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Titre : Modélisation du carbone organique du sol : estimation des changements d'apport de carbone 

nécessaires pour atteindre des objectifs politiques d’augmentation des stocks de carbone organique du sol 
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Résumé : Pour compenser partiellement les 

émissions de CO2, l'initiative 4 pour 1000 a proposé 

un objectif d'augmentation annuelle de 4‰ des 

stocks de carbone organique du sol (COS). Pourtant, 

la faisabilité d'une telle augmentation fait l'objet de 

débats. Le moyen le plus efficace pour accroître les 

stocks de COS est d'augmenter l'apport de C dans le 

sol. L'objectif de cette thèse est d'estimer l'apport de 

C nécessaire pour augmenter annuellement les 

stocks de COS de 4‰ dans les terres cultivées 

européennes. Pour cela, nous avons construit une 

modélisation inverse et nous l'avons testée sur un 

modèle de COS, en estimant les entrées nécessaires 

à atteindre un objectif de 4‰ sur plusieurs 

expériences agricoles européennes de longue durée. 

Ensuite, nous avons appliqué cette approche à un 

ensemble multi-modèle et nous avons ainsi évalué 

les incertitudes dans les estimations des entrées de C 

selon différentes représentations de la dynamique du 

COS. 

Afin de fournir un premier aperçu aux décideurs 

politiques sur la faisabilité de l’objectif 4‰ en 

Europe, nous avons appliqué un ensemble multi-

modèle sur l'ensemble des terres cultivées 

européennes et nous avons généré des cartes 

d’apport de C pour deux scénarios de changement 

climatique. Pour améliorer la simulation des stocks 

de COS à l’échelle Européenne, nous avons testé 

une nouvelle paramétrisation issue de dérivée 

statistiques.  

Notre étude a démontré qu'il existe des 

incertitudes substantielles autour de l'apport de C 

nécessaire pour atteindre un objectif de 4‰. 

Cependant, un profil général émerge, où atteindre 

un objectif d'augmentation de 4‰ du stock de 

COS à l'échelle des terres cultivées européennes 

semble réalisable pour les scénarios futurs de 

changement climatique, uniquement via des 

augmentations drastiques d’apports de C au sol. 
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Abstract: To partially compensate for CO2 emissions, 

the 4 per 1000 initiative proposed an annual 4‰ soil 

organic carbon (SOC) stock increase. Yet, the 

feasibility of such an ambitious target is still under 

debate. The most efficient way to increase the SOC 

stocks is to increase the C input to the soil. The 

objective of this thesis was to estimate the C input 

required to yearly increase the SOC stocks by 4‰ in 

European croplands. To solve this problem, we built 

an inverse modeling approach and tested it on a SOC 

model, by estimating the C input required to reach 

the 4‰ objective at multiple long-term agricultural 

experiments in Europe. Then, we applied this 

approach to a multi-model ensemble, to assess the 

uncertainties of the estimations according to 

different representations of the SOC dynamics. 

As a first attempt to provide insights for 

policymakers on the feasibility of a 4‰ target in 

Europe, we applied a multi-model ensemble over 

the whole European cropland area and we 

generated maps of the required C input under two 

scenarios of climate change. To improve the 

simulation of SOC stocks at the European scale, 

we tested a new, statistically derived, 

parametrization technique.  

Our study demonstrates that there are substantial 

uncertainties around the C input required to reach 

a 4‰ target. However, a general pattern emerges 

at the European cropland scale, where the 4‰ 

target seems feasible under future scenarios of 

climate change, only assuming drastic increases of 

C input to the soil. 
 



 

RESUME 

Les émissions anthropiques de gaz à effet de serre (GES) provoquent un changement 

climatique irréversible et l'Union Européenne (UE) s'est engagée à diminuer fortement 

ses émissions de GES. Cependant, pour atteindre la neutralité carbone (C) d'ici 2050, il 

sera également nécessaire de séquestrer du C atmosphérique dans des puits naturels, 

tels que les sols. Pour compenser partiellement les émissions de CO2, l'initiative 4 pour 

1000 a proposé en 2015 un objectif d'augmentation annuelle de 4‰ des stocks de 

carbone organique du sol (COS) dans les 30-40 premiers cm de profondeur du sol. 

Pourtant, la faisabilité d'une telle augmentation fait encore l'objet de débats car elle 

pourrait nécessiter des changements substantiels et rapides dans les pratiques 

agricoles qui seraient difficiles à mettre en œuvre. Le moyen le plus efficace pour 

accroître les stocks de COS est d'augmenter l'apport de C dans le sol. Les modèles 

basés sur les processus biogéochimiques peuvent simuler la dynamique du COS et 

sont de plus en plus utilisés pour aider les décideurs dans leurs politiques 

d'atténuation du COS. Cependant, malgré les nombreux modèles disponibles pour 

décrire la dynamique du COS, les simulations sont encore peu fiables. En effet, les 

incertitudes ne proviennent pas seulement de la structure mécaniste des modèles et 

des processus qu’ils prennent en compte, mais aussi des données utilisées en entrée 

et des valeurs des paramètres. 

L'objectif de cette thèse est d'estimer l'apport de C nécessaire pour augmenter 

annuellement les stocks de COS de 4‰ dans les terres cultivées européennes. Pour 

cela, nous avons construit une modélisation inverse et nous l'avons testée sur un 

modèle de COS, en estimant les entrées nécessaires à atteindre un objectif de 4‰ sur 

plusieurs expériences agricoles Européennes de longue durée. Ensuite, nous avons 

appliqué cette approche à un ensemble multi-modèle et nous avons ainsi évalué les 

incertitudes dans les estimations des entrées de C selon différentes représentations de 

la dynamique du COS. Afin de fournir un premier aperçu aux décideurs politiques sur 

la faisabilité de l’objectif 4‰ en Europe, nous avons appliqué un ensemble multi-

modèle sur l'ensemble des terres cultivées européennes et nous avons généré des 
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cartes d’apports de C pour deux scénarios de changement climatique. Pour améliorer 

la simulation des stocks de COS à l’échelle Européenne, nous avons testé une nouvelle 

paramétrisation issue de dérivée statistiques. 

Notre étude a démontré qu'il existe des incertitudes substantielles autour de l'apport 

de C nécessaire pour atteindre un objectif de 4‰. Cependant, un profil général 

émerge, où atteindre un objectif d'augmentation de 4‰ du stock de COS à l'échelle 

des terres cultivées européennes semble réalisable pour les scénarios futurs de 

changement climatique, uniquement via des augmentations drastiques d’apports de 

C au sol. En particulier, un apport de C plus élevé est nécessaire en Europe du Nord, 

tandis qu’en Europe du Sud les incertitudes sont plus élevées. La grande variabilité 

dans les simulations d'apport de C nécessaires à l’objectif 4‰ souligne l'avantage 

d'utiliser des ensembles multi-modèles, afin de prendre en compte la gamme 

d'incertitudes liées à leurs différentes structures mécanistiques. Cependant, les 

ensembles multi-modèles ont encore tendance à sous-estimer l'apport de C nécessaire 

pour augmenter les stocks de COS. Des progrès importants doivent donc encore être 

faits pour améliorer les simulations des modèles, en particulier pour saisir l'effet d'un 

apport supplémentaire de C sur l'accumulation de COS. A l'échelle locale, la calibration 

des paramètres des modèles a été nécessaire pour simuler les variations observées des 

stocks de COS. Lorsqu’un suivi à long terme du stock de COS n'est pas disponible, il 

est nécessaire d'améliorer les techniques de paramétrisation. La calibration que nous 

avons proposée à l'échelle européenne a amélioré la simulation des stocks de COS de 

la première année, mais a augmenté la divergence des stocks de COS prédits par les 

modèles. De futurs travaux se concentrant sur la réduction des incertitudes des 

modèles sont donc essentiels, afin de fournir des prédictions fiables des futures 

variations des stocks de COS et des processus associés. 

Les chapitres de cette thèse peuvent être résumés comme suit : 

• Le Chapitre 2 développe une approche de modélisation inverse utilisant le 

modèle de COS Century (Parton et al., 1988b) pour estimer l'apport de C 

nécessaire à augmenter les stocks de COS de 4‰ par an dans plusieurs 
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expériences de long-terme en Europe, où différents types de matières 

organiques ont été ajoutés au sol. Nous évaluons la performance du modèle 

sur ces expériences et nous calibrons ses paramètres pour faire correspondre 

l'évolution des stocks de COS aux différents traitements de contrôle. Enfin, nous 

estimons la sensibilité du modèle à différents scénarios d'augmentation de la 

température ; 

• Le Chapitre 3 applique l'outil de modélisation inverse à un ensemble multi-

modèle (AMG, Century, ICBM, Roth-C, Millennial et MIMICS) pour évaluer 

l'incertitude de l'apport de C simulé pour atteindre l'objectif de 4‰, relatif aux 

différentes représentations des processus de COS dans les modèles 

sélectionnés ; 

• Le Chapitre 4 étend l’analyse à l’ensemble des terres cultivés européennes avec 

un sous-ensemble du multi-modèle, dans une première tentative d'étudier la 

faisabilité de l'objectif de 4‰ à l'échelle de l’Europe. Nous proposons une 

technique de calibration pour améliorer les simulations des modèles et 

fournissons des cartes montrant l'apport en C nécessaire pour atteindre 

l'objectif de 4‰, selon deux scénarios de changement climatique ; 

• Le Chapitre 5 discute des différentes manières de calculer les objectifs 

quantitatifs de stockage de COS, et montre leurs implications en termes 

d'apport supplémentaire de C, à travers une étude de cas basée sur des 

expériences agricoles de long-terme avec des traitements de matière organique 

exogène ; 

• Le Chapitre 6 résume les résultats les plus saillants et discute d'autres 

implications pour les recherches futures. 
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1 CHAPTER 1  GENERAL INTRODUCTION 

Increasing soil organic carbon (SOC) stocks is a promising option to reduce atmospheric 

carbon dioxide (CO2) concentration and mitigate climate change (Lal, 2016; Minasny et al., 

2017; Martin et al., 2021). By improving soil fertility and other soil conditions that are 

essential for crop growth, increased SOC stocks also promote food security (Lal, 2016). SOC 

stock variations at the field scale derive from imbalances between carbon (C) input to the soil, 

such as crop residues, litterfall, roots, and organic amendments, and C output from the soil, 

e.g., from mineralization, leaching, and soil erosion. Some agricultural practices, such as 

reduced tillage, may decrease SOC mineralization rates (Haddaway et al., 2016). 

Nevertheless, there is a consensus that the most efficient way to increase SOC stocks is to 

increase the C input to the soil (Virto et al., 2012; Autret et al., 2016; Fujisaki et al., 2018). 

When compared to conventional agricultural practices, examples of practices for croplands 

that produce and return additional C input to the soil are: agroforestry systems, cover 

cropping, lengthening leys in temporary grasslands, and effective restitution of crop residues 

and organic amendments to the soil (Chenu et al., 2019). Recently, several international 

efforts have been made to promote the increase of SOC stocks at the global scale. For 

example, in 2015 the “4 per 1000” initiative was launched to promote SOC storage increases 

through recommended land management practices (www.4p1000.org). Another example is 

the aspirational target that the Mission Board for Soil Health and Food has proposed for 2030, 

which is to reverse current SOC content decreases in European croplands to an annual 

increase of 1‰ to 4‰ (Veerman et al., 2020). The feasibility of such quantitative targets is 

still under debate (e.g., Chabbi et al., 2017; van Groenigen et al., 2017; Soussana et al., 2019; 

Rumpel et al., 2020).  

In this thesis, we formulated the following question: “What is the amount of C input required 

to annually increase SOC stocks by a certain fixed target, like 4‰ per year?” The next chapters 

tackle this question using process-based models at the European cropland scale. 

1.1 FUTURE CHALLENGES FOR SOILS IN A WARMER CLIMATE 

The assessment reports of the Intergovernmental Panel on Climate Change address the most 

up-to-date physical understanding of the climate system and climate change. The sixth and 
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latest report announced that human-induced climate change is already affecting every region 

across the world (IPCC, 2021). Many of the observed changes in the climate system are 

irreversible over hundreds to thousands of years and continued global warming is projected 

to further intensify extreme events of the climate system (IPCC, 2021). Limiting human-

induced global warming requires reducing cumulative CO2 emissions and other greenhouse 

gases (GHGs) until a net-zero emissions target is reached. Despite the Paris Agreement’s 

objective to limit global warming “well below 2˚C” relative to the pre-industrial period, global 

average CO2 emissions are still rising (Le Quéré et al., 2018). The Europe 2020 Strategy goal, 

which set a 20% GHGs emission reduction relative to 1990, was not reached by any Member 

State (Becker et al., 2020). Yet, with the “European Climate Law”, the European Commission 

has set even more ambitious targets (European Commission, 2021). Compared to 1990 levels, 

by 2030 the EU aims to decrease net GHGs emission by at least 55%, in order to reach C 

neutrality by 2050. To achieve C neutrality it will be necessary to implement land-based 

mitigation solutions that sequester large amounts of CO2 from the atmosphere (Krause et al., 

2020). For instance, this can be done: by enhancing the natural sink of C via avoided 

deforestation and reforestation, through bioenergy cultivation with C capture and storage, 

and via the sequestration of C in agricultural soils through improved management practices 

(Fuglestvedt et al., 2018). This latter land-based solution will be particularly critical, 

considering that the human population is predicted to reach 9.7 billion in 2050 and to increase 

further to 10.9 billion by the end of the century (Gu et al., 2021). With this population growth, 

agricultural soils will have to maintain and improve their productivity in order to ensure food 

security (Molotoks et al., 2021). Increasing SOC has positive consequences on the soil 

structure and soil quality. This latter can be defined as the capacity of the soil to produce 

economic goods and provide ecosystem services (Lal, 2010). The combined capacity of soils 

to provide food and sequester atmospheric CO2 highlights their central role in tackling today 

and future challenges of the human society. Based on these ideas, the “4 per 1000” initiative 

was proposed in 2015 to promote agricultural practices that maintain and increase global SOC 

stocks.  

1.2 THE 4 PER 1000 INITIATIVE AND THE EUROPEAN TARGETS OF SOC STOCK INCREASE 

Globally, soils store two to three times more C than the atmosphere (Le Quéré et al., 2018) 

(Figure 1-1). The annual GHG emissions from fossil fuels are estimated at 9.4 Gt C (i.e., 1015 
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g C), while global SOC stocks up to 2 m depth are estimated at around 2400 Gt C (Le Quéré et 

al., 2018). Taking the ratio between these two values gives approximately 0.4% (or 4‰, i.e., 

4 per 1000), which is the annual increase of global SOC stocks theoretically required to 

compensate for GHG emissions from fossil fuels burning (Balesdent and Arrouays, 1999). The 

“4 per 1000” proposal calls for a voluntary action plan to protect existing SOC stock, and to 

enhance SOC stocks of world soils to a 30-40 cm depth at the rate of 4‰ per year (Lal, 2016). 

A 4‰ increase target cannot be implemented everywhere because soils vary widely in terms 

of C storage (e.g., deserts, peatlands, and mountains) (Minasny et al., 2017). The strategy of 

the initiative is instead to focus on agricultural soils. The two main reasons are that 

agricultural soils are markedly SOC-depleted and agricultural management practices can be 

modified within a relatively short period of time. In addition to that, the agricultural sector 

emits 6.2 ± 1.4 Gt carbon dioxide equivalents (CO2eq) each year (IPCC, 2019). To avoid GHGs 

emissions and additionally exploit the potential of soils to store C, it is crucial to improve the 

management of this sector. Further benefits will derive in terms of soil health and food 

security. It is worth noting that reducing GHGs emissions remains the first-order solution to 

reach a net-zero emission target. In fact, when considering global agricultural soils, a 4‰ 

target would only partially offset anthropogenic emissions from fossil fuel burning (Lal, 2016; 

Minasny et al., 2017). 

The Mission Board for Soil Health and Food of the European Union (EU) proposed a series of 

quantitative targets to improve the health of European soils (Veerman et al., 2020). One of 

the objectives for 2030 is to reverse current C concentration losses in European croplands, 

which were estimated at 5‰ yr-1 on average, to an increase of 1‰ to 4‰ yr-1 (Veerman et 

al., 2020). Increasing SOC stocks also supports the Sustainable Development Goals (SDGs) of 

the United Nations (UN). In particular, it promotes Target 2.4 for land and soil quality, and 

Target 15.3 for land degradation neutrality (Rosa, 2017). 
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Figure 1-1 Global carbon cycle between the land and the atmosphere. Average values for 2008-2017 (see the 

legend for the corresponding arrows and units) were taken from Ciais et al. (2013). Uncertainty in the 

atmospheric CO2 growth rate is ± 0.02 Gt C yr-1. Figure adapted from Le Quéré et al. (2018). Icons made 

by Freepik from www.flaticon.com. 

1.3 INCREASING SOC STOCKS IN AGRICULTURAL SOILS 

Soils contain C in both organic (SOC) and inorganic forms (e.g., carbonates and lime) (Abbas 

et al., 2020). Through photosynthesis, plants sequester atmospheric CO2 and form OC 

compounds, which are partly transferred to the soil via rhizodeposition (Figure 1-1). When 

they die, plants and other biological materials are also degraded by soil organisms into OC 

compounds. During the mineralization processes, some CO2 is released back to the 

atmosphere. Meanwhile, the entrapment of organic compounds into microsites inaccessible 

to microorganisms and the adsorption of organic compounds into mineral surfaces protect 

SOC from further decomposition. In addition, some compounds (e.g., char) intrinsically 

decompose very slowly. The storage of SOC under forms that are not accessible to 

microorganisms and long turnover times of organic compounds result in the accumulation of 

SOC (Abbas et al., 2020). In natural conditions, SOC is in a state of dynamic equilibrium where 

continuous losses are counterbalanced by continuous gains (Janzen, 2006). If either the input 

or loss rate is altered due to some disturbance, such as a change in the land use or land 
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management, the SOC stock will evolve out of steady-state for a certain period, to eventually 

reach a new equilibrium value (Chenu et al., 2019). In recent centuries, SOC stocks in 

agricultural soils have often declined as a consequence of cultivation (Janzen, 2006). 

Compared to less intensively managed ecosystems, the continuous harvesting of plants 

reduces the amount of plant litter that is returned to the soil. Under agricultural management, 

soil aggregates are also disrupted and SOC is made more accessible to biological decay 

(Janzen, 2006). Cumulative C losses from cultivated soils exceed 50 Pg C, with average losses 

per hectare of cultivated land of approximately 30 Mg C (Janzen, 2006). Past losses of SOC 

constitute nowadays the opportunity for future SOC sinks (Janzen, 2006). 

An increase in SOC stocks can be achieved either by increasing the amount of C entering the 

soil or by decreasing the C output from the soil. The C input depends on the rate of 

photosynthesis and on the proportion of net primary production (NPP, i.e., the product of 

photosynthesis) that is returned to the soil. The C output can be reduced by decreasing the 

mineralization rate of C or, at least locally, by limiting soil erosion. Compared to decreasing 

mineralization (e.g., through no tillage), several studies suggested that the addition of C input 

is the best option to increase SOC stocks in agricultural soils (Chenu et al., 2019). For 

croplands, some examples of recommended management practices (RMPs) that increase the 

C input to the soil are the use of crop species and varieties that have a greater root mass, the 

use of cover crops during fallow periods, increased residue retention and addition of 

amendments such as compost and biochar, and the mixture of crops with trees in 

agroforestry systems (Soussana et al., 2019b; Chenu et al., 2019). 

While the capacity of these practices to increase SOC stocks gathers consensus among soil 

researchers, there is still debate on their potential to achieve the aspirational 4‰ target, due 

to both biophysical and socio-economic limitations (Chabbi et al., 2017; van Groenigen et al., 

2017; Soussana et al., 2019a; Rumpel et al., 2020; Poulton et al., 2018).  

1.4 FEASIBILITY OF A 4 PER 1000 TARGET 

Despite socio-economic limitations represent important barriers for the implementation of 

RMPs (Poulton et al., 2018), this thesis focuses on the biophysical aspect of the 4‰ feasibility. 

Criticisms of the “4 per 1000” initiative have mainly emphasized the limitation of soils to 

sequester SOC indefinitely and permanently, as well as the large amount of nutrients it 

requires (Baveye et al., 2018; Minasny et al., 2017; VandenBygaart, 2018; Lal, 2016). While 
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SOC sequestration rates may be high when a new sequestration practice is implemented, they 

slow down over time until SOC stocks reach a new steady-state (Smith, 2012). Furthermore, 

if soils are poorly managed, C sinks can be reversed at any stage (Smith, 2012). To conserve 

the attained level of SOC stocks, improved management practices must be maintained 

indefinitely, but with no additional benefits in terms of C sink. Noulèkoun et al. (2021) 

observed this effect while studying the potential of grazing exclosures in Northern Ethiopia. 

Following the conversion of degraded grazing lands to exclosures, they found that the rates 

of increase of SOC stocks across the different sites were initially as high as 7% to 19% yr-1. 

After 8 years, the SOC stocks declined to eventually reach a new steady-state.  

Another biophysical limitation to the 4‰ is linked to soil nutrients, and particularly to 

nitrogen (N). Because the C and N cycles are tightly coupled, the increase of C input also 

increases the demand for N. To preserve N availability, large amounts of mineral fertilizers 

have to be applied to the soil. However, the use of mineral fertilizers produces N2O emissions 

and nitrate leaching, with negative consequences for climate and groundwater pollution. 

Additionally, in order to be produced, mineral fertilizers create further GHGs emissions. As a 

whole, the net storage potential of the implemented practice may be limited. Details on the 

C and N cycle and tradeoffs between C storage and N2O emissions are elaborated in Appendix 

I. 

A growing number of works has focused on the feasibility of the 4‰ target, both from 

empirical evidence and from a modelling perspective. Wiesmeier et al. (2020) studied the 

potential of different agricultural practices to sequester C in Bavaria. They found that the 4‰ 

target was not achievable in this region. Among the selected practices, they identified cover 

cropping and agroforestry as having the highest potential to increase SOC stocks in 

agricultural soils. In a systematic review of SOC storage under agroforestry and conservation 

agriculture in sub-Saharan Africa, Corbeels et al. (2019) showed that some agro-systems 

reached the 4‰ target, while others did not. In particular, SOC storage rates in fallows and 

multitstrata agroforestry systems were significantly higher than 4‰ yr-1. Systems under 

conservation agriculture, i.e. under no or minimum tillage, permanent soil coverage, crop 

residue retention, and intercropping or crop rotation, also had similar outcomes. Poulton et 

al. (2018) evaluated the feasibility of the 4‰ target in 16 agricultural long-term experiments 

(LTEs) in the United Kingdom. The experiments consisted in adding organic amendments or N 

fertilizers to the soil, introducing pasture leys into continuous arable systems, and the 
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converting arable land to woodland. The authors found that the 4‰ target was achieved or 

exceeded in the majority of the experiments. Even so, due to the high resources required for 

farmers (i.e., animal manure) and because the majority of the practices they studied was 

already widely adopted (e.g., the use of organic amendments and N fertilizers), they 

suggested a limited applicability of the 4‰ target, and pointed out the socio-economic 

barriers to the 4 per 1000. 

From a modelling perspective, Martin et al. (2021) assessed the feasibility of the 4‰ target 

in mainland France using an inverse Roth-C modelling approach. They estimated that a 30 to 

40% increase of C input will be necessary to obtain a 4‰ annual increase of SOC stocks over 

30 years. They found that cropland soils were mainly unsaturated. That is to say, additional 

SOC could potentially be stabilized in the fine fractions of these soils. For this reason, they 

suggested that increases in NPP returns to cropland soils should be prioritized. For German 

croplands, a study with different SOC models from Riggers et al. (2021) estimated that an 

increase of C input of 213 to 283% will be required to increase SOC stocks by 4‰ yr-1 between 

2090 and 2099, relative to 2014, according to different climate change scenarios. Although 

these studies provide an estimate of the amount of C input required to reach the 4‰ target 

in France and Germany, a lack of knowledge arises at the European scale.  

1.5. SIMULATING SOC STOCKS WITH PROCESS-BASED MODELS 

Since the 1930s, several SOC models have been developed to mathematically describe 

biogeochemical processes in the soil (Manzoni and Porporato, 2009). Although there is a large 

number of models with different levels of complexity (see Manzoni and Porporato, 2009 and 

Campbell and Paustian, 2015), the predominant formalism since its first appearance in 1945 

is the system of ordinary differential equations (ODEs). In this formalism, each ODE describes 

the mass balance of SOC in continuous time within a soil compartment, and each 

compartment is characterized by a specific rate of decomposition of SOC (Manzoni and 

Porporato, 2009). While the number of equations (i.e., compartments) and the degree of 

nonlinearity vary from model to model, they all can be described by the following system of 

equations: 

𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝐼(𝑡) − 𝐾𝑖(𝑡) ∙ 𝐶𝑖(𝑡)         Eq. 1 
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Where 
𝑑𝐶𝑖(𝑡)

𝑑𝑡
 is the variation of SOC with time within a soil compartment (𝑖 = 1, … , 𝑛 denoting 

the soil compartment); 𝐼(𝑡) is the amount of C that enters the system; and the term 𝐾𝑖(𝑡) ∙

𝐶𝑖(𝑡) represents the fraction of C that is lost by the system through decomposition. The rate 

at which C is decomposed may be described through different kinetic reaction forms (e.g., 

linear, multiplicative Michaelis-Menten and inverse Michaelis-Menten kinetics). SOC models 

use temperature and water response functions to link the rate of SOC decomposition to 

climatic factors, such as soil or air temperature, soil humidity, precipitation, and 

evapotranspiration. The rate of SOC decomposition may also depend on soil characteristics, 

such as the clay and carbonate (CaCO3) contents in the soil (Andriulo et al., 1999). Climate and 

soil variables are then input to the models to simulate the variation of SOC stocks with time. 

If they do not explicitly simulate plant-growth, models also need data on the amount of C 

input to the soil, 𝐼(𝑡). That is, C input from plants (e.g., crop residues, litterfall, roots and roots 

exudates) and other organic material (e.g., organic amendments). Linear systems of equations 

with constant coefficients can be solved analytically (e.g., Andrén and Kätterer, 1997; Bolker 

et al., 1998; Saffih-Hdadi and Mary, 2008), while nonlinear models need to be solved 

numerically (Manzoni and Porporato, 2009). Despite the presence of nonlinearities, some 

models can be solved analytically at steady-state (by setting Eq. 1 to zero) and numerically 

afterwards (e.g., Xia et al., 2012; Huang et al., 2018). 

Models can be applied at different scales (e.g., microbial, ecosystem or global scale). They can 

be used to understand the processes that drive SOC decomposition and accumulation, study 

their sensitivity to changes in climate or land-use, and predict the evolution of SOC stocks 

with time. Models may have more or less explicit processes. For example, some models have 

microbial explicit pools that mediate SOC decomposition (e.g., Wieder et al., 2015; Abramoff 

et al., 2018), while other simpler models do not account for microbial activity and will only 

represent the effect of microorganisms through an active pool, where SOC is rapidly 

decomposed (e.g., Parton et al., 1988; Coleman and Jenkinson, 1996; Andriulo et al., 1999). 

Because the soil system is highly complex, it remains fundamentally impossible to describe all 

of its processes in a model. Furthermore, models are a simplified representation of reality, 

thus choices have to be made on what processes to include, how to parametrize them and 

what parts to neglect. This wide range of possible representations of the SOC dynamics 

constitute an asset for soil modelers who want to predict the evolution of SOC stocks over 
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time, while accounting for the existing uncertainty around SOC processes. In climate 

modelling, the use of multi-model ensembles is a consolidated practice (Tebaldi and Knutti, 

2007; Parker, 2010; Jebeile and Crucifix, 2020). It capitalizes on the numerous mathematical 

formalisms available in the literature to provide uncertainty ranges for climate change 

predictions. The soil modelling community still rarely relies on multi-model ensembles for SOC 

stock predictions. Compared to singular model simulations, multi-model ensemble means are 

expected to provide improved estimates, due to the relative independence of SOC model 

simulations’ errors (IPCC, 2007). Increasing the reliability of SOC model predictions by 

accounting for their uncertainty is particularly relevant to improve future climate change 

projections, due to the potentially significant feedbacks between the climate system and the 

C cycle. The more so, because model simulations serve as basis for policy makers who may 

have to provide financial support for the implementation of practices that increase SOC 

stocks.  

1.6 FIXING QUANTITATIVE TARGETS OF SOC STOCK INCREASE 

The adoption of practices that increase SOC stocks may be incentivized by policy makers 

through farm-level payments. To promote and monitor the implementation of RMPs, it is 

convenient to fix quantitative targets for SOC stock increase (European Commission, 2021). 

For this reason, it must be defined a reference against which the SOC stock increase is 

calculated. In a set of theoretical examples, Pellerin et al. (2019) and Soussana et al. (2019) 

illustrated the potential impact of a 4‰ increase calculated against a baseline, or 

independently of it. A baseline is a reference practice where SOC stocks are monitored over 

time and to which the RMP is compared. If the SOC stock increase target is calculated against 

a baseline, the increase rate required to reach the target will be independent of the former 

SOC stock trend. A second possibility is to consider a single SOC measurement against which 

to calculate the SOC stock increase. In this case, if SOC stocks are not at equilibrium, the rate 

of increase required to reach the target will depend on the SOC stock trend previous to the 

implementation of the practice (Soussana et al., 2019). Calculating the increase 

independently of the baseline will put the pressure on soils with degrading SOC stocks, 

because the rate at which they will have to increase will be higher than soils with stabilized 

or increasing stocks (Soussana et al., 2019). This has been advocated as the most relevant 

option because it is in line with the Land Degradation Neutrality target of the UNCCD 
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(Soussana et al., 2019). However, increasing SOC stocks by 4‰ independently of the baseline 

may require high amounts of C input in soils with negative SOC stock trends. It is important 

to assess the feasibility of quantitative SOC stock increase targets calculated independently 

of the baseline, such as those proposed by the Mission Board for Soil Health and Food 

(Veerman et al., 2020) and discuss the implications in terms of additional C input required. 

The fifth Chapter of this thesis is dedicated to the estimation of the additional C input required 

to reach a 1‰-4‰ SOC increase target in a set of agricultural LTEs with additional EOM 

inputs, calculated with the two different approaches described above. This will help 

understanding how the calculation of a quantitative target may have different implications in 

terms of additional C input required. 

1.7 OVERVIEW OF THE THESIS 

The primary objectives of this research can be summarized as follows: 

• Chapter 2 develops an inverse modelling approach using the SOC model Century 

(Parton et al., 1988a) to estimate the C input required to increase SOC stocks by 4‰ 

yr-1 in several LTEs around Europe, where different types of OM were added to the 

soil. We evaluate the performance of the model on the LTEs and we calibrate its 

parameters to fit the evolution of SOC stocks in the different control treatments. 

Finally, we estimate the sensitivity of the model to different scenarios of temperature 

increase; 

• Chapter 3 applies the inverse modelling tool to a multi-model ensemble (AMG, 

Century, ICBM, Roth-C, Millennial and MIMICS) to assess the uncertainty of the 

simulated C input required to reach the 4‰ target, relative to different 

representations of the SOC processes in the selected models; 

• Chapter 4 upscales a subset of the multi-model ensemble to the European cropland 

area, in a first attempt to study the feasibility of the 4‰ target at the European scale. 

We propose a calibration technique to improve model simulations and provide maps 

of C input required to reach the 4‰ target under two scenarios of climate change; 

• Chapter 5 discusses different ways to calculate quantitative targets, and shows their 

implications in terms of additional C input, through a case study based on long-term 

agricultural experiments with EOM treatments; 
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• Chapter 6 summarizes the most salient results and discusses further implications for 

future reasearch. 
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Abstract. The 4 per 1000 initiative aims to maintain and increase soil organic carbon (SOC) 

stocks for soil fertility, food security and climate change adaptation and mitigation. One way 

to enhance SOC stocks is to increase carbon (C) inputs to the soil.  

