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Résumé
L’émergence du Building Information Model (BIM) dans les domaines de l’industrie du BTP et de la
gestion de la ville révolutionnent notre manière de concevoir, construire, gérer et entretenir nos bâtiments.
Les modèles BIM rassemblent à la fois des informations géométriques sur le bâtiment, mais également
des informations sémantiques permettant d’identifier chaque composant logique (mur, dalle, fenêtre, etc.).
Cette information est généralement créée manuellement à la conception d’un nouveau bâtiment; cependant,
seul 1% du parc immobilier à reconstituer est renouvelé chaque année. La génération automatique de
maquettes BIM à partir de capteurs tels que des appareils photos ou des LIDARs (générant directement
des nuages de points) constitue dans ce contexte un besoin de plus en plus important. L’objectif de cette
thèse est le développement de nouvelles méthodes pour la reconstruction de maquettes BIM, qui incluent à
la fois les informations géométriques et sémantiques. Un important effort de recherche est déployé pour
rendre les méthodes existantes plus robustes aux contraintes présentes dans les différents cas d’usage
pratiques. La reconstruction 3D débute généralement par l’acquisition de nuages de points par LIDARs ou
par photogrammétrie, c’est-à-dire la triangulation de points clés mis en correspondance entre différentes
photographies d’un même lieu, avant la reconstruction de la surface sous-jacente. Dans le contexte du
bâtiment, la triangulation est rendue difficile par la présence de zones sans texture dans lesquelles les
algorithmes peinent à détecter des points-clés. De plus, certaines parties du bâtiment peuvent être absentes
des données d’entrée en raison des occultations ou d’erreurs imputables à l’opérateur. En ce qui concerne
la sémantique au sein des nuages de points, il existe d’importantes ambiguïtés entre les différentes classes:
il peut par exemple être ardu de repérer sur un nuage de points la séparation entre une porte et un mur.
Dans cette thèse, nous proposons trois contributions techniques afin de traiter ces limitations.
Tout d’abord, nous proposons la première méthode permettant la reconstruction planaire par morceaux

de bâtiments à partir d’images utilisant des segments de droites comme primitives. En effet, bien que les
vastes zones sans texture dans les bâtiments (murs blancs par exemple) rendent difficile la détection de
points clés, les segments de droites restent visibles et détectables (par exemple grâce au changement de
luminance à l’intersection entre deux murs). L’utilisation de ces segments de droites rend notre méthode
robuste aux surfaces sans texture, et nous sommes en mesure de reconstruire des scènes pour lesquelles les
méthodes basées sur les points-clé échouent.
La seconde contribution traite le problème de la reconstruction de maillage à partir d’un ensemble

d’images de basse résolution prises à des positions et orientations connues de l’espace. Dans ce contexte, les
méthodes traditionnelles échouent, et apprendre des a priori directement sur de grandes bases de données
de formes 3D nous permet tout de même d’effectuer une reconstruction. Plus précisément, notre méthode
apprend des a priori afin de fournir une première approximation de la forme à reconstruire que nous
affinons ensuite en ajoutant des contraintes géométriques. Notre méthode fournit directement un maillage et
se compare positivement avec les méthodes de l’état de l’art dont la sortie est limitée à un nuage de point
bruité.
Notre troisième contribution est VASAD, un jeu de données pour la reconstruction volumique et sémantique,

que nous avons créé à partir de modèles BIM bruts disponibles en ligne. C’est le premier jeu de données de
cette taille (62.000m²) à fournir simultanément des annotations géométriques et sémantiques. En plus de
ce jeu de données, nous proposons 2 méthodes pour reconstruire de manière conjointe la géométrie et la
sémantique à partir d’un nuage de point et nous démontrons que notre jeu de données propose des défis
susceptibles de fortement influencer les recherches futures.

Mots-clé BIM, apprentissage, reconstruction, sémantique.
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Abstract
The advent of Building Information Models (BIM) in the field of construction and city management
revolutionizes the way we design, build, operate and maintain our buildings. BIM models not only include
the geometric aspect of the buildings but also semantic information which identifies its logical components
(walls, slabs, windows, doors, etc.). While this information is fairly reasonable to create during the building
design, only 1% of the building stock is renewed each year. There is therefore an increasing need for
automated methods to generate BIM models on existing buildings from sensors such as simple RGB cameras
or more advanced LIDAR sensors which directly provide a point cloud. In this context, the goal of this
thesis is to develop approaches for BIM reconstruction, including both geometric reconstruction and semantic
analysis. These tasks have been explored, but an important research effort is being conducted to make
them more robust to the variety of use cases found in practice. 3D reconstruction is usually operated based
on direct 3D acquisitions such as LIDARs or using photogrammetry, i.e., using pictures to triangulate key
point locations and reconstruct the surface afterward. In the context of buildings, the latter case is usually
limited by the presence of textureless areas which makes it hard for the algorithms to find key points and
to triangulate them. Moreover, some parts of the buildings might be missing from the input data because
of occlusions or omission from the acquisition operator. Regarding semantics in point clouds, important
ambiguities exist between semantic classes: the discontinuity between a wall and a door can be hard to
distinguish from a point cloud only; a slab, a roof and a ceiling sometimes need additional context to be
disentangled. In this thesis, we present three technical contributions to address these issues.
First, for 3D reconstruction of building scenes, we propose the first method to reconstruct piecewise-planar

scenes from images using line segments as primitives. While wide textureless areas exist in indoor scenes
(e.g., walls), making it particularly difficult to detect key points, lines are often more visible and easier to
detect (e.g., change of illumination at the intersection of two walls) and therefore should be used to ensure
robustness of image-based reconstruction approaches. We leverage the presence of these line segments and
the possibility to detect and triangulate them. This makes the method robust to textureless surfaces, and we
show that we can reconstruct scenes on which point-based methods fail.
The second contribution is more theoretical and addresses the problem of mesh reconstruction from

multiple images of low resolution with known position and orientation in space. In this context, traditional
methods completely fail and directly learning priors on a large scale dataset of 3D shapes allows us to still
perform reconstruction. More specifically, our method uses the learned priors to provide an initial rough
shape which is further refined by incorporating geometric constraints. Our method directly outputs a mesh
and competes with state-of-the-art methods, which can only output a noisy point cloud.
Finally, the third technical contribution is VASAD, a dataset for volumetric and semantic reconstruction,

which we created from raw BIM models available online. It is the first large scale dataset (62,000m²) to
offer both geometric and semantic annotations at point and mesh level. With this dataset, we propose two
methods to jointly reconstruct both geometry and semantics from a point cloud and we show that the
proposed dataset is challenging enough to stimulate research.

Keywords BIM, machine learning, reconstruction, semantic.
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1
Introduction

Chapter 2 ]

1.1 motivation

1.1.1 BIM

Since the spread of computers in almost every professional field, construction and civil
engineering have benefited a lot from this technology. Early in this interaction, the idea
grew to save time and money by making digital models for buildings. Though it might
seem obvious to use computers for building design, it was soon understood that bringing
more information into the digital model could lead to gains in the whole building life-cycle
steps [ULW19], such as operations, maintenance, repair or asset management.
The Building Information Models were invented to fill this purpose: not only do they

contain the geometry of the building, but many operational details such as building parts,
infrastructure, network, metadata and documentation (see Figure 1.1). Modern software
has been built to make it convenient to generate such complex files, e.g., ReVit, BIM 360,
ARCHICAD, or TEKLA Structures. While efforts are being made to standardize BIM files,
the use of this digital twins gets more and more generalized. A visual representation of a
building and its corresponding BIM file is provided on Figure 1.2.

1.1.2 Automatic model generation

While this software allows the generation of rich data during the building design, it is
expensive to manually create BIM files for existing building. As a matter of fact, this
involves getting precise measurements, guessing what is behind hidden spots, gathering
all the data in the software and of course, avoiding mistakes along this tedious work.
Again, computer science can have an impactful role to play in automating this task [HNZ21].

While parts of the infrastructure require specific sensors to recover (e.g., electric network
in walls), recovering the logical functionality of each building component (walls, win-
dows, stairs, etc.) as a semantic label is doable for a human by visualizing the data.
Indeed, knowing these labels could allow automatic material assignment when conducting
simulation of the thermal performance of the building.
In this context we can ask: in the spirit of BIM models, is it possible with simple

sensors such as regular cameras or LIDARs (see 1.2.1) to recover both the geometry and
the semantic class of each component in a given building? This thesis is dedicated to
answering that question. Our problem is twofold and we discuss here the definition of
both aspects.
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Structure and walls

Hydraulic network highlighted

Electric network highlighted

Figure 1.1: A
BIM model and
its different com-
ponents.
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Actual building [Com12]

Representation of the BIM model

Figure 1.2: A
building (Villa
Sextant) and its
digital twin.

1.2 approach

We provide here a general description of the tasks involved in the thesis and general
bibliographic elements. A detailed related work is provided for each of our contributions
in sections 2.2, 5.2 and 8.2.

1.2.1 Sensors

Every signal-processing routine starts with a sensor acquisition. For buildings, it is possible
to use several kinds of sensors:
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] RGB cameras: Regular cameras produce an image as a grid of pixels, each of which
contains an RGB byte triplet which encodes a red/green/blue light color information.
While this is a very natural way of capturing and representing our environment as we
see it; this does not allow a direct access to a geometric information. With this type of
data, recovering the 3D information requires additional processing, which we develop
below.

] RGB-D cameras: Also called 2.5D sensors, these devices (e.g., Microsoft Kinect, Intel
Realsense and Apple’s Face ID) make use of structured light to produce a depth
information on top of the color information for every pixel. A point cloud can then
directly be obtained thanks to the camera calibration parameters. Though they are still
slightly more expensive than regular cameras, these sensors become more and more
common as they are being integrated on modern smartphones.

] LIDAR sensors: Laser-based sensors produce a point cloud where each point represents
the intersection between a laser beam and a physical surface. These devices are the
most expensive but their price is decreasing fast. They are by far more precise than
RGB-D camera and they cover a larger field of view.

Because they measure physical quantities, all of these sensors are subject to noise
from various sources. These sources include the manufacturing precision of the optical
components, the general condition of the optical components, the homogeneity of the
atmosphere between the sensor and the captured object, and specific properties of the
surface which may be incompatible with a proper capture (e.g., a mirror for RGB-D
cameras and LIDAR sensors).
Dealing with noise is central when working on real data and specific methods perform

denoising [MGMH04, TXFY18]. For this reason, algorithms can be designed first on
synthetic data for which the level of noise is controlled, before being applied to real data.

1.2.2 3D Reconstruction

Reconstructing the geometry from photographs or LIDARs is usually referred to as 3D
Reconstruction in the computer vision literature. This process aims at retrieving the shape
and appearance of real objects. The notion of virtual shape is very ill defined as there
are many ways to represent a shape in 3D: point clouds, meshes, primitive set, implicit
functions. The choice of the correct representation depends on the input, and the use we
want to make of the 3D reconstruction.
In the particular case of BIM models, current software mostly represents the shapes as

meshes, more specifically closed meshes. This allows us to define an interior and an exterior
for any part in the scene, which is crucial to perform thermal and acoustic simulations.
This distinction is paramount since most approaches in the computer vision literature
are focused on surface reconstruction (i.e., generating surfaces which do not necessarily
partition the space between interior/exterior) rather than volume reconstruction. In this
dissertation, when dealing with building reconstruction, we strive to propose methods
which reconstruct proper volumes as they are more useful for downstream applications.
Additionally, the parts in BIM models are usually represented in an idealized version, i.e.,
the way the architect drew them. In order to get closer to this representation, it is usual
to add constraints such as piecewise planarity and/or encourage right angles in the final
reconstruction. These constraints aim to account for planar walls typically intersecting at
right angles.
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3D Reconstruction has the particularity to be an ill-defined problem: the representation
we have of the object we try to reconstruct is often partial and there are therefore many
ways to perform reconstruction while respecting the input data.

Images as input. When dealing with images, two major classes of methods are being used:

] Photogrammetry: given a set of input images, the idea is to first find corresponding
point pairs across different images to calibrate the cameras (i.e., guessing the relative
camera position to one another as well as the internal parameters such as the focal
length and the optical center). It is then possible to obtain a point cloud by triangulation
techniques. In practice, the bundle adjustment methods [SF16] do both tasks (calibration
and triangulation) simultaneously, but it is necessary to densify the matches.

] Prior-based methods: Assuming that we can decompose an image in a depth image, a
reflectance image and an illumination model [Hor74], the Shape from shading algorithms
propose to recover the shape of an object assuming just the illumination and reflectance
are known [ZTCS99]. These methods make strong assumptions on the scene and
work well only under specific conditions. More recently, the advent of deep learning
techniques (see 1.2.4) allows to directly learn strong priors from large-scale datasets of
objects.

Point cloud as input. When dealing with point clouds, we already have access to a
geometric information which may be sufficient for some applications. However, point
clouds have major flaws: to well represent a shape, they need to be particularly dense
(typically hundreds of millions for a building), and the sampling needs to be as uniform
as possible (to avoid missing details). This is a very heavy and inefficient representation,
and due to the capture from fixed point of views, the raw point clouds are usually not
uniformly sampled (see Figure 1.3). As previously mentioned, raw point clouds are also
subject to noise, which makes the estimation of the underlying surface less precise. Finally,
for many applications, the normal information associated to each point of the surface is
often required. Though this can be estimated by various methods [BM12], the accuracy of
the method highly depends on the point cloud aforementioned qualities.
For these reasons, an important research effort has been conducted to perform surface

prediction from a point cloud. Classical methods make use of priors such as the smoothness
of the underlying surface [KBH06] or negligible noise [BMR+99]. In the case of BIM,
surface reconstruction is not enough: we need a volume reconstruction, i.e., a partition
of the space between empty and full parts. This is a harder task in general and fewer
methods provide such a partition as an output [BdLGM14, NW17].

1.2.3 Semantic segmentation

Our objective also includes semantic segmentation, i.e., the process of labeling each building
part. In general, this task is still an important research challenge. Simple shapes like
planes [SWK07] can efficiently be retrieved. When the segments are well separated by a
high curvature, a region growing based algorithm [ZPK+02] can be used. However, for
many practical tasks, and in the context of BIM reconstruction in particular, the parts we
want to segment are not described by their geometry, but by their functional use. The IFC
format often used for BIM projects defines parts such as slabs, roofs, windows, doors to
name a few. These parts are usually represented by a closed volume and a label. Most



8

of the time, the parts do not overlap and the separation between two objects is visually
clear. However, when looking at the point cloud only (in the case of a LIDAR sensor), it
can be very difficult to tell different components apart (see Figure 1.3). Moreover, parts in
buildings can be ambiguous: in modern buildings flat roofs can for instance be mistaken
for slabs. For these reasons, it makes sense to learn the shape priors directly on the data
instead of hand crafting it. Again, recent deep-learning-based techniques show promising
results in this direction (see 1.2.4).

1.2.4 Deep Learning

In recent years, the deep-learning-based techniques have spread through all the tasks
studied in computer vision and allowed major breakthrough. Even though these techniques
have been first developed during the early years of computer vision [Ros58], two main
factors account for the recent success of these algorithms:

] Data: The present-day steady release of large scale datasets [DDS+09, CFG+15] has
allowed training deep learning models at large scale.

] Computing power: One of the first major breakthrough was accomplished thanks to a
smart implementation of deep neural networks on a modern GPU for image classification
[KSH12].

The influence of deep learning on our task is twofold:

] Deep reconstruction methods: Classical methods can only make use of the data from
the specific scene they are trying to reconstruct, as well as hand-crafted priors. While
this allows impressive results [SF16], the algorithm often fail where a human would
perfectly understand the geometry of a scene thanks to his/her own experience of his/her
surrounding world. Deep learning methods allow to go past this limitation by enabling
scene completion [SYZ+17] or single-view reconstruction [GFK+18, PFS+19, MON+19].
Moreover, the encoder/decoder architecture of these methods allow handling various
inputs, and as such, [GFK+18, PFS+19, MON+19] also allow reconstruction from a point
cloud thanks to the powerful PointNet [QSMG17] encoder.

] Deep segmentation methods: As mentioned in 1.2.3, classical methods struggle to
model complex classes. The deep-learning-based methods have first brought tremendous
improvements on image segmentation [RFB15, LSD15]. These networks have been used
to label point clouds by back-projecting the 2D segmentation information [BGLSA18],
and specialized networks for directly segmenting 3D data have appeared [QSMG17,
QYSG17, ÇAL+16, TQD+19].

1.3 contributions

1.3.1 Main contributions

As we noticed in the previous section, many topics are concerned by the subject of BIM
reconstruction. In this dissertation, we are interested in four particular aspects:

] 3D reconstruction of buildings.

] Reconstruction from photographs taken thanks to RGB cameras.
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Original mesh

Point cloud (darker points are closer to the sensor)

Figure 1.3:
Even on syn-
thetic data, it
is difficult to
distinguish a
door on a point
cloud.
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Figure 1.4:
Summary of
our contribu-
tions (framed)
and their
relationship to
the topics cover
by the thesis
subject (black).

] Reconstruction from point clouds obtained from LIDAR scans.

] The use of machine learning, especially deep learning to leverage large scale datasets
to perform both reconstruction and semantic segmentation.

This dissertation aims at paving the way towards efficient methods to automatically
reconstruct and label each logical part of a building. As such, we bring three contributions
which deal with the four aforementioned aspects (see Figure 1.4):

] Surface Reconstruction from 3D Line Segments

In this contribution, we are interested in the pure problem of surface reconstruction in
the context of buildings. In particular, we address one of the most important failure
cases of the traditional methods, i.e., the reconstruction of textureless areas, which are
omnipresent in modern buildings. To that end, we develop an original reconstruction
method based on line segments instead of points.

] 3D Reconstruction by Parameterized Surface Mapping

In this contribution, we are interested in the possibility to use machine learning to learn
priors for reconstruction. Moreover, we are interested in leveraging multiple views of
an object to further refine the obtained mesh.

] VASAD: a Volume and Semantic dataset for Building Reconstruction from Point
Clouds

With this contribution, we bring into play the semantics along with geometry to make
the synthesis of both aspects. We propose VASAD, a dataset built from freely available
BIM products, and show that we can directly learn on models for the 3D reconstruction
with semantic task, and therefore come closer to a full automation of the BIM generation
process.

We open source the code and data for our contributions on Github [Lan21].
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1.3.2 Other contributions

Our other contributions in the course of the PhD will not be discussed in this dissertation.
They include:

] Pose from shape [XQL+19]: a 3D pose estimation for objects from a single picture.

] NeeDrop: a work including an unsupervised loss to learn to reconstruct implicit surfaces
from a dataset of point clouds.

1.4 organization of the dissertation

Our surface reconstruction from 3D line segments algorithm is presented in part II while
our 3D reconstruction by parameterized surface mapping algorithm is presented in part III.
Our dataset VASAD and its baselines are presented in part IV and part V concludes this
dissertation.
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Part II

SURFACE RECONSTRUCTION FROM 3D LINE
SEGMENTS



2
Introduction

[ Chapter 1
Chapter 3 ]Synopsis In man-made environments such as indoor scenes, when point-based 3D re-

construction fails due to the lack of texture (see Figure 2.1), lines can still be detected
and used to support surfaces. We present a novel method for watertight piecewise-planar
surface reconstruction from 3D line segments with visibility information. First, planes
are extracted by a novel RANSAC approach for line segments that allows multiple shape
support. Then, each 3D cell of a plane arrangement is labeled full or empty based on line
attachment to planes, visibility and regularization. Experiments show the robustness to
sparse input data, noise and outliers.

