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Résumeé

Cette thése se compose de trois chapitres qui traitent de I'analyse/prévision des
matieres premieres agricoles échangées au niveau mondial. Tous, ont utilisé des
données et des méthodes accessibles au public qui peuvent étre reproduites et
qui sont donc accessibles indépendamment de toute limitation budgétaire. En
tant que telle, cette these propose une nouvelle méthodologie de prévision et
d’'analyse des prix des produits agricoles de base afin de garantir une grande
précision de prévision, tout en étant interprétable et techniquement accessible.
Nous montrons que les prix des produits agricoles peuvent étre prévus pour des
périodes allant d'un mois a un an, tout en maintenant une qualité de prévision
élevée et les principes de transparence scientifique.

L'idée centrale cette étude

Transformer la théorie de la prévision des prix des produits agricoles en un
outil disponible et accessible serait socialement bénéfique, surtout pour ceux
qui n'y ont actuellement pas acces - il s'agit principalement des résidents des
pays a faible revenu. Si I'on considére que chaque culture a des valeurs nutri-
tionnelles uniques, laconsommation de plusieurs cultures de différents groupes
peut créer un régime alimentaire complet et équilibré. Dans le cadre d'une al-
imentation peu transformée, l'intégration de ces cultures peut permettre de
mettre en place un régime alimentaire sain et bon marché. En tant que source
bon marché d'énergie et de micro-nutriments, le mais, associé au soja comme
source bon marché de protéines, de graisses et d'autres micro-nutriments, peut
promouvoir la sécurité alimentaire des consommateurs a faibles revenus. Par-
allelement, et en combinaison avec le cacao, cultivé principalement par les petits
agriculteurs des pays en développement, peut contribuer au bien-étre en tant
gu'outil permettant de sauver les agriculteurs pauvres du cycle de la pauvreté.

Cela a souvent été le role historique : le mais, en tant que culture relative-
ment durable cultivée dans des zones climatiques variées et le soja, qui est un
élément important du régime alimentaire chinois depuis des milliers d'années.
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Cependant, contrairement a I'énorme potentiel de ces cultures et a leur capa-
cité évidente a nourrir 'ensemble de la population mondiale aujourd’hui (Helms,
2004), leur offre reste limitée dans certaines régions. Bien que la production al-
imentaire ait plus que triplé au cours des six derniéres décennies, l'utilisation
croissante des principales cultures du monde comme source d’énergie ou d'ali-
mentation du bétail a augmenté leur consommation dans les régions a haut
revenu, au détriment des régions a faible revenu. En outre, I'évolution du régime
alimentaire mondial entraine une hausse de la consommation de viande, méme
dans les régions les moins riches, ce qui contribue a accroitre la demande. La
tendance a stocker des denrées alimentaires dans le cadre d'une stratégie (com-
merciale) de sécurité alimentaire visant a protéger les populations (de gestion
des risques) en cas de fluctuations des prix des denrées alimentaires entraine
également une vulnérabilité relativement élevée chez les résidents des pays a
faible revenu qui ne possedent pas de stocks alimentaires suffisants.

Malgré les demandes répétées de I'Organisation mondiale du commerce
(OMC) de s'abstenir d'interventions gouvernementales qui pourraient nuire a la
compétitivité des marchés (G20, 2020 ; OMC, 2020), la récente crise du coronavir-
us a prouvé, une fois de plus, que les premiers a souffrir des fluctuations de prix
sontles pays a faible PIB par habitant. En outre, la crise sanitaire (et économique)
actuelle a révélé les conséquences négatives des tensions internationales, not-
amment entre les grandes puissances, et du manque de coordination entre les
pays commercants (IFPRI et al., 2020). Les plus vulnérables sont les pauvres,
qui n‘ont pas supporté l'incertitude, notamment I'impossibilité de vendre leurs
produits agricoles ou d'acheter la nourriture. Etant donné que peu de pays ont
détenu des réserves alimentaires suffisantes pour trois mois, des millions de
personnes ont rejoint celles qui souffraient déja d'insécurité alimentaire.

Compte tenu du potentiel existant dans le commerce alimentaire interna-
tional et des affirmations historiques officielles selon lesquelles il permettra d'é-
quilibrer la distribution alimentaire entre tous les pays tout en garantissant un
marché compétitif et en équilibrant les fluctuations de prix, cette étude s'est con-
centrée sur les prix internationaux des produits agricoles. L'ensemble de I'étude
a été réalisé dans le but de promouvoir la symétrie des informations concernant
les marchés mondiaux des produits agricoles, y compris les facteurs de fluctu-
ation des prix, leur probabilité d’apparition dans un avenir proche (un mois a un
an a l'avance) et leur quantification. J'espére que cette étude pourra faire pro-
gresser le bien-étre social, en particulier celui des personnes défavorisées dans
les pays a faible revenu.
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Approche empirique

Cette étude est composée de trois essais qui donnent une bonne image de la
performance de I'approche empirique proposée. Dans I'ensemble, ils créent un
cadre accessible pour I'analyse des marchés internationaux des produits agri-
coles de base en démélant les impacts des productions agricoles sur le prix
mondial de la méme culture.

Essai I: Analyse de la sensibilité du prix mondial du mais a la
production régionale a I'aide de méthodes statistiques et
d’apprentissage automatique

Des l'ouverture, cette thése tente de retracer deux points essentiels: Le premier
est une évaluation de I'impact des zones de production sur les fluctuations de
prix du mais; le second est I'établissement d'une relation empirique entre le prix
mondial du mais et la variation de la production. Cet article examine le mais en
tant que marché prototype sur prés de six décennies. Le caractére unique de
cette étude réside dans l'utilisation pionniére de modéles d'apprentissage auto-
matique pour analyser les prix a moyen terme des produits agricoles de base,
tout en donnant un apercu de ce qui se cache derriere les résultats obtenus.
Pour chaque modéle, des versions spécifiques a deux mois sont construites : la
régression pour quantifier les variations annuelles des prix et la classification,
pour évaluer la probabilité d'une baisse ou d'une hausse des prix par rapport a
'année précédente. Tous les modeles ont été évalués par une Leave-One-Out-
Cross-Validation. L'étude se concentre sur le quatrieme trimestre de l'année,
C'est-a-dire au début de la période ou le mais nord-américain (principalement
les Etats-Unis) est physiquement commercialisé sur le Chicago Merchandise Ex-
change en tant que nouvelle récolte. Les résultats quantifient I'impact de la
production de mais en Amérique du Nord sur le prix mondial du mais en oc-
tobre, novembre et décembre, c'est-a-dire pendant et apres la saison de récolte
nord-ameéricaine. Les résultats soulignent le potentiel d'utilisation de modeles
d’'apprentissage automatique pour la prévision des prix, mais ne comparent pas
la performance prédictive de cette approche avec les outils de prévision stand-
ard.
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ESSAI II: PREVISION DES PRIX MONDIAUX DU MAIS A PARTIR DE
LA PRODUCTION REGIONALE

Le deuxiéme essai s'inscrit directement dans la continuité du premier en se fo-
calisant sur la prévision. Cet article a été motivé par deux objectifs principaux
: Le premier était de prévoir le prix mondial mensuel du mais dans un horizon
temporel a moyen terme, et le second était de trouver la méthode de prévision
la plus précise pour différents mois et délais (lags).

Nous comparons les outils d'apprentissage automatique a deux modeles
économeétriques ; tous deux sont des outils omniprésents dans les études de
prévision :

TBATS - un outil auto-régressif qui traite automatiquement les caractéristiqu-
es non linéaires et la multisaisonnalité. TBATS a déja démontré des capacités
de prédiction impressionnantes dans des plages relativement courtes pour une
variété de sujets, notamment le prix quotidien de I'électricité (Karabiber et Xydis,
2019), la consommation de gaz (Naim et al., 2018), et méme les précipitations (Far-
heen, 2021). Cependant, en ce qui concerne la prévision des prix des matieres
premieres agricoles, c'est la premiere fois que I'on teste TBATS.

VAR - un modele auto-régressif multivarié. Le VAR est un outil de prévision
largement utilisé et relativement simple, qui revét une grande importance dans
I'élaboration et I'analyse des politiques monétaires. Les modeles VAR s’excellent
dans la détection des chocs au sein des données et la combinaison de leurs ef-
fets sur la variabilité des principales variables ou, dans notre cas, des prix du
mais. Cependant, si le VAR est un outil efficace pour la prévision de variables
telles que l'inflation, la croissance du PIB, le taux de change ou les taux d'intérét
(Bjgrnland,2008 ; Kapetaniosetal.,2008), son efficacité n'a pas encore été testée
dans le contexte des prix des matieres premiéres agricoles a moyen terme. Le
deuxiéme article compare les modéles de prévision a un benchmark corres-
pondant a une prédiction naive constante. L'évaluation des modéles comprend
un processus de validation croisée glissante, qui produit une erreur de prévi-
sion (RMSE) utilisée pour classer tous les modéles et une comparaison avec une
prédiction naive représentée par une valeur moyenne de changement de prix.

Au-dela de la comparaison de l'attrait des modeles pour la prévision des prix
du mais, 'étude comprend une analyse de la nature de la relation entre le niveau
de changement de la production annuelle régionale de mais et le changement
de son prix mondial ; I'identification des régions ayant le plus grand impact sur
le prix du mais, ventilé par mois. En outre, I'étude fournit une ventilation précise
de la méthode préférée de prévision des prix mensuels du mais en fonction de
I'horizon de prévision (par mois, avec des décalages d'un mais).

L'analyse de I'importance relative, qui cherche a découvrir la pertinence glob-
ale de chaque région pour la prévision des prix (Kdnig et al., 2021), a confirmé
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I'influence relative substantielle de la production de I'Amérique du Nord sur le
prix mondial pendant la majeure partie de I'année, a partir du début de I'année
de marché en octobre jusqu’en mai. Cependant, I'Asie occidentale a exercé une
influence plus substantielle sur les changements de prix du mais en juillet et en
aoqt.

En outre, les valeurs de Shapley ont donné un apercu des principaux moteurs
des fortes et inévitables fluctuations des prix Les résultats montrent en effet
gue certaines régions ont influencé a I'extréme les fluctuations des prix obser-
vées certaines années. Par exemple, Shapley met en lumiere l'influence forte-
ment positive des rendements de mais d'’Afrique de I'Est en 2006 sur le prix de
novembre de cette méme année. Indéniablement, 2006 a été une année de
sécheresse extréme dans la région (Solomon et al., 2007), ce qui a nui au sec-
teur agricole (Gebrechorkos et al., 2020), et a entrainé des importations de mais
exceptionnellement élevées, notamment en provenance des Etats-Unis.

ESSAI 111: EVALUATION FONDEE SUR DES DONNEES, DE I'lMPACT
DE LA PRODUCTION AGRICOLE SUR LES PRIX MONDIAUX DU
MAIS, SOJA ET CACAO

Le dernier article applique les connaissances accumulées dans les deux premi-
ers essais en examinant l'efficacité des méthodes de prévision pour deux cul-
tures supplémentaires : le soja et le cacao. Cette analyse explore le caractére
générique de I'approche proposée et capture le caractére unique des produits
agricoles de base de trois catégories différentes, telles que déterminées par la
Banque mondiale : les céréales, pour le mais ; les huiles et farines, pour le soja
; et les boissons, pour le cacao. En outre, ce chapitre évalue la sensibilité des
performances du modele aux trois échelles géographiques considérées pour
les entrées, c'est-a-dire régionale (comme dans les deux premiers essais), con-
tinentale et nationale. Enfin, et pour les trois produits de base, nous avons mis
en ceuvre chaque modeéle avec deux ensembles d’entrées : (1) les variations ré-
gionales de production ou de rendement ; et (2) les mémes variables avec I'ajout
de la variation annuelle relative du prix de 'année précédente.

En somme, chaque prix mensuel prévu est le résultat du modele le plus
performant, sur 60 (5 algorithmes x 3 échelles géographiques x 4 versions, a
I'exclusion de TBATS), et par rapport a la division d'échelle géographique la plus
pertinente.

La spécification de trois catégories de marchés de matieres premieres ag-
ricoles et de trois échelles géographiques met en évidence I'importance de la
structure économique du marché. Les résultats révélent Iimportance capitale
que les structures de marché ont sur le niveau des productions végétales qui
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influencent les prix des produits agricoles de base au niveau mondial. En outre,
I'étude montre que les changements régionaux dans la production de mais ont
indéniablement des impacts élevés sur son prix, en particulier lorsqu'ils provi-
ennent d’Amérique du Nord - le premier producteur et exportateur mondial de
cette culture, et avec une différence considérable par rapport aux autres ré-
gions.

L'autre extréme est le marché du cacao. L'Afrique de I'Ouest et 'Amérique du
Sud concentrent a elles seules la majeure partie de la production de cacao dans
leur région, généralement le fait de petits exploitants dans des fermes familiales
situées dans des zones relativement pauvres. Contrairement au mais et au soja,
qui sont principalement négociés sur le marché international situé et géré dans
le pays du plus gros producteur, le cacao est négocié principalement du cété des
importateurs, a New-York et a Londres, c'est-a-dire loin de son pays d'origine. Ce
fait contribue au manque d'information sur le marché parmi les producteurs de
cacao et les empéche de contréler le prix qu'ils recevront pour leur récolte ou la
date préférée pour la vendre.

De nombreuses techniques ont été appliquées pour interpréter les résultats
des modeles ajustés : analyse de limportance relative (Greenwell et al., 2020),
valeurs de Shapley (Molnar et al., 2018 ; Tiangi et al., 2021 ; Greenwell, 2017 ;
Liu et Just, 2020) et analyse de corrélation standard. Pour le cacao, aucune de
ces méthodes n'a indiqué une relation forte entre le volume de production du
principal producteur (Céte d'lvoire) et les variations de prix. Les résultats ont
cependant montré une absence de pouvoir de marché absolu concentré dans
une zone particuliere et une distribution assez uniforme de I'impact mensuel par
pays sur I'année. En outre, un examen approfondi a mis en évidence une rela-
tion assez complexe entre les valeurs de Shapley et les variations de rendement
des cultures en Cote d'lvoire. En se concentrant sur des chocs de prix extrémes
spécifiques, on a constaté une forte contribution du rendement du cacao en In-
donésie aux événements de hausses de prix exceptionnellement élevées. Les
résultats ont semblé surprenants au départ, car il s'agit du marché le plus con-
centré parmi les trois marchés examinés, sans compter que la part de marché de
I''ndonésie sur le marché mondial du cacao est nettement inférieure a celle de
la Cote d'lvoire. Cependant, une étude approfondie de la littérature sur le cacao
a révélé un systeme complexe dans lequel certains facteurs sapent I'équilibre
naturel du marché.

Pour la Cote d'lvoire (Cameroun et Nigeria), trés peu d’'organisations locales
collectent la grande majorité de la production des petits exploitants, dont la plu-
part n‘ont pas accés aux informations sur le marché. De fait ils recoivent, en
début de saison, un prix fixé par le gouvernement local en fonction des prix fu-
turs et des bourses (CCl et CNUCED/OMC., 2001). Ce prix est toutefois fixé a un
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niveau suffisamment bas pour assurer un retour positif a 'organisme payeur.
Au fil des années, le marché d'exportation du cacao en Céte d'lvoire a été privat-
isé, de sorte que des sociétés d'exportation privées collectent désormais la pro-
duction. De ce fait, la situation des petits agriculteurs ne s'est pas encore améli-
orée (Abbott et al., 2019). Dans ces conditions, les agriculteurs de Cote d'lvoire
prennent la décision critique deés le début de la saison de culture : ils visent a
augmenter leur production lorsque le prix qu'ils recoivent de leur gouvernement
augmente et vice versa.

En termes de résultats de prévision, les méthodes d'apprentissage automati-
qgue (RF et GBM) sont généralement plus performantes que les autres modeles
pour tout horizon supérieur a trois mois dans le futur. Le GBM offre une pré-
cision de prévision nettement supérieure pour les mois de la nouvelle récolte de
mais et de soja en Amérique du Nord Dans le secteur du cacao, ces mois, a sa-
voir mars, avril et mai, sont les seuls pour lesquels les modeéles d’apprentissage
automatique sont pris en compte.

CONTRIBUTIONS PRINCIPALES

Ce projet de recherche offre a la littérature plusieurs contributions sur la prévi-
sion des prix. L'essai | a principalement contribué a la présentation de nouvelles
méthodes analytiques pour la prévision des prix des produits agricoles de base
en identifiant les principaux facteurs de changement des prix du mais a l'aide
de plusieurs techniques économétriques et d’'apprentissage automatique. Le
premier article, qui était notre premiere tentative a n'utiliser que des données
accessibles et des modeles relativement simples, a révélé que les algorithmes
d'apprentissage automatique sont un outil légitime pour la science de la prévi-
sion des prix des produits agricoles de base. En outre, il a démontré que ces
modeles d'apprentissage automatique ne doivent pas nécessairement étre du
type "boite noire" et que leur comportement devient interprétable lorsqu'on
utilise de puissantes techniques de visualisation. Le deuxieme essai (Essai Il)
a poursuivi le chemin entamé dans l'essai précédent et a fourni la preuve, par le
biais de plusieurs techniques d'interprétation de modeles, suivant laquelle les
prix sur le marché du mais réagissent fortement aux changements de la pro-
duction agricole en Amérique du Nord, principalement du rendement. Cette
derniére s'applique a 10 prix mensuels par an, a I'exception des deux derniers
mois de I'année commerciale nord-américaine. Notre technique de classement
par importance a réveélé une forte avance de I'Asie occidentale au cours de ces
deux mois. Cependant, lorsqu’on se concentre sur des événements spécifiques,
la valeur de Shapley présente des influences relativement fortes de I'Asie occi-
dentale et de I'Afrique du Nord. Le troisieme et dernier essai (essai lll) a révélé



24 Acronyms

des différences notables dans les approches de prévision optimales pour chaque
prix de produit agricole unique en développant le deuxiéme essai. Il a démon-
tré que pour prévoir les prix du mais avec la plus grande précision, par rapport
aux modeles testés dans cette these, les rendements régionaux sont I'entrée la
plus recommandée a utiliser. Pour le soja, Iimpact provient pour I'essentiel de
la production régionale, tandis que les prix du cacao sont grandement affectés
par le rendement local des six plus grands pays producteurs. En appliquant des
techniques d'interprétation multiples (PDP, importance relative, valeur de Shap-
ley. Avec une analyse basée sur le SHAP : Shapley value and PDP) a permis de
mettre en évidence I'impact remarquable de chaque unité de production sur le
prix mensuel mondial. Elle a ainsi fourni un outil original pour se préparer aux
fluctuations extrémes des prix.

Cette étude a suivi trois principes directeurs, a savoir la concision, la com-
préhensibilité, I'interopérabilité et I'accessibilité. D’'une maniére générale, elle a
contribué aux efforts de promotion de la sécurité alimentaire mondiale.

Contribution | - OUTIL DE PREVISION CONCIS ET COMPREHENS-
IBLE

Nous définissons un modele idéal capable de prendre en compte les multiples
facteurs de fluctuation des prix des produits agricoles tout en restant relative-
ment succinct. Alors que la collecte de données pourrait constituer un obstacle a
la réalisation d'un tel modele, cette étude a réussi a limiter les données d'entrée
aux données accessibles au public (production/rendement annuel des cultures),
que l'utilisateur peut obtenir en un simple clic. L'utilisateur peut transformer
cette information brute en une variable groupée utilisable en téléchargeant les
données dans son ordinateur personnel et en exécutant le code. La variable
dépendante du modele (prix mondiaux) est transformée en son style "adapté
au modéle" de la méme maniére.

Contribution Il - OUTIL DE PREVISION INTERPRETABLE

Dans leur article, Coyle et Weller (2020) critiquent le choix par les chercheurs des
modeles d'apprentissage automatique comme outil d'analyse et de prévision
des questions liées aux politiques. lIs affirment que les modeles d'apprentissage
automatique sont souvent non interprétables et empéchent donc leurs utilisate-
urs de les comprendre et de vérifier la validité de leurs résultats. Pour sur-
monter ce défi, nous avons choisi de construire les trois articles sur la base
de modeéles interprétables, puis d'utiliser plusieurs techniques de visualisation
non consacrées par les modeles existants (Molnar, 2019). Plus précisément, la
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premiere étape de la réalisation de cette recherche consistait a étudier la rela-
tion causale entre les entrées et les sorties du modéle. Pour cette information
primaire, nous avons utilisé I'indicateur de causalité de Granger (Granger, 1969).
Aprés I'entrainement des modéles, le niveau de contribution a la précision de la
prédiction (RMSE) a déterminé I'importance régionale relative séparément pour
chaque algorithme et pour chaque mois. Enfin, les diagrammes de dépendance
partielle (PDP) décrivent visuellement les réponses moyennes du prix du mais
aux variations du rendement relatif du mais dans les régions les mieux classées
en fonction de leur contribution a la précision des prédictions des modeles.

Dans le deuxiéeme article, la technique de I'importance relative a montré, une
fois encore, l'influence relative des caractéristiques. Plus tard, I'intégration de
la valeur de Shapley basée sur la théorie des jeux nous a permis d'évaluer la
contribution marginale de chacune des régions productrices aux événements
spécifiques des chocs de prix les plus extrémes, dans les deux sens, positif et
négatif. Le troisieme article combine plusieurs techniques d'interprétation de
modeles. Parmi celles-ci, citons les explications additives de Shapley (SHAP) de
Lundberg et Lee (2017). SHAP est une méthode d'interprétation par apprentis-
sage automatique basée sur l'algorithme traditionnel de Shapley. Comme les
valeurs de Shapley, SHAP mesure les contributions de chaque caractéristique
aux prédictions du modéle. Cependant, le principal avantage de cet algorithme
innovant découle de sa capacité a combiner un PDP adapté a Shapley pour une
interprétation qui combine a la fois des mesures de quantification et de visual-
isation.

Contribution 11l - OUTIL DE PREVISION ACCESSIBLE

Pour étre accessible le modele doit étre constamment prét a étre adapté par le
concepteur stratégique de la sécurité alimentaire, a savoir le responsable poli-
tique qui l'utilise. Pour atteindre cet objectif, le décideur doit avoir un acces
régulier aux données du modele. Un tel modele offre a ses utilisateurs la pos-
sibilité de comprendre ce qui se cache derriére et une compréhension globale
du marché auquel ils sont confrontés.

Tout d’'abord, le programme de prévision comprend un outil d'évaluation des
erreurs alternatives appelé "Avantage relatif". Grace a cet outil, les utilisateurs
peuvent déterminer sile modéle de prévision est suffisamment efficace par rap-
port a la prévision constante et aux autres modeles. En outre, " L'Avantage
Relatif" fournit une évaluation dynamique, en fonction du mois requis et du
temps restant jusqu'a la date d'échéance. En deuxieme lieu les techniques de
diagnostic des modéles mentionnées dans la section précédente indiquent quel
acteur l'utilisateur du modele doit examiner avec prudence. Lorsqu'ils l'utilisent,
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les décideurs peuvent concevoir leur stratégie jusqu’a un an avant l'achat/la
vente des produits agricoles, puis en vérifier 'exactitude a I'approche de la date
réelle des échanges.

RECOMMANDATIONS ET TRAVAUX FUTURS

Cette thése de doctorat fournit un outil de prévision et d’analyse des prix des
matiéres premiéres agricoles compréhensible, interprétable et accessible pour
des perspectives d'analyse de un a douze mois. En outre, il est accessible a
qguiconque en a besoin sous la forme d'un package R ou python prét a I'emploi,
qui exploite uniquement des données librement disponibles. A ce jour, le mod-
ele examine en détail trois types de cultures différentes faisant I'objet d'échanges
internationaux. Cependant, il implique la prévision des prix de huit cultures
au total et s'avere donc étre un outil nettement plus performant, applicable a
d’'autres produits agricoles que le mais, le soja et le cacao.

Les prévisions de prix dans ce projet sont le résultat d'un seul type d’entrée
(production ou rendement des cultures). En plus de présenter un résultat fi-
nal, le modéle fournit une analyse d'erreur qui indique le risque estimé, corres-
pondant a I'erreur de prévision approximative du modele. La recommandation
générale est de considérer a la fois le prix prévu et I'erreur du modele et de
préférer agir les mois ou le risque d’erreur est faible. Nous utilisons notre mod-
éle pour mettre en évidence les événements critiques de changement de prix,
qui doivent étre détectés correctement pour permettre au modele d'étre trans-
parent pour ses utilisateurs. L'un des défis de la prévision des prix des produits
agricoles de base est que, si I'on se soucie surtout de prévoir les événements de
fluctuations extrémes, ces événements sont relativement rares. Du point de vue
de la sécurité alimentaire, le fait de ne pas identifier des événements de change-
ment de prix extrémes pourrait étre un résultat pire que de manquer des événe-
ments de changement de prix modérés. Des techniques telles que l'algorithme
de la valeur de Shapley peuvent refléter ces priorités politiques dans le mod-
ele. Notre analyse souligne I'importance de comprendre le compromis entre
'omission de certains chocs de production (rendement) dans des régions influ-
entes et le fait d'accorder, par erreur, plus d'attention a I'offre mondiale totale
ou méme a la production des régions a faible impact. Les données sur les co(ts
d’'une mauvaise interprétation pourraient aider a évaluer les dommages poten-
tiels de tout choc de production agricole sur le niveau de sécurité alimentaire des
régions vulnérables. Au cours de mes recherches, j'ai découvert le domaine du
commerce international des produits agricoles de base et I'apprentissage auto-
matique. Au cours des derniéres années, j'ai lu de nombreux articles et écouté
un nombre incalculable de conférences et d'opinions d'experts de différents do-
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maines.

Les chapitres inclus dans ce document de recherche ne montrent pas toutes
les tentatives pour maximiser la contribution de notre outil au monde de la pré-
vision des prix des matieres premieres agricoles. Nous avons examiné différentes
variables explicatives, ensemble ou séparément ; nous avons analysé le pouvoir
prédictif sur la base de données provenant de diverses sources d'information et
nous avons méme examiné la dépendance en fonction des saisons de récolte
par rapport aux dates des années commerciales locales. En outre, nous avons
expérimenté des modeles a partir d'un large éventail de possibilités tout en ef-
fectuant différentes versions de I'exécution dans les modeéles que nous avons fi-
nalement inclus. Pour maximiser la familiarité avec les méthodes actuellement
acceptées et 'ensemble des options disponibles, une segmentation des vari-
ables explicatives a également été effectuée surla base d'un travail de recherche
approfondi, qui comprenait I'exploration de bases de données économiques et
agronomiques parallélement a une enquéte sur la littérature existante.

Cet outil de prévision peut dans I'immédiat ne pas étre pertinent pour tous
les pays. Les prix internationaux (Banque mondiale) examinés dans cette étude
indiquent la valeur mensuelle moyenne payée sur les marchés commerciaux
mondiaux directs. Ce prix n'est pas nécessairement un bon indicateur du niveau
des prix a la consommation (partie du revenu consacrée a l'alimentation), qui
détermine en fin de compte leur niveau de sécurité alimentaire. Comme nous
I'avons vu a propos du cacao, ces prix ne refletent pas toujours le prix payé a
I'agriculteur qui I'a produit. Cest ici qu'intervient la grande importance de la
nature de I'Etat importateur ou exportateur de chaque CA.

Comme démontré tout au long de la these, alors que de nombreux pays a
haut revenu gérent des programmes bien planifiés pour protéger les consom-
mateurs et les producteurs des fluctuations de prix, les pays a faible revenu
ne peuvent pas toujours le faire efficacement. Le résultat de l'existence ou de
I'inexistence de tels programmes est le niveau auquel le prix intérieur de chaque
pays fluctuera en fonction du prix mondial. Par ailleurs, en attendant que les
données soient disponibles de maniere suffisamment fiable et riche, il pour-
rait étre bénéfique d'inclure la variation annuelle des stocks de céréales comme
'une des entrées du modele. En effet, grace a leur réle originel, les stocks ali-
mentaires importants peuvent compenser les périodes de mauvaises récoltes
ou de prix élevés des produits agricoles de base, etils fonctionnent donc comme
une sauvegarde sociale. Malheureusement, le stockage de nourriture est une
question colteuse qui n'est pas économiquement disponible pour toutes les na-
tions. En outre, des stocks suffisants peuvent atténuer la concurrence pour les
produits alimentaires. En revanche, le sur-stockage peut faire sortir les marchés
mondiaux de leur phase de stabilisation naturelle, comme cela s'est produit au
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début de 2020, lorsque la Chine a reconstitué ses stocks de céréales. Indéniable-
ment, les personnes les moins protégées sont aussi les plus vulnérables. Mais,
malheureusement, ce sont aussi ceux qui ne disposent pas des outils néces-
saires pour analyser les marchés mondiaux et prévoir le moment optimal pour
acheter ou vendre des matieres premieres agricoles.

Dans un environnement aussi incertain, la volatilité excessive des prix des
produits de base a des répercussions négatives tant sur les producteurs que
sur les consommateurs. Ce manque d'information se répercute généralement
sur les revenus et la production des agriculteurs et conduit a de moins bonnes
décisions en matiere d'investissement dans les intrants. Les répercussions de
I'instabilité des marchés des produits de base peuvent également exacerber les
probléemes de pauvreté, notamment dans les zones rurales. Cest ainsi que
le manque d'information vient s'ajouter a limpact négatif sur la sécurité ali-
mentaire dans les pays les plus vulnérables et dépendants des importations.

Une autre question importante non prise en compte ici le rapport entre les
prix des différents produits de base. Dans un modele de prévision des prix,
chaque produit agricole est, tout au long de la thése, considéré comme indépend-
ant des autres. Cependant, dans la pratique, comme la valeur de Shapley I'a
montré trés visiblement dans l'interprétation des résultats du mais, il existe une
forte relation entre les prix des produits de substitution.

Au niveau nutritionnel, le mais est un hydrate de carbone et, par conséquent,
il est un substitut du blé, du riz et parfois du soja. En effet, en tant qu'aliment
pour le bétail, les fluctuations de prix de ces produits agricoles refletent égale-
ment les fluctuations de prix d’autres produits agricoles sur le marché interna-
tional et sont utilisés comme source de protéines : viande et produits laitiers. En
ce qui concerne les prix locaux, les prix des ceufs évolueront également a terme,
en fonction des prix des céréales. En tant que source d'énergie, le mais est égale-
ment utilisé comme biocarburant et donc coordonné avec d’autres produits de
base, avec les prix des produits de base énergétiques : charbon, pétrole brut et
gaz naturel.

Quant au cacao et au café, ces produits agricoles de base ne sont pas essen-
tiels en termes de valeur nutritionnelle pour le consommateur, mais constituent
une source de revenus unique ou importante pour de nombreux petits exploit-
ants, notamment dans les pays en développement d’Afrique occidentale. Ces
produits agricoles de base sont cultivés principalement sous les tropiques et
importés en grande majorité par les pays a revenu élevé.

Les prix des producteurs fluctuent en fonction des cours internationaux et
déterminent souvent leur décision en matiére d'allocation des terres, passant
du cacao au café (Gilbert, 2016). Au-dela de ce qui précéde, les résultats obtenus
par les techniques d'ouverture de modeéle ouvrent la voie a de futures études
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qui porteront sur 'amélioration des modeles. Dans ce contexte, il est possible
d’explorer d'autres options d'ajout d'une variable explicative ou de conversion a
une variable explicative différente, d'examiner la qualité des prévisions de mod-
éles supplémentaires ou de construire une prévision basée sur I'exécution de
plusieurs modeles simultanément. Un autre conseil est d’analyser les possib-
ilités de combiner les différents algorithmes pour créer un modeéle couvrant
plusieurs cultures.

En conclusion, ce travail offre un outil complet et disponible pour I'analyse et
la prévision des prix des produits agricoles de base dans des plages de temps
allant d'un mois a un an. S'il est utilisé correctement, le mécanisme proposé
peut contribuer a la sécurité alimentaire et économique des ménages, des agri-
culteurs ou d'autres entités dans le besoin. Cependant, comme déja mentionné
dans le premier paragraphe de ce travail, cet outil apportera un bénéfice max-
imal s'il est incorporé dans le cadre d'un plan multidisciplinaire de sécurité ali-
mentaire.






Chapter 1

Introduction

A person’s ability to avoid starvation
will depend both on his ownership
and on the exchange entitlement mapping
that he faces.

