 36.91 18.4 (1963) 70.02 (2018)
Middle Africa 8.5 6.74 (1979) 10.9 (2015)
Northern Africa 41.2 15.91 (1961) 69.12 (2012)
Northern America 73.34 39.23 (1961) 118.01 (2017)
Northern Europe* 34.36 10 (1985) 71.74 (2016)
Oceania 50.47 17.33 (1966) 87.81 (2015)
South America 27.72 12.95 (1964) 59.26 (2017)
South-eastern Asia 21.83 9.02 (1961) 46.14 (2018)
Southern Africa 23.89 7.88 (1992) 58.13 (2017)
Southern Asia 17.28 10.02 (1971) 34.29 (2017)
Southern Europe 54.31 21.13 (1961) 90.58 (2018)
Western Africa 12.02 6.96 (1972) 19.54 (2018)
Western Asia 34.87 11.4 (1962) 79.18 (2018)
Western Europe 69.51 22.56 (1962) 103.05 (2011)
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October November December
(Intercept) -0.008 0.025 0.023(0.704) (0.180) (0.211)EasternAfrica 0.241 0.369 0.290(0.091) (0.013) (0.040)EasternAsia 0.334(0.057)NorthernAmerica -0.372 -0.269 -0.293(0.000) (0.001) (0.000)Oceania 0.168(0.075)SouthAmerica 0.244 0.209 0.232(0.062) (0.119) (0.071)SouthEasternAsia 0.182(0.147)SouthernAfrica -0.075 -0.116 -0.074(0.049) (0.004) (0.050)WesternAsia -0.366 -0.298 -0.342(0.022) (0.051) (0.020)Caribbean -0.422 -0.295(0.011) (0.061)
Num.Obs. 56 56 56R2 0.495 0.483 0.466R2 Adj. 0.409 0.420 0.400AIC -76.0 -74.0 -79.1BIC -55.8 -57.8 -62.9Log.Lik. 48.013 45.004 47.549

Table 3.4 – Linear regression, Inputs=relative regional production changes



96 CHAPTER 3. ESSAY I

October November December
(Intercept) 0.016 0.017 0.031(0.409) (0.461) (0.067)EasternAfrica 0.319 0.466 0.307(0.017) (0.003) (0.029)MiddleAfrica 0.876 0.821 0.540(0.001) (0.006) (0.036)NorthernAfrica -0.350 -0.394(0.075) (0.080)NorthernAmerica -0.539 -0.481 -0.577(0.000) (0.000) (0.000)SouthEasternAsia 0.738 0.595(0.027) (0.115)SouthernAfrica -0.069 -0.077 -0.056(0.077) (0.087) (0.163)SouthernEurope -0.181 -0.185(0.153) (0.202)WesternAsia -0.356 -0.326 -0.364(0.053) (0.120) (0.058)WesternEurope 0.136 0.176(0.095) (0.061)
Num.Obs. 56 56 56R2 0.606 0.525 0.485R2 Adj. 0.529 0.432 0.433AIC -88.0 -72.7 -83.2BIC -65.7 -50.4 -69.0Log.Lik. 54.999 47.354 48.580

Table 3.5 – Linear regression, Inputs=relative regional yield changes
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October November December
(Intercept) -1.241 -0.849 -0.734(0.069) (0.245) (0.359)EasternAsia 11.273 13.760(0.029) (0.082)MiddleAfrica 11.782 24.357 13.839(0.113) (0.044) (0.142)NorthernAmerica -12.679 -14.458 -14.367(0.002) (0.007) (0.006)Oceania 7.747 11.244 11.549(0.027) (0.012) (0.026)SouthAmerica 13.491 10.101 16.375(0.012) (0.049) (0.027)SouthEasternAsia 7.799 22.156 10.735(0.077) (0.022) (0.096)SouthernAsia -8.310 -9.282 -10.242(0.071) (0.075) (0.064)WesternAsia -10.081 -11.730 -24.163(0.046) (0.059) (0.029)Caribbean -17.261(0.034)EasternEurope 18.163 15.166(0.007) (0.038)NorthernAfrica -17.639(0.036)SouthernEurope -18.862 -24.117(0.034) (0.041)WesternEurope 4.198(0.173)
Num.Obs. 56 56 56AIC 59.5 56.5 57.2BIC 77.7 80.8 81.5Log.Lik. -20.727 -16.236 -16.597

Table 3.6 – Summary statistics of the classification linear models, GLM, In-puts=relative regional production changes
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October November December
(Intercept) 0.242 -0.943 1.727(0.691) (0.259) (0.010)Caribbean 9.602 12.766 12.620(0.132) (0.113) (0.122)MiddleAfrica 21.082 47.144 26.697(0.012) (0.014) (0.023)NorthernAfrica -14.884 -45.965 -13.985(0.022) (0.014) (0.041)NorthernAmerica -12.637 -21.116 -18.034(0.001) (0.007) (0.003)SouthEasternAsia 20.966 90.067(0.155) (0.014)SouthernAsia -8.086 -20.623 -14.116(0.090) (0.019) (0.025)WesternAsia -9.653 -23.056(0.118) (0.012)EasternAfrica 12.587 7.477(0.032) (0.138)EasternEurope 10.131 7.601(0.086) (0.115)SouthernEurope -12.183 -13.813(0.189) (0.092)WesternAfrica -27.689(0.016)WesternEurope 9.432 5.866(0.061) (0.062)
Num.Obs. 56 56 56AIC 58.7 56.0 59.2BIC 74.9 80.3 81.4Log.Lik. -21.354 -15.989 -18.580

Table 3.7 – Summary statistics of the classification linear models, GLM, In-puts=relative regional yield changes



Chapter 4

Forecasting global maize prices
from regional productions

Co-author: David Makowski

Abstract

This study analyses the quality of six regression algorithms in forecasting themonthly price of maize in its primary international trading market, using pub-licly available data of agricultural production at a regional scale. The forecast-ing process covers a period of between one and twelve months ahead, usingsix different forecasting techniques. Three of them (CART, RF, and GBM) aretree-based machine learning techniques able to capture the relative influenceof maize-producing regions on global maize price variations. Additionally, weconsider two types of linear models - standard multiple linear regression andvector autoregressive (VAR) model. Finally, TBATS serves as an advanced time-seriesmodel that holds the advantages of several commonly used time-series al-gorithms. Using cross-validation, we compare the predictive capabilities of thesesix methods. We find RF and GBM have superior forecasting abilities relative tothe linearmodels and that TBATS ismore accurate for short time forecasts whenthe time horizon is shorter than threemonths. On top of that, themodels assessthe marginal contribution of each of the producing regions to the most extremeprice shocks that occurred through the past six centuries, in both positive andnegative directions, using Shapley decompositions. Our results reveal a stronginfluence of North-American yield variation on the global price, except for thelast months preceding the new-crop season.
99
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4.1 Introduction

The prices of food and agricultural products are of interest to many stakehold-ers, including policymakers, traders, and consumers. Moreover, these priceshave ahigh impact onbusinesses andpeoplewhodependonagricultural products.Therefore, predicting the prices of agricultural commodities is a highly strategicissue.
Price forecasters commonly use the prediction methods depending on thetarget time horizon. For example, Partial-equilibrium (PE)and General equilib-rium models (GEM) are common (Valin et al., 2014) for long-term predictionsbecause long-term price changes (i.e., over several years or decades). In suchhorizons, price changes are primarily the results of political or climatic changesand long-run market structures and demographic dynamics. Therefore, suchpredictions are relevant in the context of the need for ahead-of-time adaptationand long-term strategy, particularly for policymakers.
Short-time agricultural price changes are relevant for traders who sell or buyagricultural commodities hourly or daily. At this time frame, price fluctuationsdepending on the short-term balance between supply and demand and thecommodity market dynamics (Piot-Lepetit and M’Barek, 2011). Therefore, short-term predictions usually use standard time series analysis techniques such assmoothing methods or ARIMA models.
This paper focuses on medium-time fluctuations, i.e. over periods of up toone year. Those fluctuations mainly affect domestic markets but sometimesspill over into the global market, depending on their level, the crop in ques-tion, and region which had been affected (Headey and Fan, 2010). The UnitedStates Department of Agriculture (USDA) (ERS-USDA, 2021) publishes monthlyprice forecasts based on amodel namedWorld Agricultural Supply and DemandEstimates (WASDE), to provideUSDA staffs andpolicymakerswith price forecastsmonthly and for up to 16 months ahead (Hoffman et al., 2015). However, themethodology used in WASDE is considered as complex (Hoffman et al., 2018)and is not fully accessible. Furthermore, (Hoffman, 2011; Warr, 1990; Hoffmanet al., 2015; Lusk, 2016) have criticised it for its lack of accuracy.
Here, we focus on maize, a major agricultural commodity used worldwide.Maize plays a crucial role in global food security (directly or through livestockfeed) and energy crops. More specifically, our objective is to predict maize’smonthly average global price. To do so, we test three machine learning (ML) al-gorithmsbasedon regression trees, predicting the annual change in themonthlymaize price from the annual changes in regional maize productions or yields.These techniques aim at capturing the effect of the regional supply level changeon global maize prices. In addition to these three ML algorithms, we use two
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time-series methods: vector autoregressive model (VAR), which had previouslyproven to capture the effects of shocks in exogenous variables on feed prices(Schaub and Finger, 2020), and Trigonometric Seasonal Box TransformationwithARMA residuals Trend and Seasonal Components (TBATS), a model that enablesus to predict price changes based on the combined influence of trends, season-ality, and auto-correlations of monthly prices.

In this paper, we compare the performances of these five models for out-of-sample predictions to those of a benchmark model based on linear regressionfor time horizons of one to twelve months ahead. Besides, we show that thethree ML algorithms tested here can be used to identify the most influentialmaize-producing regions and to identify the origins of price shocks.

4.2 Data

The relationship between commodity price shocks and annual supplies dependsnot only on how production changes at the global scale but also on regionalproductions (Hertel et al., 2016). For this reason, we used regional productionand yield annual changes as dependent variables (see table 4.2 and table 4.3in Appendix 4.A). These data were collected in 242 countries and are publiclyavailable in FAOSTAT for 1961 to 2019 to aggregate 19 regions (FAO, 2020). Asthe harvest dates differed across these regions (according to their location inthe northern or southern hemispheres), we assumed that the production (oryield) in a given region would have an impact on maize prices during one yearstarting from the harvest month of the biggest producer of this region. Thisperiod corresponds roughly to the market year of each region. For example,based on this approach, we assume that production (yield) in Northern Americain year y starts impacting monthly maize price from October of that year untilSeptember year y + 1. In contrast, we assume that the production in SouthernAmerica (locatedmainly in the southern hemisphere) impactsmaize prices fromMarch year y until February year y + 1. All the periods considered are shown inAppendix 4.A.
We converted the nominal maize prices (US No. 2 yellow from the WorldBank’s commoditymarket database) into real 2010 USD. Then, we defined qm,y asa series of deflated monthly global maize prices, wherem and y are the monthsand year indices, respectively, so that m=1,...,12 and y=1,...,Y . The second series

zk,y describes the production (or yield) in a region k (k=1, . . . ,K) and a year y.Since these variables have different units, we express them in relative terms asfollows:
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pm,y =
qm,y − qm,y−1

qm,y−1

(4.1)
xk,y =

zk,y − zk,y−1

zk,y−1

(4.2)
Fig 4.1 provides a visual representation of the three types of time series usedin this study. Note the significant differences between the levels of variability ofproduction and yield.
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Figure 4.1 – Annual changes (%) in global price, regional production and regionalyield (in the three biggest producing regions).

4.3 Methods
We consider two types of models, i.e. models predicting maize price changesas a function of yearly production (yield) changes and models predicting maizeprice changes from past monthly observations of price changes and yearly pro-duction (yield) changes. The first type of models can be expressed as
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pm,y = f(x1,y, ..., xk,y, ..., x19,y) (4.3)
and the second as:

pm,y = f(pm,y−1, x1,y, ..., xk,y, ..., x19,y) (4.4)
where k is the region index. We consider different types of function f , basedon linear models and machine learning algorithms, as described below.

4.3.1 Models 1, 2, and 3 - Machine learning
The use of ML makes it possible to discover hidden patterns about the relation-ship between the direction and magnitude of changes in pm,y versus the variab-ility in xk,y. This way, we can detect non-linear relationships between variableswithout making any strong preliminary assumptions on the shapes of the rela-tionships. More specifically, we use three different approaches, namely classi-fication and regression trees (CART, model 1), Random Forest (RF, model 2), andgradient boosting (GBM, model 3).Classification and regression trees (CART) is a recursive ML technique de-veloped by Breiman et al. (1984). The algorithm receives all the observationsthat include information about the input variables (x1,y,x2,y,...,x19,y), and build aregression tree to minimise the error rate in predicting pm,y, measured here bythe residual sum of squares (RSS). The partitioning process starts with a singleleaf at the top of the tree (root). In each step, the algorithm splits the node intotwo, each defined by a different input (region), and stops when no further im-provement is possible, i.e., when RSS cannot be any lower. We fit CART using the
rpart package of R (Therneau et al., 2019). An illustration can be found in fig 4.8,Appendix 4.A.CART models are usually easy to interpret but are considered weak learners(Luo et al., 2019), which might be highly biased. To overcome this problem, weapply two alternative methods based on the assembly of high numbers of indi-vidual trees, namely random forest (RF) and gradient boosting machine (GBM)(Liaw et al., 2002). RF takes a random subset of the original dataset and uses it tofit a basic decision tree to predict pm,y. A bootstrapping process is implemented
T times (t = 1, ..., T ), and the T resulting trees are then averaged to produce thefinal predictions. Here, we find that RF leads to the most stable results with T= 500 trees. RF is applied here using the package randomForest (Breiman et al.,2018).Similar to RF, GBM examines periods as a subsample of the data and usesthem to fit a single tree. Nevertheless, unlike the latter, the selected sub-sample
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is chosen according to the estimation error obtained in the analysis of the pre-vious training set. In this study, we find that GBM returns the most accurateforecast when using T=100 trees. This method is implemented with the gbm Rpackage Friedman (2001).

4.3.2 Model 4 - Multivariate linear regression

In linear model (LM), price change pm,y is related to xk,y as:

pm,y = αm +
Ks∑
k=1

βk,mxk,y + εm,y (4.5)
where αm is the intercept, βk,m are regression parameters, εm,y are the re-siduals, and Ks (< 19) is the number of selected regions. One model is fittedseparately for each monthm (with the function lm of the R software). To obtaina parsimoniousmodel, we use a step-wise algorithm (based on AIC) to select themost influential Ks regions. Because of its simplicity and strong assumptions,this linear model serves as a benchmark model.

4.3.3 Model 5 - VAR

Model vector autoregressive (VAR) empirically examines the evolution and com-mon effects that time series have on each other so that it describes the relation-ships over time between all the variables in question. In this case, the model in-cludes several dynamic variables that affect each other and the effect of shocksin each explanatory variable on the global price. Unlike the models we haveused so far, pm,y is not only a function of xk,y but also of the past price changevalues, pm,y−1.The basic purpose of VAR is to describe the interactions between all variablesand try to predict future effects. Since firstly introduced by Sims (1980), VARhas been widely used and is considered a particularly effective tool in designingpolicy strategies (Bernanke et al., 2005; Jouchi et al., 2011). Here, we use thisapproach to predict pm,y as a function of pm,y−1 and of xk,y as follows:

pm,y = αm + β0,mpm,y−1 +
K∑
k=1

βk,mxk,y + εm,y (4.6)
One separate model is fitted for each month m using the vars R package(Pfaff and Stigler, 2018).



