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Titre : Piégeage d'atomes individuels en environnement cryogénique

Mots clés : pinces optiques, simulation quantique, cryogénie

Résumé : Des atomes individuels piégés dans des
matrices de pinces optiques forment une des meil-
leures plateformes expérimentales pour la simulation
quantique de modéles de spins. Comme pour la plu-
part des plateformes de simulation quantique, I'aug-
mentation du nombre d'objets quantiques controlés
individuellement est un défi majeur. Dans cette thése,
je présente notre travail sur la levée des principales
limitations a la réalisation de grandes matrices
d'atomes sans défaut avec des fidélités élevées. Ces
limitations des fidélités de préparation incluent la du-
rée de vie limitée par le vide d'un seul atome dans la
pince, et le temps nécessaire pour préparer de
grandes matrices, atome par atome, avec une pince
optigue mobile. Nous avons d'abord amélioré
I'assemblage de grands réseaux d'atomes sans dé-
faut en développant des nouveaux algorithmes plus
efficaces. En utilisant ces derniers, nous avons

augmenté le nombre d'atomes d'une quarantaine
a deux cents sur notre expérience a température
ambiante. Nous avons ensuite construit une
nouvelle plateforme cryogénique de pinces a
atomes dans laquelle la durée de vie d'un seul
atome est supérieure a 6000 secondes, soit une
amélioration d'environ 300 fois par rapport a notre
expérience a température ambiante. Nous
décrivons la conception et la construction de la
nouvelle configuration cryogénique et évaluons ses
performances dans une série de tests. Enfin, nous
démontrons le piégeage d'atomes uniques dans
des réseaux de pinces optiques a des températures
cryogéniques et analysons les  différents
mécanismes de perte présents pendant la mesure
de la durée de vie. Ces résultats ouvrent la voie a
des simulations quantiques a grande échelle sur
notre plateforme.

Title : Scaling-up the Tweezer Platform - Trapping Arrays of Single Atoms in a Cryogenic Environment

Keywords : optical tweezers, quantum simulation, cryogenics

Abstract : Arrays of single atoms trapped in optical
tweezers are a prominent platform for the quantum
simulation of spin models. As for most quantum
simulation platforms, scaling up the number of
individually controlled quantum objects is a major
challenge. In this thesis, | present our work on lifting
principal limitations to achieving large defect-free
atom arrays with high fidelities. These limitations of
the preparation fidelities include the vacuum-limited
lifetime of a single atom in the tweezer, and the time
needed to prepare large arrays atom-by-atom with a
moveable optical tweezer. We first improved the
assembly of large defect-free atom arrays by
developing a new algorithmic framework. Using the
new framework, we increased the number of atoms

from around forty to two hundred on our room-
temperature setup. We then built a novel cryogenic
atom tweezer platform in which the single-atom
lifetime is over 6000 seconds, an approximately
300-fold improvement over our room-temperature
experiment. We describe the design and
construction of the new cryogenic setup and
evaluate its performance in a series of tests. Finally,
we demonstrate the trapping of single atoms in
tweezer arrays at cryogenic temperatures and
analyze different loss mechanisms present during
the lifetime measurement. These results open the
way to large-scale quantum simulations on our
platform.
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Introduction

In recent decades, the ability to manipulate individual quantum systems [Wineland,
2013; Haroche, 2013] has improved at a rapid pace, leading many researchers to
believe that we are on the verge of a second quantum revolution. Several new quantum
technologies, which utilize unique quantum properties to gain an advantage over their
classical counterparts, have been developed in recent years and their industrialization
leads to breakthroughs in various fields. While some of these technologies rely on
the precise control of a single quantum object, other entangle multiple quantum
systems. This unique property of quantum systems led to a long-standing debate
in the physics community that started with Einstein, Podolsky and Rosen in 1935
[Einstein, Podolsky, and Rosen, 1935], and was experimentally settled nearly fifty
years later by [Aspect, Grangier, and Roger, 1982]. Today’s quantum technologies
are implemented in a variety of physical systems, from single particles to solid-state
devices. They find applications in different fields which can be categorized broadly in
quantum sensing and metrology, quantum communication, quantum computing and
quantum simulation.

Quantum systems are very sensitive to disturbances from their environment, a
characteristic which is exploited to build quantum sensors. As an example, Nitrogen-
vacancy (NV) centers are solid-state systems, whose electron spin is sensitive to
external perturbations like strain or electric and magnetic fields. Their use as a
magnetometer was first demonstrated in 2008 [Balasubramanian et al., 2008; Maze
et al., 2008]. Together with their small size, allowing for the resolution of structures on
the nanometer scale, having a sensitivity on the order of pT/ vHz makes NV centers
particularly interesting for future sensing applications in many fields.

The sensitivity of quantum systems can further be used for secure communication.
By making use of the quantum property of photons, data can be transferred in a
secure way. This secure protocol was suggested first in 1984 [Bennett and Brassard,
1984], and quantum-key-distribution was shown a few years later on a laboratory
table [Bennett et al., 1992]. Today, researchers strive to extend the distance of

quantum communication, by decreasing decoherence effects and building quantum
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repeaters. In 2017, a satellite-to-ground quantum key distribution over 1200 km was
first demonstrated [Liao et al., 2017].

To study quantum mechanical systems encountered, e.g. in condensed matter physics
or high-energy physics, it is convenient to use another quantum system, as Feynman
suggested in 1982 [Feynman, 1982]. The amount of data needed to store the full
wavefunction of a quantum system on a classical computer grows exponentially with
the number of particles N, leading to an unfeasible amount of storage space even for
moderate N. As an example, to represent a system of N spin-1/2 particle, one needs
to store 2V complex amplitudes. With N = 40, this implies about 24° ~ 10'? numbers
which — for double-precision — is a storage space of about ~ 6.4 x 103 bits, or 8 TB
of data. This scaling problem could be solved by using a universal quantum computer.
Through the excellent control of isolated two-level systems, so-called qubits, such
a device only needs N qubits to store the full wavefunction of a N-particle system.
Furthermore, through the application of single- and two-qubit gates, any many-qubit
unitary transformation could be implemented, and for instance the time-evolution
of any quantum system could be studied [Lloyd, 1996]. A very high fidelity of these
gates is of utmost importance, as many of them have to be sequentially applied to the

system.

Apart from the simulation of quantum systems, such a universal quantum computer
has the potential to solve many computational problems considerably faster than
a classical computer, most notably the factorization of large integers into prime
factors [Shor, 1994], which would have far-reaching consequences for cryptography.
The potential advantage of a quantum device over its classical counterpart coined
the term quantum advantage: a demonstration that a quantum device can solve a
(not necessarily useful) problem, that no classical computer can solve in a feasible
amount of time. Even though Google claimed a quantum advantage with a 53 qubit
superconducting chip [Arute, Arya, and Babbush, 2019], realizing a scalable universal

quantum computer is still a long way off.

A scalable quantum computer requires that arbitrarily large computational tasks
can be implemented with small output errors. This requires very high gate fidelities.
However, even with finite error probabilities per gate, one can construct fault-tolerant
architectures with quantum error correction codes, when the error per gate is under a
certain threshold [Preskill, 1998; Kitaev, 1997; Aharonov and Ben-Or, 1999; Knill,
Laflamme, and Zurek, 1998; Steane, 2003; Gottesman, 1997; Knill, 2005]. This threshold
depends on the error model and the device capability and ranges widely in the literature,
e.g. 1076 [Preskill, 1998; Kitaev, 1997; Aharonov and Ben-Or, 1999; Knill, Laflamme,

12



and Zurek, 1998], 107 [Gottesman, 1997], 3 x 1073 [Steane, 2003]. Even 3 x 1072 is
possible in principle, although the needed fault-tolerant architecture is impractical
because of its large resource requirements [Knill, 2005]: quantum error-correction
codes combine many physical qubits with finite gate error to obtain one logical
qubit. This resource requirement is difficult to fulfil, highlighting the need for a
many-qubit platform with low gate errors. Currently, platforms operate in the noisy
intermediate-scale quantum (NISQ) regime [Preskill, 2018], where fidelities and system

sizes are too small to achieve fault-tolerance with many qubits.

Analog Quantum simulation

Another, more short-term approach to quantum simulation, is analog quantum
simulation with NISQ devices. If the Hamiltonian of a (toy) model of a quantum
mechanical system can be mapped onto a simulator system, the simulator can be used
to produce properties of interest, like correlation functions or the ground state. Even
though the simulator may be restricted to a class of Hamiltonians, it can be far more

fault-tolerant than a universal quantum simulator.

Today, (analog) quantum simulations are possible on different platforms (see e.g.
the review [Georgescu, Ashhab, and Nori, 2014]), which the most prominent are
ultracold gases [Bloch, Dalibard, and Nascimbene, 2012], ions [Blatt and Roos, 2012],
superconducting qubits [Houck, Tiireci, and Koch, 2012] and Rydberg atoms in optical
tweezers [Browaeys and Lahaye, 2020]. These platforms differ not only in their physical
realization, but also with respect to the models that they can simulate. The models
can be from a variety of fields, e.g., cosmology [Nation et al., 2009], high-energy
physics [Ott et al., 2021], or condensed-matter physics, where phenomena such as
superfluidity [Guo et al., 2020; Eckel et al., 2014; Madison et al., 2000] are investigated
and models such as the Hubbard model [Jaksch et al., 1998] or spin models [Porras and
Cirac, 2004] are implemented on simulators. Furthermore, two different approaches are
taken: the top-down and the bottom-up approach. Ultracold gases in optical lattices
start initially with many atoms — the top-down approach — which makes them a
great prospect for scalability. On the other hand, ions, superconducting qubits and
Rydberg tweezer platforms start by controlling single qubits and then try to scale up
the number of interacting elements — therefore called bottom-up approach — while
maintaining high fidelities and coherences. Even though scalability seems to be harder

in these setups, they profit from excellent single-qubit and interaction control.

Neutral atoms in optical lattices is the platform with the largest number of

particles so far. The lattice sites are loaded from a degenerate gas, achieving a typical
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filling of approximately 90% of the lattice sites [Greiner et al., 2012; Bloch, Dalibard,
and Zwerger, 2008]. The system naturally implements the Fermi- or Bose-Hubbard
model, as atoms can tunnel between lattice sites with a hopping amplitude ¢ and
experience an on-site interaction energy U. In the limit of ¢ < U, only the spin-degree
of freedom remains, and the system can simulate spin Hamiltonians. So-called quantum
gas microscopes [Bakr et al., 2009] are able to achieve single-site resolution, to probe
single-site occupancy, or to address individual sites with light using digital mirror

devices.

Trapped ions have demonstrated an extremely high level of control, with two-qubit
gate errors of 8(4) x 10™* [Gaebler et al., 2016], which is in the regime for fault-tolerant
architectures. Recently, several groups demonstrated the encoding of one logical qubit
with several physical qubits using fault-tolerant codes [Ryan-Anderson et al., 2021;
Egan et al., 2021]. Therefore, trapped ions are candidates for both universal and
analog quantum simulation. The ions are generally trapped in linear Paul traps, and
can be cooled and manipulated by lasers. In contrast to neutral atoms, they have
strong long-range interactions due to the Coulomb repulsion. Control of the quantum
state is facilitated by changing the internal state of an ion with a laser, and coupling
the internal state to the vibrational state in the trap potential. So far, quantum
simulations have been done in 1-D chains of a few tens of qubits. Implementing 2-D

trapping potentials and scaling up the number of ions remains a very challenging task.

Superconducting qubit chips are the most promising solid-state platform to
date, showing excellent control with entangling gate errors of 6 x 107 [Jurcevic
et al., 2021]. Similarly to ions, this makes them an excellent candidate for universal
quantum computing and simulation, as well as analog quantum simulation with
hopping Hamiltonians. Major technology companies such as Google and IBM are
investing in this platform because of its potential chip integrability. Again, scalability
is challenging, largely due to the fact that each qubit needs wiring and connections
with minimal cross-talk [Tabuchi, Tamate, and Yorozu, 2021]. IBM announced a new
127-qubit processor this year, the largest superconducting qubit chip to date [Ball,
2021].

Rydberg atoms are interesting for quantum technologies in various ways, such as
sensing [Dietsche et al., 2019; Schmidt et al., 2018] or single-photon control [Ripka
et al., 2018; Stiesdal et al., 2021]. As potential platform for quantum simulation, they
were first identified in 2010 [Weimer et al., 2010]. In that same year entangling gates
between Rydberg atoms were also demonstrated for the first time [Isenhower et al.,

2010; Wilk et al., 2010]. Recently, quantum gates with fidelities approaching those of

14



the best quantum computation platforms have been shown [Levine et al., 2018, 2019;
Graham et al., 2019; Madjarov et al., 2020] — e.g. exceeding 0.97 [Levine et al., 2018]
— and first Rydberg quantum processors have been demonstrated [Bluvstein et al.,
2021; Graham et al., 2021].

Our platform is based on the trapping of neutral atoms in tightly confined optical
dipole traps — also called tweezers — which was pioneered at the Institut d’Optique
in the group of Philippe Grangier [Schlosser et al., 2001]. Through the use of a spatial
light modulator, any geometrical configuration of traps can be chosen [Nogrette et al.,
2014], with distances down to a few micrometers. It is possible to obtain fully loaded
structures in arbitrary geometries through atom-by-atom assembling techniques that
will be explained in detail in Chapters 2 and 3 of this thesis. Compared to the other
platforms, this versatility is a major advantage, as condensed matter models can be
simulated on any lattice or even non-regular geometries.

Furthermore, Rydberg platforms can simulate a variety of Hamiltonians, as they
can work in different regimes depending on the way the qubit is encoded. If the qubit
is encoded in ground- (|g) = ||)) and Rydberg (|r) = [1)) states of the atom, the van
der Waals interaction leads to an Ising-like Hamiltonian. As the ground and Rydberg
states are coupled by a laser field, the whole system can be described by an Ising
model with transverse and longitudinal magnetic field. In recent years, many groups
have demonstrated quantum simulations of the Ising model [Labuhn et al., 2016;
Lienhard et al., 2018; Scholl et al., 2021a; Bernien et al., 2017; Kim et al., 2020).

Two different Rydberg states, |nS) = |]) and |[nP) = |1), that can be coupled by a
microwave field, can also be used as a qubit basis. These Rydberg atoms can then
interact via a spin-exchange process [Barredo et al., 2015], and evolve back- and forth
between []1) and |1]) states. This interaction can be written as an XY-Hamiltonian,
with the microwave playing the role of a magnetic field, but also as a hardcore-boson
Hamiltonian, where a particle hops from site to site. As an example, the harcore-
boson Hamiltonian of the Su-Schrieffer-Heeger model was investigated experimentally
[de Léséleuc et al., 2019]. Lately, it has also been shown, that the XXZ-Hamiltonian
can be engineered by combining microwave drive and spin-exchange [Scholl et al.,
2021b].

Scalability

As increasing the number of individually-controlled quantum objects is a necessary
condition for practical use [Alexeev et al., 2021], all bottom-up quantum simulation

platforms face the challenge of scalability. To reach a quantum advantage over classical
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Figure 1.1: Comparison of number of bulk and border atoms. In multiple dimensions,
the ratio between bulk (red) and border atoms (grey) gets smaller. A 64-atom chain has
62 bulk atoms, a 8x8 rectangle has 36 bulk atoms and a 4x4x4 cube has only 8 bulk
atoms. To simulate quasi-infinite crystal structures in multiple dimensions, a large number

of atoms are needed, as only bulk atoms capture the full dynamics.

1004

10 5

Number of qubits

2000 2005 2010 2015 2020
Year

Figure 1.2: Comparison of bottom-up platforms in terms of scaling in the recent
decades. Left: Images of the following platforms. In blue: sketch of a linear Paul traps
for ions [Blatt], In red: A superconducting qubits chip [Gibney, 2019], In green: A
Rydberg tweezer array. Right: The first entanglement of two ions was shown in [Turchette
et al., 1998]. The same year, researchers at IBM, Oxford, Berkeley, Stanford, and MIT
demonstrated superconducting two-qubit systems. Although the first gate using Rydberg
atoms was not shown until 2010 [Isenhower et al., 2010; Wilk et al., 2010], the platform
grew at a rapid pace and is comparable in atom numbers compared to the other two
platforms. Data taken from: Superconducting qubits [Feldman, 2019], Rydberg atoms
[Barredo et al., 2014],[Labuhn et al., 2016],[Bernien et al., 2017],[Ebadi et al., 2021,
Scholl et al., 2021a], and ions [Sackett et al., 2000],[Haffner et al., 2005],[Monz et al.,
2011],[Zhang et al., 2017] .



computers, the platforms ideally need to work in the regime of many qubits, where
simulations unfeasible on a classical computer. Furthermore, as periodic boundary
conditions are challenging to implement on a physical system, the large qubit limit is
needed for an accurate understanding of quasi-infinite condensed matter systems.

This is illustrated in Figure 1.1. Only bulk atoms are useful for the understanding
of quasi-infinite condensed matter models, as border atoms have fewer neighbors,
leading to a different interaction. Whereas in one dimension, there are naturally only
two border atoms, in two- or three dimensions the ratio of bulk versus border atoms is
reduced. As an example, a 4 x 4 x 4 cube with 64 atoms only has eight atoms in the
bulk. We therefore need to produce a large atom number to be able to simulate these
models in multiple dimensions while neglecting border effects.

To date, the bottom-up approaches have been restricted to a few tens of qubits
[Arute, Arya, and Babbush, 2019; Zhang et al., 2017; Bernien et al., 2017] and upscaling
has been a challenge. The Rydberg platform has made the fastest progress in recent
years, as can be seen in Figure 1.2, compared to superconducting qubits or ion chains,
which have existed for nearly twice as long.

The efforts of my thesis are directed towards further scaling up the number of qubits
on the Rydberg platforms, from a few tens to a few hundreds of qubits, bringing the
platform in the regime of the top-down approach of optical lattices. For this purpose,
we built a second-generation experiment, that traps arrays of atoms in a cryogenic

environment.

Cryogenic platforms

Cryogenic platforms cool down a macroscopic part of the experimental apparatus
to cryogenic temperatures, depending on the used cryogenic liquid, e.g., below 77 K
(liquid Nitrogen), or ~ 4 K (Helium 4). Even though the experiment described in this
thesis trapped single atoms in tweezers at 4 K for the first time, cryogenic platforms
have existed for a while in the atomic physics community for various reasons. The
motivation might differ from setup to setup, but broadly two main advantages can be
seen.

First, the number of phonons in materials decreases with temperature, and their
contribution ’freezes-out’ below a certain temperature. Systems that rely on chips or
electrodes to trap particles are therefore less limited by phonon-noise. Ions trapped on
the surface of cryogenic chips experience less radio-frequency loss and heating rates are
reduced by orders of magnitude [Niedermayr et al., 2014], leading to an increase of the

coherence of the system. Similarly, atoms magnetically trapped close to the surface of
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Figure 1.3: Advantages of a cryogenic tweezer platform. a: Probability of obtaining a
defect-free shot p(IN) = exp(—tassembly/Tarray) as a function of the number N of atoms,
solely considering experimental timescales and the vacuum-limited lifetime of the atoms
(no experimental imperfections). Due to the small lifetime in our room-temperature setup,
the probability for a perfect shot is small for NV > 100 qubits and a lot of repetitions of the
experiment are needed to acquire enough statistics. In the new cryogenic environment with
lifetimes of 100 minutes however, the lifetime no longer is a limiting factor. b: Rydberg
lifetime of a nS-state of 8’Rb at 300K and 4K. The Rydberg lifetime is reduced at
room-temperature due to black-body radiation induced transitions to neighboring Rydberg
states. In a cryogenic environment at 4 K, the black-body radiation is surpressed which
leads to longer Rydberg lifetimes (data from [Beterov et al.,, 2009]). This increases the

coherence of quantum simulations.

a chip [Nirrengarten et al., 2006; Roux et al., 2008; Bernon et al., 2013] profit from the
reduction of thermal current noise at low temperatures and have reported increased
coherence and trapping lifetimes.

Second, in a cryogenic environment, experiments profit from a drastically reduced
total vapor pressure. Residual gas 'freezes-out” when it comes in contact with a surface
at cryogenic temperatures — an effect called cryo-pumping — and does not desorb. At
liquid nitrogen temperatures (< 77 K), only neon, helium and hydrogen isotopes are
still in the gas phase and at temperatures of 4 K all gases are condensed or frozen-out.
In cryostats at 4 K, pressures below 1074 mbar are routinely achieved [Benvenuti,
1974], and in sealed cryogenic ion traps, pressures as low as 1077 mbar have been
reported [Diederich et al., 1998; Gabrielse et al., 1990].

The main advantage of a low background gas pressure is long trapping lifetimes of

particles due to a reduction of collisions with particles from the background gas. In
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ion traps, these losses are induced by charge-exchange reactions with background gas
particles and closed-cycle cryogenic ion traps have lately been reported in [Pagano
et al., 2018; Micke et al., 2019; Leopold et al., 2019]. In neutral atom experiments, the
momentum transfer due to a background gas collision is usually large enough to expel

the atom from its trap.

In Rydberg tweezer platforms, long trapping lifetimes are essential for simulations
with high number of qubits. While one atom has a lifetime of 7 = 20s in our room-
temperature setup, an array of N atoms has then a lifetime of 7.,y = 7/N. To
benefit from fully loaded arrays, we have to work in a regime where the experimental
timescale tey, is much smaller than the lifetime of the array (fexp < Tamay), as otherwise
atom losses reduce the probability to obtain a fully-loaded array. Unfortunately, the
experimental time increases linearly with the number of atoms, as the assembly process
takes more and more time as N increases. In [Barredo et al., 2016], the assembly time
for staggered arrays is found to be tassempy = 50(ms) + 0.85N (ms). As can be seen in
Fig. 1.3a, a major limitation for scaling up the atom number in our room-temperature
is the relatively short lifetime. The probability to prepare a defect-free array of N
atoms scales as p(N) = exp(—tassembly/Tarray). ON OUr room-temperature experiment,
the resulting probability to prepare arrays over 200 atoms is below 10%. In contrast,
in a cryogenic environment with a lifetime of 7.y, = 100 min, large atom arrays of up

to a thousand atoms should be possible with a high fidelity.
A final advantage for Rydberg platforms comes from reduced black-body radiation

at cryogenic temperatures. The Rydberg lifetime for low orbital angular momentum
states, usually a few 100ns for principal quantum numbers of n > 50, is limited
by black-body induced transitions to neighboring Rydberg states. In a cryostat
environment, these transition to neighboring states are negligible and the effective
lifetime for Rydberg atoms is purely determined by the spontaneous decay to the
ground state. This increases the effective lifetime, e.g. by a factor of approximately 3
for n = 80 (see Fig. 1.3b). In a quantum simulation experiment, this would lead to an

increased coherence.

Compared to low orbital angular momentum Rydberg states, circular Rydberg states
InC') [Hulet and Kleppner, 1983] with maximal angular momentum |m|=¢=mn —1
can have significantly longer natural lifetimes — e.g. approximately 25 ms for n = 48
— because they have only a single radiative decay channel to the next-lowest circular
state. This motivates their use for quantum computing and simulation [Xia, Zhang,
and Saffman, 2013; Nguyen et al., 2018; Cohen and Thompson, 2021]. As recently

proposed [Nguyen et al., 2018], lifetimes in the minute range can be achieved when
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spontaneous emission is inhibited by capacitor plates with a spacing smaller than half
the radiated wavelength — e.g. A = 4.9 mm for the [48C) — [47C) transition — and

black-body radiation induced transitions are limited when using a cryogenic platform.

Thesis outline

This thesis describes our efforts to scale up the number of atoms in Rydberg quantum
simulators. For this purpose, we designed and built a new experimental platform that
creates atom arrays in a cryogenic environment with unprecedented trapping lifetimes
in excess of 100 minutes. Together with improved assembly techniques and algorithms,
the thesis demonstrates the assembly of large atom arrays and therefore the scaling
capabilities of this platform. The manuscript is arranged as follows:

Chapter 2 describes a state-of-the-art platform, namely the current room-temperature
Rydberg platform in our group. I give an overview over single-atom trapping and the
creation of fully-assembled structures in two dimensions. Then, I explain the excitation
to the Rydberg states with a short overview of the new scheme that we implemented
during my PhD. Lastly, I discuss the limitations of the current room-temperature
setup in terms of scaling-up to higher atom numbers.

Chapter 3 presents improvements of the atom assembly techniques that have been
pioneered in this group. I start by describing the problem at hand, highlighting the
importance of different parameters in the optimization process. Then, I show in which
ways the current algorithms are non-ideal and demonstrate new improved algorithms
that can run on fully-arbitrary geometries that are not bound on a Bravais-lattice.
Finally, I demonstrate their application on a project involving quantum simulations of
the Ising model, where we assembled triangular and square arrays of up to 200 atoms.

Chapter 4 is dedicated to the design and construction of a new cryogenic tweezer
platform and forms the core of this work. I begin by giving an overview of the new
setup, after which I describe the different parts of the platform in detail. Finally, I
evaluate the performance of the cryostat in a series of tests.

Chapter 5 shows the trapping of single atoms in tweezers in a cryogenic environment
for the first time. I start by describing the laser system and the magneto-optical
trap. Then, atom arrays with lifetimes of over 100 minutes are demonstrated and I
characterize different effects limiting the measured lifetime.

Finally, Chapter 6 presents first steps towards scaling the platform to atom arrays
with several hundreds of atoms. Different challenges are highlighted and I present

work on how to improve current techniques of trap equalization.
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This chapter will present a state-of-the-art Rydberg platform for the quantum
simulation of spin models. The described experiment is the room-temperature platform
of our group at Institut d’Optique, built by Lucas Béguin [Béguin, 2013] and Alice
Vernier and upgraded by the following PhD students and postdocs. The working
principles, capabilities, as well as the short-comings of this machine are described, as
it serves as reference against which the novel setup, that was constructed during my
PhD, can be compared.

The quantum simulations of the platform are typically based on two ingredients,
which are explained in the first two sections. First, the microscopic structure of a
condensed matter model, e.g., the specific lattice type, is mimicked, which will be
presented in Section 2.1. This involves the trapping of single atoms in optical tweezers,
the creation of holographic trap arrays using a spatial light modulator, and the creation

of defect-free arrays of atoms.
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Then, the interactions of the condensed matter model have to be emulated on our
setup, utilizing the characteristics of Rydberg states. Section 2.2 describes the atoms’
excitation to the Rydberg state. A novel scheme, that we implemented during my

PhD, is presented briefly and a short overview of possible experiments is given.

Lastly, in Section 2.3, limitations of the current state-of-the-art setup are described.
Focusing mainly on its ability to scale to larger number of atoms, the details of this
section will motivate the efforts in the design and construction of the new cryogenic

machine.

Creating atomic structures atom-by-atom

The experiment is based on trapping single atoms in tightly focused optical dipole
traps, so-called optical tweezers. Historically, optical tweezers have first been used to
trap micron-sized particles with a combination of radiation-pressure and dipole force
[Ashkin, 1970]. Ashkin’s work on optical trapping was recognized with the Nobel prize
in 2018. Next to manipulating micron-sized particles, optical dipole traps became
a tool to trap and manipulate atomic clouds in cold-atom experiments [Grimm,
Weidemiiller, and Ovchinnikov, 2000]. In red-detuned focused laser beams, atoms
are attracted to the intensity maximum with a dipole force that is proportional to
Fiipole  VI/A, with VI being the intensity gradient and A the detuning of the laser
beam. Trap depths are usually on the order of 1 mK and therefore require the atoms

to be pre-cooled, e.g. by an optical molasses.

Pioneering experiments with micron-sized dipole traps at the Institut d’Optique
showed that single atoms can be isolated with help of light-assisted-collision processes
[Schlosser et al., 2001]. When the trapping volume is small enough, atom pairs are
rapidly expelled from the traps. This effect, also called collisional blockade, leads to

either one or zero atoms being in the trap at any time.

For many years, the probabilistic single atom occupation in a dipole trap was
a strong limitation for using the platform for the quantum simulation of ordered
condensed matter systems. In 2016 however, our group demonstrated a deterministic
scheme to produce defect-free atom arrays, paving the way for the quantum simulation

of spin Hamiltonians.
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Figure 2.1: Principle of single atom loading. a: A 850 nm laser is focused by a
high-numerical-aperture lens. The waist of approximately 1 pm in the focus is overlapping
with an atomic cloud from a magneto-optical trap (MOT). The 780 nm fluorescence
can be collected via the same lens, and separated from the trap laser light by a dichroic
mirror. b: Light-assisted collision mechanism. In the presence of red-detuned light, atoms
can associate to an attractive molecular potential at interatomic distance R.. The gain
in kinetic energy AFE is usually much higher than the trap depth which leads to both
atoms being expelled from the trap. c: The fluorescence signal shows the characteristic
step-function for single-atom loading in the collisional-blockade regime. Two fluorescence
levels can be separated, indicated by the dotted line, corresponding to one or no atom in

the trap.

2.1.1 Single atoms in optical tweezers

The first single-atom experiment at Institut d’Optique (MIGOU) featured a home-made
microscope objective under vacuum [Vigneron, 1998] to create the optical tweezers.
In a second-generation experiment (ASPHERIX), this setup was later simplified by
replacing the microscope objective with a large numerical-aperture aspheric lens
[Sortais et al., 2007]. On our room-temperature setup (CHADOQ), an improved lens
design by Lucas Béguin [Béguin, 2013], was implemented. This lens is coated with a
thin metallic layer of ITO to avoid the accumulation of charges, a crucial element for

electric field-sensitive Rydberg atoms, and an advantage over the previous designs.

The room-temperature setup of our group is described in detail in the thesis of
Lucas Béguin [Béguin, 2013]. It features two aspheric high-numerical-aperture lenses

(NA = 0.5, focal length f = 10 mm, working distance of 7 mm), focusing a 850 nm
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laser beam to a waist of approximately 1 pm at the center of a vacuum chamber (see
Fig. 2.1a). The focus overlaps with a 8"Rb atom cloud. The Rubidium atoms originate
from an oven at approximately 100 °C, are slowed down by a spin-flip Zeeman-slower
before being trapped by a magneto-optical trap (MOT) in the science chamber.
The far-red-detuned optical dipole trap has a power of about 3.5 mW, leading to a
trap depth of approximately 1 mK, therefore it is much deeper than the usual MOT
temperature of about 100 pK.

Atoms are loaded into the optical tweezer due to the cooling light of the magneto-
optical trap. They can then be expelled from the trap by one- or two-body losses, as
described e.g. in [Fuhrmanek et al., 2012]. One-body losses are usually associated with
either collisions with the background gas or heating due to cycles of absorption and
emission of photons, whereas two-body losses are induced by light-assisted collisions.
Due to the small trapping volume, the collisional blockade regime applies. In presence
of the red-detuned light of the MOT, two atoms can form a loosely-bound pair, being
attracted to each other due to the dipole potential (V(r) oc —Cs5/r?, see Fig. 2.1b). If
the gain in kinetic energy exceeds the trap depth, the atom-pair escapes the trap.
When the two-body losses dominate over the loading rate of the magneto-optical trap,

either one or no atom is in the trap at any time.

Part of the 780 nm fluorescence light that the atom scatters in all directions is
collimated by the same aspheric lens (see Fig. 2.1a), separated from the trap light by
a dichroic mirror, and then imaged onto an EMCCD camera (Andor iXon Ultra 897).
To increase the signal-to-noise ratio, the imaging system is designed such that the
light from a single tweezer is collected on one pixel of the camera. The characteristic
fluorescence signal, extracted from of the photo-counts of this pixel (see Fig. 2.1c),
reminds of a random telegraph noise signal. It is a sign of the light-assisted collisions,
as two distinct fluorescence levels can be detected, corresponding to one or no atom in

the tweezer.

A clear fluorescence signal such as in Figure 2.1c¢ — with a clear separation of two
levels corresponding to zero or one atom and a loading probability of approximately
50% — is only obtained in a small regime of laser powers corresponding to trap depths
of approximately 1-1.5 mK. For smaller trap depths, the loading probability is reduced
and atoms are lost easily during imaging due to heating. For higher laser powers, the
increased light shift leads to a substantial loss in fluorescence light, as the atoms are
detuned further from the imaging light and scatter less photons. As a result, the two
levels are not clearly separated any more and detection errors increase. Furthermore

the loading of multiple atoms in the deep tweezer traps has been observed as an
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Figure 2.2: Generation of trap arrays. A phase ¢(x,y) is imprinted onto an incoming
gaussian laser beam of amplitude Ag(x,y), with help of a spatial-light modulator. Arrays
of dipole traps can be created in the focal plane of the aspheric lens, by choosing the right
phase pattern on the SLM. We image the intensity distribution in the focal plane of the
aspheric lens, using the second asphere, a lens and a CCD camera. The scale bar depicts a

distance of 20 pm.

increased loading rate competes with the rate of light-assisted collisions.

2.1.2 Creation of atom arrays using a spatial light modulator

Our experimental setup has the ability to create reconfigurable arrays of microtraps
in the focal plane of the aspheric lens, using a spatial light modulator (SLM). This
was first implemented in our group in [Nogrette et al., 2014] and is described in
the thesis of Henning Labuhn [Labuhn, 2016]. Later, the technique was extended to
three-dimensional structures [Barredo et al., 2018], which is reported in detail in the
thesis of Sylvain de Leseleuc [de Léséleuc, 2018] and Vincent Lienhard [Lienhard,
2019).

The working principle is illustrated in Figure 2.2a. We imprint a phase ¢(z,y)
onto an incoming gaussian beam of amplitude Ag(x,y). The intensity distribution in
the focal plane of the lenses is then given by the square modulus of the 2D-Fourier
transform of Age®. With our spatial light modulator — a Hamamatsu X10468-02 SLM
with 792x600 pixels and an active area of 12x15.8 mm? — we can control the phase
of the light, but not its amplitude. Solving the inverse problem of finding the right
SLM phase pattern for a given intensity distribution in the focal plane is not trivial,
but there are several established iterative algorithms such as the Gerchberg-Saxton

(GS) algorithm [Di Leonardo, lanni, and Ruocco, 2007] that we use on the experiment.

Compared to an amplitude-only modulator, e.g. a digital mirror device (DMD),

phase-only modulators have the advantage of using most of the intensity of the
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incoming light to generate the arrays of microtraps. Whereas DMDs utilize only
around 50% of the light, phase modulators with the GS algorithm are reported to use
over 94% of the incoming light to create 100 traps in the focal plane of a lens [Di

Leonardo, lanni, and Ruocco, 2007].

Additional Phases The phase pattern on the SLM includes several contributions
beyond the trap pattern calculated by the GS algorithm. First, Hamamatsu supplies a
correction pattern that cancels the residual non-flatness of the SLM-chip. Second,
we are able to translate the traps in the plane by adding a linear evolution of the
phase modulo 27 (blazed grating), or in axial direction by adding a quadratic phase
evolution modulo 27 (Fresnel lens). Lastly, the SLM provides us with the opportunity
to correct aberrations from optical elements in the path, namely the mirrors, lenses,
viewports and aspheric lenses. By measuring and decomposing the aberrations into
Zernike-polynomials, we can add an aberration-correcting phase mask on the SLM. It
is however non-trivial to measure the aberrations in the focal plane of the aspheric
lens, as we only have access to the signal before and after the chamber. In the past,
the aberrations were measured after the chamber using a Shack-Hartmann wavefront
sensor. When the opposite of the measured phase distortion was added as a phase
mask onto the SLM, an increase in trapping frequencies was observed, indicating a
reduction in aberrations [Labuhn, 2016]. Similar results can be achieved by manually
adjusting the coefficients of the various, low-degree Zernike polynomials using the trap

images on the CCD camera.

Intensity Equalization When calculating the phase pattern with the GS algo-
rithm, choosing all target intensities I; to be equal, the peak intensities of the traps
are usually not homogenous, as can be seen in Figure 2.3a. As an example, on our
experiment the 23x23 trap array with a spacing of 5 pm, calculated with around 20
iterations of the GS algorithm, has a measured dispersion of trap intensities with a
standard deviation of 45%. As previously explained, it is important for all trap depths

to be similar to obtain a telegraphic-like trace (see Figure 2.1c) for each trap.

We therefore equalize the trap depths — assuming the same waist for all traps — in
a feed-back loop, as illustrated in Figure 2.3b. We start by running the GS algorithm,
choosing all target intensities I, o to be equal. The obtained intensity of each trap I; is
then measured with a CCD camera (see Fig. 2.2a). We can then adjust the target
intensities of the GS-algorithm in the next iteration of the feed-back loop. We choose
the target intensities of the k + 1l-iteration to be I; ;11 = wy;I; ; using the weights
wip = wir1[1— G(1 —I;/T)]7', with a gain factor 0 < G < 1, I being the average

trap intensity.
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Figure 2.3: Intensity equalization of trap arrays. a: The exemplary intensity distribution
of a 23x23 trap array, before and after 15 iterations of intensity equalization. Before, the
distribution has a standard deviation of approximately 45%. With more than 400 traps, we
typically reach a standard deviation of the mean of approximately 5% after 10-15 iterations.
The scale bar depicts a distance of 20 pm. b: Block diagram of the feedback-algorithm.
We measure the intensity I; of each trap . This determines the weights w; which are used

for the calculation of the phase pattern in the next iteration.

The procedure is repeated, until a satisfying level of trap uniformity is reached.
With 100 traps, we typically reach a standard deviation of the trap intensities of
approximately 2% after 5-10 iterations [Labuhn, 2016]. Unfortunately, the intensities
of the traps on the CCD-camera differ from the actual intensities in the focal plane of
the lenses. This can be caused by aberrations, and will be explained in more detail in
Section 2.3.

2.1.3 Defect-free atom arrays
To simulate large-scale condensed matter models on our tweezer platform, defect-free

arrays of single atoms are essential. We are able to create arrays of micron-sized

tweezers with a spatial light modulator. However, since we isolate single atoms with
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light-assisted collisions, each tweezer has only a loading probability of 50% and

therefore only half of our microtrap array is filled on average with atoms.

Several groups have shown that with careful engineering of the collision processes,
loading probabilities of up to 90% can be achieved [Griinzweig et al., 2010; Lester
et al., 2015; Brown et al., 2019; Jenkins et al., 2021]. By using a blue-detuned laser
beam, only one atom is on average lost during a collision. However, this depends on
the careful adjustment of detuning and trap depth, which is difficult on large-scale
arrays, and we found the technique not to be robust on a day-to-day basis.

Furthermore, even with a loading probability of 90%, a defect-free 50-atom array
would only be prepared with a probability of less than one percent. This highlights
the need of an active sorting method to create large defect-free arrays with a high
probability.

In our group, this was first implemented in [Barredo et al., 2016] and is described
in detail in the thesis of Vincent Lienhard [Lienhard, 2019] and Sylvain de Léséleuc
[de Léséleuc, 2018]. At the same time, similar efforts have been reported in [Endres
et al., 2016; Kim et al., 2016]. Later the technique in our group was extended to three
dimensions in [Barredo et al., 2018].

The creation of a user-defined N-atom structure, denoted target array, with high
repetition rate is based on a fast programmable control system, as illustrated in
Figure 2.4. Due to the stochastic loading, we usually start with at least 2N traps,
containing the user-defined target array and additional reservoir atoms. After an
initial fluorescence image of 20 ms, the control system determines the trap occupation,
computes the necessary moves of reservoir atoms to target traps, and moves the atoms
sequentially with a single moving tweezer. A final fluorescence image then determines
the success of the assembly process. The assembly process usually takes less than

100 ms for structures with less than 100 atoms.