- Amartya Sen, Poverty and Famines (p.4)

1.1 Motivation

My voyage into higher education had begun out of a genuine desire to bring
about "Tikun Olam" - repair the world and lead it to a better place. Over time, |
realised that my capacity was limited and that my efforts were unlikely to lead
to significant change. However, | also realised that if | learn and persevere, |
can take a small part in a big project, striving for the same goal. The purpose of
this thesis is to contribute to the second Sustainable Development Goal
of "End hunger, achieve food security and improved nutrition and promote sus-
tainable agriculture" through its first criteria of correcting and preventing trade
restrictions and distortions in the world agricultural markets.

The prevailing view amongst many economists was that the solution to the
food insecurity problem in the world lies in the existence of world trade in ag-
ricultural commodities. According to them, international trade can avoid costly
food surpluses (or deficiencies) in certain zones by transporting them to areas
with a shortage. The argument was that international trade would help maintain
arich diet throughout the year and at a relatively stable price level (Costinot and
Rodriguez-Clare} 2018; van Meijjl et al., 2017).

Then, toward the end of 2019, the coronavirus pandemic erupted, and the
normal local-global food prices equilibrium distorted drastically (Schmidhuber
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et al., 2020). If until that point, food shortage problems were the domain of
low-income countries, the COVID-19 crisis had brought, amongst other things, a
sharprise in food prices of some agricultural commodities (AC), while the price of
others have declined due to adverse demand conditiondl These have led to an
increase in food insecurity in most of the world. Whereas the highest increases
were in medium-low income countries, an increase is also apparent in upper-
middle-income economies (see Fig .
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Figure 1.1 - Prevalence of moderate or severe food insecurity (%/population)
Source: [FAQO|(2020)

In this thesis, | have chosen to explore the possibility of improving the cred-
ibility of global food price forecasts and making them accessible to all those who
need them. The main drive for this work is the conclusion that agricultural com-
modity price plays an essential role in food security (FAO, 2018). However, today
there is a lack of accessible tools for forecasting their variations in the

"Part of my doctoral studies has involved a monthly media monitoring on COVID-19 impacts
on food and agricultural products and price. All the information has been published in a news-
letter format and is available at|cland.Isce.ipsl.fr/covidig
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We assume that such tools if existed at the beginning of the Covid-19 crisis,
could mitigate the deteriorating quality of life of those 118 million people added
to the global hunger map in 2020 (World-Bank; |2021b). This assumption has en-
couraged me to find a solution to this problem. Furthermore, given the develop-
ment of the food insecurity phenomena, both levels of quantity and severity, this
problem is now the concern of populations who, until recently, have not experi-
enced food shortages. In the USA, for example, the number of households that
needed assistance in obtaining food increased in 2020-2021 (Coleman-Jensen
et al.,[2021; [USDA, 2021). Similarly, in Israel, the number of families who have be-
come dependent on food associations has increased significantly (Mayzel, 2021;
Latet, |2021).

The instability of the global prices is a long last common topic in both
food policy literature (Taylor, 1919; Brorsen and Irwin, 1996) and forecasting the-
ory (Allen, 1994; Brandt and Bessler, 1983). This issue is a topic of concern for
several major international organisations such as the the and the
World Bank. However, none of the existing studies has provided a medium-term
forecast that enables users to reproduce the model and glimpse into the predic-
tion algorithm’s decision-making process. Beyond that, using machine learning
models to predict agricultural commodity prices in the non-short term (as will
be expanded below) is also pioneering in its field. This research project aims to
bridge this gap by developing a novel tool to forecast|AC| prices. This tool would
hopefully incorporate high reliability, accessibility and replicability.

In conclusion, this complex situation led us to ask three questions that have
constructed this dissertation together. The research questions are:

1. Which are the main drivers to|AC| price fluctuations?

2. Are there differences between the market influence of each player?

3. We define improvement as a forecasting tool that provides reliability, ac-
cessibility, comprehensibility and interpretability. According to this defini-
tion, can we improve the existing forecasting performance of international
AC prices up to a year ahead?

Answering these questions would enable turning price forecasting into an
accessible tool that could help improve food security worldwide.
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1.2 Background

1.2.1 TheAgricultural Problem - An adequate agricultural pro-
duction does not guarantee access to food

For thousands of years, man has lived in the shadow of scarcity and daily worries
about an adequate food supply. This concern was first scientifically expressed by
Malthus|(1789), who demonstrated by a simple economic model how, given fixed
factors of production and declining marginal output, the amount of food per
capita would decrease with each increase in the number of consumers. Malthus
assumed that the food production increases logistically, while the world popu-
lation, i.e. the demand side, increased exponentially. Under the minimal food
required for human survival, the result of this model is an equilibrium, where
the marginal amount of food produced meets the minimum amount of food
consumed. From this point on, neither the total food supply increase nor the
world population. The clear conclusion of this theory is that man is doomed to
continue living under food shortage while consuming the necessary minimum
and that the demographic growth will come to an alt.

Since the development of the Malthusian theory in the late 18th century, ag-
ricultural production has utterly changed, mainly due to the shift to mechanism-
based production and technological improvement, which have led to a signific-
antincrease in the amount of food produced all over the world, notably in indus-
trialised countries. At the same time, the world population continued growing
to a level where the production curve seemed to be reversed, as the growth
rate of food production outpaced the demographic growth (Daily et al., 1998).
As a result, food prices fell, and the use of agricultural output changed. Appar-
ently, throughout history, maize has been cultivated and consumed as a crucial
component in the daily diet of Native Americans (Ranum et al., 2014). However,
today only 8-10% of the maize produced in the US (the world's largest producer)
is used for human consumption, while the rest is for livestock feeding (55-60%)
and ethanol (35-40%)]

Thus, although the Malthusian theory has not stood the test of time, there ex-
ist populations who suffer from insufficient food or essential nutrients. Accord-
ing to the World-Bank| (2021b), during the year 2020, about 30% of the world’s
population did not have access to food at an adequate nutritional level. Despite
that, 21st-century’s hunger is not due to scarcity of food supplies but due to a
shortage of tools that allow access to it, that is, low-income (as demonstrated in

Fig [1.1).

2According to the Education page.
source: www.cmegroup.com/education/courses,



https://www.cmegroup.com/education/courses/introduction-to-grains-and-oilseeds/learn-about-corn-production-use-and-transportation.html

1.2. BACKGROUND 35

1.2.2 Agricultural Commodities

Agricultural commodities (AC) have strong links with the financial world. These
products are derived from agriculture and considered necessities, and they in-
clude staples such as wheat, maize, rice and soybeans, and wood, cotton, cocoa
and coffee. These|A(Jare quoted on the Chicago Mercantile Exchange or
other big global markets exchanges. They are also priced in future contracts and
Over The Counter (OTQ).

As it comes, only a minor part of futures contracts are delivered physically
(CME-Groupj 2021), while their role is mainly to be a risk managing tool for pro-
ducers and middle operators. At the same time, contracts reflect the situation in
the cash market rather accurately, especially when the due date comes closer.

Inthe socio-economic aspect, changes in the agricultural commodity markets
impact food supply chains through production volumes. On the demand as-
pect, the world population is constantly growing, especially in developing areas,
where the agricultural sector is particularly vulnerable (traditional agriculture
techniques combined with worsening climatic conditions). Parallel, the growing
consumption of animal-based products has led to increased grain use, which
serves as livestock feed.

Most generally, prices tend to be particularly volatile due to their nat-
ural dependence on three unstable market elements (FAO, |2012): 1. Agricultural
supply is subject to exogenous natural shocks (weather, water and soil qual-
ity, diseases and pests), which affect both quality and quantity. Therefore, ag-
ricultural production varies greatly, not seasonally but also annually; 2. The
relatively long and limited production time causes a low price elasticity of sup-
ply, at least in the short term; and 3. most of the world trade in agriculture is
concentrated around products whose regular supply is essential anywhere and
at any point in time. In the absence of an adequate alternative supply (usually
grain stocks), the consumer will be willing to pay a high price, provided he can
consume food. That is, in the short term, the price elasticity of demand is low.

In the context of international trade, the topic is perceived often as a tool
for alleviating production shocks challenges to food security. More precisely,
it creates constant trade flows that may contribute to an all year balanced food
supply and diets worldwide (Costinot and Donaldson;2016; van Meljl et al.,[2017).

Due to their high dependency on exogenous factors, the volumes of pro-
duction of different regions often show abrupt variations which may impact the
global market (Abbott et al.| 2009). Circumstantially, prices fluctuate differ-
ently from other internationally traded commodities (World-Bank| 2020a).

Local factors, such as weather or national policies, do not systematically af-
fect trades at a global level. However, in some cases, these local factors have
significant impacts on commodity prices (Abbott et al., 2009). Undoubtedly, his-
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torical evidence suggests that global[A( price shocks, some of which led to large-
scale food crises, resulted from changes in local environmental or socio-economic
conditions. In their studies, Headey and Fan|(2008) first show how the 2005-2008
food crisis came in the wake of severe climatic events and droughts that resul-
ted in poor harvests of several major|[AC/(maize, wheat and rice) in specific key-
exporting countries. In a later review, |[Headey and Fan|(2010) argue that political
factors in those countries were also central factors in those price increases, as
China and India grain stocks declined significantly for almost a decade before
the crisis began. Specifically in India, the government'’s decision to ban exports
and to import massive amounts of rice stemmed mainly from public pressure
before the upcoming elections, as the country’s cereals reserves were still suf-
ficiently high. Specifically to rice, prices increased by almost 300% in only three
months (FAO, 2008). The recent trade war between the US and China, for in-
stance, led to mutual tariff increases, which caused high volatility and declining
demand from the US, mainly in grain commodities. Another example, at the
height of the first COVID-19 wave, Russia prohibited its agricultural export. This
decision, which was taken shortly after by 23 other countries, led to a rise in
prices despite the decline in world demand at the same time (ITC, |2021). The
COVID-19 pandemic has caused significant shocks in grain production, which
were very apparent in vulnerable regions where agriculture is based mainly on
labour work (Schmidhuber et al.,2020). As sometimes these regions are also big
world-producers, food prices have soared high worldwide.

All the price shocks mentioned above were unpredicted; their impacts were
substantial and have led to an increase in food insecurity and worsened diet
globally, whereas the over-whole influences are yet to come (Laborde et al.,
2021). Similarly, Mundlak and Larson|(1992) show that most of the changes in
world prices pass on to household (consumer) prices.

To understand the[ACmarkets, it is not necessary to know all the influencing
factors but, preferably, recognise the most influential ones relative to the price
forecasting horizon.

1.2.3 Food Security - Concept and Strategy

Food security is a situation where all people have regular and constant availabil-
ity, stability, utilisation, and access to a healthy diet that come in hand with their
food preferences (Ghorbani and Zou, |1996). Food insecurity, on the other hand,
exists when a person lacks at least one of the four components that define food
security (FAO and WFP, 2010).

In general, the higher the income level, the lower the share of food expendit-
ure. Indeed, in countries with a high per capita income, the average volume of
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food expenditure is lower relative to total household expenditure (6% in the US,
12% in France and 16% in Israel)F] In contrast, food expenditure in countries with
low per capita income counts as a big part of the monthly expenditure (52% in
Kenya, 59% in Nigeria). Therefore, any change in food prices impacts the over-
all living system in low-income countries, while high-income countries are less
vulnerable.

Food price changes relationships with global food security levels have been
the subject of many studies over the years. The issue of price volatility is still
central today for countries that still rely heavily on commodity exports (FAO,
2002; |UN, 2019). Although instability of international prices can be determ-
ined by demand fluctuations, their physical price reflects an equilibrium between
the two. As such, if the price elasticity of demand is low, even small supply shocks
can result in significant price fluctuations and cause profound impact in terms
of food security (Smith and Subandoro, 2007; |Smith et al., |2014). It is import-
ant to emphasise that the measure of the food supply is a sum of the amount
produced and consumed in an agricultural year, the annual change in the crop
stocks, minus the depreciation originating from the supply chain (FAO, 2021).
Moreover, it is often acceptable to use a country's food stocks level for indic-
ating its food security situation (Christian and Marco, |2006) or local food prices
(Gouel et al., 2016). In recent decades, several extreme changes in commodity
markets have put both producers and consumers in dire straits. Moreover, the
international context seems to be increasingly unfavourable to producers. Let
us point out two problems:

High instability of global|[AC| prices

Most generally, prices tend to be particularly volatile for several reasons.
First, agricultural supply is subject to exogenous natural shocks (weather, wa-
ter and soil quality, diseases and pests), which affect both quality and quantity.
Therefore, it varies not only seasonally but also annually. The relatively long and
limited production time causes low production elasticity. As for the food crisis
of 2008-2009, there was an exceptionally high price increase, which, in some
countries, resulted in serious hunger riots. Looking into details, both China and
India started reducing their excessive grain stocks since the beginning of the
2000s following strategic decisions. As the global grain stocks slowly went down,
prices of the world’s major crops have mounted gradually (Headey, 2011). These
decisions and a dietary transition toward higher meat consumption (mainly in
China) triggered higher demand for oilseeds, maize, and soybean. Parallel, fuel

3According to 2017 data. For more information, visit https://ourworldindata.org/
grapher/share-of-consumer-expenditure-spent-on-food?tab=table
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prices started augmenting, which stimulated higher local bio-energy consump-
tion in the USA (maize origin bio-fuel) and thus lowered maize exports, which
pushed prices even higher. Then, in 2006-2008 severe climatic conditions have
resulted in meagre harvests globally. To cope with the challenging market condi-
tions and protect their population from food shortage, several of the world big
exporting countries have used export bans or restrictions (Childs et al., 2009).
The combination of all these problems has caused massive price soars, which,
in turn, resulted in the food crisis.

Similar to the crisis described earlier, in the Covid-19 crisis, too, we see a
global process that began before the final explosion. The cease of the African
swine fever, which started immediately after the swine flu, has forced China, the
world's largest grain consumer, to make massive grain imports to refill its stocks.
Towards the end of 2019, China and the United States signed an agreement on
ending the "trade war" under which China purchased, among other commodit-
ies, American [AC| for about 32 billion USD, mainly grains and soybeans (Horne
et al., 2020). [}| The adverse weather events, which hit both the US and Brazil,
damaged grain production and thus negatively impacted the already low grain
supply. All of these things lead to a sharp price shock.

Shortly after, severe floods hit several Asian countries. The extreme weather
damaged crop yield and prevented labour access to the fields. Moreover, the
parallel breakout of the COVID-19 and the low [AC] supply in the global markets
have triggered export restrictions by the world biggest exporters, notably Russia,
leaving big importers with limited access to their staple food. By the third month
of 2020, many countries were already under extreme mobility restrictions, which
had affected the entire global trade system. Among those most affected are the
basic and essential commodities, such as foods. At that time, however,[AC prices
went down. The sudden closure of most of the world’s borders and the severe
mobility restrictions within the countries has caused a sharp drop in demand
for fuels, which led energy prices to collapse. As explained above, a large part
of the[A(Jis also an energy source (biodiesel). Indeed, commodity prices used as
an energy substitute have fallen following oil prices (World-Bank, 2020b). In this
context, it is maize, soybean, palm oil, and even sugar. However, this situation
did not last long, and shortly after, the agricultural commodity prices skyrock-
eted. The crisis affected the whole food system abruptly, moving through the
entire value chain straight up to the consumers. Moreover, from the supply
side, the strict regulations have resulted in an immediate shortage of workers

4China signed an agreement with the US in January 2020. At the beginning of 2020, there
was political tension between the Chinese and the Australian governments. This tension drove
China to import grains from the US rather than from Australia (Liangyue and Greenville} 2020).
This enormous change contributed enormously to the decreased grain supply of the largest
exporter (the US).
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in the agriculture industry, notably among labour-intensive sectors and areas.
In addition to all these, the La Nifia events that plagued large parts of the world
during the summer and fall months caused severe damage to crops, especially
in Northern America. The triple combination of uncertainty about the virus, pro-
duction slowdown and speculation about a possible food shortage led to panic
among governments, who wanted to ensure the availability of food staples to
consumers in their countries. As a result, many governments have imposed ex-
port restrictions on food products, thus preventing import-dependent countries
from having a regular food supply. However, those changes were local and had
varied depending on product and country. Therefore, the normal local-global
food prices equilibrium distorted drastically (Schmidhuber et al.,2020). Parallel,
the demand side had shifted abruptly. In high-income countries, demand trans-
posed from big food suppliers, such as restaurants and public distributors, to
private households, causing a sudden increase in demand for high-quality food,
such as meat, dairy, fruits and vegetables (Laborde et al., 2020). On the other
hand, in low- and middle-income societies, the vast loss of income had forced
the poor to increase the already high staple food consumption while giving up
other nutritional sources. Putting all these changes together, local scarceness
in food products, and the insurance regarding the about to come demands had
driven a global food security crisis.

Producers are not always sufficiently protected from price fluctuations

Secondly, price stabilisation mechanisms, mainly in low-income countries, are
not always sufficient for protecting producers from extreme price shocks (Gouel,
2011,2012). Consequently, in times of sharp price fluctuations, many farmers find
themselves financially exposed to income losses (Gilbert and Varangis, 2003).
Additionally, many countries have a weak capacity to manage the consequences
of price instability: market risk management instruments, such as sufficiently
large food stocks, are only used in a few developing countries and do not yet con-
stitute a comprehensive solution to the price instability problem, which harms
both producers and consumers. Given that those citizens of low-income coun-
tries spend a large portion of their total income on food, the negative impact of
any price shocks on their daily life becomes a real threat. This finding leads us
to examine the possibility of forecasting [AC| price changes in a way that would
be both accurate and accessible, even for users with low economic capacity.
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1.3 Approach - Science Without Borders

The doctoral thesis was made possible by generous funding from CLAND, aiming
to assist the global efforts to promote food security. Being part of the CLAND
project, this study advocates the idea of open science - to be used by others.
| strongly hope it will be used by those who can improve it, but most of all by
those who need it. Intrinsically, this project works under three main principles.

1.3.1 Principle | - Concise Comprehensibility

The first principle that led this work derives from three specifications stated in
section1.2.2[and 1.2.3} 1. prices are highly volatile due to their dependency
on unstable market conditions. In the absence of sufficient food stocks and the
more basic food consumption (i.e., food that is not highly processed), sharp fluc-
tuations in prices often cause unstable food prices; 2. In low-income coun-
tries, the average volume of food expenditure is high relative to total household
expenditure. Also, in these countries, the food reserves and the governmental
tools for food price stabilisation are relatively limited, so that imported food
prices are significantly affected by changes in prices in the global markets;
and 3. Finally, at relatively low-income levels, consumption of staples out of the
total diet is relatively high compared to consumption of processed or animal
products (FAO, 2012).

This led to our perspective that food security is feasible under the condi-
tions of stable food prices, especially for those of low-income levels. Further-
more, machine learning models can contain numerous explanatory variables
and analyse complex situations while maintaining simplicity in their operation.
As such, choosing them as the leading research method in this study was a nat-
ural choice. Advances have been made in transparent|[ML models intended for
predicting various quantities of interest for food security (Beillouin et al., 2020;
Blumenstock et al., 2015; [Lentz et al., 2019). While their link to food security is
unquestionable, none of them addresses|[AC| prices directly.

This thesis restricts the independent variables to local (domestic, regional
and continental) productions and yields. These variables inform directly on the
level of commodity supply, which is usually an unstable component of the mar-
ket, and have a significant impact over prices (Headey and Fan, 2010). Al-
though these variables can be potentially relevant for crop price predictions,
they are rarely used as a sole predictor in econometric-based studies due to the
risk of endogeneity.
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1.3.2 Principle Il - Interpretability

The second principle that leads this study states that[MLJmodels should be inter-
pretable (Molnar, 2019). To date, as will be further detailed in Chapter models
that have focused on|AC| price forecasts through machine learning have either
lacked transparency or have used complex analysing methods either produced
only final results and thus kept the logic behind the algorithm decision unre-
vealed.

Here, we train the models to analyse the relationships between inputs
describing local crop production and yield variations and outputs representing
crop price variations. The proposed models use several techniques to rank the
producing units according to their level of influence over the global market and
quantify the effect that any change in the annual regional productivity has on
global price changes.

1.3.3 Principle Il - Accessibility

The third and final principle is accessibility. To benefit all policymakers, the
model must rely solely on reliable and entirely accessible data. Regular access
to data is a key to developing a flexible food security strategy that can keep up
to date and adapt to any change in the field.

Under this concept, this research uses only publicly available yearly produc-
tion data (FAO, 2020) and monthly price data (World-Bank, 2021a) and open-
access software.

1.4 Machine Learningas a price forecasting method

Predicting|AC|prices serves essential needs for any time frame, from the shortest
few seconds to years ahead. Chapter 2| which reviews the existing price fore-
casting literature, illustrates the richness of the extant economic models for
forecasting prices over different time frames. In short terms, a wide range of
statistical methods can analyse or predict prices at a high-reliability level.
However, there seems to be a gap between the current forecasting methods
and the need to predict|AC] prices over time ranging from a few months and up
to a year ahead, in a way that will make it possible to analyse the forecasted
results and understand their causes. Specifically, a method has not yet been
found that will make it possible to accurately predict|AC prices while relying on
exogenous explanatory variables without involving economic theories.

Recent developments in technology and research skills have accelerated the
application of statistical and machine learning algorithms. These models solve
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complex problems using relatively simple methods while providing prediction
results of high accuracy, even when compared to particularly advanced mod-
els (Storm et al.| 2019; |[Lobell and Burke, 2010). As a result, these models have
become more frequent when forecasting complicated processes.

Most generally, [ML] can treat two types of problems:

Supervised, in which data with existing labelling or classification accompany
the model to create new observations, i.e., forecasts, based on the information
known; And

Unsupervised, in which the objective is to divide a high-dimensional raw
set of data into clusters based on similar internal structures and patterns, as
identified by the algorithm.

Here, we try to predict a response variable (AC prices) as a function of several
inputs and use a set of observed input-and-output values. Therefore, we use
supervised learning techniques.

In supervised learning, X is a data set of observed inputs variables, and Y is
a set of the observed output variable to be predicted. The primary goal of this
method is to find a model that could use the explanatory variables to predict the
value of the dependent variable. Supervised learning can generate accurate and
reliable forecasting results if integrated with the appropriate model. Following
the assumptions of independent variables and a stable data generating process
across training, and the application procedure in this thesis is as follows:

1. Define the Training-set (in-sample): a collection of m X;'s and Y;'s observa-
tions, 1 =1,2,...,m.
Where X is a row vector such that X; = (2,1, %i2..., Ti k);

2. Train several algorithms to forecast the output (out-of-sample) from the
inputs, using the m observations from the training dataset. Repeating the
process for several algorithms;

3. Compare the forecasting results based on a test dataset to select a model,
aiming to minimise the forecasting error.

One of the salient advantages of[ML]is the ease of applying it to a wide range
of data and research methods. Because the models examined in this study have
not yet served for [Medium Term|[AC global prices forecasts, this advantage is
particularly significant.

The three methods considered in this study are decision-tree based al-
gorithms. Tree-based approaches are embedded as data-partition predictors
of if-then forecasts. Moreover, they stratify the predictor space into simple and
homogeneous domains and use splitting rules that are easy to implement.
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1.5 Data

This project uses monthly prices data of three agricultural commodities (maize,
soybean and cocoa). The prices are publicly available on the World-Bank website
(World-Bank, 2021a), starting in January 1960 to the present. This time range is
large enough to take inflation into account. Thus, the first step was to deflate
the nominal prices to bring them down to the same scale. For that, we used the
monthly nominal published by the World Bank. Then, we replicated the process
on 12 different price indices, searching for the index that will bring prices closest
to the real[AC]prices, also published on the World Bank website, but on an annual
basis.

Let us define ¢;, , as a nominal price relative to a month m in a year y, g,
as the deflated prices and In,,, as the price index, both relative to the same
period. Setting 2010 as the year of basis (In,,2010 ~ 100) the deflation was as

follows:

n
Gy X Iny, 2010
Gm,y =

(1.1)

Ing,,

Finally, we chose the agricultural price index to serve as the deflator. The
decision derived from three factors: The first derives from Tadasse et al. (2016)
indicating that, although widely used, the US consumer price index (CPI) could be
a biased deflator when dealing in a global market that includes both developed
and developing countries. The second reason is a relatively lower gap (meas-
ured in terms of Root Mean Square Error) between the|[AC/annual real prices, as
published by the World Bank. Third, to reassure this decision, | directly asked
the World Bank’'s commodities team, who approved this decision.

Relative to the models' input, we extracted annual crop yield and production
time series from the data website (FAOSTAT) for all years available (1961
to 2019), relative to three geographic scales: continental, regional and national
(local).

1.6 Scope of Work

This doctoral thesis examined and forecasted the monthly prices of several [AC]|
which are of high importance in terms of trade and food security. All along,
the research relies on publicly available data of annual production, according to
three types of geographical divisions. This thesis offers a double contribution:

5The complete price forecasting tool includes three beverage commodities (cocoa, Arabica
coffee and Robusta coffee); two oils and meals commodities (soybean and palm oil); and three
grain commodities (maize, rice and wheat)
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on the academic side, it is the pioneer in performing a|[Medium Term|price fore-
casting of agricultural commodities using[ML It also detects the main drivers for
price changes through investigation of the algorithms. Second, it offers
a practical, non-academic contribution - it provides price forecasting tools
that can benefit policymakers who lack the tools that are required for trading in
the globall[A( markets in an optimal manner. As such, although the thesis incor-
porates diverse and advanced research approaches, the final model will supply
policymakers with a ready for use product: it is accompanied by detailed and
comprehensive explanations, under the promise to be accessible, even for non-
specialists. Moreover, as part of the transparency agenda that accompanies this
work, all the data and techniques assisting it are accessible to the public, free of
charge, and have a high level of reliability.

1.7 Organisation of the thesis

The current chapter presents and describes the challenges in predicting the
price of agricultural commodities. The chapter sheds light on the importance of
maintaining stable prices and pre-prepare for extreme changes and describes
the scope and purpose of the work. Chapter[2|presents key literature references
and past studies that all together created the basis for this thesis. Chapters
l4land [g] are articles written and submitted (or published) in scientific journals.
Chapter [3] analyses the maize market and identifies which regions drive price
shifts in the global maize market through changes in their annual maize produc-
tion. In addition, it offers a ranking of the relative impact of 17 market players.
Chapter [4] also deals with the maize market. This article directly continues the
project presented in the third chapter. Again, it relies on its conclusions while
attempting to trace the optimal model for forecasting global maize prices in peri-
ods of up to one year ahead. Here, too, all models are opened to analyse spe-
cific extreme price fluctuations events and understand the main drivers for their
occurrence. Next, Chapter [5]is a natural continuation of two previous studies.
It researches and examines additional ways of applying forecasting models for
two other major crops, each of different market characteristics - soybean and
cocoa beans. All three commodities are of high global importance, and each is
associated with a different group of[AC] according to the official division as done
by the World Bank. Finally, the[6th and final chapter summarises and discusses
the main finding and conclusions derived from this doctoral thesis.



Chapter 2

Literature Survey of AC| Price
Fluctuations Research

The end of starvation
reflects a shift
in the entitlement system

- Amartya Sen, Poverty and Famines (p.82)

The term price fluctuations defines a change in a commodity price relative
to a given period under the research needs as defined by the researcher. For
example, Adjemian and Irwin|(2018) analyse by-minute price changes of three[A]
and therefore refers to price fluctuations as a single minute change (very-short
term). Other studies define price fluctuations according to a day (Karali et al.,
2019), a year (Haile et al., 2017) and even of decades, as in Fuss et al./(2015).

The literature concerning [AC price fluctuations consists of numerous meth-
ods. Following Popkin|(1977) and |Piot-Lepetit and M'Barek| (2011), the [AC prices
literature had been categorised into four time-horizons: very short term (VST),
for time frames of a few hours and even minutes ahead; short-term (ST), for
periods of one day to three months ahead; medium-term for periods of
up to 18 months into the future; and long-term for any further periods. As
will be seen during the review, the longer the analysis range, the greater is the
complexity of the model.

Beyond the time-frame differences, the richness of approaches concerning
price fluctuations have led to the development of a wide range of methods
for analysing them. On that account, we also distinguish between two analysis
frameworks of [AC] price fluctuations: Statistical (non-structural) methods; and
structural methods, which are based on economic theories.

45
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Structural methods assume a theory that correctly describes the actual eco-
nomic behaviour of prices and serve for non-short periods analysis. We classify
this group into two:

*+ Equilibrium models: These economic models represent market equilib-
rium in various determinants. Equilibrium models vary by complexity, as
detailed in this literature survey. These models rarely serve for direct fore-
casting but are mainly used for price analysis (Deaton and Laroque, 1992)
or in counterfactual simulations, which indicate the role of each variable
(e.g., changesin policy, climate, etc.) on the price behaviour. Although con-
sidered too complex for direct forecasting, equilibrium models can serve
as an indirect forecasting tool after calibration on different sources (Valin
et al.,[2014; [Kan et al., 2018).

+ Statistical methods: Structural Vector Autoregressive (SVAR) models are
based on a statistical estimate of several series, assuming long-term and
short-term relationships derived from economic theory. When estimat-
ing price fluctuations using SVAR, the researcher assumes that shocks in
a particular explanatory variable are neutral in the long run. In this sense,
shocks in other explanatory variables and the explanatory variable itself
(price) are the ones that ultimately determine the potential price.

The non-structural methods group includes all the analysis models based
on a particular statistical process rather than an explicit economic theory. These
models are used concerning price fluctuations ranging from a few minutes and
may reach time horizons of up to about a year and a half ahead. As before, we
distinguish between two non-structural approaches:

+ Causal inference methods: This type of literature usually aims to estimate
the causal effects of certain variables on price fluctuations. The estimation
of the causal effects is made by observed prices, using direct measurement
using relatively simple linear or smoothed trends. In the short term, the
crop production, the total supply and demand for agricultural products
are given and fixed. Then, assuming they are a function of a wide range
of constraints, i.e., production, policies, transportation costs and suchlike,
the researcher calculates the observed price directly, using a time series
of affecting variables. As such, these models mainly serve for relatively
short-term analysis, such as future prices (Colling et al., 1996), spot prices
(Weymar, [1965) or price in practice (Jichlinski, 1983).

* Forecasting methods: These methods serve for forecasts in periods ran-
ging from a few minutes up to relatively one year. They include time series
models, regression and classification based methods. During the last years,
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forecasting models have become common in forecasting different topics
such as yield (Laudien et al., 2020), production (Beillouin et al., 2020) and
even nutritional needs (Zeevi et al., 2015). However, concerning prices,
these are only short-term forecasts studies that have applied these models
up to this day.

Despite this precise distinction between structural and non-structural ap-
proaches, there are models, such as WASDE| SAP, which combine in their fore-
casts several methods from the two groups (Frederic and Gerald, 1999; Hoffman
et al., [2018).

Whilst the thesis aims to forecast|A(prices; this survey covers both models of
prediction and models of causal inference. Indeed, although forecasting is very
useful, economists mainly study causal inferences: how oil price affects world
food prices (Abdoulkarim and Zainab| 2011); what is the effect of global[AC| prices
on local agricultural production (Haile et al., 2016); or how wine prices react to
changes in wine stocks (Bukenya and Labys, 2007)?

2.1 Veryshortterm and short term agricultural com-
modity price research

Despite the dissimilarity between some of the analyses regarding price valu-
ation in the(of about up to one-day intervals) and (time intervals of up
to three months), it is sometimes difficult to differentiate between them. There-
fore, this section surveys methods of both time frames while indicating to which
of them each method belongs. In very-short terms, any data regarding sup-
ply and demand is unchanged, so that|AC prices are analysed using relatively
simple non-structural methods and can be forecasted directly from historical
data. Most generally, any period added to the analysis model enables the ex-
amination of higher complexity and added relationships or inter-relationships
at different levels. However, it comes with the price of a decrease in the analysis
ability of the model.

AC are soft commodities but, like other goods traded in international mar-
kets, are often traded according to contracts and priced "Real-time", with no
breaks. [ACare known for their high volatility and thus subjected as risky assets
(Clapp and Isakson, 2018). One of the major factors for|[AC| price change is unex-
pected drastic fluctuations that, although not frequent, has a critical role in
trade (ITC and UNCTAD/WTO., 2001).

The literature aims to analyse [AC prices in the [VST|studies the causal effect
of certain variables on|A(C prices, i.e., to analyse them. One of the questions of
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interest in this literature is if and how [USDAl announcements affect [AC futures
prices.

Adjemian and Irwin| (2018), for example, analyse the impact of the [USDA|re-
ports on the prices of maize, soybean and wheat in the Chicago Mercantile Ex-
change (CME). They compare [AC| price fluctuations before and after May 2012,
i.e., during the period in which trading ceased on the morning of the publication
of the government report, as opposed to a period in which trading is continuous.
To do this, they examine the minute fluctuations according to three versions of
price fluctuations, all three of which use the observed price by the minute. In
addition, they test the price volatility according to three equations: the max-
imum daily difference according to log (first equation), an average daily differ-
ence (second equation) or the difference between the last price observed before
the publication of the report (third equation). Nevertheless, the price patterns
analysis always directly estimates one variable - price fluctuations explained by
the number of contracts issued per minute.