3 image samples out of the 32 images used for reconstruction

Colmap [SF16] + Poisson [KBH06] failed reconstruction

Figure 2.1:
Failed point-
based recon-
struction in
a textureless
environment
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2.1 reconstructing textureless surfaces

Numerous applications make use of 3D models of existing objects. In particular, models
of existing buildings (e.g., BIMs) allow virtual visits and work planning, as well as
simulations and optimizations, e.g., for thermal performance, acoustics or lighting. The
building geometry is often reconstructed from 3D point clouds captured with LIDARs
or using cameras and photogrammetry. But with cameras, registration and surface
reconstruction often fail on indoor environments because of the lack of texture and strong
view points changes: salient points are scarce, point matching is difficult and less reliable,
and when calibration nonetheless succeeds, generated points are extremely sparse and
reconstructed surfaces suffer from holes and inaccuracies.
Yet, recent results hint it is possible to rely on line segments rather than points. Lines

are indeed prevalent in man-made environments, even if textureless. From robust detec-
tion [GvGJMR12, SMM16a] and matching [ZYL11, WWH09, HS12] to camera registration
[EE11, SMM16b, SMM17, MDR18] and 3D segment reconstruction [HWB13, HMB16], lines
can be used when photometric approaches fail for lack of texture. But as opposed to point
processing, line-based surface reconstruction has little been studied [WM14, MG16]. This
paper presents a novel approach to do so.

A change of paradigm is needed to consider 3D line segments rather than points.
Transposing point-based methods to lines is difficult as many point-related assumptions
do not hold for line segments. Indeed, points should be numerous enough (often, in
thousands), with a uniform enough sampling, with an accurate enough detection and
matching, and most of all, they must belong at most to one primitive. On the contrary, only
a few tens of lines (rarely hundreds) are typically detected, and their density and sampling
uniformity is so low that they cannot directly support a good surface reconstruction. Also,
due to noise in local gradients and varying occlusions depending on viewpoints, segment
detection is less accurate and often leads to over-segmentation and unstable end-points
which are ignored by most 2D line matchers. Only after image registration and 3D segment
reconstruction can 2D detections be related to actual fragments of a 3D line segment,
moreover possibly differing according to the different viewpoints. Besides, curvy shapes
as cylinders may yield unstable occlusion edges (silhouettes), yielding noise or outliers.
Finally, some 3D lines identify straight edges that are creases between two planar surfaces,
and thus support two shapes, contrary to points, that only support one shape.
Belonging to two primitives rather than one requires reconsidering shape detection. In

particular, in greedy iterative methods, removing all data supporting a detected shape
could prevent detecting other shapes because all or a significant fraction of features would
then be missing. For instance, it would not be possible to detect all the faces of a cube
given only its edges (see Figure 3.3). And even if enough 3D data remain for detection,
shape sampling would be affected and some shapes would be less likely or unlikely to be
detected.

Overview. We propose the first complete reconstruction pipeline that inputs 3D line
segments with visibility information and outputs a watertight piecewise-planar surface
without self-intersection (cf. Figure 2.2). We first extract primitive planes from the line
cloud, distinguishing two kinds of line segments: textural lines, supporting a single plane,
and structural lines, at the edge between two planes. Then, we label each 3D cell of the
plane arrangement as full or empty by minimizing an energy based on line type, line
segment support, visibility constrains and regularization.

Our main contributions are as follows:
- We define a robust and scalable plane detection method from 3D line segments,
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Pictures Detected segments
in pictures

3D lines

Planes extracted
from 3D lines

3D Polyhedral
complexExtracted surface

Input

Output

Figure 2.2:
Line-based 3D
reconstruction
pipeline. This
paper covers
from Input to
Output.

without scene assumptions. This novel non-straightforward RANSAC formulation takes
into account a key specificity of lines vs points, namely that they can support up to two
primitives (at edges), which breaks the greedy iterative detection traditionally used with
points.
- We totally recast the surface reconstruction approach of [CLP10, BdLGM14] into a

line-based setting. We meaningfully and efficiently generalize data fidelity and visibility
from points to line segments, taking care of lines supporting two planes. We also feature a
simpler and lighter treatment of noise.
- We validate our method on existing datasets, and provide new ones to assess line-based

reconstruction quality.

2.2 related work

Surface reconstruction has been extensively studied from 3D points [BTS+14] and/or images
[FH15]. The conventional multi-view stereo reconstruction algorithms essentially focus on
finding pointwise correspondences across images to first find the relative position of images
to each other, and then to extract a dense point cloud by incorporating epipolar constraints
and designing photometric errors as detailed in [FH15]. Schoenberger et al. have developed
COLMAP [SF16], a method which leverages both geometric and photometric constraints
to build a point cloud from images. This algorithm outperforms the state-of-the-art on
several public benchmarks. A surface can then be obtained from the dense point cloud
thanks to meshing methods which leverage priors on the surface smoothness [KBH06] or
the point cloud density [LPK09].
As opposed to the point-based methods, we consider here the input to be 3D line

segments (with viewpoints), that can be sparse, missing, noisy and corrupted with outliers.
We aim at an idealized piecewise-planar and watertight surface to be consistent with the
current representation of buildings in BIM models.

To deal with sparse data, some methods detect planes based on 3D features and
dominant orientations [SSS09], possibly with a Manhattan-world assumption [FCSS09],
and create piecewise-planar depth maps taking into account visibility and local con-
sistency. Other approaches consider 2D image patches back-projected on 3D planes
[MK10, BdLGMK17]. In contrast, our method produces a watertight mesh, does not
impose a few specific orientations, and can work with 3D features only, not requiring
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images and not working at pixel level.
Another approach to little input data is to extend boundaries and primitives until they

intersect [CLF02]. It however does not ensure a watertight reconstruction either. This is
only achieved by methods that create a volumetric partition of the 3D space and extract
the surface from full and empty cells. The partition can be a voxel grid [SDK09], a 3D
Delaunay triangulation [LPK07, WWW11] or a plane arrangement [CLP10, BdLGM14].

Wireframe reconstruction is what most lined-based methods focus on: rather than
surfaces, they study how to generate meaningful 3D line segments [JKTS10, HWB13,
HMB16, IS17], after line matching is performed [SZ97]. And more general curves than
lines are not used beyond structure from motion [NF15].

Surface reconstruction with lines in addition to points has received a modest attention.
Baillard and Zisserman [BZ99] reconstruct planes from a 3D line and a neighboring
detected point. It requires lines surrounded with texture and is outlier-sensitive. It also
does not prevent self-intersections nor guarantees watertightness. The authors of [BENV06]
segment images into likely planar polygons based on 3D corner junctions and use best
supporting lines to reconstruct polygons in 3D. For 2.5D reconstruction, extracted 3D
lines [SZ97] are used with a dense height map to build a line arrangement on the ground
plane and create geometric primitives and building masks [ZBKB08]. In [SSS09], pairs
of 3D lines generated from vanishing directions provide plane hypotheses, validated by
3D points. The surface is a set of planar patches created from plane assignment to pixels.
[STO15] adds points uniformly sampled on the 3D lines to the Delaunay triangulation,
introducing extra parameters, and although visibility is treated without sampling, the
method is unlikely to work on scenes with only sparse lines. [HMB14] also shows a
meshing improvement using 3D line segments.

Surface reconstruction from line segments only, when points fail due to the lack of
texture, has little been studied.

The method described in [ZRK12] presents a single-view surface reconstruction based
on 2D line segments. Lines are paired from segment extensions along their direction,
and planes orientations are sought by RANSAC, hypothesizing mutually orthogonal
corresponding 3D lines. Articulating lines are found at plane intersections to construct a
multi-plane structure. Our structural lines are called ‘articulation’ or ‘articulating’ lines
in [ZRK12]. They are discovered late, to set plane offsets, whereas we differentiate them
early at plane detection. For robotic mapping, [WM14] considers all combinations of
two non-collinear coplanar line segments as plane hypotheses. Line segments are then
assigned to possibly multiple planes in a face complex built from plane intersections. The
reconstructed surface is made of faces depending on an occlusion score. Compared to our
approach, this method does not scale well to many lines, is sensitive to outliers, relies on a
number of conservative heuristics that can be detrimental to surface recall, involves no
regularization, and does not reconstruct a watertight mesh. As for [MG16], it first reprojects
3D lines into images that see them, studies the intersection of segments in 2D rather
than planes in 3D, and infers plane hypotheses. The surface is made from image faces
back-projected onto a possible 3D plane. Although less sensitive to outliers, this method
involves heuristics and no proper regularization, and it reconstructs a non-watertight mesh
with floating polygons and possible self-intersections.

Extracting 3D planes from line segments has little been treated; the literature focuses
on point clouds, chiefly ignoring line clouds. The most popular scheme for points, which
is robust to sparsity contrary to region growing as in [CLP10, BdLGM14], is RANSAC
[CKY09, SWK07]. But as explained below, it cannot straightforwardly be applied to line
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segments because it relies on different distribution hypotheses and because of the possible
association of a single segment to several primitives, also invalidating line discretization
into points. Still, [WM14] takes line segments as input, but plane detection is somewhat
exhaustive, hence with scalability issues, and sensitive to outliers. Using laser data, [CCO15]
exploits 3D lines to detect planes, but it uses strong properties of LIDAR acquisition, namely
line parallelism and large and dense data.
An open question is if multi-model methods [ZKM05, TF08, IB12, MF14], which

assume non-overlapping segmented data, can be adapted not only to large inputs but also
to multiple shape support [KKZ09, BTL16], as absolutely required for line segments.

Surface reconstruction from a plane arrangement is a common topic, with variants
enforcing plane regularity [LWC+11, MMBM15] or level of detail [VLA15], or offering
reconstruction simplicity [NW17]. It is largely orthogonal to our work. Here we build
on [BdLGM14], with line-specific data and visibility terms.



3
Method

[ Chapter 2
Chapter 4 ]

Figure 3.1:
Input lines and
reconstructed
surfaces on 4
datasets (from
left to right):
TimberFrame,
HouseInterior,
Barn, Terrains.

3.1 line extraction

In this work, we assume we have as input 3D line segments as well as their viewpoints.
Concretely, for our experiments, we extract 3D line segments thanks to the Line3d++
algorithm [Hof16, HMB16]. First, when the calibration is not provided, we compute it
thanks to the classical feature matching and filtering method with bundle adjustment
available in COLMAP [SF16]. Then, lines are detected thanks to the a contrario method
LSD [GvGJMR12]. Line3d++ essentially consists of 4 steps, plus 1 optional step. It first
generates potential line matches across the images based on epipolar constraints. The
matches are then filtered based on the heuristic that correct matches usually support each
other, i.e., a good potential 3D segment should be close to other 3D segments. After
this process, each remaining 2D detection which has at least one match generates a 3D
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hypothesis thanks to the match that has the highest confidence, as computed during the
previous step. Finally, the 2D detections are clustered based on the spatial proximity of
their 3D hypothesis, and a 3D line segment is determined for each output cluster. As an
optional refinement step, a bundle adjustment can be applied to ensure that the final 3D
line segments fit their 2D residuals.
The output 3D line segments along with their 2D residuals and the camera poses

constitute the input to our method.

3.2 plane detection from 3d line segments

The first step of our approach is to detect planes that are supported by line segments
in the input line cloud ℒ. We use the RANSAC framework [FB81] as it scales well to
large scenes and deals well with a high proportion of outliers, which are unavoidable in
photogrammetric data. The general idea is to randomly select two candidate lines in the
input line set and to find the lines which are close to the plane generated by the candidate
lines. Repeating this process and keeping the plane with the largest number of inlier lines
statistically allows to recover the most salient plane of the line set (see Figure 3.2). Our
whole algorithm is summarized in Figure 3.5 and we provide here a detailed explanation.

Figure 3.2: One
iteration of
our RANSAC
process: two
random line
segments are
selected (left)
and the lines
fitting the
corresponding
candidate plane
are selected
(right).

As argued above and shown experimentally (cf. Sect. 4), a key requirement is to allow
a line to belong to two planes. Lines supporting one plane are considered textural; lines
supporting two planes are deemed structural. Yet some actual texture lines may support
additional “virtual” planes, as when a line is drawn around an object, e.g., at the borders
of a frieze around the walls of a room, which belongs both to the vertical walls and to an
non-physical horizontal plane.

3.2.1 Candidate plane construction

We generate candidates by sampling the minimum number of observations required to
create a model, i.e., two non-collinear line segments to define a plane. Two 3D segments
𝑙𝑎, 𝑙𝑏 can be coplanar in two ways: they can be parallel, or their supporting infinite lines can
intersect. With noisy real data, the latter can be relaxed using a maximum small distance
𝜖 between the lines. We discard parallelism because, when reconstructing man-made
environments such as buildings, it may generate many bad planes. Indeed, two random
vertical segments (e.g., detected on windows) are parallel but statistically unlikely to
support an actual, physical plane (e.g., segments on different facades). We thus threshold
the angle ∠(𝑙𝑎, 𝑙𝑏), which also excludes the degenerate case of collinear segments.
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3.2.2 Greedy detection and multi-support issues

We sample planes as line pairs and perform an iterative extraction of the most significant
planes, i.e., with the largest number of supporting segments after a given number of
sampling trials. However, contrary to usual RANSAC, we cannot remove supporting
segments at once as they may actually belong to two planes; it would lead to detecting the
main planes only, missing planes with a smaller support. Conversely, we cannot consider
all segments as available at each iteration: it would statistically lead to multiple detections
of the same large planes and again miss planes with small support.
A natural way to allow a datum to be part of several detection in greedy RANSAC is to

remove inliers for model sampling but not for data assignment to models [ZRK12]. But
for sparse data (which is the case with line segments), it fails to detect models with little
data support, e.g., preventing detecting all the faces of a cube from its sole edges (see
Figure 3.3).
Another way to allow the same datum to seed several models is to bound their number,

i.e., 2 for lines supporting planes. But it does not work either as it often associates a line
twice to more or less the same plane.
Our solution, as described below, is to bound the number of supported planes per line

segment, but with an additional condition to prevent shared segments to belong to similar
planes.

input detection assignment detection assignment

detection assignment detection assignment No more
detection
possible.
Two missing
planes.

Figure 3.3:
Because line
segments are
sparse, remov-
ing the inliers
immediately
after a plane
detection leads
to missing
planes in the
simple case of
a cube whose
detected lines
are the edges
(in red: the
detected planes
at each step).

3.2.3 Candidate plane generation

We note Λ(𝑃) the set of line segments supporting a plane 𝑃, Π(𝑙) the set of planes supported
by a line segment 𝑙 ∈ ℒ, with | Π(𝑙) | ≤ 2, and ℒ𝑖 the set of segments supporting 𝑖 plane(s)
for 𝑖 in 0, 1, 2.
We construct these sets iteratively by generating candidates planes 𝑃 and assigning them

segments 𝑙 ∈ ℒ, some of which may have already been assigned to another plane Π(𝑙).
Only line segments in ℒ2 are discarded from the pool of available segments to support a
plane, as they already support two planes. Initially, ℒ0 = ℒ, and ℒ1 = ℒ2 = ∅.
As line segments are not put aside as soon as they are assigned to a plane, they can be

drawn again to generate new candidate models. However, generating several times the
same plane (with the same supporting line segments) would not only reduce efficiency, but
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also make some models little likely to be drawn, as models with a large support would be
sampled much more often. To prevent it, after drawing a first line segment 𝑙𝑎 ∈ ℒ0 ∪ ℒ1,
there are two cases. If 𝑙𝑎 ∈ ℒ0, i.e., if 𝑙𝑎 has not been assigned to any plane yet, then the
second segment 𝑙𝑏 can be drawn unconditionally in ℒ0 ∪ ℒ1 as it will always yield a new
model. If 𝑙𝑎 ∈ ℒ1, i.e., if 𝑙𝑎 has already been assigned to some plane 𝑃 ′, with Π(𝑙𝑎) = {𝑃 ′},
then lines in Λ(𝑃 ′), i.e., supporting 𝑃 ′, are excluded when drawing the second segment 𝑙𝑏.
This ensures 𝑙𝑎, 𝑙𝑏 cannot participate to the same already existing model. As the number
of extracted planes is typically less than a few hundred, this drawing can be optimized by
incrementally keeping track of the sets Λ̄(𝑃 ) = ℒ (ℒ2 ∪ Λ(𝑃)), that have not already been
assigned to a detected plane 𝑃.
Note that we do not prevent a line pair to be redrawn when it previously failed to

generate an accepted model (for lack of planarity, parallelism or poor support). It is not an
issue as it does not lead to unbalanced chances to detect a plane. Yet, when the number of
input line segments is not too large, we can perform a systematic drawing of all line pairs,
possibly exploiting the above filtering. In this case, all possible models are considered and
at most once.

3.2.4 Inlier selection

After picking a candidate plane 𝑃, we populate the support Λ(𝑃). For this, we go through
each segment 𝑙 ∈ ℒ0 ∪ ℒ1 and assign it to Λ(𝑃) if close enough to 𝑃, i.e., if 𝑑(𝑙, 𝑃 ) ≤ 𝜖.
Several distances can be used, such as the average or the maximum distance to the plane.
If 𝑙 already supports some other plane 𝑃 ′, i.e., if Π(𝑙) = {𝑃 ′}, then also assigning 𝑙 to

𝑃 would make it a structural segment. As such, we impose that it lies close to the line
at the intersection of both planes, i.e., 𝑑(𝑙, 𝑃 ∩ 𝑃 ′) ≤ 𝜖 (see Figure 3.4). This condition
is stronger than imposing both 𝑑(𝑙, 𝑃 ) ≤ 𝜖 and 𝑑(𝑙, 𝑃 ′) ≤ 𝜖 as the angle between 𝑃 and
𝑃 ′ could be small and 𝑙 could then be close to both 𝑃 and 𝑃 ′ although far from their
intersection. This condition is actually crucial. Without it, we would tend to associate 𝑙 to
two planes 𝑃 and 𝑃 ′ which are very similar, and fail to detect crease lines.

3.2.5 Plane selection

Last, we sample 𝑁iter models and keep the plane with the largest number of inliers. (See
Figure 3.5 for the abstract version of the algorithm.)
This plane detection differs from [ZRK12], that samples and populates planes from 2D

line pairs instead of 3D lines, making inlier search quadratic, not linear, and requiring
heuristically to only consider pairs defined by intersecting segment extensions, which is
highly unstable due to noise in endpoints and which induces plane splitting at occlusions.
We have none of these downsides. Besides, structural lines in [ZRK12] are found with
heuristics after RANSAC, considering plane pairs and candidate lines, which only makes
sense as they have few (<10) planes. We get them directly, without heuristics, in greater
number, and for many more planes.

3.2.6 Plane refitting

After each plane 𝑃best is selected, it is actually refitted to its inliers Λbest before being stored
into Π, based on the (signed) distance of the segment endpoints, weighted by the segment
length. As it changes the plane equation, we check whether the slice centered on the
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Figure 3.4:
Inlier selection.
We assume the
black plane has
already been
detected and
we are selecting
inliers for the
pink plane.
Both the red
and green line
segments are
close to the
planes but only
the green seg-
ment is selected
because it is
close enough
to the plane
intersection
(i.e., within
the yellow
cylinder).

refitted plane 𝑃 ′ with thickness 𝜖 now contains extra segments. If so, they are added as
inliers and refitting is repeated.