Moving Tweezer The fundamental concept of our assembly techniques relies on
the transport of atoms between reservoir and target traps in a single moving tweezer.
A schematic of the procedure is shown in Figure 2.5. We overlap the moving tweezer
with a stationary SLM trap holding an atom, and ramp up the power in the moving
tweezer to approximately 10 mK in 400 ps. The atom follows the deep potential of the
moving tweezer, that is moved to the position of another empty stationary SLM trap
with a velocity of 100 pm ms~!. Here, the trap power is ramped down to zero in 400 pis.

In [Barredo et al., 2016], two types of moves are presented (see Fig. 2.5 ¢,d). We

consider one move to be one atom being picked up from a reservoir trap by the moving
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Figure 2.4: Schema of atom assembly. After we load 2N traps with on average N
atoms, we take an initial fluorescence imaging, to determine the initial occupation of the
traps. The assembly algorithm then computes the necessary moves from initial to target
traps. Then, the atoms are moved with a moving tweezer. Finally, another fluorescence

image is taken to determine the final occupation and success of the assembly process.

tweezer and transferred to an empty target trap. The moving tweezer can either
"slalom” between the SLM traps (Fig. 2.5 ¢), or move along the Bravais lattice defined
by the traps (Fig. 2.5 d). Today, only the latter is used, as its efficiency was in general
found to be higher. The ”slalom” moves lead to non-negligible atom loss, especially
when the SLM traps are close.

The moving tweezer is controlled with a 2D-acousto-optical deflector (2D-AOD,
DTSXY-400-850 from AA Opto Electronics), as illustrated in Figure 2.5a. A change
of radio frequency applied to the AOD, changes the deflection angle which moves
the tweezer in the focal plane of the aspheric lens with 5pm MHz ™. By changing
the RF-power of one of the AODs, we are able to control the amplitude of the
moving tweezer. In the design of the optical system, we consider the following points
[de Léséleuc, 2018]: First, we conjugate the approximate plane of the AODs with
the plane of the aspheric lenses, such that the beam will not clip on the lens for any
deflection angle. Second, we choose a slightly bigger waist of 1.3 pm for the moving
tweezer, to help with the overlap of stationary traps and moving tweezer. Finally, the
moving tweezer covers a range of 180x 180 pm? in the focal plane of the asphere.

The radiofrequency applied to the 2D-AODs is supplied from voltage controlled
oscillators (VCO, Mini circuits POS-150+). The frequency of the VCOs can be tuned
with an analog voltage with a bandwidth of 100 kHz, setting an upper limit for the
velocity of the moving tweezer. We tune the radiofrequency amplitude using a fast
(500 MHz bandwidth) mixer after the VCO (see explanation below). The analog voltage
to control both amplitude and frequency is supplied via two computer-controlled
Arduino Due. The time resolution of the Arduino is 4 ps.

Another possibility to control the 2D-AODs is driving them with an arbitrary wave-
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Figure 2.5: Assembly of defect-free arrays of atoms a: A stationary trap pattern is
produced with the SLM. With a polarized beam splitter (PBS), we combine the trap beam
with a moving tweezer that is deflected by a 2D-acousto-optical deflector. The positions of
the moving tweezer with respect to the SLM traps is controlled with the 2D-AODs after
being calibrated using a CCD-camera after the chamber. b: lllustration of the moving
tweezer. At the position of a reservoir trap (blue), the power of the moving tweezer (red)
is ramped up to approximately U = 10mK in 7ramp = 400 ps, before the tweezer beam is
moved with a speed v = 100 pum ms~!. At the position of the target trap, the power in the
moving tweezer is reduced to zero in another 400 ps. c,d: lllustration of the two different

types of moves.

form generator (AWG). However, since single moves are relatively long (approximately
1ms) compared to the period of the RF signal at the center frequency of the AODs
(approximately 10ns), sampling the waveforms for the moves poses experimental
challenges in terms of data memory and transfer speed. Using VCOs and Arduino
Dues therefore is a much simpler and cheaper solution, as it allows to send comparably

low-frequency signals that have been calculated on-the-fly.

For the assembly to work with high efficiency, it is crucial to ensure the perfect
overlap of moving tweezer and stationary SLM traps. For the calibration of this
overlap, we utilize a CCD camera after the vacuum chamber (see Fig. 2.5a). First,
we record the positions of the SLM traps on the camera. Then, we scan the moving
tweezer across the camera, recording its position for a set of RF frequencies, or analog

voltages supplied by the Arduinos. Using interpolating functions, we can then map
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Figure 2.6: Change of RF control. a: Before, a RF-driver (grey box), built at the
institute, consisting of a voltage controlled oscillator and a variable attenuator, was directly
connected to an amplifier driving the AOD. When changing the RF power with the
attenuator, back reflections due to a change in the load changed the VCO frequency by
approximately 100 kHz (corresponding to 0.5 pm in the plane of the atoms). b: With
the addition of a preamplifier with sufficient isolation (ZFL-500+ has an isolation of
approximately 13 dB), load changes on the attenuator/mixer do not lead to significant

back reflections into the VCO. The frequency pulling is now lower than 1kHz.

any position in the plane of the aspheric lens to an analog voltage of the Arduinos
controlling the AODs.

During my PhD, I changed the radio frequency control of the AODs, as illustrated
in Figure 2.6, leading to a better calibration and overlap of moving tweezer beam
with the stationary SLM traps. The position and trap depth of the moving tweezer is
controlled via VCOs which suffer from frequency pulling when their load changes.
Because an impedance mismatch leads to back reflections into the device, its frequency
changes when the load or attenuation after the VCO changes. In our experiment,
this manifested in a change of RF frequency of approximately 100 kHz, when the RF
amplitude was changed from minimum to maximum power. For the moving tweezer,
this corresponded to a change in position of 0.5 pm while the trap depth was ramped

from zero to 10 mK.

A solution to the problem is illustrated in Figure 2.6b. By fixing the attenuation
inside the VCO driver box, and attaching a fixed-gain pre-amplifier (Mini Circuits
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ZFL-5004+, gain 25 dB, directivity 38 dB), the VCO is sufficiently isolated from
the load changes of the attenuator/mixer (Mini Circuits ZLW-1). As a result, the
frequency pulling effect is negligible and the overlap of moving tweezer and SLM trap

is independent of the amplitude of the moving tweezer.

Shortest-move-first algorithm As illustrated in Figure 2.4, the atom assembly
occurs on a relatively short time scale of up to 100 ms, ensuring high repetition rates of
the experiment. This requires an algorithm which computes the moves from reservoir
atoms to target traps in up to a few tens of milliseconds, while finding a minimal
number of moves. As we will see in Chapter 3, finding the optimal set of moves, e.g.
the set of moves that minimizes the assembly time, is an intractable problem as soon
as we need to move more than a few tens of atoms, and therefore cannot be computed
on experimental time scales.

The algorithm described in [Barredo et al., 2016] is a heuristic method aiming to
minimize the travelled distance of the moving tweezer. While not finding the minimal
distance, its computation time is relatively short and scales as O(N?) with the number
of atoms. In a first step, we compute a matrix of distances D = d; ; between each
reservoir atom s; and empty target trap t;. On average there are N/2 reservoir and
empty target traps. The entries of this matrix are ordered by increasing length after
which the first N/2 elements are chosen, with the condition that it is only one element
per row or column (meaning each atom or target trap is only assigned once). This
first assignment is however not collision-free: Since we move along the lattice given
by the SLM traps, it is possible that filled target traps lie in between the reservoir
atom s; and the target trap t;. To avoid collisions, the assignment has therefore
to be post-processed for these obstacle atoms O, by splitting these paths [S — T
into [O — T and [S — O]. While the post-processing does not change the travelled
distance, it increases the number of total moves. The short-comings of this algorithm,

mainly the large overhead of moves in certain geometries, are described in Section 2.3.

Quantum simulation with Rydberg atoms

To study large-scale spin-Hamiltonians on our setup, our group leverages the unique
properties of Rydberg states to engineer spin-spin interactions. After we create
defect-free atom arrays with a typical inter-atomic distance of a few micrometers,
sizeable interactions are made possible by exciting the atoms to Rydberg states with a

principal quantum number of above approximately 50. In a classical picture, these
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Rydberg atoms have a strong dipole moment, that interact over large distances via

the dipole-dipole interaction:

1 dy-dy— 3(dy - 7)(dy - 7)
" Adre R3 ’

Vaa (2.1)
with d being the dipole operator, and R the distance between the two atoms.

The interaction between two Rydberg-atoms can be as large as tens of MHz for
distances of 10 pm, whereas their lifetime is on the order of several hundreds of js.
Even though the Rydberg lifetime is finite, quantum simulation experiments are
possible as the observed dynamics is on much shorter timescales than decoherence
effects because of the finite lifetime of the states.

In the following section, the encoding of spin qubits with our Rydberg simulator is
demonstrated with two examples. A detailed analysis of experiments can be found in the
thesis of Sylvain de Léséleuc [de Léséleuc, 2018] and Vincent Lienhard [Lienhard, 2019],
and furthermore in the review [Browaeys and Lahaye, 2020]. Then, the experimental
realization of the Rydberg excitation is briefly described with emphasis on the new
setup that we constructed during the time of my PhD. A detailed description of the
new setup, including a quantitative comparison with the old excitation scheme, is
found in the thesis of Pascal Scholl [Scholl, 2021].

2.2.1 Implementation of different spin-Hamiltonians

Spin-Hamiltonians are primarily used as a microscopic description of magnetic materi-
als. The simplest models consider spin-1/2 particles localized on lattice sites, with
observables being represented by the Pauli-matrices (o, 0y, 0.). The fully isotropic
Heisenberg model can be written as H = ZZ ; Jijo; - oj and is used to describe
(anti-)ferromagnets. However, most real-life materials are anisotropic and can be
described by the generalized XXZ-Hamiltonian: H =3, . Ji;(of0f + 0]0?) + J5of 0%,
where the coupling constant in two directions is equal (J* = JY = J) and differs
in the third direction (J* # J). Rydberg simulators naturally implement the two
extremes of the XXZ-Hamiltonian, where spins interact in a plane, described by the
planar XY-Hamiltonian H =3, ; Jij(0707 + ofo?), or out of plane, described by the
uni-axial Ising-Hamiltonian H = Z” Jio705.

Ising-Hamiltonian Our Rydberg simulator naturally implements an Ising-like

Hamiltonian with effective transverse and longitudinal fields, if the spin-qubit is
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encoded in ground- (|g) = |})) and Rybderg state (|r) = |1)). Two Rydberg states in
the same state (|rr)) experience an energy shift due to the dipole interaction V.
Because of the odd parity of the interactions, there is no first-order perturbation
term. However, to second-order, the pair-state is shifted by an energy scaling with
Vijox 1/ R?j, also called van der Waals interaction. Finally, as the two spin states are
coupled via a coherent laser-field with Rabi-frequency ) and detuning o, we can write:

hsY - . Cs
H =" Za - hézi:m + D Vining, with Vij = 2o, (22)

1<J

Here, n; = (07 4+ 1)/2 is unity for a Rydberg atom and zero otherwise.

The Ising-Hamiltonian has been extensively studied, both theoretically and ex-
perimentally across different platforms, and there are still open questions today. On
Rydberg simulators, this type of Hamiltonian has been investigated in 1D [Bernien
et al., 2017; Omran et al., 2019], in 2D [Labuhn et al., 2016; Lienhard et al., 2018; Scholl
et al., 2021a; Ebadi et al., 2021] and in 3D [Kim et al., 2020]. Especially interesting
on tweezer platforms is the ability to explore different lattice geometries, change the
interparticle distance and the interaction strengths, as the model offers a variety of
different phases and phase diagrams to explore (e.g. [Samajdar et al., 2020]). The phase
diagrams can be explored by sweeping parameters quasi-adiabatically, e.g., to try to
prepare the ground-state of the system. Furthermore, out-of-equilibrium dynamics

of the system can be probed by changing parameters non-adiabatically, e.g., in a quench.

XY-Hamiltonian Another Hamiltonian that can be naturally implemented
on our setup is the XY-Hamiltonian. To do so, the spin-qubit is encoded in two
different Rydberg states |nS) = ||) and |nP) = |1). The dipole-couping gives rise
to an interaction potential that scales as V;; o< 1/ Rij and leads to an exchange of
internal state, or "flip-flop” interaction. Using a microwave field with Rabi-frequency

) and detuning 9, the two states can be coupled with each other and we can write:

hQ ) B Cs -
HZTZUi—?ZUi%—Zﬁ(U;—Uj +0;0]) (2.3)
i i i<j
Here, 0~ = [}); (1[; and o™ = [1), (}|; are lowering and raising spin operators. Note

that 070, + 07 0 = 3(0707 + 0}0?).
This model is equivalent to a hard-core boson hopping Hamiltonian, in which
1) = |1) corresponds to a particle and |}) = |0) to an empty site. In this way, the

model can be used to describe transport phenomena, in which an excitation can hop
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Figure 2.7: Ground state-Rydberg Rabi Oscillation a: Rabi oscillation between the
ground state and the !7551/2,mj = 1/2> state. b: Zoom of the first period with a contrast
of approximately 97%. A detailed analysis of contrast and decoherence effects is found in
the thesis of Pascal Scholl[Scholl, 2021].

from site to site, or a particle can tunnel between neighboring sites of a lattice. This
was implemented on our setup to investigate the Su, Schrieffer and Heeger (SSH) model
[de Léséleuc et al., 2019], one of the simplest condensed-matter models displaying

topological properties.

2.2.2 Rydberg excitation scheme

To excite 8"Rb atoms from the ground to a Rydberg state, we make use of a two-photon
transition, since a one-photon transition requires a coherent laser source in the deep
UV (<300nm), which are not readily commercially available. In our scheme, we use
a laser at 420nm to couple the ground state to an intermediate level ‘6P3 /2>, and
a second laser at 1013 nm coupling the intermediate state to a Rydberg state. The
two laser beams are counter propagating along direction of the magnetic field. We
can excite !nSl /2> and ‘an /2> Rydberg states. A typical Rabi oscillation between
ground- and |7551/2, mj = 1/2> is shown in Fig. 2.7.

A new scheme We changed the Rydberg excitation scheme during the time of
my PhD. Before, the group was using the intermediate level ’5P1 /2> and diode lasers.
After a careful analysis of the imperfections of the scheme [de Léséleuc et al., 2018],
and an experimental demonstration of the scheme using the ‘6P3 /2> intermediate state
[Levine et al., 2018], the group decided to change both the laser technology and the

intermediate level.
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Figure 2.8: Doppler-free spectroscopy of 6P/, level a: Spectrum, including 87Rb
and 85Rb lines. Highlighted are the 87Rb |F = 2) — |F”) and the |F' = 1) — |F") line. b:
Zoom on the lines relevant for Rydberg excitation. Because of our o™ -light, we utilize the
stretched transition |F = 2) — |F’ = 3) for the excitation.

The improvements by changing the intermediate level is two-fold. First, with
Tep,,, = 113 ns, the lifetime of the intermediate state is approximately a factor four
higher compared to the one of 5P 2, reducing decoherence effects from spontaneous
emission. Second, to couple the intermediate state to a Rydberg level, where the dipole
matrix element is much weaker, we use an infrared laser source, where more laser
power is commercially available, e.g., by using a fiber amplifier.

We further changed the laser technology from diode to titanium sapphire lasers to
generate the 1013 nm light, and 840 nm light, which is doubled with a BBO-crystal
in a cavity. This produces inherently less phase noise compared to a diode laser.
Phase noise, especially at a Fourier frequency of approximately 1 MHz is an important
source of decoherence for our system, as described in detail in the thesis of Sylvain de
Léséleuc [de Léséleuc, 2018].

To probe the new intermediate level with the new titanium sapphire laser, we first
set up a Doppler-free spectroscopy, as seen in Figure 2.8. The frequency calibration
was done with our wavemeter (High Finesse, WLM SU10) and are consistent with
[Glaser et al., 2020].

Layout of the setup The layout of the setup is illustrated in Figure 2.9. The
420 nm laser passes through an EOM, enabling fast switching times of approximately
10ns and a double-pass AOM to enable temporal shaping of frequency and amplitude
during a pulse. The beam arrives with up to 350 mW on the main optical table via

a fiber and is focused to a 1/e? waist of wyy = 250 pm. The 1013 nm laser seeds a
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Figure 2.9: Layout of the laser system. The 420 nm light is generated from a frequency-
doubled 840 nm titanium sapphire laser. After an AOM and EOM to be able to switch

off/on and sweep amplitude and frequency, the light is transferred to the experimental
table via a fiber, and up to 350 mW are focused in the vacuum chamber to a waist of
250 pm. The 1013 nm titanium sapphire laser is injected in a 10W laser amplifier, and
focused in the vacuum chamber to a waist of 130 pm. Both lasers are frequency stabilized
with a PDH-lock to an ultra-stable cavity. A scheme of the locking electronics is shown,
where Mix = Mixer, PD = photodiode, LP = lowpass-filter. Whereas the output of the
PID is connected to the fast piezo of the titanium saphire laser, an integrated signal is
connected to the slow piezo, cancelling slow thermal drifts. Furthermore, the slow piezo is

used for scanning the frequency when locking. See text for more detail.

10 W laser amplifier (AzurLight) on the main optical table, after which the setup is
free-space. It passes through an AOM, to switch the laser beam, before being focused
to a waist of wig;3 = 130 pm in the plane of the atoms.

Frequency stabilization A small portion of the light of both the 840 nm and
the 1013 nm titanium sapphire lasers are picked up and used to lock them to a
ultra-stable laser cavity (with a finesse of F = 20000, by Stable Laser Systems) using
the Pound-Drever-Hall (PDH) technique. I built the cavity system similarly to the
previous system described in [Ravets, 2014], however, it includes two major changes,
highlighted in Figure 2.9: First, I simplified the system by using only one fiberized
electro-optical modulator (EOM) to scan the frequency and create the sidebands
for the PDH lock, where previously this was done with two separate EOMs. This is
done by combining the 20 MHz PDH RF signal with a variable RF signal, used to

37



2.3

Chapter 2: A State-of-the-Art Rydberg Quantum Simulator

scan the frequency in experiments, using a power combiner. Second, changing the
wavelength of a titanium saphire laser works differently compared to the previously
used diode lasers, which required new locking electronics. The used M2 SolsTIS has
two intracavity piezos for feedback stabilization of the laser frequency. The first one
has a large range (+15 GHz, 1.5 GHz V™! sensitivity) and can therefore be used to
scan the cavity across several free spectral ranges of the ultra-stable cavity (1.5 GHz)
which is useful for finding the PDH signal. However, it is comparably slow (up to
50 Hz) and therefore is not used to lock the laser. This is done with the fast piezo
(first resonance at 105kHz). Unfortunately, the range of the fast piezo (+40 MHz,
4 MHz V! sensitivity) is smaller than the slow thermal drift of the laser over one
hour. Therefore, I implemented feedback electronics with an inner fast servo loop with
the fast piezo, and an outer slow loop, using the slow piezo. This enables the system
to follow slow thermal drifts which are larger than the range of the fast piezo. The
inner loop uses a PID controller that acts on the PDH error signal with the fast piezo.
The outer loop, uses the output of the PID controller as error signal and counteracts
slow drifts with the slow piezo. This ensures that the output of the PID controller is
centered around zero, and the fast piezo always stays centered.

Note that newer versions of the SolsTIS include an intra-cavity EOM that make fast
feedback up to 10 MHz possible. Using this system, laser linewidths of approximately
200 Hz have been reported [Graham et al., 2021].

Detection of a Rydberg atom To excite the atoms to the Rydberg states, the
optical dipole traps are switched off and the atoms are in free-flight. After having
performed a quantum simulation experiment, the dipole traps are switched on again.
Only ground-state atoms will be recaptured, as atoms being in the Rydberg state at
that point will be ejected from the trap volume due to the ponderomotive force that
the weakly-bound electron is experiencing in the oscillating electromagnetic field. For
the previously described case of the XY-model, where the spin qubit is encoded in two
different Rydberg states, we de-excite one of the Rydberg states to the ground-state

before switching on the dipole traps.

Limitation of current room-temperature setup

Many quantum simulation experiments have been performed with the current room-
temperature setup, highlighting the capabilities of Rydberg platforms as analog
quantum simulators. However, the total number of particles involved in experiments

before the start of my PhD was up to 60 atoms. Due to improvements on the setup (see
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Chapter 3), we were able to perform a quantum simulation of the Ising model with up
to 200 particles. Even though this was already in a regime, where matrix-product-state
simulations of our theory colleagues were taking several weeks to perform with the
appropriate bond-dimensions, it is desirable to increase the atom number even further,
as especially in two and three dimensions, the increased number of atoms on the
boundaries can modify the dynamics of the system drastically. However, on the
experimental side it is not a simple task to increase the atom number. The limitations
of our current room-temperature setup with respect to increasing the atom number

are detailed in the following section.

2.3.1 Number of atoms and lifetime

The first strong limitation for scaling up the number of atoms is the vacuum-limited
lifetime of single atoms in the tweezers. Hot molecules from the background gas collide
with atoms in the tweezer, leading to an exponential decay of the survival probability
with time. The pressure in our room-temperature setup is approximately 10~'* mbar,
and the measured lifetime is 7= 19.8(7) s (see Fig. 2.10a). Even though this timescale
seems long compared to the time of a single experiment, it is a major limitation if an
ensemble of N atoms is involved, as the lifetime of the whole ensemble is 75 = Ty /N
With increasing N, the overall lifetime is therefore quickly reduced to experimental
timescales of a few hundreds of milliseconds, and is therefore a dominating contributor
to atom loss.

As an example, in Fig. 2.10b, the ensemble vacuum lifetime is compared to the time
needed to rearrange a N-atom staggered array. As one move takes about 0.9 ms, and
on average N/2 atoms are not in their target positions, a lower bound on the time to
assemble a staggered array can be estimated with tagemby = 50+ 0.9N/2 (ms), with
50 ms an assumed fixed time for the programs to transfer the image, analyse it and
compute the moves.

The two curves intersect, when the assembly time equals the ensemble vacuum
lifetime. At this atom number, background gas collisions limit the fidelity of the
assembly drastically, and a defect-free shot can only be assembled with a probability
of 1/e = 37%.

Reducing the assembly time is challenging, as the linear scaling with the atom
number is inherent to the problem. The ensemble lifetime on our room-temperature
setup for 1000 atoms is 20 ms, which comparable to many experimental timescales,

as for example fluorescence images are taken with an exposure time of 20 ms on our
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Figure 2.10: Lifetime of room-temperature setup a: Measurement of the vacuum
lifetime 7yac b: Comparison of the N-atom lifetime and another experimental timescale,

the assembly time of a N-atom staggered array.

experiment.

Figure 2.10b illustrates, that the vacuum lifetime needs to be increased by at least a
factor 25 to be able to assemble arrays of 1000 atoms with our method. Decreasing
the background pressure further on our room-temperature experiment is not simple
though, as we are already using standard ultra-high vacuum methods, with copper
gaskets, ion pumps and baking out procedures. This motivates the construction of a
novel cryogenic tweezer platform, since cryogenic experiments can reach the needed

pressure regimes of below 107'* mbar.

2.3.2 Assembly of defect-free atom arrays

Even if a cryogenic environment can mitigate the limiting effect of the vacuum lifetime
on the scalability of tweezer platforms, improving the assembly process is beneficial
to obtain large defect-free atom arrays. First, a speed-up of the assembly process
would lead to higher repetition rates of the experiment. This is desirable on our
room-temperature setup due to the limited vacuum lifetime, but also on the cryogenic
platform, as it would enable to take a certain amount of statistics in a shorter amount
of time. Second, a reduction in the number of moves to assemble an array would lead to
a higher success probability, as the probability to move an atom between to traps has

a high, yet finite success probability. This single-move success probability is 0.993(1)
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for a small array of 10um extend [Barredo et al., 2016], but can be significantly lower

for arrays with an extend on the order of 100 pm as we shall see in Chapter 3.

Different Assembly schemes First, I give a short review on different existing

assembly techniques and compare them to our method:

At KAIST in Korea, the group of Jaewook Ahn uses a spatial light modulator to
create reconfigurable arrays of microtraps in multiple dimensions, similar to our group.
In contrast, they assemble defect-free arrays by changing the phase pattern on the SLM
during each experimental cycle, moving all atoms at once to their target positions. The
phase pattern is recalculated with a repetition rate of up to 60 Hz, and using multiple
rearrangement cycles, they are able to assemble arrays with up to 30 atoms with a
lifetime limited single atom loading efficiency of 0.98 after approximately 9 cycles
[Kim et al., 2016]. The feedback cycles are performed with a repetition rate of 0.5 Hz,
therefore considerably slower than the method used in our group. Further, we typically
reach a single atom loading efficiency of above 0.98 after only two rearrangement

cycles, indicating that our experimental imperfections are smaller.

At Harvard, the group of Mikhail Lukin further developed the one-dimensional
assembler of [Endres et al., 2016], by combining it with a spatial light modulator.
Similar to our group, they combine a 2D-AOD with an SLM. However, they are able
to control multiple tweezers at the same time. Moving multiple atoms at a time, and
decreasing the ramp-times of the tweezer to 15 ps, they are able to increase the speed
of the atom assembly [Ebadi et al., 2021]. Taking less time for the rearrangement, they
increase the average filling fraction to 98.5% for one, and 99.2% for two rearrangement

cycles, even if the single-move success probability is the same as in our experiment.

Although the second method seems to have a small advantage compared to ours due
to its increased speed, the use of multiple tweezers at the same time is limited to regular
geometries. Due to changes I have conducted during my PhD, our assembler can also
assemble completely arbitrary geometries, as [ describe in detail in 3. Furthermore, we

conducted algorithmic changes, increasing the efficiency of our assembly scheme.

Limitations of our scheme In our assembly process, the dominating time scale
is ramping up and down the intensity of the moving tweezer (see Fig.2.5b). Further,
every move has a finite success probability. Therefore, reducing the total number
of moves would reduce the assembly time and increase its success probability. The
previously described shortest-move-first algorithm however aims only to reduce the

total path length of the moving tweezer. Figure 2.11a illustrates a situation in which the
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Figure 2.11: Shortcoming of the Shortest-Move-first algorithm. a: Snapshots during
the assembly process of a 14x14 array. The macroscopic behaviour reveals that the
shortest-move-first algorithm starts by filling the border of the target array (green) with
close-by reservoir atoms (red), before the center of the array is filled (e.g. Move 82). These
atoms are later obstacles for the last reservoir atoms that are supposed to fill the center
(e.g. move 197), leading to a large over-head of moves. b: Scaling of the number of moves
Ny, with the target array size N for staggered (i), random (i) and compact (iii) target
arrays. The black line and grey area indicate the ideal minimum number of moves, as on
average N/2 target traps are empty and need to be filled. While the scaling is especially
detrimental in the case of compact arrays due to the reason highlighted in (a), it is also

non-ideal for staggered and random target arrays.

shortest-move-first algorithm is leading to a much higher than ideal number of moves.
For compact arrays, in which all reservoir atoms lie outside of the target structure,
the algorithm tends to fills the target array from the outside to the inside, since the
shortest moves are the ones from reservoir atoms in proximity to empty target traps
on the border of the array. This however produces a large overhead, since the atoms
on the border are obstacles to atoms that are supposed to be moved to the center at a
later stage of the process. Figure 2.11b shows the scaling of the algorithm with the
number of atoms in the target array. For compact square arrays, the number of moves
scales non-lineary as Ncompact — (.28 N14 which can be qualitatively understood, as
a significant number of atoms o< N need to be moved multiple times (about v/ N
times which is the linear dimension of the array). For random arrays the number of
moves scales as No™Pact — 1 05N and for staggered arrays as NomPact — ().85N. The
algorithms described in Chapter 3 improve all of these scalings, but most drastically

for compact arrays, where a linear scaling with at most N moves is possible.
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Figure 2.12: Field-of-view and compensated Aberrations a: Intensity equalized trap
array of 23x23 atoms, spaced by 5 pm. The intensities have a standard deviation of 5% b:
in-situ characterization of the fluorescence signal of the same trap array as in (a). The
color represents the loading probability of the trap, 0.5 corresponding to the signal being
50% of the time above treshold and 50% below treshold. Darker traps with less loading
have in general less peak intensity. Further, the size of the circles signifies the difference in
fluorescence counts between the two levels of the telegraphic signal. If there is too much
power in the trap, the step gets smaller due to the induced light-shift. It is evident, that
the intensities are not as equal as the image on the CCD camera. Using the intensity
equalization method, we achieve a 50% loading probability only (approximately) inside of

the field-of-view of the lens.

2.3.3 Limited field-of-view of the aspheric lenses

As previously described, a lens design by Lucas Béguin [Béguin, 2013] was used on our
room-temperature quantum simulator CHADOQ. The use of aspheric lenses is a great
simplification compared to the microscope objective inside of the vacuum chamber in
MIGOU, and the use of the ITO coating on the lenses a clear advantage for Rydberg
physics.

A drawback of aspheric lenses however is their limited field of view in comparison to
a microscope objective. The performance of an optical system is usually characterised
with the Strehl ratio S = Luperr/Lstig that measures the ratio of peak intensity in the
presence of aberrations ([,perr) compared to a perfectly stigmatic optical system (Zgig ).
Off-axis, this ratio decreases due to aberrations and in general S > 0.8 is quoted for

diffraction-limited performance [Sortais et al., 2007].

In ASPHERIX [Sortais et al., 2007], the used lens has a Strehl-ratio of S > 0.8
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for transverse fields of +25 pm. On CHADOQ [Béguin, 2013], it was measured that
S > 0.8 for transverse fields of up to approximately +45pm. The reduction in off-axis
intensity at the border of the array is not a major concern for trapping atoms, as
we can in principle adjust the trap depths with the SLM. However, it reduces the
amount of fluorescence photons and aberrations additionally lead to deformation of
the trap shape, increasing the size of the waist which in the worst case can slow the
light-assisted collision dynamics and increase the probability to trap multiple atoms
per tweezer.

Experiments have shown that we can work with a transverse fields of £75-100 pm.
On the border, this reduces the fluorescence counts approximately by 50%, and the
traps, while aberrated, still display the typical telegraphic fluorescence signal. When
distancing the traps by 5 jum in a square array, this would correspond to about 1300
traps in the field of view of the lens, making approximately 650 atoms the maximum
size of defect-free arrays utilizing the current model of aspheric lenses.

A further limitation of the setup is that some types of aberrations, such as coma, are
compensated by the symmetry of the two aspheric lenses in f-f configuration. Therefore,
the intensity pattern on the CCD camera after the chamber is not a direct indication
of the intensities in the focal plane of the lenses (see Fig.2.12), especially outside the
FOV of the lenses. As a well-equalized trap array is crucial for the preparation of
defect-free arrays, the previous intensity-equalization procedure is not good enough
for big arrays and new in-situ methods need to be implemented. During my PhD,
I implemented such a method, leading to the assembly of up to 200 atoms on our
room-temperature setup (see Chapter 3) and further improvements of this method are

discussed in Chapter 6 .

Conclusion

In this chapter, I presented the state-of-the-art Rydberg quantum simulator of our
group. First, I described all necessary experimental tools to create defect-free arrays of
neutral atoms. I pointed out an improvement of the assembly process that I conducted
by changing the RF control for the AODs. Then, I explained the tools to utilize the
platform for the quantum simulation of spin-models and highlighted our work on
changing the Rydberg excitation scheme. Lastly, I presented several limitations of this
setup in terms of increasing the number of atoms involved in quantum simulations.
During my PhD, I worked on lifting these limitations. We built a novel cryogenic

setup, described in Chapter 4, with lifetimes long enough not to be limiting for the

44



2.4 Conclusion

assembly of over one thousand atoms. Furthermore, I improved the efficiency of the
assembly process, leading to an increase in average filling fraction of target traps
from 96% reported in [Barredo et al., 2016] for an 25-atom array, up to 98.5% for a
196-atom array. This contribution is twofold: First, a change in algorithms, reported
in Chapter 3, leading to fewer moves, faster calculation times and making multiple
rearrangement cycles possible. Second, a new in-situ equalization scheme for the trap
powers, using the fluorescence signal of the atoms instead of the intensity on the
CCD-camera, which is described in Chapters 3 and 6.
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In Chapter 2, I introduced the basic principles of the atom assembly. I also discussed
limitations of the current algorithms, which motivated an algorithmic improvement
on our setup. This chapter will detail the problem at hand, and present three new
algorithms that lead to significant experimental improvements. This work led to a
publication and is presented in [Schymik et al., 2020] (see Appendix D). Finally, I will
show an application of the algorithms for a quantum simulation project of the Ising
model [Scholl et al., 2021a] with up to 200 atoms (see Appendix F).

Defining the problem - pebble motion on a graph

As introduced in Section 2.1.3, we aim to assemble a target structure of N atoms. As

the loading probability of each trap is around 50%, we start with at least 2N traps,
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including the N target traps, and at least N reservoir traps. In a sequential order, we
move atoms with a moving tweezer from reservoir to target traps until all target traps
are filled. We are interested in finding an algorithm that computes this sequence of

moves, while fulfilling the following two criteria:

1. The time to compute the sequence of moves should not surpass a few tens of
milliseconds for a few hundred atoms, as we need to run the algorithm at each

repetition of the experiment.

2. The algorithm should find the sequence of moves that maximizes the success
probability of the assembly process. Because of the vacuum-limited lifetime (see
Chapter 2.3.1), the success probability is strongly dependant on minimizing the
total assembly time, consisting of the computation time of the algorithm, the

number of moves and the total travelled distance.

3.1.1 Assembly time, travelled distance and number of moves

As presented in Section 2.1.3, ramping the intensity of the moving tweezer power is the
dominant timescale during the assembly process on our experiment, as it takes about
400 ps, whereas the atoms are moved at a constant speed of 100 pmms~!. Moving an
atom between two traps with a typical experimental distance of 5 — 10 pm therefore
consists in a ramping time of 800 us, and a moving time of 50 — 100 ps. Minimizing
the total assembly time is therefore in most cases similar to minimizing the number
of individual moves, and minimizing the total travelled distance plays a minor role.
Another reason to find a minimal number of moves arises from the finite success
probability of each move, due to a non-perfect transfer between the moving tweezer
trap and the stationary SLM traps.

In this section, we will see that finding the minimal number of moves is an intractable
problem for larger number of atoms and we have to opt for heuristic algorithms finding
a near-optimal solution that can be computed in a few tens of ms.

One exception, where we can find the optimal solution on experimental time scales,
is the slalom moves that have been briefly introduced in Chapter 2.1.3. If the moving
tweezer can move between adjacent rows of static SLM traps, the number of moves
is fixed and equal to the number of missing atoms in the target array, on average
N/2. Furthermore, the moves can be performed in any order. In this case the task

to minimize the assembly time simplifies: Only the travelled distance remains to be
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minimized and this problem amounts to a well-known computer science problem,

namely the linear sum assignment problem (LSAP) [Cormen et al., 2001]:

Having a set of source atoms S and target traps T', together with a weight function
C:SxT — R, we need to find a bijection f : S — T that minimizes the cost
function ) Cues(a, f(a)). In our case, we can explicitly write the weight function as
the euclidean distance between source atom s and target atom ¢, with C(s;,t;) =
[(8i0 —tin)? + (8iy —tiy)?]/2. Although there are (N/2)! possible different assignments
in our case, there are well-known algorithms solving this problem in polynomial
time (O(N?))), such as the Hungarian algorithm. On our laboratory computer with
Python 3.6, the calculation takes approximately 3 ms for N = 200. We use a modified
Joncker-Volgenant algorithm [Crouse, 2016] with no initialization implemented in the

scipy.optimize package [Virtanen et al., 2020].

However, on the experiment, we are not using slalom moves any more. They have
been found to have a considerably smaller success probability when the spacing
between static traps is around 5 pm and smaller. Instead, the moving tweezer travels
along the lattice formed by the SLM traps. This changes the problem considerably,
as atoms may lie on the path between a reservoir and a target trap. If an obstacle
atom o is in the path between source atom s and target trap t, we cannot perform
the move [s — t] without a collision. We can change the sequence of moves, and first
move [0 — t| and then [s — o]. Even though the travelled distance has remained
unchanged, we hereby increased the number of moves, increasing the assembly time.
Furthermore, it is evident that the order of the sequence of moves has become crucial,
as [0 — t] has to be performed before [s — 0]. As a result, we are no longer able to
solve the problem with a bijection f :.S — T and this can no longer be considered as

an assignment problem. We therefore need to develop new algorithms.

We simplify the problem of minimizing the assembly time, by only considering to
minimize the total number of moves, as it is the dominant time scale on the experiment.
Then, it is similar to a well-known problem in computer science: the ”pebble-motion
problem on a graph” in a variant with unlabeled pebbles. Unfortunately, it is intractable
for large N [Calinescu, Dumitrescu, and Pach, 2006] and therefore it is impossible to

calculate the optimal number of moves on experimental time scales.

Hence, we opt for heuristic algorithms that find a close-to-optimal solution, given
they can be computed in a few tens of milliseconds for a few hundred of target traps.
However, the optimal number of moves is not known in general, and highly dependent
on the initial atom configuration. Because of possible obstacles, it is in most cases not

possible to find a sequence of moves that assembles the target array in N/2 moves.
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Still, we consider N/2 as a lower bound on the optimal number of moves. We will see
that for compact arrays an upper bound on the optimal number of moves exists too,
as it is always possible to find a sequence of maximally N moves for a compact target

structure of N atoms.

A new algorithmic framework

We have developed a new algorithmic framework for the atom assembly that includes
the following changes.

First, we have developed three new algorithms that significantly reduce the total
assembly time compared to the shortest-move-first algorithm that was introduced in
Chapter 2.1.3. Each of the new algorithms has an advantage in a different situation,

e.g. depending on the geometry of the target and reservoir traps:

» The compression algorithm (see Section 3.2.1 below) is targeted at compact
arrays, in which all reservoir atoms lie outside of the target structure, and has
the advantage of a fast computation time that scales favorable with the number

of atoms (roughly as N1?).

« The two hybdrid algorithms, denoted LSAP1 and LSAP2 (see Section 3.2.2
below), both working for any target/reservoir geometries. While the LSAP1
computes a smaller number of moves in the case of compact geometries, the
LSAP2 algorithm is best for staggered configurations, in which reservoir atoms

and target trap positions alternate.

Second, I present a new graph-based approach for the assembly. Using graphs,
we extended all algorithms to non-regular structures, e.g. when target and reservoir
atoms do not lie on a common Bravais lattice. I further describe a new way to
generate reservoir trap positions given a target trap array, and finding lattice edges for
non-regular structures along which the moving tweezer can travel.

Third, we include the capability of performing multiple rearrangement cycles to

increase the probability of obtaining a defect-free atom array.

3.2.1 Compression algorithm

In Figure 2.11, we saw that the shortest-move algorithm leads to a large overhead

in number of moves in the case of compact arrays. Instead of filling the center, the

50



3.2 A new algorithmic framework

b C
. 500
’ Ir’1|’t’|fakl Move 43 0.124
#80088808000 ettt I | N (R 0.28N'2 +
0.10 400 0-98N
0.08- 300 § ¢
z g
& 0.06 = $
2004 v
0.04- & v
100- S
v
Mm '
0.00 T T T 0 T T
0 100 200 300 400 500 0 100 200
N N

Figure 3.1: The compression algorithm. a A 14x14 target array is assembled in 195
moves. Starting from the center, the traps are filled layer by layer. Each target trap is
filled with the closest atom from outside the assembled bulk. b: Histogram of the number
of moves needed to assemble a 14 x 14 target array, sampled from 1000 realizations.
The shortest-move-first algorithm (red) needs an average of 421 moves, whereas the
compression algorithm has a sharp distribution with Ny, < 196. c: Number of moves for
the shortest-move-first (red circles) and the compression algorithm (green triangles) for
different target array sizes. The black line (grey area) represents N/2. Each data point
is the average over 1000 randomly loaded realizations, errorbars denote the standard

deviation.

algorithm fills the border of the array first. Then, the paths towards the empty
center traps are blocked, and additional moves have to be performed to remove these
obstacles. As a result, the number of moves required to assemble a compact N atom
structure scales non-linearly, with Npoves ¢ N4, In the following, I present a new

algorithm that finds a sequence of moves that always fulfills Ny,oves < V.