In this study, we assessed the amount of organic C inputs that are necessary to reach a target 

of SOC stocks increase by 4‰ per year on average, for 30 years, in 14 long-term agricultural 

sites in Europe. We used the Century model to simulate SOC stocks and assessed the required 

level of additional C inputs to reach the 4 per 1000 target at these sites. Then, we analyzed 

how this would change under future scenarios of temperature increase. Initial stocks were 

simulated assuming steady state. We compared modelled C inputs to different treatments of 

additional C used on the experimental sites (exogenous organic matter addition and one 

treatment with different crop rotations). The model was calibrated to fit the control plots, i.e. 

conventional management without additional C inputs from exogenous organic matter or 

changes in crop rotations, and was able to reproduce the SOC stocks dynamics.  

We found that, on average among the selected experimental sites, annual C inputs will have 

to increase by 43.15 ± 5.05 %, which is 0.66 ± 0.23 MgC ha-1 per year (mean ± standard 

error), with respect to the initial C inputs in the control treatment. The simulated amount of 

C inputs required to reach the 4‰ SOC increase was lower or similar to the amount of C inputs 

actually used in the majority of the additional C input treatments of the long-term 

experiments. However, Century might be overestimating the effect of additional C inputs on 

SOC stocks. In the experimental sites, we found that treatments with additional C inputs were 

increasing by 0.25% on average. This means that the C inputs required to reach the 4 per 1000 

target might actually be much higher. Furthermore, we estimated that annual C inputs will 

have to increase even more due to climate warming, that is 54% more and 120% more, for a 

1°C and 5°C warming, respectively. We showed that modelled C inputs required to reach the 

target depended linearly on the initial SOC stocks, raising concern on the feasibility of the 4 

per 1000 objective in soils with a higher potential contribution on C sequestration, that is soils 

with high SOC stocks. Our work highlights the challenge of increasing SOC stocks at large scale 

and in a future with warmer climate. 

2.1 INTRODUCTION 

Increasing organic carbon (C) stocks in agricultural soils is beneficial for soil fertility and crop 

production and for climate change adaptation and mitigation. This consideration was at the 
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basis of the 4 per 1000 (4p1000) initiative, proposed by the French Government during the 

21st Conference of the Parties (COP21) on climate change. The 4p1000 initiative aims to 

promote agricultural practices that enable the conservation of organic carbon in the soil 

(www.4p1000.org). Because soil organic carbon (SOC) stocks are two to three times higher 

than those in the atmosphere, even a small increase of the SOC pool can translate into 

significant changes in the atmospheric pool (Minasny et al., 2017). To demonstrate the 

importance of SOC, the initiative took as an example the fact that increasing global SOC stocks 

up to 0.4 m depth by 4p1000 (0.4%) per year of their initial value could offset the net annual 

carbon dioxide (CO2) anthropogenic emissions to the atmosphere (Soussana, 2017). While 

increasing SOC stocks by 4p1000 annually is not a normative target of the initiative, this value 

can be taken as a reference to which current situations and alternative strategies are 

compared (e.g. Pellerin et al., 2017). 

Strategies of conservation and expansion of existing SOC pools may be necessary but are not 

sufficient to mitigate climate change (Paustian et al., 2016). In this sense, increasing SOC 

stocks cannot be regarded as a dispensation to continue business as usual, but rather as a 

wedge of negative greenhouse gases (GHG) emissions (Wollenberg et al., 2016), as well as a 

strategy for improving most soils’ resilience to changes in the climate.  

The potential to increase SOC stocks is particularly relevant in cropped soils, where the 

depletion of organic matter with respect to the original non-cultivated situation has been 

demonstrated (Clivot et al., 2019; Goidts and van Wesemael, 2007; Meersmans et al., 2011; 

Saffih-Hdadi and Mary, 2008; Sanderman et al., 2017; Zinn et al., 2005) and where 

straightforward management practices can be implemented to promote the conservation or 

increment of SOC (Chenu et al., 2019; Guenet et al., 2020; Paustian et al., 2016). Moreover, 

increasing the organic C content in agricultural soils is known to improve their fertility and 

water retention capacity (Lal 2008), indirectly enhancing agricultural productivity and food 

security. 

SOC stocks are a function of C inputs and C outputs. To increase SOC stocks one can either 

increase C inputs to the soil (i.e. adding plant material or organic fertilizers) or reduce C 

outputs resulting from mineralization and, in some cases, soil erosion. Increasing SOC stocks 

can be achieved via agricultural practices such as retention of crop residues and organic 

amendments to the soil, cover cropping, diversified rotations and agroforestry systems 

(Chenu et al., 2019; Powlson et al., 2011). However, some of these practices only lead to local 
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carbon storage at field scale, rather than a net carbon sequestration from the atmosphere at 

larger scales (Chenu et al., 2019).  

Assessing the evolution of SOC stocks over time is important to estimate correctly the 

potential of SOC storage in agricultural soils and evaluate management practices in terms of 

both SOC stocks increase and sequestration potential. The dynamics of SOC stocks can be 

either measured in agricultural soils through long-term experiments (LTEs) and soil 

monitoring networks or estimated via biogeochemical models (Campbell and Paustian, 2015; 

Manzoni and Porporato, 2009). Combining measurements of SOC with models provides a 

wider applicability of the information collected in field trials, as it allows SOC stocks and their 

future trends to be estimated. However, validity of models in the studied areas has to be 

assessed and models need to be initialized. This means that the initial status of SOC has to be 

set, either for lack of data on total initial stocks, or to determine the allocation of C among 

model’s compartments that cannot be measured. This is commonly accomplished by 

assuming that SOC is at equilibrium at the beginning of the experiment (Luo et al., 2017; Xia 

et al., 2012).  

The feasibility and applicability of a 4‰ increase target depend on biotechnical and socio-

economic factors. As we mentioned earlier, a number of practices are known to increase SOC 

stocks in agricultural systems. However, it is still debated whether they will be sufficient to 

reach the 4p1000 objective. Minasny et al. (2017) described opportunities and limitations of 

a 4‰ SOC increase in 20 regions across the world. Several authors (e.g. Baveye et al., 2018; 

van Groenigen et al., 2017; VandenBygaart, 2018) argued that some of the examples 

described in Minasny et al. (2017) were not representative of wide-scale agriculture and 

suggested that a 4‰ rate is not attainable in many practical situations (Poulton et al., 2018). 

Implementing new agricultural practices that allow the maintenance and increase of SOC 

stocks might require structural land management changes that not all farmers will be willing 

to adopt. Incentivizing and sustaining virtuous practices to increase SOC stocks should be a 

strategy for policymakers to overcome socio-economic barriers (e.g. Lal, 2018; Soussana, 

2017) and in order to do that, they need to be correctly informed. Recent works have assessed 

the biotechnical limitations of a SOC increase, studying the required and available biomass to 

reach a 4p1000 target in European soils (Wiesmeier et al., 2016; Martin et al., 2021; Riggers 

et al., 2021).  
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Our work was set up in this context with the objectives to: 1) estimate the amount of C inputs 

needed to increase SOC stocks by 4‰ per year; 2) investigate if this amount is attainable with 

currently implemented soil practices (i.e. organic amendments and different crop rotations) 

and 3) study how the required C inputs are going to evolve in a future driven by climate 

change. We used the biogeochemistry SOC model Century, which is one of the most widely 

used and validated models (Smith et al., 1997), to simulate SOC stocks in 14 different 

agricultural LTEs around Europe. We set the target of SOC stocks increase to 4‰ per year for 

30 years, relative to the initial stocks in the reference treatments. With an inverse modeling 

approach, we estimated the amount of additional C inputs required to reach a 4p1000 target 

at these sites. Finally, we evaluated the dependency of the required additional C inputs to 

different scenarios of increased temperature.   

2.2 MATERIALS AND METHODS 

2.2.1 Experimental sites 

We compiled data from 14 LTEs in arable cropping systems across Europe (Figure 2-1), where 

a total of 46 treatments with increased C inputs to the soil were performed and one control 

plot in each experiment was implemented (Table 2-1). The experiments lasted between 11 

and 53 years (median value of 16 years) in the period from 1956 to 2018. Most of the 

experiments had at least 3 replicates, except for the Italian site Foggia, the French site Champ 

Noël 3 and the British site Broadbalk, where no replicates were available. We selected 

experiments where dry matter (DM) yields and SOC had been measured at several dates. C 

inputs in all sites, except for control plots and all plots in Foggia, included exogenous organic 

matter (EOM) addition, e.g. animal manure, household waste, sewage sludge or compost 

additions. In Foggia, different rotations without organic matter addition were studied and 

compared to a wheat-only treatment, considered as the control plot. The annual C inputs to 

the soil were substantially higher in the rotations compared to the control. More information 

on crop rotations and C inputs for each treatment can be found in Table 2-1.  

Cropping systems in the 60 treatments (14 control plots and 46 additional C input treatments) 

were mainly cereal-dominated rotations (wheat, maize, barley and oat). In particular, four 

were cereal monocultures (silage maize in Champ Noël 3, Le Rheu 1 and Le Rheu 2 and winter 

wheat in Broadbalk) and four sites had rotations of different cereals (winter wheat and silage 
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or grain maize in Crécom 3 PRO, Feucherolles, La Jaillière 2 PRO and Avrillé). The other sites 

rotated cereal crops with legumes (chickpea, pea) and/or root crops (fodder beet, fodder rape 

and Swedish turnip), oilseed crops (sunflower and oilseed rape), cover crops (mustard and 

rapeseed) and one rotation included tomatoes. Straw residues were systematically exported 

except in French sites, where residues were sometimes incorporated into the soil as 

accounted for in the C input calculations. All LTEs were under conventional tillage, which was 

performed with a tractor, except in the case of Ultuna, where it was performed manually. All 

experiments were rainfed, except for Foggia, where tomatoes were irrigated in summer. The 

French sites Champ Noël 3, Crécom 3 PRO, La Jaillière 2 PRO, Le Rheu 1 and Trévarez received 

optimal amounts of mineral fertilizers both in the control plot and in the different organic 

matter treatments. All other experiments did not receive any mineral fertilization. All control 

plots, apart from Arazuri, had decreasing SOC stock trends (SOC approximated with a linear 

regression: 𝑆𝑂𝐶 =  𝑚 ∙ 𝑡 + 𝑆𝑂𝐶0, with average relative change: 
𝑚

𝑆𝑂𝐶0
∙ 100 = -0.76 %, R2 = 

0.58). Over the 46 treatments of additional C input, 18 exhibited increasing SOC stocks at a 

higher rate than 4‰ per year on average over the experiment length (Table 2-1.). Six 

treatments had increasing SOC stocks, but at a lower ratio than 4p1000. The other 22 

treatments with additional C inputs had decreasing SOC stocks (MgC ha-1). However, the 

decreasing trend was, in these cases, lower than the decreasing trend in the respective 

control plot, on the majority of the treatments.  

2.2.2 Climate forcing 

Mean temperature of the sites ranged from a minimum of 5.7 ˚C to a maximum of 15.5 ˚C, 

while mean soil humidity to approximately 20 cm depth ranged between 20.2 and 24.6 kgH2O 

m-2
soil in the dataset (Table 2-2). When available, observed daily air temperature was used as 

an approximation of soil temperature. Otherwise, land-atmosphere model ORCHIDEE was 

used to simulate soil surface temperature and soil humidity at site-scale (Krinner et al., 2005). 

ORCHIDEE simulations were run over each site using a 3-hourly global climate dataset at 0.5˚ 

(GSWP3 http://hydro.iis.u-tokyo.ac.jp/GSWP3/). Plant cover was set to C3 plant functional 

type (PFT) for agriculture. 
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2.2.3 Soil characteristics 

The sampling depth of the experiments varied between 20 and 30 cm. SOC stocks were 

measured in 3 – 4 replicates, apart from Foggia and Champ Noël 3 experiments, where no 

replicates were available, and Broadbalk. In this experiment, SOC was measured in each plot 

using a semi-cylindrical auger where 10-20 cores were taken from across the plot and bulked 

together (more details can be found on the e-RA website1). The clay content ranged from 10% 

(Jeu-les-Bois) to 41% (Foggia). Soil pH varied from a minimum of 5.85 in Le Rheu 1 to a 

maximum of 8.33 in Colmar. The average bulk density (BD) in the control plots was 1.38 g cm-

3. SOC stocks (MgC ha-1) were calculated at each site using the following equation: 

𝑆𝑂𝐶 (𝑀𝑔𝐶 ℎ𝑎−1) = SOC(%) ∙ 𝐵𝐷(𝑔 𝑐𝑚−3) ∙ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎ (𝑐𝑚),    (1) 

where SOC (%) is the concentration of organic C in the soil, BD is the average bulk density of 

the experimental plot. It should be noted that the application of EOMs might induce 

differences in BD with time, which in turn affects the calculations of SOC stocks. No 

adjustment was made in this sense, since data on the evolution of BD was available only for 

a few sites. This might explain differences between the SOC stocks calculated for Broadbalk 

in this paper and those found by Powlson et al. (2012) in the same site, by adjusting soil 

weights to observed decreases in top soil BD due to accumulating farmyard manure (FYM). 

Initial SOC stocks values in the control plot and mean climate variables for each site are 

reported in (Table 2-2). 

Table 2-1: Summary of the agricultural experiments included in the study: crop rotations grown at site, amount of carbon 
inputs (MgC  ha-1 per year) estimated from crop yields as in (Bolinder et al., 2007), type of treatments, amount of additional 
organic carbon from organic treatments (MgC ha-1 per year) and mean annual SOC stocks variation (%). 

Site ID Treatment Rotations* Carbon inputs 

from crop 

rotations 

Treatment 

type 

Additional 

carbon inputs 

from organic 

treatments 

SOC annual 

variation 

      MgC ha-1 

year-1 

  MgC ha-1 

year-1 

% 

Champ Noël 3 Min** sM 1.29 Reference+N*

* 

0 -0.92 

(CHNO3) LP Silage maize 1.49 Pig manure 0.79 -0.89 

Colmar T0 wW/Mg/sB/S 2.79 Reference 0 -0.78 

 
1 www.era.rothamsted.ac.uk 
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(COL) BIO1 wW/Mg/sB/S 3.93 Biowaste 1.01 0.15 
 

BOUE1 wW/Mg/sB/S 3.96 Sewage 

sludge 

0.49 -0.61 

 
CFB1 wW/Mg/sB/S 4.04 Cow manure 1.07 -0.01 

 
DVB1 wW/Mg/sB/S 4.00 Green 

manure+Sewa

ge sludge 

1.08 0.18 

  FB1 wW/Mg/sB/S 3.93 Cow manure 1.36 -0.01 

Crécom 3 PRO Min wW/sM 1.84 Reference+N 0 -0.06 

(CREC3) FB2 wW/sM 1.92 Cow manure 1.82 0.49 

  FV wW/sM 1.96 Poultry 

manure 

0.47 -1.46 

Feucherolles T0 wW/ Mg  2.22 Reference 0 -0.66 

(FEU) BIO1 wW/Mg 3.44 Biowaste 2.21 3.60 
 

DVB1 wW/Mg 3.45 Green 

manure+Sewa

ge sludge 

2.45 3.69 

 
FB1 wW/Mg 3.55 Cow manure 2.28 1.36 

  OMR1 wW/Mg 3.45 Household 

waste 

2.11 1.72 

Jeu-les-Bois M0 wB/R/wW 2.99 Reference 0 -1.33 

(JEU) CFB1 wB/R/wW 2.89 Cow manure 1.1 1.61 
 

CFB2 wB/R/wW 3.06 Poultry 

manure 

1.94 1.52 

  FB2 wB/R/wW 3.11 Cow manure 2.43 0.99 

La Jaillière 2 

PRO 

Min sM/wW 1.59 Reference+N 0 -1.43 

(LAJA2) CFB sM/wW 1.25 Cow manure 1.14 -0.88 
 

CFP sM/wW 1.21 Pig manure 1 -1.09 
 

CFV sM/wW 1.31 Poultry 

manure 

0.94 -1.60 

 
FB sM/wW 1.29 Cow manure 1.44 -0.64 

 
FP sM/wW 1.27 Pig manure 1.07 -1.03 

  FV sM/wW 1.40 Poultry 

manure 

0.93 -1.59 

Le Rheu 1 Min sM 1.31 Reference+N 0 -1.51 

(RHEU1) CFB1 sM 1.31 Cow manure 1.06 -1.21 

Le Rheu 2 T0 sM 1.03 Reference 0 -1.72 

(RHEU2) CFP1 sM 1.20 Pig manure 0.78 -1.28 

  FP sM 1.30 Pig manure 1.62 -0.74 

Arazuri DO_N0 B/P/W/Sf/O 0.98 Reference 0 1.00 

(ARAZ) D1_F1 B/P/W/Sf/O 1.40 Sewage 

sludge 

2.82 0.40 
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D1_F2 B/P/W/Sf/O 1.41 Sewage 

sludge 

1.4 1.22 

 
D1_F3 B/P/W/Sf/O 1.44 Sewage 

sludge 

0.78 1.22 

 
D2_F1 B/P/W/Sf/O 1.30 Sewage 

sludge 

5.64 0.22 

 
D2_F2 B/P/W/Sf/O 1.40 Sewage 

sludge 

2.8 2.32 

  D2_F3 B/P/W/Sf/O 1.49 Sewage 

sludge 

1.56 0.93 

Ultuna P0_B O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.03 Reference 0 -0.52 

(ULTU) S_F O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.10 Straw 1.77 -0.09 

 
GM_H O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.82 Green manure 1.76 0.11 

 
PEAT_I O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.14 Peat 1.97 2.17 

 
FYM_J O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.76 Farmyard 

Manure 

1.91 0.69 

 
SD_L O/sT/Mu/sB/FB/OsR/W/F

R/M 

0.82 Sawdust 1.84 0.56 

  SS_O O/sT/Mu/sB/FB/OsR/W/F

R/M 

2.59 Sewage 

sludge 

1.84 1.36 

Broadbalk 3_Nill wW 0.36 Reference 0 -0.09 

(BROAD) 19_Cast wW 0.65 Castor meal 0.43 0.42 

  22_FYM wW 2.07 Farmyard 

Manure 

3 0.38 

Foggia*** T0 W 1.56 Reference 0 -0.86 
 

Dw-Dw-Fall W/W/F 2.13 Rotation 0.57 0.01 
 

Dw-Fall W/F 1.95 Rotation 0.39 -0.33 
 

Dw-Oa-Fall W/O/F 2.20 Rotation 0.64 -0.33 
 

Dw-Dw-Cp W/W/C 2.53 Rotation 0.97 -0.15 

  Dw-Dw-To W/W/T 2.57 Rotation 1.01 -0.59 

Trévarez Min RG/Mg/wW/sM 1.94 Reference+N 0 -0.66 

(TREV) FB RG/Mg/wW/sM 2.04 Cow manure 1.52 -0.39 

  FP RG/Mg/wW/sM 2.02 Pig manure 1.18 -0.18 

Avrillé T12TR wW/sM 2.25 Reference 0 -1.18 

(AVRI) T2TR wW/sM 2.36 Cow manure 1.68 -0.76 

*Crops: sM = silage Maize, Mg= Maize grain, wW = winter Wheat, W = Wheat, sB 

= spring Barley, wB = winter Barley, B = barley, S = sugarbeet, 

   

R = Rapeseed, Sf = Sunflower, O = Oats, P = Pea, sT = Swedish Turlip, Mu = 

Mustard, DF = Fodder Beet, OsR = Oilseed Rape, FR = fodder Rape, 

   

F = green Fallow, C = Chickpeas, T = Tomato, RG = Ray Grass 
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**Optimal amounts of mineral fertilizers added to the control plot and to all other treatments in the experiment 

*** In Foggia, additional carbon inputs from organic treatments were calculated for each rotation as the difference between C  

inputs in the rotation and the reference wheat-only rotation.  

 

 

 

 

 

Figure 2-1. Location of the 60 field trials distributed among the 14 cropland experiments around Europe. 



 

Table 2-2: Information about experimental sites, including: mean annual values of temperature (C˚) and soil humidity to 
approximately 20 cm depth (kgH2O m-2soil) simulated with the ORCHIDEE model at each experimental site, measured pH, 
bulk density (g cm-3), clay (%) and initial SOC stocks in the control plots (MgC ha-1) at the experimental sites. Reference 
papers for each site are indicated. 1For Arazuri, data were directly provided by the Spanish Mancomunidad de la Comarca 
de Pamplona. 

Sites 
Reference 

paper 
Coordinates Years 

Mean annual 

Temperature 

Mean annual 

soil humidity 
pH 

Bulk 

density 
Clay 

Initial 

SOC 

stocks 

    ˚C kg H2O m2
soil  g cm-3 % MgC ha-1 

Champ Noël 

3* 

(Clivot et al., 

2019) 

48.09˚ N, 

1.78 ˚ W 
1990 - 2008 12.1 21.6 6.3 1.35 15.1 40.57 

Colmar 
(Levavasseur 

et al., 2020) 

48.11 ˚ N, 

7.38 ˚ E 
2000 - 2013 9.6 24.6 8.33 1.3 23.1 54.33 

Crécom 3 

PRO 

(Clivot et al., 

2019) 

48.32 ˚ N, 

3.16 ˚ W 
1986 - 2008 11.8 22.9 6.15 1.36 14.6 62 

Feucherolles 
(Levavasseur 

et al., 2020) 

48.88˚ N, 

1.96˚ E 
1998 - 2013 11.9 21.2 6.73 1.32 15.6 39.78 

Jeu-les-Bois 
(Clivot et al., 

2019) 

46.68˚ N, 

1.79˚ E 
1998 - 2008 12.2 22.1 6.27 1.52 10 48.53 

La Jaillière 2 

PRO 

(Levavasseur 

et al., 2020) 

47.44˚ N, 

0.98˚ W 
1995 - 2009 12.7 20.5 6.8 1.37 20.8 32.42 

Le Rheu 1* 
(Clivot et al., 

2019) 

48.09˚ N, 

1.78˚ W 
1994 - 2009 12.2 21.8 5.85 1.27 16.4 36.23 

Le Rheu 2* 
(Clivot et al., 

2019) 

48.09 N, 

1.78 W 
1994 - 2009 12.2 21.8 6.05 1.28 13.9 36.53 

Arazuri1 - 
42.81˚ N, 

1.72˚ W 
1993 - 2018 12.7 20.4 8.6 1.67 27.9 55.39 

Ultuna 
(Kätterer et 

al., 2011) 

59.82˚ N, 

17.65˚ E 
1956 - 2008 5.7 22.6 6.23 1.4 36.5 41.72 

Broadbalk 
(Powlson et 

al. 2012) 

51.81˚ N, 

0.37˚ W 
1968 - 2015 10.2 21.5 7.8 1.25 25 24.84 

Foggia 
(Farina et al., 

2017) 

41.49˚ N, 

15.48˚ E 
1992 - 2008 15.5 22.4 8.1 1.32 41 63.22 

Trévarez 
(Clivot et al., 

2019) 

48.15˚ N, 

3.76˚ W 
1986 - 2008 11.8 23.4 6.01 1.48 19.2 115.33 

Avrillé* 
(Clivot et al., 

2019) 

47.50˚ N, 

0.60˚ W 
1983 - 1991 12.0 20.2 6.59 1.4 17.6 54.46 

*These experiments were part of the initial French database (AIAL) described in Clivot et al. (2019), but they were not selected for the 

final modelling work of this latter study. For more information, see also Bouthier et al. (2014). 

 

2.2.4 Carbon inputs 

The allocation of C in the aboveground and belowground parts of the plant was estimated 

with the approach first described by Bolinder et al. (2007) for Canadian experiments and then 

adapted by Clivot et al. (2019) to the same French sites we use in this study. This methodology 
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allows splitting C inputs from crop residues after harvest into aboveground and belowground 

C inputs, using measured dry matter yields and estimations of the shoot-to-root ratio (S:R) 

and harvest indexes (HI) of the crops (see Figure 2-2). The aboveground plant material is 

estimated as the harvested part of the plant (CP), which is exported from the soil, plus the 

straw and stubble that are left in the soil after harvest (CS). The harvested part consists of the 

measurements of DM yields (YP), while the straw and stubble are estimated using the HI 

coefficient of the different crops in the rotation (Bolinder et al., 2007). We assumed that the 

values used in Clivot et al. (2019) for the HI compiled from French experimental sites were 

applicable to all the sites in our dataset, which mainly include temperate sites over Europe. 

When these values were not available for some crops, they have been directly derived from 

Bolinder et al. (2007) or other sources in the literature (S:R ratio for fallow from Mekonnen, 

Buresh, and Jama (1997) and tomato from Lovelli et al. (2012)). When straw was exported 

from the field, we considered that only a fraction of CS was left on the soil. This fraction was 

set to 0.4 for all sites and to 0.2 in Ultuna, where almost no stubble was left on the soil, since 

plots were harvested by hand and crops were cut at the soil surface. We considered a C 

content of 0.44 gC gDM-1 in the aboveground plant material (Redin et al., 2014) and 0.4 gC 

gDM-1 in the belowground part material (Bolinder et al., 2007). We used the asymptotic 

equation of Gale and Grigal (1987) to determine the cumulative BG input fraction from the 

soil surface to a considered depth: 

𝐵𝐺𝐹 𝑑𝑒𝑝𝑡ℎ = 1 −  𝛽𝑑𝑒𝑝𝑡ℎ ,        (2) 

where 𝛽 is a crop-specific parameter determined using the root distributions for temperate 

agricultural crops, reported in Fan et al. (2016) and Clivot et al. (2019). The depth was set to 

30 cm, since it was the depth at which soil samples were taken in the majority of the sites. 

For more details on the C inputs allocation method and the allometric functions involved, see 

Bolinder et al. (2007) and Clivot et al. (2019).  
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Figure 2-2 Adapted from (Bolinder et al., 2007). Representation of the distribution of carbon in the different parts of the 
plant: CP represents the carbon in the harvested product (grain, forage, tuber); CS is the carbon in the aboveground residues 
(straw, stover, chaff); CR is the carbon present in roots and CE represents all the extra-root carbon (including all root-derived 
materials not usually recovered in the root fraction). 

2.2.5 Century model 

2.2.5.1 Model description 

For this study, we selected the Century model, which has proved to be well suited to simulate 

accurately the soil C dynamics in a range of pedoclimatic areas and cropping systems 

(Bortolon et al., 2011; Cong et al., 2014; Parton et al., 1993), and because we had the full 

command of the model for fine tuning of parameters. Soil C dynamics in a soil organic matter 

(SOM) model with first-order kinetics can be mathematically described by the following first-

order differential matrix equation: 

 
d𝑺𝑶𝑪(t)

dt
= 𝑰 + 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t),      (3) 

where 𝑰 is the vector of the external C inputs to the soil system, with four nonzero elements 

(Figure 2-3). The second term 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t) of the equation represents organic 

matter decomposition rates (diagonal matrix K), losses through respiration (𝛏𝐓𝐖𝐋𝐂𝐥(t)), 

transfers of C among different SOC pools (𝐀) and SOC evolution with time (𝑺𝑶𝑪(t)) (see 

Appendix A). We used the daily time-step version of the SOM model Century (Parton et al., 

1988) to simulate the amount of C inputs required to reach a 4‰ annual increase of SOC 

storage over 30 years. In the version used, only SOC is modelled and plant growth is directly 

accounted as variations of C inputs. The original version of Century simulates the fluxes of 

SOC depending on soil relative humidity, temperature and texture (as a percentage of clay). 

As shown in Figure 2-3, the model is discretized into 7 compartments that exchange C with 

each other: 4 pools of litter (aboveground metabolic, belowground metabolic, aboveground 
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structural and belowground structural) and 3 pools of SOC (active, slow and passive). The 

litter C is partially released to the atmosphere as respired CO2 and partially converted to SOM 

in the active, slow and passive pools (see Table S1 in the supporting information for default 

Century parameters). The decomposition rate of C in the ith pool depends on climatic 

conditions, litter and soil characteristics and is calculated using environmental response 

functions, as follows: 

𝜉𝑇𝑊𝐿𝐶𝑙(𝑡)𝑖 ∙ 𝐾𝑖 = 𝑘𝑖 ∙ 𝑓𝑇(𝑡) ∙ 𝑓𝑊(𝑡) ∙ 𝑓𝐿 𝑖 ∙ 𝑓𝐶𝑙𝑎𝑦 𝑖,      (4) 

where 𝑖 = 1, … ,7 is one of the aboveground (AG) and belowground (BG) metabolic and 

structural litter pools, and the active, slow and passive SOC pools; 𝐾𝑖 is the (𝐾)𝑖𝑖 element of 

the diagonal matrix K in Eq. (3); 𝑘𝑖  is the specific mineralization rate of pool 𝑖, fT(t) is a 

function of daily soil temperature, fW(t) is a function used as a proxy to describe the effects 

of soil moisture, fL i is a reduction rate parameter acting on the AG and BG structural pools 

only, depending on the lignin concentration in the litter and fClay i is a reduction rate function 

of clay on SOC mineralization in the active pool. The temperature function fT(t) describes the 

exponential dependence of soil decomposition on surface temperature, through the Q10 

relationship that was first presented by M. J. H. van’t Hoff in 1884: 

fT(t) = 𝑄10

(𝑇(𝑡)−𝑇𝑟𝑒𝑓)

10 ,        (5) 

where Q10 is the temperature coefficient, usually set to 2 and Tref is the reference temperature 

of 30 ˚C. The Q10 factor is a measure of the soil respiration change rate as a consequence of 

increasing temperature by 10˚. The other environmental response functions are described in 

Appendix A. 

 

Figure 2-3 Representation of litter and soil organic carbon (SOC) pools in Century. The model takes as inputs litter carbon 
from plants (aboveground metabolic (I1), belowground metabolic (I2), aboveground structural (I3) and belowground 
structural (I4)). A certain fraction of carbon can be transferred from one pool to another and each time a transfer occurs, 
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part of this carbon is respired and leaves the system to the atmosphere as CO2. The SOC active pool receives carbon from 
each litter pool, while only the structural material is transferred to the SOC slow pool. Litter material never goes directly to 
the SOC passive pool while the three SOC pools exchange C within each other. 

2.2.5.2 Model initialization 

The initialization of the model consists of specifying the sizes of the SOC pools at the beginning 

of the experiment. Here, we assumed initial pools are in equilibrium with C inputs before the 

experiments begin, in absence of knowledge about past land use and climate making initial 

pools different from steady state (Sanderman et al., 2017). Then, initialization can be done 

either by running the model iteratively for thousands of years to approximate the steady state 

solution (numerical spin-up), or semi-analytically by solving the set of differential equations 

that describes the C transfers within model compartments (Xia et al., 2012). We solved the 

matrix equation by inverse calculations for determining pools sizes at steady state, as in Xia 

et al. (2012) and Huang et al. (2018). These authors demonstrated that the matrix inversion 

approach exactly reproduces the steady state and SOC dynamics of the model. By speeding 

up the performance of the simulations, this technique allowed us to perform the optimization 

of model parameters, the sensitivity analysis of SOC to climatic variables and the 

quantification of model outputs uncertainties through Monte-Carlo (MC) iterative 

procedures. We solved the matrix equation by using its semi-analytical solution and the 

following algorithm: 1) calculating annual averages of matrix items obtained by Century 

simulations, driven by 30 years of climatic forcing; 2) setting Eq. (3) to zero to solve the state 

vector SOC. For each agricultural site, the 30 years of climate forcing were set as the 30 years 

preceding the beginning of the experiment, and the litter input estimated from observed 

vegetation was set to be the average litter input in the control plot over the experiment 

duration. 

