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Unwanted thermoacoustic instabilities are harmful to combustion systems that suer from them such as gas turbine combustors operating under lean premixed conditions.

Advanced monitoring systems are needed to estimate and forecast the phenomenon to assist in decision making and automatic stabilization. In this thesis we propose using a distributed description of acoustics interfaced to heat release models, with nonlinearities whenever possible, to describe the instabilities. State and parameter estimation algorithms taking these dynamic eects into account are explored. Two dierent levels of complexity are considered: we start with a laboratory setup and move towards a model of longitudinal thermoacoustic modes in a can combustor.

First, state estimation for the electrically heated Rijke tube is considered. A globally convergent observer, taking into account nonlinearities from the electrical heater and distributed dynamics, is proposed and analysed. This is paired with a parameter identier for estimating boundary acoustic impedances. The state observer and parameter identier are tested both in simulations and experimentally. Next, a parameter identier to estimate both boundary parameters of 2×2 linear hyperbolic systems with a single boundary measurement is proposed. Also, a transient model of acoustics in a duct with spatially varying cross-sectional area is derived. Using these two results together the boundary parameter estimation scheme for the Rijke tube is extended to more general ducts. An output feedback controller, combining a full-state feedback control law and collocated boundary observer, for longitudinal thermoacoustic instabilities in a model of a can combustor with distributed acoustics and a linear ame model is proposed next. Convergence is proven and it is tested in simulations. Lastly, the state estimation problem for a can combustor model with a nonlinear ame is considered. Neural networks are used to design an observer for the ame subsystem, which is subsequently veried on CFD data. v Acknowledgments This thesis would not have been possible were it not for the input, collaboration and support from a large number of individuals. First and foremost I would like to thank my advisor Florent Di Meglio

i Résumé Les instabilités thermoacoustiques sont néfastes pour les systèmes de combustion dans lesquels elles apparaissent, tels que les chambres de combustion de turbines à gaz. Des systèmes de surveillance avancés sont nécessaires pour estimer et prévoir ce phénomène an de le prévenir, et possiblement de le supprimer grâce à des méthodes de contrôle. Dans cette thèse, nous proposons d'utiliser une description sous forme de systèmes à paramètres distribués des phénomènes acoustiques couplés à des modèles de dégagement de chaleur. Les non-linéarités sont prises en compte chaque fois que possible, pour décrire les instabilités. Des algorithmes d'estimation d'état et de paramètres prenant en compte ces eets dynamiques sont proposés.

Deux niveaux de complexité diérents sont considéré. D'une part, on s'intéresse à une conguration de laboratoire et un modèle de modes thermoacoustiques longitudinaux dans une chambre de combustion. Pour ce système, un estimateur de l'état d'un tube de Rijke chaué électriquement est synthétisé. Puis, un observateur globalement convergent, prenant en compte les non-linéarités du réchaueur électrique et la dynamique distribuée, est proposé et analysé. Celui-ci est associé à un algorithme d'identication de paramètres pour estimer les impédances acoustiques aux frontières du domaine spatial. L'observateur d'état et l'identication de paramètres sont testés à la fois dans des simulations et expérimentalement. Ensuite, nous proposons un algorithme pour estimer les deux paramètres aux limites de systèmes hyperboliques linéaires 2 × 2 avec une seule mesure aux limites. En outre, un modèle dynamique de l'acoustique dans un conduit avec une section transversale variable dans l'espace est dérivé. En utilisant ces deux résultats ensemble, le schéma d'estimation des paramètres aux limites pour le tube de Rijke est étendu à des conduits plus généraux. Un bouclage de sortie, combinant une loi de commande par retour d'état et un observateur frontière colocalisé, pour les instabilités thermoacoustiques longitudinales dans un modèle d'une chambre de combustion avec acoustique distribuée et un modèle de amme linéaire est ensuite proposé. Enn, nous proposons un estimateur d'était pour un modèle de chambre de combustion avec une amme non linéaire. Une méthode basée sur l'utilisation de réseaux de neurones est utilisée pour concevoir un observateur pour le sous-système de amme, qui est ensuite vérié sur les données CFD. Dans ce chapitre introductif, le sujet de la thèse est motivé et une revue de la littérature des travaux antérieurs sur le sujet est présentée. Par la suite, notre approche est introduite et comparée aux approches précédentes, assurant sa nouveauté et l'intérêt d'appliquer une telle approche. Une liste de contributions et de publications qui sont un résultat direct du travail présenté ici est énoncée, avant que la structure de la thèse ne soit expliquée.

Introduction

In this introductory chapter, the thesis topic is motivated and a literature review of previous work on the topic is presented. Thereafter our approach is introduced and compared to previous approaches, ensuring its novelty and the interest of applying such an approach. A list of contributions and publications which are a direct result of the work presented here are stated, before the thesis structure is explained.

Background

The ever increasing demand of energy and transport in society since the industrial revolution has gone hand in hand with an increase in emissions into the atmosphere, which in turn contribute to undesirable eects such as global warming and more extreme weather patterns [START_REF] Masson-Delmotte | [END_REF]. One particular technology which has, since the rst useful one in the sense of providing net power output was built in 1903 by AEgidius Elling [START_REF] Bakken | [END_REF]], been especially ubiquitous in both power generation applications and for use as a propulsion system for vehicles such as ships and aircraft [Nasir et al. 2018] is the gas turbine (see Figure 1.1). Since then numerous improvements to the technology have been developed, with more ecient power outputs and cleaner emissions in each generation. One direction of improvement which is especially promising with respect to decreasing emissions into the atmosphere, especially in the form of N O x formation, and hence contributing to an overall cleaner technology is the operation of gas turbines under so-called Figure 1.1: Siemens SGT-750 gas turbine (left) and cross section of combustion chamber (right). From [START_REF] Rashwan | [END_REF].

lean premixed conditions [Seo 2003]. The main challenge faced in implementing this technique in practice is the increased likelihood of detrimental thermoacoustic instabilities [START_REF] Lieuwen | [END_REF] in the combustion chamber, the part of the gas turbine shown on the right of Figure 1.1, under this operating regime. Due to the widespread use of and reliance on gas turbines by society, overcoming this issue would be a signicant contribution towards solving the current climate crisis.

Within the context of their spontaneous occurrence in combustion chambers, thermoacoustic instabilities are an undesirable phenomenon, with consequences ranging from wear and tear in the less severe cases up to the combustor exploding in the more extreme cases [Poinsot 2017], possibly in a matter of seconds. An Figure 1.2: Burner assembly that has been damaged by thermoacoustic instabilities.

From [Goy et al. 2005].

example from [Goy et al. 2005] of a burner assembly that has undergone a beating from these instabilities is shown in Figure 1.2. As noted in [START_REF] Mcmanus | [END_REF],

answering the question of whether or not a combustor will suer from such instabilities is notoriously dicult to answer in the design and even production stages, with thermoacoustic oscillations usually rst being observed in latter stages of the development cycle.

Thermoacoustic instabilities were initially studied as a physical curiosity before they became an issue in practical technologies, with the rst published study based on work by [START_REF] Higgins | On the sound produced by a current of hydrogen gas passing through a tube[END_REF]]. This was followed by work in [Rijke 1859], which standardized the experimental setup now known as the Rijke tube by generating thermoacoustic instabilities via a heated gauze placed in the lower half of an openended tube. A physical mechanism for the instability is qualitatively suggested in [START_REF] Rayleigh | Lord Rayleigh. The explanation of certain acoustical phenomena[END_REF]], later to be quantied more precisely in [START_REF] Putnam | [END_REF].

In practice and with thermoacoustic instabilities possibly occurring in a wide range of combustion technologies, such as solid [Price 1969] and liquid [Crocco 1965] propellant rocket motors, ramjets [START_REF] Rogers | [END_REF], turbojet thrust augmenters [Bonnell et al. 1971], boilers [Putnam 1971] and furnaces [START_REF] Lieuwen | [END_REF] to give a non-exhaustive list, a high number of dierent factors play in and hence the precise classication of thermoacoustic instabilities is a dicult task.

In [Williams 2018] thermoacoustic instabilities due to combustion are classied in three dierent categories:

1. Intrinsic instabilities.

2. Chamber instabilities.

3. System instabilities.

The rst of these, intrinsic instabilities, occur when there is some unstable feedback mechanism of a combustion process interacting with itself and is often characterized by being of lower frequency than the other types. A well-known mathematical model that gives an example of this type of instability mechanism on laminar ame fronts is the Kuramoto-Sivashinsky equation [Kuramoto 1978, Sivashinsky 1977],

and has been studied recently by multiple authors from a system dynamics perspective due to its interesting instability properties (see e.g. [Liu & Krsti¢ 2001, Baudouin et al. 2013[START_REF] Coron | [END_REF]). Such instabilities are however outside the scope of this work, and instead the focus is directed towards the second type, namely chamber instabilities. In practice these occur when combustion occurs inside a conned volume, which is the case one has inside gas turbine combustion chambers. Compared to intrinsic instabilities, these instabilities tend to be characterized by much higher frequencies, typically dominated by the acoustic properties of the combustor. The main mechanism driving the instability here is the acoustics in the chamber being in phase with the heat release process, causing a selfsustaining oscillation that grows exponentially until being saturated by nonlinear eects [START_REF] Sujith | [END_REF]]. The third type of instability, system instabilities, occur due to the interaction of the combustion system with other parts of the system, such as the feed or exhaust system. These are however also outside the scope of this work.

Approach

To deal with the thermoacoustic instability issue, one must disrupt the constructive coupling between heat release and acoustic waves in some sense. Much of the early work on tackling this problem has been based on applying what one can consider traditional engineering approaches of physically augmenting the system, known as passive control methods (see e.g. [Culick 1988]). Passive methodologies are still an active eld of development and some of the strategies employed include but are not limited to Helmholtz resonators [Gysling et al. 2000], acoustic liners for internal damping inside the combustor [Eldredge & Dowling 2003] and quarter wave tubes [Zahn et al. 2016].

Analysing the frequency domain properties [Zahn et al. 2015] of combustors ts naturally well with passive stabilization methods because they allow investigations, such as sensitivity analyses [Magri & Juniper 2013] and determinations of stability margins [Betz et al. 2017], into how the ad-hoc system augmentation inuences the overall system eigenvalues to be readily performed.

As noted in [START_REF] Morgans | [END_REF], a drawback of passive methodologies is that they are potentially expensive and time consuming to implement due to their bespoke nature, and often times they only work under specic operating conditions.

A possibly more exible approach is active stabilization methods, which were already investigated in a theoretical setting for instabilities in rocket engines in the 1950s [Tsien 1952]. The rst experimental studies on empirically based control strategies of feeding back a phase-shifted and amplied sensor signal, tuned via a trial-and-error approach, started being performed for the Rijke tube around three decades later in [Dines 1984]. Since then a multitude of dierent approaches have been studied, with an overview of contributions up to the mid-2000s

given in [Dowling & Morgans 2005]. Gradually more and more model-based control strategies started appearing, with some notable contributions from around the turn of the millennium being [START_REF] Krsti¢ | [END_REF], Annaswamy et al. 2000].

In this thesis the main focus is the design of model-based algorithms for estimating unmeasured states and unknown parameters of transient models reproducing thermoacoustic instabilities. The literature on model-based estimation methods for thermoacoustic instabilities is highly sparse in comparison to its control counterpart, but some notable contributions are [Hong & Lin 2007, de Andrade et al. 2020] and a review of typical sensors used are given in [START_REF] Docquier | [END_REF]. The intended application of these algorithms would be to run in real time with the physical process, where use cases could be general monitoring and in early-warning systems, but also in conjunction with control algorithms that need access to unmeasured state and parameter data. A trade-o one faces in the modelling stage for such algorithm design is model complexity, where one wants a model that is simple enough that it can be run online, but complex enough to capture the most important features of the dynamics. Two important aspects of thermoacoustic instabilities (of the chamber instability type) is the distributed nature of the acoustics but also strong nonlinearities in the heat release model, which has an eect of saturating the thermoacoustic instability into a limit cycle oscillation [Han et al. 2015].

Many of the previous model-based control and estimation algorithms from the literature base themselves on an approach of rst lumping the mathematical model into a nite dimensional model (see e.g. [Bonciolini et al. 2021]), basing the algorithm design on this reduced model. This approach is often referred to as earlylumping. A well-known issue from vibration control that can come up with earlylumping is the so-called spillover phenomenon [Sa et al. 2018], where higher order modes that have been neglected in the modelling are inadvertently destabilized. The spillover phenomenon has been observed in experiments involving control of thermoacoustic instabilities with early-lumped model-based controllers, see e.g. [START_REF] Bloxsidge | [END_REF], Gulati & Mani 1992]. A way of overcoming this issue is to take a so-called late-lumping approach, where the full distributed nature of the dynamics is taken into account in the algorithm design, only discretizing the model in the implementation stages.

In this thesis a late lumping approach is taken for the model-based estimation algorithm design, aiming to preserve the distributed nature of the phenomenon as much as possible, yet basing the algorithm design on a model that is feasible to implement in real time. Little work of this type has been addressed previously in the literature for application towards thermoacoustic instabilities. In the past decade some work has been done taking a similar approach for the Rijke tube [Olgac et al. 2014, Epperlein et al. 2015, de Andrade et al. 2018a], but the heat release models are in this case always linearized, thus losing the important nonlinear nature of the phenomenon. Hence, the aim of this thesis is to explore the design of model-based estimation algorithms for thermoacoustic instabilities that take into account both the distributed and nonlinear aspects, whenever possible.

The general model structure that will be used to describe the chamber instabilities is that of coupled Partial Dierential Equation (PDE)Ordinary Dierential Equation (ODE) models [START_REF] Barreau | [END_REF][START_REF] Ghousein | [END_REF], where roughly speaking the PDE represents the chamber acoustics and the ODE represents the heat release model. Also, as discussed extensively in [Poinsot 2017], the literature heavily focuses on studies investigating laboratory setups but which are not directly useful for understanding and tackling the problem of thermoacoustic instabilities in practical engines. Although the work in this thesis uses the Rijke tube as a starting point, the aim is to leverage this as a stepping stone towards estimation design for more complicated mathematical models that can better describe a combustion chamber towards the second half of the work. This can then serve as a general framework for further investigations of the same nature, where the algorithms can be extended to larger scale system instabilities, or be modied to take into account the smaller scale eects of intrinsic instabilites. Also, the framework could be extended to design estimation algorithms for more complicated chamber instabilities such as those found in annular combustors.

For the algorithm designs, we assume limited instrumentation is available. Precisely, all the algorithms considered assume a single pressure measurement is available, only. Arguably the most important states to estimate when regarding chamber instabilities is the distributed pressure and velocity together with heat release rate.

A parameter of high signicance in the stability properties of chamber instabilities, but which is typically dicult to know a priori, are the boundary acoustic impedances. Hence focus will be placed on estimation of these parameters. Overall, the objectives of the thesis can be summarized as follows:

1. Design observers estimating distributed states and heat release under perfect model assumptions.

2. Design parameter identication algorithms relying on parsimonious measurements.

3. When possible, take into account the nonlinearity of the heat release process.

Next, in Section 1.3 the contributions of the thesis are stated, before the thesis structure is summarized in Section 1.4.

Contributions

Following on from the statement of objectives in Section 1.2, we state here the main contributions which have come about as a result of this thesis work. They can be summarized as follows:

1. A globally convergent state observer for the Rijke tube, using a distributed model of the acoustics and a nonlinear model of the heat release rate, has been designed and analysed. It has also been tested in simulations and experimentally.

2. A distributed transient model of the acoustics, suitable for control and estimation algorithm design, in a duct with spatially varying cross-sectional area is derived. This model generalizes the model of acoustics in a duct with constant cross-sectional area. Also, the coupling with a ame at a boundary with sudden area expansion has been treated.

3. A parameter identication scheme for estimating both boundary acoustic impedances of the Rijke tube, relying on a single pressure measurement is derived. It is tested in simulations and experimentally. Also, using the model from Contribution 2, how this scheme generalizes to the case of a duct with spatially varying cross-sectional area has been considered.

4.

A state observer and full-state feedback controller for a linearized model of a can combustor, assuming actuation is collocated to the pressure sensor, has been designed. These can be combined into an output feedback controller.

The designs have been tested in simulations.

5. An observer for a nonlinear ame model has been designed numerically using neural networks. The observer has been veried using Computational Fluid Dynamics (CFD) data.

Part of the work presented in this thesis has resulted in the following rst-author publications:

• Submitted.

It should also be noted that some of the work presented in this thesis is as of yet unpublished, and may warrant future publication.

Thesis structure

Part I This part presents the problem considered and states underlying assumptions. It lays the groundwork for the remainder of the thesis.

Chapter 1 In this chapter, which is the current one, background literature on the problem has been introduced. The approach taken and contributions are stated.

Chapter 2 This chapter is responsible for presenting the mathematical models the algorithm designs appearing in Part II & III are based on. Part of the content in this chapter appears in [Wilhelmsen & Di Meglio 2021].

Part II For this part of the thesis the Rijke tube, a laboratory setup, is considered.

The state observation and boundary parameter identication problems are solved.

Chapter 3 In this chapter, a state observer for the Rijke tube is derived and analysed, before being tested in simulations and experimentally. Part of this chapter appears in [Wilhelmsen & Di Meglio 2020b].

Chapter 4 Here the acoustic boundary parameter identication problem is considered.

A simple scheme for estimating both boundary parameters with a single pressure sensor is proposed, and afterwards tested in simulations and experimentally.

Part of the material presented in this chapter appears in [Wilhelmsen & Di Meglio 2020a].

Part III The aim of this part is to move the study of estimation algorithms from a laboratory setup towards more complicated combustor dynamics.

Chapter 5 In this chapter, the boundary parameter identication scheme problem for general 2 × 2 linear hyperbolic PDEs is studied. A generalization of the estimation scheme from Chapter 4 to more complicated combustor acoustics is suggested. The main contribution from [Wilhelmsen & Di Meglio 2020a] is presented in this chapter, along with a minor unpublished result.

Chapter 6 This chapter derives an output feedback controller for a linearized model of a combustor with distributed acoustics. All of this chapter is based on content from from [Wilhelmsen & Di Meglio 2021].

Chapter 7 Here the state observer design for a combustor model with distributed acoustics but nonlinear ame model is considered. Using results from the literature, the state estimation problem is reduced to the problem of static function approximation, for which neural networks are employed. The nonlinear observer is veried on CFD data. All the novel material in this chapter is as of yet unpublished.

Part IV This last part suggests some conclusions, and houses the appendix and bibliography.

Chapter 8 In this chapter the progress made is summarized, and reections are made. Some directions for further research are proposed. The mathematical models which form the basis for the rest of the thesis are developed in this chapter. It starts with introducing the general approach to modelling taken, which is a time domain network model approach. This approach considers the thermoacoustic system as consisting of multiple subsystems with well-dened interfaces. Heat release models are the rst type of subsystem to be covered. Two types are considered, namely heat release from an electrical heater and heat release due to ames. We then derive a model of the acoustic phenomenon. We propose a model suitable for estimation and control algorithm design, describing longitudinal oscillations in a duct with spatially varying geometry. It is simplied to two special cases, the rst one being for zero mean ow and the second special case being the model for acoustics in a duct with constant cross-sectional area. The third type of subsystem, acoustic impedances, are considered next. This is followed by the description of coupling between the heat release and acoustics, before the complete network models that will be considered throughout the thesis are summarized.

Modelling principles

In this thesis we are concerned with longitudinal thermoacoustic oscillations, using 1-D distributed models to describe the acoustics. Here, the acoustic modes along a privileged coordinate is described, with ow eld uctuations along the other spatial coordinates assumed constant or negligible for the analysis of modes along the axis of interest. Although this assumption is too simplistic to describe highly complex cases such as azimuthal modes mixing with longitudinal modes as one can in practice nd in annular combustors [Pankiewitz & Sattelmayer 2003[START_REF] Lieuwen | [END_REF],

studying the simpler cases is essential to understanding the more complex cases. To describe the heat release, 0 -D models based on the assumption that the spatial extent of the heat source is negligible compared to the length scale of the acoustics inside the combustor are employed. This allows the heating element/ame to be considered an acoustically compact source [Lieuwen 2021], and its internal structure can be disregarded and instead an Input and Output (I/O) description used.

With interfaces dened between the heat source and the acoustics, the complete system can be described as an interconnected model of acoustic elements. Such a modelling approach is referred to in the literature as thermoacoustic network modelling [Polifke & Gentemann 2004, Stow & Dowling 2009, Moeck 2010], and is the approach taken here. A schematic of the structure of a typical thermoacoustic network model is shown in Figure 2.1.

As described in [Emmert 2016], there are two main paradigms within network modelling of thermoacoustics. The more classical approach is to consider the frequency domain properties of the thermoacoustic instabilities, such as wave number and complex frequency of the oscillations. This approach lends itself well to com- putation of the eigenmodes of a given combustor setup to determine its intrinsic stability properties, and hence useful for passive stabilization approaches of thermoacoustic instabilities. Some contributions in the literature that apply this approach are [Dowling 1995, Schuermans et al. 2000]. On the other hand, rather than basing the analysis around specic wave numbers and frequencies of oscillation, a dierent approach is to simply describe the thermoacoustic instabilities by a set of mathematical models (typically state space representations) of the subsystems interconnected by well-dened interfaces, that physically represent the averaged acoustic quantity at the point of the interface. This approach lends itself well to time domain analysis, and is the approach taken here. Some other examples from the literature that employ this approach are [Schuermans et al. 2003, Bothien et al. 2007].

In the following sections, we introduce the mathematical models of the various subsystems that will be employed in the network models used in this thesis. First, in Section 2.2 heat release models that are considered are described. The rst heat release model considered is that of an electrical heater, which is used in the work on the Rijke tube in Part II of this thesis. Flame models are instead considered in Part III of the thesis, and these are subsequently described. Next, in Section 2.3, the acoustics is modelled. These models are used throughout the thesis, and this section contains a generalization of 1 -D innite dimensional acoustics models for the case when one has a duct with spatially varying geometry and non-zero mean ow. Then in Section 2.4 the model boundary conditions and interfaces are described, including descriptions of acoustic impedance and coupling between the acoustics and heat release. The nal network models that are used throughout the thesis are summarized in Section 2.5.

Heat release

Electrical heater

Modelling of the electrical heater used in the Rijke tube considered in this thesis is based on work done originally by [King 1914] and [Lighthill 1954]. A description of the modelling process is given in [START_REF] Epperlein | [END_REF]], but it is included here for completeness and convenience for the reader. Consider an electrical heater made of a wire of length l w and diameter d w , in a laminar ow eld, as depicted in Figure 2.2. We are interested in quantifying the power of heat release Q from the electrical heater into the ow eld, which occurs due to convection and conduction processes.

There are two main quantities aecting these processes, namely the local velocity V of the ow eld around the heater and the dierence between the wire temperature T w and the surrounding gas temperature T g . We make the following assumptions:

Assumption 1. The ow is laminar and equal throughout the cross section perpendicular to the direction of the ow.

Assumption 2. The steady-state ow states density ρ, pressure P , and velocity V are constant in time.

Assumption 3. The wire temperature T w and gas temperature T g are described by constant scalars.

King's law developed by [King 1914] gives an approximate algebraic relationship between heat release Q K 1 and the aforementioned quantities which reads

Q K = l w κ + κ v |V | (T w -T g ) (2.1)
where κ represents thermal conductivity of the surrounding uid, and κ v is a proportionality constant that must be empirically determined.

The algebraic relationship (2.1) works well in describing the heat release when the ow eld around the electrical heater is constant, but in thermoacoustic systems 1 Subscript K used here to denote heat release as predicted by King's law.

such as the Rijke tube the local velocity is changing rapidly, and hence additional dynamic eects must be taken into consideration. When the ow around the heater is uctuating, a boundary layer is formed around the wire, as illustrated in Figure 2.2.

Hence, the heat release from the wire predicted by (2.1) is not released directly into the ow eld, but must pass through the boundary layer rst. In [Lighthill 1954] it was found that these dynamics can be approximated by a rst-order transfer function, relating the heat release Q K directly from the wire as input and the resultant heat release Q released into the ow as output, given by

Q Q K (s) = 1 τ s + 1 (2.2)
where τ is a time constant computed as

τ = d w 5 V ,
the quantity V appearing in the denominator denoting mean ow velocity. Combining then (2.1)(2.2) and writing in the time domain, we have a scalar ODE describing the heat release rate Q from the electrical heater given by

Q(t) = - 1 τ Q(t) + 1 τ l w κ + κ v |V (t)| (T w -T g ).
(2.3)

This model can be used as a subsystem in a thermoacoustic network model by considering the averaged (in space over the cross section perpendicular to the direction of ow) local velocity V as the input variable and heat release rate Q as output vari- 

Flames

Mathematical modelling of ames and combustion processes is a rich and complex eld, and going deep into this topic is outside the scope of this thesis. For the interested reader, in-depth sources covering the topic such as [START_REF] Liberman | Introduction to physics and chemistry of combustion: explosion, ame, detonation[END_REF], Lieuwen 2021, Poinsot & Veynante 2005, De Goey et al. 2011] can be consulted.

Rather, we are interested in obtaining an external description of the ame and its interaction with the ow eld.

Flames are the result of combustion, which in essence is an exothermic chemical reaction between a fuel and an oxidizer. The ames we consider are assumed to have suciently low speeds to be so-called deagrations, rather than detonations which occur at much higher speeds [Poinsot & Veynante 2005[START_REF] Oran | [END_REF].

Within the scope of this work we are mainly interested in ames that can be considered premixed and laminar. That is to say the fuel and oxidizer are mixed before arriving at the ame, rather than introduced separately which is the case for diusion ames, and the ow eld around the ame is laminar rather than turbulent. This assumption is not as restrictive as it might seem from rst glance, for two main reasons. Firstly, in practice the issue of thermoacoustic instabilities often occurs within lean premixed combustors [Seo 2003], and hence using premixed ame models makes sense from a practical perspective. Secondly, as noted in [Poinsot & Veynante 2005], many models of turbulent ames, such as amelet theory [Williams 1975], use smaller laminar ame models as their building blocks. Within the ame, a series of exothermic reduction-oxidation reactions occur, releasing heat into the ow and a mix of burned gases at the downstream boundary of the reaction zone. Note that the ame is travelling into the unburned gases with laminar burning velocity V l , being stabilized by the ow eld moving in the opposite direction with similar velocity.

Depending on the particular fuel and oxidizer used and the conditions under which the reaction occurs, in practice a high number of dierent chemical reactions with varying rates of reaction, possibly involving multiple reaction steps, can occur.

However, for the purpose of this work we consider the chemistry to occur in a single-step irreversible reaction, represented by the general chemical formula

n F F + n O O → P (2.4)
where F , O and P are placeholders for chemical formulas of the fuel, oxidizer and product respectively, and n F , n O denote the relative quantities of fuel and oxidizer in the reaction. Some examples of combustion reactions represented by the gen- 

n F F n O O P 2 C 3 H 8 7 O 2 6CO 2 + 8H 2 O 2 CH 3 OH 3 O 2 2CO 2 + 4H 2 O 1 H 2 1 Cl 2 2HCl
φ := ṁF ṁO (2.5)
where ṁF and ṁO are respectively the mass ow rates of fuel and oxidizer, and the mass stoichiometric ratio is dened by

:= n O W O n F W F (2.6)
with W F , W O being the molar masses of fuel and oxidizer, respectively. The combustion process is said to be lean if φ < 1, rich if φ > 1 and at stoichiometry if φ = 1. As mentioned previously, the main focus within this work is on lean combustion, where there is an excess of oxidizer in the ow. It is in this case reasonable to assume that the gas upstream and downstream of the reaction zone have similar physical properties, such as density and adiabatic constant.

The thickness of the reaction zone separating the unburned and burned gas regions in Figure 2.3 is assumed to be small in relation to the wavelength of the acoustics considered. One can hence apply the so-called thin ame limit and consider the ame to be an innitesimally thin sheet separating the two regions of the ow [START_REF] Lieuwen | [END_REF]] via a jump condition in the ow eld. The location of this innitesimally thin region, referred to as the ame front, in the ow as a function of radial position from the centre of a burner is depicted in Figure 2.4 for the case of a conical ame. Based on the velocity V the dynamics of the ame front can be described by the G-equation [Williams 1985]

∂G ∂t + V (t) ∂G ∂z = -V l ∂G ∂z 2 + ∂G ∂r 2 (2.7)
where the level set G(z, r, t) = 0 represents the ame front and the ame speed V l is assumed constant. The ame height h F and tip angle α F are calculated from the steady-state solution to (2.7), by setting V (t) ≡ V and ∂G ∂t = 0. As can be seen, perturbations in the local velocity vector V aects the local displacement of the ame front, something which can be observed experimentally as shown by the Schlieren images in Figure 2.5. This in turn impacts the total area A F of the ame where ds is an innitesimal displacement along the ame surface (see Figure 2.4).

Assuming a homogenous equivalence ratio throughout the incoming premixed gas, the heat release rate uctuations Q are related to the displacements in ame surface area ȂF = A F -ĀF , ĀF being the steady-state ame area, given by [Ducruix et al. 2000] Q = ρV l ∆q ȂF .

(2.9)

where ρ is the density of the gas and ∆q is the heat release per unit mass (caloric value) of the premixed gas. So far, in addition to Assumptions 1, 2, we have introduced the following Assumptions in the preceding discussion:

Assumption 4. The fuel and oxidizer enter the reaction zone premixed.

Assumption 5. The combustion is lean so the equivalence ratio, assumed to be constant, satises φ < 1. Hence the physical properties of the gas are similar before and after the reaction zone.

Assumption 6. The combustion reaction can be approximated by a single-step chemical reaction of the form (2.4).

Assumption 7. The spatial extent of the reaction zone is considered small compared to the acoustic wavelength, so it can be considered an innitesimally thin discontinuity.

Assumption 8. The ame sheet is a deagration and hence moves into the unburned gases at a constant velocity V l of comparable magnitude to the local steadystate ow velocity V .