The idea of the compression algorithm is to fill the trap array in a predetermined
order that naturally avoids collisions. We can start e.g. in the center of the trap array,
as it is depicted in Figure 3.1a, and fill it progressively layer by layer until the whole
array has been filled. We choose each trap to be filled by the closest trap outside of
the already assembled bulk.

As each empty trap is filled with the closest atom from the outside, none of
the paths have obstacles. Therefore, the total number of moves is by construction
less or equal than the number N of target traps. We have therefore proven that
N/2 < Npoves,min < N for the minimal number of moves to assemble a 50%-loaded

N-atom target structure.

The comparison in scaling between the shortest-moves-first and the compression
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algorithm is illustrated in Figure 3.1. Taking a 14 x 14 target structure as an example,
the histogram of the number of moves shows the drastic difference between the
algorithms. Whereas the shortest-moves-first algorithm has a broad distribution with
an average of 421 and a standard deviation of 29 moves, the compression algorithm
has a sharp distribution: Over 90% of the realizations require 186 < N, < 196 moves.
For the experiment, the small variance ensures a good shot-to-shot repeatability of the
assembly process, especially when compared to the shortest-moves-first algorithm. A
further experimental advantage of the sharp distribution is that the maximal number
of moves is known, as N, < N. This is useful, as we fix the time delay between the
initial and the assembled fluorescence image on the experimental sequencer for each
array. For the shortest-move algorithm, we used to add a buffer of about three standard
deviations to the average assembly time to make sure that all initial configurations
can be assembled in the given time. This is no longer needed for the compression
algorithm. Another advantage is the fast computation time of this algorithm. Because
of the predetermined order in which the traps are filled, we can create a look-up
table before run-time. The table contains which target traps can be filled from which
source traps and is independent of the initial loading. At run-time, the algorithm
is left with scanning a one-dimensional list. We found that the computation time
of our implementation scales roughly with N2, and takes about 7ms for N = 100
atoms. Note that our implementation is a simple Python program that has not been
enhanced, e.g. by using C-extensions, as compared to the LSAP-solver later mentioned

in this chapter.

3.2.2 Hybrid algorithms

The compression algorithm shows that it is always possible to find a sequence of
at most N moves to assemble a compact N-atom target array. Knowing this, it is
interesting to revisit the LSAP algorithm that was mentioned in the case of slalom
moves. Since the LSAP algorithm finds a bijection between reservoir traps and target
atoms, its result contains by definition a matching between N reservoir traps and N
target traps.

We previously saw that the order of moves is crucial to avoid collisions, when moving
along the lattice sites. The LSAP algorithm however does not return a sequence of
moves, but only a unordered matching between traps that minimizes a cost function,
e.g. the distance. Moreover, it is unknown, if this matching contains a sequence of

moves that would lead to a collision-free assembly.
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Figure 3.2: The LSAP1 algorithm. a lllustration of the different steps of the algorithm
(see text). b: Comparison of the scaling of the number of moves Ny,, with the number
of target traps N for staggered arrays (for exemplary array see inset), between the old
shortest-move-first algorithm and the different steps of the LSAP1 algorithm. The black

line indicates N/2, the number of on average unoccupied target traps.

In the following, I present two hybrid algorithms that find a collision-free sequence

of moves, starting from an initial LSAP matching.

LSAP1: Standard metric, split and merge

This algorithm starts with a standard LSAP algorithm as previously described. As

a cost function, we minimize the total travelled pathlength lio, = >

illustrated in Figure 3.2a , we order the returned matching by pathlength, from shortest
to longest. Then, we post-process the moves, similarly to the shortest-moves-first
algorithm, by splitting each path with obstacle into two paths. As an intermediate
result, we obtain a collision-free sequence of moves. As we see in Figure 3.2b, after this
step the number of moves scale as 0.68N for staggered arrays, which is a significant
improvement to the shortest-move-first algorithm (0.85N). However, it is possible to
reduce the number of moves further. In a second iteration, we try to merge moves
where an atom is picked up twice, while checking it does not reintroduce a collision.
This second step reduces the total number of moves considerably and for staggered
arrays, we arrive at a close-to-optimal scaling of 0.63./V.

Next to a close-to-optimal number of moves, this algorithm has the advantage
of finding the optimal pathlength, as it starts with an LSAP solver. Therefore, it
is a good choice even for systems where ramping the intensity is not the dominant

timescale.
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Figure 3.3: The LSAP2 algorithm. a lllustration of the different steps of the algorithm
(see text). b: Comparison of the scaling of the number of moves Ny, with the number
of target traps N for compact arrays (for exemplary array see inset), between the old
shortest-move-first algorithm and the different steps of the LSAP2 algorithm. The black

line indicates N/2, the number of on average unoccupied target traps.

Note that the merging technique works for all algorithms which pick up certain
atoms more than once. Therefore, it is also applicable to the shortest-move-algorithm.
However, we find the smallest number of moves in the above combination with the
LSAP matching.

The computation time for a staggered array of 200 target traps is 5ms and for
our atom numbers, we find that it scales roughly as N?2. To save computation time,
we precalculate the distances and paths between all trap pairs and store it in a
look-up table before runtime. During each assembly cycle, the costmatrix of the LSAP

algorithm is then found as a submatrix of this look-up table.

LSAP2: modified metric and reordering

This algorithm starts with an LSAP algorithm with a modified cost function. We
consider the sum of the squares of all pathlengths " . ¢? as it favors shorter
moves which avoids collisions' . Empirically, we find that the returned matching can
be reordered into a collision-free sequence of moves to assemble any target array.
The working principle is reminiscent of the compression algorithm, as the cost
to fill an empty target trap is smallest for the closest atom. If there is an obstacle

O on the shortest path between source trap S and target trap 7', the cost of the

!The idea of an LSAP algorithm with a modified metric is similar to [Lee, Kim, and Ahn, 2017].
However, their assembly technique moves all atoms at once. Therefore, contrary to our case, they
do not need to find a collision-free sequence of moves.
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move [S — T is bigger than the combined cost of the moves [O — T and [S — O]:
t—s?>|t—o]?+]o—s|* as|t—s|=|t—o|+|o—s|

To get a collision-free sequence, we reorder the matching returned by the LSAP
algorithm with the following algorithm, as illustrated in Figure 3.3: We examine each
move in the sequence, and, if the target trap of the move is occupied (case 1), or if
another trap along the path of the move is filled (case 2), or if the target trap is in the
path of another move following in the list (case 3), we postpone the move by putting
it at the end of the sequence of moves. Although without proof, we observe that this
procedure always converges into a collision-free sequence.

We find that this algorithm works best for compact arrays, where the number
of moves scales as 0.98N, similar to the compression algorithm. Furthermore, the
pathlength is close-to-optimal since we start with an LSAP solver, even if we consider
the square of all pathlengths. The algorithm takes about 4 ms to compute for a compact
array of 100 target atoms and for our atom numbers, we find that the computing time
roughly scales with N2.

Compared to the compression algorithm, the LSAP is faster for smaller atom
numbers, mainly due to the highly optimized code of the LSAP. Due to its more
favorable scaling, the compression algorithm in our implementation is however faster

above a cricital target atom number of N, = 300.

3.2.3 From Bravais lattice to fully-arbitrary graphs

The atom assembler presented in [Barredo et al., 2016] allowed us to create user-defined
target trap arrays, with the restrictions that all reservoir and target traps have to
lie on an underlying Bravais lattice. During my PhD, we lifted this restriction by
changing the framework of the algorithms to a graph-based approach and are now
able to assemble truly arbitrary trap arrays.

This work was motivated by several interesting quantum simulations that would
require physical structures that can not be described by a Bravais lattice. Totally
arbitrary structures can be useful for combinatorial optimization problems such as
finding the maximum independent set of a graph [Pichler et al., 2018; Henriet, 2020].
Further non-periodic structures include crystal defects (vacancies, dislocations, grain
boundaries), quasi-crystals or disordered arrays for Anderson or many-body localization
studies.

When considering to assemble a user-defined target array with arbitrary positions,

there are two major differences in comparison to an array that can be described by a
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Figure 3.4: Initialization procedure of an arbitrary target array. From left to right:
The user-defined target trap pattern (green circles). A Voronoi decomposition (grey lines)
of the target trap array. Placement of the reservoir traps (red circles) inside each region,
respecting the minimum distance requirement. Delaunay triangulation of the whole trap
array (grey lines) to find edges for the moving tweezer to travel along. Edges in black are

too close to another trap and are removed.

Bravais lattice. First, the positions of the reservoir traps are not naturally given by a
common lattice anymore, necessitating a new procedure to place reservoir traps given
the target trap positions. Second, the paths the moving tweezer can travel along are
not naturally given by the lattice edges anymore. As the moving tweezer can not travel
between any two traps in a direct, straight line without the possibility of collisions
with obstacle atoms, this requires finding a set of edges along which to move. We solve

these two problems in the following way, as illustrated in Figure 3.4:

The process starts with an arbitrary user-defined trap array with N target traps
that we wish to assemble. We then need to place N additional reservoir atoms close to
our target trap array. The assembly process needs considerably less moves if each
target trap is surrounded by at least one reservoir trap (e.g. staggered configuration),
and therefore a reservoir trap should be placed in immediate proximity of each target
trap whenever possible. To do so, we use a Voronoi decomposition [Preparata and
Shamos, 1985] of the target traps. This divides the plane in N regions, one around
each trap 7', such that all points of this regions are closer to T" than to any other trap.
In each of these Voronoi cells, we place a single reservoir trap, as long as it satisfies a
minimal distance requirement of 4 pm to all other traps. Note that this procedure

recovers a staggered configuration on a square array.

If the target traps are too close to each other, we cannot add enough reservoir traps
with this method. Then, we place the extra traps at the periphery of the pattern in a

compact triangular array, as it has the highest compactness of 2d Bravais lattices

Next, we have to find the paths along which the moving tweezer can travel. For
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this, we use a Delaunay triangulation [Preparata and Shamos, 1985], as illustrated
in Figure 3.4. To avoid collisions, we enforce a minimal distance between edges and

traps: we post-remove an edge if there is a trap in its vicinity that is closer than 3 pm.

In practice, the triangulation is done with the scipy library [Virtanen et al., 2020].
With the triangulation, the problem can be naturally described in a graph language, in
which the nodes are the trap positions and the edges the paths along which the moving
tweezer can travel. Each edge can be weighted with its length, making it possible to
run efficient shortest-path graph-algorithms (e.g. the Dijkstra algorithm [Preparata
and Shamos, 1985], to find the shortest path for the moving tweezer between two
traps, following the edges of the graph). For the generation of the graphs and the
graph-algorithms,; we use the Networkx library [Hagberg, Swart, and S Chult, 2008].

The graph-based framework is a powerful tool that lets us utilize all prior algorithms
on arbitrary trap arrays, without adding any extra computational cost at runtime. We
compute the distances and shortest-paths between all traps before runtime, and store
them in a look-up table. During the experimental sequence, there are therefore no

computations done on the graph structure itself.

In Figure 3.5, we illustrate two different arbitrary patterns. For both of them, the
reservoir traps are generated in the above described way, then the array is triangulated
to find the paths for the moving tweezer. The two structures were then assembled
using the LSAP1 algorithm.

3.2.4 Choosing the right algorithm

Given the algorithmic framework that was introduced in this Chapter, the working-

procedure is illustrated in the flowchart in Figure 3.6.

Starting with a set of user-defined target trap positions, we first determine whether
they lie on a Bravais lattice. If yes, the reservoir atoms are naturally given, else, they

have to be created with the method introduced in the last section.

We then choose the best algorithm according to the following reasoning: For
non-compact structures, e.g. staggered arrays, we use the LSAP1 algorithm. For
compact arrays, we choose the compression or LSAP2 algorithm. Since the compression
algorithm has a more favorable scaling of the computation time with the number
of traps, we utilize it above a critical number of 300. Below, we utilize the LSAP2
algorithm. The scalings and computation times are summarized in the table in Figure
3.6.
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Figure 3.5: Examples of the assembly of two arbitrary target geometries. From
left to right: target trap positions (green), triangulated ensemble of target (green) and
reservoir (red) traps, connected by the edges (grey) the moving tweezer travels along, an
initial fluorescence image determining the trap occupation, a final fluorescence image after
the assembly process. Upper: Dislocation with 39 atoms. Utilizing the LSAP1 algorithm,
the array is assembled in on average 24 moves. Lower: Mona Lisa with 106 atoms. With
the LSAP1 algorithm, the array is assembled with on average 70 moves. The scale bar in

the fluorescence images depicts a distance of 10 ym.

3.2.5 Multiple assembly cycles

As previously described, the probability F, to obtain a defect-free N-atom array
depends strongly on the lifetime 7,. of the atoms in the tweezer, and the time needed

to assemble the N-atom array. Ultimately, the probability is limited by:

tassembly (N)

Fj(V) = exp(~ o=l

). (3.1)
The assembly time f,sembly is a function of the number of atoms and is given by:

tassembly = tanalysis + tcomp + vatramp + dtotvmm (32)

where tanalysis 1 the time needed to analyse a fluorescence image (approximately

50ms), and teomp the computation time of the algorithm. The moving time for the
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Figure 3.6: Summary of the different algorithms and workflow. Left: Table with
summary of the different algorithms. Scaling of the number of moves Ny, with the number
of target traps N, the calculation time for a target trap number of N = 100, and the
typical rough scaling of the computation time with the number of target traps. Right:
Flowchart of our modular approach. The best choice of algorithm depends on the target

array.

moving tweezer is influenced by the algorithm and depends mainly on the number of
moves Ny, and to a lesser extend on the total travelled distance d;., with ramp time
tramp and the velocity of the moving tweezer vy, as explained in Section 3.1.1. Note
that all these times depend on the number N of target traps!

However, each move only has a finite success probability. In [Barredo et al., 2016],
the success probability was found to be py, = 0.993(1) between two neighbouring
traps with 5 pm. If we consider p,,, to be the average success probability of each move,
and N, are needed to assemble the N-atom array, this reduces the probability to

obtain a defect-free array to:

N (_ tassembly ) .

Po(N) = pryexp T/ N (3.3)

Note that this is an estimation that assumes that all moves have the same success
probability, the average move success probability. Due to experimental imperfections
that will be evaluated at the end of this chapter, this is not true in general, and

different moves can have different success probabilities. As in general va”“’ pi # pNmv,
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Figure 3.7: Success Probability to assemble a staggered N-atom array. The
probabilities Py includes the finite success probability of each move (see Eq. 3.3), whereas
Py is the purely lifetime-limited success probability (see Eq. 3.1) that could be achieved in
the limit of many rearrangement cycles. The increase in success probability between the old
shortest-move-first algorithm and the new LSAP1 algorithm with multiple rearrangement

cycles is significant. However, the success probability could be further improved by an

increased vacuum lifetime.

[first cycle
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Figure 3.8: Second rearrangement cycle: Example of an 108 atom array, the scale bar
denotes 10 pm. After the first rearrangement cycle, we do not remove excess reservoir
atoms (red) from their traps, but use them to fill the remaining unoccupied target traps
(green). This significantly increases the fidelity of a defect-free shot, as shown in the

histogram.

this is only a rough estimation. However, it lets us distinguish between the different
physical contributions to the success probability.

In Figure 3.7, the different success probabilities of equations (3.1,3.3) are illustrated on
an example with a staggered N-atom array. While the success probability is significantly
improved for the new algorithms, e.g. the LSAP1 compared to the shortest-move-first,

the single move efficiency decreases the success probability drastically compared to Fj.
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3.3 Application of enhanced assembly on the quantum simulation of the Ising model

To solve this issue, we implement multiple rearrangement cycles, as illustrated
in Figure 3.8. On the shown triangular patch with 108 atoms, there are on average
two empty target traps after the first rearrangement cycle. We do not remove excess
reservoir atoms after the first cycle, but use them to fill the remaining empty target
traps in a second rearrangement cycle. This significantly increases the probability to
obtain a defect-free array, as illustrated by the histogram in Figure 3.8. In the limit of

many rearrangement cycles, the probability should converge to Fj.

On the experiment, we rarely found a significant gain beyond two cycles, partly
because of an imperfect trap depth equalization, as illustrated in the next section. In
most cases we started with a surplus of reservoir traps of approximately 10% and

performed two rearrangement cycles.

Note that in a cryogenic environment with extended single-atom lifetimes of 6000,

both the probabilities Py and Py are significantly increased (see Figure 3.7).

Application of enhanced assembly on the quantum simulation of

the Ising model

During my PhD, we performed a quantum simulation of the 2D transverse field Ising
model with up to 200 atoms. This model has been previously implemented on our
room-temperature setup in [Lienhard et al., 2018], where antiferromagnetic ordering
and the build-up of correlations has been observed. However, these preliminary studies
were limited due to a relatively small coherence time of approximately 1ps and a

limited system size of 36 atoms.

With the improvements of the atom assembly highlighted in this section, and the
implementation of a new laser system (see Chapter 2.2.2), we were able to investigate
the model with unprecedented system size of up to 200 atoms and coherence time of
20 us. This work has lead to a back-to-back publication [Scholl et al., 2021a] with
the group of Mikhail D. Lukin at Harvard [Ebadi et al., 2021}, and is described in
detail in the thesis of Pascal Scholl [Scholl, 2021]. In the following, I will describe the
preparation of 200-atom arrays and then briefly summarize the quantum simulation

experiments.
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Figure 3.9: Assembly of 14x14 square array. a: Target (green) and reservoir trap (red)
placement in staggered configuration. b: Assembled defect-free fluorescence image. c:

Probability distribution of number of defects.

3.3.1 Arrays of up to 200 atoms

Preparing defect-free atom arrays with up to 200 atoms is a challenging task on our
room-temperature setup and involves using the new algorithmic framework discussed
in the previous sections. In the following, I will highlight the used procedure, and
point to further experimental limitations, mainly related to the limited field-of-view
of the lenses and caused optical aberrations. Solutions to these limitations will be
presented in Chapter 6.

For the project, we prepared e.g. defect-free 14 x 14 square arrays with an interatomic
distance of 10 pm. The extent of the array is thus 130 pm and similar to the field-of-view
of the aspheric lens. Therefore, we place the reservoir atoms inside of the structure in a
staggered configuration (see Figure 3.9a), resulting in an interatomic distance of 5 pm
in y- and 10 pm in x-direction. The staggered configuration needs the least number of
moves using the LSAP1 algorithm (compare Figure 3.6) and for a 50%-loading, we
expect an average number of moves of 123. Using two rearrangement cycles, we obtain
a defect-free 196-atom array with a probability of P 196 =2.5% (see Figure 3.9¢). This
demonstrates the capabilities of our new algorithmic framework, that allows us to
reach an unprecedented atom number with a non-negligible preparation fidelity.

Assembling these large arrays, we find however that increasing the atom number
has additional experimental challenges next to the algorithmic side. Mainly, these
challenges stem from the fact that these large arrays have an extent similar to the
field-of-view of the aspheric lenses. As a result, optical aberrations on the border of
the array (see Section 2.3.3) are playing a role: the trap depth equalization and the
single-move efficiency are worse compared to smaller arrays.

This reduces the efficiency of the assembly process: We find that the success
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probability of 2.5% to assemble a defect-free array is reduced compared to the
approximately 10% expected from a single cycle with an average single-move efficiency
of Py = 0.993(1) (compare Equation 3.3, Figure 3.7). Especially, as we find an average
of 83 moves — the lower than N/2 number of moves is caused by an increased loading
probability of approximately 60-65% — and an average total travelled distance of
620 pm when analysing the data for the first rearrangement cycle. The connection
between the lower than expected overall success probability and an imperfect trap
depth equalization is illustrated in Figure 3.10. It shows the filling probability of each
of the 196 traps after two assembly cycles, deduced from the fluorescence images
before and after the assembly process. Most target traps are filled in 98.5% of the
experimental cycles, except for a few traps that have a significantly smaller filling
probability. These traps have a smaller than average trap depth, leading to an increased
loss probability.

The probability to assemble a defect-free array, can be found by multiplying the
filling probabilities p; of all traps ¢ and is, as stated above: Py 196 = [ [, pi = 2.5%. From
Figure 3.10b, we see that this probability is limited by a few traps with significantly
smaller filling probability. We expect that with an improved trap depth equalization
method, all traps have a filling probability distribution with an average probability of
Pave = 0.985 (red line in Fig. 3.10b). Considering this value leads to a probability
of P 196 = 5.2% to assemble a defect-free array. This highlights the importance of a
better trap depth equalization method and in Chapter 6, I will present a new improved
method.

For this project, I implemented a first iteration of a new in situ trap depth
equalization. The new method improved the success probability of the assembly
process considerably compared to the normal intensity equalization. In contrast to
the intensity equalization feedback that takes the measured intensities as weights
for a feedback algorithm (see Fig. 2.3), the new method relies on taking the loading
probability of each trap (see Fig. 2.12) into account. Even though the method resulted
in a major improvement, it is still imperfect, as can be seen from the histogram of the
filling probabilities in Figure 3.10b.

The additional discrepancy to the expected success probability to obtain zero defects
might stem from the fact that for large arrays, the single move efficiency is significantly
lower than the pyy = 0.993(1) quoted in [Barredo et al., 2016]. From the assembly of

the 14 x 14 array, we can estimate the average single move fidelity p,,, with:

t (V)
—Nmv _ =N assembly
mv pavgexp ( TVaC/N ) ) (34)
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Figure 3.10: Filling Probabilities of 14 x 14 target array after two rearrangement
cycles. a: Target array with filling probability, denoting the assembly success, for each
trap. b:Histogram of the filling probabilities of a. We can see a peaked distribution around

a filling probability of 0.985 (red line), and a tail of traps with smaller filling probabilities.

where N is the number of atoms in the target array, N,, the number of moves,
determined by the algorithm, p,,, the average filling fraction of the traps after one
rearrangement cycle, 7, = 20 s the vacuum lifetime on our room-temperature setup.
We find an average single move fidelity of p,,, = 0.972(4). Again, note that this is only

a simple estimation, as we work with average quantities.

We attribute this reduced single move fidelity mainly to more complicated and
longer moves (compared to [Barredo et al., 2016]). The laser power in the moving
tweezer can vary by approximately 30% over the whole extend of the large array,
which can change the transfer efficiency between moving tweezer and SLM traps.
Compared to our 14 x 14 array with an extent of 130 pm, the benchmark in [Barredo

et al., 2016] was done with a 3 x 3 array with an extent of only 10 pm.

3.3.2 Quasi-adiabatic preparation of antiferromagnetic ground states

In the last section, I showed that we can prepare defect-free arrays of 200 atoms with
non-negligible fidelities due to the new algorithmic framework. This opens up the

possibility to perform a large-scale quantum simulation of the Ising model.

The Hamiltonian of the transverse field Ising model (see Chapter 2.2.1) is naturally

implemented on our Rydberg platform:
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Figure 3.11: Antiferromagnetic ordering in square arrays. a: lllustration of the Rydberg
blockade. The strong interaction prevent the simultaneous excitation of two ground-state
atoms (red) to the Rydberg state (blue), if their distance is smaller than the Rydberg
radius Ry. b,c,d,e: lllustration of the experimental cycle. The atoms are initialized in the
ground-state representing the paramagnetic phase (b). Then detuning § and Rabi-frequency
Q are changed (c) to reach the antiferromagnetic ground-state of the system (d). This
figure is adapted from [Scholl et al., 2021a].

Hpya = ; Ujning + ? Z ) Z ni, (3.5)
where the Rydberg- }7581/2, my = 1/2> and groundstate !551/2, F=2mp= 2> are
mapped onto the spin states |1) and ||). Here, U;; = % is the van der Waals interaction,
with Cg the van der Waals coefficient and R the distance between the atoms, ¢ and
n; = 1) (1], = (1 + 07)/2 are the Pauli matrices, 2 the Rabi frequency of the laser
field with detuning ¢.

As illustrated in Figure 3.11, the strong interactions, characterized by the Rydberg
radius Ry, = (Cs/hQ)"%, lead to antiferromagnetic ordering: As the Rydberg radius is
similar to the lattice spacing R, >~ a = 10 pm, the interactions prevent the simultaneous
excitation of two neighbouring atoms.

We prepare the antiferromagnetic ground state of the system, by quasi-adiabatically
changing the parameters of Hryq as can be seen in Figure 3.11 on a 196 atom square
array. The array is initialized in the paramagnetic ground state, where all spins are
aligned |} ... |). This state is represented by the assembled array, as |/) is encoded
in the ground-state atom (see Fig. 3.11b). In 6 s, the detuning and Rabi frequency

are then changed (see Fig. 3.11c,e), crossing the phase transition and reaching the
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antiferromagnetic ground state. The duration of the sweep of 6 us was found to be a
good balance between decoherence effects and quasi-adiabaticity of the sweep.

In this work, we also investigated the phase diagram of the triangular lattice (see
Fig. 3.8 for an assembled triangular array). We observe for the first time the creation
of two distinct antiferromagnetic orders. For an in-depth analysis of the experiments
on the triangular and square lattice, the reader is referred to the thesis of Pascal
Scholl [Scholl, 2021].

Increasing the system size is critical, as the phase diagram of our finite size system can
change quite drastically from an infinite system size (see [Lienhard et al., 2018],[Scholl,
2021]). Because of the open-boundary conditions, the atoms on the boundary experience
fewer interactions as the ones in the bulk: compared to an infinite system, this can
lead to more ground-state configurations on the classical line of the phase diagram
(2 =0), as the atoms on the boundary are more likely to be excited to the Rydberg
state for increasing 9.

This work demonstrates that by pushing our platform to unprecedented atom

numbers, we can address open questions in many-body physics.

Conclusion

In this chapter, I presented a new algorithmic framework for the assembly process that
allowed us to reach unprecedented atom numbers on our room-temperature setup.
This demonstrates the capabilities of our platform to perform large-scale quantum
simulations to address open questions in many-body physics.

First, I described three new algorithms that improve the assembly efficiency by
significantly reducing the number of moves compared to the previous shortest-move-first
algorithm. Together with performing multiple assembly cycles, this allowed us to
prepare defect-free atom-arrays of up to 200 atoms with non-negligible fidelities.

Using a new graph-based approach, the algorithms are extended further to non-
regular structures that cannot be represented on a Bravais lattice. This approach
opens up the possibility to interesting new experiments, like the optimization problem
of finding the maximum-independent set on a graph.

Finally, I highlight experimental limitations on our setup. First, the vacuum-limited
single-atom lifetime in our tweezers is an ultimate limit on our room-temperature
setup. With our new cryogenic platform (see Chapter 4), we can lift this limitation and
increase the atom number further. Second, I highlight experimental concerns caused by

the big extend of our arrays that is similar to the field-of-view of the aspheric lenses.
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This motivates us to improve techniques that have worked well on smaller arrays, like

the trap depth equalization, and these improvements will be presented in Chapter 6.
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In the last chapters, I presented the vacuum-limited lifetime of a single atom in a
tweezer as a major limitation for the scalability of our room-temperature quantum
simulation platform. Due to the cryopumping effect, cryogenic experiments routinely
achieve a vacuum pressure several orders of magnitude lower than on room-temperature
platforms (e.g. [Benvenuti, 1974; Diederich et al., 1998; Gabrielse et al., 1990]).
Therefore, we designed and built a novel cryogenic single-atom array platform which I
describe in detail in this chapter.

I will describe the design of the new apparatus, starting with an overview of the
different components, before detailing them further. Then, I analyse the performance
of the cryostat in a series of tests. Specifically, I evaluate the capability of the cryogenic
platform to sustain low temperatures while submitted to various heat loads during

large-scale quantum simulation experiments.

Design of the apparatus

As detailed in the introduction, there have been various efforts in the atomic, molecular,

optical community (AMO) to build cryogenic experiments, such as in the trapped ion
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community ([Pagano et al., 2018; Micke et al., 2019]), or for Bose-Einstein Condensation
([Roux et al., 2008; Bernon et al., 2013]). However, each platform has its own specific
constraints, so an adaptation for our tweezer array experiment is not straightforward.

Our system was designed in collaboration with the cryogenic company MyCryoFirm.
Their flagship product OptiDry is an optical-access, closed-cycle (Helium 4) cryostat
with temperatures down to 4 K. Our new platform relies on the same cryogenic
techniques, albeit being UHV-compatible and adapted for the requirements of a
tweezer array experiment.

In our design process, we decided to keep several main technical solutions of our
room-temperature setup. This involved the following components: an atom source
composed of an oven and a spin-flip Zeeman slower, and a science chamber including two
aspheric lenses to generate the tweezers and magnetic field coils for the magneto-optical
trap.

This enables us to focus mainly on the design of the cryogenic side of the new
platform. I illustrate the platform in two parts: the ultra-high vacuum, closed-cycle
cryostat that cools down part of the science chamber to 4 K, and the science chamber
containing all necessary elements for the generation of large-scale single-atom arrays.
Although reminiscent of our room-temperature setup, all elements inside the science
chamber are modified for cryogenic temperatures, necessitated by experimental
challenges such as thermal contraction, thermal conduction and electric resistivity at

low temperatures.

4.1.1 Overview of the setup

An overview of the setup is illustrated in Figure 4.1. The atomic source is similar
to our room-temperature setup. It contains an oven, creating an atomic beam of
Rubidium that is slowed down by a spin-flip Zeeman slower before we capture atoms
in a magneto-optical trap in the science chamber. The oven-part can be decoupled by
a gate valve, blocking the atomic beam. This atomic source has been built by Eric
Magnan and is described in more detail in his thesis [Magnan, 2018].

The cryogenic side of the experiment accommodates an ultra-high vacuum closed-
cycle cryostat which is encased in a large stainless-steel vacuum chamber at 300 K. It
contains a science chamber on one side that is connected to the Zeeman slower, and
a pulse-tube-refrigerator on the other. Attached to the cryostat are two pumps, a
300 Ls™! titanium-sublimation ion pump and a non-evaporable getter (NEG) cartridge.

Figure 4.2 shows a cross-section of the cryogenic part. The pulse-tube refrigerator
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Figure 4.1: Overview of the experimental apparatus. Schematic of the whole setup,

including the atom source and the cryostat.

(PTR) has two stages, cooling a first radiation shield to 30 K (light blue) and a second
baseplate and heatshield to 4 K (dark blue). The compression of helium inside of the
PTR leads to vibration amplitudes typically on the 10 pm level at the cold head.
To decouple the optical assembly in the science chamber from these vibrations, the
connections between the PTR stage and the thermal shields or baseplate are made out
of ultra-soft, high thermal conductivity copper braids.

The science chamber contains super-conducting magnetic-field coils and the optical
assembly at a temperature of 4 K. The optics include two aspheric lenses, and two
mirrors for beam steering of the Zeeman and MOT beams. We use the same lenses as
on our room temperature setup (NA = 0.5, focal length f =10 mm, working distance
of 7 mm). To allow optical access from the outside, the thermal shields (30 K and
4 K) are equipped with 5mm thick fused-silica. The laser beams from the outside
therefore propagate through two vacuum viewports and four windows on the thermal
shields. In the direction of the Zeeman beam however, the thermal shields have an

aperture with a diameter of approximately 13 mm.

4.1.2 Closed-cycle cryostat

To cool down a significant part of the science chamber to 4 K, we built a two-stage

closed-cycle cryostat using a pulse-tube refrigerator (PTR) in collaboration with the
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Figure 4.2: Cross-section of the cryostat: A two stage pulse-tube refrigerator (PTR)
cools down an optical assembly inside nested radiation shields. The first stage of the PTR
is connected via flexible copper links to a 30 K shield (light blue), and the second stage of
the PTR to a radiation shield at 4K (dark blue), inside which the optical assembly is

found.

company MyCryoFirm. We opt for a nonbakeable system, similar to the commercial
OptiDry models from MyCryoFirm, as the PTR cannot be heated above temperatures
of approximately 60 °C, and a removable PTR makes the design significantly more
involved. Additionally, we only use UHV compatible materials inside of the vacuum
vessel. This compromise results in a moderate vacuum in the room-temperature
chamber (order of 1 x 10~® mbar). However, we shall see in the following chapter that
the cryopumping by the 4 K shield enclosing the atoms results in a vacuum several

orders of magnitude better than on our room-temperature setup.

In the following, I describe briefly the working principle of the Gifford-McMahon-
type pulse-tube refrigerator that we use. For simplicity, I limit the description to
a single-stage, although we use a two-stage PTR. For a more in depth review on
cryocoolers, the reader is referred to [de Waele, 2011]. Then, I detail the realization of

a closed-cycle cryostat for our experimental purposes.

Working principle of the cryocooler The basic working principle of a Gifford-
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Figure 4.3: Schema of a one stage Pulse-tube refrigerator setup: a The pulse-tube is
connected via a rotary valve to the high and low pressure side (pp,p;) of a compressor. V},
and V7, are buffer volumes of the compressor. The cooling head has a regenerator, and an
isolated pulse-tube. It is connected via an orifice to a buffer volume. b: The trajectory of a
gas volume close to the cold end X, or hot end X of the pulse-tube. On the right side,
the gas volume enters the pulse tube at a lower temperature than leaving it, therefore
leading to a net heating effect at the heat exchanger X;. On the left side, the gas volume
leaves the pulse tube at a lower temperature than entering it, leading to a net cooling at
X1,. For details see text. Figure adapted from [de Waele, 2011].

McMahon-type pulse-tube refrigerator (PTR) is illustrated in Figure 4.3. The working
fluid is helium, with pressures variating between approximately 10 to 25 bar. The
hot side of the regenerator is connected alternatingly to the high- and low-pressure
side of the compressor. A rotary valve ensures this connection while decoupling the
compressor (50Hz) from the cooler, resulting in pulse-tube operating frequencies of
about 1-2 Hz

While the working fluid is in good thermal contact with its surrounding in the
regenerator, it is thermally isolated from its surroundings in the pulse-tube. Here,

pressure changes in the working fluid lead to heating and cooling.

During the compression phase, the gas flows into the pulse-tube via the regenerator
— a matrix of solid porous material with high heat capacity and good thermal
contact with the working fluid — and the cold heat exchanger X. At the hot heat
exchanger X, gas leaves the pulse tube through an orifice into the buffer at (ambient)
temperature T, until the pressure in pulse-tube and buffer equilibrates. Heat is released
via the heat exchanger. When the pressure in the pulse-tube is lower, the gas flows
back from the buffer via the orifice. As illustrated in Figure 4.3b, the gas leaves the
tube at the hot end Xy with a higher temperature than the inlet temperature T,,
therefore we observe a net heating effect at Xy. Contrarily, the gas enters the pulse

tube at the cold end with temperature 77, when the pressure is high, and returns with
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a temperature lower than 77, therefore there is a net cooling effect at X.

Compared to other types of cryo-coolers, the pulse-tube has no mechanical displacer
near the cold-head that moves the gas through the regenerator. Instead, a buffer
volume with flow resistance (orifice) achieves the needed dephasing between the
movement of the gas and the temperature or pressure changes. It is therefore less
prone to vibrations and electromagnetic interferences. The residual vibrations caused
by helium compression and expansion can be successfully decoupled by flexible copper
braids. While our standard Helium 4 pulse-tube has two stages at 30 K and 4K,
temperatures down to 1.73 K have been reached using *He as the working fluid [Jiang
et al., 2004] with a three-stage PTR.

Pulse-tube refrigerator Our cryostat is based on a two-stage pulse-tube-
refrigerator head (PTR, Sumitomo RP-082B2S) with a cooling capacity of approxi-
mately 1 W on the second stage at 4 K. The PTR is connected to a 7kW compressor
(Sumitomo F-70H) running at 50 Hz that is water-cooled with 10 L min~".

Radiation shields The two stages of the PTR are connected to a nested structure
of radiation shields, at temperatures of 30 K and 4 K. These parts are made out of
2 mm-thick polished, gold-plated copper to reduce their emissivity. The shields are
fabricated in multiple parts to simplify the assembly through the large CF275 vacuum
flanges on the cryogenic side (see Figure 4.2). Custom gold-plated copper parts are
added on the shields where the pulse-tube passes through the 30 K shield, to reduce
the size of any gaps and limit the blackbody radiation from the exterior. This avoids
the use of silver tape often used in cryogenic experiments, as we refrain from the use

of any adhesives because of UHV considerations.

Mechanical supports A major technical challenge in building the cryostat is
the mechanical connection between parts of different temperatures, such as the 30 K
shield and the 300 K chamber, or the 4 K shield and the 30 K shield. These supports
have to be mechanically stable, but at the same time their cross-area should be small
to reduce the thermal conductance to the cold stages of the cryostat. This is part of
the expertise of our collaboration partner MyCryoFirm. In their commercial OptiDry
cryostat, the 30 K shield is connected to the 300 K stainless steel vacuum vessel with
epoxied fiberglass tubes. As we refrain from using adhesives such as epoxy, we opt for
ultra-thin stainless steel tubes with a wall-thickness of 0.1 mm which are welded to
the bottom of the 300 K vessel. Furthermore, these ultra-thin tubes are used in a
truss structure, supporting the 4 K shield on the 30 K shield. Because of the thin
wall-thickness and the small thermal conductivity of stainless steel — from 4 K to

30 K the heat conductance through the stainless steel supports is approximately a
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Figure 4.4: Picture of the baseplate and copper braids before assembly: A large
gold-plated copper baseplate connects the PTR side of the experiment with the science
chamber. To decouple from vibrations, the connections to the 2nd PTR stage, and to the

4 K baseplate in the science chamber is made with flexible copper braids.

factor 700 lower compared to an equivalent (OFHC) copper structure — the heat load
on the 4 K platine is kept to a minimum, while the truss structure leads to a good
mechanical stability.

Vibrational decoupling To reduce vibrations in the science chamber due to
the PTR, the first stage of the PTR is connected to the 30 K radiation shields using
ultra-soft, high termal conductivity copper braids (see Figure 4.2). Furthermore, these
copper braids are used to connect the second PTR stage at 4 K to a large gold-plated
copper baseplate of approximately 6 kg, reaching into the science chamber (see Figure
4.4). There, this copper baseplate is connected by another pair of copper braids to the
4 K baseplate in the science chamber on which the optical assembly is mounted.

This three-fold decoupling leads to a very effective reduction of the vibrational
amplitude at the position of the lens holder in the science chamber. In a first test, we
measure the vibrations, using a commercial displacement measurement interferometer
(attocube IDS3010). Placing the retroreflector of the interferometer at the position of
the lens holder, we measure rms vibration amplitudes along the three different axis.
At the main vibration frequency component — the operating frequency of the pulse

tube at 1-2 Hz — the measured amplitudes are:

e Zeeman axis: 5 nm
o Tweezer axis: 11 nm

o vertical axis: 5 nm .