4.4. MODEL EVALUATION 105
4.3.4 Model 6 - TBATS

The Trigonometric Seasonal Box Transformationwith ARMA residuals Trend andSeasonal Components (TBATS) model (De Livera et al., 2011) is an upgraded time-seriesmodelwhich candealwith trends,multiple-seasonality and auto-correlations.Thismethod automatically determineswhether a Box-Cox transformation of thedata is required, whether seasonality needs to be accounted for (based on Four-ier series), and whether a time trend should be included. It also automaticallyselects the optimal number of autoregressive and moving average componentsfor predicting the target response variable.Contrary to the models mentioned above, TBATS is fitted to the time seriesof the relative annual change in the monthly price of maize directly, withoutusing the production data. TBATS aims at predicting price changes from thepast series of observed price changes without taking regional productions intoaccount. We consider several time horizons for price change predictions, fromone month ahead to one year ahead. Here, this method is implemented withthe R package forecast (Hyndman et al., 2020).

4.4 Model evaluation

Themodel prediction errorswere assessed and comparedusing a cross-validation(CV) technique, implemented separately for each month and model. At each it-eration of the CV, we select a sub-sample (training-set) containing observationsfrom all the first Ỹ years plus the i following years (i is successively set equal to1, 2, ...I , where I=13 or 14, depending on the month considered, and Ỹ is equalto 44 or 45). At each iteration, the training set trains the models, and the result-ing trained models are used to predict the price change at year Ỹ + i + 1. Withthis procedure, we ensure that at least Ỹ + 1 years of data are available to trainthe models. Smaller datasets would lead to inaccurate predictions and a lack ofidentifiability.We define the forecast error for themodel in monthm of themarketing year
y as:

εm,y = p̃m,y − pm,y (4.7)
where pm,y is the observed price, and p̃m,y is the forecast made in m of themarketing year y by any of the models considered in this study. We then usethese errors to compute an RMSE for each month and each model, as:

RMSEm =

√∑I
i=1(p̃m,y − pm,y)2

I
(4.8)
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The accuracy of TBATS predictions is evaluated by computing the RMSE cri-terion for 12 different time horizons, i.e. h=1,2,...,12 months ahead. For a givenyear, a given month, and a given time horizon, TBATS is trained using all pricedata available before the monthm−h, and the trained model is used to predictthe value of pm,y (Ỹ = 28, ITBATS = 690). This procedure is repeated relative toevery year, every month, and time horizon. Then, a specific value of RMSE hascomputed for each month m and time horizon h combination by averaging theprediction errors among all years of data.

Finally, we assess and rank the influences of the producing regions using twodifferent techniques. First, we use permutation ranking with RF and GBM to as-sess the importance of each region for predictingmaize prices. This approach al-lows us to identify themost and least influential regions when forecastingmaizeprice changes (Appendix 4.A). Second, using the Shapley decomposition tech-nique (Shapley, 2016), we strive to identify the regional production variationsresponsible for specific extreme price change anomalies that occurred at somespecific months and years in the past. Importance ranking and Shapley decom-position were implemented using the package iml of the R software.

4.5 Results

Fig 4.2 below presents the price change forecasts obtained by the differentmod-els considered.
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Figure 4.2 – Forecasted maize monthly price changes obtained with all models.CART, RF, GBM, LM, and VAR are shown on the left. The TBATS forecasts aredisplayed on the right for time lag ranging from 1 to 12 months. The black linesindicate the observed price changes
The left side of the figure (fig 4.2) presents the forecasts derived from the MLand linear models in the period between October 1990 and January 2020 (Seg-mentation bymonths is in Appendix 4.A). Generally, MLmodels tend to producemore accurate predictions than LM and VAR, as the latter twomethods producesomewhat fluctuating predictions. Nonetheless, VAR seems to perform well incase of extreme price shocks.TBATS predictions tend to divergemore from the observations when derivedseveral months before the dates of forecast (right side of fig 4.2). For lag longerthan three months, the predictions differ a lot from the observations.Fig 4.3 below shows the relative advantage of using each model for fore-casting pm,y, with the reference value being the observed standard deviation ofthe price each month (sd(pm,y)). This measure corresponds to the differencebetween sd(pm,y) and the RMSE of each model the same month, divided by

sd(pm,y), and expressed in percentages. A positive value indicates that the cor-responding model is better than a constant prediction equal to zero. This way,
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all the points below the black horizontal line indicatemodels showing ineffectiveprice forecasts. In contrast, those above indicate models whose average fore-cast errors are lower than sd(pm,y). Such models are better than a constant pre-diction equal to zero. The highest relative advantage values (located at the topof the graphic) indicate the most relevant models, which appear to be the tree-based methods in most cases (GBM, RF, and CART). The results are presentedseparately for TBATS to assess the influence of the time lags on the predictionaccuracy. The relative advantage of TBATS compared to a constant prediction ishigh for a time horizon up to 3 months and became very low after six months.
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Figure 4.3 – Relative advantage in terms of prediction accuracy of the forecastingmodels, over 1990-2020. This measure corresponds to the difference betweenthe standard deviation of the price changes in the whole dataset (sd(pm,y)) andthe RMSE of each model the same month, divided by sd(pm,y), and expressed inpercentages. It indicates the relative benefit of using the models compared toa constant prediction equal to zero. ML methods, LM and VAR were used withproduction and yield inputs, successively.
Results show that several models are more accurate than constant predic-tions. The relative advantages of GBM tend to be higher when applying regional
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productions as inputs rather than regional yields. However, the differencesbetween the two types of inputs are not very high. The relative advantages of LMor VAR are often negative, revealing that these methods do not often performbetter than constant predictions. Concerning TBATS (fig 4.3, right), price changepredictions are more accurate than constant predictions, as long as the time-horizon for forecasting remains lower than 3 or 4 months. For such cases (darkpoints in Figure 4.3), the relative advantage of TBATS predictions can be higherby 78% higher than constant predictions. On the other hand, for longer timehorizons, the accuracy of TBATS decreases rapidly and becomes not efficient atall for lag higher than six months.

We used the cross-validated values of RMSE to identify the most accuratemodels for each time horizon between one month and a year ahead, as shownin Table 4.1.
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Table 4.1 – Best forecasting options for different months. The names reportedfor each month correspond to the models showing the lowest RMSE for predict-ing price change at this period. The numbers indicate the RMSE values of thebest models. As TBATS tends to perform very well for short time lags, TBATS ap-pears to be the best option for all months when the time lag is in the range of 1 to5. For longer time lags, other models (in particular GBM) are more accurate. ForCART and GBM, the name between brackets indicates whether the predictionswere more accurate with regional yields or productions. The last column (sd pobs.) indicates the empirical standard deviations of the observed price changes,which can be considered as a benchmark
Time lags (months) sd p

m 1 2 3 4 5 6 7 8 9 10 11 12 obs.
Jan. TBATS GBM (xk,y=Production)

0.05 0.06 0.09 0.11 0.17
Feb. TBATS GBM (xk,y=Production)

0.05 0.08 0.09 0.11 0.13 0.19
Mar. TBATS GBM (xk,y=Production)

0.04 0.08 0.11 0.12 0.14 0.18
Apr. TBATS GBM (xk,y=Production)

0.06 0.08 0.11 0.13 0.14 0.18
May TBATS GBM (xk,y=Production)

0.06 0.06 0.09 0.12 0.15 0.18
Jun. TBATS GBM (xk,y = Yield)

0.08 0.09 0.11 0.13 0.14 0.16 0.17 0.22
Jul. TBATS CART (xk,y=Production)

0.11 0.15 0.14 0.15 0.20
Aug. TBATS GBM (xk,y=Production)

0.07 0.12 0.19
Sept. TBATS CART (xk,y=Production)

0.09 0.14 0.18
Oct. TBATS GBM (xk,y=Production)

0.06 0.11 0.17
Nov. TBATS GBM (xk,y=Production)

0.06 0.11 0.15 0.19
Dec. TBATS GBM (xk,y=Production)

0.04 0.07 0.1 0.13 0.17
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According to table 4.1, TBATS is the bestmodel to predict pm,y in each of the 12months of the year in a forecast range of two (September to November) to fivemonths ahead (FebruaryMarch, andMay to August). However, to predict a pricefor time horizons longer than three or four months, ML models are often morereliable and, in addition, offer the possibility to identify the most and least influ-ential regions based on importance ranking and Shapley decomposition. For ex-ample, importance rankings (Supplementary fig 4.9 and fig 4.10 in Appendix 4.A)reveal a strong influence of Northern America for almost all months. Corres-pondingly, Western Asia, another central producing region, had strong relativeinfluence substantially during the two months preceding the harvest season inNorthern America (July and August).The Shapley decompositions confirm the strong influence of Northern Amer-ica. Two Shapley decompositions are shown in fig 4.4 for two extreme eventscorresponding to a substantial price increase and a firm price decrease overthe period considered. Each regional Shapley value indicates the share of theprice anomaly (either in December 1995 or in December 2013) explained by thecorresponding region. According to these decompositions, the high maize priceincrease occurring in December 1995 appears to be mainly due to the changesin maize production obtained in Northern America and, to a lower extend, inSouthern Africa. The maize productions in Northern America are also respons-ible for a significant share of the substantial price decrease in December 2013.Other examples confirming the significant role of Northern America are shownin Appendix 4.A.

4.6 Discussion
This research project analyses six decades of the global maize market. Maizeis the highest produced crop worldwide and an essential energy source, espe-cially in developing countries. Our study attempts to forecast the internationalmonthly price of this commodity as a function of regional production. Althoughmany have analysed and attempted to predict the price of maize accurately(see, for example, Hoffman et al. (2015), Xiaojie and Yun (2021), and Ahumadaand Cornejo (2016)), very few have developed methods that are both easy toreproduce and interpret by users who are not necessarily specialists in priceprediction. With regards to ML, our study offers a double contribution. First,on the academic side, it is the pioneer in performing Medium Term price fore-casting of maize using ML, let alone detecting the main drivers for maize pricechanges through investigation of the ML algorithms. Second, it offers a prac-tical, non-academic contribution - providing a range of price forecasting toolsthat stakeholders who do not have access to the best tools needed to trade in
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Figure 4.4 – Shapley values for December 1995 (strong price increase) andDecember 2013 (strong price decrease). The decompositions show the contribu-tions of the producing regions to two extreme relative price changes (regionalproductions in red, and yields in blue). At a given date, the sum of the regionalShapley values is equal to the price change anomaly

global markets optimally can use easily.
Our study uses machine-learning algorithms and relies on publicly availabledata only. It is based on the use of annual regional yields and productions toenable the user to evaluate the sense behind the results, principally challengingthe transparency of each model. The chosen models were those which had pre-viously tested in relation with the global maize market and regional production(Zelingher et al., 2021), notable are CART (Breiman et al., 1984), RF (Hastie et al.,2009) and GBM (Friedman, 2001). To those are added two econometric models,each possess certain advantages: VAR (Sims, 1980), which can detect inter-andintra-effects of local productions shocks, and TBATS (De Livera et al., 2011), as atime-series based approach that has proved to achieve low forecasting errors(Lima and Laporta, 2020).
To understand the process behind themodels’ output and identify the forces
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which drive these price change forecasts, we use two evaluation techniques:a relative importance examination and Shapley decomposition (Shapley, 2016).The integration of these two model-agnostic approaches guarantees an overallunderstanding of the different forces that act in the global commerce of maize.At first, the relative importance examination quantifies the impact of each pro-ducing region on annual changes in the monthly price (as a consequence ofits contribution to the forecasting ability of the model). Next, Shapley providesa case-explicit examination, showing the nature (positive/negative correlation)and level (as a relation to the interaction of all regions with the dependent vari-able) regional production changes in a specific year affected price changes atsome selected date. This measurement is especially critical for understandingthe forces influencing extreme price changes, which might drive a global foodcrisis.

The paper emphasises the importance of conducting a constant comparisonbetween the forecast values of several forecasting algorithms while looking atthe marginal contribution of each factor to the output. Furthermore, this studyhighlights the importance of predicting global maize prices according to variousscenarios using different models. This way, the impact of the various producingregions (input) can be examined and evaluated accordingly. That becomes cru-cial when a change in the production of a highly influential region is observedor projected.
Our results demonstrate significant dissimilarities between the impact levelsof the different regions, withmonthly variance. Indeed, the relationship betweenmaize prices and production changes in major producing regions are apparent,as Headey and Fan (2010) had already claimed. However, the "New-crop" periodalso plays a critical role. It is not by hazard that the impact of Northern Americais evident throughout the entire year except for July and August. As it happens,the primary harvest season in this region begins next month, i.e., in September,so it is clear that the previous year’s crop is no longer traded. However, it is notyet possible to predict with certainty the amount of crop harvested in the com-ing months. Therefore, the impact of Northern America in these months is low,despite being a big maize producer and exporter. Similarly, these two monthsare when the relative impact of Western Asia becomes high, as they present themain harvest season in this region.
This study proposes a significant contribution to the price forecasting liter-ature of agricultural commodities. First and foremost, it is constructed to bereplicated. Whereas to date, many have been obliged to base their food se-curity strategy on paid data obtained from private companies or based on finalresults published as obscure numbers (see WASDE, World Bank CommoditiesPrice Forecast or FAO-AMIS Market Database); our research offers an available
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high-quality alternative. Indeed, activating the code through all stages, includ-ing those leading to the "black box" opening, will provide the user with predictedmaize price values and an understanding of the processes and effects leadingto these forecasted price values. Another contribution derives from the divisionof the forecasting period simultaneously to months and time horizon, giving theusers the unique opportunity to adapt their strategy in case of possible changesin the maize market, principally in high influential regions. Lastly, the paper en-ables analysis of specific events through the Shapley-algorithm, while taking theopportunity to understand the existing gap between average marginal regionalimpacts and those that occur in times of extreme price changes.Although this project deals with maize, the tested methodologies can be ap-plied to other agricultural commodities. In future work, we will examine this as-sumption on several different internationally traded crops. There, we will striveto capture inter-and intra-sectoral differences and detect the factors impactingprice volatilities in each of them. Indeed, the broader this open-price-forecastingwill get, the higher will become its contribution to global food security.
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4.A Appendix

4.A.1 Data information

Table 4.2 – Variable description and sources.
Final data

Data Unites Time-range Indices SignProduction % change/year 1962 - 2019 k = Region, y = Year xk,y

Yield % change/year 1962 - 2019 k = Region, y = Year xk,y

Price % change /year 01/1961 - 11/2020 m = Month, y = Year pm,y

Initial information
Data Unites Time-range Source Sign

Price Nominal USD, m/tonne 01/1960 - 11/2020 World Bank, Pink Sheet (2020)
Price index USD (2010 = 100) 01/1960 - 11/2020 World Bank, Pink Sheet (2020)
Production tonnes / year 1961 - 2019 FAO STAT (2020) zk,y

Yield hg / ha 1961 - 2019 FAO STAT (2020) zk,y

Real price Real USD (2010) 01/1960 - 11/2020 qm,y



116 CHAPTER 4. ESSAY II

Table 4.3 – Data composition (19 regions) and summary statistics of inputs.
Production data (FAOSTAT)

Production (1000 tonnes) Yield (1000 hg/ha)
Regions %/total Average Average Min. (year) Max. (year)Caribbean 0.08% 460 11.13 8.54 (1993) 14.78 (2004)
Central America 3.27% 17,825 20.13 9.74 (1961) 34.41 (2018)
Central Asia* 0.11% 1,251 47.74 25.63 (1997) 65.72 (2018)
Eastern Africa 2.64% 14,395 13.54 9.52 (1965) 19.44 (2014)
Eastern Asia 19.03% 103,592 39.01 12.28 (1961) 60.89 (2017)
Eastern Europe 6.23% 33,925 36.91 18.4 (1963) 70.02 (2018)
Middle Africa 0.47% 2,563 8.5 6.74 (1979) 10.9 (2015)
Northern Africa 0.91% 4,974 41.2 15.91 (1961) 69.12 (2012)
Northern America 40.59% 220,940 73.34 39.23 (1961) 118.01 (2017)
Northern Europe* 0.00% 38 34.36 10 (1985) 71.74 (2016)
Oceania 0.08% 424 50.47 17.33 (1966) 87.81 (2015)
South America 9.75% 53,066 27.72 12.95 (1964) 59.26 (2017)
South-eastern Asia 3.52% 19,186 21.83 9.02 (1961) 46.14 (2018)
Southern Africa 1.68% 9,170 23.89 7.88 (1992) 58.13 (2017)
Southern Asia 2.95% 16,037 17.28 10.02 (1971) 34.29 (2017)
Southern Europe 3.83% 20,845 54.31 21.13 (1961) 90.58 (2018)
Western Africa 1.47% 7,975 12.02 6.96 (1972) 19.54 (2018)
Western Asia 0.56% 3,069 34.87 11.4 (1962) 79.18 (2018)
Western Europe 2.80% 15,264 69.51 22.56 (1962) 103.05 (2011)
* Central Asia and Northern Europe are excluded from analysis due to lack of data