2.2.5.3 Model calibration: optimization of the metabolic:structural fractions of the litter 

inputs 

In the Century model, AG and BG carbon inputs are further separated into metabolic and 

structural fractions, according to the lignin to nitrogen (L:N) ratio. Because the L:N ratio was 

not available for all the crops in the database, we fitted model simulations to observed SOC 

dynamics for the control plot of each site, i.e. the reference plot without additional C inputs, 

in order to get the metabolic:structural (M:S) fraction of the AG and BG carbon inputs. We 

used the sequential least-squares quadratic programming function in Python (SciPy v1.5.1, 
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scipy.optimize package with method=‘SLSQP’), a nonlinear constrained, gradient-based 

optimization algorithm (Fu et al., 2019). We successfully performed the optimization on 13 

sites, where at least three measures of SOC stocks were available. For Jeu-les-Bois, which 

includes two SOC measurements only, we decided to use the same optimized values as for 

Feucherolles, which has similar pedoclimatic conditions and crop rotations. The optimization 

consisted in minimizing the following function: 

𝐽𝑓𝑖𝑡 = ∑
(𝑆𝑂𝐶𝑖

𝑚𝑜𝑑𝑒𝑙−𝑆𝑂𝐶𝑖
𝑜𝑏𝑠)

2

𝜎2
𝑖
𝑆𝑂𝐶𝑜𝑏𝑠

𝑛
𝑖=1 ,       (6) 

where i=1,…,n is the year of the experiment, 𝑆𝑂𝐶𝑖
𝑚𝑜𝑑𝑒𝑙  (MgC ha-1) is the SOC simulated with 

Century for year i, 𝑆𝑂𝐶𝑖
𝑜𝑏𝑠  (MgC ha-1) is the observed SOC for year i in the control plot and 

𝜎2
𝑖
𝑆𝑂𝐶𝑜𝑏𝑠 is the variance of the 𝑆𝑂𝐶𝑖

𝑜𝑏𝑠  estimated from the different replicates. When 

replicates were not available, we recalculated 𝜎2𝑆𝑂𝐶𝑜𝑏𝑠 as the variance amongst 𝑆𝑂𝐶𝑜𝑏𝑠  

samples of the whole experiment. The optimized M:S values are reported in Table 3-3 and 

represent the average quality of litter C in the rotating crops along the duration of the 

experiments that match control SOC data at each site. 

Table 2-3 Optimized values of the aboveground metabolic (AM), aboveground structural (AS), belowground 
metabolic (BM) and belowground structural (BS) fractions of the litter inputs and the Q10 and reference 
temperature (˚C) parameters. 

Site AM AS BM BS Q10 Reference temperature 

      
˚C 

CHNO3 0.85 0.15 0.26 0.74 5.0 21.2 

COL 0.85 0.15 0.57 0.43 2.0 30.0 

CREC3 0.15 0.85 0.29 0.71 2.0 30.0 

FEU 0.85 0.15 0.52 0.48 5.0 21.6 

JEU* 0.85 0.15 0.52 0.48 5.0 21.6 

LAJA2 0.85 0.15 0.72 0.28 5.0 21.5 

RHEU1 0.85 0.15 0.49 0.51 5.0 21.3 

RHEU2 0.85 0.15 0.32 0.68 5.0 21.3 

ARAZ 0.53 0.47 0.53 0.47 3.0 30.0 

ULTU 0.85 0.15 0.85 0.15 2.2 30.0 

BROAD 0.42 0.58 0.15 0.85 2.9 30.0 

FOGGIA 0.15 0.85 0.15 0.85 5.0 27.1 

TREV1 0.15 0.85 0.15 0.85 5.0 23.0 

AVRI 0.85 0.15 0.76 0.24 2.0 30.0 
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2.2.5.4 Model calibration: optimization of temperature dependency parameters 

We optimized the Q10 and daily soil reference temperature parameters, which affect SOC 

decomposition. The Q10 factor is fixed to 2 in Century. However, many authors have shown 

that Q10 measurements vary with pedoclimatic conditions and vegetation activity (Craine et 

al., 2010; Lefèvre et al., 2014; Meyer et al., 2018; Wang et al., 2010). For this reason, and to 

reproduce correctly interregional variations among the sites in the dataset, we optimized 

both the Q10 and reference temperature parameters to better fit the SOC dynamics (MgC ha-

1) of each agricultural site at control plot. We decided to bind the Q10 between 1 and 5, 

following the variation of Q10 found by Wang et al. (2010) over 384 samples collected in the 

Northern Hemisphere. The reference temperature ranged between 10 and 30˚C. We used the 

SLSQP optimization algorithm and the cost function of Eq. (6) to perform the optimization, 

which was successful in 13 sites and we assigned the values obtained from the optimization 

of Feucherolles to Jeu-les-Bois, where SOC measurements were too sparse to perform a two-

dimensional optimization. Optimized values of Q10 and reference temperature are reported 

in Table 3-3. 

Model performance in the control plot was evaluated using two residual-based metrics. The 

first one is the Mean Squared Deviation (MSD), decomposed into its three components to 

help locating the source of error of model simulations: the Squared Bias (SB), the Non-Unity 

slope (NU) and the Lack of Correlation (LC). The second metrics used is the Normalized Root 

Mean Squared Deviation (NRMSD) (see Appendix B). 

2.2.6 4p1000 analysis 

2.2.6.1 Optimization of C inputs to reach the 4p1000 target 

After the spin-up to steady state, the model was set to calculate the SOC stocks dynamics of 

the control plot and the C inputs for virtual treatments, assuming an average increase of SOC 

stocks by 4‰ per year over 30 years. 30 years is considered as a period of time over which 

the variation of SOC can be detected correctly. During this period length, we supposed the 

soil was fed with constant amounts of C inputs from plant material. For the control, we 

derived C inputs from measurements of DM yields and calculated the annual mean over the 

whole experiment length. For the virtual treatments, we used an optimization algorithm to 

calculate the required amount of C inputs to reach a linear increase of SOC storage by 4‰ per 
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year above the SOC stock at the start of the simulation. Mathematically, we minimized the 

following function: 

𝐽4𝑝1000 =| 𝑆𝑂𝐶0 ∙ (1 + 0.004 ∙ 30) − 𝑆𝑂𝐶30
𝑚𝑜𝑑𝑒𝑙(𝑰)|,    (7) 

where 𝑰 is the 1x4 vector of C inputs to minimize over, 𝑆𝑂𝐶0 is the initial SOC stock and 

𝑆𝑂𝐶30
𝑚𝑜𝑑𝑒𝑙(𝑰) is the SOC stock after 30 years of simulation. During the optimization, the M:S 

fractions were allowed to vary to estimate the quality of the optimal C inputs. Instead, we 

kept the aboveground:belowground ratio of the C inputs fixed to its initial value, to bind the 

model in order to represent agronomically plausible C inputs. In fact, if not bound, the model 

tends to increase the belowground C fraction to unrealistic values (assuming the same crop 

rotations persisted on site). On the other hand, keeping the aboveground:belowground ratio 

fixed implies that the simulated additional C inputs will be spread equally on surface and 

belowground. As for the previous optimizations, we used the Python function SLSQP to solve 

the minimization problem. The outcome of the optimization is a 4x1 vector (𝑰𝑜𝑝𝑡) 

representing the amount of C in the four litter input pools that matches the 4p1000 rate 

target. 

2.2.6.2 Uncertainties quantification 

Uncertainties of model outcomes were quantified using a Monte-Carlo approach. We initially 

calculated the standard error (SE) of the mean C inputs derived from yield measurements for 

each experimental site: 

𝑆𝐸 =  √
𝜎2

𝐼

𝑠
,         (8) 

where 𝜎2
𝐼 is the variance of the estimated C input from yield measurements and s is the 

length of the experiment. If not available, we calculated 𝜎2
𝐼 as the average relative variance 

of C inputs among the control plots. We therefore randomly generated N vectors of C inputs 

(𝑰) around the calculated standard error and performed the 4p1000 optimization N times, 

each time using one of the generated vectors I as a prior for the optimization.  To correctly 

assess the uncertainty over the required C inputs we set N to 50 (Anderson, 1976). The 

standard error of model outputs was calculated with Eq. (8), where the variance was set as 

the variance of the modelled carbon outputs and the experiment size (s) to 50. 



 

 40 

2.2.6.3 Sensitivity analysis to temperature 

We tested the sensitivity of model outputs to temperature, running two simulations with 

increased temperatures. We considered two representative concentration pathways (RCPs) 

of global average surface temperature change projections (IPCC, 2015). The first scenario 

(RCP2.6) is the one that contemplates stringent mitigation policies and predicts that average 

global land temperature will increase by 1˚C during the period 2081-2100, compared to the 

mean temperature of 1986-2005. The second scenario (RCP8.5) estimates an average 

temperature increase of +4.8˚C, compared to the same period of time. We ran two 

simulations of increasing temperature scenarios with Century. We considered the same initial 

conditions as the standard simulations, hence running the spin-up with the average soil 

temperature and relative humidity of the 30 years preceding the experiments. Then, we 

increased daily temperature by 1˚C (AS1) and 5˚C (AS5) for the entire simulation length, to 

assess the sensitivity of modelled C inputs to increasing temperatures. Nevertheless, it must 

be noted that our simulations are running over a 30 years period, not the entire 21st Century. 

Thus, the temperature sensitivity analysis should not be considered as a test of climatic 

scenarios but as a classical sensitivity analysis where the boundaries were defined following 

RCP2.6 and RCP8.5 predictions of increased temperatures. 

2.3 RESULTS 

2.3.1  Fit of calibrated model to control SOC values  

Modelled and measured SOC stocks in the control plot were compared to evaluate the 

capability of the calibrated version of Century to reproduce the dynamics of SOC stocks in the 

selected sites (Figure 2-4.c). As shown in Figure 2-4.b, the NRMSD of the control plot SOC 

stocks is lower than 15% for all the treatments, indicating that overall model simulations fitted 

the observed SOC stocks well (observed SOC stocks variance was 16.3% on average in the 

control plots). The correlation coefficient between modelled and observed SOC stocks in the 

control plots was 0.96 (Figure 2-4.c). Figure 2-4.a provides the values of the three components 

of the MSD indicator for each site. It can be noticed that the LC and NU components are the 

highest contributors to MSD. This means that the major sources of error are the 

representation of the data shape and magnitude of fluctuation among the measurements. 

The highest NRMSD can be found in Le Rheu 1 and Le Rheu 2 (around 12% and 14% 
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respectively). In these sites the model seems to better capture the shape of the data (low LC 

compared to the other sites), but it misses the representation of mean SOC stock (high SB) 

and data scattering (high NU) of the experimental profiles. We tested the capability of Century 

to reproduce SOC stocks increase in the additional C input treatments (Figure 2-5). Figure 2-5 

shows the correlation between additional C inputs and SOC stock increase in the C input 

treatments (R2 = 0.23). In the same graph, we can appreciate additional C inputs simulated by 

Century to reach the 4p1000 target being 0.66 ± 0.23 MgC ha-1 per year (mean ± standard 

deviation from the mean). This shows that Century is generally overestimating the effect of 

additional C inputs on SOC stocks increase. However, the effect of additional C inputs on 

observed SOC stock increase varies largely across different treatments. 

 

Figure 2-4 a) Decomposed mean squared deviation (MgC ha-1)2 in control plots for all sites. LC = Lack of 
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Correlation, NU = Non-Unity slope and SB = Squared Bias. b) Normalized root squared deviation (%) in control 
plots for all sites c) Fit of predicted versus observed SOC stocks (MgC ha-1) in control plots for all sites (R2 = 0.96). 

 

Figure 2-5 Correlation between additional carbon inputs (MgC ha-1 per year) and annual SOC stock increase (%) 
in the carbon inputs treatments and mean ± standard deviation of the additional carbon inputs to reach the 
0.4% target in Century. 

2.3.2 Estimates of additional carbon inputs and SOC changes 

2.3.2.1 Virtual C inputs to reach the 4p1000 

Figure 2-6 represents the average percentage change of C inputs required to reach the 4‰ 

annual increase of SOC stocks, among the whole sites. The increase of C inputs is given for 

each litter pool. On average, a 43.15 ± 5.05 % (mean ± SE across sites) increase of total 

annual C inputs compared to the current situation in the control plot, is required to meet the 

4p1000 target. In terms of absolute values, this represents an additional 0.66 ± 0.23 MgC ha-

1 inputs per year, i.e. 2.35 ± 0.21 MgC ha-1 total inputs per year (equivalent approximately to 

4.05 ± 0.36 MgDM ha-1 per year). What stands out in the graph is that, on average among the 

studied sites, the AG structural litter pool should be more than doubled, while the other pools 

need only to increase by about half of their initial value. In terms of absolute values, the 

structural AG biomass (which was initially 0.29 MgC ha-1 per year on average in the control 

treatments) would need an additional 0.18 MgC ha-1 per year to reach the 4p1000; the 

metabolic AG (initially 0.70 MgC ha-1 per year on average) needs an additional 0.14 MgC ha-1 
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per year; structural and metabolic BG biomass (initially 0.65 and 0.52 MgC ha-1 per year) 

require an additional C input corresponding to 0.21 and 0.13 MgC ha-1 per year respectively. 

Analysis of the SOC pools evolution in the runs with optimized C inputs to match the 4p1000 

increase rate, indicates that the active and slow pools increased by 0.58% and 0.61% per year 

respectively, while the passive pool increased annually by 0.01% (Figure 2-7). In absolute 

values, the slow compartment contributed the most to the increase of SOC during the 30 

years runs, as it increased by 2.7 MgC ha-1 on average among the sites (against an increase of 

0.1 and 0.06 MgC ha-1 in the active and passive compartments respectively). This corresponds 

to a storage efficiency for the 30 years of simulation of approximately 13.7 % in the slow pool, 

compared to a storage efficiency of 0.5% and 0.34% in the active and in the passive pools 

respectively. 

We found a high linear correlation (R2=0.80) between observed initial SOC stocks and 

optimized C inputs (Figure 2-8). It is logical and expected that for low initial SOC stocks in 

steady state, a small increase of C inputs is sufficient to reach the 4p1000 target. Conversely, 

when SOC is high at the beginning of the experiment (e.g. Trévarez) much higher C inputs 

must be employed since our target increase rate is a relative target. The regression line that 

emerges from the cross sites’ relationship can be written as: 

I4𝑝1000  =  0.013 ∙  𝑆𝑂𝐶0
𝑜𝑏𝑠  +  0.001,       (9) 

where I4𝑝1000 are the simulated C inputs needed to reach the 4p1000 target (𝑀𝑔𝐶 ℎ𝑎−1 per 

year) and 𝑆𝑂𝐶0
𝑜𝑏𝑠  (𝑀𝑔𝐶 ℎ𝑎−1) is the observed initial SOC stock.  
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Figure 2-6 Sites average percentage change of carbon inputs needed to reach the 4p1000 (TOT), separated into 
the four litter input pools. AM = aboveground metabolic, BM = belowground metabolic, AS = aboveground 
structural, BS = belowground structural and TOT = total litter inputs. Error bars indicate the standard error. N.B: 
Total change of carbon inputs (TOT) was calculated as the percentage change between the total amount of 
carbon inputs before and after the 4p1000 optimization, averaged across all sites. 

2.3.2.2 Virtual versus actual C inputs in the experimental carbon treatments  

In Figure 2-9 we compare the C inputs required to reach the 4p1000 target to the actual inputs 

used across the 46 treatments of additional C. The additional C (MgC ha-1 per year) shown in 

the graph for all experimental treatments refers to exogenous organic amendments, plus 

additional C due to increased crop yields, relatively to the control plot. The most striking result 

emerging from the data is that modelled additional C inputs are systematically lower or similar 

to at least one treatment of additional C in all sites, except for Foggia. In Foggia experiment, 

different crop rotations were compared and no additional EOM was incorporated to the soil. 

Here, none of the rotations had sufficient additional C content (compared to the control 

wheat-only treatment), to meet the required C input level predicted by Century for a 4p1000 

increase rate. Overall, 86.91% of the experimental treatments used higher amounts of C 

inputs compared to the modelled need of additional C inputs in the same site. For the other 

treatments, the difference between simulated and observed additional C input was not 

significant. In the experimental treatments were applied 1.52 MgC ha-1 per year on average 

and SOC stocks were found to be increasing by 0.25% per year relative to initial stocks. 
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Modelled additional C input to reach a 0.4% increase was 0.66 MgC ha-1 per year, on average 

among the sites. 

 

Figure 2-7 Sites average soil organic carbon pools (ACT = active, SLOW = slow and PASS= passive) evolution (MgC 
ha-1) over the 30 years of simulation to reach the 4p1000 target. In the graph the mean percentage increase is 
given for each SOC pool. 

 

Figure 2-8 Correlation between initial observed SOC stocks (MgC ha-1) and modelled carbon inputs needed to 
reach the 4p1000 target (MgC ha-1 year-1). The correlation coefficient (R2) is 0.80 and the regression line is y = 
0.013∙x+0.001. 

2.3.3 Carbon input requirements with temperature increase 

The temperature sensitivity analysis of the Century model for the 4p1000 target framework 

is plotted in Figure 2-10. The required amount of C inputs to reach the 4p1000 target is likely 
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to increase with increasing temperature scenarios. In particular, C inputs will have to increase 

on average by 54% in the AS1 scenario of +1˚C and 120% in the AS5 scenario of +5˚C 

temperature change, relative to current C inputs in the control plots. This represents an 

additional C inputs increase of 11% and 77% respectively, compared to the business as usual 

scenario with current temperature setup (CURR). What can be clearly seen in the graph is the 

increased amount of C inputs required in Trévarez, where C inputs should more than 

quadruplicate to reach the 4p1000 objective. 

2.4 DISCUSSION 

2.4.1 Reliability of the Century model 

The Century model has been widely used to simulate SOC stocks dynamics in arable cropping 

systems (Bortolon et al., 2011; Cong et al., 2014; Kelly et al., 1997; Xu et al., 2011). Optimizing 

the metabolic:structural ratio in the reference plots allowed us to initialize the C inputs 

compartments, since no measurement of the L:N ratio was available. This allowed us to: 1) 

take into account the average C quality of the litter pools in the different crops rotations and 

2) estimate correctly the initial values of SOC stocks on the majority of the sites. On the other 

hand, this could have influenced the predicted redistribution of C in the additional C inputs 

required to reach the 4p1000 (Figure 2-6). We suggest that taking into account the historical 

site-specific land use could help initialize SOC stocks without requiring any assumption 

regarding the M:S ratio (e.g. with historically based equilibrium scenarios as in Lugato et al. 

(2014)). To further improve SOC stock simulations, we optimized the Q10 and reference 

temperature parameters on the control plots, to account for the different pedo-climatic 

conditions of the experimental sites and enhance model predictions of SOC stocks dynamics 

(Craine et al., 2010; Lefèvre et al., 2014; Meyer et al., 2018; Wang et al., 2010). Although the 

dispersion of SOC stocks over time is not perfectly captured in the majority of the control 

plots (see the high LC component of the MSD in Figure 2-4), the simulations of SOC dynamics 

were improved by the optimization of temperature related parameters and the NRMSD was 

found to be lower than 15% on all sites. Figure C2 shows that the optimization of temperature 

sensitive parameters did not affect significantly the required C input estimation for the 

current temperature scenario. This means that, although parameters optimization improved 

the simulation of SOC stocks in the control plots, the final results are not affected by it. The 
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capability of Century to simulate SOC stocks in the simulations of additional C treatments 

might be a major shortcoming of modeling results. In fact, although SOC stocks were found 

to be increasing on average in the additional C treatments (0.25% per year with 1.52 MgC ha-

1 yearly additional C inputs), this increase rate is lower than the 0.4% increase of SOC stocks 

predicted by Century with lower amounts of virtual C inputs (0.66 MgC ha-1 per year). This is 

pointed out in Figure 2-5, where we can see that predicted additional C inputs to reach the 

4‰ are lower than the correlation line between additional C inputs and SOC stocks increase 

in field treatments. The overestimation of the C input effect on SOC stocks in Century might 

be related to the assumption that SOC stocks are in equilibrium with C inputs at the onset of 

the experiment and on the high sensitivity of the model to C inputs. 
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Figure 2-9 Additional modelled carbon inputs (MgC ha-1 year-1) to reach the 4p1000 (grey bars) compared to 
additional carbon input treatments (colored bars) on each experimental site. Additional carbon inputs for field 
trials are calculated as the sum of organic fertilizers and the delta carbon inputs from crop yields (compared to 
the control plot). Additional carbon treatments are separated into different categories: BIO waste = biowaste 
compost, green manure, green manure + sewage sludge and household waste, Cow Manure = cow manure and 
farmyard manure (in Broadbalk and Ultuna), Pig Manure, Poultry Manure,  Sewage Sludge, Rotations = different 
crop rotations, Other organic amendments (OA) = straw, sawdust and peat (in Ultuna) and Castor Meal (in 
Broadbalk). The error bars shown are the standard errors computed with the Monte Carlo method. 
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Figure 2-10 Temperature sensitivity analysis of carbon inputs increase (%) to reach the 4p1000 objective. 
CURR=business as usual simulation, AS1=RCP2.6 scenario of +1˚C temperature increase, AS5=RCP8.5 scenario of 
+5˚C temperature change. 

2.4.2 Increasing annual SOC stocks by 4p1000 

2.4.2.1 Modelled carbon inputs to reach the 4p1000 

Century simulations estimated that annual C inputs should increase by 43±5% (SE) on average 

to reach the 4p1000 target on the selected experimental sites, under the condition that the 

additional C inputs are equally distributed among the surface and belowground, in order to 

maintain the same aboveground:belowground ratio as at the beginning of the experiment. 

Martin et al. (2021) found similar values of required additional C inputs to reach a 4p1000 

target in France croplands (i.e. 42%, that is 0.88 MgC ha-1 per year). This is higher than the 

values found by Chenu et al. (2019) using default RothC 26.3 parameters, who estimated a 
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relative increase of C inputs in temperate sandy soils by 24% and in temperate clayey soils by 

29%. Riggers et al. (2021) found that in 2095, a minimum increase of C inputs by 45% will be 

required to maintain SOC stocks of German croplands at the level of 2014. However, they 

found that to increase SOC stocks by 4‰ per year, a much higher effort will be required. That 

is, C inputs in 2095 will have to increase by 213% relative to current levels.  

In our study, not only the quantity of C but also the quality will need to change according to 

Century predictions. In fact, the predicted aboveground structural litter change was threefold 

higher than all other pools on average, representing an additional 0.18 MgC ha-1 each year. A 

way for the farmer to increase the structural fraction of the C inputs is to compost the organic 

amendments that will be spread on soil surface. Increasing EOM in large quantities may not 

be possible everywhere. First of all, the amount of organic fertilizers is limited at regional 

scale. If farmers source additional EOMs elsewhere, only those EOMs that otherwise would 

be mineralized (e.g. burnt) and not applied to land account as sequestration. Second, farmers 

may be prevented from applying high amounts of EOM because of the risk of nitrate and 

phosphate pollution (Li et al., 2017; Piovesan et al., 2009). Moreover, producing additional 

animal manure implies larger GHG emissions through animal digestion and manure 

decomposition. Consequently, even if more manure is returned to the soil, it will not 

necessarily result in climate change mitigation. 

2.4.2.2 Stability of the additional carbon stored 

Another important aspect to take into consideration is the stability of the additional C. In fact, 

the duration and persistence of C in the soil might be very different depending on whether or 

not the proportion of stable C is important. In the Century model, this translates into 

questioning whether the fractions of the long turnover rate pools (the slow and passive SOC 

pools) have increased. In our simulations, a general pattern can be detected (Figure 2-6) 

where both passive and slow pools increased, but at very different rates (0.1‰ and 6.1‰ per 

year respectively). The active pool increased by 5.8‰ annually, with benefits for soil fertility 

and hence food security. The additional C is mainly stored in the slow pool (2.7 MgC ha-1 in 30 

years of simulations), meaning that it will be stored in the soil for around 20 to 30 years. The 

increase in C inputs must be sustained to increase SOC stocks at the desired rate, until a new 

equilibrium will be reached. To further increase SOC stocks after the new equilibrium, new 

strategies of additional C could be implemented later on. For instance, this could be achieved 
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through the implementation of complementary management options to those considered in 

the long-term experiments described here, such as residue management, cover crops, 

conservation agriculture and agroforestry systems (Chenu et al., 2019; Lal, 1997; Smith et al., 

1997).  

2.4.2.3 Simulated carbon inputs and experimental carbon addition treatments 

Different types of organic C treatments were considered in this study and compared to 

Century simulations of C inputs required to reach the 4p1000. In all experimental sites with 

additional EOM inputs, at least one treatment employed higher amounts of C inputs 

compared to the simulated C inputs required for a 4‰ annual target. In Foggia, C inputs from 

different crop rotations were studied, but none employed sufficient amounts of additional C 

to reach the 4p1000, as predicted by Century. Model results in Foggia had a high standard 

error, mainly due to the fact that the variability of crop yields for this site was not available. 

Thus, for this site, we calculated model uncertainty using the average relative variability 

across the whole dataset, which could have increased the uncertainty of model outputs. 

It is important to note that the amount of C inputs simulated by Century was constrained to 

have the same AG:BG ratio as at the beginning of the experiment. This means that the 

additional C inputs should be distributed equally on soil surface and belowground, not to 

change the initial allocation of C in the litter pools. Since all field treatments were performed 

under conventional tillage, the comparison between modelled and observed additional C 

inputs under this constraint holds well.  

The annual SOC stocks variation (0.25%) estimated in the experimental C treatments across 

the 14 sites, indicates that Century might be overestimating the effect of additional C inputs 

on SOC stocks. In particular, only 18 out of 46 field treatments (with average additional C 

inputs of 1.93 MgC ha-1 per year) were found to be actually increasing SOC stocks at a higher 

rate than 4‰ per year, relatively to their initial SOC stocks. This is similar to the values found 

by Poulton et al. (2018), who estimated that adding similar high amounts of C inputs increased 

SOC stocks at an annual rate higher than 4‰ in 16 long-term agricultural experiments. Thus, 

Century seems to be over-predicting the effect of adding C inputs in the virtual simulations. 

The overestimation of the Century model might be due to several factors. First of all, the C 

inputs prescribed to model simulations were constant through time, while C inputs from plant 

material actually vary annually and over the years because of agronomical and climatic 
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factors. Historical land use and management practices such as tillage were not taken into 

account, although they affect SOC stocks (Pellerin et al. 2017). Another factor that the model 

is not taking into account is N and other nutrients availability, which might affect the SOC 

stocks dynamics. This is especially true for treatments with different frequencies of 

application (e.g. Arazuri), where nutrients depletion is likely to be more evident when the 

application is sparser. The method used to estimate C inputs (i.e. the allometric functions 

from Bolinder et al. (2007) in our case) also influences the simulation of SOC stocks (Clivot et 

al., 2019). However, estimating the increase of C inputs relative to their initial value has likely 

cancelled out uncertainties related to the C inputs estimation method in our analysis. 

2.4.2.4 Organic carbon inputs use in Europe 

Zhang et al. (2017) estimated that the amount of N inputs from livestock manure applied to 

European croplands was 3.9 Tg N in 2014, for a cropland area of 127 Mha in 2015 (Goldewijk 

et al. 2017). Cattle manure, which represents the highest proportion of manure produced and 

applied to croplands, has average C:N ratio ranging between 10 and 30 (multiple sources from 

Fuchs et al. (2014) and Pellerin et al. (2017)). With these data, we can roughly estimate the 

application of C manure from livestock in European agricultural soils as ranging between 0.30 

and 0.92 MgC ha-1 each year. Most of the experiments used in this study used higher amounts 

of C input (1.52 MgC ha-1 per year on average). However, the C inputs requirement predicted 

by Century, which ranged between 0.24±0.02 and 1.20±1.00 MgC ha-1 per year, plus one site 

with 1.45±0.16 MgC ha-1 per year, is in line with the average use of livestock manure in 

Europe. In terms of C sequestration, organic fertilizers coming from animal manure are usually 

being applied to the soil at some location, hence they cannot account for additional climate 

mitigation potential (Poulton et al., 2018). Rather, they are considered as a business as usual 

situation that can unlikely be significantly expanded. However, according to Zhang et al. 

(2017) estimation, there is room for improvement since the fraction of livestock manure 

applied to cropland in the 2010s was approximately 26% of total livestock production in 

Europe. The estimates from Zhang et al. (2017) refer to livestock manure only. In our study, 

we also considered treatments with other types of EOM addition, such as sewage sludge and 

household waste. In many countries, a significant proportion of food and urban waste is 

currently left on disposal areas, where C is lost to the atmosphere as CO2 or methane (CH4) 

emissions (Bijaya et al. 2006). Pellegrini et al. (2016) reported the amounts of sewage sludge 
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disposed on landfill in Europe (EU26) from Eurostat (2014b). In 2010, this was 0.914 TgDM. 

Using the Van Bemmelen factor (1.724) to convert OM to OC (McBratney and Minasny, 2010; 

Rovira et al., 2015), we estimated that the sewage sludge disposed on landfill in Europe was 

around 0.004 MgC ha-1 per year in 2010. If applied to cropland, this could potentially increase 

C inputs to the soil and decrease GHG emissions associated to landfilled waste. However, in 

some countries social acceptability of spreading EOM such as sewage sludge is very low, 

limiting its actual potential. In Europe, landfilled municipal waste was 0.3 MgC ha-1 in 2019 

(estimated from Eurostat (2020) considering a C content in household waste of 71% (Larsen 

et al., 2013)). This is higher than the amount of municipal waste currently composted in 

Europe (i.e. 0.22 MgC ha-1 in 2019, according to Eurostat (2020)), showing that additional 

efforts to improve the reutilization of municipal waste could help to increase C inputs in 

agriculture. A contribution to the sequestration of C from the atmosphere could also come 

from changing the treatment methods which affect the quality of C in crop residues and 

manure, so that their turnover time decreases, e.g. through fermentation or biochar. 

However, a full C cycle assessment should be considered to make sure that GHG emissions 

associated to such treatments do not exceed additional C storage (Guenet et al., 2020). In 

general, improving the use efficiency of EOM to the soil by managing it differently could 

contribute to some extent to climate change mitigation, increase soil quality, and reduce 

mineral fertilizers use (Chadwick et al. 2015). In this study, we did not include other 

potentially beneficial management practices, such as cover crops, reduced tillage, biochar 

application, improved soil pH, landscape differentiation and mineral amendments. Further 

research should investigate if long-term experiments with these management practices 

would be able to increase SOC stocks by 4p1000, following Century predictions. 

2.4.2.5 Reaching a 4p1000 target: only a matter of initial SOC stocks? 

As we expected, the estimated amount of C inputs to reach the 4p1000 target was linearly 

correlated to the initial observed level of SOC stocks (Figure 2-7). This result means that site 

differences in Q10 and decomposition rates are less influential than initial SOC in determining 

the optimal input increase to reach the 4‰ per year target. The linearity between C inputs 

and initial SOC stocks is primarily due to the linear structure of the Century model. In fact, if 

we consider the stationary solution for which Eq. (2) is equal to 0, SOC depends linearly on 

the carbon inputs. Therefore, the opposite is also true (i.e. carbon inputs are linearly 
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dependent to the initial amount of SOC stocks). Moreover, the 4p1000 target itself is defined 

as the increase of SOC by 0.4% per year, relatively to its initial value (Minasny et al., 2017). 

Hence, it implies a proportional contribution that depends on the initial SOC stocks. 

Wiesmeier et al. (2016) also observed a linear relationship between SOC increase and C 

inputs. This linear relationship means that soils with high SOC stocks will have to increase 

their carbon stocks more in absolute terms to meet this quantitative target. On the other side, 

smaller amounts of C will have to be employed in sites with low levels of SOC stocks, to reach 

a 4p1000 target. However, increasing C inputs where SOC stocks are low might require 

substantial changes in the agricultural systems and such quantity of additional OM might not 

be available at a large scale. A counterpoint is also that the largest contribution of C 

sequestration will come from soils with medium or high SOC stocks (i.e. higher than 50 MgC 

ha-1, such as grasslands and forests). In these soils, the required additional C inputs will have 

to be higher according to Century, raising concern on a compensation of CO2 emissions 

through improved SOC stocks at a global scale. This result depends on the quality of the 

simulated carbon inputs (i.e. the predicted metabolic:structural ratio) and does not take into 

account any notion of soil saturation.  Before applying this trend to calculate the required C 

inputs from current SOC stocks, we should extend the database to cover different pedo-

climatic regions and different ecosystems of the world. Moreover, inaccuracies in simulations 

outcomes, such as those found in this study, need to be reduced. As discussed in subsection 

4.2.3, a better representation of C inputs dynamics and management practices could improve 

the simulation of SOC stocks.  