The measured background amplitude on the optical table is below 1 nm.
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Figure 4.5: Schematic of the optical assembly. a: Cross section of the science chamber.
The optical assembly is inside the nested radiation shields. Laser beams enter the chamber
through vacuum viewports and windows on the radiation shields. The Zeeman beam and
the vertical MOT beams are reflected by 45°-mirrors at 4 K. Apertures in the heat shields
allow atoms to enter from the Zeeman slower. b: Cross section of the lens holder, including

stress-free mounted aspheric lenses, superconducting coils and the 45°-mirror for the MOT.

We conclude that the vibrations are sufficiently suppressed for our tweezer experi-
ments. The vibrational amplitude is far smaller than the extent of the tweezer traps (~
1um) and the atomic motion in the trap (~ 100 nm). Furthermore, the main vibration
frequency components (1-2 Hz) are far below the trap frequencies (tens of kHz).

Therefore the atoms should not experience any heating effects due to vibrations.

4.1.3 Science chamber

The optical assembly is placed inside the 4 K radiation shield of the science chamber
and is illustrated in Figure 4.5. It includes the two stress-free mounted aspheric lenses,
and two mirrors for beam steering. Additionally, superconducting coils are mounted on
the lens holder. Two temperature sensors are inside of the science chamber, a silicon
diode (Lakeshore) next to the lens holder (see Fig 4.5a), and a PT-100 platinum sensor
(Lakeshore) on the bottom of the 30 K radiation shield. In the following, I will detail

the different elements of the science chamber.
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Figure 4.6: Pictures of the setup. a: The 30 K radiation shield with stress-free mounted
windows. b: The lens holder with superconducting coil. c: cross section of a schematic
illustrating the stress-free mounted fused-silica window. The window is held in place by a

spring-loaded ring plate.

Radiation shields

Inside the science chamber, the radiation shields are two nested cylinders, made out of
2 mm-thick gold-plated copper (see Figure 4.5). Each of the shields has 11 windows,
six for the MOT beams, one for the zeeman slower beam, and 4 windows for diagnostic
cameras which sit on top or below the horizontal MOT windows. Additionally, each
shield has an aperture of 13 mm, to allow atoms to enter the trapping region.

The 5mm thick fused silica windows are mounted on the heat shield in a stress-free
fashion. As we cool down the ensemble from 300 K to 30 K or 4 K, materials contract
with different magnitudes: The fused-silica windows contract less than the metal
(Copper or Beryllium-Copper) around. Stress from clamping the window, e.g. with a
set-screw, can induce optical aberrations due to deformation, but also stress-induced
birefringence which would change the polarization of incoming laser beams. Therefore,

we designed a stress-free mount for the heat shield windows: they are held in place
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with plates that are spring-loaded with a pair of fingerstock gaskets (see Fig. 4.6a).
The top- and bottom MOT and the Zeeman slower windows are anti-reflection
coated for blue and infrared light (400 — 500 nm and 750 — 1100 nm) to allow Rydberg

excitation. The other windows are coated only for the infrared light.

Optical Assembly

The central structure of the optical assembly — the lens holder — is attached to the
4 K baseplate. It features two aspheric lenses, superconducting coils and a 45° mirror.
It is milled in a beryllium-copper (CuBe: 98% Cu, 2% Be) block. The material choice
is a trade-off, as it has better mechanical properties than copper, while maintaining
acceptable thermal conductivity. Furthermore, its electrical conductivity at 4 K is
lower than that of copper, reducing the effects of eddy-currents.

Stress-free mounted lenses The two aspheric lenses' in f—f configuration
are mounted in beryllium-copper barrels (see Fig. 4.5b and 4.6b). Similarly to the
windows on the heat shields, the lenses are mounted in a stress-free way, accounting
for the differential thermal contraction of CuBe and glass when cooling down. This is
especially important to reduce stress-induced optical aberrations or birefringence in
the tweezer traps.

The CuBe barrels have a relative thermal contraction between room-temperature
and 4 K of [Ekin, 2006]

(AL/L)cuBe = (Lagsk — Lax)/Lagsk = 0.00316 (4.1)

whereas the lens glass (D-ZLaF52LA, Light Path Technologies) has (at room tempera-

ture) a linear coefficient of thermal expansion of

1dL
CTE = 7 == = 6.9 107K . (4.2)

To account for the differential thermal contraction, we choose the internal diameter
of the barrels to exceed the outer diameter of the lenses by 20 pm at room-temperature.
This results in a stress-free fit at cryogenic temperatures. To ensure the correct
positioning of the lenses at room-temperature and during the cool-down, the lenses
are spring-loaded, using a CuBe spring? and a nut.

In first tests, the stress-free design was qualitatively verified by a crossed-polariser

stress test. This test consisted in placing the sample (the lenses inside of the lens

ILightpath Technologies, NA=0.5, f=10 mm, working distance of 7 mm.
2CuBe spring with stiffness of 0.5 N/mm
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Figure 4.7: Spotsize at room-temperature and 4 K a: Camera images of the spotsizes
after the chamber. b: Comparison of slices integrated along the horizontal or vertical
direction. No drastic changes are observed, although minor stress seems to be present in
x-direction. Note that the beam passes through 2 vacuum viewports and 4 windows on the
heat shields before being imaged onto a CCD camera. The beam has not been realigned at

cryrogenic temperatures.

holder) between two crossed-polarizers. Any stress (due to cooling down to 4 K) would
lead to stress-induced birefringence and change the transmission through the crossed
polarizers. However, no major changes in transmission were detected, leading to the

conclusion that our design succesfully prevents stress on the lenses.

In the final setup, we measured the spotsize of a single tweezer before and after the
cool-down, to determine if stress is present (see Figure 4.7). Only minor changes in

the spotsize are observed.

Compensation for f—f configuration As the CuBe lens holder, and to a
lesser extend the lenses, contract when cooling down the ensemble to 4 K, the distance
between the two aspheric lenses decreases. Consequently, if the lenses were in f—
f configuration at cryogenic temperatures and a laser beam enters and exits the
system collimated, the system at room-temperature can be described, in the thin-lens

approximation, by a lens with effective focal length f”:

1 AL

== 4.3

f, aQSph ( )
Here, faspn = 10 mm is the focal length of the aspheric lenses and AL the contraction

length.

Since the lens-holder is made out of beryllium-copper, its thermal contraction is
determined by equation (4.1). We can neglect the thermal contraction of the glass,

because of the following argument: In the thin lens approximation, the focal length f
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Figure 4.8: Axial Contraction of imaging system. a: lllustration of the f—f configuration,
where the distance is gradually reduced when cooling down to cryogenic temperatures. b:
Measurement of the change in distance AL between the lenses, inferred from the size of
the beam at a certain distance after the second lens. The red shaded area indicates the
standard deviation of the measurement. In blue, the literature values of the relative length

contraction of beryllium-copper ([Ekin, 2006]).

is given by: . .
n JR—
— = 4.4
f R Y ( )

with R the radius of curvature of our plano-convex lens. While the change of R with

temperature is governed by the CTE of glass (equation (4.2)), the index of refraction

of the lens glass changes similarly:

d
% —6.5x 10°°K! . (4.5)

These two effects approximately cancel each other out and we therefore only take into
account the contraction of the CuBe lens holder.

Figure 4.8 illustrates the change in effective focal length of our f — f lens setup.
Taking into account the distance between the two lenses (2 x WD = 14mm), we
expect a length change of AL = 44 pm. If we neglect the contraction of the lenses,
the total system would therefore have a focal length of approximately f' =2.5 m at
room-temperature, when collimated at 4 K. As we want the optical system to be
collimated at 4 K, we need to pre-compensate the distance between the two lenses
at room-temperature by the contraction length AL (see Figure 4.8). We realise the
pre-compensation with copper spacers between the barrels and holders with a thickness
that I gradually reduced by manual lapping until the proper axial spacing between the
two lenses was reached.

Figure 4.8b shows a measurement of the contraction of the lens holder, inferred from
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Figure 4.9: Mirror for the vertical MOT beams A silver mirror is mounted in using

CuBe springs and a retainer plate, to mitigate stress during cool-down.

the size of the beam at a certain distance after the second lens. In blue, the literature
values for the length contraction for beryllium-copper [Ekin, 2006] are compared to our
measurement. We find an outstanding agreement between the literature contraction
values and the measurement. Furthermore the thickness of the copper spacers is
almost perfect, as it deviates only by approximately 5pm. As a result, we measure
that our pre-compensated system has a focal length f’ of approximately 2.5m at
room-temperature. At 4 K the system is almost afocal, as the exiting beam focuses at
a distance of > 20 m.

Stress-free mounted 45° mirrors Two stress-free mounted 45° silver mirrors
are inside the science chamber. A first mirror is mounted on the bottom of the lens
holder. It reflects the two vertical MOT beams, as we do not have optical access
from the bottom of the chamber. A second mirror is mounted next to the lens holder
reflecting the Zeeman beam from the top. This avoids having a cold window at
cryogenic temperature facing the hot atomic beam, which would not not transmit the
Zeeman laser after becoming opaque due to an accumulation of Rubidium. In contrast,
the silver mirror would reflect the laser beam even with accumulation of Rubidium.

Both mirrors are mounted with beryllium-copper springs holding them in place
(see Figure 4.9). This mitigates stress due to differential thermal contraction of the

materials during cool-down to 4 K.

Superconducting magnetic field coils

Above and below the lens holder are two magnetic field coils (see Fig. 4.5). They can
be used for a MOT magnetic field gradient, or for a homogenous bias field, when

changing from anti-Helmholtz to Helmholtz configuration.
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As current-carrying wires are a major heat source in our cryogenic setup, we opt for
superconducting wire for our magnetic field coils. We choose a 0.5 mm diameter, Kapton
insulated wire (Supercon Inc.) that has multiple 38 pm-diameter superconducting NbTi
wires inside of a copper-matrix, with a copper-to-superconductor ratio of approximately
3:1. The superconductor has a critical temperature of 9.2 K, and we measure the
residual resistivity ratio (RRR) of the copper wire to be approximately 230 (see Fig.
4.10).

Each coil is wound around a beryllium-copper form (100 turns with a diameter of
52mm). The material choice reduces eddy currents compared to copper, as beryllium-
copper has a moderate electrical resistivity at cryogenic temperatures (At 10 K [Ekin,
2006]: pcue = 6.92p2 cm, poy (orHC, RRR~100) = 0.0151Q2 cm). In a preliminary test
setup at 4 K, we measured characteristic magnetic field decay times of approximately
1 ms. In the final setup however, we notice that the magnetic field the atoms experience
is negligible only after 40 ms. This is most likely caused by the presence of pure copper
parts (e.g. the 4 K shield) close to the coils in which eddy currents develop.

In (anti-)Helmholtz configuration the coils produce (magnetic field gradients of
4.3 G/cmA) peak magnetic fields of 23 G/A.

Wiring between the cold-plate and the exterior The superconducting coils
are connected to the 300 K exterior via a 0.6 mm-diameter Kapton-insulated copper
wire, and the connection between the copper and the superconducting wire is made on
the 4 K base-plate in the science chamber.

On its way from the 300 K exterior to the 4 K base plate, the wire is thermalised
at multiple locations. First, on a 40 mm tall chimney on the 30 K shield. Then, it is
wrapped tightly around the pulse tube. In the science chamber, the wire is wound
around and clamped on one of the pillars (see Figure 4.5).

For diagnostic purposes, the superconducting coils are furthermore connected to the
300 K outside via an additional 0.25 mm Kapton-insulated copper wire. This second
pair of wires for each coil lets us determine the resistance in a four-wire-measurement.
Figure 4.10 illustrates a typical 4-wire measurement that was conducted during
the cool-down of the cryostat. Below the critical temperature, the coils enter the
superconducting phase and the resistance of the coils vanishes. In the measurement the
resistance jumped to approximately 1 m§2 around 9.2 K, before vanishing completely
below 6 K. This indicates that the superconducting wire is not in perfect thermal
contact with the coil holder during the cool-down.

Considerations on wire choice The copper wires from the 300 K exterior to

the 4 K cold plate are a significant heat load for the cryostat. This became apparent
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Figure 4.10: Wiring for 4-wire measurement. a: Each superconducting coil is connected
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to two pairs of copper wires leading to the 300 K exterior. The 0.6 mm-wires are the
main current-carrying wires, and the 0.25 mm-wires can be used to determine the coils
resistance by measuring the voltage drop over the coils at a known current. b: Example of
a typical 4-wire measurement during cool-down in a test cryostat. ¢: Zoom into (b) for low
temperatures. Below the critical temperature of 9.2 K, the coils enter the superconducting
phase and their resistance vanishes. The residual resistivity ratio of the copper in the wire

is approximately 230, as can be seen from the ratio of resistances at room-temperature
(2.3 ) and at 10K (10 mf2).

to us, as we first connected the 0.25 mm-diameter copper wire to the superconducting
coils. When driving the coils with currents above 1 A using this wire, the heat load on
the cold head was too high. We therefore changed to the 0.6 mm-diameter copper wire
to drive the coils, leaving the smaller 0.25 mm-diameter copper wire for possible 4-wire
measurements to determine the state of the superconducting coils (see above). I detail

further considerations for the wire choice in the following.

The diameters for high-current wires have to be chosen to minimize the overall heat
load on the 4 K stage of the cryostat, including the heat influx from outside and Joule
heating [McFee, 1959].

The heat introduced by a current I flowing through a small length of wire d¢ with

cross section A and resistivity p is

d_€]2

di = p(T) 1%, (4.6)

and therefore scales inversely with the wire cross-section A and thus with the square
of the diameter.

However, the thermal conductance along the wire is

dr

— \NT)A—
qg=XT) i
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with the thermal conductivity A. It scales linearly with wire cross-section (square of
the diameter).

Whereas one would like to choose the smallest possible diameter to minimize the
heat leak from the 300 K exterior down the wires into the cryostat, Joule heating
becomes a problem for cables with small diameters, such as for the 0.25 mm-diameter
wire in our case. Therefore a compromise has to be considered when selecting the
optimal cable diameter: the sum of the heat conduction along the wire and the heat
introduced by Joule heating has to be minimized.

In the following, I make a basic approximation of the optimal wire parameters for
our cryostat, under the assumption of constant thermal conductivity A(T") = A and
electric resistivity p(7') = p. From equation (4.6) and (4.7), one can find the general

equation:

q = I\/Qp)\(Tmax - T) 3 (48)

where T),.x is the maximal temperature along the wire.

To minimize the heat flowing into the low-temperature region ¢, the maximum
temperature should be minimal (see eq. (4.8)), that is, when T}, is equal to the
temperature Ty at the hot (room-temperature) end of the cable.

From equations (4.6), (4.7) and (4.8) one can then derive the optimal wire parameters:

o — 2%(TH ~Te) | (4.9)

with Ty and Ty the temperatures at the hot and cold end of the wire.
In our case, assuming room-temperature values for A and p, we find an optimal wire

size for the connection between 290 K and 4 K with the parameters:

LI/A~4x10°A/m . (4.10)

For a wire length of 1 m and a current of 2 A, we find that an optimal wire has
a diameter of approximately 0.8 mm. In reality the situation is more complicated,
as A and p vary a lot with temperature. However, the value of equation (4.10) only
changes by approximately 30% when considering the real parameters. The optimal
wire parameters, taking into account the temperature variance of A and p are described
in the literature [Ekin, 2006].

This highlights that the wire with 0.25 mm-diameter was too small. It is furthermore
interesting to know how much a deviation from the optimal parameters changes the

heat load on the cryostat. When the selected cross-section A is bigger than the optimal
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Figure 4.11: Temperature profile of copper wires with different diameters. A 1 m
long copper wire with a cross-section diameter d is driven with a current of 1 A. On
both sides the wire is thermalised to 4 K. The resulting peak temperature is strongly

dependent on the diameter d and can reach temperatures above the critical temperature
of the superconducting coil.

one Agpt, we can find for the ratio between the non-ideal heat flow ¢, and the minimal

heat flow: )
qr o 1 A + Aopt
Aopt A

[q.L]min B 2

(4.11)

A similar relation can be found when a smaller cross-section is selected [McFee, 1959].

This means that when the diameter d is wrong by a factor of 2, the heat flow on the
cold end of the wire is approximately doubled.

This basic model highlights the importance of choosing the right wire diameter
and gives a good idea of the wire diameter that we have to choose. However, the

real situation is more complicated, as our cryostat has two stages and the wire is
thermalised in multiple places.

Another difficulty is the approximate distance of 1 m between the PTR cold-head
and the cold-plate of the science chamber. The wire is thermalised to 4 K in both

places, but can significantly heat up in between, especially if the wire diameter is too
small for a given current.

The temperature distribution along a wire of length L that is thermalised on both
ends to the same temperature of T = 4 K is symmetric, with a maximum temperature
at L/2. We are interested in finding the maximum temperature, this time considering
the temperature dependence of the thermal conductivity at low temperatures. Ac-

cording to the Wiedemann-Franz-law, the dependence is approximately linear for low
temperatures, with:
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ANT) =BT . (4.12)

For our copper wire, 8 = 158 W/m/K? [Ekin, 2006] (assuming RRR = 100 ).

From equation (4.6) and (4.7), one can derive the differential equation:

d d e
7oy = P

—(T—T) = 4.13
d:z:( dx ) BAZ (4.13)
which can be solved using substitution to arrive at:
T(z)=+—alx—c)2+c (4.14)
where e
p
and
e =05L, ¢ =acs+T? . (4.16)

The maximum temperature is therefore inversely proportional to the area A of
the wire. Its strong dependence on the wire diameter is illustrated in Figure 4.11.
A wire with a diameter of 0.25 mm can easily reach temperatures above the critical
temperature of the superconducting coil. This is especially a problem, when the wire
is not perfectly thermalised to 4 K on one or both sides, as we shall see later. The wire

diameter choice of 0.6 mm however seems suitable for our purposes.

Performance characterization of the cryostat

To demonstrate that the new experimental apparatus fulfils all necessary criteria for an
operation with large-scale tweezer arrays, we characterized its performance in a series
of tests. First, I describe the basic operation of the cryostat. Then, I investigate all
possible experimental heat loads and estimate the heat budget. Finally, I characterize

the operational regime of the superconducting coils.

4.2.1 Basic operation: cool-down and heat-up

Before operating the Cryostat, we evacuated the system until we reached a residual

pressure in the 1 x 1078 mbar range. First, we connected a turbomolecular pump, and
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Figure 4.12: Temperature behaviour during cool-down and warm up. a: Typical
cool-down, the base temperatures are reached after approximately 15 hours. b: zoom into

(a) for low temperatures. c: Typical warm-up, the system can be opened after approximately

3 days.

degassed and activated the titanium sublimation ion pump and the non-evaporable
getter pump at pressures below 5 x 1077 mbar (as measured by the turbomolecular
pump). This pressure is limited mainly by the absence of a bake-out of the system and
by the numerous elements inside of the chamber, some of which have a large surface
area, such as the copper braids.

Then, we switch on the pulse tube refrigerator, and the temperature decreases
until it reaches a steady-state value after approximately 15 hours (see Figure 4.12).
The temperature is measured with two thermometers (see Fig. 4.2): a silicon diode
(Lakeshore) next to the lens holder on the 4 K-baseplate (77) and a PT-100 platinum
resistance thermometer (Lakeshore) on the bottom of the 30 K radiation shield in the
science chamber (75). After the cool-down, the pressure measured by the ion-pump
current is approximately 4 x 107! mbar.

Warming-up the cryostat to room-temperature takes a minimum of three days, if the
pulse-tube is switched off and the vessel is kept under vacuum (see Figure 4.12b). In
practice, we usually switched off the cryostat Fridays and opened the vessel Mondays
to change the test configuration (see tests below). This could however be accelerated
to about half a day by flooding the chamber with dry nitrogen gas to supplement the

radiative heat transfer by the much more efficient convective transfer.

4.2.2 Preliminary tests and heat budget evaluation

In a series of tests with various configurations, we evaluated the response of the

cryostat to different heat loads that we expect during the operation of the experiment.
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Starting with a configuration with a minimal experimental heat load, we sequentially
added elements to the science chamber and independently evaluated each contribution.

Cool-down with minimal heat load We first cooled-down the system with a
minimal heat load, without the superconducting coils and the wiring from 4 K to 300 K.
We further replaced all windows in the heat shields with gold-coated copper plugs and
sealed the aperture for the atomic beam in the heat shields. The base-temperature in
this configuration is 77 = 30.1 K and T = 3.2 K.

In order to determine the cryostats response to a given heat load, we applied
controlled power through two heaters and measured the temperature increase, as
illustrated in Figure 4.13. The two heaters were positioned next to the lens holder in
the science chamber (H;) and on the 4 K-baseplate just beneath the PTR 4-K stage on
the cryostat side (Hy). Temperatures were measured in proximity to the heaters: We
added two Cernox temperature sensors next to the lens holder (C;) and on the PTR
4-K stage (Cy). After we applied a given power through one of the heaters, we waited
approximately 5 — 10 minutes for the temperatures to equilibrate before measurement.

As can be seen in Figure 4.13b, the temperature increase is maximal on the lens
holder, when a heat load is applied in the science chamber. Above a base temperature
of 4K, this increase is approximately 4 K W1, If the heat load is applied on the
cryostat side close to the second PTR stage, the temperature increase is smaller, with
approximately 2K W1,

This heater test serves as a reference, as we can compare future temperature increases
caused by additional heat loads to the controlled heating power applied during this
test. Note that we removed both the heaters H; » and the Cernox temperature sensors
(' 2 for the final configuration.

Cool-down with windows In a second cool-down, we mounted the stress-free
fused silica windows on both of the radiation shields, and opened the aperture for the
atoms. The Zeeman slower was not connected, but a blind flange was at its place.

The base temperature was barely increased (< 0.1 K). This shows that the windows
block most of the black-body radiation from the outside. Furthermore, the small
aperture in the heat shields for the atomic beam does not contribute significantly
to heating. We repeated the experiment with the heaters H; o, but the results were
similar with respect to our measurement precision.

Cool-down with superconducting coils Next, we mounted the superconducting
coils on the optical assembly, and connected the four 0.6 mm-diameter copper wires
from the 4 K baseplate to the 300 K exterior. Additionally, four 0.25 mm-diameter

copper wires were already connected for a potential four-wire measurement (see above).
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Figure 4.13: Temperature increase for controlled heat load a: Heater positions
(H1,H2) and temperature sensor positions (C1,C3). b Heater H; next to the lens holder.
The temperature increase is maximal next to the lens holder and approximately 4 K W1,

b: Heater Hs on the 4 K-baseplate beneath the PTR 4-K stage. The temperature increase
is approximately 2K W1,

After cool-down, we measured a base-temperature of 77 = 32.1 K and T, = 4.2 K. I

compare the temperature increase of 1 K with a basic calculation in the following.

The conduction heat flow ¢ along one cable with length L and cross-section A is

A 300K
i== / A(T)dT (4.17)
L 4K

The thermal conductivity A is strongly dependent on the temperature for high-purity
metals, such as copper in electrical cables. Tabulated values of this integral can be

found in [Ekin, 2006], and for high-purity (ETP) copper | 43}(20}{ NT)dT = 165kWm™'.

For our cables with an approximate length of 2m, we find a combined conduction
heat flow of around 425 mW. The 0.6 mm-diameter cables contributes with about
360 mW, whereas the 0.25 mm-diameter cables with about 65 mW. This number
roughly agrees with the measurements in Figure 4.13, considering that we did not

measure the cable length and do not know the purity of the copper inside of the cable.
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Figure 4.14: Characterization of the SC coils a: In a four-wire measurement, we
determine the resistance of the coils for a given current through the coils and measure the
increase in temperature 77 on the baseplate of the lens holder in the science chamber.
Above a current of 1.7 A, we observe a jump in the resistance of the coil, indicating a
partial transition to the normal state. Whereas the heat load is small in the superconducting
state and mainly caused by the connecting copper wires, the whole coil contributes to
heating above the transition. b: When sending the current through the smaller 0.25 mm
wire, the Joule heating has a drastic effect, highlighting the importance of the correct
diameter choice (in our case 0.6 mm). Here, the resistance is the coil plus the copper wires

leading to the exterior.

Operation of the superconducting coils Next, we sent current through the
superconducting coils to evaluate the additional heat load due to Joule heating of
the current-carrying wires. At the same time, we measured the resistance of the
superconducting coils in a four-wire measurement (see Fig. 4.10), to determine the

state of the superconducting coils.

Figure 4.14a illustrates the measurement of temperature and resistance for increasing
current. At a current of 1 A, the increase in temperature is approximately 0.1 K.
For currents up to 1.7 A, this temperature increase is mostly attributed to Joule
heating in the 0.6 mm-diameter wire connecting to the superconducting coils. For
higher currents however, we observe a jump in the resistance of the coils, indicating
that the coils partially reach a temperature over the critical temperature of 9.2 K and
transition to the normal state. As the temperature of the lens holder is still below the
critical temperature, we assume that the thermal contact between the kapton-insulated

SC-wire and the CuBe-form of the coil is not sufficient for good thermalization.

Above this transition, the temperature increases in a steeper way with increasing
current, as the coil contributes to Joule heating. At a current of 2.5 A, we reach a

temperature of 5.4 K. As we shall see in Chapter 5, the reachable magnetic field
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Figure 4.15: Temperature increase for laser power a: Increase in temperature inside the
cryostat for a given laser power through the aspheric lenses. The temperature is measured
with C' 2 (see above), and the laser power is measured after the chamber. b: Overlay of
the data with Figure 4.13, assuming that the 9% loss of laser power at each lens entirely

contributes to heating.

gradients of up to 7.3 G/cm (corresponding to currents of 1.7 A) are more than enough

for the operation of a MOT and the loading of a tweezer array.

In a first test before the 0.6 mm-diameter wire was installed, we tested the super-
conducting coils with the 0.25 mm-diameter wire that we later used for the four-wire
measurement setup (see Figure 4.14b). Although we were not able to measure the
coils resistance directly in a 4-wire measurement, we still observed a jump in the
total resistance (superconducting coils plus the cables to the 300 K exterior). With
the smaller than optimal wire (see above), the Joule heating effect was much more
pronounced, reaching a temperature of above 10 K for a current of 1.7 A. This

highlights the importance of the above discussed choice of wire diameter.

Operation with high laser power To use the platform for large-scale quantum
simulation, we need to send a high laser power through the aspheric lenses. For 1000
atoms we need about 2000 traps which equals to approximately 4 W of laser power
at the used wavelength of 815nm. Part of the laser power however is absorbed or
reflected by the ITO coating of the lenses and does not exit the cryostat. Therefore, it
is a major heat load to consider. Both of the aspheric lenses are coated with a 120 nm
thick coating of ITO, which has a specified transmission of 91% at a wavelength of
815nm. Of the 9% non-transmitted light, about 1-2 percentage points are due to
absorption of the ITO, whereas the rest of the light is reflected and may or may not

exit the cryostat.

Figure 4.15a shows the temperature increase in the cryostat, measured with the
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same sensors C 5 as above, for a given laser power. Again, we let the temperature
settle for at least 5 minutes before measurement and measured the laser power after
the chamber. In 4.15b, we compare the data to the heater measurement (Fig. 4.13b),
assuming that the full 9% of the light per lens is contributing to heating. The data
fits remarkably, leading to the conclusion that indeed most of the light that is not
transmitted by the lenses stays in the cryostat and is eventually absorbed by the
surrounding surfaces. Note however, that the data is overlayed with the H, heater
data. This leads to the conclusion that most of the laser light is reflected by the ITO
coating and absorbed on other parts of the 4 K environment, e.g. the heat shields.

In summary, the absorption of laser power is not a hindrance to utilizing the machine
for large-scale quantum computation. Even for 4 W of laser power, the temperature
increase would be less than 2 K, as the heat load is about 340 mW per Watt of laser
power. Moreover, the thickness of the ITO coating could be reduced.

Summary of all heat loads The performance tests are summarized in Table
4.1. In the final configuration, we create at least 1000 traps and send 1.6 A through the
superconducting coils. The combined increase of the base temperature is approximately
1 K, leading to a temperature of T} = 5.2 K.

The base temperature is therefore still relatively low and significantly lower than
the critical temperature of the superconducting coils of 9.2 K. Extrapolating the data,
we should be able to use this kind of platform for over 6000 traps, which shows that
a cryogenic tweezer platform would be capable of performing large-scale quantum
simulation. However, we have not tested the platform in this regime because we do
not have the required laser power.

Images of the setup To give the reader an impression of the new cryogenic setup,

I have attached images of the experiment in Appendix A.
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4.3 Conclusion

Test conditions Temperature 2nd stage
minimal heat load, no wires, no light, plugged

. 32K
windows and atom beam aperture
windows and open atom aperture, no light, 33 K
no wires ’
windows and open atom aperture, SC coils

. ) 4.2 K

and wires, no current, no light
windows and open atom aperture, SC coils 152 K
and wires, current 1.6 A | no light ’
windows and open atom aperture, SC coils 59 K
and wires, current 1.6 A , 2 W laser power ’

Table 4.1.: Summary of performance tests: Each configuration including the temperature
measured on the 4 K baseplate in the science chamber. For the first three tests, the

cryostat was opened to change the configuration and cooled-down anew.

Conclusion

In this chapter, I presented the design and characterization of a new cryogenic tweezer
platform for large-scale quantum simulation.

First, I gave an overview over the new cryogenic platform that shares some main
characteristics with our room-temperature setup: An atomic source, and a science
chamber with aspheric lenses and magnetic field coils, to load single atoms into the
tweezer traps. However, the design of the science chamber is heavily modified due to

the experimental challenge of cooling down the main parts to 4 K.

After illustrating the ultra-high vacuum cryostat design using a pulse-tube refrig-
erator, I detailed our solutions to the experimental challenges that involve thermal
contraction, conduction and electric resistivity.

Finally, I demonstrated in a series of tests that the new platform indeed manages to
keep low temperatures with all heat loads present in an experiment with large tweezer
arrays. In the next chapter we shall see, that the large pumping speed of the surfaces
at 4 K close to the atoms indeed leads to a vacuum orders of magnitude lower than on
our room-temperature setup resulting in long vacuum-limited trapping lifetimes of
single atoms in tweezers of over 6000 s, an approximately 300-fold increase over the

20 s lifetime of the room-temperature setup.

Compared to our room-temperature setup, the cryogenic setup does not yet include
electrodes to actively control the electrostatic environment in the focal plane of the

lenses. For Rybderg experiments, this is a crucial ingredient however and we plan
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to include them in the near future. Similarly, we plan to add antennas inside of the

chamber to drive microwave transitions between different Rydberg levels.
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The last chapter detailed the design of the new cryogenic tweezer platform. In this
chapter, I demonstrate the trapping of single 8Rb atoms in a cryogenic environment
at 4 K with trapping lifetimes exceeding 6000 s.

First, I detail the laser system used to trap a cloud of Rubidium atoms in a
magneto-optical trap (MOT) and the measurement of the lifetime of the atoms in the
MOT. Then, we trap single atoms in tweezers, and measure their vacuum-limited
lifetime. We shall see, that it is not trivial to measure these long lifetimes, as other
effects can lead to losses, such as heating mechanisms. We therefore study these effects
carefully, find a suitable measurement method and finally measure a lifetime exceeding
6000s. Parts of this chapter are published in Physical Review Applied [Schymik et al.,
2021](see Appendix E).

Note: After the first set of lifetime measurements, we have noticed a vacuum leak
in the flange of the 300 L/s ion pump. After fixing the leak, the vacuum pressure as
measured by the ion pump decreased from previously 3 x 10~" mbar to 4 x 10~° mbar.
Correspondingly, we measured an increase in the single-atom lifetime in the tweezers
from previously 335 s to over 6000 s. Note that a part of our data, e.g. the lifetime of
the magneto-optical trap, was only measured before fixing the leak. In the following, I

will note if a measurement was done pre- or post-leak.
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Figure 5.1: Lifetime of atoms in the magneto-optical trap. a: Image of the MOT with
a CCD camera. On the right, the aspheric lens can be seen. b: Decay of the fluorescence
of the MOT. A fit to the low-density tail of the distribution results in a lifetime of 140 s.

Lifetime of atoms in a magneto-optical trap

Creating a magneto-optical trap is the first step towards loading single atoms in optical
dipole traps. As background-gas collisions are also present in a MOT, this furthermore
allows us to obtain a first estimation of the trap lifetime. On our room-temperature
experiment, the MOT lifetime is with myor = 20 s similar to the lifetime of the atoms
in the tweezer. In cryogenic experiments, MOT lifetimes in excess of 1 h have been
measured [Willems and Libbrecht, 1995].

Laser system  We operate the oven at approximately 100 °C. The hot atomic
beam of 8"Rb atoms is slowed with a spin-flip Zeeman slower to trap atoms in
a magneto-optical trap in the center of the science chamber. The MOT cooling
light consists of three pairs of counter-propagating beams, with an 1/e* radius of
1.7mm and a power of 1 mW per beam. The light is detuned by —4.5I" from the
F =2 — [’ = 3 transition of the D line of 8"Rb. The laser is frequency-stabilized
on the FF = 2 — F’ = (1,3) cross-over transition using a standard Doppler-free
spectroscopy and detuned with a double-pass acousto-optical modulator (AOM). Since
the atoms have a small chance of decaying into the F' = 1 state due to off-resonant
scattering over F’ = 2, we further use a repumping scheme. It consists of three pairs of
counter-propagating beams on the same path and and with the same size as the cooling
light, but with a power of 0.1 mW per beam. The repump light is frequency-stabilized
on the F' =1 — F’ = 2 transition of the Dy line. We typically apply a magnetic-field

gradient of 6 G/cm using the superconducting coils in the science chamber.
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5.2 Lifetime of single atoms in tweezer arrays

MOT lifetime After loading the MOT for approximately 500 ms, we stop any
further loading of the MOT by switching-off the Zeeman laser light and closing the
gate valve to the oven by hand in about 1 s. The fluorescence decay of the MOT is
measured with a CCD camera, as illustrated in Figure 5.1. The atom number loss

from the trap is typically modelled with:

1

™OT

n — Bn?, (5.1)

n=—

where n is the atom density in the trap that is proportional to the measured fluorescence
light in our case. For high densities, the decay is dominated by two-body collisions
with collisional constant 5. For low atom densities, one-body losses are observed with
rate TI\7[10T which is usually cause by collisions with the background gas. For a more in
depth analysis of collisions in a MOT, see e.g. Ref. [Sesko et al., 1989].

We have furthermore noticed that the decay is also sensitive on the alignment of the
relatively small laser beams. We attribute this to a loss from atoms in the outer region
of the MOT, where beam intensities are not perfectly balanced.

As illustrated in Figure 5.1, we extract « from the exponential decay at low densities
and measure a lifetime of myor = 140 s, which is seven times higher than on our
room-temperature setup. It corresponds to vacuum pressures in the low 1072 mbar
regime, and demonstrates the effect of cryopumping of the 4 K-shields surrounding
the atoms, especially, since the vacuum pressure in the 300 K part of the system is
measured to be in the 1077 mbar regime (as measured by the ion pump current). Note

that this measurement was done before fixing the vacuum leak in the ion pump.

Lifetime of single atoms in tweezer arrays

To create arrays of single atom, we use a 830 nm titanium saphire laser light source
and a spatial light modulator, as explained in Section 2.1.2. With the SLM, we create
arrays of tweezer traps in the focal plane of the aspheric lenses.

To demonstrate the scalability of the new platform, we would like to measure
the vacuum-limited lifetime of an atom in a tweezer, or in other words the survival
probability of a single atom in a tweezer as a function of the hold time (see Fig. 2.10).
In practice, we use a trap array (e.g. a 9 x 9 square array), take two fluorescence
images with varying time separation and analyse for each initially filled trap if it is
still occupied in the second image. To extract a vacuum-limited lifetime from this

measurement, we need to be sure that the losses observed in the second fluorescence
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image are caused entirely by background gas collisions.

In this section, I show that this is not a trivial task, as different mechanisms lead
to atom loss on the long time scales of the lifetime measurement. In the following, I
present our careful studies of theses loss mechanisms.

First, I present a study of heating mechanisms in the tweezer traps. Compared to
our room-temperature setup, this is especially important on the new cryogenic setup,
as heating occurs on a timescale that is shorter than losses due to background collisions
at these low vacuum pressure levels. These heating effects can be suppressed by cooling
the atoms and I will present how we cool down atoms in the traps to approximately
201K using polarization gradient cooling. In this context, I will demonstrate that
further loss mechanisms which occur in the presence of cooling light: correlated losses
due to collisions with Hy atoms at 4 K and another loss mechanism in presence of the
cooling light that is dependent on the power in the repump laser. Then, I show that
on our cryogenic setup, ballistic collisions with atoms from the oven can decrease the
lifetime in the traps, which is why we close the gate valve (automatically) between two
fluorescence images.

We finally find a measurement method that minimizes the effects of all other loss
mechanisms, measuring a trap lifetime exceeding 6000 s, a lower bound on the expected
vacuum-limited lifetime. With this, we have achieved the goal of our cryogenic setup to
increase the lifetime by several orders of magnitude compared to our room-temperature

setup.

5.2.1 Heating mechanisms and polarization gradient cooling

First, we try to measure the lifetime 7 by evaluating the atom number loss between
two fluorescence images separated by a time At. No cooling light is applied in between
the two images. If the losses were purely due to background collisions, one would
expect an exponential decay of the survival probability P(t) of an atom in a single

tweezer:

Poac(t) = exp(—t/T) (5.2)

Figure 5.2 illustrates the experiment with a square array of 9x 9 traps with a spacing
of 10 pum. We find that the decay is not exponential. Note that this measurement was

performed before fixing the leak.
Trap light scattering Although the dipole trap at 830 nm is far red-detuned
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Figure 5.2: Lifetime of an atom in the tweezer without cooling. The survival
probability between two images with time separation At is not a pure exponential decay.
This can be modelled with a linear heating rate due to off-resonant scattering of the

trapping laser light [Darquié, 2005].

from the atomic resonance of Rubidium, atoms in the trap scatter photons with a finite

rate leading to a linear increase of the atom temperature with time. The scattering

1

rate at this wavelength is 'y, = 3257, with a recoil energy of Fiecon = 0.36 nK. We

define the linear heating rate as [Grimm, Weidemiiller, and Ovchinnikov, 2000]:

ge = 2T vecoil'se = 5. 75 nK s™1, (5.3)

Assuming a 3D isotropic harmonic trap, it has been shown ([Darquié, 2005]) that

linear heating leads to a survival probability of:

PsurvivaJ(t) = Pvac(t)Pheat(t)y (54)

with:

Uo UO Ug
Pheat(t) = 1 — — |1 B
heat (£) exp< kp(To + Ozt)) ( * k(1o + at) i ki (To + at)? 55

As can be seen from Figure 5.2, the linear heating rate describes the experimental

data well. With an initial temperature of Ty =20 1K (see below) and a trap depth
of Up/kp =1mK, we find a heating rate of a = (9.9 + 0.7)pKs™! (see Figure 5.2),
comparable with the estimate of equation (5.3).

We conclude that contrary to our room-temperature setup, heating due to off-
resonant scattering of the trapping laser has a significant contribution when measuring
the lifetime in the tweezers. To counteract the heating during this measurement, we

therefore need to apply cooling light in between two images. This could be done either
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Figure 5.3: Release and Recapture measurement. a The trap is switched off for a
certain time, and the atom moves ballistically with a velocity determined by its energy.
After a few us, the trap is switched on again and the atom is lost if its outside of the
trapping volume. b: The loss can be compared to a Monte-Carlo simulation of the classical
atom trajectories given an initial temperature T' (solid lines). On our setup, the initial
temperature after loading the atoms into the tweezers with the MOT lasers is approximately
50 uK (red dots). Through polarization-gradient-cooling, we are able to cool-down the

atoms to approximately 20 pK (blue dots).

continuously, or by a short cooling pulse with a certain repetition rate that resets
the temperature every few seconds. If we want the loss due to heating between two
cooling pulses to be much less than 1% — therefore Pyac(l — Pheat) < 1% — we should
send a cooling pulse with a period of 7" < 10 s.

