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Introduction (Français)

1 Contexte

La crise climatique menace les conditions de vie sur Terre : l’augmentation prévue du
nombre et de l’intensité des vagues de chaleur, des fortes pluies, des sécheresses et des feux
de forêts en résultant, et des inondations des zones côtières accroîtra les risques pesant
sur les systèmes écologiques et humains. La crise climatique est causée par les activités
humaines responsables d’une augmentation sans précédent des émissions de gaz à effet
de serre (GES) depuis le début de l’ère industrielle [IPCC, 2014b]. La part estimée de
la production d’électricité et de chaleur dans le total des émissions mondiales de GES
va de 17% à 30% (données de 2010) [IPCC, 2014a]. La part de l’énergie utilisée dans les
bâtiments résidentiels dans le total des émissions mondiales de GES va de 10,9% (données
de 2016, [Ritchie and Roser, 2020]) à 12% (données de 2010, [IPCC, 2014a]).

Réduire les émissions de GES tout en soutenant le développement des sociétés humaines
nécessite l’adoption de comportements durables dans les pays développés, et de remplacer
mondialement les énergies fossiles (charbon, pétrole, gaz) utilisées pour la production
d’électricité et pour d’autres usages par des alternatives « bas-carbone ». La production
d’électricité d’origine nucléaire et renouvelable est considérée comme bas-carbone puisque
les émissions de GES lors du fonctionnement et du cycle de vie complet de ces centrales
sont estimées être largement plus faibles que celles des centrales fonctionnant aux énergies
fossiles.

C’est une des raisons pour lesquelles les incitations gouvernementales au développement
des énergies renouvelables se sont développées sous diverses formes dans les dernières
décennies. Les autres raisons sont le besoin d’alternatives face à la raréfaction pétrolière,
les inquiétudes liées à la sécurité des centrales nucléaires après l’accident de Fukushima,
et le problème sanitaire lié à la pollution de l’air due aux centrales thermiques à énergies
fossiles.

Ces politiques de soutien, couplées à des avancées soutenues de recherche et dévelop-
pement, ont mené à des réductions de coût de production exceptionnelles dans les 10
dernières années, permettant une croissance rapide de la capacité installée et en projet de
production d’électricité renouvelable [SolarPower Europe, 2018].

Par ailleurs, les unités de production d’électricité renouvelable de suffisamment petite
puissance peuvent être raccordées au réseau de basse ou moyenne tension, contrairement
aux grandes centrales connectées au réseau de transport d’électricité de haute tension.
Dans de nombreux endroits, il est estimé que l’installation de ces sources d’énergie distri-
buées pourra limiter le coût et les défaillances du système électrique associés à l’augmen-
tation de la consommation d’électricité et à l’extension des réseaux électriques.

Ces deux tendances expliquent la croissance rapide dans le monde des capacités ins-
tallées de production d’électricité photovoltaïque en particulier, celle-ci étant la forme la
moins chère et la plus simple à installer parmi les sources d’électricité renouvelables distri-
buées. Un avantage supplémentaire de l’électricité photovoltaïque est la variété des tailles
d’installations possibles, des centrales gigantesques situées dans les régions désertiques
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Introduction (Français)

jusqu’aux installations individuelles composées d’un seul panneau solaire placé sur le toit
d’un petit bâtiment.

Dans les pays à revenu faible et intermédiaire [World Bank Data Help Desk, 2021] où
les réseaux de transport et de distribution d’électricité n’ont pas encore atteint la taille
et la résilience nécessaires pour couvrir la quasi-totalité des lieux habités, la production
distribuée offre l’opportunité de fournir de l’électricité dans des lieux reculés, au lieu de
devoir attendre l’extension du réseau électrique et la connexion avec des centrales de
production distantes.

En somme, la part grandissante des ressources distribuées dans la production d’élec-
tricité mondiale permet d’anticiper un changement de paradigme, qui est le passage d’une
organisation centralisée du système électrique où la production s’adaptait aux besoins de
consommation, vers une organisation hybride, où la demande d’électricité est également
pilotée afin de l’adapter à l’intermittence des ressources distribuées qui engendre une plus
grande variabilité de la production. Ainsi, les flexibilités de production et de consomma-
tion sont de plus en plus valorisées pour les gestionnaires de réseaux de transport et de
distribution d’électricité, en tant qu’options alternatives à un renforcement significatif des
investissements financiers dans les réseaux [IEA, 2018].

La flexibilité de consommation est la possibilité de déplacer dans le temps ou de mo-
difier la consommation électrique de certains usages. L’autoconsommation, quant à elle,
est un cadre réglementaire visant à encourager ces flexibilités de consommation à l’échelle
d’un bâtiment, en promouvant la consommation locale plutôt que l’export vers le réseau
électrique. L’électricité en question peut être produite localement par tout type de res-
source distribuée, mais les panneaux photovoltaïques (PV) sont principalement utilisés
étant donné la taille modulable de leurs installations, et leur coût avantageux. L’autocon-
sommation solaire contribue à la stabilité du réseau de distribution électrique en évitant
des hausses de tension lors des pics de production solaire, et aide à augmenter la part
du PV dans le mix électrique [Nousdilis et al., 2018]. Grâce à des simplifications de pro-
cédures administratives [EU Directive, 2018] et de nouvelles grilles tarifaires qui ont fait
de l’autoconsommation électrique une option rentable, ces installations continuent d’être
encouragées et sont devenues populaires.

Les installations en autoconsommation PV favorisent le pilotage intelligent des consom-
mations des usages électriques. En effet, tirer pleinement parti des incitations financières
liées à l’autoconsommation nécessite un pilotage optimal des consommations du foyer. De
plus, la valeur des gestionnaires d’énergie utilisés pour surveiller, contrôler et optimiser
les consommations du foyer est accrue par le montant croissant des factures d’électricité
des consommateurs. Cette tendance devrait se poursuivre en vue de l’électrification des
consommations d’énergie habituellement couvertes par des combustibles fossiles.

2 Objectifs de la thèse

L’objectif de cette thèse est d’avancer sur la voie d’un gestionnaire d’énergie apportant
des bénéfices à la fois au consommateur et au gestionnaire du réseau de distribution. Le
premier cherche à diminuer sa facture totale d’énergie, tandis que le second désire le plus
haut taux d’autoconsommation possible.

Ce travail se concentre sur l’optimisation de l’autoconsommation photovoltaïque des
bâtiments résidentiels, étant donné que les bâtiments commerciaux ont des courbes de
charge et des contraintes spécifiques et recouvrent de nombreuses catégories différentes.
Dans le secteur résidentiel, les foyers peuvent avoir des compositions variées et habiter
des appartements ou des maisons individuelles. Les installations en autoconsommation
considérées ici ne couvrent que cette dernière catégorie. Dans la première partie de ce
travail, l’échelle d’une maison individuelle est considérée, tandis que le cadre d’étude est
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élargi à un groupement de maisons individuelles dans la seconde partie.
Avec 12% de la consommation électrique domestique d’Europe dédiée à l’eau chaude

en 2018 [Eurostat, 2018], les équipements électriques de chauffage de l’eau (avec et sans
stockage) représentent une part importante dans les factures d’électricité des bâtiments
résidentiels. Les ballons d’eau chaude, ou chauffe-eau Joule (CEJ) sont des équipements
particulièrement intéressants puisqu’ils fournissent un moyen de stockage de l’énergie sous
forme thermique. D’un coût initial faible, les CEJ ont l’intérêt d’être déjà répandus dans
plusieurs pays : les 57 millions d’unités installées en 2014 en Europe représentent 23% du
parc total d’équipement principal de chauffage de l’eau en Europe [VHK, 2019], et cette
part de marché atteint 45% en France avec 11 millions d’unités installées [MSI, 2019].
De plus, par leur consommation d’énergie et leur puissance nominale élevées, les CEJ
représentent un équipement électrique particulièrement propice au pilotage dans le cadre
d’une optimisation de l’autoconsommation du photovoltaïque [Cao et al., 2013, Lefort
et al., 2013, Sossan et al., 2013, Heleno et al., 2015, Beeker et al., 2016, Pacaud, 2018].
La première partie de cette thèse porte exclusivement sur le contrôle des CEJ, tandis
que l’éventail des usages électriques pilotés est étendu aux usages blancs et aux véhicules
électriques dans la seconde partie.

2.1 Définition des objectifs concernant l’autoconsommation

Plusieurs critères permettent d’évaluer le fonctionnement d’une installation en autocon-
sommation.

Tout d’abord, l’énergie autoconsommée, notée SC dans ce manuscrit, est définie comme
la part de la production PV locale qui est consommée localement. Mathématiquement, elle
est définie comme l’intégrale sur la période [0, τ ] du minimum entre la production PV locale
et la consommation électrique totale :

SC =
∫ τ

0
min(C(t), PPV(t))dt (1)

où C(t) est la consommation électrique totale du foyer au temps t, et PPV(t) est la puissance
totale produite par les panneaux PV au temps t.

Ensuite, le taux d’autoconsommation est le ratio de l’énergie autoconsommée SC sur
l’énergie totale localement produite EPV, sur la même période.

SC% = SC

EPV
(2)

où
EPV =

∫ τ

0
PPV(t)dt (3)

Un taux d’autoconsommation de 100% indique que la production PV locale est totalement
consommée sur place. EPV étant indépendant des stratégies de pilotage, maximiser SC
revient à maximiser SC%.

De même, le taux d’autoproduction est le ratio de l’énergie autoconsommée SC sur
l’énergie totale localement consommée EC, sur la même période.

SP% = SC

EC
(4)

où
EC =

∫ τ

0
C(t)dt (5)

Un taux d’autoproduction de 100% indique que la consommation locale est totalement
couverte par la production locale, qui peut même être en surplus. EC dépend des stratégies
de pilotage des consommations, donc maximiser SC ne maximise pas forcément SP%.
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Par ailleurs, un critère important pour les propriétaires d’une installation en autocon-
sommation est la facture globale d’énergie. Celle-ci dépend des profils et des volumes de
consommation et de production, de leur concomitance, des prix de revente ou subventions
accordées pour l’injection de puissance dans le réseau, et des prix horaires de l’électri-
cité. Par toutes ces composantes, l’optimisation de l’énergie autoconsommée peut ne pas
coïncider avec l’optimisation de la facture globale d’énergie.

Le point de vue d’un gestionnaire de réseau de distribution mènerait à vouloir minimiser
le volume d’énergie réinjectée dans le réseau, défini par∫ τ

0
max(PPV(t) − C(t), 0)dt (6)

Une installation en autoconsommation connectée au réseau mais cherchant à atteindre
une autonomie énergétique pourrait souhaiter minimiser le volume total d’énergie impor-
tée, défini par ∫ τ

0
max(C(t) − PPV(t), 0)dt (7)

Enfin, des critères composites peuvent être définis afin de prendre en compte d’autres
aspects tels quel des mesures de confort, en plus d’un ou plusieurs des critères présentés.

Les objectifs habituellement retenus sont différents selon la configuration de l’installa-
tion en autoconsommation. On distingue généralement trois configurations :

1. Un micro-réseau isolé : dans ce cas, le fonctionnement doit garantir la continuité de
l’approvisionnement électrique à partir d’unités de production locales renouvelables,
soutenues par d’autres sources d’énergie fossiles pilotables, ou un volume conséquent
de stockage. Le taux d’autoconsommation est nécessairement de 100%.

2. Le réseau de distribution local est soumis à de fortes contraintes. Etant donné qu’his-
toriquement, les réseaux de distribution étaient conçus pour satisfaire un certain
niveau de consommation, des contraintes peuvent apparaître lorsque la production
décentralisée renouvelable est trop importante et dépasse la consommation locale. Si
trop de puissance est réinjectée, des hausses de tension peuvent apparaître et endom-
mager le réseau. Des sanctions financières dissuasives peuvent être appliquées en cas
de réinjection de puissance dépassant un certain seuil. Dans ce cas, le gestionnaire
cherchera à avoir des taux d’autoconsommations aussi élevés que possible.

3. L’installation en autoconsommation individuelle ou collective est connectée au réseau
de distribution, sans contraintes de hausses de tension. Aucune contrainte ne porte
alors sur les taux d’autoconsommation ou d’autoproduction. L’objectif sera alors
habituellement de minimiser la facture d’énergie.

Dans cette thèse, aucune contrainte d’autonomie ni de réinjection n’est considérée, ce
qui correspond au troisième cas présenté. Dans les deux premiers chapitres, l’objectif est
d’évaluer le taux d’autoconsommation maximal atteignable par une installation indivi-
duelle standard, afin d’obtenir un outil de comparaison. Les deux derniers chapitres, eux,
portent sur la minimisation de la facture d’énergie, pour considérer un objectif plus aligné
avec les préoccupations des propriétaires de ces systèmes.

2.2 Objectifs de robustesse face aux incertitudes

La production PV dépend de l’intensité de l’irradiance solaire, qui peut être affectée par
plusieurs phénomènes : variations saisonnières, variabilité journalière, couverture nuageuse,
ombre de nuages passant. Ces phénomènes ne sont pas parfaitement prévisibles. Ainsi la
variabilité de la météo impacte la fiabilité des prévisions de météo et de production [Inman
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et al., 2013]. Plus la prédiction concerne un horizon de temps lointain, plus l’incertitude
est grande.

Il n’est pas rare de présenter les performances d’un gestionnaire d’énergie en auto-
consommation testé dans un cadre négligeant les incertitudes de production PV. Cela est
valable si l’on se concentre sur les performances a posteriori d’un gestionnaire d’énergie, où
l’on mesure la performance réelle et passée, différente de la performance qui était prévue
par le gestionnaire au moment de la prise de décision en anticipation. Néanmoins une éva-
luation valide des performances a priori se doit de prendre les incertitudes en compte. Cela
nécessite de considérer que les prédictions de production PV utilisées pour décider d’une
stratégie de contrôle peuvent ne pas se matérialiser exactement. Une évaluation rigoureuse
des performances de la stratégie de pilotage choisie peut être faite en testant la stratégie
de pilotage face à un grand nombre de scénarios de production simulés, et en mesurant la
performance moyenne. Chaque scénario de cet ensemble doit être réaliste individuellement,
et les variations de tout l’ensemble doivent être représentatives du niveau d’incertitudes
associé à la prévision initiale. Le Chapitre 2 propose une méthode pour construire un
ensemble de scénarios de production PV cohérent de ce type, et l’utilise pour fournir une
évaluation correcte et a priori de la performance de l’algorithme de contrôle déterministe
développé dans le Chapitre 1, face aux incertitudes de prévisions de production. Dans la
deuxième partie de cette thèse, l’approche par horizon glissant de la commande prédictive
est adoptée, permettant d’adapter les stratégies de contrôle aux informations mises à jour
progressivement (Chapitres 3 et 4).

2.3 Objectifs de déploiement sur les micro-réseaux avec échanges d’éner-
gie

Un micro-réseau est un réseau électrique peu étendu, composé de plusieurs bâtiments et
de sources d’énergie distribuées produisant localement une partie de l’énergie requise. Les
bâtiments peuvent être tertiaires ou résidentiels ; les sources d’énergie distribuées peuvent
être des panneaux PV, de petites éoliennes, des centrales de cogénération, des batteries
électriques ; les sources d’énergie distribuées peuvent appartenir aux agents individuelle-
ment ou collectivement, ou appartenir à une entité tierce (comme le gestionnaire du ré-
seau de distribution, ou un fournisseur d’énergie) ; le micro-réseau peut être complètement
isolé, isolé sur demande, ou bien complètement connecté au réseau électrique principal ; un
micro-réseau peut couvrir des zones de tailles variées, allant d’un seul immeuble à l’échelle
d’une petite île.

Puisqu’un micro-réseau est constitué de plusieurs bâtiments, de quelques usages élec-
triques pilotables et de sources d’énergie distribuées, ces installations peuvent être décrites
comme des communautés en autoconsommation collective, si les échanges d’énergie entre
les participants sont permis. Dans ce cas, la définition initiale de l’autoconsommation
peut être étendue au périmètre de la communauté, en incluant toute l’énergie produite et
consommée au sein du micro-réseau. Les échanges d’énergie locaux correspondent princi-
palement à un principe comptable permettant de partager la production d’énergie locale
entre les participants de la communauté énergétique, afin d’augmenter la part d’énergie
localement produite et consommée par chaque entité1. La seule contrainte physique à
respecter pour la stabilité du réseau est d’assurer que les pics de tension dus aux réin-
jections locales de puissance ne dépassent pas le niveau que peut supporter le réseau de
distribution.

1Physiquement, les électrons suivent toujours le chemin le plus court (ou chemin de moindre résistance),
il est donc impossible de garantir l’origine physique de l’énergie consommée à un endroit d’un réseau
connecté et maillé.
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2.4 Objectifs de protection des données personnelles

Dans les Chapitres 3 et 4, des échanges d’énergie sont permis entre des membres d’un
micro-réseau, un groupement d’habitations individuelles s’accordant pour se vendre et
s’acheter de l’énergie, pour partager l’usage d’une ressource d’énergie distribuée (telle une
batterie), et pour chercher à atteindre un objectif commun, la minimisation du coût de
fourniture de l’énergie pour la communauté dans son ensemble et pour chaque participant
particulier. Dans ce cadre, l’augmentation de l’énergie autoconsommée à l’échelle du micro-
réseau peut servir leur objectif. Dans cette communauté énergétique, les gestionnaires
d’énergie de chaque foyer doivent communiquer entre eux et avec l’entité centrale, ce qui
soulève des problèmes de divulgation des informations privées des participants.

Dans les expériences présentées dans [Huberman et al., 2005], des individus devaient
établir la valeur (en dollars) de certaines informations personnelles. Un des résultats no-
tables est que le pourcentage de personnes demandant une somme « infinie » (plus de
100$ dans l’expérience) pour révéler des informations telles que le salaire et la situation
conjugale était bien plus élevé que le pourcentage de personnes demandant une telle somme
pour d’autres types d’informations personnelles telles que l’âge et le poids. Ceci montre
l’existence d’un attachement à un certain niveau de protection de certaines informations
personnelles.

Cependant, il se trouve que certaines de ces informations peuvent être déduites des
données de consommations électriques. En effet, [Molina-Markham et al., 2010] a montré
que des traitements statistiques simples des consommations enregistrées chaque seconde
pendant deux mois permettaient d’identifier les équipements électriques d’un foyer, et
peut-être même la routine journalière en cas de disponibilité de larges jeux de données.
Au sein d’un enregistrement des consommations électriques de 180 foyers sur 14 jours au
pas de temps horaire, [Buchmann et al., 2013] a réussi à identifier une combinaison unique
de paramètres (comme le premier pic de demande dans la journée, ou la consommation
totale journalière) permettant d’identifier précisément 68 % des foyers.

Il est donc possible de déduire des informations personnelles telles que la richesse, le
statut professionnel, les départs en vacances ou le nombre de personnes vivant dans une
maison. C’est pourquoi le droit à la protection des données personnelles est protégé par la
réglementation européenne en matière de protection de la vie privée [EU Regulation, 2016],
bien connue sous le nom de Règlement Général sur la Protection des Données (RGPD). Ce
règlement établit que « la protection des personnes physiques à l’égard du traitement des
données à caractère personnel est un droit fondamental ». Concrètement, il est déclaré que
« les données à caractère personnel doivent être collectées pour des finalités déterminées,
explicites et légitimes, et ne pas être traitées ultérieurement d’une manière incompatible
avec ces finalités ».

Ainsi la protection des données personnelles est un enjeu majeur pour la conception
de futures communautés locales d’énergie supposées bénéfiques pour les consommateurs
et le gestionnaire du réseau de distribution, puisque :

• le gestionnaire du réseau de distribution et les tierces parties doivent se conformer
au RGPD ;

• une certaine garantie quant au niveau de protection de ces données pourrait rassurer
les nouveaux participants potentiels d’une telle communauté.

Il est à noter que malgré ces règles et les aspirations à la protection des données
personnelles, les auteurs de [Huberman et al., 2005] rappellent que les individus sont prêts
à faire des compromis sur ces aspects pour obtenir certains services. Cet équilibre est
également rappelé dans le règlement européen [EU Regulation, 2016], qui déclare que « le
traitement des données à caractère personnel devrait être conçu pour servir l’humanité.
Le droit à la protection des données à caractère personnel n’est pas un droit absolu ; il
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doit être considéré par rapport à sa fonction dans la société et être mis en balance avec
d’autres droits fondamentaux, conformément au principe de proportionnalité. »

3 Organisation du manuscrit

3.1 Résumé du problème considéré dans la thèse

Le problème considéré dans cette thèse peut être décrit comme le pilotage d’usages élec-
triques d’une certaine entité (foyer ou micro-réseau) afin de maximiser la consommation de
production locale d’énergie photovoltaïque, tout en respectant des contraintes de confort
et de fonctionnement.

3.2 Contenu

Le Chapitre 1 de ce manuscrit présente la formulation mathématique du problème d’op-
timisation de l’autoconsommation du photovoltaïque dans un bâtiment résidentiel. Le
problème d’optimisation a été formulé sous une forme sans contraintes incluant une pré-
vision de production PV. Les propriétés mathématiques du problème sont étudiées (non-
concavité, différentiabilité). On modélise le CEJ comme un volume d’eau à température
homogène équipé d’un thermostat. Les équations dynamiques qui en régissent le fonction-
nement peuvent être explicitement résolues, menant à un algorithme de pilotage optimal
simple et efficace. Moins générale que des approches par Model Predictive Control (MPC),
qui pourraient avoir été utilisées dans ce contexte, cette stratégie requière moins de puis-
sance de calcul et ne nécessite pas d’ajuster de paramètres. Le temps de calcul extrêmement
faible de l’algorithme proposé permet de résoudre plusieurs instances différentes du même
problème dans un temps court, et le rend compatible avec le temps réel.

Dans le Chapitre 2, les performances de l’algorithme développé sont étudiées en consi-
dérant les incertitudes des prévisions de production. La prévision de production PV consi-
dérée comme la prévision la plus probable est celle retenue nominalement, et est associée
à un certain niveau de confiance. A partir de ces deux éléments, une méthode novatrice
est décrite pour générer des ensembles de scénarios de production PV. Chaque scénario
individuel peut dévier de la prévision la plus probable. L’ensemble des scénarios suit glo-
balement la prévision la plus probable, et s’en éloigne en fonction du niveau de confiance
initial. La performance de l’algorithme de pilotage précédemment développé peut ainsi être
évaluée dans des conditions plus réalistes, en confrontant la stratégie de pilotage adoptée
grâce à la prévision initiale la plus probable avec l’ensemble des scénarios possibles asso-
ciés. Cette étude est possible grâce au faible temps de calcul requis par l’algorithme de
pilotage. Ce chapitre montre que le gain de performance obtenu par l’algorithme proposé
par rapport à une heuristique de gestionnaire disponible commercialement dépasse le gain
qui serait hypothétiquement obtenu grâce à une prévision de la production PV au pas de
temps de 30-minutes plus précise que la prévision nominale actuelle, toujours appliquée à
l’heuristique de référence.

Le Chapitre 3 étend le cadre d’étude au contrôle de plusieurs autres équipements
électriques dont une modélisation retenue utilise des variables binaires (ex. : usages blancs,
voitures électriques, batteries) et à l’optimisation de l’autoconsommation d’un ensemble
de foyers en coopération. Ce cadre mène à la description d’un problème d’optimisation
linéaire mixte (MILP), pour lequel l’algorithme précédemment présenté n’est pas adapté.
Les dimensions du problème MILP à considérer sont précisées, et l’intérêt de la coopération
est démontré sur un exemple simple.

Le Chapitre 4 aborde le défi de la protection des données personnelles des participants
au micro-réseau, un enjeu rarement considéré dans les études d’optimisation collective
des consommations d’énergie. Des méthodes de télécommunication et de cryptographie
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classiques sont adaptées et appliquées à une étude de cas, montrant la faisabilité de la
coopération efficace sous la contrainte de l’anonymat.

Publications
Ces travaux de thèse ont donné lieu à deux publications.

Article de conférence : Loris Amabile, Delphine Bresch-Pietri, Gilbert El Hajje, Sébastien
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pages 13196–13203, 2020. doi :10.1016/j.ifacol.2020.12.145. URL https://linkinghub.
elsevier.com/retrieve/pii/S2405896320304031. [Amabile et al., 2020]
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Introduction

1 Context

The climate crisis is threatening the living conditions on Earth: expected increases of heat
waves, heavy rain, drought and associated wildfires, and coastal flooding will further put
ecological and human systems at risk. The climate crisis is caused by human activities
responsible with the unprecedented increase of greenhouse gases (GHG) emissions since
the begining of the industrial era [IPCC, 2014b]. The estimated share of the “electricity
and heat production” sector in the total GHG world emissions ranges from 17% to 30%
(2010 data) [IPCC, 2014a]. The estimated share of the “residential building” end-use in
the total GHG world emissions ranges from 10.9% (2016 data, [Ritchie and Roser, 2020])
to 12% (2010 data, [IPCC, 2014a]).

Reducing GHG emissions while supporting human development requires to adopt sus-
tainable behaviors in developed countries and to replace fossil fuel power generation and
other fossil-fuel consumptions by “low-carbon” alternatives worldwide. Nuclear and re-
newable power plants are considered to be low-carbon as their operation GHG emissions
as well as life-cycle estimated GHG emissions are far lower than those of fossil fuel power
plants.

This is one of the reasons why incentives for renewable energy have grown worldwide
under various forms of government supports in the past decades. Other reasons are the
need for alternatives to oil (whose conventional sources of declining productivity let an-
ticipate a rising price of the resource), the concerns regarding the safety of nuclear power
plants after the Fukushima accident, and the air pollution sanitary issues due to fossil fuel
power plants.

These supporting policies, coupled with sustained research and development break-
throughs, have led to unprecedented production cost reductions in the past decade, en-
abling a rapid growth of worldwide installed capacities and installation projects of renew-
able energy [SolarPower Europe, 2018].

Moreover, if the capacity of the renewable energy generation unit is sufficiently small, it
can be connected to the distribution system, contrary to the conventional centralized power
stations connected to the high-voltage electricity grid. In many places, such distributed
energy resources (DERs) are expected to contain the costs and faults associated with
increasing power consumption and extending electrical grids.

Both these trends explain the rapid growth of worldwide installed capacities of solar
power in particular, which is the cheapest and easiest-to-install distributed renewable
energy source. Another advantage of solar power is the variety of installations sizes, from
huge power plants in desertic regions down to individual installations composed of a single
photovoltaic (PV) panel fitting on the roof of a small building.

In the low and middle-income countries [World Bank Data Help Desk, 2021] where the
transmission and distribution networks have not reached the size and robustness required
to cover the vast majority of the occupied land, DERs offer the opportunity to supply
electricity in remote locations by the installation of a few of these decentralized production
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units, instead of waiting on an extension of the network and get connected to a central
and distant power plant.

All in all, the growing share of DERs in the installed capacity worldwide lets us en-
vision a shift of paradigm, switching from a centralized organization of the power grid
where production is adapted to consumption, towards a hybrid vision, where the demand
side is managed as well in order to adapt to the intermittent production of DERs that
induces higher variability in supply. Hence, production and consumption flexibilities be-
come increasingly valuable for the transmission and distribution system operators (DSOs)
as substitutes for substantial grid investments [IEA, 2018].

Consumption flexibility is the ability to temporally shift or to modify the power con-
sumption of electrical appliances. Self-consumption is one regulatory framework intended
to bolster these consumption flexibilities at the building scale, by promoting local con-
sumption over export to the main grid. Power can be locally produced by any kind of
DERs, but PV is the main technology used due to its modular size and advantageous cost.
PV self-consumption contributes to the distribution grid stability by avoiding voltage rise
during peak PV generation periods and helps to reach higher shares of PV generation in
the electricity mix [Nousdilis et al., 2018]. As simplified administrative procedures [EU Di-
rective, 2018] and new tariffs have made self-consumption of generated power a profitable
option, these installations are increasingly encouraged and have become popular.

PV self-consumption installations foster local smart management of electrical appli-
ances because fully benefiting from the self-consumption financial regulatory incentives
requires optimal management of household consumptions. Moreover, the value of these
Energy Management Systems (EMSs) used to monitor, control, and optimize the house-
hold consumptions is enhanced by the increasing electricity bills of retail consumers. This
trend can be expected to continue due to the electrification of energy consumptions tra-
ditionally supplied by fossil fuels.

2 Objectives of the thesis

The aim of this work is to shape the way towards an energy management system (EMS)
benefiting both stakeholders, the consumer and the DSO. The first is concerned with the
final energy bill, while the second desires the highest self-consumption rates possible.

This work focuses on optimizing the PV self-consumption of residential buildings, as
commercial buildings have specific load curves and constraints and are subdivided in a
number of categories. In the residential sector, households can have various compositions
and inhabit apartments or individual houses. The self-consumption installations consid-
ered in this work are only of the latter category. In the first part of this work, the scale
of an individual house is considered, whereas the scope is enlarged up to a neighborhood
composed of several individual houses in the second part.

With 12% of all European domestic electric consumption dedicated to water heating
in 2018 [Eurostat, 2018], electric water heating appliances (with and without storage)
represent a major share of residential electricity bills. A type of appliance of particular
interest is Electric Water Heaters (EWHs), which provide storage capability in thermal
form. With their low investment costs, EWHs have the benefit of being already widespread
in various countries: the 57 million units installed in 2014 in Europe represent 23% of the
total European primary water heater stock [VHK, 2019], and this market share goes up
to 45% in France with 11 million units installed [MSI, 2019]. Moreover, considering their
high energy consumption and power rating, they represent a highly suitable appliance to
control in the context of PV self-consumption optimization [Cao et al., 2013, Lefort et al.,
2013, Sossan et al., 2013, Heleno et al., 2015, Beeker et al., 2016, Pacaud, 2018]. The
first part of this thesis focuses exclusively on the control of EWHs, whereas the scope of
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controlled appliances is enlarged to white goods2 and electric vehicles (EVs) in the second
part.

PV production depends on the intensity of solar irradiance, which can be affected by
several phenomena: seasonal variations, intra-day variability, cloud coverage, fast pass-
ing clouds. These phenomena are not perfectly predictable. Thus weather variability
impacts the reliability of weather and production forecasts [Inman et al., 2013]. In the
first part of this thesis, a deterministic framework is developed for the optimization of
PV self-consumption (Chapter 1), and its robustness is tested in face of the PV produc-
tion uncertainties (Chapter 2). In the last part of the thesis, the receding horizon MPC
approach can be applied, allowing to adapt the control strategy to updated information
(Chapter 3).

2.1 Objectives concerning self-consumption installations

Several metrics can be of interest for the evaluation of PV self-consumption installations.
First, the self-consumed energy, simply called self-consumption and noted SC in the

remainder of this thesis, is defined as the part of local PV production that is locally
consumed to meet electric consumption. Mathematically, it is defined as the integral over
the period [0, τ ] of the minimum between the local PV production and the total electric
consumption:

SC =
∫ τ

0
min(C(t), PPV(t))dt (8)

where C(t) is the total power consumption of the household at time t, and PPV(t) is the
total power produced by the PV arrays at time t.

Second, the self-consumption rate is the ratio of the self-consumed energy SC to the
total local energy production EPV, over the period.

SC% = SC

EPV
(9)

where
EPV =

∫ τ

0
PPV(t)dt (10)

A 100 % self-consumption rate indicates that the local PV production is totally consumed
locally. EPV being independent of the control strategies, an optimization performed over
SC also maximizes SC%.

Similarly, the self-production rate is the ratio of the self-consumed energy SC to the
total local energy consumption EC, over the period.

SP% = SC

EC
(11)

where
EC =

∫ τ

0
C(t)dt (12)

A 100 % self-production rate indicates that the local energy consumption is totally covered
by the local production, which can be in surplus. EC depends on the control strategies,
hence maximizing SC does not necessarily maximize SP%.

Then, an important criterion for the inhabitants owning a self-consumption installation
is the overall energy bill. It is impacted by the consumption and production patterns and
volumes, their co-occurrence, the selling price or subsidies accorded for the injection of

2Large electrical appliances used for routine housekeeping tasks (such as cooking, cleaning, washing
laundry, or food preservation) which were traditionally available only in white.
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power on the electricity grid, and the electricity hourly tariffs. Due to all these features,
the optimization of the self-consumed energy might not coincide with the optimization of
the overall energy bill.

A DSO point-of-view could lead to try and minimize the volume of injected power,
defined by ∫ τ

0
max(PPV(t) − C(t), 0)dt (13)

A self-consumption installation connected to the grid but wishing to reach an energetic
autonomy could be interested in minimizing the volume of imported power, defined by∫ τ

0
max(C(t) − PPV(t), 0)dt (14)

Finally, composite metrics could be formulated in order to take one of the previous
criteria into account as well as other aspects such as a measure of comfort.