We suggest to consider multi-model analysis for this type of work in the future (Farina et al., 

2021), to acknowledge different representations of SOC and reduce the effect of single 

models’ uncertainties. Furthermore, the likely increase of SOC mineralization due to future 

climate change (Wiesmeier et al., 2016) needs to be taken into account.  

2.4.3 Sensitivity analysis 

The predicted need of additional C inputs to reach the 4p1000 target is likely to be higher with 

future global warming, as a consequence of modified SOC decomposition rates. Considering 

the crucial role of soil as a land-use based option for mitigating climate change, recent studies 

have shown a growing interest in temperature sensitivity of SOC stocks decomposition (Dash 

et al., 2019; Koven et al., 2011; Parihar et al., 2019; Wiesmeier et al., 2016). We know that 
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the decomposition rate of SOM is affected – generally increased – with increasing 

temperatures. However, the magnitude of expected feedbacks is still surrounded by 

controversy. In particular, this is mainly due to the diversity of organic compounds in the soil 

that are known to have inherent sensitivities to temperature (Davidson and Janssens, 2006). 

In fact, a diversity of responses of decomposition rates to future climates can be expected, 

including increases due to higher temperature as well as decreases due to water limitation. 

In this context, the study of the Century model response to predicted scenarios of 

temperature increase is of primary importance. We mimicked the most optimistic (+1˚C) and 

pessimistic (+5˚C) RCPs scenarios of the 5th IPCC assessment report. Although these scenarios 

are calculated over ~100 years, we used these values over a 30 years simulation to assess the 

sensitivity of Century to temperature increase. What is striking from our results is that with 

increasing temperatures all sites will have to provide considerably higher amounts of C inputs 

to reach the 4p1000 target (Figure 2-9). In particular, the C inputs change needs to more than 

double in all sites, according to the worst-case scenario of +5˚C. It is important to point out 

that the optimization of the Q10 and reference temperature parameters are likely to influence 

the outcomes of the simulated SOC stocks and therefore the C inputs need. Nevertheless, 

comparing the carbon input change simulated with the optimized version of Century (Figure 

2-9) to that simulated with the default parameters setting (Fig. C1), shows that the predicted 

C inputs change follows the same pattern, even though the intensity of the increase is 

considerably higher in the optimized version. These results can be understood in two ways. 

Either the optimized version of Century is overestimating the effect of temperature on SOC 

stocks decomposition, or SOC stocks decomposition patterns are likely to increase even more 

intensively when considering the entire range of possible Q10 values. In either case, further 

research is needed to reduce the uncertainty around the impact of climate change on SOC 

decomposition. Studies should also examine moisture change, which we did not take into 

account here. This is likely to be impacted as a consequence of modified precipitations and 

temperature (IPCC, 2015), with consequences on root respiration and microbial 

decomposition (Davidson and Janssens, 2006). Additionally, increased temperature and CO2 

concentration in the atmosphere, as well as changes in precipitations are likely to influence 

net primary production and therefore C inputs to the soil. All these feedbacks are important 

and must be taken into account for a comprehensive evaluation of C cycle effects on climate 

change. 
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2.5 CONCLUSION 

The Century model predicted an average increase of annual C inputs by 43±5% to reach a 

4p1000 target over a range of 14 agricultural sites across Europe, with diverse soil types, 

climates, crop rotations and practices. The required simulated amount of additional C inputs 

was found to be systematically lower or similar to the 46 treatments of C inputs carried out 

in these sites. However, Century might have overestimated the predicted effect of additional 

C inputs on the SOC stocks variation rate, as the only field treatments that were found 

increasing SOC stocks by at least 4‰ annually were those using very high amounts of C inputs 

(~1.93 MgC ha-1 per year). The predicted amount of additional C inputs depended linearly on 

the initial amount of observed SOC stocks in the control experiments, indicating that lower 

amounts of C inputs might be sufficient to reach the 4p1000 target where SOC stocks are low. 

However, increasing C inputs might require substantial changes in the agricultural systems 

and high quantities of additional organic matter might not be available at a large scale. 

Furthermore, the required amount of additional C inputs was found to increase substantially 

with future scenarios of changes in temperature, raising concern about the feasibility of a 

4p1000 target under climate change and beyond that, the feasibility of SOC stock 

preservation. The magnitude of SOC storage potential in agricultural soils depends largely on 

site-specific conditions, such as climate, soil type and land use. In this study, we did not take 

into account the whole life cycle of C at the farm. However, compensating CO2 emissions from 

human activities through SOC sequestration should also comprehend GHG emissions related 

to the management of additional EOM. In this study, we considered only temperate, sub-

humid and Mediterranean climates. A broader evaluation of the required C inputs and 

associated agricultural practices to increase SOC stocks should be carried out at larger scales. 

Causes of biases in model simulations should be addressed in future studies and the 

representation of C inputs should be improved. We also suggest that future research should 

include multiple models, to reduce the influence of extreme model outcomes on the 

representation of SOC stocks. 

  



 

 57 

Authors contribution 

YH provided the initial model code. EB edited and developed the model code, performed the 

simulations and prepared the manuscript with contributions from all co-authors. EB, CC, PC 

and BG designed the study. HC, IV, RF, TK and MM provided the data. All co-authors 

participated to the results analysis and the writing. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This work benefited from the French state aid managed by the ANR under the 

"Investissements d'avenir" programme with the reference ANR-16-CONV-0003 (CLAND 

project). We acknowledge Mancomunidad de la Comarca de Pamplona for maintenance and 

access to Arazuri site data. Research grant RTA2017-00088-C03-01 form the Instituto Nacional 

de Investigación Agraria y Alimentaria, INIA (Spanish Agency). We acknowledge Margaret 

Glendining, curator of the electronic Rothamsted Archive (e-RA) for providing the Broadbalk 

data. The Colmar and Feucherolles field experiments form part of the SOERE-PRO (network 

of long-term experiments dedicated to the study of impacts of organic waste product 

recycling) certified by ALLENVI (Alliance Nationale de Recherche pour l'Environnement) and 

integrated as a service of the ‘Investment for future’ infrastructure AnaEE-France, overseen 

by the French National Research Agency (ANR-11-INBS-0001). 

2.6 APPENDIX A – CENTURY MODEL DESCRIPTION AND ENVIRONMENTAL FUNCTIONS USED 

The temporal evolution of soil organic carbon is described in the Century model as a first order 

differential matrix equation: 

d𝑺𝑶𝑪(t)

dt
= 𝑰 + 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t),       (2) 

where 𝑺𝑶𝑪(𝑡) is the vector describing the SOC state variables. The first term on the right side 

of the equation represents carbon inputs to the soil coming from plant residues and organic 

material. Carbon inputs are allocated into four different litter pools. Hence, 𝑰 is a 1x7 matrix 

with four nonzero elements. The second term of the equation represents carbon outputs 

from the soil, following a first order decay kinetics. 𝐀 is a 7x7 carbon transfer matrix that 

quantifies the transfers of carbon among the different pools. The diagonal entries of 𝐀 are 

equal to -1, denoting the entire decomposition flux that leaves each carbon pool. The non-

diagonal elements represent the fraction of carbon that is transferred from one pool to 
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another. K is a 7x7 diagonal matrix with the diagonal elements representing the potential 

decomposition rate of each carbon pool. 𝝃𝑻𝑾𝑳𝑪𝑰(𝑡) is the environmental scalar matrix, a 7x7 

diagonal matrix with each diagonal element denoting temperature (fT(t)), water (fW(t)) 

lignin (fL i) and clay (fClay i) scalars, which modify the potential decomposition rate. 

Temperature response function fT(t) is described by Eq. (4), the others are expressed as 

follows. The moisture function fW(t) is a polynomial function ranging from 0.25 and 1 and 

taking the form of: 

fW(t) = −1.1 ∙ 𝑤2 + 2.4 ∙  𝑤 − 0.29,       (A1) 

where 𝑤 is the daily relative humidity coefficient, which varies between 0 and 1 and was 

calculated from soil moisture (𝑚3
𝑤𝑎𝑡𝑒𝑟 

𝑚−3
𝑠𝑜𝑖𝑙), using the following function from (Krinner 

et al., 2005):  

𝑤 = ∑
𝑐𝑜𝑛𝑐𝑡𝑒𝑥𝑡𝑢𝑟𝑒 ∙ 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒−𝑊𝑃𝑡𝑒𝑥𝑡𝑢𝑟𝑒

𝐹𝐶𝑡𝑒𝑥𝑡𝑢𝑟𝑒−𝑊𝑃𝑡𝑒𝑥𝑡𝑢𝑟𝑒
𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , 

where 𝑤 is the estimated relative humidity, ranging between 0 and 1; 𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = sand, silt and 

clay; 𝑐𝑜𝑛𝑐𝑡𝑒𝑥𝑡𝑢𝑟𝑒  is the concentration of the different textures; moisture is soil moisture 

(𝑚3
𝑤𝑎𝑡𝑒𝑟 

𝑚−3
𝑠𝑜𝑖𝑙), 𝑊𝑃𝑡𝑒𝑥𝑡𝑢𝑟𝑒 is the wilting point of the different textures (equivalent to 

0.0657,  0.0884, 0.1496 for sand, silt and clay respectively) and 𝐹𝐶𝑡𝑒𝑥𝑡𝑢𝑟𝑒  is the field capacity 

of texture (equivalent to 0.1218, 0.1654, 0.2697 for sand, silt and clay respectively). 

The decomposition rate of structural litter pools is affected by their lignin content: 

fL i = 𝑒−𝑙𝑔𝑐 ∙ 𝐿,          (A2) 

where 𝑙𝑔𝑐 is the coefficient that regulates the lignin effect, while 𝐿 is the lignin structural 

fraction of the aboveground and the belowground litter pools.  

Finally, the fraction of clay in the soil (𝑔 𝑐𝑙𝑎𝑦 𝑔−1𝑠𝑜𝑖𝑙)  influences the decomposition rate of 

the active pool: 

fClay i = 1 − 0.75 ∙ 𝑐𝑙𝑎𝑦.         (A3) 

2.7 APPENDIX B – MODEL EVALUATION 

Two residual-based metrics were used to evaluate the goodness-of-fit of modelled and 

observed SOC stocks for each site: the Mean Squared Deviation (MSD) and the Normalized 

Root Mean Squared Deviation (NRMSD). The MSD for each site is defined as: 

𝑀𝑆𝐷 =  
∑ (𝑚𝑖−𝑜𝑖)2𝑛

𝑖=1

𝑠
,         (B1) 
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where i = 1,…,n is the year of the experiment, 𝑚𝑖 and 𝑜𝑖 are respectively modelled and 

observed values of SOC stocks and s is the number of observations in the experiment. 

Following Gauch et al. (2003), the MSD can be decomposed into three components: the 

Squared Bias (SB), the Non-Unity slope (NU) and the Lack of Correlation (LC). SB is calculated 

as: 

𝑆𝐵 = (�̅� − �̅�)2,          (B2) 

where �̅� and �̅� are the mean values of modelled and observed SOC stocks respectively. 

Calling ∆𝑀𝑖 = (�̅� − 𝑚𝑖) and ∆𝑂𝑖 = (�̅� − 𝑜𝑖) we have: 

𝑁𝑈 = (1 − 
∑ ∆𝑀𝑖∙∆𝑂𝑖

𝑛
𝑖=1

∑ ∆𝑀𝑖
2𝑛

𝑖=1
)

2

∙
∑ ∆𝑀𝑖

2𝑛
𝑖=1

𝑠
,       (B3) 

𝐿𝐶 = (1 − 
∑ (∆𝑀𝑖∙∆𝑂𝑖)2𝑛

𝑖=1

∑ ∆O𝑖
2∙𝑛

𝑖=1 ∑ ∆𝑀𝑖
2𝑛

𝑖=1
) ∙

∑ ∆O𝑖
2𝑛

𝑖=1

𝑠
.       (B4) 

These three components add up to MSD and help locating the causes of error of model 

predictions, determining areas in the model that require further improvement (Bellocchi et 

al., 2010). In particular, SB provides information about the mean bias of the simulation from 

measurements, NU indicates the capacity of the model to correctly reproduce the magnitude 

of the fluctuation among the measurements and LC is an indication of the dispersion of the 

points over a scatterplot, i.e. the capacity of the model to reproduce the shape of the data 

(Kobayashi and Salam, 2000). 

The second statistical measure we used was computed as the squared root of the MSD, 

normalized by the mean observed SOC stocks: 

𝑁𝑅𝑀𝑆𝐷 =  
√𝑀𝑆𝐷

�̅�
∙ 100.         (B5) 

This indicator is expressed as a percentage and allows to evaluate the model performance 

independently to the units of SOC stocks. 
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2.8 APPENDIX C – SENSITIVITY ANALYSIS WITH DEFAULT CENTURY PARAMETERS 

Figure C1: Temperature sensitivity analysis of carbon inputs change (%) to reach the 4p1000 objective, using 

Century default Q10 and reference temperature parameters. CURR=business as usual simulation, AS1=RCP2.6 

scenario of +1˚C temperature increase, AS5=RCP8.5 scenario of +5˚C temperature change. 

 

Figure C2: Effect of the optimization of the Q10 and reference temperature (Tref) parameters on the additional 

carbon inputs to reach the 4p1000 predicted by Century (mean ± standard deviation). 
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2.10 SUPPLEMENTARY MATERIAL 

Table S1: Default parameters of the Century model affecting litter and SOC dynamics (Parton et al., 1988).  

 

Parameter Matrix source Description Value Range Units 

fam2a A Transfer fraction, aboveground metabolic litter to active SOC 0.45 [0:1]  

fbm2a A Transfer fraction, belowground metabolic litter to active SOC 0.45 [0:1]  

fas2a A Transfer fraction, aboveground structural litter to active SOC 0.55 [0:1]  

fbs2a A Transfer fraction, belowground structural litter to active SOC 0.45 [0:1]  

fas2s A Transfer fraction, aboveground structural litter to slow SOC 0.7 [0:1]  

fbs2s A Transfer fraction, belowground structural litter to slow SOC 0.7 [0:1]  

fa2p A Transfer fraction, active to passive SOC 0.004 [0:1]  

fs2a A Transfer fraction, slow to active SOC 0.42 [0:1]  

fs2p A Transfer fraction, slow to passive SOC 0.03 [0:1]  

fp2a A Transfer fraction, passive to active SOC 0.45 [0:1]  

clay A, 𝑓𝐶𝑙𝑎𝑦 Clay content  [0:1]  

lgc A, 𝑓𝐿 Lignin coefficient of structural litters 3 [0:10]  

lga A, 𝑓𝐿 Belowground lignin content 0.76 [0:1]  

lgb A, 𝑓𝐿 Aboveground lignin content 0.72 [0:1]  

tau4ml K Turnover time, metabolic litter 0.066 [0:0.066] year 

tau4sl K Turnover time, structural litter 0.245 [0:0.245] year 

tau4a K Turnover time, active SOC 0.149 [0:0.149] year 

tau4s K Turnover time, slow SOC 5.48 [0:5.48] year 

tau4p K Turnover time, passive SOC 241 [0:241] year 
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Abstract 

Increasing soil organic carbon (SOC) stocks by 4‰ per year in agriculture is one of the land-

based mitigation solutions which is expected to limit future global warming. The main 

objective of this study was to estimate the feasibility and required C input changes of a 4‰ 

SOC stock increase. We used an ensemble of six SOC models to estimate the C input changes 

required to increase SOC stocks by 4‰ per year in 17 long-term agricultural experiments 

around Europe. We ran the models in two configurations: 1) with default parametrization and 

2) with parameters calibrated site-by-site to fit the evolution of SOC stocks in the control 

treatments of the experiments (i.e. treatments without exogenous organic matter addition). 

We compared model simulations and analyzed the factors generating variability across 

models. 

The calibrated ensemble was able to reproduce the SOC stock evolution in the control 

treatments. We found that, on average, the experimental sites needed additional 1.5 ± 1.2 

Mg C ha-1 yr-1 to increase SOC stocks by 4‰ per year compared to initial conditions (multi-

model median ± median standard deviation across sites). That is, a 107% increase compared 

to initial conditions. While different variables related to climate and soil conditions explained 

the variability of the models in the default configuration (i.e., their relative standard deviation 

from the mean), only the structural differences among models could explain their diverging 

behavior when they were calibrated. Our work highlights the challenge of increasing SOC 

stocks in agriculture and accentuates the need to increasingly lean on multi-model ensembles 

when predicting SOC stock trends and related processes. To increase the reliability of SOC 

models under future climate changes, we suggest model developers to pay particular 

attention to the effect of additional C input on the variation of SOC stocks. 

3.1 INTRODUCTION 

The latest report of the Intergovernmental Panel on Climate Change (IPCC, 2021) announced 

observed changes in the whole climate system in every region across the world. Although 

many of the changes already set in motion are irreversible over hundreds to thousands of 

years, strong and sustained reduction of greenhouse gas emissions (GHGs) could still limit 

climate change (IPCC, 2021). Additional efforts to decrease the level of carbon dioxide (CO2) 

and other GHGs in the atmosphere are expected from land-based mitigation solutions.  
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The European Commission has recently released a set of targets for European soils to become 

healthy, which include their contribution to climate change mitigation via increased 

atmospheric carbon (C) sequestration. The current average decline of SOC in European 

croplands (i.e. 5‰ yr-1) is aimed to be reversed to a 1‰-4‰ annual increase (Veerman et al., 

2020). With the same perspective, the 4 per 1000 (4p1000) initiative has gathered 

contributions from hundreds of partners across the world since 2015, to promote agricultural 

practices that help to maintain or enrich cultivated soils in organic carbon (SOC), including 

those which restrict mineralization of SOC and increase its content in soil (Minasny et al., 

2017). This will have the combined effect of improving soil quality (e.g., soil fertility and water 

retention (Lal, 2008)) while mitigating climate change through increased C sequestration in 

the soil. Despite the multiple benefits provided by increasing SOC stocks, the feasibility of a 

4‰ objective with current agricultural management practices is still under debate (e.g. 

Chabbi et al., 2017; van Groenigen et al., 2017; Soussana et al., 2019; Rumpel et al., 2020). 

Recently, some studies using process-based modelling approaches focused on the bio-

technical feasibility of SOC stock increase targets, such as a the 4‰ objective (e.g. Bruni et 

al., 2021; Martin et al., 2021; Riggers et al., 2021). Individual model’s predictions of a 4‰ 

increase target in Europe are relatively optimistic. That is, a required 30 to 40% C input 

increase in France according to Martin et al. (2021) and a 43% increase in European long-term 

experiments (LTEs) according to Bruni et al. (2021) under constant climate conditions. A multi-

modelling exercise from Riggers et al. (2021) predicted a much larger increase, that is a 213-

283% increase of C input required between 2090 and 2099, compared to 2014, under 

different climate change scenarios. Multi-model ensemble means are expected to provide 

improved estimates compared to singular model’s simulations, due to the relative 

independence of different SOC models’ simulation errors (IPCC, 2007). Furthermore, 

simulations designed with multiple models that have underlying structural differences 

provide an uncertainty range of SOC projections that reflects our current understanding of 

SOC processes and their possible representations. The use of multi-model ensembles to 

predict the evolution of complex systems is a widespread practice in other disciplines, such 

as climate modelling (Tebaldi and Knutti, 2007; Parker, 2010; Jebeile and Crucifix, 2020). 

Although some efforts have been made in the soil modelling community to embrace this 

practice (e.g., Palosuo et al., 2012; Sulman et al., 2018; Farina et al., 2021; Riggers et al., 2021), 

its use is not consolidated yet. 
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In the present paper, we aim to: 1) use multi-model ensembles to simulate the SOC stock 

evolution in long-term cropland experiments and evaluate two multi-model ensemble 

configurations, one with default model parameters and the other with parameters calibrated 

site-by-site, 2) provide an estimate of the C input required to annually increase SOC stocks by 

4‰ in 17 long-term experiments (LTEs) across Europe, and 3) identify potential factors 

creating uncertainty across models. With this work, we want to contribute to the 

understanding of the feasibility of a 4‰ SOC stock increase target in Europe and to add a 

piece to the ongoing discussion about the use of multi-model ensembles in soil science. 

3.2 MATERIALS AND METHODS 

3.2.1 Experimental sites 

The dataset used in this study compiles 17 long-term cropland experiments located in Europe 

(10 in France and 1 each in Spain, Great Britain, Sweden, Italy, Germany, Poland and Austria). 

Each experiment includes a control treatment and one or several treatments of additional 

exogenous organic material (EOM), for a total of 46 EOM treatments. The data consists of 

several measurements of SOC content and its variance across replicates, yearly crop yields 

and different soil characteristics (Table A1). The experiments lasted on average 25 years 

(median of 19 years), in the period between 1956 and 2018. EOM inputs were applied to the 

soil at different rates and frequencies and varied from animal manure (swine, bovine and 

poultry) to sewage sludge, peats, castor meal, sawdust, biowaste, green manure and 

household waste (i.e., residual organic material generated from residential waste). Data for 

Bologna’s experiment were directly extracted from Triberti et al. (2008) and consist of the 

average SOC stock evolution in different inorganic nitrogen (N) experiments (i.e., one 

treatment without any inorganic fertilizer and 3 treatments with different levels of N input). 

Cropping systems (Table A2) were cereal-dominated rotations (wheat, maize, barley and oat). 

In particular, four were monocultures of forage crops or cereals (silage maize in Champ Noël 

3, Le Rheu 1 and Le Rheu 2 and winter wheat in Broadbalk) and five sites had rotations of 

different cereals (winter wheat and silage or grain maize in Crécom 3 PRO, Feucherolles, La 

Jaillière 2 PRO, Avrillé and Bologna). The other experiments rotated cereal crops with legumes 

(chickpea, pea) and/or root crops (potatoes, fodder beet, fodder rape and Swedish turnip), 
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oilseed crops (oilseed flax, sunflower, oilseed rape, mustard and rapeseed), and cover crops 

(rye grass). 

Except for Müncheberg that was irrigated in 4 out of 8 replicates between 1974 and 1981, all 

experiments were rainfed and managed under conventional tillage (the Ultuna trial was tilled 

by hand with a spade to mimic conventional tillage). Straw residues were exported from the 

field, except in the French, Austrian and German sites, where residues were partly or totally 

incorporated to the soil. The French experiments Champ Noël 3, Crécom 3 PRO, La Jaillière 2 

PRO, Le Rheu1 and Trévarez received optimal amounts of mineral nitrogen (N) fertilizers both 

in the control and in the treatments. In the Polish experiment in Grabów, N was applied as 

ammonium nitrate (34% N), phosphorus (P) as triple superphosphate (45% P2O5) and 

potassium (K) as potassium chloride (60% K2O).  

3.2.2 Climate forcing  

Daily soil surface temperature, moisture and potential evapotranspiration were simulated for 

each site using the land-surface model ORCHIDEE (Krinner et al., 2005). Simulations were run 

using a 3-hourly global climate dataset at 0.5˚ (GSWP3 http://hydro.iis.u-

tokyo.ac.jp/GSWP3/), from which we also derived daily precipitation data. Mean annual 

surface temperature (MAST) during the experiments ranged between 5.7 ˚C and 12.8 ˚C 

across the sites, while mean annual precipitation (MAP) was 851 mm, with a minimum of 613 

mm and a maximum of 1314 mm (Table A3). The virtual amount of C input required to 

increase SOC stocks was analyzed over the period 1980-2010, which was the 30-yearlong 

interval covering the majority of the experiments. 

3.2.3 Soil sampling 

Soil samples were collected between 20 and 40 cm depth, in 3 to 8 replicates. In Champ Noël 

3 replicates were not available and in Broadbalk, SOC was measured using a semi-cylindrical 

auger, bulking together 10-20 cores from across the plot. SOC stocks were calculated using 

the standard formula:  

𝑆𝑂𝐶 (𝑀𝑔𝐶 ℎ𝑎−1) = SOC(%) ∙ 𝐵𝐷(𝑔 𝑐𝑚−3) ∙ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎ (𝑐𝑚) ∙ (1 −

𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑣𝑜𝑙. %/100)),  

where SOC (%) is the concentration of organic C in the soil and BD is the average bulk density 

of the experimental plot. BD across the sites ranged between 1.1 and 1.7 𝑔 ∙ cm−3. Its 
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evolution over time in the EOM treatments was not taken into account due to lack of data for 

all experiments. In Ritzlhof, BD measurements were not available. Hence, we estimated BD 

using the pedotransfer function developed by Kaur et al. (2002), using clay and silt content in 

the soil. We found a similar value as Kaur et al. (2002) in LUCAS soil maps (Ballabio et al., 

2016). Clay content ranged from 5% to 36%, while soil pH varied from 5.8 to 8.6 across the 

sites. Calcium carbonate (CaCO3) content was particularly important in Arazuri, Colmar, 

Grabów and Broadbalk soils (160, 130, 77 and 20 𝑔 𝐶𝑎𝐶𝑂3
∙ 𝑘𝑔−1

𝑠𝑜𝑖𝑙
respectively), while the 

rest of the sites had none or negligible quantities of CaCO3.  

3.2.4 Multi-model ensemble 

Six SOC models were used for the multi-model ensemble analysis: Century (Parton et al., 

1988), Roth-C (Jenkinson, 1990), ICBM (Andrén and Kätterer, 1997), AMG (Andriulo et al., 

1999), MIMICS (Wieder et al., 2015) and Millennial (v2) (Abramoff et al., 2022). All six models 

take as inputs C from plant litter and other organic material and focus on the dynamics of C 

within a single soil layer (0 - 30 cm). Four of the models (i.e., Century, Roth-C, ICBM and AMG) 

represent soil C dynamics using a conventional multi-compartmental structure, where C is 

decomposed following first order decay rates. The number of equations (and compartments) 

differs from model to model. The remaining two more recent models (i.e., MIMICS and 

Millennial) have microbial explicit C pools, where the turnover of litter and SOC pools is 

governed by temperature-sensitive Michaelis-Menten kinetics. Each model was initialized 

with the standard modelling practice which is commonly used for the model and using 

methods that reduced the running time of the spin-up (e.g., the semi-analytical spin-up for 

Century and Roth-C).  

ICBM is run at an annual time step and can be solved analytically due to the linearity of its 

system of equations. The model consists of two compartments: a young and an old SOC pool. 

Environmental factors are summarized into one coefficient that affects the decomposition 

rates of both soil compartments equally (r). The response functions to the temperature and 

moisture used to calculate the parameter r, which has to be normalized against the Ultuna 

experiment, were derived from Fortin et al. (2011) and Karlsson et al. (2011). Following its 

standard initialization method (Saffih-Hdadi and Mary, 2008), AMG was initialized using the 

value of SOC during the first year of the experiments and run numerically afterwards. The 

model contains one fresh organic matter pool and two SOC pools (active and stable). The 
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stable pool is considered constant throughout the simulation length, while the other pools 

are decayed at an annual rate. Both Roth-C and Century models were solved semi-analytically, 

following the method described in Huang et al. (2018) and Xia et al. (2012). The method 

consists of: 1) solving the set of differential equations by inverse calculations to determine 

pools sizes at steady state 2) running the model numerically for the rest of the simulation. 

Century has four litter pools (structural and metabolic aboveground litter C and structural and 

metabolic belowground litter C) and three SOC pools (active, slow and passive), which differ 

for their decomposition rates. It was run at a daily time step. Roth-C simulates the SOC 

evolution on a monthly time step and was converted into its matrix continuous form following 

Parshotam (1996). The model has five pools: decomposable and resistant plant material (DPM 

and RPM), microbial biomass, humified organic matter (HUM) and inert organic C. This latter 

pool is constant through time and is calculated from the level of SOC at the beginning of the 

experiment. Both MIMICS and Millennial models were initialized using a Newton-Raphson 

approach that calculates the steady-state of the C pools analytically (stode function of the 

rootSolve package in R (Soetaert and Herman, 2009)). They were run numerically afterwards. 

MIMICS has seven SOC pools: two litter C pools that correspond to metabolic and structural 

litter, two microbial pools and three soil organic matter (SOM) pools (a physically protected, 

a bio-chemically recalcitrant and an available SOM pool). It is usually run at an hourly time 

step, but it was run at a daily time step instead, to decrease the running time of the 

simulations. The Millennial model has five measurable pools of C: particulate organic matter 

(POM), low molecular weight C (LMWC), aggregate C, mineral-associated organic matter and 

microbial biomass C (MIC). It was run at a daily time step. 

3.2.5 Calibration of model parameters 

All models were run with two configurations: 1) using default parameters and 2) using 

calibrated parameters that were optimized site by site in order to fit the evolution of observed 

SOC stocks in the control treatments. In Century, Roth-C, ICBM and AMG, the calibration of 

the parameters was performed using the sequential least-squares quadratic programming 

function in Python (SciPy v1.5.1, scipy.optimize package with method=‘SLSQP’), a nonlinear 

constrained, gradient-based optimization algorithm (Fu et al., 2019). For MIMICS and 

Millennial, we used the limited-memory quasi-Newton method (optim function in the stats 

package in R, with method= "L-BFGS-B", Byrd et al., 1995). We applied a different algorithm 
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to these two models because the SLSQP function was not available in R. The use of R for 

MIMICS and Millennial was imposed by the fact that they needed to be spun-up each time a 

new set of parameters was generated for calibration using the stode function in R.  

To standardize the optimizations, we selected parameters that affect C decomposition (see 

Table 3-1 and Appendix B). In ICBM, the young pool is multiplied by a decomposition rate (k1) 

and the old pool is altered by two decomposition rates (k1 and k2). Both pools are also altered 

by the environmental factor r. These three parameters were optimized, following Andrén and 

Kätterer (1997). The active pool in AMG is decayed at a rate k, which depends on 

environmental factors and on a potential mineralization rate (k0). k0 is usually optimized to fit 

SOC stocks (Andriulo et al., 1999 and Clivot et al., 2019). In Century, C decomposition is mostly 

influenced by the temperature response function, which follows the van’t Hoff relationship, 

based on the Q10 factor (M. J. H. van’t Hoff, 1884). Following Bruni et al. (2021), we calibrated 

the Q10 and reference temperature factors (Tref), after calibrating the metabolic:structural 

litter ratio of the aboveground (M:SAG) and belowground (M:SBG) litter pools. These latter 

parameters are used to partition the C input into the different litter pools, and are a function 

of the nitrogen:lignin (N:L) ratio of the plants. They were optimized since no data was 

available on the N:L ratio of the different crops. SOC decomposition in Roth-C is also sensitive 

to the temperature response function, which is an empirical function initially built for the 

Rothamsted experiment (Jenkinson, 1990). We calibrated the temperature function 

parameter (Tparam) for each experimental site. In MIMICS, we calibrated the tuning coefficients 

(av and ak) of the temperature-sensitive kinetic parameters, on which the rates of C 

decomposition depend. As in Century, we also calibrated the parameter that is used to 

partition litter inputs into their metabolic and structural fraction (fmet). In Millennial, we 

optimized 1) the activation energy (𝐸𝑎𝑝𝑙) and 2) the half-saturation constant (Kpl) of the 

maximum rate of POM decomposition, and 3) the activation energy (𝐸𝑎𝑙𝑏) of the maximum 

uptake rate of the LMWC pool. Both activation energies are modified by an Arrhenius 

temperature relationship and are linked to the decomposition of POM into LMWC and to the 

microbial uptake of LMWC (Abramoff et al., 2022). 

Carbon input from plant material was calculated from annual crop yield measurements, 

following the method developed by Bolinder et al. (2007) for Canadian experiments and 

adapted by Clivot et al. (2019) to the same French experiments used in this study. The 

allometric functions used to estimate the C input and its allocation to the aboveground and 
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belowground part of the plant can be found in the paper from Clivot et al. (2019) and have 

already been applied to other agricultural experiments in European temperate climates such 

as those in our study (Bruni et al., 2021). 

Table 3-1 Description of the calibrated parameters related to the decomposition of SOC in the different models. 

Functions where they appear are described in detail in Appendix B.  

Model Decomposition-

related optimized 

parameters 

Description Unit Reference 

paper 

Century M:SAG  Metabolic:structural ratio 

of the aboveground litter 

pools 

 Parton et al. 