Temperature of the atoms  Single atoms in tweezers have a well-defined energy
which has been proven to follow a thermal Boltzman distribution from experiment
to experiment [Tuchendler et al., 2008]. Therefore, we can measure the temperature
with the standard release-and-recapture method: We switch the traps off for a short
time (typically a few us) and measure the atom loss as a function of the switch-off
time. When the traps are off, the atoms move ballistically with a velocity determined
by their initial energy. Only when they are still inside of the trap volume after it is
switched on again, they can be recaptured.

We compare the measurement of the atom loss to a Monte-Carlo simulation of the
classical trajectories given an initial temperature (see Figure 5.3). With our MOT

parameters (see Section 5.1), the temperature is approximately 50 nK.

Polarization gradient cooling Even lower temperatures can be reached by
using the polarization-gradient cooling (PGC) technique [Wineland, Dalibard, and
Cohen-Tannoudji, 1992]. The reachable temperature T' of the atoms is kgT ~ Q2 /6
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Figure 5.4: Measurement of the temperature increase. a: Schematic of the measure-
ment principle. The atoms are held in the tweezers for a variable time, after which the
temperature is determined with the release-and-recapture method with 20 ps switch-off
time. b: Evolution of the temperature with the hold time. The shaded region corresponds
to the standard deviation. We fit the data with a linear heating rate (dotted blue), and
find an initial temperature of (22 & 2)pK and a heating rate of (6.3 + 0.8)uyKs~!.

and proportional to the Rabi-frequency 2 of the MOT beams and their detuning
from the F' = 2 — F’ = 3 transition.

On the experiment, we detune the cooling light to —12I" and reduce the power to
6 mW, whereas the repump light stays on resonance. Furthermore, we switch-off the
MOT gradient, and cancel the static magnetic field with compensation coils around
the chamber. With a cooling pulse of 40 ms, we are able to cool-down the atoms from
initially 50 nK to approximately 20 pK, as illustrated in Figure 5.3.

Measuring the heating rate Independent of the indirect determination of
the heating rate from a lifetime measurement (see above), we can measure directly
the temperature increase of the atoms after a certain hold time in the tweezers.
The principle is illustrated in Figure 5.4. We hold the atoms in the tweezer for a
variable time (a few seconds), after which we determine the temperature with the
release-and-recapture method. For the temperature determination, we measure the
atom loss with and without switching-off the traps for 20 ps, and compare them to
Monte-Carlo Simulations with a given temperature (see above). As seen in Figure 5.4b,
we measure a heating rate of approximately 6 nKs~! which is again comparable with
equation (5.3), although significantly lower than the value determined with the indirect
method.

Further heating mechanisms not considered in this analysis could be technical noise

due to laser intensity or pointing noise [Savard, O’Hara, and Thomas, 1997].
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Figure 5.5: Lifetime measurement under cooling.\We observe atom loss under continuous
PGC cooling, leading to a lifetime of Tcont =162 s, whereas under a pulsed PGC condition,
we measure Tpulsed =335 s. In the pulsed condition, we send a short 20 ms cooling pulse
every 10 s. The continuous PGC uses the same parameters (detuning, power). Note that

these measurements have been performed before fixing the vacuum leak.

5.2.2 Cooling methods: pulsed or continuous?

In our new cryogenic setup, the rate at which atoms are lost by background gas
collisions is lower than the heating rates of atoms in the tweezer. Therefore, we need
to cool the atoms during the measurement to estimate the vacuum-limited lifetime in
the traps.

Continuous PGC cooling As described in the last section, we can use polarization-
gradient cooling (PGC) to cool the atoms in the tweezers to 20 uK and mitigate
heating effects during a lifetime measurement. Between the two fluorescence images, we
therefore shine the PGC light (—12I", 6 mW) continuously, as illustrated in Figure 5.5.
We measure a lifetime of 7.,,; = 162 s which is comparable to the MOT lifetime.
However, we observe an atom loss when shining the PGC light which makes this
technique not useful to measure the lifetime. I detail these light-dependent losses in
the next section.

Pulsed PGC cooling To limit the atom loss we experience during continuous
cooling as much as possible, we implement a pulsed PGC scheme. Every 10 s, we reset
the temperature with a 20 ms PGC pulse (see Figure 5.5). With this small duty cycle
(n = 0.2%), the light-dependent losses are minimized, while the losses due to heating
are small. Hence, this is the ideal method to determine the vacuum-limited lifetime.

Using the pulsed cooling method, we measured a lifetime of 335 s before fixing a
leak in our vacuum system. As we shall see later, the lifetime after fixing the leak is

measured to be over 6000 s.
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5.2.3 Light induced processes in the presence of cooling light

Even though the continuous cooling method is not suitable to measure the lifetime of
the atoms, it is interesting to investigate the causes of the observed losses further,
especially as wish not to lose any atoms while shining light, e.g. in imaging conditions.
Although we are still investigating this further in the lab, I highlight our current
observations in the following. Before that, I recall a subtlety of our lifetime measurement
(Fig. 5.5): From the two fluorescence images with varying time delay, we analyse
for each initially occupied trap if it is still filled in the second image. This might be
different from comparing the total number of atoms in the two images, as discussed

below.

Molasses reloading A first reason for losses in continuous PGC conditions might
arise from reloading of atoms into the tweezers from a Rubidium molasses between
the two fluorescence images. If a reloaded atom enters a tweezer that was already
occupied, both atoms will be expelled due to light-assisted collisions. These atoms
could originate from the source, or from background Rubidium gas in the chamber.
Both of these are unlikely however, as we block the atomic beam during the lifetime
measurement with the (motorized) gate valve, and the residual Rb pressure in the 4 K
environment is extremely small. Light incident on the inner cryogenic surfaces of the
chamber have been reported to lead to the desorption of gas [Willems and Libbrecht,
1995], but mostly Helium, and the small MOT beams are not significantly scattered

inside of the chamber.

During the measurement of the lifetime, we never see the atom number increasing
which would be the sign of a reloading mechanism from a molasses. We therefore

exclude this possibility as a cause for the observed losses.

Collisions with cold background gas At 4 K, the background gas consists
mainly of helium and hydrogen, as all other species are well frozen-out by the cryogenic
surfaces. As hydrogen is very light, the energy gained by a Rubidium atom colliding
with a hydrogen atom at 4K is small: The thermal velocity of Hy at 4 K is 220ms™!,
approximately 9 times smaller than at room-temperature. As a result, the momentum
transfer to Rubidium atoms after collisions is reduced and in some cases so small
that the Rubidium atom is only heated, but not lost from the trap. Next to low
pressures, the decreased Rubidium loss rate from the trap is an additional advantage
of a cryogenic platform. A similar observation has been made with cryogenic ion traps

[Pagano et al., 2018].

However, specific to our platform, these collisions can influence our lifetime mea-
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Figure 5.6: Recapture and correlated losses. a: When shining the imaging light
continuously, we measure recapture (see a, left) and correlated loss events (see a, right). b:
Experimental fluorescence traces showing the evolution of the trap occupancy as a function
of time. Case (i) recapture events are highlighted in red, whereas case (ii) correlated losses
are highlighted in white. We count 6 recapture events and 1 correlated loss event, next to

15 loss events without recapture. The figure is taken from [Schymik et al., 2021].

surement, as detailed in the following. After a head-on collision (worst case) between a
Hy atom, and a Rubidium atom initially at rest, the Rubidium atom gains a velocity
of only approximately 10 ms™!. This is large enough to expel it from the trap but
can be still below the capture-range of a typical Rubidium MOT. Therefore, atoms
could be recaptured into a tweezer trap after being previously expelled by a collision.
Recaptured Rubidium atoms can (i) enter an unfilled trap, leading to an unchanged
total atom number, or (ii) enter an already occupied trap, leading to a secondary loss
induced by light-assisted collisions and a total atom number decrease of two.

We illustrate these two cases in an experiment (see Figure 5.6), in which we take
images in the video mode of the camera, in which images of 50 ms are taken in fast
succession (with a dead time of approximately 20 ms). The cooling light is always on, in
imaging conditions with a detuning of —4.5I"; to be able to obtain bright fluorescence
images. After loading a MOT, we close the valve and cut the MOT beams briefly to
disperse the atomic cloud. We then watch the atom decay live on the camera.

In Figure 5.6, we see recapture events with constant total atom number (the atom
is lost in one and immediately appears in another trap). Furthermore, we observe
correlated losses, where two atoms are lost at the same time, because one lost atom
enters an already occupied trap. In this experiment, a fraction of Pecap =~ 0.46 atoms

are recaptured, as we count 6 recapture and one correlated loss event, next to 15 times
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that an atom is lost without being recaptured. Therefore, a significant fraction of
atoms that are lost due to background gas collisions are recaptured when the MOT
light is on. This is consistent with the fact that a significant amount of background
collisions is with slow hydrogen molecules. Note that the statistics of the experiment in
Figure 5.6 does not allow us to make a precise prediction of the recapture probability
Piecap- Furthermore it could, e.g., depend on the detuning of the cooling light, and the

distance between traps.

The effect of the observed recapture events however has a minor influence on
the lifetime measurement, as illustrated in Figure 5.7. As previously mentioned, we
distinguish between atoms that hop to another unfilled trap (case (i)) and atoms
that hop to another filled trap (case (ii)), leading to a correlated loss of two atoms.
Compared to the situation in which all background collisions lead to an atom loss
(Precap = 0), correlated losses (case (ii)) lead to an increased atom loss, whereas case
(i) events decrease the atom loss and can in fact increase the measured lifetime, as
an atom can re-enter a trap where an atom previously has been lost. Both of the
cases are equally likely when half of the traps are filled, e.g. at the beginning of the
measurement. However, as we start to lose atoms due to background collisions, case (i)
is more probable than case (ii) as more than half of the number of traps are unfilled.
As a result, we measure an initially bigger atom loss (compared to Precap = 0), but
for longer times, the atom loss is smaller and we measure an extended lifetime (see
Fig. 5.7). Therefore, the influence of secondary losses on the lifetime measurement

depends on the considered holding times.

On the experiment, we usually measured holding times smaller than the lifetime
(e.g. up to 0.6 lifetimes in Figure 5.5), so correlated losses could play a role. As
illustrated in Figure 5.7b, the measured lifetime is maximally reduced to around 90%
for a recapture probability of Pecap = 0.46. If long times are considered, the case (i)

events lead to an increase in measured lifetime.

The lifetime measured in continuous cooling conditions in Figure 5.5 is however
reduced by approximately 50% compared to the pulsed cooling condition. Furthermore,
the experimental situation is not comparable, as the detuning of the cooling light and
therefore the capture velocity of the molasses is different. In Figure 5.5, the light is
further detuned (—12I") compared to the —4.5I" in Figure 5.6. Therefore, we would
expect the collisions to play an even smaller role in the lifetime measurement with
continuous PGC conditions. We conclude that the discrepancy between continuous and
pulsed PGC conditions can therefore not be explained with the effect of low-energy

collisions.
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Figure 5.7: Influence of cold collisions on the measured lifetime. a: Monte-Carlo
simulation of the measured recapture probability in the initially filled traps (initial filling
50%). At short times, correlated losses (case (ii)) lead to a smaller recapture probability
compared to the no-collision case (blue line). However, at longer times, the measured
lifetime is longer due to case (i) events. b: If we consider only times up to 0.6 lifetimes,

the measured lifetime could be decreased to approximately 90%, if Precap =~ 0.46 (green).

Loss during imaging We observe that the total number of atoms in Figure 5.6
decays much faster than expected from a lifetime of 330 s. As explained in the previous
section, this cannot be caused by recapture events. As we observe this decay only in
the presence of light, we conclude that we lose a fraction of the atoms, when shining
light in imaging conditions. The decay of the total number of atoms in Figure 5.6
agrees roughly with a loss rate of B, =0.04s71. This would correspond to a survival
probability of approximately Piurvivar =0.998 for a 50 ms image. Note that the statistics
of Figure 5.6 are not enough to conclude on the imaging survival probability with high
precision. However, similar numbers for the loss between two consecutive images have
been observed on the experiment and this is a topic of further investigation.

A similar experiment is illustrated in Figure 5.8. Here, we take an image every
5 seconds, in between two short PGC pulses. This measurement was taken after
fixing the vacuum leak. Initially, this was thought to be an alternative, faster way of
estimating the vacuum-limited lifetime, because collecting enough statistics with the
usual method takes about 15 hours for the measured lifetime of 100 minutes. However,
we again measure a reduced lifetime, due to a finite imaging survival probability.

Similar to before, we observe recapture and correlated loss events, however much
rarer in this measurement, as the light is off most of the time. They can be observed
by eye in the fluorescence traces in Fig. 5.8a, but also when considering the difference
between the decay of the total atom number (that includes recaptured atoms) and the

decay of the initial population (that includes recaptured atoms only if the atom is
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Figure 5.8: Alternative lifetime measurement a: Experimental fluorescence traces,
showing the trap occupancy for each trap as a function of time. b: Experimental sequence
leading to the fluorescence traces in (a). An image is taken every 5 s, with PGC pulses
in between to cool the atom. The sequence is repeated 1045 times. c: The population
decay, regarding only initially filled traps (orange), or the total atom number (blue). It fits
with a lifetime of 100 min only when an image survival probability of Pyyvival =0.998 is
considered. c: Difference in the total atom number and the population in the initially filled

traps, consisting of a part of the case (i) recapture events.

recaptured in an initial trap), as illustrated in Figure 5.8¢c. In one cycle (see Fig. 5.8)b),
the probability to have such an event is Pease (i)/cycle =2 1 X 1074,

The decay of the population of the initially filled traps is much faster than the
later measured vacuum-limited lifetime of 100 minutes. We explain it, by taking into

account an additional loss of P /cycle:

Psurvival (t) = PNcyCIe eXp(_NcycleAtcycle/T> . (56)

— " loss/cycle

We find that Poss/eycle ™~ 2 X 1073, corresponding to an survival probability of
Piurvivar =0.998 for a 50 ms image, a similar number to the experiment before.

The detailed analysis of the imaging survival probability is beyond the scope of
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Figure 5.9: Influence of the Repump intensity on the lifetime a: Three different
lifetime measurements with continuous PGC conditions on a 9 x 9 array with open oven
valve (red, blue, green), a measurement with continuous PGC condition on a 6 x 6 array
with closed oven valve and the black dotted line represents the measured lifetime of
100 min (pulsed PGC, closed valve). b: Demonstration of the extracted lifetime as a

function of the repump intensity. c: Loss rate for the PGC beams, assuming that for the

100 min lifetime measurement in pulsed conditions, the losses are negligible.

this chapter. However, it is a current topic of research in our group, as a high image
survival probability is crucial for large defect-free arrays. Considering the survival
probability for a 50 ms image, estimated here to be P,yvivar =0.998 , a 500-atom array
can be prepared with a maximum probability of Psoy = 0.998°° ~ 0.37. Therefore
it is important to maximise the image survival probability, e.g. by investigating the

influence of trap depth, detuning, intensity of the cooling and repump light, as was

also attempted in Ref. [Martinez-Dorantes et al., 2018].

Dependence on repumper power
PGC conditions correlates to the power in the repump beam. This observation is

illustrated in Figure 5.9 where we compare measurements of the lifetime in different
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conditions. For all the measurements, we utilise the continuous PGC conditions, with
6 cooling beams (F' = 2 — F’ = 3 transition of the Dy line) detuned at —10.5I" with
an overall intensity of 6/.o0ling = 11 mWem ™!, and 6 repump beams (F =1 — F' =2
transition of the D; line) with varying intensity. The measured lifetime is higher for
smaller intensities in the repumper. Most of these measurements (red,blue,green)
were done with an open gate valve during the hold time, whereas the highest lifetime
(yellow) was measured with a closed gate valve. I detail the influence of closing the
gate valve in the next section.

This dependency of the lifetime on the repumper power can explain why the pulsed
cooling scheme is favorable for measuring the lifetime, as the repump power over the
whole measurement is the comparatively low considering its small duty cycle. At the

time of writing, we do not have an explanation of the physical processes involved.

5.2.4 Ballistic collisions with atoms from the oven

We find that the measured lifetime of the atoms in the tweezers correlates with the
temperature of the oven, when the gate valve rests open during the measurement:
for increasing temperatures of the oven, the lifetime decreases due to collisions with
atoms from the oven region.

To demonstrate this, we measure the lifetime in pulsed cooling conditions (see
above) for different oven temperatures, as illustrated in Figure 5.10. With increasing
oven temperature, the lifetime is measured to be shorter. Furthermore, we find that if
we block the atomic beam with the gate vale during the measurement of the lifetime,
the measured lifetime does not change with the oven temperature. This indicates
collisional losses with atoms from the oven region, which is in a direct line of sight of
the tweezers.

The measured survival probability for a lifetime measurement is:

Psurvival = eXP(_t/T) ) (57)

with a total loss rate 77!, depending on the vacuum lifetime 7., and a collisional rate

Qleollision -

-1 —1
T = Tvac + aCOlliSiOn . (58)

The loss rate 771 is illustrated in Figure 5.10b and depends on the temperature of the
oven. For temperatures below 340 K, the loss rate due to the lifetime (in this case

Tyac = 200 s) dominates, whereas for higher oven temperatures, the collisions have a
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Figure 5.10: Measured influence of the oven temperature on the lifetime. a:
Three exemplary lifetime measurements with different oven temperatures. With increasing
oven temperature the lifetime is shorter, indicating collisional losses with atoms from the
oven. b: From a measurement at 130 s hold time (see (a)), we find a loss rate 71 that
correlates with the oven temperature. Above temperatures of 340 K the loss rate increases
significantly. c: Collisional rate aoision as a function of the oven Rubidium vapor density.

The linear relationship indicates a dependency on the flux of the oven.

significant effect.

The rate of collisions between atoms from the oven and atoms in the tweezer should
depend on the oven flux @, and the collisional cross section o and therefore be
proportional to the Rubidium vapor density ngy in the oven:

Qeollision = Uq)oven ~ YNRb (59)

In Figure 5.10c, this dependency is illustrated, using the Rubidium vapor pressure
data from [Steck]. We find a scattering rate v = (7.1 £ 0.2) x 10722 m®s~'. This result
is comparable to an order of magnitude estimation, regarding the geometry of our
setup and lets us infer a Rubidium-Rubidium collisional cross section, as is discussed

in Appendix B.
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Figure 5.11: Expected influence of the oven flux for a lifetime of 6000 s. Using the
estimated scattering rate 7y (see Fig. 5.10) together with equations 5.7 — 5.9, we analyse
the influence of the oven flux for a lifetime of 6000 s. a: Comparison of the loss rate 771
of Figure 5.10 (blue) with an estimation for the loss rate for a lifetime of 6000 s (red)
based on ~. b: With a lifetime of over 6000 s, the influence of collisions with atoms from

the oven is non-negligible, even for low temperatures.

stepper motor

gate valve Zeeman slower

Figure 5.12: Motorized gate valve. The gate valve is opened or closed using a stepper
motor that is controlled with an Arduino. We close the valve in approximately 1 s during

the measurement of the lifetime.

As this data was taken with a comparatively low lifetime, I illustrate the estimated
effect of the collisions on the later measured lifetime of 6000 s in Figure 5.11. Here, it
is evident that aconision 1S comparable to 7, !

. even at low oven temperatures, limiting
the lifetime.

In summary, we have shown that collisions with atoms from the oven region are a
loss mechanism for atoms in the tweezers. To benefit from long lifetimes, we therefore

work at oven temperatures below 340 K. Additionally, we built a computer controllable
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Figure 5.13: Comparison of measured lifetimes. In our final cryogenic setup, we
measure a lifetime of approximately 6300 s, a 300-fold increase to the lifetime on our

room-temperature setup. The values are corrected for imaging loss.

actuator of the gate valve (see Figure 5.12), that closes and opens the valve during
the measurement of the lifetime. Using this homebuilt actuator, we ensure that the
atomic beam is blocked during the measurement, and collisions do not influence our

measurement regardless of the oven temperature.

Since it takes approximately one second to close the valve, this is however not suited
for experiments with high repetition rate. Therefore, we plan to include a computer
controllable beam flag in a future setup that can block the atomic beam fast and
therefore still allow a high experimental repetition rate of 1-2 Hz. Alternatively, a
2D-MOT instead of a Zeeman slower in the atomic source could be a solution to

decrease the influence of the flux of atoms from the oven.

5.2.5 Measurement of a lifetime of over 6000 s

I have shown that a measurement of the vacuum-limited lifetime is not a trivial task.
Atoms are not only lost by background gas collisions, but further loss mechanisms have
to be considered in order to asses the true vacuum-limited lifetime. First, collisions from
the oven can cause atom losses. To minimize this effect, we therefore operate at low
oven temperatures of 30°C, and additionally close the gate valve during measurement
to cut the atomic beam. Second, the atoms are heated due to off-resonant scattering
of trap light which can cause atom loss. To keep these losses to a minimum, we
employ PGC cooling. Third, as we observe a loss mechanism when the PGC light is
continuously on, we try to minimize the duty cycle of the cooling light. We opt for a

relatively short PGC cooling pulse of 20 ms every 10 s. Finally, in imaging conditions,
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5.3 Conclusion

we have a finite survival probability of approximately Piuvivar =0.998 for a 50 ms. In
the following measurement, we therefore correct the values by the imaging loss, by
dividing all measured survival probabilities by the imaging loss.

After fixing the a leak in the vacuum system, we use the described optimal measuring
conditions, and perform another lifetime measurement on a 9 x 9 tweezer array. The
average lifetime in the array is 7 = (6260 £ 350) s. Note that even without correcting
for the imaging loss, the lifetime is above 6000 s. In Figure 5.13, we compare the
measurements on different setups. The cryogenic lifetime estimate is approximately a
factor 300 longer than on our room-temperature setup. As the lifetime is a major
limitation on our room-temperature setup for the scalability of the platform, the
extended lifetime in the new cryogenic setup opens up the path towards large-scale

tweezer arrays.

Conclusion

In this chapter, we have estimated the vacuum-limited lifetime of atoms at 4 K in our
novel cryogenic tweezer platform. We measure a lifetime of approximately 6300 s,
a 300-fold improvement over our room-temperature. The measured lifetime gives a
lower-bound to the vacuum-limited lifetime — although we believe it to be fairly close
— as multiple loss mechanisms complicate the measurement. This very promising
result opens the path to scale-up the tweezer platform for future large-scale quantum
simulation.

I have analysed in detail different loss mechanisms, such as the influence of collisions
from the oven region, heating due to off-resonant scattering of the trap laser light and
losses due to imaging light. Using this information, we have found a measurement
protocol that is the least influenced by the different losses and allowed us finally to
measure a lifetime of approximately 6300 s.

We have found that further improvements are important for scaling up the number of
atoms on our platform. First, we should analyse in more detail the survival probability
of an atom during a fluorescence image. With a lifetime of over 6000 s, the imaging losses
are dominant in the experimental cycle. As an example, in between two fluorescence
images with a 200 ms delay, the expected loss of one atom due to the vacuum limited
lifetime is approximately Possvac 2~ 3 X 107°, compared to an expected imaging loss
Of Ploss image ™~ 2 X 1073, It would be essential to decrease the imaging loss, e.g. by
choosing a right parameter set of light detuning, intensity and trap depth. Note that

the loss due to the lifetime on our room-temperature is Fogg vac ~ 1 X 1072, an order
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of magnitude higher than the imaging loss.

Second, collisions with atoms from the oven have a significant effect on the lifetime
of the atoms in the tweezer. For the lifetime measurements, we have found a way
to mitigate this effect, by decreasing the oven temperature to 30 °C, and blocking
the atomic beam by operating the gate valve. This procedure however does not
allow a high repetition rates of the experiment, as the MOT loading time is reduced
drastically which such a low oven temperature, and the operation of the gate valve
takes approximately 1 s. Therefore, in a future setup, we should include an atomic
beam shutter that operates at high repetition rate.

An interesting further measurement could be the one of the lifetime for different
temperatures of the cryostat. This could give valuable insight on the pressures at
different temperatures, and whether it would be possible to work at higher temperatures
with similarly long lifetimes.

To improve the lifetime even further, the ultimate step would be to have a bakeable
cryogenic system. This is technically more difficult, as it requires a removable PTR.
Instead of physical connections using copper braids between the PTR head and the
heatshields and coldplate, this requires the use of radiators in a chamber filled with
buffer gas. An intermediate improvement would also be to improve the vacuum in the
non-cryogenic part of the system, e.g. the atomic source part, by the use of differential

pumping stages.
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As we have seen in the previous chapters, the vacuum-limited lifetime of a single
atom in a tweezer is a major limitation for scaling up the number of atoms on our
room-temperature quantum simulation platform. During my PhD, we lifted this
limitation with a new cryogenic setup in which the single atom lifetime is over 6000 s,
an approximately 300-fold increase over our room-temperature setup. Together with
the improved algorithmic framework for the assembly process (see Chapter 3), we are
currently working on creating large arrays of atoms. This chapter describes the work
in progress to assemble up to 500 atoms.

First, I describe the current state of the assembly process on our setup and
demonstrate that we can assemble defect-free arrays of 231 atoms, however with small
success probability. Even with the extended lifetime on our cryogenic setup, other
imperfections currently prevent us from assembling larger arrays with high fidelity.
I have identified these technical imperfections in previous chapters: In Chapter 3,
we have seen that the imperfect trap depth equalization has a major impact on the
assembly efficiency. Furthermore, the single move efficiency is not the same, considering
a small array with extent of 10pm (0.993), or a big array with extent 130 pm (0.97).
Finally, in Chapter 5, we have identified that losses during imaging have an impact on
the overall efficiency to have a defect-free shot. Once we have solved these technical
imperfections, we can fully benefit from the extended atom lifetime and assemble large

arrays with high fidelities.
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Figure 6.1: Assembly of a 231-atom array. a: Exemplary fluorescence images of the
initial array and the array after 2 assembly processes. The scale bar denotes 10 ym. b: The
probability of a trap site to be filled in the last (assembled) fluorescence image. We can
see that the overall success probability of the assembly process (found as the product of
all filling probabilities) is mainly limited by a few traps at the border of the array with a
significantly lower filling probability.

In this chapter, I detail the current progress on these topics at the time of writing.
This mainly involves work on the trap depth equalization which we have identified as
the currently strongest limitation. As both the single move efficiency and the imaging
survival probability depend on the trap depth, a small spread in trap depths is also
crucial to evaluate these imperfections. I start by detailing how the current method
[Nogrette et al., 2014] does not produce reliable results in the limit of trap arrays with
an extent larger than the field-of-view of the lenses. Next, I analyse whether we can
use the fluorescence signal of the atoms to estimate the trap depths and I propose a

new equalisation scheme involving this analysis.

Assembling large arrays on the cryogenic setup

On the new experimental setup, we implemented an atom assembler relying on the
same experimental techniques as on our room-temperature setup (see Chapter 2.1.3
for details). This involves the use of a computer controlled 2D-acousto-optical deflector
(2D-AOD) that can transport an atom between reservoir and target traps. To find
the sequence of moves to assemble the user-defined target array, we use the new
algorithmic framework described in Chapter 3.

Figure 6.1 illustrates the current state of the atom assembler. We are able to

assemble atom arrays of over 230 atoms. However, the success probability of obtaining
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a defect-free is relatively low: the probability to assemble the array at hand with at
most one defect is approximately 12%. Similar to the analysis in Chapter 3, we find
that this is mainly due to a few traps that have a significantly lower filling probability
(see Figure 6.1b), coinciding with a smaller trap depth. We conclude that we need to
find a better trap depth equalization method before we can increase the number of

atoms further to the regime of 500 atoms.

Rethinking the trap depth equalization

In Chapter 2.1.2, I illustrated a trap depth equalization method based on the trap
light [Nogrette et al., 2014]. Using the second aspheric lens and an imaging system,
we image the light intensity distribution in the atomic plane (the focal plane of the
aspheric lens) onto a CCD camera. The peak intensity of a trap on the CCD camera
image gives us an estimation of the trap depth in the focal plane of the lenses. With
this information, we then equalize the trap depths of an array using an iterative

algorithm, involving the spatial-light modulator and the CCD camera.

In the past, this method worked reasonably well on our experiment. However, the
trap arrays used for quantum simulation consisted of up to around 40 atoms and the
spatial extent was usually below 70 pm. Upon increasing the atom number during the
time of my PhD we have noticed that for larger arrays, e.g. the 196 atom array with

an extent of 130 pm described in Chapter 3, the method did not work sufficiently well.

In this section, I detail that for large arrays, compared to the field-of-view (FOV) of
the lens, the peak intensity of a trap on the CCD camera is not a reliable estimate for
the trap depth in the focal plane of the aspheric lenses. We therefore need to find
a new equalization scheme based on an in situ estimation of the trap depth. Other
groups have measured the AC-Stark shift of each trap to estimate the trap depth
for an equalization procedure ([Endres et al., 2016; Jenkins et al., 2021; Singh et al.,
2021]). Here, I analyse whether we can find an alternative and potentially less involved
estimation using the telegraphic fluorescence trace during the loading of traps. Finally,

I will suggest a new method using this estimate.
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Figure 6.2: Fluorescence traces at different laser powers. The wavelength in this
example is 815 nm. a: The loading probability and fluorescence step size (difference between
maximum and minimum fluorescence count) of a trap as a function of the average laser
power (total laser power divided by the number of traps) exhibit characteristic features. b:
Examples of the fluorescence trace at different powers. The loading probability rises from
zero to 50-60%. As the light shift decreases with decreasing trap power, the fluorescence
step is higher for lower trap powers. However, below a certain threshold the atom cannot
be trapped for the full duration of an image and the fluorescence step drops to the noise

level.

6.2.1 The problem of a trap depth equalization method based on a trap
light analysis

As described in Chapter 2, we load cold atoms from a MOT into our micron-sized
tweezers and rely on light-assisted-collision processes to isolate single atoms. Choosing
the right parameters for the trap depth leads to either one or zero atoms being in the
trap at any time with a loading probability of around 50-60%.

In Figure 6.2, I illustrate the dependence of the loading probability of a single trap
on the laser power and therefore on the trap depth. Above a certain power threshold,
we achieve a constant loading of approximately 50-60% (panel 3 and 4). If the power
is too low, we do not trap any atoms (panel 1), but, for a range of powers below the
threshold, the trap depth is still large enough to occasionally trap an atom (panel 2).
The atom is however quickly heated out of the trap, leading to a loading probability
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below 50% and a spiky fluorescence signal.

As we increase the power in the traps, we light-shift the atoms with respect to
the atomic resonance. As a result, the scattering rate decreases with increasing trap
power. For the fluorescence signal, the decreased scattering rate leads to a smaller
fluorescence step, i.e. the difference in the two fluorescence levels of the telegraphic
trace. In the limit of high trap powers, the fluorescence step can be on the same order
as the background noise on the camera (see Fig. 6.2 panel 4). This leads to an increase
of detection errors: the possibility to measure an atom, even though there is none, or

vice versa.

The trap depth equalization is crucial for our platform for two main criteria: First,
we would like to have a loading probability around 50% at each trap site. Second, we
would like the highest possible fluorescence step size to decrease detection errors. A
large spread in trap depths would make it impossible to fulfil these two criteria on all
trap sites. As the current equalization method is not perfect, we often have to accept
a small fluorescence step size for some traps to have at least 50% loading probability

on all trap sites.

To fulfil the mentioned two criteria, a reliable method to determine the depth of
each trap is needed. In the past, this was deduced by the peak intensity of a trap on
the CCD camera image. As previously mentioned, the peak intensity is only a reliable
estimate for the trap depth for arrays with a small extent compared to the FOV of the
lens. This is illustrated in Figure 6.3, where the intensity distribution, as measured on
the CCD camera, is compared to the loading probability on each trap site. In this
example, the intensities are equal with a standard deviation of approximately 8% over
the full array. In contrast, the loading probability of each trap, as calculated from the
fluorescence signal, is 50% only in an area comparable to the FOV of the lens, while it
decreases to zero on the borders of the array. As the loading probability depends on
the trap depth (see Figure 6.2), this comparison suggests that the traph depths do
not correlate with the measured intensities over the full array. This is most likely
caused by optical aberrations, such as coma that are compensated by the symmetry
of the two aspheric lenses in f-f configuration. Therefore, we do not measure these
aberrations on the CCD camera (after the second aspheric lens), although they are
present in the focal plane of the aspheric lens.

As a consequence, we are in need of a new, reliable estimation method for the trap
depth. Preferably, this method would be in situ, meaning it uses the atomic signal
itself to deduce the trap depth. This could be done for example by measuring the

trapping frequencies of each trap. Assuming the waist of each trap is the same, one

119



Chapter 6: Towards Larger Atom Arrays

Position y (um)

Occurences

Figure 6.3: Intensity distribution and loading probability on a 15x15 array. a: The
intensity distribution over the array is homogenous and its distribution has a standard devi-
ation of 8%. b: The distribution of the loading probability over the array is inhomogeneous:
an area with a diameter of approximately 70 pm on the left has a similar loading probability
of 50%, while on the border of the array, the traps are barely loaded. The histogram shows
a bimodal distribution, with two peaks around zero and 60%. We conclude from this

comparison that the intensity distribution measured on the CCD camera is not a valid
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could estimate the relative trap depth. Similarly, one could measure the AC Stark
shift (e.g. [Endres et al., 2016; Jenkins et al., 2021; Singh et al., 2021]).

A different method could be to find an equalization method using the loading
probability and/or the fluorescence step size of each trap, similar to Figure 6.2, as the
goals (a 50% loading, and a large fluorescence step size) can be described with these

two quantities. This could be easier and faster to measure than the trap frequencies or

the Stark shift.
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6.2.2 Inferring the trap depth from the fluorescence signal

To evaluate whether we can use the fluorescence trace as a valuable tool to estimate
the trap depth and equalize the trap array, we have to analyse it further. In the
following, I discuss whether its shape is a universal feature and to which extent it
could prove as a valid estimate.

Loading probability From Figure 6.2a, we find that the loading probability is
only sensitive to the trap power for small trap powers. Above, it is constantly 50-60%,
even for increasing power. Therefore, the loading probability alone is not a useful
quantity to estimate the trap depth.

The first iteration of an in situ method that I implemented on our room-temperature
setup (see Chapter 3.3) used the loading probability as weights. For the method to
work well, all traps had to have loading probabilities of 0 < Boading < 50%. Since
this is rarely the case for large arrays at the beginning, this method required many
iterations and, while drastically improving the result obtained by a simple intensity
equalisation, was still imperfect.

The functional form of the loading probability as a function of the power in the
trap experiences a sharp rise which is quite sensitive to the trap power (Fig. 6.2a).
With enough data points, one can fit an error function to the loading probability

Pioading as a function of the average trap power piap:

Hoading - O~5Pmax [erf<c<ptrap - phalf)) + 1} . (61)

Here, the maximal loading rate (50-60%) is denoted with Py,.x. Furthermore the
half-way rise power is denoted as ppai, and ¢ is a measure for the sharpness of the rise.
We fit equation (6.1) to all fluorescence traces on the 15 x 15 array (same as in
Figure 6.3). We then find that it is possible to overlay all the traces by normalising the
power of each trace with its half-way rise power pp.y, as illustrated in Figure 6.4a,b.
As all traces collapse onto one curve when normalizing the power, we conclude that
the shape is universal and that py. is an estimate for the trap depth U:
Prats _ Ui (6.2)
Dhalt U
This indicates that the sharpness of the rise (parameter ¢) is similar for most of the
traps, as can be verified in Figure 6.4d. We believe that the sharpness parameter c is
related to the spotsize of the trap, even though we do not measure a difference in spot

size with the CCD camera. This could however be related to the symmetry of the f-f

121



Chapter 6: Towards Larger Atom Arrays

Loading probability
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Figure 6.4: Overlaying all loading probabilities. a: For each trap in a 15x15 array, we
record the loading probability for 8 different powers. Each of the points is averaged for
at least 60 s, with a relatively low loading rate into the tweezer of about 2 atoms per
second (compare e.g. Figure 6.2). b: Overlay of all datapoints, by fitting the traces with
equation 6.1 and normalising the power by the half-way power. c: Distribution of the fit
parameter half-way power pyair reveals a large spread over the array, for the corresponding
intensity distribution on the CCD camera, see Fig. 6.3. d: Distribution of the sharpness fit
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configuration (see above). Furthermore, we observe that the sharpness is higher in
the top left than the bottom of the array. As it is not radially symetric, it indicates

that the trapping laser is not perfectly on the optical axis of the aspheric lens. In the

future, this could prove as a useful alignment tool.

From the recorded traces, it is possible to determine the half-way power py.;r of each
trap site with a relative precision of approximately 1%. Here, I recorded each trace
for at least 60 s at eight specific trap power values, therefore the measurement took
approximately 10 minutes. While this is comparatively long compared to imaging

the trap intensities with the CCD camera, we might only have to do it once in the
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Figure 6.5: Overlaying the fluorescence step sizes. a: For each trap in a 15x15 array,
we record the maximum fluorescence step size for 8 different powers. Each of the points is
averaged for at least 60 s, with a relatively low loading rate into the tweezer of about 2
atoms per second (compare e.g. Figure 6.2). b: Overlay of all datapoints, by using phat
previously determined by the loading probability. The spread in the maximum fluorescence

count indicates that the collection efficiency is not the same for all traps.

equalisation scheme, as I will discuss in the next section. Note that it is crucial for
the loading rate of atoms from the MOT into the tweezer to stay constant. If the
loading rate changes during measurement, the sharpness of the rise of the loading
probability in the intermediate regime will change which makes the determination of
Puarr less precise. It should however not pose a big issue for the loading rate to be
approximately constant over a duration of 10 minutes.

Fluorescence step size From Figure 6.2, we find that the fluorescence step size
has a maximum and is not a monotonous function of the trap power. This is explained
by two competing effects: First, the light-shift is smaller for a decreasing trap power,
leading to a bigger fluorescence step for low powers. Second, we need a finite trap
power to be able to trap the atom that is dependent on the temperature of the atom.
Below that power, the step size decreases to the noise level. In an intermediate regime,
the atom is captured for less than the duration of a fluorescence image, and the
fluorescence step size increases with increasing trap depth.

Using the fit parameter of the half-way power py.r from the analysis of the loading
probabilities, we can rescale the fluorescence traces, as illustrated in Figure 6.5. Again,
we find that we can overlay the traces reasonably well, however the spread in the peak
fluorescence step is significant. This can be explained by the fact that the amount of
collected fluorescence light also depends on the position. Off the axis of the aspheric
lens, we collect a significantly smaller number of photons.

We note therefore that the number of counts Neounts; Obtained with the fluorescence

camera from an atom in a tweezer trap i depends on (i) the number of photons
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Nphotons,i emitted by the atom, (ii) the position dependent collection efficiency 7; and

(iii) the conversion € from photons to digital counts in the camera:

Ncounts,i = 6771']\[photons,i . (63)

The number of scattered photons is given by the scattering rate Ry ; and the
duration of a fluorescence image (here timage = 50ms). For a two-level atom, the steady

state total photon scattering rate is given by

F> I/ Lt

N, otons,i Rsci: o
photons,i X Llsc, <2 1+ I/ 1 + 4(A;/T)?