3.2.7 Plane fusion

Modeling a building may require different levels of details, including small plane differences
such as wall offsets for door jambs, baseboards or switches. But setting a small 𝜖 to do so
may easily break a wall or a ceiling into several fragments because it is not perfectly planar
due to construction inaccuracies or load deflections. Each country actually has standards
(official or not) defining construction tolerances, e.g., 1 cm error every 2m for walls.
To prevent this arbitrary fragmentation while preserving details, we add a post-processing

plane fusion step with a tolerance higher than 𝜖, i.e., with a maximal distance threshold
𝜖fus > 𝜖 to the plane refitted on the union of inliers. This allows merging at 𝜖fus accuracy
several plane fragments detected at 𝜖. However, to make sure it applies only to cases
described above, we impose a maximum angle 𝜃fus when merging two planes and minimum
proportion 𝑝fus of common inliers. Specifically, we consider all pairs of planes in Π whose
angle is less than 𝜃fus, sort them, pick the pair with the smallest angle, and try merging
it. If it succeeds, the two planes are removed, the new refitted plane is added, and the
priority queue based on angles is updated before iterating. If it fails, the pair of planes is
discarded and the next pair is considered. This is similar to a heuristics used in Polyfit
[NW17].

3.2.8 Plane limitation

To make sure not too many planes are given to the surface reconstruction step, because of
possible limitations (cf. Sect. 4.7), the algorithm may be stopped after at most 𝑁max (best)
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INPUT: set ℒ of 3D line segments
ℒ0 ← ℒ, ℒ1 ← ∅, ℒ2 ← ∅, Π ← ∅
while | ℒ0 ∪ ℒ1 | ≥ 2 and | Π | < 𝑁max do

Λbest ← ∅ // Current best set of coplanar lines
repeat 𝑁iter times
//// Sample a candidate plane by sampling 2 lines
Pick 𝑙𝑎 ∈ ℒ0 ∪ ℒ1 // 1st sample line
//// For 2nd sample, exclude lines of the plane of 𝑙𝑎 if any
Pick 𝑙𝑏 ∈ ℒ0 ∪ ℒ1 Λ(Π(𝑙𝑎)) // 2nd sample line
//// Make candidate plane and check consistency
𝑃 ← plane(𝑙𝑎, 𝑙𝑏)
next if 𝑃 degenerate or 𝑑(𝑙𝑎, 𝑃 ) > 𝜖 or 𝑑(𝑙𝑏, 𝑃 ) > 𝜖
//// Gather line support for plane 𝑃
Λ ← {𝑙∈ℒ0 ∣ 𝑑(𝑙, 𝑃 ) ≤ 𝜖} ∪ {𝑙∈ℒ1 ∣ 𝑑(𝑙, 𝑃 ∩ Π(𝑙)) ≤ 𝜖}
//// Remember best candidate
if | Λ | > | Λbest | then Λbest←Λ, 𝑃best←𝑃 end if

end repeat
//// Update data structures
Π ← Π ∪ {𝑃best} // Set of detected planes
Λ(𝑃best) ← Λbest // Support of best plane
∀ 𝑙 ∈ Λbest, Π(𝑙)←Π(𝑙) ∪ {𝑃best} // Planes supported by 𝑙
ℒ2 ← ℒ2 ∪ (Λbest ∩ ℒ1)
ℒ1 ← (ℒ1 (Λbest ∩ ℒ1)) ∪ (Λbest ∩ ℒ0)
ℒ0 ← ℒ0 (Λbest ∩ ℒ0)

end while
OUTPUT: set of planes Π, with related support Λ(𝑃)𝑃∈Π

Figure 3.5:
RANSAC-based
plane detection
from 3D lines
segments,
differentiating
structural lines
from textural
lines.
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greedy detections.

3.3 surface reconstruction

The second step of our approach is surface reconstruction based on detected planes and
observations of 3D line segments. Rather than selecting plane-based faces with hard
constraints for the surface to be manifold and watertight [NW17], we follow [CLP10,
BdLGM14] and consider a scene bounding box, partition it into 3D cells constructed from
the planes, and assign each cell with a status ‘full’ or ‘empty’ depending on segment
visibility, with a regularization prior coping with sparse and missing data. The reconstructed
surface is then the interface between full and empty cells (see Figure 3.6). By construction,
it is watertight and free from self-intersections.

2D Plane arrangement Extracted surface
with labels

(white: 0, i.e., empty; grey: 1, i.e., full)

Figure 3.6: Ex-
tracting the re-
constructed sur-
face from the
plane arrange-
ment

Our contribution is a total reformulation of [CLP10, BdLGM14] in terms of lines, making
the difference between textural and structural lines, and with a lighter treatment of noise
in data.
The volume partition is given by a cell complex 𝒞 made from an arrangement of planes

detected in the line cloud. For each cell 𝑐 ∈ 𝒞, we represent occupancy by a discrete
variable 𝑥𝑐 ∈ {0, 1}: 0 for empty and 1 for full. A surface is uniquely defined by a cell
assignment x ∶ 𝒞 ↦ {0, 1}, where x(𝑐) = 𝑥𝑐. The optimal cell assignment x is defined as
the minimum of an energy 𝐸(x) which is the sum of three terms: a primitive term 𝐸prim(x)
penalizing line segments not lying on the reconstructed surface, a visibility term 𝐸vis(x)
penalizing surface reconstructions on the path between observations and their viewpoints,
and a regularization term 𝐸regul(x) penalizing complex surfaces.

𝐸(x) = 𝐸prim(x) + 𝐸vis(x) + 𝐸regul(x) (3.1)

3.3.1 Dealing with noise

To deal with noise in input data, [BdLGM14] introduces slack in the choice of cells
penalized for not being at the reconstructed surface and lets regularization make the right
choices. The resulting formulation and resolution is heavy. Instead, we assume that plane
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extraction (Sect. 3.2) did a good-enough job: any segment supporting a plane (resp. two
planes) is considered as a noisy inlier and is projected on the plane (resp. the intersection
of the two planes). A segment not supporting any plane is treated as an outlier for data
fidelity (no penalty for not being on the reconstructed surface) but not for visibility (penalty
for not being seen from viewpoints if hidden by reconstructed surfaces).

3.3.2 Primitive term

𝐸prim(x) penalizes line segments that support planes but do not lie on the reconstructed
surface. But it does not penalize the presence of matter in front of segments w.r.t.
viewpoints, letting the visibility term do it. Segments that support no plane are ignored as
if outliers.
For a segment 𝑙 supporting one plane 𝑃, and for each viewpoint 𝑣 seeing at least a part

of 𝑙, we consider the set 𝐶 of all cells 𝑐 immediately behind 𝑙 w.r.t. 𝑣, possibly only along a
fraction 𝑙𝑐 of 𝑙 due to occlusions (cf. Fig. 3.7(a)). Each 𝑐 ∈ 𝐶 is penalized if not full, with a
cost 1−𝑥𝑐.
For a segment 𝑙 supporting two planes 𝑃1, 𝑃2, a cell behind 𝑙 w.r.t. viewpoint 𝑣 needs

not be full. Any configuration is valid as long as the space around 𝑙 is not empty (see
Fig. 3.7(b)): salient edges, reentering edges or planes (if the seemingly structural line
happens to only be textural). To penalize only when all three cells 𝑐 around a visible
fraction of 𝑙 are empty (ignoring the cell in front), we consider a cost of max(0, 1 − ∑𝑐 𝑥𝑐),
which is equal to 1 in this case, and 0 in other configurations.
Both textural and structural cases can be covered with a single formula, where we weigh

the cost by the length of the visible fraction of 𝑙 and normalize it by a scale of interest 𝜎:

𝐸prim(x)=∑
𝑙∈ℒ1∪ℒ2

∑
𝑣∈𝒱(𝑙)

∑
𝐶∈𝒞(𝑙,𝑣)

| 𝑙𝐶 |
𝜎

max(0, 1−∑
𝑐∈𝐶

𝑥𝑐) (3.2)

where ℒ1∪ℒ2 is the set of segments 𝑙 supporting at least one plane, 𝒱(𝑙) is the set of
viewpoints 𝑣 seeing 𝑙, 𝒞(𝑙, 𝑣) is the set of cells 𝑐 adjacent to 𝑙 but not in the triangles of
sight from 𝑣 to non occluded fragments of 𝑙 (locally 1 or 3 cells as to whether 𝑙 belongs to
1 plane or 2 planes), 𝑙𝐶 is the set of fragments of 𝑙 in each cell 𝑐 ∈ 𝐶, and | 𝑙𝐶 | is the sum
of the lengths of segment fragments in 𝑙𝐶.

3.3.3 Visibility term

𝐸vis(x) penalizes reconstructed surface boundaries between viewpoints and segments, as
[CLP10, BdLGM14]. It measures the number of times a 3D segment 𝑙 is to be considered
an outlier as it should not be visible from a given viewpoint 𝑣, weighted by the length of
the visible parts 𝑙𝑣,𝑓 of 𝑙 on the offending faces 𝑓 (possibly fragmented due to occlusions).
Contrary to 𝐸prim(x), all segments are considered in 𝐸vis(x), not just segments supporting a
plane:

𝐸vis(x)=𝜆vis ∑
𝑙∈ℒ

∑
𝑣∈𝒱(𝑙)

∑
𝑓∈ℱ(𝑙,𝑣)

| 𝑙𝑣,𝑓 |
𝜎

| 𝑥𝑐+𝑣
𝑓

− 𝑥𝑐−𝑣
𝑓

| (3.3)

where ℱ(𝑙, 𝑣) is the set of faces 𝑓 of the complex intersected by the visibility triangle (𝑙, 𝑣),
at some unoccluded segment fractions 𝑙𝑣,𝑓 totaling a length of | 𝑙𝑣,𝑓 |, and 𝑐+𝑣

𝑓 , 𝑐−𝑣
𝑓 are the

cells on each side of 𝑓 (𝑐+𝑣
𝑓 being nearest to 𝑣).
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viewpoint Occluded
part of 

    part 
of    in  

(a) Primitive term, 𝑙 ∈ 𝑃

viewpoint

   part of   
in     ,     ,    

(b) Primitive term, 𝑙 ∈ 𝑃1 ∩ 𝑃2

Occluded
part of ,

,

,
,

(c) Visibility term

Figure 3.7:
Primitive and
visibility terms.

3.3.4 Regularization term

𝐸regul(x) penalizes surface complexity as the sum of the length of reconstructed edges (see
Figure 3.8) and the number of corners (see Figure 3.9), with relative weights 𝜆edge, 𝜆corner,
as defined in [BdLGM14]. Area penalization makes little sense here due to the low density
of observations in some regions. We look for the most simple surface, which we assume is
the surface that corresponds to a balanced minimization of these 2 measures (short edge
length, few corners) while being consistent with the observation (line segment attachment
to plane and visibility).

𝐸regul(x) is higher-order in the existence of a corner depends on 8 cell values. (We
assume any 4 planes have no intersection.) As in [BdLGM14], we use a mixed-integer
programming formulation of the regularization terms.

Figure 3.8:
Non-penalized
and penalized
configurations
of the 4 cells
adjacent to each
edge. Courtesy
of [BdLGM14]
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Figure 3.9:
Non-penalized
and penalized
configurations
of the 8 cells
adjacent to
each corner.
Courtesy
of [BdLGM14]

3.3.5 Solving

Due to the specific treatment of structural lines, the primitive energy term is not linear: it
involves maximum values (cf. Eq. (3.2). However, the optimization problem

minimize
x

∑
𝑙∈ℒ\ℒ0

∑
𝑣∈𝒱(𝑙)

∑
𝑠∈ ̂𝑙𝑣

| 𝑠 |
𝜎

max(0, 1 − ∑
𝑐∈𝒞

𝑐 ∩ (𝑣C𝑠) = 𝑠

𝑥𝑐)

subject to 0 ≤ 𝑥𝑐 ≤ 1, 𝑐 ∈ 𝒞.

(3.4)

can be rewritten as a standard linear program by introducing for each max term a new
slack variable 𝑧𝑠 ∈ R:

minimize
x,z

∑
𝑙∈ℒ\ℒ0

∑
𝑣∈𝒱(𝑙)

∑
𝑠∈ ̂𝑙𝑣

| 𝑠 |
𝜎

𝑧𝑠

subject to 0 ≤ 𝑥𝑐 ≤ 1, 𝑐 ∈ 𝒞.
𝑧𝑠 ≥ 1 − ∑

𝑐∈𝒞
𝑐 ∩ (𝑣C𝑠) = 𝑠

𝑥𝑐

𝑧𝑠 ≥ 0

(3.5)

where z is the vector of all variables 𝑧𝑠, 𝑣C 𝑠 is the visibility triangle formed by the line
segment 𝑠 and the point of view 𝑣 and ̂𝑙𝑣 is the set of subsegments of 𝑙 as seen from
viewpoint 𝑣.
The regularization term also is not linear. Minimizing the edges length and the number

of corner indeed involves higher-order constraints: the presence of an edge (resp. corner)
depends on the value of 4 (resp. 8) adjacent cells (full or empty). We reformulate these
constraints, that are hard to solve, using linear terms only as proposed by [BdLGM14], i.e.,
using the absolute value of linear combinations of cell values, which can also be turned
into an equivalent linear program with extra slack variables.
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The resulting energy minimization problem is formulated as mixed-integer programming,
with integral values (0 or 1) for the occupancy of cells 𝑥𝑐 and continuous values for slack
variables. As solving it is NP-hard, we also do as in [BdLGM14]: we relax the problem
for optimization, i.e., the problem is solved for 𝑥𝑐 ∈ [0, 1] for all 𝑐 ∈ 𝒞. This corresponds
to a linear program that can be solved efficiently using off-the-shelf solvers. The obtained
fractional values for variables 𝑥𝑐 are rounded independently of each other.

3.3.6 Properties of reconstructed surface

By construction, the surface we produce is watertight, even if the input data is very sparse,
and not self-intersecting. Our process treats outliers (with RANSAC at plane detection
stage, and regularization during reconstruction) and noise (with a model tolerance at
plane detection stage and via projections when reconstructing). It has also several positive
properties:

• Insensitivity to line over-segmentation: if a 3D line segment 𝑙 is split, 𝐸(x) does not
change and thus the same surface is reconstructed. This provides robustness to over-
segmentation, which is a common weakness of line segment detectors. (It may however
change inlier-ness.)

• Little sensitivity at endpoints: given a line segment 𝑙, slightly changing its endpoint only
makes a marginal change to 𝐸(x). (Yet it may change inlier-ness too.)

• Insensitivity to dummy planes: given a 3D cell assignment x, if an extra plane is
randomly inserted in the arrangement, the value of 𝐸vis(x) does not change as it only
depends on surface transitions encountered on visibility path.
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Results

[ Chapter 3
Chapter 5 ]4.1 datasets

We experimented both with real and synthetic data. The real datasets consist of images
of a ‘MeetingRoom’ from [SMM17], of a ‘Barn’ from Tanks and Temples [KPZK17], of
a ‘DeliveryArea’, a ’Bridge’ and of a corridor named ‘Terrains’ from ETH3D [SSG+17].
All scenes are poorly textured (walls of uniform colors). The synthetic datasets include
a ‘TimberFrame’ house [JKTS10] as well as two new synthetic datasets, that have been
publicly released: ‘HouseInterior’ is a living room, with both large planar areas (walls,
floor and ceiling) and smaller details (chair and table legs); ‘Andalusian’ is the outside of
a modern house; it is piecewise-planar and uniformly white.

Dataset #img | ℒ | | Π | | Πfus | | ℒ0 | | ℒ1 | | ℒ2 | #res Figure
Andalusian 249 1234 160 148 242 597 395 14503 4.1
DeliveryArea 948 1586 160 160 30 771 785 29222 4.2
Barn 410 7936 160 141 41 2157 5738 83989 4.3
TimberFrame 241 7268 140 131 264 4507 2497 79024 4.4
Bridge 110 7437 150 102 338 4168 2931 48315 4.5
MeetingRoom 32 831 135 130 25 383 423 9028 4.6
Terrains 42 3223 120 105 9 356 2858 18189 4.7
HouseInterior 159 1995 120 106 1 286 1708 18304 4.8

Number of images #img, number of 3D line segments | ℒ |, number of 3D planes before
fusion | Π |, number of 3D planes after fusion | Πfus |, number of segments supporting no
plane | ℒ0 |, one plane | ℒ1 | or two planes | ℒ2 |, and total number of sub-segments #res.

Table 4.1:
Dataset statis-
tics

MeetingRoom was calibrated with LineSfM [Sal17, SMM17] and we recalibrated the
other real datasets using COLMAP [SF16], with distortion correction as it impacts line
detection. The synthetic datasets came with their exact calibration.
We then ran Line3D++ [Hof16], as defined in [HMB16], to detect and reconstruct 3D

line segments.
Finally, we ran our plane detection and surface reconstruction, using a complete plane

arrangement as baseline (see Sect. 4.7). Tab. 4.2 lists default parameters for all datasets.
We often had to tweak 𝜎𝑝 of Line3D++ to get decent input lines, and sometimes our
𝜆edge = 𝜆corner. Tab. 4.1 reports detection statistics.
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4.2 observations on the input data

4.2.1 3D line segments detectors

There has been some recent approaches to adapt structure-from-motion (SfM) methods
from points to line segments [ZK14, SMM17]. However, few methods focus on the actual
production of 3D line segments [JKTS10, HMB16], possibly reconstructing more lines than
just what the SfM algorithms would produces, by leveraging on the calibration to match or
significantly augment matched lines. To our knowledge, only Line3D++ [Hof16, HMB16]
provides code for this denser 3D line segment reconstruction.
In our experiments, we thus use Line3D++ to detect 3D lines segments from a set of

images, and to provide as well sub-segments associated the each viewpoints.

4.2.2 Modest quality of input data from Line3D++

Although quite efficient, Line3D++ produces a somewhat noisy output on which we have
little control:

] It can miss some important lines (see Artwork 1 (a)), which may lead to relevant planes
not being detected.

] It also generate many outliers (see Artwork 1 (b)), which pressurizes the visibility and
regularization terms.

] A number of actual, physical 3D lines (including shadows) are given multiple recon-
structions (see Artwork 1 (c)).

These flaws are also visible on the line segments extracted on our datasets as seen on
Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8.
We expect any improvement on these aspects, for a 3D line segment detector to be used

as a preliminary stage to our method (which is out of the scope of this work), to have a
particularly positive impact on our results.

4.3 qualitative evaluation of reconstructions

4.3.1 Comparing to point-based reconstruction

To show the relevance of lines for scenes with little or no texture, in contrast to point-based
methods (which are doubtlessly superior on textured scenes), we compare our method to a
point-based piecewise-planar reconstruction [CLP10] on HouseInterior (cf. Fig. 4.8). Even
when densely sampling point on the ground-truth surface as seen from the viewpoints,
[CLP10] yields a reconstruction with missing details (e.g., the lounge table) due to missing
primitives in hidden area (e.g., under the table). Moreover, [CLP10] uses a regularization
that minimizes the reconstructed area, which is relevant for points uniformly sampled
on the surface but strongly penalizes unsampled regions (e.g., invisible planes of lounge
table). In contrast, our method leads to a better plane discovery and a reconstruction
robust to non-uniform sampling. (We also tried reconstructing from points sampled on
the 3D lines, but the result is poor; many planes are missed as points belong at most to
one plane. As lines mostly lie on edges, the area cost also dominates the data term and
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(a) Missing detections of 3D lines in the input: visible edge between floor
and wall in a view of the MeetingRoom dataset (left), and extracted lines

with Line3D++ where that important edge is missing to recover the floor (right).