(1988) 

M:SBG Metabolic:structural ratio 

of the belowground litter 

pools 

 

Q10 Q10 coefficient of the 

temperature response 

function 

 

Tref Reference temperature of 

the temperature response 

function 

˚C 

Roth-C Tparam Parameter of the rate 

modifying factor for 

temperature 

 Coleman and 

Jenkinson 

(1996) 

ICBM k1 Potential mineralization 

rate affecting the young 

and old SOC pools 

yr-1 Andrén and 

Kätterer 

(1997) 

k2 Potential mineralization 

rate affecting the old SOC 

pool 

yr-1 
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r Temperature and moisture 

response function 

parameter 

 

AMG k0 Potential mineralization 

rate of the active SOC pool 

 

yr-1 Andriulo et al. 

(1999) 

MIMICS fmet Metabolic:structural ratio 

of the litter inputs 

 Wieder et al. 

(2015) 

av Tuning coefficient of the 

maximum reaction velocity 

of the Michaelis-Menten 

kinetics 

 

ak Tuning coefficient of the 

half saturation constant of 

the Michaelis-Menten 

kinetics 

 

Millennial 𝐸𝑎𝑝𝑙  Activation energy for the 

maximum rate of POM 

decomposition 

 

J mol-1 Abramoff et 

al. (2022) 

Kpl Half-saturation constant of 

POM decomposition to 

LMWC 

g C m-2 

𝐸𝑎𝑙𝑏  Activation energy for the 

potential LMWC uptake 

rate 

J mol-1 

3.2.6 Required C input to increase SOC stocks by 4‰ per year 

SOC stocks were simulated for each control treatment over the experiments’ duration, to 

evaluate the capability of the models to reproduce observed SOC stocks. The period 1980-

2010 was selected to analyze the virtual amount of additional C input required to increase 



 

 80 

SOC stocks. We simulated one scenario of SOC stock evolution, where SOC stocks increased 

on average by 4‰ yr-1 for 30 years, relative to the initial SOC stocks in the control treatments. 

The amount of C input required to increase SOC stocks by the defined target, was calculated 

using an inverse modelling approach that consisted in minimizing the following equation: 

𝐽 =| 𝑆𝑂𝐶0 ∙ 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑆𝑂𝐶30
𝑚𝑜𝑑𝑒𝑙(𝑰)|,  

Where target = 1.12 (i.e., 1 + 0.004 ∙ 30) since the objective was to reach an average SOC stock 

increase of 4‰ yr-1 for 30 years. We used the Python function SLSQP to solve the optimization 

problem. C input quality is accounted differently in the different models. In Millennial, 

regardless of its quality 1/3 of the C input is allocated to POM and the rest 2/3 to LMWC 

(Abramoff et al., 2022). In Century and MIMICS, the allocation of the C input to the metabolic 

and structural litter pools depends on the L:N ratio of the C input material. Hence, the C input 

quality can be inferred by the M:S ratio of the C input. For these models, during the 

optimization process we did not prescribe the quality of the C input since the optimization 

directly simulated the optimal allocation of C in the different litter pools to reach the 4‰ 

target. However, for Century, we constrained the virtual C input to have the same 

aboveground:belowground ratio as the initial litter inputs, assuming that crops would not 

change with the 4‰ implementation and that the EOM would be equally split above and 

below the soil surface (see Bruni et al., 2021). 

In AMG and ICBM, the humification coefficient h varies according to the quality of the C input. 

For instance, in AMG h = 0.217 for aboveground winter wheat and h = 0.52 for cow manure 

(Bouthier et al., 2014). In ICBM, h = 0.125 for straw and crop residues and h = 0.31 for 

farmyard manure (FYM) (Andrén and Kätterer, 1997). In Roth-C, when entering the soil, 59% 

of litter inputs from crop plant material are allocated to DPM and 41% to the RPM 

compartment, while FYM is assumed to be more decomposed and is split in the following 

way: 49% DPM, 49% RPM and 2% HUM (Coleman and Jenkinson, 1996). For these three 

models, a fraction 𝑓 of the estimated C input was set to have the same quality as the litter 

input in the control treatment (i.e., its parametrization or its allocation to the different pools). 

The remaining (1 − 𝑓) fraction of C input was set to have the average quality of the EOM in 

the different treatments at the experimental site. For example, for AMG a site with initial 

litter input from winter wheat equal to 2 Mg C ha-1 yr-1 in the control treatment, and with a 

cow manure treatment only, a fraction 𝑓 =  2/𝑰 was set to have aboveground h = 0.217 and 
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the remaining fraction (1 − 𝑓) was set to have aboveground h = 0.52, where I is the estimated 

C input and where the maximum value of f was set to be 1.  

Both non-calibrated and calibrated models were run independently to estimate the amount 

of C input to reach the 4‰ target at the 17 experimental sites. 

3.2.7 Comparison of models’ outputs 

Models’ outputs were compared using different techniques. First, we tested the effect of the 

models and of the calibration on the simulated C input needed to reach the 4‰ target. This 

was done using a linear mixed-effect (LME) model, with fixed effects for the explanatory 

variables: “model”, “calibration” and the interaction between the two, and including a 

random effect for “sites”. The model was fit by maximizing the log-likelihood and an analysis 

of variance (ANOVA) was applied to test the effect of the different explanatory variables on 

the simulated C input. Second, we looked for groups of models that behaved similarly. We 

created clusters based on the minimum correlation distance between models’ outputs (i.e. 

the additional C input to reach the 4‰ target). The distance was calculated with an 

optimization algorithm based on minimum spanning tree (Müller et al., 2012). To estimate 

which measured variables better explained the differences between the models’ outputs, we 

used a linear model. The explanatory variables of the linear model were: MAST, MAP, PET, 

initial C input (𝐶0
𝑖𝑛), clay and CaCO3 content, soil C:N and pH, initial SOC stocks and N input 

(Nin). This latter was considered as a categorical variable, equal to 1 if N inputs were applied 

at any dose and 0 otherwise. The response variable was the relative standard deviation (RSD) 

among models’ outputs. To select the more parsimonious model, we performed a step wise 

regression by Akaike Information Criteria (AIC). The results for the multi-model ensembles are 

provided as their multi-model median (MMM) and mean. 

3.3 RESULTS 

3.3.1 Evaluation of the multi-model ensemble configurations: prediction of the SOC stocks 

in the control treatments 

In Figure 3-1 we show the regression of the predicted and observed SOC stocks in the control 

treatments. The MMM of the non-calibrated models (Figure 3-1.a) shows a coefficient of 

determination (R2) of 0.18. The calibration of model parameters improved the simulation of 

SOC stocks in the control treatments (R2 = 0.98) (Figure 3-1.b). A summarized description of 
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models’ performances is presented in the Taylor diagram of Figure 3-2. The similarity between 

simulated and observed SOC stocks in the control treatments is quantified in terms of: 1) their 

correlation (R), 2) their SD, which is normalized against the observations, and 3) their centered 

root-mean squared error (NRMSE). Apart from Century (normalized SD of 1.04), the non-

calibrated models overestimated (i.e., Roth-C) or underestimated (i.e., AMG, ICBM, Millennial 

and MIMICS) the variation of SOC stocks from their mean. The calibration of model 

parameters reduced this error, since the normalized SD is closer to 1 in all calibrated models. 

The non-calibrated AMG outperformed the other non-calibrated models both in terms of 

correlation (R = 0.96) and NRMSE (0.28). It also outperformed the calibrated version of 

Millennial (R = 0.81 and NRMSE = 0.62) and performed similarly to the calibrated version of 

MIMICS (R = 0.96 and NRMSE = 0.28). Table 3-2 presents the R2 and the RMSE for all models 

and for the MMM. In the calibrated configuration, ICBM outperformed the other models with 

the highest R2 (0.98 as in AMG and in the MMM) and the lowest RMSE (1.92). Except for AMG, 

the MMM performs better than all single models in the non-calibrated configuration. In the 

calibrated configuration, the MMM (R2 = 0.98 and RMSE = 2.34) outperforms all single models, 

except for ICBM and AMG which have the same R2 and a slightly lower RMSE. 

 

Figure 3-1 Predicted and observed SOC stocks (Mg C ha-1) in the control treatments, for the six models with: (a) 
non-calibrated and (b) calibrated parameters. The purple lines represent the multi-model median (MMM). 
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Figure 3-2 Taylor diagrams showing the non-calibrated (full spots) and calibrated (crossed spots) model 

performances. X-axis and Y-axis show the standard deviation of SOC stocks’ simulations for each model, 

normalized against the observations. The circumference of the quarter circle shows the correlation coefficient 

(R) of the different models between simulated and observed SOC stocks in the control treatments and the grey 

arcs represent the centered normalized root-mean squared error. 

Table 3-2 Statistics of models and MMM performances. 

 R2 non-calibrated R2 calibrated 
RMSE  

non-calibrated 
RMSE calibrated 

CENTURY 0.02 0.96 20.05 2.89 

ROTHC 0.05 0.96 28.79 2.87 

ICBM 0.02 0.98 21.09 1.92 

AMG 0.92 0.98 4.26 2.28 

Millennial 0.06 0.66 20.08 9.42 
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MIMICS 0.10 0.93 17.08 4.26 

MMM 0.18 0.98 15.36 2.34 

3.3.2 Evaluation of the multi-model ensemble configurations: effect of additional C input on 

the SOC stock increase 

The capability of the multi-model ensemble to predict the effect of additional C input on SOC 

stock changes is illustrated in Figure 3-3. The graph shows the correlation between additional 

C input and SOC stock increase in the EOM treatments (R2 = 0.55). For the treatments, 

additional C input was calculated as the yearly average amount of EOM added to the soil, plus 

the increased crop productivity relative to the control treatment. The correlation line and its 

confidence interval (CI) at 95% can be compared to the simulated non-calibrated and 

calibrated MMMs of the additional C input to reach a 4‰ increase of SOC stocks. The MMMs 

are shown together with their CI across sites (blue and orange crosses, respectively). The non-

calibrated configuration is significantly different from the correlation line in the EOM 

treatments. In particular, the effect of additional C input on the SOC stocks is overestimated 

by the non-calibrated MMM. On the contrary, the calibrated MMM is not significantly 

different from the EOM treatments’ correlation line. This means that the calibrated multi-

model ensemble configuration is able to predict correctly the effect of additional C input on 

SOC stocks, when compared to the 46 EOM treatments of the 17 experimental sites in our 

database. 
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Figure 3-3 SOC stock increase (%) for different levels of additional C input in the organic amendment treatments 

experiments (black spots) and additional C input required to reach the 4‰ SOC increase according to the 1) non-

calibrated multi-model median, MMM (blue cross) and the 2) calibrated multi-model median (orange cross). 

Errors are shown as confidence intervals (CI) The regression line between additional C input and SOC stock 

increase in the EOM treatments is indicated in the figure (y = m ± SD ∙ x + b ± SD). 

3.3.3 Required C input to reach a 4‰ target 

Both non-calibrated and calibrated model configurations were run inversely to estimate the 

amount of C input required to increase SOC stocks by 4‰ yr-1 on average, for 30 years. Table 

3-3 shows the percentage change of C input required to reach the target, relative to the initial 

level of C input in the control treatment. In the non-calibrated configuration, the median C 

input change is 59.4% (MMM), with a multi-model mean (± SD) of 84.5% (± 77.5%). The 

calibrated configuration predicts a median increase of 107.4% (MMM) to reach the target and 

a multi-model mean of 107.4% (± 54.8%). We can see that there is a high variability across 

models for both configurations (Table 3-3). However, when comparing the relative standard 

deviation (RSD = SD/mean ∙ 100) of the non-calibrated (91.6%) and calibrated (51%) 

configurations, we can see that the calibration reduces the variability among models (Table 

3-3).  
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Figure 3-4 shows the mean additional C input across sites predicted by each model, and the 

MMM for both ensemble configurations. The calibrated MMM (1.49 ± 1.19 Mg C ha-1 yr-1, 

median of the average C input across sites ± median SD across sites) is higher than the non-

calibrated MMM (0.87 ± 0.34 Mg C ha-1 yr-1). As shown in Figure 3-3, the calibrated MMM is 

lower but not significantly different from the C input needed to increase SOC stocks by 4‰ 

inferred from the EOM treatments (regression line at x = 0.4 in Figure 3-3), i.e., 1.98 ± 0.15 

Mg C ha-1 yr-1. 

The increased median variability across sites of the calibrated ensemble (RSD = 40% in the 

non-calibrated and 80% in the calibrated configuration) is mainly an effect of the ICBM, 

Millennial and MIMICS models. Indeed, the calibrated versions of these models have a higher 

RSD relative to their non-calibrated versions. Compared to the other models, both Century 

and Roth-C seem less sensitive to the calibration of the parameters. In these models, the 

mean additional C input and its RSD from the mean virtually do not change from one 

configuration to the other. AMG is the only model where the calibration decreases the 

variability of the estimated C input across sites (RSD = 77%), compared to its non-calibrated 

version (RSD = 94%). Table 3-4 shows the results of the ANOVA of the LME model. We found 

that the explanatory variable “model” had a significant effect on the simulated C input (p < 

0.05), i.e., the difference between simulated C input in the various models was statistically 

significant. Furthermore, we observed a significant interaction effect between models and 

calibration. This means that the effect of the calibration on the simulated C input depended 

on the model (Table 3-4). 
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Figure 3-4 Required additional C input to reach a mean annual 4‰ SOC stock increase for 30 years according to 

the different models, and MMM for the 1) non-calibrated (blue) and 2) calibrated (orange) models’ versions. 

Table 3-3 Required percentage change of C input to increase SOC stocks by 4‰ per year on average over the 

period 1980 – 2010 for the non-calibrated and calibrated models’ configurations. In the table are specified the 

multi-model median (MMM), the multi-model mean, the standard deviation (SD) from the mean and the relative 

standards deviation (RSD). 

 
C input change (%) required to increase SOC stocks by 

4‰ yr-1 on average for 30 years 

 Non-calibrated Calibrated 

AMG 216.1 142.9 

CENTURY 27.1 40.5 

ICBM 21.1 101.5 

MILLENNIAL 149.3 189.2 

MIMICS 57.5 113.2 

ROTHC 61.3 57.4 

MMM 59.4 107.4 

Mean 84.5 107.4 

SD 77.5 54.8 

RSD 91.6 51.0 
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Table 3-4 Effect of “model” and “calibration” on the estimated C input to reach the 4p1000 target. Results from 

the ANOVA of the LME model, with random effect of the sites. 

 p-value 

Intercept < 0.0001 

Model < 0.0001 

Calibration 0.0404 

Model ∙ Calibration 0.0021 

3.3.4 Clusters and variability among models 

The heatmap of Figure 3-5 shows the level of the additional simulated C input to reach the 

4‰ for each site and each calibrated model. On the above part of the figure are drawn the 

relationships of similarity among models. The clusters are based on the minimal correlation 

distance among simulated C input. What can be appreciated from the graph is that there are 

two main groups of models that behave similarly, when calibrated. The first cluster is formed 

between the AMG and ICBM models. The second cluster incorporates Century, Roth-C, 

Millennial and MIMICS (the first two models being more correlated to each other than the 

other two). The results of the stepwise AIC algorithm (Table 3-5) show that no variable has a 

significant effect (p < 0.05) on the RSD of the simulated C input among calibrated models. In 

the non-calibrated configuration, the RSD is explained by different variables (i.e., initial SOC 

stocks, MAP, initial C input and soil pH, Table 3-5) 
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Figure 3-5 Heatmap of the simulated additional C input to reach the 4‰, for each calibrated model and each 

site. Darker cells show lower C input and light cells represent higher C input. Dendograms above the heatmap 

represent the relationship of similarity among groups of models, calculated as the minimal correlation distance.  

 



 

Table 3-5 Results of the stepwise AIC model for the non-calibrated (left) and calibrated (right) configurations. The linear model was originally built with the following variables: 

initial SOC stocks, mean annual surface temperature (MAST) and precipitation (MAP), potential evapotranspiration (PET), initial C input (𝐶0
𝑖𝑛), clay and CaCO3 content, soil 

C:N ratio, soil pH and N input (Nin). This latter was provided as a categorical variable, equal to 1 if the experiment was fed with some N input, and 0 otherwise. In the table 

are shown the variables selected by the stepwise algorithm as being the most significant to explain the RSD of the simulated C input among models. At the bottom are 

specified: the residual standard error, the multiple and adjusted R2, the F-statistic and the p-value of the selected AIC model. 

Non-calibrated Calibrated 

 
Estimate 

Std. 

Error t value Pr(>|t|) 
  

Estimate 

Std. 

Error t value Pr(>|t|) 

(Intercept) 1.017 0.259 3.933 0.0043 ** (Intercept) 3.290 2.522 1.305 0.2330 

Initial SOC 

stocks 0.005 0.002 2.527 0.0354 * 

Initial SOC 

stocks -0.015 0.007 -2.054 0.0790 

MAST 0.036 0.024 1.524 0.1661 
 

MAST 0.254 0.178 1.421 0.1980 

MAP 0.001 0.000 4.060 0.0036 ** MAP 0.001 0.001 1.349 0.2190 

PET 0.000 0.000 -1.080 0.3116 
 

PET -0.002 0.001 -1.644 0.1440 

𝐶0
𝑖𝑛 -3.790 0.521 -7.276 0.0001 *** 𝐶0

𝑖𝑛 5.285 3.491 1.514 0.1740 

Clay 0.684 0.452 1.513 0.1687 
 

Clay 6.538 4.014 1.629 0.1470 

pH -0.117 0.048 -2.461 0.0392 * CaCO3 0.008 0.006 1.413 0.2010 

c(Nin) -0.111 0.071 -1.567 0.1559 
 

pH -0.604 0.511 -1.181 0.2760 

--- --- --- --- --- --- Soil C:N -0.149 0.082 -1.820 0.1120 

Significative codes:  0 ‘***’ 0.001 ‘**’ 0.01 

Residual standard error: 0.1 on 8 degrees of freedom Residual standard error: 0.4 on 7 degrees of freedom 

Multiple R-squared:  0.95, Multiple R-squared:  0.62, Adjusted R-squared:  0.14  

F-statistic: 17.15 on 8 and 8 DF,  p-value: 0.0002 F-statistic: 1.291 on 9 and 7 DF,  p-value: 0.3764 
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3.4 DISCUSSION 

3.4.1 Evaluation of the multi-model ensemble configurations 

The calibration of model parameters improved the simulation of SOC stocks in the control 

treatments of the 17 LTEs used in this study (Figure 3-1). In a multi-modelling exercise, Farina et 

al. (2021) showed that site-specific calibration improved the simulation of SOC stocks in 7 bare-

fallow LTEs in Europe. This was true both compared to a non-calibrated and to a multi-site 

calibration configuration (i.e., where generic parameters are optimized for all sites together). 

Site-specific calibration accounts for the spatial variability of model parameters across sites. 

However, in order to have a unique solution to the parameters’ calibration, site-specific 

calibration of a chrono-sequence requires a high number of SOC measurements in time at each 

site (since the number of parameters to calibrate must be lower than the number of data points).  

In our study, the calibration was also validated against the effect of C input on SOC stocks. In fact, 

the calibrated multi-model ensemble better reproduced the effect of C input on SOC stocks in 

the 46 EOM treatments, compared to the non-calibrated configuration (Figure 3-3). However, we 

found that the MMM of the additional C input to reach the 4‰, simulated by the non-calibrated 

and calibrated ensembles were not different from each other at a statistically significant level of 

p = 0.05 (Figure 3-3). This was partly because the variability across sites was high in both 

configurations (i.e., RSD across sites was 40% and 80% in the non-calibrated and calibrated 

ensembles, respectively) and that the variability across models was also high in both 

configurations (i.e., RSD across models was 91.6% and 51%, respectively).  

The higher variability across sites in the calibrated configuration, compared to the non-calibrated 

ensemble was expected. In fact, the parameters were calibrated independently at each site, 

while in the default configuration models’ parameters are constant for all sites.  

3.4.2 Single model performances and MMM 

Figure 3-2 helps to visualize models’ performances. Although both ICBM and AMG outperformed 

the other models in the calibrated configuration (R2 = 0.98), AMG performed better than any 

other model in its non-calibrated version (R2 = 0.92 against a MMM R2 = 0.18, Table 3-2). 
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However, AMG’s comparison with the other models might be partly biased. Indeed, AMG is a 

French model that was initially calibrated on several LTEs across France, which include many of 

the experiments in our database. Hence, we cannot ascertain that its application to other sites 

outside the European temperate zone would be as straightforward, although the model has 

already been evaluated on a few sites outside Europe (Andriulo et al., 1999; Saffih-Hdadi and 

Mary, 2008). Furthermore, AMG was the only model initialized with observed initial SOC stocks, 

while the other models were spun-up either analytically or semi-analytically. In fact, AMG 

prescribes the initial fraction of total SOC that is considered stable, allowing to initialize the model 

with observed initial SOC stocks (Saffih-Hdadi and Mary, 2008). Most pool-based models do not 

prescribe default partitioning in the different SOC pools at the beginning of the experiment. 

Hence, initialization to allocate the C in their different pools is typically done by running the 

models with constant or repeating inputs until the C pools reach an equilibrium (i.e., spin-up). 

The amount of C allocated to each pool at equilibrium is a function of the inputs to the model 

and the parameters. Spin-up assumes that soils are at equilibrium (Luo et al., 2017; Xia et al., 

2012), which is often not the case, especially for the agricultural soils with changing management 

practices considered in this study. Hence, simulations might be started at wrong initial values 

(e.g., Wutzler and Reichstein, 2007). An alternative initialization method that could be tested to 

compare models’ performances using observed initial total SOC stocks would be to prescribe the 

initial partitioning of SOC in the different pools of those models that are usually initialized with 

spin-up. An attempt was made for instance with Roth-C in an Australian catchment (Karunaratne 

et al., 2014). 

Although the calibration partly reduced the simulation’s errors of models initialized with spin-up, 

not all calibrated models were able to start from the correct initial level of SOC stocks (FigS1). In 

particular, Millennial showed the lowest R2 (0.66) among the calibrated models. The difficulty to 

fit Millennial's simulations to observed SOC stocks is likely due to the more complex processes 

described in the model (e.g., explicit Langmuir sorption to mineral aggregation, density-

dependent microbial turnover, etc.), which cause the model to be less sensitive to the calibration 

of a few parameters. Limitations other than parametrization might also explain errors in 

modelling predictions. For example, previous land-use or current management practices, which 
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are likely to influence the level of SOC stocks at the onset of the experiment, were not prescribed 

to the models. In AMG, previous land-use is somehow accounted for, by setting a different 

fraction of SOC that is considered stable according to the historical use of the land (Clivot et al., 

2019). While AMG has the clear advantage of starting its simulations at the observed SOC level, 

it also requires supplementary information which constrains its use to sites where SOC stock 

measurements are available at the onset of the experiment and previous land-use is known.  

Not only AMG outperformed all other models in the non-calibrated configuration, it also 

performed better than the MMM in both configurations (Table 3-2). However, the R2 of the 

MMM fit was substantially higher than all other single models in the non-calibrated configuration 

and higher or similar to other single models in the calibrated configuration (Table 3-2). Tebaldi 

and Knutti (2007) pointed out that, while for a single given simulation the multi-model 

performance might not be significantly better than the single best model, improvements are 

more substantial when aggregated performances over many simulations are considered. In fact, 

not knowing a priori which one is the best model, it would still be more likely to get better results 

with the multi-model ensemble than with any of the models individually. Of course, as the multi-

model ensemble gets larger, the estimates will be more reliable. Farina et al. (2021) suggested 

that the minimum number of models to obtain reliable results in SOC modelling would be ~ 10 

models for non-calibrated multi-model ensembles, and 3 to 4 models if site-specific calibration is 

realizable. However, this likely depends on how much the mechanical structure varies among the 

multi-model ensemble. 

3.4.3 Reaching a 4‰ target 

Many recent works have studied the feasibility of the 4‰ target through a modelling perspective. 

Martin et al. (2021) estimated that a 30% to 40% increase in C input would be needed to reach a 

4‰ objective in France, using an inverse Roth-C modelling approach. Bruni et al. (2021) used a 

similar inverse modelling approach with the Century model and applied it to 14 LTEs across 

Europe. They estimated that C input should increase by 43% on average, compared to the initial 

value of the experimental control treatments. These results are similar to our outputs from the 

Roth-C and Century model (Table 3-3). However, they are by far the most optimistic ones when 

compared to other models (Table 3-3). Furthermore, Bruni et al. (2021) showed that this 
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prediction was largely affected by soil temperature changes. Riggers et al. (2021) used a multi-

model ensemble to predict SOC stock increase scenarios under future climate change in German 

croplands. They estimated an average increase of C input of 213-283% to reach an average 4‰ 

increase between 2090 and 2099, compared to 2014. Our results seem to be in the middle of the 

range of existing estimates (i.e., a median increase of 107% according to the calibrated 

ensemble), which refer to the period 1980-2010 under current climate. Indeed, although the 

estimate of Riggers et al. (2021) is higher than ours, they estimated this change over a longer 

period (and under future changes in climate), when SOC stocks in German croplands are expected 

to decrease at a strong rate because of forecasted increased temperatures (Wiesmeier et al., 

2016; Riggers et al., 2021). 

Our findings show that the use of one single model to predict the evolution of SOC stocks and its 

related variables (e.g., the C input) is likely to bias the outputs of the modelling exercise. The 

present study raises the attention of the soil modelling community to the importance and utility 

of multi-modelling approaches. Multi-modeling approaches are especially necessary when 

models are used at new sites without previous validation. Besides, multi-modelling has been an 

established practice in climate projections for decades (Tebaldi and Knutti, 2007; Parker, 2010; 

Jebeile and Crucifix, 2020), one example being the Coupled Model Intercomparison Project 

(CMIP), which was created in 1995 and is nowadays the reference framework in which climate 

models are aggregated to predict future scenarios of climate change (Jebeile and Crucifix, 2020). 

These ensembles are currently used in the IPCC reports, considered to be the most reliable source 

of knowledge about climate change. 

As for the feasibility of a 107% increase of C input, this likely depends on the reference practice 

against which it is compared. In fact, minerally fertilized crops might already have higher C input 

compared to unfertilized crops, due to higher nutrient availability that enhances net primary 

production (Gross and Glaser, 2021), making it harder to increase C input by ~107% in minerally 

fertilized crops. Doubling the C input where mineral fertilizers and EOM inputs are already 

applied will likely require the implementation of other agricultural practices (e.g., agroforestry 

systems, cover cropping, or crops with a high belowground biomass). This is the case for Europe, 

for example, where croplands are usually minerally fertilized (Eurostat, 2021) and where EOM 
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inputs are already widely applied (Zhang et al., 2017; Foged et al., 2011; Soussana et al., 2019). 

Furthermore, it is worth to note that the use of EOM does not result in additional C sequestration 

but rather to locally increased SOC stocks. For example, extracting peats from former peatlands 

is not itself a climate-relevant C sequestration practice. In our work, EOM treatments were used 

for methodological investigation purposes only. That is, to evaluate the multi-modeling tool with 

available agricultural LTEs where SOC stocks were measured after increasing C inputs to the soil. 

3.4.4 Variability between calibrated models is due to structural model differences 

The LME model showed that the models significantly affected the prediction of C input to reach 

the 4‰. That is, the prediction of each model was significantly different from the others. 

Furthermore, the effect of the calibration on the simulated C input was model-dependent. This 

can also be observed in Figure S2, where the relationship between C input and SOC stocks is 

plotted for each model in both configurations. We can see that the models have different 

sensitivities to the calibration when we look at the relationship between C input and SOC stocks 

(Figure S2). A part from Millennial, all models have a strong linear relationship between C input 

and SOC stocks in their non-calibrated configuration. However, both AMG and ICBM become less 

linear with calibration. 

Figure 3-5 shows the creation of clusters between models that behaved similarly when calibrated 

to fit the SOC stocks. Although the ensembles’ prediction of additional C input was highly variable 

in both configurations (Figure 3-4), some models’ outputs were correlated to each other once 

calibrated to fit the stocks (while they were not in the default configuration, see Figure S3). Many 

factors could be responsible for the creation of such clusters. First of all, similarities in the 

mathematical structure of the models, such as the number of C pools, the linearity of the system 

of equations, or the type of kinetics reactions. Other computational differences could have 

introduced this clustering behavior. For instance, the spin-up method or the number and choice 

of parameters calibrated. Finally, the inherent representation of soil processes, i.e., the different 

characterization of pedo-climatic variables in the models’ functions, which is also known as 

structural uncertainty in ensemble modelling (Tebaldi and Knutti, 2007).  

Disregarding analogies in the mathematical structures of the models and their technical 

resolution, we investigated the effect of field variables on the variability of model outputs. We 



 

 96 

found that, while in the non-calibrated configuration MAP, initial SOC stocks, initial C input and 

soil pH explained the divergence between models’ outputs (i.e., their RSD), no field variable had 

a significant linear effect when models were calibrated (Table 3-5). This means that the 

calibration realigned the effect of all those variables that were causing models’ outputs to 

diverge. These results suggest that the high variability across calibrated models was mainly due 

to their structural differences and/or to the technical resolution used. In particular, simpler 

models like AMG and ICBM seemed to behave similarly when calibrated (see Figure 3-5). Models 

with a higher number of pools clustered together, and among them models with similar types of 

kinetics were more correlated to each other (i.e., Century and Roth-C, which have first order 

kinetic reactions, and Millennial and MIMICS, which have Michaelis-Menten kinetics). It is likely 

that the way models account for C inputs (e.g., their humification rates, their partitioning within 

different litter pools, and the number of litter pools itself) also affected the variability among 

models’ outputs and created the “structural clusters” of Figure 3-5. If models are correctly 

parametrized and simulate well the evolution of SOC stocks with time, we would expect them to 

converge regardless of their different mechanistic structures. However, our results suggest that 

the choice of the mathematical formalism with which SOC processes are represented affected 

significantly model predictions. This is particularly true for inverse modelling predictions of C 

input changes, where supplementary choices on the litter pools optimization have to be made. 

Our results show that, while improved parametrization reduces part of the uncertainty in the 

predictions, structural differences among models are a major factor producing diverging results. 

Because of the feedbacks between the climate system and the C cycle (e.g., changes in net 

primary productivity due to increased temperatures and CO2 accumulation), the uncertainty of 

the effect of increased C input on SOC stocks is particularly relevant since it is likely to affect 

climate change projections. This underlines the importance of multi-model ensembles, both to 

account for and to potentially reduce the uncertainty among SOC models’ predictions. 

3.5 CONCLUSION 

We found that the calibrated multi-model ensemble was able to correctly reproduce the SOC 

stocks changes at the 17 long-term European cropland experiments. We estimated that C input 

will have to increase by 107% (MMM) compared to the unamended controls to reach a 4‰ 
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objective at the experimental sites. Although still very high, we observed that the uncertainty 

among the different models was reduced when parameters were calibrated. The uncertainty 

among calibrated models was not explained by any field variable, indicating that the divergence 

in models’ estimation of additional C input depended on their mechanistic structures. 

We suggest that the soil modelling community increasingly rely on multi-modeling ensembles to 

account for such uncertainty. This is particularly important since uncertainties on the relationship 

between C input and SOC stocks will likely affect climate change projections, due to SOC-related 

feedbacks on the climate system. 
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3.6 APPENDIX A 

Table A1 Information about the soil at the experimental sites in the control treatments at the onset of the 

experiments. 

Site name 
Sampling 

depth 
Bulk density Carbonate Clay 

Initial 

SOC 

stock 

Soil 

C:N 
pH 

Reference 

paper 

 cm g cm-3 gCaCO3 kg-1 % 
Mg C 

ha-1 
   

Champ Noël 3 

(CHNO3) 
0-30 1.35 0 15 40.57 8.96 6.3 

Clivot et 

al. (2019) 

Colmar (COL) 0-28 1.3 129.57 23 54.33 10.52 8.33 

Levavasse

ur et al. 

(2020) 

Crécom 3 PRO 

(CREC3) 
0-30 1.36 0 15 62 10.17 6.15 

Clivot et 

al. (2019) 

Feucherolles 

(FEU) 
0-29 1.32 0 16 39.78 9.89 6.73 

Levavasse

ur et al. 