Although the formulation (2.7)(2.9) of variation of the heat release rate due to uctuations in the incoming ow velocity paints an intuitive picture of the process, it is rather complex and nontrivial to apply it directly for analysis of thermoacoustics from a global perspective. Indeed, computing the heat release involves integrating a path (2.8) along a level set of the solution to a nonlinear PDE (2.7), which may be both computationally expensive and inconvenient for analysis. A more practical alternative is to heuristically describe the I/O characteristics of the ame, which under Assumptions 1, 2, 48 can be achieved via the Flame Transfer Function (FTF) [START_REF] Schuller | [END_REF]] (or for nonlinear frequency domain analysis the Flame Describing Function (FDF) [START_REF] Noiray | [END_REF]) formulation. Conventionally, the FTF F is dened as the ratio of the normalized heat release rate uctuations Q/ Q

to the normalized velocity uctuations V / V at each frequency ω > 0, i.e.

F(jω

) := Q(ω) V V (ω) Q .
(2.10) 

Y (t) = nU (t -τ ).
(2.12)

In practice it has been shown that in addition to the time delay, lean premixed ames exhibit low-pass lter behaviour [Blackshear 1952, Merk 1957, Ducruix et al. 2000].

It is well known from linear systems theory that low pass lters can be described by strictly proper rational transfer functions [Zumbahlen 2007], and only taking into account this aspect of the ame behaviour one has a ame transfer function of the form

F(s) = N (s) D(s) (2.13)
where N , D are polynomials in s, where deg(N ) < deg(D).

Similar to what is done in [Freitag 2009, Cuquel 2013], we consider an FTF that combines the eects of an input time delay as described by (2.11) and low-pass lter behaviour as described by (2.13). We propose a ame transfer function of the form

F(s) = N 1 (s) + N 2 (s)e -τ s D(s) (2.14)
which is obtained by multiplying a transfer function of the form (2.13) with a transfer function of the form (2.11), and adding a polynomial term N 1 (s) to the numerator to account for possible instantaneous low-pass ltering eects. An example from the literature of an FTF, also for a conical ame, tting the form (2.14) is found in [Sugimoto & Matsui 1982] by measuring uctuations in CH * radicals. It is reproduced here as

F(s) = 2 -1 + (s -β)τ + e -(s-β)τ (s -β) 2 τ 2
where expressions for the parameters β and τ are given by

β = αV i , τ = h F V i
where V i is the (assumed constant) propagation velocity of CH * radicals, α is a constant describing the distribution of CH * radicals emitted along the ame front, and h F is the ame height.

Recall that for strictly proper rational transfer functions

N 1 D (s), N 2 D (s) there exists (A 1 , b 1 , C 1 ) ∈ R n 1 ×n 1 ×R n 1 ×1 ×R 1×n 1 , (A 2 , b 2 , C 2 ) ∈ R n 2 ×n 2 ×R n 2 ×1 ×R 1×n 2 , respectively, such that N 1 (s) D(s) = C 1 (sI -A 1 ) -1 b 1 , N 2 (s) D(s) = C 2 (sI -A 2 ) -1 b 2 .
(2.15)

We then obtain a state-space realization of (2.14) with state X ∈ R n , n := n 1 + n 2 , as

Ẋ(t) = AX(t) + B0 V (t) + B1 V (t -τ ) (2.16a) Y (t) = 1 V CX(t) (2.16b)
where

A := A 1 0 n 1 ×n 2 0 n 2 ×n 1 A 2 B0 := b 1 0 n 2 ×1 , B1 := 0 n 1 ×1 b 2 C := C 1 C 2 .
The formulation (2.14) and its equivalent time-domain representation (2.16) can both be used as linear representations of premixed ame dynamics, as we do in Chapter 6. In reality ames can have strong nonlinearities that can be important to take into account for thermoacoustic analysis. As noted in [Lieuwen 2005], nonlinearities are more pronounced at conditions such as higher perturbation frequencies and shorter ame lengths. Using an FDF, which describes the response not only as a function of the velocity perturbation frequency but also the forcing amplitude, is one method of capturing nonlinearities in the frequency domain. In Chapter 7, we take an alternative approach and propose to use a nonlinear time domain generalization of (2.16) in the form of an input-ane nonlinear state space model to capture the nonlinearity of the ame response. This gives a generic model of the form

Ẋ(t) = f (X(t)) + ḡ0 (X(t)) V (t) + ḡ1 (X(t)) V (t -τ ) (2.17a) Y (t) = 1 V h(X(t)) (2.17b)
where the functions f (•), ḡ0 (•), ḡ1 (•), h(•) can e.g. be tted using nonlinear regression software, based on I/O data of ame response from simulations or experiments.

This concludes the heat release and ame modelling. Next in Section 2.3, modelling of the acoustics is covered, before they are coupled with the heat release models in Section 2.4.

Acoustics

We rst derive the model of acoustic uctuations in a duct with spatially varying cross-sectional area and a non-zero steady-state velocity with low Mach number. This is subsequently simplied to the special cases of zero velocity in a duct with spatially varying cross section, and duct with constant cross-sectional area and arbitrary low Mach number steady-state velocity 2.3.1 Duct with spatially varying cross section Consider the setup shown in Figure 2.7. It consists of a duct of length L, with spatially varying cross-sectional area a(z) for z ∈ [0, L], through which a gas is owing with mean inlet density ρ0 , velocity V0 and pressure P0 . In addition to Assumptions 1, 2, we assume the following: Assumption 9. The steady state velocity V << c, with c being the speed of sound, for z ∈ [0, L] so that the Mach number M a << 1.

Assumption 10. The duct geometry can be approximated by a solid of revolution around the z-axis for z ∈ [0, L].

Assumption 11. Internal damping contributions from the duct wall material can be neglected.

To obtain a mathematical model for the acoustics, we start with the mass, momentum and energy equations of gas dynamics. They can respectively be written [Bale 2002] in 1 -D for the scenario shown in Figure 2.7 as the system

∂ t (a(z)ρ(z, t)) = -∂ z (a(z)ρ(z, t)V (z, t)) (2.18a) ∂ t (a(z)ρ(z, t)V (z, t)) = -∂ z a(z) P (z, t) + ρ(z, t)V 2 (z, t) + a (z)P (z, t) (2.18b) ∂ t (a(z)e(z, t)) = -∂ z (a(z) (e(z, t) + P (z, t)) V (z, t)) + Q(z, t) (2.18c)
giving a description of the density ρ, velocity V , pressure P and pointwise energy e at each spatial coordinate z ∈ [0, L] and point in time t ≥ 0. It is initialized from

ρ(z, 0) = ρ 0 (z), V (z, 0) = V 0 (z), P (z, 0) = P 0 (z), e(z, 0) = e 0 (z)
where ρ 0 , V 0 , P 0 , e 0 ∈ L 2 (0, L), with possible distributed heat release rate Q as a source term in (2.18c). We assume the total energy e is composed of potential and kinetic energy, so that e(z, t)

Total energy = ρ(z, t)U (z, t)

Potential energy + 1 2 ρ(z, t)V 2 (z, t) Kinetic energy (2.19)
with U being specic internal energy. Assuming that the air satises the ideal gas law, the specic internal energy U can be related to pressure P and density ρ via [START_REF] Epperlein | [END_REF]]

U (z, t) = C v R P (z, t) ρ(z, t) (2.20)
where C v is the specic heat capacity of the gas at constant volume, and R the universal gas constant. Substituting (2.19)(2.20) into (2.18), after some algebraic manipulation, we have the nonlinear PDE system in (ρ, V, P ) written as

ρ t (z, t) = -V (z, t)ρ z (z, t) -ρ(z, t)V z (z, t) - a (z) a(z) ρ(z, t)V (z, t) (2.21a) V t (z, t) = - 1 ρ(z, t) P z (z, t) -V (z, t)V z (z, t) (2.21b) P t (z, t) = -γP (z, t)V z (z, t) -V (z, t)P z (z, t) -γ a (z) a(z) P (z, t)V (z, t) + γ a(z) Q(z, t) (2.21c)
where γ is the adiabatic constant, dened in terms of R and C v as

γ := 1 + R C v (2.22)
and γ := γ -1.

With constant inlet conditions in Figure 2.7 thanks to Assumption 2, the acoustics are considered small perturbations around an equilibrium ow prole of (2.21).

This requires to assume the following:

Assumption 12. Temporal variations in the density, velocity and pressure can be approximated suciently well by rst-order perturbations around the mean ow.

As will be discussed further down in Section 2.4, we consider only pointwise interaction of the heat release rate with acoustic eld, and hence the heat release rate is disregarded for the equilibrium prole calculation. Setting the temporal derivative on the left-hand side of (2.21) equal to zero and rearranging, the steady state is found to satisfy the Initial Value Problem (IVP)

d dz   ρ(z) V (z) P (z)   = a (z) a(z) 1 ρ(z) V 2 (z) -γ P (z)   -ρ 2 (z) V 2 (z) γ P (z) V (z) -γ P (z)ρ(z) V 2 (z)   (2.23a)   ρ(0) V (0) P (0)   =   ρ0 V0 P0   (2.23b)
for z ∈ (0, L).

Using Assumption 12, we introduce now perturbations ρ, V , P around the mean values solved from the IVP (2.23), so we decompose ρ(z, t) = ρ(z) + ρ(z, t),

(2.24a)

V (z, t) = V (z) + V (z, t), (2.24b) 
P (z, t) = P (z) + P (z, t).

(2.24c) Substituting (2.24) into (2.21) and neglecting higher order and ane terms, we end up with

  ρt (z, t) Vt (z, t) Pt (z, t)   =    -V (z) ρ(z) 0 0 -V (z) -1 ρ(z) 0 -γ P (z) V (z)      ρz (z, t) Vz (z, t) Pz (z, t)   +    0 0 γ a(z)    Q(z, t) +   -l 1 ( V (z)) -l 1 (ρ(z)) 0 0 -V (z) 0 0 -l γ ( P (z)) -γl 1 ( V (z))     ρ(z, t) V (z, t) P (z, t)   (2.25)
where possible heat release rate uctuations Q = Q-Q appear as an external source term. The term l κ (f ) is dened

l κ (f (•)) := f (•) + κ a (•) a(•) f (•) (2.26)
for constant κ ∈ R and function f ∈ C 1 (0, L). Next, similar to what is done for acoustics in a duct with constant cross-sectional area considered in e.g. [START_REF] Epperlein | [END_REF]], dimensional analysis shows that for low Mach number ow (Assumption 9) we can approximate V ≈ 0 in relation to the other steady state quantities and decouple the expressions for V , P from the expression for ρ. This gives a simplied linear acoustic PDE system in ( V , P ) which reads

Vt (z, t) = - 1 ρ(z) Pz (z, t) -V (z) V (z, t) (2.27a) Pt (z, t) = -γ P (z) Vz (z, t) -P (z) + γ a (z) a(z) P (z) V (z, t) -γ V (z) P (z, t) + γ a(z) Q(z, t).
(2.27b)

Special cases

We present here two scenarios for which the acoustic equations (2.27) can be written in a simpler form. First in Section 2.3.2.1 we consider the case when there is zero mean ow at the inlet of the duct. Secondly, we show how (2.27) simplies to the constant cross-sectional area case in Section 2.3.2.2.

Special case I : Duct with zero mean ow

We let here V0 = 0 in the IVP (2.23). It can in this case be shown by direct substitution that the solution satises ρ(z) ≡ ρ0 , V (z) ≡ 0, P (z) ≡ P0 .

Substituting these steady-state solutions into (2.27) gives us the simplied acoustics equations

Vt (z, t) = - 1 ρ Pz (z, t) (2.28a) Pt (z, t) = -γ P Vz (z, t) -γ a (z) a(z) P V (z, t) + γ a(z) Q(z, t) (2.28b)
This model is used in Chapter 5.

Special case II : Duct with constant cross-sectional area

We let here the cross-sectional area a(z) ≡ a 0 be constant. Firstly, this implies a (z) ≡ 0, and substituting into (2.23) we obtain the constant solution ρ(z) ≡ ρ0 , V (z) ≡ V0 , P (z) ≡ P0

for the equilibrium prole. We then have that the acoustics are described by

Vt (z, t) = - 1 ρ Pz (z, t) (2.29a) Pt (z, t) = -γ P Vz (z, t) + γ a Q(z, t) (2.29b)
This model is used in Chapters 34.

We consider next in Section 2.4 boundary conditions for the acoustics (2.27)

(2.29) and coupling between the heat release and acoustic eld.

Boundary conditions

Boundary conditions for the thermoacoustic models considered in this thesis are discussed here. First, the modelling of acoustic impedance is presented in Section 2.4.1.

This is followed by coupling between ame and acoustics, which is considered in Section 2.4.2.

Acoustic impedance

Figure 2.8: Incident pressure wave P i being decomposed into reected P r and trans- mitted P t waves at surface at surface of discontinuity between region of characteristic impedance Z 0 (left) and Z 1 (right).

To introduce the concept of acoustic impedance, consider the scenario presented in Figure 2.8. It shows an incident acoustic wave P i propagating perpendicularly towards a surface of discontinuity separating two dierent media at z = z d , with respectively constant density ρ 0 , ρ 1 and speed of sound c 0 , c 1 . Due to the surface of discontinuity, the incident wave is split into two components -a transmitted wave P t , which continues in the same direction of travel as P i , and a reected wave P r which propagates in the opposite direction. As shown in [Kim 2010], the magnitude of the reected and transmitted waves are computed via the reection d r and transmission d t coecients respectively, dened as

d r := Z 1 -Z 0 Z 1 + Z 0 (2.30a) d t := 2Z 1 Z 1 + Z 0 (2.30b)
where Z i denotes the characteristic impedance of medium i ∈ {0, 1}, computed as the product of density and speed of sound

Z i = ρ i c i .
(2.31) At any point z in an acoustic eld the local pressure and velocity are related via the impedance Z through the relation

P (z, t) = Z V (z, t) (2.32)
This gives a basis for modelling the boundary conditions of the acoustics equations described in Section 2.3. When modelling the duct termination via a scalar Figure 2.9: Theoretical ideal cases for duct termination impedance. Open end (left), closed end (middle) and anechoic end (right). impedance as (2.32), there are three important theoretical edge cases to consider as shown in Figure 2.9. The rst is an ideal open end, where the impedance Z = 0. Applying (2.30a) with Z 1 = Z and Z 0 = k, k being the characteristic impedance of the gas inside the duct, one obtains a reection coecient d r = -1 for the case of an ideal open end. The second edge case is that of an ideal closed end, where the impedance Z = ±∞, and thus the reection coecient d r = 1. Finally, we have the case of an ideal anechoic end, which has an impedance of Z = k and hence reection coecient d r = 0.

In practice the impedance typically falls somewhere between these edge cases, as there will always be a certain amount of damping present causing acoustic waves to neither perfectly transmit nor perfectly reect. Knowing the exact value of the acoustic impedance at the terminations of a given duct is often dicult to know a priori or compute analytically in practice. As a representation of the duct terminations, we use the boundary conditions

P (L, t) = Z L V (L, t) + W L (t) (2.33a) P (0, t) = Z 0 V (0, t) + W 0 (t).
(2.33b) One should note that in the general case acoustic impedance is simply the ratio between velocity and pressure at any given position z and time t, so that Z(z, t) := P (z, t)

V (z, t) ,

(2.34) and hence it depends on both the media of propagation and the acoustic eld. The special case of locally reacting linear surfaces [Rienstra & Hirschberg 2004] models the acoustic impedance as a general linear system, with input being velocity perturbations and output being pressure perturbations. This description is common to use in frequency domain analysis of acoustics as the impedance can be modelled as a complex function of frequency Z = Z(ω), where the real component is the resistive part and the imaginary component the reactive part. In the time domain, the relation between pressure and velocity within this description would hence be a convolution As done in e.g. [START_REF] Epperlein | [END_REF], de Andrade et al. 2018b], we assume the electrical heater is considered a point source inside the acoustic domain at xed position z 0 ∈ (0, L). This yields the following Assumption, analagous to Assumption 7 for the ame models:

P (t) = t 0 Z(t -τ ) V (τ )
Assumption 14. The spatial extent of the electrical heater is small compared to the acoustic wavelength, and can hence be modelled by a point source in the ow.

To model this, the Dirac delta function δ is used giving rise to the representation

Q(z, t) = δ(z -z 0 ) Q(t)
(2.36) that will be used for the heat release source term in (2.29b) when modelling the Rijke tube, with the heat release rate uctuations Q = Q -Q coming from (2.3). For the combustor models considered, we assume the ame is located at the base of the combustion chamber, namely at z = 0. We make the following assumption for the boundary condition upstream (z < 0) of the ame:

Flame models

Assumption 15. There is a non-reective boundary condition upstream of the ame.

The jump condition around the ame can be considered to be composed of three regions (see Figure 2.10): the region directly upstream of the area expansion where the premixed fuel-air mixture is entering, the region of unburned gases directly downstream of the area expansion but upstream of the ame front, and the region of burnt gases directly downstream of the ame front. We denote respectively the pressure and velocity in these three regions around z = 0 as ( P -, V -), ( P 0 , V 0 ) and ( P + , V + ).

As suggested in [START_REF] Gentemann | [END_REF]], the pressure and velocity uctuations P 0 , V 0 are assumed to be in the linear regime related to their respective upstream counterparts P -, Vvia the relation

P 0 (0, t) = P -(0, t) + 1 -ζ - A u A d 2 M u k V -(0, t) (2.37a) k V 0 (0, t) = -M d P -(0, t) + A u A d k V -(0, t)
where ζ is the pressure loss coecient across the area expansion, A u , A d are respectively the area directly upstream and downstream of the area expansion, M u , M d are the ow Mach numbers directly upstream and downstream of the area expansion and k is the mean characteristic impedance of the unburned gas.

With Assumption 9 we have M u , M d << 1, so we set M u ≈ 0, M d ≈ 0 and the terms involving these are neglected, yielding

P 0 (0, t) ≈ P -(0, t) (2.38a) V 0 (0, t) ≈ A u A d V -(0, t).
(2.38b)

After the jump condition involving the area expansion, there is another jump condition as the ow passes through the ame. This condition is in [Polifke 2015] derived from the Rankine-Hugoniot equations, and in the linear regime can be written as

P + (0, t) = P 0 (0, t) -θM d k V 0 (0, t) -k V (0)θM d Q(t) Q (2.39a) k V + (0, t) = k V 0 (0, t) + k V0 θ Q(t) Q -θM d γ P 0 (0, t) (2.39b)
where θ is dened as θ := T h T c -1

(2.40)

with T c , T h being respectively the absolute temperatures at the cold (upstream) and hot (downstream) sides of the ame, and V0 is the mean velocity at z = 0.

Neglecting again the terms involving the Mach number M d << 1 in their product, yields the approximate relations P + (0, t) ≈ P 0 (0, t)

(2.41a)

V + (0, t) ≈ V 0 (0, t) + V0 θ Q(t) Q .
(2.41b)

Substituting then (2.38) into (2.41), we obtain the boundary conditions

P + (0, t) = P -(0, t) (2.42a) V + (0, t) = α V -(0, t) + ς Q(t) Q (2.42b)
where we have denoted

α := A u A d , ς := V0 θ.
The ame models (2.16) or (2.17) are in turn coupled with the average local

velocity uctuation V (•) := 1 2 ( V -(0, •) + V + (0, •)).

Summary of models

With the dierent model components described in Section 2.22.4, we put together the subsystems and present the complete network models in this section. The Rijke tube model in Section 2.5.1 and can combustor model in Section 2.5.3 both assume the following:

Assumption 16. Heat transfer between the duct walls and internal gas is neglected.

Rijke tube Chapter 3

The 

Q(t) = - 1 τ Q(t) + 1 τ l w (κ + κ v | V (z 0 , t) + V |)(T w -T g ) (2.43a) Vt (z, t) = - 1 ρ Pz (z, t) (2.43b) Pt (z, t) = -γ P Vz (z, t) + γ a δ(z -z 0 )(Q(t) -Q) (2.43c) P (L, t) = Z L V (L, t) (2.43d) P (0, t) = Z 0 V (0, t) (2.43e) P (x, 0) = P0 (x) (2.43f ) V (x, 0) = V0 (x) (2.43g) Q(0) = Q 0 (2.43h) initialized from P0 , V0 ∈ L 2 (0, L) and Q 0 ∈ R.

Acoustic duct for boundary parameter identication Chapters 45

For the purpose of boundary parameter identication, we consider a model of an acoustic duct with zero mean ow as given by (2.28), but with no heat release uctuations, so that Q ≡ 0. This is coupled to the boundary conditions (2.33), with W 0 or W L used as identication signals. The mathematical model is then

Vt (z, t) = - 1 ρ Pz (z, t) (2.44a) Pt (z, t) = -γ P Vz (z, t) -γ a (z) a(z) P V (z, t) (2.44b) P (L, t) = Z L V (L, t) + W L (t) (2.44c) P (0, t) = Z 0 V (0, t) + W 0 (t) (2.44d) P (x, 0) = P0 (x)
(2.44e)

V (x, 0) = V0 (x)

(2.44f ) initialized from P0 , V0 ∈ L 2 (0, L). 

Can combustor

Ẋ(t) = f (X(t)) + ḡ0 (X(t)) V (0, t) + ḡ1 (X(t)) V (0, t -τ ) (2.45a) Q(t) = Q V0 h(X(t)) (2.45b) Vt (z, t) = - 1 ρ(z) Pz (z, t) -V (z) V (z, t) (2.45c)
Pt (z, t) = -γ P (z) Vz (z, t) -P (z) + γ a (z) a(z) P (z) V (z, t) -γ V (z) P (z, t)

(2.45d)

P (L, t) = Z V (L, t) + W (t)
(2.45e)

P + (0, t) = P -(0, t) (2.45f ) V + (0, t) = α V -(0, t) + ς Q(t) Q (2.45g) P (x, 0) = P0 (x) (2.45h) V (x, 0) = V0 (x) (2.45i) X(0) = X 0 (2.45j)
where the more general ODE (2.17 The Rijke tube, being a common experimental setup for studying thermoacoustic instabilities, is one of the simplest arrangements capable of exhibiting the phe-nomenon. The electrically heated version has the advantage of being simple to model due to the absence of complex combustion dynamics. The version of the Rijke tube with a heated gauze was rst introduced in [Rijke 1859], and due to its simplicity has since been the subject of numerous studies to gain understanding of and develop methods to mitigate thermoacoustic instabilities, see [Raun et al. 1993] for a review.

We describe here the simulation and experimental setup considered in testing the algorithms to be designed in Chapters 34.

Simulation setup

Simulations are performed using MATLAB. The PDEs are solved using a rst-order upwind scheme, and the heat release model is solved using a fourth-order Runge-Kutta scheme. A spatial discretization of dx = 1.00 × 10 -2 and a constant time step of dt = 9.74 × 10 -6 is used. The parameter update scheme is discretized in time using a rst-order Euler scheme with a time-step of dt = 1.17 × 10 -5 s. 

κ v 1.50 W • s 0.5 • m -1.5 • K -1 Thermal conductivity of air κ 2.638 × 10 -2 W • m -1 • K -1
Length of wire On top of the steel rod, the heating element, which consists of a nickel-chromium alloy coil [Ome ], is supported via a Mica support. The heating coil is shown in Temperature of gas

P0 (x) = 0, V0 (x) = 0, Q0 = 0.
T g 3.00 × 10 2 K Empirical constant for King's law κ v 1.50 W • s 0.5 • m -1.5 • K -1 Thermal conductivity of air κ 2.638 × 10 -2 W • m -1 • K -1
Position of heater After the data is collected with the experimental setups described above, it is tested with the observer and parameter identier in MATLAB. The parameters used for this data post-processing is summarized in Table ii.2. Compared to Table ii.1, the acoustic impedances are omitted as these are considered unknown, and will be estimated using the method to be presented in Chapter 4.

The rst three parameters listed under Acoustic parameters, namely γ, P and ρ are taken to correspond to standard atmospheric conditions. Next, the length L and radius r are measured directly from the tube shown in Figure ii.5.

Under Electrical heater parameters, the measured voltage E and current I is documented. Also, the diameter of the coil wire d w is taken from the manufacturer documentation [Ome ]. The temperature of the gas T g is set to standard room temperature, and the parameters κ v and κ are the same in Tables ii.1 and ii.2, being estimates based on standard conditions of air in room temperature and estimates from the literature (see e.g [START_REF] Epperlein | [END_REF], [de Andrade et al. 2016], [de Andrade et al. 2017]). The position of the heater z 0 is measured relative to the positioning of the tube.

The mean heat release Q is under Derived parameters, as this is computed from the voltage E and current I supplied. Additionally the wire temperature T w is estimated according to the manufacturer documentation [Ome ] based on the supplied current I, and in turn from this the wire length l w is estimated, also based on the manufacturer documentation [Ome ]. From the calculated wire temperature T w together with gas temperature T g , gravitational constant g and wire diameter d w , as shown in [Epperlein 2014] the mean velocity V = g Tw-Tg Tg d w . Also, based on the formula given in [START_REF] Epperlein | [END_REF], the wire time constant τ is estimated based on the wire diameter d w and mean velocity V as τ = dw
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Chapter 3

The 

Literature review

Much of the previous work on the Rijke tube has consisted in characterizing its stability limits, with [START_REF] Carrier | The mechanics of the Rijke tube[END_REF]] pioneering linear stability analysis of the system and later [Bayly 1986] taking into account nonlinear features. In addition to experimental studies of the stability limits of the Rijke tube, studies on active control strategies applied to attenuate the thermoacoustic oscillations in the Rijke tube have been performed. A control law consisting in measuring the pressure signal upstream of the heater and subsequently sending this signal phase-shifted and amplied to a loudspeaker has been applied to a Rijke tube in [START_REF] Heckl | Active control of the noise from a Rijke tube[END_REF]], being one pressure data from a microphone located at z = 0, the aim of the state observer is to infer the unmeasured pressure and velocity perturbations along the vertical axis of the tube, together with the heat release rate from the electrical heater.

In Chapter 2, a mathematical model to describe the distributed pressure P and velocity perturbations V coupled with the heat release rate Q from the electrically heated coil is introduced, and given by (2.43). We assume the boundary pressure measurement Y (t) := P (0, t)

(3.1) is known.
Remark 1. In an ideal theoretical setting, since the Rijke tube is open at both ends, a pressure node is located at both z = 0 and z = L.

However, in practice the nodes are located slightly outside the tube ends ( [Levine & Schwinger 1948], [START_REF] Epperlein | [END_REF]) making boundary pressure sensing feasible. This fact is modelled by the non-zero impedances Z 0 , Z L in (2.43d) (2.43e).

In order to use the model for observer design, it is convenient to rewrite the linearised acoustics from (2.43) in Riemann invariant coordinates and fold the spatial domain around z 0 to move the heat release to the system boundary. To facilitate this, we introduce the invertible ane spatial coordinate transforms z

i : x → z, z 1 (x) := z 0 (1 -x) (3.2a) z 2 (x) := z 0 + x(L -z 0 ) (3.2b)
with x ∈ [0, 1] and i ∈ {1, 2} to rewrite the linearised acoustics from (2.43) in Riemann invariant coordinates. The subscript i denotes which part of the Rijke tube x is mapped to, with z 1 mapping x to points below the electrical heater and z 2 mapping x to points above the electrical heater. Next, dene the Riemann coordinates

u i (x, t) := P (z i (x), t) + k V (z i (x), t) (3.3a) v i (x, t) := P (z i (x), t) -k V (z i (x), t) (3.3b)
where k is the characteristic impedance of the gas, dened as k := γ P ρ.

(3.4) This allows us to rewrite the parts of the linearised acoustics (2.43b)(2.43c) for

z = z 0 , over (x, t) ∈ (0, 1) × [0, ∞) as u 1,t (x, t) = λ 1 u 1,x (x, t) (3.5a) v 1,t (x, t) = -λ 1 v 1,x (x, t) (3.5b) u 2,t (x, t) = -λ 2 u 2,x (x, t) (3.5c) v 2,t (x, t) = λ 2 v 2,x (x, t) (3.5d)
where

λ 1 := c z 0 (3.6a) λ 2 := c L -z 0 , (3.6b)
with c being the speed of sound inside the tube, given by c := γ P ρ .

(3.7)

Remark 2. Since z 0 ≤ L 2 we have that λ 1 ≥ λ 2 . This fact is useful later on in the observer design.

Next, the acoustic boundary conditions (2.43d)(2.43e) are rewritten as

u 1 (1, t) = d 0 v 1 (1, t) (3.8a) v 2 (1, t) = d 1 u 2 (1, t) (3.8b)
where the reection coecients d 0 , d 1 are dened as

d 0 := Z 0 + k Z 0 -k (3.9a) d 1 := Z L -k Z L + k . (3.9b)
Since the spatial domain is folded around z 0 , the electrical heater is moved to the boundary of the model. To deal with this, we consider the Laplace transform of the PDE dynamics in Riemann coordinates around the electrical heater. These can be rewritten as ODEs in the spatial coordinate z as

d dz u(z, s) = - s c u(z, s) + γ ac δ(z -z 0 ) Q(s) (3.10a) d dz v(z, s) = s c v(z, s) - γ ac δ(z -z 0 ) Q(s) (3.10b)
As shown in e.g. [START_REF] Epperlein | [END_REF], we can then write

u(z + 0 , s) = u(z - 0 , s) + γ ac Q(s) v(z + 0 , s) = v(z - 0 , s) - γ ac Q(s)
where z - 0 is the position directly under the heater and z + 0 is the position directly above the heater. Using the spatial change of variables (3.2) and writing in the time domain, this gives rise to the boundary condtions

v 1 (0, t) = v 2 (0, t) + µ X(t) (3.12a) u 2 (0, t) = u 1 (0, t) + µ X(t) (3.12b)
where we have denoted X := Q, and the ODE boundary coecient µ is dened µ := γ ac .