Another study conducted in recent years (Karali et al., 2019) also questions
the impact of US government reports on the daily price of the same commod-
ities, i.e., maize, soybeans and wheat. In this study, the researchers used
reports on yields and crop projections and compared them to forecasts pub-
lished by private analysts. The definition for the difference between them (in
per cent) is the degree of surprise of the market. Hence, the higher is the differ-
ence between the forecasts, the higher is the relevance of the [USDA forecasts
(as aforementioned, the process of all reports is done under a cloak of
secrecy). Moreover, [Karali et al. (2019) performed their analysis for a slightly
longer time frame compared to Adjemian and Irwin|(2018) and thus investigated
the[A( prices with somewhat higher complexity.

Finally, for[VST] a relatively modern method of analysing commodity prices is
a machine learning-based approach of data clustering, i.e. unsupervised learn-
ing. When used by financial institutions and entities, or governments, the re-
searcher obtains the information from selected sources (usually for a fee). It
reaches millions of records a year to create a rich and detailed database - Big
Data. As unsupervised learning is more flexible than supervised learning, in the
sense that it does not require pre-definition of explanatory variables, it is a con-
venient tool for [VST|and [ST] price analysis. The researcher defines several main
variables or points within the dataset to analyse the data. Next, the algorithm
creates new variables according to shared characteristics it identifies through
the learning process. This set of variables can express almost 90% of the total
existing variance (Hativ and Mazouz, |2021). According to the data’s centres of
gravity, a further division of the information using the k-Means method (an un-
supervised learning model) can create even more efficient learning. This type of
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learning is considered particularly effective for detecting market opportunities
and players associated with the market. k-Means is also efficient in identifying
outliers activities in the studied sector. However, on the downside, it demands
high acquaintance with the learned market and careful data organisation and
filtration. Also, handling Big-Data requires using cloud tools to store and pro-
cess this amount of data. That is, a machine strong enough to support these
requirements, as well as a budget for maintaining a cloud with large memory.
Analysis of agricultural markets through unsupervised learning exists in short
term analysis in the scientific literature, although it is somewhat rare. Kim and
Dharmasena|(2018), for example, analysed the US pecan price by identifying in-
teractions between four leading countries in this market. First, to define the
most relevant variables, they apply the graphical-based detection algorithm dir-
ected acyclic graph (DAG) (Pearl,2009). Next, an autoregressive model captured
the causality structures that best determine bi-weekly price fluctuations' drivers.
Another academic study, Deng and YU (2019) explored patterns and internal
relationships over slightly longer time frames in another academic study. Using
a time series of production costs per acre from all fields in the Chinese Heilongji-
ang province, the researchers explained price fluctuations in soybean prices.
In the first stage of identifying the factors for the price fluctuations, a Dynamic
Programming (DP) algorithm runs in iterations on the time series data. Next, the
Toeplitz Inverse Covariance-based Clustering (TICC) model analyses the data, us-
ing these variables to find the proper inter-connections within the price. Allin all,
the researchers discovered four patterns over monthly time frames. Although
is relatively short (up to three months intervals), it is a long enough time to
account for the impacts of external factors variation on the price of AC. Such
fluctuations are frequently related to one or more of the following:

1. Adverse weather events;

2. Export bans or restrictions, notably when posed by big exporters;

3. Enormous purchases (e.g, the 32 billion USD purchase made by China in
early 2020 (Horne et al., 2020)) or panic buying behaviour of numerous im-

porters/consumers, especially of staples (Hobbs)| |2020; Wright, 2008) ; and

4. Rapid and sharp changes in currency, usually the USD (Headey and Fan,
2010).

To enable the performance of causal inference but also of forecasting. Moreover,
this time frame allows the application of structural models and non-structural
analysis.
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2.1.1 Non-structural models

When forecasting [AC| prices for short terms (ST), which are slightly longer than
the VST, non-structural big-data analysis is again prevalent for decision making.
The data are usually presented as time-series (TS), reflecting the development of
activity over time (Mantzura, |2016). As here time frames are a bit longer, analysis
for food prices, which do not change by the minute, become relevant, along with
AC.

Li et al.|(2010) compared the forecasting accuracy of an Artificial Neural Net-
work (ANN) model and[ARIMAimodel on the tomato price in China for three fore-
casting horizons: daily, weekly, and monthly. Both |ANN|and |ARIMA| have been
proved to provide good[ST|time series forecasting (Zhang| 2003} Ratnayaka et al .|
2015). They successfully obtained high forecasting accuracy when using the
MA model for a forecast period of one day to one week. The authors show
significant rapid growth in the relative error, and indeed, for a price forecast for
the term of one month ahead and further,[ANN|had become a preferable model
to use.

The use of several time-series based models also serves the European dairy
market. In their study, O’'Connor and Keane|(2011) have applied Conditional Het-
eroscedasticity Models (ARCH|and [GARCH) and Time Series Models (ARMA] and
on the price of dairy products in Europe. Rather than declaring the best
forecasting model, the authors point out the strong influence of government de-
cisions over many agricultural markets. According to this study, government de-
cisions undermine the normalisation that guides many of today’'s models. That
is, market-related predictions might become more realistic if a model is used
that does not require forced research assumptions.

Similar to them, many more studies have been examining price fluctu-
ations in the short term. The common point of these studies is the integration of
[TSJor[MLmodels with big-data information. However, while these works present
low forecasting errors, they do not explain the source of those price fluctuations,
i.e., they do not diagnose the results obtained by the forecasting algorithms.

2.1.2 Structural models

All the models presented have operated in a purely statistical method. However,
for not VST, structural methods that assume that a particular theory describ-
ing the actual economic behaviour are also possible. In relatively short terms,
(Blanchard and Quah, [1988) is considered a reliable method. Although
originally presented concerning the labour market and Gross National Product
(GNP), is now a widespread tool in other contexts, agricultural commodity
prices among them. These models assume that long-term and short-term re-
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lationships stem from economic theory. The central concept of [SVAR|is that all
the shocks in the economy affect all the variables. If, for example, the depend-
ent variable is price and the explanatory variables are the regional production,
[SVAR|assumes that the price is affected by changes in all variables, including it-
self. Similarly, the regional productions affect each other and are affected by
the price. The model assumes that the effects of the explanatory variables on
the dependent variable reset in the long run.

An excellent example would be the study conducted by |Hao et al. (2017) on
the relationship between US ethanol prices and corn prices in developing coun-
tries. Beyond the obvious fact that prices in the US market are stable relative to
prices in emerging markets (see explanation in the Discussion[6.4), the research-
ers found that most of the effect of ethanol price fluctuations on maize prices in
the countries surveyed occurred within a period of up to three months.

2.2 Longterm agricultural commodity price research

In the long run, prices fluctuate primarily as a function of trends or long-
time changes in trade markets, the natural environment (climate), or politics
and society. Long-term price forecasts play an important role when build-
ing long-term strategies. These could be global cross-sectorial, such as the Sus-
tainable Development Goals of the [UN| (2021); [FPRI|s food strategy (IFPRI, 2018)
or even local land allocations between agricultural activities (Zelingher et al.,
2019). Due to the high variability and number of possible scenarios, long-term
strategies tend to be highly flexible and usually change over time to adapt to
actual changes. Following Headey and Fan|(2010) and Swinnen and McDermott
(2020), the main factors for long-term price shocks are:

Economic growth, mainly in developing countries;

Price increase of substitutes (food or other commodities);

Change in utilisation of [AC| such as for energy or livestock feed;
Energy/Fertilisers price spikes;

Gradual and continuous decrease in|AC stocks; and

Technological growth recession, especially concerning the sharp rise in
crop yields, as has occurred in recent decades.

OUTh WN

An example of a demand-side market that significantly affects the prices of ag-
ricultural commadities, in the long run, could be the rise in the income level in
developing economies. The recent rapid price rise observed in many developing
countries is a serious concern, especially when food prices are concerned. Food
prices in emerging economies have risen sharply over the past decade, as seen
in the local consumer food price index compiled by|FAO| (2020) in Figl.1
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Figure 2.1 - Consumer Prices, Food Indices (2015 = 100 %)
Source: [FAQO|(2020)

In the long term, a key driver to the rapid surge in food prices is the rise in
revenues in emerging economies, notably China, which accounts for about one-
fifth of the world population. The increase in revenue has allowed consumers to
reduce their traditional grain-based diets in favour of a more expensive menu,
containing higher rates of animal source products, fruits and vegetables. This
trend has, of course, affected the rise in world food prices (World-Bank, 2014).
Nonetheless, in developing countries, a high proportion of the population has
a low-income capacity and thus spend a large portion of their income on food
purchases. As a result, a local rise in food prices is much more significant than
a similar rise in high-income countries, i.e. the US or the EU. The growing con-
sumption of animal-based food leads to price increases of livestock feed, includ-
ing maize and soybean. In the long term, this inflation is an incentive to expand
the growing areas of these crops, often at the expense of less rewarding grains,
such as rice, which are consumed only by humans (Childs et al.| 2009; [Headey
and Fan| 2010).

An example of a variable that affects[AC| prices in the long run, this time on
the supply side, is energy price increment (World-Bank, 2016). Although not agri-



2.2. LONG TERM 53

cultural products, fuels are involved in the entire agricultural supply chain, from
the early stage of the purchase/transportation of inputs until the final delivery
to the point of sale. Farmers who irrigate their crops are particularly affected
by high pumping costs, while those who use modern seeds face higher prices of
fertilisers[] Moreover, the fact that many countries subsidise fuels for their res-
idents, or local farmers (Nwachukwu and Chike} 2011), causes a non-reduction in
the use of the same inputs by farmers, which places an economic burden on the
entire country. As will be seen in the case of an increase in the general income
level in China, here too, an increase in the demand for petroleum-based materi-
als or oil has a worldwide effect on the prices of agricultural produce in the long
run. Another side-effect of the rise in fuel prices impacts international trade.
As aforementioned, rising fuel prices increase the transportation of agricultural
commodities, making their final price for importing countries to elevate: the
higher is the price of energy, the higher is the additional price importing coun-
tries must pay for their imports. Facing such situations, governments of import-
ing countries may try to lessen imports by encouraging local farmers to produce
more of the imported crop through subsidies, reduced producer taxes or other
supports (Nidhiprabha| 2019). In this respect, the cost of all production will in-
crease, as importing efficient producers (e.g., the USA for maize, Thailand for
rice or non-agricultural products) will become less and less cost-effective when
imported. The primary way to deal with this dependence is to use crops as a
source of bio-fuels, the most common of which are ethanol (made from maize,
sugar beet or sugar cane) and bio-diesel (made from canola, soy or palm oil).
Indeed, over the last few decades, the use of biofuels has been steadily rising,
pushing the prices of those goods up and shifting their use even further from
their most basic purpose, as food for humans (HLPE, 2013). Moreover, given that
these crops also make up the bulk of the livestock nutrition, feed costs also rise,
leading to increased dairy, meat and eggs prices. As expected, the high com-
modity prices are an incentive for farmers to allocate more significant parts of
their land in the long run. This land reallocation comes in favour of growing
fuel-substitution plants, at the expense of products used mainly for human con-
sumption, such as wheat and rice (Abdoulkarim and Zainab) |2011; [Tadasse et al.,
2016).

Another important factor is long-term exchange rate fluctuations. Most of
the [AC| global trade prices are of USD units. As each country has to convert
its currency into USD, each fluctuation in the USD-local currency ratio will have
a strong influence over the real-price value of the commodity (FAO et al., 2020).

"Modern seeds produce high yields but also require the use of fertilisers (Hamzei and Seyyedi,
2016). The production process of fertilisers involves the use of fuels. Therefore, fuel price in-
crease leads to elevation production costs of fertilisers and hence to higher prices.
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This factor, of course, is of decisive influence on the prices of other commaodities.
Compared with Euro, changes in the USD value have influenced prices at
higher levels Gilbert (1989); Mitchell (2008).

Owing to the nature of the possible changes over long periods, models that
analyse price changes tend to be more complex compared to short-term
forecasting models (Piot-Lepetit and M'Barek, |2011). Generally speaking, two
types of models are most known to serve for long-run[AC price predictions, both
are structural: partial equilibrium (PE) models and computable general equilib-
rium models (Thomsen, [2021).

2.2.1 Partial Equilibrium (PE)

PE models traditionally describe a single or few market(s) while excluding in-
come effects and feedback from other markets. However, the chosen market(s)
can include many commodities. models use observed data to produce an
outcome from a series of individual equations. As such, [PElmodels generate a
mathematical equilibrium in the desired market.

One could distinct between|PE|models by differentiation of the production/demand
spatial resolution units of the production/demand units (e.g., countries, regions,
grids); term of demand (e.g., caloric consumption, price and income elasticity,
bio-fuels demand), and by the type of explanatory variables for the dependent
price factor. The latter varies greatly and could include many variables - land
and non-land inputs, yields, investment in agricultural R&D amongst them.

The Global Biosphere Management (GLOBIOM) model (Havlik et al., 2011) is
an example of a global[PEleconomic model. The principal data sources used are
mainly from FAO.[GLOBIOM]provides policy analysis on global issues related to
land-use competition between vegetative farming (18 major crops globally + 9
crops for the EU), grassland (as livestock feed of 7 animals), bioenergy crops
(short-rotation crops) and managed forest. The model considers relationships
between all products and land use and enables changing land allocation con-
cerning exogenous factors such as price and productivity changes. The regional
coverage consists of 37 regions (globally), which represent the global trade and
demand. The demand side representation in acts as an endogen-
ous system specified by price elasticity increasing functions, relative to gross
domestic product (GDP) per capita, population (exogenous variables) and a price
for each product (endogenous). On the other hand, the supply side of the model
is the productivity of three land-use sectors: agriculture, forestry and bioenergy,
presented by production functions, along with related environmental paramet-
ers such as greenhouse gases (GHG) emissions and production/supply costs.
The overall equilibrium of the agricultural and forestry markets is the maxim-
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isation of the total producer and consumer surpluses under constraints of re-
sources, technology and policy. A detailed description of the [GLOBIOM]|is avail-
able at/Havlik et al. (2018).

2.2.2 Computable General Equilibrium (CGE)

While based on the same mathematical equilibrium as PE,[CGE|are cross-sectorial
models, which are commonly used in macro-economic research to take into ac-
count a large number of factors and parameters. As such, the price elasticity
of demand in|CGE|models is relatively high, whereas price responses to supply
shocks are comparably low (Burfisher, 2021; Valenzuela et al., 2007). The de-
mand side in [CGE| is an aggregation of several factors like GDP, oil price, and
even governmental policies (Hertel et al., 2016).

When talking about global trade in agriculture, one of the leading[CGEjmodels
is the Global Trade Analysis Project (GTAP), initially developed by Hertel/(1997). It
functions as a framework for many other works and models, including the Agri-
cultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig
et al.,2013), the global Modular Applied General Equilibrium Tool (MAGNET) (van
Meijl and Woltjer, 2012) and local models such as the Israeli General Equilibrium
Model (IGEM) of |Palatnik and Shechter| (2008). is a general equilibrium
framework applied at the global level. By definition, it captures all economies
and under the assumption of free trade flows (perfectly competitive) between
them, including interactions between sectors and markets (Corong et al., 2017).
[GTAP| consists of a large set of data, counting 114 countries, where each one has
its local industries and products, and based on publicly available information.
In addition, it recognises five national income levels and represents economic
behaviour within economies (forms of production and preference functions, or
calibration of elasticities) This greatness is also the drawback of the framework,

making it highly complex. Specifically for agriculture,|GTAP} on its|GTAP-Agr ver-
sion, is a static model.

The model seeks an equilibrium point: The producers (firms) are profit max-
imisers under the constraints of production technology (given prices) and input
of labour, capital and intermediate deliveries. On the other hand, the demand
side aggregates all the private households (as a single consumer), which maxim-
ise their present value of current and future utility under a limited budget and
given prices. They are considered as having the initial endowments, and thus,
they own all the production factors and consume the final products, according
to a consumption function. As [GTAP}Agr is static, technology is assumed to be
fixed in the short term.
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2.3 |Medium Term|agricultural commodity price re-
search

[Medium Term|[A] price changes (time intervals of three to 18 months) are most
often associated with shocks in commodity markets; local changes, especially
those that have a high impact on the market (Hertel et al., 2016); or catastrophes
on a global scale. On the scientific side, it is customary to examine a change in
prices mainly in the context of price cycles in the itself or as a result of
changes in the prices of other commodities. Consistent with Labys|(2003) argu-
ment, the in-depth literature review conducted throughout the making process
of this research project shows that most of today’s studies use one or a com-
bination of non-structural techniques. e.g., [TS| based models, including vector
autoregression (VAR), exponential smoothing or models of heteroscedasticity.
However, structural models, too, are widely used in the academic literature, al-
beit for price analysis, as will be described below.

When dealing with the analysis or forecasting of[AC|prices in[Medium Term,
itis possible to use models based on time series, as was done for the short term.
In this case, the option to apply interpretable models, i.e. techniques that are not
necessarily "black box", is also open. Despite the rich academic literature, when
it comes to price studies using machine-based methods, the vast majority
of them adhere to a relatively limited number of models, those that are not in-
terpretable. A unique work conducted by |Xiong et al. (2018) predicted vegetable
prices in the Chinese market in time frames ranging from a month to six months
ahead, based on monthly price series of up to 12 years. The uniqueness of this
study stems from the attempt to understand the nature of the markets in-depth
before operating the forecasting model. As part of this approach, the authors
combine several seasonal-trend decomposition procedures and extreme learn-
ing machines (ELM), where each comes at a different stage with a different role.
At the first step of the learning process, the input data (prices) are loaded into
a seasonal-trend decomposition time series algorithm, based on a smoothing
technique that deals with missing data: STL (Cleveland et al.,|1990). STL decom-
poses all five price series into detailed seasonal, trend and remainder (residual)
components. This step is of great significance since, in the next step, an [EML]
performs the forecasting task. is a neural network fast machine learning
technique, which is known for its high forecasting accuracy (Huang et al., 2006).
However, these models cannot be opened and thus are not interpretable. The
initial data decomposition allows a separate prediction of each of the three com-
ponents to predict that it is both more accurate and more understandable in
terms of the composition of the result. While there is no significant opening up
of the "black box", this study represents a breakthrough in attempting to inter-
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pret[AC|price prediction results through machine learning.

Although somehow limited in the academic aspect, price forecasting in
the non-academic world is very developed. Currently, several international or-
ganisations periodically publish [Medium Term|[AC| price forecasts. The World
Bank, for example, publishes price forecasts (medium and long period) of 20
including three animal-based products. The forecast is published twice a
year, and the results are publicly available. However, an in-depth search has not
yielded up-to-date publications regarding the technique used to predict those
prices. Existing publication regarding the sugar market (Vries| 1980b) presents a
CGE/model that is probably no use for today'sMedium Term|forecasts. Another
publication presents the banana market (Vries, 1980a) in a manner that could
indicate the current forecasting methodology. The Commodity Price Index is
published once a month by the World Bank in two days lag of the month meas-
ured. Twice a year (every April and October), the World Bank produces general
price indices forecast along with the price of each commodity. The purpose of
which is to enable the analysis of the information. The agricultural commodities
item (accounts for almost 65% of the non-energy commodity index), consists of
three groups (beverages, food and raw materials), is highly volatile. As such, its
potential contribution to the forecast error is significant. The monthly prices and
indices are built based on commodity prices, collected regularly from the world
largest international markets. In the case of bananas, these are the markets in
Hamburg and US Gulf, under the guiding assumption of pure competition. The
global price is an aggregation of the prices obtained from each producing
country, according to its weight from all weights in the relevant month. For each
such market, the price (in USD terms) is a function of the local yield (extrapolated
based on their historical growth rate), an international price index and relative
market pressure in the US market (defined by export criteria). The model also
accounts for trends and seasonality.

The[USDAJuses the World Agricultural Supply and Demand Estimates
model to forecast the future prices of numerous grains, meals and oils, sugars,
animal-based products (milk and meat). The forecasts results are made public
every month for up to 18 months ahead. However highly used by governments
and policymakers (US-HR| 2009), these models are not only complex (Hoffman
et al., 2018) but are also un-interpretable, as their developers keep the method-
ology and the market data under "Lock-up Conditions" (Mallory, 2021).

To summarise this survey, as of today, various models provide price forecasts
of[A)in the[Medium Term| which is the most critical for the determination of an
immediate food security strategy. However, these models do not provide suffi-
cient information about the factors that led to the final forecast results. Thus,
these models do not allow policymakers to assess the risks they are facing nor
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understand the market in which they operate.

In order to fill this research gap, this doctoral dissertation provides[AC| price
forecasts in the|Medium Term| Unlike current models, price forecasts are made
solely in a way that will also allow for minimal forecasting error. At the same
time, they also provide the users with a glimpse of the model decision process.
If will follow the detailed and comprehensible instructions, even non-specialised
users will be able to replicate the forecasting process and understand the forces
operating in each relevant market.




Chapter 3

Assessing the sensitivity of global
maize price to regional productions
using statistical and machine
learning methods

Co-authors: David Makowski, Thierry Brunelle[]

Abstract

Agricultural price shocks strongly affect farmers’income and food security. There-
fore, it is essential to understand and anticipate their origins and occurrence,
particularly for the world's primary agricultural commodities. This study as-
sesses the impacts of yearly variations in regional maize productions and yields
on global maize prices using several statistical and machine learning (ML) meth-
ods. Our results show that Northern America is by far the most influential of all
regions considered. More specifically, our models reveal that a yearly yield gain
of +8% in Northern America negatively impacts the global maize price by about -
7%, while a decrease of -0.1% is expected to increase global maize price by more
than +7%. Our classification models show that a slight decrease in the maize
yield in Northern America can inflate the probability of a global maize price in-
crease. The maize productions in the other regions have a much lower influence
on the global price. Among the tested methods, random forest and gradient
boosting perform better than linear models. Our results highlight the interest

'Chapter published in the Frontiers in Sustainable Food Systems journal (DOI:
10.3389/fsufs.2021.655206)
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of ML in analysing global prices of major commodities and reveal the strong
sensitivity of maize prices to minor variations of maize production in Northern
America.

3.1 Introduction

Over the past decade, the four components of food security - availability, sta-
bility, utilisation, and access - have become significant sources of concern. At
the turn of 2010, prices of main food crops in the international markets have
shown high variability, sometimes doubling in a short time frame (Headey and
Fan, |2010). For example, the price of maize increased by 75% from September
2007 to May 2008 (Headey, 2011). Poor harvests and rising prices of agricultural
commodities had contributed to triggering the hunger riots of 2007-2008 and
the Arab Spring of 2011 (Headey and Martin| 2016). High levels of volatility in the
food prices are now recognised to affect food security for a growing number of
households (Rosenzweig et al., 2001; |Schmidhuber and Tubiello, 2007).

Several reasons can further explain the food crises at the turn of the dec-
ade: low levels of food stocks, rising prices of inputs - particularly fertilisers -
and growing demand for bio-fuel (Headey and Fan, 2008). One of the most fre-
qguently cited is idiosyncratic shocks on agricultural production at the regional
level. In 2007 and 2010, for example, extreme local environmental conditions
(e.g., droughts in Russia and extensive wildfires in Australia) and resultant de-
clines in regional production significantly contributed to the spike in global food
prices (Tadasse et al.,2016). For example, the heatwave in Russia in the summer
of 2007 and 2010 led to a significant drop in local wheat production, which res-
ulted in export restrictions and subsequent tensions on international markets
(Wegren| 2011). Restrictions on rice exports in India and Vietnam in 2007/2008
also led to substantial price increases on international markets (Headey, 2011).

Increased inter-connectivity in global food markets can be a source of resi-
lience, as seen in the recent Covid-19 outbreak, but also of vulnerability, partic-
ularly when the agricultural production of a major exporter is affected. Least
developed countries are particularly vulnerable as they may suffer more sig-
nificant import losses through their strong dependence on imports for staple
foods (Puma et al., 2015). In this case, we speak of teleconnected supply shocks
(Bren d’Amour et al.,[2016). Bren d’Amour et al.|(2016) find that the Middle East is
most sensitive to teleconnected supply shocks in wheat, Central America to sup-
ply shocks in maize, and Western Africa to supply shocks in rice. In the future,
climate change and the increasing frequency of extreme weather events could
make the food system even more vulnerable to such teleconnected shocks. Sev-
eral works study the transmission of prices and price volatility from international
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to domestic markets (Bagquedano and Liefert, |2014; Kalkuhl, |2016). However,
to our knowledge, no article has so far attempted to quantify the inverse link,
namely the sensitivity of the world price to supply shocks at the regional level.

The international maize market s a highly relevant case study because maize
is one of the most traded crops and plays an essential role in food security in
many countries. Accurate identification of the most influential maize producing
regions would potentially be helpful for decision-makers who need to optimise
both their dates of commodity purchases and their stock usages (World-Bank,
2005). Although maize is the most widely traded crop globally, only a few coun-
tries export their maize productions, suggesting that the production of a small
number of regions might impact maize prices. As some countries rely heav-
ily on maize imports to ensure food security (Wu and Guclu, 2013; Rouf Shah
et al.|, 2016), it is essential to be able to anticipate price shocks for this commod-
ity. Models that provide relatively short-term maize price projections are relev-
ant to many stakeholders. For example, the WASDE| forecasts are helpful for
risk calculation and for designing the federal US crop insurance program (US-
HR, 2009). However, these models were criticised because of their complexity
(Hoffman et al.; 2018) and, sometimes, because of their lack of accuracy (Hoff-
man, 2011; Warr, [1990; Hoffman et al., 2015; [Lusk| 2016). Other forecasting mod-
els serve private institutions, particularly companies specialising in commodity
trading. Auto-regressive methods are widely known to forecast food prices in
the academic literature (Li et al., 2010; Shively, 1996). Although all these tools are
undoubtedly helpful for forecasting maize prices, they provide little insight into
the effects of regional maize production variations on global maize prices.

Although it is difficult to predict precisely the extent to which global scale
price variations could affect local prices, it has been previously shown that shifts
in international prices can transmit into regional domestic prices (Headey and
Fan,|2010). In more recent research, Kalkuhl (2016) suggests that there is a strong
relationship between international prices and domestic ones, even when the
global market trades with futures.

The objective of our study is (i) to identify the maize-producing regions having
the most significant influence on the global price of maize through their produc-
tion and (ii) to quantify the effects of regional production changes on global price
changes. Under the assumption that regional production shifts primarily drive
shifts in maize prices (Hertel et al., |2016), we train several statistical and ma-
chine learning models using publicly available regional yearly production data
and monthly price data. Monthly price data are pertinent because maize prices
do not tend to change on a daily or weekly basis but rather monthly (Ochieng
and Baulch| 2019; Dorosh et al., 2004). Furthermore, our input variables, i.e. re-
gional maize productions or yields, directly inform on the level of commodity
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supply, which is usually an unstable component of the market. Therefore, the
trained models are used to analyse the relationships between regional maize
production (or yield) and global prices, to identify the most and least influential
producing regions in the global maize market, and finally to quantify the effect
of regional production (or yield) changes on global price changes.

In our study, we chose to use various statistical and machine learning meth-
ods. The use of different methods has several advantages. First, it allows us to
study the robustness of the main conclusions to the data analysis method imple-
mented. Second, it makes it possible to compare different methods' precision
and determine the most efficient ones. Third, our comparison of models thus
contributes to improving our understanding of maize price determinants and
developing operational and accessible predictive tools. In this way, our study is
relevant for designing food security policies.

3.2 Materials and method

3.2.1 Data

Historical annual yield (hectograms per hectare) and production (tonnes) data
were obtained from the[FAQ|data website (FAOSTAT) for all years available (1961
to 2018) for 19 regional entities (defined by FAO) covering 242 countries. For fur-
ther data definitions and the sources of the variables included in our models,
see tables[3.2]and[3.3]in Appendix[3.Al

We extracted data on maize global monthly prices from the World Bank’s
commodity markets database as the U.S. No. 2 yellow free on board (FOB) Gulf
of Mexico, U.S. nominal price, per metric tonne units. Although this price is the
traditional representative price for the maize produced in the U.S., this quotation
is today’s leading benchmark price for the international maize trade (FAO, 2021) ]

The time series summarises the monthly price of maize, as globally traded in
U.S. Gulf ports, from January 1960 to December 2019. We converted these
prices into real 2010 U.S. Dollars, using the monthly agricultural index of the

World-Bankf|(Fig[3.1).

2We found a strong correlation between the series of relative yearly maize price changes used
in this paper and the relative maize price changes of other countries. For example, Argentina
Ukraine correlation is about 0.75, according to the data made available in the GIEWS database
of the FAO.

3Although the most frequently use price index is the American CPI, we chose to use the World-
Bank monthly agricultural price index. We base our decision on two factors: The first derives
from Tadasse et al.|(2016) indicating that the U.S.could be a biased deflator when dealing in
a global market that includes both developed and developing countries. The second reason is a
relatively lower gap (RMSE) between the maize annual real prices published by the World Bank
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Figure 3.1-Time series of global maize price. (a) Real terms in 2010 US Dollars. (b)
Real terms in relative change from the same month of the previous year (ratio)

The deflated prices are further denoted as ¢, ,, where m and y are the months
and year indices, respectively. Exportable maize is usually harvested once a year,
during the main harvest season, and levels of maize production can thus po-
tentially have substantial effects on yearly price changes. For this reason, the
dependent variable in our analysis is defined as the relative price difference of
maize expressed relatively to the same month of the previous year. It is defined
as

dm,y — 9m,y—1
Py = imy Amy—2 (3.1)
Qm,y—l

and their values are shown in fig[3.1b. From the series of p,, ,, we define a
binary variable pfmy equal to one in case of price increase (p,,, > 0) and to zero
otherwise.

Maize prices for month m in year y are estimated as a function of relative
production (or yield) changes between the month m in year y and the same

to the deflated maize global monthly price calculated for this study.



64 CHAPTER 3. ESSAY'|

month in year y — 1. To accomplish this, we transformed regional yield (grain
weight per unit of the cropping area, in hectograms per hectare) and production
(total regional grain weight, in tons) data into relative changes compared to the
previous year, as follows:
Thy = Zhy — Fhy—1 (3.2)
Rky—1

Where z;, is the production (or yield) in a region k (k=1, ..., 19) and year y,
and zy, is the relative production (or yield) change in the same region and the
same year.

We predict prices during the last quarter of each year, that is, in October,
November, and December (m €10,11,12), i.e., when all regions have finished (or al-
most finished) their maize harvest and reported the yearly production and yield
obtained. For a given year, it is indeed possible to obtain accurate estimates of
maize yield and production from October onward and to use them to predict
price shocks of the same yearf]

In the next sections, we present and compare several methods to estimate
Pmy and pb, . at m €10,11,12 as a function of z;,, k €1,...,19. Each method is
implemented twice; first using relative changes in regional productions as input
variables and then using relative yield changes.

3.2.2 Linear and generalised linear models

Although the relationships between price and production or yield changes may
be non-linear, we use a linear regression model as a benchmark to estimate
price fluctuation as a function of changes in regional productions or yields. Our
linear model (LM) is defined as follows:

19
Dmy = @+ Z kak,y + €my (3.3)

k=1
where a and j; are regression parameters and ¢,, ,, is the residuals. Addition-
ally, we define a variant of this model including the price change of year y—1 (i.e.,
Pmy—1) @S a supplementary input. This serves for investigating Granger causal
relation between p,,, and z;, (Granger, 1969). The significance of the effects
of z;, are tested with and without using p,, ,—1 as an additional input in the re-
gression model. If some of the z, are still significant while taking p,, ,—1 into
account, one can be considered that there is a Granger causal relation between

Pmy and these zy, .

4http://www.amis-outlook.org/amis-about/calendars/maizecal/en/, retrieved 23
March 2020
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For classification, we use a generalised linear model with a binomial
family and a logit link. This model computes the probability that p%7y=1 (i.e.,
price increase), given the values of the regional production (or yield) changes
Ty k €1,..,19.

Both models are implemented with the function of R (R-Core-Team,
2020). As done with the other methods, we fit linear models for each month (Oc-
tober, November, December) using production and yield changes as inputs. The
most influential inputs were selected using a stepwise procedure implemented
with the [AIC|(step function of R).