4.A. APPENDIX II 117
Table 4.4 – Market year of maize, relative to the majority of production in eachregion.
Regions Market Year

Caribbean July - June
CentralAmerica October - September
CentralAsia* July - June
EasternAfrica July - June
EasternAsia April - March
EasternEurope October - September
MiddleAfrica July - June
NorthernAfrica July - June
NorthernAmerica October - September**
NorthernEurope* July - June
Oceania April - March
SouthAmerica March - February
SoutheasternAsia January - December
SouthernAfrica May - April
SouthernAsia July - June
SouthernEurope October - September
WesternAfrica July - June
WesternAsia September - August
WesternEurope July - June
*Central Asia and Northern Europe are excluded from analysis due to lack of data.**Agricultural year in the USA had changes in 1986. Starting from this year, any year yrefers to September y to August y + 1
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4.A.2 General presentation
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Figure 4.5 – Correlations between globalmaize price changes and regionalmaizeproductions (left) and yields (right)



4.A. APPENDIX II 119

10 11 12

7 8 9

4 5 6

1 2 3

2010 2015 2020 2010 2015 2020 2010 2015 2020

−0.3

0.0

0.3

0.6

−0.3

0.0

0.3

0.6

−0.3

0.0

0.3

0.6

−0.3

0.0

0.3

0.6

Date

R
el

at
iv

e 
an

nu
al

 c
ha

ng
e

Model cart gbm lm rf var

Figure 4.6 – Observed yearly price changes (in black) andmodel predictions (col-ours) using regional productions
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Figure 4.8 – CART models compute the relative price change of maize in Decem-ber (p12,y) as a function of relative regional production changes (right) and relat-ive regional yield changes (left). The nodes of each tree include three numbers;the average relative price change value over all data falling in the considerednode, the number of data in each node (n), the % of data in each node. The ter-minal nodes (at the bottom) report the relative price changes predicted by theCART models
Fig 4.8 was implemented with the package Rattle of the R software (Williams,2011) fancyRpartPlot function.

4.A.3 Breakdown of the price change by inputs and regions

The importance-ranking maize regional output has been obtained for the mostaccurate forecasting model - GBM, as shown in fig 4.9 and fig 4.10 below. Thecontribution to the prediction accuracy of pm,y determinesK relative importancevalues, as returned by these two models, separately. A region is considered asinfluential if a random choice of its corresponding input value (xk,y) leads to asubstantial increase of the mean squared error (MSE) of the price change pre-
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dictions.
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The results, which are somehow similar across the twomodels, propose verybig differences between the marginal impact of each region. Whereas most re-gions hold an average monthly influence of about 3% to 4%, Northern Amer-ica’s weight in the market is over 20%, with both types of inputs (production oryield changes), and it is followed by Western Asia. We note that while the relat-ive influence of Northern America is greater through yield changes, in the caseof Western Asia the strongest impact is rather through shifts in its production.We also note the variability of this regional importance across months. As forNorthern America, its greatest influence throughout all year long, with excep-tion of July August, which are the last months before its harvest, and where ithas a minimal marginal impact is not considerably different from those of mostregions. Not surprisingly, these are themonths in which the relative importanceof Western Asia is at its highest with an average of 24% concerning productionand 27% through yield.
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Table 4.5 – Decomposition of Shapley values results:monthly actual predictionand monthly average prediction, relative to the highest/lowest extreme pricechanges, input = regional yield. For example, the forecasted -0.17 relative pricechange for January 1987 (Extreme low) is 0.18 lower than the average price fore-cast of 0.01. For this specific event, the sum of Shapley values yields the differ-ence of actual and average prediction of -0.18.
Month Direction Actual Prediction Average Prediction

1 Lowest, January 1987 -0.17 0.012 Lowest, February 1987 -0.16 0.013 Lowest, March 1977 -0.15 0.014 Lowest, April 1977 -0.18 0.015 Lowest, May 1997 -0.24 0.016 Lowest, June 1997 -0.27 0.027 Lowest, July 1997 -0.21 0.028 Lowest, August 1977 -0.24 0.019 Lowest, September 1986 -0.15 0.0110 Lowest, October 1986 -0.17 0.0111 Lowest, November 2013 -0.20 0.0112 Lowest, December 2013 -0.20 0.011 Highest, January 1996 0.27 0.012 Highest, February 1996 0.33 0.013 Highest, March 1996 0.38 0.014 Highest, April 1996 0.38 0.015 Highest, May 1996 0.39 0.026 Highest, June 1996 0.38 0.027 Highest, July 1996 0.35 0.028 Highest, August 2011 0.26 0.019 Highest, September 1988 0.29 0.0110 Highest, October 1995 0.27 0.0111 Highest, November 2006 0.28 0.0112 Highest, December 1995 0.25 0.01
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Table 4.6 – Decomposition of Shapley values results:monthly actual predictionand monthly average prediction, relative to the highest/lowest extreme pricechanges, input = regional production. For example, the forecasted -0.17 relativeprice change for January 1987 (Extreme low) is 0.18 lower than the average priceforecast of 0.01. For this specific event, the sum of Shapley values yields thedifference of actual and average prediction of -0.18.
month Direction Actual Prediction Average Prediction

1 Lowest, January 1987 -0.18 0.012 Lowest, February 1987 -0.18 0.013 Lowest, March 1977 -0.18 0.014 Lowest, April 1977 -0.22 0.015 Lowest, May 1997 -0.23 0.026 Lowest, June 1997 -0.24 0.027 Lowest, July 1997 -0.24 0.028 Lowest, August 1977 -0.21 0.029 Lowest, September 1986 -0.17 0.0110 Lowest, October 1986 -0.19 0.0111 Lowest, November 2013 -0.19 0.0112 Lowest, December 2013 -0.18 0.011 Highest, January 1996 0.26 0.012 Highest, February 1996 0.31 0.013 Highest, March 1996 0.38 0.014 Highest, April 1996 0.37 0.015 Highest, May 1996 0.37 0.026 Highest, June 1996 0.34 0.027 Highest, July 1996 0.31 0.018 Highest, August 2011 0.27 0.019 Highest, September 1988 0.29 0.0110 Highest, October 1995 0.26 0.0111 Highest, November 2006 0.27 0.0112 Highest, December 1995 0.26 0.01



Chapter 5

Data-driven assessment of the
impacts of regional productions on
the global prices of maize, soybean
and cocoa

Co-author: David Makowski

Abstract
Prices of agricultural commodities (AC) have a crucial impact on food securityworldwide. In order to anticipate their fluctuations, it is necessary to developreliable predictive models. To facilitate their use by a large range of stakehold-ers - including those with few resources - it is necessary that these models arebased on public data and on algorithms that are easy to implement. This studycompares several simple econometric and Machine learning (ML) techniques toforecast price fluctuations of three globally traded AC - maize, soybean, and co-coa - with contrasted growing areas and market characteristics. For each ACand month, the most accurate model is selected using a cross validation pro-cedure. Results reveal that the Gradient Boosting ML model is more accuratethan other models in most cases. However, at a time horizon shorter than threemonths, the time series statisticalmethod TBATS shows very good performance.We detect strong influence of Northern America over the global price of maizeand soybean, except for the last months preceding the new-crop season. In thecocoa market, variations of production in Côte d’Ivoire, in Brazil and in Ghanahave a substantial influence on cocoa prices. All the proposed models can be
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easily trained frompublicly available data of globalmonthly prices and local pro-ductions, at different geographical scales. Our approach is very accessible andrequires few resources. It can therefore be implemented to anticipate and ana-lyse agricultural price shocks bymany stakeholders, including those with limitedresources in developing countries.
Keywords: Food-security, Agricultural commodities, Price forecasting, Agricul-tural production, Machine learning

5.1 Introduction

Prices of agricultural commodities (AC) depend on many factors impacting thesupply and demand sides of the food and feed balances. Therefore, interna-tional trade can serve as a tool for reducing price fluctuation. In principle, con-stant trade flows allow surpluses from high-productivity areas to be made avail-able to those in short supply. However, AC prices sometimes suffer significantshocks in case of extreme events impacting crop productions, substantial shiftsof food and feed demands or disruptions in storage and transportation chains.The extent of these shocks depends on the type of AC, time of occurrence, andthe impacted areas (Abbott et al., 2009) (World-Bank, 2020a).Historical evidence shows that local changes in production levels and exportrestrictions can sometimes have significant impacts on AC prices Headey andFan (2008). For example, in 2008, rice prices increased by almost 300% in onlyfour months due to export restrictions of major rice exporters with substantialsocial and economic impacts in importing countries (FAO, 2008). Furthermore, in2020, COVID-19 caused some severe shortages in agricultural productions of sev-eral regions highly dependent on human-based labour, leading to an increasein prices of some AC and food products (Schmidhuber et al., 2020).When not anticipated, global agricultural price shocks can have substantialimpacts on food security (Laborde et al., 2021) because global price variationsare often strongly correlated with local prices (Headey and Fan, 2010). In theirstudy, Mundlak and Larson (1992) show that most of the changes in world pricesare passed on to household (consumer) prices, with direct consequences onconsumers. It is, therefore, crucial to be able to anticipate these shocks. In ad-dition, price forecasting tools could be helpful to trigger mitigation strategiessufficiently in advance to reduce the risks for consumers and food security.A diversity of methods have been proposed for AC price forecasting. How-ever, accelerating technological advances, combined with improved access tolocal and global data, are opening up the possibility of using machine learning
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(ML) techniques to forecast AC prices (Xiaojie and Yun, 2021; Ticlavilca and Feuz,2010; Zhang et al., 2018). In particular, it is now becoming possible to train ma-chine learning methods on open-access databases to predict the price of ACseveral times per year for various types of products. If adopted, this approachwould be widely accessible, require few resources, and could be implementedby diverse actors in many world regions to anticipate agricultural price shocks.Moreover, while theoretical or econometric based approaches require makingstrong assumptions on the relationships between prices and influential factors(Storm et al., 2019), ML algorithms allow for the inclusion of a large number ofinput variables withminimal preliminary assumptions concerning their relation-ships with price variations.

However, the performance of machine learning methods for price forecast-ing can potentially depend on several factors, particularly on the nature of theinput variables, the chosen algorithm, the type of commodity, and the forecast-ing time horizon. It is thus essential to assess and compare different types ofML techniques rigorously under contrasting conditions to determine their val-ues. For this purpose, we choose three commodities with contrasted marketstructures - maize, soybean, cacao - to assess the performances of ML tech-niques under very different conditions. Maize belongs to the grainsWorld Bankgroup and is the most produced crop worldwide. Maize is an essential energysource, especially in developing countries, where the total calories consumedfrommaize only (excluding its indirect contribution as farm animal food) is morethan 10%.The USA is the world biggest maize producer, with about 30% of theglobal supply. In theworld’s southernhemisphere, Argentina’s andBrazil’s globalmarket shares are lower. So is Eastern Asia’s. However, they gradually increasedduring the past 60 years (from 9% to 23% and from 7% to 14%, respectively).Soybean is part of the Oils & Meals World Bank group and is the world primaryprotein source for livestock and play an essential role in the daily human diet(Thrane et al., 2017). The soybean market has experienced a substantial growthrate; its global production was multiplied by more than 13 in less than six dec-ades. However, in terms of the market, the share of the USA decreased from70% in 1961 to less than 30%. On the opposite, Argentina’s and Brazil’s shareshave increased, and these two countries now grow more than half of the worldproduction. Unlike maize and soybean, the cocoa market (included in the bever-
ages World Bank group) has started being competitive only with the establish-ment of The International Cocoa Organization (ICCO) in 1973. Due to its signi-ficant vulnerability to external changes (mainly since it is primarily produced insmall farms), the cocoa market is characterised by high and frequent price vari-ations. All three commodities are of high global importance, and each is associ-ated with a different group of AC, according to the official World Bank division
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(World-Bank, 2021a).This paper assesses the performance of six statistical and machine learningtools that can be easily implemented fromopen access data with freely availablepackages. We challenge these methods by considering the three crop speciesmentioned above and a wide range of forecasting time horizons (from 1 andup to 12 months), covering the needs of most of the decision-makers involvedin food security management. We also show how these tools can identify themost influential producing regions and provide insights into significant factorsinfluencing global trades.The rest of the paper is structured as follows. The following section describesthe data and explains their tailor to our specific research needs. Next, all mod-els are presented, including the packages used for their implementation andthe method used for assessing and comparing their performances. Finally, theresults are presented and discussed.

5.1.1 Data

Our data set includes annual crop yields and crop productions, used as explanat-ory variables, andmonthly prices, used as a dependent variable (full descriptionof the data-sets is supplied in table 5.1 in Appendix 5.A). Annual crop yields andcrop productions were extracted from the FAO STAT public database at two geo-graphical scales, national and regional (the regions were those defined by FAO,and each region includes several countries). In addition, global monthly pricedata were extracted for maize, soybean, and cocoa from the World Bank’s com-moditymarket database between January 1960 andDecember 2020 (732 values).Finally, all three price time series were converted into real 2010 USD, using theAgricultural Price Index of the corresponding period, before being transformedinto relative change from the correspondingmonth of the previous year (Fig 5.1).Fig 5.1 (left) presents the global monthly prices of the three AC’s over the pastsix decades, in real 2010 USD.National and regional cropproductions and yieldswere associatedwith somespecificmonthly prices, depending on local harvest seasons (FAS-USDA, 2021; ITCand UNCTAD/WTO., 2001). This procedure could predict monthly prices usingproduction data available before the predicted months.Fig 5.2 shows the production data for the leading producers of each of theconsidered commodities. The production shares of the different countries havechanged substantially during the considered periods, particularly for cocoa, butfor soybean and maize.We now introduce the notations used to define our models. Let us define
qcam,y as a series of real monthly global prices of a commodity ca, wherem and y
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Figure 5.1 – Prices of cocoa, maize, and soybean from 1961 to 2020, in real USD(left) and relative price change compared to the same month of the previousyear (ratio)
are the month and year indices, respectively, so thatm=1,...,12 and y=1,...,Y , and
ca is a crop index, ca=1, 2, 3, for maize, soybean and cocoa. A second time series
zcak,y describes the production (or yield) in area k (k=1, . . . ,K) during year y forcommodity ca. Since the two-time series qcam,y and zcak,y have very different units,we transform them in order to compute the relative annual changes of pricesand productions (yields) as follows:

pcam,y =
qcam,y − qcam,y−1

qcam,y−1

(5.1)
xcak,y =

zcak,y − zcak,y−1

zcak,y−1

(5.2)

5.1.2 Models
The first model is a time-series based model, in which the price variation pcam,y ispredicted solely based on a learning process of all the price changes that haveoccurred since the beginning of the observation period, without taking any ex-ternal factor into account. With the other models, price variations are predictedeither as a function of production (or yield) variations (pcam,y = f(xcak,y)) or as afunction of production variations and price variations observed the previousyear (pcam,y = f(pcam,y−1, x

ca
k,y)).
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Figure 5.2 – Cocoa, maize, and soybean production data from 1961 to 2020: pro-duction as percentage of the global amount produced (left); production quantity,in tonnes (middle); and yield in hectograms per hectare (right).