Three different configurations can be described as self-consumption installations. The
goals regarding the self-consumption and self-production metrics will be different:

1. An isolated microgrid: in this case, operations must guarantee the continuity of
power supply from a mix of renewable and non-renewable production units, or from
a mix of renewable production units backed with a consequent volume of storage.
The self-production rate is necessarily of 100%.

2. The local network experiences a high level of constraints. Given that distribution
networks were historically sized according to the expected consumption, pressure
can come from a high number of renewable generation units generating power at the
same time. If production is not consumed locally, a large volume of power can be
injected, voltage rises can then appear and damage the grid. Deterrent penalties can
be applied in case of upstream power injections above a threshold. In this case, the
self-consumption rate has to be as high as possible.

3. The individual or collective self-consumption installation is connected to an external
grid without voltage surges constraints: no objective nor constraint are linked to the
self-consumption or self-production rates. The objective is usually to minimize the
energy bill.

In this work, no constraints on autonomy nor power injection are considered, thus
the third configuration is the only one retained. In the first chapter, the aim is to as-
sess the maximal self-consumption rate attainable by a standard individual installation.
It can serve as a benchmark for other self-consumption EMSs. Thus the criterion re-
tained is the self-consumed energy volume SC. Maximizing it also maximizes SC%, the
self-consumption rate. In the second chapter, the method developed allows to assess the
statistical expectancy of this same metric, for a realistic presentation of a priori perfor-
mances. Once these investigations are terminated, the focus can be shifted to a more
realistic use-case, hence the last two chapters focus on minimizing the energy bill of the
households equipped with PV self-consumption installations.

2.2 Objectives concerning robustness to uncertainties

As PV production depends on meteorological conditions, the production prediction is
uncertain. The further in time the prediction, the larger the uncertainty.

It is not uncommon to present the performance of an self-consumption EMS tested
in a setting disregarding the uncertainty of PV production. This is acceptable when
assessing the a posteriori performances of an EMS, when measuring the past and real
performance, different from the one predicted by the EMS at the time of decision-making,
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in anticipation. However a valid a priori performance assessment should always take this
uncertainty into account. Doing so requires to consider that the PV production prediction
used to choose a control schedule might not materialize exactly. A rigorous performance
assessment of the chosen control schedule can be done by testing the schedule in face of
a large number of simulated production scenarios, and retaining the mean performance.
Each scenario of this set has to be realistic, and the set as a whose has to be representative
of the degree of uncertainty associated with the initial prevision. Chapter 2 proposes a
method to build such a coherent set of scenarios, and uses it to assess the correct a priori
performance of the control algorithms.

2.3 Objectives for deployment on microgrids with energy sharing

A microgrid is a small-sized electric network composed of several buildings and DERs
producing locally a part of the needed energy. The buildings can be tertiary or residential;
the DERs can be PV panels, small wind turbines, combined heat and power plants, electric
batteries; the DERs can be owned individually or collectively by the agents, or owned by
a third-party (e.g. the DSO or a utility); the microgrid can be completely or optionally
isolated, or fully connected to the main grid; the geographical area covered by the microgrid
can vary from the scale of a building to the scale of a tiny island.

As the microgrid is composed of several buildings, of some controllable appliances
and of DERs, the setup can conveniently be described as a collective self-consumption
community if power exchanges between the participants are allowed. In this case, the
initial definition of self-consumption is then extended to the community, including all the
locally consumed and produced power within the microgrid. The local power exchanges
are mainly an accounting principle allowing local power production to be shared between
participants of the energy community, in order to increase the share of power locally
produced and consumed by each entity3. The only physical constraint is to ensure that
the voltage increases due to the local power input at the distribution level of the grid will
not surpass the grid flexibility.

2.4 Objectives concerning privacy-preserving cooperation

In Chapters 3 and 4, energy exchanges are allowed among the members of a microgrid,
i.e. a groupment of individual households agreeing to exchange energy with each other,
to share the use of a DER (e.g. a battery), and to pursue the objective of lowering
the energy procurement cost for the whole community and for each participant. In this
framework, increasing the volume of self-consumed energy at the scale of the microgrid
can help achieve this goal. In this energy community, the individual households EMSs
have to communicate with each other and with the microgrid EMS, thus raising concerns
of disclosure of private information to other participants.

[Huberman et al., 2005] conducted experiments leading individuals to state the value
(in US dollars) of private information. Among other results, it highlighted that the per-
centage of individuals demanding an “infinite” (more than US$100 in the experiment)
amount of money to reveal information such as salary and spousal salary was way higher
than the percentage of individuals demanding such amount of money for other kind of
private information such as weight and age. This result demonstrates the wish of a certain
level of protection of some private data.

However, it happens that some elements of private data can be inferred from power
consumption data. Indeed [Molina-Markham et al., 2010] showed that simple statisti-

3Physically, the electrons always travel through the shortest path (or path of least resistance), hence it
is impossible to guarantee the physical origin of the consumed power in one location of a connected and
meshed grid.
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cal treatment allowed to identify appliances in the household monitored at a one-second
timestep during two months, and possibly the daily routine in case of availability of large
amounts of data. Among a dataset of 180 households monitored for 14 days at a one-hour
timestep, [Buchmann et al., 2013] succeeded in finding a unique combination of features
(such as the first peak of demand in the morning, or the aggregated consumption per day)
identifying 68 % of the households.

The consumption patterns hence allow one to infer personal information like wealth,
employment status, vacation timing or the number of people that live in a household. This
is why the right to the protection of personal data is protected by the European privacy
regulation [EU Regulation, 2016], well known as the General Data Protection Regulation
(GDPR). This regulation states that “the protection of natural persons in relation to the
processing of personal data is a fundamental right”. In practical terms it is stated that
“personal data shall be collected for specified, explicit and legitimate purposes and not
further processed in a manner that is incompatible with those purposes”.

Hence preservation of privacy is a key concern for the design of future energy commu-
nities that are deemed beneficial for both the consumers and the DSO, as

• the DSO and concerned third parties must abide to the constraining GDPR;
• a guaranteed level of privacy of personal data is assumed to be a reassuring feature

to enroll new potential participants.

Note that despite these protections and desires for privacy, the authors of [Huberman
et al., 2005] recall that individuals are ready to make privacy trade-offs to gain access to
specific services. This balance is also recalled in the EU regulation [EU Regulation, 2016],
stating that “the processing of personal data should be designed to serve mankind. The
right to the protection of personal data is not an absolute right; it must be considered
in relation to its function in society and be balanced against other fundamental rights, in
accordance with the principle of proportionality.”

3 Manuscript organization

Problem statement

The problem at hand can be described as scheduling controllable appliances of a given en-
tity (be it household or microgrid) in order to consume the maximum PV power produced
locally and respecting comfort or functioning constraints.

Content

In Chapter 1 of this thesis, the aim is to build the optimization algorithm at the core
of a residential EMS, showcasing the potential optimal performance attainable by a PV
self-consumption installation. Doing so will provide a standard for the evaluation of other
self-consumption optimization algorithms. The first accomplishment is to lay the mathe-
matical formulation of the problem of optimizing the PV self-consumption of a residential
building. The optimization problem is formulated in an unconstrained form involving a
PV production prediction. The mathematical properties of the problem are studied (non-
concavity, differentiability). Modeling the EWH a an homogeneous-temperature tank
equipped with a thermostat, the dynamics at stake can be explicitly resolved, leading to
a simple and efficient optimal EWH control algorithm. This strategy is less general than
Model Predictive Control (MPC) approaches, for example, which could have been used in
this context, but reveals less computationally intensive and requires no parameter tuning.
Hence, because the computing time of the proposed algorithm is extremely low, various
instances of the same problem can be solved in a short time.
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In Chapter 2, the developed EMS performances are studied considering the uncertain-
ties of production forecasts. The PV production prediction considered as a most likely
prediction is the one nominally selected, associated with a certain level of confidence.
From these two elements, a novel method is described to generate sets of PV production
scenarios. Each individual scenario can deviate from the most likely prediction. As a
whole, the scenarios set follows the most likely prediction, and its range corresponds to
the given level of uncertainty. The performances of the proposed tailored EMS of Chap-
ter 1 can thus be evaluated in a more realistic setting, where the most likely prediction
used to chose the control strategy does not necessarily materialize exactly, and where this
strategy is evaluated with the ensemble of possible scenarios. This study is possible thanks
to the low computational cost of the proposed algorithm. This chapter will show that the
performance gain attained by the proposed algorithm compared to a commercially avail-
able heuristic dwarfs the gain that would supposedly procure a 30-minute timestep PV
production prediction with increased accuracy over the nominal current prevision.

Chapter 3 extends the scope to the control of several other appliances chosen to be
modeled using binary variables (e.g. white goods, EVs, batteries) and to the cooperative
optimization of a group of households. These elements leads to formulating a mixed-
integer linear problem (MILP). The dimension of the MILP problem is detailed, and this
benefit of cooperation is established with a simple example.

Chapter 4 is the opportunity to address the challenge of individual data privacy preser-
vation, rarely considered in studies on collective optimization of energy resources. Classical
methods of telecommunication and cryptography are adapted and applied to the case study
at hand, showing the feasibility of efficient cooperation under an anonymity requirement.
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Chapter 1

A self-consumption optimization
algorithm

Un algorithme d’optimisation de l’autoconsommation. Dans ce chapitre, on con-
sidère une maison équipée de panneaux solaires dont l’unique consommation électrique
contrôlable est celle du chauffe-eau Joule (CEJ). Le chapitre présente le modèle physique
du CEJ considéré comme un volume d’eau chaude à température homogène, la définition
du volume d’énergie autoconsommée retenu comme critère d’optimisation, la formalisation
du pilotage optimal de ce CEJ sous la forme d’un problème sans contraintes, ainsi qu’un
algorithme original de résolution. La performance de l’algorithme sur une année complète
est évaluée par simulations numériques et comparée à celle de deux autres méthodes de
pilotage. Dans l’exemple considéré, la méthode présentée permet d’augmenter le volume
d’énergie auto-consommée de 28 % par rapport à une méthode de référence disponible
commercialement. Un avantage manifeste de l’algorithme proposé est sa rapidité d’exécu-
tion.

Remark The content of this chapter corresponds to an in-depth description of the method
presented in the first half of [Amabile et al., 2021]. The use-case considered here resembles
the one presented in [Amabile et al., 2020], but the algorithm presented in this thesis is a
improved version of the one presented in the article, thus resulting in better performances.
To this extent, the numerical results presented in Section 1.3 are different from those
described in the article.

1.1 Introduction

The first part of this thesis (Chapters 1 and 2) focuses on a simplified set-up where the only
regulated appliance is the electric water heater (EWH), while the rest of the appliances
represents an uncontrollable load. The objective is to design an optimization algorithm
at the core of a residential EMS, aiming to maximize the self-consumption of the photo-
voltaic (PV) arrays (a key evaluation criterion for such installations), and able to update
frequently the optimization strategy. Reformulating the EWH dynamics and constraints,
the problem under consideration is transformed into an unconstrained optimization prob-
lem. The corresponding objective function is proven to be continuously differentiable
almost everywhere and an explicit expression of its critical points and derivative discon-
tinuity points is provided. From it, an optimization algorithm is deduced (using a much
more computationally efficient numerical routine than other classical techniques (such as
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scheduling algorithms, MPC, (stochastic) optimal control)). The performance of this op-
timization methodology is then compared to an industrial heuristic using a high-fidelity
simulation platform.

1.2 Problem statement

1.2.1 Setup

The general setup under consideration is pictured in Figure 1.1 and consists of an indi-
vidual house connected to the electrical grid. It is equipped with PV arrays, heating and
cooling equipment, an EWH, and other electrical appliances such as lights, a refrigerator,
and a dishwasher.

Network

PV arrays

Energy 
management 

system

Hot water
drains

Uncontrolled demand
ThermalElectrical

Q

PPV Pewh

Electric water
heater (EWH)

Controlled demand

Figure 1.1: Setup under consideration: the Energy Management System regulates the
EWH.

The heating and cooling systems are assumed to be entirely dedicated to maintaining
house thermal equilibrium. Therefore, these appliances are considered as uncontrolled and
are not associated to any decision variables in the remainder of this study. In this chapter
and the following, the only controllable appliance to be considered is the EWH. To solve
the optimization problem, the proposed algorithm assumes to have an exact prediction of
the following elements:

• PV production curve;
• Electrical consumption profile of uncontrollable loads;
• Hot-water drains from the EWH.

Note that in Chapter 2, the impact of the imperfect nature of PV production forecasts
on the proposed EMS performance will be studied.
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1.2.2 Electric water heater modeling and control

The EWH is modeled as a homogeneous temperature volume. Leaving aside the modeling
of the temperature stratification inside the tank implies a loss of precision, but simplifies
the control design [Beeker-Adda, 2016]. Considering an initial energy state at time t0,
thermal losses, the power input from resistive heating, and the hot-water consumption
during the given period, the energy stored at a time t2 in the EWH, knowing the energy
E1 = E(t1), is given by

E(t2) = E1 e− k(t2−t1) +
∫ t2

t1
e− k(t2−t) [Pewh(s, t) −Q(t)] dt (1.1)

where

• E(t) is the energy stored in the EWH at time t;
• k is the thermal loss coefficient [Beeker-Adda, 2016];
• Pewh(s, t) is the electric power input of the EWH at time t, following the decision

variable s relative to the heating strategy (detailed in the sequel);
• Q(t) is the energy used at time t by a hot-water drain.

Here, the EWH is assumed to be equipped with an internal thermostat that is ad-
justed on a setpoint temperature Tset and a deadband of width 2M . Hence, the internal
thermostat stops any heating command when the measured temperature reaches the satu-
ration temperature Tset +M , and enables heating to resume when the temperature drops
below the clearance temperature Tset − M . Because the temperature inside the EWH is
considered homogeneous, these specific temperatures Tset + M and Tset − M correspond
to energy levels, denoted as Esat and Eclear.

Correspondingly, the power input of the EWH can be written as

Pewh(s, t) = (1 − δsat(t))P ◦
ewh(s, t) (1.2)

where s is the decision variable relative to the control strategy, t is the time, P ◦
ewh is the

chosen authorized heating power, and δsat is a hysteresis function describing the saturation
state of the tank, equal to 1 if saturation is occurring and 0 otherwise. It is

δsat(t) =


0 if E(t) < Eclear
1 if E(t) ≥ Esat
δsat(t−) if E(t) ∈ [Eclear, Esat[

(1.3)

where t− is the left one-sided limit of time t.
The variable δsat in Eqs. (1.2)-(1.3) describes the behavior of the EWH internal ther-

mostat, allowing heating to remain activated if the water temperature has not yet reached
the saturation threshold or to resume if it has dropped below the clearance temperature.

The function P ◦
ewh is defined as follows. The EWH under consideration has a power

consumption of either 0 or P ewh, its constant power rating, triggered by an On/Off autho-
rization mechanism. In this work, to simplify the heating control strategy, this authoriza-
tion is chosen to be On only during a unique and continuous period [tewh, τewh] determined
by the EMS, which corresponds to the decision variable s = (tewh, τewh) ∈ R2. In detail,

P ◦
ewh(s, t) = P ewh1[tewh,τewh](t) (1.4)

in which 1I is the indicator function of the time interval I. Within this authorized period,
the EWH internal thermostat might start and stop power activation according to Eq. (1.3).

The full description of the EWH behavior requires the following key assumption:
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Assumption 1. The saturation energy level and the hot water drains are such that
− kEsat + P ewh −Q(t) ≥ η > 0 and Q(t) ≤ Q for certain constants η > 0 and Q > 0 and
for all time t.

Additionally, note that obviously 0 < Eclear < Esat and that E0 < Esat. For a typical
setting (such as the scenario considered in Section 1.3), Assumption 1 is not restrictive
as the energy input from the resistive element of the EWH, with its high nominal power
(P ewh), largely surpasses the energy decrease due to standard hot-water consumptions
(Q(t)) and energy losses (kEsat).

Assumption 1 together with Eq.(1.1) ensure that, for t ∈ [tewh, τewh], the EWH energy
remains in [Eclear, Esat] once it is reached.

1.2.3 Optimization problem formulation

Objective function and decision variables

Self-consumption (SC) is usually considered as a proxy for reducing electricity bills, and
high SC levels can be critical in locations where the state of the distribution grid cannot
allow large volumes of PV surplus to be injected. Mathematically, it is defined as the
integral over the period [0, τ ] of the minimum between the local PV production and the
total electric consumption:

SC(s, PPV) =
∫ τ

0
min(C(s, t), PPV(t))dt (1.5)

where C is the total power consumption of the household depending on s and t, and PPV
is the total power produced by the PV arrays. Figure 1.2 gives a visual representation of
it.
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Figure 1.2: The self-consumption SC corresponds to the power that is simultaneously
produced and consumed locally.

This definition is rewritten by substracting the uncontrollable electric consumption
(heating and cooling, lights, white goods) from the PV production, and considering only
the positive part of the remaining PV production. This remaining PV production available
for consumption is called the PV surplus, and noted P̂PV. Observing from Eqs. (1.2)-(1.4)
that Pewh(s, t) is null when t /∈ [tewh, τewh], the mathematical definition of the SC becomes
the integral over a period [tewh, τewh] of the minimum between the PV surplus and the
controllable load:

SC(s, PPV) =
∫ τewh

tewh

min(Pewh(s, t), P̂PV(t))dt+Constant , SC(s, P̂PV)+Constant (1.6)
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where s = (tewh, τewh) ∈ R2 is the decision variable and P̂PV(t) ≥ 0,∀t, is the positive part
of the surplus of local production, over which the controllable load can be optimally placed.

For the sake of simplicity, the notation SC will be used in the remainder of the
manuscript to refer to the controllable part of Eq. (1.6) (illustrated in Figure 1.3).
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Figure 1.3: Optimizing SC, which is the controllable part of the self-consumption, corre-
sponds to maximizing the size of the gray area.

Constraints

The optimal control problem considers the following boundary and control constraints:

E(t0) = E0 (1.7)
E(tf) ∈ [Eclear, Esat] (1.8)

where t0 is a generic starting time at which the energy level is known.
Eq. (1.8) is a comfort constraint: the control shall guarantee that the EWH reaches an

energy interval at a final time tf. Here, this energy interval is chosen to be centered around
the energy level corresponding to a hot-water tank and the final time is the beginning of
the evening. Enforcing this constraint ensures that the tank has stored enough energy to
cover the hot-water consumption likely to happen at the end of the day.

Reducing the number of variables

Due to the hysteresis function described in Eq. (1.3) and Assumption 1, once the energy
reaches the interval [Eclear, Esat], it remains in it as long as heating is allowed by Eq. (1.4).
Hence, a simplifying choice to ensure that constraint (1.8) is met is

τewh = +∞ (1.9)

even though the control strategies developed will only be observed on the interval [tewh, tf].
Hence, τewh is no longer a decision variable, and this makes it possible to redefine s as the
starting time alone:

s = tewh (1.10)
Furthermore, taking Eq. (1.7) into account, one obtains the existence of an upper

bound tlim for tewh. According to (1.1)–(1.4), it is defined as the unique solution of the
equation

Eclear = e− k(tf −t0)E0 +
∫ tf

tlim

e− k(tf −t) P ewhdt−
∫ tf

t0
e− k(tf −t)Q(t)dt (1.11)
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which is

tlim = tf + 1
k log

(
1 + k

P ewh

(
e− k(tf −t0)E0 − Eclear −

∫ tf

t0
e− k(tf −t)Q(t)dt

))
(1.12)

that is, the latest acceptable heating starting time to reach Eclear at tf and thus satisfy
constraint (1.8). Hence constraint (1.8) can be replaced by the two simple equations
τewh = +∞ and tewh ≤ tlim.

Figure 1.4 gives an example of the evolution of the EWH energy and its oscillation
inside the interval [Eclear, Esat] for one day and a specific starting time.
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Figure 1.4: Hot-water drains (lower figure, dashed curve) decrease the EWH energy (top
figure). EWH heating intervals [tclear(n), tsat(n+1)] (lower figure, plain curve), calculated
from a chosen tewh, increase the EWH energy and keep it oscillating between the deadband
[Eclear, Esat].

This behavior defines (i) saturation times, when the EWH internal thermostat detects
a temperature reaching the allowed upper limit (the saturation temperature) and halts
heating, and (ii) clearance times, when thermal losses or hot-water consumption have led
the internal temperature to drop below the lower hysteresis value (the clearance tempera-
ture), thus making heating resume. These times are respectively denoted by tsat(n+1) and
tclear(n), n ∈ N. They are defined mathematically as tclear(0) = tewh and as the unique
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solutions on [t0,+∞) (see Proposition 1 in the sequel) to

Esat = e− k(tsat(1)−t0)E0 +
∫ tsat(1)

t0
e− k(tsat(1)−t)[Pewh(tewh, t) −Q(t)]dt

= e− k(tsat(1)−t0)E0 −
∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt+

∫ tsat(1)

tewh

e− k(tsat(1)−t) P ewhdt

= e− k(tsat(1)−t0)E0 −
∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt+ P ewh

k
(
1 − e− k(tsat(1)−tewh)

)
(1.13)

for n = 0, and for n ≥ 1,

Esat = e− k(tsat(n+1)−tclear(n))Eclear +
∫ tsat(n+1)

tclear(n)

e− k(tsat(n+1)−t)[P ewh −Q(t)]dt

= e− k(tsat(n+1)−tclear(n))
[
Eclear − P ewh

k

]
−
∫ tsat(n+1)

tclear(n)

e− k(tsat(n+1)−t)Q(t)dt+ P ewh
k
(1.14)

and

Eclear = e− k(tclear(n)−tsat(n))Esat −
∫ tclear(n)

tsat(n)

e− k(tclear(n)−t)Q(t)dt (1.15)

In the following, N denotes the index of the last clearance time tclear(n) before tf, that is,
such that tclear(N) ≤ tf < tclear(N+1).

Therefore, the EWH consumption curve can be represented by a sum of non-overlapping
boxcar functions corresponding to the intervals where δsat(t) = 0: the EWH is On between
[tewh, tsat(1)] and between each [tclear(n), tsat(n+1)] pair, with the last interval potentially
shortened to [tclear(N), tf] if tf < tsat(N+1).

Note that the hot-water drains depicted by orange dashed lines in the lower part of
Figure 1.4 have a visible impact on the internal EWH energy (upper part).

Problem statement

From the previous considerations, the problem of optimizing self-consumption can be
summarized as:

Problem 1.1. Given a PV production surplus curve P̂PV, a power rating P ewh, an ini-
tial energy level E0, saturation and clearance energy levels Esat and Eclear, a hot-water
consumption curve Q, an initial time t0 and a final time tf, solve for each day

max
tewh

∫ tf

tewh

min(Pewh(tewh, t), P̂PV(t))dt

s.t. tewh ≤ tlim

(1.16)

where tlim is defined in (1.12) and Pewh is defined as the sum of boxcar functions

Pewh(tewh, t) = P ewh

N∑
n=0

1[tclear(n),min(tsat(n+1),tf)](t) (1.17)

where tclear(0) = tewh, tclear(n) and tsat(n+1) depend on tewh and are defined in (1.14)–(1.15)
along with N .
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Figure 1.5: The objective function is not concave.

1.2.4 Optimization algorithm

In all generality, Problem 1.1 is non-concave, as multiple local maxima can be observed in
the example shown in Figure 1.5. To solve it, this study proposes to identify the critical
and derivative discontinuity points of its objective function.

Smoothness analysis of the objective function

To provide a suitable optimization solution, the nature of the objective function is ana-
lyzed.

Proposition 1. Assume that P̂PV and Q are continuous positive-valued functions such
that Assumption 1 holds. Then, the solutions tsat(n) and tclear(n) to (1.13)–(1.15) are unique
and the corresponding functions

ϕn : tewh ∈ [t0,+∞) 7→ tsat(n) (n ≥ 1) and ψn : tewh ∈ [t0,+∞) 7→ tclear(n) (n ∈ N)
(1.18)

are differentiable, increasing and bijective between R and R.
Besides, SC defined in (1.6) is almost everywhere continuously differentiable with

respect to tewh, and its derivative is given, for N ∈ N∗, by

dSC(tewh, P̂PV)
dtewh

= (1.19)

N−1∑
n=0

[
dtsat(n+1)
dtewh

min(P ewh, P̂PV(tsat(n+1))) −
dtclear(n)
dtewh

min(P ewh, P̂PV(tclear(n)))
]

−
dtclear(N)
dtewh

min(P ewh, P̂PV(tclear(N))), if tewh ∈ (ψ−1
N (tf), ϕ−1

N+1(tf))

N∑
n=0

[
dtsat(n+1)
dtewh

min(P ewh, P̂PV(tsat(n+1))) −
dtclear(n)
dtewh

min(P ewh, P̂PV(tclear(n)))
]
,

if tewh ∈ (ϕ−1
N+1(tf), ψ−1

N+1(tf))
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in which

dtsat(n)
dtewh

=



P ewh e− k(tsat(n)−tewh)

P ewh − kEsat −Q(tsat(n))
, n = 1[

kEclear − P ewh +Q(tclear(n−1))
]

e− k(tsat(n)−tclear(n−1))

kEsat − P ewh +Q(tsat(n))
·
dtclear(n−1)
dtewh

, n ≥ 2

(1.20)

dtclear(n)
dtewh

=


1 , n = 0[
kEsat +Q(tsat(n))

]
e− k(tclear(n)−tsat(n))

kEclear +Q(tclear(n))
·
dtsat(n)
dtewh

, n ≥ 1
(1.21)

Furthermore, the number of discontinuity points of the derivative of SC on [t0, tf ] is
finite.

Notice that ϕ−1
N+1(tf) is the value of tewh such that tsat(N+1) = tf and that ψ−1

N+1(tf))
is the value of tewh such that tclear(N+1) = tf .

Hence, Proposition 1 identifies two sources of discontinuities:

1. when tclear(N) becomes equal to tf, prompting a switch from final index N to N + 1;
2. when tsat(N) becomes equal to tf, prompting a switch in the result of min(tf, tsat(N)).

Appendix A explores another source of discontinuity, in the case of two controllable
appliances. The number of additional discontinuities in that case will depend on the shape
of the appliances load curves, and impacts the scalability of the optimal control research
method followed in the present chapter.

Proof. The differential form of (1.1) is

dE

dt
= −kE + Pewh(tewh, t) −Q(t) (1.22)

Due to the EWH power actuation law (1.2)–(1.4) and (1.9), Pewh(tewh, t) = 0 if
t ∈ [t0, tewh) and therefore, from (1.22), E(tewh) ≤ E0 < Esat. The first saturation
time is defined as tsat(1) = min {t | t ≥ tewh and E(t) = Esat} if this set is non-empty and
tsat(1) = +∞ otherwise. By definition of tsat(1), E(t) < Esat for t ∈ [tewh, tsat(1)) and
thus, from the EWH power actuation law (1.2)–(1.4) and (1.9), Pewh(tewh, t) = P ewh for
t ∈ [tewh, tsat(1)). Consequently, from Assumption 1 and using Gronwall’s lemma on the
differential inequalities resulting from Eq. (1.22),

E(tewh) + η(t− tewh) ≤ E(t) ≤ E(tewh) + P ewh(t− tewh) for t ∈ [tewh, tsat(1)) (1.23)

This implies that tsat(1) < +∞ as η > 0 and that

tsat(1) − tewh ∈
[
Esat − E(tewh)

P ewh
,
Esat − E(tewh)

η

]
(1.24)

Hence the duration between tewh and tsat(1) is strictly upper- and lower-bounded. Further-
more, this also implies that tsat(1) is equivalently defined as the solution to (1.13), which
is thus unique.

The first clearance time after tewh is defined as

tclear(1) = min
{
t | t ≥ tsat(1) and E(t) = Eclear

}
(1.25)
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if this set is non-empty and tclear(1) = +∞ otherwise. From the EWH power actuation
law (1.2)–(1.4) and (1.9), Pewh(tewh, t) = 0 for t ∈ [tsat(1), tclear(1)), and from (1.22) and
using Gronwall’s Lemma,

Esat +
(
kEsat +Q

)
(tsat(1) − t) ≤ E(t) ≤ Esat + kEclear(tsat(1) − t) for t ∈ [tsat(1), tclear(1))

(1.26)

This implies that tclear(1) < +∞, and that

tclear(1) − tsat(1) ∈
[
Esat − Eclear

kEsat +Q
,
Esat − Eclear

kEclear

]
(1.27)

Hence the duration between tsat(1) and tclear(1) is non-null.
Similarly, one can define by induction tsat(n) and tclear(n) for n ≥ 2 and conclude

that these instants are finite and uniquely defined as the solutions to (1.14) and (1.15)
respectively. In addition, one also gets by induction

tsat(n+1) − tclear(n) ∈
[
Esat − Eclear

P ewh
,
Esat − Eclear

η

]
, n ∈ N (1.28)

tclear(n) − tsat(n) ∈
[
Esat − Eclear

kEsat +Q
,
Esat − Eclear

kEclear

]
, n ∈ N (1.29)

.
Now, one can define

f1
(
tewh, tsat(1)

)
, e− k(tsat(1)−t0)E0 −

∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt

+ P ewh
k

(
1 − e− k(tsat(1)−tewh)

)
− Esat (1.30)

f2
(
tclear(n), tsat(n+1)

)
, e− k(tsat(n+1)−tclear(n))Eclear −

∫ tsat(n+1)

tclear(n)

e− k(tsat(n+1)−t)Q(t)dt

+ P ewh
k

(
1 − e− k(tsat(n+1)−tclear(n))

)
− Esat (1.31)

h
(
tsat(n), tclear(n)

)
, e− k(tclear(n)−tsat(n))Esat −

∫ tclear(n)

tsat(n)

e− k(tclear(n)−t)Q(t)dt− Eclear

(1.32)

to rewrite (1.13)–(1.15) as

f1
(
tewh, tsat(1)

)
= 0 (1.33)

f2
(
tclear(n), tsat(n+1)

)
= 0 (1.34)

h
(
tsat(n), tclear(n)

)
= 0 (1.35)

with f1, f2 and h continuously differentiable functions of their arguments as Q is contin-
uous. These equations imply that an implicit relation exists between the two variables of
each of these three equations, but the explicit expression of one variable as a function of
the other has to be proved. Applying Leibniz integral rules for differentiation under the
integral sign, straightforward computations yield

∂f1
∂tsat(1)

= − kE0 e− k(tsat(1)−t0) −Q(tsat(1)) + k
∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt

+ P ewh e− k(tsat(1)−tewh)

= P ewh − kEsat −Q(tsat(1)) (1.36)
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in which the last equality follows from (1.33). Similarly, one obtains

∂f2
∂tsat(n+1)

= − kEclear e− k(tsat(n+1)−tclear(n)) −
[
Q(tsat(n+1)) − k

∫ tsat(n+1)

tclear(n)

e− k(tsat(n+1)−t)Q(t)
]

+ P ewh e− k(tsat(n+1)−tclear(n))

= − kEsat + P ewh −Q(tsat(n)) (1.37)

and

∂h

∂tclear(n)
= − kEsat e− k(tclear(n)−tsat(n)) −

[
Q(tclear(n)) − k

∫ tclear(n)

tsat(n)

e− k(tclear(n)−t)Q(t)
]

= − kEclear −Q(tclear(n)) (1.38)

From Assumption 1, the right-hand side expressions in (1.36)-(1.38) are positive. Con-
sequently, using the implicit function theorem, there exists a continuously differentiable
function ϕ1 such that tsat(1) = ϕ1(tewh), at least locally. Using again the implicit function
theorem, and a direct induction argument, the existence of ψn (n ≥ 1) and ϕn (n ≥ 2) as
defined in (1.18) follows. The implicit function theorem also implies that

ϕ′
1(tewh) = −

(
∂f1

∂tsat(1)
(tewh, ϕ1(tewh))

)−1
∂f1
∂tewh

(tewh, ϕ1(tewh)) (1.39)

in which, taking a partial derivative of (1.33),

∂f1
∂tewh

(tewh, ϕ1(tewh)) = −P ewh e− k(tsat(1)−tewh) (1.40)

Gathering (1.39)–(1.40) and (1.36) gives the first expression in (1.20). Similarly, the
implicit function theorem implies

ϕ′
n+1(tewh) = −

(
∂f2

∂tsat(n+1)

)−1
∂f2

∂tclear(n)
ψ′

n(tewh) (1.41)

in which, taking a partial derivative of (1.34),

∂f2
∂tclear(n)

= kEclear e− k(tsat(n+1)−tclear(n)) + e− k(tsat(n+1)−tclear(n))Q(tclear(n))

− P ewh e− k(tsat(n+1)−tclear(n))
(1.42)

and

ψ′
n(tewh) = −

(
∂h

∂tclear(n)

)−1
∂h

∂tsat(n)
ϕ′

n(tewh) (1.43)

in which, taking a partial derivative of (1.35),

∂h

∂tsat(n)
= kEsat e− k(tclear(n)−tsat(n)) + e− k(tclear(n)−tsat(n))Q(tsat(n)) (1.44)

The second expression in (1.20) follows from (1.41)–(1.42) and (1.37), while (1.21) follows
from (1.43)–(1.44) and (1.38).