(b) Spurious detections of 3D lines in the input: view from the
MeetingRoom dataset (left), and reconstructed line cloud using Line3D++

where vertical outlier lines float above the table (right).

(c) Spurious duplication of 3D lines in the input: view from the
Andalusian dataset (left), and the extracted lines with Line3D++ where some actual
3D lines in the scene are detected many times at slightly different locations (right).

Artwork 1:
Line3d++
failing cases
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Image sample

3D line segments

Our reconstruction

Figure 4.1: Re-
sults on Andalu-
sian
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Image sample

3D line segments

Our reconstruction

Figure 4.2: Re-
sults on Deliv-
ery Area
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Image sample

3D line segments

Our reconstruction

Figure 4.3: Re-
sults on Barn
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Image sample 3D line segments

Our reconstruction

Figure 4.4: Re-
sults on Timber-
frame
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Image sample

3D line segments

Our reconstruction

Figure 4.5: Re-
sults on Bridge
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creates holes in large planar regions.) More comparisons, also with Colmap [SF16] and
Polyfit [NW17], are on Figure 4.6 and Figure 4.7.

4.3.2 Comparing to other line-based reconstruction methods

As said above, there are very few reconstruction methods based on lines. [MG16] mostly
reconstructs a soup of planes, sometimes with adjacencies, but without any topological
guarantee. [WM14] provides a slightly more behaved mesh, but reconstructions still look
messy and overly simple, although usable enough for robotic planning. No code nor data
are available for comparing with either of these methods.
Our reconstruction with sparse data are illustrated on the datasets Andalusian (Fig-

ure 4.1), Delivery Area (Figure 4.2) and MeetingRoom (Figure 4.6). We also experimented
on more textured datasets such as TimberFrame (Figure 4.4) and Barn (Figure 4.3) or less
textured datasets such as HouseInterior (see Figure 4.8), and datasets with thin structural
objects such as beams with Bridge (Figure 4.5).
Compared to usual point clouds, our 3D line clouds are extremely sparse. Despite

the noise on inliers and the number of outliers due to Line3D++, our method is able to
reconstruct a good approximation of the scenes, which illustrates the robustness of our
approach. Still Barn shows that it is hard to reconstruct a sieve-like shape (balcony) due
to the visibility lines traversing it.

4.4 quantitative evaluation of reconstructions

We performed quantitative evaluations of the quality of our reconstructions using our
datasets with ground truth. In this section, we describe the metrics we used in our
experiments, as well as our setting and principles when varying a parameter or input data
to study the sensitivity of our method (in following sections).

4.4.1 Metrics to assess the quality of surface reconstruction

We used 4 metrics derived from the Metro distance.
To compare a reconstructed mesh 𝑀recons with a ground-truth mesh 𝑀gt, we first sample

2 millions of points on the surface of each mesh. We then compute the distances of each
point of 𝑀recons to their nearest neighbour in 𝑀gt; we note this set 𝐷recons−→gt. Conversely,
we also compute the set of distances 𝐷gt−→recons.
The 4 metrics we use are the following:

] The max Metro distance measures the worst reconstruction error:

max(𝐷recons→gt ⋃ 𝐷gt→recons)

] The mean Metro distance measures the average reconstruction error:

mean(𝐷recons→gt ⋃ 𝐷gt→recons)

] The “95%-completeness” is the 95% percentile of 𝐷gt→recons. It measures the distance
under which most of the ground truth surface has been reconstructed.

] The “95%-precision” is the 95% percentile of 𝐷recons→gt. It measures the distance under
which most of what has been reconstructed is close enough to the ground truth.
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(1) (2)

(3)

(4) (5)

(6) (7)

Figure 4.6:
MeetingRoom:
(1) image
sample, (2)
segments from
Line3D++
[Hof16,
HMB16],
(3) our re-
construction,
point-based
reconstructions
with Colmap
[SF16] (4) then
Chauve et al.
[CLP10], (5)
Polyfit [NW17],
(6) Poisson
[KBH06], (7)
Delaunay
[LPK09].
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(1) (2)

(3)

(4) (5)

(6) (7)

Figure 4.7: Ter-
rains: (1) image
sample, (2)
segments from
Line3D++
[Hof16,
HMB16],
(3) our re-
construction,
point-based
reconstructions
with Colmap
[SF16] (4) then
Chauve et al.
[CLP10], (5)
Polyfit [NW17],
(6) Poisson
[KBH06], (7)
Delaunay
[LPK09].
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(1) (2)

(3) (4)

(5) (6)

Figure 4.8:
HouseInterior:
(1) an image
of the dataset,
(2) points
densely sam-
pled on surface,
(3) recon-
struction
with [CLP10],
(4) failed recon-
struction with
[CLP10] from
points sampled
on lines, (5) 3D
lines detected
with Line3D++
[Hof16], with
noise and
outliers, (6) our
reconstruc-
tion, which is
nonetheless
superior.
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We use these metrics to assess the quality of reconstructed surfaces as well as to define the
value of our parameters (see following sections).
Histograms of distances for HouseInterior are plotted on Fig. 4.9. Regarding precision,

most of the points sampled on the reconstruction (91.4%) lie at less than 5 cm to the ground
truth, showing that our RANSAC planes fit well the underlying surface and that our energy
properly balances data fidelity and regularization. The error profile for completeness is
similar, and 95% of the points on the ground truth are less than 8 cm to the reconstruction.
It shows our regularization term do not over-smooth too much the surface by erasing
details that would penalize completeness.

d < 0.05 m
91.4% of points

d < 0.05m

93.2% of points

95% of points
d = 0.12m

95% of points

d = 0.08m

Figure 4.9:
HouseInterior:
histograms of
distance errors
w.r.t. ground
truth (m).

4.4.2 Varying parameters or input data

In the following sections, starting from the default parameter setting in Table 4.2, we
vary the value of a chosen parameter (e.g., 𝜆vis) or the quantity of input data (e.g., the
number of detected 3D line segments), and we plot a graph representing the impact on a
quantitative assessment of the reconstruction.
For these experiments, we evaluate on the synthetic dataset HouseInterior, for which we

have a ground truth. Although the results are specific to this dataset, we observed that the
conclusions are relatively general. In particular, these variation studies on HouseInterior
lead our choice of the best default parameter values (see Section 4.4.3), but we did not
observe a strong need to alter this parameter setting when running on other datasets,
although small changes could sometimes provide slightly better results.
Please note that although we may vary a parameter continuously, the labeling of the

cells in the plane arrangement as full or empty is discrete and thus can lead to strong
changes on the metrics when the altered cells are large or when the measure is based on a
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maximum distance. As a consequence, curves showing the impact of parameter variations
can display significant discontinuities.
Also, due to the RANSAC stage, our algorithm is not deterministic. For each set of

parameters, we actually ran our method 5 times, and we report in the graphs both the
average value of the quantity we monitor over these 5 runs as well as its standard deviation.

Impact of Line3D++ parameters. The 3D line segments were obtained using the default
parameter settings of Line3D++ [Hof16]. We tried playing around with the parameters
but did not get significantly better segments. In particular, we studied the influence of 𝜎𝑝,
a major regularization parameter of Line3D++, on the HouseInterior dataset. It is depicted
on Figure 4.10. The default value of Line3D++ for 𝜎𝑝 is 2.5, which is in a low plateau
area of the graph.

Impact of the number of input images. We made a variant of the dataset MeetingRoom with
100 images and studied qualitatively the impact of providing a variable number of images
as input (keeping a calibration based on all 100 images). Results are depicted by Figure 4.11
and compared to a point-based approach, namely Colmap [SF16] + Poisson [KBH06]
reconstruction. When going down from 100 images to 50 images only, the quality of our
reconstruction is progressively reduced, but the general shape of the room as well as a
number of details are preserved. In contrast, the point-based reconstruction with 100
images is filled with holes and degrades rapidly when the number of images decreases.

Impact of the number of 3D line segments. We randomly sampled 3D line segments
produced by Line3D++. The influence of the number of lines segments as input to our
method is illustrated on Figure 4.12. As can be expected, the more lines, the better (in
general), as it leads to a larger diversity of possible reconstructions, with more details. The
mean Metro distance plateaus to a small value around 700 lines. Quite naturally, the max
Metro distance remains sensitive until a few thousands lines are provided. 95%-precision
also plateau a bit after a thousand lines, while 95%-completeness also retains a limited
sensitivity. The computation time of the visibility term however increases, although mostly
linearly in the number of lines.

4.4.3 Parameter setting and sensitivity study

We strove to reduce as much as possible the number of parameters of our method. Still,
it has a few parameters, that have to be set. In this section, we study how to assign a
value to these parameters, either using a formal argument (for the number of RANSAC
iterations 𝑁iter) or using an empirical justification (for the other parameters).
The parameter default setting is recalled in Table 4.2. Besides, the normalizing factor 𝜎

is set to 1m.

𝜖 𝜖fus 𝜃fus 𝑝fus 𝑁iter 𝑁max 𝜆vis 𝜆edge 𝜆corner

2 cm 3 𝜖 10° 20% 50k 160 0.1 0.01 0.01

Table 4.2:
Parameters
(all datasets
have metric
dimensions).These parameters can be slightly adapted depending on the model. For instance,

increasing 𝜆vis will dig more into the volumes, but will also make the model more sensitive
to outliers. Likewise, increasing 𝜆corner and 𝜆edge will lead to more regularization, which is
useful when data are missing, but can also lead to a loss of details.
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Figure 4.10: Im-
pact of 𝜎𝑝 on
the max / mean
Metro distance
(top), and the
95% precision
/ completeness
(bottom).
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Figure 4.11:
Variable num-
ber of input
images: com-
parison of our
method vs
Colmap [SF16]
+ Poisson
[KBH06] recon-
struction on a
variant of Meet-
ingRoom with
100 images.
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.

Figure 4.12:
Impact of the
number of
input lines on
the max/mean
Metro dis-
tance (top),
and the 95%
precision/com-
pleteness
(bottom).



47

In the following, we study the sensitivity of our method under different parameter
settings, to discover ranges of parameter values leading to a good and relatively stable
behavior. Table 4.2 resulted from this sensitivity study.

Number of RANSAC iterations 𝑵iter. Our choice for setting the value of the number of
RANSAC iterations 𝑁iter can be justified as follows.
The number of 3D line segments detected in the scenes of our datasets varies between

1,000 and 10,000, and the number of detected planes is in practice limited to about 150
(see Table 4.1). After the largest planes (with the most inliers) have been detected, the
inlier rate of the current best plane can be quite low. Yet we must make sure that planes
with a small line support are eventually detected, and first of all, sampled.
To define 𝑁iter, we want to make sure at 𝛽 = 99% chance that we sample the best plane

assuming it is supported by at least 𝛼 = 1% of the line segments in the current value
of ℒ0 ∪ ℒ1. If we call 𝑋 the event “not finding the best fitting plane after 𝑁iter iterations
among data which contain an inlier rate of 𝛼”, its probability is:

𝑃(𝑋) = (1 − 𝛼𝑘)𝑁iter

where 𝑘 = 2 is the number of line segment samples needed to generate a plane hypothesis.
The criterion 𝑃(𝑋) ≤ 1 − 𝛽 in turn yields:

𝑁iter ≤ log(1 − 𝛽)
log(1 − 𝛼𝑘)

The right term evaluates to 46,049 with the given values for 𝛼 and 𝛽. Given that the
number of candidate line segments actually decreases at each iteration, as structural lines
are detected, this is a worst case analysis.
In practice, in our experiments, we set 𝑁iter = 50000. On a 12-core CPU, the whole

RANSAC process (finding all planes) takes about 10 minutes for an upper bound of 10,000
lines with 50,000 iterations, which represents a minor fraction of the total reconstruction
time.

Maximum number of detected planes 𝑵max. We introduced a possible limit on the number
of planes discovered by our RANSAC variant. The influence of that maximum number of
detected planes 𝑁max is shown on Figure 4.16.
As can naturally be expected, the more planes, the better. The mean Metro distance

plateaus to a small value after 90 planes. So does the maximum Metro distance although
with a small value but slightly larger variance. Both the 95%-precision and the 95%-
completeness also plateau to a small value after 90 planes.
The only drawback of adding more planes, in the case of a surface reconstruction based

on a full-extent plane arrangement, is the increasing computation time, as adding a plane
has a cubic time complexity.

Weight of the visibility term vis. The impact of varying the value of parameter 𝜆vis is
represented on Figure 4.13. We observe a plateau starting a bit before 10−1 (our default
parameter), which starts deteriorating after 101 and even more after 102. As for the
regularization parameters below, this observation qualitatively also applies to the other
datasets.

Weight of the edge term edge. The impact of varying the value of parameter 𝜆edge is
represented on Figure 4.14. The error remains small when 𝜆edge is under 10−1, in particular
around value 10−2 (our default parameter).
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Figure 4.13: Im-
pact of 𝜆vis on
the max / mean
Metro distance
(top), and the
95% precision
/ completeness
(bottom).
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Figure 4.14: Im-
pact of 𝜆edge on
the max / mean
Metro distance
(top), and the
95% precision
/ completeness
(bottom).
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Figure 4.15: Im-
pact of 𝜆corner
on the max /
mean Metro dis-
tance (top), and
the 95% preci-
sion / complete-
ness (bottom).
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Figure 4.16:
Impact of the
number of
planes 𝑵max on
the max/mean
Metro distance
(top) and
on the 95%
precision/com-
pleteness
(bottom).
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Weight of the corner term corner. The impact of varying 𝜆corner is represented on Fig-
ure 4.15. As for 𝜆edge, the error remains small when 𝜆corner is under 10−1, in particular on
the plateau around value 10−2 (our default parameter).

4.4.4 Computation times

Although computing the visibility term is linear in the number of sub-segments, it is
the most time-consuming part as it depends mostly on the number of cells in the plane
arrangement, which is up to cubic in the number of planes. Time required for performing
a whole reconstruction varies from 30 minutes (MeetingRoom) to 3 hours 30 minutes
(TimberFrame). Creating the linear program from scene data takes more time than solving
it.

4.4.5 Robustness of plane detection

To explore the robustness of our RANSAC formulation, we experimented with a toy
example made of the 12 edges of a cube. We seek to extract the 6 planes associated to the
6 faces of the cube. We consider two types of perturbations: noise and outliers.
The cube has an edge length of 2. We add noise to each segment endpoint, drawn from

a uniform distribution with standard deviation ranging from 0 to 0.35. Outliers, from
0 to 50, are segments generated by uniformly picking pairs of points in a 2-radius ball.
Finally for each couple (noise, #outliers), we report the number of planes that include
the 4 edges of an actual face of the cube, using parameters 𝜖 = 0.06 and 𝑁iter = 100, and
averaging over 20 iterations.
Results are presented on Fig. 4.17. As expected, with a low level of perturbation, all

planes are perfectly extracted. As the level of perturbation increases, for both noise and
outliers, the rate of missed detections increases. Yet, even with a high level of noise,
corresponding to a highly distorted cube (very non planar faces), we get a mean of 3.95
planes, which is a major failure. Last, we compared with a regularization using only
corners or edges, which yields lower quality reconstructions.
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4.5 ablation study

To show that all line specificities in our method are useful if not crucial, we performed an
extensive ablation study.

Figure 4.18:
Reconstruc-
tion with our
method where
a line may sup-
port up to two
planes (left, our
RANSAC), or at
most one plane
(right, standard
RANSAC).

If one line supports at most one plane, as in an ordinary RANSAC framework, and if all
lines supporting a detected plane are thus put aside before performing the following plane
detection, as is the case in a greedy detection scheme, then fewer lines are available to
detect succeeding planes, and less planes are detected. Experimentally, on HouseInterior,
this detects only 45 planes instead of 120 with our method. The impact on reconstruc-
tion is illustrated on Figure 4.18: only the main planes are more or less reconstructed
appropriately.

Figure 4.19:
Reconstruc-
tion with our
method where
the gathering
of inliers for a
plane model
relies on the
distance to
the plane
intersection for
lines already
supporting
a plane (left,
our approach),
and to the
plane only
(right, standard
approach).

If inliers are decided only from the distance to the model, rather than from the distance
to the intersection of the plane model with the plane that already supports the inlier in
case the line is structural, i.e., if we make no difference between lines in ℒ0 and lines in
ℒ1 when gathering inliers for a given model (see Section 3.2), then the algorithm tends to
associate a line twice with more or less the same plane. Experimentally, on HouseInterior,
this detects only 92 planes, vs 120 with our algorithm. See Figure 4.19 for an illustration
of the impact on the reconstruction.

If structural lines are treated as textural lines, i.e., if a structural line in ℒ2 is simply
treated as two textural lines in ℒ1 (one for each supported plane), then reconstruction
totally fails (see Figure 4.20). This illustrates the importance of distinguishing structural
lines form textural lines, not only for plane detection but also for surface reconstruction.

If regularization penalizes only the length of edges, rather than only the number of
corners, the reconstruction is not as good, as can be seen qualitatively on Figure 4.21. This
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Figure 4.20:
Reconstruc-
tion with our
method where
all structural
lines are treated
specifically
(left), and con-
sidered as two
textural lines,
i.e., one for
each supported
plane (right).

Figure 4.21:
Reconstruction
with a regu-
larization on
corners only
(left), vs on
edges only
(right).

Figure 4.22:
Reconstruction
with a regu-
larization on
corners and
edges (left), vs
on corners only
(right).

fact has already been observed by [BdLGM14]: providing a good balance between 𝜆edge

and 𝜆corner, the regularization on both corners and edges is slightly better.

If regularization penalizes only the number of corners, rather than both corners and
edges, the reconstruction also is not as good (ground floor), although it can be locally
better (armchair), as can be seen qualitatively on Figure 4.22. This fact has also already
been observed by [BdLGM14].

If regularization also penalizes the surface area, as a measure of surface simplicity
like in [CLP10, BdLGM14], the metrics do not improve but rather tend to deteriorate, as
can be seen on Figure 4.23. The fact is this term makes little sense on the kind of building
scenes we are considering because we want to be able to reconstruct large surfaces with
little data, that mostly lies on their boundaries only.