3.2.3 CART

The three[MLmethods considered in this study are decision-tree based algorithms:
Classification and regression trees (CART), random forests (RF), and gradient
boosting machine (GBM). None of these methods makes any strong assump-
tion about the functional form of the relationship between the dependent vari-
able and the explanatory variables, neither about the data distribution. They
can thus capture nonlinear relationships between the inputs (regional produc-
tion or yield changes) and the output (global price change). We shortly present
our implementation of [CART| here, while[RF and[GBM|are presented in the next
sections.

The purpose of [CART]is to build a binary decision tree. Let p,,, be a de-
pendentvariable and 1 ,, 74, ..., Tk, @ Series of explanatory variables. The tree
is constructed by repeatedly distributing the observations into homogeneous
groups relative to p,,,. The partitioning criteria is monotonous in the explanat-
ory variable, z;, which defines a cross-section of z;. In contrast, higher valued
observations belong to the right and lower-valued to the left branches. Addi-
tional partitions based on the same variable can be made, but one cut-off pointis
determined at each stage. The subgroups that define the tree are called nodes.
performs recursive partitioning, and searches for splits that minimise the
test error rate in the chosen objective function. The choice of the objective func-
tion depends on whether the output is continuous (p,,,) or categorical (pl;n’y). In
the former case, i.e. for predicting p,,,, [CART|is implemented using the resid-
ual sum of squares (RSS). To predict pfw (classification), the objective function
is a purity index based on the Gini index. Here, [CART|was implemented with the
package rpart of the R software (Therneau et al., 2019) (rpart function).
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3.2.4 Random Forest and Gradient Boosting

Although simple to visualise and interpret, results are usually unstable
and tend to be sensitive to small data changes. Their price predictions are not
always accurate (Kuhn andJohnson, 2013). For these reasons, ensemble learning
algorithms based on bagging (for "bootstrap aggregating") and boosting meth-
ods are frequently used instead of [CART] trees (Breiman| 2000). In this study,
we use random forests (RF) (Liaw et al., 2002) as a bagging-based algorithm and
gradient boosting machine (GBM) as a boosting-based method.

The[RFalgorithm builds an ensemble of trees, each relying on a small subset
of inputs (i.e., a subset of all regional productions or yields). Each tree is fitted
to a randomly chosen training set generated using a bootstrap procedure. This
approach reduces the effects of correlations between variables while allowing
different input variables to be selected. In predictions are derived by com-
puting the average of all trees. Here, we find that 500 trees lead to stable res-
ults. [RF can rank the inputs according to their predictive powers and, here, the
resulting ranking can be used to identify the regions whose maize productions
(or yields) show the strongest influence on global maize price. In this study,
is implemented with the randomForest function of the package randomForest
(Breiman et al.,2018), both for quantitative predictions and for classification.

The method is also based on an ensemble of trees (Efron and Hastie,
20160). At each iteration, builds a simple tree (weak-learner), each of which
is learning from the prediction errors of all the trees built so far. The final pre-
diction is the sum of all the models calculated earlier. As[RF,[GBM]is able to rank
the inputs according to their predictive powers. In our case, we fit[GBM| using
the gbm function of the gbm package (Friedman, 2001) both for regression and
classification based predictions. Here, we find that the most accurate results
are obtained with 100 trees for GBM.

Neither RF nor has analytical expressions. However, standard meth-
ods can be used to rank their inputs according to their importance and visualise
their effects on the output on price changes. Using these methods, we rank the
model inputs zy,, from the most influential to the least by computing the mean
decrease accuracy criterion (Calle and Urrea, |2010) for each input (i.e. each re-
gional production or yield changes). This criterion measures the extent to which
the accuracy of model predictions or classifications decreases when each input
variable is setto arandom value. Lastly, we use partial dependence plots (Green-
well, 2017) to visualise the response of the model outputs to the most influential
inputs, averaging the overall values of the other inputs. These plots allow us
to analyse the shapes of the responses and detect non-linearity. The same ap-
proaches were applied to[LM]and [CART|to compare the input rankings and the
dependence plots of all methods on the same basis.
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3.2.5 Models Evaluation

The accuracy of the quantitative price-estimation is assessed by root mean squared
error (RMSE), which we estimate using a leave-one-out cross-validation (LOOCV).

In each step, one year of price (p,, ,, m=10,11,12) and production/yield (zy,,) is ex-
tracted from the original data set. Then, the four models (CART, and
are trained using the remaining 55 years, to estimate the removed value of
Pm,y USINg the trained models. For each year, the procedure is performed to ob-
tain a set of 56 estimations for each tested model and each month (m=10,11,12).
Finally, we calculate a valueRMSE|for each model and each predicted month. We
repeat the whole procedure twice, using regional maize production and regional
maize yields as inputs, successively.

To evaluate the accuracy of the classification models, we apply the same
procedure, this time to calculate the area under the RO(| curve (AUQ).
This criterion is commonly used to evaluate the performance of classification
algorithms (Hernandez-Orallo et al., 2012). Anhigher than o.5 indicates bet-
ter performance than random classification. An[AUC|equal to 1 reveals a perfect
classification.

3.3 Results

3.3.1 Quantitative effects of regional productions on price changes

Table 3.1 - Comparison of values for the four types of models (Im: linear
model; cart: regression tree; rf: random forest; gbm: gradient boosting model).
[RMSE|values (expressed in the same unit as a relative price change, i.e. in relative
change ratio compared to the same month the previous year), were computed
by cross-validation for predicting yearly price changes in October, November,
and December using two types of inputs: relative regional production (left) or
yield (right) changes. The lowest values obtained for each month are in red

| | Production | Yield |

| | [EM] [[CART]| [RA [ [GBM]| [LM] [[CART]| [RF |[GBM]|

| October | 0.169 | 0.140 | 0.137 | 0.135 | 0.132 | 0.136 | 0.122 | 0.128 |

| November | 0.153 | 0.148 | 0.140 | 0.135 | 0.163 | 0.147 | 0.139 | 0.158 |

| December | 0.144 | 0.148 | 0.130 | 0.129 | 0.139 | 0.129 | 0.129 | 0.147 |
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Table [3.1shows that the best methods are either [RF or [GBM| depending on the
considered month. For example, the most accurate predictions of global price
changes in October (po,) are obtained by RF with an equal to 0.12. The
least accurate results (i.e., the highest RMSE) are obtained either with the linear
model (LM) or with depending on the month considered.

The importance ranking of the regional maize yields is shown in Fig[3.2|for the
three months considered and the four different statistical and machine learn-
ing methods. The ranking obtained when using regional production changes
as inputs is shown in the supplementary materials (Fig[3.15). We determine the
contribution to the prediction accuracy (RMSE) of the price as the relative im-
portance of each region in a given month. We consider a region to be influential
if a random choice of its corresponding input value (i.e., a yield change or pro-
duction change chosen at random) leads to a substantial increase of the
of the price change predictions. On the other hand, a region would be non-
influential if a random choice of its corresponding input value does not affect
the RMSE. Results clearly show that Northern America is by far the most influen-
tial region according to the four methods, with both types of inputs (production
or yield changes), and for the three months considered. The only exception is
the linear model (with yield change inputs) in November, but this model has low
predictive power compared to others in November (Table [3.1). Considering the
most accurate methods (GBM and RF), yield and production changes in Northern
America have the most substantial influence on global price changes. Moreover,
according to the linear models, the effects of yield and production change in
Northern America on global price change are statistically significant (p<0.01) in
October, November, and December, with and without the price change in year
y-1 included as an additional explanatory input. This result indicates a Granger
causality of yield and production changes in Northern America on global maize
price. Furthermore, it reveals that yield and production changes are helpful in
forecasting price changes, even when previous price changes were taken into
account.
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Figure 3.2 - Importance levels of regional yield changes for predicting the global
maize price in October (10), November (11) and December (12). Importance levels
are computed using the criterion and measure the extent to which the
model accuracy decreases with a random permutation of each input.

The partial dependence plot shown in Fig[3.3| presents the average re-
sponse of price changes in October (10), November (11), and December (12) to
variations of maize yield compared to the previous year in the most influential
region, i.e., Northern America (similar are shown in the supplementary
Fig using production instead of yield). The obtained using the four
models consistently show that an increase (decrease) of yield in Northern Amer-
ica leads to a decrease (increase) of global price. In October, for example, an 8%
rise of relative maize yield in Northern America leads to a reduction of maize
price of 7% according to the[GBM|model, while a 0.1% decrease of relative maize
yield in Northern America is expected to increase the global price by 7% accord-
ing to the same model. This result confirms the strong influence of Northern
American yield on global maize prices. The[PDPf obtained using the production
and yield changes in other regions show much weaker trends and much flatter
curves (see, for example, the obtained for the region Southern Africa, in

supplementary Fig[3.16] Fig[3.18).
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Figure 3.3 - Partial dependence plots obtained with[LM}[CART] rf and show-
ing the average response of relative price change in October (10), November (11)

and December (12) to relative yield change in Northern America. The points in-
dicate price variations as observed over the period of 1961-2019. The plot shows
that, according to all models, any increase (decrease) of yield in Northern Amer-
ica compared to the previous year leads to a decrease (increase) of global price.

3.3.2 Classification of price increase vs. decrease

Fig[3.4|shows the results thatROC analyses for the classification models for the
three months considered. The results are in favour of[GBMland[REwith[AUCfall-
ing in the range of 0.7-0.8 for these methods in most cases. The 95%Cl are rel-
atively large, but those obtained with[RFand never include the benchmark
value 0.5, characterising a random classification. On the contrary, the 95%Cl of
[CART]and the linear model sometimes include 0.5, revealing that these methods
do not systematically perform better than a random classification. For a given
month and a given type of input, the lowest/[AU(Jis obtained by the linear model
or CART. The two types of inputs did not lead to any systematic difference in
[AUC values.
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Figure 3.4 - AUC values obtained for the classification models predicting price
increase vs. price decrease in October (10), November (11) and December (12).
The horizontal red line indicates AUC=0.5, i.e random classification. Vertical bars
indicate the 95% confidence intervals (Cl). When these bars do not include o.5,
the[AUQis significantly higher than 0.5 (p<0.05)

As already noticed in the case of regression, the importance ranking of the
regional production and yield inputs of the classification models reveals that
Northern America is the most influential region, in particular for the model[GBM]
which has a good classification power. For more details, see figure and
figure[3.20]in the Appendix[3.A

Fig shows the of the classification models. These repres-

ent the average responses of the probability of price increase to relative yield
changes in Northern America obtained with regional production inputs
are shown in Supplementary F). The probability of a global price increase strongly
decreases below 0.5 as soon as the yield change is positive in Northern Amer-
ica compared to the previous year. In contrast, it increases above 0.5 when
the yield change is negative. The effect is powerful with the model GBM. As
already noticed for quantitative price changes, the PDPk obtained with the clas-
sification models show much weaker trends and much flatter curves for regions
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other than Northern America (see, for example, the obtained for the re-
gion Southern Africa, in supplementary Fig[3.21and Fig[3.23).
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Figure 3.5 - Partial dependence plots showing the probability of price increase
in October, November and December as a function of relative yield change in
Northern America, for the four models considered. The points indicate price
variations (on the y-axis, 1=price increase, o=price decrease) as observed over
the period of 1961-2019.

3.4 Discussion

Using regional maize production data and global maize prices, we assessed the
effects of regional production and yield variations on late-season global maize
prices. Because of the existing relationship between the global price and do-
mestic prices, especially in the least developed countries (Caracciolo et al.; 2014),
the topic is essential to dealing with food security issues in vulnerable regions.
Our study is the first to address this question using various statistical and
machine learning methods. Overall, all models consistently show that Northern
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America is the most influential region, and both maize yields and maize produc-
tions seem to be equally influential. However, this result is somewhat trivial as
Northern America (and, more specifically, the USA) is the leading maize producer
and exporter at a global scale and as the USA is known to have a strong influence
on the agricultural trade market (Chatzopoulos et al./(2019)). However, our mod-
els can provide data-driven quantitative information on the effect of regional
production variations on global maize prices. Our analysis provides real added
value because it allows us to quantify the effect of an increase or decrease in the
annual production of maize in this region on the global price of this commodity.
All methods reveal that a slight increase (decrease) of maize production or yield
in Northern America would lead to a decrease (increase) of the global maize
price by a few per cent compared to the previous year. When considering the
most accurate methods, an increase of maize yield relative to the previous year
of +8% in Northern America negatively affects the global maize price by about
-7%, while a decrease of yield in Northern America as low as -0.1% will cause the
global maize price to increase by more than 7%. The strong impact of maize
production in Northern America is confirmed by the results obtained with the
classification methods. Indeed, these methods indicate that the slight increase
(decrease) in maize yield or production in Northern America has a strong negat-
ive (positive) effect on the probability of maize price increase compared to the
previous year. Even a minimal decrease in maize production in Northern Amer-
ica can inflate the probability of a price increase.

Among all the considered modelling techniques, ensemble tree-based tech-
niques (random forest and gradient boosting) show the lowest[RMSE|and highest
values, revealing that these methods were the best for both quantitat-
ive price prediction and classification. Indeed, in addition to predicting price
changes quantitatively, the methods tested in this paper can be used to clas-
sify relative price increase vs decrease situations. The principle is to compute
the probability of price change increase (or decrease) as a function of regional
production (or yield) changes. The tree-based models tend to outperform the
simpler [GLM] Still, the rate of misclassification is approximately 25% with
and which is relatively high but better than a random classification. As no-
ticed for quantitative predictions, the production change in Northern Americais,
by far, the most meaningful input for classifying price increase vs price decrease
situations. All these results concur in showing that maize production change in
Northern America is a highly relevant indicator for assessing the risk of global
maize price increase or decrease.

The nature of the inputs (i.e., production vs yield changes) has a marginal im-
pact on the methods’ performance. Thus, surprisingly, both and[RFdo not
perform better when regional production variations are used as inputs instead
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of yield. However, production data combine two types of information, i.e., yields
and cropping areas, whether yield variations alone do not account for possible
variance in the regional maize cultivated areas.

Although the main purpose of our study is not to propose new forecast-
ing tools, our models could potentially be used to predict global maize prices.
Compared to other types of forecasting models, [GBM|and [RF have several ad-
vantages but also a few disadvantages. Our models rely on public data and
can be easily implemented using standard modelling open-source software. On
the contrary, private forecasting techniques are usually unpublished, not freely
available, and not transparent. Structural models constitute another category of
models that can predict the prices of agricultural commodities. These models
rely on theories describing economic systems and are developed by interna-
tional organisations such as [FAQ| [OECD] and [[FPRIl They simulate price fluctu-
ations using a series of functions describing partial or general market equilib-
rium. Although these models are used to predict product prices in the long run,
they are not usually implemented to make short-term predictions. They are also
complex and cannot be easily run by non-specialists. The model is an-
other example of an operational tool for maize price predictions. Similarly to our
models, can forecast maize price at a monthly time step. According to
Hoffman et al./(2015), WASDE|relies on a combination of nine different structural
and non-structural sub-models while and [RF can be easily implemented
using free R packages and publicly accessible data. They could be thus easily
run by any interested stakeholder and updated every year based on the most
recent data.

Our models could serve to predict price changes for other agricultural com-
modities from regional crop productions in the future. From a practical point
of view, a disadvantage of theML tree-based models is that they rely on yearly
regional production input data. In principle, these data are only available after
harvest, but relatively accurate values can be estimated shortly before harvest
from local expert knowledge and model predictions. However, considering the
maize growing season, it is not realistic to get reliable regional production data
before the end of summer, especially regarding regions located in the Northern
hemisphere, particularly Northern America, which is a key region for predicting
global maize price. For this reason, all models were used here to predict global
maize prices at the end of the year, more specifically in October, November, and
December.

In this study, we analysed the effect of regional productions on global maize
prices during the last three months of the year. We made this choice to be con-
sistent with the harvest date for maize in the central maize-producing region -
North America - which takes place in the very late summer and fall. Although we
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did not carry out a detailed analysis for earlier months, we did perform a sens-
itivity analysis of the influence of North America depending on the month con-
sidered. As a result, we found that this region retained a significant but lesser
influence in the months preceding the harvest, probably due to the influence
of the harvest forecasts anticipated by the maize market players. In the future,
however, it would be beneficial to deepen this analysis to identify more precisely
the influence of the different producers on prices during the first months of the
year.

Our approach could potentially be replicated for other crops whose produc-
tion is less geographically concentrated. Such flexibility would allow us to assess
the world food price sensitivity to production shocks or an export ban in a given
country.

3.5 Conclusions

This study demonstrates that it is possible to assess the impact of regional maize
production variations on the global price of maize using machine learning tech-
niques on publicly available regional production and price data. As these meth-
ods can be easily implemented using only freely available packages and public
information, our results contribute to forecasting the global price of maize more
accessible. As such, our price prediction technique can be included food secur-
ity management programs and policies and possibly serve as a price forecaster.
Furthermore, the methods considered can rank regional producers according
to their influence on global maize prices. Our results show that Northern Amer-
ica is the most influential out of all regions. More specifically, our results reveal
that, for maize, small positive production changes relative to the previous year
in Northern America have a strong and negative impact on global maize prices.
Our study highlights the potential interest of [ML for predicting global prices of
major commodities from regional production and assessing price sensitivity to
regional crop producers.
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Figure 3.6 - Relative change in the global maize price versus relative regional
production (a) and yield (b) changes, for three biggest maize producing regions

Regression based analysis

Fig [3.7p| shows the tree fitted to predict p,,, in October as a function of
the regional production (or yield) changes. This tree has four (fig[3.73a) or five
(fig[3.7b) final nodes, defined by three or four inputs corresponding to different
regions. The tree root (the upper rectangle in the diagram centre) includes 56
observations (i.e., the whole dataset) with an average p;,, of 0.59%. Referring
to Fig[3.73} after the algorithm examines all possible partitions according to the
set of input variables, the optimisation function of[CART]|finds that the maximum
reduction of RSS] This result is achieved by splitting the 56 price data into two
groups, defined by the maize production in Northern America, at a cut-off point
of 1.9%. All regions with production change more significant than 1.9% are in-
cluded in the right branch (no.2). On the contrary, when production change in
Northern America is lower than 1.9%, the right branch of the tree (no.3) is used.
The second partition is done based on the Caribbean (if zy4 >1.9%) or South-
ern Africa (if zya <1.9%). The final nodes at the bottom of the diagram include

Sapp [3.7]- fig[3.12 were implemented with the package Rattle of the R software (Williams)
2011) (fancyRpartPlot function)
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the average observed price change corresponding to five different production
(or yield) situations. These results correspond to the average price changes re-
ported in the final nodes. Here, the fitted tree produces four different price
estimations determined by the values of three inputs.

(@) Inputs=relative regional production

changes (b) Inputs=relative regional yield changes

Figure 3.7 - CART models computing p;,, of maize (i.e., relative price change in
October) as a function of relative regional production changes (a) and relative
regional yield changes (b). All nodes of each tree include three numbers; the
average relative price change value over all data falling in the considered node,
the number of data in each node (n), the % of data in each node. The terminal

nodes (at the bottom) report the relative price changes predicted by the
models
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E:z;)a:]r;p;l;ts = relative regional production (b) Inputs = relative regional yield changes

Figure 3.8 - CART models computing p11 , of maize (i.e., relative price change in

November) as a function of relative regional production changes (a) and relative
regional yield changes (b)
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Figure 3.9 - CART models computing p;,, of maize (i.e., relative price change in
December) as a function of relative regional production changes (a) and relative
regional yield changes (b)
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Figure 3.10 - Observed relative price change vs. Predicted relative price change,
October (10) November (11) and December (12), with yield changes used as inputs.
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Figure 3.11 - Observed relative price change vs. Predicted relative price change,
October (10) November (11) and December (12), with production changes used as
inputs.
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Figure 3.12 - Importance ranking of changes in production on the global maize
October (10), November (11) and December (12) price. Importance levels are com-
puted using the [RMSE|criterion and the permutation technique.
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Figure 3.13 - Partial dependence plots obtained with and

showing the average response of relative price change in October (10), Novem-
ber (11) and December (12) to relative yield change in Southern Africa.
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Figure 3.14 - Partial dependence plots obtained with CART| RF and

showing the average response of relative price change in October (10), Novem-
ber (11) and December (12) to relative production change in Northern America.
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Figure 3.15 - Partial dependence plots obtained with CART| RF and

showing the average response of relative price change in October (10), Novem-
ber (11) and December (12) to relative production change in Southern Africa.

Classification based analysis

Fig[3.16] shows the tree obtained for classifying October price into two categor-
ies: price increase or decrease. Here, also, the most influential input is Northern
America. According to the fitted tree, the highest chance of price decline in Oc-
tober occurs when the annual North-American production increases by more
than 5.2%.
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(@) Inputs=relative regional production

changes (b) Inputs=relative regional yield changes

Figure 3.16 - CART models computing the probability of relative maize price in-
crease in October as a function of relative regional production changes (a) and
relative regional yield changes (b). Each node of each tree includes three num-
bers; the proportion of data showing a price increase among the data falling
in the considered node, the number of data in each node (n), the % of data in
each node. The terminal nodes (at the bottom) reports the probabilities of price
increase computed by the models

(@) Inputs=relative regional production

changes (b) Inputs=relative regional yield changes

Figure 3.17 - CART models computing the probability of relative maize price in-
crease in November as a function of relative regional production changes (a) and
relative regional yield changes (b).
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(@) Inputs=relative regional production

changes (b) Inputs=relative regional yield changes

Figure 3.18 - CART models computing the probability of relative maize price in-
crease in December as a function of relative regional production changes (a) and
relative regional yield changes (b).
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Figure 3.20 - Importance ranking of changes in production on the global maize
October (10), November (11) and December (12) price. Importance levels are com-
puted using the cross-entropy loss (CE) indicator with the permutation tech-
nique.
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Figure 3.21 - Partial dependence plots showing the probability of price increase
in October, November and December as a function of relative yield change in
Southern Africa.
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Figure 3.22 - Partial dependence plots showing the probability of price in-
crease in October, November and December as a function of relative production
change in Northern America.
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Figure 3.23 - Partial dependence plots obtained with CART| RF and

showing the average response of relative price change in October (10), Novem-
ber (11) and December (12) to relative production change in Southern Africa.

Tables
Regression based analysis

Tables[3.4land[3.5|show the summary statistics of multivariate linear regression
models predicting relative price changes as a function of relative regional pro-
duction changes (table and relative regional yield changes (table [3.4). In
the first row of each region are the estimated coefficients, 3, namely, relative
change in p1g 4, p11,, and pi2, induced by a one percent increase in regional pro-
duction, z;,, where all other variables are fixed. The values in brackets show
the levels of significance (p-value) of all estimated coefficients. The region with
the strongest (and significant) impact is Northern-America.
Tables[3.6]and[3.7]show a summary statistics of the classification linear mod-
els, which compute the probability of relative maize price increase in Oc-
tober, November and December as a function of relative regional production
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changes (tables and relative regional yield changes (tables[3.7). The tables
show the change in the logit of the probability of global maize price increase in-
duced by each regional input, and the significance of the estimated coefficients
(between brackets).
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Table 3.2 - Summary statistics for regional data over 1961-2018.

Production data (FAOSTAT) |

| (1000 tonnes) |

Regions %/total | Average
Caribbean 0.08% 460

| Central America | 3.27% | 17,825 |
| Central Asia* | om% | 1251 |
| Eastern Africa | 2.64% | 14,395 |
| Eastern Asia | 19.03% | 103,592 |
| Eastern Europe | 6.23% | 33,925 |
| Middle Africa | 0.47% | 2,563 |
| Northern Africa | 0.91% | 4,974 |
| Northern America | 40.59% | 220,940 |
| Northern Europe* | 0.00% | 38 |
| Oceania | 0.08% | 424 |
| South America | 9.75% | 53,066 |
| South-eastern Asia | 3.52% | 19,186 |
| Southern Africa | 1.68% | 9,170 |
| Southern Asia | 2.95% | 16,037 |
| Southern Europe | 3.83% | 20,845 |
| Western Africa | 1.47% | 7.975 |
| Western Asia | 0.56% | 3,069 |
| Western Europe | 2.80% | 15,264 |
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Table 3.3 - Summary statistics for regional data over 1961-2018.

Production data (FAOSTAT) |
Yield (1000 hg/ha) |

Regions
Caribbean

Average
1.13

Min. (year)
8.54 (1993)

2013 | 9.74(1961) | 34.41(2018) |
47.74 | 25.63(1997) | 65.72 (2018) |
13.54 | 9.52(1965) | 19.44(2014) |
39.01 | 12.28 (1961) | 60.89 (2017) |

Max. (year)
14.78 (2004)

\ Central America

\ Central Asia*

\ Eastern Africa

\ Eastern Asia

| Eastern Europe
| Middle Africa

\ Northern Africa

36.91 | 18.4(1963) | 70.02(2018) |
85 | 6.74(1979) | 10.9(2015) |
412 | 15.91(1961) | 69.12 (2012)

| Northern America | 73.34 | 39.23(1961) | 118.01(2017)

| Northern Europe* | 34.36 | 10(1985) | 71.74 (2016

| Oceania | 50.47 | 17.33(1966) | 87.81(2015

\ South America

| South-eastern Asia | 21.83 | 9.02(1961) | 46.14 (2018

(
| Southern Africa (

23.89 | 7.88(1992) | 58.13 (2017

)
)
27.72 | 12.95(1964) | 59.26 (2017)
)
)
)

| Southern Asia 17.28 | 10.02(1971) | 34.29 (2017

|
|
|
|
| Southern Europe | 54.31 | 21.13(1961) | 90.58 (2018)
|
|
|

| Western Africa 1202 | 6.96(1972) | 19.54 (2018

)
| Western Asia 34.87 | 11.4(1962) | 79.18 (2018)

| Western Europe 69.51 | 22.56 (1962) | 103.05 (2011)
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October November December
(Intercept) -0.008 0.025 0.023
(0.704) (0.180) (0.211)
EasternAfrica 0.241 0.369 0.290
(0.091) (0.013) (0.040)
EasternAsia 0.334
(0.057)
NorthernAmerica -0.372 -0.269 -0.293
(0.000) (0.001) (0.000)
Oceania 0.168
(0.075)
SouthAmerica 0.244 0.209 0.232
(0.062) (0.119) (0.071)
SouthEasternAsia 0.182
(0.147)
SouthernAfrica -0.075 -0.116 -0.074
(0.049) (0.004) (0.050)
WesternAsia -0.366 -0.298 -0.342
(0.022) (0.051) (0.020)
Caribbean -0.422 -0.295
(0.011) (0.061)
Num.Obs. 56 56 56
R2 0.495 0.483 0.466
R2 Adj. 0.409 0.420 0.400
AIC -76.0 -74.0 -79.1
BIC -55.8 -57.8 -62.9
Log.Lik. 48.013 45.004 47.549

Table 3.4 - Linear regression, Inputs=relative regional production changes
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October November December

(Intercept) 0.016 0.017 0.031
(0.409)  (0.461) (0.067)

EasternAfrica 0.319 0.466 0.307
(0.017) (0.003) (0.029)

MiddleAfrica 0.876 0.821 0.540
(0.001) (0.006) (0.036)

NorthernAfrica -0.350 -0.394

(0.075)  (0.080)
NorthernAmerica -0.539 -0.481 -0.577

(0.000) (0.000) (0.000)
SouthEasternAsia 0.738 0.595

(0.027) (0.115)

SouthernAfrica -0.069 -0.077 -0.056
(0.077) (0.087) (0.163)

SouthernEurope  -0.181 -0.185
(0.153) (0.202)

WesternAsia -0.356 -0.326 -0.364
(0.053) (0.120) (0.058)

WesternEurope 0.136 0.176
(0.095)  (0.061)

Num.Obs. 56 56 56

R2 0.606 0.525 0.485
R2 Adj. 0.529 0.432 0.433
AIC -88.0 -72.7 -83.2
BIC -65.7 -50.4 -69.0
Log.Lik. 54.999  47.354 48.580

Table 3.5 - Linear regression, Inputs=relative regional yield changes
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October November December

(Intercept) -1.241 -0.849 -0.734
(0.069)  (0.245) (0.359)
EasternAsia 11.273 13.760
(0.029) (0.082)
MiddleAfrica 11.782 24.357 13.839
(0.113) (0.044) (0.142)
NorthernAmerica -12.679  -14.458 -14.367
(0.002) (0.007) (0.006)
Oceania 7.747 11.244 11.549
(0.027) (0.012) (0.026)
SouthAmerica 13.491 10.101 16.375
(0.012) (0.049) (0.027)
SouthEasternAsia 7.799 22.156 10.735
(0.077) (0.022) (0.096)
SouthernAsia -8.310 -9.282 -10.242
(0.071) (0.075) (0.064)
WesternAsia -10.081 -11.730 -24.163
(0.046)  (0.059) (0.029)
Caribbean -17.261
(0.034)
EasternEurope 18.163 15.166
(0.007) (0.038)
NorthernAfrica -17.639
(0.036)
SouthernEurope -18.862 -24.117
(0.034) (0.041)
WesternEurope 4.198
(0.173)
Num.Obs. 56 56 56
AIC 59.5 56.5 57.2
BIC 77.7 80.8 81.5
Log.Lik. -20.727 -16.236 -16.597

Table 3.6 - Summary statistics of the classification linear models, In-
puts=relative regional production changes
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Table 3.7 - Summary statistics of the classification linear models, In-
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October November December
(Intercept) 0.242 -0.943 1.727
(0.691) (0.259) (0.010)
Caribbean 9.602 12.766 12.620
(0.132) (0.113) (0.122)
MiddleAfrica 21.082 47.144 26.697
(0.012) (0.014) (0.023)
NorthernAfrica -14.884  -45.965 -13.985
(0.022) (0.014) (0.041)
NorthernAmerica -12.637 -21.116 -18.034
(0.001) (0.007) (0.003)
SouthEasternAsia 20.966 90.067
(0.155) (0.014)
SouthernAsia -8.086 -20.623 -14.116
(0.090) (0.019) (0.025)
WesternAsia -9.653 -23.056
(0.118) (0.012)
EasternAfrica 12.587 7.477
(0.032) (0.138)
EasternEurope 10.131 7.601
(0.086) (0.115)
SouthernEurope -12.183 -13.813
(0.189) (0.092)
WesternAfrica -27.689
(0.016)
WesternEurope 9.432 5.866
(0.061) (0.062)
Num.Obs. 56 56 56
AIC 58.7 56.0 59.2
BIC 74.9 80.3 81.4
Log.Lik. -21.354  -15.989 -18.580

puts=relative regional yield changes



Chapter 4

Forecasting global maize prices
from regional productions

Co-author: David Makowski

Abstract

This study analyses the quality of six regression algorithms in forecasting the
monthly price of maize in its primary international trading market, using pub-
licly available data of agricultural production at a regional scale. The forecast-
ing process covers a period of between one and twelve months ahead, using
six different forecasting techniques. Three of them (CART, and GBM) are
tree-based machine learning techniques able to capture the relative influence
of maize-producing regions on global maize price variations. Additionally, we
consider two types of linear models - standard multiple linear regression and
vector autoregressive (VAR) model. Finally, TBATS|serves as an advanced time-
series model that holds the advantages of several commonly used time-series al-
gorithms. Using cross-validation, we compare the predictive capabilities of these
six methods. We find [RF and have superior forecasting abilities relative to
the linear models and thatTBATSlis more accurate for short time forecasts when
the time horizon is shorter than three months. On top of that, the models assess
the marginal contribution of each of the producing regions to the most extreme
price shocks that occurred through the past six centuries, in both positive and
negative directions, using Shapley decompositions. Our results reveal a strong
influence of North-American yield variation on the global price, except for the
last months preceding the new-crop season.

99
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4.1 Introduction

The prices of food and agricultural products are of interest to many stakehold-
ers, including policymakers, traders, and consumers. Moreover, these prices
have a high impact on businesses and people who depend on agricultural products.
Therefore, predicting the prices of agricultural commaodities is a highly strategic
issue.

Price forecasters commonly use the prediction methods depending on the
target time horizon. For example, Partial-equilibrium (PE)and General equilib-
rium models are common (Valin et al.| 2014) for long-term predictions
because long-term price changes (i.e., over several years or decades). In such
horizons, price changes are primarily the results of political or climatic changes
and long-run market structures and demographic dynamics. Therefore, such
predictions are relevant in the context of the need for ahead-of-time adaptation
and long-term strategy, particularly for policymakers.

Short-time agricultural price changes are relevant for traders who sell or buy
agricultural commodities hourly or daily. At this time frame, price fluctuations
depending on the short-term balance between supply and demand and the
commodity market dynamics (Piot-Lepetit and M'Barek, 2011). Therefore, short-
term predictions usually use standard time series analysis techniques such as
smoothing methods or [ARIMA|models.