One can observe that the right-hand side of (1.20)–(1.21) is positive, which implies
that tsat(n) and tclear(n) are increasing functions of tewh. As tclear(0) = tewh, one concludes
from the lower bounds in (1.28)–(1.29) that tsat(n) and tclear(n) are bijections.
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Finally, from (1.17), note that the integrand in the objective function SC (1.6) is
non-null only during the intervals [tclear(n), tsat(n+1)]. For tewh ∈

[
ψ−1

N (tf ), ψ−1
N+1(tf )

)
, the

objective function therefore rewrites

SC(tewh, P̂PV) =
∫ tsat(1)

tewh

min(P ewh, P̂PV(t))dt

+
N∑

n=1

( ∫ tclear(n)

tsat(n)

min(0, P̂PV(t))dt︸ ︷︷ ︸
=0

+
∫ min(tsat(n+1),tf)

tclear(n)

min(P ewh, P̂PV(t))dt
)

=
N∑

n=0

∫ min(tsat(n+1),tf)

tclear(n)

min(P ewh, P̂PV(t))dt

=
N−1∑
n=0

∫ tsat(n+1)

tclear(n)

min(P ewh, P̂PV(t))dt (1.45)

+



∫ tf

tclear(N)

min(P ewh, P̂PV(t))dt , if tewh ∈ (ψ−1
N (tf), ϕ−1

N+1(tf))∫ tsat(N+1)

tclear(N)

min(P ewh, P̂PV(t))dt , if tewh ∈ (ϕ−1
N+1(tf), ψ−1

N+1(tf))

Hence, Leibniz integral rules for differentiation under the integral sign give (1.19). Observe
that the discontinuity points are in finite number on [t0, tf ] due to the lower bound for
the steps defined in (1.28)–(1.29). This concludes the proof.

Calculations

The specific times tsat(n+1) and tclear(n), n ∈ N, as well as their derivatives, must be com-
puted because they are involved in the expression of the derivative of the objective function
in Eq. (1.19), but cannot be explicitly determined from their definitions (1.13)–(1.15). Be-
sides, the derivatives of these times, dtsat(n+1)

dtewh
and dtclear(n)

dtewh
, also appear in (1.19) and involve

tsat(n+1) and tclear(n). The following discussion will clarify how these terms are evaluated
numerically.

Description of the calculation of the tsat times For the EWH saturation times tsat(n+1), a
fixed-point algorithm is used. Indeed, one cannot deduce an explicit expression for tsat(1)
from (1.13) due to the presence of the integral term corresponding to the hot-water drains.
However, one can rewrite (1.13) as

Esat = e− k(tsat(1)−t0)E0 −
∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt+ P ewh

k
(
1 − e− k(tsat(1)−tewh)

)
(1.46)

and transform it into

log
(
P ewh − kEsat − k

∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt

)
= log

(
P ewh ektewh − k ekt0 E0

)
+ log

(
e−ktsat(1)

) (1.47)

which leads to
tsat(1) = g1

(
tewh, tsat(1)

)
(1.48)
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with

g1
(
tewh, tsat(1)

)
,

1
k

[
log

(
P ewh ek tewh − kE0 ek t0

)
− log

(
P ewh − kEsat − k

∫ tsat(1)

t0
e− k(tsat(1)−t)Q(t)dt

)] (1.49)

which can be shown to be a contractive mapping with respect to tsat(1) for the parameter
values under consideration in this study (see Appendix B for more details). Hence, fixed-
point iterations were used to estimate tsat(1) numerically, with successive estimates of tsat(1)
computed through g1(tewh, tsat(1)) and progressively reaching this fixed point. Usually,
fewer than one dozen iterations are needed to reach an accurate value.

Similarly, Eq. (1.14) can be rewritten for n ≥ 1 as

Esat = Eclear e− k(tsat(n+1)−tclear(n))

+ P ewh
k

(
1 − e− k(tsat(n+1)−tclear(n))

)
−
∫ tsat(n+1)

tclear(n)
e− k(tsat(n+1)−t)Q(t)dt

(1.50)

which can be reorganized as

tsat(n+1) = tclear(n) + 1
k

[
log(P ewh − kEclear)

− log
(
P ewh − kEsat − k

∫ tsat(n+1)

tclear(n)

e− k(tsat(n+1)−t)Q(t)dt
)]

tsat(n+1) , g2
(
tclear(n), tsat(n+1)

)
(1.51)

in which g2 is a contractive mapping (see Appendix B for more details). tsat(n+1) can thus
be calculated with fixed-point iterations as well. Note that g2 requires a prior calculation
of tclear(n), which will now be described in detail.

Description of the calculation of the tclear times The tclear(n) times satisfy a similar fixed-
point equation; however, the resulting mapping is not contractive. Hence, a dichotomy
procedure was followed instead to evaluate tclear(n). Indeed, it can be proven that the
energy obtained from Eq. (1.15) between a saturation time tsat(n) and a clearance time
tclear(n), n ∈ N∗ is a decreasing function of tclear(n), ensuring the convergence of the method.

Hence, in a nutshell, the proposed procedure computes alternatively tsat(n+1) through
a fixed-point procedure and tclear(n) with a dichotomy algorithm and repeats this process
iteratively until tf is reached.

Algorithm description

Because the problem is non-concave and not everywhere differentiable, it is necessary
to assess the nature of every stationary point and every point of discontinuity of the
derivative. Away from discontinuities, the stationary condition can be written as

dSC(tewh, P̂PV)
dtewh

= 0 (1.52)

and the discontinuity points belong to

S =
({
ψ−1

n (tf ) , n ∈ N
}

∪
{
ϕ−1

n (tf ) , n ≥ 1
})

∩ [t0, tf ] (1.53)
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in which the functions ψn, ϕn are defined in Proposition 1.
Corresponding SC values are then evaluated and compared to solve the optimization

problem. Typically, for the examples treated in this thesis, fewer than ten extrema need
to be considered.

A key advantage of this approach is that evaluating the stationary condition (1.52)
through Eq. (1.19) is much less computationally intensive than exhaustively evaluating
the integral in Eq. (1.16).

Algorithm The solutions to the stationary condition being exhaustively determined, along
with the discontinuity points of the derivatives, the corresponding values of the objective
function are then compared to solve Problem 1.1. This procedure is summarized in Al-
gorithm 1.1. Note that this algorithm is of course intended to be used over a finite time
grid. Specifically the for loop and the final argmax identification consider a finite number
of elements, and a solution of Eq. (1.52) or an element of S is identified in the if condition
when the objective function derivative (1.19) goes from a positive to a non-positive value
between two consecutive timesteps. This algorithm can now be applied in a high-fidelity
environment.

Algorithm 1.1: Calculate t?ewh solution of Problem 1.1
Input: P̂PV, P ewh, t0, E0, tf, Ef, Esat, Eclear, Q, I = [0, tlim]
for each timestep t ∈ I do

Compute times = [every tclear(n) and tsat(n+1) up to tf].
//necessary to compute Eqs. (1.52) and (1.53)

if t is solution of Eq. (1.52) or belongs to S defined in (1.53), then
Compute SC(t, P̂PV)
Update Buffer = [Buffer, SC(t, P̂PV)]

end
end
Identify t?ewh = argmax

t
Buffer

Figure 1.6 displays an example of the result of Algorithm 1.1, with the EWH heating
period chosen so that the SC will be maximized.
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EWH power Pewh

Self-consumption SC

Figure 1.6: The optimized placement of the EWH heating period maximizes the gray area,
i.e. the objective SC.
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1.3 Numerical experiments

1.3.1 Test setting and hardware specifications

Consider two crystalline silicon PV arrays of 1.5 kWp
1 each, both inclined at 15° relative

to the horizontal and of respective azimuth 15° and 105° relative to the South. An EWH of
volume V = 200 L and power rating P ewh = 3 kW is considered, to cover the consumption
of 2 inhabitants. The scenario of outdoor temperature, input cold water, and solar irradi-
ance correspond to a house located in Fontainebleau, in the French region of Ile-de-France.
The total yearly PV production amounts to 2.9 MWh, and the total yearly PV surplus
available for the EWH consumption is 1.8 MWh. As previously mentioned in Section 1.2.1,
a unique deterministic PV production forecast is considered, with perfect prediction: the
same load curve is used both for the prediction used by the control strategies to sched-
ule the EWH, and for the a posteriori performance evaluation of the chosen schedule on
the volume of self-consumed energy. Figure 1.7 displays the total PV production curve
and the corresponding PV surplus curve, after substraction of the uncontrolled electric
consumption, for a few days.
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Figure 1.7: Total PV production (blue) and PV surplus (orange) for 2 winter days and 2
summer days.

The hot-water drains scenario is perfectly known and is repeated each day with the
same pattern reported in Figure 1.8, with drains in the morning (from 7 a.m. to 9 a.m.)
and in the evening (from 6 p.m. to 7 p.m. and from 8 p.m. to 10 p.m), ranging between
26.8 L h−1 and 27.7 L h−1, for a total consumption of 956 L per week at 60 °C. Only slight
quantity variations occur seasonally, with the same pattern tuned down in summer. The
final time tf is set as 6 p.m., in order to satisfy the main hot-water drains occurring at the
end of the day.

Table 1.1: Hardware specifications
PV capacity 3 kWp
EWH Power rating 3 kW
EWH volume 200 L
Weekly hot-water consumption at 60 °C 956 L

The proposed method is validated through comparisons with two other EWH control
strategies:

1kWp stands for kW “peak”: it is the maximum electrical power that can be supplied by a PV system,
under standardized test conditions of irradiance, temperature and solar spectrum.

39



Chapter 1. A self-consumption optimization algorithm

0 5 10 15 20

Time [hour]

0

10

20

H
o
t

w
a
te

r
fl
ow

[L
h
−

1
]

Figure 1.8: Hot-water drains for a winter day.

• a passive heuristic strategy, triggering the heating authorization consistently during
[1 a.m.-7 a.m.] and [12 p.m.-2 p.m.] in order to follow the off-peak hours of electricity
price;

• an industrial reference heuristic control.

Both methods take advantage of the off-peak hours for the electricity price, between [1
a.m.-7 a.m.] and [12 p.m.-2 p.m.], in order to limit the household electricity bill.

This industrial reference control was developed for commercial use in residential hous-
ing equipped with PV arrays with the double aim of maximizing the consumption of local
PV production and ensuring a reduced electricity bill. The off-peak hours of electricity
price can be put to advantage for the latter objective. It follows priority rules to choose
each day whether or not to start the heating authorization, according to the following
principles:

• determine when to start the EWH according to a PV surplus threshold set up in
advance;

• figure out whether heating the tank without PV production is necessary, according
to whether or not the daily heating duration target has been met.

Note that the reference control does not require the hot-water drains sequence to perform
an estimation of the next heating duration target, whereas the method proposed here
requires exact knowledge of it.

The numerical experiments required the controller presented in this chapter to commu-
nicate with a simulation model. It is implemented using Python 3.7.3. The high-fidelity
simulation model is implemented using the Dymola 2018 software (based on the Modelica
3.2.2 object-oriented modeling language, see [Wiström, 2013]). It includes a model for the
EWH, and readings of simulated datasets for the house uncontrolled electric loads and for
the PV power production. The EWH simulation model is more complex and more accu-
rate than the model described in Section 1.2.2. It models the stratification phenomenon,
with three layers of water constituting the whole volume for improved representativeness.
The thermal energy dissipated by the resistive element, as well as the incoming cold water,
are situated in the lower layer of the tank, whereas the hot-water outlet is situated in the
upper layer. As described in [Beeker-Adda, 2016], at rest, the layers are mixed only by
heat diffusion. The effects of this phenomenon are relatively slow compared to the forced
convection and mixing induced by draining. Finally, heat losses at the walls of the tank
are more precisely accounted for in this simulation model than in the control model.
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1.3.2 Numerical results

Simulations consist of a daily optimization over one year representative of the typical
meteorological conditions of the location, starting January 1st. Algorithm 1.1 is used with
I restricted to the interval of start times such that the heating authorization would cover
the valuable times of high PV production: night hours are not considered as potential
start times. The initial and target energy levels E0 and Ef for the proposed method
correspond to the energy levels reached at these times by the EWH under the reference
control. Results are extracted with a 30-minute timestep.

A major advantage of the proposed method is its limited computational load: it
achieves optimally scheduling these 365 load curves in an average of 40 seconds with
Python 3.7.3 and a Core i3 2.4 GHz processor, with 8 Go RAM. The corresponding time
of less than 0.11 seconds per curve is short enough to consider repeating the procedure
several times for various consumption and production scenarios.

For comparison, the Nelder–Mead optimization method, a derivative-free algorithm
based only on objective function evaluations finds the optimal starting time for a single
PV production curve in an average of 0.65 seconds. This relatively high computational
time could in all likelihood be related to the fixed-point iterations described above and
necessary to compute Pewh in Eq. (1.17). Furthermore, this method sometimes converges
to a local maximum instead of the global maximum, with a strong dependency on the
chosen initialization time. For instance, for the example pictured in Figure 1.5, when
initialized at t = 3 h, the Nelder–Mead algorithm converges to the local maximum (2.9 h,
0.6 kWh), and initialized between 12 h and 14 h, it converges to the local maximum (1.2 h,
2.9 kWh), which can be observed in Figure 1.5.

Self-consumed energy volumes

The evolution of the cumulative daily SC (cumulative sum starting from January 1st) is
displayed in Figure 1.9. The cumulated SC values reached at the end of the year are listed
in Table 1.2. These values correspond to the amount of PV surplus energy used for the
controllable EWH consumptions.
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Figure 1.9: The cumulative self-consumed energy varies largely with the chosen strategy.

Table 1.2: Final annual controllable SC volumes for each strategy
Proposed method Reference control Passive heuristic

0.61 MWh 0.48 MWh 0.23 MWh
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The final values show that, overall, the proposed method outperforms significantly the
reference control, and that both are largely more efficient than the passive strategy (see
Table 1.2).

A year-long analysis of the daily SC confirms the interest of the proposed method,
both during winter and summer days. This method outputs a higher SC 311 days of the
year and a lower SC only for 7 days. The 47 other days results in the same SC value.
Over a whole year, the proposed method yields a 28 % increase of the SC compared to
the reference control.

Self-consumption rate

An additional perspective is provided by the self-consumption rate, a measure commonly
referred to for self-consumption installations. The self-consumption rate relative to the
controllable consumptions is the ratio

SC% =
∫ τ

0 min(Pewh, P̂PV)ds∫ τ
0 P̂PV(s)ds

=
∫ τ

0 min(Pewh, P̂PV)ds
ÊPV

(1.54)

l∑
h=1

l∑
g=1

yh,g =
l∑

g=1

l∑
h=1

yh,g

where τ can vary from 0 to the end of the year, the numerator is the self-consumed energy
considering only the controllable consumptions and the PV surplus, and the denominator
is the local PV surplus production over the period.

If time τ is equal to 24 hours, SC% corresponds to the self-consumption rate relative
to the controllable consumptions for the first day, January 1st. If τ is equal to 365 days,
SC% corresponds to this rate calculated for the whole year.

The evolution of the cumulative self-consumption rate relative to the controllable con-
sumptions for each strategy over a one-year simulation is shown in Figure 1.10. The values
reached at the end of the year are listed in Table 1.3.
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Figure 1.10: The final self-consumption rate varies largely with the chosen strategy.

Table 1.3: Final annual controllable SC% values for each strategy
Proposed method Reference control Passive heuristic

33.7 % 26.4 % 12.4 %

This proportional perspective confirms the superiority of the proposed algorithm over
the reference.
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Seasonal analysis

The analysis of Figure 1.9 and 1.10 is now carried on through seasonal observations.
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Figure 1.11: The differences in daily self-consumption for each strategy is exacerbated
during sunny summer days.

Figure 1.11 highlights the ability of the proposed algorithm to take advantage of large
volumes of available PV surpluses. These high stakes days lead to the final difference
between each approach witnessed in Figure 1.9 and Table 1.2.

Figure 1.12 displays an example of the EWH consumption curves resulting from the
three strategies for a summer day PV surplus. For this particular day, SC for the proposed
method is 3.4 kWh, exceeding the 2.3 kWh of the reference control.

Neither the reference control nor the passive heuristic exactly follow their heating
command (dashed lines), because the EWH internal thermostat stops the heating when
the water temperature reaches the higher limit. This higher limit can be reached early in
the day, as displayed in Figure 1.12, because a first heating period usually occurs at night
when electricity prices are low, in addition to reduced hot-water consumptions.

The high PV production level triggers the reference control heating authorization early,
when the PV surplus is not at its maximum. Thus the simple and efficient working
principle of the reference control, based on a PV surplus threshold, prevents it from
harnessing the best part of the renewable resource.

During winter days, PV surplus is way more limited. The small extra amounts of
PV energy consumed by the EWH controlled by the proposed method over the reference
control, visible in Figure 1.11 lead to a massive difference in the daily self-consumption
rate SC%. This is visible in Figure 1.13 showing the cumulated self-consumption rate for
each strategy over the year.

Figure 1.14 displays the EWH consumption curves resulting from the three strategies
and the available PV surplus on a winter day. It highlights the fact that the reference
control will not try and consume the very low PV production of winter days and risk
yielding an extra cost, but will rather activate according to the off-peak hours of the
electricity price. These different approaches result in a typically better SC with the
proposed method.
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Figure 1.12: The heating signal of the proposed method is the only one capable of waiting
and exploiting the summer day PV production (black curves), leading to self-consumption
volumes (gray patch) varying from simple to almost triple.
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Figure 1.13: Tapping the scarce PV surplus volumes of winter days leads to high daily
self-consumption rates for the proposed method.
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Figure 1.14: The proposed method is the only one correctly detecting the small amounts
of PV production surplus (black curves) in the winter, leading to higher self-consumed
energy volumes (gray patch).

Whole household self-consumption metrics

As the metrics of self-consumption installations are usually defined at the household level,
comparing them for each approach at the household level (i.e. including controllable and
non-controllable consumptions) offers another perspective on the comparative impact of
each algorithm. Table 1.4 lists the amount of total PV produced energy consumed locally
by all the household consumptions, over a whole year. The increase offered by the proposed

Table 1.4: Final total annual self-consumed energy volumes for each strategy, including
the non-controllable consumptions

Proposed method Reference control Passive heuristic
1.72 MWh 1.59 MWh 1.33 MWh

method over the reference control is now of only + 8.3 %. Figure 1.15 displays these values
and shows the lower difference between each strategy.

Likewise, the differences of daily self-consumption rate at the household level from one
approach to the other, visible in Figure 1.16, is largely diminished in comparison with
the differences of Figure 1.13. This is especially true for winter days where the extra PV
production harnessed by the proposed method amount to a tiny fraction of the total PV
produced energy. As the small amounts of PV production occurring during these winter
days can be completely used for self-consumption, a few measure points are close to a
daily SC rate of 100 %.
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Figure 1.15: Considering the total production and consumption, the final difference in
cumulative self-consumed energy between each strategy is lower than when considering
only the controllable consumptions (see Figure 1.9).
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Figure 1.16: The daily total self-consumption rate can be of 100% for the three strategies
during winter days, as the total volume of PV production is limited.
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The total self-consumption rates evolve accordingly, as Figure 1.17 and Table 1.5 show
it.
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Figure 1.17: Considering the total production and consumption, the final difference in
cumulative self-consumption rate between each strategy is lower than when considering
only the controllable consumptions (see Figure 1.10).

Table 1.5: Final annual total SC% values for each strategy

Proposed method Reference control Passive heuristic
58.7 % 54.3 % 45.4 %

1.4 Conclusion and perspectives
In this chapter a methodology has been proposed to optimize the starting time of an
EWH in order to maximize the self-consumption rate of a residential PV installation. This
method is optimal, simple and has a very low computational cost. Numerical experiments
proved the relevance of the method, achieving an improvement of +28 % in yearly self-
consumed energy over an industrial energy management solution.

The proposed method could benefit from some functional enhancements: first, imple-
menting an estimation feature for future hot-water consumption, to overcome the unreal-
istic assumption of perfect knowledge on this matter; then, shifting to the minimization
of the total household electricity bill.

Another type of improvement would be to include other controllable home appliances.
However, scaling the proposed method to the control of several appliances could be dif-
ficult, as Appendix A showed that the overlapping of several load curves can lead to
discontinuities in the objective function, and thus greatly increase the number of opti-
mality candidate points and computation time to identify the optimal schedule. For this
reason, the optimal control of several appliances will be considered in the second half of
this manuscript using Mixed Integer Linear Programming (MILP) formulations (starting
Chapter 3).

But first, the lightweight side of the algorithm can be put to advantage in quickly exam-
ining several scenarios and thus studying the impact of consumption or production profiles
uncertainties. This application of the proposed method is now explored in Chapter 2.
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Chapter 2

Impact of production forecast
uncertainties

Impact des incertitudes de prévision de production. Ce chapitre présente une
méthode de génération d’ensembles de scénarios de production PV autour d’une prévision
initiale déterministe, considérée comme la plus probable. Avec ces ensembles de scénarios
de production PV et l’algorithme d’optimisation présenté dans le chapitre précédent, il est
possible d’étudier la performance du pilotage choisi du chauffe-eau Joule d’un bâtiment
résidentiel équipé de panneaux PV, sur un large nombre de scénarios de production. Cette
méthode d’évaluation des performances avec prise en compte de l’incertitude de produc-
tion est plus réaliste que l’évaluation où la production PV est supposée connue d’avance,
comme au chapitre précédent. Une étude numérique sur une année indique que le gain de
performance apporté par l’algorithme proposé par rapport à l’heuristique de référence est
plus important que ce qu’apporterait une méthode de prévision exacte de la production
PV utilisée avec l’heuristique de référence.

Remark This chapter is partly extracted from the second half of the paper [Amabile
et al., 2021].

2.1 Introduction

2.1.1 Production and consumption uncertainties

The gains obtained with the algorithm presented in Chapter 1 were evaluated in an hy-
pothetical setting, where the photovoltaic (PV) production forecast was considered to
materialize exactly.

However, the PV production cannot be predicted perfectly in advance. A more realistic
assessment of a priori performances (i.e. at the time of decision-making, in anticipation)
has to account for the prediction uncertainties.

Numerous self-consumption optimization studies have reported impressive figures. How-
ever, they suffer from requiring perfect knowledge of the inhabitants behavior [Sossan
et al., 2013] and of the weather forecast (e.g. [Lefort et al., 2013], which uses the same
production scenario for the forecast, for the decision algorithm and for performance evalu-
ation of the chosen control), which appears to be an important factor. Indeed, renewable
generation is subject to weather variability, leading to a limitation on production fore-
cast precision [Inman et al., 2013]. The robust optimization paradigm [Paridari et al.,
2016, Wytock et al., 2017, Pflaum et al., 2018] can be used to tackle these uncertainties,
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but these approaches often lead to considering the least favorable scenarios and therefore
proposing too-conservative strategies. For instance, [Pflaum et al., 2018] estimates a ro-
bust upper bound on the power required by an electric car-sharing charging station during
a day, before dividing this available power between the electric vehicles through an ad-hoc
heuristic. While the robust approach can satisfy the distribution system operator whose
grid stability responsibility is facilitated, it leads to an overestimation of the energy needed
by 34 %. Adjusting some of the parameters of the method can lower this overestimation
to 23 % but not realistically any further.

Alternatively, Model Predictive Control (MPC) enables weather forecast updates at
each prediction step, thus improving performance [Pflaum et al., 2014, Parisio et al.,
2015, Wytock et al., 2017, Lefort et al., 2013, Sossan et al., 2013, Parisio et al., 2017].
This improvement is even more significant when stochastic MPC [Oldewurtel et al., 2012,
Oldewurtel, 2011] or Stochastic optimal control [Pacaud, 2018] is used, but this comes at
the price of potentially burdensome computation times.

2.1.2 Contribution of the chapter

Assessing the a priori performance of any energy management system (EMS) requires to
test a chosen control schedule with a set of potential PV production scenarios, represen-
tative of the estimated uncertainty associated with the initial production prediction.

In order to assess the impact of 30-minute PV production forecast uncertainties on
the optimization algorithms considered in Chapter 1, a specific PV production scenarios
generation method is developed here.

In this chapter, the reference situation is a rule-based basic heuristic representative of
the current state-of-the-art controller in commercial products (already presented in Sec-
tion 1.3), which relies on a single deterministic PV production forecast, imperfect but
considered as the most likely prediction. Considering this class of EMS as a baseline,
this chapter compares the performance gains provided by the efficient optimization strat-
egy presented in Chapter 1 over the commercial heuristic, and by a more accurate PV
production forecast over the most likely prediction.

To conduct this investigation, an original method is used to generate a vast class of PV
power production scenarios. This method is build on [Thorey et al., 2018], which provides
a methodology to obtain the quantile forecasts of the PV load factor. The PV load
factor is the power production of the PV installation normalized by its nominal installed
power. Based on these quantile forecasts, this chapter presents a method to generate
PV production scenarios that collectively satisfy a given probabilistic distribution while
individually presenting realistic intra-day variability, that is, a realistic correlation factor.

Because the computing time of the algorithm proposed in Chapter 1 is quite low, vari-
ous instances can be studied in a short time. Hence, the performance of a specific schedule
could be quickly assessed as the empirical expectancy of the self-consumed energy reached
by the schedule over each instance of the generated set of PV production scenarios. As
the method presented in this chapter generates PV production scenarios that collectively
satisfy a probabilistic distribution matching the level of uncertainty of the original deter-
ministic forecast, the performance measured for a schedule this way is more realistic than
when it is evaluated considering that the PV production prevision is exact.

It is shown in this chapter that, beyond a given level of forecast accuracy, the impact
of knowing in advance the exact PV production forecast is negligible compared to the
impact of the choice of the EWH control algorithm.
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2.1.3 Chapter organization

Section 2.2 presents a methodology to generate a set of correlated realizations of a stochas-
tic process, the PV production scenarios, which are representative of the estimated un-
certainties of most likely PV production forecasts. Section 2.3 presents the numerical
experiments conducted to validate the overall methodology and then compares the per-
formance gains provided by the optimization strategy presented in Chapter 1 over the
commercial heuristic, and by a more accurate PV production forecast over the most likely
prediction. Section 2.4 reports conclusions and perspectives.

2.2 Generation of stochastic PV production scenarios

This chapter seeks to evaluate the impact of a discrepancy between the unique determin-
istic production forecast used in the EMS and the actual realized production. Only a few
studies in the literature have numerically evaluated this kind of impact on their EMS,
among them [Thomas et al., 2018] and [Rabiee et al., 2016]. However, in both cases, only
a few scenarios were considered, which cannot account for potential intra-day variability.

The following discussion describes the methodology designed to generate a represen-
tative set of PV production scenarios.

2.2.1 Available data

Starting from a single deterministic forecast refered to as most likely, a set of PV produc-
tion scenarios is needed to illustrate the uncertainties related to the initial deterministic
forecast. The set as a whole shall represent the range of possible production outcomes
proportionally to the observed variability of the most likely forecast, and each individual
scenario shall present a realistic intra-day variability.

Associated with weather-based PV power production models, ensemble weather fore-
casts provided by meteorological services could serve this purpose [ECMWF, 2021]. In-
deed, they give an indication of the range of possible future states of the atmosphere.
However, only a limited number of possible outcomes are produced. In addition, their
standard timestep is several hours, hence providing low resolution. Therefore, these data
were discarded as a data source for the study at hand.

Instead, the uncertainties of deterministic PV load factor forecasts can be described by
quantile forecasts. In [Thorey et al., 2018], quantile regressions are applied to deterministic
PV production forecasts to build 21 quantile forecasts (for the quantiles 0.01, 0.99, and
from 0.05 to 0.95 with a 0.05 increment). Each deterministic PV production forecast itself
is the result of a statistical model fed with the following variables from a deterministic
weather forecast: solar irradiance, total cloud cover and 2m temperature1. The PV load
factor quantile forecasts are the input data to the presented method.

At each 30-minute timestep2, for each day, following the methodology from [Thorey
et al., 2018], an estimation of the uncertainties is available in the form of quantile values.
Figure 2.1 reports these quantile curves, with one color for each quantile value. The darkest
(and lowest) curve is the 0.01 quantile curve: for each timestep, there is a 1 % chance
that the PV load factor will be below the value of this curve. The lightest (and highest)
curve is the 0.99 quantile curve: there is a 99 % chance that the PV load factor will be
below the value of this curve. The 19 curves in-between correspond to all the quantiles
between 0.05 and 0.95, with a 0.05 increment. This quantile generation methodology is a
priori not climate-dependent, but was tested exclusively for an oceanic temperate climate

12m temperature refers to air temperature at 2 meters above the surface
2Note that PV production forecasts with a 30-minute timestep are here considered to be possibly exact,

thus knowingly disregarding faster variations in solar irradiance, for instance due to passing clouds.
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(covering the vast majority of the French continental territory).
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Figure 2.1: Quantile values at each timestep associated with the PV production forecast
for one day in June with a cloudy afternoon (timezone: UTC+2). Data generated using
the method of [Thorey et al., 2018]

.

Thanks to these quantile values, the cumulative distribution functions of the PV load
factor are known for all the consecutive times in a discretized day3. With these cumula-
tive distribution functions, the next step is to generate numerous PV load factor scenarios.

2.2.2 Methodology for generating correlated scenarios

Creating the daily scenarios by successively picking one of the values drawn for each
timestep according to the cumulative distribution is not a suitable option. Indeed, the
generated PV load factor scenarios might then be physically irrealistic, with important
changes of values from one timestep to another. It is necessary to introduce some corre-
lation of the PV load factor between two consecutive timesteps.

The cumulative distribution function obtained by the quantile regression inspired by
[Thorey et al., 2018] has unfortunately no analytical form and does not correspond to any
standard random process a priori (see Figure 2.2). Hence, it is necessary to design an ad
hoc procedure to introduce correlation between two random variables X1 and X2 of fixed
and known respective cumulative distributions F1 and F2.

The solution proposed here is based on the Probability Integral Transform (see e.g.
[Angus, 1994]). This result states that if X is a continuous random variable with cu-
mulative distribution function FX , then the random variable Y = FX(X) has a uniform
distribution on [0, 1].

3Note that the quantile values resulting from the quantile regression presented by [Thorey et al., 2018]
can be greater than the maximum load factor at the given timestamp. It is thus necessary to saturate each
cumulative distribution function obtained in proportionality with this daily maximum load factor. This
upper limit is obtained assuming a completely clear sky at a given location. Reversely, without a mean to
determine the lower bound of the load factor (through a completely cloud-covered sky, for instance), it is
simply set to 0 without loss of generality.
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Figure 2.2: The cumulative distribution function for two consecutive timesteps for the
same day in June do not follow any standard random process a priori. The differences
between the consecutive curves demonstrate the changing weather conditions.

To address this correlation issue, consider two random variables X1 and X2, of respec-
tive cumulative distribution functions F1 and F2. Consider U1 = F1(X1) and U2, two
uniformly distributed random variables on [0,1]. Another random variable is built with
the following relation:

W = (1 − α)U1 + αU2 (2.1)

with α ∈ ]0, 1[. The probability density function f of W can be calculated as

f(x) =


x
ab if 0 ≤ x ≤ a
1
b if a ≤ x ≤ b
1−x
ab if b ≤ x ≤ 1

(2.2)

with a = min{α, 1 − α} and b = max{α, 1 − α}. Integrating f yields the cumulative
distribution function F of W as follows

F (x) =


x2

2ab if 0 ≤ x ≤ a
a
2b + x−a

b if a ≤ x ≤ b

a
2b + b−a

b + x−b− x2−b2
2

ab if b ≤ x ≤ 1
(2.3)

F (W) is then uniformly distributed according to the Probability Integral Transform. Be-
sides, when the same result is applied again, F−1

2 (F (W)) has the same probability density
function as X2. Yet, interestingly, it is correlated with X1 through Eq. (2.1), which is the
desired result.