4.6 limitations and perspectives

The quality of 2D and 3D line segments at input (from Line3D++) is the main bottleneck
of our method. Improving them would be very helpful.
Mainly, it would be specially relevant to merge points and lines treatments into a single

framework to offer a smooth transition from textured regions to textureless areas.
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Figure 4.23: Im-
pact of 𝜆area on
the max / mean
Metro distance
(top), and the
95% precision
/ completeness
(bottom).
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Also, in our experiments, we used the full-extent plane arrangement, i.e., with planes
extending all the way to the scene bounding box. This is not intrinsic to our method; it
merely provides a baseline. Because of a cubic complexity in the number of planes, the
acceptable number of planes is limited to a few hundreds, which is in practice often enough
for a single room or the exterior of a building, but not enough for a complete BIM model.
(It is also easy to keep the best few hundred planes after RANSAC detection to make sure
the pipeline succeeds.) Yet, preliminary experiments with a coarse-to-fine approach show
promising results for scaling to large scenes. In the cell complex, limiting the plane extent
with a heuristic on a coarse voxel-based partition [CLP10] or the 3D adaptation [BL20] of
the 2D kinetic polygonal plane partitioning [BL18] would also reduce the complexity.
Moreover, defining a notion of extent for line-detected planes, similar to 𝛼-shapes in

the case of points [EKS83] but adapted to lines [vKvLV11, vKvLV13], could also be used
to introduce so-called ‘ghost planes’, corresponding to unobserved, hidden planes at
occluding edges of observed surfaces [CLP10, BdLGM14].
Last, global regularization weights favor highly sampled surfaces. Adapting them to

be more sensitive to weakly supported surfaces as in [JP11] could improve the results.
They also need to be adjusted for each scene to perform the best reconstruction; thus,
automatizing the parameters search would greatly improve the convenience of use of the
pipeline.

4.7 conclusion

In this work, we proposed a surface reconstruction pipeline from images using 3D line
segments. The whole approach takes into account the line set properties: small size,
sparsity, density variations. We first presented a RANSAC approach designed for plane
extraction in such line sets. It is robust to over segmentation of lines. Then, we adapted
a surface reconstruction method using a plane arrangement to fit line specificities. In
particular, we designed our data term for multiple viewpoints and insensitivity to dummy
plane insertion. Finally, experiments on both synthetic and real datasets show the practical
interest and robustness of our method.
Future work also includes finding means to better normalize the regularization param-

eters, although we believe there will still be some dependency on the type of scene, in
particular depending on whether the scene is inside or outside. More general perspectives
include developing a general framework accepting both 3D points and line segments and
being able to smoothly adapt from point-based paradigm on textured scenes [CLP10] with
proper regularization [BdLGM14], to line-based reconstruction on textureless areas.
One of the main perspective is to create a unified approach to deal with heterogeneous

line/point clouds. It would involve developing a new criterion for plane extraction and
reformulating the energy for surface extraction to be well balanced between lines and
points.



Transition
In this part, we have used a direct method to perform 3D reconstruction of buildings. We
tackled specific issues met in building environments and paved the way towards an efficient
algorithm. However, as discussed, limitations remain. In particular, some parameters
must be adapted for each scene, and there is no semantic information in the output. Both
problems require strong and complex priors to be solved. With the growing amount
of data publicly available online and the generalization of machine learning techniques
throughout all computer vision tasks, a promising way to build strong priors is to directly
learn them from the data. In the next part, we conduct experiments on a dataset of objects,
in order to study how one can learn reconstruction priors and incorporate geometric
constraints to enhance the overall resulting mesh.
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Part III

3D RECONSTRUCTION BY PARAMETERIZED
SURFACE MAPPING



5
Introduction

[ Chapter 4
Chapter 6 ]Synopsis We introduce an approach for computing a 3D mesh from one or more views of

an object by establishing dense correspondences between pixels in one or different views
and 3D locations on a learnable parameterized surface. Our insight is to optimize a novel
geometric cycle-consistency loss between the learnable parameterized surface and input
views over an embedded representation of the target shape, allowing the reconstruction of
a 3D shape that closely aligns with its depiction in one or more views. In addition, we
introduce a multi-view shape encoder that can jointly be trained with the AtlasNet surface
parameterization. We demonstrate the efficacy of our approach on the ShapeNet-COCO
dataset and show that our approach outperforms XNOCS [SRV+19] when averaging over
three shape categories.

5.1 learning 3d reconstruction

Figure 5.1:
Input: a set
of 5 calibrated
low-resolution
images with
arbitrary
backgrounds.
Output: a 3D
mesh

Reconstructing a shape from one or more views is a long-standing problem in computer
vision [SCD+06]. When we, as humans, are relatively far away from an object where
binocular parallax is negligible, we are nonetheless able to infer a representation of its
geometry, including its hidden faces, and as we move closer, we are able to incorporate
information from the new viewpoints and from both eyes. An ideal system should be
able to reconstruct a shape, including inferring hidden faces, from a single view and
update the reconstruction as more image evidence is gathered. To achieve this goal,
a system must integrate information from a learned prior for the shape (single-view
reconstruction) with geometric constraints when more than one view is available (multi-
view reconstruction). This goal is important for scanning, augmented reality, and robotic
navigation and manipulation applications.
For shape reconstruction, we argue that the choice of shape representation is important.

In this work, we seek to output a surface-parameterized mesh reconstruction of a shape
from one or more input views. As we will show, the parameterized surface representation
provides a natural medium for establishing dense correspondences across views and
allows leveraging recent work that learns surface-parameterized shape priors [GFK+18].
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Moreover, the representation lends itself to rasterization, which makes it possible to reason
about contours. In contrast, other shape representations, such as points, voxels, and
implicit surfaces, do not easily offer such benefits.
Classical multi-view 3D reconstructions approaches establish dense correspondences

between pixels or image regions depicting the same surface locations, followed by triangula-
tion to yield a 3D shape [SCD+06]. However, these approaches fail to find correspondences
in flat, non-textured regions, and they cannot extrapolate to reconstruct nonvisible/occluded
surfaces. In addition, they typically yield point clouds, whereas meshes are more useful in
most real-world downstream applications.
Incorporating data-driven shape priors into the 3D reconstruction process has been

used to address the above limitations [GFK+18, PFS+19]. However, an ideal shape
prior should be able to adapt in order to finely align with its depiction in the input
views [LWR+19]. Furthermore, the prior should not require manual annotation of the
surface parameterization, i.e., landmarks of shape parts, and should be learnable from
training data.
To address the above issues, we propose a method that learns to establish dense

correspondences between image pixels and a learned parameterized surface, which is
trained on a corpus of shapes from the same class, without known surface parameterizations.
The approach has two steps. First, as opposed to the method of Kulkarni et al. [KGT19]
that uses a fixed template, we generate an initial shape template with a multi-view shape
encoder, which extends AtlasNet [GFK+18] to multiple viewpoints. Second, this template,
specific to the shape we want to reconstruct, is refined using a cycle-consistency loss which
allows the shape to adapt and finely align with its depiction in the input views.
We evaluate our method compared to a recent state-of-the-art approach for 3D re-

construction from multiple views [SRV+19]. We show that our method outperforms
the baselines when averaging over three shape categories. Moreover, as opposed to
XNOCS [SRV+19] and traditional multi-view stereo methods [SCD+06], our shape param-
eterization naturally yields a mesh that can be used out-of-the-box for most graphics
applications.

5.2 related work

Single-view reconstruction. Single-view scene reconstruction is a classic problem in
computer vision. Most successful method learn 3D orientation priors over images or image
patches that are trained for example by supervised learning [SSN09, EPF14].
Recently, methods have tried to relax the explicit 3D supervision requirement by learning

class-specific reconstruction priors over, for example, a deformable mesh [KTEM18]. This
approach generates impressive textured reconstructions from a single image, but requires
extra supervision in the form of keypoints in correspondence during training, whereas we
learn these as well.
More recently, Canonical Surface Mapping (CSM) [KGT19] predicts UV mapping from

a single image onto a canonical model, trained entirely using self-supervision (via the
images themselves) by introducing a geometric cycle-consistency term. Our work is
inspired by this, but differs in two key ways. First, we do not assume a fixed canonical
model, rather we optimize over a learned surface parameterization to better match the
observed data. Second, CSM works only for single views, whereas we develop a multi-view
cycle-consistency term to better integrate multi-view information when available. This is
critical when reconstructing both the mapping and the underlying model jointly, due to
the ill-posed nature of the problem.
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Data-driven multi-view reconstruction. When given multiple views, it is possible to infer
scene geometry by finding correspondences subject to geometric, e.g., epipolar constraints.
Classical approaches such as multi-view stereo (MVS) [SCD+06] are powerful and well
established tools with many uses. However, MVS fails in cases where correspondences are
ambiguous, e.g., occluded surfaces, texture-less regions, and view-dependent effects. To
overcome these limitations, these methods often employ weak smoothness priors. Recently,
data-driven methods have been introduced that attempt to extend MVS to leverage much
stronger priors to deal with ambiguities [KHM17, HMK+18]. Our work differs from these
works in that we reconstruct a mesh rather than a point cloud, which typically requires
stronger data priors, as seen in the single-view setting.
Other approaches for learning mesh reconstruction rely on manual alignment between

the cameras and shape generator and optimize a photometric loss, which is not robust to
illumination changes [LWR+19]. Alternately, Pixel2Mesh++ [WZLF19] presents a feed-
forward neural network that maps from input views and a base sphere mesh to an output
adapted mesh. However, this approach differs fundamentally in that it does not establish
a dense surface mapping from pixels to the reconstructed mesh, which is required for fine
scale alignment.
More recently, a number of methods for multi-view novel view synthesis have proposed

eliminating the explicit mesh reconstruction altogether and instead learn features, for
example, in a voxel grid [STH+19, LSS+19] or a set of orthogonal planes spaced in
3D [ZTF+18]. These approaches demonstrate strong view synthesis results, but cannot be
used in cases where mesh reconstructions are still required.
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Method

[ Chapter 5
Chapter 7 ]6.1 learning a multi-view parameterized surface mapping

We consider a shape 𝑆 and a collection 𝒱𝑆 of views of 𝑆, where a view 𝑣 = (𝐼, 𝜋) ∈ 𝒱𝑆
consists of an image 𝐼 with associated camera intrinsics and extrinsics 𝜋. We seek to
output a surface mesh ℳ of the shape in object coordinates. We assume that a template
𝒯 parameterizes the output surface mesh and that the mapping 𝒱𝑆 → 𝒯 → ℳ produces
the output. Our goal is to learn this parameterized surface mapping from image pixel
locations to the output surface. For this, we present a two-step approach, depicted in
Figure 6.1. The first step (initialization) aims at estimating an initial template, represented
by a latent vector zS and the weights of an AtlasNet decoder 𝜙 [GFK+18]. The second
step (optimization) improves the shape representation using a cycle-consistency loss.

6.1.1 Initialization

Multi-view shape encoder. To compute the initial latent shape feature zS, we propose a
multi-view shape encoder ℰ jointly trained with the shape parameterization 𝜙, cf., Fig. 6.2.
For each view 𝑣 = (𝐼, 𝜋) ∈ 𝒱𝑆, the image 𝐼 is encoded using a convolutional neural

network 𝒞. Now the resulting features are expressed in a coordinate system linked to the
view. Therefore, we apply a neural network ℛ that transforms the encoded representation
with respect to the view camera parameters 𝜋 in a representation expressed in the canonical
pose. The multi-view encoder ℰ aggregates by average pooling the features extracted from
each view. The resulting representation ensures equivariance with respect to the camera
parameters and can handle a variable number of input views. Denoting |𝒱𝑆| the size of
the view collection 𝒱𝑆, the output of our multi-view shape encoder ℰ is the average of
encoded transformed views:

zS = ℰ(𝒱𝑆) = 1
|𝒱𝑆|

∑
(𝐼,𝜋)∈𝒱𝑆

ℛ(𝒞(𝐼), 𝜋). (6.1)

We assume here a spherical parameterization of a shape collection 𝒮: the template
𝒯 we consider is a sphere, which covers the range of genus-zero shapes. We learn
our parameterization using an AtlasNet decoder 𝜙. To do so, we need to establish
correspondences between each shape 𝑆 ∈ 𝒮 in the collection. We achieve this goal by
establishing per-shape correspondences 𝒬𝑆 via the template 𝒯. While there are a variety
of spherical parameterizations of a shape [PH03], we use a gnomonic projection due to its
simplicity. To assign correspondences between the points at the surface of a 3D object and
a sphere centered on the object centroid, the gnomonic mapping consists in associating
each point on the object to its central projection on the sphere (see Figure 6.3).
We jointly optimize the parameters of ℰ and 𝜙 using the shape prior loss ℒshape as the

sum of 𝐿1 losses over shapes 𝑆 ∈ 𝒮 and established 3D point correspondences (q,q′) ∈ 𝒬𝑆
between the template 𝒯 and the shape 𝑆:
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Figure 6.3:
The gnomonic
mapping: each
point sampled
on the ground
truth shape
is projected
on the sphere
using a central
projection.

ℒshape(𝜙, 𝒮) = ∑
𝑆∈𝒮

∑
(q,q′)∈𝒬𝑆

∥𝜙ℰ(𝒱𝑆)(q) − q′∥
1

(6.2)

Training procedure. Given a dataset of 3D shapes, we render multiple views and
jointly train the parameters for the multi-view shape encoder ℰ and the parameterization
𝜙. We follow the network architectures and two-stage training procedure described in
Groueix et al. [GFK+18] to train a single-view model comprising the parameterization
𝜙 and single-view encoder 𝒞 using loss ℒshape. We then jointly train the multi-view
shape encoder and parameterization by initializing the parameters for 𝜙 and 𝒞 from the
single-view training step.
In our implementation, 𝒞 is a ResNet-18 [HZRS16], ℛ is a multi-layer perceptron with

two layers and the AtlasNet decoder 𝜙 is a multi-layer perceptron with four layers.

6.1.2 Optimization

Given the estimated shape produced at the initialization, it is possible to further improve
the reconstruction.
Similar to CSM [KGT19], we employ cycle-consistency in our reconstruction loss to

learn the parametric surface mapping: after mapping a pixel location p in an image to the
surface mesh via the template, it should project back to the original location p. We further
encourage that the projected point lies within a segmentation mask 𝒳𝑣 of the depicted
shape, in each view 𝑣 (see Figure 6.5). The segmentation mask can be obtained with an
off-the-shelf instance segmentation algorithm [HGDG17].
The cycle-consistency loss is graphically described on Figure 6.4. Let 𝑣 = (𝐼, 𝜋) be a

view in collection 𝒱𝑆 and ℱ𝑣 ∶ R2 → 𝒯 be a learnable mapping from a 2D pixel location
p in image 𝐼 to a point on template 𝒯. We note 𝒫𝜋 ∶ R3 → R2 the function projecting
a 3D point on the image plane and define the cycle projection function 𝒦 ∶ R2 → R2 as
𝒦(p) = 𝒫𝜋 ∘ 𝜙zS ∘ ℱ𝑣(p).
Our reconstruction loss is the sum of squared-reprojection errors and squared-Chamfer

distances to the segmentation mask over all pixels, weighted by 𝜆 = 0.25:

ℒrec(ℱ𝑣, 𝜙zS)=∑
p∈𝒳𝑣

(‖𝒦(p)−p‖2
2 + 𝜆min

p′∈𝒳𝑣

‖𝒦(p)−p′‖2
2) (6.3)

Shape refinement procedure. We initialize the latent vector zS and 𝜙 with the weights
obtained at the initialization step. In our implementation, the mapping ℱ𝑣 is a 4-level
UNet [RFB15] with a ResNet backbone. ℱ𝑣 has 3 output dimensions which are normalized
in order to represent a UVW mapping on the template sphere 𝒯. To properly initialize
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the cycles, the UNet weights are set by training to reconstruct the UVW rendering of the
initial shape. Once the pipeline is initialized, we optimize both the UNet and the decoder
using ℒrec.

6.1.3 Implementation details

We optimize our full loss ℒrec in stages, starting with the shape prior loss ℒshape. Given
a dataset of 3D shapes, we render multiple views and jointly train the parameters for
the multi-view shape encoder ℰ and the parameterization 𝜙. We follow the network
architectures and two-stage training procedure described in Groueix et al. [GFK+18] to
train a single-view model comprising the parameterization 𝜙 and single-view encoder 𝒞
using loss ℒshape. We then jointly train the multi-view shape encoder and parameterization
by initializing the parameters for 𝜙 and 𝒞 from the single-view training step. We assume
that the relative poses (extrinsic parameters) and camera calibration (intrinsic parameters)
for the input views are known. These can be either given a priori (e.g., assuming pre-
calibrated cameras and IMU-based SLAM from a smartphone), or computed from the
data by traditional structure-from-motion methods [SF16]. We optimize the shape prior
loss ℒshape between the ground truth and predicted shapes using the Adam optimization
with a learning rate of 1e-3.
Given the trained parameterization 𝜙 and multi-view shape encoder ℰ, we optimize the

reconstruction loss ℒrec over all views 𝒱. First, we set the latent vector to be the output of
the multi-view shape encoder applied to the input image collection zS ← ℰ(𝒱). Second, we
initialize the ℱ by making a UVW rendering of the initial mesh (each pixel contains the
UVW coordinate of the corresponding point on the mesh), and by optimizing the L2 loss
between this rendering and the ℱ output over the ℱ parameterization for 30 iterations.
This allows the initial pixel-to-UVW mapping to be consistent with the initial mesh. Next,
we optimize the reconstruction loss ℒrec over the mapping ℱ and parameterization 𝜙 for
220 more iterations (the latent vector zS stays fixed during this optimization).

Pixel sampling method. At inference time, we randomly sample 2500 pixels per mask
per iteration to prevent memory overflow.

Network architectures. In the multi-view shape, the convolutional neural network
encoder 𝒞 is a ResNet-18 [HZRS16] (yellow blocks in Figure 6.2). Latent spatial transfor-
mation network (LSTN, orange blocks in Figure 6.2) is a multi-layer perceptron with two
layers. Finally, the AtlasNet decoder is a multi-layer perception with four layers.
The mapping ℱ, which maps the image space to the template space, is implemented

with a 4-level UNet [RFB15].

Optimization parameters. We optimize the loss via Adam over mini-batches comprised of
sampled pixels from each view image. We initialize the UNet with random weights and
we first optimize solely over the UNet’s weights for 300 iterations with learning rate 1e-4
in order to properly initialize it. Then, the UNet weights as well as the decoder’s weights
are jointly optimized for 2200 more epochs with a learning rate of 1e-5.
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6.2 design choices

6.2.1 Template choice

The AtlasNet [GFK+18] framework allows the use of different templates to deform. The
default choice is an atlas: a set of (typically 25) planar primitives. Unfortunately, this is
incompatible with our UNet-based architecture for the pixel-to-UVW mapping. Indeed,
mapping an input pixel to a 3D point on the atlas involves choosing on which of the
25 primitives we want to map the pixel on. This is a hard (discrete) choice, and thus
not naturally back-propagable. One could imagine making a soft choice (i.e., predicting
a distribution of probability of the point presence on each primitive), but this involve
important changes in the architecture, the loss and introduces uncertainty about the
convergence of the optimization.
We first made experiments with a single plane as a primitive template. While this

allowed to efficiently develop the pipeline, limitations soon appeared. As reported in the
original AtlasNet paper, the raw performance of the single plane primitive is very limited.
Moreover, since our procedure continuously optimizes the pixel to template position, the
pixel closely mapped to the plane boundaries have a clipped gradient in order not to move
past this border. This introduces local minima in the optimization and caused failure
cases.
It was consequently natural to use a borderless primitive such as a sphere. Mapping a

pixel to this template involves no choice and no gradient clipping.