Time series model

We use TBATS to forecast pcam,y using previously observed prices solely. Trigo-nometric Seasonal Box Transformation with ARMA residuals Trend and Sea-sonal Components (TBATS) (De Livera et al., 2011) is an innovative time series(TS) model. TBATS automatically handles non-linearity by using Box-Cox trans-formation of the data, recognising multiple seasonal components and determ-ining possible time trends. For making the final forecast, TBATS chooses the op-timal number of autoregressive and moving average components to minimisethe forecasting error.
We apply TBATS using the R package forecast of Hyndman et al. (2020) con-sidering forecasting time horizons from 1 to 12 months ahead after the last ob-servedmonthly price variation, for eachmonth from January toDecember. Thus,TBATS is the only algorithmwith no additional information apart from the histor-ical prices. On the other hand, as TBATS ignores the effects of external factors,
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it may lead to distorted results, especially when lags become larger (Gos et al.,2020) and cannot be used to analyse the effects of critical factors on price vari-ation.With that in mind, we integrate TBATS in our research as an additional toolfor relatively short-term forecasts, assuming that itmay sometimes lead tomoreaccurate predictions than other models. To implement TBATS forecasts in R, weuse the forecast package (Hyndman et al., 2020).
Linear models

Linear models describe the impact of annual regional outputs on the monthlyglobal price through linear relationships. We define two versions. The first onerelate price variations to production variations as follows:

pcam,y = αca
0,m +

K∑
k=1

βca
k,mx

ca
k,y + εcam,y (5.3)

The second model takes into account a possible dependence of monthlyprices on the price the same month of the previous year:

pcam,y = αca
0,m + αca

1,mp
ca
m,y−1 +

K∑
k=1

βca
k,mx

ca
k,y + εcam,y (5.4)

In both equations αca
0,m is the intercept, βca

k,m are regression parameters, εcam,yare the residuals, and K is the total number of producing areas included in themodel (either countries or FAO regions, see Appendix tables 2-4). αca
1,m, whichappears exclusively in Eq 5.4, represents the marginal influence that pcam,y−1 hasover pcam,y. The parameters were estimated using the software (R-Core-Team,2020) base functions lm for each crop separately. Four different series of inputswere considered in turn: production changes per country, yield changes percountry, production changes per region, yield changes per region. These fourinput sets led to four different models per crop (i.e., eight models when con-sidering the two types of the linear model defined above). For each model, thenumber of inputs was reduced using a stepwise selection procedure based onAIC to select the most influential among theK regions or countries considered.

Machine-learning (ML) models

This study examines the forecasting accuracy of threeMLmodels, namely CART,random forest, and gradient boosting.
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Classification and regression trees (CART) was developed by Breiman et al.(1984) almost three decades ago, although it has only become popular in recentyears. Its main advantage over traditional regression techniques is that CARTdoes not require forcing any pre-assumptions onto the model while keeping ahigh level of interpretability. The principle of this method is to define a series ofsplitting rules based on the explanatory variables (here, the production or yieldchanges) able to minimise the prediction errors. The resulting set of splittingrules defines a tree that can be used to predict the target variable pcam,y. Here,CART is fitted using the rpart package of the R software (Therneau et al., 2019).CART is sometimes considered as a "weak learner" (Luo et al., 2019;Westreichet al., 2010). The resulting tree generated by CART is prone to instability (a differ-ent tree is often generated as soon as the data-set is slightly changed). Randomforest (Hastie et al., 2009) was developed to reduce this instability by generat-ing an ensemble of trees based on bootstrap samples drawn from the originaldata set. (Rokach, 2010). The ensemble approach assumes that if onemodel hasnot detected an important feature, it will be reflected in another model. Here,this method is implemented with the randomForest R package of Breiman et al.(2018). Another ensemble approach, which has proved very useful during thelast few years, is Gradient Boosting (GBM). This method is implemented usingthe gbm R package (Friedman, 2001). GBM combines the results of several simpletrees by selecting sub-samples according to the estimation errors of the previ-ous trees. Both RF and GBM are implemented with 500 trees, as stable resultswere obtained with this number.
Vector autoregressive model (VAR)

Our last model is based on vector autoregressive model (VAR), fitted using the
vars R package (Pfaff and Stigler, 2018) for each month and crop species, sep-arately. VAR analyses several dynamic variables that simultaneously influenceeach other (Sims, 1980). In this study, VAR is used not only detects the effectsof local productions shocks, xcak,y, on global price variations but also the relation-ships between the different xcak,y across the regions considered. Moreover, VARdeals with the effect of the previous prices pcam,y−1 on pcam,y.

5.1.3 Model evaluation

We evaluate the accuracy of the price change predictions by implementing aRolling Cross-Validation (RCV) with each modelling technique. We define twelveseparate training sets (one per monthm) each including the first Ỹ ca = 44 yearsof observations. At each RCV iteration, we add one year of data i (the year im-
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mediately following the last year of the training set), fit the regression modelto the resulting expanded data-set, and use the trained model to forecast theprice change of the next year Ỹ ca + i + 1. This procedure results in I predictedprices, where I=13 or 14, depending on the crop and month 1. The choice of aminimal training set of 44 years enables a sufficiently high number of data toestimate the model parameters. The accuracy of the predictions is then evalu-ated by computing the root mean squared error (RMSE). We replicate the wholeprocess for each regression model and each predicted month.For TBATS, the calculation of RMSE is done in a slightly different manner be-cause TBATS is used to predict the price at 12 different time horizons, h = 1,2,...12months after the last observation. We train TBATS on a minimal set of Ỹ = 28months. We then add eachmonthly data one by one, train TBATS each time, andpredict the next 12 months of price changes using each trained TBATS model. Avalue of RMSE is finally computed for each timehorizonh, each predictedmonth,and each crop species.In order to measure the added values of the models compared to a con-stant prediction, the RMSE values are compared to the standard deviation ofthe observed values of pcam,y (SD(pcam,y)) for each crop species and each month.The standard deviation can be seen as an upper bound above which the modelis useless compared to a constant prediction. To facilitate the comparison, wecompute an index - Relative Advantage (RA) - defined as:

RA = 1− RMSEca
m

SD(pcam,y)
(5.5)

A specific value ofRA is computed for eachmodel, month, and crop species.The whole set of values are presented in Appendix 5.A, Table 5.5, 5.6 and 5.7,for maize, soybean and cocoa, accordingly.

5.1.4 Ranking of the producing regions
In most studies, the relative importance of each producing region is usually as-sessed by calculating the increase in mean prediction errors (measured by themean squared error (MSE)), resulting in a random choice of the value of eachinput xcak,y (Friedman, 2001; Jeung et al., 2019). A high increase of MSE revealsthat the input is influential, whereas a low or zero MSE increase reveals that thecorresponding input is non-influential. Although practical and very popular, thisapproach is not able to assess the direction of the effect of each feature on p̃cam,y.

1Cocoa: I = 14 for all months; Maize: I = 13 for the months April to September, and 14 for theother six months; Soybean: I = 13 for the first nine months of the year, and 14 for the final threemonths.
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This importance ranking technique cannot be used to determine whether each
xcak,y has a positive or negative effect on prices. To do so, we implement herea more recent approach based on the method Shapley Additive exPlanations(SHAP) (Lundberg and Lee, 2017). Shapley values measure the contributions ofthemodel inputs to themodel predictions. More specifically, considering a givenprediction and the set of inputs used to produce this prediction, the Shapleyvalues measure the contribution of the input values (here, the values of xcak,y) onthe deviation of the considered predicted value to the mean predicted value.The set of Shapley values computed for all predictions provides a global pic-ture of the contributions of the different inputs to the predicted values. Here,Shapley values are significant because they describe the contribution of the re-gional productions to predicted price variations, in particular to the most ex-treme predicted price variations corresponding to major price shocks. Shapleyvalues provide information on both the directions and magnitude of the effectsof the inputs. When plotted as a function of the values of xcak,y, they provide avisualisation tool to assess the risk of price shocks as a function of the levels ofvariation in regional productions. Finally, we rank the producing regions accord-ing to their influence on predicted price variations by taking the average of theabsolute Shapley values by region.

5.2 Results

5.2.1 Maize prices
RA values are shown in Fig 5.3 for each model type and each predicted month,separately. Apart from TBATS, all the models’ performances are reported con-sidering different inputs, namely regional productions, regional yields, and re-gional productions/yields plus previous prices. For TBATS, RA values are shownfor a forecasting time horizon of one to 12 months ahead.Short-term predictions obtained with TBATS (one month ahead) tend to bemore accurate than those obtained with machine learning tools and VAR. TheRA reaches 37% with the best machine learning tool, while the best RA of TBATSis higher and stands at 78% in March when considering one-month ahead fore-casts. For this type of forecast, the RA of TBATS is usually higher than 50% formost of the predicted months, revealing that this method can reduce the pre-diction errors by at least 50% compared to a constant prediction.However, these good performances are not maintained when attemptingmore extended time-horizon forecasts with TBATS. RA levels decrease rapidlyfor any increment of time horizon. More precisely, while the average RA valuefor a month-ahead forecast is 64%, it drops to 45% for two-month ahead fore-
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casts and decreases further for predictions at longer time horizons, becomingquickly close to zero or even negative (Fig 5.3).Concerning machine learning tools, RA tends to be slightly higher when yieldchanges are used as predictors, and the GBM technique appears to performbetter, especially compared to LM and VAR, in most cases. In addition, GBMtends to perform better than TBATS for time-horizon larger than six months.

Figure 5.3 – Relative advantage (RA) in prediction accuracy of the forecastingmodels compared to constant prediction, over 1990-2020, for maize. RA is equalto 1 minus the ratio of the RMSE of each model to the standard deviation of theprice changes in the whole data-set the samemonth, and expressed in percent-ages. It indicates the relative benefit of using themodels compared to a constantprediction. ML methods, LM and VAR were used with either production or yieldinputs, and with/without taking the price changes of the previous year (PastP)into account.

5.2.2 Soybean prices
In a similar way to maize, the best model to predict soybean price variationis TBATS for one, two or three-month ahead forecasts (Fig 5.4). However, forlonger-time lags, the accuracy of TBATS declines as lag values become larger.Moreover, the relative advantage of TBATS varies between months. For ex-ample, whereas the RA exceeds 70% for one-month ahead forecasts in January-March, it only reaches 29% in May and 36% July.Relative to the other techniques, the best results are obtained during the firstfew months (January-March) and between August and November. During theseperiods, RA can reach levels close to 50%. Predictions obtained in April-July tendto be less accurate, with RA often close to zero. The nature of the inputs does not
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strongly influence the accuracy of the forecasting methods. Similar RA valuesare obtained with production or yield-related predictors, or whether previousprices are taken into account or not. GBM tends to be the most accurate amongthe tested algorithms and is ranked first in five months of the year. RF is rankedfirst in four months of the year, particularly with production inputs. LM providesrelatively good results for January and September but is less accurate in othermonths. Compared to maize, ML models tend to perform better at forecastingsoybean prices, while TBATS is slightly less accurate.

Figure 5.4 – Relative advantage (RA) in prediction accuracy of the forecastingmodels compared to constant prediction, over 1990-2020, for soybean. RA isequal to 1 minus the ratio of the RMSE of each model to the standard deviationof the price changes in the whole data-set the same month, and expressed inpercentages. It indicates the relative benefit of using the models compared to aconstant prediction. MLmethods, LM and VARwere usedwith either productionor yield inputs, and with/without taking the price changes of the previous year(PastP) into account.

5.2.3 Cocoa prices
For cocoa, TBATS gives relatively good results for short time horizons, with RAvalues exceeding 50% for most of the year. However, we note that the forecastaccuracy decrease for a more extended time horizon is moderate, compared tomaize and soybean, especially in August and September. Other predictivemeth-ods tend to perform poorly in most cases, with a few exceptions obtained withthe GBM method in March (RA = 31%), April (RA = 43%) and May (RA = 48%) us-ing national yield changes as predictors. The high RA values obtained betweenMarch and May may be since March is the last month of the main-crop har-
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vest season in several major producing countries - Brazil, Côte d’Ivoire, Ghanaand even Cameroon (ITC and UNCTAD/WTO., 2001). During the rest of the year,production data do not substantially influence cocoa’s price, according to ourresults.

Figure 5.5 – Relative advantage (RA) in prediction accuracy of the forecastingmodels compared to constant prediction, over 1990-2020, for cocoa. RA is equalto 1 minus the ratio of the RMSE of each model to the standard deviation of theprice changes in the whole dataset the same month, and expressed in percent-ages. It indicates the relative benefit of using themodels compared to a constantprediction. ML methods, LM and VAR were used with either production or yieldinputs, and with/without taking the price changes of the previous year (PastP)into account.

5.2.4 Most influential producing regions

We analyse the contributions of each producing region to price changes by com-puting SHapley Additive exPlanations (SHAP) with the most accurate ML tech-niques identified above (i.e., GBM). This approach allows us to express the dif-ference between a specific price change prediction to the mean prediction as asum of contributions (Shapley values) of the input values (yield or productionchanges). Producing regions of high relative importance are expected to havehigh absolute Shapley values, while those of lower influence are most likely tohave Shapley values close to zero. Results are shown in Fig 5.6 to Fig 5.11.
For maize, Shapley values are reported for the forecasting technique GBMwith regional yield changes and for January, which provides the most accurateresults (Fig 5.6).
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Figure 5.6 – Maize Shapley values for each regions (left) and for two most influ-ential regions as a function of relative yield changes (right) computed with theforecasting model (GBM) for January. Left: Regions are ranked from the mostinfluential (top) to the least (bottom). Each point correspond to one forecast ofprice change, where deep purple represents a high value of the considered fea-ture (yield change input, here) and orange a low value. The points are locatedalong the X-axis according to the level of the impact of regional yield changeon price changes (the Shapley value), in a way that extreme negative impact onprice change is at the most right, and vice versa. All points are centred aroundthe black vertical line, which presents no impact onmodel predictions comparedtomean prediction. The bold number to the right of the Y-axis is themean abso-lute value of all the Shapley values by region, summarising the average impactsof the regions. Right: SHAP dependence plots, for the most influential region(on top) and the second-most influential. Here, the Shapley values of the twomost influential producing regions are presented as a function of the relativeyield changes of these regions, together with a smooth regression curve.
Shapley values confirm the strong impact of Northern American maize yieldon the global maize price. For Northern America, Shapley values tend to takehighly positive values when yield changes are low and negative (i.e., yield de-crease compared to the previous year). At the same time, they are more likelyto take negative values for positive yield changes (i.e., yield increase comparedto the previous year) (Fig 5.6). This result indicates that a yield decrease (in-crease) in Northern America tends to be associated with a predicted global priceincrease (decrease). Thus, the importance of Northern America is considerablyhigher than that of all the other regions. This conclusion is relevant not only forJanuary but for all other months as well, except for July and August (see Fig 5.12in Appendix 5.B).
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Another exciting finding stems from the secondmost important region,West-ern Asia. According to Shapley values, the impact of this region is minor com-pared to Northern America. Although the Shapley values of Western Asia showa similar declining trend with yield variations as in Northern America, the rangeof Shapley values is narrower in Western Asia. The average absolute value ofthe Shapley’s is more than two times smaller in this region (0.031 versus 0.07)(Fig 5.6).
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Figure 5.7 – Time series of Shapley values for the two most influential maizeproducing regions. The bold lines indicate Shapley values. The dashed red linesindicate price variations (in January). The dashed blue lines indicate yield vari-ations. For facilitating the visualisation, variations higher than 0.5 in absolutevalues are rounded down to 0.5
Fig 5.7 presents the Shapley values as a function of years, where they arecompared to the relative yield changes (in blue) and the predicted price vari-ations in January (in bright red). Again, the high impact of Northern America onglobal price prediction is evident, as peaks of Shapley values appear throughoutthe period, in particular during years when Northern American productions (oryield) reached very high or low levels. The variability of the Shapley values of thesecond most influential region (Western Asia) is much lower. Interestingly, theShapley values obtained for Western Asia remain close to zero most of the timebut drop to relatively low levels during years characterised by strongly positiveyield variations.Results obtained for soybean are similar to those obtained for maize. How-ever, we note weaker domination by lead producers (compared to the maize
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Shapley values, the mean are smaller and their ranges of variations narrower),suggesting a more competitive global market for soybean than maize. Similarto maize, we found a declining trend between Shapley values and regional pro-duction variationswhen considering the twomost influential regions (Fig 5.8 andFig 5.9).
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Figure 5.8 – Soybean Shapley values for each regions (left) and for two most in-fluential regions as a function of relative production changes (right) computedwith the forecasting model (GBM) for the month of January. Left: Regions areranked from the most influential (top) to the least (bottom). Each point cor-respond to one forecast of price change, where deep purple represents a highvalue of the considered feature (production change input, here) and orange alow value. The points are located along the X-axis according to the level of theimpact of regional production change on price changes (the Shapley value), in away that extreme negative impact on price change is at the most right, and viceversa. All points are centred around the black vertical line, which presents noimpact on model predictions compared to mean prediction. The bold numberto the right of the Y-axis is the mean absolute value of all the Shapley values,summarising the average impact of the corresponding region. Right: SHAP de-pendence plots, for the two most influential regions. Here, the Shapley valuesof the two most influential producing regions are presented as a function of therelative production changes of these regions, together with a smooth regressioncurve.
The results obtained for cocoa show a different pattern. The cocoa produc-tion is highly geographically concentrated in only three regions (see Table 5.4 inAppendix 5.A). Interestingly, this is the sole of the three commodities consideredfor which prices are predicted more accurately with national than regional pro-ductions. Although Côte d’Ivoire - the first world producer - is ranked first ac-



5.2. RESULTS 147
NorthernAmerica SouthernAfrica

1980 2000 2020 1980 2000 2020

−0.50

−0.25

0.00

0.25

0.50

Year

S
ha

pl
ey

 v
al

ue
s,

 y
ie

ld
 v

ar
ia

tio
ns

, a
nd

 p
ric

e 
va

ria
tio

ns

Figure 5.9 – Time series of Shapley values for the two most influential soybeanproducing regions. Shapley values are indicated by the bold lines. Price vari-ations (in January) are indicated by the dashed red lines. Production variationsare indicated by the dashed blue lines. For facilitating the visualisation, vari-ations higher than 0.5 in absolute values are rounded down to 0.5.

cording to mean Shapley values, Brazil and Ghana also show a strong influence(Fig 5.10). Nevertheless, the mean absolute Shapley value difference betweenthe first two regions is relatively small compared to maize and soybean.