(2020) 

Jeu-les-Bois 

(JEU) 
0-30 1.52 0 10 48.53 9.66 6.27 

Clivot et 

al. (2019) 

La Jaillière 2 

PRO (LAJA2) 
0-25 1.37 0 21 32.42 9.01 6.8 

Levavasse

ur et al. 

(2020) 

Le Rheu 1 

(RHEU1) 
0-30 1.27 0 16 36.23 10.05 5.85 

Clivot et 

al. (2019) 

Le Rheu 2 

(RHEU2) 
0-30 1.28 0 14 36.53 8.22 6.05 

Clivot et 

al. (2019) 

Arazuri 

(ARAZ) 
0-30 1.67 160 28 55.39 6.44 8.6 

Simoes-

Mota et al. 

(2021) 

Ultuna 

(ULTU) 
0-20 1.4 0 36 41.72 8.82 6.23 

Kätterer et 

al. (2011) 
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Broadbalk 

(BROAD) 
0-23 1.25 20 25 24.84 8.95 7.25 

Powlson 

et al. 

(2012) 

Trévarez (TREV) 0-30 1.48 0 19 115.33 9.49 6.01 
Clivot et 

al. (2019) 

Avrillé (AVRI) 0-30 1.4 0 18 46.2 8.91 6.59 
Clivot et 

al. (2019) 

Bologna 

(BOLO) 
0-40 1.16 0 28 25.41 7 6.9 

Triberti et 

al. (2008) 

Grabów 

(GRAB) 
0-25 1.4 76.66 5 31.08 10.76 5.87 

Martyniuk 

et al. 

(2019) 

Müncheberg 

(MUNCHE) 
0-25 1.47 0 5 19.66 10 5.95 

Mirschel 

et al. 

(2007) 

Ritzlhof 

(RITZ) 
0-25 1.1 0.03 23 28.88 9.42 6.88 

Kurzeman

n et al. 

(2020) 

Mean  1.36 22.72 18.65 43.46 8.61 6.63  

Median  1.36 0 18.32 40.17 8.98 6.44  

Minimum  1.1 0 5 19.66 0.09 5.85  

Maximum  1.67 160 36 115.33 10.76 8.6  

 

Table A2 Agronomic information on the experimental sites. 

Site 

name 

Experime

nt length 

Treatment 

name 

Rotations * C input from 

plants 

C input from 

EOM 

Treatment 

type 

Initial 

SOC 

stocks 

SOC 

stock 

increase 

** 
  

 
 

Mg ha-1 yr-1 Mg ha-1 yr-1  Mg ha-1 % 

CHNO3 19 Min sM 1.29 0.00 Reference 

+ N *** 

40.57 -0.92 

  
LP sM 1.49 0.79 Pig 

Manure 

43.30 -0.89 

COL 14 T0 wW/Mg/sB/S 2.79 0.00 Reference 54.33 -0.78 
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BIO1 wW/Mg/sB/S 3.93 1.01 Biowaste 54.78 0.15 

  
BOUE1 wW/Mg/sB/S 3.96 0.49 Sewage 

sludge 

54.33 -0.61 

  
CFB1 wW/Mg/sB/S 4.04 1.07 Cow 

manure 

51.42 -0.01 

  
DVB1 wW/Mg/sB/S 4.00 1.08 Green 

manure + 

sewage 

sludge 

53.69 0.18 

  
FB1 wW/Mg/sB/S 3.93 1.36 Cow 

manure 

53.69 -0.01 

CREC3 23 Min wW/sM 1.84 0.00 Reference 

+ N 

62.00 -0.06 

  
FB2 wW/sM 1.92 1.82 Cow 

manure 

61.27 0.49 

  
FV wW/sM 1.96 0.47 Poultry 

manure 

64.07 -1.46 

FEU 16 T0 wW/Mg 2.22 0.00 Reference 39.78 -0.66 
  

BIO1 wW/Mg 3.44 2.21 Biowaste 41.23 3.60 
  

DVB1 wW/Mg 3.45 2.45 Green 

manure + 

sewage 

sludge 

40.52 3.69 

  
FB1 wW/Mg 3.55 2.28 Cow 

Manure 

42.99 1.36 

  
OMR1 wW/Mg 3.45 2.11 Househol

d waste 

39.68 1.72 

JEU 11 M0 wB/R/wW 2.99 0.00 Reference 48.53 -1.33 
  

CFB1 wB/R/wW 2.89 1.10 Cow 

manure 

42.78 1.61 

  
CFB2 wB/R/wW 3.06 1.94 Cow 

manure 

40.71 1.52 

  
FB2 wB/R/wW 3.11 2.43 Cow 

manure 

40.98 0.99 
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LAJA2 15 Min sM/wW 1.59 0.00 Reference 

+ N 

32.42 -1.43 

  
CFB sM/wW 1.25 1.14 Cow 

manure 

31.79 -0.88 

  
CFP sM/wW 1.21 1.00 Pig 

manure 

31.36 -1.09 

  
CFV sM/wW 1.31 0.94 Poultry 

manure 

31.36 -1.60 

  
FB sM/wW 1.29 1.44 Cow 

manure 

31.01 -0.64 

  
FP sM/wW 1.27 1.07 Pig 

manure 

33.05 -1.03 

  
FV sM/wW 1.40 0.93 Poultry 

manure 

33.40 -1.59 

RHEU1 16 Min sM 1.31 0.00 Reference 

+ N 

36.23 -1.51 

  
CFB1 sM 1.31 1.06 Cow 

manure 

36.23 -1.21 

RHEU2 16 T0 sM 1.03 0.00 Reference 36.53 -1.72 
  

CFP1 sM 1.20 0.78 Pig 

manure 

36.53 -1.28 

  
FP sM 1.30 1.63 Pig 

manure 

36.53 -0.74 

ARAZ 17 D0_N0 W/B/Sf/O 1.34 0.00 Reference 55.39 1.00 
  

D1_F1 W/B/Sf/O 1.92 2.79 Sewage 

sludge 

62.17 0.40 

  
D1_F2 W/B/Sf/O 1.87 1.30 Sewage 

sludge 

63.19 1.22 

  
D1_F3 W/B/Sf/O 1.95 0.68 Sewage 

sludge 

63.19 1.22 

  
D2_F1 W/B/Sf/O 1.75 5.56 Sewage 

sludge 

74.02 0.22 

  
D2_F2 W/B/Sf/O 1.84 2.60 Sewage 

sludge 

57.53 2.32 
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D2_F3 W/B/Sf/O 1.98 1.32 Sewage 

sludge 

63.18 0.93 

ULTU 53 P0_B O/sT/Mu/sB/

Fb/OsR/FR/M 

1.03 0.00 Reference 41.72 -0.52 

  
S_F O/sT/Mu/sB/

Fb/OsR/FR/M 

1.10 1.77 Straw 42.28 -0.09 

  
GM_H O/sT/Mu/sB/

Fb/OsR/FR/M 

1.82 1.76 Green 

manure 

40.6 0.11 

  
PEAT_I O/sT/Mu/sB/

Fb/OsR/FR/M 

1.14 1.97 Peat 41.16 2.17 

  
FYM_J O/sT/Mu/sB/

Fb/OsR/FR/M 

1.76 1.91 Farmyard 

manure 

41.72 0.69 

  
SD_L O/sT/Mu/sB/

Fb/OsR/FR/M 

0.82 1.84 Sawdust 40.88 0.56 

  
SS_O O/sT/Mu/sB/

Fb/OsR/FR/M 

2.59 1.84 Sewage 

sludge 

43.12 1.36 

BROAD 48 3_Nill wW 0.36 0.00 Reference 24.84 -0.09 
  

19_Cast wW 0.95 0.43 Castor 

meal 

32.74 0.42 

  
22_FYM wW 2.07 2.99 Farmyard 

manure 

61.49 0.38 

TREV1 23 Min RG/Mg/wW/s

M 

1.94 0.00 Reference 

+ N 

115.33 -0.66 

  
FB RG/Mg/wW/s

M 

2.04 1.52 Cow 

manure 

110.67 -0.39 

  
FP RG/Mg/wW/s

M 

2.02 1.18 Pig 

manure 

109.50 -0.18 

AVRI 8 T1TR wW/sM 1.62 0.00 Reference 46.20 -1.18 
  

T2TR wW/sM 1.71 1.58 Cow 

manure 

47.13 -0.76 

BOLO 29 T0 M/wW 1.96 0.00 Reference 

+ N *** (b) 

25.41 0.41 

  
CM M/wW 2.21 2.24 Cow 

manure 

28.63 1.18 

  
CS M/wW 2.15 2.64 Cow slurry 26.70 0.93 
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GRABÓW 33 CP P/B/wW/Mu/

sM 

2.10 0.00 Reference 

+ N *** (c) 

31.08 -0.88 

  
T1 P/B/wW/Mu/

sM 

2.39 0.98 Farmyard 

manure 

33.18 -0.54 

MUNCHE 54 CP gM/wR/P/sW

/S/sB/wW/Of

lax/fPea/sM/ 

0.47 0.00 Reference 

*** 

19.66 -0.29 

  
FYM2 gM/wR/P/sW

/S/sB/wW/Of

lax/fPea/sM/ 

0.50 1.40 Farmyard 

manure 

20.48 0.18 

RITZ 28 CP M/sW/wB/Pe

a/wW/wB 

1.52 0.00 Reference 28.88 0.59 

  
BW M/sW/wB/Pe

a/wW/wB 

1.88 1.73 Biowaste 28.88 1.39 

*Rotations legend: M = maize / wM = winter maize / sM = silage maize / Mg = maize grain / gM = green maize / W = wheat / 

wW = winter wheat / sW = spring wheat / B = barley / wB = winter barley / sB = spring barley / O = Oats / P = potato / S = 

sugar beet / R = rapeseed / Sf = sunflower / sT = Swedish turnip / Mu = mustard / Fb = fodder beet / OsR = oilseed rape / FR 

= fodder rape / RG = ray grass / wR = winter rye / Oflax = oil flax / fPea = fodder peas / Pea = peas 

** Calculated by approximating the SOC stock evolution with a linear regression of the form: SOC = mt+b, where t = the 

number of the year, m is the slope and b is the intercept 

*** (a) Optimal amount of N inputs in both the reference and the treatments; (b) in Bologna, data represents the mean of 

several treatments with different inorganic fertilization rates (see Triberti et al. (2008)); (c) in Grabów N was applied as 

ammonium nitrate (34% N), phosphorus (P) as triple superphosphate (45% P2O5) and potassium (K) as potassium chloride 

(60% K2O)  
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Table A1-1 Mean annual climate variables extracted from the GSWP3 climate dataset (i.e., mean annual precipitation 

(MAP)) or simulated by the ORCHIDEE model at each site (i.e., mean annual potential evapotranspiration (PET), mean 

annual surface temperature (MAST), and mean annual soil water content (SWC)). In the table are also specified the 

geographical coordinates of the experiments and the years of the simulations.  

 Coordinates Years PET MAP MAST SWC 

   mm mm ˚C 
kgH2O 

m2
soil 

CHNO3 48.09 ˚N, 1.78 ˚W 1990-2008 1107.5 818.1 12.2 21.6 

COL 48.11 ˚N, 7.38 ˚E 2000-2013 866.6 1126.7 9.7 24.6 

CREC3 48.32 ˚N, 3.16 ˚W 1986-2008 1131.3 1150.1 11.8 22.9 

FEU 48.88 ˚N, 1.96 ˚E 1998-2013 1049.9 707.3 11.9 21.2 

JEU1 46.68 ˚N, 1.79 ˚E 1998-2008 1205.4 869.1 12.2 22.1 

LAJA2 47.44 ˚N, 0.98 ˚W 1995-2009 1314.7 794.7 12.8 20.5 

RHEU1 48.09 ˚N, 1.78 ˚W 1994-2009 1106.6 841.2 12.3 21.8 

RHEU2 48.09 ˚N, 1.78 ˚W 1994-2009 1106.6 841.2 12.3 21.8 

ARAZ 42.81 ˚N, 1.72 ˚W 2002-2018 1416.4 866.0 12.6 20.3 

ULTU 59.82 ˚N, 17.65 ˚E 1956-2008 824.5 613.4 5.7 22.6 

BROAD 51.81 ˚N, 0.37 ˚W 1968-2015 872.0 665.6 10.3 21.5 

TREV1 48.15 ˚N, 3.76 ˚W 1986-2008 1139.5 1314.5 11.9 23.4 

AVRI 47.50 ˚N, 0.60 ˚W 1984-1991 1170.1 680.7 12.0 20.0 

BOLO 44.55 ˚N, 11.35 ˚E 1972-2000 1474.3 890.9 11.3 19.4 

GRABÓW 51.35 ˚N, 21.66 ˚E 1980-2012 974.8 638.1 8.5 13.5 

MUNCHE 14.11 ˚N, 52.51 ˚E 1963-2016 938.3 639.9 9.2 20.9 

RITZ 48.18 ˚N, 14.25 ˚E 1991-2018 675.5 1010.5 9.1 25.4 

Mean   1080.8 851.0 10.9 21.4 

Median   1106.6 841.2 11.9 21.6 

Minimum   675.5 613.4 5.7 13.5 

Maximum   1474.3 1314.5 12.8 25.4 

 

3.7 APPENDIX B 

The parameters calibrated in the models are linked to SOC decomposition (Table 3-1). Below, we 

detail the different functions in which they appear. 
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Century 

In Century, the C input is partitioned into the metabolic and structural litters according to the 

𝑀: 𝑆𝑟𝑎𝑡𝑖𝑜: 

𝑑𝐿𝐼𝑇𝑠𝐴𝐺,𝐵𝐺

𝑑𝑡
= 𝑓𝑆 𝐴𝐺,𝐵𝐺 ∙ 𝐼𝐴𝐺,𝐵𝐺 − 𝐹𝐿𝑆 𝐴𝐺,𝐵𝐺  (Eq. B1) 

𝑑𝐿𝐼𝑇𝑀𝐴𝐺,𝐵𝐺

𝑑𝑡
= 𝑓𝑀 𝐴𝐺,𝐵𝐺 ∙ 𝐼𝐴𝐺,𝐵𝐺 − 𝐹𝐿𝑀 𝐴𝐺,𝐵𝐺  (Eq. B2) 

Where 𝐴𝐺 = aboveground and 𝐵𝐺 = belowground, 
𝑓𝑀 𝐴𝐺,𝐵𝐺

𝑓𝑆 𝐴𝐺,𝐵𝐺
= 𝑀: 𝑆𝑟𝑎𝑡𝑖𝑜 is the 

metabolic:structural ratio of the litter inputs, 𝐿𝐼𝑇𝑆(𝑡) and 𝐿𝐼𝑇𝑀(𝑡) are the state variables of the 

structural and metabolic litter pools, respectively (g C m-2), 𝐼 is the C input (g C m-2 d-1), 𝐹𝐿𝑆  is the 

outflux from the structural litter pool (g C m-2 d-1), and 𝐹𝐿𝑀 is the outflux from the metabolic litter 

pool (g C m-2 d-1): 

𝐹𝐿𝑆 𝐴𝐺,𝐵𝐺 = 𝐿𝐼𝑇𝑆 𝐴𝐺,𝐵𝐺(𝑡) ∙ 𝑘𝐿𝑆 ∙ 𝑓(𝑇) ∙ 𝑓(𝑊) ∙ 𝑒−3∙𝑙𝑖𝑔𝑛𝑖𝑛𝑆 𝐴𝐺,𝐵𝐺 (Eq. B3) 

𝐹𝐿𝑀 𝐴𝐺,𝐵𝐺 = 𝐿𝐼𝑇𝑀 𝐴𝐺,𝐵𝐺(𝑡) ∙ 𝑘𝐿𝑀 ∙ 𝑓(𝑇) ∙ 𝑓(𝑊) (Eq. B4) 

Where 𝑘𝐿𝑆 = 0.01 and 𝑘𝐿𝑀= 0.041 (d-1) are the turnover rates of the structural and metabolic 

litter pools, respectively, 𝑓(𝑇) and 𝑓(𝑊) are the temperature and moisture response functions, 

𝑙𝑖𝑔𝑛𝑖𝑛𝑆 𝐴𝐺 = 0.76 and 𝑙𝑖𝑔𝑛𝑖𝑛𝑆 𝐵𝐺= 0.72 are the lignin fractions in the aboveground and 

belowground structural litter pools, respectively.  

And where the temperature response function is defined as: 

𝑓(𝑇) = 𝑄10

(𝑇(𝑡)−𝑇𝑟𝑒𝑓)

10  (Eq. B5) 

Where 𝑄10 is the temperature coefficient of the Van’t Hoff equation (M. J. H. van’t Hoff, 1884), 

𝑇𝑟𝑒𝑓 is the reference temperature (˚C), and T(t) is temperature (˚C). 

Roth-C 

In Roth-C, the temperature response function takes the form: 

𝑓(𝑇) =
47.91

1+𝑒
(

106.06
𝑇(𝑡)+𝑇𝑝𝑎𝑟𝑎𝑚

)
  (Eq. B6) 

Where 𝑇(𝑡) is temperature (˚C) and 𝑇𝑝𝑎𝑟𝑎𝑚  is a parameter. 

ICBM 
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In ICBM, the ordinary differential equations of the young and old SOC pools are:  

𝑑𝑌

𝑑𝑡
= 𝑖 − 𝑘1 ∙ 𝑟 ∙ 𝑌(𝑡) (Eq. B7) 

𝑑𝑂

𝑑𝑡
= ℎ ∙ 𝑘1 ∙ 𝑟 ∙ 𝑌(𝑡) − 𝑘2 ∙ 𝑟 ∙ 𝑂(𝑡) (Eq. B8) 

Where 𝑌(𝑡) is the state variable of the young SOC pool (kg C m-2), 𝑂(𝑡) is the state variable of 

the old SOC pool (kg C m-2), 𝑖 is the C input (kg C m-2 yr-1), 𝑘1 is the potential mineralization rate 

affecting both the young and the old SOC pools (yr-1), 𝑘2 is the potential mineralization rate 

affecting the old SOC pool (yr-1), 𝑟 is the environmental parameter, and h is the “humification 

coefficient”, i.e., the fraction of the annual outflux from the young to the old pool. The 

environmental parameter 𝑟 was calculated using the temperature and moisture response 

functions described in Fortin et al. (2011) and Karlsson et al. (2011) and normalized against the 

Ultuna experiment. 

AMG 

In AMG, the mineralization rate constant k of the active pool (yr-1) depends on: 

𝑘 = 𝑘0 ∙ 𝑓(𝑇) ∙ 𝑓(𝑊) ∙ 𝑓(𝐴) ∙ 𝑓(𝐶𝑎𝐶𝑂3) (Eq. B9) 

Where 𝑘0 is the potential mineralization rate of the active SOC pool (yr-1), 𝑓(𝑇) is the 

temperature response function, 𝑓(𝑊) is the water response function, and 𝑓(𝐴) and 𝑓(𝐶𝑎𝐶𝑂3) 

are functions describing the effect of clay and 𝐶𝑎𝐶𝑂3 soil content on SOC mineralization. 

MIMICS 

𝑑𝐿𝐼𝑇𝑠

𝑑𝑡
= (1 − 𝑓𝑀𝐸𝑇) ∙ 𝐼 − 𝐹𝐿𝑆  (Eq. B11) 

𝑑𝐿𝐼𝑇𝑀

𝑑𝑡
= 𝑓𝑀𝐸𝑇 ∙ 𝐼 − 𝐹𝐿𝑀  (Eq. B12) 

𝐹𝐿𝑆 =  𝑀𝐼𝐶𝑟(𝑡) ∙ 𝑉𝑚𝑎𝑥 ∙
𝐿𝐼𝑇𝑆(𝑡)

𝐾𝑚+𝐿𝐼𝑇𝑆(𝑡)
+ 𝑀𝐼𝐶𝑘(𝑡) ∙ 𝑉𝑚𝑎𝑥 ∙

𝐿𝐼𝑇𝑆(𝑡)

𝐾𝑚+𝐿𝐼𝑇𝑆(𝑡)
 (Eq. B13) 

𝐹𝐿𝑀 =  𝑀𝐼𝐶𝑟(𝑡) ∙ 𝑉𝑚𝑎𝑥 ∙
𝐿𝐼𝑇𝑀(𝑡)

𝐾𝑚+𝐿𝐼𝑇𝑀(𝑡)
+ 𝑀𝐼𝐶𝑘(𝑡) ∙ 𝑉𝑚𝑎𝑥 ∙

𝐿𝐼𝑇𝑀(𝑡)

𝐾𝑚+𝐿𝐼𝑇𝑀(𝑡)
 (Eq. B14) 

Where 𝐿𝐼𝑇𝑠(𝑡) and 𝐿𝐼𝑇𝑀(𝑡) are the state variables of the structural and metabolic litter pools, 

respectively (mg C cm-3), 𝑀𝐼𝐶𝑟(𝑡) and 𝑀𝐼𝐶𝑘(𝑡) are the state variables of the copiotrophic and 

oligotrophic microbial biomass pools, respectively (mg C cm-3), 𝐼 is the C input (mg C cm-3 d-1), 
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𝑓𝑀𝐸𝑇 is the fraction of the C input that goes to the metabolic litter pool, and 𝐹𝐿𝑆 and 𝐹𝐿𝑀 are the 

outfluxes from the two litter pools (mg C cm-3 d-1), and with temperature sensitive maximum 

reaction velocities 𝑉𝑚𝑎𝑥 (mg C (mg MIC)-1 d-1) and half-saturation constants 𝐾𝑚 (mg C cm-3) of the 

Michaelis-Menten kinetics: 

𝑉𝑚𝑎𝑥 = 𝑒𝑉𝑠𝑙𝑜𝑝𝑒∙𝑇(𝑡)+𝑉𝑖𝑛𝑡 ∙ 𝑎𝑣 ∙ 𝑉𝑚𝑜𝑑 (Eq. B15) 

𝐾𝑚 = 𝑒𝐾𝑠𝑙𝑜𝑝𝑒∙𝑇(𝑡)+𝐾𝑖𝑛𝑡 ∙ 𝑎𝑘 ∙ 𝐾𝑚𝑜𝑑   (Eq. B16) 

Where 𝑉𝑠𝑙𝑜𝑝𝑒  (ln(mg C (mg MIC)-1 d-1)˚C-1) and 𝐾𝑠𝑙𝑜𝑝𝑒  (ln(mg C cm-3)˚C-1) are regression 

coefficients (ln(mg C (mg MIC)-1 d-1)˚C-1), 𝑉𝑖𝑛𝑡 (ln(mg C (mg MIC)-1 d-1)) and 𝐾𝑖𝑛𝑡 (ln(mg C cm-3)) 

are regression intercepts, 𝑎𝑣 and 𝑎𝑘 are tuning coefficients, 𝑉𝑚𝑜𝑑and 𝐾𝑚𝑜𝑑are coefficients 

modifying 𝑉𝑚𝑎𝑥 and 𝐾𝑚 for fluxes into the microbial pools, and T(t) is temperature. 

Millennial 

𝐹𝑝𝑙 = 𝑉𝑝𝑙𝑆𝑤,𝐷𝑃
𝐵

𝐾𝑝𝑙+𝐵
 (Eq. B17) 

𝑉𝑝𝑙 = 𝛼𝑝𝑙𝑒
−𝐸𝑎𝑝𝑙/(𝑅(𝑇(𝑡)+273.15)) (Eq. B18) 

𝑉𝑙𝑏 = 𝛼𝑙𝑏𝑒−𝐸𝑎𝑙𝑏/(𝑅(𝑇(𝑡)+273.15)) (Eq. B19) 

Where 𝑉𝑝𝑙 is the maximum rate of POM decomposition to LMWC (d-1) and 𝑉𝑙𝑏is the maximum 

uptake rate of LMWC (d-1), 𝑆𝑤,𝐷 is the diffusion limitation of substrates, P is the POM pool, B is 

the microbial biomass pool, 𝐾𝑝𝑙 is the half-saturation constant of POM decomposition to LMWC 

(g C m-2), 𝛼𝑝𝑙(g C m-2 (g C m-2)-1 d-1) and 𝛼𝑙𝑏 (g C m-2 (g C m-2)-1 d-1) are the pre-exponential 

constants of 𝑉𝑝𝑙 and 𝑉𝑙𝑏, respectively, 𝐸𝑎𝑝𝑙 (J mol-1) and 𝐸𝑎𝑙𝑏 (J mol-1) are the activation energies 

of 𝑉𝑝𝑙 and 𝑉𝑙𝑏, respectively, R is the gas constant  (J K-1 mol-1), 𝑇(𝑡) is temperature (˚C). 
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3.9  SUPPLEMENTARY MATERIAL 

 

Figure S1 SOC stock simulations in the control plots of the 17 LTEs. The blue lines represent the multi-model median 

(MMM) simulations and the uncertainty range (SD) among the different models. Observed SOC stocks are 

represented by the orange dashed line. 



 

 114 

 

Figure S2 Relationship between simulated additional C input to reach the 4‰ and initial SOC stocks in the control 

treatments. Left-side panel shows the non-calibrated models and right-side panel shows the calibrated models. 
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Figure S3 Heatmap of the simulated additional C input to reach the 4‰, for the non-calibrated models at each site. 

Darker cells show lower C input and lighter cells represent higher C input. Dendrograms above the heatmap 

represent the relationship of similarity among groups of models, calculated as the minimal correlation distance 
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4 CHAPTER 4  EUROPEAN CROPLANDS UNDER CLIMATE CHANGE : CARBON 

INPUT CHANGES REQUIRED TO INCREASE PROJECTED SOIL ORGANIC CARBON 

STOCKS 

Abstract 

The European Union (EU) aims to increase soil organic carbon (SOC) stocks in croplands by 1‰-

4‰ yr-1 by 2030, to limit future global warming and improve food security. The feasibility of such 

objective is under debate, since even a relatively low increase of SOC stocks could potentially 

require significant amounts of carbon (C) input to the soil. The required changes of C input can 

be estimated with process-based models, which simulate the dynamics of OC in the soil. In 

particular, the use of multi-model ensembles provides the level of uncertainty of such estimates, 

based on different representations of SOC processes. However, without a proper evaluation of 

their ability to reproduce SOC stock variations, model simulations remain somewhat unreliable. 

In this study, we used three SOC models (AMG, ICBM, and Roth-C) to predict the evolution of 

SOC stocks during the next century in European croplands, under two scenarios of climate 

change. For our simulations, we used the European database of topsoil OC (LUCAS) and climate 

forcing from the ISIMP project. With an inverse modelling approach, we estimated the amount 

of C input required to increase SOC stocks by 4‰ yr-1 in European croplands, considering constant 

C input throughout the simulation length. To improve model simulations, we tested a new 

calibration technique, where SOC model parameters were estimated for each cropland location 

of the LUCAS database, using statistical relationships between the model parameters and the 

pedo-climatic conditions of the sites.  

This approach improved the simulations of first-year SOC stocks for models that were initialized 

with spin-up and had initially high relative errors. However, it increased the divergence between 

SOC stock predictions across models. Our multi-model simulations showed that reaching a 4‰ 

SOC stock increase target in European croplands might be feasible under future scenarios of 

climate change, only assuming drastic increases of C input to the soils, especially in Northern 

Europe. However, model predictions of SOC stocks remain highly uncertain. Future works should 
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focus on the reduction of model uncertainties to provide reliable predictions of future SOC 

stocks, and improve the estimates of related C input needs. 

4.1 INTRODUCTION 

The European Union (EU) has set ambitious targets to tackle climate change. In comparison to 

the levels of 1990, by 2050 one aim is to reach net zero greenhouse gas (GHG) emissions 

(European Commission, 2021). In addition, by 2030 the EU has also introduced an overall target 

for carbon (C) removals by natural sinks equivalent to 310 Tg of CO2 emissions (European 

Commission, 2021). Soil is recognized as the second largest C sink after oceans, and among 

terrestrial ecosystems soil organic carbon (SOC) stocks are the largest C stocks (Lal, 2008). Policy 

frameworks addressing land use and land use changes at the European level could generate 

significant changes in SOC stock levels. In this context, the Mission Board for Soil Health and Food 

(Veerman et al., 2020) has recently proposed a series of quantitative targets that by 2030 should 

improve soil health in the EU. In particular, the mission aims to restore 50% of degraded land, 

and to reverse current C concentration losses on cultivated land (0.5% yr-1 at 20 cm depth) to an 

increase of 0.1 - 0.4% yr-1 (Veerman et al., 2020). An annual target of 0.4% (i.e., 4‰) SOC stock 

increase had already been proposed in 2015 by the “4 per 1000” initiative 

(https://www.4p1000.org/, last access: 29 December 2021). It suggested a voluntary action plan 

to maintain and increase existing SOC stocks by 4‰ yr-1 to a 30-40 cm depth at the global scale, 

in order to mitigate climate change and improve food security (Lal, 2016). Since the “4 per 1000” 

initiative was launched, a number of studies have investigated the feasibility of a 4‰ annual SOC 

stock increase (e.g. Poulton et al., 2018; Wiesmeier et al., 2020; Noulèkoun et al., 2021; Riggers 

et al., 2021; Martin et al., 2021). However, a global assessment at the European level is still 

missing. 

To increase SOC stocks one could either increase C input into the soil (e.g., adding organic matter 

(OM) inputs or increasing atmospheric CO2 fixation through plant growth) or decrease C output 

from the soil (e.g., decreasing SOC mineralization or soil erosion). There is a general consensus 

that the most efficient way to increase SOC stocks is through increased C input (Virto et al., 2012; 

Autret et al., 2016; Fujisaki et al., 2018). When compared to conventional practices, examples of 

practices for croplands that produce and return additional C inputs to the soil include: 
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agroforestry systems, cover cropping, lengthening leys in temporary grasslands, and effective 

restitution of crop residues and organic amendments to the soil (Chenu et al., 2019). 

Process-based models are used to simulate and predict the dynamics of SOC stocks. They can be 

run inversely to simulate the amount of C input required to reach a pre-fixed SOC stock increase 

target. However, if not properly tested and calibrated, SOC models may predict false SOC stock 

variations. To avoid reliance on one single model simulation, multi-model ensembles can be run 

that provide a range of uncertainty around simulated SOC stock variations, according to different 

representations of SOC processes (Farina et al., 2021; Bruni et al., in prep). Model 

parametrization is also a key aspect that should be considered to improve the reliability of model 

simulations. When the default parametrization is used, parameters are kept constant and their 

values usually rely on empirical functions that were derived from one or few experiments in the 

same pedo-climatic conditions (e.g. Coleman and Jenkinson, 1996). And yet, it is well known that 

parameter values should vary depending on soil and climatic conditions. SOC models are 

sometimes evaluated on their ability to simulate SOC changes at different locations (e.g., Smith 

et al., 1997), and model parameters can be tuned to improve the representation of observed SOC 

changes. For instance, to increase the reliability of model simulations, long-term experiments 

(LTEs) where SOC stocks are monitored over time can be used to calibrate model parameters and 

fit the observed SOC stock variations.  

To estimate the spatial variability of the C input change requirements to reach an annual 4‰ SOC 

stock increase target in European croplands, we ran a multi-model ensemble of SOC process-

based models (AMG, Andriulo et al., 1999; ICBM, Andrén and Kätterer, 1997; and Roth-C, 

Jenkinson, 1990). The ensemble was run over 5785 arable locations derived from the most 

extensive harmonized land use and soil inventory network available for the EU (Land Use and 

Coverage Area frame Survey, LUCAS) (Ballabio et al., 2016). The evolution of SOC stocks from 

2015 to 2100 could then be simulated according to two climate change scenarios, derived from 

the representative concentration pathways (RCPs) 2.6 and 6.0 (IPCC, 2015). Relative carbon input 

changes needed to increase SOC stocks by 4‰ yr-1 between 2015 and 2100, compared to average 

levels of C input between 2000 and 2009, were estimated by running each model inversely, 

considering no land use changes over the simulated period. In a previous work, selected model 
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parameters were calibrated to fit the evolution of SOC stocks at 16 LTEs in European croplands 

(Bruni et al., in prep). In this paper, we proposed a new parametrization configuration for the 

SOC models, where the calibrated parameters from Bruni et al. (in prep) were linked to the pedo-

climatic conditions of the LTEs through multiple linear statistical regressions. The parameter 

values were then estimated for all 5785 cropland sites of the LUCAS database by applying these 

statistical relationships. The present paper aims to provide insightful maps of required C input 

changes to increase SOC stocks by 4‰ yr-1 under future climate change in European croplands, 

and to test a calibration technique for SOC models based on statistical relationships between 

calibrated model parameters and pedo-climatic conditions at different sites. 