(3.13)

Denoting X := Q, the heat release model (2.43a) is rewritten as

Ẋ(t) = -aX(t) + b 1 |b 2 + b 3 (u 1 (0, t) -v 2 (0, t))| + b 4 (3.14) with a := 1 τ b 1 := l w (T w -T g )κ v τ b 2 := V b 3 := 1 2k b 4 := l w (T w -T g )κ τ .
The gauge pressure measurement (3.1) is in the Riemann invariant coordinates,

dened via (3.3), written as Y (•) = 1 2 (u 1 (1, •) + v 1 (1, •)).
Applying the boundary condition for u 1 we see by dening the boundary measurement signal

y(t) := v 1 (1, t) (3.15)
the gauge pressure measurement is reconstructed as

Y (t) = 1 + d 0 2 y(t).
(3.16)

These dynamics are schematically depicted in Figure 3.1. Notice that several feedback loops make the dynamics potentially unstable.

Observer design

With the measurement signal y dened in (3.15), we propose the observer û1 (1, t) = d 0 y(t)

Ẋ(t) = -a X(t) + b 1 |b 2 + b 3 (û 1 (0, t) -v2 (0, t))| + b 4 (3.17a) û1,t (x, t) = λ 1 û1,x (x, t) (3.17b) û2,t (x, t) = -λ 2 û2,x (x, t) (3.17c) v1,t (x, t) = -λ 1 v1,x (x, t) (3.17d) v2,t (x, t) = λ 2 v2,x (x, t) (3.17e) û2 (0, t) = û1 (0, t) + µ( X(t) -X) (3.17f ) v1 (0, t) = v2 (0, t) + µ( X(t) -X) (3.17g)
(3.17h) v2 (1, t) = d 1 y(t + λ -1 1 -λ -1 2 ) + d 1 û1 (0, t -λ -1 2 ) -v2 (0, t -λ -1 2 ) . (3.17i)
We state now the main result pertaining to the convergence properties of (3.17), before explaining the rationale behind the observer. A formal proof of the result is then given in Section 3.2.3.

Theorem 1. Consider system (3.5), (3.8), (3.12), (3.14) and the state observer (3.17) using the measurement (3.15). We assume |d 0 |, |d 1 | < 1. Assume the states have initial conditions (u i,0 , v i,0 , X 0 ) ∈ L 2 (0, 1) × L 2 (0, 1) × R and (û i,0 , vi,0 , X0 ) ∈ L 2 (0, 1)×L 2 (0, 1)×R, respectively. Then, the zero equilibrium of the dynamics of the estimation errors ũi :

= u i -ûi , ṽi := v i -vi , X := X -X is Globally Asymptocally Stable (GAS).
This observer consists of a copy of the Rijke tube dynamics in Riemann coordinates (3.5), with the exception of (3.17i). While (3.17h) consists of injecting the measured output directly, Equation (3.17i) deserves more explanation. It is based on the following considerations. First, notice that substituting Equation (3.12b) into the general solution of u 2 in terms of the boundary at

x = 0, u 2 (1, •) rewrites u 2 (1, t) = u 2 (0, t -λ -1 2 ) = u 1 (0, t -λ -1 2 ) + µ X(t -λ -1 2 ).
(3.18)

Besides, using the expression for v 1 (0, •) from (3.12a) together with the measurement y(

•) = v 1 (1, •) yields µ X(t) = y(t + λ -1 1 ) -v 2 (0, t). (3.19) Combining (3.18)(3.19) gives v 2 (1, t) = d 1 u 1 (0, t -λ -1 2 ) -v 2 (0, t -λ -1 2 ) + y(t + λ -1 1 -λ -1 2 ) .
(3.20)

The boundary condition (3.17i) follows by considering estimates of u 1 (0, t -λ -1 2 ) and v 2 (0, t -λ -1

2 ) in lieu of the true values. As we show next in Section 3.2.3, the resulting error converges asymptotically to zero.

Remark 3. Notice that the observer is causal, in particular the signal y(t

+ λ -1 1 - λ -1
2 ) is available at time t due to Remark 2.

Convergence analysis

The most critical boundary conditions in the error system for stability are ũ1 (1, •), ṽ2 (1, •), so we derive their expressions rst. It is trivial to see that ũ1 (1,

•) = 0, while subtracting (3.17i) from (3.20) yields ṽ2 (1, t) = d 1 (ũ 1 (0, t -λ -1 2 ) -ṽ2 (0, t -λ -1 2 )).
(3.21)

The other terms in the observer (3.17) are copies of the corresponding terms in the original system (3.5) and hence their corresponding error dynamics are easily computed. Therefore, the state estimation error in ũi , ṽi , X satises the dynamics

ũ1,t (x, t) = λ 1 ũ1,x (x, t) (3.22a) ũ2,t (x, t) = -λ 2 ũ2,x (x, t) (3.22b) ṽ1,t (x, t) = -λ 1 ṽ1,x (x, t) (3.22c) ṽ2,t (x, t) = λ 2 ṽ2,x (x, t) (3.22d) ũ1 (1, t) = 0 (3.22e) ũ2 (0, t) = ũ1 (0, t) + µ X(t) (3.22f ) ṽ1 (0, t) = ṽ2 (0, t) + µ X(t) (3.22g) ṽ2 (1, t) = d 1 ũ1 (0, t -λ -1 2 ) -ṽ2 (0, t -λ -1 2 ) (3.22h) Ẋ(t) = -a X(t) + b 1 |b 2 + b 3 (u 1 (0, t) -v 2 (0, t))| -b 1 |b 2 + b 3 (û 1 (0, t) -v2 (0, t))| (3.22i)
A schematic view of the error system is shown in Figure 3.2, illustrating the cascade structure of its dynamics which ensure the convergence of its states to zero. We are now ready to prove Theorem 1.

Proof of Theorem 1.

From (3.22a), (3.22e) we see that ũ1 (0, t -λ -1 2 ) = 0 for time t ≥ λ -1 1 + λ -1
2 . Hence the boundary condition (3.22h) simplies after this time to

ṽ2 (1, t) = -d 1 ṽ2 (0, t -λ -1 2 ) (3.23) allowing us to conclude that ṽ2 (0, t) = -d 1 ṽ2 (0, t -2λ -1 2 ).
(3.24)

Since |d 1 | < 1, we can conclude that ṽ2 (0, t) → 0 exponentially as t → ∞. Next, we can bound (3.22i) by the following inequality:

Ẋ(t) ≤ -a X(t) + b 1 |b 3 [ũ 1 (0, t) -ṽ2 (0, t)]|.
(3.25) Dene

g(t) := b 1 |b 3 (ũ 1 (0, t) -ṽ2 (0, t))| (3.26)
where we know g tends to zero as t → ∞. Also, dening the linear system in Ξ,

Ξ(t) = -a Ξ(t) + g(t), (3.27) 
with initial condition Ξ(0) = X(0), then Ξ is Input-to-State Stable (ISS) with respect to g. More precisely (see [START_REF] Khalil | [END_REF]), we can establish the bound (where 0 ≤ t 0 ≤ t),

| Ξ(t -t 0 )| ≤ e -a(t-t 0 ) | Ξ(t 0 )| + 1 a sup t 0 ≤τ ≤t |g(τ )|.
(3.28)

Since Ẋ ≤ Ξ and X(0) = Ξ(0), we can establish X(t) ≤ Ξ(t).

(3.29)

As g is exponentially vanishing as t → ∞, we see the right hand side of (3.28) goes to zero and hence X → 0 asymptotically as t → ∞, which proves the Theorem.

Robustness to modelling error in boundary condition

In practice the acoustic impedances Z 0 , Z L appearing in Equations (2.43d)(2.43e) are dicult to estimate correctly, implying the boundary coecients d 0 , d 1 appearing in (3.8) for the Riemann coordinate formulation is prone to being incorrectly modelled. Denote the estimates of d 0 , d 1 as d0 , d1 and dene d0 := d 0 -d0 , d1 := d 1 -d1 as the modelling errors.

When d0 , d1 is used in place of d 0 , d 1 in the observer (6.41), the expressions for ũ1 (1, •), ṽ2 (1, •), given by (3.22e), (3.22h), change to ũ1 (1, t) = d0 y(t)

(3.30) ṽ2 (1, t) = d1 (ũ 1 (0, t -λ -1 2 ) -ṽ2 (0, t -λ -1 2 ) (3.31) + d1 µX(t -λ -1 2 ) + u 1 (0, t -λ -1 2 )
with the rest of the error system (3.22) being unaected. We state now a Proposition on the sensitivity of the state estimate error to errors in these boundary parameters.

Proposition 1. Assume that the states of the original system are bounded, and the estimates d0 , d1 of d 0 , d 1 respectively satisfy

| d0 |, | d1 | < 1. (3.32)
Then all the error signals ũi , ṽi , X are bounded.

Proof. In the following we denote the Laplace transform of the time-domain signal

f as f , i.e. f (s) = L(f (•)). With the signal h dened as h(t) := u 1 (0, t) + µX(t) (3.33) we nd that ǔ1 (0, s) v2 (0, s) = H(s) y(s) ȟ(s) (3.34)
where

H(s) :=   e -λ -1 1 s 0 d1 e -(2λ -1 2 +λ -1 1 )s 1+ d1 e -2λ -1 2 s e -2λ -1 2 s 1+ d1 e -2λ -1 2 s   d0 0 0 d1 (3.35)
is a transfer matrix. This allows us to reconstruct the signal ι dened as ι(t) := ũ1 (0, t) -ṽ2 (0, t)

(3.36) in terms of signals y, h as ι(t) = 1 -1 L -1 H(s) y(s) ȟ(s) . (3.37) Since | d0 |, | d1 | < 1, Equation (3.35
) implies that H is stable (see [Niculescu 2001] for a more extended treatment of transfer functions for systems with time delays), and since y, h ∈ L ∞ , one has ι, g ∈ L ∞ , with g dened by (3.26). Further, since ũ1 (1,

•) = d0 y(•), ũ1 (1, •) ∈ L ∞ and hence all of ũ1 is bounded.
Besides, one has

v2 (1, s) = e -λ -1 2 s 1 + d1 e -λ -1 2 s d0 d1 e -λ -1 1 s y(s) + d1 ȟ(s) (3.38) which again using that | d0 |, | d1 | < 1 implies that ṽ2 (1, •) ∈ L ∞ and
therefore all of ṽ2 is bounded. Equation (3.25) further implies the following bound on X,

X(t) ≤ e -at | X(0)| + 1 a ||g|| ∞ .

Simulations

We test rst the observer in a simulation setting, with parameters as presented in Table ii.1. In this chapter, the observer (3.17) is tested for the case when the boundary acoustic impedances Z 0 , Z L are incorrect. These simulations demonstrate the theoretical result of Propostion 1. In Chapter 4, after having estimated the boundary parameters, the observer with correct boundary parameters will be tested, demonstrating Theorem 1.

As a comparison, an observer we refer to as the trivial observer will be compared to (3.17) in the simulations. This observer is identical to (3.17), except instead of the boundary condition (3.17i), it uses

v2 (1, t) = d 1 û2 (1, t).
(3.40)

The trivial observer (3.17a)(3.17h), (3.40) is the simplest observer one can construct for the Rijke tube modelled by (2.43) using the measurement (3.1), since it is simply a copy of the dynamics with the measurement injected in the corresponding boundary where it is taken. It does not have a convergence guarantee as one has a potentially unstable feedback loop in the interaction between û2 , v2 and X, but because it does not attempt to reconstruct v(1, •) from known signals it does not introduce an exponentially converging error, which is a drawback of the observer (3.17 the same parameters and measurement signal as the observer (3.17) in the respective tests. In the two tests, the simulation is run for t s = 2 s, and the observers are turned on at t = 0.5 s.

First simulation -Smaller impedances

Here estimates Ẑ0 = -5, ẐL = 5 are used as values of the impedance in the observer. First the estimation errors for the observers are plotted against each other. For the pressure and velocity, the estimation error by the heater, at position z = z 0 , is considered.

In Figure 3.3, the pressure estimation error P (z 0 , •) of the observer (3.17 up in this manner for ease of viewing, due to the relatively high frequency of the dynamics. In Table 3.1 the estimates of the estimation error norms for the two observers is summarized to three signicant digits, using T 1 = 1.5 s and T 2 = 2 s. The observer (3.17) has a norm || P (z 0 )|| that is 11.0% higher than the one for the trivial observer. However, the norms || Ṽ (z 0 )|| and || Q|| are respectively 69.9% and 128%

|| f || ≈ 1 T 2 -T 1 T 2 T 1 f 2 (t)dt.
higher for the trivial observer (3.17a)(3.17h), (3.40) than for the observer (3.17).

Hence, despite the pressure estimation error norms being slightly higher for the the observer (3.17) compared to the trivial observer, the estimation error norm of the velocity and heat release rate is signicantly higher for the trivial observer. We can thus conclude that overall the observer (3.17) has (after the initial transient)

better performance than the trivial observer (3.17a)(3.17h), (3.40) when Ẑ0 = -5 and ẐL = 5 are used in place of Z 0 = -15 and Z L = 20 respectively.

To have a sense of the state estimates produced by the two observers as compared to the true states, after the initial transient, the estimates are plotted against the true states for t ∈ [1.99, 2.00]. In Figure 3.6 the pressure P (z 0 , •) at z 0 is plotted against the estimate P (z 0 , •) produced by the observer (3.17 

Second simulation -Larger impedances

Here the case of incorrect estimates taking values Ẑ0 = -50, ẐL = 50 is considered.

As in Section 3.3.1, the pressure and velocity estimation errors are plotted for z = z 0 . In Figure 3.9 the pressure estimation error P (z 0 , •) for the observer (3.17) is plotted against the corresponding error Ptrivial (z 0 , •) for (3.17a)(3.17h), (3.40) in dark and lighter blue, respectively. In Figure 3.10 the velocity estimation error Ṽ (z 0 , •) is plotted in dark green against Ṽtrivial (z 0 , •) in light green. Lastly, the heat release estimation errors Q(•) and Qtrivial (•) are shown in Figure 3.11, in respectively dark and light red.

The pressure estimation errors plotted in Figure 3.9 are fairly similar to each other. However, for the velocity estimation errors in Figures 3.10, the estimation errors from the observer (3.17) have a tighter bound and appear to be closer to the origin after the initial transient as compared to the trivial observer (3.17a) (3.17h), (3.40). The same can be said for the heat release rate estimation errors in Figure 3.11, where the observer (3.17) performs objectively better after the initial transient.

Norm

Observer (3.17) worse in estimation of the velocity and heat release rate. Here, the observer (3.17) has error norm || P (z 0 )|| that is estimated to be 10.0% higher than that for the trivial observer (3.17a)(3.17h), (3.40). On the other hand, the norm || Ṽ (z 0 )|| is 70.5% higher for the trivial observer. Finally, the estimate of the heat release rate estimation error norm is 90.7% higher for the trivial observer, when compared to the corresponding metric for the observer (3.17). Figure 3.12: Pressure at z = z 0 compared to estimates.

Again, we show the state estimates versus the states for the last 10 ms of the simulation. In Figure 3.12 the pressure at z = z 0 is plotted against the estimates P (z 0 , •) and Ptrivial (z 0 , •). From the Figure, their performance is nearly identical, with Ptrivial (z 0 , •) being slightly closer to P (z 0 , •) some of the time and P (z 0 , •) being slightly closer at other times, but overall they are approximately equally far away. In Figure 3.13, the velocity estimate V (z 0 , •) from (3.17) and the estimate Vtrivial (z 0 , •) is plotted against the velocity V (z 0 , •). Here it can be clearly seen that V (z 0 , •) is closer the the true state than Vtrivial (z 0 , •) throughout. Lastly, in Figure 3.14, we see the heat release rate Q(•) compared to the estimates Q(•) and Qtrivial (•). As for the velocity, the estimate Q(•) is closer to the true state throughout than Qtrivial (•).

Here the observer (3.17) was tested and compared to the trivial observer (3.17a)(3.17h), (3.40) for two cases when incorrect values of the acoustic impedances are used, rstly when the estimates are smaller in absolute value than the true parameters, and secondly when the estimates are larger in absolute value.

Proposition 1 guarantees that the estimation errors from (3.17) remain bounded whenever these estimates are incorrect, as long as the reection coecients d0 , d1 are smaller than unity in absolute value. The trivial observer (3.17a)(3.17h), .14, we see the estimates using Ẑ0 , ẐL smaller than Z 0 , Z L in absolute value are in general larger than the true states, whereas the estimates using Ẑ0 , ẐL larger than Z 0 , Z L in absolute value end up being smaller than the true states. This is to be expected as an impedance closer to the characteristic impedance k results the estimated reection coecients d0 , d1 being closer to zero, and hence introduces more damping into the system. Since using values of the acoustic impedances smaller than the true values causes the observer to exaggerate the estimates, and likewise using values larger than the true values causes the observer to underestimate the states, to achieve correct state estimates it is important to have as correct estimates of the acoustic impedances at hand, which is the focus of Chapter 4. We test next the state observer on experimental data.

Experiment

We consider in this section the experimental setup consisting of the Rijke tube as t ∈ [40 42] over which the observer is to be tested. As expected, the boundary pressure measurement has a much smaller magnitude than the in-domain pressure measurement, since it is close to a node. We test now the observer (3.17) to see how well it uses the data shown in Figure 3.15 to estimate the data in Figure 3.16. For simplicity, only the observer (3.17) and not the trivial observer is tested here.

Since the boundary impedances Z 0 , Z L are here unknown, a range of values are tested. In Figure 3.17, the observer is tested using guessed values of the impedances

set to Z z = ±5 P a • s • m -1 for z ∈ {0, L}.
The estimate produced by the observer at position z = z v is plotted in grey and compared to the measured pressure at vertical position z = z v . It is apparent that the pressure estimate overshoots the measured pressure by a signicant amount. On the other, in Figure 3.18 the impedances are

set to Z z = ±50 P a • s • m -1 .
Here the observer produces pressure estimates with amplitudes smaller than the measured pressure at z = z v .

To have a clearer view of the discrepancy between measured and estimated pressure, in Figure 3.19 the estimates compared to the measured pressure at z = z v is plotted for a shorter interval of time t ∈ [41.98 42], being the last 20 ms of the observer test. Here, in addition to This is further discussed in Section 3.5.

Z z = ±5 P a • s • m -1 and Z z = ±50 P a • s • m -1 ,
using impedances Z z = ±5 P a • s • m -1 , z ∈ {0, L} at z = z v .
using impedances Z z = ±50 P a • s • m -1 , z ∈ {0, L} at z = z v .

Discussion

The observer (3.17) features a nonlinear model of the heat release (2.43a) and has proven convergence, but with the tradeo that an asymptotically convergent error is introduced into the dynamics. It has been tested and compared to the trivial observer which has no convergence guarantee, but does not introduce such an error into its dynamics.

The simulation results presented in Section 3.3 were in general as expected, although the trivial observer has in most cases surprisingly good performance. In tube [Levine & Schwinger 1948], and leaving this out in the modelling could be a possible explanation for the observed phase shift.

Another possible modelling error could be due to assumptions regarding heat transfer. In the particular experimental setup used here, the tube used is made of steel, which is a metal and hence conducts heat well. With the heater having been turned on for some time, inevitably the tube heats up, which then in turn inuences the temperature T g of the gas around the heater. As is seen in (2.43a), the rate of change of heat release rate is directly proportional to the dierence between the wire and the gas temperature. The temperature of the gas documented in Table ii.2 is of approximate room temperature, which may in practice be wrong.

Indeed, as is documented in the literature [Du et al. 2019], the temperature of the gas immediately surrounding the electrical heater tends to be signicantly higher than the standard ambient room temperature surrounding the tube.

Therefore, in addition to the pressure measurement, a useful auxiliary sensor signal to use in the observer could be the temperature of the gas around the heater. Alternatively, observers that use more complicated models of the Rijke tube than (2.43) could be a viable research direction, with an observer that estimates the temperature distribution in the tube and its inuence on the acoustics being an interesting idea.

Chapter 4

The In theory the Rijke tube has ideal open ends with reection coecients d r = -1; in practice there is always unknown damping present, which implies |d r | < 1. Sensitivity of the state estimates from the observer proposed in Chapter 3 to dierent values of the unknown boundary coecients motivates identication of these parameters in practice. After a literature review on the topic, we propose in this chapter a method for estimating these parameters from a single pressure measurement. The model (2.44) which, with constant cross-sectional area, models the Rijke tube with the heater turned o, is rewritten in Riemann coordinates. Using the Method Of Characteristics (MOC), a regressor form linear in the unknown parameters and their product is written. We propose applying this regressor form together with Least Squares (LS) with forgetting factor to estimate the boundary acoustic impedances. This is done rst in simulations, and subsequently using experimental data. We test the observer from Chapter 3 with the identied values of the boundary parameters.

Literature review

In addition to design of state observers for estimating the pressure, velocity and heat release from sensor measurements, many of the parameters in the Rijke tube are by default unknown and need to be identied to implement the observers correctly.

In [START_REF] Epperlein | [END_REF]] a range of classical system identication techniques are applied to estimate various parameters in the Rijke tube. As seen in Chapter 3, one class of parameters that can have a large impact on obtaining the correct estimates is the boundary acoustic impedances. These parameters appear in the acoustic boundary conditions (2.43d)(2.43e) of the Rijke tube acoustic model.

In particular for combustion chambers susceptible to thermoacoustic instabilities, the chambers are in practice interfaced to complex turbomachinery during their operation, which in turn determines the impedances, making it a daunting task to analytically compute the quantities for all operating conditions [Poinsot 2017]. In the Rijke tube the acoustic impedances are in practice open ends with a bit of damping, and hence simpler than the impedances one nds in real combustion chambers.

Hence, studying the problem of acoustic impedance estimation in the Rijke tube can be seen as a stepping stone towards understanding how to estimate the acoustic impedances in more complicated cases.

An early method for determination of boundary acoustic impedances developed is the Standing-Wave-Ratio (SWR) method [Kathuriya & Munjal 1975] where the positions of nodes and antinodes of a standing wave inside a tube connected to the acoustic boundary impedances of interest are identied by moving a microphone along the tube, and based on this information the acoustic impedances can be computed. Later, the now much used two-microphone method was introduced by [Seybert & Ross 1977]. The method consists of exciting the acoustic system at the boundary anticollocated to the unknown acoustic boundary with an acoustic source randomly uctuating within a narrow bandwidth around the frequency one wishes to estimate the boundary impedance for. Two microphones are then placed at dierent positions along the tube, and the boundary acoustic impedance is calculated based on the auto-spectral densities of the pressure at the respective points and their relative cross-spectral density. The original two-microphone method does not take into account uncertainty in the estimate, with an improved version doing this suggested in [Schultz et al. 2007].

The methods for estimating acoustic impedance mentioned above were designed to be applied with frequency domain data, assuming the impedance to be a general linear system with velocity as the input and pressure as the output, and hence typically giving a complex frequency response as the estimate of the impedance.

For more complex cases it is necessary to describe the impedance in that manner, but in the Rijke tube acoustics (2.43) they are simply represented as real scalar quantities, with the pressure at the boundary being proportional to the velocity, rather than a convolution. To estimate these quantities, we propose in Section 4.2 a parameter identication scheme. The method is developed in the time domain and can hence be implemented in real-time. In Section 3.2 we have proposed a state observer for the Rijke tube and proved that its corresponding estimation error dynamics are GAS with respect to the origin, if all model parameters are known. Also, a minor result was given with respect to robustness of the observer estimates to error in knowledge of the acoustic reection coecients, which can in practice be challenging to compute or estimate accurately.

Parameter identier

In this section a simple estimation scheme for estimating these reection coecients is proposed.

Model in Riemann coordinates

We consider the same setup as shown in Figure ii.1, but with the electrical heater turned o. Also, we let there be a loudspeaker collocated with the pressure measurement at z = 0. This results in the setup illustrated in Figure 4.1, with the acoustic impedances Z 0 , Z L , which we are interested in estimating, labelled. The model (2.44) with a (•) ≡ 0, W L ≡ 0 and W 0 ≡ W can describe this scenario, where W is an identication signal. Note that this model is identical to (2.43b)(2.43e) with Q = Q ≡ 0, and can hence represent the Rijke tube with the heater turned o. We assume the measurement Y given by (3.1) is available.

Dene the Riemann coordinates u(x, t) = P (xl, t) + k V (xl, t) (4.1a) v(x, t) = P (xl, t) -k V (xl, t) (4.1b)
where k the characteristic impedance of the air as given by (3.4). Note that unlike the observer design, where separate Riemann coordinates are needed for the part of the tube above and below the heater, only a single pair of Riemann coordinates are needed here due to the absence of folding the domain around the electrical heater.

Applying this transformation maps the system (2.44) with a (•) ≡ 0 into the system u t (x, t) = -λu x (x, t)

(4.2a) v t (x, t) = λv x (x, t) (4.2b) u(0, t) = d 0 v(0, t) + U (t) (4.2c) v(1, t) = d 1 u(1, t) (4.2d)
with reection coecients d 0 , d 1 given in (3.9) and λ dened by λ := c L .

(4.3a)

For the sake of obtaining the regressor form needed for parameter identication, we dene the signal y as y(t) := v(0, t) 

U (t) = (1 -d 0 )W (t) (4.5a) y(t) = 2 1 + d 0 Y (t) - 1 -d 0 1 + d 0 W (t).

Regressor form

The regressor form is given by the following Lemma.

Lemma 1. Consider the duct acoustics described by (2.44) with a (•) ≡ 0, W 0 = W and W L ≡ 0, and output signal Y given by (3.1). Then the relation

r(t) = ϑ R(t) (4.6)
where r is dened by

r(t) := Y (t) - 1 2 W (t), (4.7)
the parameter vector ϑ is written in terms of d 0 , d 1 , dened in (3.9), as

ϑ :=   d 0 d 1 d 0 d 1   , (4.8) 
and known signal vector R is 

R(t) :=   r(t -2λ -1 ) -1 2 W (t) 1 2 W (t -2λ -1 )   ,
y(t) = d 1 d 0 y(t -2λ -1 ) + d 1 U (t -2λ -1
).

(4.10)

Next, substituting (4.5) into (4.10) we obtain

2 1 + d 0 Y (t) - 1 -d 0 1 + d 0 W (t) = d 1 d 0 2 1 + d 0 Y (t -2λ -1 ) - 1 -d 0 1 + d 0 W (t -2λ -1 ) + d 1 (1 -d 0 )W (t -2λ -1
).

(4.11)

With some algebraic manipulation, we end up with

Y (t) - 1 2 W (t) =r(t) = d 1 d 0 Y (t -2λ -1 ) - 1 2 W (t -2λ -1 ) =r(t-2λ -1 ) +d 0 - 1 2 W (t) + d 1 1 2 W (t -2λ -1 ) + 1 2 d 1 d 2 0 W (t -2λ -1 ) - 1 2 d 1 d 2 0 W (t -2λ -1 ) =0 (4.12)
which can be written as (4.6)(4.9), and the proof is complete.

With the regressor form (4.6), a wide range of parameter identication schemes can be applied to estimate the parameter vector ϑ, given that the signal r and signal vector R are available. Next, in Section 4.2.3 we state sucient conditions for the parameter estimates to converge when applying modied LS with forgetting factor.

Identication scheme

To apply the regressor form (4.6)(4.9) to estimate the boundary acoustic impedances Z 0 , Z L via (3.9), we consider modied least squares with forgetting factor. Denote the estimate of ϑ dened in (4.8) as θ. We can then form an estimate r of r as dened in (4.7), by replacing ϑ by θ in (4.6), which lets us dene r(t) := θ(t) R(t). Theorem 2. Dene r := r -r. The adaptive law (4.14) guarantees that 

• r, θ, θ ∈ L ∞ • r, θ ∈ L 2 • If Ψ ∈ L ∞
O( ď0 , ď1 ) := δ 1 ( ď0 ď1 -θ) 2 + δ 2 ( ď0 -d0 ) 2 + δ 3 ( ď1 -d1 ) 2 (4.16)
and

δ i = 1, if ρ i is PE 0, otherwise .
(4.17) where ρ i is the i th component of R.

We test next the parameter estimation scheme in simulations and experiments.

The obtained values are then applied together with the observer from Chapter 3.

Simulations

Parameter identication simulations

Here we apply the parameter estimation scheme proposed in Section 4.2 to estimate the acoustic impedances Z 0 , Z L listed in Table ii.1, testing the update law considered in Theorem 2.

To obtain sucient information about the acoustic boundary impedances Z 0 , Z 1 , the input signal W in (4.8) must be suciently rich, so that the PE condition in Theorem 2 is satised. For the simulations in this section, we choose W as

W (t) = 2 cos λπ 3 t + 2.5 cos λπ 4 t + 3 cos(λπt)
where λ is computed from (4.3a) and (3.7) using parameters in For each time step, after updating the parameter estimate using (4.14), the optimization problem (4.16) is solved with

δ 1 = 1, δ 2 = 1, δ 3 = 1,
using the fminunc function from MATLAB. To obtain values of the acoustic impedances which can be applied to the observer, the expected value and variance of the estimates for the last 0.5 s of the simulation are computed, summarized in With the parameter identication algorithm tested on a simulation example in Section 4.3.1 and the parameter estimates subsequently applied to the observer from Chapter 3, we now do the same with the experimental data. 

Experiments

We test in this section the parameter identication method developed in Section 4. For each time step, after updating the parameter estimate using (4.14), the optimization problem (4.16) is solved with

δ 1 = 1, δ 2 = 0, δ 3 = 1.
The resultant acoustic impedances as a function of time are plotted in Figure 4.11 contributing factor in inaccurate estimation of the pressure amplitude. In addition to this possible contributions from modelling error will be discussed in Section 4.5.

As was the case in Chapter 3, the estimates are however still phase-shifted compared to the measured pressure signal and as seen from Figure 4.13 possible uncertainty in the measured microphone position does not inuence this greatly.

Discussion

Compared to existing results in the literature, the parameter identier (4.14) has the advantage that it estimates both acoustic impedances simultaneously with a single pressure measurement, but with the regressor form (4.6) being overparametrized.

Since the acoustic impedances are estimated indirectly via the reection coecients d 0 , d 1 , an accurate knowledge of the characteristic impedance k is needed to get accurate knowledge of the impedances.

In the parameter identication experiment presented in Section 4.4.1, the estimate of ẐL converges to a larger absolute value than the estimate of Ẑ0 . This end [Levine & Schwinger 1948], the microphone that is supposed to only pick up the loudspeaker signal could also accidentally pick up some of the tube acoustic response. Also, the loudspeaker signal is attenuated slightly as it travels from the loudspeaker into the tube, so the exact microphone placements could impact the resultant parameter estimate.