For Côte d’Ivoire, the negative relationship between Shapley values and yieldchanges is not very strong (Fig 5.10). However, Brazil’s decreasing trend is ap-parent - the second most influential region.

Shapley time series confirm the similar influence of Côte d’Ivoire and Brazilon cocoa prices. However, Shapley values of Brazil tend to be opposite of yieldvariations in this region (Fig 5.11).
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Figure 5.11 – Time series of Shapley values for the twomost influential cocoa pro-ducing countries. Shapley values are indicated by the bold lines. Price variations(in May) are indicated by the dashed red lines. Yield variations are indicated bythe dashed blue lines. For facilitating the visualisation, variations higher than0.5 in absolute values are rounded down to 0.5
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5.3 Discussion

This study examines the effectiveness of several machine learning and econo-metric methods for forecasting the international price of three globally tradedcrops: maize, soybean and cocoa. The selected methods rely on open-sourcedata and software. Through a comparative analysis, it explores the genericity ofthe proposed approach and captures the uniqueness of AC from three differentcategories, as determined by the World Bank: grains, for maize; oils & meals, forsoybean; and beverages, for cocoa. The robustness of themodel performances isassessed by conducting an in-depth sensitivity analysis across three geographicscales (regional, continental and national), two types of productionmetrics (pro-duction or yield variations) and the inclusion or not of the relative annual changeof last year’s price. All in all, each forecasted monthly price is the result of thebest performing model, selected out of 60 (5 algorithms × 3 geographic scales
× 4 versions, excluding TBATS). The analysis of three AC market categories andthe comparison of three geographic scales reveal the significance of the eco-nomic structure of the market, in particular the utmost importance that mar-ket structures have on how crops production influences AC prices globally. Thestudy shows that regional changes inmaize production inNorthern America (thecrop’s lead world producer and exporter) have undeniably high impacts on itsglobal price. The market is thus clearly dominated by the world’s leading pro-ducer of maize, but this is more minor the case for the other crops. The otherextreme is the cocoa market, which is concentrated for the most part in two re-gions (Western Africa and South America), and whose production is typically thework of smallholder farmers in family farms in relatively poor areas. Contrary tomaize and soybean, which are tradedmainly in the international market locatedand managed in the country of the biggest producer,2 cocoa is mainly traded inthe importer side, New York and London, i.e., far from its country of origin. Thismarket structuring contributes to a lack of market information among cocoafarmers and prevents them from controlling the price they will receive for theircrop or the preferred date to sell it.

Beyond evaluating the accuracy of the predictions, many techniques havebeen applied to interpret the results of the trained models in this study: relativeimportance analysis (Greenwell et al., 2020), Shapley values (Molnar et al., 2018;Tianqi et al., 2021), (Greenwell, 2017; Liu and Just, 2020) and standard correla-tion analysis. For cocoa, none of these methods indicated a strong relationshipbetween the production volume of the leading producer (Côte d’Ivoire) and price
2Themainstay of maize and soybean’s trade is at the CME in US dollar. However, for soybean,since December 2007, the price listed on the World Bank website comes from the ConstructionIndustry Federation (CIF) Rotterdam
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changes. However, the results did showa lack of absolutemarket power concen-trated in a particular area and a relatively uniformdistribution ofmonthly impactper country over the year. Moreover, a comprehensive examination pointed outa rather complex relationship between Shapley values and crop yield variationsin Côte d’Ivoire. Finally, focusing on specific extreme price shocks indicated ahigh contribution of cocoa yield in Indonesia to events of exceptionally high priceincreases.
The results did show a lack of absolute market power concentrated in a par-ticular area and reasonably uniform distribution of monthly impact per coun-try over the year. Moreover, our comprehensive analysis pointed out a rathercomplex relationship between Shapley values and crop yield variations in Côted’Ivoire. Focusing on specific extreme price shocks, we showed a high contribu-tion of cocoa yield in Indonesia to events of exceptionally high price increases.The results seemed surprising at first, as Indonesia’s market share in the globalcocoa market is significantly lower than that of Côte d’Ivoire. However, an in-depth study of the cocoa literature has revealed a multiplex system in whichsome factors undermine the natural equilibrium of the market. ForCôte d’Ivoire(as well as Cameroon and Nigeria), the vast majority of production is collectedfrom small farmers, most of whom have no access to market information. Al-ternatively, they received a price set by the local government at the beginning ofthe season, depending on future prices on significant stock exchanges (ITC andUNCTAD/WTO., 2001). Over the years, the cocoa export market in Côte d’Ivoirehas been privatised, and private export companies are now responsible for col-lecting cocoa production, thus reducing farmers’ room for action during andafter harvest (Abbott et al., 2019). In Côte d’Ivoire, farmers take critical decisionsright at the beginning of the growing season, trying to increase their productionwhen the price they receive from their government increases and vice versa.
The soybean market has grown significantly over the past six decades and istoday the most important legume in the world for producing oils and proteins.Like maize, here too, the influence of Northern America is evident above that ofthe other provinces. However, Northern America’s market share has shrunk sig-nificantly over the years, and now South America (mainly Argentina and Brazil)is a leader in global soybean production. Nevertheless, Northern America is stillthe first to impact price changes in the global soybean market for most monthsof the year, other than those prior to the harvest season (similar to the maizemarket).
In terms of forecasting results, ML methods (RF and GBM) usually performbetter than the other models for medium to long time horizons, as shown inAppendix 5.B. For a short-time horizon (one to three months), TBATS was gen-erally more accurate, revealing that information about production changes is
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probably already partly integrated into the market prices one to three monthsin advances. GBM provides a noticeable higher forecasting accuracy for North-ern America’s new-crop (the beginning of the standardised trading year) monthsconcerning maize and soybean. For cocoa, March, April and May, are the onlymonths in which ML models are substantially better than the other models, in-cluding TBATS. As a result, onemight conclude that the benefit of taking regionalproduction into account tends to bemore decisive for competitive markets withfewer price distortions.

5.4 Conclusion
As the proposed forecasting tools rely on public data and open-source software,they can be easily implemented by many stakeholders, even with limited re-sources. Furthermore, we demonstrated that our framework is relevant for dif-ferent crop types, namelymaize, soybean and cocoa. Therefore, we believe that,in the future, it could cover other agricultural commodities.Our analysis shows that, for short-term predictions, time series forecast-ing techniques such as TBATS provided accurate predictions of price variations.However, for longer forecasting horizons, the accuracy level of this techniquede-clines rapidly, and it becomes more relevant to use alternative methods basedon regression models and machine learning tools, including production/yieldvariations as predictors. We found that machine learning techniques based onensembles of trees, such as random forest and gradient boosting, were potent.An added value of these machine learning models stays in their ability to rankproducing units according to their influence on price changes and to quantifythe contributions of major producing regions on the occurrence of significantprice shocks. Moreover, they can help analyse the relationships between priceand production changes in major producing regions.Thanks to its transparency and ease of application, the proposed frameworkcan help improve the analysis of price variations, especially in developing coun-tries with limited resources for price modelling projects.
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5.A Appendix

Table 5.1 – Variable description and data sources.
Final data

Data Unites Time-range Indices SignProduction % change/year 1962 - 2019 k = Region, y = Year xk,y

Yield % change/year 1962 - 2019 k = Region, y = Year xk,y

Price % change/year 01/1961 - 11/2020 m = Month, y = Year pm,y

Initial information
Data Unites Time-range Source Sign

Price Nominal USD/mt* 01/1960 - 11/2020 World Bank, Pink Sheet (2020)
Ag. Price index USD (2010 = 100) 01/1960 - 11/2020 World Bank, Pink Sheet (2020)
Production tonnes/year 1961 - 2019 FAO STAT (2020) zk,y

Yield hg/ha 1961 - 2019 FAO STAT (2020) zk,y

Real price Real USD (2010) 01/1960 - 11/2020 qm,y

Additional information
Data Unites Time-range Source Sign

Production 1000 mt/year 1960 - 2020 PSD, USDA zk,y

Production % change/year 1961 - 2020 k = Region, y = Year xUSDA
k,y

* For cocoa, prices are given by units of kg, and were manually converted to metrictonnes units
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5.A.1 Maize

Table 5.2 – Production data of maize, relative to region
Production (1000 tonnes) Yield (1000 hg/ha)

Regions %/total Average Average Min. (year) Max. (year)
Caribbean 0.10% 462 11.16 8.54 (1993) 14.78 (2004)
Central America 3.30% 18,050 20.4 9.74 (1961) 36.31 (2019)
Central Asia* 0.10% 1,288 48.34 25.63 (1997) 65.72 (2018)
Eastern Africa 2.60% 14,673 13.64 9.52 (1965) 19.49 (2019)
Eastern Asia 19.20% 106,304 39.41 12.28 (1961) 62.94 (2019)
Eastern Europe 6.30% 34,856 37.4 18.4 (1963) 70.02 (2018)
Middle Africa 0.50% 2,652 8.54 6.74 (1979) 10.9 (2015)
Northern Africa 0.90% 5,017 41.68 15.91 (1961) 69.32 (2019)
Northern America 40.30% 223,304 73.87 39.23 (1961) 118.01 (2017)
Northern Europe* 0.00% 41 35.43 10 (1985) 75.84 (2019)
Oceania 0.10% 426 50.76 17.33 (1966) 87.81 (2015)
South America 9.90% 55,095 28.29 12.95 (1964) 61.38 (2019)
South-eastern Asia 3.60% 19,741 22.26 9.02 (1961) 46.9 (2019)
Southern Africa 1.70% 9,209 24.26 7.88 (1992) 58.13 (2017)
Southern Asia 3.00% 16,495 17.59 10.02 (1971) 35.28 (2019)
Southern Europe 3.80% 20,902 54.9 21.13 (1961) 90.58 (2018)
Western Africa 1.50% 8,252 12.11 6.96 (1972) 19.54 (2018)
Western Asia 0.60% 3,142 35.6 11.4 (1962) 79.18 (2018)
Western Europe 2.80% 15,336 69.82 22.56 (1962) 103.05 (2011)
*Excluded from analysis due to lack of data
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Table 5.3 – Production data of maize, relative to country
Production (1000 tonnes) Yield (1000 hg/ha)

Countries %/total Average Average Min. (year) Max. (year)
Argentina 2.70% 14,813 43.13 16.48 (1963) 78.62 (2019)
Brazil 6.10% 33,777 26 11.61 (1964) 57.73 (2019)
China 18.80% 104,055 39.39 11.85 (1961) 63.17 (2019)
India 2.10% 11,472 16.17 9 (1971) 30.7 (2019)
Mexico 2.80% 15,409 21.53 9.87 (1963) 40.7 (2019)
USA 38.90% 215,455 73.83 39.18 (1961) 117.43 (2016)

Table 5.4 – Production data of maize, relative to continent
Production (1000 tonnes) Yield (1000 hg/ha)

Continents %/total Average Average Min. (year) Max. (year)
Africa 7.23% 2,361,926 15.47 9.8 (1964) 21.66 (2017)
Americas 53.45% 17,463,588 50.48 25.83 (1964) 82.19 (2016)
Asia 26.41% 8,628,804 31.39 11.37 (1961) 55.41 (2019)
Europe 12.84% 4,195,971 46.82 20.87 (1963) 75.28 (2018)
Oceania 0.08% 25,118 50.8 17.34 (1966) 87.98 (2015)
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5.A.2 Soybean

Table 5.5 – Production data of soybean, relative to region
Production (1000 tonnes) Yield (1000 hg/ha)

Regions %/total Average Average Min. (year) Max. (year)
Central America 0.27% 372 18.2 12.85 (2010) 21.34 (1991)
Central Asia* 0.03% 96 12.46 2.5 (1972) 22.93 (2017)
Eastern Africa 0.16% 229 15.18 6.47 (1996) 21.68 (2016)
Eastern Asia 8.69% 12,087 13.19 5.54 (1961) 22.38 (1978)
Eastern Europe 1.33% 1,852 24.19 6.76 (1968) 36.85 (2014)
Middle Africa 0.02% 21 13.82 6.42 (1961) 18.82 (2018)
Northern Africa 0.04% 61 15.41 3.86 (1966) 23.29 (2008)
Northern America 45.11% 62,764 10.68 6.37 (1968) 14.85 (2015)
Northern Europe* 0.00% 1 5.75 2.29 (1983) 15.63 (2010)
Oceania 0.04% 51 10.19 3.22 (1964) 19.53 (2018)
South America 39.00% 54,263 7.08 4.61 (2012) 8.87 (1988)
South-eastern Asia 0.92% 1,279 25.79 9.49 (1973) 32.99 (2012)
Southern Africa 0.17% 235 20.08 9.39 (1964) 32.61 (2017)
Southern Asia 3.24% 4,505 23.27 15.35 (1964) 34.6 (2016)
Southern Europe 0.56% 783 22.69 7.83 (1964) 43.5 (2015)
Western Africa 0.25% 345 15.33 12.69 (2019) 17.97 (2018)
Western Asia 0.05% 69 8.84 4.66 (1965) 13.59 (2012)
Western Europe* 0.13% 220 23.58 12.51 (1974) 29.97 (2017)
*Excluded from analysis due to lack of data
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Table 5.6 – Production data of soybean, relative to country
Production (1000 tonnes) Yield (1000 hg/ha)

Countries %/total Average Average Min. (year) Max. (year)Argentina 12.90% 17,941 20.68 9.77 (1961) 33.34 (2019)
Brazil 23.10% 32,075 20.09 8.48 (1964) 33.9 (2018)
China 8.20% 11,375 13.9 6.26 (1961) 18.98 (2018)
India 3.10% 4,374 8.51 4.35 (1965) 13.53 (2012)
USA 43.60% 60,660 23.3 15.31 (1964) 34.94 (2016)

Table 5.7 – Production data of soybean, relative to continent
Production (1000 tonnes) Yield (1000 hg/ha)