(6.4)

Here, T" is the natural decay rate from the excited state, Iy, the saturation intensity,
I the intensity of the laser and A the detuning of the laser from the atomic resonance.
The detuning A; at each trap ¢ is given by the detuning of the MOT laser beams
dvor and the light-shift of the ground and excited state Oygns snirei, With A; =
OMOT + Otight shift,i- 1he light-shift depends on the trap depth of each trap and is

therefore proportional to the average laser power per trap:

511ght shift,s = 5: Ptrap (6-5)

with 9] the light-shift per mW of average trap power.
In Figure 6.6a, the fluorescence step is fitted with equations (6.3),(6.4), having

the conversion factor Ciot = €nitimage and the light shift per mW of average trap
power ¢ as free parameters. We see that the decrease of the fluorescence step is well
captured by the effect of reduced scattering rate. Similar to the analysis of the loading
probability, we try to overlay all the traces onto one curve in Figure 6.6c. As the trace
collapse onto one curve, the light shift per mW ¢ therefore is a good estimate for the
trap depth. However, not all the traces had enough data points above 50% loading
probability (compare e.g. Fig. 6.4), and therefore we could not determine §; for all

traps, as can be seen in Figure 6.6d.

In conclusion, we find that the decrease of the fluorescence step with increasing power
can indeed be described with a light-shift from the atomic resonance. Furthermore, we
can estimate the trap depth from the decrease of the fluorescence step with increasing
trap power. However, from the given data, we could not estimate the trap depth for
all traps. Therefore, the fluorescence step size should be recorded for more values of
the power. The estimation of the absolute value of the light shift with our method is

not very precise, because (i) most of the traces do not have sufficient data points to
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Figure 6.6: Overlaying the fluorescence step sizes. a: The fluorescence step size for a
trap (blue points) is proportional to the scattering rate. The decrease with increasing power
is caused by the light-shift. The red dotted line is a fit to the data using the scattering
rate (eq. (6.4)). b: Example of histogram of a fluorescence trace (not from this data set)
that allows us to extract the fluorescence step. The error on the fluorescence step is given
by the gaussian distribution (see text). c: We can overlay all data points by rescaling the
axis with the fit parameters. d: The light shift per mW of laser power §* for all traps, as

obtained from the fits. For a few shallow traps, not enough data points at high power were
available to fit equation (6.4).

fit, (ii) the errors for the fluorescence step are for us on the order of 10% (see 6.6b),
mainly given by the photon-shot noise and conversion processes in the camera (see
e.g. Ref. [Alberti et al., 2016]). Furthermore, the precision could be improved with a
calibration of the camera, to be able to extract the number of photons (see e.g. Ref.
[Bergschneider et al., 2018]) and fix the parameter C.

Comparing both the analysis of the fluorescence step and of the loading probability,
the latter seems preferable for a trap equalization method. From the given data, the
fitting procedure of the loading probability lead to a smaller uncertainty for the trap
depth estimate pp.;. Furthermore, less data points for lower powers can be taken

compared to the procedure for the fluorescence step that did not work for all traps.
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6.2.3 A new proposed scheme

As we have seen in the previous section, the loading probability as a function of the
trap power allows us to compare the trap depths between traps with relatively high
precision. Therefore, we should be able to use the determined half-way power ppa,; of
each trap ¢ for a trap depth equalization scheme. In the following, I propose two new
schemes to equalize the trap depths which are illustrated in Figure 6.7.

Iterative Scheme A first scheme might use the half-way power pua/Ppas to
substitute the previously measured peak intensity I;/1. Then the equalization scheme
is similar to the method described in Chapter 2.1.2, as illustrated in Figure 6.7 .
The advantage of this method is that it entirely relies on the EMCCD camera that
records the fluorescence traces and the SLM. The CCD camera is not needed any
more. The disadvantage however is the comparatively long duration of the equalisation
scheme. In each iteration, we have to record the fluorescence trace for multiple overall
trap powers, which can easily take 5 to 10 minutes. Therefore this method would
take at least one hour to equalize the trap depths reasonably well (usually about 10
iterations).

Combined Scheme In a second scheme, we avoid measuring the half-way power
Prarf in each iteration. Instead, we measure it once to calibrate the CCD camera. We
assume that on each trap site i, the measured peak intensity I on the CCD camera is

proportional to the trap depth U; in the focal plane of the aspheric lens:

U; Phalf,i = 57;[1-* . (6-6)

The proportionality factor 3; is not equal for all traps i, as we have previously seen,
e.g. in Figure 6.3. However, on each trap site there is a linear relationship between the
measured between U; and I, as has been verified.

After this calibration, we can use the CCD camera and the SLM for the feedback
algorithm. The advantage of this method is that the time consuming measurement of
the half-way powers ppai; is done only once, and afterwards is substituted for the fast

intensity measurement of the CCD camera.

Conclusion

In this Chapter, I have illustrated current progress on the experiment to solve technical

imperfections in order to assemble large arrays of atoms. These technical imperfections
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Figure 6.7: Schematic of the proposed equalization schemes. Method 1: This
method relies on the determination of the trap depths with the in situ atomic signal
recorded by the EMCCD camera. From the determination of the half-way power pya; for
each trap i, we can then calculate weights in a similar fashion to before and use them
in the next iteration of the SLM algorithm. This method does not use the CCD camera
anymore to measure the intensity distribution in the focal plane of the aspheric lens.
Method 2: This method first calibrates the measured intensities on the CCD camera, by
determining the corresponding ppaif,; for all traps. Using the conversion factor 3; for each

trap, we then perform the equalization purely with the CCD camera and the SLM.

have been analysed in the course of this thesis and are (i) the imperfect trap depth
equalization, (ii) the decreased assembly efficiency for large arrays, and (iii) the finite
imaging survival probability. Once these imperfections have been resolved, we can
fully profit from the extended vacuum lifetime of the cryogenic setup and should be

able to assemble up to 500 atoms.

127



Chapter 6: Towards Larger Atom Arrays

This chapter focuses mainly on the trap depth equalization. I first state the issues
of the current method that uses the CCD camera to estimate the trap depths. Then, I
analyse whether we can obtain more reliable estimates from the fluorescence trace. I
find that we can estimate the trap depth from measuring the decrease in scattering
rate for increasing light-shift. However, it is more reliable to estimate the trap depth
from the change of loading probability as a function of trap depth. I then propose two
new methods that use this new metric. The big advantage of the proposed methods is

that they require only simple tools to estimate the trap depth (only the MOT lasers).
Next steps I have recorded and analysed the data of this chapter at the time of

writing and we have not demonstrated the proposed methods yet. In the immediate
future, we will however test both methods experimentally and evaluate whether the

fluorescence trace can be used for a new improved trap depth equalization method.

One disadvantage of the proposed method is the required overall laser power. This
is usually a limited resource; however, we need to change it over a large range during
the measurement of the loading probability curve (see Figure 6.4). If the initial spread
of trap depths is too big, we will not have a large enough range in power to take
the full calibration curve for all the traps. Therefore we need some pre-equalization
method for large (larger than the FOV) arrays, to smoothen out the initial trap depth
pattern (see circle in Figure 6.3). This is easily done however, by doing one calibration
measurement of the positions (with less traps), and then saving the weights. We can
then do intensity equalization in the beginning using these weights, to arrive at a
pre-equalized pattern.

Another solution could be to partition the trap array into two (or more) equal parts
and change the trap depths in the two parts using the SLM. While the first part is
ramped from full trap depth to almost zero trap depth, the second part is ramped in
the opposite way. This way, the overall laser power will always be constant, however,

the trap depths can be changed over a large range.

Other imperfections A well equalized trap array will not only be important
to assemble large arrays of atoms, but also to examine the other two technical

imperfections in more detail.

The survival probability of an atom during an image depends on the trap depth,
as we have already seen in this Chapter. If the trap depth is too small, the atoms
are trapped for less than the duration of an image, leading to a spiky fluorescence
trace. Related to this observation, the detuning of the imaging light from resonance
should play an important role, and its intensity, as we saw in the previous chapter for

a reduced lifetime for high repump intensities. In Chapter 5, we have seen that we
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currently obtain a survival probability of approximately 0.998 for an atom during
a 50 ms fluorescence image. However, it is important to increase this further. With
Strontium e.g., it has been shown that high survival probabilities of 0.99932(8) can
achieved [Covey et al., 2019].

The reduced single move efficiency for large arrays also depends on the trap depth,
as has been shown in [Barredo et al., 2016]. We think that reduction of this single
move efficiency — when comparing arrays of 10 pm extent to those bigger than 100 pm
— is mainly due to the change of trap depth of the moving tweezer over the whole
extent of a large array, caused by the changing diffraction efficiency of the AODs. This
could however be calibrated in the future such that the trap depth is kept constant

over the full array using feed-forward.
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Conclusion and Outlook

Similar to most quantum simulation platforms, the tweezer atom array experiment of
our group faces a major challenge in increasing the number of individually controlled
quantum objects. In this manuscript, I have presented work on lifting some important
limitations for the scalability of our platform, involving the construction of a new
cryogenic tweezer array experiment and improved assembly algorithms for large
defect-free arrays.

Assembly of defect-free atom arrays The atom-by-atom assembly scheme of
our group was first presented in 2016 [Barredo et al., 2016]. With it, we could assemble
regular (Bravais) lattice geometries with excellent efficiencies and later the method was
extended to three dimensions [Barredo et al., 2018]. The ability to produce defect-free
atom arrays together with the flexibility in choice of lattice geometries (e.g. triangular,
square, Kagome) opened up a variety of possible applications in the field of quantum
simulation. During my PhD, we have improved this method in two regards: (i) the
scalability of the technique and (ii), its flexibility by extending it to the assembly of
arbitrary geometries.

With new algorithms that need less elementary moves to assemble a defect-free
atom structure, we improved the overall efficiency of the assembly process [Schymik
et al., 2020]. As a result, we were able to increase the number of atoms from around
forty up to 200 for a quantum simulation of the Ising model on our room-temperature
setup [Scholl et al., 2021a]. With the total atom number increase, the ratio between
bulk and boundary atoms also improves and both allows us to investigate phenomena
that were previously limited by atom number and boundary effects.

Using the new algorithmic framework, we can now assemble arbitrary geometries.
This further extends the number of physics questions that can be investigated on
our platform. Next to condensed matter models with non-periodic features such as
crystal defects (interstitial defects, vacancies, dislocations, grain boundaries), this
includes recent proposals for optimization problems on graphs [Henry et al., 2021;
Pichler et al., 2018; Henriet, 2020; Minhyuk et al., 2021]. As an example, finding the

maximum independent set (MIS) of a unit-disc graph is an optimization problem that



Chapter 7: Conclusion and Outlook

Figure 7.1: Maximum independent set for unit-disc graphs. On the unit-disc graph, two
vertices are connected if they are closer than a unit distance, symbolised be green circles.
Finding the maximum independent set (red) is an optimization problem that can be mapped
onto a Rydberg quantum simulator. Hereby, the Rydberg blockade radius corresponds to
the unit distance, and the MIS is the ground-state for an Ising-like Hamiltonian. This
figure is extracted from Ref. [Pichler et al., 2018].

can be mapped on a Rydberg quantum simulator. A unit-disc graph is a collection of
vertices with an edge between two vertices, if they are closer than a unit distance, as
illustrated in Figure 7.1. Finding the MIS of a given graph consists in finding the
largest subset of vertices, such that no two two vertices in the MIS are connected by
an edge. The decision version of the MIS problem — deciding whether the size of an

MIS is larger than a given integer on an arbitrary graph — is known to be np-hard.

The Rybderg blockade prevents the simultaneous excitation of two connected vertices
on a graph, if the atomic configuration is chosen such that connected vertices have a
large van der Waals interaction energy. The ground state of the system would then
correspond to the maximum independent set of the unit-disc graph. The ability to
assemble arbitrary geometries is hereby essential to be able to choose the right atomic

configuration for a given graph.

Cryogenic tweezer platform In Chapter 4, I have presented the construction of
a new cryogenic tweezer platform. Due to the high pumping speed of the cryogenic
surfaces at 4 K, the vacuum at the position of the atoms is orders of magnitude
better than on our room temperature setup. This drastically reduces the loss rate of
8TRb atoms from the tweezer due to background gas collisions. As demonstrated in
Chapter 5, the lifetime of an atom in the tweezer is over 6000 s, compared to our

room-temperature setup an increase by a factor of approximately 300.

On our room-temperature setup, the lifetime is a major limitation to scaling up the

number of atoms. With a lifetime of over 6000 s however, its effect is almost negligible

132



even for an array with over 1000 atoms. This is a promising result for the creation
of large arrays of atoms on tweezer platforms and shows its potential for large-scale
quantum simulation or computation. Recently, the attractiveness of the Rydberg
tweezer platform has lead to a large interest in the cold atom community, with the
construction of many similar (but non-cryogenic) platforms in labs all over the world,
and even at the industrial level in companies, such as QuEra [Bluvstein et al., 2021],
ColdQuanta [Graham et al., 2021], Atom Computing [Barnes et al., 2021] or PASQAL
[Henriet et al., 2020]. The work of this thesis is relevant for these companies as well,

as most of them promise 1000 qubit processors or computers by 2024.

In a series of tests, we have investigated several experimental heat loads on our
cryogenic platform, like current carrying wires or incident laser power (see Chapter
5). We have demonstrated the capability of our system to keep low temperatures
despite these heat loads, as the temperature of the cold plate rises only to 5.2 K, when
operated with approximately 1000 tweezer traps. Therefore, our cryostat is well-suited

for experiments with large tweezer arrays.

In the near future, it would be interesting to measure the lifetime at different
(cryogenic) temperatures, above the critical temperature of the superconducting
coils and e.g. up to the temperature of liquid nitrogen. Although the lifetime surely
decreases at higher temperatures, the requirements for acceptable heat loads soften.
As an example, one could use non-superconducting coils at higher temperatures, if the
decrease in lifetime is acceptable. In view of the industrialisation of these platforms,

this information could be valuable.

Future directions In Chapter 6, I have illustrated important steps towards the
assembly of up to 500 atoms on our cryogenic platform. This involves improving
several technical imperfections such as the trap depth equalisation, the single-move
efficiency of the moving tweezer, and the survival probability of a fluorescence image.
In the near future, we will work on solving these imperfections to demonstrate the

assembly of large arrays with high fidelities.
To further extend the assembly capabilities, we could implement the 3D plane-by-

plane assembly scheme of our group [Barredo et al., 2018]. The third dimension would
help to alleviate the constraint of the field-of-view of the lens, as more traps could be
created in the volume of the FOV. The technical implementation includes electric
tunable lenses to change the focal plane of the moving tweezer and the fluorescence
camera. As each plane is imaged separately, the plane-by-plane assembly usually takes
longer than assembling a single plane. This should not be limiting any more with

the extended lifetime on our cryogenic setup. However, the limited image survival
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probability could still be of concern. Therefore, it could be useful to implement another
SLM in the fluorescence plane to image several planes simultaneously [Haeun et al.,
2021]. With these changes and the promising results of the thesis, we hope to reach
the regime of 1000 traps in three dimensions soon. An additional improvement with
techniques to increase the loading probability way above 50% [Sompet et al., 2013;
Lester et al., 2015; Brown et al., 2019; Aliyu et al., 2021; Jenkins et al., 2021] could be
helpful to lift the constraint of laser power and reduce the assembly time.

In the near future, we will add the capabilities for Rydberg atoms to our setup. This
involves a laser system for the Rydberg excitation, similar to the one I have described
in Chapter 2.2.2. Furthermore, electrodes should be added to the lens holder, similar
to our room-temperature setup [Béguin, 2013], to actively control the electrostatic
environment in the focal plane of the lenses. To drive transitions between different
Rydberg states, we would also add microwave antennas inside the 4 K shield. As our
cryogenic system is not baked out, these simple upgrades in the science chamber can
be done on a relatively fast time scale, as we have seen during the tests described in
Chapter 4.

A first interesting experiment with Ryberg atoms would be the measurement of the
Rydberg lifetime. As explained in Chapter 1, the lifetime should be extended in a
cryogenic environment, due to the suppression of black-body induced transitions. The
measurement of Rydberg lifetimes has been measured recently in our room-temperature
setup by trapping Rydberg atoms in three-dimensional holographic bottle beam traps
[Barredo et al., 2020]. In this work, the trapping lifetimes of states with principal
quantum numbers 60 < n < 90 coincided with the Rydberg lifetimes in a 300 K
environment. A similar experiment could be conducted on the cryogenic experiment,
demonstrating the effect of reduced black-body radiation on the Rydberg lifetime.

Afterwards, we would work towards large-scale quantum simulations of spin-

Hamiltonians, e.g. the described Ising or XY-Hamiltonian, in two and three dimensions.

134



The Experiment in Practice: A Photo
Gallery

In this Appendix, I illustrate the experimental setup with a few photos from the lab
(Figure A.1).

The whole cryogenic setup is in the middle of the room on a 1.5 m x 2.5 m optical
table. The atomic source part (oven and Zeeman slower) is mounted on a moveable
breadboard, while the stainless-steel case of the cryogenic part is clamped to the
optical table. Not shown in the images is a chain hoist above the experimental table
that we used during construction to lift and place the science chamber. Above the
experimental table are shelves, upon which the rotary valve is mounted. The helium
lines on the rotary valve are connected to the cold head (PTR) of the cryostat, and
also to a compressor that is sitting in the corner of the room. The compressor is

water-cooled and connected to the water circuit of the air-conditioning.



Appendix A: The Experiment in Practice: A Photo Gallery
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Figure A.1: Pictures of the experiment. Left: Front and backside of the experiment.
Right: A rotary valve is connected to the PTR head and sits above the experiment. Helium
lines are connecting the rotary valve to a water-cooled compressor that sits in a corner of
the lab.
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B.1

Estimate of the Rubidium-Rubidium
Collisional Cross Section

In this Appendix, I show that the measured scattering rate between Rubidium atoms
in the tweezer and Rubidium atoms from the oven (see Figure B.1a) agrees with a
simple estimation given the geometry of the oven, but neglecting any effect of the
trap. From the scattering rate, we can infer a Rb-Rb collisional loss cross section of
o = 340 A”. This is within a factor of five to a classical calculation including the trap
depth. It also agrees within approximately a factor seven with the total collisional

cross section literature value of oy, = 2500 A? [Bali et al., 1999].

Inferring the Rb-Rb collisional loss cross section from oven losses

In Chapter 5, we measured atom losses as a function of oven temperature. From this,
we inferred a collision rate  that depended linearly on the Rubidium density in the

oven

5 = YMoven, (Bl)

357! (see Figure B.1).

with the experimental determined parameter v = 7.1 x 107* m
Even though several experimental parameters, such as the oven temperature, are
not known with high precision, we can estimate a Rb-Rb collisional cross section from
this measurement with a simple model.
The collision rate 8 depends on the particle flux ® in the chamber — the number of

particles per unit time and unit area — and the Rb-Rb collisional cross section:

6 = Ulossq)chamber- (BQ)

To find the flux ®cpamper, We use the following model. We consider an effusive oven,
consisting of a Rubidium metal that is in equilibrium with its vapor, corresponding to

the saturated vapor pressure P, (7') at oven temperature 7". The density of Rubidium
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Figure B.1: Atom losses in the tweezer due to collisions with oven atoms a: Same
as Figure 5.10, we measure a linear dependence between the collision loss rate and the Rb
density in the oven. b: Sketch of the simplified model with the oven on the left and the
science chamber on the right. Fast atoms exit the oven and fly towards the chamber where
they scatter on the Rb atom in the tweezer.

in the oven 1S Ngyen = Poat(T) g gas inside the oven with aperture Agyen, = m(2.5 mm)?
kpT

is in equilibrium and follows the Maxwell-Boltzman distribution:

3/2 2,2 4 .2
B m —m(v; + v, + v7)
f(vg,vy,0,) = (QW]CBT) exp( ST ) . (B.3)

Using spherical coordinates, the probability of having a particle with velocity v within
the solid angle d2Q = sinf df d¢ then reads

3/2 —m(v? + v +v?)
ep= (" 2 r Ty T 20 do B.4
<2kaT) ! eXp( 2T ) v (B4)

The number of atoms flying out of the oven per unit time and unit area, denoted flux

®, can be found as:

1

(I)oven = Znovenfl_) ) (BS)
with ¥ the mean velocity in the vapor:
8kpT
b= b (B.6)
mm

For small solid angles, one finds that the flux of atoms into the chamber at a distance

of d = 1.5 m is then given by:

onen

o (B.7)

q)chamber = (I)oven
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B.2

B.2 Classical estimate of the collisional loss cross section

Combining equations (B.2),(B.5) and (B.7), we find

onenfl_}
ﬁ = Ulossmnovena (B8)

and using equation (B.1), we finally find the loss cross section as a function of the

measured parameter -:

logs = Y —————— ~ 340 A% . (B.9)

Classical estimate of the collisional loss cross section

To estimate the collisional cross section, we can use our knowledge of the experimental
situation (see Figure B.2) to make a simplifying approximation. An atom leaves the
oven in z-direction with velocity v (typically 300ms™') and is scattered in the xy-plane
on an atom in a dipole trap inside of the science chamber. The atom from the oven
has a high kinetic energy compared to the shallow trap with a depth of approximately
1mK. We are interested in finding the impact parameter by, at which the trapped atom
receives enough momentum to leave the trap. If this was for small impact parameters
b, e.g. a near head-on collision, the imparted momentum on the trapped particles is
large and both particles would change directions. Here, the full two-body problem
would have to be solved for which we would change to the center-of-momentum frame.
In our case however, we know that even collisions with large impact parameter will
lead to a loss of the trapped atom. In this limit, the deviation angles of the atom from
the oven are small. We assume the atom is not deflected at all and its trajectory is
fixed along y = b with uniform velocity v. In this limit, the calculation of the collisional

loss cross section simplifies and we can use the laboratory frame.

First, we calculate the imparted momentum Ap,(b) on the Rubidium atom in the
dipole trap with trap depth U, as a function of the impact parameter b. At distance
b = by the Rubidium atom receives enough energy to leave the trap (see Figure B.2b),
if

Ap, (b = by)?

> U. B.10
QmRb 0 ( )

Then, the collisional loss cross section is

Tloss = The. (B.11)
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Rb = Apy(b=bg)?
e r(t) = A /v2t2 + b2 if M > Uy

Rbtrap i
Ap X I UO

y

Figure B.2: Collisions under small angles. a: A Rubidium atom from the oven with a
velocity voven Scatters on a stationary Rubidium atom in a dipole trap. Under large enough
distances p, the scattering angle 6 is small. The trapped Rubidium atom has momentum
Ap, after the scattering event. b: For distances smaller than the impact parameter b, the

atom leaves the trap after the collision.

The potential U between the two Rubidium atoms is given by the van-der-Waals Cjg

coefficient: o o
Uy = —%6 _ __—Ce B.12
() 6 (V282 + y2)3 ( )

where Cg gy, = 4667 Haa§ in atomic units [Gould and Bucko, 2016] and r is the distance
between the two atoms (see Fig. B.2a).

The imparted momentum along vy is

Apy—/_ —g—gdt | (B.13)

Using equation (B.12) and the fact that the oven atom is moving along a straight line

y = b, we get N
Ap, = —6bCs /OO (v?tfﬁ' (B.14)
Finally, we find
Apy(b) = 123;6 , (B.15)

Using equation (B.11) and (B.10), we find for the loss cross section:

1 (15705 \*Y¢
e = . B.1
7! 7T[2mUO( 8v )} (B-16)

The collisional loss cross section is therefore proportional to U, /6 and v=1/3. Using
the mean velocity of Rubidium atoms! out of an oven at 100°C v = 300ms~! and a

trap depth Uy = 1 mK, we arrive at:

'For this estimate, we refrain from taking into account the velocity distribution and instead use .
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B.2 Classical estimate of the collisional loss cross section

Oloss = 1600 A% . (B.17)

In comparison, the simple estimation of the collisional cross section (eq. (B.9)) from
experimental loss rates lies within a factor of five of the calculated value. Note however
that the experimentally inferred collisional cross-section is only a crude approximation,
as our setup leads to several technical uncertainties. The temperature of the oven is
not known with high precision. The oven is wrapped in heating tape and connected to
a temperature controller together with a single temperature sensor that is attached to
the oven. Due to the wrapping, the temperature might not be uniform in the oven

region, and the temperature sensor is in close proximity to the heating tape.
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Magnetic Field Coils for the
Magneto-Optical Trap

This appendix gives details about the magnetic field coils in the science chamber used
for the magneto-optical trap.

The coils consist of a copper-beryllium holder, with an external diameter of
dexy = H2mm around which the superconducting wire is wound with N = 100 turns.
The two coils are separated by deois = 80 mm and can be operated in (anti-)Helmholtz
configuration (see Fig. C.1a).

The magnetic field B on axis (x =y = 0) as a function of the position z for the two

coils is calculated as follows:

B(z) = MOEJZIK\/ - eth/Qercoﬂs )3 (\/ e"tz/z_ ))T B(eRY

1 ext (:011s

The calculated field and gradient for our geometry is illustrated in Figure C.1b. In
anti-Helmholtz configuration, we reach a magnetic field gradient of 4.3G/cm/A at the
position of the atoms. For the operation of the MOT, we usually use a current of
around 1.7 A leading to a magnetic field gradient of approximately 7G/cm/A.

For Helmholtz configuration (plus sign in equation (C.1)), the field and gradient is
illustrated in Figure C.1c.

The Kapton-insulated superconducting wire (Supercon Inc.) has a diameter of
0.5mm. Inside, it has multiple 38 pm-diameter superconducting NbTi wires inside of
a copper-matrix, with a copper-to-superconductor ratio of approximately 3:1. The
superconductor has a critical temperature of 9.2 K, the residual resistivity ratio (RRR)
of the copper wire is approximately 230.

Per coil, we use an approximate length of L =16 m of wire. We measure the

resistance of each coil to be Reoii r=300x = 2.1 €.



Appendix C: Magnetic Field Coils for the Magneto-Optical Trap

Figure C.1: Magnetic field coils. a: Cross-section through the lens-holder containing the
magnetic-field coils. b: Calculated magnitude of magnetic field and magnetic field gradient
as a function of the position. We reach a typical magnetic field gradient of 4.3G/cm/A at

the center of the coils in anti-Helmholtz configuration. c: Magnetic field and gradient as a
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Article: Enhanced Atom-by-Atom
Assembly of Arbitrary Tweezer Arrays

This appendix reproduces the following published article:

Kai-Niklas Schymik, Vincent Lienhard, Daniel Barredo, Pascal Scholl, Hannah
Williams, Antoine Browaeys, and Thierry Lahaye. Enhanced atom-by-atom assembly
of arbitrary tweezer arrays. Physical Review A 102, 063107 (2020)
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Editors’ Suggestion

Enhanced atom-by-atom assembly of arbitrary tweezer arrays

Kai-Niklas Schymik, Vincent Lienhard, Daniel Barredo ®, Pascal Scholl, Hannah Williams ®,
Antoine Browaeys, and Thierry Lahaye
Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
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We report on improvements extending the capabilities of the atom-by-atom assembler described by Barredo
et al. [Science 354, 1021 (2016)] that we use to create fully-loaded target arrays of more than 100 single
atoms in optical tweezers, starting from randomly loaded, half-filled initial arrays. We describe four variants
of the sorting algorithm that decrease the number of moves needed for assembly and enable the assembly of
arbitrary, nonregular target arrays. We demonstrate experimentally the performance of this enhanced assembler

for a variety of target arrays.

DOI: 10.1103/PhysRevA.102.063107

I. INTRODUCTION

Over the past few years, arrays of single laser-cooled atoms
trapped in optical tweezers have become a prominent platform
for quantum science, in particular for quantum simulation [1].
They allow single-atom imaging and manipulation, fast repe-
tition rates, and high tunability of the geometry of the arrays.
When combined with excitation to Rydberg states, these sys-
tems naturally implement quantum spin models, with either
Ising [2-6] or XY [7] interactions. They can also be used to
realize quantum gates with fidelities approaching those of the
best quantum computing platforms [8—11].

A crucial ingredient of the atom array platform is the
atom-by-atom assembly of fully loaded arrays, starting from
the partially loaded arrays (with a typical filling fraction of
50%—-60%) obtained when loading optical tweezers with sin-
gle atoms [12]. This technique, first demonstrated in [13—15],
can follow different approaches. A fast and effective approach
for realizing one-dimensional chains uses an acousto-optic
deflector (AOD) driven with multiple radio-frequency tones to
generate all the traps [14]; after loading, empty traps are then
switched off and the remaining ones are brought to their target
position, thus achieving a fully loaded chain in a single step.
However, directly extending this approach to more than one
dimension is challenging [16]. A different approach consists
in using a spatial light modulator (SLM) to generate arbitrary
patterns of traps in one, two, or three dimensions, load them
with atoms, and then dynamically change the SLM pattern to
rearrange the atoms in space [17]. However, SLMs are slow,
making the rearrangement time prohibitive, which limits this
approach to small atom numbers. Another approach is using
a static trap array and combining it with a moving tweezer
[13,18].

Our experiment [ 13] follows this strategy and uses an SLM
that produces a user-defined fixed pattern of optical tweez-
ers which includes the final (target) array, combined with a
moving tweezer. This extra microtrap, controlled by a two-
dimensional (2D) AOD, is used to move the atoms one by
one to reach a fully loaded target array. The heuristic shortest-
moves-first algorithm used in [13] to find the set of needed

2469-9926/2020/102(6)/063107(10)

063107-1

moves is versatile, as any target array included in an initial
regular array can be assembled. It works well up to a few
tens of atoms, but it has some limitations. First, the algorithm
was written for regular arrays, such as square and triangular
lattices. On completely arbitrary arrays, lattice edges along
which atoms can be moved are not naturally given, and using
straight paths between source and target traps would lead to
unwanted losses, as another target trap already containing an
atom may be in the way. Another limitation is that the number
of moves needed for ordering is not optimal and minimizing
this number becomes more crucial when the number N of
assembled atoms increases beyond a few tens.

Here we describe four improved algorithms that can be
used without any change in the hardware; the choice of the
most efficient approach depends on the characteristics of the
target array. We first recall in Sec. II the problem we need to
solve and review our previous approach and its shortcomings
(Sec. IIT). We then discuss in Sec. IV a compression algorithm
which is well adapted for compact arrays (here, by compact
we mean that no trap other than target ones lies within the
target array). The number of moves is then at most N, which
significantly reduces the assembly time. We show in Sec. V
that a similar scaling can be obtained for all arrays (compact
or not) by using algorithms based on a linear sum assignment
problem solver. In Sec. VI we extend these algorithms to the
case of fully arbitrary two-dimensional patterns (i.e., they are
not embedded in a regular Bravais lattice). Finally, in Sec. VII
we experimentally implement these approaches in a variety
of arrays.

II. STATEMENT OF THE PROBLEM

Our goal is to obtain a fully loaded array of N traps, whose
positions are given by the user (this defines the target array,
denoted by green circles in this paper). To do so, we start
from a larger array, with ~2N traps, containing the target
array and extra, reservoir traps (these will be denoted by red
circles). The entire array is loaded in a stochastic way with an
~50% filling fraction at each realization of the experiment.

©2020 American Physical Society



KAI-NIKLAS SCHYMIK et al.

PHYSICAL REVIEW A 102, 063107 (2020)

Therefore, we have, with high probability, at least N atoms
in the full array. Using a moving optical tweezer, we then
transport the atoms one by one, from an initial trap to one
of the target traps, until the target array is fully filled.

To maximize the success probability of the assembly pro-
cess, we need to minimize the total assembly time. One reason
for that arises from the vacuum-limited lifetime of a trapped
atom, which, in our experiments, is Ty,c ~ 20 s. This means
that for an array with N atoms, the lifetime of the config-
uration is Tya/N. It is thus important, when N increases,
to minimize the total assembly time to reduce atom losses
during rearrangement. As atoms are moved between traps
at a constant velocity (typically ~100 nm/us, meaning we
need ~50 ps to move over a typical nearest-neighbor dis-
tance of 5 um) and as it requires a comparatively longer time
(600 ws) to capture or release an atom [13], minimizing the
arrangement time mainly amounts to minimizing the number
of moves and, but to a lesser extent, the total travel distance
(defined as the sum of the lengths of the successive straight
paths over which an atom is moved). A second reason for
minimizing the number of moves is that each transfer from
a source trap to a target trap has a finite success probability
p (typically around p ~ 0.98-0.99 in our experiments), partly
due to the already mentioned vacuum-limited losses, but also
due to, e.g., inaccuracy in the positioning of the moving
tweezers or residual heating. Beyond the number of moves
and the total travel distance, the time it takes for the algorithm
to compute the moves at each repetition of the experiment
contributes to the total assembly time.

In [13] we distinguished two types of moves for reordering.
The first approach (which we called type 1) corresponds to the
situation where the atom can be moved in between adjacent
rows of traps. Then, as on average N/2 atoms are out of place
initially, the mean number of needed moves is Ny, = N/2
and we have to solve a linear sum assignment problem [19].
Using the Hungarian algorithm (as in [20]) then minimizes
the assembly time. However, type-1 moves require a large
distance (at least 5 um) between any two traps to avoid atom
loss due to disturbances of the trap potential. In practice, many
experimental reasons (the finite field of view of the lenses
used to focus the tweezers, the need to have large interaction
strength between Rydberg atoms, and to have uniform Ry-
dberg excitation lasers over the array) call for having smaller
distances in the arrays. Furthermore, as we will see in Sec. VI,
type-1 moves are not well suited for the assembly of truly arbi-
trary geometries. For these reasons, we here focus on solving
our problem using just type-2 moves, where an atom can only
be moved along a straight path between adjacent traps.

In the case of type-2 moves, assigning any source trap to
any target trap is not possible, since other traps might be in the
way. While an atom can be moved over an empty trap as the
moving tweezer is ~10 times as deep as the stationary traps,
having filled traps on the path would lead to collisions and
atom loss. Finding the optimal set of moves is thus nontrivial
since it requires finding a collision-free assignment with a
well-defined ordering of the moves. In computer science, this
problem is known as the pebble motion on a graph (in a variant
with unlabeled pebbles) and is intractable for large N [21],
even more so in practice as we need to solve it in a time short
compared to the configuration lifetime. Therefore, we opt for

heuristic algorithms, provided they give a solution not too far
from the optimum and run in a few tens of milliseconds at
most for up to a few hundred atoms. In the next section, we
will see that the algorithm used in [13] actually meets these
criteria only when the target array is not too compact and
when N is not too large.

III. OUR PREVIOUS ASSEMBLER: PRINCIPLE
OF OPERATION AND LIMITATIONS

The atom-by-atom assembler described in [13,22] allowed
us to create user-defined arrays in one, two, and three di-
mensions at unit filling. Nonperiodic structures, or complex
lattices such as ladder, honeycomb, kagome, or pyrochlore
geometries could also be obtained by selecting a subset of
target traps on an underlying Bravais lattice.

We chose a heuristic approach to the problem that had the
advantage of requiring a short computation time, scaling as
O(N?), albeit at the expense of not guaranteeing the opti-
mal assignment. This greedy algorithm, which we will call
the shortest-moves-first algorithm, works as follows. We first
compute a matrix of distances D = d;; between each out-of-
place atom s; and each (empty) target ¢; trap. Then we order
the entries of this matrix by increasing length and select the
first N/2 elements with the condition that only one element
per row or column is chosen (i.e., that each atom or target trap
is only assigned once).

This initial matching is not collision-free, as already filled
traps may lie in between a matched reservoir atom and an
empty target trap. Therefore, in a second step, we postpro-
cess this assignment by applying a rule that splits each move
S — T from a source atom S to a target trap 7 in two moves
O — T and S — O for each obstacle atom O that is found
in the path. Note that this process leaves the travel distance
unchanged but increases the number of moves, therefore in-
creasing the total assembly time.

Figure 1 shows the number of moves Ny, returned by
the above algorithm to assemble a target array of N atoms
embedded in a square array, for three different geometries: (i)
a staggered pattern, (ii) a random pattern, and (iii) a compact
square in the center. The number of moves is averaged over
1000 realizations of the initial random loading. We observe
that Ny is only slightly above N/2 for the cases (i) and
(ii) where the reservoir and target traps are strongly mixed.
However, in the case (iii) of compact geometries, where all
the reservoir atoms lie outside the target array, we observe that
this procedure scales as Ny,y o« N*, with o =~ 1.4 (red dashed
line), making it unsuitable for large arrays.

The reason for this is illustrated in Fig. 2, which shows a
few snapshots of the reordering process. The shortest moves
are those connecting out-of-place atoms with target traps on
the border of the array; therefore, the algorithm starts by filling
the outermost shell. Once this is done, it is no longer possible
to fill the (empty) inner traps without performing extra oper-
ations to displace the atoms that lie in the way, giving rise to
many extra moves to fill the inner part of the target array. For
the initial configuration in Fig. 2(b), the 14 x 14 target array is
assembled in 444 moves. As picking up and releasing an atom
takes extra time, this behavior leads to prohibitive rearrange-
ment times, even if the distance traveled is close to optimal.
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FIG. 1. Scaling of the number of moves for different geometries,
with the shortest-moves-first approach. The plot shows the number
Ny of moves (averaged over 1000 realizations of the random load-
ing; the error bars indicate the standard deviation of the distribution
of Nyy) as a function of the size N of the target array. For staggered
configurations (blue), where a target trap and a reservoir trap alter-
nate, the overhead as compared to the lower bound N/2 (indicated
by the solid black line above the gray-shaded area) is small. For a
random subset of target traps in a square array (purple), the number
of postprocessing moves due to obstacles is already bigger, but the
scaling is still linear with N. A drastic change appears in the case
of compact geometries (red), where the target array is surrounded by
reservoir atoms. Here the number of moves does not increase linearly
with N, but rather as N'* (dashed line) and many postprocess moves
are needed. This means that the current algorithm is unsuited for
large compact geometries.

This behavior is problematic, as many arrays of interest
for quantum simulation are compact. Therefore, it is crucial
to find an assignment between the reservoir and target traps
which really minimizes the number of moves. For assembling
compact arrays, a much better approach, where the maximum
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number of moves is at most N, is the compression algorithm
that we now describe.

IV. IMPROVED ASSEMBLY OF COMPACT ARRAYS
BY THE COMPRESSION ALGORITHM

From the above considerations it is clear that we need to
prevent the formation of the outer shell during the assembling
process. A simple way to do this and have a collision-free
assignment without any postprocessing is to fill the target
traps in a determined order. We first fill the central traps and
progressively, one layer after the other, we fill the compact
structure until we reach its border. To fill the traps, we choose
the closest atoms lying outside the already assembled bulk.
An asset of this compression approach is that we can calculate
once, independently of the initial loading, a lookup table. The
table stores which source traps can be used to fill a given
target trap. In combination with the predetermined order in
which the target traps are filled, the lookup table reduces the
calculation time of a particular instance. We observe that it
scales roughly as N!? with the number of target traps and
amounts, in our implementation, to about 7 ms for N = 100
on a regular desktop computer with 16 GB of RAM.