6.2.2 Using the UVW parameterization

When using the sphere as a template, we can use the following classical UV-mapping:

𝑢 =0.5 + 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑑𝑥, 𝑑𝑧)
2Π

(6.4)

𝑣 =0.5 −
𝑎𝑟𝑐𝑠𝑖𝑛(𝑑𝑦)

𝑃 𝑖
(6.5)

where (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) represents any point on the unit sphere. This parameterization is similar
to the latitude/longitude system on earth and as such, it presents a discontinuity line (akin
to the international date line) on the U coordinate as represented on Figure 6.6.
As our algorithm maps pixels to a position on the sphere, this is an issue, because

the points on the sphere cannot cross the discontinuity line during the optimization. We
therefore use 3 output channels instead of 2 on our UNet and use a simple normalization to
obtain a point on the sphere. While this parameterization does not involve any discontinuity,
the risk is for the norm of the output channel to either vanish or diverge. In practice, we
did not notice such a phenomenon.

6.2.3 Optimized parameters

The authors of [LWR+19] only used the latent vector as an optimization parameter. This
assumes that the latent space build at initialization time (see subsection 6.1.1) is expressive
enough. In order to check this assumption, we took a trained decoder, generated a latent
model thanks to the first input image of a model, and optimized the decoder output
against the ground truth with the Chamfer distance. We tried optimizing over the latent
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Figure 6.6:
Rendering of
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unit sphere

vector on the first hand, and over the decoder’s weights on the other hand (see Figure 6.7).
It turned out that recovering small details and achieving a very high F-score was not
possible when optimizing only over the latent vector, hence our choice to optimize over
the decoder’s weights.

6.2.4 Positional encoding

The AtlasNet decoder is a multi-layer perceptron modeling a deformation of a surface.
Recently, the positional encoding method has been introduced to help this kind of network
to model finer details [MST+20]. This method consists in providing as input to the
network a frequency decomposition of the coordinates. In our case, while this improves
the loss during training, it also decorelates the points on the template surface. As shown
by Figure 6.8, even if the point cloud looks correct, the wireframe of the mesh shows a lot
of foldings and self-intersections. In our case we therefore concluded that it was better to
preserve the ability of neighbour points to keep being correlated during the update of the
decoder weights.

6.2.5 Regularization

Foldings and self-intersections are bad in general: first, they usually cause additional
troubles in downstream applications; second, our optimization process is based on the
assumption that we can continuously deform the template to the target shape. When
reaching a deformation state that involves self-intersection, this generates discontinuities
in the pixel to UV mapping which make the optimization even harder. In order to avoid
these issues, we have tried introducing regularization losses for the Chamfer loss:

] Edge regularization: L2 penalization of the distance between neighbour vertices.

] Normal consistency: cosine distance between the normals of each pair of points which
share an edge.

] Laplacian regularization: we add the Laplacian of the transformation to encourage
neighbour points on the sphere to also be neighbours on the target surface.
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This approach has several drawbacks: first, it is hard to find the weights for the
regularization terms; second, these regularization terms tend to prevent the model from
learning details in the priors. In the end, we obtained better qualitative and quantitative
results by introducing the gnomonic distance as a learning loss for the optimization step
(see 6.1.1).
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Results

[ Chapter 6
Chapter 8 ]We report qualitative and quantitative performance compared to the baselines. We consider

the task of reconstructing a depicted shape given a set of views with known camera and
object segmentation mask for each view.

7.1 dataset

For our controlled setup, we evaluated on the publicly available ShapeNetCOCO dataset
[SRV+19], which has rendered views for three shape categories (“airplane”, “car”, “chair”)
from ShapeNet [CFG+15]. We used the published training and validation splits containing
11,469 and 2,868 shape instances, respectively. We evaluated on 100 random shape
instances belonging to the validation split for each shape category (300 instances in
total). The dataset includes for most shape instances 20 rendered views with widely
varying camera distances from the target shape, with the rendered views composited
on single still images from the COCO dataset [LMB+14]. Note that the rendered views
in the ShapeNetCOCO dataset are more challenging than rendered views from Choy et
al. [CXG+16] due to the composited natural image background and larger distances from
the camera’s viewpoint to the shape. We also found that the camera calibration was
not accurate for the Choy et al. [CXG+16] rendered views, which limits the accuracy of
the reconstructions. Note that the ShapeNetCOCO dataset has world origin at the shape
instances’ centroid. Finally, we use the ground truth segmentation masks provided with
the dataset.

7.2 evaluation criteria

We evaluate the quality of the output reconstructions by reporting the F1-score (F1)
and symmetric Chamfer distance (CD). Following Wang et al. [WZLF19], we apply their
method for uniformly sampling points on the surface of the ground-truth shapes, yielding
10k points per shape. Following Wen et al. [SRV+19], we sample 10k points from the
output shapes. Given a threshold 𝜏 which is 1% of the ground-truth mesh bounding box
diagonal, we compute the fraction of output points that are within 𝜏 of a ground-truth
point (precision) and vice versa (recall). We follow Knapitsch et al. [KPZK17] and report
the F1-score, which is the harmonic mean of precision and recall. We follow Sridhar et
al. [SRV+19] and report squared-symmetric Chamfer distance (multiplied by 100). Note
that these metrics are point-based, not meshed-based (which our network outputs), in
order to be comparable with XNOCS [SRV+19].
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7.3 experimental results

7.3.1 Optimization process

We represent on Figure 7.2 what happens during the optimization process of ℒrec on an
example shape from the airplane category. The step count starts after the UNet has been
initialized (see 6.1.3 for the detailed procedure). As expected, we notice that the mesh
gets closer to the ground truth as optimization evolves. Moreover, the wings on the initial
shape continuously move and deform towards their final position, which tends to show
that the priors obtained at initialization are correctly exploited.

7.3.2 Baselines

We compare against XNOCS [SRV+19] with multi-view aggregation of 5 images and
with separate networks trained for each shape category. To be comparable, we train our
approach by randomly sampling (only) five images for the input views.
We also compare against a fixed single-template baseline. For this baseline, we randomly

choose a template shape for each shape class and compare the chosen template against
the validation set. (The shapes are oriented and scaled consistently across the dataset.)
We report the average across ten randomly selected templates for each category. For a
particular selected template, this baseline is an upper bound for CSM [KGT19].

7.3.3 Results compared to baselines

Airplane Car Chair Avg.
Method F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓
Single template 36.7 0.42 23.3 0.53 13.3 1.04 24.4 0.66
XNOCS [SRV+19] 62.3 0.08 33.2 0.19 27.2 0.20 40.9 0.16
Our full model 56.3 0.04 41.7 0.07 25.5 0.28 41.2 0.13

Table 7.1:
Multi-view
shape recon-
struction on
the ShapeNet-
COCO [SRV+19]
validation set.
We report
F1-score (F1)
and squared-
symmetric
100xChamfer
distance (CD),
averaged over
each class.

We train our method (Our full model) for each shape category separately. We report
results in Table 7.1. Averaging over the three shape categories, our approach outperforms
the baselines for both the F1-score and the Chamfer distance criteria although we solve a
harder task, i.e., meshing rather than point generation. Note that the template baseline
performs surprisingly well. In fact, as noted in Tatarchenko et al. [TRR+19], there is large
overlap of the shapes in the train/val splits. We show qualitative results in Figure 7.1, 7.3,
7.4, 7.5 and 7.6. On Figure 7.1, we also show the whole sequence of input images from
which the model was created.
The point clouds generated by XNOCS are very noisy. We observe that creating a

mesh from the output point clouds may be difficult, while our approach produces meshes
directly.
Our method is able to recover specific shape details of the reconstructed shape (see

the reactors on Figure 7.1 and 7.3). In the airplane (Figure 7.3) and car (Figure 7.4)
categories, we notice that many models share similar shapes with very slight differences
(e.g., car trunk shape, position of the airplane reactors). Our optimization step allows
to more precisely recover these details. We notice that the chair category is harder to
properly reconstruct. This is due to the fact that the transformation between a sphere and
a chair requires additional distortion compared to the other categories, e.g., to create thin
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legs. Moreover, the models in this category include non genus 0 objects, which cannot
perfectly be reconstructed by a sphere. Therefore, optimization is harder and can more
easily get trapped into local minima.

7.4 ablation study

The results of an ablation study are presented in Table 7.2. We consider the method with
or without the optimization step. We also consider using a Chamfer loss rather than the
gnomonic loss.

7.4.1 Impact of the optimization stage

We see that the multi-view encoder performs reasonably well, in particular on planes and
cars, but it is not sufficient to reach the state-of-the-art. It is however a good prior in the
full setting: the model with optimization performs better than the multi-view encoder
alone on every categories and metrics (from 16 to 24 points), given as input the estimated
shape produced at the initialization step.

7.4.2 Chamfer loss vs gnomonic loss

We compare our ℒshape loss defined with a gnomonic projection of the sphere to the
Chamfer distance loss, that uses closest points to establish correspondences [GFK+18],
which often leads to non-smooth and non-injective mappings with local self-intersections
and foldovers. We first optimize the multi-view encoder and the AltlasNet decoder (MV
encoder) and observe that the two models obtain similar scores. It seems that both losses
are suitable for the task. However, taking the next step (Full model), we can observe that
using the gnomonic projection leads to a higher F1-score. Our interpretation is that this is
due the non-smooth surface reconstructed with the Chamfer loss. We show in Figure 7.7
two meshes reconstructed after MV-encoder training, with Chamfer distance (left) and
gnomonic projection (right). The first model seems to better fit the plane shape, but has a
lot of self-intersections (each color discontinuity) while the second model is very smooth.
This smoothness is, in practice, a better starting point for the reconstruction optimization.

Chamfer loss Gnomonic mapping loss

Figure 7.7:
Visualization of
learned surface
parameteriza-
tion depending
on the loss
used. Disconti-
nuities in colors
indicate self-
intersections.
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Airpl. Car Chair Avg.
Method Loss F1↑ F1↑ F1↑ F1↑
AtlasNet† Chamfer 38.6 20.6 5.8 21.7
MV encoder only Chamfer 33.0 14.6 14.9 20.8
MV encoder only Gnomonic 32.9 24.2 9.2 22.1
MV encoder + optimization Chamfer 49.7 34.2 24.3 36.1
MV encoder + optimization Gnomonic 56.3 41.7 25.5 41.2

Table 7.2:
Ablation study.
Comparison
of multi-view
encoder and
full model for
Chamfer and
gnomonic loss.
†: AtlasNet
(single view)
makes inference
in canonical
coordinates
as opposed
to camera
coordinates for
our method.

7.5 discussion and limitations

While our approach outperforms the baselines, we found several limitations. First, while the
gnomonic projection outperforms the Chamfer loss, there are still remaining reconstruction
artifacts when mapping from a sphere to a target shape to due the lack of bijectivity; most
shapes are not star-shaped volumes, even simple cars. Second, the spherical template
shape restricts the outputs to the set of genus-zero shapes, which does not allow us to
reconstruct well shapes with arbitrary topologies, which is the case of many chairs (cf.
Figure 7.1). In fact, both issues are present in chairs which are harder to reconstruct for
XNOCS too.

7.6 conclusion

To wind up, we have presented a method to learn a dense UVW mapping of a parame-
terizable shape template. We introduce a multi-cycle loss to resolve ambiguities inherent
in single image shape and UVW prediction, and show that our method outperforms a
recent state-of-the-art approach. In addition, our method is able to reconstruct a mesh,
rather than a point cloud, which makes it more useful for downstream 3D applications.
An interesting research direction is to use UVWs predicted from multiple images along
with traditional projection-based techniques to optimize for the final mesh textures.



Transition
In this part, we studied how machine learning can enhance the reconstruction task by
incorporating meaningful priors into the reconstruction process. Thanks to our method,
we are able to generate meshes out of low resolution calibrated images representing small
objects with little to no texture. In the next part, instead of pictures, we are interested in
point clouds obtained by LIDAR sensors, and we aim at inferring semantics in addition to
a volume reconstruction. While the template deformation approach is promising, there
are inherent difficulties to adapt it in the context of buildings: the genus of a building can
be high; the deformation from a simple template is greater than in the case of objects and
this 3D representation does not naturally handle multiple labels. In part II, we used a
partition of the 3D space which, as we will see, more easily handles multiple labels. In the
next part, we strive to use both machine learning and a partition of space to achieve both
3D volume reconstruction and semantics inference by focusing on the main obstacle: the
lack of relevant data to learn from for this task.



83



Part IV

VASAD: A VOLUME AND SEMANTIC
DATASET FOR BUILDING RECONSTRUCTION

FROM POINT CLOUDS



8
Introduction

[ Chapter 7
Chapter 9 ]Synopsis. 3D Scene Reconstruction has important applications in industrial contexts, and

the advent of Building Information Models (BIM) has made it possible to drastically
improve the operational costs of existing buildings. While the community has mostly
focused on surface reconstruction or semantic segmentation as separate problems, the joint
reconstruction of both volumes and semantics has little been discussed, mostly due to the
lack of large scale volume datasets with semantic annotations.
In this work, we introduce a new dataset called VASAD, for Volume And Semantic

Architectural Dataset. It is composed of 6 models, with full volume description and
semantic labels. It represents approximately 62,000 m2 of building floors, making it large
enough for the development and evaluation of learning-based approaches.
Additionally, we propose several methods to jointly reconstruct both geometry and

semantics and evaluate on the test set of the dataset. We show that the proposed dataset
is challenging enough to stimulate research.

8.1 3d reconstruction for buildings

Monitoring the life cycle of existing buildings is of great interest for the building industry.
In this context, being able to reconstruct a Building Information Model (i.e., a digital repre-
sentation) of the current state of a building is required [TB15]. It implies reconstructing
both the volume geometry and the semantics of the building.
In industrial contexts, the first step to perform model reconstruction is often to capture a

3D scan using LIDAR technology. This type of sensors allows precise depth measurements
and therefore provides high-quality geometric features. Moreover, normals are efficiently
estimated on such raw data [BM12]. However, LIDAR sensors suffer from inherent flaws:
there often are missing measurements due to mirrors or surfaces which are transparent to
the LIDAR light frequency. Moreover, measurements are usually taken from a fixed point
of view which generates a non uniform sampling with respect to the underlying surface.
Finally, and as for every sensors, some surfaces may be completely missing from the input
data because they were not seen from any point of view. Reconstructing building parts
from partial data involves the use of strong priors. This motivates the use of machine
learning based approaches to learn these priors directly from existing data.
In this context, many approaches have been developed for 3D semantic segmentation for

point clouds [BPM20, QSMG17, TQD+19]. On the other hand, advances have been made
for surface reconstruction [CXG+16, GFK+18, MON+19, PFS+19] and more recently for
large scene reconstruction [PNM+20]. However few methods tackle the semantic volume
reconstruction [SYZ+17] task and when it comes to full building reconstruction, related
work is even scarcer [MvAB+20].
One of the main reasons is the lack of suitable datasets. The existing datasets usually

tackle one task or the other, and datasets containing both geometric and semantic infor-
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mation are focused on objects (i.e., furniture) rather than building components. Therefore,
these components are usually presented as open surfaces instead of closed instance volumes
which is required for digital building reconstruction.
This work intends to help filling the gap toward full digital mockup reconstruction

both in terms of dataset and methodology. We introduce a new dataset called VASAD, for
Volume And Semantic Architectural Dataset. It is composed of 6 full building models,
with volume description and semantic labels of each building component. It represents
approximately 62,000 m2 of building floors, making it large enough for the development
and evaluation of learning-based approaches. The objective of this synthetic dataset is
to leverage machine learning techniques for architectural reconstruction, regarding both
geometry and semantics.
Second, we present a deep neural network for joint semantic and geometric reconstruction.

It is built over of a semantic feature extractor followed by a dense voxel-reconstruction
network. Quantitative evaluations on VASAD show that it outperforms the state-of-the-
art reconstruction method [PNM+20] that we also modified for semantic reconstruction
purposes.

8.2 related work

Surface reconstruction Reconstructing surfaces has been part of the earliest tasks that
the computer vision community has tried to address. Assuming that the point clouds
are directly sampled on the underlying surface, efficient methods [BMR+99] allow mesh
reconstruction. However, the point clouds are usually noisy and a smoothness prior can help
handling outliers [KBH06]. In the context of LIDAR scans in man-made environments,
piecewise-planar reconstruction provides an idealized model of the scene [BdLGM14,
NW17] or an hybrid idealized/free-form model [LA13]. To avoid using hand-crafted priors,
recent methods tend to leverage big datasets of 3D objects [CFG+15] and scenes [GLU12,
BGM+19, HSL+17, ASZS17, RDG18] to directly learn meaningful priors. Early works use
a voxel-based representation [CXG+16] to apply similar neural network structures as in
2D. More recent works have enabled learned 3D reconstruction on meshes [GFK+18,
WZL+18] and using implicit functions [PFS+19, MON+19, PNM+20]. Another research
direction [CTZ20], leverages binary space partitioning, which generates simple piecewise-
planar closed meshes that are similar to the output of the computer-aided design editors
typically used to build BIM models. These methods usually involve an encoder/decoder
neural network architecture, and make an important use of the PointNet [QSMG17] point
cloud encoder.

Semantic segmentation of point clouds Early methods [NL13] formulate the point cloud
segmentation problem as a region-growing [BJ88] problem, a model-fitting problem [SWK07],
a clustering problem [BL08] or a graph-cut [GF09] optimization. These different formula-
tions allow the user to hand-craft priors they have on their data: [SWK07] is efficient to
recover piecewise-planar regions of a point cloud, and it is robust to noise; [GF09] allows
to use local properties as descriptors and to use pairwise relationships as a propagation
prior. While these methods can be very effective in particular cases, they fail at handling
classes which involve complex priors.
Again, recent methods leverage deep learning to directly learn complex priors on

massively available data. Pioneering work in this direction includes PointNet [QSMG17], a
simple multi-layer perceptron which leverages the pooling operator to approximate any



87

continuous order-invariant function on a set of point coordinates with features. Follow-
up work [QYSG17] focused on building a local analysis to improve performance, and
progressively, proposals have been made to generalize the convolution operator to point
clouds [LBS+18, TQD+19, WQF19, BPM20], pushing further the number of handled
classes, the complexity of the detected classes, and the size of the handled point clouds.
While these methods rely almost purely on point geometry, RGB-D sensors allow to
jointly leverage photometric and geometric information to enhance the segmentation
performance [DN18].

Joint reconstruction and semantic segmentation The intuition that both tasks of recon-
struction and semantic segmentation can leverage each other becomes more and more
popular. Pioneering work in this direction [SYZ+17] simultaneously complete and label
voxels obtained from a single depth image with full supervision. Recent work try to
directly leverage the synergy between both tasks in a single-view setup by affinity learn-
ing [ZCX+19], by supervising the reconstruction task thanks to a pre-trained segmentation
network [GHL+20], by introducing a content consistency constraint [CLLW19] or by in-
dependently estimating the geometry on the segmented classes and adding a merging
step [AAB19, WZW+20].
Implicit representation is a major tool to achieve both tasks, because it allows to formulate

the problem as an optimization task over the whole 3D space whose data term can be
hand-crafted [HP16] or learned [CSO+18]. In this context, some research projects began
to get interested in buildings [DRB+18], but essentially stayed at the scale of a room and
its furniture, and the lack of data has prevented researchers to address the reconstruction
of the full structure of a building with semantics.

Need for a joint semantic/volume dataset Existing datasets mainly focus on a single task
which is either surface reconstruction or semantic segmentation.

Semantic segmentation is usually handled at point level on various point cloud types such
as car-embedded LIDARs, e.g., SemanticKITTI [GLU12, BGM+19] or nuScenes [CBL+19],
outdoor LIDAR, e.g., Semantic3D [HSL+17] or NPM3D [RDG18], or indoor scenes, e.g.,
S3DIS [ASZS17], MatterPort3D [CDF+17] or ScanNet [DCS+17].