Although the parameters found in Section 4.4.1 made an improvement to the observer state estimates, the estimate shown in Figure 4.13 is still far from perfect. As discussed in Section 3.5, there could be multiple reasons, such as possible modelling error, for this. Two probable causes of modelling errors are mentioned, namely the lack of modelling heat transfer between the air inside the Rijke tube and tube walls and also modelling the impedances as having a resistive component, only. The former could cause errors in the sense that extra damping from a heated tube that is not included in the model might cause the observer to overestimate the amplitude of the thermoacoustic instabilities. Indeed, this could possibly explain the estimated pressure amplitude in Figures 4.124.13 being larger than that of the measured pressure despite using estimated rather than guessed values of the boundary impedances. Also as discussed in Section 3.5, the latter modelling error is a probable cause for the observed phase shift in Figures 3.19 The work that was considered in Part II dealt with the Rijke tube, which is a laboratory setup. Although studying this setup is useful for understanding the rudiments of thermoacoustics as a physical phenomenon, designing algorithms to estimate the states and parameters for the Rijke tube can not be directly applied to practical combustors. There are, in addition to other factors, two important reasons for this.

Firstly, the Rijke tube uses either a heated gauze or an electrical heater, which are simpler to model than ames in principal. Secondly, the Rijke tube has very simple geometry, whereas many important aspects of thermoacoustics in combustors are a direct consequence of their more complicated geometry [Poinsot 2017].

Therefore, to work towards model-based state and parameter estimation algorithms for combustors, the unique aspects of combustor dynamics need to be taken into account in the models used. In Part III of the thesis we aim to take some steps, however small, towards this. Only longitudinal modes and laminar ame dynamics are considered, but we hope the contributions presented can be built upon towards the realization of estimation algorithms using more realistic descriptions of the combustor dynamics in future work. We start in Chapter 5 by considering the problem of generalizing the parameter estimation scheme from Chapter 4, which assumes the cross-sectional area of the duct is constant, to the case when the duct has spatially varying geometry. This is done by using the acoustics described by (2.44) with a (•) = 0 in general as a basis. In this chapter, a parameter identication scheme for estimating the boundary coecients of a 2 × 2 linear hyperbolic system is presented. The design is similar to the parameter identication scheme suggested in Chapter 4 for the Rijke tube, but the in-domain coupling coecients make applying the same approach non-trivial.

To overcome this issue, a backstepping transformation is employed to map the 2 × 2 linear hyperbolic system into a target system driven by the I/O signals at each point in the spatial domain. The MOC is then applied to nd a regressor form for which standard parameter estimation methods can be applied. The design is demonstrated in simulations on a theoretical example. Next, it is shown that the model (2.44)

of acoustics in a duct with spatially varying cross-sectional area can be written as a 2 × 2 linear hyperbolic system. This allows the regressor form found for general 2 × 2 linear hyperbolic systems to be applied to nd a similar form for estimation of boundary acoustic impedances in ducts with spatially varying geometry.

Background

Problem statement

We are here concerned with systems of the form

u t (x, t) = -λ(x)u x (x, t) + σ + (x)v(x, t) (5.1a) v t (x, t) = µ(x)v x (x, t) + σ -(x)u(x, t) (5.1b) u(0, t) = d 0 v(0, t) (5.1c) v(1, t) = d 1 u(1, t) + U (t),
(5.1d)

where u, v are distributed states dened over (x, t) ∈ [0, 1] × [0, ∞), and the boundary reection coecients d 0 , d 1 are unknown. The transport speeds λ, µ ∈ C 1 (0, 1) and in-domain coupling coecients σ + , σ -∈ C 0 (0, 1) are all assumed known, and U : [0, ∞) → R is a boundary input signal. We assume the initial conditions u 0 , v 0 ∈ L 2 (0, 1).

Given knowledge of the boundary measurement y(t) := u(1, t),

(5.2) only, the main goal is to design a parameter identication scheme for estimating the unknown coecients d 0 , d 1 and to choose the input signal U so that parameter convergence is achieved. In order to actuate and sense these systems, the most feasible access points in many practical applications are the boundaries, and hence much research has been devoted to observer and controller design within this setting over the past years.

A successful technique for boundary observer and controller design for many distributed parameter systems is the backstepping methodology, which was rst developed for stabilization of certain classes of nite dimensional nonlinear systems (see [START_REF] Krsti¢ | [END_REF][START_REF] Khalil | [END_REF]) and later generalized to design stabilizing boundary control laws for innite dimensional systems, the design rst fully mastered in [Liu 2003] for a parabolic PDE. The technique was later applied to hyperbolic PDEs in [Krsti¢ & Smyshlyaev 2008a] and later to systems of rst-order hyperbolic PDEs in [START_REF] Vazquez | [END_REF].

In early contributions it is assumed all system parameters are known, but following on the research eort for control and observer backstepping designs, research into adaptive controllers and parameter identiers for parabolic PDEs has been considered, culminating in the seminal text [Smyshlyaev & Krsti¢ 2010].

In [Mechhoud et al. 2013] estimation of the source terms in a parabolic PDE describing plasma heat transport is considered, and in [Baudouin et al. 2014 A scheme for estimating both reection coecients d 0 , d 1 in the 2 × 2 linear hyperbolic system (5.1), given the boundary measurement (5.2) only is presented in Section 5.2. Both reection coecients of such systems are estimated in [START_REF] Annsen | [END_REF]], but assuming both boundaries are available for measurement. Here, we only require one measurement. The methodology applied here is based on using a Volterra integral transformation, a vital ingredient in the innite dimensional backstepping technique (see [Krsti¢ & Smyshlyaev 2008b]), to map the system we are studying into a target system. Using this target system, the measure-ment signal is written in a regressor form linear in the unknown coecients and their product, allowing standard parameter identication techniques to be applied. The results from Section 5.2 are then applied in Section 5.4 to suggest an algorithm for estimating the boundary impedances of a duct with spatially varying cross section, such as the one modelled by (2.44).

5.2 Boundary parameter estimation 2×2 hyperbolic systems

Mapping to target system

We apply the Volterra integral transformation α(x, t) = u(x, t) +

1 x K uu (x, ξ)u(ξ, t) + K uv (x, ξ)v(ξ, t)dξ (5.3a) β(x, t) = v(x, t) + 1 x K vu (x, ξ)u(ξ, t) + K vv (x, ξ)v(ξ, t)dξ (5.3b)
with kernels satisfying the PDE system

-λ(x)K uu x (x, ξ) -λ(ξ)K uu ξ (x, ξ) = λ (ξ)K uu (x, ξ) + σ -(ξ)K uv (x, ξ) (5.4a) -λ(x)K uv x (x, ξ) + µ(ξ)K uv ξ (x, ξ) = -µ (ξ)K uv (x, ξ) + σ + (ξ)K uu (x, ξ) (5.4b) -µ(x)K vu x (x, ξ) + λ(ξ)K vu ξ(x, ξ) = -λ (ξ)K vu (x, ξ) -σ -(ξ)K vv (x, ξ) (5.4c) -µ(x)K vv x (x, ξ) -µ(ξ)K vv ξ (x, ξ) = µ (ξ)K vv (x, ξ) -σ + (ξ)K vu (x, ξ)
(5.4d) dened over the the upper triangular domain T u := {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1}, and having boundary conditions

K uu (x, 1) = f u (x)
(5.5a)

K uv (x, x) = σ + (x) λ(x) + µ(x) (5.5b) K vu (x, x) = -σ -(x) λ(x) + µ(x) (5.5c) K vv (x, 1) = f v (x) (5.5d)
Here the boundary data f u , f v can be chosen freely, as long as it is suciently smooth for (5.4)(5.5) to have a well-posed solution. In Figure 5.1, a schematic representation of the characteristics of the kernel equations (5.4)(5.5) is shown.

Remark 4. Note that unlike the standard backstepping transformation considered in e.g. [START_REF] Vazquez | [END_REF]], the kernels dened by (5.4)(5.5) do not depend on the boundary coecients d 0 , d 1 . This is achieved, as can be seen in (5.5) and Figure 5.1, by dening the boundary condition of K uu , K vv along the line ξ = 1 rather than x = 0, as is conventional in backstepping designs for observer and controller designs. We present now a Lemma equating the system (5.1) with a target system. The proof is standard and hence omitted.

Lemma 2. The invertible Volterra integral transformation (5.3)(5.5) maps the system (5.1) into the target system α t (x, t) + λ(x)α x (x, t) = l y 1 (x)y(t) + l U 1 (x)U (t)

(5.6a)

β t (x, t) -µ(x)β x (x, t) = l y 2 (x)y(t) + l U 2 (x)U (t) (5.6b) α(0, t) = d 0 β(0, t) + 1 0 M (x)α(x, t) + N (x)β(x, t)dx (5.6c) β(1, t) = d 1 α(1, t) + U (t)
(5.6d) with the I/O gains dened as

l y 1 (x) := d 1 µ(1)K uv (x, 1) -λ(1)K uu (x, 1) (5.7) l y 2 (x) := d 1 µ(1)K vv (x, 1) -λ(1)K vu (x, 1) (5.8) l U 1 (x) := µ(1)K uv (x, 1)
(5.9) l U 2 (x) := µ(1)K vv (x, 1)

(5.10) and M , N given by

M (x) := K uu (0, x) -d 0 K vu (0, x) - x 0 M (s)K uu (s, x) + N (s)K uv (s, x)ds (5.11) N (x) := K uv (0, x) -d 0 K vv (0, x) - x 0 M (s)K vu (s, x) + N (s)K vv (s, x)ds (5.12) + φ λ (1) 0 l U 1 (φ -1 λ (s))y(t -φ λ (1) + s)ds
(5.27)

I y 4 [y](t) := 1 0 M 1 (s)F y 21 [y](s, t) + N 1 (s)F y 22 [y](s, t)ds + φ λ (1) 0 ly 1 (φ -1 λ (s))y(t -φ λ (1) + s)ds
(5.28)

I U 4 [U ](t) := 1 0 M 1 (s)F U 21 [U ](s, t) + N 1 (s)F U 22 [U ](s, t)ds + φ λ (1) 0 l U 1 (φ -1 λ (s))U (t -φ λ (1) + s)ds (5.29) which in turn depend on F y ij , F U ij , given by F y 11 [y](s, t) := φλ (s) 0 l U 1 (φ -1 λ (φ λ (s) + σ))y(t -φ λ (1) + σ)dσ
(5.30)

F y 12 [y](s, t) := y(t -φµ (s)) + φµ(s) 0 l U 2 (φ -1 µ (φ µ (1) -σ))y(t -φµ (s) -φ λ (1) + σ)dσ (5.31) F y 21 [y](s, t) := y(t -φ λ (s)) - φλ (s) 0 ly 1 (φ -1 λ (φ λ (s) + σ))y(t -φ λ (1) + σ)dσ (5.32) F U 21 [U ](s, t) := - φλ (s) 0 l U 1 (φ -1 λ (φ λ (s) + σ))U (t -φ λ (1) + σ)dσ
(5.33)

F y 22 [y](s, t) := φµ(s) 0 ly 2 (φ -1 µ (φ µ (1) -σ))y(t -φµ (s) -φ λ (1) + σ)dσ
(5.34)

F U 22 [U ](s, t) := U (t -φµ (s) -φ λ (1)) + φµ(s) 0 l U 2 (φ -1 µ (φ µ (1) -σ))U (t -φµ (s) -φ λ (1) + σ)dσ (5.35)
Lemma 3. The output signal y dened in (5.2) can be written as

y(t) = d 0 d 1 ω 1 (t) + d 0 ω 2 (t) + d 1 ω 3 (t) + ω 4 (t)
(5.36)

with ω i dened as Proof. Applying the MOC and transformation (5.3a), we write the measurement as

ω 1 (t) := y(t -φ λ (1) -φ µ (1)) + I y 1 [y](t) (5.37) ω 2 (t) := U (t -φ λ (1) -φ µ (1)) + I y 2 [y](t) + I U 2 [U ](t) (5.
y(t) = α(1, t)
we see that (5.36) can be expressed in the regressor form (t) = ϑ Ω(t)

(5.45) with ϑ as dened in (4.8) but Ω given by

Ω(t) :=   ω 1 (t) ω 2 (t) ω 3 (t)   .
(5.46)

Similar to the case in Section 4.2, a large number of standard adaptive schemes can be applied with the regressor form (5.45) to estimate the unknown parameters in ϑ. As was done there, we suggest applying modied least-squares with forgetting factor. We form an estimate ˆ of the signal by applying the parameter estimate vector θ ˆ (t) := θ(t) Ω(t),

(5.47)

and together with forgetting factor β > 0, the adaptive law reads θ(t) = P (t)( (t) -ˆ (t))Ω(t)

(5.48a)

Ṗ (t) = βP (t) -P (t)Ω(t)Ω(t) P (t), if ||P (t)|| ≤ P 0,
otherwise.

(5.48b) initialized from P (0) = P 0 , θ(0) = θ0 and P an upper bound imposed on P . The following Theorem is almost identical to Theorem 2 (only dierence being dierent signals), but is stated for completeness.

Theorem 3. Dene ˜ := -ˆ . The adaptive law (5.48) guarantees that

• ˜ , θ, θ ∈ L ∞ . • ˜ , θ ∈ L 2 .
• If Ω ∈ L ∞ and Ω is PE, then P , P -1 ∈ L ∞ and θ(t) → ϑ exponentially.

Since the same parameter vector is used in (5.45) as was the case for (4.6), the optimization problem (4.15)(4.16) with δ i assigned as

δ i = 1, if ω i is PE 0, otherwise.
(5.49) is solved to obtain unique estimates ď0 , ď1 .

Remark 5. Given a vector of signals Ω dened as (5.46), checking whether it and its components are PE is relatively straightforward. Recalling from [Ioannou & Sun 2012] that a signal ϕ :

[0, ∞) → R n is PE if it satises α 1 I ≥ 1 T 0 t+T 0 t ϕ(τ )ϕ (τ )dτ ≥ α 0 I (5.50)
for some T 0 , α 0 , α 1 > 0, whether the signal is PE or not can be veried by applying the condition directly. However, the question of how to choose the input signal U so that Ω and its components are PE is more tricky and will in practice most likely need to be found by trial and error, before the parameter identier can be applied to a given plant. As discussed in [Ioannou & Sun 2012], a rule of thumb is to choose U to be suciently rich of order equal to the number of unknown parameter, which in the case of U being the sum of sinusoids corresponds to the signal consisting of at least half as many distinct frequencies as there are unknown parameters. One could then apply (5.50) to verify that the regressor signal Ω and its components are PE for this choice of U .

Simulations

Simulation example

The system (5.1) is implemented in MATLAB with the coecients

λ(x) = 1, µ(x) = 1 σ + (x) = 1, σ -(x) = 1 d 0 = 0.1, d 1 = 0.2
and simulated for a total time of t s = 20 seconds, starting from the initial conditions u 0 (x) = 0, v 0 (x) = 0.

Spatial and temporal discretization of dx = 10 -3 and dt = 10 -3 , respectively, are used. To solve the PDEs forwards in time, a rst-order upwind scheme is applied.

The trapezoidal method is used to approximate all integrals.

As the system parametrization (5.45) is linear in three parameters, the input signal U must be suciently rich in frequencies to allow the signal vector Ω to be PE and be able to distinguish between the parameters. To excite the system to generate sucient output information for parameter convergence, the input signal U dened by

U (t) = sin(t) + sin t 2 is chosen.
In order to compute the signals ω i , i ∈ {1, . . . , 4}, dened by (5.37)(5.40), the kernel PDE system (5.4)(5.5) is solved using Uniformly Gridded Discretization (UGD) (see [Annsen & Aamo 2019]) with boundary data f u = 0 and f v = 0. Hence, using these solutions the signals ω i are computed after φ λ (1) + φ µ (1) = 2 s of I/O data has been collected.

Remark 6. The choice of boundary data f u , f v tunes the exact shape (as functions of I/O data) of the respective signal components d 0 d 1 ω 1 , d 0 ω 2 , d 1 ω 3 and ω 4 , that decompose the measurement signal y in (5.36). In the example presented here, choosing f u = f v = 0 is sucient to obtain parameter convergence, but in certain cases where Ω does not satisfy the PE property with this choice, one could choose f u and f v dierently to make Ω PE, given that U is suciently rich. There is no guarantee, however, that this will work in all cases, and further investigation is necessary to establish the exact conditions for this to be possible. For each time step, after updating the parameter estimate using (5.48), the optimization problem (4.15)(4.16) is solved with

δ 1 = 1, δ 2 = 1, δ 3 = 1,
using the fminunc function from MATLAB.

A plot showing the parameter d 0 plotted against d0 directly from the update law and ď0 after the optimization step is plotted in Figure 5.3. Likewise, Figure 5.4 shows a plot of d 1 against d1 and ď1 . As can be seen, both estimates from before and after the optimization step converge to their true values. In particular for the estimation of d 0 , the optimization step forces the estimate ď0 to stay closer throughout, compared to d0 which has a small overshoot initially.

Robustness to noise

In situations where one has sensor data that is corrupted by high levels of noise, the forgetting factor β appearing in (5.48) has the eect of amplifying the noise, as it discounts past data in preference for current data, and can hence give poor parameter estimates if β and/or the maximum covariance norm P are chosen to be too high. One faces in any case a trade-o between exibility oered by the forgetting factor and robustness to noise.

The system (5.1) is simulated with the same settings as in Section 5. The quality of the parameter estimates are deteriorated due to the noise, but despite 1 The unit Watt [W ] to quantify the size of the noise is used here with the conventional meaning, as used by the wgn function [wgn ] used to implement it in MATLAB, that if a voltage with equal numerical value, in Volts [V ], to the noise signal generated is placed over a resistor with resistance 1 Ω, a power equal to the number of Watts specied would be dissipated.

this the estimates remain in the neighbourhood of the correct parameter values.

One should however note that parametrization (5.45) used will cause the estimates produced by applying LS to be biased when faced with measurement noise. Hence with signicant amounts of noise the estimates could diverge, rather than converge to the true parameters as they would in the corresponding noiseless case with identical input signal. It could be benecial to instead apply an update law more robust to noise, such as Instrumental Variables (IV) (see e.g. [Ljung 1987]), rather than LS in such a scenario. that it is collocated to a pressure measurement. Also, it is assumed the air inside the duct is stationary, so that V = 0, and standard atmospheric conditions apply.

As shown in Chapter 2, such a scenario can be modelled by (2.44) with W 0 = 0.

The pressure measurement Y is given by Y (t) = P (L, t)

(5.51)

and together with knowledge of W , the aim is to estimate unknown boundary acoustic impedances Z 0 , Z L . We proceed in the following steps. First, we show that (2.44) can be written in the form (5.1) by mapping into Riemann coordinates. Then, applying results from Section 5.2, we suggest a regressor form for (2.44) that can be used for parameter identication. (5.55a)

σ -(x) = -σ(x)

(5.55b) reection coecients

d 0 := Z 0 + k Z 0 -k (5.56a) d 1 := Z L -k Z L + k (5.56b) (5.56c)
and input signal

U (t) := (1 -d 1 )α W W (t) (5.57)
where (5.60a)

α W := exp L c 1 0 σ(ξ)dξ (5.
1 2 (ū t (x, t) + vt (x, t)) = - γ P 2kL (ū x (x, t) -vx (x, t)) - γ P 2k a (xL) a(xL) (ū(x, t) -v(x, t))
(5.60b)

Multiplying (5.60a) by k and adding and subtracting from (5.60b) gives the following expressions for the temporal partial derivatives ūt , vt ūt (x, t) = -1 2L

k ρ + γ P k ūx (x, t) + 1 2L - k ρ + γ P k vx (x, t) - γ P 2k a (xL) a(xL) ū(x, t) + γ P 2k a (xL) a(xL) v(x, t), (5.61a) vt (x, t) = 1 2L k ρ - γ P k ūx (x, t) + 1 2L k ρ + γ P k vx (x, t) - γ P 2k a (xL) a(xL) ū(x, t) + γ P 2k a (xL) a(xL) v(x, t).
(5.61b)

Applying the denitions of k, c and σ, we write (5.61) as

ūt (x, t) = - c L ūx (x, t) -σ(x)ū(x, t) + σ(x)v(x, t) (5.62a) vt (x, t) = c L vx (x, t) -σ(x)ū(x, t) + σ(x)v(x, t) (5.62b)
Next, substituting the subsequent change of variables

u(x, t) = ū(x, t) exp L c x 0 σ(ξ)dξ (5.63a) v(x, t) = v(x, t) exp L c x 0 σ(ξ)dξ
(5.63b) into (5.62) we obtain (5.1a)(5.1b) with λ, µ as given in (5.54) and σ + , σ -as given in (5.55).

Composing (5.59) with (5.63) gives the complete change of coordinates (5.52).

Substituting this into the boundary conditions (5.1c)(5.1d), by assigning d 0 , d 1 and U as in (5.56)(5.57) we see (2.44c)(2.44d) maps into (5.1c)(5.1d) with W 0 = 0, and the proof is complete.

Regressor form

Having shown that the acoustics mathematical model (2.44) ts into the form (5.1),

we combine here Lemmas 34 to suggest a regressor form for estimating the boundary impedances Z 0 , Z L in (2.44).

Lemma 5. Consider the acoustics described by (2.44) and I/O signals W and Y

given by (2.44c) and (5.51) respectively. Then the relation

χ(t) = ι Ψ(t) (5.64)
where the signal χ is dened by

χ(t) := 2 (Y (t) -I y 4 [Y ](t)) + α W I y 4 [W ](t) -W (t) -I U 4 [W ](t)
(5.65)

the parameter vector ι is given by

ι :=        d 0 d 2 1 d 2 1 d 0 d 1 d 0 d 1       
(5.66)

and the vector of signals Ψ, which is given by

Ψ(t) :=        ψ 1 (t) ψ 2 (t) ψ 3 (t) ψ 4 (t) ψ 5 (t)       
(5.67) consists of the component signals ψ i dened by

ψ 1 (t) := α W I y 1 [W ](t) -I U 2 [W ](t)
(5.68)

ψ 2 (t) := α W I y 3 [W ](t) -I U 4 [W ](t)
(5.69)

ψ 3 (t) := 2 (Y (t -φ λ (1) -φ µ (1)) + I y 1 [Y ](t)) + α W (I y 2 [W ](t) -W (t -φ λ (1) -φ µ (1)) -I y 1 [W ](t))
(5.70)

ψ 4 (t) := 2I y 2 [Y ](t) + α W W (t -φ λ (1) -φ µ (1)) + I U 2 [W ](t) -I y 2 [W ](t)
(5.71)

ψ 5 (t) := 2I y 3 [Y ](t) + α W (I y 4 [W ](t) -W (t) -I y 3 [W ](t))
(5.72) holds true.

Proof. The relation between U and W is given in (5.57), and applying this together with (5.51)(5.52) we write the characteristics measurement y, dened in (5.2), in terms of Y , W and system parameters as

y(t) = 2 1 + d 1 Y (t) - 1 -d 1 1 + d 1 exp L c 1 0 σ(ξ)dξ W (t).
(5.73) Subsituting (5.57), (5.73) into (5.37)(5.40) gives

ω 1 (t) = 2 1 + d 1 (Y (t -φ λ (1) -φ µ (1)) + I y 1 [Y ](t)) - 1 -d 1 1 + d 1 exp L c 1 0 σ(ξ)dξ (W (t -φ λ (1) -φ µ (1)) + I y 1 [W ](t)) (5.74) ω 2 (t) = (1 -d 1 ) exp L c 1 0 σ(ξ)dξ W (t -φ λ (1) -φ µ (1)) + I U 2 [W ](t) + 2 1 + d 1 I y 2 [Y ](t) - 1 -d 1 1 + d 1 exp L c 1 0 σ(ξ)dξ I y 2 [W ](t)
(5.75)

ω 3 (t) = 2 1 + d 1 I y 3 [Y ](t) - 1 -d 1 1 + d 1 exp L c 1 0 σ(ξ)dξ I y 3 [W ](t) (5.76) ω 4 (t) = 2 1 + d 1 I y 4 [Y ](t) - 1 -d 1 1 + d 1 exp L c 1 0 σ(ξ)dξ I y 4 [W ](t) + (1 -d 1 ) exp L c 1 0 σ(ξ)dξ I U 4 [W ](t).
(5.77) Substituting (5.74)(5.77) into the regressor form (5.45) and multiplying both sides by (1

+ d 1 ) yields 2Y (t) -(1 -d 1 ) exp L c 1 0 σ(ξ)dξ W (t) -2I y 4 [Y ](t) + (1 -d 1 ) exp L c 1 0 σ(ξ)dξ I y 4 [W ](t) -(1 -d 2 1 ) exp L c 1 0 σ(ξ)dξ I U 4 [W ](t) = d 0 d 1 2(Y (t -φ λ (1) -φ µ (1)) + I y 1 [Y ](t)) -(1 -d 1 ) exp L c 1 0 σ(ξ)dξ (W (t -φ λ (1) -φ µ (1)) + I y 1 [W ](t)) + d 0 (1 -d 2 1 ) exp L c 1 0 σ(ξ)dξ W (t -φ λ (1) -φ µ (1)) + I U 2 [W ](t) + 2I y 2 [Y ](t) -(1 -d 1 ) exp( L c 1 0 σ(ξ)dξ)I y 2 [W ](t) + d 1 2I y 3 [Y ](t) -(1 -d 1 ) exp L c 1 0 σ(ξ)dξ I y 3 [W ](t) .
Rearranging gives us the regressor form (5.64), and the proof is complete.

With the regressor form (5.64), it should in principle be possible to apply a wide range of dierent parameter identication schemes to estimate the unknown reection coecients d 0 , d 1 and hence Z 0 , Z L in (2.44). However, the parameter vector ι appearing in (5.64) is more overparametrized than the parameter vector ϑ appearing in (4.6) and (5.45).

Discussion

We solved in this chapter the problem of estimating both reection coecients of 2× 2 linear hyperbolic systems of the form (5.1) using a single boundary measurement.

The approach used was similar to the one for boundary estimation in the Rijke tube in Chapter 4, but to deal with the in-domain coupling coecients the plant was mapped into target system (5.6) for which the MOC is applied to obtain the regressor form (5.45).

Applying a standard parameter estimation scheme, such as least-squares with forgetting factor as suggested, on the system written in regressor form should in theory result in the parameters converging to their correct values, given that the input signal is chosen to be suciently rich for the signals in the regressor form to be PE. However, as the parameter vectors ϑ given in (4.8), and especially ι in (5.66), are overparametrized, obtaining unique estimates ď0 , ď1 that are consistent with all the estimates in the parameter vectors is not necessarily guaranteed by the procedure methods such as the two-microphone method [Seybert & Ross 1977], part of the value in designing time-domain parameter estimation scheme is their application to real-time applications, such as adaptive observers and controllers. Also, to implement the parameter estimation schemes considered here online in a system suering from thermoacoustic instabilities, the algorithms need to be extended to work in tandem with heat release included in the model.

As mentioned in Chapter 2, the acoustic impedance is often within the paradigm of locally reacting linear surfaces considered to be a general linear system. The parameter estimation schemes presented here consider it as the even more special case of being modelled by a constant scalar, as this formulation is convenient to work with in the time domain. In an analogue to purely resistive networks in electric circuit theory, this formulation only takes the resistive part of the impedance into account and disregards possible reactive parts. As considered in e.g. [Rienstra & Hirschberg 2004], one could model the impedance as a mass-springdamper system, where the damper represents the resistive part that is currently modelled, and the mass and spring model reactive parts of the impedance, analogous to inductors and capacitors modelling the reactive parts of the impedance in electric circuit theory. With such a model, the parameter estimation scheme would have three parameter to estimate at each boundary, namely the unknown mass, spring constant and damping coecient. The problem would then formulate as parameter identication for a coupled hyperbolic PDEODE system.

So far we considered in Section 5.4 the estimation of acoustic impedances in a duct with spatially varying geometry, but the acoustic properties of the duct walls was not explicitly taken into account. For the sake of boundary acoustic impedance estimation, modelling of the acoustics where such distributed damping due to the particular material is taken into account would be a useful further step from the model (2.44), as this could prevent possible distributed contributions from the acoustic properties of the material to be inadvertently lumped into the boundary impedance estimates. [Culick 1988, Putnam 1971] out the instabilities by ad-hoc physical augmentation of the system. Although it is advantageous to have an inherently stable system, passive methodologies to stabilize thermoacoustic instabilities can turn out to be incredibly expensive, the infamous Apollo F-1 project [Oefelein & Yang 1993] being an example of this. Also as noted in [Dowling & Morgans 2005], even though a passive method works well within a

given operating region, it might have limited applicability to other operating condi-

tions.

An alternative to passive stabilization of thermoacoustic instabilities is active stabilization. The interest of this approach amongst researchers in the eld has gone in and out of fashion since the problem rst started being studied, with one of the earliest contributions [Tsien 1952] being from the beginning of the 1950s. A few decades later active feedback control of combustion instabilities was demonstrated experimentally, rstly on the Rijke tube [Dines 1984[START_REF] Heckl | Active control of the noise from a Rijke tube[END_REF]] and gradually on more complex rigs [Lang et al. 1987[START_REF] Neumeier | [END_REF], Johnson et al. 2001],

via empirically designed phase-shift controllers. These are based on feeding back an amplied and phase-shifted measurement signal 1 , tuned via a trial-and-error approach.

More sophisticated control algorithms, both in the form of datadriven [Kemal & Bowman 1996, Blonbou et al. 2000, Murugappan et al. 2003] and model-based [START_REF][END_REF], Krsti¢ et al. 1999, Annaswamy et al. 2000] design approaches have been explored.

Many of the model-based control algorithms in the literature rely on truncating the innite dimensional model of the thermoacoustic instability into anite number of modes, arguing that the lower order modes are most signicant for the instability and the higher order modes can thus be disregarded. This approach reduces the plant model to be stabilized as a set of ODEs, and a nite-dimensional control law can then be developed to stabilize these lower order modes. Unfortunately, a problem with this approach is that although the modes included in the truncated model are stabilized, instabilities at higher frequencies that were not present initially may inadvertently occur as a result of the intervention [START_REF] Bloxsidge | [END_REF], Gulati & Mani 1992].