Continents %/total Average Average Min. (year) Max. (year)
Africa 1.00% 880 8.36 3.48 (1965) 14.59 (2010)
Americas 84.00% 117,399 22.34 15.17 (1964) 32.57 (2017)
Asia 13.00% 17,986 12.06 6.44 (1961) 15.35 (2010)
Europe 2.00% 2,811 13.38 3.31 (1964) 23.16 (1997)
Oceania 0.00% 51 15.41 3.86 (1966) 23.29 (2008)
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5.A.3 Cocoa

Table 5.8 – Production data of cocoa, relative to region
Production (1000 tonnes) Yield (1000 hg/ha)

Regions %/total Average Average Min. (year) Max. (year)
Caribbean 2.20% 60 3.6 2.21 (2005) 5.37 (2019)
Central America 1.80% 49 4.89 2.83 (1965) 6.65 (2007)
Eastern Africa 0.50% 14 3.96 1.72 (1963) 5.84 (2015)
Eastern Asia* 0.00% 0
Middle Africa 6.20% 172 2.98 1.92 (1976) 3.94 (2019)
Oceania 1.40% 40 4.14 3.24 (1994) 5.11 (1971)
South America 15.90% 437 4 2.66 (2000) 5.68 (1985)
South-eastern Asia 12.90% 355 6.13 2.65 (1962) 10.32 (1998)
Southern Asia 0.30% 9 3.15 1.01 (1972) 5.74 (1994)
Western Africa 58.80% 1,620 3.99 2.55 (1965) 5.07 (1996)
*Excluded from analysis due to lack of data

Table 5.9 – Production data of cocoa, relative to country
Production (1000 tonnes) Yield (1000 hg/ha)

Countries %/total Average Average Min. (year) Max. (year)
Brazil 9.23% 254 78.61 2.79 (2000) 7.42 (1979)
Cameroon 5.30% 146 57.73 1.98 (1961) 4.16 (2019)
Côte d’Ivoire 30.50% 840 63.17 3.27 (1961) 7.01 (2000)
Ghana 16.70% 460 30.70 2.05 (1981) 5.5 (2012)
Indonesia 10.60% 292 40.70 1.22 (1962) 11.32 (1998)
Nigeria 9.90% 273 117.43 2 (1962) 4.98 (1998)
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Table 5.10 – Production data of cocoa, relative to continent
Production (1000 tonnes) Yield (1000 hg/ha)

Continents %/total Average Average Min. (year) Max. (year)
Africa 65.54% 106,525 3.86 2.54 (1961) 4.93 (2006)
Americas 19.82% 32,210 4.00 2.69 (2000) 5.57 (2019)
Asia 13.20% 21,445 5.73 2.64 (1961) 10.16 (1998)
Oceania 1.44% 2,344 4.14 3.24 (1998) 5.11 (1971)



5.A. APPENDIX III.A 159



160 CHAPTER 5. ESSAY III

5.B Detailed results and interpretation

5.B.1 Maize

Table 5.11 – Best forecasting options for differentmonths, relative tomaize price.The names reported for each month correspond to the models showing thehighest RA for predicting price change at this period. As TBATS tends to per-form very well for short time lags, TBATS appears to be the best option for allmonths when the time lag is relatively small. For longer time horizons, othermodels (in particular GBM) are more accurate. The name between brackets in-dicates whether the predictions were more accurate with regional yields or pro-ductions and whether historical prices were found to have a substantial impacton price.
Time lags (months)

Month 1 2 3 4 5 6 7 8 9 10 11 12

January TBATS GBM (Yield)
0.73 0.64 0.46 0.37

February TBATS GBM (Yield)
0.75 0.59 0.53 0.38 0.29

March TBATS GBM (Yield)
0.78 0.59 0.47 0.41 0.3 0.22

April TBATS GBM (Yield + pm,y−1)
0.67 0.55 0.41 0.34 0.24 0.18

May TBATS GBM (Yield + pm,y−1)
0.68 0.64 0.47 0.30 0.21 0.19 0.18

June TBATS GBM (Production)
0.61 0.55 0.48 0.39 0.31 0.24 0.19

July TBATS CART (Yield)
0.44 0.28 0.29 0.24 0.23

August TBATS CART (Production)
0.61 0.31

September TBATS LM (Production)
0.46 0.21

October TBATS GBM (Yield)
0.57 0.31

November TBATS GBM (Yield)
0.63 0.36 0.24

December TBATS GBM (Yield + pm,y−1)
0.72 0.56 0.33 0.31
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Figure 5.12 – Relative importance, Maize
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5.B.2 Soybean

Table 5.12 – Best forecasting options for different months, relative to soybeanprice. The names reported for each month correspond to the models show-ing the highest RA for predicting price change at this period. As TBATS tendsto perform very well for short time lags, TBATS appears to be the best optionfor all months when the time lag is relatively small. For longer time horizons,other models (in particular GBM) are more accurate. The name between brack-ets indicates whether the predictions were more accurate with regional yieldsor productions and whether historical prices were found to have a substantialimpact on price.
Time lags (months)

Month 1 2 3 4 5 6 7 8 9 10 11 12

January TBATS LM (Yield)
0.72 0.54

February TBATS GBM (Production)
0.56 0.51 0.44 0.39

March TBATS RF (Production + pm,y−1)
0.63 0.48

April TBATS RF (Production + pm,y−1)
0.42 0.38

May TBATS CART (Production)
0.29 0.26

June TBATS GBM (Yield)
0.53 0.31

July TBATS RF (Production + pm,y−1)
0.36 0.22 0.16

August TBATS RF (Yield)
0.49 0.24 0.19 0.06

September TBATS LM (Yield)
0.55 0.32 0.21

October TBATS GBM (Production)
0.68 0.46 0.37

November TBATS GBM (Production)
0.56 0.40 0.29 0.19

December TBATS GBM (Production + pm,y−1)
0.64 0.38 0.31 0.24
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Figure 5.13 – Relative importance, Soybean
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5.B.3 Cocoa

Table 5.13 – Best forecasting options for differentmonths, relative to cocoa price.The names reported for each month correspond to the models showing thehighest RA for predicting price change at this period. As TBATS tends to per-form very well for short time lags, TBATS appears to be the best option for allmonths when the time lag is relatively small. For longer time horizons, othermodels (in particular GBM) are more accurate. The name between brackets in-dicates whether the predictions were more accurate with national yields or pro-ductions and whether historical prices were found to have a substantial impacton price.
Time lags (months)Month 1 2 3 4 5 6 7 8 9 10 11 12

January TBATS CART (Production + pm,y−1)
0.69 0.55 0.45 0.27 0.15

February TBATS LM (Yield)
0.61 0.44 0.40 0.37 0.20 0.13

March TBATS GBM (Yield + pm,y−1)
0.51 0.40 0.31

April TBATS GBM (Yield)
0.68 0.43

May TBATS GBM (Yield)
0.59 0.48

June TBATS RF (Production)
0.62 0.48 0.34 0.30 0.20

July TBATS RF (Production)
0.62 0.46 0.32 0.22 0.21 0.13

August TBATS RF (Production)
0.71 0.54 0.39 0.28 0.21 0.22 0.13

September TBATS GBM (Yield)
0.63 0.62 0.43 0.29 0.21 0.13 0.16 0.03

October TBATS GBM (Yield + pm,y−1)
0.59 0.35 0.37 0.24 0.11

November TBATS VAR (Yield)
0.49 0.22 0.12

December TBATS VAR (yield)
0.59 0.41 0.24 0.12



5.B. APPENDIX III.B 167

10 11 12

7 8 9

4 5 6

1 2 3

0 10 20 30 0 10 20 30 0 10 20 30

Brazil

Cameroon

CotedIvoire

Ghana

Indonesia

Nigeria

Brazil

Cameroon

CotedIvoire

Ghana

Indonesia

Nigeria

Brazil

Cameroon

CotedIvoire

Ghana

Indonesia

Nigeria

Brazil

Cameroon

CotedIvoire

Ghana

Indonesia

Nigeria

Relative importance

R
eg

io
n

Figure 5.14 – Relative importance, Cocoa



168 CHAPTER 5. ESSAY III

3 4

1 2

1960 1980 2000 20201960 1980 2000 2020

−0.4

0.0

0.4

−0.4

0.0

0.4

Year

va
lu

e

as.factor(month)

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5.15 – Time-series of Shapley values, Cote D’Ivoire, Cocoa



Chapter 6

Discussion

The fear of population
running ahead of food production
has been regularly voiced.
It is not my intention
to dismiss these problems and fears.

– Amartya Sen, Poverty and Famines (p.150)
This research wasmotivated by a long-time desire to contribute to the world-wide efforts of improving food security and diets worldwide. While already fa-miliar with the subjects of climate change and their effects on agriculture andthe problem of food security from previous research papers, the topic of inter-national trade was new to me.Beginning this research, we recognised the scarcity of an AC price forecastingtool that would be accurate and bridge the gap of dis-information that stronglyaffects the most vulnerable producers and consumers around the globe. Com-pleting this thesis, we achieved to provide anovelmethodology to forecast agricultural-commodity prices. This method ensures high forecasting accuracy and is inter-pretable and technically accessible. We show that AC prices can be predictedfor time-frames of one month to a year ahead while maintaining a high forecastquality and the principles of scientific transparency.

6.1 The basic idea behind the study
As already explained in the introduction chapter, turning the theory of AC priceforecasting into an available and accessible tool would be socially beneficial, es-pecially for those who currently cannot access it - those aremainly the residents

169
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of low-income countries. Considering that every crop has unique nutritional val-ues, consuming several crops from different groups can create a complete bal-anced diet. In the context of minimally processed food, such crop integrationcan build a low-priced and healthy diet. As an inexpensive source of energyand micro-nutrients, maize, combined with soybean as a cheap source of pro-tein, fat, and other micro-nutrients, can promote food security for low-incomeconsumers. Parallel, and in combination with cocoa, cultivated mainly by smallfarmers in developing countries, can help in terms of welfare as a tool for res-cuing poor farmers from the cycle of poverty. That has often been the historicalrole: maize, as a relatively sustainable crop cultivated in varied climate zones,and soybean, which has been an important food component of the Chinese dietfor thousands of years. However, in contrast to the tremendous potential ofthese crops and their clear potential to feed the entire world population today(Helms, 2004), their supply in certain areas is still limited.
Although food production has more than tripled over the past six decades,the growing use of the world’s major crops as a source for energy or livestockfeed has increased their consumption in high-income regions, which comes atthe expense of the low-income ones. Furthermore, the global diet evolutionleads to upward in meat consumption even in the least affluent regions, con-tributing to increased demand. The tendency to stock food as part of a food se-curity (business) strategy to protect populations (of risks management) in timesof food price fluctuations also causes relatively high vulnerability among resid-ents of low-income countries who do not possess adequate food stocks.
Despite repeated requests from the World Trade Organisation (WTO) to re-frain from government interventions, which could harm markets competitive-ness (G20, 2020;WTO, 2020), the recent coronavirus crisis has proved, once again,that the first to suffer from price fluctuations are the low GDP per capita’s coun-tries. Furthermore, the ongoing health (and economic) crisis revealed the negat-ive consequences of international tensions, especially between themajor powers,and a lack of coordination between the trading countries (IFPRI et al., 2020). Themost vulnerable are the poor, who could not stand the uncertainty, includingthe inability to sell their agricultural goods or purchase food. Given that notmany countries have held sufficient food reserves for three months, millionshave joined those who already suffered from food insecurity. Based on the ex-isting potential in international food trade and the historical claims that it willbalance the food distribution among all countries while ensuring a competitivemarket and balancing price fluctuations, this study focused on the internationalprices of agricultural goods. The entire study was done with an aspiration topromote the symmetry in information regarding global AC markets, includingthe drivers for price fluctuations, their likelihood to occur in the coming future
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(month to a year ahead) and their quantification. I hope this study could advancesocial welfare, especially among the underprivileged in low-income countries.

6.2 Empirical Approach
This study is composed of three essays that give a good picture of the perform-ance of the proposed empirical approach. As a whole, they create an accessibleframework for analysing the international ACmarkets by unravelling the impactsof agricultural productions on the global price of the same crop.
6.2.1 Essay I: Assessing the sensitivity of globalmaize price to

regional productionusing statistical andmachine learn-
ing methods

The opening article of the doctoral dissertation attempts to trace two key points:The first is an assessment of the impact of the producing areas on maize pricefluctuations; the second is an establishment of an empirical relationship betweenglobal maize price and production variation.This article examines maize as a prototype market for an almost six decadesperiod. The uniqueness of this study lies in its pioneer use of ML models toanalyse AC prices in the Medium Term while providing a glimpse of what standsbehind the results obtained. For each model, two-month specific versions arebuilt: regression to quantify annual price changes and classification, to assessthe chance of a price decrease or increase relative to the year before. All mod-els were evaluated by a leave one out cross-validation. The study focuses on thefourth quarter of the year, i.e., the beginning of the period in which the NorthAmerican (mainly USA) maize’s is physically sold on the Chicago MerchandiseExchange as new crop. The results quantify the impact of maize production inNorthern America on the global maize price in October, November and Decem-ber, i.e. during and after the North-American harvest season. The results pointout the potential of using machine learning models for price prediction but donot compare the predictive performance of this approach with standard fore-casting tools.
6.2.2 Essay II: Forecasting global maize prices from regional

productions
The second essay directly continues the first while focusing on forecasting. Thisarticlewasmotivatedby twomain objectives: The firstwas to forecast themonthly
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global price ofmaize in aMedium Term time horizon, and the secondwas to findthe most accurate forecasting method for different months and time-frames(lags).We compare machine learning tools to two econometric models; both areubiquitous tools in forecasting studies:
1. TBATS - an autoregressive tool that automatically handles non-linear fea-tures and multi-seasonality. TBATS has already demonstrated impressivepredictive capabilities in relatively short ranges for a variety of topics, in-cluding daily electricity price (Karabiber and Xydis, 2019), gas consumption(Naim et al., 2018), and even rainfall (Farheen, 2021). As for AC price fore-casting, however, this is the first time to test TBATS.
2. VAR - a multivariate autoregressive model. VAR is a widely used and rel-atively simple forecasting tool with great importance in building and ana-lysing monetary policies. VAR models excel in detecting shocks within thedata and combining their effects on the variability of the main variablesor, in our case, maize prices. While VAR is an effective tool for forecast-ing variables such as inflation, GDP growth, currency exchange or interestrates (Bjørnland, 2008; Kapetanios et al., 2008), its effectiveness has not yetbeen tested in the context of Medium Term AC prices.
The second article compares the forecasting models relative to a benchmarkcorresponding to a naive constant prediction. As such, the model evaluationincluded a rolling cross-validation process, which yielded a forecasting error(RMSE) used to rank all the models; and a comparison with a naive predictionrepresented by a mean price change value. Beyond comparing the attractive-ness of the models for forecasting maize prices, the study includes an analysisof the nature of the relationship between the level of change in the regional an-nual maize production and the change in its global price; Identification of theregions with the highest impact on the maize price, broken down by month. Inaddition, the study provides an accurate breakdown of the preferred methodfor forecasting monthly maize prices according to the forecasting horizon (bymonth, in one-month lags).Relative importance analysis, which seeks to uncover the overall relevance ofeach region for price forecasting (König et al., 2021), confirmed the substantialrelative influence of Northern American production on the global price duringmost of the year, starting from the beginning of themarket year in October untilMay. However, Western Asia showed a more substantial influence on maizeprice changes in July and August.Additionally, the Shapley values provided a glimpse into the main drivers ofinevitable extreme price fluctuations. By taking into account specific extreme
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cases, the results show that certain regions greatly impacted extreme price fluc-tuations observed at specific years. For example, Shapley brings into light thestrong positive influence of the Eastern African maize yields of 2006 over theNovember price of that same year. Undeniably, 2006 was a year of extremedroughts in the region (Solomon et al., 2007), which harmed the agricultural sec-tor (Gebrechorkos et al., 2020), and resulted in exceptionally high maize import-ation, notably from the United States.
6.2.3 Essay III: Data-driven assessment of the impacts of crop