Figure 3(a) illustrates how the algorithm works on a small
square array. The target array is first assembled from the
bottom left corner, then the diagonal, and finally the top right
corner. Using this algorithm, atoms which initially occupy
target traps can be displaced, which means additional moves
with respect to an optimal solution. However, as we always
use the atoms closest to the border of the compact structure to
assemble it, the path is always obstacle-free and therefore we
do not need any postprocessing. Consequently, each atom is
moved at most once during the assembling process, which sets
the upper bound N,y < N and ensures on average a smaller
number of moves using the compression algorithm with
respect to the shortest-moves-first algorithm of the preceding
section. As Ny, cannot be lower than N/2 on average, our
solution, while not optimal for many initial loading instances,
is generally close to optimal. Figure 3(b) shows how this

Move 2 Move 3
Move 197 Move 444

©8008000000000008000 0000000000000000000
0e0095555550000800s 208 0000050000000000
35855555559000005888 3 288
38 EH o 38
1 32 353 39
38 33 3 33
38 33 38 33
580sssss 39 28 39
33388885000500088555 38 33
38 00888555 38 39
33500805800 00008 8030 38 33
3300e890060600088300 38 33
38 29 38 29
3308585055 600098000 38 33
o8 33 38 33
H 39 38 39
3 33 38 33
03833388885888888330 388 333

8559560000000 98800086000960000960
38888888888858883¢0%s 38888338883338883388

FIG. 2. Assembling of a compact array using the shortest-moves-first algorithm. (a) Microscopic view. The first set of moves (blue lines)
connects out-of-place atoms with target traps on the outer shell of the structure (e.g., move 1). Once the border is populated, it is no longer
possible to fill the inner traps without performing extra moves (move 2). (b) The macroscopic behavior on a 14x 14 array reveals that the
algorithm starts by filling the border of the target array (green circles) with atoms from reservoir traps (red circles), while inner traps are still
empty (e.g., move 82), leading to a large overhead in the number of moves for successful assembling.
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FIG. 3. Compression algorithm. (a) Illustration of the compression procedure for a 2x2 target array, requiring four moves. (b) A few
assembling steps using the compression algorithm to assemble a 14 x 14 target array in only 195 moves, to be contrasted with the 444 moves

needed previously.

compression algorithm outperforms the shortest-moves-first
one. The 196 target atoms are assembled in 195 moves,
whereas the same initial configuration required 444 moves to
be sorted with our previous approach.

As can be seen in Fig. 4(a), not only is the average number
of moves smaller than before, but the distribution of Ny, cal-
culated for 1000 random initial loading instances of the array,
is also strongly sub-Poissonian, as well as asymmetric, with a
sharp cutoff at N. This is an appealing feature, as it indicates
that the success probability of the assembly process should
be more consistent from one shot to another, as compared to
the previous approach. Figure 4(b) shows the linear scaling of
Ny With N.

This technique can be naturally extended to the case of
compact structures in other lattices (e.g., triangular) and also
to arbitrary geometries, as we will see in Sec. VI.
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FIG. 4. Compression vs shortest-moves-first algorithms. (a) His-
togram of the number of moves needed to fill a 14x14 square
array for 1000 initial random loading instances. The compression
algorithm (green) has a narrow distribution which is bounded by N.
The shortest-moves-first algorithm (red) has a broad distribution and
requires on average many more moves since the initial assignment is
not collision-free. (b) Comparison of the scaling of N, as a function
of N between the two algorithms. The compression algorithm gives
a number of moves linear in N. Error bars are the standard deviation
of the distribution.

V. USING A LINEAR SUM ASSIGNMENT
PROBLEM SOLVER

In view of minimizing the number of moves, it is inter-
esting to revisit the approach of the problem as a linear sum
assignment problem (LSAP), which was mentioned above for
the case of type-1 moves. However, for the type-2 moves
we are interested in here, a direct application of the LSAP
matching with the travel distance £ as a cost function does not
yield a collision-free assignment and requires postprocessing,
which in general increases the number of moves. We describe
in this section two different algorithms that first use a LSAP
solver and then reprocess the moves, which leads to a low
number of moves. The LSAP solver we use in practice is
a modified Jonker-Volgenant algorithm with no initialization
[23], which is implemented in the scipy.optimize PYTHON
package [24].

The first algorithm (LSAP1) uses the total travel distance
> - £; as the cost function, while the second one (LSAP2)

moves 1
uses a modified metric Zmoves ; 41.2, which favors shorter paths
[Fig. 5(a)]. In both cases, the set of returned moves is post-
processed to eliminate collisions and reduce the number of

moves.

A. LSAP1: Standard metric and merging

Our first approach, described using a simple example in
Fig. 5(b), starts with the LSAP algorithm using the travel
distance between the source and target traps as a cost function.
We first sort the returned moves from shortest to longest. Since
the found assignment leads to collisions, we then postprocess
the set of moves by splitting the paths with obstacles into two
or more moves, just as in the shortest-moves-first approach.
However, in a second iteration, we merge again some moves
in which an atom is picked up twice, thereby reducing the
number of moves considerably, checking at each step that
we do not reintroduce any collision in doing so. Note that
this second merging iteration can in principle be applied to
any algorithm, but yields the smallest number of moves when
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FIG. 5. Modified LSAP algorithms. (a) Using a cost function with & = 2 (see the text) in a LSAP solver favors short moves. (b) The
algorithm LSAPI1 first uses a LSAP solver with « = 1, which returns a list of moves [here (2,3,4) means that the atom initially in trap
2 is moved, via trap 3, to trap 4]. Some moves lead to collisions (denoted in red) and thus the set of moves is postprocessed as in the
shortest-moves-first algorithms, by splitting the problematic moves into two or more stages. However, in a second step, two moves that share
the same trap as final and initial positions (denoted in red) can be merged together, reducing the total number of moves. (c) The algorithm
LSAP2 uses a modified cost function with & = 2, which returns a set of short moves; to avoid collisions, the moves are then reordered by
applying successively three rules (see the text) until the rearrangement can be performed without collisions. Numbers in red highlight the
breaking of a rule. (d) Number N, of needed moves as a function of N to assemble a staggered target array (blue), a random target array
(purple), or a compact target array (red), for the LSAP1 and LSAP2 algorithms. The dashed lines reproduce the fits of Fig. 1 for comparison.

starting from the LSAP matching. The computation time for
this approach is on average 4 ms for 100 target traps in a
staggered geometry and roughly scales as N2.!+2

Figure 5(d) shows the number of moves Ny, as a function
of N for LSAP 1 (disks). The performance is very satisfactory
for staggered or random target arrays, as the number of moves
is only 20-30 % higher than the absolute lower bound N/2.
For compact arrays, the number of needed moves is slightly
larger than N, making this approach less efficient than the
compression algorithm described in Sec. IV.

'In the worst case, the Hungarian matching algorithm is known to
scale as N*; however, we observe empirically that for the current
problem and for the values of N up to a few hundreds considered
here, the average runtime of our LSAP and reordering algorithm
scales roughly as N2,

2To reduce the computation time during the experiment, we precal-
culate a lookup table with the shortest paths and path lengths between
all trap pairs. During each assembly cycle, the cost matrix for the
LSAP algorithm is found as a submatrix of the lookup table.

B. LSAP2: Modified metric and reordering

Long moves lead to many collisions; therefore, it is benefi-
cial to avoid them. In our second approach we achieve this by
using a modified cost function »_ 4 ; 2. A similar idea was
introduced in [20], but here the moves are sequential and we
thus need to find the right ordering in which the moves have
to be performed to avoid collisions.

To do so, we apply the following rules. We examine each
move in the list and if the target trap of the move is occupied
(case 1), if another trap along the path of the move is filled
(case 2), or if the target trap is in the path of another move
following in the list (case 3), we postpone this move and put
it at the end of the list of moves. We find empirically that
this procedure always produces a collision-free set of moves.
This approach is illustrated in Fig. 5(c). The whole algorithm
(LSAP and reordering) has an average computation time of 4
ms for N = 100 target traps in a compact geometry and scales
roughly as N2.

Whatever the target array, the maximum number of moves
is bounded by N, the size of the cost matrix. As can be seen
in Fig. 5(d) (triangles), the number of moves returned by
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LSAP2 is slightly larger than LSAPI1 for sparse arrays, but
is smaller for compact arrays, where it gives essentially the
same performance as the compression algorithm. The latter,
however, has the advantage of a shorter calculation time for
N > N, with a critical atom number N, ~ 300 in our current
implementation.

VI. ARRAYS WITH COMPLETELY
ARBITRARY GEOMETRY

Condensed-matter models are often studied on specific
crystalline arrangements which are described by a Bravais
lattice, e.g., a square or a triangular lattice. Our previous
assembler was therefore based on such an underlying lattice,
which simplifies the problem in two ways. First, this naturally
defines the paths along which the moving tweezer can travel
and, because these lattice edges are separated by a constant
spacing, it automatically ensures that a minimal distance be-
tween atoms in traps and the moving tweezer is always kept
during the rearrangement. Second, it simplifies the distance
calculation between two traps by defining the metric in terms
of lattice coordinates (Manhattan distance).

Not all physical structures of interest for quantum sim-
ulation, however, can be described by a Bravais lattice.
Examples of such nonperiodic features include crystals with
defects (interstitial defects, vacancies, dislocations, and grain
boundaries), quasicrystals, disordered arrays for Anderson
or many-body localization studies, and even totally arbitrary
structures in the context of combinatorial optimization prob-
lems such as finding the maximum independent set of a graph
[25,26]. To examine such systems, we developed a variant of
our algorithms, which is not based on an underlying lattice
and therefore allows us to assemble truly arbitrary structures.

The starting point for our algorithm is the set of N target
traps, whose positions are provided by the user. Because of
the stochastic loading, we have to place N additional reservoir
traps close to the arbitrary N-atom target configuration. This
reservoir generation works as follows [Fig. 6(a)]. Whenever
possible, to reduce the number of moves, a reservoir trap
should be placed in immediate proximity to each target trap.
To do so, we compute the Voronoi diagram [27] of the set of
target traps (i.e., divide the plane in N regions, one around
each target trap T, such that all points of this region are closer
to T than to any other trap). We then add in each Voronoi cell
a single reservoir trap, provided it can be placed at a distance
larger than a “safety” distance d,, (typically ~4 pum) from all
other traps. If successful, this procedure ensures that for each
target trap there is a single reservoir close to it [Fig. 6(b)]. If,
however, the density of the target traps is already comparable
to 1/d?, then we cannot add enough reservoir traps in this way
and so we place extra traps at the periphery of the pattern in a
compact triangular array [Fig. 6(c)].

The next step is to find paths along which an atom can
travel to an empty target trap. Contrary to the case of Bravais
lattices, no obvious edges are a priori connecting the traps
along which the moves can be performed. Direct straight-line
paths from the reservoir to the target trap are also not possible,
since there can be other traps in the way, leading to collisions
and atom losses. We thus define the set of allowed paths by
using a Delaunay triangulation [27] of the full set of traps
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FIG. 6. Generating the reservoir arrays for arbitrary target arrays.
(a) Starting from the user-defined target array (left), we compute its
Voronoi diagram (middle) and in each cell we add a reservoir trap,
shown in red, if there is enough room (right); otherwise we add it
at the periphery (see the text for details). Also shown are examples
of generated reservoirs for an N = 200 target array, (b) without and
(c) with the need to add reservoirs at the periphery.

(target and reservoir) as shown in Fig. 7. In practice, we imple-
mented the triangulation in PYTHON 3.0 with the SCIPY library
[24]. To enforce the above-mentioned constraint of a minimal
passing distance, we postremove edges that do not meet this
requirement (see dashed lines in Fig. 7). We emphasize that
the generation of the reservoir traps and of the allowed edges
is done just once for any given target array, and not at each rep-
etition of the experiment, which considerably relaxes the con-
straints on the speed of this algorithm. In practice, arrays with
hundreds of target traps can be processed in a few seconds.

~
.
..
~

FIG. 7. Generating the allowed paths between traps. We first per-
form the Delaunay triangulation of the atom array. In a second step,
we remove edges which do not fulfill a minimal passing-distance
requirement (dotted line).
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This triangulation then allows us to naturally describe the
whole structure in terms of graph language, connecting the
nodes (trap positions) by edges along which the atoms are
allowed to move. In this way, we eliminate the necessity to
describe the problem with an underlying Bravais lattice. Fur-
thermore, it allows the implementation of efficient shortest-
path graph algorithms (e.g., the Dijkstra algorithm [19]) to
find the shortest path between a matched initial and target trap,
following the allowed edges of the graph. For the generation
of the graphs and graph algorithms the NETWORKX library
[28] is used. With these modifications, it is now possible to
extend the algorithms discussed above to arbitrary patterns.
The scaling and performance of the algorithms (in terms of
computation time and the number of moves) are essentially
unchanged as compared to the case of regular lattices.

VII. EXPERIMENTAL DEMONSTRATION

The experimental setup has been described in [13]. Using
an SLM (Hammamatsu X10468-02), a fixed pattern of optical
dipole traps at 850 nm is generated in the focal plane of a
high-numerical-aperture (equal to 0.5) aspheric lens. With
an available laser power of ~1 W, we can generate up to
200 traps with a 1/¢* radius of ~1 um and a typical trap
depth of ~1 mK, resulting in a radial (longitudinal) trapping
frequency around 100 kHz (20 kHz). Initially, the traps are
stochastically loaded with single atoms at a temperature of
~10 pK from a magneto-optical trap of 3’Rb atoms; the typ-
ical loading time is ~150 ms. An initial fluorescence image
(20 ms) determines the initial occupancy of the traps, which
is 50-60% on average.

To assemble a target array, we use a single 850-nm dipole
trap with a 1/¢? radius of ~1.3 um, steered by a 2D AOD,
which can pick up an atom from a static trap by ramping
up its depth to ~10 mK and subsequently moving and then
releasing the atom at the position of an empty static trap. After
the assembly, a fluorescence image with an exposure time of
20 ms determines the occupancy of the target array, before we
perform an actual experiment, e.g., quantum simulation of a
spin model, by exciting the atoms to Rydberg levels [1]. This
technique allows us to perform experiments with a typical
repetition rate of ~3 Hz.

Once the trap array has been generated, we equalize the
trap intensities using the fluorescence signal of the loaded
traps.> Then the choice of the optimal algorithm to be used
for assembly, among the three described above, is made ac-
cording to the characteristics of the target array to assemble,
as described in Fig. 8.

Finally, in order to further improve the success proba-
bility of assembling a defect-free array, we apply multiple

31t is of importance that all microtraps have a good optical quality
and in particular the same depth such that (i) single-atom loading
does indeed occur with a probability of ~1/2 and (ii) the fluores-
cence signal from any given trap allows for efficient identification
of the presence of a single atom. We now equalize the trap depths
by a direct optimization of the fluorescence time trace of each single
trap, altering the trap intensity until we fulfill criteria (i) and (ii). A
detailed description of this procedure is left for future work.

User-defined
target trap
positions

Generate
reservoir traps
and triangulate

Yes Q

Belongs to
Bravais
lattice?

Is target
array
‘compact’?

No

Yes

Compression LSAP 2 LSAP 1

FIG. 8. Algorithm choice flowchart. The best-suited algorithm to
be used depends on the characteristics of the target array. The critical
atom number N, is defined at the end of Sec. V.

rearrangement cycles (similar to [14,18]). At the end of the
first rearrangement process, we keep the excess atoms and
determine the defects with a fluorescence image. We then fill
these defects [Fig. 9(a)]. This process can be repeated until a
defect-free array is obtained and excess atoms are removed.
However, since this procedure requires more than N initial

(a)

(b) o3

I
N

Probability
Probability

e
=

il

Y0 2 4 6 8 %72 4 6 8
Number of defects Number of defects

FIG. 9. Multiple rearrangement cycles. The probability to assem-
ble a defect-free array can be increased by starting with more than N
atoms and repeating the rearrangement cycle more than once. (a) On
the shown 10x 10 compact target square array, we can increase the
probability to create a defect-free array by a factor 10 (from 2% to
20%), when starting with 225 atoms and performing a second cycle.
(b) A Monte Carlo simulation (red) of the first cycle and second
cycle, including the measured efficiencies of performing the moves
and vacuum lifetime, reproduces the experimental distribution of
defects reasonably well.
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FIG. 10. Gallery of assembled arbitrary structures. Shown from left to right are the target structure, the structure with the generated
reservoir traps (in red) and the allowed paths connecting traps, the fluorescence image of an initial random loading, the fluorescence image
of the assembled structure, and the probability distribution of the number of defects after a rearrangement cycle (gray) and after two such
cycles (dark gray). All white scale bars are 10 um. (a) Compact square array (N = 100), (b) the arbitrary array used as an example in Sec. VI
(N = 14), (c) an edge dislocation in a square lattice (N = 39), (d) a grain boundary between a square and a triangular lattice (N = 91), (e) a
patch of a triangular lattice (N = 108), and (f) an atomic rendering of Mona Lisa (N = 106).
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atoms, a high efficiency of a single rearrangement cycle is
still essential as laser power is a limiting factor for scaling
up the number of atoms. Figure 9(b) shows the probability
distribution of the number of defects (missing atoms) after a
single (left) or two (right) rearrangement cycles, showing the
benefit of performing several cycles.

Examples of assembled structures of various types, with up
to N = 108 atoms, can be seen in Fig. 10. The probability to
have a given number of defects in the final array is shown in
the histograms on the right, for a single rearrangement (gray)
and for two cycles (dark gray). In the latter case, even for N >
100, defect-free arrays are obtained in about 20% of the shots.
Using a trapping wavelength closer to resonance (820 nm) in
order to generate more traps for a given laser power, we have
been able to assemble arrays of up to 209 atoms without any
given defects.

VIII. CONCLUSION

In this paper, we have shown how, without any change
in the hardware used in [13], improved algorithms can
significantly improve the capabilities of a moving-tweezer
atom-by-atom assembler, both in terms of possible array ge-
ometries and in terms of achievable atom numbers due to the
fact that fewer moves are required.

The algorithms demonstrated here can be used directly for
the plane-by-plane assembly of three-dimensional structures
[22]. Extending them to a full three-dimensional assembly

with atoms being moved also longitudinally, along the lens
optical axis, will require significant changes due to the fact
that transverse moves (using an AOD) and longitudinal moves
(done with an electrically tunable lens) do not obey the same
constraints.

Another natural extension of this study, which we leave for
future work, is to use multiple tweezers working in parallel, in
the spirit of [14]. This approach should be particularly easy to
adapt to the compression algorithm for assembling compact
regular structures; then, assuming that the laser power for
generating the multiple tweezers is not a limit, the assembly
time could scale as ~/N, making it possible to assemble struc-
tures with several hundreds of atoms. Combined with other
technical improvements, using, e.g., cryogenic environments
to drastically extend the vacuum-limited lifetime, reaching a
scale of 1000 atoms or more thus seems realistic in the rela-
tively near future, which would open up a variety of exciting
applications in quantum science and technology.
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We report on the trapping of single Rb atoms in tunable arrays of optical tweezers in a cryogenic
environment at approximately 4 K. We describe the design and construction of the experimental apparatus,
based on a custom-made UHV-compatible closed-cycle cryostat with optical access. We demonstrate the
trapping of single atoms in cryogenic arrays of optical tweezers, with lifetimes up to 6000 s, despite the
fact that the vacuum system has not been baked out. These results open the way to large arrays of single
atoms with extended coherence, for applications in large-scale quantum simulation of many-body systems
and, more generally, in quantum science and technology.

DOI: 10.1103/PhysRevApplied.16.034013

I. INTRODUCTION

For most applications of quantum science and technol-
ogy, whatever the experimental platform, scaling up the
number of individually controlled quantum objects is a
major subject of research, as this is a necessary condi-
tion for practical use [1]. Over the past few years, tweezer
atom arrays have emerged as a very versatile platform for
quantum science, with applications ranging from quantum
simulation of many-body systems [2] to quantum metrol-
ogy [3,4] and quantum computing [5,6]. Large arrays with
up to approximately 200 atoms are now used for quantum
simulation of spin systems [7,8]. They are assembled atom
by atom, using moving optical tweezers, from an initially
disordered configuration. One of the current challenges in
the field is to scale up the atom number while preserving,
or even increasing, the coherence of the system.

A natural way to achieve this goal is to operate the
tweezer arrays in a cryogenic environment at a tempera-
ture of a few kelvin. A first beneficial effect is that the
residual pressure is considerably smaller than at room tem-
perature, which reduces collisions of the trapped atoms
with the residual gas. This allows us to increase the trap-
ping lifetime of atoms in the tweezers, which is one of
the limiting factors in the assembly of large arrays, as
the assembly time increases with the system size. For a
sequential assembly scheme, as used, e.g., in Ref. [9],

“thierry.lahaye@institutoptique.fr

2331-7019/21/16(3)/034013(8)

034013-1

increasing the trapping lifetime by a factor of « allows for
an increase in the atom number by roughly /o [10]. A
second benefit is that black-body radiation (BBR), which
scales as T*, is considerably reduced in such an environ-
ment, making BBR-induced transitions between Rydberg
levels almost negligible. For low-angular-momentum Ryd-
berg states, this results in a typical increase of the Rydberg
lifetime by a factor of between 2 and 3 [11], with a direct
impact on coherence and gate fidelities [12]. The inhibi-
tion of BBR-induced transitions would also be beneficial
for Rydberg dressing experiments, where they are a serious
limitation [13,14]. For circular states, the lifetime increases
by several orders of magnitude in a cryogenic environment
[15], motivating their use for quantum computing and sim-
ulation [16—18]. Finally, cryogenic single-atom trapping is
also required, albeit at much lower temperatures, for cou-
pling single atoms to microwave resonators in order to
build hybrid systems [19].

Here, we demonstrate the trapping of single atoms in
arrays of optical tweezers in a cryogenic environment at
4 K. We first describe the design, construction, and char-
acterization of the setup, based on a closed-cycle cryostat
where we use only UHV-compatible components. We then
show how laser cooling and trapping of Rb atoms in the
setup is obtained without any strong change as compared
to a room-temperature setup. We finally show that we can
trap single atoms in arrays of tweezers, with measured life-
times in the tweezers up to 6000 s, a 300-fold improvement
compared to our current room-temperature setup.

© 2021 American Physical Society
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II. EXPERIMENTAL APPARATUS
A. Cryostat design

The adaptation of an atom-tweezer setup for operation
at cryogenic temperatures comes with many specific tech-
nical constraints. This means that a straightforward use
of the cryogenic solutions previously developed in the
atomic, molecular, and optical (AMO) community, e.g.,
for ion trapping [20,21] or for Bose-Einstein condensation
[22,23], is not possible.

In this work, we have chosen to keep, whenever possi-
ble, the technical solutions adopted in our existing room-
temperature setup, e.g., the use of in-vacuum high-NA
aspheric lenses or that of a Zeeman slower as an atom
source [24]. This has allowed us to focus mainly on the
design of the cryogenic part. We base our design on the
use of a closed-cycle cryostat using a pulse-tube refrig-
erator (PTR), with the technical constraint of using only
UHV-compatible materials. However, to keep the design
of our custom-made cryostat close to that of a commer-
cial model [25], we opt for a nonbakeable system, as the
PTR cannot be baked out without being damaged (hav-
ing a removable PTR to allow for bake-out of the rest of
the system makes the design significantly more involved).
This trade-off results in having a moderate vacuum in the
room-temperature chamber but, as we shall see, cryopump-
ing by the 4-K shield enclosing the atoms still results in
long trapping lifetimes.

Figure 1(a) shows a general view of the system. The
cryostat is enclosed in a large stainless-steel vacuum cham-
ber at 300 K that accommodates the PTR on one side and a
science chamber on the other side. An atomic source, com-
prising a rubidium oven followed by a Zeeman slower, is
connected to the science chamber and can be isolated from
it using a gate valve actuated with a stepper motor. The
cryostat chamber is pumped using a 300-L/s ion pump
(that includes a titanium sublimator), as well as with a
nonevaporable getter (NEG) cartridge.

A cross section of the cryostat assembly is shown in
Fig. 1(b). The two cooling stages of the PTR at 30 K
and 4 K are thermally connected to nested gold-plated
copper radiation shields, which extend all the way to the
science chamber. This connection is made using ultra-
soft high-thermal-conductivity copper braids for vibration
decoupling. On the thermal shields, antireflection-coated
5-mm-thick fused-silica windows allow for optical access
along all the needed directions [26]. The vibrational decou-
pling with copper braids is highly efficient: with the PTR
in operation, we measure, along the three orthogonal direc-
tions, residual vibrations on the 4-K baseplate below 10 nm
(rms), the main frequency components being in the hertz
range.

The optical assembly for atom trapping is bolted on
the 4 K baseplate, in the center of the science chamber,
and comprises a beryllium-copper (Cu-Be) lens holder and

two mirrors for beam steering. The four magneto-optical
trap (MOT) beams in the horizontal plane, as well as the
tweezer beam along the optical axis of the aspheric lenses,
propagate in a straight line from outside the chamber,
through a total of two vacuum view ports and four win-
dows on the thermal shields, and exit the chamber on the
other side. Three beams, on two axes (the Zeeman slower
beam and the vertical MOT beams) are reflected inside
the chamber on 45° metallic mirrors held by Cu-Be sup-
ports. This allows (i) for the vertical MOT axis, to avoid
having beams coming from below the chamber, which
would make the construction of the cryostat quite involved,
and (ii) for the Zeeman slower beam, to avoid having a
cold window facing the atomic beam, where Rb would
accumulate, rendering it opaque. Two apertures with a
diameter of 13 mm, one in each thermal shield, allow the
atomic beam from the Zeeman slower to enter the trapping
region.

Figure 1(c) shows a cross-section view of the lens
mount. It is milled in a Cu-Be block; this choice of material
is a trade-off to retain good thermal conductivity while hav-
ing better mechanical properties than copper [27]. The two
aspheric lenses (LightPath Technologies, NA 0.5, focal
length 10 mm, working distance 7 mm) are mounted in
Cu-Be barrels. To account for the differential thermal con-
traction between Cu-Be and glass upon cooling, the barrels
are machined such that, at room temperature, their inter-
nal diameter exceeds the outer diameter of the lenses by
20 um, resulting in a perfect match of diameters at 4 K.
The flat face of the lens is pressed against a shoulder at the
end of the barrel using a Cu-Be spring and a nut to ensure
the correct positioning of the lens at the end of the bar-
rel. In a preliminary set of experiments, we check, using
white-light illumination between crossed polarizers, that
no stress-induced birefringence occurs in the lenses when
cooling down the system.

The two lenses are mounted with a spacing such that at
4K, they are in an ideal / -f* configuration. Due to the ther-
mal contraction of the Cu-Be lens holder, and to a lesser
extent to that of the aspheric lenses, this means that at room
temperature an incident collimated beam will focus at a
finite distance, calculated to be approximately 2.5 m, after
passing through both lenses. Using copper spacers between
the barrels and the holder, with a thickness that we grad-
ually reduce by lapping, the longitudinal positioning of
the lenses is carefully adjusted until the proper spacing is
obtained. When cooled down to 4 K, the system becomes
almost afocal, as a collimated incident beam focuses at a
distance > 20 m after the second lens.

In view of future experiments with Rydberg atoms, the
face of the lens facing the atoms is coated with a trans-
parent but conductive layer of indium-tin oxide (ITO),
with a thickness of 120 nm (giving an overall transmis-
sion of the lens of about 90% at the tweezer wavelength of
830 nm).
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The experimental setup. (a) A schematic rendering of the entire apparatus, comprising the atomic source and the cryostat.

(b) A longitudinal cross section of the cryostat, showing the pulse-tube refrigerator with its two stages at 30 K and 4 K, together
with the corresponding thermal shields to which they are connected through vibration-decoupling copper braids. (c) An enlarged cross

section of the lens-holder piece.

The lens holder also accommodates two independent
superconducting (SC) coils, wound with 0.5-mm diame-
ter Nb-Ti wire, which can be used to produce the MOT
magnetic field gradient or a homogeneous bias field when
switching from an anti-Helmholtz to a Helmholtz config-
uration. They are connected to the exterior of the cryo-
stat via 0.6-mm-diameter kapton-insulated copper wire
(the chosen diameter is a trade-off that minimizes the
heat conduction from room temperature to 4 K and the
Joule heating in the wire, for the design current of 2
A [27]). To minimize the effect of eddy currents when

switching the magnetic field on and off, the coil form is
made of Cu-Be which, unlike pure copper, has a mod-
erate electrical conductivity even at cryogenic tempera-
tures. In a preliminary experiment in a test cryostat at 4
K, we measure decay times of approximately 1 ms for
the magnetic field; however, there, the copper thermal
shields are quite remote from the coils. In the final con-
figuration of the cryostat, when operating a MOT (see
Sec. Il A) and turning off the field, we observe that
the magnetic field experienced by the atoms fully set-
tles after only approximately 40 ms, most likely due to
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the presence of pure copper parts (in particular, the 4-K
thermal shield) close to the coils. While this is not an issue
for loading optical tweezers, as we show below, one could
improve on this in future designs by replacing some copper
parts by Cu-Be ones when possible and by cutting out nar-
row slits in the shields at appropriate locations to break the
paths of eddy currents. Finally, we check that for relevant
repetition rates of current switching, eddy currents do not
lead to any appreciable heating.

B. Performance of the cryostat

To operate the cryostat, we first evacuate the system
with turbomolecular pumps, until we reach a residual pres-
sure in the 10~8-mbar range. This pressure is due to (i)
the absence of bake-out of the setup and (ii) the large
number of elements under vacuum, especially those hav-
ing a large surface-to-volume area, such as the copper
braids, for which outgassing is very slow. We then switch
on the PTR and, within about 15 h, the temperatures 7}
and 7, measured by sensors on the first-stage (“30-K”)
and on the second-stage (“4-K”) shields reach steady val-
ues. The pressure in the chamber, as measured by the
300-L/s ion-pump current, is then around 4 x 107" mbar
[28]. Warming up to room temperature takes about 100 h
when keeping the chamber under vacuum; if needed, faster
cycling times could be achieved by flushing the chamber
with dry nitrogen to enhance heat exchange.

We characterize the performance of the cryostat in a
series of preliminary experiments in various configura-
tions, which allow us to evaluate its response to the various
heat loads to which it is subjected in operation. We first
cool down the system in a configuration minimizing the
heat load (no wiring for the SC coils, windows in the ther-
mal shields replaced by gold-plated copper blanks, and
openings for the atomic beam sealed) and measure 7 =
30.1 K and 7> = 3.2 K, which gives the base temperature
that the system can reach. By applying controlled power to
heaters located on the 4-K plate, we measure a temperature
increase of around 4 K/W, which gives an estimate of the
acceptable heat load. In a second configuration, where the
fused-silica windows are mounted on the thermal shields
and the apertures for the atomic beam are open, the mea-
sured temperature is barely affected, showing that most of
the BBR is effectively blocked by the windows. In the final
configuration, the SC coils are connected using their four
0.6-mm-diameter wires; the measured temperature (with-
out any current flowing in the coils) is then 7, = 4.2 K,
consistent with the heat load due to heat conduction along
the wires.

Finally, we test the cryostat performance in the presence
of the two extra heat load sources that appear when trap-
ping atoms, namely laser light for the tweezer array and
current flowing through the coils. Concerning laser power,
due to the ITO coating on the lenses, a significant part

(about 20%) of the light at 830 nm is absorbed or reflected
by the pair of lenses and does not exit the cryostat; part of
it is thus a direct heat load for the 4-K environment. For
an incident power of 1 W (enough to generate about 500
optical tweezers), we measure a temperature increase of
the lens holder by about 1 K. Concerning the operation of
the coils, we observe a slight temperature increase (0.1 K
for 1 A) when we run a current through them. For small
currents, up to 1.7 A (corresponding to a MOT gradient of
7.3 G/cm), we attribute this to Joule heating of the (non-
SC) wires connecting the coils to the room-temperature
connectors. Beyond this value, we observe a jump in the
coil resistance, indicating that they partially reach a tem-
perature above the Nb-Ti critical temperature of 9.2 K and
transition to the normal state, most likely because the ther-
mal contact between the kapton-insulated SC wire and the
Cu-Be coil form is not sufficient for proper thermalization.
Then, the temperature increase is steeper, with the lens-
holder sensor reaching a temperature of 5.4 K when the
current is 2.5 A. This is more than enough for operating a
MOT in order to load the tweezer array, as we discuss in
Sec. IITA.

ITI. SINGLE-ATOM TRAPPING IN ARRAYS OF
OPTICAL TWEEZERS

A. Magneto-optical trap

We now describe the operation of the setup for atom
trapping, starting with the realization of a ¥Rb MOT. To
do so, we typically operate the rubidium oven at 100 °C.
The resulting atomic beam is slowed down via the Zee-
man slower and loads a magneto-optical trap in the sci-
ence chamber. The MOT uses six counterpropagating laser
beams with a 1/e? radius of 1.7 mm and a power of 1
mW each, detuned by —4.5T from the F =2 — F' =3
transition of the D, line (the natural line width of which
is ' = 27 x 6 MHz). Repumping light is combined with
these six beams, with a power 0.1 mW per beam; it is res-
onant with the F = 1 — F’ = 2 transition of the D line.
The typical magnetic field gradient used for MOT loading
is 6 G/cm.

After loading the MOT for typically 500 ms, we turn
off the Zeeman slower beam and close the gate valve
to stop any further loading of the magneto-optical trap.
The decay of the MOT fluorescence, measured with a
CCD camera, is shown in Fig. 2. At short times, the
MOT decays relatively quickly, due to a combination of
(1) light-assisted collisions in the dense central region of
the cloud and (ii) the escape of atoms from the outer
regions of the MOT, where the beam intensities are not
perfectly balanced (making this initial decay quite sen-
sitive to the alignment of the MOT beams). At long
times, the fluorescence decay is exponential, with a 1/e
lifetime of about 140 s, much less sensitive to beam
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FIG. 2. The fluorescence decay of the MOT. An exponential
decay fit at long times (white dashed line) gives a 1 /e decay time
of about 140 s. The inset shows the MOT cloud (arrow) facing
one of the aspheric lenses.

alignment. Such a MOT lifetime is typical of vacuum sys-
tems with pressures in the low-10~'2-mbar range, showing
the dramatic effect of cryopumping by the 4-K surfaces
surrounding the atoms, despite the relatively low vac-
uum in the room-temperature chamber. This measured
lifetime gives a lower bound on the vacuum-limited life-
time that we can expect for atoms in optical tweezers
[29].

B. Arrays of optical tweezers

We then study the loading of single atoms into opti-
cal tweezers, which are created using light at 830 nm.
Using a spatial light modulator, we create arbitrary tweezer
arrays in the focal plane of the aspheric lens [30]. For the
work reported here, we use a 9 x 9 square array (see the
average fluorescence image in the inset of Fig. 3). The flu-
orescence emitted by trapped atoms is collected, using the
same aspheric lenses, on an electron-multiplication cam-
era with a typical exposure time of 50 ms. We observe
that despite the large number of optical surfaces the beams
go through and the high reflectivity of the gold-plated
thermal shields, stray light is barely higher than in our
room-temperature setup and does not significantly affect
the detection of single atoms.

For a power of 3 mW per optical microtrap, we mea-
sure, using parametric heating, an axial (radial) trapping
frequency 8 kHz (70 kHz). The trap depth is Uy/kp >~ 0.8
mK. Using a release-and-recapture method [31], we mea-
sure the atomic temperature in the tweezers to be around
50 uK after the atoms have been cooled for 50 ms by
polarization-gradient cooling (PGC) with a detuning of
—4.5T'. We cool the atoms down further to 20 uK, using a
—10.5T"-detuned light pulse of 40 ms.

To measure the time evolution of the probability of
keeping an atom in the optical tweezers, we record a first
fluorescence image to identify the traps initially containing
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FIG. 3. (a) The survival probability of a single atom as a func-

tion of the time it is held in optical tweezers, without PGC (red),
with continuous PGC (green), and with a 15-ms pulse of PGC
every 10 s (blue). The exponential-decay fits (solid lines) give
1/e decay times of about 162 s for continuous PGC and of 335 s
for pulsed PGC. The inset shows an averaged fluorescence image
of the 9 x 9 tweezer array, with a spacing of 10 um between
adjacent microtraps. (b) Lifetime measurement for pulsed PGC
(blue) after improvement of the vacuum [28,29], note the change
in the horizontal scale. The 1/e decay time is now 6050 s (solid
line). For comparison, the no-PGC and continuous-PGC curves
from panel (a) are plotted again.

atoms; we then wait for a time #,,)q and we finally take a
second image to identify the remaining atoms.

Without any cooling light during the hold time, half of
the atoms are lost after about 30 s and the decay of the
recapture probability with time is nonexponential (see the
red dots in Fig. 3). This is explained by a linear heating
rate, which we measure in a separate experiment to be
of about 8 uK/s, originating from off-resonant scattering
of the 830-nm trapping light. An obvious way to miti-
gate this heating is to leave the PGC on during the hold
time. With a detuning of —10.5T, the recapture probability
is then increased drastically, giving an exponential decay
with a 1/e decay time of 162 s (green dots). However, a
careful inspection of the second image shows that occa-
sionally, an initially empty trap is occupied in the final
image. A more detailed analysis (see the Appendix) shows
that from time to time, some atoms that are expelled from a
trap via collisions with background-gas molecules are still
slow enough to be recaptured in the optical molasses and
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then reloaded in another optical microtrap, either giving
rise to a trap loading (if this other trap is initially empty)
or to the correlated loss of two atoms (if the other trap is
already occupied). This suggests that the trap lifetime can
be further increased.

To do so, we pulse the PGC cooling light, sending a 15-
ms PGC pulse at —10.5T" every 10 s. These timings fulfill
the following conditions: the PGC pulse is long enough
to fully cool the atom again and is repeated often enough
such that the increase in temperature induced by the 830-
nm light over the period of 10 s remains well below the trap
depth. At the same time, the overall duty cycle n = 0.15%
is very small, such that the probability of correlated atom
loss, now multiplied by 7, becomes entirely negligible.
In these conditions, we measure a background-collision-
limited lifetime of 335 s (blue), i.e., an improvement by
a factor of approximately 16 as compared to our room-
temperature setup [29]. Finally, after improving the vac-
uum, we repeat the pulsed-PGC lifetime measurement and
obtain a 1/e lifetime of 6050 s as shown in Fig. 3(b). The
pulsed-PGC cooling is entirely compatible with atom-by-
atom rearrangement, meaning that we can benefit from this
lifetime increase for assembling large arrays.

IV. CONCLUSION

In this work, we demonstrate, using a relatively sim-
ple setup, the trapping of single atoms in arrays of optical
tweezers in a 4-K environment, with long lifetimes of over
6000 s, that open up exciting prospects. We now discuss
possible ways to improve the performance in the future.

Using the same setup, the next step will consist in realiz-
ing large rearranged arrays with hundreds of single atoms.
Defect-free arrays of approximately 800 atoms seem to
be within reach in our setup (the necessary 1600 opti-
cal tweezers still correspond, for a trapping wavelength
of 830 nm, to an acceptable heat load for the cryostat). In
the current stage, with ITO coating on the aspheric lenses
and appropriate antireflection coatings on the windows, the
setup is compatible with Rydberg excitation, albeit without
the possibility of electric field control. A direct measure-
ment of Rydberg-level lifetimes using a ponderomotive
bottle-beam trap [32] would be interesting, to check the
increase in the Rydberg-state lifetime due to the suppres-
sion of BBR-induced transitions. The addition of a set of
electrodes on the lens holder, and possibly a microwave
antenna for coherent manipulation in the Rydberg man-
ifold, will be a relatively simple upgrade of the current
setup.