Surface reconstruction aims at reconstructing a 2-manifold based on partial view of the
scene (either point cloud or images). Multiple datasets exist for this task, including
ShapeNet [CFG+15], DFaust [BRPMB17] or MatterPort3D [CDF+17]. In the most general
case, this task does not impose to reconstruct closed surfaces. However, several approaches,
including implicit function estimation, tackle the task by learning a dense function over the
whole 3D space which labels any 3D point as inside or outside; this function is learned
using closed shapes, (volumes) as a supervision.

Volume datasets are often obtained after a heavy pre-processing step for closing shapes.
In [MON+19, PNM+20], the shapes of ShapeNet are closed using the marching cubes
algorithm [LC87].

Semantic and volume approaches are very rare due to the lack of datasets containing both
information.
In [PNM+20], the authors propose a synthetic dataset, SyntheticRooms, constructed

with ShapeNet objects and planes with small thickness for walls and floor. Even if not
used in [PNM+20], semantic information can be retrieved and used for learning. However,
the dataset is object-oriented and is not realistic for the reconstruction of the full volume of
a building: the building components are reduced to floor and walls with a fixed thickness.
S3DIS [ASZS17] contains volume information encoded as a set of 3D boxes with



88

semantics. The classes are more numerous than in SyntheticRooms, including windows
and doors, but the volume representation is mostly furniture focused i.e., it is not accurate at
all for the building structure. For example, volumes are built for each room independently,
thus, floor and walls are given arbitrary thicknesses; moreover, some holes (missing labels)
make the date incomplete (see Figure 8.1).
To address the lack of data for volume and semantic reconstruction, we present a new

dataset.
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Empty column

Lack of thickness in a wall

Holes in the walls

Figure 8.1:
A few short-
comings of
the volume
annotations in
S3DIS [ASZS17].



9
Dataset

[ Chapter 8
Chapter 10 ]9.1 building information models

In recent years, the construction industry has developed a new type of digital model
called Building information model (BIM) for better building conception, maintenance and
modification. While 3D geometric models have essentially been used for building concep-
tion, BIMs include a richer information: the semantic class of each building component
(e.g., wall, ceiling, floor...), as well as other technical information. While this semantic
data is usually created during the design of a new building, it is especially useful for
existing buildings. However, manually creating such semantized models is costly. The
main objective of our dataset is to show that it is possible to use BIM models available in
the wild to learn semantic and volume priors to perform reconstruction from point clouds
which are typically obtained from LIDAR scans.

9.2 presentation of the dataset

As opposed to previous datasets, our primary objective is to build a realistic database
for building component reconstruction that is focused on the building’s entire structure
instead of furniture.
VASAD is derived from six freely available BIMs covering more than 62,000 m2. The

scenes vary from a large scale hospital to a small residential building. The six buildings
are presented in Figure 9.1 (a) and (b), with interior views on Artwork 2, Artwork 3,
Artwork 4, Artwork 5, Artwork 6 and Artwork 7. The semantic classes and their color
representations are listed on Table 9.1. These classes have been obtained by filtering the
components names in the original BIM models. We strove to build classes which are
relevant to properly model arbitrary building structures, and to avoid the overlap between
the classes, though some of them can be challenging to tell apart (e.g., partition vs bearing
wall, slab vs ceiling, partition vs pillar). As opposed to S3DIS [ASZS17] which covers
6,000 m2, VASAD contains the full structure information, e.g., the volumes represent the
full structural components of the building and are not limited to a few millimeters from
the surface.

Beam Bearing wall Ceiling Door Floor Partition

Pillar Railing Roof Stair Window

Table 9.1: Se-
mantic classes
in VASAD along
with their color
scheme.
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(1) NBU_OfficeBuilding (2) Sextant

(3) WestRiverSideHospital (4) Trapelo

(5) OTC-ConferenceCenter (6) NBU_MedicalClinic
(a) Visualization of the dataset

Id Type Name Split Surface #Objects
(𝑚2)

1 Office NBU_OfficeBuilding Train 3700 1241
2 Residential (villa) Sextant Train 228 1444
3 Hospital WestRiverSideHospital Train 29600 23661
4 Office Trapelo Train 5800 3657
5 Conference Center OTC-ConferenceCenter Train 18400 5500
6 Medical Clinic NBU_MedicalClinic Test 4500 3094

(b) Buildings composing our dataset

Figure 9.1:
Dataset
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9.3 3d representation

Given an oracle which tells the class of an arbitrary 3D point on the scene, it is possible to
generate a wide variety of 3D representations, e.g., meshes or voxels. In order to build
such an oracle, an important condition is that the input shapes are closed so that the
interior/exterior notions are correctly defined. It is practice almost the case in VASAD,
though some construction errors still remain (e.g., due to their complex structure, some
stairs railing are not always closed meshes without self-intersections).
Our oracle is built on the idea that any ray starting from a point inside a given shape

intersects its surface an odd number of times. In order to introduce some robustness
with respect to the errors in the input meshes, we use 3 axis-aligned rays to determine a
point’s label. A majority vote helps deciding on the correct label. The detailed algorithm
is described on Figure 9.2.

INPUT: a 3D point 𝑝 and a mesh ℳ of the BIM model, structured as a set of object
meshes ℳ𝑠 with a semantic label

label = label(void) // Initialize the point label to void (i.e., empty)
queries ← {Ray(𝑝, e𝑥), Ray(𝑝, e𝑦), Ray(𝑝, e𝑧)}// Consider 3 orthogonal directions
for ℳ𝑠 ∈ ℳ do // For every semantic instance ℳ𝑠 in the global mesh

𝑛odd-inter ← 0 // Initialize the counter of rays having an odd number
// of intersections with the object mesh ℳ𝑠

for query ∈ queries do
if |query∩ ℳ𝑠 | mod 2 = 1 do // Count one for each query ray

// having an odd number of intersections with ℳ𝑠
𝑛odd-inter ← 𝑛odd-inter + 1

end if
end for
if 𝑛odd-inter ≥ 2 do // If at least two rays vote for being inside ℳ𝑠
label ← label(ℳ𝑠) > // Assign the label of ℳ𝑠
break

end if
end for
OUTPUT: label for point 𝑝

Figure 9.2: 3D
point labeling
from a labeled
mesh algorithm.

9.4 point cloud simulation

In many methods [PNM+20], the input point clouds are created synthetically by uniformly
sampling the ground-truth surface. In this work, we go one step closer to a realistic LIDAR
scan by sampling points by ray shooting from a set of viewpoints.

9.4.1 Viewpoint generation

Modern acquisition methods of indoor and outdoor environments make use of UAVs [CTLES17]
to allow point cloud capture and registration from almost arbitrary viewpoints. To sim-
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ulate this kind of acquisition given a mesh, some constraints have to be satisfied. First,
viewpoints should not be inside a full volume. Moreover, in a realistic setup, viewpoints
are spread across the model so that most surface points are visible from at least one
viewpoint. Enforcing the latter condition is computationally expensive. We propose a
heuristic in order to tackle this task with a cheaper computational cost. When a surface
is not seen from any viewpoint, the area in the void close to this surface is also unseen
from the viewpoints already stored, therefore, we sample viewpoint candidates in the void
and check that they are not seen from the viewpoints already stored. Once we are unable
to find such points, the viewpoint generation algorithm stops. A pseudo code for the
algorithm is available on Figure 9.3.

INPUT: mesh ℳ representing the whole BIM model.
𝒱 ← ∅ // Initialize the set of viewpoints as empty
while | 𝒱 | < 𝑁max do
repeat 𝑁iter times
//// Sample a candidate viewpoint in void
Pick 𝑣 ∈ bbox(ℳ) // Uniform sampling
while label(𝑣) = void do // Using the algorithm described in Figure 9.2
Pick 𝑣 ∈ bbox(ℳ)

end while
is_valid ← true
for 𝑣𝑐 ∈ 𝒱 do // Compare the current viewpoint to those we already have
if segment(𝑣, 𝑣𝑐) ∩ ℳ = ∅ then // If the viewpoints ”see” each other
is_valid ← false // Then the candidate viewpoint is discarded
break

end if
end for
if is_valid then

𝒱 ← 𝒱 ∪ {𝑣}
break

end if
end repeat

end while
OUTPUT: set of point of views 𝒱

Figure 9.3:
Viewpoint
generation
algorithm.

9.4.2 Ray shooting

From each viewpoint, directions are uniformly sampled to define a set of rays. The first
intersection between each ray and the global mesh gives us the scanned point. We also
save the normal of the surface at the scanned point, which can also be efficiently estimated
in practice [BM12], as well as the label of the intersected instance in the global mesh.
This provides a more realistic point cloud than a uniform sampling on the global mesh.

Not only does it prevents point sampling on invisible mesh surfaces, e.g. where two objects
are in contact, but it also provides a typical non uniform distribution of points across the
surface (see Figure 9.4).
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While this method leads to a more realistic simulation, it could still be improved:
LIDARs typically embed a rotor which makes the distribution of shooting directions
around the viewpoint non isotropic. Moreover, the sampled point’s position on the ray is
usually noisy. The level of noise varies with the incidence angle with respect to the normal
of the scanned surface, the distance between the sensor and the scanned surface, and the
texture and albedo of the surface. Improvements on the baseline virtual scanning method
we provide could lead to more realistic features and close the gap towards real data.

Figure 9.4:
Representation
of the sampled
point cloud
on the ground
truth mesh (test
set). The point
distribution is
not uniform: it
is denser closer
to viewpoints.

9.5 train/test split

S3DIS [ASZS17] includes only 6 large floors coming from 3 buildings. The train/test set is
made as to avoid that similar parts are seen in both tests. We leverage the diversity of
buildings in VASAD to propose a train/test split where the test set consists of a full building.
Since our buildings have different sizes, we choose as a test building NBU_MedicalClinic
which has a medium size and a variety of semantic components (see Figure 9.1).
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(1) NBU_OfficeBuilding Artwork 2: Ex-
terior overview
and interior de-
tails of NBU_Of-
ficeBuilding.
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(2) Sextant Artwork 3:
Real [Com17],
exterior
overview and
interior details
of Sextant.
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(3) WestRiverSideHospital Artwork 4: Ex-
terior overview
and interior
details of
WestRiverSide-
Hospital.
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(4) Trapelo Artwork 5:
Real, exterior
overview and
interior details
of Trapelo.
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(5) OTC-ConferenceCenter Artwork 6: Ex-
terior overview
and interior
details of OTC-
ConferenceCenter.
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(6) NBU_MedicalClinic Artwork 7: Ex-
terior overview
and interior
details of
NBU_Medical-
Clinic.



10
Method

[ Chapter 9
Chapter 11 ]10.1 reconstruction approaches

As previous approaches essentially focused on surface reconstruction only, the task of
reconstructing both the volume and the semantics that we propose is novel. We introduce
two methods to perform volume reconstruction with semantics. The first one is a composite
point-voxel model which extracts rich semantic features with a raw-point network and
then handles semantic reconstruction with a voxel network. The second one is a direct
extension of the state-of-art ConvONet method for surface reconstruction [PNM+20] to
handle semantics.

10.2 pvsrnet

Voxels are a very natural way to apply learning methods to 3D reconstruction because
they allow a direct generalization of the methods used for images. In particular, the
UNet [RFB15] architecture has successfully been applied for image segmentation. Its direct
3D generalization has already been used in order to perform a dense volume segmentation
from sparse annotations [ÇAL+16]. One of the main drawbacks of the voxel representation
is its memory consumption. In practice, attempts have been made to exploit the sparsity
of the reconstructed space [TDB17]. This approach involves leaving the decision whether
to subdivide the space to reconstruct to the network. In our case, we keep a vanilla UNet
and we leverage point convolution networks [BPM20] which are able to process a larger
part of space at once and to therefore leverage an additional context. This is particularly
important in the context of semantic segmentation of buildings: locally, a ceiling and a
slab can look very similar, and the relative position of these elements in the building can
help disentangling this ambiguity.

Point cloud
with normals

FKA-Conv
UNet

Point cloud 
with features

Voxel
accumulation

Voxels
with features

Voxels
with labels

3D UNet Figure 10.1:
PVSRNet is
composed of
two networks,
one operating
on a raw point
cloud for rich
semantic fea-
ture extraction
(FKAConv
sub-network)
and the second
one on voxels
for semantic vol-
ume occupancy
(3D UNet).

The method is summarized on Figure 10.1. The point cloud with normals is first
processed at large scale by a FKAConv-based [BPM20] UNet. A feature is computed per
point at this stage. Since the 3D space area is too big to be fully processed as voxels,
only a smaller part (in practice a cubic chunk of 2m40 side) is accumulated in a set of
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48x48x48 voxels: when several points fall in the same voxel, the voxel feature is computed
as the average of the points’ features. At this stage, only a subset of the voxels close to the
surface is filled with information. Then, the voxels are fed to a 3D UNet whose role is to
propagate the information across the whole volume.
In theory, this model is end-to-end trainable, but this was not practically tractable with

our computation means. Therefore, we first trained the FKA-Conv UNet thanks to the
point’s label that are recorded during the virtual scan (See 9.4.2). The loss we use is a
cross-entropy loss and the features we keep are the raw logits (before the softmax). The
obtained point clouds with features are then used to build chunks of voxels. Each voxel
chunk is a cube whose side has 48 voxels of 5cm each. The second step consists in using
these chunks to train the 3D Unet thanks to, again, a cross entropy loss applied on the
voxels.
For simplicity, we refer to this approach as PVSRNet for Point-Voxel Semantic Recon-

struction Network.

10.3 semantic convolutional occupancy network

ConvONet [PNM+20] reconstructs volumes as an implicit representation from a 3D point
cloud. It is based on the simpler Occupancy Networks [MON+19] which consist in a multi
layer perceptron mapping the 3D space to an occupancy (typically with value 1 inside the
shape and 0 outside), conditioned on a latent representation of the whole input. A major
limitation of Occupancy Networks [MON+19] is that they make use of a unique latent
vector to represent the whole input point cloud, regardless of its scale and complexity
which prevents it to be used for scene reconstruction in practice.
In ConvONet [PNM+20], the authors first subdivide the input point cloud into large

voxels. For each of these large voxels, a PointNet [QSMG17] encoder takes as input the
points located in the considered voxel and provides a local latent vector. This set of latent
vectors is then further refined thanks to a 3D UNet [ÇAL+16]. Finally, for each arbitrary
point in the 3D space, occupation is obtained by trilinear interpolation of the latent vector,
which is fed to a decoding multi-layer perceptron similar to the one used in [MON+19].
To obtain semantic information on top of pure geometry, we modify the predicted

occupancy function: instead of only predicting a binary occupancy, for a given point, we
predict a semantic class, including void. The network is then trained with a standard
cross-entropy loss. At inference time, the authors of [PNM+20] directly apply the marching
cube [LC87] algorithm on the output logit, which allows a smooth interpolation between
the marching cube voxels. In our case, we first apply a hard argmax on the logits, and the
marching cubes algorithm is applied for each non-void semantic class against all other
classes. Therefore, the global reconstructed mesh includes one mesh per class. Using a
hard softmax does not allow a smooth interpolation (hence the voxelized aspect of the
output), but it allows to perfectly stitch two volumes of different class, without in-between
void or overlap, which is a typical requirement for BIM applications. If a smoother mesh
is needed for a specific application, it is possible to use a finer marching cubes resolution,
at the cost of additional computation time.

10.4 data preparation

Input and outputs are different for PVSRNet and SemConvONet (the semantized version
of ConvONet). This section describes how the VASAD dataset is prepared for training
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with each method.

] PVSRNet: As described in section 10.2, PVSRNet is composed of two sub-networks.
One dealing with points (FKAConv) and the other processing voxels (3D-UNet). In
FKAConv, a 6m-diameter ball is used to select subsets of points at training time. The
obtained point features are then aggregated in voxels of 5cm. Each chunk of voxels has
48 voxels per side, which yields a 2.40m square. In order to label the voxels, we follow
a strategy that has a bias towards the full space, as to balance the fact that 70% of the
models is composed of void space. For each voxel, we sample 27 points on a regular
grid and get their labels thanks to the algorithm described in Figure 9.2. If and only if
all points are labeled with void, the voxel gets a void label. Otherwise, the voxel gets the
value of the most represented full class among the points. This allows us to recover thin
objects such as windows which often fail to be represented by the majority of the 27
points. For each sampled point on the surface, the line segment between the point and
the point of view from which it was sampled constitutes a visibility information. This
information is stored at voxel level thanks to a binary variable which stores whether
a given voxel is intersected by a visibility segment or not. The routine to efficiently
compute this information is described on Figure 10.2.

] Semantic Convolutional Occupancy Network: We strive to mimic the data format used
in the original implementation. We randomly sample cubes of 4m side in the 3D space
and apply a random Y-axis rotation. We select the input points which lie in this cube.
As a supervision, and to be fair with the bias towards full spaces we introduced when
preparing the data for PVSRNet, we first sample points on a 5cm voxel grid, and 27
points per voxel on an inner regular grid. This generates more points than needed in
the original algorithm, we therefore apply the following selection: for each 5cm-side
voxel, we make sure to have at least one point per class that is represented in the voxel.
This typically yields more than half of the 1M points we wish to consider per chunk.
The remaining points are randomly selected among the rest.

Figure 10.2:
Fast visibility
computation.
The voxels
considered on
a line of sight
(highlighted)
are computed
by querying
the voxels in
which lie the
mid-points
(green) of the
line segment
end-points and
the intersections
(red) of the
line segment
and the voxels
facets, all of
which are easily
computed.
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Results

[ Chapter 10
Chapter 12 ]11.1 metrics

The task of volume reconstruction with semantic is manifold, therefore it needs different
metrics to quantitatively assess each aspect of the resulting 3D model. In particular, both
geometric and semantic aspects need to be evaluated. Moreover, we not only propose
metrics that evaluate the volume aspect of the reconstruction, but we also propose surface
metrics that evaluate the quality of the reconstructed surface.

11.1.1 Volume metrics

Evaluation is carried out by uniformly sampling points 𝒫𝑣 in the union of the bounding
box of the ground-truth and the predicted 3D models. In practice, we sample 10 million
points and we noticed that increasing the number of points left the metrics stable. We
then find the ground-truth label 𝑙𝑝,𝑔𝑡 and predicted label 𝑙𝑝,𝑝𝑟𝑒𝑑 for each point 𝑝 ∈ 𝒫𝑣
thanks to the algorithm presented in Figure 9.2. All the volume metrics that we build are
based on these labels. We denote by 𝑣𝑜𝑖𝑑 the void label.

] Semantic IoU (intersection over union): Among each point in 𝒫𝑣 that are labeled as
full in either the ground truth or the prediction, we look at the ratio of these points
which have the same label in both the ground truth and the prediction.