productions on the global prices of maize, soybean and
cocoa

The final article applies the knowledge accumulated throughout the two formeressays by examining the effectiveness of the forecasting methods for two ad-ditional crops: soybeans and cocoa. This analysis explores the genericity of theproposed approach and captures the uniqueness of AC from three different cat-egories, as determined by the World Bank: grains, for maize; oils & meals, forsoybean; and beverages, for cocoa. Additionally, this chapter assesses the sens-itivity of the model performances to three geographic scales considered for theinputs, i.e., regional (as in the two first essays), continental and national. Finallyand for all three commodities, we implemented each model with two sets of in-puts: 1. regional production or yield variations; and 2. the same variables withthe addition of the relative annual change of last year’s price. All in all, eachforecasted monthly price is the result of the best performing model, out of 60(5 algorithms × 3 geographic scales × 4 versions, excluding TBATS), and relat-ive to the most relevant geographic scale division. The specification of three ACmarket categories and three geographic scales brings out the significance of theeconomic structure of the market. The results reveal the utmost importancethat market structures have on the level crop productions influence AC pricesglobally. Furthermore, the study shows that regional changes in maize produc-tion have undeniably high impacts on its price, especially when coming fromNorthern America - the crop’s lead world producer and exporter, and by a con-siderable difference compared to other regions. The other extreme is the cocoamarket. Western Africa and South America concentrate alonemost of the cocoaproduction in their area, typically as the work of smallholder farmers in familyfarms in relatively poor areas. Contrary to maize and soybean, which are tradedmainly in the international market located and managed in the country of thebiggest producer, 1 cocoa is mainly traded in the importer side, New York and
1the mainstay of maize and soybean trade activity is at the CME in US dollar. However, forsoybean, since December 2007, the price listed on the World Bank website comes from the
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London, i.e., far from its country of origin. This fact contributes to the lack ofmarket information among cocoa producers and detracts from their ability tocontrol the price they will receive for their crop or the preferred date for sellingit.
Numerous techniques were applied for interpreting the results of the fit-ted models: relative importance analysis (Greenwell et al., 2020), Shapley val-ues (Molnar et al., 2018; Tianqi et al., 2021), (Greenwell, 2017; Liu and Just, 2020)and standard correlation analysis. For cocoa, none of these methods indicateda strong relationship between the production volume of the leading producer(Côte d’Ivoire) and price changes. The results did show a lack of absolute mar-ket power concentrated in a particular area and a fairly uniform distributionof monthly impact per country over the year. Moreover, a comprehensive ex-amination pointed out a rather complex relationship between Shapley valuesand crop yield variations in Côte d’Ivoire. Focusing on specific extreme priceshocks indicated a high contribution of cocoa yield in Indonesia to events ofexceptionally high price increases. The results seemed surprising at first, as itis the most concentrated market among the three markets examined, not tomention that Indonesia’s market share in the global cocoa market is signific-antly lower than that of Côte d’Ivoire. However, an in-depth study of the cocoaliterature has revealed a complex system in which some factors undermine thenatural equilibriumof themarket. For Côte d’Ivoire (as well as Cameroon andNi-geria), one or very few local organisations collect the vast majority of productionfrom the small farmers, most of whom have no access to market information.Alternatively, they received a price set by the local government at the begin-ning of the season, depending on future prices and stock exchanges (ITC andUNCTAD/WTO., 2001). This price, however, is set low enough to ensure a pos-itive return to the paying body. As it comes, over the years, the cocoa exportmarket in Ivory Coast has been privatised, so private export companies now col-lect the production. As a result, there has not yet been an improvement in thesmall farmers’ situation (Abbott et al., 2019). In such conditions, the farmers ofCôte d’Ivoire take the critical decision right at the beginning of the growing sea-son: they aim at increasing their production when the price they receive fromtheir government increases and vice versa.
In terms of forecasting results, ML methods (RF and GBM) usually performbetter than the other models for any horizon that is longer than three monthsinto the future (Depends on the crop and month. For detailed results see Ap-pendix 5.B). Concerning maize and soybean, GBM provides noticeable higherforecasting accuracy for Northern America’s new crop months. In cocoa, thesemonths, namely March, April and May, are the only ones in which ML models

Construction Industry Federation (CIF) Rotterdam
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are considerably favourable over the other models, including TBATS.

As a result, one might conclude that the effectiveness of the forecasting toolproposed in a research study increases for sectors with fewer market distor-tions. That is, the model is more suitable for competitive markets.

6.3 Contributions

This research project offers several contributions to the literature on price fore-casting. Detecting the main drivers for maize prices changes using several MLandeconometric techniques, Essay I (3rd chapter)mainly contributedbypresent-ing novel analytical methods for forecasting AC prices. The first article, whichwas our first try to only accessible data and relatively simple models, revealedthat ML algorithms are a legitimate tool to be used in the AC price forecastingscience. Moreover, it proved that these ML models do not have to be of the"black-box" type and that their behaviour becomes interpretable when usingpowerful visualisation techniques.
The second essay (4th chapter) continued the path started in the one beforeand provided evidence, through several model interpretation techniques, thatprices in the maize market react strongly to changes in crop output changes inNorthern America, mainly of yield. The latter applies to 10 monthly prices peryear, apart from the last two months of the North American trade year. Ourimportance ranking technique revealed a strong lead of Western Asia duringthose two months. However, when focusing on specific events, Shapley valuepresents relatively strong Western Asia and Northern Africa influences.2
The third and final essay (5th chapter) found, through expanding the secondessay, substantial differences in the optimal forecasting approaches for eachunique AC price. It showed that for forecasting maize prices with the highestaccuracy, relative to the models tested in this thesis, regional yields is the mostrecommended input to use. For soybean, most of the impact comes from re-gional production, while cocoa prices are greatly affected by the local yield ofthe six biggest producing countries. The application of multiple interpretationtechniques (PDP, relative importance, Shapley value; with SHAP based analysis:Shapley value and PDP) uncovered the remarkable impact each producing unithas over the global monthly price and thus supplied an original tool to pre-prepare to extreme price fluctuations.

2Together, Western Asia and Northern Africa (MENA) compose a whole region sharing somecommon characteristics. In both areas, July and August open the regional trading year of maize.With regards to Western Asia, these impacts are more of the negative direction, i.e., its maincontribution pushes the global price down
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This study followed three leading principles, i.e., concise comprehensibility,interpretability and accessibility. Generally speaking, it contributed to the effortsfor promoting global food security.

6.3.1 Contribution I - ConciseComprehensible Forecasting Tool
As noted in the Approach and Methodologies chapter, an ideal model for thisresearch can capture multiple drivers to AC price fluctuations while remainingrelatively succinct. Whereas data collection could be an obstacle in the way ofsuch a model, this study successfully restricted the input to publicly availabledata (annual crop production/yield), which the user can obtain in one simpleclick. The user can turn this raw information into a usable grouped variableby uploading the data into his personal computer and running the code. Thedependent variable of the model (global prices) transformed into its "model-adapted" style in the same manner.

6.3.2 Contribution II - Interpretable Forecasting Tool
In their article, Coyle and Weller (2020) criticise researchers’ choice of ML mod-els as a tool to analyse and predict policy-related questions. They argue that MLmodels are often non-interpretable and thus prevent their users from under-standing them and verifying the validity of their results. To overcome this chal-lenge, we chose to construct all three articles based on interpretable modelsand then used several model-agnostic (Molnar, 2019) visualisation techniques.More specifically, the first step of conducting this research was to investigatethe causal relationship between the model’s inputs and output. For this primalinformation, we used the Granger indicator of causality (Granger, 1969). Aftertraining the models, the contribution level to the prediction accuracy (RMSE) de-termined the relative regional importance separately for each algorithm for eachmonth. Finally, the Partial Dependence Plots (PDP) visually described the aver-age responses of the maize price to relative maize yield changes in the regionsthat ranked the highest by their contribution to the prediction accuracy of themodels.In the second paper, the relative importance technique showed, again, therelative influence of the features. Later, integration of the game-theory basedShapley value enabled us to assess themarginal contribution of each of the pro-ducing regions to specific events of the most extreme price shocks, in both pos-itive and negative directions.The third article combines severalmodel interpretation techniques. Amongstthem is Shapley Additive Explanations (SHAP) of Lundberg and Lee (2017). SHAP
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is an ML specific interpretation method based on the traditional Shapley al-gorithm. Similar to the Shapley values, SHAPmeasures the contributions of eachfeature to the model predictions. However, the main advantage of this innovat-ive algorithm derives from its ability to combine a Shapley adapted PDP for aninterpretation that combines both quantification and visualisation measures.

6.3.3 Contribution III - Accessible Forecasting Tool

By being accessible, the model must be constantly ready for adaptation by thefood security strategic designer, i.e., the policymaker who uses it. The policy-maker must have regular access to the model’s input to achieve this goal. Sucha model provides its users with the ability to understand what stands behind itand a global comprehension regarding the market they face.
First, the forecasting program includes an alternative error valuation toolnamed "Relative Advantage". Using this tool, users can explore whether theforecasting model is sufficiently efficient relative to constant prediction and theother models. "Relative Advantage" provides a dynamic evaluation, dependenton the required month and the time remaining until the due date. Second, themodel-agnostic techniques mentioned in the previous section indicate whichactor should the model-user examine with caution. By using it, policymakerscan design their strategy for up to one year before buying/selling the AC, thenverifying its accuracy as the actual trade date approach.
We summarise the overall contribution with a hypothetical example showinghow to profit from this forecasting tool.
Often, decision-makers involved in food security programmes have a limitedannual budget, and the objective is to maximise the food security level of a pop-ulation in need. The policymaker aims to purchase a sufficient amount of maize(source of energy for humans and livestock), wheat, rice (sources of energy forhumans), soybean (source of protein for humans and livestock) for one year;while saving as much as possible for a local production of fruits and vegetables.Any budget left can potentially increase social welfare through steps such as in-vestments in grain stock building or technologies. We assume that protein-richfoods (eggs and dairy, with a limited amount of meat) do not have additionalcosts besides feeding. Considering the costs and risks associated with storingAC increase by the day, ourmodel will return, for each crop and eachmonth, theforecasted costs of the actual crop purchase. The policymaker will then integ-rate this information into the local costs function (including any details regard-ing freight, storage, quality, or any other relevant factor) to detect the optimalmonth(s) to purchase some quantity of each AC.
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6.4 Recommendations and future work

This doctorate thesis provides a comprehensible, interpretable and accessibleAC price forecasting and analysis tool for analysis horizons of one to twelvemonths ahead. Moreover, it is accessible to whoever needs it as a ready to useR or python package, which uses freely available data only. As of today, themodel examines three different internationally traded crops thoroughly. How-ever, it involves the price forecasting of eight crops in total (final results are inAppendix A) and, thus, proves to be a substantially outperforming tool, whichis applicable for other AC besides maize, soybean and cocoa. Price forecasts inthis project are the output of one type of input (crop production or yield). Apartfrom presenting a final result, the model provides an error analysis that indic-ates the estimated risk, corresponding to the approximated forecasting error ofthemodel. The overall recommendation is to consider both forecasted price andthe model error and prefer acting in months where the risk of errors is small.
We use our model to highlight critical price change events, which should bedetected correctly to enable themodel to be transparent for its users. One chal-lenge with forecasting AC prices is that while one might care most about fore-casting events of extreme fluctuations, these events are relatively rare. From afood-security perspective, failing to identify extreme price change events mightbe a worse outcome than missing events of moderate price changes. Tech-niques such as the Shapley value algorithm can reflect these policy priorities inthe model. Our analysis highlights the importance of understanding the trade-off between missing some production (yield) shocks in influential regions andmistakenly putting more attention on the total global supply or even on the pro-duction of regions with low-impact. Data on the costs of misinterpretation couldassist in evaluating the potential damage of any agricultural output shocks onthe food security level of vulnerable areas.
While doing the research, I first encountered the field of international ACtrade, along with the subject of machine learning. Over the past few years, Ihave read numerous articles and listened to countless lectures, conferencesand opinions of experts from numerous fields. The chapters included in thisresearch paper do not show all the attempts to maximise our tool’s contribu-tion to the world of AC price forecasting. We examined different explanatoryvariables, either together or separately; analysed the predictive power basedon data from various sources of information and even examined dependenceaccording to harvest seasons versus local trading year dates. In addition, weexperimented with models from a wide array of possibilities while performingdifferent versions of the run in the models that we eventually included. To max-imise the familiarity with the currently accepted methods and the overall op-
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tions available, segmentation of explanatory variables was also done based onprofound research work, which included the exploration of economic and agro-nomic databases parallel to an investigation of the existing literature.

This forecasting tool may not be imminently relevant to all countries. The in-ternational (World-Bank) prices examined in this study show the averagemonthlyvalue paid in direct global trading markets. This price is not necessarily a goodindicator of the consumer price level (part of income spent on food), which ulti-mately determines his/her level of food security. As discussed concerning cocoa,these prices do not always reflect the price paid for the farmer who producedit. Here comes the great importance of the nature of the state importing or ex-porting each AC. As explained in Section 1.2.3, whilemany high-income countriesmanage well-planned programmes to protect consumers and producers fromprice fluctuations, low-income countries cannot always do it efficiently. The bot-tom line of the existence or in-existence of such programmes is the level at whicheach country’s domestic price will fluctuate by the global price.
Alternatively, by the time data will be available in a sufficiently reliable andrich manner, it could be beneficial to include annual grain-stocks change as oneof the model’s inputs. Indeed, by their original role, large food stocks can com-pensate for periods of poor harvest or high AC prices, and thus they functionas a social safeguard. Unfortunately, food stocking is a costly matter that is noteconomically available for all nations. Furthermore, sufficient stocks can mit-igate competition over food products. On the downside, overstocking can putglobal markets out of their natural stabilisation, as happened at the beginningof 2020, when China re-filled its grain stocks.
Undeniably, those who are less protected are also themost vulnerable ones.However, unfortunately, those are also the ones who lack the tools to analysethe global markets and forecast the optimal moment to purchase or sell agri-cultural commodities. In such an uncertain environment, excessive volatility incommodity prices negatively affects both producers and consumers. This lackof information generally impacts farmers’ incomes and production and leads toworse input investment decisions. The repercussions of commodity market in-stability can also exacerbate poverty problems, particularly in rural areas. Thisway, lack of information adds to the negative impact on food security in themostvulnerable and import-dependent countries.
Another significant issue not considered here is the relationship between theprices of different commodities. Throughout the thesis work, a price forecastingmodel refers to each AC as independent of the others. However, in practice, asthe Shapley value showed very visibly in the result interpretation of the maize,there is a strong relationship between the prices of substitute commodities. Onthe nutritional level, maize is a carbohydrate and, hence it is a substitute for
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wheat, rice and sometimes soybean. Indeed, as a feed for livestock, price fluctu-ations of these AC also reflect price fluctuations of other AC on the internationalmarket and are used as a source of protein: meat and dairy products. In termsof local prices, egg prices will also shift eventually, in line with grain prices. In itsaspect as an energy source, maize is used as a bio-fuel and therefore coordin-ated, alongwith other commodities, with the prices of energy commodities: coal,crude oils and natural gas.As for cocoa and coffee, these AC are not essential in terms of nutritionalvalue to the consumer but constitute a single or significant source of income formany small farmers, notably in developing countries inWestern Africa. These ACare grownmainly in the tropics and imported in the vastmajority by high-incomecountries. Producer prices fluctuate with the international price and are fre-quently determine their decision regarding land-allocation, changing betweencocoa and coffee trees (Gilbert, 2016).Beyond the discussed above, the results derived by model-opening tech-niques open the possibility for future studies that will address model improve-ment. In this context, it is possible exploring other options for adding an ex-planatory variable or converting to a different explanatory variable, examiningthe forecast quality of additional models or constructing a forecast based onrunning several models simultaneously. Another piece of advice is to analysepossibilities for combining the different algorithms to create a model coveringseveral crops.To conclude, this work offers a comprehensive and available tool for ana-lysing and forecasting prices of agricultural commodities in time ranges of onemonth to one year ahead. If used correctly, the proposed mechanism may con-tribute to the food and economic security of households, farmers or other en-tities in need. However, as already written in the first paragraph of the work,this tool will bring maximum benefit if incorporated as part of a multidisciplin-ary food security plan. Undoubtedly, food prices are a critical component butinvesting in education (including education for proper nutrition and maintain-ing a healthy lifestyle), health, employment and security are also necessary, asfully detailed in the SDG website.