4.2 MATERIALS AND METHODS 

4.2.1 Soil data 

The LUCAS database gathers harmonized data on land use and land cover across the EU, 

combining remote sensing and direct field observations (Ballabio et al., 2016). It provides topsoil 

data (0-20 cm) for 2009 (2012 for Romania and Bulgaria) on approximately 20000 sampling 

locations over all land use and land cover types. The survey was repeated in 2015 over most of 

the same sampling points (Jones et al., 2020). For the purpose of this study, we included only 

sites under agricultural land use classified as arable under rotational crops, both in 2009/2012 

and 2015 sampling campaigns (Figure 4-1). The properties considered for the topsoil layer 

included: soil texture (i.e., clay content), pH (in CaCl2), coarse fragments, carbonate (CaCO3) 

content, total nitrogen (N) content, SOC content in 2009/2012 and in 2015. Bulk density was 

derived from a pedotransfer function using soil texture and SOC as inputs (Panagos et al., 2020), 

to calculate SOC stocks with Equation 1: 

𝑆𝑂𝐶 (𝑀𝑔𝐶 ℎ𝑎−1) = SOC(%) ∙ 𝐵𝐷(𝑔 𝑐𝑚−3) ∙ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎ (𝑐𝑚) ∙ (1 −

𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑣𝑜𝑙. %/100)),      (1) 
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Figure 4-1 Soil organic carbon stocks (Mg C ha-1) in European croplands, calculated with Eq. 1 for (a) 2009/2012 and 

(b) 2015 

4.2.2 Climatic data 

Climatic forcing data (i.e., daily surface temperature and daily precipitation from water and 

snowfall) were derived from the IPSL-CM5A-LR model in the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) framework (Figure 4-2) (Frieler et al., 2017). For potential 

evapotranspiration and soil moisture (up to 24.8 cm depth), we derived the monthly output from 

the ORCHIDEE model, coupled with the IPSL-CM5A-LR model in the ISIMIP framework (Figure 

4-2). We used two climatic scenarios of global climate change projections: the RCP 2.6 and RCP 

6.0. The RCP 2.6 scenario contemplates stringent mitigation policies and predicts an average 

global land temperature increase of 1˚C during the period 2081-2100, compared to mean 

temperatures in 1986-2005. The RCP 6.0 estimates an average temperature increase of 2.2˚C, 

compared to the same period of time. To estimate initial conditions for models that had to be 

initialized through analytical or semi-analytical spin-up, the assumption that SOC stocks were at 

steady-state at the onset of the simulations (i.e., in 2015) was made. For spin-up, average climatic 

forcing between 2006 and 2014 under RCP 2.6 was used. Forward simulations were run from 

2015 to 2100, with climatic forcing from RCPs 2.6 and 6.0. 
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Figure 4-2 Average climatic forcing between 2006 and 2100 across the 5785 sites of the study area, according to the 

representative concentration pathways (RCPs) 2.6 and 6.0 (the blue and the red lines correspond to the average 

across sites for RCP 2.6 and RCP 6.0, respectively, and the colored areas correspond to their standard deviation). 

Data were derived and annually averaged from the IPSL-CM5A-LR model in the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) framework ((a) mean annual surface temperature, and (b) mean annual 

precipitation) and from the coupled ORCHIDEE and IPSL-CM5A-LR models ((c) mean annual potential 

evapotranspiration, and (d) mean annual soil moisture at 24.8 cm depth). 

4.2.3 Carbon input  

Carbon input levels were derived from the net primary production (NPP) product of the 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data (average NPP between 

2000 and 2009) (Zhao et al., 2005), corrected by removing the fraction of NPP that was harvested 

with values from Plutzar et al. (2016). Both MODIS annual NPP estimates and human 
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appropriated NPP fraction (HANPPf) values were provided at 1 km spatial resolution and were 

derived for each cropland location of the LUCAS database. The HANPPf from Plutzar et al. (2016) 

includes the human-induced alteration of NPP due to land use and harvest. The C input was 

calculated by multiplying the total annual NPP by HANPPf, and adding the C input from organic 

fertilizers. Organic fertilization from animal manures was derived from the ‘Gridded Livestock of 

the World’ FAO dataset (Robinson et al., 2014) (see Lugato et al., 2014). Model simulations were 

run with constant land-use and C input between 2015 and 2100. That is, land-use was supposed 

not to change, and C input variations over time were not considered. 

4.2.4 Models 

We used three mechanistic SOC models that were initially built to simulate the SOC stock 

dynamics in agro-ecosystems and were largely evaluated in temperate cropland sites: AMG 

(Andriulo et al., 1999), ICBM (Andrén and Kätterer, 1997) and Roth-C (Jenkinson, 1990). All three 

models simulate SOC stocks within a single soil layer (0-30 cm), using a conventional multi-

compartmental structure. C inputs enter the different SOC pools and are partly decomposed, 

following first order decay rates. The only C outputs considered are those from respired CO2. A 

detailed description of each model is provided in Appendix A. Mathematical equations of the 

models can be found in: Clivot et al. (2019) for AMG, Andrén and Kätterer (1997) for ICBM, 

Coleman and Jenkinson (1996) for Roth-C, and Parshotam (1996) for Roth-C’s continuous version. 

To provide average SOC stock projections under climate change in European croplands, individual 

model simulations of SOC stocks were averaged over the entire database, and the mean of the 

multi-model ensemble (𝑥) and its standard deviation (𝑆𝐷𝑥) were calculated as Equations 2 and 

3: 

𝑥 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
;       (2) 

𝑆𝐷𝑥 =  √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛
;       (3) 

Where: 𝑥𝑖 is the average SOC stock across all locations, predicted by individual model 𝑖 (with 𝑖 = 

AMG, ICBM and Roth-C). In the text, we will refer to 𝑥 and 𝑆𝐷𝑥  as the multi-model mean of the 

averages and multi-model standard deviation (SD) of the averages, indicating that they were 

calculated from the average model predictions of SOC stocks over Europe. In contrast, when the 
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multi-model means and SDs are calculated for each location, they will simply be called multi-

model means and multi-model SDs. Finally, when referring to the spatial variation of the data 

over the study area, (i.e., the SD of the data distribution), we will call it spatial SD. 

4.2.5 Models’ parametrization 

Models were run in two configurations: 1) with default parametrization and 2) with one or several 

"statistically calibrated” parameters. The parameters that were selected to be calibrated (Table 

4-1) were linked to the decomposition rate of C or to the temperature control function, which is 

indirectly linked to the SOC decomposition. In the default configuration, those parameters were 

constant across sites. The approach used to statistically calibrate the parameters is described 

hereafter. First, we calibrated the selected parameters by fitting the evolution of SOC stocks with 

time at 16 LTEs carried out in European croplands (Bruni et al., in prep). The fit consisted in 

minimizing the difference between simulated and measured SOC stocks, weighted by the errors 

between SOC stock measurements’ repetitions. Second, we estimated a statistical relationship 

between the calibrated parameters and the pedo-climatic conditions of the 16 sites. For that, we 

used a multiple linear regression model where the response variable was the calibrated 

parameter and the explanatory variables were: mean annual surface temperature, mean annual 

precipitation, mean annual potential evapotranspiration, mean C input, clay and CaCO3 content, 

soil C:N and pH, initial SOC stocks and N input at the LTEs. N input was considered as a dummy 

variable, equal to 1 if N inputs were applied at any dose and 0 otherwise. Climatic variables used 

for SOC model simulations at the 16 LTEs, and for statistical regressions (i.e., daily mean surface 

temperature, precipitations and potential evapotranspiration) were derived from an hourly 

global climate dataset at 0.5˚ (GSWP3 http://hydro.iis.u-tokyo.ac.jp/GSWP3/), and annually 

averaged. To select the more parsimonious model, we performed a step wise regression by 

Akaike Information Criteria (AIC). The pedo-climatic functions estimated to derive the calibrated 

parameters are described in Table 4-1. As a final step, we derived the statistically calibrated 

parameters values for all 5785 locations using: the estimated statistical pedo-climatic functions 

for each parameter, the soil variables from the LUCAS survey and the climatic variables from the 

ISIMIP framework (RCPs 2.6 and 6.0). The statistically calibrated parameters were bound to 

assure physical realistic values. The AMG decomposition rate parameter (k0) was bounded 
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between 0 and 1. The Roth-C reference temperature parameter (Tparam) was bounded between 

15˚C and 30˚C. The temperature response function (a) of Roth-C was additionally constrained to 

be lower than 4.5, to avoid that SOC was completely decomposed when the calibrated Tparam took 

values toward the upper bound (see Coleman and Jenkinson, 1996). The ICBM decomposition 

rate parameter of the young pool (k1) was bounded between 0.1 and 30, the decomposition rate 

parameter of the old pool (k2) was bounded between 0.001 and 1, and the environmental factor 

parameter (r) was bounded between 0.001 and 10. Additionally, k1 was constrained to be higher 

than k2, to assure that the turnover rate of the young pool was faster than the old pool. Since 

ICBM was calibrated on the 16 LTEs with multiple parameters, we tested the performance of the 

statistically calibrated model using different combinations of statistically calibrated parameters 

(i.e., all three parameters statistically calibrated, both k1 and k2 statistically calibrated, k1 and k2 

individually statistically calibrated, both k1 and r statistically calibrated, and both k2 and r 

statistically calibrated). Then, we selected the combination of statistically calibrated parameters 

that minimized the average absolute relative error (RE) between simulated and observed SOC 

stocks in 2015 (see Eq. 4). That is to say, the configuration where only k1 was statistically 

calibrated. 

4.2.6 Performance evaluation of the statistical parameter calibration 

To evaluate our approach, we performed a leave-one-out cross validation (LOOCV) test (Table 

4-2), where the multiple linear regressions by stepwise AIC were trained over a subset of the 

database and tested on the left-out samples. LOOCV is a particular type of cross-validation, where 

the number of samples in the training set is n-1 and the number of test samples is 1 (with n being 

the total number of samples, i.e., in our case n = 16 and the training set has 15 samples). This is 

repeated iteratively for all samples in the dataset, with a total of n models being trained and 

tested. The LOOCV test results are provided as: the relative root-mean-squared-error (r-RMSE), 

calculated as the RMSE divided by the mean of the parameter’s values, the coefficient of 

determination (R2), and the mean absolute error (MAE) of the statistical models built for each 

calibrated parameter (Table 4-2). 

Model simulations of first-year SOC stocks were compared to measured SOC stocks in 2015 for 

all 5785 locations, for both non-calibrated and calibrated configurations of the ICBM and Roth-C 
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models. Since AMG uses first-year SOC stock measurements to initialize the simulations, we could 

not use this model for evaluation. Percentage relative error between simulated and measured 

SOC stocks in 2015 were calculated as Equation 4: 

RΕ (%) =  
(𝑆𝑂𝐶2015

𝑚𝑜𝑑𝑒𝑙−𝑆𝑂𝐶2015
𝑚𝑒𝑎𝑠𝑢𝑟𝑒)

𝑆𝑂𝐶2015
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∙ 100    (4) 

Where RE (%) is the relative error, 𝑆𝑂𝐶2015
𝑚𝑜𝑑𝑒𝑙 is the SOC stock in 2015 simulated by either ICBM 

or Roth-C models, and 𝑆𝑂𝐶2015
𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the measured SOC stock in 2015. Negative values of RE 

denote that the model is underestimating the measured SOC stock in 2015, while positive values 

indicate that the model is overestimating the measured SOC stock in 2015. Average absolute 

relative error across the dataset was calculated for each model as the average of the absolute 

value of RE. 
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Table 4-1 Coefficients of the multiple linear regressions. 

 Response 

variable 

 Coefficients 

of multiple 

linear 

regression 

          

Model Parameter  Intercept Mean 

annual 

surface 

temperature 

Mean 

annual 

precipitation 

Mean annual 

potential 

evapotranspiration 

Initial 

SOC 

stock 

Initial 

carbon 

input 

Clay CaCO3 pH Soil C:N N input 

 

 Units  ˚C mm mm Mg C 

ha-1 

Mg C ha-1 

yr-1 

g g-1 g kg-1   0-1 

dummy 

variable 

AMG k0 yr-1 0.75 -0.02 -1 ∙ 10-4 2∙10-4 -12∙10-4 0.08  7∙10-4 -0.08   

ICBM 

k1 yr-1 74.69 1.82  -0.02    0.05 -6.60 -3.08  

k2 yr-1 -0.06 -0.01 7.36 1∙10-4 -7∙10-4       

r  7.81 0.75       -1.83  -1.97 

Roth-

C 

Tparam ˚C 34.3 -1.30 -43∙ 10-4 0.01 -0.12 6.20 6.15  -1.94   
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4.2.7 Inverse modelling 

The amount of C input required to increase SOC stocks by 4‰ yr-1 over the period 2015-2100 

was calculated using an inverse modelling approach that consisted in minimizing Equation 4: 

𝐽 =| 𝑆𝑂𝐶2015
𝑚𝑜𝑑𝑒𝑙 ∙ (1 + 0.004 ∙ 85) − 𝑆𝑂𝐶2100

𝑚𝑜𝑑𝑒𝑙(𝑰)|,    (4) 

Where 𝑆𝑂𝐶2015
𝑚𝑜𝑑𝑒𝑙 and 𝑆𝑂𝐶2100

𝑚𝑜𝑑𝑒𝑙 are the simulated SOC stock levels in 2015 and 2100, 

respectively, and 𝑰 is the C input.  

The amount of C input from livestock manure was supposed to be maintained at current levels, 

unless the estimated C input to reach the 4‰ target was lower than the amount of C input from 

livestock manure. In that case, the amount of livestock manure was supposed to be 0 and the 

estimated C input considered as plant material only.  

4.3 RESULTS 

4.3.1 Evaluation of the statistical models for statistical parameter calibration 

Figure 4-3 shows the correlation between the parameters predicted with the multiple linear 

regressions (i.e., the statistically calibrated parameters) and the values of the parameters 

calibrated over the 16 LTEs. The reference temperature parameter (Tparam) of the Roth-C model 

showed the highest R2 (0.96) between predicted and calibrated parameters, followed by the 

decomposition rate parameter k0 of AMG (0.77), the decomposition rate parameters k2 (0.72) 

and k1 (0.45) of ICBM, and the environmental parameter r of ICBM (0.43) (Figure 4-3). 

 shows the results of the LOOCV test. The statistical model built for Tparam had the highest R2 (0.68) 

and lowest r-RMSE (0.14), compared to the other models, and a MAE of 2.48 ˚C. All the other 

statistical models had a R2 lower than 0.1 and a r-RMSE between 1.03 (k0) and 3.53 (k1) (Table 

4-2). 
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Table 4-2 Results of the leave-one-out cross correlation test of the multiple linear regression for the soil organic 

carbon models’ parameters. 

Model Parameter R2 MAE r-RMSE 

AMG k0 0.01 0.13 1.03 

ICBM k1 0.05 12.22 3.53 

 k2 0.00 0.03 3.2 

 r 0.07 4.11 1.84 

Roth-C Tparam 0.68 2.48 0.14 
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Figure 4-3 Correlation between the predicted soil organic carbon (SOC) model parameters estimated with the 

multiple linear regression (see Table 4-1), and the calibrated parameters estimated by fitting the SOC models to the 

measured SOC stock evolution in 16 cropland long-term experiments. (a) Tparam (˚C) is the reference temperature 

parameter of the temperature response function in the Roth-C model, (b) k1 (yr-1) and (c) k2 (yr-1) are the 

decomposition rate parameters of the young and the old pool in the ICBM model, respectively, (d) r is the 

environmental factor parameter in the ICBM model, and (e) k0 (yr-1) is the decomposition rate parameter of the 

active pool in the AMG model. 
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4.3.2 Relative error of simulated soil organic carbon stocks in 2015 

Figure 4-4 shows the relative errors between simulated and measured SOC stocks in 2015, over 

the study area, for the non-calibrated and calibrated ICBM (with only k1 statistically calibrated) 

and Roth-C models. AMG is not presented here since it was initialized using observed SOC stock 

values. The non-calibrated models both underestimated and overestimated first-year SOC stocks, 

at different locations (Figure 4-4.a and Figure 4-4.c). However, as can be seen from Figure 4-5, 

while non-calibrated Roth-C mainly tended to overestimate the observed SOC stocks, non-

calibrated ICBM tended to underestimate them. For non-calibrated ICBM, the mean absolute RE 

of first-year SOC stocks over Europe was 60 ± 378 % (mean ± spatial SD) (Table 4-3). For non-

calibrated Roth-C, mean absolute RE was 99 ± 595 % (Table 4-3). Overall, the non-calibrated 

multi-model ensemble had a mean absolute RE of 48 ± 320 % on first-year SOC stocks (Table 

4-3).  

Overall, the statistical calibration of model parameters decreased the mean absolute RE by 

approximately 40% (Table 4-3). However, the statistical calibration was in reality capable to 

reduce the mean absolute RE only for one out of two models (AMG could not be tested since it 

was initialized with first-year SOC stocks). In fact, while the calibration of Roth-C’s Tparam improved 

the simulation of first-year SOC stocks by 63%, compared to non-calibrated Roth-C (i.e., mean 

absolute RE decreased to 36 ± 283 %), the improvement of ICBM’s simulations with calibrated 

k1 was negligeable (i.e., mean absolute RE was 59 ± 359 %) (Table 4-3). 

Table 4-3 Mean percentage relative error (RE) ± spatial standard deviation (SD) between measured and predicted 

soil organic carbon stocks in 2015, for the non-calibrated and calibrated ICBM, Roth-C and multi-model ensemble. 

 Relative error (mean ± SD %) 

 
Non-calibrated 
 

Calibrated 

ICBM 59.6 ± 378.0 59.0 ± 358.8 

Roth-C 99.0  ± 595.8 36.5 ± 282.6 

Multi-model mean 47.8 ± 320.1 28.5 ± 212.7 
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Figure 4-4 Relative error (%) of predicted soil organic carbon (SOC) stocks in 2015 (Eq. 3) under representative 

concentration pathway (RCP) 2.6 for the: (a) non-calibrated ICBM, (b) calibrated ICBM (k1), (c) non-calibrated Roth-

C, and (d) calibrated Roth-C models. 
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Figure 4-5 Predicted versus observed soil organic carbon (SOC) stocks (Mg C ha-1) in 2015 for the (a) ICBM and (b) 

Roth-C models. 

4.3.3 Projected soil organic carbon stocks under RCPs 2.6 and 6.0 

Future SOC stock projections between 2015 and 2100 were performed with each model, 

considering two scenarios of climate change (RCPs 2.6 and 6.0), and considering constant C inputs 

throughout the simulations. Thus, only the effect of climate change on soil decomposition was 

considered here and not that of elevated CO2 concentration in the atmosphere. The average SOC 
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stock evolution over Europe was calculated for each model (Figure 4-6), and the multi-model 

mean and SD of the averages (calculated with Eqs. 2 and 3) were plotted in Figure 4-6. We can 

see that, under both non-calibrated and calibrated multi-model configurations, the evolution of 

average SOC stocks over Europe was approximately stable or slightly increasing (Table 4-4). This 

was mainly due to a compensation between models, since the SOC stock trends predicted by the 

models strongly diverged from each other, under both configurations and climate change 

scenarios. In fact, AMG predicted a strong increase in average SOC stocks (i.e., from a 0.08% 

under non-calibrated RCP 2.6 to a 0.15% under calibrated RCP 6.0, Table 4-4). ICBM predicted 

slightly increasing average SOC stocks (i.e., from 0.03% under non-calibrated RCP 2.6 to a 0.06% 

under calibrated RCP 6.0, Table 4-4). Contrastingly, Roth-C predicted decreasing average SOC 

stock trends (i.e., from a -0.04% under non-calibrated RCP 6.0 to a -0.07% under calibrated RCP 

2.6, Table 4-4). The calibration effect on the different models was manyfold. The calibration of 

Roth-C decreased predicted first-year average SOC stocks, compared to the non-calibrated 

configuration (Figure 4-6). Furthermore, in the calibrated configuration of Roth-C average SOC 

stocks were decreasing at a higher rate, compared to non-calibrated Roth-C, especially under 

RCP 2.6 (Table 4-4). In contrast, the calibration of ICBM had almost no effect on the initial average 

SOC stocks, while it amplified the increasing rate of the average SOC stock trend (Table 4-4). 

Similarly, the rate of increase of average SOC stocks in the AMG model increased with the 

calibration. In both ICBM and AMG models, the average rate of increase under RCP 6.0 was higher 

than under RCP 2.6. Furthermore, while in ICBM the average SOC stock increase was constant 

with time, average SOC stocks in the AMG model increased more intensively in the second half 

of the century (Figure 4-6). What stands out from Figure 4-6 is that the multi-model SD of the 

averages is lower in the calibrated ensemble, compared to the non-calibrated ensemble. 

However, in the non-calibrated configuration the multi-model SD of the averages decreases with 

time, since model predictions start from very different points and tend to converge with time. In 

contrast, in the calibrated configuration the multi-model SD of the averages increases with time, 

as the models tend to diverge more intensively. 
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Figure 4-6 Projected soil organic carbon (SOC) stocks between 2015 and 2100. Means between SOC models and 

standard deviation from the means (calculated with Eqs. 2 and 3) are shown in blue for the representative 

concentration pathway (RCP) 2.6 and in red for RCP 6.0, for both non-calibrated (left side figures) and calibrated 

(right side figures) configurations. Colored lines show the SOC stocks predicted by the AMG, ICBM and Roth-C 

models. 

Table 4-4 Average annual soil organic carbon (SOC) stock changes (%) in European croplands between 2015 and 

2100, under representative concentration pathways (RCPs) 2.6 and 6.0, considering constant carbon inputs. 

 

Non-

calibrated 

RCP 2.6 

Calibrated 

RCP 2.6 

Non-

calibrated 

RCP 6.0 

Calibrated 

RCP 6.0 

AMG 0.075 0.087 0.127 0.148 

ICBM 0.035 0.039 0.055 0.063 

ROTHC -0.050 -0.044 -0.074 -0.058 

Multi-model mean 0.010 0.028 0.021 0.052 
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4.3.4 Required carbon input changes to reach a 4‰ soil organic carbon stock increase 

Figure 4-7 shows the relative change of C input required to reach an average annual 4‰ increase 

of SOC stocks between 2015 and 2100, relative to average C input levels between 2000 and 2009. 

Carbon input change patterns were similar for both non-calibrated and calibrated configurations, 

and for both climate change scenarios (RCPs 2.6 and 6.0), with the level of increase of the 

required C input generally decreasing with the latitude. However, we found also that the multi-

model SD relative to the multi-model mean (i.e., the multi-model RSD) was increasing with 

decreasing latitudes in both configurations (Figure 4-7). This means that, required relative C input 

change predictions tended to diverge more across models at low latitudes (see Supplementary 

Figure 1). On average, the multi-model RSD of required C input change was similar between the 

non-calibrated and calibrated configurations under RCP 2.6 (i.e., multi-model RSD was 135% and 

133% in the non-calibrated and calibrated configurations, respectively), but it was much higher 

in the calibrated configuration under RCP 6.0 (i.e., multi-model RSD was 111% and 2945% in the 

non-calibrated and calibrated configurations, respectively). This means that, the required relative 

C input change predictions in the calibrated configuration diverged more strongly across models 

under amplified climate change. Furthermore, we found that the calibration of model 

parameters tended to decrease the dispersion of the predicted relative C input change relative 

to the mean (i.e., their spatial RSD), across the different locations (Table 4-5). This was not the 

case for the required mean additional C input predicted by the calibrated models (i.e., the 

absolute difference in Mg C ha-1 yr-1), for which the calibrated configuration showed a higher 

spatial RSD, compared to the non-calibrated configuration (Table 4-5).
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Table 4-5 Simulated average carbon input changes required to increase soil organic carbon stocks by 4‰ yr-1, on 

average between 2015 and 2100, relative to average annual C input levels in 2000-2009 (mean ± standard deviation 

(SD) and relative standard deviation (RSD)). 

Configuration Climate 

scenario 

Required relative change of C input to 

reach the 4‰ target 

Required additional C input to reach 

the 4‰ target 

  Mean of multi-model 

means ± multi-model 

spatial SD 

Multi-model 

spatial RSD 

Mean of multi-

model means ± 

multi-model 

spatial SD 

Multi-model 

spatial RSD 

  % % Mg C ha-1 % 

Non-calibrated 
RCP 2.6 128.7 ± 345.7 268.5 2.5 ± 1.6  63.1 

RCP 6.0 129.4 ± 328.9 254.2 2.5 ± 1.8 69.7 

Calibrated 
RCP 2.6 108.2 ± 221.8 205.0 2.7 ± 2.3 85.2 

RCP 6.0 106.2 ± 217.8 205.2 2.7 ± 2.5 93.3 

 

Figure 4-7 Predicted carbon input increase (%), relative to average carbon input levels in 2000-2009, required to 

increase SOC stocks on average by 4‰ yr-1 from 2015 to 2100. Multi-model means (MMM) and relative standard 

deviations (RSD) are shown for the non-calibrated and calibrated representative concentration pathways (RCPs) 2.6 

and 6.0 scenarios. 
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4.4 DISCUSSION 

4.4.1 Ensemble modelling 

For the non-calibrated multi-model ensemble, the difference between simulated and observed 

first-year average SOC stocks over Europe was very small (Figure 4-6). This indicates that the non-

calibrated multi-model ensemble was able to correctly assess average SOC stocks in 2015, at the 

European cropland level. However, as can be seen in Figure 4-6, this was mainly due to a bias 

compensation between the Roth-C and ICBM models, which were both initialized with spin-up 

techniques (the first one semi-analytically and the second one analytically). Roth-C and ICBM 

respectively severely overestimated and underestimated first-year average SOC stocks. As a 

result, the multi-model mean of average SOC stocks was closer to observed values. On the one 

side, this highlights that multi-model ensembles may improve the simulations of average SOC 

stocks. In fact, despite the low number of models in the ensemble, the chance to mispredict first-

year SOC stocks in Europe would have been higher, whether a single SOC model had been chosen. 

On the other side, our results show that multi-model means may predict initial average SOC stock 

levels that are closer to observations, albeit for the wrong reasons. Incorrect initial SOC stock 

predictions and uncertainties within different models may be the result of defective estimations 

of the initial conditions, different model structures, and parameter values (Shi et al., 2018). In 

our exercise, a necessary assumption to perform the inverse modelling was for the models to be 

at steady-state before starting the simulations. This implies that first-year SOC stocks (2015 in 

our case) were at equilibrium, whereas this is unlikely (Sanderman et al., 2018). Indeed, it is 

suggested that on average SOC stocks in European arable soils are currently decreasing by 0.5% 

(Veerman et al., 2020). Errors in the initial conditions then propagate through the projection of 

future SOC stocks (e.g. Shi et al., 2018). In addition to incorrect initial conditions, Shi et al. (2018) 

also found that increasing complexity in model structures amplified the uncertainty in predicted 

responses to climate change. That is, vertically resolved and microbial explicit SOC models 

projected higher uncertainties to climate change than a conventional one-layer SOC model. In 

our work, we used three different SOC models, all based on the conventional framework of one-

layer SOC pools. However, we found that even models with similar structures predicted highly 
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divergent SOC stock evolutions under future climate change. One way to improve model 

predictions is through the calibration of model parameters, in order to reduce the difference 

between simulated and observed SOC stock changes. If chronosequences of SOC stock 

measurements are available, the calibration can be performed via optimization techniques that 

estimate the best parameters values to minimize the difference between observed and predicted 

SOC stocks (see for instance Bruni et al., 2021). At a large scale, SOC stock change measurements 

are very rare. In this work, we proposed a calibration technique where pedo-climatic data from 

several LTEs was used to derive statistical relationships between model parameters and pedo-

climatic conditions, which could be used to re-parameterize SOC models at a larger scale.  

4.4.2 Calibration of model parameters using statistical regressions 

Model parameters are usually constant in default SOC model configurations. However, it is 

commonly known that parameter values vary with soil and climatic conditions. For example, the 

temperature sensitivity of soil respiration (i.e., the increase in soil respiration due to temperature 

changes) is known to depend on other environmental factors that influence the quantity and 

degradability of SOC, such as soil moisture, texture, pH, and land use (Meyer et al., 2018; Wang 

et al., 2010). Our results show that it is possible to link calibrated model parameters to pedo-

climatic factors via statistical regressions (Figure 4-3), and then use these regressions to predict 

calibrated parameter values at other sites. The statistical calibration of model parameters was 

able to reduce the bias compensation between the different models, as well as the uncertainty 

of SOC stock predictions (see lower multi-model SD of the averages in Figure 4-6). Furthermore, 

the statistical calibration reduced the mean absolute RE of the first-year SOC stocks predicted by 

the multi-model ensemble by 40% (Table 4-3). In particular, the statistical calibration of the 

reference temperature parameter (Tparam) of the Roth-C model (Coleman and Jenkinson, 1996) 

reduced the mean absolute RE between simulated and observed first-year SOC stocks by 63% 

(Table 4-3). In contrast, ICBM simulations were less sensitive to the statistical calibration, when 

the decomposition rate parameter of the young pool (k1) was used. Simulations of first-year SOC 

stocks were even worse compared the non-calibrated configuration, when all three ICBM 

parameters (k1, k2 and r) were simultaneously statistically calibrated (see Supplementary Figure 

2). One possible reason why the statistical calibration of ICBM over the 5785 locations 
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underperformed, compared to Roth-C, is that the fit of ICBM at the 16 LTEs was done by 

simultaneously calibrating three parameters. This may have introduced correlations between 

parameters and induced data overfitting, which as a consequence decreased the capability of the 

derived statistical relationships to correctly predict the best parameter values (Table 4-2). 

Another possible explanation is that ICBM parameters may be intrinsically less linked to pedo-

climatic factors. Furthermore, the relatively small number of LTEs available for our analysis to 

derive calibrated model parameters, limited the consistency of the statistical regressions built 

(Table 4-1). The only regression model that showed a good performance at the LOOCV test (i.e., 

R2 > 0.6 and r-RMSE < 0.15, Table 4-2) was indeed the one built for Tparam. 

These results suggest that, if correctly constrained by pedo-climatic factors, statistical 

relationships between SOC model parameters and pedo-climatic variables allow estimating site-

specific parameter values that may reduce the error of SOC model predictions (Table 4-3), and 

the uncertainty across models (Figure 4-6). However, the capability to predict the calibrated 

parameters via the statistical regressions should be evaluated before applying it to the SOC 

models. Increasing the number of experiments on which the statistical relationships are derived 

may enhance the consistency of the statistical regressions and increase the reliability of the 

statistical calibration. In this work, we evaluated the calibration only against 2015’s SOC stock 

measurements, because the temporal trend of SOC stock between 2009/2012 and 2015 was not 

detectable (Panagos et al., 2020). However, oncoming sampling campaigns of the LUCAS survey 

(European Commission, 2021) may allow testing the validity of our calibration technique on SOC 

stock changes. 

4.4.3 Uncertainty of projected soil organic carbon stocks under future climate change 

Multi-model ensembles predicted approximately stable average SOC stocks in Europe under 

both RCP 2.6 and 6.0. However, this was mainly due to a compensation between different SOC 

stock trends across models (Figure 4-6). The statistical calibration was able to reduce the 

uncertainty between predicted average SOC stocks across models. However, this was mainly 

due to decreased uncertainty across models around initial SOC stock. In fact, the SOC stock 

trends in the models were different from each other, and diverged even more intensively under 
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statistical calibration (Table 4-5). As a consequence, in the calibrated configuration, the multi-

model SD of the average SOC stocks increased with time (Figure 4-6). 