In a nutshell, denoting by Fk the cumulative distribution function of the random
variable Xk, the stochastic process used to generate the scenarios is{

xk+1 = F−1
k+1(F ((1 − α)Fk(xk) + αuk+1)), for k > 0

x0 = 0
(2.4)

with α ∈]0, 1[, F defined in Eq. (2.3) and uk+1 uniformly distributed over [0,1].
The degree of correlation, given by Cov(xi,xj)

σxi σxj
(where σxi is the standard deviation of

xi), can be tuned by varying the value of α. In the simulations in this study, the value
of the parameter α was chosen so that the impact of a past random selection fades after
a given number of timesteps. The choice of α = 0.25 leads to a steady decrease in the
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correlation between two values xi and xj separated by an increasing duration, with a
median correlation of 0.45 between two values separated by 5 hours.

With 500 values drawn for each timestep, the original estimated uncertainty quantile
values and the dispersion of the scenarios generated by this method match almost perfectly.
Increasing the number of scenarios would increase the accuracy of the method, but also
the time required for computation. Limiting the number of scenarios to 500 seems to
be an acceptable compromise between the computational burden and the accuracy of the
method.

2.3 Numerical experiments

It is recalled that the modeling of appliances in the considered setup, and the core of the
proposed optimization algorithm are presented in Section 1.2. The optimization problem
at hand is Problem 1.1.

From the forecast and production data of a PV installation, a set of PV production
scenarios was generated according to the method presented in the previous section. Note
that the dataset of PV production forecasts is not the same as the one used in Chapter 1.
Here, because the data used were not available for two months from the middle of August
to the middle of October, the experiments described were conducted over 309 dates only,
instead of 365.

Using these scenarios, the impact of PV production uncertainties on the self-consumption
performances of two EMSs was investigated in an individual house case study.

2.3.1 Test setting

The test setting considered here is the same as the one presented in Section 1.3.1, regarding
the EWH volume and power rating, the number of inhabitants, the scenario of outdoor
temperature, input cold water, hot-water consumption and other uncontrollable appliances
load curves, the household location, the final time for the comfort constraint.

A difference is that the two crystalline silicon PV arrays of 1.5 kWp
4 each are now both

inclined at 35° relative to the horizontal and facing South.
The scenarios of PV production considered for these numerical experiments are detailed

in the subsequent Section 2.3.3.
It is stressed that although this study covers only uncertainties within similar weather

conditions (the oceanic temperate climate found in most of north-western Europe), the
method is not climate-dependent.

2.3.2 High-fidelity model and hardware specifications

The numerical experiments required the controller presented in this chapter to communi-
cate with a simulation model. The controller corresponds to the optimization algorithm
presented in Chapter 1 based on the simplified EWH model. The high-fidelity EWH model
and simulation platform considered are the same as those presented in Section 1.3.1.

All computations are run on a Core i3 2.4 GHz processor, with 8 Go RAM and using
Python 3.7.3. Running the entire calculations described below (optimization and high-
fidelity simulation) took approximately 70 hours for 309 days and 500 scenarios per day.

4kWp stands for kW “peak”: it is the maximum electrical power that can be supplied by a PV system,
under standardized test conditions of irradiance, temperature and solar spectrum
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2.3.3 Performance evaluation procedure

The performances of two EWH control algorithms was compared under two settings re-
garding PV production uncertainties, resulting in four configurations.

Strategies Two control algorithms can be considered to compute the heating strategy:

• the industrial reference heuristic control presented in Section 1.3.1;
• the optimization algorithm proposed in Chapter 1.

Both are deterministic, meaning that they consider a unique and supposedly exact PV
power prediction to decide on the corresponding optimal heating strategy.

Subsequently, sR denotes a strategy computed with the reference heuristic, whereas
sP denotes a strategy computed with the proposed method.

Scenarios The most likely PV production scenario on day j is denoted by Sj
ML. The

range of outcomes for the PV production on this day j is represented by the set of K
distinct PV production scenarios being generated. The kth realization scenario belonging
to this set, with k ∈ [1,K], is denoted by Sj

k.
Two configurations are considered: either the EMS knows only the most likely PV pro-

duction scenario, or it knows the exact PV power predictions. In the first case, sR(Sj
ML)

denotes a strategy computed with the reference heuristic, and sP(Sj
ML) denotes a strategy

computed with the proposed algorithm, both optimized over Sj
ML, the most likely scenario

on day j. In the second case, sR(Sj
k) denotes a strategy computed with the reference

heuristic, and sP(Sj
k) denotes a strategy computed with the proposed algorithm, both

optimized over Sj
k, the realization scenario k of day j. This case corresponds to the avail-

ability of what is named a “perfect” PV production forecast.

For a given date j, the performance of the reference control relying on a most likely
forecast is the mean SC achieved by this heating strategy evaluated with respect to all the
realization scenarios of the generated set. The corresponding mathematical formulation
is given in Eq. (2.5). This configuration is hereafter called Reference - Most Likely. This
empirical average can be considered as an approximation of the expected value of SC for
all possible PV production.

Eq. (2.8) shows the mathematical definition of the mean SC score achievable by the
proposed algorithm for a given date j, in the case where a “perfect” forecast is available
for every realization scenario of the set. This configuration is hereafter named Proposed -
Exact.

Reference - Exact is the mean SC score attainable by the reference heuristic with
knowledge of each production realization scenario (Eq. (2.6)); Proposed - Most Likely is
the mean SC score achieved by the heating strategy designed by the proposed algorithm
relying only on the most likely forecast (Eq. (2.7)).

Reference - Most Likely: 1
K

K∑
k=0

SC
(
sR(Sj

ML), Sj
k

)
(2.5)

Reference - Exact: 1
K

K∑
k=0

SC
(
sR(Sj

k), Sj
k

)
(2.6)
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Proposed - Most Likely: 1
K

K∑
k=0

SC
(
sP(Sj

ML), Sj
k

)
(2.7)

Proposed - Exact: 1
K

K∑
k=0

SC
(
sP(Sj

k), Sj
k

)
(2.8)

Logically, it should hold that (2.5) < (2.6), and (2.7) < (2.8). However, (2.6) < (2.7)
is not guaranteed, and quantifying the relation between these values is one of the purposes
of this study.

Table 2.1 details the simulations conducted for the proposed algorithm in this plan
of action, with K = 500 generated scenarios. Equivalent calculations were conducted
for the reference control. Crosses “×” designate combinations that are not associated
with calculations. Computing the SC score of every single strategy over every single
scenario and then computing the mean SC score of each strategy over the complete set of
scenarios could lead to identifying the optimal control strategy in presence of production
uncertainties, but doing so would require an amount of time so long that performing this
computation in order to implement the resulting strategy would not be realistic.

Table 2.1: Scores computed for the proposed algorithm in the conducted numerical simu-
lations.
(Crosses indicate scores that were not evaluated.)
Strategies PV production scenarios for day j

Most Likely, Sj
ML Realization 1, Sj

1 ... Realization k, Sj
k ... Realization K, Sj

K

sP(Sj
ML) (Most Likely) SC

(
sP(Sj

ML), Sj
ML

)
SC

(
sP(Sj

ML), Sj
1

)
... SC

(
sP(Sj

ML), Sj
k

)
... SC

(
sP(Sj

ML), Sj
K

)
sP(Sj

1) (Realization 1) × SC
(
sP(Sj

1), Sj
1

)
× × × ×

... × × . . . × × ×

sP(Sj
k) (Realization k) × × × SC

(
sP(Sj

k), Sj
k

)
× ×

... × × × × . . . ×

sP(Sj
K) (Realization K) × × × × × SC

(
sP(Sj

K), Sj
K

)

2.3.4 Results

The impact of the exact PV load factor predictions and of the chosen algorithm can be
seen in Figure 2.3. It reports the sum, from January 1st to the end of each month, of the
expected daily SC over the set of drawn scenarios Sj

k, k ∈ [1,K]. The control can use either
the reference heuristic (orange color) or the proposed tailored algorithm (blue color). The
strategy has been optimized either following a most likely PV production forecast (dashed
lines) or assuming that the exact PV production forecast is available for each realization
(solid lines). The following equation gives the corresponding mathematical formulation
with J ∈ [Jan.31st, ...,Dec.31st], the date of each end of month:

J∑
j=Jan.1st

[
1
K

K∑
k=0

SC
(
X,Sj

k

)]
(2.9)

with X taking the following values in each case:

Reference - Most Likely: X = sR(Sj
ML) (2.10)

Reference - Exact: X = sR(Sj
k) (2.11)
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Proposed - Most Likely: X = sP(Sj
ML) (2.12)

Proposed - Exact: X = sP(Sj
k) (2.13)
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Figure 2.3: The cumulated expected SC is significantly more impacted by the algorithm
choice than the forecast precision.

The cumulated SC values reached at the end of the year and the corresponding relative
increase compared with the Reference - Most Likely case are listed in Table 2.2.

Table 2.2: The cumulated self-consumed energy for 309 days can be increased by 11%
with a smarter optimization algorithm.

Strategy Cumulated Expected SC
Relative increase w.r.t.
Reference - Most Likely

Reference - Most Likely (2.10) 1.42 MWh -
Reference - Exact (2.11) 1.43 MWh +0.85%
Proposed - Most Likely (2.12) 1.58 MWh +11%
Proposed - Exact (2.13) 1.61 MWh +13%

It is clear that, for the studied setup, the impact of a “perfect” PV production forecast
is negligible compared with the impact of the choice of the control algorithm. The hypo-
thetical benefit of switching from a most likely PV power prediction to an “exact” one (at a
30-minute timestep) would be slightly greater with the proposed algorithm (+0.03 MWh)
than with the Reference heuristic (+0.01 MWh), but remains limited compared with the
gains coming from the choice of the control algorithm. Note that the SC values consider
both the components due to EWH consumption and those due to uncontrolled demand.
It is recalled that the most likely forecast already conveys some information about the PV
production curves that will finally occur. Shall a “perfect” PV production forecast be com-
pared with a very low level production forecast (e.g. based on clear-sky solar irradiance
only), the impact of the forecast precision would be much greater.

Remark The figures display a gap from the middle of August to the middle of October,
because the PV production forecasts were not available for these dates, as mentioned at
the beginning of Section 2.3. The “annual” values were hence calculated for 309 days only.
As such, the total PV production on the considered period amounts to 3.0 MWh.
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Figure 2.4 shows the daily expected self-consumption gains for each configuration com-
pared with the Reference heuristic - Most Likely forecast configuration. For improved
clarity, the daily mean Reference - Most Likely SC score on day j is denoted as

RML(j) = 1
K

K∑
k=0

SC
(
sR(Sj

ML), Sj
k

)
(2.14)

The curves correspond to the following quantity, with j ∈ [Jan.1st,Dec.31st]:

1
K

K∑
k=0

SC
(
X,Sj

k

)
− RML(j) (2.15)

The quantity is evaluated for these three values of X: sR(Sj
k), sP(Sj

ML), sP(Sj
k).

The gains are almost always greater with the Proposed algorithm than with the Refer-
ence heuristic and Exact PV forecasts. Neither the Reference heuristic nor the Proposed
algorithm succeeds in benefiting sensibly from the exact PV forecasts. The ratio of these
SC gains over the daily score of the Reference - Most Likely configuration is not depicted
because it follows almost the same pattern, with y-values ranging from -10 % to +30 %.
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Figure 2.4: The daily SC gains for each configuration with respect to the Reference - Most
Likely configuration are higher during summer days.

Figure 2.4 suggests that the performance difference depends on the weather conditions
of the day (e.g., a sunny summer day associated with a high load factor or an intermittently
cloudy autumn day associated with a low one). To further analyze these differences, the
309 days of the simulation were partitioned according to their distribution profile. The
clustering was made automatically through a K-means method fed with the quantile values
of the distribution of the PV load factor values at noon for the K = 500 scenarios. Because
it seems that the partitioning depends mainly on the median value of this distribution, the
partitioning is represented in Figure 2.5 with only the median noon value for each day. The
“Low” cohort represented in blue contains 104 days, the “Medium” one, corresponding to
the orange dots, contains 86 days, and there are 119 “High” PV scenario days represented
by green dots. Unsurprisingly, it can be observed that winter days are mainly grouped in
the “Low” cohort, and summer days are in the “High” one.

The clustering allows to break down the relative and absolute expected SC gains
(w.r.t. the Reference - Most Likely configuration) according to the type of day. The lower
window of Figure 2.6 represents the variability of the 309 absolute SC gains (same data as
Figure 2.4), according to the PV scenario types classification. The upper window reports
the variability of the 309 relative SC gains according to the classification, as detailed in
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Figure 2.5: PV load factor days clustering.

the following quantities

1
RML(j)

[
1
K

K∑
k=0

SC
(
X,Sj

k

)
− RML(j)

]
(2.16)

with RML(j) defined in Eq. (2.14). The equation is valued for the three same values of X
as in Eq. (2.15).

It is clear that the gains over the Reference - Most Likely case, both absolute and
relative, are observed during high PV power production days. Because the reference
control is activated as soon as the PV production reaches a threshold, it cannot tap into
the higher production values later in the day, thus leading to lower self-consumption scores
on clear sunny days. Besides, sunny summer days usually have low variability. Hence a
most likely forecast is good enough for the proposed algorithm to reach high SC scores.
Moreover, it is obvious that a too-basic heuristic control can only poorly benefit from
the valuable information carried by an “exact” PV production forecast. This underlines
the fact that further research efforts might be better spent on developing better control
algorithms than on finding better forecasting methods for the considered time resolution.

2.4 Conclusions
This chapter has studied the impact of PV production forecasts uncertainties on the
performance of an EMS optimizing the self-consumption of a residential PV installation.
To this end, the optimal EWH scheduling algorithm presented in Chapter 1 has been used
with erroneous information. A methodology to generate a set of realistic PV production
scenarios was presented. This method ensures that the ensemble of PV power scenarios
is representative of the variability associated with most likely weather forecasts. When
combined, the efficient optimization algorithm and these sets of PV production scenarios
make it possible to assess the performance of such an EMS according to various production
scenarios, either assuming the availability of “perfect” PV production predictions or of only
the most likely forecasts.

This study has shown that, more globally, self-consumption performance benefits more
from an efficient optimal management system like the one proposed in Chapter 1 than from
“perfect” PV production predictions at a 30-minute timestep. Indeed, considering a simple
rule-based commercial heuristic accessing a single deterministic most likely forecast as a
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Figure 2.6: The relative and absolute expected SC gains w.r.t. Reference - Most Likely
tend to be higher with the proposed algorithm, and especially during “High” PV produc-
tion days.

baseline and upgrading to the proposed optimization algorithm yields an 11% increase
in annual cumulated expected self-consumed energy, whereas combining this proposed
optimization algorithm and a “perfect” PV production forecast at a 30-minute timestep
brings only an additional two-percentage-point increase (from +11% to +13%). A detailed
analysis shows that the gains yielded by the optimization algorithm choice are concentrated
in days of high PV power production.

It is recalled that these findings regarding the volume of self-consumed energy do not
necessarily apply to the overall electricity bill of the household, because of the temporal
variation of the hourly electricity tariffs.

The PV production scenarios generation method developed for this study is also of
interest as it allows to assess more truthfully the a priori performance of an EMS.

This study suggests that for these installations:

• the current level of accuracy of PV production forecasts is good enough;
• improving the control algorithms (as it has been proposed in Chapter 1) can be

valuable.

This work should be extended to study as well the impact of inhabitants’ behavior
uncertainties, both for hot-water usage and for uncontrolled power demand.

Assuming that PV production scenarios with a 30-minute timestep can be exact is also
an oversimplification, so future research is needed to assess the performance loss of this
kind on system due to faster production variations.
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Chapter 3

MILP formulation for the
microgrid energy bill optimization

Formulation d’un problème d’optimisation linéaire mixte pour l’optimisation
de la facture d’énergie d’un micro-réseau. Ce chapitre traite de la minimisation
de la facture d’énergie d’un micro-réseau avec autoconsommation, sous forme d’un prob-
lème d’optimisation linéaire mixte. Au sein du micro-réseau, plusieurs foyers sont équipés
d’usages pilotables, peuvent échanger de l’énergie et accéder à une batterie partagée. Une
modélisation discrétisée des usages avec stockage (chauffe-eau Joule, véhicule électrique,
batterie) est proposée, inspirée d’une modélisation des usages blancs présente dans la
littérature. La formulation du problème d’optimisation à ce niveau implique la concaténa-
tion des contraintes de chaque habitation participant au micro-réseau. La complexité du
problème centralisé obtenu est explorée. L’intérêt quantitatif de la coopération et le coût
de la non-coopération sont présentés au travers d’un cas d’étude simple à deux agents et
deux usages.

3.1 Introduction

3.1.1 Context

In the first half of this thesis (Chapter 1 and Chapter 2), an efficient algorithm has been
developed and used for the explicit control of an EWH with the aim of maximizing the
consumption of the energy locally produced by the residential photovoltaic (PV) self-
consumption installation (Chapter 1). This chapter broadens the scope of controlled
systems for the optimization of PV self-consumption using several appliances in several
households in a local network. An example setup is first introduced before detailing the
concepts behind this organization.

Example setup

To visualize the kind of microgrid configuration where appliances control and cooperative
energy optimization is desirable, here is detailed an example use-case including several
extensions already mentioned in the previous chapters.

Consider a group of neighbor houses (e.g. five) in a residential neighborhood located
in a sufficiently sunny city, all equipped with their own PV panels. Each house is assumed
to be equipped with a handful of controllable appliances, and with an energy management
system (EMS) aiming at minimizing their individual electricity bill. The controllable
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appliances of each household can be any selection from the following appliances of interest
for control, given their large nominal power and energy consumption and the fact that
their activation can be dissociated from the time of use of the service: EWHs, electric
vehicles (EVs), dishwashers, washing machines, dryers (the three latter regrouped under
the designation “white goods”1). A shared battery of substantial capacity is located nearby
the houses. Figure 3.1 presents such an example.

Figure 3.1: The use-case microgrid is composed of households of varied equipment profiles.

Typical technical characteristics of the use-case are the following:

• Installed individual PV power: 9 kWp
2

• Maximum power exchange: 9 kV A3

• EWH heat pump: variable power [0 W to 600 W] and boost power 2 kW
• EV capacity: 40 kWh
• V2X enabled EVSEs4, of power: 40 kW
• Shared battery: 100 kWh, 100 kW
• Maximum number of daily battery cycle: 1
• Households composition:

– House 1 : 2 adults + 1 children;
– House 2 : 2 adults + 2 children;
– House 3 : 1 adult;
– House 4 : 2 retired adults;
– House 5 : 2 adults.

The cooperative energy management scheme subsequently presented in this chapter
can be usefully applied to such a microgrid configuration.

Change of objective function

The first critical extension of this chapter with respect to Chapters 1 and 2 concerns the
scope of the objective function. This chapter operates a semantic broadening from the

1Large electrical appliances used for routine housekeeping tasks (such as cooking, cleaning, washing
laundry, or food preservation) which were traditionally available only in white.

2kWp stands for kW “peak”: it is the maximum electrical power that can be supplied by a PV system,
under standardized test conditions of irradiance, temperature and solar spectrum

3The volt-ampere unit used for the apparent power in an electrical circuit is usually used for analyzing
alternating current (AC) circuits.

4EV Supply Equipment: individual charging station for an EV
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optimizing the physical criterion of self-consumption (i.e. the energy simultaneously pro-
duced and consumed locally) to optimizing the financial cost of operation of installations
with self-consumption. Here, the cost of total electricity supply at the microgrid scale
is minimized. The amount of self-consumed energy, used as the optimization criterion
of the previous chapters, still has to be computed to evaluate the overall electricity bill,
and could have been used as the objective function of the problems formulated in this
chapter. However, due to the variable cost of electricity through the day, maximizing the
self-consumed energy can lead to sub-optimal electricity bills, especially when harnessing
the local mid-day production also leads to consuming more energy from the grid at high
cost periods. Thus, a more realistic study in the current framework where the households
are connected to a main grid experiencing little upstream power constraints is to consider
that the criterion minimized by the EMSs is the overall energy cost.

Number and nature of controlled appliances

Other extensions (identified at the end of Chapter 1) regard the number and nature of
involved appliances. In this chapter, the range of appliances controlled is thus broadened
in order to reach higher levels of self-consumption.

To extend the type of appliances that an EMS could control in the same household,
white goods first come to mind as they:

• represent significant shares of the overall residential energy consumption;
• have large power ratings;
• are household appliances whose activation can be desynchronized with the inhabi-

tants presence;
• are already widespread (though not in their controllable “smart” versions).

Then, EVs have to be considered as:

• their sales are expected to increase steadily over the next years as a necessary replace-
ment of internal combustion engine vehicles that contribute to the climate crisis;

• their charging operations will need to be managed to avoid any detrimental effects
on both the users energy bills and the electric grid;

• they can provide flexibility services to the grid thanks to Vehicle-to-X capabilities.

Vehicle-to-X (V2X) refers to the possibility for an EV to exchange power back to a place
connected to the used EV Supply Equipment. Depending on the considered location, it can
correspond to giving power back to the home (V2H), building (V2B) or the grid (V2G).
[Gonzalez Venegas et al., 2021] provides a detailed review of potential frameworks and
barriers for the provision of flexibility services to distribution grids from EVs. The paper
recalls that individual vehicles have long idle periods, and that the limited time required
to provide the charge necessary for a usual daily consumption leaves enough margin to
provide such services. In the case of distribution grids, EV flexibility can be used to defer
or avoid costly infrastructure reinforcements, with great economic savings. These power
exchanges require bidirectional chargers and ad-hoc communication protocols.

Modeling these appliances using the framework presented in Chapter 1 would lead to a
burdensome combinatorial analysis. Indeed, adapting this approach to only two appliances
showed that the specific times where the supports of the load curves were intersecting result
in discontinuities in the objective function (see Appendix A). These specific times thus
have to be detected in order to find the best times of control in each continuous subset,
before comparing them to finally extract the solution. The number of discontinuities would
increase in a combinatorial manner for a growing number of controlled appliances, thus
rendering this approach unsuitable for the desired use-case.
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On the contrary, several works resort to MILP formulations for a simpler, more scalable
and more flexible formulation of their operation. Especially, these formulations allow to
use binary variables to model On/Off behaviors, conditional activation (e.g. depending on
a price signal), or pauses between the various phases of operation. Adapting the previously
presented framework to these kind of constraints, for several different appliances would
result in a quite complex model. Instead, the path followed in this chapter to model
electrical appliances is to resort to classical MILP formulations. As Chapter 2 showed
it, self-consumption performance benefits more from an efficient optimal management
system based on deterministic most likely PV production forecasts than from “perfect”
PV production predictions at a 30-minute timestep. At the light of this result, the MILP
formulations followed in this chapter only consider the most likely production forecasts in
order to find the optimal appliances schedule at the household or microgrid level.

Microgrid

Another critical extension previously identified is to try and optimize the behavior of a
microgrid, whose local production and consumption implies the principle of collective self-
consumption but also allows for the collective ownership of distributed energy resources
(DERs).

Collective self-consumption Collective self-consumption is the extension of the concept
to the totality of energy consumptions and productions in a specified set of buildings, for
instance, a few houses located in the same neighborhood.

It has been shown that collective self-consumption can further decrease electricity bills
and increase the volume of locally produced, exchanged and consumed energy with respect
to individual self-consumption configurations [Mengelkamp et al., 2018]. Moreover, this
effect can be reinforced if the share of DERs (e.g. batteries) allotted to each household can
be dynamically chosen at each timestep according to all of the microgrid needs, [Dimitrov
et al., 2016].

Shared batteries A microgrid can benefit from the addition of batteries to the PV in-
stallations to increase the volume of self-consumed energy and decrease electricity bills by
performing arbitration in regards to the price of electricity. If multiple individual bat-
teries increase the self-consumption of each agent, [Roberts et al., 2019] has shown that
self-consumption is further increased with the installation of shared batteries instead of
individual ones. Shared batteries have also the advantage of reducing the investment,
maintenance, operational and replacement costs per end-user [Tascikaraoglu et al., 2019],
whereas individual batteries still represent an overall cost as long as they do not provide
additional services [Quoilin et al., 2016, Goebel et al., 2017, Roberts et al., 2019]). Fur-
ther, it has been shown by [Koirala et al., 2018] that shared batteries foster social benefits
beyond monetary gains, including reinforced social cohesion and local economy, compared
to a collection of individually owned and operated batteries. Hence the microgrid consid-
ered in this chapter is equipped with a central shared battery. [Dimitrov et al., 2016] has
presented an efficient heuristic allowing agents to bid for a portion of the storage capacity
allotted to another agent. The algorithm is a distributed control policy, where each user
operates independently with the least exchange of information with the other users. It
shows that allowing a dynamical allocation of the storage capacity is more profitable than
being restricted to multiple private storage capacities.

The microgrid concept calls for the design of collaboration schemes allowing to optimize
the collective power use. A direct way to ensure the optimal operation of a collective self-
consumption microgrid is to formulate and solve the corresponding optimization problem
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at the microgrid level. This yields a lower bound for the cost of supplying energy to the
whole community. This is the approach followed in this chapter.

3.1.2 Content of the chapter

The microgrid considered in this chapter, as illustrated in Figure 3.1, is composed of up to
a dozen single-family residential buildings, each equipped with their own PV panels and
able to store and draw power into and from a shared community battery. The microgrid
is connected to the main grid, experiences no voltage constraints (see the Introduction
for details), and its size is restricted to a small neighborhood. Energy exchanges between
participants are allowed, and even encouraged through the specific tariffs.

The microgrid optimization problem is defined as the problem of minimizing the cost of
supplying energy to the microgrid by controlling the shared DERs and all the controllable
appliances in the microgrid, and by importing and exporting the remaining deficit and
surplus power from and to the external grid operator. Formulating this problem assumes
that the microgrid EMS can retrieve all the relevant information from the agents, the
DERs and the external grid.

This chapters details the constraints, decision variables and objective function of the
microgrid optimization problem, formulated as a MILP.

First, Section 3.2 covers how the microgrid optimization problem can be formulated
by aggregating the individual households operational constraints into the definition of
the microgrid behavior. The scalability limitations of this approach are then explored in
Section 3.3. Finally the value of cooperation at the microgrid level is proved in a small
and solvable use-case in Section 3.4.

3.2 Microgrid optimization problem formulation

The microgrid optimization problem under consideration here is the minimization of the
overall energy supply cost, under the individual households load constraints, the microgrid
coupling constraints and the battery operations constraints.

To ensure that the appliances activation schedules resulting from the microgrid EMS
optimization are applied, it is assumed that the individual houses EMSs are fully connected
to the household appliances and to the microgrid EMS, that they automatically retrieve the
solution from the microgrid EMS and pilot their appliances according to this recommended
schedule.

3.2.1 Notations

In the remainder of this chapter, the following notations will be used for matrices and
vectors:

The time horizon is uniformly discretized in a finite time grid of H timesteps indexed
by the variable t.

For any non-null natural integers n1, n2, 0n1,n2 is the null matrix in Rn1×n2 .
For any non-null natural integer n, 1n is the vector full of ones in Rn and 0n the null

vector in Rn.
These elements have a simplified notation for the dimension H that often appears:

I and 0 are respectively the identity matrix and the null matrix in RH×H .
1 is the vector full of ones in RH and 0 is the null vector in RH .

3.2.2 White goods modeling: the energy phases concept

[Sou et al., 2011] proposes an advanced modeling framework for controllable appliances
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of the white goods category, using mixed integer linear programming (MILP) to model
operation characteristics such as duration and peak power consumption, or uninterruptible
and sequential operations.

In the proposed scheduling framework for appliances of the white goods category, an
appliance operation process is divided into a set of sequential energy phases. Apprehending
this concept is fundamental to understand many aspects of the subsequent analysis. Thus a
detailed description is given here before presenting the households optimization constraints
in the following section.

An energy phase is an uninterruptible sub-task of the appliance operation which uses a
pre-specified amount of electric energy, and may have bounds on the instantaneous power
consumption and the execution time. The energy phases are uninterruptible in that a
sub-task has to be completed in a continuous duration, and cannot be resumed. They are
sequential since the next appliance sub-task cannot begin until the previous sub-task is
completed (e.g. the washing machine agitator cannot start until the basin is filled with
water).

Table 3.1 presents the technical specifications for a dishwasher. These specifications
are adapted from [Sou et al., 2011] to work with a 15-minute timestep. Figure 3.2 details
the energy phases composing an example load curve for a dishwasher, compliant with the
specifications of Table 3.1. A log scale has been used on the second plot (right) to show
the low power consumptions of the “drain & dry” energy phase. The number of energy
phases of an appliance of the white goods category is thereafter noted J (here J = 5 for
the considered dishwasher).

Table 3.1: Dishwasher technical specifications from [Sou et al., 2011]
Energy phase Energy (Wh) Min power (W) Max power (W) Duration (min)
pre-wash 16.0 6.47 140 15
wash 751.2 140.26 2117.8 30
1st rinse & drain 19 10.28 132.4 15
2nd rinse 572.3 187.3 2143 15
drain & dry 1.7 0.2 2.3 60
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Figure 3.2: Each colored block corresponds to one energy phase, an uninterruptible sub-
task of the dishwasher program.
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3.2.3 Households constraints

A framework similar to the one proposed by [Sou et al., 2011] has been developed to model
“storage” appliances such as EWHs, batteries and EVs. All these models (both for white
goods and storage appliances) are detailed in Appendix C, and can be written with the
following equations, for the smart appliance i of an household h(h ∈ [1, l]):

Ahixhi ≤ bhi ∀h, i (3.1)

with the content of Ahi, xhi and bhi depending on the type of appliance modeled. Note
that this inequality formulation can also be used to describe equality equations using two
inverted inequalities.

xhi gathers all the variables needed to describe the operation of the appliance i. For
“storage loads” such as an EWH or an EV, xhi is composed of the variables defining the
stored energy and the instantaneous power flux at every timestep, thus characterizing
its load curve. For an EV, additional binary variables help define its status (charging,
discharging). For white goods, xhi is composed of variables defining the instantaneous
power consumption at every timestep (thus characterizing its load curve), and binary
variables indicating the present and past state of each energy phase composing a specific
program.

Eq. (3.1) models the behavior of any controllable appliance. The constraints presented
in the following paragraphs are necessary to define the overall load curve of an household,
uniting the power consumption of its controllable and uncontrollable appliances, and its
local power production.

Power exchange limitations

The household EMS takes into account the power exchanges with the rest of the microgrid,
which are bounded as follows, for all h, t:

0 ≤ P t
h,s ≤ Ph,maxδ

t
h,s (3.2)

0 ≤ P t
h,d ≤ Ph,maxδ

t
h,d (3.3)

δt
h,d + δt

h,s ≤ 1 (3.4)

Constraint (3.2) describes the limitations on Ph,s, the household h net surplus power.
Ph,max is the maximum power exchange between household h and the microgrid. The
binary decision variable δt

h,s equals 1 when the household load curve is in surplus, 0 other-
wise. Constraint (3.3) similarly describes the limitations on Ph,d, the household net deficit
power, with the binary decision variable δt

h,d indicating when the household load curve is
in deficit. Finally, the constraint (3.4) guarantees that the household load curve in not in
surplus and in deficit at the same timestep.

Eqs. (3.2)–(3.4) can be formulated as

αh,def xh,def ≤ bh,def ∀h (3.5)

with

αh,def =


I 0 −Ph,maxI 0

−I 0 0 0
0 I 0 −Ph,maxI
0 −I 0 0
0 0 I I

 (3.6)

and with

xh,def =


(P t

h,s)t∈[1,H]
(P t

h,d)t∈[1,H]
(δt

h,s)t∈[1,H]
(δt

h,d)t∈[1,H]

 , bh,def =
(

04H

1

)
(3.7)
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Supply-demand balance

Power balance at each household level at all times is enforced by the following constraint:

P t
h,s − P t

h,d = P t
h,PV − P t

h,unc −
mh∑
i=1

J∑
j=1

P t
hij ∀h, t (3.8)

where Ph,PV is the PV local production, Ph,unc is the uncontrolled power consumption for
household h, and Phij is the power of the energy phase j of appliance i of household h5.

Eq. (3.8) can be more compactly written as

mh∑
i=1

αhi xhi + αh,join xh,def ≤ bh,join ∀h (3.9)

with

αhi =





0H,HJ 0H,HJ

1>
J

. . .
1>

J

0H,HJ 0H,HJ

−1>
J

. . .
−1>

J


if the appliance is one of
the white goods category

(
0 P ewhI
0 −P ewhI

)
if the appliance is an EWH
of power rating P ewh(

0 I −I 0H,2H

0 −I I 0H,2H

)
if the appliance is an EV

(3.10)

with spaces full of zeros left empty for better readability, with xh,i defined in Appendix C.2.5,
xh,def defined in Eq. (3.7), and with

αh,join =
(

I −I 0 0
−I I 0 0

)
, bh,join =

(
(P t

h,PV − P t
h,unc)t∈[1,H]

(−P t
h,PV + P t

h,unc)t∈[1,H]

)
(3.11)

Summary

Gathering (3.1), (3.5) and (3.9), the household consumption constraints can be concate-
nated under the form

Ah xh ≤ bh (3.12)

with

Ah =



Ah,1 0 . . . 0 0

0 Ah,2
. . . 0 0

... . . . . . . . . . ...