To improve the residual pressure even further, the ulti-
mate step would be to make the system bakeable. For that,
the design needs to use a removable PTR, which requires
us to use radiators in a chamber filled with buffer gas as
the vibration-decoupling heat exchanger, in place of the
copper braids used here. Another possible improvement

would be to maximize the cryopumping efficiency using
porous materials such as activated charcoal. Such a setup,
although more involved than the one used in the current
work, is perfectly realistic. Cryogenic setups will certainly
allow us to reach 1000-atom-scale tweezer arrays, and
maybe even more if combined with techniques [33-36]
that allow for an initial loading efficiency of the array con-
siderably above 50%, thus reducing both the assembly time
and the required trapping laser power.
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APPENDIX: CORRELATED LOSS AND
RECAPTURE UNDER CONTINUOUS
POLARIZATION-GRADIENT COOLING

The fact that the measured trapping lifetime for an
atom in optical tweezers is reduced under continuous-PGC
conditions can arise due to two different effects, the rel-
ative importance of which depends on the experimental
parameters.

The first effect is simply that when the PGC beams are
always on, a steady-state very dilute cloud of laser-cooled
atoms (loaded either from slow atoms from the source or
from a residual Rb pressure in the chamber), always sur-
rounds the tweezer array; this yields occasional loading
of single atoms in a microtrap that is already occupied,
resulting in the loss of both atoms. In the present case, this
effect should be negligible, as the atom source is mechani-
cally blocked by the stepper-motor-actuated valve, and the
residual Rb pressure in the 4-K environment is extremely
low.

The second effect is the following. The energy that is
imparted to a trapped Rb atom by a molecule from the
residual gas in the vacuum chamber (consisting mostly
of H, molecules, as most other species are extremely
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FIG. 4. (a) Examples of fluorescence images of a 6 x 6 array,

showing, between successive frames, either the loss of an atom
accompanied by the loading of a previously empty trap (left) or
the “simultaneous” loss of two atoms (right). (b) Experimental
fluorescence traces, showing the evolution of the array occu-
pancy as a function of time, with correlated loss-and-recapture
events highlighted in white and red, respectively. (c) The result
of'a Monte Carlo simulation of the simple model discussed in the
text, showing the same qualitative behavior as the experimental
traces in (b).

well cryopumped by the 4-K walls) can be small enough
that the Rb atom, while expelled from the approximately
1-mK-deep optical tweezers, is still captured in the optical
molasses [37]. This atom can then be very quickly loaded
in another trap of the array, that is either empty or loaded.
In the first case, two successive frames of the camera that
monitors the fluorescence of the array will show the same
number of trapped atoms, but with one trap having lost its
atom and another one being suddenly loaded [Fig. 4(a),
left]. In the second case, the second frame will show two
fewer atoms than the first one [Fig. 4(a), right].

Analysis of the successive images acquired during con-
tinuous PGC (but taken with a detuning of —4.5T to obtain
relatively bright fluorescence images) shows that several
of those correlated loss-and-recapture events can be iden-
tified during the full decay of the array and that they
contribute significantly to the trapping lifetime. A typical
example of such an analysis is shown in Fig. 4(b). Figure
4(c) shows the result of a very simple stochastic model-
ing of the process. At each time step, corresponding to an
imaging frame, each atom in a filled trap i has a proba-
bility pon of undergoing a collision with the background
gas; if a collision does occur, it leaves the trap but has a
probability p. of being recaptured in any trap j of the
array (including i), chosen randomly, giving rise to either a
recapture or to correlated loss. We find that values around

Prec ~ 0.2 reproduce qualitatively the main features of the
experimental traces.

A quantitative investigation of the dependence of p,. on
various parameters (the temperature of the environment,
the parameters of the PGC) is beyond the scope of this
paper but could be an interesting extension of the present
work.
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Quantum simulation using synthetic systems is a promising route to solve
outstanding quantum many-body problems in regimes where other approaches,
including numerical ones, fail'. Many platforms are being developed towards this
goal, inparticular based on trappedions®*, superconducting circuits®”, neutral
atoms® ™ or molecules™*. All of these platforms face two key challenges: scaling up
the ensemble size while retaining high-quality control over the parameters, and
validating the outputs for these large systems. Here we use programmable arrays of
individual atoms trapped in optical tweezers, with interactions controlled by laser
excitation to Rydberg states", toimplement an iconic many-body problem—the
antiferromagnetic two-dimensional transverse-field Ising model. We push this
platformto aregime with up to 196 atoms manipulated with high fidelity and probe
the antiferromagnetic order by dynamically tuning the parameters of the
Hamiltonian. We illustrate the versatility of our platform by exploring various system
sizes on two qualitatively different geometries—square and triangular arrays. We
obtain good agreement with numerical calculations up to a computationally feasible
size (approximately 100 particles). This work demonstrates that our platform can be

readily used to address open questions in many-body physics.

Previous studies have demonstrated the potential of Rydberg-based
quantum simulators with up to a few tens of atoms™™¢, including
high-fidelity manipulations”™", In particular, the transverse-field
Ising (TFI) model has been studied in one dimension with up to 51
atoms'*?° in two-dimensional (2D) square arrays—but with a lim-
ited degree of coherence'®”, making it difficult to observe genuine
quantum features—and recently in three dimensions with 22 atoms?.
Here weimplementthe TFImodelin two dimensions, combining much
larger atom numbers (up to around 200) and a high degree of coher-
ence. In ourimplementation, we explore two geometries that exhibit
qualitatively different phase diagrams: the bipartite square lattice and
thegeometrically frustrated triangular lattice”. On the square lattice,
we prepare the Néel state that is characteristic of antiferromagnets
withunprecedented probability. On the triangular lattice, we observe
the creation of two distinct antiferromagnetic (AF) orders. The large
number of atomsinvolved and the non-equilibrium nature of the experi-
mentmakes adirect comparisonwith accurate numerical simulations
challenging. To validate the dynamics of our simulator, we have pushed
matrix-product-state simulations to their limit and are able to simu-
late the dynamics of up to 100 atoms in two dimensions. We obtain an
impressive agreement between the simulation and the experiment up
tothisnumber, whichis one of the largest for which a direct comparison
has been performed. Finally, by comparing the experiment to classical
Monte Carlo calculations, we demonstrate that our results cannot be

reproduced by a classical equilibrium distribution at the same mean
energy, and that the experiment features an enhanced probability of
finding classical ground states.

2D quantum Ising model on a Rydberg simulator

For arrays of atoms coupled by the (repulsive) van der Waals inter-
action, when excited to Rydberg states, the Hamiltonian of the TFI
modelis:

e
Haya= . Uy iy + == 3 o =h6 )., 0
i i

i<j

where the Rydberg and ground states are mapped onto the (pseudo-)
spin states |1) and |[V), respectively. Here U;= C6/r,~‘} is the van der
Waalsinteraction, C¢is the van der Waals coefficient, r;is the distance
between atoms i andj, n;= |1 |;= (1+07)/2 , 0;are the usual Pauli
matrices and 7 is the reduced Planck’s constant. The two spin states
are coupled via a laser field with a Rabi frequency Q and a detuning &,
whichactastransverse and longitudinal fields, respectively. AF order-
inginthe system appears asaconsequence of the stronginteractions
characterized by the Rydberg blockade radius R,, as illustrated in
Fig.1a?*. The type of AF ordering depends on the geometry of the array
and the Hamiltonian parameters.
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Fig.1|Emergence of AF ordering from the Rydbergblockade in square and
triangulararrays. a, Illustration of the Rydberg blockade with two atoms,
whereby the stronginteractions prevent the simultaneous excitation of two
atoms fromthe ground state (red circles) to the Rydberg state (blue circles)

We create defect-free square and triangular arrays of up to 196
and 147 ¥Rb atoms, respectively, using an optimized atom-by-atom
assembly protocol® (Fig. 1b). We define |V ) =|5S,,, F=2, m;=2) and
|™)=175S,/,, m;=1/2) (Fand m;are the hyperfine quantum numbers
and m,is the magnetic quantum number for the fine structure), which
are coupled via the intermediate state|6P, ,, F =3, mr = 3) with two
counter-propagating laser beams with wavelengths of 420 nm and
1,013 nm (ref.?) (see ‘Experimental setup’ section). We achieve asingle
atom excitation probability 0f 99.1(8)% and acoherence time of 20 us,
about 20 times longer than in our previous work* (see ‘Coherence of
single-atom laser excitation’ section). We use arrays with atomic spac-
ing a = 10 um, leading to a nearest-neighbour interaction of
U/h=1.95MHz.

To probe the phase diagram of Hg,4, we sweep Qand § over time, and
transfer the system from its initial paramagnetic (PM) ground state
[V V...V )into the AF phase. A quantum phase transition (QPT) separates
these two phases. Ideally, one would adiabatically drive the system
such that it remains in the instantaneous ground state. However, the
energy gap at the QPT decreases with theatom number N, (proportional
to1/-/N on asquare lattice and exponentially for the triangular lat-
tice?”?®). This leads to timescales that are experimentally impractical
duetodecoherenceeffects, dominated by spontaneous emission from
theintermediate state. Hence, we choose sweep times (about 6 ps) that
are short enough to avoid sizeable decoherence but sufficiently long
to quasi-adiabatically probe the phase diagram (see ‘Benchmarking
the 4 x 4 array’ section). We record fluorescence images of the atoms
remainingin|¥ ). Examples of single-shotimages of the largest square
and triangular arrays before (and following) the preparation sweeps
areshowninFig.1b, c. Thefinalimages show almost-perfect AF order-
ing. For the results presented here, we typically repeat the sequence
1,000 times.

Antiferromagnet on the square lattice

We first focus on the square lattice, using arrays of size N=L x L, with
an even linear system size L so that the two Néel states have the same
energy. In Fig. 2a, we sketch the (bulk) phase diagram. In the case of
the van der Waalsinteractionimplemented here, the AF phase region
is expectedtoextend up to the critical point 1Q.=1.25Uat h6 = 4.66U/2
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HRyd (t)

withinthe Rydbergblockade radius R, at which U=hQ.b, ¢, Single-shot
fluorescenceimages of groundstate (|V)) atomsinal4 x 14 square array (top)
and al47-atomtriangular array (bottom) with an atomic separation of

a=10 um.b, Initial PM states. ¢, Nearly perfect AF ordering.

(ref.??). More complex phases®, explored in a companion paper?,
appear at the lower and upper boundaries of 16/Uin the AF region. The
applied sweeps are shownin Fig. 2a, with the QPT being crossed during
the ramp down of Q(¢). Figure 2b presents an experimental histogram
ofthestatesrecorded at the end of the sweep for the 8 x 8 array. Remark-
ably, out of 2°*~2 x 10" possible states, we obtain a perfectly ordered
state with a probability of around 2.5% (including detection errors;
evenif the sweeps were fully adiabatic, the probability of measuring
perfect AF ordering would be about 27% due to our detection errors),
as can be seen by the two prominent peaks. The fluorescence images
show the two corresponding Néel states. To characterize the magnetic
orderingof the states prepared during the sweep, we measure the order
parameter, which is the normalized staggered magnetization
Mg,g = (Iny — npl)/(N/2), giving the difference in the number of excita-
tions on each sublattice (A and B), averaged over many realizations.
The two perfect AF states correspond to one of the two sublattices
being fully excited, such that m,,, = 1. We access the dynamics of the
system during the sweep by rapidly turning off the excitation laser at
different times ¢, (Fig. 2a). Figure 2c shows the evolution of my,, for
the 6 x 6 array and the 10 x 10 array, using the same sweep. Over the
first 1.5 ps of the sweep, the systemis in the PM phase, where fluctua-
tions lead to small but finite my,, > 1/-/N. We then observe the growth
of mg,, during the drive of the system from the PM to the AF phase.

Tobenchmark our platform, we perform a systematic comparison of
the dynamics with matrix product state (MPS) numerical simulations
(see‘Matrix product states’ section). We consider boththe programmed
and the real parameters, the latter of which include independently
calibrated experimental imperfections (detection errors, inhomoge-
neities of the excitation beams, pulse shapes and residual disorder in
the atomic positions, described in detail in the ‘Effect ofimperfections
onlarger arrays’ section), with the exception of decoherence effects.
Forthe 6 x 6 array, we observe agood agreement between the experi-
mental results and the MPS simulations, for both situations. For the
10 x 10 array, the experiment and the real MPS simulations also agree
well. The difference between the programmed and the real MPS simu-
lations highlights that the imperfections have a more severe impact
on larger systems. In addition, the reduced final value of m,, for the
programmed MPSonthe 10 x 10 array indicates that asthe systemsize
grows, adiabaticity is indeed harder to achieve.
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Fig.2| Thelsingmodelonasquarelattice. a, Sketched bulk phase diagram
forthe squarelattice. Theinset shows the sweep shape, with ¢, the switch-off
time of the excitation laser. The correspondingtrajectoryinthe phase diagram
isshownasaredarrow. b, State histogram for the 8 x 8 array at the end of the
sweep. Theinsetsshow fluorescenceimages of the two perfect AF states, which
are obtained with 2.5% probability. ¢, Growth of the staggered magnetization
duringthe sweep for the 6 x 6 array (left) and the 10 x 10 array (right). The blue
circlesare experimentalresults with standard errors on the mean smaller than
the markerssize. Theerror bar onthe final pointisindicative of the long-term
stability of the experimental setup (see ‘Long-termstability’ section). MPS

We now characterize the final state obtained at the end of the sweep
(2=0).First, we visualize the shot-wise contributions to m,, using a
2D histogram of the probability P(n,, ny) of the| ) populations n, and
ng of the two sublattices A and B. Here the two Néel states appear as
points at (V/2,0) and (O, N/2). The results are plotted in Fig. 2d for the
10 x 10 array and the 14 x 14 array. For both systems, we observe the
presence of points along the diagonal, highlighting that the average
Rydberg density is about 50%. For the 10 x 10 array, we observe a con-
glomeration of points around the two corners belonging to the Néel
states. Owing to the imperfections and the scaling of the energy gap,
the state preparation becomes more challenging with increasing sys-
tem size. The elongated histogram for the 14 x 14 array demonstrates
that, remarkably, we prepare strongly AF ordered states (m,,,,=0.391(1)),
even for such large systems. This is also evident in the fluorescence
imageinFig.1c, which shows 184 atoms (out 0f196) obeying AF order-
ing. Foracomparison with simulations, we have devised an algorithm
to stochastically sample the MPS wavefunction, thereby obtaining
snapshotsasin the experiment (see ‘Sampling of MPS wavefunctions’
section). The lower half of Fig. 2d shows the so-obtained histogram for
the 10 x 10 lattice, which matches the experiment very well. For even
larger atom numbers, accurate MPS simulations become intractable.

Second, we compute the connected spin-spin correlation function
defined as

Gi= LZ {mnyy = <npXny), )
Neti

where the sum runs over all pairs of atoms i and j separated by ke, + le,,
with e, denoting the two vectors of the underlying lattice, kand [are
two integer numbers, and N, ,being the number of such pairs. Figure 2e
shows the C;, correlation maps corresponding to the m,, histograms
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simulations without (dashed line) and with (grey lines) experimental
imperfections for which 50 (6 x 6 array) and 77 (10 x 10 array) disorder instances
areshown, withtheir average showninblack. The vertical dotted lines
correspond tothe turning pointsinthe sweep. The vertical red regions depict
thefinite-size phase boundaries between the PM and AF phases, obtained from
theinflection point of mg,, using ground state density matrix renormalization
group.d, Final staggered magnetization histograms for the 10 x 10 array (left)
andthe 14 x 14 array (right). e, The correlation maps for the 10 x 10 array (left)
andthe14 x 14 array (right), with the MPS results shownin the lower half for the
10 x10array.

showninFig.2d. The plots show the alternation of correlation and anti-
correlation, expected for AF ordering, whose values would be +1/4 for
the Néel state. The spatial decay of the correlationsis well described by
correlation lengths of £=7aand §=5.5a for the two systemsizes, respec-
tively, showing that the sweeps produce highly AF ordered states (the
residual anisotropy observed is due to the finite size of the excitation
beams, whichiscomparable to the width of the array (130 pm)). Again,
we observe good agreement between the experimental and real MPS
results forthe10 x10 array, confirming that the simulations capture well
the experimental conditions (for a real-time analysis of the correlations
duringthe sweep, see the ‘Growth of antiferromagnetic order’ section).

Comparison with classical thermal equilibrium

To further quantify the AF ordering, we analyse the distribution of AF
clustersizes®. For eachrun of the experiment, we decompose the snap-
shotintoindividual clusters obeying local AF ordering (see examplesin
Fig.3a,b). We count the number of atoms inside each individual cluster,
andrecord the largest size, s,... From the full set of snapshots, we recon-
struct the probability distribution P(s,,,,). For a perfectly AF-ordered
state, this distribution presents as a single peak of unit probability at
Smax = N, While imperfect ordering shows up as a distribution broad-
ened towards smaller s,,,,. InFig. 3¢, d we show P(s,,,,,) at the end of the
sweep for the 10 x 10 array obtained from the experiment (Fig. 3c) and
from MPS simulations (Fig. 3d). We observe that more than 27% (30%)
of the shots in the experiment (MPS) contain AF clusters of at least
90 sites, that s, s,,,, > 90.

Thefactthat we obtainadistribution of final states raises the question
whether the system has thermalized during the finite duration of the
sweep'**, Toanswer this question, we compare the observed distribu-
tion P(s,,,) to the corresponding distribution obtained froma classical
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Fig.3|Quantumreal-time evolution versus classical equilibrium.
a,b,FluorescenceimagesonalOx10arrayillustrating how we extract the
largest AF domains comprising 94 (a) and 100 (b) sites, indicated by the blue
boundaries.c, d, Distributions of s, at theend of the sweep (blue) compared
with the classical equilibrium result (yellow) with the corresponding
hypothetical temperature Ty, obtained from the experiment (c) and MPS
simulations (d). Theinsetindisazoominto the distribution of the largest AF
domains.

equilibrium setup withahypothetical temperature T,,,,. We focusona
classical description for two reasons: (1) the classical energy is the one
accessible in the experiment and (2) at the end of the sweep, Q=0 and
the quantumand classical statistical mechanics descriptions coincide.

To determine T,,,, we match the classical Ising energy E ., (¢.) of
the experimental system with EMS. (T) from the corresponding classi-
cal statistical mechanics system for a given temperature T estimated
from aMonte Carlo sampling (one could also use other observables to
match a hypothetical temperature, but as temperature is the variable
conjugate to the energy in thermodynamics, it is the most natural
choice). Werefer to the ‘Extracting a classical temperature’ section for
a thorough discussion of T, during the sweep. In Fig. 3¢, d, we show
P(s,,) for the corresponding classical equilibrium distributions, and
observe that they do notreproduce the distribution of the experimen-
taland MPSresults. In particular, the probability of creating perfectly
ordered statesis higherin the quantumreal-time evolutionthanin the
classical equilibrium case. The classical equilibrium approach also
results in shorter correlation lengths. A similar analysis during the
sweep and for the MPS real-time evolution shows similar features (see
the ‘Experiment versus classical equilibrium during the sweep’ and
‘MPS time evolution versus classical equilibrium’ sections). Our analy-
sis therefore reveals that despite residual imperfections, the experi-
ment does not thermalize during the state preparation protocol and
iswellreproduced by aunitary quantum mechanical real-time descrip-
tion. Furthermore, the enhanced probability of finding the targeted
classical states is promising for future applications of the Rydberg
platform, for example, as a quantum annealer to solve optimization
problems of various types®* ¢,

Thel/3 and 2/3 phases on the triangular lattice

Having explored the square lattice, we now consider the more complex
triangular array. Here the TFI model features a richer phase diagram,
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with prominent ordered phases at 1/3 and 2/3 Rydberg filling, as
sketched in Fig. 4a. The 1/3 phase is the analogue of the AF ordering
onthesquarelattice, where the Rydbergblockade prevents neighbour-
ing sites from being excited simultaneously, leading to one of the three
sublattices being filled with Rydberg excitations, illustrated in Fig. 1c.
The 2/3 phaseis the ‘particle-hole’ inverse of this, with two sublattices
being fully excited and one sublattice containing ground-state atoms.
Inbetween these phase regions, at 1/2filling, the classical Ising model
(Q=0)isstrongly frustrated for nearest-neighbourinteractions, with
an exponentially large (in N) ground-state manifold®. Finite Q stabi-
lizes yet another ordered phase in a process called ‘order by disorder’
(OBD)29,37741‘

To explore the triangular phase diagram, we consider hexagonal
clusters of various sizes, built shell by shell around a central three-
atom triangle (Fig. 1b). We apply the sweeps shown in Fig. 4a for two
different final detunings, &, to create the 1/3 and the 2/3 phases.
To quantify the state preparation process, we again measure the
temporal dynamics of the order parameter, the normalized stagger-
ed magnetization. For the triangular array, this is defined as
My = <INy + €235 + €230 |)/(N/3), where n, g c is the Rydberg po-
pulation oneach ofthe three sublattices. We plot the results in Fig. 4b
for the experiment and two types of MPS simulation (programmed
andreal) for a 75-atom array, with 6;chosen to prepare the 1/3 phase.
We observe the growth of the AF ordering both in the experiment and
the simulations, which agree well during the first 5 ps of the sweep.
After this, the experimental results plateau at a lower value of mg,,
thanexpected fromthe MPS. The inclusion of experimental imperfec-
tions decreases the final value of my,,; however, thereisstill adiscrep-
ancy with the experimental results. A possible explanation could be
the enhanced sensitivity of the QPT from PM to the 1/3 AF phase
(believed to be first order?) to the residual experimental imperfec-
tions not included in the MPS simulation. Confirming the origin of
this effect will be the subject of future work.

To further characterize the prepared final states, we consider G,
defined similarly to equation (2). Here the perfect AF state would
have C;, = +2/9 and C,, = -1/9 for correlated and anticorrelated
sites, respectively. In Fig. 4c, e, we show the final-state correlation
maps for the 1/3 (2/3) phases on atom arrays of 75, 108 and 147 sites
(108 sites). We observe a pattern characteristic of three-sublattice
ordered states, throughout almost the entire bulk of our systems,
with a correlation length = 3-3.7a for the 1/3 phase and £ = 2a for
the 2/3 phase. In Fig. 4d, f, we plot the corresponding distributions
of the complex order parameter. For perfectly ordered 1/3 (2/3) sys-
tems, one would expect peaks at the three corners of the bounding
hexagon, marked by red (green) dots. We observe correspondingly
aligned triangular distributions with good agreement between the
experimental and MPS results. There is a higher accumulation of points
atthe cornersin the MPS results, which corresponds toa higher value
of m,,. Although the distributions spread almost fully to the corners
inthe1/3 phaseresults, for the 2/3 phase the size of the triangle is vis-
ibly reduced. This reduction is due to finite-size cluster effects: the
boundaryisfilled withRydberg excitations, which reduces the maximal
possible extent of the distribution to the inner hexagon (dashed lines)
(see ‘Triangular 2/3 plateau’ section). The above results demonstrate
the preparation of the 1/3 and 2/3 phases using a synthetic quantum
many-body system. Despite the experimental imperfections, and the
finite sweep duration, we are able to produce highly ordered states on
even the largest 147-atom array. This is highlighted in Fig. 1c, which
shows a fluorescence image of the 1/3 phase on the 147-atom array
with almost perfect AF ordering. Finally, similar to the square array,
we observe an enhanced probability of finding highly ordered states
compared with a classical equilibrium system at the same energy, as
revealed by experimental order parameter distributions that are cen-
tred atlarger values (see details in the ‘Time evolution versus classical
equilibrium on the triangular lattice’ section).
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the sweep fora75-atomarray. The blue circles are experimental results with
standard errors on the mean smaller than the markerssize. Theerror bar onthe
final pointisindicative of the long-termstability of the experimental setup (see
‘Long-termstability’ section). MPS simulations without (dashed line) and with
(greylines) experimentalimperfections for which 50 disorder instances are
shown, with their average shown inblack. The vertical dotted lines correspond
totheturningpointsin the sweep. The vertical red region depicts the finite-size

Conclusions and outlook

We have probed the quantum dynamics of Ising magnetsinsquare and
triangular geometries, beyond situations that can be exactly simulated
classically. We have validated the experimental results with compre-
hensive numerical simulations up to computationally feasible sizes.
We have shown a high degree of coherence and control, over alarge
number of atoms. Combined, this demonstrates that our platform
is now able to study quantum spin models in regimes beyond those
accessible via numerical investigations. We have also identified a
potential advantage of Rydberg quantum simulators to prepare tar-
geted classical states, compared with classical equilibrium systems.
Natural extensions of this work include a thorough investigation of
the dynamics of the 2D QPT, and further explorations of the effects
of frustration, in particular the observation of the elusive OBD phase.
Finally, our benchmark provides a roadmap for improving the plat-
formeven further, thus opening exciting prospects beyond quantum
simulation, for example, for optimization®**¢, quantum sensing****
and quantum computing***,

Independent work exploring other phases and dynamics onasquare
array with a Rydberg quantum simulator is reported in a companion
publication®.

phase boundarybetweenthe PM and the 1/3 AF phase phases obtained from
density matrix renormalizationgroup.c, d, Final experimental correlation
maps (c) and corresponding staggered magnetization histograms plotted in
the complex plane (d) for the 75-site (left), 108-site (middle) and 147-site (right)
triangular arrays for the sweep preparing the1/3 phase. For the 75-site and
108-site arrays, the lower half of the histograms show the analogous MPS
results.e, f,Final experimental correlation map (e) and corresponding
staggered magnetization histogram (f) for the 108-site triangular array for the
sweep preparingthe 2/3 phase. The lower half of fshows the corresponding
MPSresults.
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Résumé en Francais

Au cours des dernieres décennies, la capacité a manipuler des systémes quantiques
individuels s’est améliorée a un rythme rapide, ce qui amene de nombreux chercheurs
a penser que nous sommes a l’aube d’'une deuxieme révolution quantique. Plusieurs
nouvelles technologies quantiques, qui utilisent des propriétés quantiques individuels
pour obtenir un avantage sur leurs homologues classiques, ont été développées ces
dernieres années et leur industrialisation a permis de réaliser des percées dans
divers domaines. Ces technologies reposent sur le controle précis d’objets quantiques
uniques qui peuvent étre mis en ceuvre dans une variété de systemes physiques, des
particules uniques aux dispositifs a de physique du solide. En outre, elles trouvent
des applications dans différents domaines qui peuvent étre classés dans les catégories
suivantes : détection et métrologie quantiques, communication quantique, informatique
quantique et simulation quantique.

Les systemes quantiques sont tres sensibles aux perturbations de leur environnement,
une caractéristique qui est exploitée pour construire des capteurs quantiques. Par
exemple, les centres NV dans le diamant sont des systemes solide dont le spin
électronique est sensible aux perturbations externes telles que la déformation, les
champs électriques ou magnétiques. Leur petite taille rend ces capteurs particulierement
intéressants pour les applications industrielles.

La sensibilité des systemes quantiques peut également étre utilisée pour la communi-
cation sécurisée. En utilisant les propriétés quantiques des photons, les données peuvent
étre transférées de maniere sécurisée. Le domaine de la communication quantique
s’efforce d’étendre cette recherche d’un environnement de laboratoire a une échelle
industrielle, et ces dernieres années, une distribution de clés quantiques entre un
satellite et la Terre sur une distance de 1200 km a été démontrée.

Meéme si les lois fondamentales de la physique quantique sont bien connues, de
nombreuses questions ouvertes se posent dans les systemes fortement corrélés avec
un nombre de particules plus important. En présence de fortes interactions entre les
particules quantiques, I’étude numérique de ces systemes est difficile. Par exemple, si

I'on enregistre la fonction d’onde d’un systeme de N particules de spin-1/2 dans la
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mémoire d'un ordinateur, les données nécessaires augmentent de maniere exponentielle,
atteignant plusieurs milliers de téraoctets de données pour seulement 50 particules.
Comme l'a suggéré Feynman, il est plus pratique d’utiliser un autre systeme quantique
controlable pour simuler un modele de mécanique quantique. Un tel simulateur
quantique n’aurait besoin que de N qubits pour stocker la fonction d’onde complete

d’un systeme a N particules.

La simulation quantique pourrait étre mise en ceuvre a l'aide d’un ordinateur
quantique, un outil général qui peut simuler une grande classe d’Hamiltoniens. Il repose
sur le fait que toute opération unitaire peut étre décomposée en portes quantiques
universelles. Comme un grand nombre de ces portes doivent étre appliquées a la suite
les unes des autres, des fidélités tres élevées sont nécessaires. Cependant, méme avec
des probabilités d’erreur finies par porte, il est possible de construire des architectures
tolérantes aux erreurs avec des codes de correction d’erreurs quantiques, lorsque I'erreur
par porte est inférieure a un certain seuil. Cela nécessite des ressources importantes: les
codes de correction d’erreurs quantiques combinent de nombreux qubits physiques avec
une erreur par porte finie pour obtenir un qubit logique. Cette exigence en matiere
de ressources est difficile a satisfaire, ce qui souligne la nécessité d’une plateforme
a plusieurs qubits avec de faibles erreurs de porte. Actuellement, les plates-formes
fonctionnent dans le régime NISQ (jj noisy intermediate scale quantum era ;; ), ol
les fidélités et les tailles de systeme sont trop petites pour obtenir une tolérance
aux erreurs avec de nombreux qubits. L’'un des principaux défis de ces plates-formes

consiste a augmenter le nombre de qubits tout en maintenant des fidélités élevées.

Une autre approche de la simulation quantique, a plus court terme, est la simulation
quantique analogique. Si 'Hamiltonien d’un modele d’un systeme quantique peut étre
mis en correspondance avec un systeme de simulation, le simulateur peut étre utilisé
pour produire des propriétés intéressantes, comme les fonctions de corrélation ou I'état
fondamental. Méme si le simulateur peut étre limité a une classe d’Hamiltoniens, il

peut étre beaucoup plus tolérant aux erreurs qu’'un simulateur quantique universel.

Dans ce manuscrit, je décris un tel simulateur quantique analogique basé sur des
atomes de rubidium, piégés dans des pinces optiques, qui sont excités vers des états de
Rydberg. En combinant les géométries programmables des réseaux de pinces avec les
interactions dues a l'excitation de Rydberg, notre plateforme est capable de simuler
des modeles de matiere condensée emblématiques du magnétisme quantique, tels que

le modele d’Ising et le modele XY.

Le dispositif experimental a 1’état de ’art construit de notre groupe est cependant

limitée en termes d’augmentations des particules, la plus grande géométrie assemblée
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avant mon doctorat étant de 72 atomes. Cette limitation est due a deux échelles de
temps concurrentes : Premierement, un certain temps, appelé temps d’assemblage, est
nécessaire pour assembler une structure a N atomes, et varie linéairement avec N.
Deuxiemement, la durée de vie d’'un atome dans la pince est de 20 s et limitée par le
vide, car les collisions avec le gaz entrainent des pertes d’atomes. La durée de vie
d’un réseau de N atomes est inversement proportionnelle a /N. En raison de ces deux
échelles de temps, la probabilité d’assembler un réseau sans défaut de plus de 300
atomes sur notre expérience a température ambiante est d’environ 1 %.

Dans ce manuscrit, je décris le travail effectué pour lever ces deux principales
limitations afin de réaliser de grands réseaux d’atomes sans défaut avec une grande
fidélité. Dans le chapitre 3, je décris un nouveau cadre algorithmique, qui a un
temps de calcul rapide et nécessite moins de mouvements élémentaires pendant le
processus d’assemblage, conduisant a ’assemblage d’un réseau de 196 atomes sur
notre installation a température ambiante. Nous construisons ensuite un nouveau
dispositif expérimental cryogénique, décrit en détail dans le chapitre 4. Dans un
environnement cryogénique, les expériences bénéficient d’une pression de vapeur totale
considérablement réduite. Le gaz résiduel jj gele ;;, lorsqu’il entre en contact avec une
surface a des températures cryogéniques — un effet appelé cryopompage — et ne se
désorbe pas. A des températures de 4 K, tous les gaz sont condensés ou gelés. En
conséquence, la durée de vie d’'un atome de rubidium dans la pince est de plus de
6000 s , soit une amélioration de 300 fois par rapport a notre expérience a température

ambiante.

Chapitre 2

Dans ce chapitre, je présente le simulateur quantique Rydberg existant dans notre
groupe. Tout d’abord, je décris le piégeage d’atomes de Rubidium dans des pinces
optiques et 'utilisation d’un modulateur spatial de lumiere pour créer des géométries de
piege arbitraires en plusieurs dimensions. Je décris ensuite tous les outils expérimentaux
nécessaires pour créer des matrices d’atomes sans défaut. Je présente une amélioration
du processus d’assemblage que j’ai réalisée en modifiant le controle de la radio-fréquence
utilisée pour les déflecteurs acousto-optiques. En outre, j'explique comment nous
utilisons cette plateforme pour la simulation quantique de modeles de spin et je
souligne notre mise en ceuvre d’un nouveau schéma d’excitation Rydberg. Enfin, je
présente plusieurs limites de cette expérience en termes d’augmentation du nombre

d’atomes impliqués dans les simulations quantiques, notamment la durée de vie limitée
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des atomes dans la pince, le temps d’assemblage et les aberrations optiques dues au

champ limité des lentilles asphériques utilisées.

Chapitre 3

Le temps d’assemblage est une échelle de temps limitante pour la création de grands
réseaux sans défaut. Dans ce chapitre, je présente un nouveau cadre algorithmique
pour le processus d’assemblage qui nous a permis de réduire considérablement le temps
d’assemblage et d’atteindre des nombres d’atomes sans précédent sur notre installation
a température ambiante. Cela démontre les capacités de notre plateforme a réaliser des
simulations quantiques a grande échelle pour répondre a des questions ouvertes en
physique a N corps.

Tout d’abord, je définis le probleme a résoudre : trouver un algorithme qui retourne
le temps d’assemblage total le plus petit possible, y compris le temps de calcul
de l'algorithme lui-méme et le temps nécessaire pour déplacer tous les atomes de
maniere séquentielle. Ensuite, je détaille nos contraintes expérimentales, et montre
que le probleme est 1ié a un probleme d’optimisation dit LSAP (jj linear sum
assignment problem ;;) dans un cas particulier. En général, cependant, l'ordre de la
séquence des déplacements est crucial, ce qui souligne la nécessité de développer de
nouveaux algorithmes. Nous trouvons qu’apres avoir pris en compte nos contraintes
expérimentales, le probleme en question est similaire a un probleme bien connu en
informatique, le probleme du mouvement des cailloux sur un graphe, qui est intractable
pour un grand nombre d’atomes. Il est donc impossible de calculer le nombre optimal
de mouvements a 1’échelle de temps expérimentale et nous optons donc pour des
algorithmes heuristiques.

Je décris trois nouveaux algorithmes qui améliorent 'efficacité de ’assemblage en
réduisant considérablement le nombre de mouvements par rapport a l’algorithme
utilisé précédemment. Combiné avec I'exécution de plusieurs cycles d’assemblage, cela
nous permet de préparer des matrices d’atomes sans défaut, jusqu’a 200 atomes, avec
des fidélités non négligeables.

Grace a une nouvelle approche basée sur les graphes, les algorithmes sont étendus
a des structures non régulieres qui ne peuvent étre représentées sur un réseau de
Bravais. Cette approche ouvre la voie a de nouvelles expériences intéressantes, comme
I’étude de 'effet des défauts cristallins dans les matériaux magnétiques ou le probleme
d’optimisation consistant a trouver la taille maximum d’un ensemble indépendant

d'un graphe.
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Chapitre 4

Dans ce chapitre, je présente la conception et la caractérisation d’une nouvelle
plateforme cryogénique de pinces optiques pour la simulation quantique a grande
échelle.

Tout d’abord, je donne un apercgu de la nouvelle plateforme cryogénique qui partage
certaines caractéristiques principales avec notre expérience a température ambiante
: Une source atomique, et une chambre de science avec des lentilles asphériques et
des bobines de champ magnétique, pour charger des atomes uniques dans les pieges.
Cependant, la conception de la chambre est fortement modifiée en raison du défi
expérimental que représente le refroidissement des principales parties a 4 K.

Apres avoir illustré la conception du cryostat a ultravide a 1’aide d’un tube pulsé, je
détaille nos solutions aux défis expérimentaux qui impliquent la contraction thermique,
la conduction thermique et la résistivité électrique.

Enfin, je démontre dans une série de tests que la nouvelle plateforme parvient
effectivement a maintenir de basses températures avec toutes les charges thermiques
présentes dans une expérience avec de grands réseaux de pinces. La grande vitesse
de pompage des surfaces a 4 K pres des atomes conduit effectivement a un vide de
plusieurs ordres de grandeur inférieur a celui de notre installation a température
ambiante, comme nous voyons dans le chapitre 5, ce qui permet d’obtenir des durées
de vie de piégeage limitées par le vide d’atomes uniques dans les pinces optiques de
plus de 6000 s.

Chapitre 5

Dans ce chapitre, je démontre le piégeage d’atomes uniques de Rubidium dans un
environnement cryogénique a 4 K avec des durées de vie de piégeage dépassant 6000 s.
Ce résultat tres prometteur ouvre la voie au passage a ’échelle de la plateforme des
pinces optiques pour la simulation quantique a grande échelle.

Tout d’abord, je détaille le systeme laser utilisé pour piéger un nuage d’atomes de
Rubidium dans un piege magnéto-optique (PMO) et la mesure de la durée de vie des
atomes dans le PMO. Ensuite, nous piégeons des atomes dans des pinces optiques et
mesurons une durée de vie d’environ 6300 s, soit une amélioration de 300 fois par
rapport a notre installation a température ambiante.

Pour mesurer la durée de vie, nous avons analysé en détail les différents mécanismes
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de perte, et trouvé un protocole de mesure robuste contre ces pertes. Tout d’abord,
les collisions entre les atomes de la région du four et les atomes de la pince optique
peuvent entrainer des pertes importantes. Pour les supprimer, nous fermons la vanne
entre la source atomique et la chambre de science pendant la mesure a 'aide d’'un
actionneur maison controlé par ordinateur. En outre, I’échauffement di a la diffusion
non-résonante de la lumiere laser du piege entraine des pertes, ce qui nécessite un
refroidissement laser pendant la mesure. Cependant, comme nous trouvons également
des pertes dues a la lumiere d’imagerie, nous utilisons finalement un schéma de

refroidissement laser pulsé pendant la mesure.

Chapitre 6

Dans ce chapitre, j’illustre les progres au moment de la rédaction du présent rapport de
I’expérience visant a résoudre les imperfections techniques afin d’assembler de grands
réseaux d’atomes. Ces imperfections techniques ont été analysées au cours de cette
these et sont (i) I’égalisation imparfaite de la profondeur des pieges, (ii) la diminution
de Defficacité de 'assemblage pour les grands réseaux, et (iii) la probabilité finie
de survie des atomes pendant I'imagerie de fluorescence. Une fois ces imperfections
résolues, nous pourrons profiter pleinement de la durée de vie prolongée du vide de la
configuration cryogénique et devrions étre en mesure d’assembler jusqu'a 500 atomes.

Ce chapitre se concentre principalement sur I’égalisation de la profondeur des pieges.
Je présente d’abord les problemes de la méthode actuelle qui utilise une caméra CCD
pour estimer la profondeur des pieges. Ensuite, j’analyse si nous pouvons obtenir des
estimations plus fiables de la profondeur du piege a partir de la trace de fluorescence. Je
constate que nous pouvons estimer la profondeur du piege en mesurant la diminution
du taux de diffusion pour un décalage lumineux croissant. De plus, la profondeur
du piege peut étre estimée a partir du changement de la probabilité de chargement
en fonction de la profondeur du piege. Je propose ensuite deux nouvelles méthodes
qui utilisent cette nouvelle métrique. Le grand avantage des méthodes proposées est

qu’elles ne nécessitent que des outils simples pour estimer la profondeur des pieges.
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