This paper focuses on medium-time fluctuations, i.e. over periods of up to
one year. Those fluctuations mainly affect domestic markets but sometimes
spill over into the global market, depending on their level, the crop in ques-
tion, and region which had been affected (Headey and Fan| |2010). The United
States Department of Agriculture (ERS-USDA| 2021) publishes monthly
price forecasts based on a model named World Agricultural Supply and Demand
Estimates (WASDE), to provide[USDA|staffs and policymakers with price forecasts
monthly and for up to 16 months ahead (Hoffman et al., 2015). However, the
methodology used in is considered as complex (Hoffman et al, [2018)
and is not fully accessible. Furthermore, (Hoffman, 2011; Warr, 1990; Hoffman
et al.| 2015; |Lusk, [2016) have criticised it for its lack of accuracy.

Here, we focus on maize, a major agricultural commodity used worldwide.
Maize plays a crucial role in global food security (directly or through livestock
feed) and energy crops. More specifically, our objective is to predict maize's
monthly average global price. To do so, we test three machine learning al-
gorithms based onregression trees, predicting the annual change in the monthly
maize price from the annual changes in regional maize productions or yields.
These techniques aim at capturing the effect of the regional supply level change
on global maize prices. In addition to these three algorithms, we use two
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time-series methods: vector autoregressive model (VAR), which had previously
proven to capture the effects of shocks in exogenous variables on feed prices
(Schaub and Finger,|2020), and Trigonometric Seasonal Box Transformation with
residuals Trend and Seasonal Components (TBATS), a model that enables
us to predict price changes based on the combined influence of trends, season-
ality, and auto-correlations of monthly prices.

In this paper, we compare the performances of these five models for out-of-
sample predictions to those of a benchmark model based on linear regression
for time horizons of one to twelve months ahead. Besides, we show that the
three algorithms tested here can be used to identify the most influential
maize-producing regions and to identify the origins of price shocks.

4.2 Data

The relationship between commodity price shocks and annual supplies depends
not only on how production changes at the global scale but also on regional
productions (Hertel et al., 2016). For this reason, we used regional production
and yield annual changes as dependent variables (see table and table
in Appendix [4.A). These data were collected in 242 countries and are publicly
available in FAOSTAT for 1961 to 2019 to aggregate 19 regions (FAO, 2020). As
the harvest dates differed across these regions (according to their location in
the northern or southern hemispheres), we assumed that the production (or
yield) in a given region would have an impact on maize prices during one year
starting from the harvest month of the biggest producer of this region. This
period corresponds roughly to the market year of each region. For example,
based on this approach, we assume that production (yield) in Northern America
in year y starts impacting monthly maize price from October of that year until
September year y + 1. In contrast, we assume that the production in Southern
America (located mainly in the southern hemisphere) impacts maize prices from
March year y until February year y + 1. All the periods considered are shown in
Appendix [4.Al

We converted the nominal maize prices (US No. 2 yellow from the World
Bank's commodity market database) into real 2010 USD. Then, we defined ¢, , as
a series of deflated monthly global maize prices, where m and y are the months
and year indices, respectively, so that m=1,...,122 and y=1,...,Y". The second series
21,y describes the production (or yield) in a region & (k=1, ...,K) and a year v.
Since these variables have different units, we express them in relative terms as
follows:
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pmvy - (4'1)
Qm,yfl

Z]c7 — Rky—
Ty = Shy  cky-1 (4.2)
Zky—1
Figlg.1provides a visual representation of the three types of time series used
in this study. Note the significant differences between the levels of variability of

production and yield.

Global maize price — Eastern Asia = Northern America = South America

Price Production Yield

Relative annual change
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Figure 4.1 - Annual changes (%) in global price, regional production and regional
yield (in the three biggest producing regions).

4.3 Methods

We consider two types of models, i.e. models predicting maize price changes
as a function of yearly production (yield) changes and models predicting maize
price changes from past monthly observations of price changes and yearly pro-
duction (yield) changes. The first type of models can be expressed as
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Pmy = f(xl,ya ey Ly oeny le,y) (43)

and the second as:

Pmy = f(pm,y—h L1y ooy Lhyyyooes le,y) (44)

where k is the region index. We consider different types of function f, based
on linear models and machine learning algorithms, as described below.

4.3.1 Models 1, 2, and 3 - Machine learning

The use of[ML]makes it possible to discover hidden patterns about the relation-
ship between the direction and magnitude of changes in p,, , versus the variab-
ility in x,. This way, we can detect non-linear relationships between variables
without making any strong preliminary assumptions on the shapes of the rela-
tionships. More specifically, we use three different approaches, namely classi-
fication and regression trees model 1), Random Forest (RF, model 2), and
gradient boosting model 3).

Classification and regression trees is a recursive [ML] technique de-
veloped by Breiman et al,| (1984). The algorithm receives all the observations
that include information about the input variables (z; ,,%2 y,....x19,), and build a
regression tree to minimise the error rate in predicting p,,,, measured here by
the residual sum of squares (RSS). The partitioning process starts with a single
leaf at the top of the tree (root). In each step, the algorithm splits the node into
two, each defined by a different input (region), and stops when no further im-
provement is possible, i.e., when[RSScannot be any lower. We fit[CART|using the
rpart package of R (Therneau et al|2019). An illustration can be found in fig[4.8]
Appendix [4.Al

CART models are usually easy to interpret but are considered weak learners
(Luo et al., 2019), which might be highly biased. To overcome this problem, we
apply two alternative methods based on the assembly of high numbers of indi-
vidual trees, namely random forest and gradient boosting machine (GBM)
(Liaw et al.}[2002). takes a random subset of the original dataset and uses it to
fit a basic decision tree to predict p,, ,. A bootstrapping process is implemented
T'times (¢t =1,...,7), and the T resulting trees are then averaged to produce the
final predictions. Here, we find that [RF| leads to the most stable results with T
=500 trees. |RHis applied here using the package randomForest (Breiman et al.,
2018).

Similar to RF, [GBM] examines periods as a subsample of the data and uses
them to fit a single tree. Nevertheless, unlike the latter, the selected sub-sample
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is chosen according to the estimation error obtained in the analysis of the pre-
vious training set. In this study, we find that returns the most accurate
forecast when using T=100 trees. This method is implemented with the gbm R
package Friedman (2001).

4.3.2 Model 4 - Multivariate linear regression
In linear model (LM), price change p,, , is related to z;, as:

Ks

Pmy = Qm + Z /Bkmv,xk,y + €my (4.5)
k=1

where a,, is the intercept, 3 ,, are regression parameters, ¢, , are the re-
siduals, and K* (< 19) is the number of selected regions. One model is fitted
separately for each month m (with the function im of the R software). To obtain
a parsimonious model, we use a step-wise algorithm (based on[AIC) to select the
most influential K* regions. Because of its simplicity and strong assumptions,
this linear model serves as a benchmark model.

4.3.3 Model 5-VAR

Model vector autoregressive empirically examines the evolution and com-
mon effects that time series have on each other so that it describes the relation-
ships over time between all the variables in question. In this case, the model in-
cludes several dynamic variables that affect each other and the effect of shocks
in each explanatory variable on the global price. Unlike the models we have
used so far, p,,, is not only a function of z, but also of the past price change
values, py, 1.

The basic purpose of VARJis to describe the interactions between all variables
and try to predict future effects. Since firstly introduced by [Sims| (1980),
has been widely used and is considered a particularly effective tool in designing
policy strategies (Bernanke et al., 2005; Jouchi et al., [2011). Here, we use this
approach to predict p,, , as a function of p,, ,_1 and of z;, as follows:

K

pm,y = O + Bo,mpm,y—l + Z 6k,mxk,y + 67n,y (46)
k=1

One separate model is fitted for each month m using the vars R package
(Pfaff and Stigler, 2018).



4.4. MODEL EVALUATION 105

4.3.4 Model 6 - TBATS

The Trigonometric Seasonal Box Transformation with[ARMA|residuals Trend and
Seasonal Components (TBATS) model (De Livera et al.,|2011) is an upgraded time-
series model which can deal with trends, multiple-seasonality and auto-correlations.
This method automatically determines whether a Box-Cox transformation of the
datais required, whether seasonality needs to be accounted for (based on Four-
ier series), and whether a time trend should be included. It also automatically
selects the optimal number of autoregressive and moving average components
for predicting the target response variable.

Contrary to the models mentioned above, is fitted to the time series
of the relative annual change in the monthly price of maize directly, without
using the production data. aims at predicting price changes from the
past series of observed price changes without taking regional productions into
account. We consider several time horizons for price change predictions, from
one month ahead to one year ahead. Here, this method is implemented with
the R package forecast (Hyndman et al., 2020).

4.4 Model evaluation

The model prediction errors were assessed and compared using a cross-validation
(CV) technique, implemented separately for each month and model. At each it-
eration of the CV, we select a sub-sample (training-set) containing observations
from all the first Y years plus the i following years (i is successively set equal to
1,2, ...I, where I=13 or 14, depending on the month considered, and Y is equal
to 44 or 45). At each iteration, the training set trains the models, and the result-
ing trained models are used to predict the price change at year Y + i + 1. With
this procedure, we ensure that at least Y + 1 years of data are available to train
the models. Smaller datasets would lead to inaccurate predictions and a lack of
identifiability.

We define the forecast error for the model in month m of the marketing year
y as:

emvy = ﬁmvy - pmvy (4'7)
where p,, , is the observed price, and p,, , is the forecast made in m of the

marketing year y by any of the models considered in this study. We then use
these errors to compute an [RMSE|for each month and each model, as:

I = 2
RMSE,, = \/ 2 (P o Py (4.8)
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The accuracy of [TBATS| predictions is evaluated by computing the RMSE| cri-
terion for 12 different time horizons, i.e. h=1,2,...,22 months ahead. For a given

year, a given month, and a given time horizon, is trained using all price
data available before the month m — h, and the trained model is used to predict
the value of p,, , (Y =28, Irpars = 690). This procedure is repeated relative to
every year, every month, and time horizon. Then, a specific value of RMSE| has
computed for each month m and time horizon h combination by averaging the
prediction errors among all years of data.

Finally, we assess and rank the influences of the producing regions using two
different techniques. First, we use permutation ranking with[RF and [GBM|to as-
sess theimportance of each region for predicting maize prices. This approach al-
lows us to identify the most and least influential regions when forecasting maize
price changes (Appendix [4.A). Second, using the Shapley decomposition tech-
nique (Shapley, 2016), we strive to identify the regional production variations
responsible for specific extreme price change anomalies that occurred at some
specific months and years in the past. Importance ranking and Shapley decom-
position were implemented using the package iml of the R software.

4.5 Results

Figls.2lbelow presents the price change forecasts obtained by the different mod-
els considered.
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Figure 4.2 - Forecasted maize monthly price changes obtained with all models.
CART, RF, GBM, LM, and are shown on the left. The [TBATY forecasts are
displayed on the right for time lag ranging from 1 to 12 months. The black lines
indicate the observed price changes

The left side of the figure (fig4.2) presents the forecasts derived from the[MU
and linear models in the period between October 1990 and January 2020 (Seg-
mentation by months is in Appendix[4.A). Generally,[MLJmodels tend to produce
more accurate predictions than[LM]and VAR, as the latter two methods produce
somewhat fluctuating predictions. Nonetheless, seems to perform well in
case of extreme price shocks.

[TBATS|predictions tend to diverge more from the observations when derived
several months before the dates of forecast (right side of fig[4.2). For lag longer
than three months, the predictions differ a lot from the observations.

Fig below shows the relative advantage of using each model for fore-
casting p., ,, With the reference value being the observed standard deviation of
the price each month (sd(p,,,)). This measure corresponds to the difference
between sd(p,,,) and the of each model the same month, divided by
sd(pm,y), and expressed in percentages. A positive value indicates that the cor-
responding model is better than a constant prediction equal to zero. This way,
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all the points below the black horizontal line indicate models showing ineffective
price forecasts. In contrast, those above indicate models whose average fore-
cast errors are lower than sd(p;,,). Such models are better than a constant pre-
diction equal to zero. The highest relative advantage values (located at the top
of the graphic) indicate the most relevant models, which appear to be the tree-
based methods in most cases and [CART). The results are presented
separately for[TBATS|to assess the influence of the time lags on the prediction
accuracy. The relative advantage of TBATS|compared to a constant prediction is
high for a time horizon up to 3 months and became very low after six months.

Production Yield TBATS

Model
cart

gbm

Relative advantage
£33
Relative advantage
.
©w o

Month Month

Figure 4.3 - Relative advantage in terms of prediction accuracy of the forecasting
models, over 1990-2020. This measure corresponds to the difference between
the standard deviation of the price changes in the whole dataset (sd(p,,)) and
the RMSE| of each model the same month, divided by sd(p,,,,), and expressed in
percentages. It indicates the relative benefit of using the models compared to
a constant prediction equal to zero. ML methods, [LM]and [VAR| were used with
production and yield inputs, successively.

Results show that several models are more accurate than constant predic-
tions. The relative advantages of|[GBM|tend to be higher when applying regional
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productions as inputs rather than regional yields. However, the differences
between the two types of inputs are not very high. The relative advantages of[LM|
or|VAR| are often negative, revealing that these methods do not often perform
better than constant predictions. Concerning[TBATS|(fig[4.3} right), price change
predictions are more accurate than constant predictions, as long as the time-
horizon for forecasting remains lower than 3 or 4 months. For such cases (dark
points in Figure[4.3), the relative advantage of [TBATS|predictions can be higher
by 78% higher than constant predictions. On the other hand, for longer time
horizons, the accuracy of TBATS|decreases rapidly and becomes not efficient at
all for lag higher than six months.

We used the cross-validated values of RMSE| to identify the most accurate
models for each time horizon between one month and a year ahead, as shown

in Table 4.1
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Table 4.1 - Best forecasting options for different months. The names reported
for each month correspond to the models showing the lowest[RMSE|for predict-
ing price change at this period. The numbers indicate the [RMSE| values of the
best models. As[TBATS|tends to perform very well for short time lags, [TBATS|ap-
pears to be the best option for all months when the time lagis in the range of 1to
5. For longer time lags, other models (in particular[GBM) are more accurate. For
[CART|and [GBM] the name between brackets indicates whether the predictions
were more accurate with regional yields or productions. The last column (sd p
obs.) indicates the empirical standard deviations of the observed price changes,
which can be considered as a benchmark

| | Time lags (months) | sdp |
m | 1 |2 |3 4|5 |6 [7]8 9 0] m]obs|
| | TBATS | GBM (z,,=Production) | |
‘Jan | 0.05 | 0.06 | 0.09 | 0.1 | 047 |
| | TBATS | GBM (z,,=Production) | |
Feb.
| | 0.05 |0.08|0.09 | 0.1 | 0.13 | 019 |
| | TBATS | GBM (z,,=Production) | |
Mar.
| | 0.04 |0.08| 0.1 | 0.2 | 0.14 | 0.18 |
| | TBATS | GBM (z,,=Production) | |
| Apr. | 0.06 | 0.08| 0.11 | 0.3 | 0.14 | 0.18 |
| | TBATS | GBM (z,,=Production) | |
| May | 0.06 |0.06|0.09 |0.12 | 0.15 | 0.18 |
| | TBATS | GBM (zy, = Yield) | |
\J | 0.08 |0.09 | 0.11 |0.13] 0.4 | 0.16 | 0.17 | 0.22 |
| | TBATS | CART (x,,=Production) | |
\JUL | o1 | 045 | 044 | 0.15 | 0.20 |
| | TBATS | GBM (z,,=Production) | |
Aug.
| | 0.07 | 0.12 | 019 |
| | TBATS | CART (x,,=Production) | |
Sept.
| | 0.09 | 0.14 | 0.18 |
| | TBATS | GBM (z,,=Production) | |
Oct.
| | 0.06 | 0.11 | 047 |
| | TBATS | GBM (z,,=Production) | |
Nov.
| | 0.06 | 0.1 | 0.15 | 0.9 |
| | TBATS | GBM (,=Production) | |
‘ Dec.

| 0.04 |0.07| 01 | 0.13 | 047 |
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According to table[4.1[TBATS]is the best model to predict p,, , in each of the 12
months of the year in a forecast range of two (September to November) to five
months ahead (February March, and May to August). However, to predict a price
for time horizons longer than three or four months, [ML] models are often more
reliable and, in addition, offer the possibility to identify the most and least influ-
ential regions based on importance ranking and Shapley decomposition. For ex-
ample, importance rankings (Supplementary fig[4.9)and fig[4.10]in Appendix[4.A)
reveal a strong influence of Northern America for almost all months. Corres-
pondingly, Western Asia, another central producing region, had strong relative
influence substantially during the two months preceding the harvest season in
Northern America (July and August).

The Shapley decompositions confirm the strong influence of Northern Amer-
ica. Two Shapley decompositions are shown in fig[4.4] for two extreme events
corresponding to a substantial price increase and a firm price decrease over
the period considered. Each regional Shapley value indicates the share of the
price anomaly (either in December 1995 or in December 2013) explained by the
corresponding region. According to these decompositions, the high maize price
increase occurring in December 1995 appears to be mainly due to the changes
in maize production obtained in Northern America and, to a lower extend, in
Southern Africa. The maize productions in Northern America are also respons-
ible for a significant share of the substantial price decrease in December 2013.
Other examples confirming the significant role of Northern America are shown

in Appendix|[4.Al

4.6 Discussion

This research project analyses six decades of the global maize market. Maize
is the highest produced crop worldwide and an essential energy source, espe-
cially in developing countries. Our study attempts to forecast the international
monthly price of this commodity as a function of regional production. Although
many have analysed and attempted to predict the price of maize accurately
(see, for example, Hoffman et al. (2015), Xiaojie and Yun| (2021), and Ahumada
and Cornejo| (2016)), very few have developed methods that are both easy to
reproduce and interpret by users who are not necessarily specialists in price
prediction. With regards to our study offers a double contribution. First,
on the academic side, it is the pioneer in performing [Medium Term| price fore-
casting of maize using ML let alone detecting the main drivers for maize price
changes through investigation of the algorithms. Second, it offers a prac-
tical, non-academic contribution - providing a range of price forecasting tools
that stakeholders who do not have access to the best tools needed to trade in
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Figure 4.4 - Shapley values for December 1995 (strong price increase) and
December 2013 (strong price decrease). The decompositions show the contribu-
tions of the producing regions to two extreme relative price changes (regional
productions in red, and yields in blue). At a given date, the sum of the regional
Shapley values is equal to the price change anomaly

global markets optimally can use easily.

Our study uses machine-learning algorithms and relies on publicly available
data only. It is based on the use of annual regional yields and productions to
enable the user to evaluate the sense behind the results, principally challenging
the transparency of each model. The chosen models were those which had pre-
viously tested in relation with the global maize market and regional production
(Zelingher et al.] [2021), notable are [CART](Breiman et al, 1984),
2009) and [GBM] (Friedman)| [2001). To those are added two econometric models,
each possess certain advantages: VAR| (Sims)| 1980), which can detect inter-and
intra-effects of local productions shocks, and [TBATS|(De Livera et al., 2011), as a
time-series based approach that has proved to achieve low forecasting errors
(Lima and Laporta; [2020).

To understand the process behind the models’ output and identify the forces
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which drive these price change forecasts, we use two evaluation techniques:
a relative importance examination and Shapley decomposition (Shapley, |2016).
The integration of these two model-agnostic approaches guarantees an overall
understanding of the different forces that act in the global commerce of maize.
At first, the relative importance examination quantifies the impact of each pro-
ducing region on annual changes in the monthly price (as a consequence of
its contribution to the forecasting ability of the model). Next, Shapley provides
a case-explicit examination, showing the nature (positive/negative correlation)
and level (as a relation to the interaction of all regions with the dependent vari-
able) regional production changes in a specific year affected price changes at
some selected date. This measurement is especially critical for understanding
the forces influencing extreme price changes, which might drive a global food
crisis.

The paper emphasises the importance of conducting a constant comparison
between the forecast values of several forecasting algorithms while looking at
the marginal contribution of each factor to the output. Furthermore, this study
highlights the importance of predicting global maize prices according to various
scenarios using different models. This way, the impact of the various producing
regions (input) can be examined and evaluated accordingly. That becomes cru-
cial when a change in the production of a highly influential region is observed
or projected.

Our results demonstrate significant dissimilarities between the impact levels
of the different regions, with monthly variance. Indeed, the relationship between
maize prices and production changes in major producing regions are apparent,
as|Headey and Fan|(2010) had already claimed. However, the "New-crop" period
also plays a critical role. It is not by hazard that the impact of Northern America
is evident throughout the entire year except for July and August. As it happens,
the primary harvest season in this region begins next month, i.e., in September,
so it is clear that the previous year's crop is no longer traded. However, it is not
yet possible to predict with certainty the amount of crop harvested in the com-
ing months. Therefore, the impact of Northern America in these months is low,
despite being a big maize producer and exporter. Similarly, these two months
are when the relative impact of Western Asia becomes high, as they present the
main harvest season in this region.

This study proposes a significant contribution to the price forecasting liter-
ature of agricultural commodities. First and foremost, it is constructed to be
replicated. Whereas to date, many have been obliged to base their food se-
curity strategy on paid data obtained from private companies or based on final
results published as obscure numbers (see World Bank Commodities
Price Forecast or FAO-AMIS Market Database); our research offers an available
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high-quality alternative. Indeed, activating the code through all stages, includ-
ing those leading to the "black box" opening, will provide the user with predicted
maize price values and an understanding of the processes and effects leading
to these forecasted price values. Another contribution derives from the division
of the forecasting period simultaneously to months and time horizon, giving the
users the unique opportunity to adapt their strategy in case of possible changes
in the maize market, principally in high influential regions. Lastly, the paper en-
ables analysis of specific events through the Shapley-algorithm, while taking the
opportunity to understand the existing gap between average marginal regional
impacts and those that occur in times of extreme price changes.

Although this project deals with maize, the tested methodologies can be ap-
plied to other agricultural commodities. In future work, we will examine this as-
sumption on several different internationally traded crops. There, we will strive
to capture inter-and intra-sectoral differences and detect the factors impacting
price volatilities in each of them. Indeed, the broader this open-price-forecasting
will get, the higher will become its contribution to global food security.
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4.A Appendix

4.A.1 Data information

Table 4.2 - Variable description and sources.

| Final data |
Data Unites Time-range Indices Sign
Production | % change/year 1962 - 2019 k = Region, y = Year Ty
| Yield | % change/year | 1962-2019 | k=Region,y=Year | x;, |
| Price | % change /year | 01/1961-11/2020 | m =Month,y=Year | p,, |
| Initial information |
| Data | Unites | Time-range | Source | Sign |
| Price | Nominal USD, m/tonne | 01/1960 - 11/2020 | World Bank, Pink Sheet (2020) |
| Price index | USD (2010 = 100) | 01/1960 - 11/2020 | World Bank, Pink Sheet (2020) |
| Production | tonnes / year | 1961-2019 | FAO STAT (2020) | oz |
| Yield | hg/ ha | 1961-2019 | FAO STAT (2020) | 2,

| Real price | Real USD (2010) | 01/1960 - 11/2020 | | Gy
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Table 4.3 - Data composition (19 regions) and summary statistics of inputs.

Production data (FAOSTAT)

| Production (1000 tonnes) |

Yield (1000 hg/ha)

|
|
Max. (year)

Regions %/total | Average Average | Min. (year)

Caribbean 0.08% 460 11.13 8.54(1993) | 14.78 (2004)

| Central America | 3.27% | 17,825 | 2013 | 9.74(1961) | 34.41(2018) |
| Central Asia* | 0.1% | 1,251 | 47.74 | 25.63(1997) | 65.72(2018) |
| Eastern Africa | 2.64% | 14,395 | 13.54 | 9.52(1965) | 19.44 (2014) |
| Eastern Asia | 19.03% | 103,592 | 39.01 | 12.28(1961) | 60.89 (2017) |
| Eastern Europe | 6.23% | 33,925 | 36.91 | 18.4(1963) | 70.02(2018) |
| Middle Africa | 0.47% | 2,563 | 85 | 6.74(1979) | 10.9(2015) |
| Northern Africa | 0.91% | 4,974 | 412 | 15.91(1961) | 69.12 (2012) |
| Northern America | 40.59% | 220,940 | 73.34 | 39.23(1961) | 118.01(2017) |
| Northern Europe* | 0.00% | 38 | 34.36 | 10(1985) | 71.74(2016) |
| Oceania | 0.08% | 424 | 50.47 | 17.33(1966) | 87.81(2015) |
| South America | 9.75% | 53,066 | 27.72 | 12.95(1964) | 59.26 (2017) |
| South-eastern Asia | 3.52% | 19,186 | 21.83 | 9.02(1961) | 46.14 (2018) |
| Southern Africa | 1.68% | 9,170 | 23.89 | 7.88(1992) | 58.13(2017) |
| Southern Asia | 2.95% | 16,037 | 17.28 | 10.02(1971) | 34.29 (2017) |
| Southern Europe | 3.83% | 20,845 | 54.31 | 2113(1961) | 90.58 (2018) |
| Western Africa | 1.47% | 7,975 | 12.02 | 6.96(1972) | 19.54 (2018) |
| Western Asia | 0.56% | 3,069 | 34.87 | 11.4(1962) | 79.18 (2018) |
| Western Europe | 2.80% | 15,264 | 69.51 | 22.56 (1962) | 103.05 (2011) |

* Central Asia and Northern Europe are excluded from analysis due to lack of data
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Table 4.4 - Market year of maize, relative to the majority of production in each
region.

| Regions | Market Year

| Caribbean | July - June

| CentralAmerica | October - September

| CentralAsia* | July - June

| EasternAfrica | July - June

| EasternAsia | April - March

| EasternEurope | October - September
| MiddleAfrica | July - June

| NorthernAfrica | July - June

| NorthernEurope* | July - June

| Oceania | April - March

| SouthAmerica | March - February

| SoutheasternAsia | January - December

| SouthernAfrica | May - April

| SouthernAsia | July - June

| SouthernEurope | October - September

| WesternAfrica | July - June

|
|
|
|
|
|
|
|
|
| NorthernAmerica | October - September** |
|
|
|
|
|
|
|
|
|

\ WesternAsia \ September - August

| WesternEurope | July - June |

*Central Asia and Northern Europe are excluded from analysis due to lack of data.
**Agricultural year in the USA had changes in 1986. Starting from this year, any year y
refers to September y to August y + 1
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4.A.2 General presentation

Production Yield
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Figure 4.5 - Correlations between global maize price changes and regional maize
productions (left) and yields (right)
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Figure 4.6 - Observed yearly price changes (in black) and model predictions (col-
ours) using regional productions
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Model cart gbm Im f var
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Figure 4.7 - Observed yearly price changes (in black) and model predictions (col-
ours) using regional yields
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NorthernAmerica >= 0.052 NorthernAmerica >= 0.0077

NorthernAmerica >= -0.13 SouthernAsia < 0.029

CentralAmerica < 0.034 CentralAmerica < -0.0n=7

-0.034
n=24 42%

NorthernAfrica < 0.026

0.044
n=27 47%

WesternAfrica >= 0.1

-0.039
n=14 25%
-0.17 -0.03 0.0092
n=9 16% n=8 14% n=11 19%

Figure 4.8 - CART models compute the relative price change of maize in Decem-
ber (p12,) as a function of relative regional production changes (right) and relat-
ive regional yield changes (left). The nodes of each tree include three numbers;
the average relative price change value over all data falling in the considered
node, the number of data in each node (n), the % of data in each node. The ter-
minal nodes (at the bottom) report the relative price changes predicted by the
CART models

Fig [4.8 was implemented with the package Rattle of the R software
fancyRpartPlot function.

4.A.3 Breakdown of the price change by inputs and regions

The importance-ranking maize regional output has been obtained for the most
accurate forecasting model - GBM, as shown in fig[4.9] and fig[4.10] below. The
contribution to the prediction accuracy of p,, , determines K relative importance
values, as returned by these two models, separately. A region is considered as
influential if a random choice of its corresponding input value (z;,) leads to a
substantial increase of the mean squared error (MSE) of the price change pre-
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dictions.
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Figure 4.9 - Importance levels of x;, for predicting the global maize price. Im-
portance levels are computed using MSE and measure the extent to which the
model accuracy decreases with a random permutation of each input relative
to GBM. The figure shows the marginal importance of each region in the first
semester of the year, i.e January - June. As such, the higher the bar reaches on
the X-axis, the higher the marginal effect of that area on the maize price. The
figure is divided into two parts: production in red and yield in blue.
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Figure 4.10 - Importance levels of z;, for predicting the global maize price. Im-
portance levels are computed using MSE and measure the extent to which the
model accuracy decreases with a random permutation of each input relative to
GBM. The figure shows the marginal importance of each region in the second
semester of the year, i.e July - December. Inputs are presented in two colours:
production in red and yield in blue.
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The results, which are somehow similar across the two models, propose very
big differences between the marginal impact of each region. Whereas most re-
gions hold an average monthly influence of about 3% to 4%, Northern Amer-
ica's weight in the market is over 20%, with both types of inputs (production or
yield changes), and it is followed by Western Asia. We note that while the relat-
ive influence of Northern America is greater through yield changes, in the case
of Western Asia the strongest impact is rather through shifts in its production.
We also note the variability of this regional importance across months. As for
Northern America, its greatest influence throughout all year long, with excep-
tion of July August, which are the last months before its harvest, and where it
has a minimal marginal impact is not considerably different from those of most
regions. Not surprisingly, these are the months in which the relative importance
of Western Asia is at its highest with an average of 24% concerning production
and 27% through yield.
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Table 4.5 - Decomposition of Shapley values results:monthly actual prediction
and monthly average prediction, relative to the highest/lowest extreme price
changes, input = regional yield. For example, the forecasted -0.17 relative price
change for January 1987 (Extreme low) is 0.18 lower than the average price fore-
cast of 0.01. For this specific event, the sum of Shapley values yields the differ-

ence of actual and average prediction of -0.18.

Month

Direction

Actual Prediction Average Prediction

N2 00VOONOUTRAWN-=2 P20 oONOUTDAWN 2

Lowest, January 1987
Lowest, February 1987
Lowest, March 1977
Lowest, April 1977
Lowest, May 1997
Lowest, June 1997
Lowest, July 1997
Lowest, August 1977
Lowest, September 1986
Lowest, October 1986
Lowest, November 2013
Lowest, December 2013
Highest, January 1996
Highest, February 1996
Highest, March 1996
Highest, April 1996
Highest, May 1996
Highest, June 1996
Highest, July 1996
Highest, August 2011
Highest, September 1988
Highest, October 1995
Highest, November 2006
Highest, December 1995

-0.17
-0.16
-0.15
-0.18
-0.24
-0.27
-0.21
-0.24
-0.15
-0.17
-0.20
-0.20
0.27
0.33
0.38
0.38
0.39
0.38
0.35
0.26
0.29
0.27
0.28
0.25

0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
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Table 4.6 - Decomposition of Shapley values results:monthly actual prediction
and monthly average prediction, relative to the highest/lowest extreme price
changes, input = regional production. For example, the forecasted -0.17 relative
price change for January 1987 (Extreme low) is 0.18 lower than the average price
forecast of 0.01. For this specific event, the sum of Shapley values yields the
difference of actual and average prediction of -0.18.

month Direction Actual Prediction Average Prediction
1 Lowest, January 1987 -0.18 0.01
2 Lowest, February 1987 -0.18 0.01
3 Lowest, March 1977 -0.18 0.01
4 Lowest, April 1977 -0.22 0.01
5 Lowest, May 1997 -0.23 0.02
6 Lowest, June 1997 -0.24 0.02
7 Lowest, July 1997 -0.24 0.02
8 Lowest, August 1977 -0.21 0.02
9 Lowest, September 1986 -0.17 0.01
10 Lowest, October 1986 -0.19 0.01
1 Lowest, November 2013 -0.19 0.01
12 Lowest, December 2013 -0.18 0.01
1 Highest, January 1996 0.26 0.01
2 Highest, February 1996 0.31 0.01
3 Highest, March 1996 0.38 0.01
4 Highest, April 1996 0.37 0.01
5 Highest, May 1996 0.37 0.02
6 Highest, June 1996 0.34 0.02
7 Highest, July 1996 0.31 0.01
8 Highest, August 2011 0.27 0.01
9 Highest, September 1988 0.29 0.01
10 Highest, October 1995 0.26 0.01
1 Highest, November 2006 0.27 0.01
12 Highest, December 1995 0.26 0.01




Chapters

Data-driven assessment of the
impacts of regional productions on
the global prices of maize, soybean
and cocoa

Co-author: David Makowski

Abstract

Prices of agricultural commodities (AC) have a crucial impact on food security
worldwide. In order to anticipate their fluctuations, it is necessary to develop
reliable predictive models. To facilitate their use by a large range of stakehold-
ers - including those with few resources - it is necessary that these models are
based on public data and on algorithms that are easy to implement. This study
compares several simple econometric and Machine learning (ML) techniques to
forecast price fluctuations of three globally traded [AC]- maize, soybean, and co-
coa - with contrasted growing areas and market characteristics. For each
and month, the most accurate model is selected using a cross validation pro-
cedure. Results reveal that the Gradient Boosting [ML] model is more accurate
than other models in most cases. However, at a time horizon shorter than three
months, the time series statistical method[TBATS|shows very good performance.
We detect strong influence of Northern America over the global price of maize
and soybean, except for the last months preceding the new-crop season. In the
cocoa market, variations of production in Coéte d'lvoire, in Brazil and in Ghana
have a substantial influence on cocoa prices. All the proposed models can be
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easily trained from publicly available data of global monthly prices and local pro-
ductions, at different geographical scales. Our approach is very accessible and
requires few resources. It can therefore be implemented to anticipate and ana-
lyse agricultural price shocks by many stakeholders, including those with limited
resources in developing countries.