0 0 . . . Ah,mh
0

0 0 . . . 0 αh,def
αh,1 αh,2 . . . αh,mh

αh,join


, xh =


xh,1
xh,2

...
xh,mh

xh,def

 , bh =



bh,1
bh,2

...
bh,mh

bh,def
bh,join


(3.13)

5For “storage” appliances that are not modeled with energy phases, this power variable is not indexed
by j.
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3.2.4 Microgrid constraints

The microgrid constraints are the concatenation of the constraints of its parts, namely
the constraints of all the households and of the shared battery. In its resulting shape, the
formulation of the microgrid constraints is thus an extension of the work presented in [Sou
et al., 2011], from the household level to the microgrid level.

Aggregated households behavior

The microgrid EMS requires the equations linking the individual load curves to the vari-
ables defining the behavior of the aggregated agents, for all t:

P t
s,agg − P t

d,agg =
l∑

h=1
(P t

h,s − P t
h,d) (3.14)

0 ≤ P t
s,agg ≤ δt

s,agg

l∑
h=1

Ph,max (3.15)

0 ≤ P t
d,agg ≤ δt

d,agg

l∑
h=1

Ph,max (3.16)

δt
s,agg + δt

d,agg ≤ 1 (3.17)

Constraint (3.14) defines Ps,agg and Pd,agg, the two positive variables resulting from an
overall surplus load curve or an overall deficit load curve, respectively, for the aggregated
households. Constraints (3.15) and (3.16) are enforced to meet the upper and lower
limitations on power exchanged from the households when the aggregated power are in
surplus or in deficit at each timestep t. Binary decision variables δt

s,agg and δt
d,agg indicate

whether the aggregated load curve is in surplus or in deficit. The constraint (3.17) should
be satisfied to make sure that the microgrid load curve in not in surplus and in deficit at
the same timestep.

Eqs. (3.14)–(3.17) are summarized as

l∑
h=1

αh xh + αagg xagg ≤ bagg (3.18)

with the individual household decision variables xh ∈ Rnh ∀h ∈ [1, l], defined in Eq. (3.13),
and

αh =

0H,n′
h

−IH IH 0H,2H

0H,n′
h

IH −IH 0H,2H

05H,nh

 (3.19)

where n′
h = nh − 4H is the dimension of

(
x>

h,1 x>
h,2 . . . x>

h,mh

)>
(see Eq. (3.13)), with

αagg =



I −I 0 0

−I I 0
...

I 0 −
∑l

h=1 Ph,maxI
...

−I 0 0 0
0 I 0 −

∑l
h=1 Ph,maxI

0 −I 0 0
0 0 I I


(3.20)
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and

xagg =


(P t

s,agg)t∈[1,H]
(P t

d,agg)t∈[1,H]
(δt

s,agg)t∈[1,H]
(δt

d,agg)t∈[1,H]

 , bagg =
(

06H

1

)
(3.21)

Battery operations

The operation constraints defined in the battery model in Section C.3.3 are summarized
as

Abat,op xbat ≤ bbat,op (3.22)

where the content of Abat,op and bbat,op are detailed in Eqs. (C.38) and (C.39) in Ap-
pendix C.3.3 and where xbat gathers the variables defining the behavior of the shared
battery and is defined as

xbat =



(P t
ba)t∈[1,H]

(P t
ab)t∈[1,H]

(P t
bg)t∈[1,H]

(P t
gb)t∈[1,H]

(δt
C)t∈[1,H]

(δt
D)t∈[1,H]

(Et
bat)t∈[1,H]


(3.23)

Pba is the power discharged from the battery to feed the aggregated agents demand, Pab
is the power surplus coming from the agents and charging the battery, Pbg is the power
discharged from the battery towards the outer grid, Pgb is the power imported from the
grid to charge the battery. δC and δD are binary variables identifying if the battery is
respectively charging or discharging, and Ebat is the stored energy.

Battery limitations and supply-demand balance

The microgrid EMS considers the limitations on the battery model variables and the
overall power balance, for all t:

0 ≤ P t
ba ≤ P t

d,agg (3.24)
0 ≤ P t

ab ≤ P t
s,agg (3.25)

0 ≤ P t
bg ≤ P t

mg (3.26)
0 ≤ P t

gb ≤ P t
gm (3.27)

P t
gm − P t

mg = P t
d,agg − P t

s,agg + P t
gb − P t

bg + P t
ab − P t

ba (3.28)

Constraints (3.24)-(3.27) define the power exchange between each layer of the oper-
ation, and their respective upper and lower limitations. The power discharged from the
battery to supply the aggregated households P t

ba cannot be greater than the aggregated
load curves deficit (3.24). The power production surplus from the aggregated households
has to be greater than the power exchange from the agents to the battery P t

ab (3.25).
Constraint (3.26) imposes that the power discharged from the battery towards the outer
grid P t

bg be not larger than P t
mg, the overall exported power from the microgrid to the

outer grid. Similarly, constraint (3.27) imposes that the charging power coming from the
outer grid to the battery P t

gb is not larger than P t
gm, the overall imported power from the

outer grid to supply the microgrid. Finally, constraint (3.28) is enforced to satisfy the
power balance in the system.
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Eqs. (3.24)–(3.27) defining the battery limitations and Eq. (3.28) defining the power
balance are summarized as:

Aagg xagg +Abat,lim xbat +Am xm ≤ bbat,lim (3.29)

with xagg defined in Eq. (3.21), xbat defined in Eq. (3.23), with

Aagg =



0 0
0 −I
0 0

−I 0
04H,2H

I −I
−I I

010H,2H


, Abat,lim =



−I 0 0 0

I 0
...

...

0 −I
...

...
... I 0

...
... 0 −I

...
...

... I 0
...

... 0 −I
0 0 0 I
I −I I −I

−I I −I I

010H,3H



(3.30)

and with

Am =



05H,2H

0 −I
0 0

−I 0
I −I

−I I


, xm =

(
(P t

gm)t∈[1,H]
(P t

mg)t∈[1,H]

)
, bbat,lim = 010H (3.31)

3.2.5 Microgrid objective function

The microgrid EMS objective depends on the legal and technical organization of the
operation. In principle, two main situations could be considered. If the shared battery
and microgrid EMS are installed by will of the residents, the objective of this EMS is to
minimize the collective cost of energy procurement. If the battery and EMS installation
are chosen and funded by the distribution system operator, the objective of the EMS will
more likely be to minimize the volume of imported and exported energy. In this second
situation, the objective has to be balanced with the minimization of the deviation between
the energy bill when participating to this operation and non participating in it, for each
household. With non-constant price rates throughout the day, these two objectives might
not coincide, and might even be contradictory.

The first configuration is considered in the remainder of this chapter: the microgrid
EMS objective is to minimize the cost of collective energy procurement:

min
H∑

t=1

(
ct

dP
t
gm − ct

sP
t
mg

)
∆t (3.32)

with ∆t the timestep length, P t
gm the power imports from the outer grid to the microgrid

at timestep t, P t
mg the power exports from the microgrid to the outer grid at timestep t,

ct
d the cost for deficit energy bought from the outer grid at timestep t, and ct

s the cost for
surplus energy sold by the microgrid to the main grid at timestep t.
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3.2.6 Microgrid optimization problem

The microgrid EMS minimizes the whole microgrid electricity bill defined in Eq. (3.32)
under operations constraints for every controllable appliances including the shared bat-
tery, power exchange limitations between each level, and supply-demand balancing at each
level and for each household.

According to the previous descriptions, the microgrid problem at stake can be formu-
lated as

Problem 3.1.

min c>x

s.t. Ax ≤ b
(3.33)

with the cost vector defined as

c =
(
0>

n1 . . . 0>
nl

0>
4H 0>

7H (ct
d)>

t∈[1,H]∆t −(ct
s)>

t∈[1,H]∆t
)>

(3.34)

and with the decision variables

x =
(
x>

1 x>
2 . . . x>

l x>
agg x>

bat x>
m

)>
(3.35)

in which each household decision variables vector xh,∀h ∈ [1, l] is defined in Eq. (3.13),
xagg is defined in Eq. (3.21), xbat is defined in Eq. (3.23), and xm is defined in Eq. (3.31).

The constraints matrix A, and right-hand side vector b are defined as

A =



A1 0 . . . 0

0 A2
. . . 0

... . . . . . . . . .

0 0 . . . Al

0

α1 α2 . . . αl αagg 07H,7H 07H,2H

0 0nbat,op,4H Abat,op 0nbat,op,2H

Aagg Abat,lim Am


, b =



b1
b2
...
bl

bagg
bbat,op
bbat,lim


(3.36)

in which ∀h ∈ [1, l], the matrix Ah corresponds to one household constraints matrix
defined in Eq. (3.13), αh is defined in Eq. (3.19), αagg is defined in Eq. (3.20), Abat,op is
defined in Eq. (C.39), Aagg is defined in Eq. (3.30), Abat,lim is defined in Eq. (3.30), Am
is defined in Eq. (3.31), and empty matrices 0 here have the adequate shape, in which
nbat,op = 7H + 3 + Hcrit,bat + 2(H − 1) is the number of lines of Abat,op, in which bh is
defined in Eq. (3.13), bagg is defined in Eq. (3.21), bbat,op is defined in Eq. (C.38), and
bbat,lim is defined in Eq. (3.31).

Notice that the same principle applies for the construction of both constraints ma-
trices at the household level (Eq. (3.13)) and at the microgrid level (Eq. (3.36)): these
constraints matrices consist of the constraints matrices of their individual constituents
plus the equations linking these elements into a broader composition. The formulation
of the microgrid optimization problem is thus an extension of the work presented in [Sou
et al., 2011], from the household level to the microgrid level.

Remark Numerical experiments were conducted using the optimization software “Py-
omo” [Hart et al., 2011] with solver “CPLEX” [IBM, 2020]. For some use-cases, the solver
is successful only when modeling equality constraints as double inequality constraints [Py-
omo Forum - Google groups, 2018]. This situation happened for the case-study at hand,
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hence the choice to model the equality constraint of Eqs. (3.8), (3.14) and (3.28) as double
inequality constraints in Eqs. (3.9), (3.18) and (3.29) respectively. Note that if the reso-
lution method used was an Interior Points method, this formulation would not have been
adequate as the intersection of the inequality constraints transformed into strict inequali-
ties would be empty.

Now that the theoretical framework of the whole microgrid optimization problem has
been described, its tractability conditions have to be examined. The next section explores
the complexity and data-burden of the microgrid optimization problem, while the following
highlights the benefit of the centralized approach on a small and solvable use-case.

3.3 Problem complexity

3.3.1 Time discretization

Each household of the microgrid can be equipped with several controllable appliances,
among which EWHs and EVs, notably. Comfort constraints for EVs usually correspond
to a target level of energy that has to be available in the morning for the daily rides.
electric water heaters (EWHs) comfort constraint can similarly apply in the morning, but
also in the evening, as hot water is required for cooking and bathing.

Having constraints in both the morning and the evening imposes that the time hori-
zon H be longer than one day. If the problem is solved in an iterative MPC manner,
with a receding horizon, having a time horizon long enough MPC enables to take these
constraints sufficiently in advance to improve performances. Typically, the time horizon
will correspond to 36 or 48 hours. [Serale et al., 2018] shows that the majority of energy
applications of MPC use time horizons of 24 hours, but some works consider longer time
horizons.

A timestep of 15 minutes will be considered, as is usually done in smart appliances and
smart grid applications. Note that this duration could profitably be shortened to 5 minutes
per slot for a more accurate control of white goods load curves, but this would further
increase the number of decision variables and the computational burden. [Sou et al., 2011]
showed that the time slot length has a significant impact on computation time, while
offering only a moderate improvement of the optimal solution. Indeed, in comparison with
a 3-minute timestep, scheduling three appliances with a 10-minute timestep divides by 55
the resolution time, but only decreases by 1 percentage point the maximal saving between
the worst case (energy bill maximization) and the best case (energy bill minimization).
They conclude that “this justifies the use of lower fidelity optimization models, so long as
the temporal constraints (e.g. process time bounds) are reasonably captured.”

3.3.2 Complexity calculation

According to the modelization proposed by [Sou et al., 2011] (presented in Section C.2),
one appliance of the white goods category modeled with H timesteps and J energy phases
requires

4J + 4HJ + 2(H − 1)J + 3H(J − 1) constraints (3.37)
3HJ variables (3.38)

The EWH and EV MILP modelizations, adapted from the framework proposed in [Sou
et al., 2011], are detailed in Section C.3 The EWH MILP modelization requires

4H + 2(H − 1) +Hcrit,ewh + 2 constraints (3.39)
3H variables (3.40)
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Chapter 3. MILP formulation for the microgrid energy bill optimization

where Hcrit,ewh is the number of critical timesteps for which a specified level of energy is
imposed for the hot-water stock. For instance, the hot-water consumption of an household
might require to have a high level of available hot-water at 7 a.m., at noon and at 7 p.m.:
this constraint would lead to Hcrit,ewh = 3.

The EV MILP modelization requires

7H + 3 +Hcrit,ev + 2(H − 1) constraints (3.41)
5H variables (3.42)

where Hcrit,ev is the number of critical timesteps for which a specified level of energy is
imposed for the EV battery (e.g. the battery must be full every morning for a round-trip).

To these number of variables have to be added the slack variables and constraints
necessary to describe the overall household behavior described in Eqs. (3.2)-(3.4) and
(3.8), which amounts to 7H constraints and 4H variables.

Given the J energy phases required to model any appliance of the white goods category,
the number of variables and equations required for their modelization is almost directly
affected by a factor J . Thus, the MILP modelization for an EWH and an EV are much
less cumbersome than the modelization of a white good modeled with a few energy phases,
which can reach prohibitive sizes.

To get a first idea on the problem complexity, the size of the constraints matrix mod-
eling each type of appliance are listed in Table 3.2. These results are direct computations
from Eqs. (3.37)-(3.42), with H = 96 timesteps (a classical 15-minute discretization of
a 24-hour day), with the specified number of energy phases J when applicable, and the
number of critical timesteps for which a specific level of energy has to be met set to
Hcrit,ewh = 2 for the EWH and to Hcrit,ev = 1 for the EV.

Table 3.2: The appliances model require very large sparse matrices

Appliance Number of
energy phases

Number of
constraints

Number of
variables

Share of
non-zero
elements

EWH \ 578 288 0.69 %
EV \ 866 480 0.41 %
Washing machine 7 5774 2016 0.13 %
Dryer 1 578 288 0.92 %
Dishwasher 5 4042 1440 0.18 %

The results listed in Table 3.2 show the high complexity of an optimization problem
that would be limited to even a few appliances. For instance, a house equipped with a
single controllable appliance of “dishwasher” type, modeled with J = 5 energy phases over
H = 96 timesteps corresponds to a constraints matrix of shape (4714, 1824)6, resulting
in 4714 × 1824 = 8 598 336 elements, which would require already a considerable amount
of memory (see Section 4.2.1 for more details on this). It shows as well the considerably
sparse nature of the constraints matrices used to model the smart appliances. This sparse
nature of the constraints matrix could suggest to use adequate methods allowing not to
store the high volume of null elements, which will be discussed in the next chapter.

Consider again the use-case outlined in Section 3.1.1. A total of five houses is consid-
ered, each equipped according to Table 3.3.

Taking into account only the white goods models (as they are the largest in number
of elements), the constraints matrix of the most-equipped house according to the use-
case described in Table 3.3 would require to store at least 27 000 non-zero elements. The

6Direct calculation from Eqs. (3.37)-(3.38), with addition of the household behavior equations described
using 7 × H constraints and 4 × H variables.
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House 1 House 2 House 3 House 4 House 5
PV arrays X X X X X
EMS X X X X X
EWH X X X X X
Washing machine X X X
Dryer X
Dishwasher X X
EV X X X

Table 3.3: Equipment of each of the microgrid households for the use-case detailed in
Section 3.1.1

resulting size of the microgrid problem is such that it might not be handled as is by the
solver. This limitation confirms the need of decentralized computing approaches, which
has already been recommended and is a current research topic in the demand response
literature [Vardakas et al., 2015, Howell et al., 2017].

The high complexity of even a single household optimization problem coincides with the
limitation observed in [Sou et al., 2011] regarding the resolution time of the formulated
optimization problem. The paper highlights the impossibility for CPLEX to solve the
problem with 10 appliances modeled with 6 phases and a 10-minute timestep. This use-
case results in 10 (5580, 2112) constraints matrices, hence a total of 117 849 600 elements
in the constraints matrices requiring 0.9 GiB as float24 data. The paper hence states
that this MILP modelization “does not admit scalable solution algorithms, and it should
be restricted to the case of a single household with a few appliances (e.g. less than
five).” Although CPLEX cannot find the optimal solution in a limited time for such large
problems, the paper details that CPLEX can manage to find a feasible solution for up to
20 appliances.

These elements indicate that the tractability of the proposed approach will depend
on the time resolution chosen, the level of detail of the load curves modelization (e.g.
the value of H and J), and the number of appliances. The precision of the time grid
discretization as well as the number of energy phases considered for the modelization of
the appliances in the white goods category have a major impact on the complexity of the
problem, but reducing these values would result in a coarser modelization and less realistic
results.

3.4 The cost of non-cooperation

Despite the limitations mentioned in the previous section, the interest of the proposed
approach persists for some cases where this complexity is limited. This section presents a
numerical example showing the extent of the gains attained.

Consider a simple microgrid composed of two individual houses (l = 2), of similar
composition and identical PV installations (and hence production). The first house owns a
controllable dishwasher, the second owns a controllable washing machine (see Appendix C
for the details of these models proposed by [Sou et al., 2011]). A battery is shared between
both houses.

The two households may decide to cooperate or not. The impact of this choice is now
explored.
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Chapter 3. MILP formulation for the microgrid energy bill optimization

3.4.1 Cooperative setting

If the two households cooperate, the microgrid EMS optimizes its energy bill by scheduling
all the controllable appliances of both households, and the shared battery operation.

The cooperative setting corresponds to solving Problem 3.1. Its output is denoted
BMG, the overall bill of the microgrid. The decision variable x is defined as in Eq. (3.35)
as the concatenation of x1, the vector of decision variables of household 1, x2 the one
of household 2, and xagg, xbat, xm the decision variables necessary for the description of
the aggregated household consumptions, of the battery operations, and of the microgrid
overall load curve.

3.4.2 Non-cooperative setting

In the non-cooperative setting on the other hand, the overall cost of supplying energy
to the microgrid is the sum of the energy bills of the individual households that have
optimized their own consumptions without supervision from the microgrid EMS, plus the
cost of optimal operation of the shared battery by the microgrid EMS.

First, each household EMS h controls its appliance under its overall constraints sum-
marized in Eq. (3.12), to minimize its household electricity bill, defined as

H∑
t=1

(
ct

dP
t
h,d − ct

sP
t
h,s

)
∆t (3.43)

with ct
d the cost for deficit energy bought from the microgrid at timestep t, and ct

s the cost
for surplus energy sold from the household to the microgrid at timestep t.

The optimization problem of household h ∈ 1, 2 is summarized as

Bh = min c>
h xh (3.44)

s.t. Ah xh ≤ bh

with
ch =

(
0>

n′
h

−(ct
s)>

t∈[1,H]∆t (ct
d)>

t∈[1,H]∆t 0>
4H

)>
(3.45)

and x?
1 and x?

2 denote the respective corresponding solutions.
Then, in this non-cooperative configuration, once each household has computed its

optimal appliances schedule (x?
1 and x?

2), the microgrid EMS collects these solutions and
schedules the shared battery operation according to its operational and limit constraints.

It is assumed that the energy prices when buying and selling, (ct
d)t∈[1,H] and (ct

s)t∈[1,H],
are the same for both households, and are the same as the ones imposed by the main grid
to the microgrid. Hence, the microgrid EMS operates the shared battery and transfers the
main grid energy prices without generating a profit for itself. The microgrid EMS solely
acts as a support to the microgrid participants, and the cost of operating the battery has
to be divided among the participants7.

In this configuration, the microgrid EMS only controls the battery and considers x?
1

and x?
2 as inputs instead of decision variables. Thus, the aggregated households behavior

in Eq. (3.18) is rewritten with l = 2 households into

αagg xagg ≤ bagg − α1 x
?
1 − α2 x

?
2 (3.46)

The optimization problem of the microgrid EMS is finally

Bbat = min
xagg,xbat,xm

H∑
t=1

(
ct

dP
t
gm − ct

sP
t
mg

)
∆t− c>

1 x
?
1 − c>

2 x
?
2

s.t. (3.22), (3.29), (3.46)
(3.47)

7Another option could have been for the microgrid EMS to act as an independent entity and try to
maximize its profits by adding a margin to the prices from the main grid – this is not the case here.
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3.4. The cost of non-cooperation

with xagg, xbat and xm respectively defined in Eqs. (3.21), (3.23), (3.31). When positive,
Bbat is the additional cost incurred for operating the battery. When negative, Bbat is the
profit generated by the battery operation. In either case, this amount has to be distributed
among the agents, and is added to the individual agents energy bills B1 and B2 to calculate
the overall energy cost.

Ultimately, the overall energy cost for the microgrid in the non-cooperative setting is
the sum B1 +B2 +Bbat.

3.4.3 Cost comparison

The cost of non-cooperation corresponds to the difference between the overall energy cost
of the two configurations, which can be written using the previous notations as:

B1 +B2 +Bbat −BMG (3.48)

In this example, the microgrid is located near Fontainebleau, in the French region of Ile-
de-France. The considered shared battery capacity is C = 8 kWh. The price of electricity
considered is the current Peak/Off-Peak retail tariff from EDF, the major French utility:
18.2 ce/kWh (Peak) and 13.6 ce/kWh (Off-Peak). The subsidy for PV surplus upstream
injection is the current flat rate for small domestic installations, fixed by French regulation:
10 ce/kWh. In this example, these prices are considered for the power exchanges between
the households and the microgrid, as well as between the microgrid and the external main
grid. Both individual houses are assumed to be equipped with the same 3 kWp PV panels,
having the same orientation and exposure, thus exactly the same production. The PV
production considered here corresponds to a uniformly cloudy day. The prices as well as
the PV production are represented in Figure 3.3.
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Figure 3.3: Examples of electricity purchase and feed-in tariffs, and PV production of each
household for a late winter day. 15-minute timesteps.

The non-controllable power consumption of each household is represented in Figure 3.4.
The non-controllable power consumption data is taken from the public “Individual house-
hold electric power consumption” dataset [UCI Machine Learning Repository, 2012] con-
taining 47 months of power measurements at a one-minute timestep, from a house located
in Sceaux, in the French region of Ile-de-France. Among the measurements are the house-
hold total power consumption as well as sub-meterings corresponding to the kitchen, the
laundry-room, and the EWH. This allows to select, as the non-controllable load curve for
the first household equipped with a controllable dishwasher, the total household power
consumption minus the metered load curve of the kitchen. Similarly, the non-controllable
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Figure 3.4: Examples of the non-controllable power consumptions for a day.

load curve for the second household equipped with a controllable dishwasher corresponds
to the total household power consumption minus the consumptions from the laundry room.
The data is re-sampled at a 15-minute timestep.

The addition of the PV production and the non-controllable power consumptions yield
a PV surplus production curve available for the controllable appliances to use. The avail-
able PV surplus of each household is displayed in Figure 3.5. The benefit of cooperation
will come from the concerted use of the shared battery, but also from the pooling of these
PV production surpluses.
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Figure 3.5: The PV production surplus of the each household is available for self-
consumption.

Here, the local PV production is supposedly known in advance for both optimization
cases. Figure 3.6 reports the load curves or the controllable appliances resulting from
optimal scheduling in the two different settings8. The upper two figures of Figure 3.6

8Notice that the appliances load curves displayed in Figure 3.6 can slightly differ from one configuration
to the other, as the MILP formulation of the controllable appliances constraints allows for some flexibility
in how is allotted the energy required for each energy phase.
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Figure 3.6: Resulting schedule without cooperation (upper two figures) and with cooper-
ation (bottom figure).
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correspond to the non-cooperative case, where each household EMS chooses the optimal
scheduling of their own appliance, x?

1 and x?
2 respectively, according to the supply elec-

tricity price and to their own PV production and uncontrolled consumption. Both the
dishwasher of the first household and the washing machine of the second household are
scheduled at the same time when the cost of electricity is low, because their individual
PV surplus is two small for self-consumption to be profitable. The individual costs B1
and B2 correspond to these load curves. After each household has chosen its appliance
schedule and has transmitted its resulting overall load curve to the microgrid EMS, the
battery schedule is chosen leading to the cost Bbat.

The resulting overall cost for one day in the non-cooperative case is

B1 +B2 +Bbat = 5.7996e (3.49)

The lower figure of Figure 3.6, on the contrary, corresponds to the cooperative case,
where the microgrid EMS collects all the information needed to optimally control both ap-
pliances and the shared battery, with the objective of minimizing the total microgrid elec-
tricity bill BMG. In the cooperative configuration, the microgrid EMS pools the available
PV surpluses, thus allowing self-consumption, and schedules the appliances successively,
thus smoothing the overall load.

For this single day, the resulting cost of the microgrid optimization problem is

BMG = 5.7004e (3.50)

Hence a cooperation scheme can lead to save up to 1.7 % on the energy cost in this two
households case. A more in-depth economical evaluation of this cost of non-cooperation,
with respect to a set of hypothesis (on the number of potential microgrids, on their size
and composition, on the household profiles, on the prices of energy) was not the subject
of the present work, but would be a valuable addition. As the non-cooperative setting
already includes some partial cooperation through the use of a shared battery operated
with the aim of minimizing the collective cost of energy, the relative gain is quite limited.
Yet, other studies available in the literature have shown that the relative gain would be
larger if individual batteries where operated for the interest of individual households in
the non-cooperative setting [Parisio et al., 2017], or if energy storage was not present at all
in both settings [Carli and Dotoli, 2019]. A consideration of the broader cost structure of
electricity, including upstream and local grid costs, leads to increased savings attained by
the cooperative setting [Hupez et al., 2021]. It can be reasonably expected that a larger
degree of freedom, i.e. additional controllable appliances, would increase the attained
savings. This cost difference generates the interest for a cooperation protocol yielding the
optimal appliances schedule for the microgrid optimization problem.

For more details on the two optimization results, Figure 3.7 presents the aggregated
agents load curve, the battery schedule and the microgrid imports and exports from the
outer grid, for each configuration. Extra steps would be required to define the individual
power bills of both households, as discussed in Section 5.2.

3.5 Conclusion
This chapter has detailed how the microgrid appliances scheduling optimization problem
can be formulated as a MILP, and is composed of the elements of the participant house-
holds’ own optimization problems. Major computational and memory limitations of this
approach have been highlighted, but the benefit of this approach has been proven on a
small example, where a 1.7 % cost reduction is attained thanks to the cooperative na-
ture of the microgrid optimization. It could be larger when the number of participants is
increased.
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However the cooperative approach generates privacy-protection concerns, as the energy
demand of a household contains personal information that agents might not want to
disclose to neighbors nor to a third party entity. It seems especially important that the
exchanged data for the collaboration scheme does not allow to infer personal details such
as wealth, habits, equipment, daily routine, number of occupants.

Hence, while solving the microgrid problem is the optimal collaboration scheme for
an energy community, collecting all the information necessary to formulate it requires to
build a privacy-preserving communication protocol in order to hide which consumption
detail corresponds to which agent.

The next chapter will try and detail a method allowing to transmit the required infor-
mation from the household EMSs to the microgrid EMS, with the imperative of hiding the
private data of a participant to its neighbors, and the identity of the participant owning
the data transmitted to the microgrid.
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Chapter 4

Privacy-preserving cooperation

Protocoles de communication au sein d’un micro-réseau avec protection des
données personnelles. Ce chapitre aborde la question de la coopération au sein d’un
micro-réseau avec protection de l’anonymat des agents. En s’inspirant de techniques bien
connues de cryptographie, trois protocoles sont proposés pour communiquer les contraintes
des gestionnaires d’énergie des habitations jusqu’à celui du micro-réseau. Ces protocoles
permettent ainsi de formuler le problème d’optimisation centralisé présenté au chapitre
précédent, tout en garantissant l’anonymat des données échangées. Le temps de calcul ad-
ditionnel nécessaire à chacune de ces trois méthodes est comparé sur un cas d’étude simple
à deux habitations et deux usages pilotés. Certaines questions ouvertes par l’anonymisa-
tion des participations au sein d’un micro-réseau sont listées.

4.1 Introduction

In the previous chapter, the construction of an energy optimization problem encompass-
ing all the households controllable power consumptions at the microgrid level has been
described. Despite the mentioned computational complexity limitations, the interest of
the approach on a small scale use-case has been demonstrated.

Implicitly, all data were shared between participants of the grid, and for this reason
one can consider that the microgrid EMS had on omniscient view of the situation. In
mode details, in its present form, the construction of such an omniscient optimization
problem requires for the microgrid energy management system (EMS) to collect all data
and, in particular, to have knowledge of sensitive information such as the number and
type of appliances owned by an household or the time preferences for their operation.

To comply with the privacy protection aspirations and legal requirements on privacy
preservation, the challenge of the present chapter is to anonymously transmit the necessary
information from the participants to the microgrid EMS in order to formulate a problem
equivalent to the omniscient one for reaching the same solution. This property is referred
to as “privacy preservation”.

4.1.1 A brief review on decentralized cooperation in microgrids

Decentralized optimization approaches can have the benefit of keeping the agents con-
straints private and letting them perform their own optimization. However such methods
were not chosen for the use-case at hand for reasons detailed in the following paragraphs.
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Decentralized cooperation in microgrids through game theory approaches

As the cost of energy for one agent in a microgrid can depend on its neighbors decisions
as well as its own, the problem of optimizing one’s energy bill for an agent in a microgrid
can be stated in the framework of game theory. Regarding the privacy of personal data,
game-theoretic methods have the benefit of operating in a decentralized manner: each
agent can keep its constraints private and perform its own optimization, depending on
the cost provided by the microgrid EMS, and the behavior of other agents. Furthermore,
these decentralized approaches can scale up to large systems.

In [Jacquot et al., 2018], the demand response framework applied to a microgrid and
the associated hourly billing mechanism is formulated under the form of a game. The
mechanism is proved to converge to a Nash equilibrium after a limited number of iterations.
The final privacy step would be to anonymize the communication of an agent’s optimal
load curve at the end of an iteration to the central operator. This chapter will present
useful tools to perform this additional privacy requirement.

In [Xie et al., 2020], a local energy market is described as a game with buyer and seller
coalitions. Secure multiparty computation and encryption protocols are used to preserve
the agent’s private data. The optimal trading price between both coalitions is computed
for each minute and the method is scalable.

In general, the Nash Equilibrium of game-theoretic methods does not achieve collective
optimality1. Similarly as for the algorithm developed in Chapter 1, the aim is to reach
the optimal organization. This is why this manuscript focuses on methods from control
theory rather than game theory.

Decentralized cooperation in microgrids through control approaches

[Paridari et al., 2015] proposes a decentralized computation of the optimal load curve of
the agents in a microgrid, in cooperation thanks to a central operator communicating a
target signal to each agent.

Similarly, in [Jacquot et al., 2019] the agents respond to a target signal to optimize
their own load curve in a decentralized manner, but the data required for the aggregator
problem formulation is collected through secure multiparty computation, thus protecting
the agents’ private data. In this paper, the cooperation between the microgrid consumers
results from the proposed “Alternate Projections Method”, and the preservation of privacy
comes from the “Secure Multiparty Computation of Aggregate” method. The convex
nature of the admissible set of consumption profiles of each agent allows to perform the
projection of the power production distribution desired by the central operator onto theses
admissible sets.

In the problem at hand in this manuscript, the detailed modeling of electrical appli-
ances such as white goods, electric water heaters (EWHs) and Electric Vehicles (EVs) is
included. It creates non-convex admissible sets for the load curves of the microgrid agents.
Thus the non-convexity of the admissible sets of consumption profiles considered here for-
bids to apply the methods proposed in [Jacquot et al., 2019], but some common methods
will be reused such as the “Secure Multiparty Computation of Aggregate” of this paper
that corresponds to the “Secure Sum” algorithm from [Yao, 1986] which is presented in
the next section.