https://sdgs.un.org/
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Table A.1 – Forecasting cycle for monthly price of Arabica coffee
Time lags (months)

Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS GBM (Prod. Region)
0.68 0.65 0.54 0.44 0.40 0.36 0.40 0.23 0.08 0.05

Feb TBATS RF (Prod. local + pm,y−1)
0.54 0.33 0.30 0.21 0.10 0.09 0.08 0.12 0.08

Mar TBATS RF (Prod. Local + pm,y−1)
0.67 0.28 0.14 0.13

Apr TBATS VAR (Prod. Local + pm,y−1)
0.82 0.54 0.20 0.08

May TBATS VAR (Prod. Local + pm,y−1)
0.62 0.50 0.33 0.12

Jun TBATS VAR (Prod. Local + pm,y−1)
0.66 0.41 0.31 0.22 0.03

Jul TBATS RF (Prod. Region)
0.64 0.44 0.20 0.12 0.12

Aug TBATS VAR (Prod. Region)
0.60 0.67 0.48 0.26 0.18 0.17 0.07

Sep TBATS RF (Prod. Region)
0.78 0.60 0.61 0.45 0.21 0.14 0.13 0.07

Oct TBATS VAR (Prod. Region)
0.65 0.59 0.53 0.46 0.27 0.14 0.09 0.09

Nov TBATS GBM (Prod. Region + pm,y−1)
0.71 0.48 0.42 0.34 0.41 0.23 0.11

Dec TBATS GBM (Prod. Region + pm,y−1)
0.65 0.47 0.39 0.31 0.21 0.37 0.20 0.14

Best models over annual production and different geographic scales(continental, regional, local), for horizons of 1 to 12 months, relative to month.
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Table A.2 – Forecasting cycle for monthly price of cocoa

Time lags (months)
Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS VAR (Yield. Region)
0.69 0.55 0.45 0.27 0.18

Feb TBATS LM (Yield Local)
0.61 0.44 0.40 0.37 0.20 0.13

Mar TBATS GBM (Yield Local + pm,y−1)
0.51 0.40 0.31

Apr TBATS GBM (Yield Local)
0.68 0.43

May TBATS GBM (Yield Local)
0.59 0.48

Jun TBATS RF (Prod. Local)
0.62 0.48 0.34 0.30 0.20

Jul TBATS RF (Prod. Local)
0.62 0.46 0.32 0.22 0.21 0.13

Aug TBATS LM (Yield. Region)
0.71 0.54 0.39 0.28 0.21 0.22 0.16

Sep TBATS LM (Yield. Region)
0.63 0.62 0.43 0.29 0.21 0.13 0.16 0.10

Oct TBATS LM (Yield Local)
0.59 0.35 0.37 0.24 0.11

Nov TBATS VAR (Yield. Region)
0.49 0.19 0.18

Dec TBATS VAR (Yield Region + pm,y−1)
0.59 0.41 0.24 0.19

Best models over different variables (annual production or yield) andgeographic scales (continental, regional, local), 1 to 12 months ahead, relative tomonth.



202 APPENDIX A. APPENDIX

Table A.3 – Forecasting cycle for monthly price of maize
Time lags (months)

Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS GBM (Yield. Region)
0.73 0.64 0.46 0.37

Feb TBATS GBM (Yield. Region)
0.75 0.59 0.53 0.38 0.29

Mar TBATS GBM (Yield. Region)
0.78 0.59 0.47 0.41 0.3 0.22

Apr TBATS VAR (Prod. Local + pm,y−1)
0.67 0.55 0.41 0.34 0.25

May TBATS VAR (Prod. Local + pm,y−1)
0.68 0.64 0.47 0.30 0.23

Jun TBATS GBM (Prod. Region)
0.61 0.55 0.48 0.39 0.31 0.24 0.19

Jul TBATS CART (Yield. Region)
0.44 0.28 0.29 0.24 0.23

Aug TBATS CART (Prod. Region)
0.61 0.31

Sep TBATS LM (Prod. Region)
0.46 0.21

Oct TBATS GBM (Yield Local + pm,y−1)
0.57 0.37

Nov TBATS GBM (Yield Local)
0.63 0.36 0.28

Dec TBATS GBM (Yield Region + pm,y−1)
0.72 0.56 0.33 0.31

Best models over different variables (annual production or yield) andgeographic scales (continental, regional, local), 1 to 12 months ahead, relative tomonth.
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Table A.4 – Forecasting cycle for monthly price of palm-oil

Time lags (months)
Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS GBM (Yield Local)
0.71 0.53 0.35 0.37

Feb TBATS LM (Prod. Region)
0.77 0.57 0.48 0.36 0.29

Mar TBATS LM (Prod. Region + pm,y−1)
0.72 0.61 0.45 0.41 0.29 0.22

Apr TBATS VAR (Prod. Local + pm,y−1)
0.57 0.44 0.41 0.28 0.25

May TBATS VAR (Prod. Local + pm,y−1)
0.67 0.43 0.31 0.33 0.23

Jun TBATS VAR (Prod. Local + pm,y−1)
0.72 0.46 0.33 0.18 0.22 0.13

Jul TBATS VAR (Prod. Local + pm,y−1)
0.54 0.44 0.23 0.37 0.09 0.11 0.08

Aug TBATS VAR (Prod. Local + pm,y−1)
0.51 0.33 0.29 0.14 0.16 0.09

Sep TBATS VAR (Prod. Region + pm,y−1)
0.77 0.34 0.33 0.3 0.18

Oct TBATS GBM (Yield Local + pm,y−1)
0.65 0.55 0.37

Nov TBATS GBM (Yield Local)
0.66 0.42 0.43 0.28

Dec TBATS GBM (Yield Local)
0.72 0.56 0.33 0.31 0.27

Best models over different variables (annual production or yield) andgeographic scales (continental, regional, local), 1 to 12 months ahead, relative tomonth.
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Table A.5 – Forecasting cycle for monthly price of rice
Time lags (months)

Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS LM (Prod. Region + pm,y−1)
0.71 0.53 0.42

Feb TBATS VAR (Yield Local + pm,y−1)
0.77 0.57 0.48 0.36 0.18 0.14

Mar TBATS VAR (Prod. Region)
0.72 0.61 0.45 0.41 0.29 0.19

Apr TBATS VAR (Prod. Local + pm,y−1)
0.57 0.44 0.41 0.28 0.09 0.05

May TBATS VAR (Prod. Local + pm,y−1)
0.67 0.43 0.31 0.33 0.20 0.11

Jun TBATS GBM (Yield Local)
0.72 0.46 0.33 0.18 0.22 0.16

Jul TBATS RF (Yield Local)
0.54 0.44 0.23 0.37 0.09 0.09

Aug TBATS GBM (Yield Local)
0.51 0.33 0.29 0.14 0.12

Sep TBATS RF (Yield Local + pm,y−1)
0.77 0.34 0.33 0.3 0.13 0.08 0.05

Oct TBATS LM (Prod. Region + pm,y−1)
0.65 0.55 0.44

Nov TBATS LM (Prod. Region)
0.66 0.42 0.43 0.24

Dec TBATS LM (Prod. Region + pm,y−1)
0.73 0.45 0.30 0.36 0.19

Best models over different variables (annual production or yield) andgeographic scales (continental, regional, local), 1 to 12 months ahead, relative tomonth.
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Table A.6 – Forecasting cycle for monthly price of Robusta coffee

Time lags (months)
Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS
0.76 0.62 0.51 0.26 0.17 0.14 0.12 0.12 0.08

Feb TBATS RF (Prod. Local)
0.76 0.64 0.54 0.45 0.23 0.14 0.12 0.10 0.09 0.05

Mar TBATS
0.73 0.53 0.45 0.42 0.35 0.16 0.10 0.11 0.09 0.07 0.04

Apr TBATS
0.76 0.57 0.39 0.35 0.35 0.31 0.12 0.08 0.08 0.05 0.03 0.02

May TBATS
0.82 0.57 0.42 0.27 0.25 0.26 0.24 0.06 0.03 0.04 0.01

Jun TBATS
0.80 0.68 0.55 0.37 0.23 0.22 0.22 0.22 0.04 0.03 0.02

Jul TBATS
0.81 0.69 0.60 0.51 0.36 0.23 0.21 0.19 0.20 0.02 0.01 0.01

Aug TBATS
0.71 0.65 0.64 0.55 0.44 0.36 0.20 0.21 0.16 0.16

Sep TBATS CART (Prod. Local)
0.74 0.50 0.44 0.44 0.34

Oct TBATS
0.47 0.40 0.3 0.28 0.28 0.25 0.13 0.1

Nov TBATS
0.76 0.37 0.3 0.25 0.23 0.21 0.19 0.07 0.05

Dec TBATS
0.74 0.59 0.28 0.20 0.18 0.16 0.15 0.11 0.01

Best models over annual production and different geographic scales(continental, regional, local), for horizons of 1 to 12 months, relative to month.
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Table A.7 – Forecasting cycle for monthly price of soybean
Time lags (months)

Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS LM (Yield. Region)
0.72 0.53

Feb TBATS VAR (Yield Local + pm,y−1)
0.56 0.51 0.44 0.4

Mar TBATS RF (Prod. Region + pm,y−1)
0.63 0.59 0.48

Apr TBATS RF (Prod. Region + pm,y−1)
0.42 0.38

May TBATS CART (Prod. Region)
0.29 0.26

Jun TBATS GBM (Yield. Region)
0.53 0.31

Jul TBATS VAR (Prod. Local + pm,y−1)
0.36 0.28

Aug TBATS GBM (Prod. Local)
0.49 0.24 0.19 0.12

Sep TBATS GBM (Prod. Local)
0.55 0.32 0.22

Oct TBATS GBM (Prod. Region)
0.68 0.46 0.37

Nov TBATS GBM (Prod. Region)
0.56 0.40 0.29 0.19

Dec TBATS GBM (Prod. Region + pm,y−1)
0.64 0.38 0.31 0.24

Best models over different variables (annual production or yield) andgeographic scales (continental, regional, local), 1 to 12 months ahead, relative tomonth.
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Table A.8 – Forecasting cycle for monthly price of wheat

Time lags (months)
Month 1 2 3 4 5 6 7 8 9 10 11 12

Jan TBATS GBM (Yield Local)
0.79 0.55 0.36 0.32 0.28

Feb TBATS LM (Prod. Region + pm,y−1)
0.72 0.64 0.47 0.37 0.32 0.19

Mar TBATS GBM (Yield Local + pm,y−1)
0.51 0.40 0.19

Apr TBATS VAR (Prod. Local + pm,y−1)
0.68 0.25

May TBATS VAR (Prod. Local + pm,y−1)
0.59 0.23

Jun TBATS VAR (Prod. Local + pm,y−1)
0.62 0.48 0.34 0.30 0.13

Jul TBATS LM (Prod. Region)
0.62 0.46 0.32 0.22 0.21 0.12

Aug TBATS VAR (Prod. Local + pm,y−1)
0.71 0.54 0.39 0.28 0.21 0.22 0.09

Sep TBATS CART (Prod. Local)
0.63 0.62 0.43 0.29 0.21 0.13 0.16 0.11

Oct TBATS GBM (Yield Local + pm,y−1)
0.59 0.35 0.37 0.24 0.37

Nov TBATS GBM (Yield Local)
0.49 0.22 0.28

Dec TBATS GBM (Yield Local)
0.66 0.45 0.45 0.27

Best models over different variables (annual production or yield) andgeographic scales (continental, regional, local), for horizons of 1 to 12 months,relative to month.
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Table A.9 – Data sources 1/2
Crop Agricultural output Monthly prices
Arabica, coffee PSD Data Setes (2021) PSD Data Setes (2021)
Cocoa FAO STAT (2020) FAO STAT (2020)
Maize FAO STAT (2020) World Bank, Pink Sheet (2020)
Palm-oil FAO STAT (2020) World Bank, Pink Sheet (2020)
Rice FAO STAT (2020) World Bank, Pink Sheet (2020)
Robusta, coffee PSD Data Setes (2021) World Bank, Pink Sheet (2020)
Soybean FAO STAT (2020) World Bank, Pink Sheet (2020)
Wheat FAO STAT (2020) World Bank, Pink Sheet (2020)

Table A.10 – Data sources 2/2
References

PSD Data Setes apps.fas.usda.gov/psdonline
FAO STAT www.fao.org/faostat
World Bank, Pink Sheet www.worldbank.org/en/research

https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads
https://www.fao.org/faostat/en/#data
https://www.worldbank.org/en/research/commodity-markets
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Résumé : Serait-il possible de développer un outil de 
prévision des prix des produits agricoles de base qui soit 
à la fois précis, interprétable et accessible au plus grand 
nombre ? Un tel outil permettrait à ceux qui n'ont pas la 
capacité financière ou le bagage technique appropriés 
de prévoir les prix des produits agricoles de base, un ou 
plusieurs mois à l'avance. Ce doctorat explore la 
faisabilité de cette idée en trois parties : L'objectif de la 
première partie est de tester la capacité de plusieurs 
modèles statistiques et d'apprentissage automatique à 
simuler les variations du prix du maïs en fonction des 
variations annuelles de production et de rendement du 
maïs observées dans les principales régions 
productrices. Dans la deuxième partie de la thèse, les 
modèles développés dans la première partie sont 
adaptés pour effectuer des prévisions mensuelles de 
prix du maïs. Nous comparons les performances de ces 
modèles à celles de techniques prédictives souvent 
utilisées pour l'analyse des séries chronologiques. Enfin, 
dans la troisième partie, nous étendons le travail réalisé  

sur le maïs à deux autres cultures très différentes - le et le 
cacao. Nous analysons la capacité des techniques de 
prévision mises au point dans la partie précédente à 
prédire les variations de prix du soja et du cacao et nous 
analysons également l'effet de l'échelle géographique 
considérée pour calculer les variations de production. Dans 
cette partie également, nous montrons comment les 
méthodes d'apprentissage machine peuvent être utilisées 
pour identifier les chocs de production à l'origine des chocs 
de prix. Globalement, cette thèse montre que les méthodes 
d'apprentissage automatique sont des outils 
potentiellement utiles à la fois pour comprendre l'impact 
de la production agricole sur les variations de prix et pour 
prédire ces variations plusieurs mois à l'avance. Ces 
approches sont assez faciles à appliquer et peuvent être 
calibrées avec des données de prix et de production 
publiquement accessibles. Elles peuvent ainsi contribuer à 
démocratiser l'analyse et la prévision des variations de prix 
agricoles. 
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Abstract : Would it be possible to develop a 
forecasting tool for agricultural commodity (AC) prices 
that is both accurate and interpretable and publicly 
accessible? Such a tool could turn the forecasting and 
analysis of food prices into an implementable 
instrument used by whoever is concerned by food 
security. This PhD explores the feasibility of this idea in 
three parts: The first part aims to test the ability of 
several statistical and machine learning (ML) models to 
simulate changes in maize prices based on annual 
changes in maize production and yield observed in 
major producing regions. The second part of the thesis 
applies the models developed in the first part and adapt 
them to produce monthly forecasts of maize prices. We 
compare the performance of these models to that of 
forecasting techniques often used for time 

series analysis. Finally, the third part extends the model to 
consider two other different crops – soybeans and cocoa. 
We evaluate the forecasting ability of the techniques 
developed in the previous stages to predict price changes 
for soybeans and cocoa. Additionally, we test the sensitivity 
of the results relative to three geographic scales. Also is the 
application of ML methods to identify which production 
shocks drive price shocks. Overall, this thesis shows that ML 
methods are a potential tool for understanding and 
forecasting the impact of agricultural production on price 
variations. These approaches can be easily implemented 
since they rely on publicly available data, accessible via 
public website. These tools can thus contribute to 
democratising the analysis and forecasting of variation in 
AC prices. 
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