Keywords: Food-security, Agricultural commodities, Price forecasting, Agricul-
tural production, Machine learning

5.1 Introduction

Prices of agricultural commodities (AC) depend on many factors impacting the
supply and demand sides of the food and feed balances. Therefore, interna-
tional trade can serve as a tool for reducing price fluctuation. In principle, con-
stant trade flows allow surpluses from high-productivity areas to be made avail-
able to those in short supply. However, AC prices sometimes suffer significant
shocks in case of extreme events impacting crop productions, substantial shifts
of food and feed demands or disruptions in storage and transportation chains.
The extent of these shocks depends on the type of AC, time of occurrence, and
the impacted areas (Abbott et al.,|2009) (World-Bank| 2020a).

Historical evidence shows that local changes in production levels and export
restrictions can sometimes have significant impacts on AC prices Headey and
Fan|(2008). For example, in 2008, rice prices increased by almost 300% in only
four months due to export restrictions of major rice exporters with substantial
social and economicimpacts in importing countries (FAO,2008). Furthermore, in
2020, COVID-19 caused some severe shortages in agricultural productions of sev-
eral regions highly dependent on human-based labour, leading to an increase
in prices of some AC and food products (Schmidhuber et al., 2020).

When not anticipated, global agricultural price shocks can have substantial
impacts on food security (Laborde et al., 2021) because global price variations
are often strongly correlated with local prices (Headey and Fan, 2010). In their
study, Mundlak and Larson|(1992) show that most of the changes in world prices
are passed on to household (consumer) prices, with direct consequences on
consumers. It is, therefore, crucial to be able to anticipate these shocks. In ad-
dition, price forecasting tools could be helpful to trigger mitigation strategies
sufficiently in advance to reduce the risks for consumers and food security.

A diversity of methods have been proposed for AC price forecasting. How-
ever, accelerating technological advances, combined with improved access to
local and global data, are opening up the possibility of using machine learning
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(ML) techniques to forecast AC prices (Xiaojie and Yun, 2021; [Ticlavilca and Feuz,
2010; Zhang et al., |2018). In particular, it is now becoming possible to train ma-
chine learning methods on open-access databases to predict the price of AC
several times per year for various types of products. If adopted, this approach
would be widely accessible, require few resources, and could be implemented
by diverse actors in many world regions to anticipate agricultural price shocks.
Moreover, while theoretical or econometric based approaches require making
strong assumptions on the relationships between prices and influential factors
(Storm et al., 2019), ML algorithms allow for the inclusion of a large number of
input variables with minimal preliminary assumptions concerning their relation-
ships with price variations.

However, the performance of machine learning methods for price forecast-
ing can potentially depend on several factors, particularly on the nature of the
input variables, the chosen algorithm, the type of commodity, and the forecast-
ing time horizon. It is thus essential to assess and compare different types of
ML techniques rigorously under contrasting conditions to determine their val-
ues. For this purpose, we choose three commodities with contrasted market
structures - maize, soybean, cacao - to assess the performances of ML tech-
niques under very different conditions. Maize belongs to the grains World Bank
group and is the most produced crop worldwide. Maize is an essential energy
source, especially in developing countries, where the total calories consumed
from maize only (excluding its indirect contribution as farm animal food) is more
than 10%.The USA is the world biggest maize producer, with about 30% of the
global supply. In the world’s southern hemisphere, Argentina’s and Brazil's global
market shares are lower. So is Eastern Asia’s. However, they gradually increased
during the past 60 years (from 9% to 23% and from 7% to 14%, respectively).
Soybean is part of the Oils & Meals World Bank group and is the world primary
protein source for livestock and play an essential role in the daily human diet
(Thrane et al., 2017). The soybean market has experienced a substantial growth
rate; its global production was multiplied by more than 13 in less than six dec-
ades. However, in terms of the market, the share of the USA decreased from
70% in 1961 to less than 30%. On the opposite, Argentina’s and Brazil's shares
have increased, and these two countries now grow more than half of the world
production. Unlike maize and soybean, the cocoa market (included in the bever-
ages World Bank group) has started being competitive only with the establish-
ment of The International Cocoa Organization (ICCO) in 1973. Due to its signi-
ficant vulnerability to external changes (mainly since it is primarily produced in
small farms), the cocoa market is characterised by high and frequent price vari-
ations. All three commodities are of high global importance, and each is associ-
ated with a different group of AC, according to the official World Bank division
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(World-Bank; 2021a).

This paper assesses the performance of six statistical and machine learning
tools that can be easily implemented from open access data with freely available
packages. We challenge these methods by considering the three crop species
mentioned above and a wide range of forecasting time horizons (from 1 and
up to 12 months), covering the needs of most of the decision-makers involved
in food security management. We also show how these tools can identify the
most influential producing regions and provide insights into significant factors
influencing global trades.

The rest of the paper is structured as follows. The following section describes
the data and explains their tailor to our specific research needs. Next, all mod-
els are presented, including the packages used for their implementation and
the method used for assessing and comparing their performances. Finally, the
results are presented and discussed.

5.1.1 Data

Our data setincludes annual crop yields and crop productions, used as explanat-
ory variables, and monthly prices, used as a dependent variable (full description
of the data-sets is supplied in table[s.1in Appendix[5.A). Annual crop yields and
crop productions were extracted from the FAO STAT public database at two geo-
graphical scales, national and regional (the regions were those defined by FAO,
and each region includes several countries). In addition, global monthly price
data were extracted for maize, soybean, and cocoa from the World Bank’s com-
modity market database between January 1960 and December 2020 (732 values).
Finally, all three price time series were converted into real 2010 USD, using the
Agricultural Price Index of the corresponding period, before being transformed
into relative change from the corresponding month of the previous year (Fig[5.1).

Fig[5.1(left) presents the global monthly prices of the three AC's over the past
six decades, in real 2010 USD.

National and regional crop productions and yields were associated with some
specific monthly prices, depending on local harvest seasons (FAS-USDA, 2021; ITC
and UNCTAD/WTO., 2001). This procedure could predict monthly prices using
production data available before the predicted months.

Fig[5.2] shows the production data for the leading producers of each of the
considered commaodities. The production shares of the different countries have
changed substantially during the considered periods, particularly for cocoa, but
for soybean and maize.

We now introduce the notations used to define our models. Let us define
qp,, @s a series of real monthly global prices of a commodity ca, where m and y
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Figure 5.1 - Prices of cocoa, maize, and soybean from 1961 to 2020, in real USD
(left) and relative price change compared to the same month of the previous
year (ratio)

are the month and year indices, respectively, so that m=1,...,12 and y=1,...,Y, and
ca is a crop index, ca=1, 2, 3, for maize, soybean and cocoa. A second time series
2% describes the production (or yield) in area k (k=1, ...,K) during year y for
commodity ca. Since the two-time series g5, and 27, have very different units,
we transform them in order to compute the relative annual changes of prices
and productions (yields) as follows:

ca __ ,ca
_ Amy — Amy—1

ca
pm7y - ca (51)
Qm7y_1
Lla _ sca
ca __ k:y kvyfl
Thy = ~ca (52)
k,ay—1

5.1..2 Models

The first model is a time-series based model, in which the price variation p;?  is
predicted solely based on a learning process of all the price changes that have
occurred since the beginning of the observation period, without taking any ex-
ternal factor into account. With the other models, price variations are predicted
either as a function of production (or yield) variations (p;;, = f(a:g?y)) or as a
function of production variations and price variations observed the previous

year (pgg,y = f(pfg,y—la xz?y))
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Figure 5.2 - Cocoa, maize, and soybean production data from 1961 to 2020: pro-
duction as percentage of the global amount produced (left); production quantity,
in tonnes (middle); and yield in hectograms per hectare (right).

Time series model

We use TBATS to forecast p; , using previously observed prices solely. Trigo-
nometric Seasonal Box Transformation with ARMA residuals Trend and Sea-
sonal Components (TBATS) (De Livera et al. 2011) is an innovative time series
(TS) model. TBATS automatically handles non-linearity by using Box-Cox trans-
formation of the data, recognising multiple seasonal components and determ-
ining possible time trends. For making the final forecast, TBATS chooses the op-
timal number of autoregressive and moving average components to minimise
the forecasting error.

We apply TBATS using the R package forecast of Hyndman et al.|(2020) con-
sidering forecasting time horizons from 1 to 12 months ahead after the last ob-
served monthly price variation, for each month from January to December. Thus,
TBATS is the only algorithm with no additional information apart from the histor-
ical prices. On the other hand, as TBATS ignores the effects of external factors,
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it may lead to distorted results, especially when lags become larger (Gos et al.,
2020) and cannot be used to analyse the effects of critical factors on price vari-
ation.

With that in mind, we integrate TBATS in our research as an additional tool
for relatively short-term forecasts, assuming that it may sometimes lead to more
accurate predictions than other models. To implement TBATS forecasts in R, we
use the forecast package (Hyndman et al., 2020).

Linear models

Linear models describe the impact of annual regional outputs on the monthly
global price through linear relationships. We define two versions. The first one
relate price variations to production variations as follows:

K
ca _ ca ca ca ca
Py = Qom + § :ﬁkmxky + €m,y (5.3)
k=1

The second model takes into account a possible dependence of monthly
prices on the price the same month of the previous year:

K
ca _ ca ca ca E ca ca ca
pm7y _ ao’m + a17mpm7y71 + /Bkzmxkzy + €m7y (5.4)
k=1

In both equations af’,, is the intercept, 5;°,, are regression parameters, ;7
are the residuals, and K is the total number of producing areas included in the
model (either countries or FAO regions, see Appendix tables 2-4). af’,, which
appears exclusively in Eq represents the marginal influence that p;? | has
over p;t . The parameters were estimated using the software (R-Core-Team,
2020) base functions 1m for each crop separately. Four different series of inputs
were considered in turn: production changes per country, yield changes per
country, production changes per region, yield changes per region. These four
input sets led to four different models per crop (i.e., eight models when con-
sidering the two types of the linear model defined above). For each model, the
number of inputs was reduced using a stepwise selection procedure based on

AIC to select the most influential among the K regions or countries considered.

Machine-learning (ML) models

This study examines the forecasting accuracy of three ML models, namely CART,
random forest, and gradient boosting.
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Classification and regression trees (CART) was developed by Breiman et al.
(1984) almost three decades ago, although it has only become popular in recent
years. Its main advantage over traditional regression techniques is that CART
does not require forcing any pre-assumptions onto the model while keeping a
high level of interpretability. The principle of this method is to define a series of
splitting rules based on the explanatory variables (here, the production or yield
changes) able to minimise the prediction errors. The resulting set of splitting
rules defines a tree that can be used to predict the target variable p;? . Here,
CART is fitted using the rpart package of the R software (Therneau et al., 2019).

CART is sometimes considered as a "weak learner" (Luo et al.,2019; Westreich
et al.,2010). The resulting tree generated by CART is prone to instability (a differ-
ent tree is often generated as soon as the data-set is slightly changed). Random
forest (Hastie et al., 2009) was developed to reduce this instability by generat-
ing an ensemble of trees based on bootstrap samples drawn from the original
data set. (Rokach,2010). The ensemble approach assumes that if one model has
not detected an important feature, it will be reflected in another model. Here,
this method is implemented with the randomForest R package of Breiman et al.
(2018). Another ensemble approach, which has proved very useful during the
last few years, is Gradient Boosting (GBM). This method is implemented using
the gbm R package (Friedman, 2001). GBM combines the results of several simple
trees by selecting sub-samples according to the estimation errors of the previ-
ous trees. Both RF and GBM are implemented with 500 trees, as stable results
were obtained with this number.

Vector autoregressive model (VAR)

Our last model is based on vector autoregressive model (VAR), fitted using the
vars R package (Pfaff and Stigler, 2018) for each month and crop species, sep-
arately. VAR analyses several dynamic variables that simultaneously influence
each other (Sims, 1980). In this study, VAR is used not only detects the effects
of local productions shocks, zj? , on global price variations but also the relation-
ships between the different zj’, across the regions considered. Moreover, VAR
deals with the effect of the previous prices py,,_; on pit ..

5.1.3 Model evaluation

We evaluate the accuracy of the price change predictions by implementing a
Rolling Cross-Validation (RCV) with each modelling technique. We define twelve
separate training sets (one per month m) each including the first Y = 44 years
of observations. At each RCV iteration, we add one year of data i (the year im-
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mediately following the last year of the training set), fit the regression model
to the resulting expanded data-set, and use the trained model to forecast the
price change of the next year Y + i + 1. This procedure results in I predicted
prices, where =13 or 14, depending on the crop and month [l The choice of a
minimal training set of 44 years enables a sufficiently high number of data to
estimate the model parameters. The accuracy of the predictions is then evalu-
ated by computing the root mean squared error (RMSE). We replicate the whole
process for each regression model and each predicted month.

For TBATS, the calculation of RMSE is done in a slightly different manner be-
cause TBATS is used to predict the price at 12 different time horizons, h =1,2,...12
months after the last observation. We train TBATS on a minimal set of ¥ = 28
months. We then add each monthly data one by one, train TBATS each time, and
predict the next 12 months of price changes using each trained TBATS model. A
value of RMSE is finally computed for each time horizon h, each predicted month,
and each crop species.

In order to measure the added values of the models compared to a con-
stant prediction, the RMSE values are compared to the standard deviation of
the observed values of pi;, (SD(psy;,)) for each crop species and each month.
The standard deviation can be seen as an upper bound above which the model
is useless compared to a constant prediction. To facilitate the comparison, we
compute an index - Relative Advantage (RA) - defined as:

RMSE
RA=1—-—17—% (5.5)
SD(pgz,)

A specific value of RA is computed for each model, month, and crop species.

The whole set of values are presented in Appendix[5.Al Table and
for maize, soybean and cocoa, accordingly.

5.1.4 Ranking of the producing regions

In most studies, the relative importance of each producing region is usually as-
sessed by calculating the increase in mean prediction errors (measured by the
mean squared error (MSE)), resulting in a random choice of the value of each
input z7’, (Friedman; 2007, Jeung et al,, 2019). A high increase of MSE reveals
that the input is influential, whereas a low or zero MSE increase reveals that the
corresponding input is non-influential. Although practical and very popular, this
approach is not able to assess the direction of the effect of each feature on 5 .

'Cocoa: I =14 for all months; Maize: I =13 for the months April to September, and 14 for the
other six months; Soybean: I =13 for the first nine months of the year, and 14 for the final three
months.
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This importance ranking technique cannot be used to determine whether each
zy, has a positive or negative effect on prices. To do so, we implement here
a more recent approach based on the method Shapley Additive exPlanations
(SHAP) (Lundberg and Lee, |2017). Shapley values measure the contributions of
the model inputs to the model predictions. More specifically, considering a given
prediction and the set of inputs used to produce this prediction, the Shapley
values measure the contribution of the input values (here, the values of xi‘}y) on
the deviation of the considered predicted value to the mean predicted value.
The set of Shapley values computed for all predictions provides a global pic-
ture of the contributions of the different inputs to the predicted values. Here,
Shapley values are significant because they describe the contribution of the re-
gional productions to predicted price variations, in particular to the most ex-
treme predicted price variations corresponding to major price shocks. Shapley
values provide information on both the directions and magnitude of the effects
of the inputs. When plotted as a function of the values of z’, they provide a
visualisation tool to assess the risk of price shocks as a function of the levels of
variation in regional productions. Finally, we rank the producing regions accord-
ing to their influence on predicted price variations by taking the average of the
absolute Shapley values by region.

5.2 Results

5.2.1 Maize prices

RA values are shown in Fig[5.3|for each model type and each predicted month,
separately. Apart from TBATS, all the models’ performances are reported con-
sidering different inputs, namely regional productions, regional yields, and re-
gional productions/yields plus previous prices. For TBATS, RA values are shown
for a forecasting time horizon of one to 12 months ahead.

Short-term predictions obtained with TBATS (one month ahead) tend to be
more accurate than those obtained with machine learning tools and VAR. The
RA reaches 37% with the best machine learning tool, while the best RA of TBATS
is higher and stands at 78% in March when considering one-month ahead fore-
casts. For this type of forecast, the RA of TBATS is usually higher than 50% for
most of the predicted months, revealing that this method can reduce the pre-
diction errors by at least 50% compared to a constant prediction.

However, these good performances are not maintained when attempting
more extended time-horizon forecasts with TBATS. RA levels decrease rapidly
for any increment of time horizon. More precisely, while the average RA value
for a month-ahead forecast is 64%, it drops to 45% for two-month ahead fore-
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casts and decreases further for predictions at longer time horizons, becoming
quickly close to zero or even negative (Fig[5.3).

Concerning machine learning tools, RA tends to be slightly higher when yield
changes are used as predictors, and the GBM technique appears to perform
better, especially compared to LM and VAR, in most cases. In addition, GBM
tends to perform better than TBATS for time-horizon larger than six months.
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Figure 5.3 - Relative advantage (RA) in prediction accuracy of the forecasting
models compared to constant prediction, over 1990-2020, for maize. RA is equal
to 1 minus the ratio of the RMSE of each model to the standard deviation of the
price changes in the whole data-set the same month, and expressed in percent-
ages. Itindicates the relative benefit of using the models compared to a constant
prediction. ML methods, LM and VAR were used with either production or yield
inputs, and with/without taking the price changes of the previous year (PastP)
into account.

5.2.2 Soybean prices

In a similar way to maize, the best model to predict soybean price variation
is TBATS for one, two or three-month ahead forecasts (Fig . However, for
longer-time lags, the accuracy of TBATS declines as lag values become larger.
Moreover, the relative advantage of TBATS varies between months. For ex-
ample, whereas the RA exceeds 70% for one-month ahead forecasts in January-
March, it only reaches 29% in May and 36% July.

Relative to the other techniques, the best results are obtained during the first
few months (January-March) and between August and November. During these
periods, RA can reach levels close to 50%. Predictions obtained in April-July tend
to be less accurate, with RA often close to zero. The nature of the inputs does not
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strongly influence the accuracy of the forecasting methods. Similar RA values
are obtained with production or yield-related predictors, or whether previous
prices are taken into account or not. GBM tends to be the most accurate among
the tested algorithms and is ranked first in five months of the year. RF is ranked
first in four months of the year, particularly with production inputs. LM provides
relatively good results for January and September but is less accurate in other
months. Compared to maize, ML models tend to perform better at forecasting
soybean prices, while TBATS is slightly less accurate.
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Figure 5.4 - Relative advantage (RA) in prediction accuracy of the forecasting
models compared to constant prediction, over 1990-2020, for soybean. RA is
equal to 1 minus the ratio of the RMSE of each model to the standard deviation
of the price changes in the whole data-set the same month, and expressed in
percentages. It indicates the relative benefit of using the models compared to a
constant prediction. ML methods, LM and VAR were used with either production
or yield inputs, and with/without taking the price changes of the previous year
(PastP) into account.

5.2.3 Cocoa prices

For cocoa, TBATS gives relatively good results for short time horizons, with RA
values exceeding 50% for most of the year. However, we note that the forecast
accuracy decrease for a more extended time horizon is moderate, compared to
maize and soybean, especially in August and September. Other predictive meth-
ods tend to perform poorly in most cases, with a few exceptions obtained with
the GBM method in March (RA = 31%), April (RA = 43%) and May (RA = 48%) us-
ing national yield changes as predictors. The high RA values obtained between
March and May may be since March is the last month of the main-crop har-
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vest season in several major producing countries - Brazil, Cote d'lvoire, Ghana
and even Cameroon (ITC and UNCTAD/WTO., 2001). During the rest of the year,
production data do not substantially influence cocoa'’s price, according to our
results.
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Figure 5.5 - Relative advantage (RA) in prediction accuracy of the forecasting
models compared to constant prediction, over 1990-2020, for cocoa. RA is equal
to 1 minus the ratio of the RMSE of each model to the standard deviation of the
price changes in the whole dataset the same month, and expressed in percent-
ages. Itindicates the relative benefit of using the models compared to a constant
prediction. ML methods, LM and VAR were used with either production or yield
inputs, and with/without taking the price changes of the previous year (PastP)
into account.

5.2.4 Most influential producing regions

We analyse the contributions of each producing region to price changes by com-
puting SHapley Additive exPlanations (SHAP) with the most accurate ML tech-
niques identified above (i.e., GBM). This approach allows us to express the dif-
ference between a specific price change prediction to the mean prediction as a
sum of contributions (Shapley values) of the input values (yield or production
changes). Producing regions of high relative importance are expected to have
high absolute Shapley values, while those of lower influence are most likely to
have Shapley values close to zero. Results are shown in Fig[5.6]to Fig[s.11]

For maize, Shapley values are reported for the forecasting technique GBM
with regional yield changes and for January, which provides the most accurate

results (Fig[s.6).
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Figure 5.6 - Maize Shapley values for each regions (left) and for two most influ-
ential regions as a function of relative yield changes (right) computed with the
forecasting model (GBM) for January. Left: Regions are ranked from the most
influential (top) to the least (bottom). Each point correspond to one forecast of
price change, where deep purple represents a high value of the considered fea-
ture (yield change input, here) and orange a low value. The points are located
along the X-axis according to the level of the impact of regional yield change
on price changes (the Shapley value), in a way that extreme negative impact on
price change is at the most right, and vice versa. All points are centred around
the black vertical line, which presents no impact on model predictions compared
to mean prediction. The bold number to the right of the Y-axis is the mean abso-
lute value of all the Shapley values by region, summarising the average impacts
of the regions. Right: SHAP dependence plots, for the most influential region
(on top) and the second-most influential. Here, the Shapley values of the two
most influential producing regions are presented as a function of the relative
yield changes of these regions, together with a smooth regression curve.

Shapley values confirm the strong impact of Northern American maize yield
on the global maize price. For Northern America, Shapley values tend to take
highly positive values when yield changes are low and negative (i.e., yield de-
crease compared to the previous year). At the same time, they are more likely
to take negative values for positive yield changes (i.e., yield increase compared
to the previous year) (Fig [5.6). This result indicates that a yield decrease (in-
crease) in Northern America tends to be associated with a predicted global price
increase (decrease). Thus, the importance of Northern America is considerably
higher than that of all the other regions. This conclusion is relevant not only for
January but for all other months as well, except for July and August (see Fig|[5.12]

in Appendix|s.B).
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Another exciting finding stems from the second mostimportant region, West-
ern Asia. According to Shapley values, the impact of this region is minor com-
pared to Northern America. Although the Shapley values of Western Asia show
a similar declining trend with yield variations as in Northern America, the range
of Shapley values is narrower in Western Asia. The average absolute value of
the Shapley’s is more than two times smaller in this region (0.031 versus 0.07)

(Fig[5.6).

NorthernAmerica WesternAsia

0.25-
0.00- WW\/\/\/\/\/J\AN\/\M/ \/\/\/\/\W/\/W

1980 2000 2020 1980 2000 2020
Year

Shapley values, yield variations, and price variations

Figure 5.7 - Time series of Shapley values for the two most influential maize
producing regions. The bold lines indicate Shapley values. The dashed red lines
indicate price variations (in January). The dashed blue lines indicate yield vari-
ations. For facilitating the visualisation, variations higher than 0.5 in absolute
values are rounded down to 0.5

Fig presents the Shapley values as a function of years, where they are
compared to the relative yield changes (in blue) and the predicted price vari-
ations in January (in bright red). Again, the high impact of Northern America on
global price prediction is evident, as peaks of Shapley values appear throughout
the period, in particular during years when Northern American productions (or
yield) reached very high or low levels. The variability of the Shapley values of the
second most influential region (Western Asia) is much lower. Interestingly, the
Shapley values obtained for Western Asia remain close to zero most of the time
but drop to relatively low levels during years characterised by strongly positive
yield variations.

Results obtained for soybean are similar to those obtained for maize. How-
ever, we note weaker domination by lead producers (compared to the maize
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Shapley values, the mean are smaller and their ranges of variations narrower),
suggesting a more competitive global market for soybean than maize. Similar
to maize, we found a declining trend between Shapley values and regional pro-
duction variations when considering the two most influential regions (Fig[s.8land

Fig[5.9).
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Figure 5.8 - Soybean Shapley values for each regions (left) and for two most in-
fluential regions as a function of relative production changes (right) computed
with the forecasting model (GBM) for the month of January. Left: Regions are
ranked from the most influential (top) to the least (bottom). Each point cor-
respond to one forecast of price change, where deep purple represents a high
value of the considered feature (production change input, here) and orange a
low value. The points are located along the X-axis according to the level of the
impact of regional production change on price changes (the Shapley value), in a
way that extreme negative impact on price change is at the most right, and vice
versa. All points are centred around the black vertical line, which presents no
impact on model predictions compared to mean prediction. The bold number
to the right of the Y-axis is the mean absolute value of all the Shapley values,
summarising the average impact of the corresponding region. Right: SHAP de-
pendence plots, for the two most influential regions. Here, the Shapley values
of the two most influential producing regions are presented as a function of the
relative production changes of these regions, together with a smooth regression
curve.

The results obtained for cocoa show a different pattern. The cocoa produc-
tion is highly geographically concentrated in only three regions (see Table[5.4]in
Appendix[5.A). Interestingly, this is the sole of the three commodities considered
for which prices are predicted more accurately with national than regional pro-
ductions. Although Cote d'Ivoire - the first world producer - is ranked first ac-
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Figure 5.9 - Time series of Shapley values for the two most influential soybean
producing regions. Shapley values are indicated by the bold lines. Price vari-
ations (in January) are indicated by the dashed red lines. Production variations
are indicated by the dashed blue lines. For facilitating the visualisation, vari-
ations higher than 0.5 in absolute values are rounded down to o.5.

cording to mean Shapley values, Brazil and Ghana also show a strong influence
(Fig [5.10). Nevertheless, the mean absolute Shapley value difference between
the first two regions is relatively small compared to maize and soybean.

For Cote d'lvoire, the negative relationship between Shapley values and yield
changes is not very strong (Fig[5.10). However, Brazil's decreasing trend is ap-
parent - the second most influential region.

Shapley time series confirm the similar influence of Céte d'lvoire and Brazil
on cocoa prices. However, Shapley values of Brazil tend to be opposite of yield
variations in this region (Fig[5.11).
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Figure 5.10 - Cocoa Shapley values for each regions (left) and for two most influ-
ential regions as a function of relative yield changes (right) computed with the
forecasting model (GBM) for the month of May. Left: Regions are ranked from
the most influential (top) to the least (bottom). Each point correspond to one
forecast of price change, where deep purple represents a high value of the con-
sidered feature (yield change input, here) and orange a low value. The points are
located along the X-axis according to the level of the impact of regional produc-
tion change on price changes (the Shapley value), in a way that extreme negative
impact on price change is at the most right, and vice versa. All points are centred
around the black vertical line, which presents no impact on model predictions
compared to mean prediction. The bold number to the right of the Y-axis is the
mean absolute value of all the Shapley values, summarising the average impact
of the corresponding region. Right: SHAP dependence plots, for the most influ-
ential region (on top) and the second-most influential. Here, the Shapley values
of the two most influential producing regions are presented as a function of the
relative yield changes of these regions, together with a smooth regression curve.

Brazil CotedIvoire

o
N
bl

o
=}
S}

o
N
a

Shapley values, yield variations, and price variations
|

1980 2000 2020 1980 2000 2020
Year

Figure 5.11 - Time series of Shapley values for the two most influential cocoa pro-
ducing countries. Shapley values are indicated by the bold lines. Price variations
(in May) are indicated by the dashed red lines. Yield variations are indicated by
the dashed blue lines. For facilitating the visualisation, variations higher than
0.5 in absolute values are rounded down to 0.5
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5.3 Discussion

This study examines the effectiveness of several machine learning and econo-
metric methods for forecasting the international price of three globally traded
crops: maize, soybean and cocoa. The selected methods rely on open-source
data and software. Through a comparative analysis, it explores the genericity of
the proposed approach and captures the uniqueness of AC from three different
categories, as determined by the World Bank: grains, for maize; oils & meals, for
soybean; and beverages, for cocoa. The robustness of the model performances is
assessed by conducting an in-depth sensitivity analysis across three geographic
scales (regional, continental and national), two types of production metrics (pro-
duction or yield variations) and the inclusion or not of the relative annual change
of last year’s price. All in all, each forecasted monthly price is the result of the
best performing model, selected out of 60 (5 algorithms x 3 geographic scales
x 4 versions, excluding TBATS). The analysis of three AC market categories and
the comparison of three geographic scales reveal the significance of the eco-
nomic structure of the market, in particular the utmost importance that mar-
ket structures have on how crops production influences AC prices globally. The
study shows that regional changes in maize production in Northern America (the
crop’s lead world producer and exporter) have undeniably high impacts on its
global price. The market is thus clearly dominated by the world’s leading pro-
ducer of maize, but this is more minor the case for the other crops. The other
extreme is the cocoa market, which is concentrated for the most part in two re-
gions (Western Africa and South America), and whose production is typically the
work of smallholder farmers in family farms in relatively poor areas. Contrary to
maize and soybean, which are traded mainly in the international market located
and managed in the country of the biggest producerf]cocoa is mainly traded in
the importer side, New York and London, i.e., far from its country of origin. This
market structuring contributes to a lack of market information among cocoa
farmers and prevents them from controlling the price they will receive for their
crop or the preferred date to sell it.

Beyond evaluating the accuracy of the predictions, many techniques have
been applied to interpret the results of the trained models in this study: relative
importance analysis (Greenwell et al., 2020), Shapley values (Molnar et al., 2018;
Tiangi et al., 2021), (Greenwell, 2017; [Liu and Just, 2020) and standard correla-
tion analysis. For cocoa, none of these methods indicated a strong relationship
between the production volume of the leading producer (Céte d’lvoire) and price

2The mainstay of maize and soybean'’s trade is at the CME in US dollar. However, for soybean,
since December 2007, the price listed on the World Bank website comes from the Construction
Industry Federation (CIF) Rotterdam
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changes. However, the results did show a lack of absolute market power concen-
trated in a particular area and a relatively uniform distribution of monthly impact
per country over the year. Moreover, a comprehensive examination pointed out
a rather complex relationship between Shapley values and crop yield variations
in Cote d'lvoire. Finally, focusing on specific extreme price shocks indicated a
high contribution of cocoa yield in Indonesia to events of exceptionally high price
increases.

The results did show a lack of absolute market power concentrated in a par-
ticular area and reasonably uniform distribution of monthly impact per coun-
try over the year. Moreover, our comprehensive analysis pointed out a rather
complex relationship between Shapley values and crop yield variations in Cote
d'Ivoire. Focusing on specific extreme price shocks, we showed a high contribu-
tion of cocoa yield in Indonesia to events of exceptionally high price increases.
The results seemed surprising at first, as Indonesia’s market share in the global
cocoa market is significantly lower than that of Céte d'lvoire. However, an in-
depth study of the cocoa literature has revealed a multiplex system in which
some factors undermine the natural equilibrium of the market. ForCote d'lvoire
(as well as Cameroon and Nigeria), the vast majority of production is collected
from small farmers, most of whom have no access to market information. Al-
ternatively, they received a price set by the local government at the beginning of
the season, depending on future prices on significant stock exchanges (ITC and
UNCTAD/WTO.| 2001). Over the years, the cocoa export market in Céte d'lvoire
has been privatised, and private export companies are now responsible for col-
lecting cocoa production, thus reducing farmers' room for action during and
after harvest (Abbott et al.,2019). In Cote d'lvoire, farmers take critical decisions
right at the beginning of the growing season, trying to increase their production
when the price they receive from their government increases and vice versa.