The approach chosen here to create cooperation among the microgrid participants is
to anonymously communicate all the data necessary to control the agents’ controllable

1Note that some Nash equilibria can be proven to reach the collective optimum, or to have a bounded
price of anarchy (as in [Jacquot et al., 2018]), which is the ratio of the optimum collective cost of the
system and the collective cost of the worst Nash Equilibrium, providing a measure of the efficiency of a
mechanism in game theory.
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appliances to the microgrid EMS, responsible for formulating and solving the microgrid
optimization problem.

4.1.2 Problem definition

The challenge considered in this chapter is to formulate an optimization problem yielding
the same solutions as the omniscient problem of a microgrid, while hiding the correspon-
dence between a participating household and its private information.

The omniscient problem, as defined in Problem 3.1, is

Problem 4.1. [Problem 3.1, Omniscient problem]

min
(
0>

n1 . . . 0>
nl

c>
)>

x

s.t. Ax ≤ b
(4.1)

where the decision variable x is defined in Eq. (3.35) as

x =
(
x>

1 x>
2 . . . x>

l x>
agg x>

bat x>
m

)>
(4.2)

and the cost vector from Eq. (3.34) is simplified into

c =
(
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4H 0>
7H (ct

d)>
t∈[1,H]∆t −(ct

s)>
t∈[1,H]∆t

)>
(4.3)

with cd and cs the costs for deficit energy bought from or surplus energy sold to the outer
grid at timestep t, ∆t the timestep length, and the constraints matrix A and the right-hand
side vector b are defined in Eq. (3.36) as

A =



A1 0 . . . 0

0 A2
. . . 0

... . . . . . . . . .

0 0 . . . Al

0

α1 α2 . . . αl αagg 07H,7H 07H,2H

0 0nbat,op,4H Abat,op 0nbat,op,2H

Aagg Abat,lim Am


, b =



b1
b2
...
bl

bagg
bbat,op
bbat,lim


(4.4)

in which the various matrices and dimensions are defined in Problem 3.1.
The private information owned by the households and necessary for the problem for-

mulation and resolution is composed of a constraints matrix Ah and a right-hand side
vector bh for each household h ∈ [1, l] (see Eq. (3.36)).

Assume that the households decision variables are standardized (which will be consid-
ered in the remainder of this chapter, and detailed in the following section). Then the
households decision variables xh all have the same structure and dimension nh = n, ∀h ∈
[1, l], and the matrices αh, h ∈ [1, l] (described in Eq. (3.19)) are all equal and simply
denoted α ∈ R7H,n.

Under this assumption, one can reformulate Problem 4.1 as follows

Problem 4.2. [Problem 4.1 reformulated]
Solve, for x =

(
x>

1 , . . . , x
>
l , y

>
)>

,

min
x
c>y

s.t.


Ah xh ≤ bh, h = 1, . . . , l

αsys

l∑
h=1

xh +Asys y ≤ bsys

(4.5)
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with

αsys =
(

α
0nbat,op+10H, n

)
, Asys =

 αagg 07H,7H 07H,2H

0nbat,op,4H Abat,op 0nbat,op,2H

Aagg Abat,lim Am

 , bsys =

 bagg
bbat,op
bbat,lim


(4.6)

Notice that this problem is invariant by permutation of the decision variables xh. More
precisely, consider the following problem:

Problem 4.3. For a given permutation σ of [1, …, l] and for x =
(
x>

σ(1), . . . , x
>
σ(l), y

>
)>

,

min
x
c>y

s.t.


Aσ(h) xσ(h) ≤ bσ(h), h = 1, . . . , l

αsys

l∑
h=1

xσ(h) +Asys y ≤ bsys

(4.7)

with αsys, Asys and bsys defined in Eq. (4.6).
Problems 4.2 and 4.3 are trivially equivalent. Thus, for the microgrid EMS to solve

Problem 4.2, it is sufficient to know Ah and bh, h = 1, . . . , l up to a given permutation
(notice that the variables y and the matrices αsys, Asys, bsys concern general specifications
of the microgrid and are thus known by the microgrid EMS). This inspired the core of the
privacy-preserving methodologies proposed in this chapter. Note that it is not necessary
to know σ to solve Problem 4.3.

4.1.3 Content

In this chapter, three approaches are considered to ensure identity protection when build-
ing the microgrid optimization problem of a microgrid. The first approach, Protocol A
(Section 4.3), is to follow an encrypted communication protocol that allows each agent
to securely send information to the microgrid EMS, and to provide a masked return ad-
dress for the microgrid EMS to use. The latter can then communicate the result of the
optimization back to the agent, without knowing which agent is addressed. The data
are impossible to read and the identities remain unknown. This first approach could be
expected to be the most costly one in terms of computing times, due to the encryption of
all the information, but allows to keep the result of the optimization secret. The method
uses the encrypted communication protocol presented in [Chaum, 1981].

The second approach, Protocol B1 (Section 4.4.2), is to anonymously assign a unique
identifier (ID) to each participant in the microgrid, in such a way that neither an agent nor
the microgrid EMS can know the ID of the appliances of its neighbors. The association
of the households with the set of IDs forms the permutation σ involved in the microgrid
optimization problem 4.3, which can be solved by the microgrid EMS. The result of the
microgrid problem (or an encrypted version of it, potentially) is then openly broadcast.
All the tools necessary to perform this protocol are presented in [Dunning and Kresman,
2013] and recalled here in Section 4.4.1 for clarity.

Finally, a variant of the previous approach is proposed in Protocol B2 (Section 4.4.2).
It applies the same unique ID assignment and secure multiparty computation, this time
to transmit both private data and public encryption keys from the agents to the micro-
grid EMS. This allows to keep private the solution vector of each agent returned by the
microgrid EMS.

In any case, once the information is collected through one of the proposed privacy-
preserving communication protocols, the microgrid EMS is responsible for solving the
microgrid optimization problem 4.3, including choosing the charging and discharging cycles
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of the battery with the aim of minimizing the supply cost of energy of the overall microgrid,
and is finally responsible for sending the results to the agents.

Before the communication schemes are presented, the next section details the sparse
data compression that can be performed to save significant volumes of data transmission
and consequently save significant amounts of computational burden in the protocols.

4.2 Data formats

Notice that the obviously sparse nature of the agents’ constraints matrices Ah (see defini-
tion (3.13)) and their large dimensions invite to use adequate algorithms for their transfer
from the agents to the microgrid EMS and thus save a non-negligible amount of time.

Either a sparse data transfer or a standardized data structure can be adopted. This is
exposed below.

4.2.1 Sparse data communication

Sparse matrix transfer consists in communicating three elements (value, row index, column
index) per non-zero element, instead of communicating all the elements of the matrix.
The non-communicated elements are considered to be null by default (see e.g. [Golub and
Van Loan, 2013]).

The interest of such simple data compression is made clear with a simple example.
As mentioned in the previous chapter (Section 3.3), a house equipped with a single
controllable appliance of “dishwasher” type, modeled with J = 5 energy phases2 over
H = 96 timesteps (a classical 15-minute discretization of a 24-hour day) ends up with
4714×1824 = 8 598 336 elements. Only 11 783 of these elements are non-zeros (0.14 %). For
memory use reduction, it is considered that non-zero elements are stored under the half-
precision floating-point format where each element is stored using 2 bytes (B), i.e. 16 bits
(instead of using the double-precision floating-point format intended for larger float vari-
ables and requiring 8 bytes). It is also considered that rows and columns indices are stores
as 16-bit unsigned integers for the same reason. Thus, transmitting this matrix as a sparse
matrix made results in exchanging 3 elements (value, row and column indices) of 2 bytes for
each of the 11783 non-zero values, thus exchanging 11 783 × 3 × 2 = 70 698 B ' 0.07 MiB,
whereas transmitting the whole matrix would correspond to transmitting approximately
16 MiB (the Mi binary prefix denotes 220 B), which is impracticable.

4.2.2 Data standardization

As each household can be composed of any combination of smart appliances (see for
instance Table 3.3), each household constraints matrix Ah can be of different size and
composition. Using the sparse data communication method, as discussed in the previous
section, thus requires to exchange the location (row and column indices) of all non-zero
values to exchange a matrix.

On the other hand, a standard composition can be assumed for all households, leading
to a standard structure for the constraints matrices. The standard structure being known
to all participants in the microgrid, only the values of the elements of interest have to
be transmitted, instead of sending also the row and column indices. A value of interest
corresponds to an element in the matrices that is not structurally null. This group of
values encompasses the above-mentioned non-zero elements, but is not restricted to it, as
some zeros will be variables that could have been non-null.

2An energy phase is an uninterruptible sub-task of the operation of an appliance in the white goods
category, which uses a pre-specified amount of electric energy, see Section C.2 for more details.
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In this scheme, the number of elements whose values are transmitted is higher, due
to the communicated zeros, but the size of data transmitted for each non-zero value is
divided by 3 in comparison with the sparse data communication scheme, thanks to the
rows and columns indices not communicated.

This approach requires some assumptions to be validated:

• each household constraints matrix has to host a standardized list of appliances con-
straints matrices, e.g. one EWH, one EV, one of every type of white goods, in a
specific order. If a household does not own a specific appliance, the corresponding
matrix block has to be left entirely null and transmitted as such, and cannot be
removed.

• the content of the appliances model constraints matrices Ahi has to be standardized:
each appliance i has to use the standard structure of its type (one structure for each
type of the white goods category, one structure for the EWHs, one structure for the
EVs), with a specified number of energy phases if applicable, and a standardized
order in the decision variables.

• all the household EMSs and the microgrid EMS agree on this overall structure.

These standardization requirements ensure that each household constraints matrix follows
the same structure, is composed of the same blocks defining the appliances, with key
variables located in the same spots3.

As defined in Eq. (3.13), each household constraints matrix Ah is composed of stan-
dardized blocks of appliances Ah,i, of common behavior blocks αh,def, αh,i and αh,join,
and of large empty blocks, with i ∈ [1,mh] and h ∈ [1, l]. The standardization en-
ables to communicate only the values of the variables of interest (not structurally ze-
ros) of each of these blocks, written in vectors denoted Ah,i, αh,def, αh,i and αh,join, with
i ∈ [1,mh] and h ∈ [1, l].

These vectors of the non-null elements of the blocks composing Ah are concatenated
in a large vector, named the compressed vector

Ah =
(
A

>
h,1 A

>
h,2 . . . A

>
h,mh

α>
h,def α>

h,1 α>
h,2 . . . α>

h,mh
α>

h,join

)>
(4.8)

The length of this standardized compressed vector is noted n. For reference, considering
that the minimal standard corresponds to a household composed of one EWH, one EV, one
dishwasher, one washing-machine and one dryer, the length of Ah would be n = 34 660.

The data standardization defines unambiguously to which appliance corresponds a
given block of variables in Ah, and which element in the original block matrix corresponds
to the communicated variable of interest. Accordingly, these standardization rules yield a
vector bh,∀h ∈ [1, l] containing the ordered and variables of interest of each of the block
vectors composing bh, h = 1, . . . , l. The length of this standardized compressed vector is
noted m.

The data standardization also establishes the order and type of the decision variables.
The microgrid EMS is thus able to formulate and solve the problem.

The obvious drawback of this method is that the standardization requires to transmit
an important number of potentially null values: if a household is only equipped with one
appliance, it still has to transmit a significant amount of zeros for the elements of interest
of the matrices of the other appliances4.

3The standardization requires that each type of white goods is modeled using a number of energy phases
corresponding to the worst case of their potential operations. If the appliance is used in a way that requires
less energy phases, the remaining elements of the unnecessary energy phases can be left empty.

4To avoid transmitting too much unnecessary values, it is important to define a minimal standard. For
example, if no participant owns a dishwasher, then the standard constraints matrix of a dishwasher and
its elements of interest does not have to be considered in the standard household matrices.
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The computational burden of the communication methods presented in the two fol-
lowing sections is impacted by the size of the data transmitted. For this reason, it is
considered that all these methods are conducted using the compressed vectors Ah and bh,
for h = 1, . . . , l, containing the variables of interest of the constraints matrices Ah and
right-hand side vectors bh.

Now are detailed three methods that could be used to ensure identity protection when
transmitting the necessary information from the participants to the microgrid EMS.

4.3 Encryption-based communication (Protocol A)

The first approach presented in this section is based on encrypted communication proto-
cols. [Chaum, 1981] provides the tools to hide the identity of an agent (in the present
case, a house) sending encrypted data to a central operator (in the present case, the mi-
crogrid EMS), and to return the result of the optimization problem to the corresponding
agent without the central operator knowing its identity. This paper is the main source of
inspiration in this section.

4.3.1 Definitions

First of all, the whole data of an agent h in its compressed version (see Section 4.2.2),
comprised of its constraints matrix Ah and its right-hand side vector bh, is denoted Dh.

On one hand, as defined in [Chaum, 1981], a public key cryptosystem uses a pair of
keys K and Inv(K). “The public key K is made known to the other users or anyone else
who cares to know it; the private key Inv(K) is never divulged.” The encryption of a
message X with key K is denoted K(X), and the keys are inverses in the sense that

Inv(K)(K(X)) = K(Inv(K)(X)) = X (4.9)

This public/private key pair is also named “asymmetric”. On the other hand, a “symmet-
ric” encryption key K is a key that is its own inverse:

K(K(X)) = X (4.10)

In order to forbid a listener to guess that two messages are equal (Y = X) by checking
whether their encryption is the same (K(Y ) = K(X)), a large string of random bits R is
attached to X before encrypting. The encrypted message is then denoted K(R,X).

The cryptosystem includes two additional intermediary “Bots” that will process each
message sent before it is delivered.

The purpose of the Bot of type 1 is to hide the correspondences between the items in
its input and those in its output, because it hides the order of arrival by outputting the
items in batches. Thus a listener cannot know which message received by the microgrid
EMS comes from what agent. It performs the following transformation for a message sent
from an agent to the microgrid EMS:

Km1(R1,KMG(R0, D),MMG) → KMG(R0, D),MMG (4.11)

where Km1 is the first Bot public key, KMG is the microgrid EMS public key, KMG(R0, D)
is the encrypted message containing the data D, MMG is the microgrid EMS address in the
local communication network, and R0 and R1 are two random strings. The Bot decrypts
its input with its private key, throws away the random string R1, outputs the remainder,
and finally forwards the sealed messages KMG(R0, D) of the output to MMG the address
of the microgrid EMS who then decrypts the message with their own private key.
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The second category of Bot allows the microgrid EMS to respond to the agent while
still keeping the identity of the agent secret from the microgrid EMS. The solution is
for the agent to form an untraceable return address Km2(R2,Mh) hiding its real address
Mh. Here, R2 is another key that will also act as a random string for blurring. The
masked return address can be sent from the agent to the microgrid EMS as part of the
first message.

The second kind of Bot performs this transformation of the input created by the
microgrid EMS:

Km2(R2,Mh),Kh(R3, x
?
h) → Mh,R2(Kh(R3, x

?
h)). (4.12)

where Km2 is the second Bot public key, R2 and R3 are two random strings, Kh is the agent
public key, and x?

h is the part of the solution of the optimization problem that involves the
agent control variables. This Bot uses the string of bits R2 that it finds after decrypting
the address part Km2(R2,Mh) as a key to re-encrypt the message part Kh(R3, x

?
h). Only

the addressee h can decrypt the resulting output because h created both R2 and Kh.
Both these Bots are used as intermediary for the messages transmission system, pro-

viding additional protection.
The concepts presented in this section are combined into a communication protocol

adapted to the problem at hand.

4.3.2 Encrypted communication protocol

Mh denotes the real address of agent h in the local communication network, and Kh denotes
the symmetric encryption key it generates. The asymmetric pair of public/private keys
generated by an entity e is noted Ke,K’e.

Below are enumerated the successive steps of the proposed encrypted communication
protocol. Table 4.1 lists the acquired knowledge by each entity at each step. This protocol
is simply referred to as Protocol A thereafter.

0. Agent h knows its real address Mh, its symmetric encryption key Kh, its whole data
Dh = (Ah, bh), three random strings R0, R1 and R2. The type 1 Bot knows its
public/private keys pair Km1, K’m1. The type 2 Bot knows its public/private keys
pair Km2, K’m2. The microgrid EMS knows its address MMG, its public/private keys
pair KMG, K’MG, and a random string R3.

1. Both Bots as well as the microgrid EMS broadcast their public keys to every partic-
ipant. The microgrid EMS also broadcasts its address.

2. Agent h formulates the message to send including its data Dh, its masked return ad-
dress Km2(R2,Mh) and its symmetrical encryption key Kh. Encrypted, the message
sent is

Km1(R0,KMG(R1, [Dh,Km2(R2,Mh),Kh]),MMG) (4.13)

3. The type 1 Bot receives the message, decrypts it according to the transformation in
Eq. (4.11) with its private key K’m1, identifies the elements, and sends the content

KMG(R1, [Dh,Km2(R2,Mh),Kh]) (4.14)

to the address MMG of the microgrid EMS.
4. The microgrid EMS receives the message, decrypts it with its private key K’MG, and

identifies the elements.
5. The microgrid EMS solves the microgrid optimization problem, Problem 4.2 using

the information of every agent plus the information of the shared battery and obtains
the optimal solution

(
x?>, y?>

)>
.

90



4.3. Encryption-based communication (Protocol A)

6. The microgrid EMS formulates the message

Km2(R2,Mh),Kh(R3, x
?
h) (4.15)

in order to send x?
h, the agent’s share of the solution, in a message encrypted with

the agent symmetrical encryption key Kh to the type 2 Bot, addressed to the agent
masked return address Km2(R2,Mh).

7. The type 2 Bot receives the message, decrypts the first part according to the trans-
formation in Eq. (4.12) with its private key K’m2, identifies the elements, and sends
the doubly encrypted message

R2(Kh(R3, x
?
h)) (4.16)

to the real address Mh of agent h.
8. The agent decrypts the doubly encrypted message using the two symmetrical keys

R2 and Kh which it is the only one to know, and finally reads x?
h.

Step Agent h EMS Type 1 Bot Type 2 Bot Microgrid EMS
0 Mh, Kh, Dh, R0,

R1, R/K2

Km1, K’m1 Km2, K’m2 MMG, KMG, K’MG, R3

1 Km1, Km2, KMG,
MMG

- - Km1, Km2

3 - KMG(R1, [Dh,Km2(R2,Mh),Kh]),
MMG, R0

- -

4 - - - Dh, h = 1, . . . , l, Km2(R2,Mh), Kh, R1
5 - - - x?

h, h = 1, . . . , l
7 - - R2, Mh, Kh(R3, x

?
h) -

8 x?
h - - -

Table 4.1: Newly acquired knowledge after each step of the communication protocol

This communication protocol can be employed using the GNU Privacy Guard (GnuPG).
It is a complete and free implementation of the OpenPGP standard, also known as PGP.
As explained in [GnuPG, 2021], “GnuPG allows you to encrypt and sign your data and
communications; it features a versatile key management system, along with access modules
for all kinds of public key directories.” The python-gnupg module allows Python programs
to make use of the functionality provided by GnuPG [Sajip, 2021]. Figure 4.1 presents the
principle of PGP encryption. Figure 4.2 presents the principle of PGP decryption. Note

Figure 4.1: Encryption principle of PGP [Zimmermann, 1995] (illustration from
[Wikipedia, 2021]).

that a symmetric session key is generated in order to encrypt the actual data, whereas
the receiver’s public key is only used to encrypt the session key itself. This is due to
the limited size of messages encrypted by RSA, the higher efficiency for multi-recipient
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Figure 4.2: Decryption principle of PGP [Zimmermann, 1995] (illustration from
[Wikipedia, 2021]).

data exchange, the data-enlargment of RSA encryption, and the slower speed of RSA
encryption (see [Information Security Stack Exchange, 2012]).

Importantly, the procedure proposed here allows to keep secret the optimal schedule
of the appliances of each agent from all other agents.

4.4 Anonymous ID - based communication (Protocols B1
and B2)

The second approach now presented in this section is based on anonymous identifier as-
signment and secure multiparty computation.

4.4.1 Algorithmic tools

The cornerstone of the methods presented in this section is to assign an anonymous ID to
each agent participating in the microgrid, in the form of a unique integer. The ID can then
be used to coordinate the anonymous information exchange. In the end, the association of
the households with the set of IDs forms the permutation σ involved in the Problem 4.3,
which can be solved by the microgrid EMS to reach the same solution as the omniscient
problem, as it is equivalent to Problem 4.2, as discussed previously.

[Dunning and Kresman, 2013] is the main source of inspiration for the privacy-preserving
communication protocol considered in this section. The article presents the “Find Anony-
mous ID Assignment (AIDA)” algorithm reproduced here for convenience (see Algo-
rithm 4.4), used to perform the unique ID assignment anonymously, as desired. It is
based on two other algorithms, Algorithms 4.1 and 4.3 which are first detailed. Follow-
ing this article, it is assumed that all agents in the microgrid are semi-honest, a concept
also known as honest-but-curious, in which each agent can be described as “a legitimate
participant in a communication protocol who will not deviate from the defined protocol
but will attempt to learn all possible information from legitimately received messages.”
[Paverd and Martin, 2014]. This property implies that protective measures are not needed
to counter malevolent behaviors, and that the protocols will be executed faithfully.

The first tool used in the proposed protocol is Algorithm 4.1, the “Distributed Secure
Sum” algorithm. It is used to compute the sum of pieces of data distributed across several
agents, without revealing the data of each agent to other agents nor to the microgrid
EMS. This classical ingredient of secret communications, is also presented in [Jacquot
et al., 2019] under the name “Secure Multiparty Computation of Aggregate”.
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Algorithm 4.1: Distributed Secure Sum: Share a sum of data items β =∑l
h=1 dh among all l agents without revealing the values dh

Input: l agents each holding a data item dh from Z with h = 1, . . . , l.
for each agent h ∈ [1, l] do

Agent h draws random values yh,1, . . . , yh,l−1 without any constraint and
according to any desired probability distribution.

Agent h then chooses yh,l such that

yh,l = dh −
l−1∑
g=1

yh,g (4.17)

to ensure that the sum of drawn values adds up to the initial data.
for each agent g ∈ [1, l] do

Value yh,g is transmitted from agent h to agent g
end

end
for each agent g ∈ [1, l] do

Agent g computes the sum of the random values received as

zg = y1,g + · · · + yl,g (4.18)

Agent g broadcasts the sum zg to all other agents.
end
for each agent h ∈ [1, l] do

Agent h adds all the received sums to compute

β = z1 + · · · + zl (4.19)

end

In the end, the algorithm succeeds in transmitting the sum because the data items are
parted then reunited

β = z1 + · · · + zl

= y1,1 + · · · + yl,1 + · · · + y1,l + · · · + yl,l

= y1,1 + · · · + y1,l + · · · + yl,1 + · · · + yl,l

= d1 + · · · + dl
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The “Distributed Secure Sum” (Algorithm 4.1) allows every agent to compute the
final sum. Another version of the “Secure Sum” algorithm is the “Centralized Secure
Sum” (Algorithm 4.2), where only the microgrid EMS can compute the final sum. The
algorithm differs only in the final steps. It is also used in the final protocol considered.

Algorithm 4.2: Centralized Secure Sum: Communicate a sum of data items
β =

∑l
h=1 dh with the microgrid EMS without revealing the values dh

Input: l agents each holding a data item dh from Z with h = 1, . . . , l.
for each agent h ∈ [1, l] do

Agent h draws random values yh,1, . . . , yh,l−1 without any constraint and
according to any desired probability distribution.

Agent h then chooses yh,l such that

yh,l = dh −
l−1∑
g=1

yh,g (4.20)

to ensure that the sum of drawn values adds up to the initial data.
for each agent g ∈ [1, l] do

Value yh,g is transmitted from agent h to agent g
end

end
for each agent g ∈ [1, l] do

Agent g computes the sum of the random values received as

zg = y1,g + · · · + yl,g (4.21)

Agent g broadcasts the sum zg to the microgrid EMS
end
The microgrid EMS adds all the received sums to compute

β = z1 + · · · + zl (4.22)

Notice that broadcasting is not necessarily anonymous in the several communication
steps of Algorithms 4.1 and 4.2. With this communication scheme, it is required to
eavesdrop on every single information exchange to be able to reconstruct the initial data
involved in the final sum.
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The second tool presented in [Dunning and Kresman, 2013] is the “Anonymous Data
Sharing With Power Sums” algorithm, reproduced here in Algorithm 4.3. It is used to
anonymously transmit data dh(h = 1, . . . , l) held by each agent to every other participant.
The algorithm consists in creating a polynomial of degree l, whose roots on the ring of
natural integers modulo p are the data to transmit. The prime number p has to satisfy
p > dh,∀h ∈ [1, l]. The polynomial coefficients are computed using Newton’s Identities,
which are collectively computed using the “Secure Sum” algorithm (Algorithm 4.1). Notice
that knowing the polynomial coefficients does not enable to deduce a pair (root, agent),
because the coefficients of the polynomial are symmetric functions of the roots.

Algorithm 4.3: Anonymous Data Sharing With Power Sums: Make every
data item dh of agent h public to all l agents without revealing the sources

Input: l agents each holding a data item dh from Z with h = 1, . . . , l; a prime
number p satisfying p > dh,∀h ∈ [1, l].

for each agent h ∈ [1, l] do
Compute dn

h with power values n = 1, . . . , l over the Finite Field Z/pZ.
end
Agents use the “Secure Sum” Algorithm 4.1 to share knowledge of the power
sums with every agent:

S1 =
l∑

h=1
dh, S2 =

l∑
h=1

d2
h, . . . , Sl =

l∑
h=1

dl
h (4.23)

for each agent h ∈ [1, l] do
Construct the Newton polynomial which has d1, . . . , dl as its roots using
Newton’s Identities. Representing the Newton polynomial as

Π(x) = γlx
l + . . .+ γ1x+ γ0 (4.24)

the values γ0, . . . , γl are obtained from the equations:

γl = −1 (4.25)

γl−1 = −1
1 (γlS1) (4.26)

γl−2 = −1
2 (γl−1S1 + γlS2) (4.27)

γl−3 = −1
3 (γl−2S1 + γl−1S2 + γlS3) (4.28)

. . .

γl−m = − 1
m

m∑
k=1

γl−m+kSk (4.29)

Determine the roots d1, . . . , dl of the polynomial Π over Z/pZ
end

This step prevents sharing and computing extremely large numbers, due to the calcu-
lation of the values power “up to l”. Note that, in the Finite Field Z/pZ, the calculation
of γi coefficients (Eqs. (4.25)-(4.29)) requires finding the modular multiplicative inverse
1
m for m = 1, . . . , l, which can be computed using the Euclidean algorithm. This algo-
rithm along with a simple example are detailed in Appendix D. An example of the use of
Algorithm 4.3 from [Dunning and Kresman, 2013] is reproduced in Appendix E.
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Finally, the “Find AIDA” Algorithm 4.4 is the one yielding the unique ID to every
agent. At one step, random integers between 1 and S are chosen by each agent. The
list of chosen integers is shared using the “Anonymous Data Sharing With Power Sums”
Algorithm 4.3. An agent’s position will be determined by its position among the chosen
integers, provisions being made for collisions. The parameter S should be chosen so that
S ≥ l.

Algorithm 4.4: Find Anonymous ID Assignment: Have the l agents define
an anonymous indexing permutation σ : 1, . . . , l → 1, . . . , l without any central
authority.

Input: l agents.
1) Set the number of assigned agents ξ = 0 and σh = 0 for h = 1, . . . , l.
while ξ < l do

for each agent h ∈ [1, l] do
if σh = 0 then

2) Choose a random integer yh in the range 1 to S.
else

2) Choose yh = 0.
end

end
3) Agents share knowledge of yh for h = 1, . . . , l with the “Anonymous Data
Sharing With Power Sums” Algorithm 4.3. Shared values are denoted q1, …,
ql.

for each agent h ∈ [1, l] do
Remove from Q = {q1, . . . , ql} the zero values and all duplicated values to
create a new sorted list U = {u1, . . . , uf } where f is the number of unique
random values.

if qh ∈ U then
4) Pick σh = ξ + Card(uj : uj ≤ yh), the position of their random
number in the revised list as it would appear after being sorted.

end
5) Update the number of agents assigned: ξ = ξ + f .

end
end

The 5 steps of the algorithm are identified by indices 1), …, 5). An example of the use
of Algorithm 4.4 from [Dunning and Kresman, 2013] is reproduced in Appendix F.

4.4.2 Secure multiparty computation

Now that the tools from [Dunning and Kresman, 2013] have been detailed, the principle
of the privacy-preserving communication scheme that is advocated can be presented.

Protocol B1

Once an anonymous ID has been assigned to each participant, the compressed vector
versions of the data elements Ah and bh, h = 1, . . . , l (see Section 4.2) required for the
composition of the microgrid optimization problem 4.2 can be transmitted anonymously.

The idea is to use once again the “Secure Sum” algorithm, but in a different way.
Just like the household constraints matrices Ah can be transmitted as vectors of their
flattened non-structurally null elements Ah, the collection of these vectors of interest can
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be collected by the microgrid EMS as an ordered vector:

V =
(
A

>
1 A

>
2 . . . A

>
l

)>
(4.30)

where Ah is the compressed vector of variables of interest of the constraints matrix Ah

defined in Section 4.2.2.
The idea proposed in [Dunning and Kresman, 2013] for the microgrid EMS to collect

all these compressed vectors is the following: each agent h creates a vector of l blocks
of standard compressed vector length n, and stores its own compressed vector Ah in the
block of index matching its assigned anonymous ID (see the “Find AIDA” Algorithm 4.4).
The created vector Ae

h is

A
e
h =

(
0>

n . . . A
>
h . . . 0>

n

)>
(4.31)

where 0n is the null vector in Rn. Ah is here stored on the block of index i, the anony-
mous ID assigned to agent h. The same principle applies for the communication of the
compressed right-hand side vectors bh, h = 1, . . . , l, of standard length m.

Then, the “Secure Sum” Algorithm 4.2 can be used for the microgrid EMS to collect all
these matrices ordered accordingly, the sum of Ae

h, h = 1, . . . , l resulting in V (Eq. (4.30)),
and the sum of be

h, h = 1, . . . , l denoted W .
Upon reception of V and W by the microgrid EMS, it can form the matrices Aσ(h) and

vectors bσ(h), h = 1, . . . , l thanks to the knowledge of the data standard which is public.
Then, Problem 4.3 can be constructed and solved.

The solution vector is finally openly broadcast. Every agent can read its part of the
solution vector, as well as the one of the other participants. This protocol is simply referred
to as Protocol B1 thereafter.

Encrypted response option (Protocol B2)

For increased security, an option of the presented protocol uses both the secure sum
algorithm, and pairs of public-private encryption keys. The secure sum algorithm is now
used to transfer the agent public encryption keys Kh (more details on encryption principles
are given in Section 4.3), in addition to the compressed vectors Ah and bh containing the
data of agent h 5.

Then, after solving the microgrid optimization problem, the microgrid EMS can en-
crypt each part of the solution vector with the corresponding encryption key. The en-
crypted result is openly broadcast. The agents can read all the solutions parts, but can
only decrypt the one corresponding to their own decision variables, with their private
encryption key.

Algorithm 6 details this method, which follows the same principle as Eqs. (4.30) and
(4.31). This protocol is simply referred to as Protocol B2 thereafter.

4.4.3 Communication protocol

The successive steps of the protocols based on anonymous ID assignment and secure
multiparty communication (Protocols B1 and B2) are detailed here:

1. Houses participate in the “Find AIDA” method (Algorithm 4.4) in order to get an
AIDA (Anonymous ID Assignment) for each controllable appliance;

5This approach assumes that it is possible to work with a hexadecimal or binary version of the encryption
key, in order to be able to divide it in several bits that add up to the correct sum in the end of the secure
sum algorithm.
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Algorithm 4.5: Secure multiparty transmission of encryption keys and broadcast
of encrypted solution (Protocol B2)

Input: Compressed vectors Ah for h ∈ [1, l], of standard size n.
Agents pick IDs n1, . . . , nl with Algorithm 4.4.
for each agent h ∈ [1, l] do

Construct Ae
h =

(
0>

n(nh−1) A
>
h 0>

n(l−nh)

)>

Construct be
h =

(
0>

n(nh−1) b
>
h 0>

n(l−nh)

)>

Construct Ke
h =

(
0>

(nh−1) Kh 0>
(l−nh)

)>

end
Agents share V =

∑l
h=1A

e
h, W =

∑l
h=1 b

e
h and K =

∑l
h=1K

e
h with the microgrid

EMS using Algorithm 4.2.
The microgrid EMS decompresses V and W to form

(
Aσ(h)

)
h∈[1,l]

and(
bσ(h)

)
h∈[1,l]

, then computes a solution
(
x?>, y?>

)>
to Problem 4.3

The microgrid EMS ciphers each component x?
h of x? with the key Kh and

broadcasts the corresponding result x?
c .

for each agent h ∈ [1, l] do
Pick x?

c,nh
and deciphers it with its private key.

end

2. Secure multiparty computation is used to transmit the necessary data (vector of
interest variables of constraints matrix Ah (see Section 4.2.2) and constraint vector
bh) to the microgrid EMS;

3. Optionally, the agents communicate their public encryption keys to the microgrid
EMS with the same method (Protocol B2);

4. The microgrid EMS collects all the data to create the microgrid optimization problem
(equivalent to the omniscient problem) and solves it;

5. In the “Encrypted response” option (Protocol B2), each part of the solution vector
is encrypted with the appropriate encryption key;

6. The (potentially encrypted) solution vector is broadcast to the agents;
7. Each individual EMS retrieves its own solution, decrypts it if it has been encrypted,

then applies it.