Additionally, it is typically assumed that the duct acoustics can be modelled by an ideal wave equation, which in reality requires that the duct has constant cross-sectional area relative to the propagation of the acoustic waves and no internal damping. This is a reasonable assumption for many laboratory setups, where the ducts are purposefully made to be straight, but since real combustion chambers tend to have more complex geometry, for them it is not necessarily the case. As pointed out in [Poinsot 2017], the chamber geometry is a highly signicant determining factor for combustion instability, and is thus important to take into account when considering the suppression of thermoacoustic instabilities in real combustion chambers. In [de Andrade et al. 2018b, de Andrade et al. 2018a], an innitedimensional full-state feedback control law and boundary observer for stabilizing thermoacoustic instabilities in the Rijke tube are designed, respectively. Although the acoustics model considered contains all modes of the system, the Rijke tube has straight geometry and the design is therefore not directly applicable to real combustion chambers.

The objective of this chapter is to propose a model-based output-feedback control law for stabilizing thermoacoustic instabilities that takes into account the innitedimensional nature of the duct acoustics and eects from spatially varying geometry.

A linear ame response is assumed, which is a reasonable assumption for early stages of the instability, and hence if the instability is suppressed fast enough nonlinear effects are unnecessary to take into account. As part of the design process, an observer that estimates pressure, velocity and heat release in the combustion chamber from a pressure measurement is derived. As a contribution on its own, the observer could have applications within early warning systems to detect thermoacoustic instabilities before they grow unstable.

Model in Riemann coordinates

Consider the setup shown in Figure 6.1. It consists of a duct of length L and spatially varying cross-sectional area a(z), where z ∈ [0, L]. It is assumed a premixed ame is burning at z = 0, being fed by a fuel injector. At the far end of the duct, at z = L, a loudspeaker is assumed to be collocated with a pressure sensor. This setup can be modelled by the can combustor model (2.45), where the input signal W comes in via the boundary condition (2.45e), and the output signal Y is as dened in (5.51).

In this chapter, we consider the special case when the ame subsystem (2.45a)

(2.45b) is linearised. We present now a Lemma mapping the model considered into a form suitable for algorithm design and analysis. 

Ẋ(t) = AX(t) + B 0 v(0, t) + B 1 v(0, t -τ ) (6.2a) u t (x, t) = -λ(x)u x (x, t) + σ + (x)v(x, t) (6.2b) v t (x, t) = µ(x)v x (x, t) + σ -(x)u(x, t) (6.2c) u(0, t) = d 0 v(0, t) + CX(t) (6.2d) v(1, t) = d 1 u(1, t) + U (t),
d 0 := 1 -α 1 + α , (6.5a) d 1 := Z -k(L) Z + k(L) exp L 1 0 σ++ (ξ) + σ--(ξ) c(ξL) dξ , (6.5b) boundary input signal U (t) := 2k(L) k(L) + Z exp L 1 0 σ--(ξ) c(ξL) dξ W (t) (6.6)
and matrix-valued parameters B 0 , B 1 , C given by

B 0 := - 1 2k(0) B0 (6.7) B 1 := - 1 2k(0) B1 (6.8) C := 2k(0) 1 + α θ C (6.9)
where (6.12)

σ++ (x) := - 1 + γ 2 V (xL) - 1 2k(xL) P (xL) + a (xL) a(xL) - k (xL) k(xL) γ P (xL) (6.10a) σ+-(x) := 1 -γ 2 V (xL) + 1 2k(xL) P (xL) + a (xL) a(xL) - k (xL) k(xL) γ P (xL) (6.10b) σ-+ (x) := 1 -γ 2 V (xL) - 1 2k(xL) P (xL) + a (xL) a(xL) - k (xL) k(xL) γ P (xL) (6.10c) σ--(x) := - 1 + γ 2 V (xL) + 1 2k(xL) P (xL) + a (xL) a(xL) - k (xL) k(xL) γ P (xL) (6.
Proof. The part of the Proof regarding mapping of the acoustics (2.45c)(2.45d) into the PDE dynamics (6.2b)(6.2c) and boundary condition (2.45e) into (6.2e) is almost identical to steps followed in the proof of Lemma 4, so it is omitted.

Evaluating the change of variables (6.1) at x = 0, and denoting by u -(0, •), v -(0, •) characteristics variables directly upstream of the ame and area jump, u + (0, •), v + (0, •) characteristics variables directly downstream of the ame, we rewrite (2.45f)(2.45g) as

1 2 u + (0, t) + v + (0, t) = 1 2 (u -(0, t) + v -(0, t)) (6.13a) 1 2 u + (0, t) -v + (0, t) = α 2 u -(0, t) -v -(0, t) + k(0)θ CX(t).
(6.13b)

Adding and subtracting (6.13a) respectively to and from (6.13b), after some algebra we have the boundary conditions

u + (0, t) = 1 -α 1 + α v + (0, t) + 2α 1 + α u -(0, t) + 2k(0)θ 1 + α CX(t), (6.14a) v -(0, t) = -1 + α 1 + α u -(0, t) + 2 1 + α v + (0, t) + 2k(0)θ 1 + α CX(t). (6.14b)
Substituting characteristic variables into the linearized ame model followed by boundary conditions (6.14) gives

Ẋ(t) = AX(t) + B0 u -(0, t) -v + (0, t) 2k(0) + B1 u -(0, t -τ ) -v + (0, t -τ ) 2k (0) . (6.15) 
Thanks to Assumption 15, a non-reective section is upstream of the boundary (6.14), so we can in (6.14)(6.15) set u -(0, •) = 0. Also, since v -(0, •) exits the system the boundary condition (6.14b) is disregarded in the nal model. Hence, denoting u(0,

•) = u + (0, •), v(0, •) = v + (0, •)
gives respectively (6.2d) with d 0 assigned in (6.5a), C assigned in (6.9) and (6.2a) with B 0 , B 1 assigned in (6.7)(6.8).

Remark 7. Note that for the physical control signal W in (6.6) to be implementable in practice, the proportionality constant between U and W must be non-zero. Physically this corresponds to the case when the actuated boundary is not an ideal rigid wall, which in theory would correspond to a velocity node and hence an innite specic impedance Z.

Problem statement

We consider in this chapter boundary controller and observer design of the plant (6.2). In Section 6.26.3 the problems of full-state feedback control design and observer design for the plant is considered in general. These designs are then combined into an output-feedback controller in Section 6.4 which is applied to stabilize longitudinal thermoacoustic instabilities in a simulation example presented in Section 6.5.

The plant (6.2) consists of a linear ODE subsystem (6.2a) with state X ∈ R n dened for t ∈ [0, ∞), where A ∈ R n×n , and having both instantaneous and timedelayed input signals entering via B 0 , B 1 ∈ R n×1 , respectively. It is coupled via the boundary (6.2d), with C ∈ R 1×n and d 0 ∈ R, to a 2 × 2 linear hyperbolic PDE system (6.2b)(6.2c), with states u, v ∈ L 2 (0, 1) dened over (x, t) ∈ [0, 1] × [0, ∞). The parameters of the PDE system are the transport speeds λ, µ ∈ C 1 (0, 1), λ, µ > 0, and in-domain coupling coecients σ + , σ -∈ L ∞ (0, 1). The plant is actuated by the signal U : [0, ∞) → R via the boundary condition (6.2e), where d 1 ∈ R, and we assume a collocated measurement signal y, dened as in (5.2) is available. For the purpose of the control and observer designs we make the following assumption.

Assumption 17. The transport speeds λ, µ ∈ C 1 (0, 1) and time delay τ ∈ R in (6.2) satisfy the inequalities

• λ(x), µ(x), τ > 0, • τ ≥ 1 0 dx λ(x) , 1 0 dx µ(x) .
Additionally, to facilitate the control and observer design we introduce the articial state w, dened according to

w t (x, t) = - 1 τ w x (x, t), (6.16a) 
w(0, t) = v(0, t).

(6.16b)

The plant ODE (6.2a) is then rewritten as

Ẋ(t) = AX(t) + B 0 v(0, t) + B 1 w(1, t).
(6.17)

The problem of boundary control and observer design for interconnected PDE ODE systems has been widely studied in the literature the past decade, both for parabolic PDEs [Tang & Xie 2011] and hyperbolic PDEs [Di Meglio et al. 2018].

These build on contributions for stabilization of PDEs, which for hyperbolic PDEs was rstly achieved with the backstepping method in [START_REF] Vazquez | [END_REF]]. Alternative methods to backstepping have also been considered, such as Lyapunov-based methods [START_REF] Castillo | [END_REF]. In [Castillo et al. 2012] Lyapunov based methods are considered for hyperbolic PDEs with dynamic boundary conditions.

With B 1 = 0 in (6.2) the collocated controller and observer design from [Di Meglio et al. 2018] can be applied to stabilize (6.2), but when B 1 = 0 the delayed input signal causes extra diculties.

As an isolated subsystem with v(0, •) considered as the input signal, stabilization of (6.2a) is considered in [Kwon & Pearson 1980, Artstein 1982].

The plant considered in [de Andrade et al. 2018b] can be written to look similar to (6.2), but only a scalar ODE is considered and the PDE subsystems have no in-domain couplings.

Likewise, the plant considered in [Auriol et al. 2020a] can be written to look similar to (6.2) but instead of a term proportional to the delayed v(0, •) signal one would have a term related to the delayed ODE state X(•).

Control Design

The control design is performed in two steps. First, (6.2) is mapped into a simpler cascade for which the control design is known. Subsequently, the control law for the simpler cascade is written out and the expression for U that stabilizes (6.2) is recovered.

Mapping into simpler cascade

Consider the cascade system

Ż(t) = AZ(t) + Bβ(0, t) (6.18a) α t (x, t) = -λ(x)α x (x, t) (6.18b) β t (x, t) = µ(x)β x (x, t) (6.18c) α(0, t) = d 0 β(0, t) (6.18d) β(1, t) = d 1 α(1, t) + V (t) (6.18e)
where B and V are to be dened, and the change of coordinates

Z(t) = X(t) - 1 0 r(ξ)w(ξ, t)dξ (6.19a) α(x, t) = u(x, t) -ν u (x) X(t) - x 0 K uu (x, ξ)u(ξ, t)dξ - x 0 K uv (x, ξ)v(ξ, t)dξ - 1 0 R u (x, ξ)w(ξ, t)dξ (6.19b) β(x, t) = v(x, t) -ν v (x) X(t) - x 0 K vu (x, ξ)u(ξ, t)dξ - x 0 K vv (x, ξ)v(ξ, t)dξ - 1 0 R v (x, ξ)w(ξ, t)dξ (6.19c)
where r satises for ξ ∈ [0, 1]

r (ξ) = τ Ar(ξ) + τ d 0 BR u (0, ξ), (6.20a) r(1) = -τ B 1 , (6.20b) ν u , ν v satisfy for x ∈ [0, 1] ν u (x) = - 1 λ(x) A ν u (x) - λ(0) λ(x) K uu (x, 0)C (6.21a) ν v (x) = 1 µ(x) A ν v (x) + λ(0) µ(x) K vu (x, 0)C (6.21b) ν u (0) = C (6.21c) ν v (0) = 0, (6.21d) R u , R v are for (x, ξ) ∈ S, the square domain S := {(x, ξ) | 0 ≤ x, ξ ≤ 1}, given by 1 τ R u ξ (x, ξ) = -λ(x)R u x (x, ξ) (6.22a) 1 τ R v ξ (x, ξ) = µ(x)R v x (x, ξ) (6.22b) R u (x, 1) = τ ν u (x) B 1 (6.22c) R u (1, ξ) = 0 (6.22d) R v (x, 1) = τ ν v (x) B 1 (6.22e) R v (0, ξ) = 1 d 0 R u (0, ξ) (6.22f )
and nally K uu , K uv , K vu , K vv are for (x, ξ) ∈ T l , the lower triangular domain

T l := {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1}, given by λ(x)K uu x (x, ξ) + λ(ξ)K uu ξ (x, ξ) = -λ (ξ)K uu (x, ξ) -σ -(ξ)K uv (x, ξ) (6.23a) λ(x)K uv x (x, ξ) -µ(ξ)K uv ξ (x, ξ) = µ (ξ)K uv (x, ξ) -σ + (ξ)K uu (x, ξ) (6.23b) µ(x)K vu x (x, ξ) -λ(ξ)K vu ξ (x, ξ) = λ (ξ)K vu (x, ξ) + σ -(ξ)K vv (x, ξ) (6.23c) µ(x)K vv x (x, ξ) + µ(ξ)K vv ξ (x, ξ) = -µ (ξ)K vv (x, ξ) + σ + (ξ)K vu (x, ξ) (6.23d) K uu (x, 0) = µ(0) d 0 λ(0) K uv (x, 0) - 1 d 0 λ(0) ν u (x) B 0 - 1 d 0 λ(0)τ R u (x, 0) (6.23e) K uv (x, x) = σ + (x) λ(x) + µ(x) (6.23f ) K vu (x, x) = - σ -(x) λ(x) + µ(x) (6.23g) K vv (x, 0) = λ(0)d 0 µ(0) K vu (x, 0) + 1 µ(0) ν v (x) B 0 + 1 µ(0)τ R v (x, 0).
(6.23h)

The vector B in (6.18a) is dened in terms of the solution to (6.20) as

B := B 0 - 1 τ r (0). 
(6.24)

We have the following Lemma.

Lemma 7. With U in (6.2e) given by

U (t) = V (t) + (ν v (1) -d 1 ν u (1) )X(t) + 1 0 (K vu (1, ξ) -d 1 K uu (1, ξ)) u(ξ, t)dξ + 1 0 (K vv (1, ξ) -d 1 K uv (1, ξ)) v(ξ, t)dξ + 1 0 R v (1, ξ)w(ξ, t)dξ, (6.25) 
the transformation (6.19)(6.23) maps (6.2) into (6.18), (6.24), whenever (6.20) (6.23) has a unique, smooth solution.

Proof. Dierentiating (6.19a) with respect to time, (6.19b)(6.19c) with respect to time and space, integrating by parts and substituting the resultant expressions into target dynamics (6.18a)(6.18c), applying (6.20), (6.21a)(6.21b), (6.22a)(6.22c), (6.22e), (6.23) and (6.24) we recover (6.2a)(6.2c).

Furthermore, evaluating (6.19b)(6.19c) at x = 0 and substituting into (6.18d), from applying (6.21c)(6.21d), (6.22f) we recover (6.2d). Finally, evaluating (6.19b) (6.19c) at x = 1, substituting into (6.18e) and applying (6.22d) we obtain (6.2e), (6.25).

Remark 8. Note that ν v (0) and R u (1, •) do not necessarily need to be assigned to zero as in (6.21d), (6.22d), respectively; their values are an extra degree of freedom in the design. However, in assigning a non-zero value to these boundary conditions, B dened in (6.24) will be the solution to a nonlinear matrix equation, which may or may not have a unique solution, depending on the system parameters. As is shown further down, picking them as (6.21d), (6.22d) lets B be solved as the solution to a linear matrix equation.

Analysis of kernels

As mentioned in Lemma 7, in order to map (6.2) into (6.18) via a transformation of the form (6.19), the kernels (6.20)(6.23), in addition to B dened as (6.24), must have a well-posed solution. We show here that this is the case under Assumption 17 and suciently smooth model parameters in (6.2).

Firstly, the general solution of (6.20) is for ξ ∈ [0, 1] given by r(ξ) = -τ e τ A(ξ-1) B 1 + 1 d 0 1 ξ e -τ As BR u (0, s)ds .

(6.26)

Evaluating then (6.26) at ξ = 0 and substituting into (6.24), with the matrix E dened as

E := I - 1 d 0 1 0 e τ As R u (0, s)ds, (6.27) 
and I denoting the identity matrix, we uniquely solve for B as B = E -1 (B 0 + e -Aτ B 1 ).

(6.28)

Note that this requires the following Assumption:

Assumption 18. The matrix E dened by (6.27) is invertible.

Applying the MOC, under Assumption 17 we have the solution of (6.22) given by

R u (x, ξ) = τ ν u (φ -1 λ (φ λ (x) + τ (1 -ξ))) B 1 , if ξ > 1 -1 τ (φ λ (1) -φ λ (x)) 0, if ξ ≤ 1 -1 τ (φ λ (1) -φ λ (x)) (6.29a) R v (x, ξ) = τ ν v (φ -1 µ (φ µ (x) + τ (ξ -1))) B 1 , if ξ > 1 -1 τ φ µ (x) 1 d 0 R u (0, ξ + 1 τ φ µ (x)), if ξ ≤ 1 -1 τ φ µ (x). (6.29b) ε 1 (x)G 2 x (x, ξ) -ε 2 (ξ)G 2 ξ (x, ξ) = c 21 (x, ξ)G 1 (x, ξ) + c 22 (x, ξ)G 2 (x, ξ) (6.33b) G 1 (x, 0) = aG 2 (x, 0) + γ(x) F + b 1 (x) (6.33c) G 2 (x, x) = b 2 (x) (6.33d) γ (x) = D(x)γ(x) + G 2 (x, 0)E(x) (6.33e) γ(0) = H (6.33f ) with parameters satisfying ε 1 , ε 2 ∈ C 1 (0, 1), ε 1 , ε 2 > 0, a ∈ R, b 1 , b 2 ∈ C(0, 1), c 11 , c 12 , c 21 , c 22 ∈ C(T l ), D ∈ C((0, 1); R n×n ), E ∈ C((0, 1); R n×1 ), F, H ∈ R n×1 has a unique solution G 1 , G 2 ∈ L ∞ (T l ), γ ∈ (L ∞ [0, 1]) n .
The proof of this Lemma is almost identical to the proof of Lemma 1 in [Auriol et al. 2018], and hence omitted.

Through comparison we see the systems of equations for (K uu , K uv , ν u ), (K vv , K vu , ν v ) can be written in the form (6.33) with appropriate coecient assignment, and hence by Lemma 8 we establish that

K uu , K uv , K vu , K vv ∈ L ∞ (T l ), ν u , ν v ∈ (L ∞ [0, 1]) n .

Full control law

We present now the main result of this section.

Theorem 4. Let Assumption 17 and 18 be satised, and assume that (A, B) is a controllable pair, K ∈ R 1×n chosen so that (A + BK) is Hurwitz. Denote by Φ α , Φ β the state transition matrices dened via

∂ ∂x Φ α (x, σ) = - 1 λ(x) A Φ α (x, σ), Φ α (σ, σ) = I (6.34a) ∂ ∂x Φ β (x, σ) = 1 µ(x) A Φ β (x, σ), Φ β (σ, σ) = I. (6.34b)
Then the full-state feedback control law

U (t) = Π X(t) + 1 0 π u (ξ)u(ξ, t)dξ + 1 0 π v (ξ)v(ξ, t)dξ + 1 0 π w (ξ)w(ξ, t)dξ (6.35) with Π := N X + ν v (1) -d 1 ν u (1) (6.36a) π u (x) := N u (x) + K vu (1, x) -d 1 K uu (1, x) (6.36b) π v (x) := N v (x) + K vv (1, x) -d 1 K uv (1, x) (6.36c) π w (x) := N w (x) + R v (1, x) (6.36d) with N X , N u , N v , N w dened by N u (ξ) := M α (ξ) - 1 ξ M α (s)K uu (s, ξ)ds - 1 ξ M β (s)K vu (s, ξ)ds (6.37a)

Observer Design

We design in this section an observer of the form

Ẋ(t) = A X(t) + B 0 v(0, t) + B 1 ŵ(1, t) + L[y(t) -û(1, t)] (6.41a) ût (x, t) = -λ(x)û x (x, t) + σ + (x)v(x, t) + P + (x)[y(t) -û(1, t)] (6.41b) vt (x, t) = µ(x)v x (x, t) + σ -(x)û(x, t) + P -(x)[y(t) -û(1, t)] (6.41c) ŵt (x, t) = - 1 τ ŵt (x, t) + P w (x)[y(t) -û(1, t)] (6.41d) û(0, t) = d 0 v(0, t) + C X(t) (6.41e) v(1, t) = d 1 y(t) + U (t) (6.41f ) ŵ(0, t) = v(0, t) (6.41g)
using the measurement signal y as dened in (5.2), where L, P + , P -, P w are gains to be found such that (û, v, ŵ, X) converge to their true values (u, v, w, X) in some sense.

With state estimation errors dened as ũ := u -û, ṽ := v -v, w := w -ŵ and X := X -X, we nd the state estimation error dynamics

Ẋ(t) = A X(t) + B 0 ṽ(0, t) + B 1 w(1, t) -Lũ(1, t) (6.42a) ũt (x, t) = -λ(x)ũ x (x, t) + σ + (x)ṽ(x, t) -P + (x)ũ(1, t) (6.42b) ṽt (x, t) = µ(x)ṽ x (x, t) + σ -(x)ũ(x, t) -P -(x)ũ(1, t) (6.42c) wt (x, t) = - 1 τ wx (x, t) -P w (x)ũ(1, t) (6.42d) ũ(0, t) = d 0 ṽ(0, t) + C X(t) (6.42e) ṽ(1, t) = 0 (6.42f )
w(0, t) = ṽ(0, t).

(6.42g)

Mapping into stable cascade

Consider the target error system

Ż(t) = (A -ΓC) Z(t) (6.43a) αt (x, t) = -λ(x) αx (x, t) (6.43b) βt (x, t) = µ(x) βx (x, t) (6.43c) ωt (x, t) = - 1 τ ωx (x, t) (6.43d) α(0, t) = d 0 β(0, t) + C Z(t) + 1 0 F (ξ)ω(ξ, t)dξ (6.43e) ω(0, t) = β(0, t) + 1 0 H(ξ) β(ξ, t)dξ (6.43f ) β(1, t) = 0 (6.43g)
where Γ is picked so that (A -ΓC) is Hurwitz, and F , H are to be dened further down. We assess the convergence properties of (6.43) in the following Lemma.

Lemma 9. The states (α, β, ω, Z) of (6.43) converge exponentially fast to the origin.

Proof. Due to (6.43c), (6.43g), we have that β ≡ 0 for time t ≥ φ µ (1). Hence, after this (6.43f) is reduced to ω(0, •) = 0, which together with (6.43d) implies ω ≡ 0 for time t ≥ φ µ (1) + τ . Thereafter the target system is reduced to the autonomous ODE (6.43a) cascading into the transport PDE (6.43b), via the boundary condition (6.43e) which is reduced to α(0, •) = C Z(•). Because Γ is picked so that A -ΓC is Hurwitz, (α, Z) converge to the origin exponentially fast and the Proof is complete.

Consider next the change of coordinates

X(t) = Z(t) + 1 0 η α (ξ)α(ξ, t)dξ + 1 0 η β (ξ) β(ξ, t)dξ + 1 0 η ω (ξ)ω(ξ, t)dξ (6.44a) w(x, t) = ω(x, t) + 1 0 S α (x, ξ)α(ξ, t)dξ (6.44b) ũ(x, t) = α(x, t) + 1 x M αα (x, ξ)α(ξ, t)dξ + 1 x M αβ (x, ξ) β(ξ, t)dξ (6.44c) ṽ(x, t) = β(x, t) + 1 x M βα (x, ξ)α(ξ, t)dξ + 1 x M ββ (x, ξ) β(ξ, t)dξ (6.44d)
where η ω satises for ξ ∈ [0, 1]

η ω (ξ) = τ (A -ΓC)η ω (ξ) (6.45a) η ω (1) = -τ B 1 , (6.45b) 
η α satises for ξ ∈ [0, 1] η α (ξ) = 1 λ(ξ) A -λ (ξ)I η α (ξ) + B 0 M βα (0, ξ) + B 1 S α (1, ξ) (6.46a) η α (0) = 1 λ(0) Γ, (6.46b) η β satises for ξ ∈ [0, 1] η β (ξ) = - 1 µ(ξ) A + µ (ξ)I η β (ξ) + (B 0 - 1 τ η ω (0))M ββ (0, ξ) (6.47a) η β (0) = 1 µ(0) 1 τ η ω (0) + λ(0)d 0 η α (0) -B 0 , (6.47b) S α satises for (x, ξ) ∈ S λ(ξ)S α ξ (x, ξ) + 1 τ S α x (x, ξ) = -λ (ξ)S α (x, ξ) (6.48a) S α (x, 0) = 0 (6.48b) S α (0, ξ) = M βα (0, ξ), (6.48c) and M αα , M αβ , M βα , M ββ are for (x, ξ) ∈ T u := {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1} given by λ(ξ)M αα ξ (x, ξ) + λ(x)M αα x (x, ξ) = -λ (ξ)M αα (x, ξ) + σ + (x)M βα (x, ξ) (6.49a) -µ(ξ)M αβ ξ (x, ξ) + λ(x)M αβ x (x, ξ) = µ (ξ)M αβ (x, ξ) + σ + (x)M ββ (x, ξ) (6.49b) λ(ξ)M βα ξ (x, ξ) -µ(x)M βα x (x, ξ) = -λ (ξ)M βα (x, ξ) + σ -(x)M αα (x, ξ) (6.49c) -µ(ξ)M ββ ξ (x, ξ) -µ(x)M ββ x (x, ξ) = µ (ξ)M ββ (x, ξ) + σ -(x)M αβ (x, ξ) (6.49d) M αα (0, ξ) = d 0 M βα (0, ξ) + Cη α (ξ) (6.49e) M αβ (x, x) = - σ + (x) λ(x) + µ(x) (6.49f ) M βα (x, x) = σ -(x) λ(x) + µ(x) (6.49g) M ββ (0, ξ) = 1 d 0 M αβ (0, ξ) -Cη β (ξ) .
(6.49h)

The terms F , H appearing in (6.43e)(6.43f) are dened as

F (ξ) := Cη ω (ξ), H(ξ) := M ββ (0, ξ).
(6.50)

We have the following Lemma.

Lemma 10. The change of coordinates (6.44) maps (6.43) into (6.42), provided that P + (x) = λ(1)M αα (x, 1), (6.51a)

P -(x) = λ(1)M βα (x, 1), (6.51b) 
P w (x) = λ(1)S α (x, 1), (

L = λ(1)η α (1).

(6.51d)

Analysis of kernels

As was done for the controller kernels in Section 6.2.2, we show here that under Assumption 17 and suciently smooth model parameters in (6.2), the kernel equations (6.45)(6.49) have a well-posed solution.

Firstly, (6.45) is solved explicitly as

η ω (ξ) = -τ exp(τ (A -ΓC)(ξ -1))B 1 . (6.52)
Also, as a function of M βα , the solution to S α is written as

S α (x, ξ) = exp(- τ x 0 λ (σ + φ λ (ξ) -τ x)dσ)M βα (0, ξ -λτ x), if ξ ≥ φ -1 λ (τ x) 0, if ξ < φ -1 λ (τ x).
(6.53) Figure 6.3: Sketch of solution to S α . The region shaded in grey has characteristics originating along the line x = 0, while the region shaded in blue has characteristics from ξ = 0. The line of discontinuity, represented by the dashed line, intersects ξ = 1 at the point x = 1 τ φ λ (1).

The solution to S α is illustrated in Figure 6.3. Evaluating (6.53) at x = 1 and substituting into (6.46a), we have

η α (ξ) = 1 λ(ξ) A -λ (ξ)I η α (ξ) + 1 λ(ξ) B 0 M βα (0, ξ). (6.54) 
Then (6.54) together with (6.46b), (6.49a), (6.49c), (6.49e), (6.49g) constitutes an independent system of equations to solve for (M αα , M βα , η α ).

Likewise, evaluating (6.52) at ξ = 0 and substituting this together with (6.46b), (6.49h) into (6.47) we have

η β (ξ) = - 1 µ(ξ) (A + µ (ξ)I) + 1 µ(ξ) BC η β (ξ) - 1 d 0 µ(ξ) BM αβ (0, ξ) (6.55a) η β (0) = d 0 µ(0) Γ - 1 µ(0) B (6.55b) with B := B 0 + exp(-τ (A -ΓC)B 1 . (6.56)
This gives us that (6.55) together with (6.49b), (6.49d), (6.49f), (6.49h) is a coupled system of equations for (M ββ , M αβ , η β ). Swapping x → ξ, ξ → x in the systems of equations (6.46b), (6.49a), (6.49c), (6.49e), (6.49g), (6.54) for (M αα , M βα , η α ) and (6.49b), (6.49d), (6.49f), (6.49h), (6.55) for (M ββ , M αβ , η β ), we mirror the equations over the line x = ξ such that they are dened over

(T l ) 2 ×[0, 1] rather than (T u ) 2 ×[0, 1]. Lemma 8 is then applied to establish that M αα , M αβ , M βα , M ββ ∈ L ∞ (T u ) and η α , η β ∈ (L ∞ [0, 1]) n .

Observer

We present now the main result of this section.

Theorem 5. The observer (6.41) with gains (6.51) produces state estimates (û, v, ŵ, X) that converge exponentially to the states (u, v, w, X) of the plant (6.2), (6.16).

Proof. Because the change of coordinates (6.44) is invertible, by combining Lemmas 910, we see the observer error system (6.42) with gains (6.51) converges to the origin exponentially. Due to the denition of the error state, we write û = u -ũ, v = v -ṽ, w = w -ŵ, X = X -X, and indeed because (ũ, ṽ, w, X) → 0 exponentially, we have (û, v, ŵ, X) → (u, v, w, X) exponentially.

Combining then Lemma 6 and Theorem 5, we see estimates for the pressure, velocity and heat release rate perturbations ( P , V , Q) in the thermoacoustic system (2.45) are computed based on û, v, X as

P (z, t) := 1 2 û z L , t exp L z L 0 σ++ (ξ) c(ξL) dξ + v z L , t exp -L z L 0 σ--(ξ) c(ξL) dξ (6.57a) V (z, t) := 1 2k(z) û z L , t exp L z L 0 σ++ (ξ) c(ξL) dξ -v z L , t exp -L z L 0 σ--(ξ) c(ξL) dξ (6.57b) Q(t) := Q V (0) C X(t).
(6.57c)

Output Feedback Controller

We combine here the results from Section 6.26.3 to propose an output feedback controller to stabilize (6.2), whenever the output signal (5.2) is known. This is then applied to make an acoustic boundary output feedback controller for the thermoacoustic model (2.45).