The soybean market has grown significantly over the past six decades and is
today the most important legume in the world for producing oils and proteins.
Like maize, here too, the influence of Northern America is evident above that of
the other provinces. However, Northern America’s market share has shrunk sig-
nificantly over the years, and now South America (mainly Argentina and Brazil)
is a leader in global soybean production. Nevertheless, Northern America is still
the first to impact price changes in the global soybean market for most months
of the year, other than those prior to the harvest season (similar to the maize
market).

In terms of forecasting results, ML methods (RF and GBM) usually perform
better than the other models for medium to long time horizons, as shown in
Appendix [5.B] For a short-time horizon (one to three months), TBATS was gen-
erally more accurate, revealing that information about production changes is
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probably already partly integrated into the market prices one to three months
in advances. GBM provides a noticeable higher forecasting accuracy for North-
ern America’'s new-crop (the beginning of the standardised trading year) months
concerning maize and soybean. For cocoa, March, April and May, are the only
months in which ML models are substantially better than the other models, in-
cluding TBATS. As a result, one might conclude that the benefit of taking regional
production into account tends to be more decisive for competitive markets with
fewer price distortions.

5.4 Conclusion

As the proposed forecasting tools rely on public data and open-source software,
they can be easily implemented by many stakeholders, even with limited re-
sources. Furthermore, we demonstrated that our framework is relevant for dif-
ferent crop types, namely maize, soybean and cocoa. Therefore, we believe that,
in the future, it could cover other agricultural commodities.

Our analysis shows that, for short-term predictions, time series forecast-
ing techniques such as TBATS provided accurate predictions of price variations.
However, for longer forecasting horizons, the accuracy level of this technique de-
clines rapidly, and it becomes more relevant to use alternative methods based
on regression models and machine learning tools, including production/yield
variations as predictors. We found that machine learning techniques based on
ensembles of trees, such as random forest and gradient boosting, were potent.
An added value of these machine learning models stays in their ability to rank
producing units according to their influence on price changes and to quantify
the contributions of major producing regions on the occurrence of significant
price shocks. Moreover, they can help analyse the relationships between price
and production changes in major producing regions.

Thanks to its transparency and ease of application, the proposed framework
can help improve the analysis of price variations, especially in developing coun-
tries with limited resources for price modelling projects.
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5.A Appendix

Table 5.1 - Variable description and data sources.

| Final data |
Data Unites Time-range Indices Sign
Production % change/year 1962 - 2019 k = Region, y = Year Ty
| Yield | % change/year | 1962-2019 | k=Region,y=Year | m, |
| Price | % change/year | 01/1961-11/2020 | m =Month,y=Year | p,, |
Initial information
| Data | Unites | Time-range | Source | Sign
| Price | Nominal USD/mt* | 01/1960 - 11/2020 | World Bank, Pink Sheet (2020)

|
|
| Ag. Price index | USD (2010 =100) | 01/1960 - 11/2020 | World Bank, Pink Sheet (2020) |
|
|
|

| Production | tonnes/year | 1961-2019 | FAO STAT (2020) | Zky

| Yield | hg/ha | 1961-2019 | FAOSTAT (2020) | 2z,

| Real price | Real USD (2010) | 01/1960 - 11/2020 | | Gy
Additional information |

| Data | Unites | Time-range | Source | Sign |

| Production | 1000 mt/year | 1960-2020 | PSD, USDA .

| Production | % change/year | 1961-2020 | k=Region,y=Year | z{5P4 |

* For cocoa, prices are given by units of kg, and were manually converted to metric
tonnes units
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5.A.1 Maize
Table 5.2 - Production data of maize, relative to region

| | Production (1000 tonnes) | Yield (1000 hg/ha) |
| Regions | %/total | Average | Average | Min. (year) | Max. (year) |
| Caribbean | 0.10% | 462 | 116 | 8.54(1993) | 14.78 (2004) |
| Central America | 3.30% | 18,050 | 204 | 9.74(1961) | 36.31(2019) |
| Central Asia* | 0.10% | 1,288 | 48.34 | 25.63(1997) | 65.72(2018) |
| Eastern Africa | 2.60% | 14,673 | 13.64 | 9.52(1965) | 19.49 (2019) |
| Eastern Asia | 19.20% | 106,304 | 39.41 | 12.28(1961) | 62.94 (2019) |
| Eastern Europe | 6.30% | 34,856 | 37.4 | 18.4(1963) | 70.02(2018) |
| Middle Africa | 0.50% | 2,652 | 854 | 6.74(1979) | 10.9(2015) |
| Northern Africa | 0.90% | 5,017 | 41.68 | 15.91(1961) | 69.32(2019) |
| Northern America | 40.30% | 223,304 | 73.87 | 39.23(1961) | 118.01(2017) |
| Northern Europe* | 0.00% | 41 | 3543 | 10(1985) | 75.84(2019) |
| Oceania | 0.10% | 426 | 50.76 | 17.33(1966) | 87.81(2015) |
| South America | 9.90% | 55,095 | 2829 | 12.95(1964) | 61.38 (2019) |
| South-eastern Asia | 3.60% | 19,741 | 2226 | 9.02(1961) | 46.9(2019) |
| Southern Africa | 1.70% | 9,209 | 2426 | 7.88(1992) | 58.13(2017) |
| Southern Asia | 3.00% | 16,495 | 17.59 | 10.02(1971) | 35.28 (2019) |
| Southern Europe | 3.80% | 20,902 | 54.9 | 2113(1961) | 90.58 (2018) |
| Western Africa | 1.50% | 8,252 | 1211 | 6.96(1972) | 19.54 (2018) |
| Western Asia | 0.60% | 3,142 | 356 | 11.4(1962) | 79.18 (2018) |
| Western Europe | 2.80% | 15,336 | 69.82 | 22.56 (1962) | 103.05 (2011) |

*Excluded from analysis due to lack of data
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Table 5.3 - Production data of maize, relative to country

| | Production (1000 tonnes) | Yield (1000 hg/ha) |
| Countries | %/total | Average | Average | Min. (year) | Max. (year) |
| Argentina | 2.70% | 14,813 | 4343 | 16.48 (1963) | 78.62(2019) |
| Brazil | 6.10% | 33,777 | 26 | 11.61(1964) | 57.73 (2019) |
| China | 18.80% | 104,055 | 39.39 | 11.85(1961) | 63.17 (2019) |
| India | 2.10% | 1,472 | 1647 | 9(1971) | 30.7(2019) |
| Mexico | 2.80% | 15,409 | 2153 | 9.87(1963) | 40.7(2019) |
| USA | 38.90% | 215,455 | 73.83 | 39.18 (1961) | 117.43 (2016) |

Table 5.4 - Production data of maize, relative to continent

| Continents | %/total | Average Average | Min. (year) | Max. (year) |

| Africa | 7.23% | 2,361,926 15.47 | 9.8(1964) | 21.66(2017) |

50.48 | 25.83(1964) | 82.19 (2016) |

| Americas | 53.45% | 17,463,588

| Asia | 26.41% | 8,628,804
| Europe | 12.84% | 4,195,971

31.39 | 11.37(1961) | 55.41(2019) |
46.82 | 20.87(1963) | 75.28 (2018) |

| | Production (1000 tonnes) | Yield (1000 hg/ha) |
|
|
|
|
|
|

| Oceania | 0.08% | 25,118 50.8 | 17.34(1966) | 87.98 (2015) |
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Table 5.5 - Production data of soybean, relative to region

| | Production (1000 tonnes) |

Yield (1000 hg/ha) |

| Regions | %/total | Average | Average | Min. (year) | Max. (year) |
| Central America | 0.27% | 372 | 182 | 12.85(2010) | 21.34(1991) |
| Central Asia* | 0.03% | 96 | 1246 | 2.5(1972) | 22.93(2017) |
| Eastern Africa | 0.16% | 229 | 1518 | 6.47(1996) | 21.68 (2016) |
| Eastern Asia | 8.69% | 12,087 | 1319 | 5.54(1961) | 22.38 (1978) |
| Eastern Europe | 1.33% | 1,852 | 2419 | 6.76 (1968) | 36.85 (2014) |
| Middle Africa | 0.02% | 21 | 13.82 | 6.42(1961) | 18.82(2018) |
| Northern Africa | 0.04% | 61 | 15.41 | 3.86(1966) | 23.29 (2008) |
| Northern America | 45.11% | 62,764 | 10.68 | 6.37(1968) | 14.85 (2015) |
| Northern Europe* | 0.00% | 1 | 575 | 2.29(1983) | 15.63 (2010) |
| Oceania | 0.04% | 51 | 10419 | 3.22(1964) | 19.53 (2018) |
| South America | 39.00% | 54,263 | 7.08 | 4.61(2012) | 8.87(1988) |
| South-eastern Asia | 0.92% | 1,279 | 25.79 | 9.49(1973) | 32.99 (2012) |
| Southern Africa | 0.17% | 235 | 20.08 | 9.39(1964) | 32.61(2017) |
| Southern Asia | 3.24% | 4,505 | 23.27 |15.35(1964) | 34.6 (2016) |
| Southern Europe | 0.56% | 783 | 22,69 | 7.83(1964) | 43.5(2015) |
| Western Africa | 0.25% | 345 | 15.33 | 12.69 (2019) | 17.97 (2018) |
| Western Asia | 0.05% | 69 | 884 | 4.66(1965) | 13.59 (2012) |
| Western Europe* | 0.13% | 220 | 23.58 | 12.51(1974) | 29.97 (2017) |

*Excluded from analysis due to lack of data
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Table 5.6 - Production data of soybean, relative to country

| | Production (1000 tonnes) | Yield (1000 hg/ha) |
Countries | %/total Average Average | Min. (year) | Max. (year)
Argentina | 12.90% 17,941 20.68 9.77 (1961) | 33.34 (2019)
| Brazil | 23.10% | 32,075 | 20.09 | 8.48(1964) | 33.9(2018) |
| China | 8.20% | 11,375 | 13.9 | 6.26(1961) | 18.98 (2018) |
| India | 3.10% | 4,374 | 851 | 4.35(1965) | 13.53 (2012) |
| USA | 43.60% | 60,660 | 233 | 15.31(1964) | 34.94 (2016) |

Table 5.7 - Production data of soybean, relative to continent

| | Production (1000 tonnes) | Yield (1000 hg/ha) |

| Continents | %/total | Average | Average | Min. (year) | Max. (year) |

| Africa | 1.00% | 880 | 836 | 3.48(1965) | 14.59 (2010) |

| Americas | 84.00% | 117,399 | 2234 | 15.17 (1964) | 32.57 (2017) |

| Asia | 13.00% | 17,986 | 12.06 | 6.44(1961) | 15.35 (2010) |

| Europe | 2.00% | 2,811 | 13.38 | 3.31(1964) | 23.16 (1997) |
|

| Oceania | 0.00% | 51 15.41 | 3.86 (1966) | 23.29 (2008) |
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Table 5.8 - Production data of cocoa, relative to region

| | Production (1000 tonnes

Yield (1000 hg/ha) |

)|
| Regions | %/total | Average | Average | Min. (year) | Max. (year) |
| Caribbean | 2.20% | 60 | 36 | 2.21(2005) | 5.37(2019) |
| Central America | 1.80% | 49 | 4.89 | 2.83(1965) | 6.65(2007) |
| Eastern Africa | 0.50% | 14 | 3.96 | 1.72(1963) | 5.84(2015) |
| Eastern Asia* | 0.00% | 0 | | | |
| Middle Africa | 6.20% | 172 | 2.98 | 1.92(1976) | 3.94(2019) |
| Oceania | 1.40% | 40 | 494 | 3.24(1994) | 5.11(1971) |
| South America | 15.90% | 437 | 4 | 2.66(2000) | 5.68(1985) |
| South-eastern Asia | 12.90% | 355 | 6.3 | 2.65(1962) | 10.32(1998) |
| Southern Asia | 0.30% | 9 | 345 | 1.01(1972) | 5.74(1994) |
| Western Africa | 58.80% | 1,620 | 3.99 | 2.55(1965) | 5.07(1996) |

*Excluded from analysis due to lack of data

Table 5.9 - Production data of cocoa, relative to country

\ \ Production (1000 tonnes) \

Yield (1000 hg/ha)

|
| Average | Min. (year) | Max. (year) |

| Countries | %/total | Average

| Brazil | 9.23% | 254 | 7861 | 2.79(2000) | 7.42(1979) |
| Cameroon | 5.30% | 146 | 57.73 | 1.98(1961) | 4.16 (2019) |
| Cote d'lvoire | 30.50% | 840 | 6347 | 3.27(1961) | 7.01(2000) |
| Ghana | 16.70% | 460 | 3070 | 2.05(1981) | 5.5(2012) |
| Indonesia | 10.60% | 292 | 4070 | 1.22(1962) | 11.32(1998) |
| Nigeria | 9.90% | 273 | 117.43 | 2(1962) | 4.98(1998) |
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Table 5.10 - Production data of cocoa, relative to continent

| | Production (1000 tonnes) | Yield (1000 hg/ha) |
| Continents | %/total | Average | Average | Min. (year) | Max. (year) |
| Africa | 65.54% | 106,525 | 3.86 | 2.54(1961) | 4.93 (2006) |
| Americas | 19.82% | 32,210 | 4.00 |2.69(2000) | 5.57(2019) |
| Asia | 13.20% | 21,445 | 573 | 2.64(1961) | 10.16 (1998) |
| Oceania | 1.44% | 2,344 | 414 | 3.24(1998) | 5.11(1971) |
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5.B Detailed results and interpretation
5.B.1 Maize

Table 5.11 - Best forecasting options for different months, relative to maize price.
The names reported for each month correspond to the models showing the
highest RA for predicting price change at this period. As TBATS tends to per-
form very well for short time lags, TBATS appears to be the best option for all
months when the time lag is relatively small. For longer time horizons, other
models (in particular GBM) are more accurate. The name between brackets in-
dicates whether the predictions were more accurate with regional yields or pro-
ductions and whether historical prices were found to have a substantial impact
on price.

Time lags (months)

| | |
| Month | 1 | 2 | 3 | | 5 | 6 |7]8]9]10]11]12]
| | TBATS | GBM (Yield) |
‘January | 0.73 | 0.64 | 0.46 | 0.37 |
| | TBATS | GBM (Yield) |
February
| | 0.75 | 0.59 | 0.53 | 0.38 | 0.29 |
| | TBATS | GBM (Yield) |
March
| | 0.78 | 0.59 | 0.47 | 0.41] 0.3 | 0.22 |
| | TBATS | GBM(Yield + pyy—1) |
| April | 0.67 | 055 041034024 | 0.18 |
| | TBATS | GBM (Yield + p, 1) |
| May | 0.68 | 064 |0.47|0.30]| 021 | 0.9 | 0.18 |
| | TBATS | GBM (Production) |
June
| | 061 | 055|048 039 031|024 | 0.19 |
| | TBATS | CART (Yield) |
‘July | 0.44 | 028|029 | 0.24 | 0.23 |
| | TBATS | CART (Production) |
August
| | 0.61 | 0.31 |
| | TBATS | LM (Production) |
September
| | 0.46 | 0.21 |
| | TBATS | GBM (Yield) |
October
| | 0.57 | 0.31 |
| | TBATS | GBM (Yield) |
November
| | 0.63 | 0.36 | 0.24 |
| | TBATS | GBM (Yield + p;, 1) |
‘ December ‘ ‘

0.72 | 0.56 | 0.33 | 0.31
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5.B.2 Soybean

Table 5.12 - Best forecasting options for different months, relative to soybean
price. The names reported for each month correspond to the models show-
ing the highest RA for predicting price change at this period. As TBATS tends
to perform very well for short time lags, TBATS appears to be the best option
for all months when the time lag is relatively small. For longer time horizons,
other models (in particular GBM) are more accurate. The name between brack-
ets indicates whether the predictions were more accurate with regional yields
or productions and whether historical prices were found to have a substantial
impact on price.

\ Time lags (months)
|

| |
| Month 1 | 2 | 3 |4|5|6|7|8|9]10]11]|12]
| | TBATS | LM (Yield) |
January
| | 072 | 054 |
| | TBATS | GBM (Production) |
February
| | 0.56 | 0.51 | 0.44 | 0.39 |
| | TBATS | RF (Production + py, ;1) |
March
| | 063 | 0.48 |
| | TBATS | RF (Production + p,,, , 1) |
| April o042 | 0.38 |
| | TBATS | CART (Production) |
| May | 029 | 0.26 |
| | TBATS | GBM (Yield) |
June
\ \ 0.53 \ 0.31 ‘
| | TBATS | RF (Production + p,,, 1) |
\me | 036 | 0.22 | 0.16 |
| | TBATS | RF (Yield) |
August
| | 0.49 | 024 | 049 | 0.06 |
| | TBATS | LM (Yield) |
September
| | 055 |o0.32 | 0.21 |
| | TBATS | GBM (Production) |
‘ October ‘ 0.68 ‘ 0.46 ‘ 037 ‘
| | TBATS | GBM (Production) |
November
| | 0.56 | 0.40 | 029 | 0.19 |
| | TBATS | GBM (Production + p,,,-1) |
| December | |

0.64 |0.38] 031 | 0.24




164 CHAPTER 5. ESSAY Il

1 2 3
WesternAsia- [ i =
WesternAfrica- [ | =
SouthernEurope - - - _
SouthernAsia~ [ [ ] I
SouthernAfrica- [ e — .
SoutheasternAsia- [0 e ]
SouthAmerica- [ = =
Oceania - - . -
NorthernAmerica - [ —+—+—+—{— ——+—+—+—+—]
MiddleAfrica- [ ] =
EasternEurope- [ —_ ——]
EasternAsia- [ . |
EasternAfrica- - - -
CentralAmerica- | [ ] =
4 5| 6
WesternAsia- [ ] =
WesternAfrica- | s ——+]
SouthernEurope- || ] e
SouthernAsia- . —
SouthernAfrica - _ I -
SoutheasternAsia- [ e .
SouthAmerica- [ ——— ——
Oceania- [ ] ]
NorthernAmerica - [N ——+—+—| ——+—
MiddleAfrica- [ ] | ]
EasternEurope - - - _
EasternAsia- || ] =
EasternAfrica- || e |
< CentralAmerica- [0 [ —
5]
g ; 8 8
& WesternAsia- || — —
WesternAfrica - _ _ -
SouthernEurope - _ - -
SouthernAsia- | ] I —
SouthernAfrica- [ ] —F—
SoutheasternAsia- [ B |
SouthAmerica - _ - -
Oceania- - _ -
NorthernAmerica- [ ] ————+—+—1—]
MiddleAfrica- [ | ] ]
EasternEurope- [0 ] =
EasternAsia - - _
EasternAfrica - _ _ _
CentralAmerica- | = =
10 11 12
WesternAsia- | ] |
WesternAfrica- | B =
SouthernEurope- | e ——t
SouthernAsia- [ —+—+—+—+ e ——
SouthernAfrica - - - _
SoutheasternAsia - I- = .-
SouthAmerica -
Oceania- [ ——— ——
NorthernAmerica - [ -_ -_
MiddleAfrica- [
EasternEurope - - | -
EasternAsia- | B ]
EasternAfrica- || = ]
CentralAmerica- || . | . - | . |
0 10 20 30 0 10 20 30 0 10 20 30

Relative importance

Figure 5.13 - Relative importance, Soybean
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5.B.3 Cocoa

Table 5.13 - Best forecasting options for different months, relative to cocoa price.
The names reported for each month correspond to the models showing the
highest RA for predicting price change at this period. As TBATS tends to per-
form very well for short time lags, TBATS appears to be the best option for all
months when the time lag is relatively small. For longer time horizons, other
models (in particular GBM) are more accurate. The name between brackets in-
dicates whether the predictions were more accurate with national yields or pro-
ductions and whether historical prices were found to have a substantial impact
on price.

Time lags (months)
Month 1 | 2| 3| 4 5 | 6 | 7 [8|9|10]11]|12
TBATS CART (Production + p,;, 1)

January
| | 0.69 | 0.55|0.45 | 0.27 | 0.15
| | TBATS | LM (Yield)
February
| | 0.61 | 0.44 | 0.40 037 0.20 | 0.13
| | TBATS | GBM (Yield + pp,y—1)

March
| | 0.51 | 0.40 | 0.31
| | TBATS | GBM (Yield)
| April | 0.68 | 0.43
| | TBATS | GBM (Yield)
| May | 059 | 0.48
| | TBATS | RF (Production)

June
| | 0.62 | 0.48|0.34 | 0.30 | 0.20
| | TBATS | RF (Production)
‘July | 0.62 | 046|032 022] 021 0.13
| | TBATS | RF (Production)
August
| | 071 | 054|039 028 021|022 | 0.13
| | TBATS | GBM (Yield)
| September | 0.63 | 062|043 | 029 021|043 0.16 | 0.03
| | TBATS | GBM (Yield + p,, 1)
October
| | 0.59 | 035|037 024 | 0.11
| | TBATS | VAR (Yield)

November
| | 0.49 | 0.22] 0.12
| | TBATS | VAR (yield)
‘ December ‘

0.59 | 0.41| 0.24 | 0.12
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Figure 5.14 - Relative importance, Cocoa
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Chapter 6

Discussion

The fear of population
running ahead of food production
has been regularly voiced.
It is not my intention
to dismiss these problems and fears.

- Amartya Sen, Poverty and Famines (p.150)

This research was motivated by a long-time desire to contribute to the world-
wide efforts of improving food security and diets worldwide. While already fa-
miliar with the subjects of climate change and their effects on agriculture and
the problem of food security from previous research papers, the topic of inter-
national trade was new to me.

Beginning this research, we recognised the scarcity of an[AC|price forecasting
tool that would be accurate and bridge the gap of dis-information that strongly
affects the most vulnerable producers and consumers around the globe. Com-
pleting this thesis, we achieved to provide a novel methodology to forecast agricultural-
commodity prices. This method ensures high forecasting accuracy and is inter-
pretable and technically accessible. We show that [AC| prices can be predicted
for time-frames of one month to a year ahead while maintaining a high forecast
quality and the principles of scientific transparency.

6.1 The basic idea behind the study
As already explained in the introduction chapter, turning the theory of [AC| price
forecasting into an available and accessible tool would be socially beneficial, es-

pecially for those who currently cannot access it - those are mainly the residents

169
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of low-income countries. Considering that every crop has unique nutritional val-
ues, consuming several crops from different groups can create a complete bal-
anced diet. In the context of minimally processed food, such crop integration
can build a low-priced and healthy diet. As an inexpensive source of energy
and micro-nutrients, maize, combined with soybean as a cheap source of pro-
tein, fat, and other micro-nutrients, can promote food security for low-income
consumers. Parallel, and in combination with cocoa, cultivated mainly by small
farmers in developing countries, can help in terms of welfare as a tool for res-
cuing poor farmers from the cycle of poverty. That has often been the historical
role: maize, as a relatively sustainable crop cultivated in varied climate zones,
and soybean, which has been an important food component of the Chinese diet
for thousands of years. However, in contrast to the tremendous potential of
these crops and their clear potential to feed the entire world population today
(Helms, 2004), their supply in certain areas is still limited.

Although food production has more than tripled over the past six decades,
the growing use of the world’s major crops as a source for energy or livestock
feed has increased their consumption in high-income regions, which comes at
the expense of the low-income ones. Furthermore, the global diet evolution
leads to upward in meat consumption even in the least affluent regions, con-
tributing to increased demand. The tendency to stock food as part of a food se-
curity (business) strategy to protect populations (of risks management) in times
of food price fluctuations also causes relatively high vulnerability among resid-
ents of low-income countries who do not possess adequate food stocks.

Despite repeated requests from the World Trade Organisation to re-
frain from government interventions, which could harm markets competitive-
ness (G20,2020; WTO} 2020), the recent coronavirus crisis has proved, once again,
that the first to suffer from price fluctuations are the low|[GDP|per capita’s coun-
tries. Furthermore, the ongoing health (and economic) crisis revealed the negat-
ive consequences of international tensions, especially between the major powers,
and a lack of coordination between the trading countries (IFPRI et al., 2020). The
most vulnerable are the poor, who could not stand the uncertainty, including
the inability to sell their agricultural goods or purchase food. Given that not
many countries have held sufficient food reserves for three months, millions
have joined those who already suffered from food insecurity. Based on the ex-
isting potential in international food trade and the historical claims that it will
balance the food distribution among all countries while ensuring a competitive
market and balancing price fluctuations, this study focused on the international
prices of agricultural goods. The entire study was done with an aspiration to
promote the symmetry in information regarding global markets, including
the drivers for price fluctuations, their likelihood to occur in the coming future
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(month to a year ahead) and their quantification. I hope this study could advance
social welfare, especially among the underprivileged in low-income countries.

6.2 Empirical Approach

This study is composed of three essays that give a good picture of the perform-
ance of the proposed empirical approach. As a whole, they create an accessible
framework for analysing the internationallACjmarkets by unravelling the impacts
of agricultural productions on the global price of the same crop.

6.2.1 Essay l: Assessing the sensitivity of global maize price to
regional production using statistical and machine learn-
ing methods

The opening article of the doctoral dissertation attempts to trace two key points:
The first is an assessment of the impact of the producing areas on maize price
fluctuations; the second is an establishment of an empirical relationship between
global maize price and production variation.

This article examines maize as a prototype market for an almost six decades
period. The uniqueness of this study lies in its pioneer use of [ML] models to
analyse[AC|prices in the[Medium Term|while providing a glimpse of what stands
behind the results obtained. For each model, two-month specific versions are
built: regression to quantify annual price changes and classification, to assess
the chance of a price decrease or increase relative to the year before. All mod-
els were evaluated by a leave one out cross-validation. The study focuses on the
fourth quarter of the year, i.e., the beginning of the period in which the North
American (mainly USA) maize’s is physically sold on the Chicago Merchandise
Exchange as new crop. The results quantify the impact of maize production in
Northern America on the global maize price in October, November and Decem-
ber, i.e. during and after the North-American harvest season. The results point
out the potential of using machine learning models for price prediction but do
not compare the predictive performance of this approach with standard fore-
casting tools.

6.2.2 Essay ll: Forecasting global maize prices from regional
productions

The second essay directly continues the first while focusing on forecasting. This
article was motivated by two main objectives: The first was to forecast the monthly
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global price of maize in aMedium Term|time horizon, and the second was to find
the most accurate forecasting method for different months and time-frames
(lags).

We compare machine learning tools to two econometric models; both are
ubiquitous tools in forecasting studies:

1. [TBATS]- an autoregressive tool that automatically handles non-linear fea-
tures and multi-seasonality. has already demonstrated impressive
predictive capabilities in relatively short ranges for a variety of topics, in-
cluding daily electricity price (Karabiber and Xydis, |2019), gas consumption
(Naim et al., 2018), and even rainfall (Farheen| |2021). As for price fore-
casting, however, this is the first time to test TBATS.

2. - a multivariate autoregressive model. is a widely used and rel-
atively simple forecasting tool with great importance in building and ana-
lysing monetary policies. models excel in detecting shocks within the
data and combining their effects on the variability of the main variables
or, in our case, maize prices. While is an effective tool for forecast-
ing variables such as inflation, [GDP|growth, currency exchange or interest
rates (Bjgrnland} 2008;|Kapetanios et al.,|2008), its effectiveness has not yet
been tested in the context of[Medium Term|[AC| prices.

The second article compares the forecasting models relative to a benchmark
corresponding to a naive constant prediction. As such, the model evaluation
included a rolling cross-validation process, which yielded a forecasting error
used to rank all the models; and a comparison with a naive prediction
represented by a mean price change value. Beyond comparing the attractive-
ness of the models for forecasting maize prices, the study includes an analysis
of the nature of the relationship between the level of change in the regional an-
nual maize production and the change in its global price; Identification of the
regions with the highest impact on the maize price, broken down by month. In
addition, the study provides an accurate breakdown of the preferred method
for forecasting monthly maize prices according to the forecasting horizon (by
month, in one-month lags).

Relative importance analysis, which seeks to uncover the overall relevance of
each region for price forecasting (Konig et al., |2021), confirmed the substantial
relative influence of Northern American production on the global price during
most of the year, starting from the beginning of the market year in October until
May. However, Western Asia showed a more substantial influence on maize
price changes in July and August.

Additionally, the Shapley values provided a glimpse into the main drivers of
inevitable extreme price fluctuations. By taking into account specific extreme
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cases, the results show that certain regions greatly impacted extreme price fluc-
tuations observed at specific years. For example, Shapley brings into light the
strong positive influence of the Eastern African maize yields of 2006 over the
November price of that same year. Undeniably, 2006 was a year of extreme
droughts in the region (Solomon et al.,|2007), which harmed the agricultural sec-
tor (Gebrechorkos et al.,2020), and resulted in exceptionally high maize import-
ation, notably from the United States.

6.2.3 Essay lll: Data-driven assessment of the impacts of crop
productions on the global prices of maize, soybean and
cocoa

The final article applies the knowledge accumulated throughout the two former
essays by examining the effectiveness of the forecasting methods for two ad-
ditional crops: soybeans and cocoa. This analysis explores the genericity of the
proposed approach and captures the uniqueness of[A/from three different cat-
egories, as determined by the World Bank: grains, for maize; oils & meals, for
soybean; and beverages, for cocoa. Additionally, this chapter assesses the sens-
itivity of the model performances to three geographic scales considered for the
inputs, i.e., regional (as in the two first essays), continental and national. Finally
and for all three commodities, we implemented each model with two sets of in-
puts: 1. regional production or yield variations; and 2. the same variables with
the addition of the relative annual change of last year’s price. All in all, each
forecasted monthly price is the result of the best performing model, out of 60
(5 algorithms x 3 geographic scales x 4 versions, excluding [TBATS), and relat-
ive to the most relevant geographic scale division. The specification of three [AC]
market categories and three geographic scales brings out the significance of the
economic structure of the market. The results reveal the utmost importance
that market structures have on the level crop productions influence prices
globally. Furthermore, the study shows that regional changes in maize produc-
tion have undeniably high impacts on its price, especially when coming from
Northern America - the crop’s lead world producer and exporter, and by a con-
siderable difference compared to other regions. The other extreme is the cocoa
market. Western Africa and South America concentrate alone most of the cocoa
production in their area, typically as the work of smallholder farmers in family
farms in relatively poor areas. Contrary to maize and soybean, which are traded
mainly in the international market located and managed in the country of the
biggest producer, [ cocoa is mainly traded in the importer side, New York and

'the mainstay of maize and soybean trade activity is at the in US dollar. However, for
soybean, since December 2007, the price listed on the World Bank website comes from the
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London, i.e., far from its country of origin. This fact contributes to the lack of
market information among cocoa producers and detracts from their ability to
control the price they will receive for their crop or the preferred date for selling
it.

Numerous techniques were applied for interpreting the results of the fit-
ted models: relative importance analysis (Greenwell et al., 2020), Shapley val-
ues (Molnar et al., [2018; [Tianqgi et al., 2021), (Greenwell, 2017; Liu and Just, 2020)
and standard correlation analysis. For cocoa, none of these methods indicated
a strong relationship between the production volume of the leading producer
(Cote d'lvoire) and price changes. The results did show a lack of absolute mar-
ket power concentrated in a particular area and a fairly uniform distribution
of monthly impact per country over the year. Moreover, a comprehensive ex-
amination pointed out a rather complex relationship between Shapley values
and crop yield variations in Cote d'lvoire. Focusing on specific extreme price
shocks indicated a high contribution of cocoa yield in Indonesia to events of
exceptionally high price increases. The results seemed surprising at first, as it
is the most concentrated market among the three markets examined, not to
mention that Indonesia’s market share in the global cocoa market is signific-
antly lower than that of Céte d'lvoire. However, an in-depth study of the cocoa
literature has revealed a complex system in which some factors undermine the
natural equilibrium of the market. For Cote d'lvoire (as well as Cameroon and Ni-
geria), one or very few local organisations collect the vast majority of production
from the small farmers, most of whom have no access to market information.
Alternatively, they received a price set by the local government at the begin-
ning of the season, depending on future prices and stock exchanges (ITC and
UNCTAD/WTO., 2001). This price, however, is set low enough to ensure a pos-
itive return to the paying body. As it comes, over the years, the cocoa export
market in Ivory Coast has been privatised, so private export companies now col-
lect the production. As a result, there has not yet been an improvement in the
small farmers’ situation (Abbott et al., 2019). In such conditions, the farmers of
Céte d'lvoire take the critical decision right at the beginning of the growing sea-
son: they aim at increasing their production when the price they receive from
their government increases and vice versa.