Each agent can read the complete result, and will implement the solution corresponding
to its ID. If the “encrypted response” option is implemented, each agent can only decrypt
and read its own part of the solution vector. In a microgrid with more than 2 households,
as each agent knows only its unique ID, the agents cannot link directly the solution of other
IDs (i.e. the control parameters of other agents) to a specific household. In a microgrid
restricted to only two households, the “encrypted response” version of this scheme is
required, for the agents not to know exactly the final appliances schedule of its neighbor.

These communication protocols can be applied using the python-FLINT Python mod-
ule. It allows to perform number theory operations as required in Algorithm 4.3, such as
computing the modular inverse of any natural integer (detailed in Appendix D) or finding
the roots of a polynomial modulo a prime.
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4.5 Protocols comparison

4.5.1 Security quality

The security of communication corresponds in each protocol to the difficulty for an agent
to learn private data of another agent (Ah and bh). When Protocol A (encryption-based,
presented in Section 4.3) is used, learning data would requires to listen to only one com-
munication from one agent to the microgrid EMS, but also to know the encryption key
required to decode the message. Indeed, hacking an encrypted message is supposed to be
infeasible [Schneier, 1996]. On the contrary, the secure multiparty computation protocols
(B1 and B2) presented in Section 4.4 require for an eavesdropper to listen to every single
communication in order to be able to recompose the data of a single agent. Indeed the
microgrid EMS is the only entity knowing the “real” data, recomposed at the end of the
“Secure Sum” Algorithm. Regarding the communication of the solution schedule, the use
of encryption keys has the obvious advantage of hiding the solution vector (i.e. appliances
planning) of any agent from its neighbors. These differences are listed in Table 4.2.

Table 4.2: Summary of the privacy-preserving communication protocols
Encrypted

communications ID-based communications

(Protocol A)

Without
solution encryption

(Protocol B1)

With
solution encryption

(Protocol B2)
Information
originally known by
the microgrid EMS

αsys, Asys, bsys c, number of households l,
standard matrices structure

Information known
originally only by
household h

Ah, bh, Kh,
standard

matrices structure

Ah, bh,
standard

matrices structure

Ah, bh, Kh,
standard

matrices structure
Information learnt
by the microgrid
EMS during
protocol

(
Aσ(h), bσ(h)

)
h∈[1,l](

x?
σ(h), y

?
σ(h)

)
h∈[1,l](

Kσ(h)
)

h∈[1,l]

(
Aσ(h), bσ(h)

)
h∈[1,l](

x?
σ(h), y

?
σ(h)

)
h∈[1,l]

(
Aσ(h), bσ(h)

)
h∈[1,l](

x?
σ(h), y

?
σ(h)

)
h∈[1,l](

Kσ(h)
)

h∈[1,l]

Information learnt
by household h at
the end of protocol

x?
h

x?
h,

xσ(i) for σ(i) 6= h
x?

h

Information
necessary for an
external agent to
learn Ah or bh

Impossible
(PGP protocol)

listening to all channels
of exchange to recompose

V =
∑l

h=1A
e
h or W =

∑l
h=1 b

e
h

4.5.2 Runtime

The simple two-participants use-case from Section 3.4 is considered again for a time com-
parison of the three communication protocols. Only the first phase of the protocols, where
the agents communicate their private data to the microgrid EMS, are compared. Only
the compressed vector of the constraints matrix is communicated, and not the compressed
version of the right-hand side vector of the agents. The time required for the microgrid
EMS to sent a response is not accounted for here.

99
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The issue of one agent being able to infer the data of its neighbor in the two-participants
case arises. In the case of distributed algorithms, such a limitation is widely known and
reported e.g. in [Tassa and Cohen, 2013]. Note that, in the case of the Distributed Secure
Sum, it is not a limitation of the protocols, but a natural consequence of the computation
even if it would be executed using a trusted third party. As this section focuses on time
of execution of the methods, this issue is dismissed here.

The number of timesteps is H = 96 (a classical 15-minute discretization of a 24-hour
day). The first house is equipped with a dishwasher modeled with J = 5 energy phases
and the second house is equipped with a washing machine modeled with J = 7 energy
phases. The constraints matrix of the first house is of shape (4714, 1824), as computed
in Section 3.3, and the constraints matrix of the second house is of shape (6446, 2400).
However only the variables of interest are communicated, resulting in a vector of 13 031
elements for the first house and of 18 013 elements for the second house.

The tests were conducted on a laptop equipped with Python 3.7.3 and a Core i3
2.4 GHz processor, with 8 Go RAM.

The Encryption protocol (Protocol A) was first applied. It takes on average 9.7 seconds
to generate the keys for all the entities involved in the protocol, and an additional 1.9
seconds to perform the data exchanges (limited to the initial communication from the
agents to the microgrid EMS). Table 4.3 displays the duration required by each step of
this communication protocol. It is recalled that the duration of resolution of the microgrid
optimization problem is not accounted for here. Notice that the “Keys generation” and

Table 4.3: Protocol A: the duration of encryption, transmission and decryption steps are
extremely low.

Step Median duration
Keys generation 9.7 s
Keys exchanges 0.4 s
Agent 1 data encryption and transmission 0.4 s
Agent 2 data encryption and transmission 0.4 s
Type 1 Bot decryption and message handling 0.3 s
Microgrid EMS messages decryption 0.4 s
Total 11.6 s

“Keys exchange” steps, significant contributors to the total duration, would be executed
only once for several data exchanges, leaving only a fraction of this duration to be repeated
at each exchange.

Consider now Protocol B1, based on secure multiparty computation. It performs all
the data exchange in an average of 3.2 seconds. As with the encrypted communication
protocol, only the values of the elements of interest (i.e. elements that are not structurally
equal to zero) of the constraints matrices of each agent are exchanged, because the struc-
ture of the resulting matrix is standardized and known in advance. This protocol requires
that the compressed vectors of the variables of interest of the constraints matrices are
included in a null vector (see Eqs. (4.30) and (4.31)), thus resulting in 2n ' 60 000 secure
sum calculations.

Finally, consider Protocol B2, based on secure multiparty computation and with solu-
tion encryption. It performs all the data exchanges in an average of 8.37 seconds. Table 4.4
displays the duration required by each step of this communication protocol.

After this private data communication has been performed, the microgrid EMS can
formulate and solve the microgrid optimization problem. For reference, the median reso-
lution time is 7 s.
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Table 4.4: Protocol B2: Keys exchange through the Secure Sum is extremely fast.
Step Median duration
Keys generation 4.6 s
Agents data exchange (through Secure Sum) 3.7 s
Agents keys exchange (through Secure Sum) 0.07 s
Total 8.37 s

The very low computational cost of the Encryption communication scheme seems to ad-
vocate for this option over the other two, provided that new encryption keys are generated
and exchanged only rarely. A thorough comparison with a larger number of participants
and including complexity comparison is however needed to compare the three complete
schemes (response steps included) over repeated data exchange.

4.6 Conclusion

This chapter has addressed the privacy-preservation challenge in a local energy community.
The aim was to construct the microgrid optimization problem with permutation (Prob-

lem 4.3), strictly equivalent to the omniscient one (Problem 3.1), while protecting the
privacy of the microgrid agents. To this end, three communication protocols inspired
from cryptography and secure multiparty computation have been described. They allow
to transmit anonymously (i.e. without the data recipient being able to directly link which
data comes from which sender) to the microgrid EMS the individual constraints, consump-
tion and production profiles necessary for the construction of the optimization problem at
the microgrid level.

A small-size use-case has allowed to evaluate the time required for communication by
the three privacy-preserving protocols.

4.6.1 Possible extensions

The success of both methods in transmitting data in a limited time suggests to try and
apply the proposed anonymization method to a larger group of optimization problems of
this kind.

Indeed, the solution of any non-linear optimization problem under parametric con-
straints depending on distributed parameters (belonging to agents in a network) can be
found by constructing an equivalent problem after the anonymous collection of the param-
eters, thanks to the privacy-preserving communication methods proposed in this chapter.

Namely, consider the problem of l agents, each of them having a triplet (xh, θh) ∈
X × Θ, h = 1, . . . , l satisfying constraints of the form

c(xh, θh) ≤ 0 , h = 1, . . . , l (4.32)

with c : X × Θ → Rm, and wishing to share anonymously these information with a central
operator, to construct and solve the mixed-integer nonlinear optimization problem

Problem 4.4.

min
(x,y)∈X l×Y

f(x, y, θ)

s.t.
{
c(xh, θh) ≤ 0 , h = 1, . . . , l
cop(x, y, θ) ≤ 0

(4.33)

101



Chapter 4. Privacy-preserving cooperation

with the objective function f : X l × Y × Θl → R and the operator constraint cop :
X l × Y × Θ → Rp, satisfying the following assumption:

Assumption 2. The cost function f and the operator constraint cop in Problem 4.4 are
such that, for any permutation σ of {1, . . . , l},

∀(x, y, θ) ∈ X l × Y × Θl,

{
f(x, y, θ) = f(xσ, y, θσ)
cop(x, y, θ) = cop(xσ, y, θσ)

(4.34)

The privacy-preserving protocols presented in this chapter allow to solve Problem 4.4
by exchanging the data θh with the central operator.

Furthermore, this study calls for a thorough mapping of the categories of optimization
problems that can be anonymized (in addition to the problem at hand in this chapter and
to the aforementioned one), of the anonymization techniques applicable to each type of
optimization problems, and a comparison of them. For instance, one can wonder if the
methods proposed here could apply to the problem studied in [Jacquot et al., 2019], and
how their performance would compare to the one used in that paper. Such mappings would
be a major addition in generalizing privacy-preserving methods for collective optimization
problems.

Finally, a potential extension of the privacy-preserving protocols proposed here could
be to have the agents send the technical information (power ratings and limitations, en-
ergy requirements, energy phases duration) to the microgrid EMS, and let it perform the
discretization of the constraints equations resulting in the constraints matrices formula-
tion. Thus the volume of data transmitted would be significantly lower. This approach
was not explored in this thesis.

4.6.2 Open questions for a privacy-preserving collaboration scheme

In view of real world applications, a couple of questions remain to be investigated regarding
the final level of privacy, that has to be assessed considering the whole setup. Challenges
to a proper level of privacy are the following:

• the monitoring of household consumptions is necessary to establish bills between the
distribution system operator and households.

• a fine-grain division of the operation cost of the shared battery requires to track the
power exchanges between each household and the battery.

A direction of research to achieve these goals could be to mix the elements proposed
in this chapter with game theory approaches.

102



Chapter 5

Conclusion and perspectives

Conclusion et perspectives. Ce chapitre commence par résumer les principales contri-
butions de cette thèse. Puis il présente certaines directions de travail qui, à la lumière des
présents travaux, semblent prometteurs pour les futurs systèmes de gestion de l’énergie.
Ces perspectives sont réparties entre celles qui semblent au moins partiellement applicables
aux outils présentés dans cette thèse, et celles qui s’inscrivent dans un cadre plus général.

5.1 Conclusion
Here are summarized the main contributions from this thesis. The first two chapters
develop useful tools for the performance evaluation of existing PV-equipped smart home
control algorithms, while the last two chapters propose a solution to the challenge of
enabling cooperation in a microgrid while protecting the privacy of participants.

• In Chapter 1, a method is developed to find efficiently the optimal control of an elec-
tric water heater (EWH) in an individual house equipped with photovoltaic (PV)
panels, under the following conditions: 1.the assumption of perfect prediction of the
hot-water consumptions profile; 2.the modelization of the EWH without the strat-
ification phenomenon; 3.the maximization of a specific criterion, the self-consumed
energy. This resolution algorithm can be used as a comparison tool for other EWH
control algorithms designed for self-consumption installations, in that it provides the
absolute maximum performance and thus informs on the progression margin of the
others algorithms.

• Chapter 2 proposed a PV production scenarios generation method to provide a
set of individually realistic scenarios that represents as a whole the uncertainties
of an initial PV forecast. Using the quick algorithm presented in Chapter 1 on
every scenario generated by the present method allows to give the only acceptable a
priori performance evaluation of a smart home control algorithm with a predictive
component. A study conducted in this chapter also allows to assess the hypothetical
margin for progress available for an EWH control algorithm that would benefit from
perfect PV production predictions.

• Chapter 3 details the formulation of the energy optimization problem at the micro-
grid level, where the microgrid EMS can act on all the agent’s controllable appliances
and a shared battery, in order to foster cooperation and to minimize the overall en-
ergy cost. The problem is formulated as a MILP. Its interest is proved in a small-size
example and its complexity is discussed.

• Chapter 4 draws inspiration from cryptography tools to propose three privacy-
preserving communication schemes allowing to formulate the microgrid problem
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while anonymizing the data necessary to its construction. For a small-size prob-
lem, both schemes are shown to be quick enough with respect to the usual timestep
of microgrid energy optimization algorithms.

In order to pave the way for the extension of this work towards the design of fully-
implementable PV self-consumption EMSs at the household and microgrid level, some
additional notions are presented in the following section.

5.2 Perspectives
A handful of concepts, in addition to the ones used throughout this manuscript, have been
proposed in the literature in order to design an ideal energy management system (EMS)
both for the household and the microgrid levels. These notions were not included in the
present work for better clarity of the work exposed or for lack of time, but could become
vital in the design of such ideals EMSs. The present section will present these available
building blocks and the corresponding references.

5.2.1 Extensions of the present work

In this section are presented concepts and references that might be applicable to the tools
used in this manuscript, or that seem at least like natural extensions of the presented
work. These concepts could thus provide valuable additions without shifting entirely the
nature of the EMSs developed.

Hot-water consumption estimation Throughout all this thesis, a major hypothesis has
been made: the perfect knowledge, in advance, of the hot-water drains. The sequence of
time, duration and amplitude of the hot-water drains is supposedly known in advance in
both the continuous and discrete-time EWH models used. Future works shall overcome
this quite unrealistic assumption.

To this end, inspiration can be drawn from [Arkhangelski et al., 2019] which proposes
to forecast load consumption using a Recurrent Neural Network (RNN) method with Long
Short Term Memory (LSTM) algorithm. Recurrent Neural Networks (RNN) are said to be
more effective in sequential data dynamics modeling than other types of Artificial Neural
Networks.

Stochastic MPC Despite potentially large computation times, Stochastic MPC might
prove more valuable than other control approaches when dealing with increased levels of
uncertainty. Chapter 2 showed that, at a 30-minute timestep, the benefit of anticipating
(hypothetically perfectly) the PV production uncertainties, when using a basic control
heuristic, was lower than the benefit of switching to an improved control algorithm. How-
ever, the benefit of anticipating production uncertainties would probably be increased
with a decreased timestep length, and with the occupants behavior uncertainties taken
into account.

Peer-to-peer energy trading In a microgrid composed of several households with DERs, if
local peer-to-peer energy exchanges are not authorized, each household converses with the
microgrid EMS exclusively, all its power surplus and deficit is paid by and to the microgrid
EMS, and all agents have this same and unique intermediary. This is the case retained in
this manuscript. However, when direct peer-to-peer energy trading is allowed, the trading
is then executed at a price in-between the selling and buying prices of the corresponding
agents. This configuration should be encouraged in future works at it promotes peer-to-
peer power exchanges as they are beneficial to both parties: the seller gets a higher selling
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price, and the buyer gets a lower buying price than the respective ones offered by the
microgrid EMS.

Cost configuration A question of interest in a microgrid optimization configuration is to
know whether the prices for buying and selling power inside the microgrid have to be the
same than those from the external grid. In the use-cases considered in the last two chapters
of this thesis, these prices were the same at each level of the energy system, the microgrid
EMS thus only operating as a neutral entity supporting the agents in the cost-reduction
process. Nevertheless, another configuration could have the microgrid EMS apply a profit
rate to the prices from the external grid, before exchanging energy with the microgrid
participants. The impact of each configuration has to be studied. Moreover, when a price
mechanism is designed for the access to a shared battery, the energy consumed at one
moment by an agent may have been purchased and stored before by the microgrid EMS
through the battery. The price mechanism could account for this time delay in order
to establish a fair cost allocation. For instance, [Steriotis et al., 2019] provides a price
mechanism ensuring that the price of the energy exiting the shared battery reflects the
cost previously paid by the community to make this energy available. The price mechanism
increases the fairness of the energy cost division among the agents.

Whatever the cost configuration selected, the evaluation of its impact on the collective
and individual costs has to be assessed.

Fair division of collective cost The question of the fair division of the collective cost of
operation of the shared resource soon rises in a collective self-consumption operation, as
was mentioned in Section 3.4.

A fairness criteria should be used in an extension of the presented work, in order to
ensure

• that the battery access price leads to a fairer division of the collective cost of oper-
ation of the shared resource;

• and to lead to the best choice of division of the collective cost of operation of the
shared resource.

An “effort” criteria could be needed for the fair division of the collective cost. With the
aim of finding the fairest distribution of the collective profit, a special retribution could
go to the most compliant agents with the demand response signals. Some challenges then
arise:

• if a marketplace type of price is considered, how not to pay twice for the same
“effort”?

• how to compare the effort made by one type of household to another, with radically
different types of households, consumption patterns and constraints (e.g. a retired
couple vs a family of four with working parents)?

• how to define which behaviors are vertuous, and which are not?

[Steriotis et al., 2019] and [Jacquot et al., 2017] each propose a possible fairness crite-
rion. A billing mechanism is fair if the bill of user n reflects correctly the additional cost
it as brought to the collective system.

Despite its difficult evaluation, the fairness of a cost configuration in a microgrid has
to be assessed in order to encourage enrollment of new participants.

Discomfort If the comfort constraints are formulated in the optimization problem as hard
constraints, better solutions that infringe these rules only by a small margin cannot be
proposed. Thus comfort constraints can be softened in order to provide more flexibility to
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the system. This is especially interesting when the household participates in DR actions,
in frequency regulation actions, or in a microgrid. The common element of these three
situations is that a collective objective is acknowledged, beyond the individual household
one. In these situations, one can imagine allowing to breach the comfort constraints. But
then the resulting discomfort must be taken into account in the problem resolution, and
a form of compensation might be required.

For example, [Pflaum et al., 2014] includes a discomfort function in the overall multi-
objective function of an energy management problem in a smart district. Figure 5.1
displays the value of the discomfort criterion in function of the state variable y with
respect to upper and lower bounds y and y.

Figure 5.1: Example of a discomfort function from [Pflaum et al., 2014]. Parameters ρ0,
ρ1, δy determine the bounds violations zones.

Such a formulation could be used for the softening of the user preferences constraints
in the optimization problem formulated in Chapter 3. In all likelihood, it should translate
into improved performances and increase feasibility of the problem at stake.

Multi-objective optimization Similarly, regarding self-consumption installations, multi-
objective optimization can be of interest since two different objective functions proved
useful throughout this manuscript: the self-consumed volume of energy and the electricity
bill. Both these criteria could be incorporated in a single weighted objective in the case
of an installation connected to a constrained grid in terms of upstream injection. [Gon-
zalez Venegas et al., 2021] recalls that several control strategies can apply to EVs, with
several potentially aligned or opposed objectives. This is true for any appliance storing
energy, be it in a way to provide another principal service (EWHs, EVs) or not (batteries).

Distributed computations The computational burden of solving the microgrid optimiza-
tion problem in Chapter 3 highlighted the limitations of resorting to a centralized problem
for the optimization of energy communities. Similarly, for MPC strategies, [Pflaum et al.,
2014] evaluates centralized approaches as unsuitable for microgrids, because of the heavy
computational burden, the lack of modularity (each change in one building affecting the
centralized formulation), and the data privacy issues.

Distributed computation strategies consist in a decomposition of the central problem
into sub-problems processed by the local EMSs which are able to recover the optimal
solution of the centralized problem or at least to find a relevant sub-optimal solution,
through an iterative communication scheme.
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In particular, decomposition-coordination methods [Culioli and Cohen, 1990] have been
proposed in order to optimize a common objective function by decentralized computations.
In such methods, a centralized optimization problem is split into small-size local optimiza-
tion problems whose outputs are coordinated dynamically by a central agent so that the
overall objective of the system becomes aligned (after a certain number of iterations) with
the centralized optimization problem outcome.

Two challenges then face the adoption of distributed computation techniques: the
restricted type of problems potentially solved by these techniques, and the protection of
the private data exchanged.

Recent research potentially providing insights on privacy preserving energy sharing
and optimization, with distributed computing, in order to design scalable solutions: [Ye
et al., 2020] proposes a privacy-preserving version of a consensus-based microgrid EMS,
based on distributed computation. In this framework, the agents share a common global
objective and are willing to collaborate, but refuse to disclose private information to their
neighbors. Random weights are used to blur the power supply or demand information or
each agent. Contrary to the use-case studied in this thesis, cooperation in this framework
requires that all agents share the same global objective, instead of an individual one.
Investigations are needed to assess if the privacy guarantees of the method hold when
replacing the linear problem solved by the gradient descent of the lagrangian function by
a more complex optimization problem (including integer variables for instance).

5.2.2 Towards distributed energy systems

Considering that energy systems will progressively switch from a centralized and scarcely
digitalized organization towards a decentralized and highly monitored system, some au-
thors have advocated the use of some concepts in the design of future EMSs, especially
for the case of collective energy management.

Multi-agent systems A multi-agent system (MAS) is composed of several agents (e.g.
software programs, robots, humans, ants) acting in a given environment according to a
given set of rules. The primary characteristics of the agents are the following [Wooldridge,
2002]:

• Autonomy: agents at least partially independent, self-aware, autonomous;
• Local views: no agent has a full global view, or the system is too complex for an

agent to exploit such knowledge;
• Decentralization: no agent is designated as controlling (or the system is effectively

reduced to a monolithic system).

Inside a MAS, an agent is modeled by expliciting its individual goal (the objective
function it will aim at optimizing), the interaction capabilities it has with the other intel-
ligent agents, and the ways it might react to the changes in its environment [Kumar Nunna
and Doolla, 2013]. This set of rules defines the behavior of the agents, and thus confer
them some degrees of autonomy: plans of actions are put in practice according to their
desires and current knowledge [Ionita, 2009].

A MAS is thus a network of intelligent and autonomous controllers. This framework
seems adequate to answer the problem of untractable complexity of a centralized resolution
of a local energy community optimization problem. Indeed, as the behavior, intelligence
and computing power is distributed at the agent level, the evolution of the overall system
will emerge as a result of the behaviors of its agents, and the approach is more scalable
than centralized control [Howell et al., 2017].
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[Logenthiran et al., 2011] points out the advantages of the MAS approach: unit au-
tonomy, lower volume of data manipulation, robustness of the control system, “plug and
play” capability, learning of agents.

This “plug and play” capability is especially attractive for the future studies of col-
lective energy management systems, as the framework allows to describe different types
of agents and to describe once and for all, in their interaction rules, how each agent will
communicate with the different types of agents at reach, despite a potentially evolving en-
vironment. This approach could help simulate large systems made of several sub-systems,
the decentralized management intelligence being more adaptable and scalable than in
centralized approaches.

The JADE (Java Agent DEvelopment) framework is a popular framework for these
systems [Jade, 2021].

Introduction to the holonic system approach A natural extension of the cooperation of
household EMSs into a local energy community proposed in Chapter 3 is to aim at a
modular cooperation between neighboring entities of the same kind, at every scale of the
power system.

This idea takes form in the concept of holonic systems. [Howell et al., 2017] presents
the principle of a holonic organization, where each entity has the dual role of both an
aggregator/controller of some sub-level entities, and a part of a larger upper-level entity.
Figure 5.2 shows the interactions between the elements of a holonic system. Groupments
are meant to be dynamical, evolutionary according to indisponibilities or arrivals and
departures of entities. The modularity of this concept is indented to bring resilience.

Figure 5.2: In a holonic system, each element is both a part, contained in a larger entity,
and a whole, containing groups of smaller entities. Figure from [Howell et al., 2017].

The authors advocate applying this concept in the development of future EMSs, in
order to work towards effective and widespread “smart grids” and “microgrids”, where
a completely distributed and modular organization allows entities of the same nature to
communicate and collaborate, but also to be grouped into a larger entity, and this at every
possible scale.

An advantage of the concept is its adequation with distributed computations, which
are required in order to scale up cooperation and optimization at every level of the power
system.

[Ionita, 2009] precises that “the essential feature of the basic holon is its structural
self-similarity at different scales”, and [Pahwa et al., 2015] explains in other words that
an interest of this approach is to “design a core control holon that can be reused from the
highest substation level to the lowest levels of the power distribution system”.

Thus, the concept of holonic architecture could be beneficial to the design of future
EMSs.
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Appendix A

Differentiability of the objective
function (1.6) for multiple
appliances

The objective function considered in the optimization Problem 1.1 has been proven to
be almost everywhere continuously differentiable in Section 1.2.4, with a finite number of
discontinuity points on any interval.

In the case of several appliances scheduling, discontinuities of the derivative of the
objective function (A.1) also appear at times when the support of the two appliances load
curves start to overlap, that is, when the ending time of an appliance corresponds to the
starting time of another one.

This appendix detailes a simple use-case which allows to illustrate the presence of such
discontinuities in the objective function derivative at these specific times.

A.1 Objective function study

Consider two controllable appliances of respective load curves P1 and P2 shaped as boxcar
functions, with starting times t1, t2, ending times T1 = t1 + ∆1, T2 = t2 + ∆2, and power
ratings P 1, P 2 respectively. Here the appliances load curves are supposed to be of fixed
durations ∆1 and ∆2 respectively. The decision variable s relative to the control strategy
simplifies to (t1,t2), and the objective function (1.6) becomes

SC(t1, t2, P̂PV) =
∫ τ

0
min(P1(t1, t) + P2(t2, t), P̂PV(t))dt (A.1)

First, consider the case where the supports of two appliances load curves are disjoints,
P1 preceding P2 without loss of generality (t1 < T1 < t2 < T2):

SC(t1, t2, P̂PV) =
∫ T1

t1
min(P 1, P̂PV(t))dt+

∫ T2

t2
min(P 2, P̂PV(t))dt (A.2)

The derivative of the objective function with respect to t1 is

∂SC(t1, t2, P̂PV)
∂t1

= ∂T1
∂t1

min(P 1, P̂PV(T1)) − ∂t1
∂t1

min(P 1, P̂PV(t1))

= min(P 1, P̂PV(T1)) − min(P 1, P̂PV(t1)) (A.3)

Then, consider the case where the support of the two appliances load curves overlap, that
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is, are non-null simultaneously, with P1 shifted over P2 (t1 < t2 < T1 < T2):

SC(t1, t2, P̂PV) =
∫ t2

t1
min(P 1, P̂PV(t))dt+

∫ T1

t2
min(P 1,max(P̂PV(t) − P 2, 0))dt

+
∫ T2

t2
min(P 2, P̂PV(t))dt

(A.4)

Hence, in this case, the derivative of the objective function with respect to t1 is

∂SC(t1, t2, P̂PV)
∂t1

= − ∂t1
∂t1

min(P 1, P̂PV(t1))

+ ∂T1
∂t1

min(P 1,max(P̂PV(T1) − P 2, 0))

= min(P 1,max(P̂PV(T1) − P 2, 0)) − min(P 1, P̂PV(t1)) (A.5)

The fact that P2 is now non-null at t = T1 leads to a potential difference in the two
expressions of Eqs. (A.3) and (A.5). The only case where there is no difference in the
two expressions is when P̂PV(T1) > P 1 + P 2, so that P̂PV(T1) − P 2 > P 1. Except in this
specific case, two appliances can create discontinuities in the objective function each time
the supports of their load curves start to overlap.

A.2 Numerical example

The mapping of the SC score for the two appliances displayed in Figure A.1 shows the
non-concave nature of the objective function.
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Figure A.1: The mapping of the SC score (in kWh) for two appliances shows the non-
concave nature of the objective function.
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At a 10-minutes timestep, the appliances scheduling that yields the maximum self-
consumed volume SC = 4.8 kWh is depicted in Figure A.2 and corresponds to the starting
times t?1 = 12 h10 min and t?2 = 10 h10 min. The duration of each boxcar is ∆1 = 3 h and
∆2 = 2 h. The nominal power of the appliances is P 1 = 2.2 kW and P 2 = 2 kW. The
optimal schedule happens to be for load curves of contiguous support.
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Self-consumption SC

Figure A.2: The optimal scheduling of both appliances covers as much PV power as
possible.

The four pairs of starting times corresponding to discontinuities in the objective func-
tion derivative can be expressed with the following equations, describing four different
configurations of coincident rising or falling edges:

t1 = t2 (A.6)
t2 = t1 + ∆1 (A.7)
t1 = t2 + ∆2 (A.8)
t1 = t2 + ∆2 − ∆1 (A.9)

The discontinuities become visible when plotting the objective function partial deriva-
tive with respect to variable t2, ∂SC(s,P̂PV)

∂t2
with variable t1 fixed to t?1, as shown in Fig-

ure A.3 Figure A.4 identifies the discontinuities defined in Eqs. (A.6)-(A.6) on the SC
values mapping (from Figure A.1).

In the case of more complex load curves, with more edges, additional discontinuities
would appear.

Hence the objective function of Problem 1.1 presents at least 2n(n − 1) additional
discontinuity points for its derivative, in the case of n controllable appliances. As the
resolution method proposed in Section 1.2.4 requires to detect all the discontinuities in
the objective function derivative, and to exhaustively compute the objective function on
each set described by these discontinuities, its complexity increases quadratically with
the number of appliances. A significant increase in the computation time can thus be
expected, possibly rendering the proposed method inadequate, or too slow compared to
other optimization methods.
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Appendix A. Differentiability of the objective function (1.6) for multiple appliances
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Figure A.3: Discontinuities are visible on the plot of the objective function partial deriva-
tive with respect to variable t2.
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Figure A.4: The discontinuities equations can be identified on the SC values mapping.
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Appendix B

Details on the computations of the
derivative of the objective function
of Problem 1.1

Section 1.2.4 presents the calculations necessary to compute the tsat and tclear times of
the electric water heater (EWH) control. Additional details are provided here on these
calculations.

B.1 Calculation of the EWH saturation times, tsat

Eqs. (1.48) and (1.51) build contractive maps that converge to a fixed point.
This contraction property is used as follows. From a first approximation t̂1sat(1) or

t̂1sat(n+1), the following approximations can be computed as g1
(
tewh, t̂

1
sat(1)

)
, t̂1sat(1)

(Eq. (1.48)) or g2
(
tclear(n), t̂

1
sat(n+1)

)
, t̂1sat(n+1) (Eq. (1.51)). The calculation is repeated

until the convergence1 or a maximum number of iterations (e.g. 20) has been reached.

The contraction mapping defined by a function f has at most one fixed point if for
any x1 and x2, there exists κ ∈ [0, 1[ such that:

|f(x1) − f(x2)| ≤ κ|x1 − x2| (B.1)

In the case of a function f being C1, the fundamental theorem of calculus states that
f(x2) = f(x1) +

∫ x2
x1
f ′(s)ds. It can thus be stated that

|f(x2) − f(x1)| ≤ sup
s∈[x1,x2]

|f ′(s)|(x2 − x1) (B.2)

Hence the value of κ for the contractive map in the case at hand can be computed
through the evaluation of the sup values of their derivatives.

Computing κ numerically for both functions g1 and g2 confirms that they form con-
tractive maps.

B.2 Calculation of the EWH resumption times, tclear

The contraction mapping approach cannot work for the calculation of the tclear times
however, for which the corresponding functions do not generate a contractive map.

1When applied on a discretized time grid, convergence means that the difference between two consecutive
iterations is smaller than the timestep length.
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Appendix B. Details on the computations of the derivative of the objective function of
Problem 1.1

Hence another approach is required, through a simple dichotomy procedure.

The dichotomy process is as follows:

• Initialization with t̂Lclear(n) = tsat(n), t̂Rclear(n) = tf and t̂Mclear(n) =
t̂L
clear(n)+t̂R

clear(n)
2 .

• Calculate ÊM
clear using Eq. (1.15) and t̂Mclear(n).