IoU𝑠 =
| 𝑝 ∈ 𝒫𝑣 such that 𝑙𝑝,𝑔𝑡 ≠ 𝑣𝑜𝑖𝑑 and 𝑙𝑝,𝑔𝑡 = 𝑙𝑝,𝑝𝑟𝑒𝑑 |
| 𝑝 ∈ 𝒫𝑣 such that 𝑙𝑝,𝑔𝑡 ≠ 𝑣𝑜𝑖𝑑 or 𝑙𝑝,𝑝𝑟𝑒𝑑 ≠ 𝑣𝑜𝑖𝑑 |

] Geometric IoU: Some models can predict a correct partition of the 3D space between the
binary labels (full/void), but misclassify the full space (e.g., wall vs window confusion).
In this case, even if the semantic is incorrect, the geometry is still recovered. We evaluate
this thanks to the geometric IoU:

IoU𝑔 =
| 𝑝 ∈ 𝒫𝑣 such that 𝑙𝑝,𝑔𝑡 ≠ 𝑣𝑜𝑖𝑑 and 𝑙𝑝,𝑝𝑟𝑒𝑑 ≠ 𝑣𝑜𝑖𝑑 |
| 𝑝 ∈ 𝒫𝑣 such that 𝑙𝑝,𝑔𝑡 ≠ 𝑣𝑜𝑖𝑑 or 𝑙𝑝,𝑝𝑟𝑒𝑑 ≠ 𝑣𝑜𝑖𝑑 |

] Confusion matrix: when working with classification tasks, the error is usually not
evenly spread across the different classes. The best way to quantitatively visualize this is
by building a confusion matrix 𝐶 whose term 𝐶𝑖,𝑗 counts the number of points in 𝑝 ∈ 𝒫𝑣
whose ground truth class is 𝑖 and whose predicted class is 𝑗. A perfect classification
would therefore generate a diagonal confusion matrix.

𝐶𝑖,𝑗 = | 𝑝 ∈ 𝒫𝑣 such that 𝑙𝑝,𝑔𝑡 = 𝑖 and 𝑙𝑝,𝑝𝑟𝑒𝑑 = 𝑗 |

For the sake of visualization and understanding, each row 𝐶𝑖 is normalized by the total
number of points whose ground truth class is 𝑖: ∑𝑗 𝐶𝑖,𝑗.
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11.1.2 Surface metrics

Our surface metrics evaluate the quality of the geometry of the reconstructed surface.
To do so, we sample points 𝒫𝑠,𝑔𝑡 on the ground-truth mesh and points 𝒫𝑠,𝑝𝑟𝑒𝑑 on the
predicted mesh. In practice, | 𝒫𝑠,𝑔𝑡 | = | 𝒫𝑠,𝑝𝑟𝑒𝑑 | = 10 millions.
We then evaluate the distance between each point in 𝒫𝑠,𝑝𝑟𝑒𝑑 and its nearest neighbour

in 𝒫𝑠,𝑔𝑡:

𝐷𝑝𝑟𝑒𝑑→𝑔𝑡 = {||𝑝 − 𝑁𝑁𝒫𝑠,𝑔𝑡
(𝑝)|| for each 𝑝 ∈ 𝒫𝑠,𝑝𝑟𝑒𝑑}

where 𝑁𝑁𝑌(𝑥) is the nearest neighbour of 𝑥 in the set 𝑌.
Symmetrically, we evaluate the distance between each point in 𝒫𝑠,𝑔𝑡 and its nearest

neighbour in 𝒫𝑠,𝑝𝑟𝑒𝑑:

𝐷𝑔𝑡→𝑝𝑟𝑒𝑑 = {||𝑝 − 𝑁𝑁𝒫𝑠,𝑝𝑟𝑒𝑑
(𝑝)|| for each 𝑝 ∈ 𝒫𝑠,𝑔𝑡}

All the surface metrics we build are based on these distances.

] Mean surface distance: the average surface error is given by averaging all the nearest
neighbour distances we calculated. This distance is usually called the Chamfer distance
in the literature.

Av. dist. = mean(𝐷𝑝𝑟𝑒𝑑→𝑔𝑡 ∪ 𝐷𝑔𝑡→𝑝𝑟𝑒𝑑)

] Max surface distance: the worst surface error that we make, also called the Metro
distance.

Max. dist. = max(𝐷𝑝𝑟𝑒𝑑→𝑔𝑡 ∪ 𝐷𝑔𝑡→𝑝𝑟𝑒𝑑)

] Precision: this metric tells how close the reconstructed surface is to the ground truth.
To avoid considering the worst errors, a threshold of 95% is taken to discard the 5%
worst distances:

Prec. = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95%(𝐷𝑝𝑟𝑒𝑑→𝑔𝑡)

] Accuracy: this metric evaluates to what extent the ground truth surface is reconstructed.
As well as for the precision, a threshold of 95% is used to discard the 5% worst
distances:

Acc. = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95%(𝐷𝑔𝑡→𝑝𝑟𝑒𝑑)

11.1.3 Metric Oracle

Since all our metrics involve a discretization through point sampling, we also provide an
oracle which computes each metric for the validation model against itself on Figure 11.1.

11.2 surface reconstruction

We present quantitative (Table 11.1) and qualitative results (see Figure 11.2, Figure 11.3,
Figure 11.4, Figure 11.5, Figure 11.6, Figure 11.7 and Figure 11.8) on the VASAD dataset.
In both methods, the use of voxels on one hand, and the marching cubes algorithm on
the other hand generate highly complex meshes. Because the amount of triangles we can
display at once is limited, we had to decimate the meshes thanks to the “Quadric Edge
Collapse Decimation“ provided by the software Meshlab [CCR08]: for each 2.40m-side
chunk, we set a maximum budget of 2500 faces. This simplification was used only for
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Convolutional Neural Networks [PNM+20] PVSRNet (normals + point semantic features)

Figure 11.1: Left:
the confusion
matrix for
SemConvONet
(with normals).
Right: the con-
fusion matrix
for PVSRNet
with normals
and surface
semantics as
input.

Method Input Semantic Surface metrics Volume metrics
Nls Vis. Surf. Acc. ↓ Prec. ↓ Av. ↓ Max. ↓ IoU Sem. ↑ IoU Geo. ↑

Sem. dist. dist.
Oracle - - 0.07 0.07 0.03 0.21

ConvONet 7 7 7 7 0.16 0.67 0.13 5.69 - 0.31
(points) 7 7 7 3 0.21 0.16 0.08 5.80 0.25 0.29

3 7 7 3 0.19 0.17 0.08 4.30 0.23 0.28
PVSRNet 7 7 7 3 0.13 0.13 0.06 1.98 0.37 0.49
(voxels) 3 7 7 3 0.11 0.11 0.06 2.61 0.41 0.55

3 3 7 3 0.11 0.18 0.07 6.46 0.41 0.55
7 3 3 3 0.13 0.18 0.09 2.31 0.51 0.56
3 7 3 3 0.12 0.14 0.07 6.87 0.53 0.59

Table 11.1:
Quantitative
results: we eval-
uate both the
reconstructed
volume and
surface. Met-
rics: accuracy,
precision, av-
erage distance,
maximum dis-
tance, semantic
intersection
over union,
and geometric
intersection
over union
(considering
only full/void).

display purposes, and the quantitative evaluation was carried on the raw output data. In
the figures representing the input point clouds, each point is colored darker as it gets
closer to the viewer, in order to better perceive the underlying geometry. Again, this only
has a visualization purpose and it does not carry any additional information.
The scanned point cloud is given to all the tested networks as input, but additional

input data are also considered: the normal vector associated to each point, the visibility
information (see Figure 10.2), and the per-point classification vector obtained thanks to
FKAConv [BPM20]. Table 11.1 summarizes all the tested combinations of input.
We first report the scores for two baselines: the oracle and ConvONet [PNM+20]. The

latter is trained on our data by aggregating all the non-void semantic labels into a full
label. The task being to segment the space between inside and outside the objects volume.
We train 2 versions of SemConvONet: first with raw point clouds as input, and second

with additional normal information as an input to the PointNet encoders. Compared to
the original, purely geometric algorithm, we notice that only the accuracy slightly worsens.
The rest of the metrics tends to improve.
As an ablation study for our approach, we trained three models, not relying on point

cloud semantics. This is tantamount to using the voxel sub-network of PVSRNet alone.
Similarly to the SemConvONet experiment, we consider variants with and without the
input normals at the voxel level. In spite of the voxel discretization inherently restricting
the precision of the reconstructed surface (see the difference in reconstruction quality on
the floor on Figure 11.2), our method does better than any version of ConvONet, whether
semantics is used or not. Experiments also show that Convolutional Occupancy Network
is very sensitive to the input sampling (cf. Figure 11.2, 4th row). As a matter of fact,
experiments originally conducted by the authors of [PNM+20] include a dense uniform
sampling on the input meshes, as opposed to our dataset in which the input points are
more realistically sampled from virtual point of views.
For information, we reported two experiments in which we included the visibility

information, though PVSRNet did not seem to benefit from it. A possible explanation is
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that the oriented normal information already indicates locally in which direction the void
is located.
Finally, we report the scores of PVSRNet in the last row of Table 11.1. It leverages

both the normals and the rich semantic features from the FKAConv sub-network at voxel
level. With respect to the surface metrics, it is slightly worse but comparable to the other
variants, except for the maximal distance, due to very rare, but very penalizing missing
parts such as the parking lot of Figure 11.2, last row. The main reason of this local failure
is the extremely low point density on this part of the building.

11.3 semantic segmentation

The semantic classes in buildings are highly non uniformly distributed in terms of volume.
Structural classes such as bearing walls, partition and slabs are more represented than
smaller features such as beams, doors, pillars, railings, stairs or windows. Consequently,
we see that in spite of the bias towards full spaces in our supervision (see Figure 10.4)
which increases the supervision signal on the smaller features, they are harder to infer
while the majority classes are still well recovered by both methods. However, the Semantic
Convolutional Network is not as good as PVSRNet at resolving ambiguities (see the
ambiguity partition/bearing wall on Figure 11.3).
Other classes sometimes have an inherent ambiguity which is well observed in the

results (see the confusion matrix in Figure 11.1):

] Partition / bearing wall: partitions tend to be thinner than bearing walls, and bearing
walls tend to be mostly on the outermost part of buildings. However, exceptions remain
which can make these classes hard to distinguish.

] Bearing wall / window: windows tend to be located on bearing walls, and the transition
between the two classes can be hard to see on the point cloud. Variations in the normals
and thickness changes are typical markers of a transition between a bearing wall and a
window.

] Partition / door: similarly, and for the same reasons as for bearing walls and partitions,
a close door can be a hard feature to distinguish from its neighboring partition at point
cloud level.

] Slab / roof: In modern architecture, flat roofs are becoming more and more common.
It is even possible for people to access these parts of the building. As a consequence,
there is an intrinsic ambiguity between the two classes.

In spite of these ambiguities, we notice that the Semantic Convolutional Occupancy
Network is not able to properly recover the small classes. In particular, we can notice the
windows on Figure 11.2, the door and the beams on Figure 11.3, the railings on Figure 11.4
and the windows on Figure 11.6 and Figure 11.7. The IoU scores on Table 11.1 as well as
the confusion matrix on Figure 11.1 also show that our method benefits a lot from the
FKAConv [BPM20] point features (+10% in IoU).
One major limitation of PVSRNet is that the transition between the semantic classes is

not entirely satisfactory yet. This is especially true when the transition does not include
a significant change in the surface normal: doors/partitions, windows/bearing walls for
instance. Moreover, PVSRNet is limited by the voxel resolution which prevents it to
properly represent classes with small details such as railings (see Figure 11.4).



108

Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.2:
Qualitative re-
sults on the test
set (NBU_Medi-
calClinic).

Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.3:
Qualitative re-
sults on the test
set (NBU_Medi-
calClinic).

11.4 discussion

11.4.1 Inherent ambiguities

The dataset is built from 6 building information models designed by various architects all
of which can model a same building with slight differences. As previously mentioned in
Section 11.3, the classes can have an inherent ambiguity, especially when only considering
the point cloud as an input. A perspective for dataset improvement, besides augmenting it
with new buildings, is to enrich the models with texture and/or material simulation. The
LIDAR simulation could then be more sophisticated and produce intensity based on the
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Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.4:
Qualitative re-
sults on the test
set (NBU_Medi-
calClinic).

Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.5:
Qualitative re-
sults on the test
set (NBU_Medi-
calClinic). The
sampling is
highly non
uniform in
this area. Our
method is
more robust to
the sampling
inconsistencies

material.

11.4.2 PVSRNet

Based on our observations, the main limitation of PVSRNet is the voxel size. The voxel
resolution prevents it from properly representing classes with small details such as railings
(see Figure 11.2, 3rd row). Implicit representations are an appealing alternative to
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Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.6:
Qualitative re-
sults on the test
set (NBU_Medi-
calClinic).

Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.7:
Qualitative re-
sults on the test
set (NBU_Medi-
calClinic).

voxel based approach. However, by using ConvONet as a baseline, we bring forward
some limitations of the implicit representations: in spite of their inherent ability to
represent any arbitrary closed surface, we show that irregularly-sampled surfaces are more
efficiently reconstructed by a simpler voxel-based method. The issue is not limited to
surface reconstruction, we also notice that the smaller classes are better recovered by our
method and that the ambiguities are better resolved. One key difference between the
voxel-based methods and the implicit representations lies in the loss: while the cross-
entropy loss on voxels is dense (it provides supervision on each point of the 3D space),
supervising an implicit representation involves a discretization strategy. It is future work
to investigate methods with hybrid voxel/implicit supervision in order to take advantage
of both representations.

11.4.3 Towards BIM models

As an output, we have a set of closed volumes within which the semantic label is constant.
This is probably sufficient to perform thermal or acoustic simulations. However, in the
case of building modification, it may be necessary to have access to an idealized shape
(e.g., a true parallelepiped instead of a set of voxels). This can be achieved thanks to
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Input point cloud Ground truth

SemConvONet PVSRNet

Figure 11.8:
Qualitative re-
sults on the test
set (NBU_Med-
icalClinic).A
failure case:
due to the point
of view being
far away, the
point sampling
is too sparse,
leading to a
missing chunk.

specific mesh simplifications algorithms [CMS98]. Moreover, it maybe necessary to further
separate each instances (e.g., two perpendicular walls may be composed of 2 separate
pieces). In any case, the BIM format does not define a unique way to represent a building
and as such, this post processing step heavily depends on the downstream application.

11.5 conclusion

We introduced VASAD, a dataset for geometric and semantic reconstruction of buildings.
This dataset aims at addressing the lack of data focused on building structures which is a
key components of modern BIM models in architecture and civil engineering. This dataset
includes 6 clutterless (empty) buildings. A strategy to sample point of views in these
buildings has been developed which further allows to simulate LIDAR scans. Moreover,
a routine to label any arbitrary 3D point allows to build raw data for a large variety of
3D representations. We provide the full implementation to produce the data from the
raw IFC file, and we therefore allow this dataset to be enriched from more IFC files. We
have shown that this dataset is challenging enough for modern machine-learning-based
reconstruction methods. We were able to highlight the limitations of learned implicit
representations and we were able to propose a voxel-based method to perform semantic
reconstruction of building which is able to recover small classes and to address some of the
inherent class ambiguities. However, the non-uniform sampling of the input point cloud
makes it challenging to reconstruct a smooth surface, and the transition between classes is
not always clean. As such, we believe that this dataset paves the way for contributions
that will eventually enable fully automatic so-called Scan-to-BIM methods.
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Part V

EPILOGUE



12
Conclusion

[ Chapter 11

12.1 looking back

In terms of computer vision, automatizing the generation of a BIM model from sensors
such as cameras or LIDARs involves the task of 3D reconstruction with semantic inference.
3D reconstruction is a complex task. As we have recalled, various input sensors are
available to produce meaningful input data (images and point clouds for instance), and
the choice of the 3D output representation (mesh, voxel, implicit representation, among
others) plays a central role. Moreover, as for most of the tasks dealing with real-world
data, the algorithms performance depend on the environment: in the case of buildings
we highlighted two specificities in particular: the overwhelming presence of textureless
surface, and the highly-structured geometry (large piecewise-planar areas, big volumes
of the same semantic class such as walls, ceilings and roofs). With these observations in
mind, we studied how to design a 3D reconstruction algorithm with semantics adapted to
buildings.

] In part II, we focused on pure geometric reconstruction from a set of images with
reasonable quality. We strove to understand and tackle the specificities of 3D recon-
struction in the context of building (presence of textureless surfaces, presence of visible
line segments due to the geometric regularity of the environment) and we were able
to design a new algorithm which is able to outperform previous approaches on both
synthetic and real data [LBM19].

] In part III, we took a step away from the building environments to better understand
how to learn meaningful priors from a large dataset. We designed an algorithm which
outputs a mesh from a set of low-quality calibrated images of an object using template
deformation [LFW+21]. This approach competes with state of the art methods and is
able to directly output a mesh.

] In part IV, we directly address the task of volumetric geometric reconstruction of
buildings with semantics from LIDAR scans by introducing VASAD, a dataset specifically
designed to learn this task. We introduce effective baselines to solve the task and show
that structured 3D representations are the most promising to solve this task.

These contributions allow to push the boundaries of reconstruction algorithms and
pave the way for more contributions in the generation of BIM models. We found that the
use of machine learning is particularly effective to achieve this goal and that some of the
specific corner cases met when dealing with buildings can be addressed.
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12.2 looking ahead

With this work, we get closer to a scan-to-BIM algorithm. However, several aspects of
the problem still need to be explored. In part IV, we studied the 3D reconstruction of
buildings with semantics from artificial LIDAR scans. As discussed, a next step is to
check that our assumptions hold well on real data. Moreover, LIDAR sensors remain
expensive. It would therefore be relevant to generalize our algorithm to images as input,
but again, there is a lack of relevant data to learn this task at building scale. When
working on part IV, we noticed that the BIM files are usually not strongly constrained: for
instance, there are several possibilities to split a continuous bearing wall (see Figure 12.1),
depending on the construction method and the downstream task for which the model will
be used. Clarifying these ambiguities or introducing conventions could pave the way for
the introduction of instance segmentation in which not only would the parts be annotated
by class, but each instance would be separated as in current BIM files.

Figure 12.1: A
few different
partition pos-
sibilities for a
bearing wall
(sectional view
from above).

As mentioned previously, the BIM digital representations usually include more than the
geometry and the semantics of the visible parts. In particular, they can include information
on the different networks (electrical, hydraulic), even if they are mostly hidden in the walls
and slabs (see Figure 12.2). Recovering such invisible network would require additional
sensors (e.g., Hall-effect based sensors among others) and a specific data processing.

Full BIM Model Hydraulic network only

Figure 12.2:
Most of the hy-
draulic network
of VASAD’s
Medical Clinic
is not directly
visible.

Finally, and closer to this work, promising 3D representations could allow a future
breakthrough regarding the purely geometric and semantic aspects. The authors of
[KAB+21] experiment 3D reconstruction as a set of 3D boxes which could be an interesting
way to represent the very regular shapes of buildings, and which is a volume representation,
and the neural render fields [MST+20] allow a promising representation of a scene learned
from images.
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Additional visualizations for part III

[
We provide additional qualitative comparisons between our reconstruction method and XNOCS [SRV+19] on
Figure 13.1 and Figure 13.2.
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GT Ours XNOCS Figure 13.1:
Additional
qualitative
results for our
reconstruction
method by
parameterized
surface map-
ping. 1st col-
umn: ground
truth; 2nd
column: ours:
3rd column:
XNOCS [SRV+19]
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GT Ours XNOCS Figure 13.2:
Additional
qualitative
results for our
reconstruction
method by
parameterized
surface map-
ping. 1st col-
umn: ground
truth; 2nd
column: ours:
3rd column:
XNOCS [SRV+19]
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