Corollary 1. Assume the output signal y as dened in (5.2) is available. Then the control law

U (t) = Π X(t) + 1 0 π u (ξ)û(ξ, t)dξ + 1 0 π v (ξ)v(ξ, t)dξ + 1 0 π w (ξ) ŵ(ξ, t)dξ, (6.58) 
with Π, π u , π v , π w given in (6.36)(6.38) and X, û, v, ŵ are produced by (6.41) stabilizes (6.2) exponentially to the origin.

The proof of Corollary 1 is omitted for sake of brevity. Intuitively, the convergence of the output feedback controller can be seen by rewriting the closed loop system as a cascade of the observer system into the observer dynamics. To apply the control law (6.58) to stabilize (2.45), assume pressure measurement Y given in (5.51) is available. Then, applying (6.2e), (6.1) and (6.6) we nd y can be expressed as

y(t) = 2 P (L, t) -2k(L) k(L)+Z W (t) exp(L 1 0 σ++ (ξ) c(ξL) dξ) + d 1 exp(-L 1 0 σ--(ξ) c(ξL) dξ) . (6.59)
Hence, by Corollary 1 a stabilizing feedback U is calculated from (6.41), (6.58), where coecients are assigned according to Lemma 6. The acoustic forcing signal W to apply to stabilize (2.45) is then computed from (6.6).

Simulations

We demonstrate the theory in Sections 6.26.4 on an example of the thermoacoustic system (2.45). Next, in Section 6.5.1 the model parameters are presented, before in Section 6.5.2 the output feedback controller from Corollary 1 is veried to stabilize the plant (6.2) in a MATLAB simulation.

Simulation parameters

Firstly, to obtain the ame model, a taX model (see [Emmert et al. 2014] for more details on taX) of the considered ame being excited by an acoustic source was set up. The Simulink block diagram of this setup is shown in Figure 6.4. Applying the MATLAB system identication toolbox, a transfer function for the ame was tted to the transfer function produced by taX. The t is shown in Figure 6.5, and is given by the transfer function F (s) = 0.03412 2.251 × 10 -6 s 2 + 0.0008245s + 1 e -0.002s . 

B0 = 0 0 , B1 = 1 0 , C = 0 1.5159 × 10 4 .
for a model of the form (2.16), and the input time delay τ = 0.002 s. Since the parameters in the resultant model matrices vary largely in terms of order of magnitude, it is in practice benecial to scale the matrices to have more well-conditioned numerical behaviour. We dene the matrix P := Diag{1/β, β} where β is a tuning constant, and consider a second tuning constant δ. We dene then new matrices

A := P AP -1 , B 1 := 1 δ P B 1 , C := δCP -1 (6.60)
where B 1 and C are calculated from B1 and C according to (6.8)(6.9). From trial and error values of β = 25 and δ = 10 -4 k(0) are found, resulting in the matrices A = -366.3014 -710.8327 625 0 , B 1 = -200 0 , C = 0 316.6565

The new matrices A , B 1 and C are then used in the simulation in place of A, B 1 and C. Note that when scaling with δ, one must multiply the right-hand side of (6.57a)(6.57b) by 1 δ to compensate for the scaling when recovering the pressure and velocity from the characteristic coordinates.

Consider next a duct of length L = 2.5 m with cross-sectional area expressed as a function of z as a(z) = 1 + 0.2 tanh(-20z + 12.5) + 0.2 tanh(20z -37.5) m 2 . (6.61) is considered. The cross-sectional area is plotted in Figure 6.6. The area jump upstream of the ame at the combustor inlet has an area ratio of α = 0.12, and a specic resistive impedance of Z = 1.011×10 5 P a s m is used for the outlet boundary at the downstream end of the combustor. The resultant transport speeds λ, µ computed from (6.3), (6.11)(6.12) are approximately constant, with the maximum value approximately 0.016% higher than the minimum value. For simplicity, they are assumed constant and their mean values are used in the simulation, so that λ(x) ≡ λ, µ(x) ≡ µ. It can be veried that λτ = µτ ≈ 1.73 > 1 and hence satises Assumption 17. For the coupling of the heat release into the ow, the temperature ratio

T h Tc ≈ c 2 h c 2 c
, where c h , c c is the speed of sound directly down-and upstream of the ame. A speed of sound c c = 341 [ m s ]

upstream of the ame is used.

To compute the controller and observer gains, the poles of the target ODE matrices p c := eig(A + BK), p o := eig(A -ΓC) are set as

p c = -1 × 10 5 -2 × 10 5 , p o = -1 -2j -1 + 2j .
The kernels are approximated with UGD by discretizing the spatial domain into a uniform grid with discretization step of ∆x = ∆ξ = 10 -2 . The resultant distributed controller and observer gains are respectively plotted in Figures 6.86.9, and the ODE gains are given by Π = -3.21 × 10 6 7.43 × 10 5 , L = 9.00 × 10 -3 -1.71 .

Simulation results

To simulate the plant (6.2) with parameters dened via Lemma 6 using coecients as stated in Section 6.5.1, the normalized spatial domain [0, 1] x is discretized with 

u 0 (x) ≡ 0, v 0 (x) ≡ 0, w 0 (x) ≡ 0, X 0 = 0 1.25 × 10 -7
and results in an open-loop response of the plant as plotted in Figures 6.106.12.

As can be seen, after 0.25 s the amplitude of the pressure uctuations are almost 5000 P a, which corresponds to a Sound Pressure Level (SPL) of around 170 dB. the output feedback control signal in Figure 6.23 to the full-state feedback control signal in Figure 6.16, we see the observer dynamics in the loop causes the signal to be more uneven and with higher amplitude.

Discussion

In this chapter an output-feedback controller for stabilizing a model of thermoacoustic instabilities in a duct with spatially varying geometry coupled to a linear ame model with a simultaneous instantaneous and time-delayed velocity input has been proposed. It senses and actuates the acoustics at the boundary opposite from the location of the ame. The output feedback controller is composed of two parts, an exponentially converging full-state feedback control law connected in-the-loop to an observer providing exponentially converging internal state estimates. To design the control law, the plant is rst mapped to a simplied cascade system, for which a control law is known and can be explicitly found. Subsequently the full-state feedback control law is recovered.

On the other hand, the observer is designed by mapping the estimation error dynamics directly into an exponentially convergent target cascade system. Both the controller and observer kernels are analysed and found to have a well-posed solution given certain assumptions are satised. Results from a simulation testing rst the full-state feedback control law and observer independently, and nally the combined output feedback control law, is presented and shown to successfully stabilize and estimate the pressure, velocity and heat release uctuations, which are unstable in the open-loop plant.

From a theoretical perspective, investigating if and how the second part of Assumption 17 can be removed would be valuable. Also, design of observers and controllers for plants with more complicated dynamics in place of the wsubsystem (6.16) is a direction this research can be continued. Controller and observer designs for plants with nonlinear extensions of (6.2a), such as an inputane ODE as natural rst step, would be valuable both for theoretical understanding and practical application. Next in Chapter 7 the observer problem for such a nonlinear generalization is considered, but using a considerably dierent approach to that taken here.

In practice, if the necessary control eort to stabilize the thermoacoustic instability gets too large, the loudspeaker could saturate due to physical limitations.

Hence, further work should focus on modifying the controller presented here to stabilize the instabilities in face of actuator saturations. Future work should hence also focus on modelling and design of a controller that stabilizes the plant by actuation the ODE subsystem directly, and combining this with the observer in an anti-collocated setup. A fuel modulation controller could also be used together with the acoustic actuating controller proposed here, and studying ways of combining these would also be a useful research direction. We consider in this chapter the same setup as that shown in Figure 6.1, which can be modelled by (2.45). However, dierently from Chapter 6, we do here not linearise dynamics of the ame subsystem (2.45a)(2.45b). Assuming the boundary pressure signal (5.51) is available for measurement, the aim of this chapter is to design an observer to estimate the duct acoustics together with heat release (and internal states of the ame model) from knowledge of this output signal. The control problem is not studied in this chapter, so the loudspeaker signal W in (2.45e) at z = L can be considered an arbitrary and optional input to the system.

Lemma 6 from Chapter 6 can easily be modied to write (2.45) without any restrictions on (2.45a)(2.45b) in the form (6.2), but with

Ẋ(t) = f (X(t)) + g 0 (X(t))v(0, t) + g 1 (X(t))v(0, t -τ ) (7.1a) u(0, t) = d 0 v(0, t) + h(X(t)) (7.1b)
in place of (6.2a), (6.2d). Hence, we consider the problem of designing a state observer for the coupled PDEODE system (6.2b)(6.2c), (6.2e), (7.1) using knowledge of the output signal (5.2), only.

Due to the nonlinearity of the ame model, performing a similar analysis to that presented in Chapter 6 is highly nontrivial. Instead, we take a signicantly dierent approach. First, in Section 7.1.2 a generic observer design for a 2×2 linear hyperbolic PDE system coupled to a nonlinear ODE, from [START_REF] Irscheid | [END_REF], is presented.

This observer design allows an observer for the coupled PDEODE system to be designed, given that one has an observer for the ODE subsystem. Hence, instead of designing an observer directly for the complete plant (6.2b)(6.2c), (6.2e), (7.1), we design it for the ODE subsystem (7.1a). This reduces the problem of observer design for the complete PDEODE plant to that of observer design for just the ODE subsystem.

The observer for the nonlinear ODE subsystem is designed as a Kazantzis-Kravaris-Luenberger (KKL) observer, the literature and theory of which is reviewed in Section (7.1.3). To implement the KKL observer in practice, one needs to compute a nonlinear injective mapping between the plant state space and observer state space. Although the conditions for the existence of such a transformation are relatively weak, there is no general methodology for calculating the transformation in practice. Similar to the work done in [START_REF] Da | [END_REF], we train neural networks to approximate the transformation.

Since the resultant observer design problem considered here is of a highly numerical nature, in contrast to the analytical approach taken for the linear design in Chapter 6, a specic nonlinear ODE ame model must be applied during the design stage. For this, a nonlinear input-ane Reduced Order Model (ROM) of Kornilov's ame [Kornilov et al. 2009], a premixed laminar conical ame, is considered. This ROM is described in [da Costa Ramos 2021] and is constructed using the Dynamic ROM tool in the Twin Builder software [twi ] by Ansys Inc., based on CFD data of the ame as considered in [START_REF] Jaensch | [END_REF]. Exact expressions of the ame model are the property of Ansys Inc. and can hence not be reproduced here, but for the reader it is sucient to know they are an input-ane nonlinear model of the form (2.17), with internal state X ∈ R 5 .

Observer for nonlinear ODE coupled to hyperbolic PDE system

We state here the main result from [START_REF] Irscheid | [END_REF]] that gives a generic methodology for implementing observers for a 2 × 2 linear hyperbolic PDE coupled to a nonlinear ODE. The design is based on the following assumption.

Assumption 19. Let

Ẋ(t) = F (X(t), Ū (t)) (7.2a) Ȳ (t) = h(X(t)) (7.2b)
be a nonlinear ODE with input Ū and output Ȳ . We assume:

• An observer Ẋ(t) = F ( X(t), Ū (t), Ȳ (t))

(7.3)
initialized from X(0) = X0 ∈ R n exists such that lim t→∞ || X(t) -X(t)|| = 0.

• The vector eld F is suciently locally Lipschitz for the IVP (7.2a), initialized from some X(0) = X 0 , to have a well-posed solution for all t ≥ 0.

The rst part of Assumption 19 implies that as long as one has an observer for the ODE subsystem at hand, an observer for the coupled PDEODE system can be implemented. The second part is necessary to construct the observer presented in the following Theorem. The observer is given for the case of constant transport speeds, but Remark 1 of [START_REF] Irscheid | [END_REF]] claims that the observer can be adjusted to the case of spatially varying transport speeds with minor modication.

Theorem 6 (Theorem 1 in [START_REF] Irscheid | [END_REF]). Let Assumption 19 hold. Consider the observer

Ẋ(t) = F ( X(t), Û (t), Ŷ (t)) (7.4a) ût (x, t) = -λû x (x, t) + σ + (x)v(x, t) + P + (x)ỹ(t) (7.4b) (7.4c) vt (x, t) = µv x (x, t) + σ -(x)û(x, t) + P -(x)ỹ(t) (7.4d) û(0, t) = d 0 v(0, t) + h( X(t)) (7.4e) v(1, t) = d 1 y(t) + U (t) (7.4f ) with Û (t) = v 0, t - 1 λ + 1 0 M βα (0, ξ)ỹ t - 1 λ ξ dξ (7.5) Ŷ (t) = h X t - 1 λ -ỹ(t) (7.6) ỹ(t + s) =    û(1, t + s) -y(t + s), if s ∈ -1 λ , 0 h X t + s -1 λ -h X p s -1 λ ; t , if s ∈ 0, 1 λ (7.7) X p (s; t) = Φ t + s, Û | t+ 1 λ +s t ; X(t) (7.8) X(t) = X p (0; t) (7.9)
and observer gains given by P + (x) = λM αα (x, 1)

(7.10a) P -(x) = λM βα (x, 1) (7.10b)
where M αα , M βα are the solution to (6.49a), (6.49c), (6.49e), (6.49g) with λ(x) ≡ λ, µ(x) ≡ µ, C ≡ 0 and Φ in (7.8) denotes the solution to the IVP (7.2a) initialized from X(t) with input (7.5). This observer guarantees that (û, v, X) converges to the states (u, v, X) of the plant

Ẋ(t) = F (X(t), v(0, t)) (7.11a) u t (x, t) = -λu x (x, t) + σ + (x)v(x, t) (7.11b) v t (x, t) = µv x (x, t) + σ -(x)u(x, t) (7.11c) u(0, t) = d 0 v(0, t) + h(X(t)) (7.11d) v(1, t) = d 1 u(1, t) + U (t).
(7.11e) Setting F (X(t), v(0, •)) := f (X(t)) + g 1 (X(t))v(0, t) + g 2 (X(t))v(0, t -τ ) (7.12) in (7.11a) we can apply the observer (7.4) to estimate the states of (6.2b) (6.2c), (6.2e), (7.1), given that we have an observer Ẋ(t) = F ( X(t), v(0, t), h(X(t))).

(7.13) for the ame subsystem. For this we design a KKL observer, and the background for such observers is given next in Section 7.1.3.

Remark 10. The observer given by Theorem 6 can be applied to implement an observer for the plant (6.2) considered in Chapter 6, whenever the ODE subsystem is observable. This is because the ODE subsystem there is linear and hence trivially satises the Lipschitzness condition required by the second part of Assumption 19.

However, the observer (6.41) does not require the computation of an integral of the form (7.5) or to solve an IVP such as (7.8) at each time step as required by (7.4), but instead can be implemented directly after the gains (6.51) have been computed once oine. This suggests the observer (6.41) would be more computationally ecient than (7.4) in practice, and hence more suitable for real-time implementation.

KKL observers

The theory of KKL observers originates in the original, linear Luenberger observer design presented in [Luenberger 1964]. There, a state observer is designed for a nite-dimensional Linear Time Invariant (LTI) state-space system by mapping the plant into a target system driven by known I/O signals. Conditions are given for the existence of an invertible linear transformation between the plant and target state, which is computed from solving a Sylvester matrix equation. State estimates are then recovered by mapping the target state into the plant state space via the inverse transformation.

A generalization of this observer design for autonomous nonlinear ODEs was discovered independently by [Shoshitaishvili 1992] and [Kazantzis & Kravaris 1998].

As for the linear case, the plant is mapped into a linear target system driven by the measurement signal, but because the original plant is nonlinear, a nonlinear transformation is required. Rather than being the solution to a Sylvester matrix equation, the nonlinear transformation is here the solution to a Sylvester-like PDE.

General sucient conditions for the existence and injectivity of this mapping are given in [START_REF] Andrieu | [END_REF].

The extension of this one step further to nonautonomous nonlinear ODEs is treated in [Bernard & Andrieu 2018]. In the general case a nonlinear, time-varying transformation is required here, rather than a static one which was sucient for the autonomous nonlinear case. However, the ame model of the form (2.17) we consider here falls within a special class of nonautonomous nonlinear ODEs, namely inputane nonlinear ODEs. As shown in [Bernard & Andrieu 2018], for this particular class of nonautonomous nonlinear ODEs it is sucient to use a static, rather than time-varying transformation in a KKL observer design, and the transformation is the same as for the corresponding autonomous drift 1 system. The result is based on the following assumption.

Assumption 20. Let the system

Ẋ(t) = f (X(t)) + g(X(t)) Ū (t) (7.14a) Ȳ (t) = h(X(t)) (7.14b)
be initialized from some X 0 ∈ χ 0 ⊂ R n , and S be an open subset of R n containing χ 0 . The system (7.14) is assumed to be uniformly instantaneously observable on S and its drift system is strongly dierentially observable of order n on S.

The following result from [Bernard & Andrieu 2018] provides the theoretical basis for the numerical observer design presented in Section 7.2.

Theorem 7 (Theorem 4 in [Bernard & Andrieu 2018]). Let λ 1 , . . . , λ n be any distinct positive real numbers such that min(λ 1 , . . . , λ n ) = λ min > 0 suciently large, D the Hurwitz matrix Diag(-λ 1 , . . . , -λ n ) in R n×n , F the vector (1, . . . , 1) in R n . Then, for any positive real number U , any bounded open subset χ of R n such that

• cl(χ) ⊂ S,
• For any Ū in U, for all t in [0, ∞) and for all X 0 in χ 0 , | Ū (t)| ≤ U and Φ(t, Ū | t 0 ; X 0 ) is in χ, there exists a strictly positive number λ such that for any λ min > λ:

• There exists a function T : R n → R n , which is a dieomorphism on cl(χ) and is solution to the PDE associated to the drift dynamics ∂T ∂X (X)f (X) = DT (X) + F h(X), ∀X ∈ χ.

(7.15)

• There exists a Lipschitz function φ dened on R n satisfying φ(T (X)) := ∂T ∂X (X)g(X), ∀X ∈ χ (7.16) and such that, for any function T * : R n → R n satisfying T * (T (X)) = X (7.17 the system

Ż(t) = DZ(t) + F Ȳ (t) + φ(Z(t)) Ū (t) (7.18)
is an observer for system (7.14) initialized in χ 0 .

1 The drift system of an input-ane ODE plant is the autonomous ODE which results from setting the input Ū ≡ 0.

Hence, to design a KKL observer for the system (7.14), it suces to nd a solution T to the PDE (7.15) and its corresponding left-inverse satisfying (7.17).

Finding such transformation numerically is the focus of Section 7.2. Note that the ODE subsystem (2.45a) can be written in the form (7.14a) with g(X) := g 1 (X) g 2 (X) , Ū (t) := V (0, t) V (0, t -τ ) .

7.2 Numerical design of observer for Kornilov's ame

Methodology

We propose here a methodology for data generation to train neural networks to estimate a static transformation satisfying (7.15), linking states of the input-ane system (7.14a) to states of the corresponding observer (7.18).

In [START_REF] Da | [END_REF]] it was proposed to train a time varying transformation for input-ane nonlinear systems, which introduces an extra dimension (time)

into the transformation to be found. The approach was feasible there since toy examples of dimension n = 2 were considered; here we consider a state space model of dimension n = 5 for a practically applied problem. At this dimension, nding a static transformation is already challenging enough due to the curse of dimensionality, let alone nding a spatially varying transformation. Also, the approach previously considered relies on exploring the state space using a single nominal input signal, which for higher dimensional state spaces could be dicult to achieve suciently well in practice.

In light of Theorem 7, it is sucient to train a static transformation between the drift system and the observer dynamics it cascades into, as given by

Ẋ(t) = f (X(t)), (7.19a) 
Ż(t) = DZ(t) + F h(X(t)).

( 7.19b) To achieve this, data consisting of corresponding {X, Z} pairs in respectively the plant and observer compact states spaces of interest χ and Z needs to be established.

However, since the ame model (2.45a) describes ame behaviour under a locally changing velocity eld, simulating the drift system (7.19a) will not necessarily cause the system to follow the trajectories in χ that the plant follows under acoustic forcing. Rather, one wants to sample {X, Z} at points corresponding to where the states go under the inuence of input signals one could expect in practice.

Having picked a D and F matrix for use in (7.18), we suggest applying the following steps to generate the {X, Z} pairs necessary to train the static transformation.

1. Choose a representative set of N input signals { Ū i } 1≤i≤N for the system. 2. For each Ū i , solve the following IVP for t ∈ [0, t s ]:

Ẋi (t) = f (X i (t)) + g(X i (t)) Ū i (t), X i (0) = X i,0 ∈ χ 0 . (7.20) 3. Sample state trajectories at M points in time 0 ≤ t 1 < • • • < t M ≤ t s to obtain N × M points {X i (t j )} 1≤i≤N,1≤j≤M . 4. Solve N × M IVPs Ẋb,ij (t) = -f (X b,ij (t)), X b,ij (0) = X i (t j ) (7.21) for t ∈ [0, t o ],
with t o being the estimated convergence time 2 of the observer, and ε > 0 a time-scaling constant.

5. Solve the following N × M IVPs for t ∈ [0, t 0 ]:

Ẋf,ij (t) = f (X f,ij (t)), X f,ij (0) = X b,ij (t 0 ), (7.22a) Żij (t) = DZ ij (t) + F h(X f,ij (t)), Z ij (0) = Z ij,0 ∈ Z 0 . (7.22b) 6. Store N × M training data pairs as {X f,ij (t o ), Z ij (t o )}.
In to generate a set of trajectories {X i } N i=1 in χ with the ode45 function from MATLAB, initialized from the same initial state X i,0 = X 0 ∈ R 5 given by the Dynamic ROM model. Remark 11. The resultant observer matrix D ∈ R 6×6 has complex eigenvalues and implies the set Z for which the trajectories of (7.18) will be contained in is a subset of R 6 , which is of one dimension higher than R 5 which contains χ. However, Theorem 7 states that Z should be contained in R 5 and have real eigenvalues. These are, however, the strictest necessary conditions and in some practical scenarios (such as the one considered here) it is possible to use an observer state space of dimension p > n and matrix D with complex eigenvalues. In the case considered here we found choosing p = n+1 and complex eigenvalues in D gave better numerical performance.

Investigating the exact conditions under which this design exibility is possible would be valuable and interesting further work.

The IVPs (7.21) are solved using the ode45 solver. To visualize this step, the solution to 150 of the IVPs are plotted in Figure 7.4, using initial conditions X 30 (t j ) for j ∈ {1, . . . , 150}. Subsequently, in Step 5 the IVP (7.22) is solved N × M = 400050 times using ode45 with initial data generated from Step 4 for X f,ij but Z ij,0 = 0. This step is visualized in Figure 7.6 by showing the observer states for 150 of the IVPs, namely Z 30,j for j ∈ {1, . . . , 150}.

Step 5 results in N ×M = 400050 points Z ij in Z ⊂ R 6 . These are represented by four 3D point clouds as shown in Figure 7.6, where the black point cloud represents points in the Z 1 Z 2 Z 3 subspace of Z, the cyan point cloud is for the Z 1 Z 2 Z 4 subspace, the magenta point cloud represents points in the Z 1 Z 2 Z 5 subspace and the yellow point cloud is for Z 1 Z 2 Z 6 .

Next, in Section 7.2.3 the data shown in Figures 7.3, 7.6 is used to train nonlinear transformations between the two point clouds (one forward transformation T : R 5 → R 6 and one left-inverse T * : R 6 → R 5 ), with each triplet of points in 7.3 (one Figure 7.4: Solutions X b,30,j for j ∈ {1, . . . , 150} of (7.21). Represents backwards integration of the drift system. For ease of viewing only state component number (j mod 5) is shown for each sampling point j.

Figure 7.5: Solutions Z 30,j for j ∈ {1, . . . , 150} of (7.22). Represents integration of the observer driven by the drift system. For ease of viewing only state component number (j mod 6) is shown for each sampling point j. An example of points corresponding to each other is shown in Figure 7.7, which shows a set of points {X f,45,j (t o ), Z 45,j (t o )} for j ∈ {1, . . . , 300}.

Training of neural networks

We employ neural networks to approximate the nonlinear transformation T and its left-inverse T * necessary to implement the observer presented in Theorem 7.

Using a shallow network with a single hidden layer of sigmoid functions and a linear output layer is sucient to approximate any function with a nite number of discontinuities arbitrarily well [Beale et al. 2010], and because we have reduced our observer design problem to a problem of approximating two static functions T : R 5 → R 6 , T * : R 6 → R 5 , such an architecture is employed.

A diagram of the architecture used to approximate T is shown in Figure 7.8, whereas the neural network architecture used to approximate T * is shown in Figure 7.9. They are both initialized using the feedforwardnet function in MATLAB, and both consist of a hidden layer of 8 tansig functions, a type of sigmoid function dened by tansig(x) := 2 1 + exp(-2x) -1.

(7.23)

The input to each of the tansig functions is a weighted sum of the inputs (5 inputs in the case of T and 6 in the case of T * ) in addition to a bias. All of the input weights are summarized in a matrix denoted W 1 , of dimension 8 × 5 for T and 8 × 6 for T * , and the biases in the rst layer are stored in a vector of dimension 8 denoted b 1 . Linear combinations of the 8 tansig functions are passed into an output layer, which consists of 6 passthrough functions in the case of T and 5 passthrough functions in the case of T * . A bias is also added to each of the linear combinations of outputs from the tansig functions. In the case of T , 6 dierent linear combinations are performed so the weights in the second layer are stored in a matrix denoted W 2 of dimension 6 × 8, whereas the second bias vector denoted b 2 is of dimension 6. On the other hand, for T * the second weight matrix W 2 is of dimension 5 × 8 and the bias vector b 2 is of dimension 5. This gives a total of 101 hyperparameters to t for T * and 102 hyperparameters for T .

When initializing the neural networks, the parameters in W 1 , W that training of these networks was more challenging. This is consistent with the results of [START_REF] Andrieu | [END_REF]] which give smoothness guarantees for T but not for T * .

Resultant transformation

The hyperparameters in the weight and bias matrices W 1 , W The observer dynamics (7.18) are initialized from Z 0 = 0 in all three tests, and the property (7.17) of the left-inverse transformation is applied to generate estimates X from values of Z via X(t) = T * (Z(t)).

(7.25)

In Figure 7.13, the plant states for the observer test simulations are plotted in solid black versus the estimates produced by the observers using the three dierent transformations trained in Section 7.2, which are dashed and colour coded (see the Figure legend). From the plot, all three observers estimate the state components X 4 and X 5 fairly well, but have more error in estimating X 1 , X 2 and X 3 . This corresponds to what is seen during the transformation validation tests in Section 7.2.4. Next, in Figure 7.14 the estimation errors Xi := X i -Xi are plotted to more easily compare the performances between the three observers. Overall the three observers feature similar error magnitudes. However, in estimating X 4 and especially in X 5 observer number 1 has a slightly larger error compared to observer 2 and 3 at various points throughout the simulation.

Part of the reason in estimating the 5 internal states of the observer is for their contribution in estimating the heat release rate from the Kornilov ame. The input signal from the CFD data that is passed into the observers is plotted. This data is rstly passed as the input signal Ū , together with the corresponding heatrelease uctuation data as the output signal Ȳ , into the observer dynamics (7.18).

Then, the output estimate

Ŷ (t) = h(T * (Z(t))) (7.26)
is computed. The resultant estimates using the three dierent neural networks Next, it is of interest to test how well the observer estimates the heat release rate uctuations when the input signal Ȳ is not directly from the Kornilov CFD data, but rather generated via the Dynamic ROM ODE model, by passing the input signal data shown in Figure 7.15 as the input Ū to (7.14a), and then generating the output data Ȳ from evaluating the measurement function h in (7.14b).

In Figure 7.18 the heat release rate from the CFD data, plotted in solid black, is compared to the resultant estimates from the three observers. Compared to 

Discussion

We have in this chapter numerically designed a KKL observer for a nonlinear statespace ROM of Kornilov's ame. The observer was tested in reproducing rstly the states of the state-space model, and subsequently in estimating the heat release in the data on which the state-space model was based. Its performance, although not perfect, is fair and for the most part gives a decent prediction of the quantities of interest. One thing that could be tested to see if the observer performance improves is to design the observer to have equal dimension as the plant, as is possible according to Theorem 7. This would reduce the complexity of the problem as one less dimension needs to be considered in the target system space, and the forward and inverse transformations would be of equal size. Reducing the dimension of the target space has implications for both the data generation, since the number of points needed to sample a compact space of equal radius increases exponentially for each added dimension, and also for hyperparameter optimization, since fewer parameters would be needed, all else being equal. Alternatively, if one is only interested in estimating the heat release, the step of designing an ODE with synthetic states could be bypassed by only considering the output prediction directly with the I/O data describing the ame generated from CFD simulations, as for instance very recently studied for autonomous systems in [START_REF] Janny | [END_REF]]. To apply this to the problem considered in this chapter, the framework there would need to be extended to input-ane systems. Taking this approach could be more exible as no a priori restrictions on the structure of the f , g and h matrices in the plant model (7.14) need to be taken, eliminating a possible source of error.

Although more complicated neural network architectures can be tested, the more complex ones already tested by the author suered from overtting, in which regularization techniques must be applied. However, going in this direction could make the problem more complicated than it needs to be, especially in light of the use case of the neural network here being function approximation and hence in theory a single hidden layer being sucient. Keeping a single hidden layer, future investigations could go into nding the most suitable number of nodes in the hidden layer, as well as testing alternative sigmoid functions. Also, during training the maximum number of epochs was capped at 1000, and especially for the forward transformation the gradient and validation performance still had a slight downward trend in all cases at this point in the training, as seen in Figures 7.10, 7.12. This indicates that the training might have been stopped before a minimum in the hyperparameter search spaced was reached, and investigating whether increasing this upper bound has an impact on the observer perfomance could be a worthwhile further step.