– If ÊM
clear > Eclear, then t̂Mclear(n) < tclear(n), and t̂Lclear(n) is updated through

t̂Lclear(n) = t̂Mclear(n) and t̂Mclear(n) as the mean of both bounds.
– If ÊM

clear < Eclear, then t̂Mclear(n) > tclear(n), and t̂Rclear(n) is updated through
t̂Rclear(n) = t̂Mclear(n) and t̂Mclear(n) as the mean of both bounds.

• Start again until both bounds t̂Lclear(n) and t̂Rclear(n) converge2, or until a maximum
number of iterations has been reached (e.g. 20).

2When the dichotomy process is applied on a discretized time grid, convergence means that the difference
between two consecutive iterations is smaller than the timestep length.
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Appendix C

Appliance modeling with mixed
integer variables

This appendix details the equations modeling the appliances used in the microgrid opti-
mization problem of Chapter 3. These equations are written for a time horizon H, thus
allowing to implement a repeated resolution of the problem in an MPC manner, iteratively.

C.1 Common notations

In this appendix, the following notations will be used for matrices and vectors:
For any natural integers n1, n2, 0n1,n2 is the null matrix in Rn1×n2 , In1,n2 is the matrix

in Rn1×n2 with ones on the diagonal starting in the upper left corner, and zeros elsewhere,
I′

n1,n2 is the matrix in Rn1×n2 with ones on the diagonal starting in the lower right corner,
and zeros elsewhere:

I′
n1,n2 =



0 . . . 0 1 0 . . . 0 0

0 . . . 0 0 1 . . . 0 0
... . . .

...
... . . . . . . . . . ...

0 . . . 0 0 0 . . . 1 0
0 . . . 0 0 0 . . . 0 1


(C.1)

and Ĩn1,n2 is the substraction of the two previous matrices:

Ĩn1,n2 = In1,n2 − I′
n1,n2 ∀n1, n2 (C.2)

For any natural integer n, 1n is the vector full of ones in Rn and 0n the null vector in
Rn.

These elements have a simplified notation for the dimension H that often appears:
I and 0 are respectively the identity matrix and the null matrix in RH×H .
1 is the vector full of ones in RH and 0 is the null vector in RH .

In this framework, the time horizon is discretized in a a finite time grid of H uniform
timesteps indexed by t ∈ {1, . . . , H}, of length ∆t.

C.2 White goods modeling

The mathematical formulation for modeling smart appliances is taken from [Sou et al.,
2011] As detailed in Section 3.2.2, in the proposed scheduling framework, an appliance
operation process is divided into a set of sequential energy phases.
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Appendix C. Appliance modeling with mixed integer variables

C.2.1 Specific notations and nomenclature

For any appliance i of the white goods category of household h, the number of uninter-
ruptible energy phases is denoted J1.

Table C.1 lists the main notations used for the modeling of the appliances of the white
goods category.

Table C.1: Appliances’ model from [Sou et al., 2011] - Nomenclature
Notation Description Unit
Ehij energy requirement for energy phase j in appliance i of household

h (fixed for shiftable appliances)
Wh

l Number of households in the microgrid
mh Number of appliances in each household h = 1, 2, . . . , l
J Number of uninterruptible energy phases for each appliance i =

1, 2, . . . ,mh of each household h = 1, 2, . . . , l
P t

hij Power of the energy phase j of appliance i of household h during
timestep [t, t+ 1[

W

P t
hij lower limit of power assignment to the energy phase j for appliance

i of household h during time slot [t, t+ 1[
W

P
t
hij upper limit of power assignment to the energy phase j for appli-

ance i during time slot [t, t+ 1[
W

P t
h,max total power upper bound at time slot [t, t+ 1[ for household h W
thij lower limit of the number of time slots for energy phase j in ap-

pliance i of household h to be processed
thij upper limit of the number of time slots for energy phase j in

appliance i of household h to be processed
t̂thi Time preference interval: null if and only if none of the energy

phases of appliance i of household h can be processed during time
slot [t, t+ 1[

wt
hij binary decision variables indicating whether a particular energy

phase is being processed or not
zt

hij binary decision variable indicating whether energy phase j in ap-
pliance i of household h is already finished by time slot [t, t+ 1[

C.2.2 Problem setup

The number of appliances considered for scheduling is denoted mh in household h, and the
number of uninterruptible energy phases for each appliance i is denoted J for simplicity.
Note that in this framework “appliance” and “energy phase” are abstractions. For instance,
a single oven used for lunch and dinner can be treated as two separate appliances.

C.2.3 Decision variables

The discretized power profiles are the output of the proposed scheduler and are denoted
P t

hij , corresponding to the power assigned to energy phase j of appliance i of household h
during the whole period of time slot [t, t+ 1[. Unit for P t

hij is W. The power profiles P t
hij

are real (i.e., continuous) decision variables.
1Technically, the number of energy phases for an appliance depends on the type and model of appliance

i, but is noted simply J for simplicity of the notations.
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C.2. White goods modeling

In addition to P t
hij , auxiliary binary decision variables are required to indicate whether

a particular energy phase is being processed or not. These binary decision variables are
denoted wt

hij ∈ {0, 1}. wt
hij = 1 if and only if for appliance i of household h energy phase

j is being processed during time slot [t, t + 1[. The decision variables wt
hij are required,

for instance, to model the energy phase sequential operation constraint described next.
In addition, another set of binary decision variables is needed to model the decision

problem. This set of variables contains the zt
hij , t ∈ [1,H], with a value of one indicating

that, in appliance i of household h, energy phase j is already finished by time slot [t, t+1[.
More explanation regarding the use of the auxiliary binary decision variables are given

below.

C.2.4 Constraints

To ease the description, the constraints are organized in two groups - energy constraints
and timing constraints.

Energy Constraints:

Energy phase energy requirement: To make sure that the energy phases fulfill their energy
requirements, the following constraint is imposed:

H∑
t=1

P t
hij∆t = Ehij , ∀h, i, j (C.3)

where Ehij is the energy requirements for energy phase j of appliance i of household h.

Instantaneous energy phase power assignment bounds: To model whether an energy phase
is being processed during time slot [t, t+ 1[ as well as the lower and upper limits of power
assignment to the phase, the following constraint is imposed:

P t
hijw

t
hij ≤ P t

hij ≤ P
t
hijw

t
hij , ∀h, i, j, t (C.4)

where P t
hij and P t

hij are appliance specific data characterizing the lower and upper limits
of power assignment to the energy phases, and wt

hij is a binary variable. Note that if
wt

hij = 0, then the inequalities above collapse into a single equality P t
hij = 0.

Timing Constraints:

Energy phase process time limits: To model the limits on energy phase process time, the
following constraint is enforced

thij ≤
H∑

t=1
wt

hij ≤ thij , ∀h, i, j (C.5)

where thij and thij are the lower and upper limits of the number of time slots for energy
phase j in appliance i of household h to be processed.

As in [Sou et al., 2011], implementation of this constraint assumes that the operation
time of the energy phases can be between 80 % and 120 % of the nominal time tnom

hij .
The bounds thij and thij in Eq. (C.5) are obtained by dividing the operation time limits
[0.8tnom

hij , 1.2tnom
hij ] by the time slot length, and rounding is performed where necessary (see

Eq. (C.15)).
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Appendix C. Appliance modeling with mixed integer variables

Uninterruptible operation: An energy phase being uninterruptible implies that it cannot
be resumed after being stopped. This can be modeled by the property that, for all h, i
and j, wt

hij = 0 if there exists an earlier time slot t̃ < t such that wt̃
hij = 1 and wt̃+1

hij = 0.
An alternative formulation can be obtained with the aid of auxiliary decision variables
zt

hij (introduced in Section C.2.3) as:

wt
hij ≤ 1 − zt

hij ∀h, i, j, t (C.6)
wt−1

hij − wt
hij ≤ zt

hij ∀h, i, j,∀ t = 2, 3, . . . , H (C.7)

zt−1
hij ≤ zt

hij ∀h, i, j,∀ t = 2, 3, . . . , H (C.8)

In constraint (C.6), if zt
hij = 1, then during time slot [t, t + 1[ energy phase j in

appliance i of household h is already finished. Hence, the corresponding wt
hij must be 0.

The condition triggering zt
hij = 1 is that wt−1

hij = 1 while wt
hij = 0 (i.e., the phase is just

finished at time t). This is the situation in (C.7). Then, zt
hij should remain unity, as (C.8)

imposes it.

Sequential Processing: Sequential processing of the energy phases of an appliance means
that an energy phase cannot be processed unless its preceding phases have finished. This
condition can be conveniently described using the auxiliary decision variables zt

hij as fol-
lows:

wt
hij ≤ zt

hi(j−1), ∀h, i, t, ∀ j = 2, 3, . . . , J (C.9)

Between-phase delay: The constraint enforcing a null delay between energy phases is

zt
hi(j−1) = wt

hij + zt
hij , ∀h, i, t, ∀ j = 2, 3, . . . , J (C.10)

Note that wt
hij + zt

hij ≤ 1 because an energy phase cannot simultaneously be processed
and finished (see (C.6)). Hence, the equality in (C.10) is valid.

User time preference: The household user can set up the time preference constraints,
specifying the time interval a particular appliance must be finished before. Alternatively,
this means that the appliances cannot be run outside of the time preference interval. The
constraints are written as

wt
hij ≤ t̂thi ∀h, i, j, t (C.11)

where t̂thi characterizes the time preference interval. That is, t̂thi = 0 if and only if none of
the energy phases of appliance i of household h can be processed during time slot [t, t+1[.

Notice that additional constraints could be used to model the power safety and between-
phase delay constraints, as well as sequential operations between appliances, as introduced
by [Sou et al., 2011]. These equations are not presented here as they are not used in the
manuscript.

C.2.5 Matrices

In the thesis, this appliances model serves in a MILP formulation, with a solver requir-
ing equality constraints to be written as two inequality constraints. All previous equa-
tions (C.3)-(C.11) for the modelization of appliance i of household h can be summarized
as

Ahi xhi ≤ bhi ∀h, i (C.12)
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C.2. White goods modeling

with the vector of decision variables

xhi =


(
(wt

hij)j∈[1,J ]
)

t∈[1,H](
(zt

hij)j∈[1,J ]
)

t∈[1,H](
(P t

hij)j∈[1,J ]
)

t∈[1,H]

 (C.13)

with the constraints matrix

Ahi =
(
A>

1 A>
2 A>

3 A>
4 A>

5 A>
6 A>

7 A>
8 A>

9

)>
(C.14)

and the right-hand side vector

bhi =



(Ehij)j∈[1,J ]
(−Ehij)j∈[1,J ]

02HJ(
−0.8 tnom

hij

∆t

)
j∈[1,J ](

1.2 tnom
hij

∆t

)
j∈[1,J ]

1HJ

0(H−1)J
0(H−1)J
0H(J−1)
02H(J−1)(
t̂thi1J

)
t∈[1,H]



(C.15)

in which the block matrices are now detailed.
In (C.14), the first block matrix A1 corresponds to Eq. (C.3)

A1 =
(
02J,2HJ ∆t× Ispe

)
with Ispe =

(
IJ,J . . . IJ,J

−IJ,J . . . −IJ,J

)
∈ R2J,HJ (C.16)

In (C.14), the second block A2 corresponds to Eq. (C.4)

A2 =



P 1
hi1

P 1
hi2

. . .
P 1

hiJ

P 2
hi1

. . .
PH

hiJ

0HJ,HJ −IHJ,HJ

−P 1
hi1

−P 1
hi2

. . .
−P 1

hiJ

−P 2
hi1

. . .
−PH

hiJ

0HJ,HJ IHJ,HJ



(C.17)

For readability, the empty spaces denote null matrices of the adequate shape.

119



Appendix C. Appliance modeling with mixed integer variables

In (C.14), A3 serves for Eq. (C.5).

A3 =
(
−Ispe 02J,2HJ

)
with Ispe given in Eq. (C.16). (C.18)

In (C.14), A4 corresponds to Eq. (C.6)

A4 =
(
IHJ,HJ IHJ,HJ 0HJ,HJ

)
(C.19)

In (C.14), the fifth block A5 for Eq. (C.7) is defined as

A5 =
(
Ĩ(H−1)J,HJ −I′

(H−1)J,HJ 0(H−1)J,HJ

)
(C.20)

The last constraint (C.8) for the definition of uninterruptible operations is summarized
in (C.14) with A6

A6 =
(
0(H−1)J,HJ Ĩ(H−1)J,HJ 0(H−1)J,HJ

)
(C.21)

In (C.14), A7 groups the H × (J − 1) equations of Eq. (C.9):

A7 =


I′

J−1,J −IJ−1,J

I′
J−1,J −IJ−1,J

. . . . . .
I′

J−1,J −IJ−1,J

 (C.22)

where empty spots denote a null matrix of the adequate shape.

Eq. (C.10) is grouped in (C.14) in A8

A8 =



−I′
J−1,J ĨJ−1,J

−I′
J−1,J ĨJ−1,J

. . . . . .
−I′

J−1,J ĨJ−1,J

I′
J−1,J −ĨJ−1,J

I′
J−1,J −ĨJ−1,J

. . . . . .
I′

J−1,J −ĨJ−1,J


(C.23)

The user-time preference Eq. (C.11) is grouped in (C.14) in A9:

A9 =
(
IHJ,HJ 0HJ,2HJ

)
(C.24)

C.3 Storage loads modeling

C.3.1 Common constraints

In [Parisio et al., 2015], a distinction is made between thermal loads and electrical loads.
Similarly, in [Wytock et al., 2017], a distinction is made between thermal loads and flexible
loads. Here a distinction is made between white goods, i.e. appliances which processes
are made up of sub-processes called energy phases (see Section C.2), and storage loads,
i.e. appliances that consist in an energy storage, be it thermal energy as in the EWHs, or
electrical energy as in stationary batteries or EVs.
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C.3. Storage loads modeling

Appliances of this category are supposed to be equipped with a single power element,
thus their power profiles are either at 0, or at a fixed constant nominal value.

Whatever the storage load under consideration, bounds are imposed on the level of
stored energy Eap with ap ∈ [ewh, bat, ev], to protect the appliance durability and usabil-
ity:

Eap,min ≤ Et
ap ≤ Eap,max ∀ t, (C.25)

Moreover, the energy stored at the first timestep has to match the initialization level:

E1
ap = Eap,init (C.26)

Finally, ∆t?ap is the subset of critical timesteps for which a specified level of energy
Eap,fin for comfort is imposed for the energy stored in the appliance (e.g. battery state of
charge at the end of each day must be 50%, EV state of charge in the morning must be
above 80%, see Section 3.3.1).

Et
ap ≥ Eap,fin ∀ t ∈ ∆t?ap (C.27)

The dimension of ∆t?ap is noted Hcrit,ap. I∆t?
ap

is the matrix in RHcrit,ap×H composed
of a single 1 on each line, located on columns of indices in subset ∆t?ap. 1∆t?

ap
is the vector

full of ones in RHcrit,ap .
The different appliances in this category differ only by the equations describing their

dynamical behavior.

C.3.2 Electric Water Heater modeling

The EWH model corresponds to a homogeneous hot-water tank, discarding the stratifica-
tion phenomenon. The discretization of the model in continuous time in Eq. (1.1) yields

Et
ewh = e− k ∆t

(
Et−1

ewh + (P ewhδ
t−1
ewh −Qt−1)∆t

)
∀ t ∈ 2, . . . , H (C.28)

where

• Et
ewh is the thermal energy of the water stored in the EWH during timestep [t, t+1[;

• k is the thermal loss coefficient [Beeker-Adda, 2016];
• P

t
ewh is the constant power rating during timestep [t, t+ 1[;

• δt
ewh is the binary variable setting the On/Off status during timestep [t, t+ 1[2;

• Qt is the energy used during timestep [t, t+ 1[ by a hot-water drain.

Eqs. (C.25)-(C.28) can be summarized in the form Aewh xewh ≤ bewh with the decision
variable

xewh =
(

(Et
ewh)t∈[1,H]

(δt
ewh)t∈[1,H]

)
(C.29)

with the constraints matrix

Aewh =



I 0
−I 0(

1 0 . . . 0
)

0>(
−1 0 . . . 0

)
0>

−I∆t?
ewh

0Hcrit,ewh,H

e− k ∆t IH−1,H − I′
H−1,H e− k ∆t P ewh∆tIH−1,H

− e− k ∆t IH−1,H + I′
H−1,H − e− k ∆t P ewh∆tIH−1,H


(C.30)

2As most EWHs are equipped with a unique resistive element of fixed power rating, the EWH power is
either equal to its power rating or to zero.
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Appendix C. Appliance modeling with mixed integer variables

and with the right-hand side vector

bewh =



Eewh,max1
−Eewh,min1
Eewh,init

−Eewh,init
−Eewh,fin1Hcrit,ewh

e− k ∆t ∆t(Qt)t∈[1,H−1]
− e− k ∆t ∆t(Qt)t∈[1,H−1]


(C.31)

In the constraints matrix, the first two lines correspond to Eq. (C.25), the two following
lines correspond to Eq. (C.26), the fifth line corresponds to Eq. (C.27), and the last two
lines correspond to Eq. (C.28).

C.3.3 Shared battery modeling

The battery model distinguishes the source and destination of incoming and outgoing
power, as is necessary in the implementation.

In the variables used, “b” refers to the shared battery, “g” refers to the grid, and “a”
refers to the agents. Thus at timestep t, P t

ba is the power discharged from the battery to
supply the aggregated households, P t

ab is the power production surplus from the aggregated
households stored in the battery, P t

bg is the power discharged from the battery towards
the outer grid, and P t

gb is the charging power coming from the outer grid to the battery.
The dynamic behavior of the stored energy in the battery at a timestep t is described

by the following equation

Et
bat = ζEt−1

bat +
(

(P t−1
gb + P t−1

ab )ηC −
(P t−1

bg + P t−1
ba )

ηD

)
∆t ∀ t ∈ 2, . . . , H (C.32)

where ζ is the proportional rate of energy degradation at each timestep, ηC and ηD are
efficiency rates of the charging and discharging operations. For simplicity, the values taken
for these parameters are the following: ζ = 1, ηC = 0.98, ηD = 0.98.

The following constraints define the operation of the battery during charge and dis-
charge, for all t

0 ≤ P t
gb + P t

ab ≤ Pbat,maxδ
t
C (C.33)

0 ≤ P t
bg + P t

ba ≤ Pbat,maxδ
t
D (C.34)

δt
C + δt

D ≤ 1 (C.35)

Constraints (C.33) and (C.34) enforce the upper and lower limitations on the charging
and discharging powers at each timestep t. It is assumed that the upper limitation of
powers for charging and discharging have the same value Pbat,max. To make sure that the
battery is not charging and discharging at the same timestep, constraint (C.35) is enforced
with binary decision variables δt

C and δt
D.

In addition, it holds

H24∑
t=1

(
(P t

gb + P t
ab)ηC +

(P t
bg + P t

ba)
ηD

)
∆t ≤ C (C.36)

Constraint (C.36) ensures that the state of health of the battery is taken into account by
limiting the total energy charging and discharging of the battery over a chosen period.
The standard limit of the equivalent of the battery capacity C exchanged over a 24-hours
period is chosen here.
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C.3. Storage loads modeling

A cycle is completed by the battery when the sum of the exchanged energy is equal
to C, the nominal energy capacity of the battery. According to the previous constraint,
only one cycle is allowed per day.

These equations can be summarized in the form Abat,op xbat ≤ bbat,op using the decision
variable xbat defined as

xbat =



(Et
bat)t∈[1,H]

(P t
gb)t∈[1,H]

(P t
ab)t∈[1,H]

(P t
bg)t∈[1,H]

(P t
ba)t∈[1,H]

(δt
C)t∈[1,H]

(δt
D)t∈[1,H]


(C.37)

the right-hand side vector

bbat,op =



Ebat,max1
−Ebat,min1
Ebat,init

−Ebat,init
−Ebat,fin1Hcrit,bat

02(H−1)
04H

1
C


(C.38)

and the constraints matrix

Abat,op =
(
Abat,op,1 Abat,op,2

)
(C.39)

with

Abat,op,1 =



I 0 . . . . . . 0
−I 0 . . . . . . 0(

1 0 . . . 0
)

0> . . . . . . 0>(
−1 0 . . . 0

)
0> . . . . . . 0>

−I∆t?
bat

0Hcrit,bat,H 0Hcrit,bat,H 0Hcrit,bat,H 0Hcrit,bat,H

−ζIH−1,H + I′
H−1,H −ηC∆tIH−1,H −ηC∆tIH−1,H

∆t
ηD

IH−1,H
∆t
ηD

IH−1,H

ζIH−1,H − I′
H−1,H ηC∆tIH−1,H ηC∆tIH−1,H −∆t

ηD
IH−1,H −∆t

ηD
IH−1,H

0 I I 0 0
... −I −I 0 0
... 0 0 I I
...

...
... −I −I

0 0 0 0 0
0> ηC∆t1> ηC∆t1> ∆t

ηD
1> ∆t

ηD
1>


(C.40)
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Abat,op,2 =



0 0
0 0

0> 0>

0> 0>

0Hcrit,bat,H 0Hcrit,bat,H

0H−1,H 0H−1,H

0H−1,H 0H−1,H

−Pbat,maxI 0
0 0
0 −Pbat,maxI
0 0
I I

0> 0>



(C.41)

In the constraints matrix, the first two lines correspond to Eq. (C.25), the two following
lines correspond to Eq. (C.26), the fifth line corresponds to Eq. (C.27), the following two
lines correspond to Eq. (C.32), then four lines correspond to Eqs. (C.33)-(C.34), the twelfth
line corresponds to Eq. (C.35) and the last line corresponds to Eq. (C.36).

C.3.4 Electric Vehicles modeling

The EV can be modeled exactly as a battery, only adding a time-dependent availability,
and simplifying the variables. A model of higher precision can include the on-board charger
(OBC) efficiency and power rating, and power rating of the EV Supply Equipment. These
modeling details are dismissed.

When connected to the household EMS, the EV is necessarily parked. Thus, the
dynamic behavior of the stored energy in the EV battery during driving is not modeled.
Only dynamic behavior of the stored energy in the EV battery at a timestep t during a
vehicle-to-grid operation is modeled by the following equation

Et
ev = ζEt−1

ev +
(
P t−1

ev,cηC −
P t−1

ev,d
ηD

)
∆t ∀ t ∈ 2, . . . , H (C.42)

where Pev,c is the incoming power charging the EV battery, Pev,d is the outgoing power
discharging the EV battery, ζ is the proportional rate of energy degradation at each
timestep, ηC and ηD are efficiency rates of the charging and discharging operations.

The EV battery is either charging or discharging, not simultaneously, thus, for all t

0 ≤ P t
ev,c ≤ Pev,maxδ

t
ev,C (C.43)

0 ≤ P t
ev,d ≤ Pev,maxδ

t
ev,D (C.44)

δt
ev,C + δt

ev,D ≤ 1 (C.45)

Finally the EV battery state of health is preserved by limiting the total energy ex-
changed over a chosen period, typically up to the equivalent of the EV battery capacity
exchanged over a 24-hours period.

H24∑
t=1

(
P t

ev,cηC +
P t

ev,d
ηD

)
∆t ≤ C (C.46)

These equations can be summarized in the form Aev xev ≤ bev, using the decision
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variable xev defined as

xev =


(Et

ev)t∈[1,H]
(P t

ev,c)t∈[1,H]
(P t

ev,d)t∈[1,H]
(δt

ev,C)t∈[1,H]
(δt

ev,D)t∈[1,H]

 (C.47)

the right-hand side vector

bev =



Eev,max1
−Eev,min1
Eev,init

−Eev,init
−Eev,fin1Hcrit,ev

02(H−1)
04H

1
C


(C.48)

and the constraints matrix
Aev =

(
Aev,1 Aev,2

)
(C.49)

with

Aev,1 =



I 0 0
−I 0 0(

1 0 . . . 0
)

0> 0>(
−1 0 . . . 0

)
0> 0>

−I∆t?
ev 0Hcrit,ev,H 0Hcrit,ev,H

−ζIH−1,H + I′
H−1,H −ηC∆tIH−1,H

∆t
ηD

IH−1,H

ζIH−1,H − I′
H−1,H ηC∆tIH−1,H −∆t

ηD
IH−1,H

0 −I 0
... I 0
... 0 −I
...

... I
0 0 0

0> ηC∆t1> ∆t
ηD

1>



(C.50)

Aev,2 =



0 0
0 0

0> 0>

0> 0>

0Hcrit,ev,H 0Hcrit,ev,H

0H−1,H 0H−1,H

0H−1,H 0H−1,H

0 0
−Pev,maxI 0

0 0
0 −Pev,maxI
I I

0> 0>



(C.51)

In the constraints matrix, the first two lines correspond to Eq. (C.25), the two following
lines correspond to Eq. (C.26), the fifth line corresponds to Eq. (C.27), the following two
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lines correspond to Eq. (C.42), then four lines correspond to Eq. (C.43)-(C.44), the twelfth
line corresponds to Eq. (C.45) and the last line corresponds to Eq. (C.46).
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Appendix D

Euclidian Algorithm for modular
inverses

The following algorithm details the Euclidian Algorithm that can be used to compute u, a
modular multiplicative inverse of an integer a in the Finite Field Z/pZ (i.e. with modulo
value p). It satisfies au ≡ 1[p].

Algorithm D.1: Euclidian Algorithm: Compute the inverse of a modulo p,
with a and p integers

Input: Integers a and p
Initialize (r, u, v, r′, u′, v′) := (a, 1, 0, p, 0, 1).
while r′ 6= 0 do

Compute the quotient q of the Euclidian division of r by r′

Compute (r, u, v, r′, u′, v′) := (r′, u′, v′, r − qr′, u− qu′, v − qv′)
end
Return (r, u, v) //u is the modulo multiplicative inverse of a.

The final rest r has to be 1 in the case considered, as the Algorithm 4.4 has to work
with a and p being coprime integers.

Example: a = 120 and p = 23. Table D.1 shows the successively computed values for
r, u, v and q. The algorithm indicates that -9 is the inverse of a = 120 modulo p = 23.

r u v q

120 1 0 \
23 0 1 \
5 1 - 5 5
3 - 4 21 4
2 5 - 26 1
1 - 9 47 1

Table D.1: The Euclidian algorithm computes the r, u, v and q sequences

If a negative result is obtained but a non-negative one is needed, the value u + p can be
chosen.
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Appendix E

Example: Anonymous Data
Sharing With Power Sums

Here is reproduced an example from [Dunning and Kresman, 2013] of the execution of
Algorithm 4.3.

Suppose that l = 4 agents h wish to share a data item dh which takes values from 0
to 10: d1 = 6, d2 = 10, d3 = 6, d4 = 2. Choice of p = 11 and Finite Field Z/pZ will serve
to represent these numbers. The modulus 11 inverses needed will be 1/2 = 6, 1/3 = 4,
1/4 = 3 (see Appendix D for the presentation of the Euclidian Algorithm used to compute
these modular inverses). The agents compute the power sums shown in Table E.1.

dn
h n = 1 n = 2 n = 3 n = 4
i = 1 6 3 7 9
i = 2 10 1 10 1
i = 3 6 3 7 9
i = 4 2 4 8 5∑
dn

h S1 = 2 S2 = 10 S3 = 0 S4 = 2

Table E.1: Powers of data values dh chosen by each agent, modulo p = 11

Solving each of the Newton identities (4.25)-(4.29) in turn yields γ4 = −1 = 10, γ3 = 2,
γ2 = 9, γ1 = 1, γ0 = 6. And thus the polynomial (4.24) is

Π(x) = 10x4 + 2x3 + 9x2 + 1x+ 6 (mod p = 11) (E.1)

All the agents receive the values S1, S2, S3 and S4 and can compute the polynomial
and its roots to recover the original data items 2,6,6 and 10, but not their indices.

128



Appendix F

Example: Find AIDA

Here is reproduced an example from [Dunning and Kresman, 2013] for the execution of
Algorithm 4.4.

Suppose that four agents participate in searching for an AIDA. The random integers
in the first round yh can range from 1 to S = 10: y1 = 6, y2 = 10, y3 = 6, y4 = 2. All the
agents receive the values 2, 6, 6 and 10 with Algorithm 4.3, but not their indices. Agents
h = 2 and h = 4 can pick ν2 = 2 and ν4 = 1 by the position of their chosen integer in U ,
the ordered list of unique non-null random values.

Agents h = 1 and h = 3 choose 5 and 6 respectively in the second round, while agents
h = 2 and h = 4 choose 0 as they already have indices assigned at that point.

A trace of critical steps in the procedure is shown in Table F.1. Steps are identified by
indices 1), …, 5) in Algorithm 4.3.

Round Step ξ y1 y2 y3 y4 u1 u2 u3 u4 σ1 σ2 σ3 σ4
1 2 0 6 10 6 2
1 3 0 6 10 6 2 2 6 6 10
1 4 0 6 10 6 2 2 10 2 1
1 5 2 2 1
2 2 2 5 0 6 0 2 1
2 3 2 5 0 6 0 0 0 5 6 2 1
2 4 2 5 0 6 0 5 6 3 2 4 1

Table F.1: Trace of an AIDA algorithm execution

The final AIDA result is then σ1 = 3, σ2 = 2, σ3 = 4 and σ4 = 1.
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MOTS CLÉS

Réseaux électriques intelligents, autoconsommation, prévision de production photovoltaïque, contrôle optimal

de système énergétiques

RÉSUMÉ

Cette thèse aborde le problème de la maximisation de l'autoconsommation de la production photovoltaïque résidentielle,

par le contrôle optimal d'usages électriques domestiques. Dans la première partie, le problème d'optimisation est restreint

au contrôle d'un unique chauffe-eau à effet Joule, et est réécrit comme un problème sans contraintes. Un algorithme

d'optimisation efficace et rapide est proposé, et des expériences numériques montrent que ses performances dans un

cadre déterministe sont meilleures que celles d'autres heuristiques. Afin d'étudier l'impact des incertitudes de production

d'énergie photovoltaïque sur les performances des algorithmes de contrôle, ceux-ci sont évalués face à un grand nombre

de scénarios. Une nouvelle méthode est présentée pour générer ces scénarios, de manière à ce que la répartition de

l'ensemble représente l'étendue des réalisations possibles proportionnellement au niveau d'incertitude associé à la prévi-

sion initiale, et que chaque scénario individuel présente une variabilité intra-journalière réaliste. Des études numériques

montrent qu'à un pas-de-temps de 30 minutes, l'impact d'une prévision de production photovoltaïque « parfaite » est né-

gligeable en comparaison de l'impact du choix de l'algorithme d'optimisation. Dans la seconde partie de cette thèse, le

problème est étendu au contrôle optimal d'une diversité d'usages répartis dans plusieurs foyers formant une communauté

locale d'énergie, et partageant l'utilisation d'une batterie commune. Afin de modéliser aisément ces usages, la formulation

retenue est celle d'un problème d'optimisation linéaire mixte. La contrainte de protection des données personnelles des

participants au micro-réseau mène à proposer trois protocoles de communication préservant l'anonymat. Ces protocoles

sont utilisés pour concaténer les contraintes des foyers individuels au sein d'un problème d'optimisation centralisé, dont le

but est de minimiser le coût de fourniture de l'énergie à tout le micro-réseau, tout en préservant les données personnelles

des participants.

ABSTRACT

This thesis addresses the problem of maximizing the self-consumption of residential photovoltaic power though the op-

timal control of household appliances. In the first part of the thesis, the optimization problem is restricted to the control

of a unique electric water heater, and is formulated as an unconstrained problem. A novel and computationally efficient

optimization algorithm is proposed, and is shown to perform better in a deterministic setting than other heuristics. In order

to assess the impact of photovoltaic power production uncertainties on the control algorithms performances, the algo-

rithms are evaluated under a large number of scenarios. A novel methodology is presented to generate these scenarios

ensuring that each individual scenario presents a realistic intra-day variability, and that the set as a whole represents with

proportionality the range of possible production outcomes. Numerical experiments show that at a 30-minute timestep, the

impact of a ``perfect'' photovoltaic production forecast is negligible compared with the impact of the choice of the control al-

gorithm. In the second part of the thesis, the problem is extended to the optimal control of a diversity appliances located in

several households forming a local energy community and sharing the use of a community battery. A mixed integer linear

programming formulation of the problem is adopted in order to ease the appliances modeling. The constraint of preserving

the private data of the microgrid participants leads to proposing three privacy-preserving communication protocols. These

protocols are used to communicate the individual households constraints for the microgrid energy management system

to be able to concatenate them into a centralized microgrid optimization problem aiming to minimize the cost of providing

energy to the whole community, while preserving privacy.
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Smart grids, self-consumption, PV power production forecasts, optimal operation and control of power systems
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