In terms of forecasting results, [ML methods (RF and usually perform
better than the other models for any horizon that is longer than three months
into the future (Depends on the crop and month. For detailed results see Ap-
pendix [5.B). Concerning maize and soybean, provides noticeable higher
forecasting accuracy for Northern America’s new crop months. In cocoa, these
months, namely March, April and May, are the only ones in which models

Construction Industry Federation (CIF) Rotterdam



6.3. CONTRIBUTIONS 175

are considerably favourable over the other models, including[TBATS]

As a result, one might conclude that the effectiveness of the forecasting tool
proposed in a research study increases for sectors with fewer market distor-
tions. That is, the model is more suitable for competitive markets.

6.3 Contributions

This research project offers several contributions to the literature on price fore-
casting. Detecting the main drivers for maize prices changes using several
and econometric techniques, Essay | (3fd chapter) mainly contributed by present-
ing novel analytical methods for forecasting [AC] prices. The first article, which
was our first try to only accessible data and relatively simple models, revealed
that[ML algorithms are a legitimate tool to be used in the [AC] price forecasting
science. Moreover, it proved that these models do not have to be of the
"black-box" type and that their behaviour becomes interpretable when using
powerful visualisation techniques.

The second essay (4th chapter) continued the path started in the one before
and provided evidence, through several model interpretation techniques, that
prices in the maize market react strongly to changes in crop output changes in
Northern America, mainly of yield. The latter applies to 10 monthly prices per
year, apart from the last two months of the North American trade year. Our
importance ranking technique revealed a strong lead of Western Asia during
those two months. However, when focusing on specific events, Shapley value
presents relatively strong Western Asia and Northern Africa influencesf]

The third and final essay (sth chapter) found, through expanding the second
essay, substantial differences in the optimal forecasting approaches for each
unique price. It showed that for forecasting maize prices with the highest
accuracy, relative to the models tested in this thesis, regional yields is the most
recommended input to use. For soybean, most of the impact comes from re-
gional production, while cocoa prices are greatly affected by the local yield of
the six biggest producing countries. The application of multiple interpretation
techniques relative importance, Shapley value; with based analysis:
Shapley value and uncovered the remarkable impact each producing unit
has over the global monthly price and thus supplied an original tool to pre-
prepare to extreme price fluctuations.

*Together, Western Asia and Northern Africa (MENA) compose a whole region sharing some
common characteristics. In both areas, July and August open the regional trading year of maize.
With regards to Western Asia, these impacts are more of the negative direction, i.e., its main
contribution pushes the global price down
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This study followed three leading principles, i.e., concise comprehensibility,
interpretability and accessibility. Generally speaking, it contributed to the efforts
for promoting global food security.

6.3.1 Contribution |- Concise Comprehensible Forecasting Tool

As noted in the Approach and Methodologies chapter, an ideal model for this
research can capture multiple drivers to |AC| price fluctuations while remaining
relatively succinct. Whereas data collection could be an obstacle in the way of
such a model, this study successfully restricted the input to publicly available
data (annual crop production/yield), which the user can obtain in one simple
click. The user can turn this raw information into a usable grouped variable
by uploading the data into his personal computer and running the code. The
dependent variable of the model (global prices) transformed into its "model-
adapted" style in the same manner.

6.3.2 Contribution Il - Interpretable Forecasting Tool

In their article, Coyle and Weller| (2020) criticise researchers’ choice of ML mod-
els as a tool to analyse and predict policy-related questions. They argue that[ML]
models are often non-interpretable and thus prevent their users from under-
standing them and verifying the validity of their results. To overcome this chal-
lenge, we chose to construct all three articles based on interpretable models
and then used several model-agnostic (Molnar, 2019) visualisation techniques.

More specifically, the first step of conducting this research was to investigate
the causal relationship between the model’'s inputs and output. For this primal
information, we used the Granger indicator of causality (Granger, 1969). After
training the models, the contribution level to the prediction accuracy (RMSE) de-
termined the relative regional importance separately for each algorithm for each
month. Finally, the Partial Dependence Plots visually described the aver-
age responses of the maize price to relative maize yield changes in the regions
that ranked the highest by their contribution to the prediction accuracy of the
models.

In the second paper, the relative importance technique showed, again, the
relative influence of the features. Later, integration of the game-theory based
Shapley value enabled us to assess the marginal contribution of each of the pro-
ducing regions to specific events of the most extreme price shocks, in both pos-
itive and negative directions.

The third article combines several model interpretation techniques. Amongst
them is Shapley Additive Explanations (SHAP) of Lundberg and Lee|(2017).
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is an specific interpretation method based on the traditional Shapley al-
gorithm. Similar to the Shapley values,[SHAP|measures the contributions of each
feature to the model predictions. However, the main advantage of this innovat-
ive algorithm derives from its ability to combine a Shapley adapted [PDP|for an
interpretation that combines both quantification and visualisation measures.

6.3.3 Contribution Ill - Accessible Forecasting Tool

By being accessible, the model must be constantly ready for adaptation by the
food security strategic designer, i.e., the policymaker who uses it. The policy-
maker must have regular access to the model’s input to achieve this goal. Such
a model provides its users with the ability to understand what stands behind it
and a global comprehension regarding the market they face.

First, the forecasting program includes an alternative error valuation tool
named "Relative Advantage". Using this tool, users can explore whether the
forecasting model is sufficiently efficient relative to constant prediction and the
other models. "Relative Advantage|' provides a dynamic evaluation, dependent
on the required month and the time remaining until the due date. Second, the
model-agnostic techniques mentioned in the previous section indicate which
actor should the model-user examine with caution. By using it, policymakers
can design their strategy for up to one year before buying/selling the then
verifying its accuracy as the actual trade date approach.

We summarise the overall contribution with a hypothetical example showing
how to profit from this forecasting tool.

Often, decision-makers involved in food security programmes have a limited
annual budget, and the objective is to maximise the food security level of a pop-
ulation in need. The policymaker aims to purchase a sufficient amount of maize
(source of energy for humans and livestock), wheat, rice (sources of energy for
humans), soybean (source of protein for humans and livestock) for one year;
while saving as much as possible for a local production of fruits and vegetables.
Any budget left can potentially increase social welfare through steps such as in-
vestments in grain stock building or technologies. We assume that protein-rich
foods (eggs and dairy, with a limited amount of meat) do not have additional
costs besides feeding. Considering the costs and risks associated with storing
[Adincrease by the day, our model will return, for each crop and each month, the
forecasted costs of the actual crop purchase. The policymaker will then integ-
rate this information into the local costs function (including any details regard-
ing freight, storage, quality, or any other relevant factor) to detect the optimal
month(s) to purchase some quantity of each AC.
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6.4 Recommendations and future work

This doctorate thesis provides a comprehensible, interpretable and accessible
price forecasting and analysis tool for analysis horizons of one to twelve
months ahead. Moreover, it is accessible to whoever needs it as a ready to use
R or python package, which uses freely available data only. As of today, the
model examines three different internationally traded crops thoroughly. How-
ever, it involves the price forecasting of eight crops in total (final results are in
Appendix [A) and, thus, proves to be a substantially outperforming tool, which
is applicable for other[A(] besides maize, soybean and cocoa. Price forecasts in
this project are the output of one type of input (crop production or yield). Apart
from presenting a final result, the model provides an error analysis that indic-
ates the estimated risk, corresponding to the approximated forecasting error of
the model. The overall recommendation is to consider both forecasted price and
the model error and prefer acting in months where the risk of errors is small.

We use our model to highlight critical price change events, which should be
detected correctly to enable the model to be transparent for its users. One chal-
lenge with forecasting [AC| prices is that while one might care most about fore-
casting events of extreme fluctuations, these events are relatively rare. From a
food-security perspective, failing to identify extreme price change events might
be a worse outcome than missing events of moderate price changes. Tech-
niques such as the Shapley value algorithm can reflect these policy priorities in
the model. Our analysis highlights the importance of understanding the trade-
off between missing some production (yield) shocks in influential regions and
mistakenly putting more attention on the total global supply or even on the pro-
duction of regions with low-impact. Data on the costs of misinterpretation could
assist in evaluating the potential damage of any agricultural output shocks on
the food security level of vulnerable areas.

While doing the research, | first encountered the field of international
trade, along with the subject of machine learning. Over the past few years, |
have read numerous articles and listened to countless lectures, conferences
and opinions of experts from numerous fields. The chapters included in this
research paper do not show all the attempts to maximise our tool's contribu-
tion to the world of [AC price forecasting. We examined different explanatory
variables, either together or separately; analysed the predictive power based
on data from various sources of information and even examined dependence
according to harvest seasons versus local trading year dates. In addition, we
experimented with models from a wide array of possibilities while performing
different versions of the run in the models that we eventually included. To max-
imise the familiarity with the currently accepted methods and the overall op-
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tions available, segmentation of explanatory variables was also done based on
profound research work, which included the exploration of economic and agro-
nomic databases parallel to an investigation of the existing literature.

This forecasting tool may not be imminently relevant to all countries. The in-
ternational (World-Bank) prices examined in this study show the average monthly
value paid in direct global trading markets. This price is not necessarily a good
indicator of the consumer price level (part of income spent on food), which ulti-
mately determines his/her level of food security. As discussed concerning cocoa,
these prices do not always reflect the price paid for the farmer who produced
it. Here comes the great importance of the nature of the state importing or ex-
porting each AC. As explained in Sectionfi.2.3] while many high-income countries
manage well-planned programmes to protect consumers and producers from
price fluctuations, low-income countries cannot always do it efficiently. The bot-
tom line of the existence or in-existence of such programmes is the level at which
each country’s domestic price will fluctuate by the global price.

Alternatively, by the time data will be available in a sufficiently reliable and
rich manner, it could be beneficial to include annual grain-stocks change as one
of the model's inputs. Indeed, by their original role, large food stocks can com-
pensate for periods of poor harvest or high prices, and thus they function
as a social safeguard. Unfortunately, food stocking is a costly matter that is not
economically available for all nations. Furthermore, sufficient stocks can mit-
igate competition over food products. On the downside, overstocking can put
global markets out of their natural stabilisation, as happened at the beginning
of 2020, when China re-filled its grain stocks.

Undeniably, those who are less protected are also the most vulnerable ones.
However, unfortunately, those are also the ones who lack the tools to analyse
the global markets and forecast the optimal moment to purchase or sell agri-
cultural commodities. In such an uncertain environment, excessive volatility in
commodity prices negatively affects both producers and consumers. This lack
of information generally impacts farmers’ incomes and production and leads to
worse input investment decisions. The repercussions of commodity market in-
stability can also exacerbate poverty problems, particularly in rural areas. This
way, lack of information adds to the negative impact on food security in the most
vulnerable and import-dependent countries.

Another significant issue not considered here is the relationship between the
prices of different commodities. Throughout the thesis work, a price forecasting
model refers to each|ACJas independent of the others. However, in practice, as
the Shapley value showed very visibly in the result interpretation of the maize,
there is a strong relationship between the prices of substitute commodities. On
the nutritional level, maize is a carbohydrate and, hence it is a substitute for
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wheat, rice and sometimes soybean. Indeed, as a feed for livestock, price fluctu-
ations of these[AC]also reflect price fluctuations of other[AC/on the international
market and are used as a source of protein: meat and dairy products. In terms
of local prices, egg prices will also shift eventually, in line with grain prices. In its
aspect as an energy source, maize is used as a bio-fuel and therefore coordin-
ated, along with other commodities, with the prices of energy commodities: coal,
crude oils and natural gas.

As for cocoa and coffee, these are not essential in terms of nutritional
value to the consumer but constitute a single or significant source of income for
many small farmers, notably in developing countries in Western Africa. These[AC]
are grown mainly in the tropics and imported in the vast majority by high-income
countries. Producer prices fluctuate with the international price and are fre-
qguently determine their decision regarding land-allocation, changing between
cocoa and coffee trees (Gilbert, 2016).

Beyond the discussed above, the results derived by model-opening tech-
niques open the possibility for future studies that will address model improve-
ment. In this context, it is possible exploring other options for adding an ex-
planatory variable or converting to a different explanatory variable, examining
the forecast quality of additional models or constructing a forecast based on
running several models simultaneously. Another piece of advice is to analyse
possibilities for combining the different algorithms to create a model covering
several crops.

To conclude, this work offers a comprehensive and available tool for ana-
lysing and forecasting prices of agricultural commodities in time ranges of one
month to one year ahead. If used correctly, the proposed mechanism may con-
tribute to the food and economic security of households, farmers or other en-
tities in need. However, as already written in the first paragraph of the work,
this tool will bring maximum benefit if incorporated as part of a multidisciplin-
ary food security plan. Undoubtedly, food prices are a critical component but
investing in education (including education for proper nutrition and maintain-
ing a healthy lifestyle), health, employment and security are also necessary, as
fully detailed in the SDG website.


https://sdgs.un.org/
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Table A.1 - Forecasting cycle for monthly price of Arabica coffee

| Time lags (months)

| |
Month| 14 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 [10]11] 12 |
| | TBATS | GBM (Prod. Region) |
‘Jan | 0.68 | 0.65 | 0.54 | 0.44 | 0.40 | 0.36 | 0.40 | 0.23 | 0.08 | 0.05 |
| | TBATS | RF(Prod. local + py,y—1) |
| Feb | 0.54 | 0.33 | 0.30 | 0.21 | 0.10 | 0.09 | 0.08 | 0.12 | 0.08 |
| | TBATS | RF (Prod. Local + py, 1) |
| Mar | 0.67 | 0.28 | 0.14 | 0.13 |
| | TBATS | VAR (Prod. Local + pp, 1) |
| Apr | 0.82 | 0.54 | 0.20 | 0.08 |
| | TBATS | VAR (Prod. Local + pp, 1) |
| May | 0.62 | 0.50 | 0.33 | 0.12 |
| | TBATS | VAR (Prod. Local + p,, ;1) |
‘Jun | 0.66 | 0.41 | 0.31 | 0.22 | 0.03 |
| | TBATS | RF (Prod. Region) |
\JU| | 0.64 | 0.44 | 0.20 | 0.12 | 0.12 |
| | TBATS | VAR (Prod. Region) |
| Aug | 0.60 | 0.67 | 0.48 | 0.26 | 0.18 | 0.17 | 0.07 |
| | TBATS | RF (Prod. Region) |
| >ep | 0.78 | 0.60 | 0.61 | 0.45 | 0.21 | 0.14 | 0.13 | 0.07 |
| | TBATS | VAR (Prod. Region) |
| Oct | 0.65 | 0.59 | 0.53 | 0.46 | 0.27 | 0.14 | 0.09 | 0.09 |
| | TBATS | GBM (Prod. Region + py, y—1) |
| Nov | 0.71 | 0.48 | 0.42 | 0.34 | 0.41 | 0.23 | 0.1 |
| | TBATS | GBM (Prod. Region + p,,—1) |
| Dec | 0.65 | 0.47 | 0.39 | 0.31 | 0.21 | 0.37 | 0.20 | 0.14 |

Best models over annual production and different geographic scales
(continental, regional, local), for horizons of 1 to 12 months, relative to month.
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Table A.2 - Forecasting cycle for monthly price of cocoa

\ Time lags (months)

| |
Wonth| 1 |2 | 3 | 4|5 | 6|7 8lolw| nu
| | TBATS | VAR (Yield. Region) |
‘Jan | 0.69 | o0.55] 045027 | 0.18 |
| | TBATS | LM (Yield Local) |
Feb
| | 0.61 | 0.44 | 0.40 | 0.37 | 0.20 | 0.13 |
| |  TBATS | GBM (Yield Local + py, 1) |
| Mar | 0.51 | 0.40 | 0.31 |
TBATS GBM (Yield Local)
A
| Pr | 0.68 | 0.43 |
| | TBATS | GBM (Yield Local) |
| May | 059 | 0.48 |
| | TBATS | RF (Prod. Local) |
Jun
| | 0.62 |0.48]0.340.30 | 0.20 |
| | TBATS | RF (Prod. Local) |
Jul
| | 062 | 046 |0.32]022] 0.21 | 0.13 |
| | TBATS | LM (Yield. Region) |
| Aug | 071 | 054|039 028021022 ] 0.16 |
| | TBATS | LM (Yield. Region) |
| >ep | 0.63 | 0.62 | 043|029 021|043 0.6 | 0.10 |
| | TBATS | LM (Yield Local) |
\OCt | 0.59 |0.35]0.37 024 | 0.1 |
| | TBATS | VAR (Yield. Region) |
| Nov | 0.49 | 0.19 | 0.18 |
| | TBATS | VAR (Yield Region + p,,, 1) |
| Dec | 0.59 | 0.41 | 0.24 | 0.19 |

Best models over different variables (annual production or yield) and
geographic scales (continental, regional, local), 1 to 12 months ahead, relative to
month.
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Table A.3 - Forecasting cycle for monthly price of maize

Time lags (months)

| | |
(Month| 1 | 2 | 3| 4|5 |6 |7[8[e[10|n] 2]
| | TBATS | GBM (Yield. Region) |
‘Jan | 0.73 | 0.64 | 0.46 | 0.37 |
| | TBATS | GBM (Yield. Region) |
Feb
| | 0.75 | 0.59 | 0.53 | 0.38 | 0.29 |
| | TBATS | GBM (Yield. Region) |
Mar
| | 0.78 |0.59|0.47 | 041 03 | 0.22 |
| | TBATS | VAR (Prod. Local + pp, ;1) |
Apr
| | 0.67 | 055 041034 | 0.25 |
| | TBATS | VAR (Prod. Local + py, ;1) |
| May | 0.68 | 0.64 | 0.47 | 0.30 | 0.23 |
| | TBATS | GBM (Prod. Region) |
Jun
| | 0.61 | 055|048 0.39]031]024 | 0.19 |
| | TBATS | CART (Yield. Region) |
\JU| | 0.44 | 0.28 | 0.29 | 0.24 | 0.23 |
| | TBATS | CART (Prod. Region) |
Aug
| | 061 | 0.31 |
| | TBATS | LM (Prod. Region) |
5P| 046 | 0.21 |
| | TBATS | GBM (Yield Local + py, 1) |
Oct
| | 057 | 0.37 |
| |  TBATS | GBM (Yield Local) |
| Nov | 0.63 |0.36 | 0.28 |
| | TBATS | GBM (Yield Region + p,,, , 1) |
Dec
| | 0.72 | 056 | 0.33 | 0.31 |

Best models over different variables (annual production or yield) and
geographic scales (continental, regional, local), 1 to 12 months ahead, relative to
month.



Table A.4 - Forecasting cycle for monthly price of palm-oil
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\ Time lags (months)

| |

Month| 1 | 2 | 3 | 4 | 5 |6 |7/8laf0 | 1 |

| | TBATS | GBM (Yield Local) |

\Jan | 0.71 | 0.53 | 0.35 | 0.37 |

| | TBATS | LM (Prod. Region) |
Feb

| | 0.77 | 0.57 | 0.48 | 0.36 | 0.29 |

| | TBATS | LM (Prod. Region + p,,,,—1) |
Mar

| | 0.72 | 0.61 | 0.45 | 0.41 | 0.29 | 0.22 |

| | TBATS | VAR (Prod. Local + pp, 1) |
Apr

| | 0.57 | 0.44 | 0.41 | 0.28 | 0.25 |

| | TBATS | VAR (Prod. Local + pp, ;1) |
May

| | 0.67 | 0.43 | 0.31 | 0.33 | 0.23 |

| | TBATS | VAR(Prod. Local + ppy-1) |
Jun

| | 0.72 | 0.46 | 0.33 | 018 | 0.22 | 0.13 |

| | TBATS | VAR (Prod. Local + py, 1) |

‘Jul | 0.54 | 0.44 | 0.23 | 0.37 | 0.09 | 0.11 | 0.08 |

| | TBATS | VAR(Prod. Local + pyy-1) |
Aug

| | 0.51 | 0.33 | 0.29 | 0.14 | 0.16 | 0.09 |

| | TBATS | VAR (Prod. Region + p, ;1) |
Sep

| | 0.77 | 034 | 033 | 0.3 | 0.18 |

| | TBATS | GBM (Yield Local + p,, 1) |
Oct

| | 0.65 | 0.55 | 0.37 |

| | TBATS | GBM (Yield Local) |

| Nov | 0.66 | 0.42 | 0.43 | 0.28 |

| | TBATS | GBM (Yield Local) |
Dec

| | 0.72 | 0.56 | 0.33 | 0.31 | 0.27 |

Best models over different variables (annual production or yield) and

geographic scales (continental, regional, local), 1 to 12 months ahead, relative to

month.
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Table A.5 - Forecasting cycle for monthly price of rice

\ Time lags (months)

| |

Month| 1 | 2 | 3 | 4 | 5 | 6 [7|8]9|10]11] 12|

| | TBATS | LM (Prod. Region + py, ;1) |

‘Jan | 0.71 | 0.53 | 0.42 |

| | TBATS | VAR (Yield Local + pyy 1) |
Feb

| | 0.77 | 0.57 | 0.48 | 0.36 | 0.18 | 0.14 |

| | TBATS | VAR (Prod. Region) |
Mar

| | 0.72/| 0.61|0.45 | 0.41 | 0.29 | 0.19 |

| | TBATS | VAR(Prod. Local + 1) |
Apr

| | 0.57 | 0.44 | 0.41| 0.28 | 0.09 | 0.05 |

| | TBATS | VAR(Prod. Local + pyy—1) |
May

| | 0.67 | 0.43 | 0.31] 0.33 | 0.20 | 0.1 |

| | TBATS | GBM (Yield Local) |

‘Jun | 0.72 | 0.46 | 0.33 | 0.18 | 0.22 | 0.16 |

| | TBATS | RF (Yield Local) |

\JU| | 0.54 | 0.44 | 0.23 | 0.37 | 0.09 | 0.09 |

| | TBATS | GBM (Yield Local) |
Aug

| | 0.51 | 0.33 | 0.29 | 0.14 | 0.12 |

| | TBATS | RF (Yield Local + py, y—1) |
Sep

| | 0.77 | 034 | 0.33 | 0.3 0.13 | 0.08 | 0.05 |

| | TBATS | LM (Prod. Region + py, ;1) |
Oct

| | 0.65 | 0.55 | 0.44 |

| | TBATS | LM (Prod. Region) |
Nov

| | 0.66 | 0.42 | 0.43 | 0.24 |

| | TBATS | LM (Prod. Region + py, ;1) |
Dec

| | 0.73 | 0.45 | 0.30 | 0.36 | 0.19 |

Best models over different variables (annual production or yield) and
geographic scales (continental, regional, local), 1 to 12 months ahead, relative to
month.
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Table A.6 - Forecasting cycle for monthly price of Robusta coffee

‘ Time lags (months)

Month| 4 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11 | 12

|

|

| | TBATS | |
Jan

| | 0.76 | 0.62 | 0.51 | 0.26 | 0.17 | 0.14 | 012 | 0.12 | 0.08 | |

| | TBATS | RF(Prod. Local) |
Feb

| | 0.76 | 0.64 | 0.54 | 0.45 | 0.23 | 0.14 | 0.12 | 0.10 | 0.09 | 0.05 |

| | TBATS | |
Mar

| | 0.73 | 0.53 | 0.45 | 0.42 | 0.35 | 0.16 | 0.10 | 0.11 | 0.09 | 0.07 | 0.04 | |

| | TBATS |

| Apr | 0.76 | 0.57 | 0.39 | 0.35 | 0.35 | 0.31 | 0.12 | 0.08 | 0.08 | 0.05 | 0.03 | 0.02 |

| | TBATS | |

| May | 0.82 | 0.57 | 0.42 | 0.27 | 0.25 | 0.26 | 0.24 | 0.06 | 0.03 | 0.04 | 0.01 | |

| | TBATS | |

‘Jun | 0.80 | 0.68 | 0.55 | 0.37 | 0.23 | 0.22 | 0.22 | 0.22 | 0.04 | 0.03 | 0.02 | |

| | TBATS |

‘Jul | 0.81 | 0.69 | 0.60 | 0.51 | 0.36 | 0.23 | 0.21 | 0.19 | 0.20 | 0.02 | 0.01 | 0.01 |

| | TBATS | | |
Aug

| | 0.71 | 0.65 | 0.64 | 0.55 | 0.44 | 0.36 | 0.20 | 0.21 | 0.16 | 0.16 | | |

| | TBATS | CART (Prod. Local) |

| >ep | 0.74 | 0.50 | 0.44 | 0.44 | 0.34 |

| | TBATS | |
Oct

| | 0.47 | 0.40 | 0.3 | 0.28 | 0.28 | 0.25 | 013 | 0.1 | |

| | TBATS | |
Nov

| | 0.76 | 0.37 | 0.3 | 0.25 | 0.23 | 0.21 | 0.19 | 0.07 | 0.05 | |

| | TBATS | |

‘ Dec ‘

| 0.74 | 0.59 | 0.28 | 0.20 | 0.18 | 0.16 | 0.15 | 0.11 | 0.01 |

Best models over annual production and different geographic scales
(continental, regional, local), for horizons of 1 to 12 months, relative to month.
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Table A.7 - Forecasting cycle for monthly price of soybean

\ Time lags (months)

| |

[ Month| 1 | 2 | 3 |4|5|6|7[8|9]10]11]12]

| | TBATS | LM (Yield. Region) |
Jan

| | 072 | 0.53 |

| | TBATS | VAR(Yield Local + ppy—1) |
Feb

| | 0.56 | 0.51 | 0.44 | 0.4 |

| | TBATS | RF (Prod. Region + p,,, 1) |
Mar

| | 0.63 |0.59 | 0.48 |

| | TBATS | RF (Prod. Region + p,,, ,_1) |
Apr

| | 0.42 | 0.38 |

| | TBATS | CART (Prod. Region) |
May

| | 029 | 0.26 |

| | TBATS | GBM (Yield. Region) |
Jun

| | 053 | 0.31 |

| | TBATS | VAR (Prod. Local + py, 1) |

| Jul | 036 | 0.28 |

| | TBATS | GBM (Prod. Local) |
Aug

| | 0.49 | 0.24 | 0.19 | 0.12 |

| | TBATS | GBM (Prod. Local) |
Sep

| | 055 |0.32 ] 0.22 |

| | TBATS | GBM (Prod. Region) |

1O | 068 | 046 037 |

| | TBATS | GBM (Prod. Region) |
Nov

| | 0.56 | 0.40 | 0.29 | 0.19 |

| | TBATS | GBM (Prod. Region + p, 1) |
Dec

| | 0.64 | 038|031 | 0.24 |

Best models over different variables (annual production or yield) and
geographic scales (continental, regional, local), 1 to 12 months ahead, relative to
month.
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Table A.8 - Forecasting cycle for monthly price of wheat

\ Time lags (months)

|

(Month| 1 | 2 | 3 | 4 | 5 | 6 | 7 |[8]|9|10]|11] 12

| | TBATS | GBM (Yield Local) |

‘Jan | 0.79 | 055|036 0.32 | 0.28 |

| | TBATS | LM (Prod. Region + py,y—1) |
Feb

| | 0.72 | 0.64 | 0.47|0.37]032] 0.19 |

| |  TBATS | GBM (Yield Local + py, 1) |
Mar

| | 0.51 | 0.40 | 0.19 |

| | TBATS | VAR (Prod. Local + pp, 1) |

| Apr | 0.68 | 0.25 |

| | TBATS | VAR (Prod. Local + pp, ;1) |
May

| | 059 | 0.23 |

| | TBATS | VAR (Prod. Local + py, 1) |
Jun

| | 0.62 |0.48|0.34 | 0.30 | 0.13 |

| | TBATS | LM (Prod. Region) |
Jul

| | 0.62 | 046 |0.32] 022 0.21 | 0.12 |

| | TBATS | VAR (Prod. Local + py, 1) |
Aug

| | 071 | 054|039 028021022 ] 0.09 |

| | TBATS | CART (Prod. Local) |

| >ep | 0.63 | 0.62 | 043|029 0210430416 | 0.11 |

| | TBATS | GBM (Yield Local + py, 1) |

\OCt | 0.59 |0.35]0.37 024 | 0.37 |

| | TBATS | GBM (Yield Local) |
Nov

| | 0.49 | o0.22 | 0.28 |

| | TBATS | GBM (Yield Local) |
Dec

| | 0.66 | 0.45 | 0.45 | 0.27 |

Best models over different variables (annual production or yield) and
geographic scales (continental, regional, local), for horizons of 1to 12 months,
relative to month.
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Table A.g9 - Data sources 1/2

| Crop | Agricultural output | Monthly prices |
| Arabica, coffee | PSD Data Setes (2021) | PSD Data Setes (2021) |
| Cocoa | FAO STAT (2020) | FAO STAT (2020) |
| Maize | FAO STAT (2020) | World Bank, Pink Sheet (2020) |
| Palm-oil | FAO STAT (2020) | World Bank, Pink Sheet (2020) |
| Rice | FAO STAT (2020) | World Bank, Pink Sheet (2020) |
| Robusta, coffee | PSD Data Setes (2021) | World Bank, Pink Sheet (2020) |
| Soybean | FAO STAT (2020) | World Bank, Pink Sheet (2020) |
| Wheat | FAO STAT (2020) | World Bank, Pink Sheet (2020) |

Table A.10 - Data sources 2/2

| | References |
| PSD Data Setes | ‘apps.fas.usda.gov/psdonline |
| FAO STAT | www.fao.org/faostat |

|

\ World Bank, Pink Sheet \ www.worldbank.org/en/research



https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads
https://www.fao.org/faostat/en/#data
https://www.worldbank.org/en/research/commodity-markets
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Résumé : Serait-il possible de développer un outil de
prévision des prix des produits agricoles de base qui soit
a la fois précis, interprétable et accessible au plus grand
nombre ? Un tel outil permettrait a ceux qui n'ont pas la
capacité financiére ou le bagage technique appropriés
de prévoir les prix des produits agricoles de base, un ou
plusieurs mois a l'avance. Ce doctorat explore la
faisabilité de cette idée en trois parties : L'objectif de la
premiere partie est de tester la capacité de plusieurs
modeles statistiques et d'apprentissage automatique a
simuler les variations du prix du mais en fonction des
variations annuelles de production et de rendement du
mais observées dans les principales régions
productrices. Dans la deuxieme partie de la thése, les
modeles développés dans la premiere partie sont
adaptés pour effectuer des prévisions mensuelles de
prix du mais. Nous comparons les performances de ces
modeéles a celles de techniques prédictives souvent
utilisées pour I'analyse des séries chronologiques. Enfin,
dans la troisieme partie, nous étendons le travail réalisé
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sur le mais a deux autres cultures tres différentes - le et le
cacao. Nous analysons la capacité des techniques de
prévision mises au point dans la partie précédente a
prédire les variations de prix du soja et du cacao et nous
analysons également l'effet de I'échelle géographique
considérée pour calculer les variations de production. Dans
cette partie également, nous montrons comment les
méthodes d'apprentissage machine peuvent étre utilisées
pour identifier les chocs de production a I'origine des chocs
de prix. Globalement, cette thése montre que les méthodes
d'apprentissage  automatique  sont des  outils
potentiellement utiles a la fois pour comprendre I'impact
de la production agricole sur les variations de prix et pour
prédire ces variations plusieurs mois a l'avance. Ces
approches sont assez faciles a appliquer et peuvent étre
calibrées avec des données de prix et de production
publiquement accessibles. Elles peuvent ainsi contribuer a
démocratiser I'analyse et la prévision des variations de prix
agricoles.

Abstract Would it be possible to develop a
forecasting tool for agricultural commodity (AC) prices
that is both accurate and interpretable and publicly
accessible? Such a tool could turn the forecasting and
analysis of food prices into an implementable
instrument used by whoever is concerned by food
security. This PhD explores the feasibility of this idea in
three parts: The first part aims to test the ability of
several statistical and machine learning (ML) models to
simulate changes in maize prices based on annual
changes in maize production and yield observed in
major producing regions. The second part of the thesis
applies the models developed in the first part and adapt
them to produce monthly forecasts of maize prices. We
compare the performance of these models to that of
forecasting techniques often used for time

Title : Agricultural Commodity Price Forecasting Using Comprehensive Machine-Learning Techniques
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series analysis. Finally, the third part extends the model to
consider two other different crops — soybeans and cocoa.
We evaluate the forecasting ability of the techniques
developed in the previous stages to predict price changes
for soybeans and cocoa. Additionally, we test the sensitivity
of the results relative to three geographic scales. Also is the
application of ML methods to identify which production
shocks drive price shocks. Overall, this thesis shows that ML
methods are a potential tool for understanding and
forecasting the impact of agricultural production on price
variations. These approaches can be easily implemented
since they rely on publicly available data, accessible via
public website. These tools can thus contribute to
democratising the analysis and forecasting of variation in
AC prices.
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