From a testing point of view, a natural next step would be to integrate the observer developed in this chapter into the PDEODE observer from Theorem 7.4, and see how well it estimates heat release rate, pressure and velocity based on a pressure measurement taken from afar. This observer could be compared to the linear observer from Theorem 5, and conclusions about the advantages and disadvantages of the two dierent approaches could be drawn. It would be reasonable to expect to nd a trade-o between computational eciency and estimation accuracy. In addition to testing how well the observers perform in a pure monitoring application, the use of the linear and nonlinear observer approaches that have been explored could be tested in the loop with a full-state feedback control law. In this nal chapter, we take a bird's-eye view of what has been achieved in the thesis and make concluding statements. Perspectives and suggestions for further work are oered.

Summary

We have in this thesis, in response to the objectives stated in Chapter 1, proposed state and parameter estimation algorithms for thermoacoustic instabilities with distributed acoustics and, whenever possible, nonlinear heat release dynamics. The rst part of the work dealt with the electrically heated Rijke tube, a laboratory setup for reproducing thermoacoustic instabilities. Here, an observer relying on a boundary measurement is designed to provide globally convergent estimates of the pressure, velocity and heat release rate using a model with distributed acoustics and nonlinear heat release. It is identied that the state estimates are sensitive to the knowledge of boundary acoustic impedances, a parameter that is dicult to know or compute a priori. In response to this, we suggest a parameter identication method for estimating these parameters, also using a single pressure measurement.

As stated in the introductory Chapter 1, the literature on the topic of thermoacoustic instabilities has heavily relied on laboratory setups, and for model-based estimation and active control this is not an exception. We have therefore proposed to further the development of model-based estimation algorithms for thermoacoustics, using network models containing distributed models of the acoustics, towards cases more directly applicable to industrial settings. This is here mainly via our proposed model of distributed acoustics in ducts with variable cross-sectional area. As noted in [Poinsot 2017] the combustor geometry is a rst-order factor with regards to thermoacoustics, and therefore taking this into account in the estimation algorithm design is important for correct estimation in practical combustors outside of the laboratory. With the more general innite-dimensional acoustics model, to avoid possible occurrence of the spillover eect we use it as basis for innite-dimensional algorithm design, rather than lumping it into an ODE system rst.

An extension of the parameter identication method used for the Rijke tube is considered next, rstly in a theoretical setting by suggesting a boundary parameter identication method for 2 × 2 linear hyperbolic PDE systems where a single boundary measurement is available. It is then suggested how this can be applied to boundary parameter estimation in a duct with spatially varying cross section.

With the spatially varying acoustics coupled via a network model to a heuristically designed linear ame model, which we suggest can model the thermoacoustics in a can combustor, we design an observer for estimating the distributed velocity and pressure together with heat release from the ame. This state estimator design is paired with a collocated control law, which together can be used as an output feedback controller for the thermoacoustic oscillations. In the nal core Chapter, we consider how a state estimator for a combustor can be designed when the ame model considered is nonlinear rather than linear. The mathematical analysis used in Chapter 6 is not as straightforward for this case, so instead we take a dierent approach where the problem is, using previous results from the literature, simplied to that of a nonlinear multidimensional function approximation problem. Data is generated, and neural networks are trained to approximate the mapping. With the learned mapping, an observer for the nonlinear ame ODE subsystem is implemented and rst tested in estimating the internal states, before being tested on estimating the heat release rate from CFD data.

Discussion

Concerning the performance of the algorithms from Part II in simulations and experiments, there were mixed results. Although, to the best of the author's knowledge, this Rijke tube observer is the rst globally convergent observer for the electrically heated Rijke tube that uses fully distributed acoustics and nonlinear heat release to model the dynamics, the observer design was unconventional in the sense that no tuning is possible. To prove the global convergence, an exponentially decreasing error was introduced into the system. In the simulations this slowed the convergence down compared to a trivial observer which, without any convergence guarantees, converged much faster. Indeed, the heat release model used is self-stabilizing when the conditions allow for it, with the nonlinear contribution coming from the coupling to the acoustics. Despite this, the observer proposed had better robustness properties with respect to uncertainty in the boundary acoustic parameters, something which was veried in simulations. For the experimental tests, the estimate of the pressure was phase-shifted away from the measured verication signal. Also, compared to the dierence seen in the simulations, the dierence in response was rather large when dierent values for the acoustic impedance are tested. After the acoustic impedances were estimated using the method from Chapter 4, the amplitude of the estimated pressure signal was fairly close to the measured verication signal. However, the estimate was still phase-shifted away from the measured pressure signal, indicating that some modelling error might be present. Hence, as further work, a model validation step needs to be taken to isolate the main causes of the issue.

Since the tube used in the construction of the Rijke tube was built of steel, one possible cause of the error which had been neglected in the modelling step is heat transfer between the gas and the tube, which could heat up the temperature of the gas. Further work that could address this issue would be to include a model of the heat evolution in the tube, and couple this to the acoustics model currently in place.

Within the framework used in this thesis, this could be formulated as a problem of hyperbolic PDE system coupled in-domain to a parabolic PDE.

The parameter identication method suggested for 2 × 2 systems of linear hyperbolic PDEs in Chapter 5 is tested on a theoretical example and shown to work well there. The extension required to apply it for ducts with spatially varying cross-sectional area results in a parameter vector that is overparametrized with ve parameters to estimate two parameters, rather than three parameters to estimate two as was the case previously. For further work, it would be interesting to test this on a practical example of a duct with spatially varying cross section. It should be compared to an algorithm that does not take into account the spatially varying geometry, and the parameter estimates compared to a benchmark example.

For the state estimation of distributed pressure and velocity in a combustor, two cases were considered -namely the case of a linear ame model and the more general scenario where a nonlinear input-ane ame model is considered. Since a dierent approach was taken in considering these two cases, their performance on practical examples should be compared. As discussed, we expect the state observer from Chapter 6 to be more computationally ecient than the one from Chapter 7, but in cases where strong nonlinearities in the heat release model are present it could be at a disadvantage. For practical implementation of these state estimators in practice, it is also expected that model validation steps need to be taken to ensure the model used for observer design matches the behaviour of the combustor the observer is being applied to. Control design, which was considered for the combustor with the linear ame using acoustic actuation collocated with the pressure sensor, should also be studied when the actuation is via fuel modulation at the ame. Indeed, from the literature [Dowling & Morgans 2005] we know this type of actuation is more feasible to implement in practice. The control design for the case of nonlinear ame should also be studied.

Overall, as stated in Chapter 1, this thesis has only considered longitudinal modes of thermoacoustic instabilities. Modelling and designing estimation schemes for these is, however, a crucial step in developing estimation schemes for more general models. Although the work presented here only scratches the surface of what is possible and necessary to do, we believe many of the ideas the work in this thesis is based on, as well as the contributions oered, can together form a basis for extending the results here to more complex cases. One important extension that should be considered in future work is the development of estimation algorithms for the thermoacoustic instabilities encountered in annular combustors, which are featured in many modern combustion systems. Also, future extensions of this work should consider noise robustness and methods of modifying the algorithms suggested to such cases, if necessary and possible. Additionally, we believe the algorithms suggested here can be built on in the form of incorporating more realistic eects, in the form of eects such as internal damping contributions from the combustor material or intrinsic instabilities in the ame front, which could in certain settings be important to describe the system dynamics more accurately. 
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 21 Figure 2.1: Example schematic of thermoacoustic network model.
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 22 Figure 2.2: Heat release Q from electrical heater in laminar ow eld of velocity V . Global view (left) and boundary layer around wire due to uctuating velocity eld (right).
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 23 Figure 2.3: Heat release Q from exothermic reduction-oxidation reaction in laminar ow eld of velocity V .

Figure 2

 2 Figure 2.4: Location of conical ame front along vertical z direction as function of radius r, stabilized to edge of burner of radius R. Steady state position (dashed red line) and perturbed position (solid red line).
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 25 Figure 2.5: Schlieren images from [Ducruix et al. 2000] of a premixed conical ame under steady state conditions (top image) and velocity perturbations (bottom images).

Figure 2

 2 Figure 2.6: Gain and phase data of FTF from [Silva et al. 2017]. Prediction from simulations (solid line) and data collected from experiments (individual points).
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 27 Figure 2.7: Duct of length L with spatially varying cross-sectional area a(z) for z ∈ [0, L].

Figure 2 .

 2 Figure 2.10: Jump condition around ame.

  Figure ii.1: Diagram of Rijke tube setup to be considered for observer design in Chapter 3. The Rijke tube is set up vertically and an electrical heater is located in the lower half of the tube.

Figure ii. 2 :

 2 Figure ii.2: Open-loop pressure response of Rijke tube in simulations.

Figure

  Figure ii.3: Open-loop velocity response of Rijke tube in simulations.

  used for the experiments conducted is shown in Figure ii.5. It consists of a cylindrical steel tube of length L = 1.00 m and radius r = 35.7 mm, which is propped up by a wooden frame via plastic strips. A heating element is positioned into the bottom of the tube via a steel rod, as can be seen under the tube in Figure ii.5.

Figure ii. 5 :

 5 Figure ii.5: Rijke tube.

Figure

  Figure ii.6: Coil turned o Figure ii.7: Coil turned on

Figure

  Figure ii.9: Microphone.

Figure

  Figure ii.10: Pressure sensor supply.

Figure

  Figure ii.6, for the case when the power supply is turned o, and in Figure ii.7 with the power supply turned on. The power supply used is a VOLTCRAFT DPS-32-15 [Con 2016], pictured in Figure ii.8. During the experiment, the heating coil is positioned at z 0 = 0.25 m from the base of the tube, and fed a current of I = 16.5 A through a voltage of E = 24.0 V , giving an estimated power dissipated from the coil of Q = 396 W . For the pressure sensor readings, two ROGA RG-50 microphones [ROG ], one of which is pictured in Figure ii.9, are used. They are each powered by an MMF M29 IEPE Sensor Supply [Met 2017] as pictured in Figure ii.10, interfaced via Bayonet Neill-Concelman (BNC) connectors. From the IEPE Sensor Supply, the analog pressure signal is passed into a Bela Board [McPherson 2017], pictured in Figure ii.11, which is used for data acquisition. The Bela Board has an onboard Analog-to-Digital Converter (ADC) and C compiler, and the sensor reading is sampled at f s = 44.1 KHz.

Figure ii. 11 :

 11 Figure ii.11: Bela board used for data acquisition.

Figure

  Figure ii.12: Boundary pressure measurement. For observer.

Figure

  Figure ii.13: In-domain pressure measurement. For validation.

Figure

  Figure ii.14: Loudspeaker.

Figure

  Figure ii.15: Acoustic parameter identication setup.

  Table ii.2: Physical parameters used in data post-processing for Rijke tube experiments.

  is based on the assumption that the lower boundary is measured. After rewriting the model in Riemann coordinates and folding the spatial domain around the heat release model, thus moving it to the rewritten model boundary, the observer is proposed by copying the model dynamics and reconstructing the unmeasured boundary. It is shown that the estimate of the unmeasured boundary state converges to the true value exponentially. This in turn allows establishment of global convergence properties for all states in the model. Subsequently, a minor result asserting that the state estimates remain bounded under uncertainty in knowledge of the boundary parameters is given. The theoretical results are followed by validation, rst in simulations and then in experiments. The sensitivity to the estimates to dierent values of the boundary parameters suggests estimates of these should be obtained, motivating the topic of Chapter 4.

  of the rst studies investigating active control of the Rijke tube. More recently, a more sophisticated full-state feedback boundary control law designed via innitedimensional backstepping on a linearised PDE-ODE model of the electrically heated Rijke tube has been derived in [de Andrade et al. 2018b]. To pair with this fullstate feedback control law, a corresponding boundary observer for the linearized PDE-ODE model is derived in [de Andrade et al. 2018a]. This work was continued in [de Andrade et al. 2020], where experimental verication of the observer was obtained. Also, in [Auriol et al. 2020b], [de Andrade & Vazquez 2020] observer designs for the Rijke tube using in-domain measurements rather than just a boundary measurement are considered. As explained in Chapter 2, the heat release model (2.3) captures the nonlinear eects of the electrically heated Rijke tube. For the observer design in [de Andrade et al. 2018a] (2.3) is linearized, which makes the mathematical analysis tractable -however this linear ODE model does not reect the full nonlinear dynamics one typically obtains in practice. A nonlinear heat release model is needed to model the saturated response one sees for large amplitudes and resultant limit cycle behaviour [Agostino et al. 2002]. To maintain this behaviour in the design, we propose in Section 3.2 an observer taking into account the nonlinear features of King's law.

  in Riemann coordinates Consider the setup shown in Figure ii.1. It consists of an unanged, cylindrical tube of length L and constant cross-sectional area a, with an electrical heater located in the interior of the tube at vertical position z 0 ∈ 0, L 2 . With real-time gauge

Figure 3 . 1 :

 31 Figure 3.1: Schematic of Rijke tube system in Riemann coordinates. The green arrows are couplings between the ODE state and PDE states, the red arrows are boundary couplings between the PDE states and the magenta arrow represents the output signal.

Figure 3

 3 Figure 3.2: Schematic of the error system, where D i := λ -1 i are time delays.

  ) in the terms of its transient convergence properties. Two dierent pairs of Ẑ0 , ẐL are tested , namely one pair satisfying | Ẑ0 | < |Z 0 |, | ẐL | < |Z L |, and the second pair satisfying | Ẑ0 | > |Z 0 |, | ẐL | > |Z L |. The performance of the trivial observer (3.17a)(3.17h), (3.40) is compared, and it uses

  ) is plotted in dark blue, versus the pressure estimation error Ptrivial (z 0 , •) of the trivial observer (3.17a)(3.17h), which is plotted in a lighter shade of blue. Likewise, the velocity estimation errors Ṽ (z 0 , •) and Ṽtrivial (z 0 , •) are plotted against each other in respectively dark and light grey in Figure3.4. Lastly, the heat release estimation error Q(•) and Qtrivial (•), in respectively dark and light red, are plotted against each other in Figure3.5. With the observer being turned on at t = 0.5 s, the plots are shown for t ∈ [0.5, 0.7] and t ∈ [1.8, 2.0], being respectively the rst and last 200 ms of testing the observers. The plots are split

  Figure 3.7 the velocity V (z 0 , •) compared to the estimate V (z 0 , •) produced by (3.17) and Vtrivial (z 0 , •) produced by (3.17a)(3.17h), (3.40) is plotted. Lastly, the heat release rate Q(•) is plotted against the estimate Q(•) and Qtrivial (•) in Figure 3.8.

  shown in Figure ii.5 together with the electrical heater shown in Figures ii.6ii.7 placed in the interior of tube, as described in the introduction to Part II. Supplying power to the electrical heater via the power supply shown in Figure ii.8, thermoacoustic instabilities are incited within the tube. Recall that the measured and estimated physical parameters for the experimental setup are documented in

Figure 3

 3 Figure 3.15: Boundary pressure measurement, taken at z = 0 m. See Figure ii.12 for sensor placement. Observer tested in dark blue region.

Figure 3

 3 Figure 3.16: In-domain pressure measurement, taken at z = 0.85 m. See Figure ii.13 for sensor placement. Observer tested in dark blue region.

Figure 3

 3 Figure 3.18: Measured (blue line) compared to estimated (grey line) gauge pressure

Z

  z = ±20 P a • s • m -1 , are tested. As hinted at by Figures 3.173.18, one can see that the estimated amplitude is highly sensitive to the values of impedance used in the observer. This indicates that for more accurate estimation of the pressure, identication of the correct boundary impedance, being the focus of Chapter 4, is crucial. Additionally one sees in Figure 3.19 that the estimates are in general phase shifted and shifted away from the origin compared to the measured gauge pressure.

  the experimental part, Section 3.4, the results are more interesting. While using incorrect acoustic impedances the simulations causes slight osets in the estimates compared to the true values, as can be seen in Figures3.63.8, 3.123.14, in the experiments the variation in amplitude based on value of impedance used is much larger, as one can see in Figure3.19.In addition to the estimated amplitude being very sensitive to the acoustic impedance, the estimates shown in Figure3.19 are phase-shifted compared to the measured pressure signal. There could be multiple reasons for this, a pos-sible one being that the model (2.43) on which the algorithm design is based neglects certain aspects of the physics which are involved. With respect to the acoustic impedances, an assumption made in Chapter 2 is to model the acoustic impedances as constant scalars, hence leaving out possible reactive eects. However in practice one typically has reactive eects in the impedance of an open-ended

Figure 4 . 1 :

 41 Figure 4.1: Diagram of setup for parameter identication of boundary impedances of cylindrical tube, for application to the Rijke tube. A pressure sensor collocated with a loudspeaker are placed at z = 0. Actuating the tube with a suciently rich signal and measuring the response, the aim of the parameter identier is to estimate the unknown boundary impedances Z 0 , Z L .

  signal of (4.2). The respective I/O signals U and y from the boundary (4.2c) are related to the physical I/O signals W and Y from the boundary (2.44d) via the relations

  4.2.2, the model in Riemann coordinates (4.2) is written in a regressor form suitable for parameter identication of the unknown reection coefcients d 0 , d 1 using physical I/O signals W and Y .

  the plant dynamics (4.2) and output signal denition (4.4), we have the relation between current and past characteristic I/O signals together with parameters

  forgetting factor proposes to update the estimate θ via the adaptive lawθ(t) = P (t) (r(t) -r(t)) R(t) (4.14a) Ṗ (t) = βP (t) -P (t)R(t)R(t) P (t), if ||P (tθ(0) = θ0 ∈ R 3×1 , P (0) = P 0 ∈ R 3×3 ,and β, P > 0 are scalar tuning constants. The following Theorem presents the properties of the adaptive law (4.14).
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 424 Figure 4.2: Pressure input signal W (in blue) versus pressure output signal Y (in orange) used for parameter identication.

Figure 4 . 7 :

 47 Figure 4.7: Pressure at z = z 0 compared to estimates.

Figure 4

 4 Figure 4.10: Pressure input signal W (in blue) versus pressure output signal Y (in orange) used for parameter identication.

Figure 4

 4 Figure 4.11: Acoustic impedance estimates. for time t ∈ [0, 5], with the dashed magenta lines showing the estimates Ẑi 0 (•) 1 for i ∈ {1, 2, 3} (see legend) of Z 0 , and the dashed cyan lines showing the estimates Ẑi L (•) for i ∈ {1, 2, 3} (see legend) of Z L . Compared to the estimates found in Figure 4.3, the estimates in Figure 4.11 appear to have a higher variance, despite the lower value of forgetting factor used. It appears that the estimates reach a steady state region at around t = 4 s, and the expected value and variance of the estimates computed over the last 1 s of the simulation is recorded in Table 4.3.

Figure 4 .

 4 Figure 4.12: Measured (blue line) compared to estimated (grey line) gauge pressure at z = z v using values of impedance estimated in Section 4.4.1.

  is surprising as they should in theory be as similar as possible, with each of them representing an open end with a slight amount of damping. However, the estimates are both signicantly smaller than the characteristic impedance k in absolute value, which represent physically feasible solutions. With a value closer to k in absolute value representing more damping, and the acoustics model (2.43) used in the algorithm design assuming there is no in-domain damping in the Rijke tube, one possible explanation for acoustic impedance estimate ẐL being larger than Ẑ0 in absolute value is that in-domain damping from the tube is inadvertently lumped together with the acoustic impedance anticollocated with the I/O signals. Also, a possible source of error in the experimental technique used is that the microphones shown in Figure ii.15 are fairly close to each other. With the pressure node in practice extending approximately ∆L = 0.61r outside of the tube

  , 4.13. In addition to sensitivity of the estimate to validation microphone position as explored in Figure 4.13, the author has considered sensitivity of the estimates to other uncertain parameters, some examples being the electrical heater position and electrical heater time constant. However no signicant variation in the phase shift has been observed from varying parameters currently in the model, suggesting modelling error is the probable cause for this error. Some direct further work building on what is presented here is to investigate robustness of the parameter identier (4.14) in estimating accurately the boundary acoustic impedances of the Rijke tube. It should be investigated to what extent indomain damping inuences the estimate of the anti-collocated acoustic impedance, and the sensitivity of the method to microphone placement in relation to the loudspeaker and tube boundary. Also, possibilities for combining the observer and parameter identier into an adaptive observer should be looked into.As has been seen, the Rijke tube is a rather simple setup, and the algorithm designs based on the model (2.43) and (2.44) with constant cross-sectional area reects that. Thermoacoustic instabilities in combustors can feature highly complicated dynamics that is dicult to understand from studying basic laboratory setups such as the Rijke tube. Next, in Part III of this thesis, some research eorts attempting to move beyond the Rijke tube are considered.
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 12 Literature reviewLinear hyperbolic 2 × 2 systems of the form (5.1) model a wide range of systems commonly found in engineering applications, such as open channel ow[Coron et al. 1999], gas dynamics[Marchesin & Paes-Leme 1986], leak detection in pipes[Aamo 2015] and oil well drilling[Di Meglio & Aarsnes 2015]. They consist of two distributed one-dimensional states convecting in opposite directions through a rst-order transport equation and coupled in-domain and at the boundaries.

  ], a parameter estimation problem for the Korteweg-De Vries equation modelling shallow water waves is considered.After multiple contributions for parabolic PDEs, research on adaptive designs for hyperbolic systems was initiated in[Bernard & Krsti¢ 2014]. Building on this, much research has been done on systems of hyperbolic PDEs; in the two-part paper[Annsen & Aamo 2016a, Annsen & Aamo 2016b] uncertain indomain coupling coecients are estimated assuming distributed measurements are available, while in[START_REF] Annsen | [END_REF] an uncertain boundary reection coecient at the boundary anti-collocated with sensing is estimated for n + 1 systems.In[Ghousein et al. 2020] the temperature distribution in a heat exchanger is estimated by posing the problem as estimation of the amplitude of a distributed indomain disturbance with known prole, via considering the problem as an estimation problem for 2 × 2 linear hyperbolic systems. Many of the current designs available for adaptive control and parameter identication of hyperbolic PDE systems are covered in[Annsen & Aamo 2019].

Figure 5

 5 Figure 5.1: Schematic of kernel equations (5.4)(5.5). Characteristics in green, originating in boundary data as indicated.

  of known signals and gains dened in (5.24)(5.35).
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 5 Figure 5.2: Component signals of Ω.
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 53 Figure 5.3: Plot of d 0 versus estimates.

Figure 5 . 4 :

 54 Figure 5.4: Plot of d 1 versus estimates.
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 55 Figure 5.5: Plot of d 0 and d 1 versus estimates. With measurement noise.
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 4 Figure 5.6: Acoustic impedance estimation in duct with spatially varying crosssectional area.

Lemma 4 .

 4 Consider the change of variables u(x, t) := ( P (xL, t) + k V (xL, t)) t) := ( P (xL, t) -k V (xL, t)) of sound c and characteristic impedance k are respectively dened in (3.7), (3.4). The change of coordinates (5.52) maps (2.44) into (5.1) with trans-

  suggested. The solutions could in practice end up in local minima or saddle points that are not representative of the true solution. More investigation needs to go into choice of the input signal and update law for the parameters to be able to guarantee global convergence. In Section 4.2, the overparametrization comes about as a result of there being unknown boundary coecients in the relationship (4.5) between physical pressure I/O signals (Y, W ) and characteristic coordinate I/O signals (y, U ). On the other hand, in Section 5.2 the same overparametrization results from the presence of in-domain coupling coecients, and in Section 5.4 an even more complicated overparametrization comes about due to both factors. Compared to frequency-domain estimation

Figure 6

 6 Figure 6.1: Sketch of combustor setup considered.

  coupling coecients σ + (x) := σ+-(x) exp -L x 0 σ++ (ξ) + σ--(ξ) c(ξL) dξ ,

Figure 6 . 4 :

 64 Figure 6.4: Flame identication experiment block diagram.

Figure 6

 6 Figure 6.5: Bode plot of ame versus tted transfer function model.

Figure 6

 6 Figure 6.6: Cross-sectional area of duct.

Figure 6

 6 Figure 6.7: Steady-state density, velocity and pressure along duct.

Firstly

  , the full-state feedback controller from Theorem 4 is implemented. The closed-loop response of this controller is plotted in Figures 6.136.15. In Figure 6.16 the control signal U is plotted. Next, the observer from Theorem 5 is implemented to estimate the open-loop states plotted in Figures 6.106.12. The estimation errors are plotted in Figure 6.176.19. Lastly, the output-feedback controller from Corollary 1 is implemented to stabilize the unstable plant only using knowledge of the pressure estimate at the downstream boundary of the combustor. The closedloop response of this controller is shown in Figure 6.206.22, and the corresponding boundary control signal U is plotted in Figure 6.23. As the simulations demonstrate, the output-feedback controller is successful in stabilizing the thermoacoustic instability present in the open-loop plant. Comparing
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 6 Figure 6.10: Open-loop pressure uctuations.

Figure 6 .Figure 6

 66 Figure 6.11: Open-loop velocity uctuations.
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 6 Figure 6.13: Full-state feedback control pressure uctuations.

FigureFigure 6

 6 Figure 6.14: Full-state feedback control velocity uctuations.
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 6 Figure 6.17: Estimation error of open-loop pressure.
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 66 Figure 6.18: Observer estimation error of open-loop velocity.
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 6 Figure 6.20: Output feedback stabilized pressure uctuations.

Figure

  Figure 6.21: Output feedback stabilized velocity uctuations.

  )

Figure 7

 7 Figure 7.2: Broadband input signals to generate training data.

  .2, Step 2 of the procedure is performed

Figure 7 . 3 :

 73 Figure 7.3: Three orthogonal 3D projections of 5D point cloud representing sampled trajectories in χ ⊂ R 5 .

  points projected into the X 1 X 2 X 5 subspace.With these points in R 5 as initial conditions, N × M = 400050 IVPs of the form (7.21) are solved for Step 4 of the data generation procedure. To perform this step we need an estimate of the observer convergence time, and to estimate this we need the observer eigenvalues. These are picked to correspond to a sixth-order Bessel lter , and are calculated using the besself function in MATLAB. This results in observer D and F matrices given by and using k = 3 an estimated observer convergence time of t o ≈ 1.18 × 10 -3 s.
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 76 Figure 7.6: Four orthogonal 3D projections of 6D point cloud representing sampled trajectories in Z ⊂ R 6 .

Figure 7

 7 Figure 7.7: Example of corresponding X and Z points for training of transformation.
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 78 Figure 7.8: Architecture of neural networks used to approximate forward transformation T .

Figure 7 . 9 :

 79 Figure 7.9: Architecture of neural networks used to approximate left-inverse transformation T * .

Figure 7 Figure 7 Figure 7

 777 Figure 7.10: Gradient of the hyperparameter search vector during backpropagation training of neural networks. Shown for forward transformation (top) and inverse transformation (bottom).

Figure 7

 7 Figure 7.15: Velocity uctuation signal from CFD data used for testing.

Figure 7

 7 Figure 7.16: Observer estimates of heat release versus CFD data. Using both I/O signals from CFD as input to observer dynamics (7.18).

Figure 7 .Figure 7 Figure 7

 777 Figure7.16, there is more error in the estimation of the heat release rate, especially at points where the heat release rate experiences `spikes. This is as expected, since an extra source of error is introduced by generating the output data fed into the observer via the Dynamic ROM model. In Figure7.19 the estimation errors computed from subtracting the observer estimates in Figure7.18 from the CFD output data is plotted. Compared to Figure7.17 the errors are larger at points where the heat release changes quickly, but overall the estimation error stays close to the origin.

Figure 7

 7 Figure 7.19: Observer estimation errors. Using data from CFD as input and output data from nonlinear ODE ame model as I/O data for observer dynamics (7.18).
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	.1: Examples of combustion reaction species tting together in the for-
	mula (2.4).
	eral formula (2.4) are listed in Table 2.1. An important metric to characterize the
	combustion process is the equivalence ratio φ, dened by

  rst model we consider is the electrically heated Rijke tube. It consists of a

	cylindrical tube with constant cross-sectional area, and an electrical heater inside the
	tube. The complete model consists hence of the mathematical model of the electrical
	heater (2.3), the acoustics within a duct with constant cross-sectional area (2.29)
	with heat release coupled via (2.36) and general acoustic boundary conditions (2.33).
	We only consider state estimation of the Rijke tube, and let the boundary actuation
	signals W 0 ≡ 0, W L ≡ 0. This gives rise to the complete model
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  For both observers, the estimation error stays bounded throughout, with the trivial observer having approximately constant error for the duration of the simulation, but the observer (3.17) starting with a large error that converges to a bound.The pressure estimation errors Ptrivial (z 0 , •) in Figures 3.3 appears to be slightly closer to the origin than the estimation error P (z 0 , •). However, the estimation errors Ṽ (z 0 , •) and Q(•) appear to be much closer to the origin than Ṽtrivial (z 0 , •) and Qtrivial (•) in Figures 3.43.5. Since it can be dicult to see directly in Figures 3.3 3.5 which observer produces estimates that are on average closer to the true value, the steady-state estimation error norm || f || after the initial transient response of the quantity f is estimated via

			250 250									
			200 200									
			150 150									
	0.4		100 100									
			50 50									
	0.2											
			0 0									
	0	-50 -50									
		-100 -100									
	-0.2											
		-150 -150									
	-0.4	-200 -200									
		-250 -250									
	-0.6		0.5 0.5	0.52 0.52	0.54 0.54	0.56 0.56	0.58 0.58	0.6 0.6	0.62 0.62	0.64 0.64	0.66 0.66	0.68 0.68	0.7 0.7
	0.5	0.52	0.54	0.56	0.58	0.6	0.62	0.64	0.66	0.68	0.7
			250 250									
	0.4		200 200									
			150 150									
	0.2		100 100									
	0	50 50									
			0 0									
	-0.2											
			-50 -50									
	-0.4	-100 -100									
		-150 -150									
	-0.6											
	-200 1.8 -200	1.82	1.84	1.86	1.88	1.9	1.92	1.94	1.96	1.98	2
		1.8 1.8 -250 -250	1.82 1.82	1.84 1.84	1.86 1.86	1.88 1.88	1.9 1.9	1.92 1.92	1.94 1.94	1.96 1.96	1.98 1.98	2 2
	Figure 3.4: Velocity estimation errors. Initial transient (top) and converged esti-
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	Figure 3.3: Pressure estimation errors. Initial transient (top) and converged esti-Figure 3.5: Heat release rate estimation errors. Initial transient (top) and converged
	mates (bottom). estimates (bottom).							

  3.40) does however not have such a guarantee associated to it, but in the two cases considered, the error does indeed remain bounded as can be seen in Figures3.33.5, 

	3.93.11. Despite this, the estimates from (3.17) have overall better performance
	when using incorrect values of the boundary acoustic impedances than the trivial
	observer.	0.8									
	Comparing Figures 3.63.8 to Figures 3.123				
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Figure 3.13: Velocity at z = z 0 compared to estimates.

Figure 3.14: Heat release rate compared to estimates.
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Table ii .

 ii 2.

  Rijke Tube Parameter Identier

	téristiques, nous exprimons le problème d'identication sous forme d'une régression
	linéaire. Nous proposons de résoudre ce problème par une méthode des moindres
	carrés avec avec un facteur d'oubli pour estimer les impédances acoustiques aux
	frontières. Nous eectuons d'abord des simulations, puis nous utilisons des données
	expérimentales. Nous testons l'observateur du chapitre 3 avec les valeurs identiées
	des paramètres de frontière.
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  and Ψ is Persistently Exciting (PE), then P, P -1 ∈ L ∞ and θ(t) → ϑ exponentially.The parameter vector ϑ in (4.8) consists of three parameters, whereas we are only interested in estimating two. Hence, the regressor form (4.6) represents an overparametrized system in the unknown coecients d 0 and d 1 . Denoting θ := d 0 d 1 and θ as the estimate of θ, we propose to solve the optimization problem

					( ď0 , ď1 ) = arg min(O( ď0 , ď1 ))			(4.15)
	Proof. For	the	rst	two	properties,	see	Proof	of	Theorem	4.3.5	in

[Ioannou & Sun 2012]

, and for the nal property see Proof of Corollary 4.3.2 in

[Ioannou & Sun 2012]

.

where O : R 2 → R is given by

  Table ii.1. A plot of W versus the corresponding measurement signal Y from the simulation for t ∈ [0.0, 0.2] is shown in

  The resultant acoustic impedance estimates as a function of time for t ∈ [0, 2] are plotted in dashed lines against the true parameters, which are represented by solid lines, in Figure4.3. The impedance Z 0 and its corresponding estimate are in magenta, whereas Z L and its estimate is plotted in cyan. With the given tuning parameters, the estimates converge to a steady state solution close to the true values within 2 s. Table 4.1: Acoustic impedance estimates.

	Parameter estimate Expected value	Variance
	Ẑ0	-14.4	6.40 × 10 -3
	ẐL	20.8	3.58 × 10 -2

Table 4

 4 , the rst and last 200 ms of the observer being active is plotted. Also, shown in Figure4.5 is the estimation error Ṽ (z 0 , •), in dark green, of the velocity from (3.17) plotted against Ṽtrivial (z 0 , •) from the trivial observer, which is shown in light green. Lastly, in Figure 4.6 we see the heat release rate errors Q(•), in dark red, and Qtrivial (•), in light red, plotted against each other. Comparing Figures 4.44.6 to the corresponding Figures 3.33.5, 3.93.11 from Chapter 3, we see the estimates of Z 0 , Z L has a profound impact on the correctness of the state estimates, after the initial transient. Indeed, the errors from last 200 ms of the simulation as plotted in Figures 4.44.6 are almost at the origin. The estimates of the error norm, computed in the same way as in Chapter 3, is summarized in Table 4.2. Compared to the norms documented in Tables 3.13.2, the error norms in Table4.2 are much smaller in magnitude, as expected. However, in this case the trivial observer has better performance for all three state estimates. This
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.1. The estimates are not perfect, but are close to the true values tabulated in

Table ii.1. The true test of the parameter estimates is in assisting the observer to produce correct state estimates, which is tested next in Section 4.3.2.

4.3.2 State observer simulations -Correct boundary coecients

The observer (3.17) is now compared to the trivial observer (3.17a)(3.17h), (3.40) when using the estimates of Z 0 , Z L presented as expected values of Ẑ0 (•), ẐL (•) documented in Table

4

.1. In Figure

4

.4, the pressure estimation error P (z 0 , •), shown in dark blue, from the observer (3.17) is plotted against the error Ptrivial (z 0 , •), shown in light blue, associated with the trivial observer (3.17a)(3.17h). As done in Chapter 3

  Figure 4.8: Velocity at z = z 0 compared to estimates.
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Figure 4.9: Heat release rate compared to estimates.

  Table 4.3. Compared to the estimates in Table 4.1, the estimates in Table 4.3 do indeed have a larger variance. Next, in Section 4.4.2, the observer (3.3) is tested again, using the expected values (which converged to very similar values) of the estimates in Table 4.3 as Ẑ0 , ẐL . 1 The notation Ẑi z denotes the estimate of the boundary impedance at location z initialized from θi State observer experiment -Estimated boundary coecients We repeat here the observer experiment from Section 3.4 using values of the impedances estimated in Section 4.4.1. Precisely, we use the mean of the expected values of the estimated impedances documented in Table 4.3 in the observer. The observer is tested on the data shown in Figures 3.153.16.

	Parameter estimate Expected value Variance
			Ẑ1 0				-15.4			0.579	
			Ẑ1 L				68.5			0.443	
			Ẑ2 0				-15.4			0.577	
			Ẑ2 L				68.5			0.440	
			Ẑ3 0				-15.5			0.599	
			Ẑ3 L				68.4			0.461	
		Table 4.3: Acoustic impedance estimates.	
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  Measured (blue line) compared estimated (grey lines) gauge pressure for validation microphone locations z v ∈ [0.8 0.9]. Using values of impedance estimated in Section 4.4.1. Shown for nal 20 ms of observer test.
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As is seen, the amplitude of the estimated gauge pressure is highly sensitive to accurate knowledge of the in-domain microphone position z v , and uncertainty in this could hence be a
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	In Chapters 6 and 7, the state estimation problem for the model (2.45), representing longitudinal oscillations in a can combustor with spatially varying geometry, is considered. Here we use spatially compact ame mod-els to describe the heat release. In Chapter 6 the ame model is linearized, but in Chapter 7 a nonlinear ame model is considered. 5.1 domaine rendent l'application de la même approche non triviale. Pour surmonter ce
	problème, une transformation de type backstepping est employée pour transformer
	le système hyperbolique linéaire 2 × 2 en un système cible piloté par les signaux
	entrée/sortie en chaque point du domaine spatial. La méthode des caractéristiques
	est ensuite appliquée pour trouver une forme de régresseur pour laquelle les méthodes
	standard d'estimation des paramètres peuvent être appliquées. Nous illustrons cette
	approche par des simulations sur un exemple théorique. Ensuite, il est démontré que
	le modèle (2.44) de l'acoustique dans un conduit dont la section transversale varie
	dans l'espace peut être écrit comme un système hyperbolique linéaire 2 × 2. Cela
	permet d'appliquer la forme de régresseur trouvée pour les systèmes hyperboliques
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	Chapter 6 with the ame subsystem linearised, is proposed. After showing that (2.45) with
	linearized heat release can be written as a 2 × 2 linear hyperbolic PDE coupled to an ODE subsystem with instantaneous and time-delayed interaction, a full-state Linear Combustor feedback law is proposed. It is designed by mapping the considered plant into a
	simplied PDEODE cascade, for which control design is a solved problem. Subse-
	quently, the observer is designed by mapping the estimation error dynamics directly
	into a stable target PDEODE cascade. Combining the full-state feedback control
	law and observer we arrive at an output feedback controller. A simulation exam-
	Contents ple to demonstrate the theory is presented, where the full-state feedack controller,
	observer and output feedback controller are shown to stabilize and estimate the pressure, velocity and heat release rate. 6.1 Background 6.1 Dans ce chapitre, un contrôleur par retour de sortie est proposé pour stabiliser 6.1.1 Literature review
	les instabilités thermoacoustiques longitudinales dans un modèle mathématique d'une
	chambre de combustion de la forme (2.45), avec le sous-système décrivant la amme
	linéarisé. Après avoir montré que (2.45) avec un dégagement de chaleur linéarisé
	peut être écrit comme un système d'EDP hyperbolique linéaire 2×2 couplé à un
	sous-système d'EDO avec retard, une commande par retour d'état est proposée. Elle
	est conçue grâce à un changement de variables transformant le système considéré en
	une cascade EDPEDO simpliée, pour laquelle la conception de la commande est
	un problème résolu. Ensuite, l'observateur est conçu en transformant la dynamique
	de l'erreur d'estimation en une cascade stable EDPEDO. En combinant la loi de
	contrôle par retour d'état et l'observateur, on obtient un commande par retour de
	sortie. Un exemple de simulation pour illustrer la théorie est présenté.
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	Chapter 7 The observation problem of estimating the states of the can combustor
	model (2.45) describing longitudinal thermoacoustic instabilities is considered, but unlike Chapter 6 the ame model considered here has a nonlinear dynamic response. Nonlinear Flame Two useful results from the literature are recalled. The rst result reduces the prob-
	lem of designing an observer for the fully coupled PDEODE plant to the problem
	of designing an observer for the nonlinear ODE subsystem only. The second re-
	sult reduces the problem of observer design for the nonlinear ODE into a problem
	of approximating a static function and its left-inverse. A procedure to generate
	Contents numerical data representing points in the domain and co-domain of the function
	and its left-inverse is proposed, before being applied to numerically generate data based on the nonlinear ame model. With this data, neural networks representing the forward and left-inverse transformations necessary to implement the nonlinear observer are trained. The estimated transformations are tested rst in an observer implementation estimating the internal states of the nonlinear ODE ame model, and thereafter in estimation of the heat release rate from the original I/O data on which the ame model is based. 7.1 Background 7.1 Dans ce chapitre, nous nous intéressons au problème d'estimation des états du 7.1.1 Problem statement
	modèle de chambre de combustion (2.45) décrivant les instabilités thermoacoustiques
	longitudinales. Contrairement au chapitre 6 le modèle de amme considéré ici a
	une réponse dynamique non linéaire. Deux résultats utiles de la littérature sont
	rappelés. Le premier résultat réduit le problème de la conception d'un observateur
	pour l'interconnection EDPEDO au problème de la conception d'un observateur
	pour le sous-système non linéaire EDO uniquement. Le deuxième résultat réduit
	le problème de la conception d'un observateur pour les EDO non linéaires en un
	problème d'approximation d'une fonction statique et de son inverse à gauche. Une
	procédure pour générer des données numériques représentant des points dans le
	domaine de dénition de la fonction et de son inverse à gauche est proposée, avant
	d'être appliquée pour générer numériquement des données basées sur le modèle de
	amme non linéaire. Avec ces données, des réseaux de neurones représentant les
	transformations directe et inverse sont entraînés. Les transformations estimées
	sont d'abord testées dans une implémentation d'observateur estimant les états
	internes du modèle de amme non linéaire EDO, puis dans l'estimation du taux de
	dégagement de chaleur à partir des données originales entrée/sortie sur lesquelles
	le modèle de amme est basé.

  Step 1, the objective is to pick a set of input signals representing what the plant would be subjected to in a practical setting. This is so that in Step 2, the generated trajectories explore the regions of the state space we expect the plant to visit during practical operating conditions, so that an observer able to estimate states in this region is trained suciently well. Thereafter, Step 3 starts collecting data points that will be used during training of the neural networks by sampling the trajectories generated during Step 2. However, at this stage we only have half of the data necessary to train the neural networks the other half needs to come from sampling of the observer state space at points corresponding to transformations of the plant states through the unknown transformation T . This is what Steps 45 of the data generation procedure are for. Since knowledge of T is needed to calculate φ dened by (7.16), the input signals chosen in Step 1 cannot be directly used to drive the observer dynamics (7.18). Hence the data from the observer state space must be generated without using the input signals directly. To do this, we consider nding points in the plant state space, which when used as initial conditions to the drift dynamics (7.19a), end up at the points sampled in Step 3 after being integrated for the time equal to the observer convergence time t o . Finding these points is akin to backwards integration of the drift system, hence Step 4. Then, when the cascade (7.19) is solved from these initial conditions for a time of duration t o , the plant states will move back to the initial values they were sampled at in Step 3, while the observer states will be integrated to points Z ij = T (X ij ) in the observer state

space. This is achieved through Step 5. With the complete set of data generated, the data generated in Step 5 is stored for further use in Step 6.

  2 , b 1 and b 2 in each of the networks is randomized. Then, using the training data visually represented in Figures 7.3, 7.6, a backpropagation algorithm is employed to update the network parameters to approximate the functions T and T * . For this purpose, conjugate gradient backpropogation with Polak-Ribiére updates is used. Because

  2 , b 1 and b 2 obtained at the end of the training for each of the six networks is documented in Appendix A. 40005} and l ∈ {1, 2, 3} are made by evaluating the three neural networks T * l at the points Z kl in the validation data set. Subtracting the predictions from the corresponding X kl data points gives the prediction errors Xkl := X kl -Xkl . Scaling each of the components of Xkl by the Euclidean norm ||X l i || := The same is done for the forward transformation, namely 120015 predictions are made by computing Ẑkl = Tl (X kl ) for each X kl in the validation data set, Tl being the neural network estimate l of T .The Euclidean norm of these values are summarized in Table7.1. The neural networks have systematically relatively smaller prediction errors in X 4 , X 5 , Z 1 , Z 2 and Z 4 than in the remaining state components. None of the neural networks have overall better performance in prediction of all state components than the others.With the transformation T satisfying the Sylvester-like PDE (7.15) and its leftinverse T * having been approximated in Section 7.2, it is natural to test the transformation in an implementation of the observer from Theorem 7. The same plant and observer parameters as used for training are applied. For the input signal

			40005 k=1 |X kl i | 2 , the prediction errors for the
	components can be compared. 7.3 Simulation and verication	
	7.3.1 Direct observer tests		
	Despite approximating the same transformation and being trained with the same	Ū
	data (disregarding the 10% that is randomly taken out before training each net-to (7.14), we use the signal
	work), the resultant hyperparameters take dierent values over the three networks
	for each transformation in general. This indicates that the networks converged to Ū (t) = 0.4 sin(200πt) + 0.6 sin(300πt) (7.24)
	dierent local minima or did not fully converge to a minimal point in the hyper-
	parameter search space during training. To test the performance of the resultant which was not part of the signals used to generate the training data, plotted in
	Figures 7.17.2. To approximate φ dened as (7.16) appearing in (7.18), a nite
	Quantity dierence approximation with ∆X Neural network 1 Neural network 2 Neural network 3
	|| X1 ||/||X 1 ||	3.68 × 10 -1	3.67 × 10 -1	3.51 × 10 -1
	|| X2 ||/||X 2 ||	5.02 × 10 -1	5.14 × 10 -1	5.07 × 10 -1
	|| X3 ||/||X 3 ||	4.51 × 10 -1	4.42 × 10 -1	4.79 × 10 -1
	|| X4 ||/||X 4 ||	8.77 × 10 -2	8.61 × 10 -2	8.40 × 10 -2
	|| X5 ||/||X 5 ||	1.58 × 10 -2	2.33 × 10 -2	2.65 × 10 -2
	|| Z1 ||/||Z 1 ||	2.37 × 10 -2	3.72 × 10 -2	3.01 × 10 -2
	|| Z2 ||/||Z 2 ||	6.06 × 10 -2	5.33 × 10 -2	6.11 × 10 -2
	|| Z3 ||/||Z 3 ||	2.93 × 10 -1	2.96 × 10 -1	2.99 × 10 -1
	|| Z4 ||/||Z 4 ||	3.11 × 10 -2	2.91 × 10 -2	3.47 × 10 -2
	|| Z5 ||/||Z 5 ||	2.48 × 10 -1	2.46 × 10 -1	2.45 × 10 -1
	|| Z6 ||/||Z 6 ||	1.37 × 10 -1	1.33 × 10 -1	1.32 × 10 -1
		Table 7.1: Euclidean norms of scaled prediction errors.
	transformations, after training the transformations are tested on the remaining 10%

of the data that is not used during training. Firstly, for the left-inverse transformation, 120015 predictions Xkl = T * l (Z kl ) for k ∈ {1, . . . , i = 10 -2 is used to approximate the Jacobian ∂T ∂X .

  of the Dynamic ROM Kornilov ame model are of interest could be for control purposes, where a complete knowledge of the state might be needed for implementation of a control law, but this is outside the scope of this chapter as we do not consider control design here. Since the internal states of the Dynamic ROM ODE model are in a sense synthetic (they do not necessarily have a physical meaning), it is interesting to verify how well the observer estimates the heat release in the original CFD data on which the Dynamic ROM is based. This is the focus of Section 7.3.2.

	observer can then be placed as a subsystem in the combustor network model (6.2b)
	(6.2c), (6.2e), (7.1), and used in a PDEODE observer such as the one presented
	in Theorem 6 to estimate heat release rate (together with pressure and velocity
	perturbations) using a pressure measurement taken from afar. Another reason the
	internal state estimates											
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			Figure 7.13: Plant states versus observer estimates. Figure 7.14: Observer estimation errors.		

  One could start with the linear control law from Theorem 4, before proceeding to designing a control law taking into account nonlinearities in the heat release rate. Lastly, it is important to not forget to mention that during development of the nonlinear observer in this chapter, possible noise in the I/O signals was not taken into account. From a practical point of view, studying the sensitivity to noise of the observer is an important direction in which to further develop this work. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Dans ce chapitre nal, nous résumons les travaux réalisés dans la thèse. Des perspectives et des suggestions pour des travaux futurs sont oertes.
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 1 Table1.2: W 1 parameters forward transformation 2.-0.7438 -0.6170 -0.1600 -0.9175 -0.7153 Table 1.3: W 1 parameters forward transformation 3. Table 1.4: W 2 parameters forward transformation 1. Table 1.6: W 2 parameters forward transformation 3. 7: Bias parameters forward transformation 1. Table 1.8: Bias parameters forward transformation 2. Table 1.9: Bias parameters forward transformation 3.
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Table 1 .

 1 10: W 1 parameters inverse transformation 1.Table1.12: W 1 parameters inverse transformation 3.

		w 1 1,i	w 1 2,i	w 1 3,i	w 1 4,i	w 1 5,i	w 1 6,i
	w 1 j,1	0.1975	0.4069	0.6537	0.7793	0.6590	-1.2193
	w 1 j,2	-0.4519 -0.7778	0.0474	-0.5526	0.5512	-0.6582
	w 1 j,3	-0.5670 -1.3320 -0.9198	0.9287	0.3282	0.9070
	w 1 j,4	-0.9230 -0.0982 -2.3961	0.6542	-3.4710 -0.1798
	w 1 j,5	1.3613	0.5629	0.5792	0.0593	0.9104	-0.2677
	w 1 j,6	0.0718	0.0249	-0.6638	0.3127	-0.2835 -1.0733
	w 1 j,7	0.1668	-0.0269	1.9695	0.1153	3.1783	-0.0413
	w 1 j,8	-0.0951 -0.4528 -0.1362	1.4943	1.2534	0.6423

Table 1 .

 1 13: W 2 parameters inverse transformation 1.

		w 2 1,i	w 2 2,i	w 2 3,i	w 2 4,i	w 2 5,i	w 2 6,i	w 2 7,i	w 2 8,i
	w 2 j,1	1.1268	-0.6254	0.7815	-1.5400	1.2364	1.1251	-1.9268 -0.5410
	w 2 j,2	-0.1764 -0.0426	0.1778	0.7056	-0.6279 -0.1831	0.9001	-0.5989
	w 2 j,3	1.5557	0.1448	0.3831	-0.3140	1.1849	-0.5831 -0.8169 -0.2207
	w 2 j,4	-0.5958 -0.2105 -0.8427 -0.1496	0.2332	0.0031	-0.2307	0.4189
	w 2 j,5	-0.1629 -0.1393 -0.8389 -0.0055	0.2325	0.0040	-0.0400	0.8848

Table 1 .

 1 14: W 2 parameters inverse transformation 2.

		w 2 1,i	w 2 2,i	w 2 3,i	w 2 4,i	w 2 5,i	w 2 6,i	w 2 7,i	w 2 8,i
	w 2 j,1	-0.7805	2.2374	-1.1451	1.5314	-1.8960	1.1208	0.7387	1.5783
	w 2 j,2	0.0553	0.3161	0.7729	-0.2290	0.3677	-0.4795 -0.3732 -1.1368
	w 2 j,3	-0.5033 -0.2137 -0.2097 -0.3307 -0.1289 -0.3757	0.3793	0.5064
	w 2 j,4	0.1085	0.2132	0.0440	0.4149	-0.2165 -0.4756	0.6471	0.1822
	w 2 j,5	0.0967	-0.0341	0.1440	0.4536	-0.0403 -0.2991	0.7472	0.0289

(2.37b)

(3.39) Finally, (3.22f)(3.22g) express ũ2 (0, •), ṽ1 (0, •) as the sum of bounded signals, therefore ũ2 (x, •), ṽ1 (x, •) ∈ L ∞ , ∀x ∈ [0, 1].

This is usually a pressure measurement but other metrics such as CH * radicals or soot formation can be used.

Figure 7.1: Monofrequent input signals to generate training data.

Table 1.5: W 2 parameters forward transformation 2.

Table 1.11: W 1 parameters inverse transformation 2.

Table 1.15: W 2 parameters inverse transformation 3.

Regressor form

We denote here by φ ε the injective function φ ε (x) := x 0 dξ ε(ξ) (5.13) for any ε ∈ C 1 (0, 1), ε > 0. We denote also φε (x) := φ ε (1) -φ ε (x). Note that l y 1 , l y 2 , N and M can be factorized as l y 1 (x) = ly 1 (x) + d 1 l U 1 (x)

(5.14)

(5.15)

(5.16)

(5.17)

with component functions dened as ly 1 (x) := -λ(1)K uu (x, 1)

(5.18) ly 2 (x) := -λ(1)K vu (x, 1)

(5.19)

M 1 (x) := K uu (0, x) -

(5.20)

M 2 (x) := -K vu (0, x) -x 0 M 2 (s)K uu (s, x) + N 2 (s)K uv (s, x)ds

(5.21)

N 1 (x) := K uv (0, x) -

x 0 M 1 (s)K vu (s, x) + N 1 (s)K vv (s, x)ds

(5.22)

N 2 (x) := -K vv (0, x) - l U 2 (φ -1 µ (φ µ (1) -s))y(t -φ λ (1) -φ µ (1) + s)ds

(5.24)

(5.26)

(5.41)

Further, using the MOC for α from the boundary at x = 1

(5.42)

Applying the boundary condition (5.6c), using the MOC to solve for the dynamics (5.6b), substituting in (5.6d) and also applying (5.42) allows us to express

Hence substituting (5.43) into (5.41) and applying (5.14)(5.17), by factoring out the unknown coecients and grouping terms one obtains the expression (5.36).

Adaptive law

Denoting by the signal (t) := y(t) -ω 4 (t)

(5.44) Figure 6.2: Sketch of solutions to R u and R v . The region shaded in green has characteristics originating from the boundary condition along R u (•, 1), the region shaded in blue has characteristics with data originating in R u (1, •), and the region shaded in red has characteristics coming from the boundary condition of R v (•, 1).

The line of discontinuity in the solution of R u terminates along x = 0 at the point ξ = 1 -1 τ φ λ (1), while the main line of discontinuity in the solution to R v terminates along x = 1 at the point ξ = 1 -1 τ φ µ (1).

where φ λ , φ µ are functions of the form (5.13).

The solutions to R u , R v are illustrated in Figure 6.2. Thus, evaluating (6.29a) at ξ = 0 and substituting into (6.23e) we have

(6.30) Subsequently, substituting (6.30) into (6.21a) gives us

Then, (6.30)(6.31) together with (6.21c), (6.23a)(6.23b), (6.23f) forms a coupled system of equations to solve for (K uu , K uv , ν u ).

Likewise, evaluating (6.29b) at ξ = 0 and substituting into (6.23h) yields

(6.32)

From (6.29a) we see R u is only dependent on the solution to ν u , and hence (6.32) together with (6.21b), (6.21d), (6.23c)(6.23d), (6.23g) forms a coupled system of equations to solve for (K vv , K vu , ν v ). To assess the regularity of solutions to the systems of equations for (K uu , K uv , ν u ), (K vv , K vu , ν v ), respectively, we need the following Lemma.

Lemma 8. The coupled system

stabilizes (6.2) exponentially to the origin.

Proof. By applying the backstepping transformation and computing the kernels explicitly, obtain that V given by

exponentially stabilizes (6.18) to the origin. Substituting in the transformation (6.19) and rearranging, we can rewrite V in plant coordinates as

(6.40)

Substituting this into (6.25) we have the expression (6.35). By Lemma 7 and by the fact that (6.19) is invertible the Proof is complete.

Remark 9. It should be noted that the problem of boundary stabilization of (6.18) is a well-known problem, with several controllers in the literature (some examples presented in [Auriol et al. 2018[START_REF] Krsti¢ | [END_REF]). In principle one could apply any controller that stabilizes (6.18) and combine it with the transformation (6.19) to obtain a stabilizing controller for (6.2).

In practice, implementing the control law requires full knowledge of the states (u, v, X), which are often unknown in practice. In the next section we design an observer that produces exponentially convergent estimates of these states.

Appendix A

Trained Neural Network Coecients

The hyperparameters for the neural networks described in Section 7. We document here rst the hyperparameters for the forward transformations, and then the left-inverse transformations. In Tables 1.1-1.3, W 1 for the forward transformation is shown, in Tables 1.41.6 W 2 is documented, and lastly in Tables 1.71.9 the bias values b 1 and b 2 for T is shown. Likewise, in Tables 1.10 1.12 W 1 for the left-inverse transformations is shown, in Tables 1.131.15 we have W 2 documented, and nally the bias vectors b 1 and b 2 for T * are in Tables 1.161.18. 

RÉSUMÉ

Les instabilités thermoacoustiques sont néfastes pour les systèmes de combustion dans lesquels elles apparaissent, tels que les chambres de combustion de turbines à gaz. Des systèmes de surveillance avancés sont nécessaires pour estimer et prévoir ce phénomène afin de le prévenir, et possiblement de le supprimer grâce à des méthodes de contrôle. Dans cette thèse, nous proposons d'utiliser une description sous forme de systèmes à paramètres distribués des phénomènes acoustiques couplés à des modèles de dégagement de chaleur. Les non-linéarités sont prises en compte chaque fois que possible, pour décrire les instabilités. Des algorithmes d'estimation d'état et de paramètres prenant en compte ces effets dynamiques sont proposés. Deux niveaux de complexité différents sont considéré. D'une part, on s'intéresse à une configuration de laboratoire et un modèle de modes thermoacoustiques longitudinaux dans une chambre de combustion. Pour ce système, un estimateur de l'état d'un tube de Rijke chauffé électriquement est synthétisé. Puis, un observateur globalement convergent, prenant en compte les non-linéarités du réchauffeur électrique et la dynamique distribuée, est proposé et analysé. Celui-ci est associé à un algorithme d'identification de paramètres pour estimer les impédances acoustiques aux frontières du domaine spatial. L'observateur d'état et l'identification de paramètres sont testés à la fois dans des simulations et expérimentalement. Ensuite, nous proposons un algorithme pour estimer les deux paramètres aux limites de systèmes hyperboliques linéaires 2X2 avec une seule mesure aux limites. En outre, un modèle dynamique de l'acoustique dans un conduit avec une section transversale variable dans l'espace est dérivé. En utilisant ces deux résultats ensemble, le schéma d'estimation des paramètres aux limites pour le tube de Rijke est étendu à des conduits plus généraux. Un bouclage de sortie, combinant une loi de commande par retour d'état et un observateur frontière colocalisé, pour les instabilités thermoacoustiques longitudinales dans un modèle d'une chambre de combustion avec acoustique distribuée et un modèle de flamme linéaire est ensuite proposé. Enfin, nous proposons un estimateur d'était pour un modèle de chambre de combustion avec une flamme non linéaire. Une méthode basée sur l'utilisation de réseaux de neurones est utilisée pour concevoir un observateur pour le soussystème de flamme, qui est ensuite vérifié sur les données CFD.

MOTS CLÉS

Thermoacoustique, observateur d'état, identificateur de paramètre, commande à bouclage de sortie, systèmes de paramètres distribués, systèmes non linéaires, backstepping, les réseaux de neurones ABSTRACT Unwanted thermoacoustic instabilities are harmful to combustion systems that suffer from them such as gas turbine combustors operating under lean premixed conditions. Advanced monitoring systems are needed to estimate and forecast the phenomenon to assist in decision making and automatic stabilization. In this Thesis we propose using a distributed description of acoustics interfaced to heat release models, with nonlinearities whenever possible, to describe the instabilities. State and parameter estimation algorithms taking these dynamic effects into account are explored. Two different levels of complexity are considered: we start with a laboratory setup and move towards a model of longitudinal thermoacoustic modes in a can combustor. First, state estimation for the electrically heated Rijke tube is considered. A globally convergent observer, taking into account nonlinearities from the electrical heater and distributed dynamics, is proposed and analysed. This is paired with a parameter identifier for estimating boundary acoustic impedances. The state observer and parameter identifier are tested both in simulations and experimentally. Next, a parameter identifier to estimate both boundary parameters of 2X2 linear hyperbolic systems with a single boundary measurement is proposed. Also, a transient model of acoustics in a duct with spatially varying cross-sectional area is derived. Using these two results together the boundary parameter estimation scheme for the Rijke tube is extended to more general ducts. An output feedback controller, combining a full-state feedback control law and collocated boundary observer, for longitudinal thermoacoustic instabilities in a model of a can combustor with distributed acoustics and a linear flame model is proposed next. Convergence is proven and it is tested in simulations. Lastly, the state estimation problem for a can combustor model with a nonlinear flame is considered. Neural networks are used to design an observer for the flame subsystem, which is subsequently verified on CFD data.
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Thermoacoustics, state observer, parameter identifier, output feedback control, distributed parameter systems, nonlinear systems, backstepping, neural networks