Other works have predicted future SOC stocks in Europe. Yigini and Panagos (2016) predicted an 

increase of SOC stocks by 2050 in Europe (EU26) under different climate change and land cover 

scenarios. Shi et al. (2018) predicted SOC stock evolutions by 2100 under RCP 8.5 with different 

SOC models and parametrizations. At the European scale, they found stable SOC stocks when 

using a microbial explicit SOC model, slightly increasing SOC stocks when using a vertically 

resolved model, and strongly increasing SOC stocks when using a conventional one-layer model. 

Our projections of SOC stock changes between 2015 and 2100 only took into account the direct 

effect of climate variations. In fact, while climate variables changed over time, C input and land 

use were considered constant. The hypothesis of a constant C input over time is unlikely for 

multiple reasons. First, changes in climatic conditions, atmospheric CO2 concentration and 

technology development affect the C inputs due to changes in plants productivity (Ewert et al., 

2005). These factors also affect SOC stocks, inducing a feedback loop from the soil to the plant, 

since plant growth depends on SOC changes through soil fertility. Second, it is likely that the land 

use will change and evolve over a period of 75 year. However, the hypothesis of a constant C 

input was necessary to solve the inverse modelling exercise and, it gives a first estimate of the 

different responses of the models to the direct effect of climate on SOC stock changes. AMG’s 

predictions of an amplified SOC stock increase under RCP 6.0 (Figure 4-6) were likely due to the 

predicted increase in mean annual potential evapotranspiration, which was not counterbalanced 

by an increase in mean annual precipitations (Figure 4-2). In fact, soil moisture decreased as a 

consequence of increased potential evapotranspiration. Thus, SOC decomposition decreased as 

well (Supplementary Figure 3). However, soil moisture response functions in SOC models are 

often not realistic (Moyano et al. 2012), and this may partly explain the different predicted effects 

of climate change on the SOC models. 

4.4.4 Feasibility of the 4‰ soil organic carbon stock increase target 

Our maps show that C input change requirements will be higher in Central and Northern Europe, 

compared to Southern Europe (Figure 4-7). This was true for both non-calibrated and calibrated 

multi-model configurations. However, the multi-model RSD was higher at lower latitudes, 
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indicating that the C input change requirements in the European South are highly uncertain. The 

higher uncertainty across models in the calibrated configuration under RCP 6.0 was likely due to 

the effect of the statistical calibration on the SOC stock trends, which amplified the divergence 

across models with time. Other works have recently estimated the required C input change to 

reach a 4‰ target at a country or site-specific level. Riggers et al. (2021) found that, in German 

croplands, the required C input increase in 2099 compared to the C input levels in 2014 under 

the RCP 2.6 scenario was 221%, in order to reach an average 4‰ SOC stock increase between 

2090 and 2099. This is higher than our estimate of a 129 ± 346% and 108 ± 222% (mean ± spatial 

SD) C input increase in European croplands under RCP 2.6, in the non-calibrated and calibrated 

configurations, respectively. In addition to differences in SOC stocks levels between countries, 

which might explain part of the differences in our projections compared to Riggers et al. (2021), 

they also predicted high SOC stock losses under climate change, while our projections were 

rather stable or even increasing in the non-calibrated configuration. In a modelling exercise with 

the Century model over a set of European cropland LTEs, Bruni et al. (2021) found that C input 

had to increase by 43% to reach a 4‰ SOC stock increase over a 30-year period, compared to 

initial conditions. This was similar to Martin et al. (2021), who found with Roth-C that a 30-40% 

increase of C input to the soil would be needed to obtain a 4‰ SOC stock increase over 30 years, 

in mainland France. These studies show that there is still high uncertainty around the required C 

input level to reach a 4‰ target increase of SOC in European croplands. The statistical calibration 

that we proposed here was able to reduce the uncertainty of the multi-model ensemble around 

the predicted average SOC stocks. However, when calibrated, average trends of SOC stocks had 

steeper slopes, which resulted in a high uncertainty around the required C input changes, 

especially under RCP 6.0. To increase the reliability of projected SOC stocks, future works should 

focus on the improvement of the initial conditions of the models, on the calibration of model 

parameters based on large data samples, and on the improvement of model representations of 

soil responses to climatic variables (Moyano et al., 2012). 

4.5 CONCLUSION 

The EU climatic commitments require strong decreases in GHGs emissions, along with C removals 

by natural sinks, such as soils. Modelling exercises are needed to evaluate the potential of 
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cropland soils to store C. Our multi-model simulation showed that reaching a 4‰ SOC stock 

increase target in European croplands might be feasible under future scenarios of climate 

change, only assuming drastic increases of C input to the soils, especially in Northern Europe. 

However, model predictions of SOC stocks under climate change are still highly uncertain. Future 

works should focus on the reduction of model uncertainties to provide reliable predictions of 

future SOC stocks, and improve the estimates of related C input needs. 

4.6 APPENDIX A - MODELS 

AMG 

AMG is a three compartmental model that simulates SOC dynamics at an annual time step 

(Andriulo et al., 1999). It has one fresh organic matter pool, separated into aboveground and 

belowground material, and two SOC pools (active and stable). The C in the fresh organic matter 

pool is partly respired and partly transferred to the active SOC pool, according to C input-specific 

humification coefficients (Levavasseur et al., 2020). In the active pool, the C is decomposed 

following temperature and water dependent functions (Clivot et al., 2019). The stable pool is 

considered constant throughout the simulation length. The model is initialized using the SOC 

stock value at the onset of the simulation (Saffih-Hdadi and Mary, 2008). For the initialization, 

total SOC is split among the active and stable pool according to the historical land-use of the 

simulated site. Lacking information on historical land use, all sites were considered as having a 

long-term arable history (i.e., 65% of initial SOC stock was considered stable). For our simulations, 

each crop species from the LUCAS database was associated to its shoot:root ratio (Clivot et al., 

2019), in order to determine the repartition of the C input into its aboveground and belowground 

pools. Furthermore, each crop species was associated to an aboveground crop humification rate, 

while the belowground crop humification rate was 0.4 for all species (Clivot et al., 2019). Since 

the crop rotation at the different sites was unknown, we simulated the SOC dynamics using the 

weighted average shoot:root ratio and humification coefficients for all sites. 

For livestock manures, since the animal source was unknown, we used the average optimized 

humification coefficients for different types of animal manures from Levavasseur et al. (2020) 

(i.e. h = 0.548 for all sites). Animal manures were supposed to be spread mainly on the soil surface 

(i.e. 90% of total animal manure was spread aboveground and the rest 10% belowground). 
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ICBM 

ICBM is a two compartmental SOC model that is run at an annual time step and can be solved 

analytically (Andrén and Kätterer, 1997). C input is directly transferred to the young and the old 

SOC pools, where the C is decomposed according to: a C input type-dependent humification 

coefficient, decomposition constants, and environmental factors. The environmental factors are 

summarized into one parameter, which is calculated from temperature and soil moisture 

response functions (Fortin et al., 2011; Karlsson et al., 2011) and normalized against a Swedish 

north-temperate site. For our simulations, we normalized the environmental parameter against 

a site situated at 59.82 ˚N – 17.28 ˚E. 

Roth-C 

Roth-C is a five SOC pools model that is run at a monthly time step (Jenkinson, 1990). It was 

converted to its matrix continuous form following Parshotam (1996). The C input is split into the 

decomposable and resistant plant material (DPM and RPM) pools. For agricultural crops, a 

DPM/RPM ratio of 1.44 is used. Carbon from both DPM and RPM are partly respired as CO2 and 

partly split into the humified organic matter (HUM) and microbial biomass (MIC) pools, 

depending on the clay content of the soil. Afterwards, the BIO and HUM pools decompose to 

form more CO2, HUM and BIO. SOC decomposition is dependent on temperature and moisture 

control functions (a and b, respectively), this latter being a function of mean monthly 

precipitation, mean monthly potential evapotranspiration, clay, and soil cover coefficient (0.6 for 

vegetated soil). A small amount of total initial SOC is considered inert (IOM) and is constant 

through time. Roth-C was solved semi-analytically, following the method described in Huang et 

al. (2018) and Xia et al. (2012). That is to say: 1) the set of differential equations were solved by 

inverse calculations to determine pools sizes at steady state 2) the model was run numerically 

for the rest of the simulations. 
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4.8 SUPPLEMENTARY MATERIAL 

 

Supplementary Figure 1 Boxplots showing the distribution of the non-calibrated (blue) and calibrated (orange) 

multi-model relative standard deviations (RSD) between observed and measured first-year soil organic carbon stocks 

for each 5˚ bin of latitude. 
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Supplementary Figure 2 Relative error (%) of predicted soil organic carbon (SOC) stocks in 2015 (Eq. 3) under 

representative concentration pathway (RCP) 2.6 for the: (a) non-calibrated ICBM, (b) calibrated ICBM (k1, k2 and r), 

(c) non-calibrated Roth-C, and (d) calibrated Roth-C models. 
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Supplementary Figure 3 Evolution of the moisture control function of the AMG model (see Clivot et al., 2019) 

between 2006 and 2100, under representative concentration pathways (RCPs) 2.6 and 6.0. 
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Abstract 

The Mission Board for Soil Health and Food proposed a series of quantitative targets for 

European soils to become healthier. Among them, current soil organic carbon (SOC) 

concentration losses in croplands (0.5% yr-1 on average at 20 cm depth) should be reversed 

to an increase of 0.1-0.4% yr-1 by 2030. Quantitative targets are used by policy makers to 

incentivize the implementation of agricultural practices that increase SOC stocks. However, 

there are different approaches to calculate them.  

In this paper, we analyzed the effect of exogenous organic matter (EOM) inputs on the 

evolution of SOC stocks, with a particular focus on the new European targets and the different 
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approaches to calculate them. First, we illustrated through two case-study experiments the 

different targets set when SOC stock increase is calculated considering as reference: 1) the 

SOC stock level at the onset of the experiment and 2) the SOC stock trend in a baseline, i.e. a 

control treatment without EOM addition. Then, we used 11 LTEs with EOM addition in 

European croplands to estimate the amount of C input needed to reach the 0.1% and 0.4% 

SOC stock increase targets proposed by the Mission Board for Soil Health and Food, calculated 

with two different approaches. We found that, to reach a 0.1% and 0.4% increase target 

relative to the onset of the experiment, 2.51 and 2.71 Mg C ha-1 yr-1 of additional C input were 

necessary, respectively. Reaching a 0.1% and 0.4% increase target relative to the baseline 

required 1.38 and 1.65 Mg C ha-1 yr-1 of additional input, respectively. Depending on the 

calculation method used, the estimated amounts of additional C input required to reach each 

quantitative target were significantly different from each other. Furthermore, the quality of 

C input as represented by the C retention rate of the additional organic material (EOM and 

crop residue), had a significant effect on the variation of SOC stocks. Our work highlights the 

necessity to take into consideration the additional C input required to increase SOC stocks, 

especially for soils with decreasing SOC stocks, when the target is set independently of the 

baseline.  

5.1 INTRODUCTION 

Land based agricultural activities contribute globally to greenhouse gases (GHG) emissions 

with approximately 6.2 Gt carbon dioxide equivalents (CO2eq) each year (including non-food 

use of agricultural products and excluding emissions associated to land use change) (IPCC, 

2019). Improved management practices have the potential to reduce the impact of 

agriculture on GHG emissions (Smith et al., 1997), and additionally to sequester carbon (C) 

from the atmosphere through increased soil organic carbon (SOC) stocks (Lal, 2008; Minasny 

et al., 2017). The potential of agricultural soils to both mitigate climate change and increase 

food security through improved soil quality (e.g. increased soil fertility and water retention 

(Lal, 2008)), has been an issue in numerous political agendas for years. It finally gained an 

international breakthrough in 2015, with the 4 per 1000 initiative proposed at the COP21 

(Minasny et al., 2017). The name of the initiative comes from the idea that an increase of SOC 

stocks of 0.4% (i.e. 4‰) yr-1 in the first 30-40 cm of the soil could, at least partially, 

compensate for the CO2 emissions from fossil fuel burning. More recently, the Mission Board 
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for Soil Health and Food of the European Union (EU) proposed a series of quantitative targets 

for European soils to become healthier. Among them, current SOC concentration losses in 

croplands (calculated in the first 20 cm of the soil from the LUCAS survey as being 0.5% yr-1 

on average) should be reversed to an increase of 0.1 to 0.4% yr-1 by 2030 (Veerman et al., 

2020). It is important to note that SOC concentration losses can result in no changes or even 

increases in SOC stocks when soil bulk density (BD) increases. Veerman et al (2020) refer to 

SOC concentration losses. However, to avoid confusion, we point out that the aimed target in 

order to have a climate mitigation benefit, should refer to SOC stock increases. 

Management practices that potentially increase SOC stocks include, among others, cover 

cropping, improved crop rotations, agroforestry systems, converting cropland to grassland, 

and adding fertilizers and organic amendments to the soil (Soussana et al., 2019; Chenu et al., 

2019; Bolinder et al., 2020). Although this latter does not contribute to sequester CO2 from 

the atmosphere, adding exogenous organic matter (EOM) can improve soil quality. For 

instance, through increased water retention and soil fertility (Reeves, 1997; Robertson et al., 

2014), EOM may reduce soil erosion and increase crop productivity, indirectly enhancing a 

virtuous C cycle. That is, by increasing crop productivity, plants’ CO2 fixation is enhanced and 

higher amounts of crop residue might be left on the soil, increasing the C input and hence the 

SOC stocks. 

Farm-level payments can be used to incentivize the adoption of practices that increase SOC 

stocks. Payments can be action-based or result-based. Action-based schemes reward farmers 

for implementing agricultural practices that potentially increase SOC stocks. In contrast, the 

payment of result-based schemes is contingent upon the achievement of a certain 

measurable result (European Commission, 2021). Policy makers tend to prefer result-based 

incentives because the use of funds is more directly linked to the benefit they provide. In this 

context, it is necessary to set quantitative SOC stock increase targets in order to measure, 

report and verify the achieved results, and to define a reference against which the SOC stock 

increase is calculated.  

Pellerin et al. (2019) and Soussana et al. (2019) illustrated a 0.4% SOC stock increase target, 

calculated against a baseline of reference or independently of it, in a set of theoretical 

examples. On the one hand, setting the target of SOC stocks independently of a baseline, i.e. 

considering the SOC stocks at the onset of the implementation of an improved practice (that 

is, at time t0) as the reference, requires the measurement of SOC stocks only at t0. However, 
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if SOC stocks are not at steady-state, the rate of increase required to reach the target will 

depend on the SOC stock trend previous to the implementation of the improved practice 

(Soussana et al., 2019). In this case, the pressure will be set on soils with degrading SOC stocks, 

because the rate at which they will have to increase will be higher than soils with stable or 

increasing stocks (Soussana et al., 2019). On the other hand, increasing SOC stocks relative to 

a baseline means that the rate of increase to reach the target will be fixed, i.e. independent 

of the previous SOC stock trend. However, to fix the target it is necessary to collect data on 

the previous SOC stock trend for at least 5 to 10 years, which is considered the minimum 

duration to derive a trend in SOC stocks (Pellerin et al., 2019). For this reason, a large-scale 

deployment of this latter approach is not straightforward since each SOC storing practice 

must be associated with a control treatment and this adds complexity to land management. 

Topsoil OC stocks are often decreasing in cropland soils in Europe (Clivot et al., 2019; Goidts 

and van Wesemael, 2007; Meersmans et al., 2011; Saffih-Hdadi and Mary, 2008; Sanderman 

et al., 2017; Fernández-Ugalde et al., 2011, Veerman et al., 2020). However, opposite 

examples exist. For instance, SOC stocks (at 15-20 cm depth) are increasing in Swedish 

cropland due to the presence of more perennial forage crops (Poeplau et al., 2015). In this 

context, calculating a quantitative target of SOC stocks’ increase independently of the 

baseline seems more appropriate, since it puts the priority on the restoration of degraded 

soils (Soussana et al., 2019). This is particularly relevant considering the land degradation 

neutrality (LDN) target of the United Nation Convention to Combat Desertification (UNCCD) 

(Soussana et al., 2019) and the recently adopted European Green New Deal, which aims to 

bring the EU (27 countries) to climate-neutrality by 2050. 

Although some agricultural practices such as reduced tillage may decrease C outputs from the 

soil through decreased SOC mineralization rates (Haddaway et al., 2016), there is a general 

consensus that the most efficient way to increase SOC stocks is to increase C inputs to the soil 

(Virto et al., 2012; Autret et al., 2016; Fujisaki et al., 2018). Increasing SOC stocks 

independently of the baseline means that additional efforts to increase C inputs will be 

necessary in soils with decreasing trends. The amount of additional C input required to 

increase SOC stocks by 0.1% and 0.4% yr-1 (as targeted by the Mission Board for Soil Health 

and Food, Veerman et al., 2020), relative to the baseline or independently from it, has not 

been quantified yet. 
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In this study, we estimated the amount of C input required to reach the 0.1% and 0.4% SOC 

stock increase targets to 20-30 cm depth, calculated with two different approaches, for 11 

cropland long-term experiments (LTEs) of additional EOM inputs located in France and 

Sweden. We hypothesized that reaching the quantitative target calculated independently of 

the baseline would require higher C inputs relative to the same target calculated against a 

baseline with decreasing SOC stocks. We also hypothesized that the quality of the EOM would 

have an impact on the SOC stock change. We used the largely available data on LTEs with 

EOM treatments as an example that can be expanded to other practices. For other practices 

such as agroforestry systems or cover cropping, however, one should correct the statistical 

relationship between C input and SOC stocks, since the C input quality is not the same as for 

EOM. 

Table 5-1 Characterization of the control treatments at the long-term experiments (LTEs). Mean annual surface 
temperature and precipitation were derived from an hourly global climate dataset at 0.5° (GSWP3 
http://hydro.iis.u-tokyo.ac.jp/GSWP3/). 

Site Coordinates Years of 

experiments 

Initial 

SOC 

stocks 

Carbon input 

from crops 

Mean 

annual 

precipiration 

Mean 

annual 

surface   

temperature 

   Mg C 

ha−1 

Mg C ha−1 

yr−1 

mm yr−1 °C 

Champ Noël 

3 

48.09 

°N, 

1.78 

°W 

1990–2008 40.6 1.29 818.1 12.2 

Colmar 48.11 

°N, 

7.38 °E 

2000–2013 54.3 2.79 1126.7 9.7 

Crécom 3 48.32 

°N, 

3.16 

°W 

1986–2008 62 1.84 1150.1 11.8 

Feucherolles 48.88 

°N, 

1.96 °E 

1998–2013 39.8 2.22 707.3 11.9 

Jeu-les-Bois 46.68 1998–2008 48.5 2.99 869.1 12.2 
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°N, 

1.79 °E 

La Jaillière 2 47.44 

°N, 

0.98 

°W 

1995–2009 32.4 1.59 794.7 12.8 

Le Rheu 1 48.09 

°N, 

1.78 

°W 

1994–2009 36.2 1.31 841.2 12.3 

Le Rheu 2 48.09 

°N, 

1.78 

°W 

1994–2009 36.5 1.03 841.2 12.3 

Ultuna 59.82 

°N, 

17.65 

°E 

1956–2008 41.7 1.03 541.9* 5.7 

Trévarez 48.15 

°N, 

3.76 

°W 

1986–2008 115.3 1.94 1314.5 11.9 

Avrillé 47.50 

°N, 

0.60 

°W 

1983–1991 46.2 2.25 693.8 12 

Mean   50.3 1.84 881.7 11.3 

Median   41.7 1.84 841.2 12 

Minimum   32.4 1.03 541.9 5.7 

Maximum   115.3 2.99 1314.5 12.8 

*From onsite measurements. 
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5.2 MATERIALS AND METHODS 

5.2.1 Experimental sites 

We analyzed SOC stock data from 11 long-term cropland experiments in France and Sweden. 

Each experiment consisted of one control treatment (with or without nitrogen (N) inputs), 

and one or several treatments of EOM addition (i.e. different types of animal manure, green 

compost, sewage sludge, peat and sawdust). The total number of treatments with additional 

EOM was 33, with an average C input from additional organic material of 1.86 Mg C ha-1 yr-1 

(1.46 Mg C ha-1 yr-1 from EOM inputs and 0.40 Mg C ha-1 yr-1 from additional crop residue 

input due to increased crop growth, relative to the control treatment) and a median of 1.84 

Mg C ha-1 yr-1. The duration of the experiments varied between 9 and 53 years, with an 

average of 19 years and a median of 16 years (Table 5-1). The experiments were established 

in the period between 1956 to 2013. EOM inputs were applied at different frequencies and 

quantities and the evolution of SOC stocks (at 20-30 cm depth) over time relative to a control 

treatment without any EOM addition was monitored. Plant inputs to the soil were 

transformed to C input via allometric functions, following the Bolinder method (Bolinder et 

al., 2007) and its adaptation to French cropland experiments from Clivot et al. (2019) (see also 

its application to European cropland experiments in Bruni et al., 2021). The Bolinder method 

uses yields’ measurements and crop-specific coefficients (i.e. the harvest index and the shoot-

to-root ratio), to allocate the C to the aboveground and belowground part of the plant 

(Bolinder et al., 2007). If not specified otherwise, mean annual surface temperature and 

precipitation were derived from an hourly global climate dataset at 0.5˚ (GSWP3 

http://hydro.iis.u-tokyo.ac.jp/GSWP3/). Average annual surface temperature of the 

experiments ranged from 5.7˚ C (in Ultuna) to 12.8˚C (in La Jaillière 2), with an average 11.3˚ 

C surface temperature across the sites (Table 5-1). Mean annual rainfall was 881.7 mm across 

the experiments, with a minimum of 541.9 mm per year in Ultuna and a maximum of 1314.5 

mm per year in Trévarez. The experiments were all under arable use during the study period 

and, most of them, had a long-term arable history (Levavasseur et al. (2020); Clivot et al. 

(2019); Kätterer et al. 2011). All treatments were rainfed. French sites underwent 

conventional tillage, with deep ploughing performed almost every year, in addition to some 

superficial tillage operations (Table S1). At Ultuna, tillage was performed with a spade at 20 
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cm depth. Cropping systems were cereal-dominated rotations (Triticum aestivum, Zea mays, 

Hordeum vulgare and Avena sativa) (Table S1). In particular, three were cereal monocultures 

of silage Zea mays (Champ Noël 3, Le Rheu 1 and Le Rheu 2); four sites had rotations of 

different cereals (Triticum aestivum and silage or grain Zea mays in Crécom 3, Feucherolles, 

La Jaillière 2 and Avrillé); and the other sites rotated cereal crops with root crops (Beta 

vulgaris fodder beet, Brassica napus fodder rape and Brassica napus Swedish turnip), oilseed 

crops (Brassica napus) and silage Zea mays. Straw residue was partially or totally incorporated 

into the soil (Table S1), except in Ultuna, where all aboveground residues were removed. 

Champ Noël 3, Crécom 3, La Jaillière 2, Le Rheu 1 and Trévarez received optimal amounts of 

mineral N fertilizers both in the control and in the EOM treatments, while the other 

experiments did not receive any N inputs. EOM treatments included: cow manure (12 

treatments); 1 treatment where different types of farmyard manure were mixed together; 

compost (6 treatments, including 2 treatments of biowaste compost, 2 treatments of green 

manure mixed with sewage sludge, 1 treatment of household waste and 1 treatment of green 

manure); pig manure (6 treatments, including 2 treatments of composted pig manure and 1 

treatment of pig slurry); poultry manure (3 treatments, including one treatment of composted 

poultry manure); sewage sludge (2 treatments); 1 treatment of straw residue incorporation; 

1 peat treatment; and 1 sawdust treatment. Sources of green manure and straw residue, and 

animal species are specified in Table S1. 

Table 5-2 Soil properties for the minerally unfertilized and fertilized* control treatments at the beginning of 
the experiment. More information on the experiments can be found in Clivot et al. (2019), Kätterer et al. (2011), 
Levavasseur et al. (2020) and Bruni et al. (2021). 

 Sampling depth  Bulk density  Clay Soil C:N pH 

cm  g cm−3  %   

Champ Noël 3* 0–30  1.4  15 9 6.3 

Colmar 0–28  1.3  23 10.5 8.3 

Crécom 3* 0–30  1.4  15 10.2 6.2 

Feucherolles 0–29  1.3  16 9.9 6.7 

Jeu-les-Bois 0–30  1.5  10 9.7 6.3 

La Jaillière 2* 0–30  1.4  21 9 6.8 

Le Rheu 1* 0–30  1.3  16 10 5.8 
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Le Rheu 2 0–30  1.3  14 8.2 6 

Ultuna 0–20  1.4  36 8.8 6.2 

Trévarez* 0–30  1.5  19 9.5 6 

Avrillé 0–30  1.4  18 8.9 6.6 

 

5.2.2 Soil samples 

Soils were sampled between 0-20 and 0-30 cm depth (Table 5-2) in 3 to 4 replicated plots 

(plot sizes for each treatment are listed in Table S1). The SOC stocks were calculated using 

Equation 1 (Poeplau et al., 2017): 

𝑆𝑂𝐶 (𝑀𝑔𝐶 ℎ𝑎−1) = SOC (%) ∙ 𝐵𝐷 (𝑔 𝑐𝑚−3) ∙ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎ (𝑐𝑚) ∙

(1 − 𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑣𝑜𝑙. %/100)), 
(1) 

where SOC (%) is soil organic carbon content and BD is the bulk density (Table 5-2). Multiple 

BD measurements were performed over time at Ultuna, Colmar and Feucherolles. Significant 

changes of BD with time were found for Ultuna and Feucherolles, while BD remained constant 

in Colmar and was assumed to be constant for all other sites (i.e. only one measurement of 

BD was performed). SOC stocks were thus calculated at a fixed soil depth for these sites. Clay 

content varied between 10% and 36%. Soil pH ranged from 5.8 to 8.3 (Table 5-2). 

5.2.3 Statistical analysis 

It is well established that SOC does not accumulate indefinitely but eventually reaches a 

steady-state (i.e. under constant conditions, C inputs and C outputs eventually outbalance 

each other and SOC is approximately stable). Hence, SOC accumulation can be represented 

by an asymptotic curve (Poulton et al., 2018). However, a linear approximation holds well for 

short periods of time (Arrouays et al., 2002). Since we were studying a relatively short-term 

period (i.e. 30 years), we analyzed the simulation of SOC stocks’ evolution in each treatment 

with a linear regression (see Fig. S1) and obtained a coefficient of determination (R2) of 0.59. 

This can be written as Equation 2: 

𝑆𝑂𝐶 = 𝑚 ∙ 𝑡 + 𝑏, (2) 

Where SOC is the soil organic carbon stock in Mg C ha-1, m is the slope coefficient, b the 

intercept, t is time (i.e. the number of years since the beginning of the experiment).  
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We evaluated the effect of total C input on the evolution of SOC stocks, calculated with two 

approaches (T0 and B, see Eqs. 4 and 5). We used a linear mixed effect model, with an 

interaction effect between the quantity and the quality of the total C input. The quality was 

expressed through the C retention coefficient of the exogenous C input, which represents the 

proportion of exogenous C that is incorporated into SOC and is not mineralized within 1 year. 

Values for the C retention coefficient were taken from Levavasseur et al. (2020) and Clivot et 

al. (2019) for each EOM and crop type (Table S1). The authors derived this coefficient by 

optimizing the “h” parameter of the AMG model (Andriulo et al., 1999) in order to fit time 

series of differences in SOC stocks between EOM treatments and controls (Levavasseur et al., 

2020). Thus, the C input quality factor (i.e. the C retention coefficient) expresses numerically 

the quality of the crop species and EOM input of the treatment. Since C input in each 

treatment came from multiple sources with different C retention coefficients (i.e. 

aboveground plant material, belowground plant material and EOM inputs), 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦was 

calculated as the weighted average between the different sources of C input in the treatment. 

We assumed that the explanatory variables, i.e. C input quantity and C retention coefficient 

had fixed effects, while the experimental site was set to have a random effect. This eliminates 

the spatial correlation among treatments carried out at the same site. Model parameters 

were estimated by maximizing an approximation to the likelihood integrated over the random 

effect, as in Equation 3: 

𝑆𝑂𝐶 increase𝑖 (%) = 𝑎0
𝑠𝑖𝑡𝑒 + 𝑎1 ∙ 𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 + 𝑎2 ∙ 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦 + 𝑎3 ∙ 𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ∙

𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦 + ε, 
(3) 

With 𝑖 = 𝑇0 𝑜𝑟 𝐵 (i.e. SOC stock increase calculated with 𝑇0 or B approaches, see subsection 

2.4). And where: 𝑎0
𝑠𝑖𝑡𝑒 is the site-dependent intercept of the regression; 𝑎1 and 𝑎2 are the 

coefficients of the main factors, i.e. the quantity of total C input (𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦) and the C 

retention coefficient (𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦), respectively; 𝑎3 is the coefficient of the interaction effect 

between 𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  and 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦; and ε is the error term of the linear mixed effect model 

(ε~(0, 𝜎2)).  

To test the significance of differences between C input quantities to reach the 0.1% and 0.4% 

targets (calculated with T0 or B approaches) at the experimental sites, one-way ANOVA 

combined with post-hoc tests (Bonferroni) and Student’s t tests were applied. Normal 

distribution of the data was tested with a Shapiro-Wilks normality test. 
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5.2.4 Calculating a 0.1% and 0.4% SOC stock increase target 

The increase of SOC stocks can be calculated 1) relative to the value of the SOC stocks at the 

onset of the study period (i.e. at t0) or 2) relative to a baseline, i.e. the SOC stock trend of a 

control treatment. Assuming that we want to increase SOC stocks by 0.1% or 0.4% each year, 

the first approach (T0) can be written as Equation 4: 

𝑆𝑂𝐶𝑇0
= SOC0

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∙ (1 + target ∙ 𝑛) , (4) 

Where 𝑆𝑂𝐶𝑇0
is the amount of SOC stock targeted by the T0 control approach, SOC0

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is 

the SOC stock in the control treatment at t0, target = 0.001 or 0. 004, for a 0.1% and 0.4% SOC 

stock increase, respectively, and n is the number of years for which the SOC increase is 

estimated. Assuming SOC stocks evolve linearly with time, the second approach (B) to 

calculate a 0.1% or 0.4% SOC stock increase target is equal to Equation 5. 

𝑆𝑂𝐶𝐵  = SOC0
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∙ (1 + (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + target) ∙ 𝑛), (5) 

Where 𝑆𝑂𝐶𝐵  is the target set by the baseline approach,  𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =
𝑚

SOC0
𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 

with m being the slope coefficient of the regression line of the SOC stocks in the control 

treatment (see Eq. 2), For the rest of the study, the predicted SOC stocks will be evaluated 

over 30 years, i.e. n = 30. 

5.3 RESULTS 

5.3.1 Effect of the target calculation approach: two case studies 

We applied the two approaches described above (i.e. Eq. 4 for T0 and Eq. 5 for B) to two case 

study LTEs with very different SOC stock dynamics in their control treatment, to illustrate how 

different SOC stock increase targets are set. The first case study was the 23 years old 

experiment Crécom 3, where SOC stocks in the first 30 cm are approximately at steady-state 

(Figure 5-1.A) (i.e. over time, fresh C inputs to the soil compensate SOC losses by 

decomposition and SOC stocks can be approximated with a constant line). This site, located 

in northwestern France, has a control treatment with an annual SOC stock change of -0.06 % 

(correlation coefficient of the regression line between SOC stocks and time, R2 = 0.04). The 

slope coefficient of the correlation between SOC stocks and time in the control treatment was 

-0.038 ± 0.125 (mean ± standard error, SE) (Table 5-3). The second site Feucherolles was a 

16 years old northcentral French experiment. At the control treatment, SOC stocks at 20 cm 
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depth were decreasing with a strong relative annual change of -0.65 % (R2 = 0.65) (Figure 

5-1.B).  

5.3.2 The importance of considering the baseline  

In Figure 5-1, we illustrate the theoretical SOC stock increase imposed by a 0.4% target 

calculated with T0 (Eq. 4) (blue colored area) and B (Eq. 5) (orange colored area). Outcomes 

are different whether the control treatment’s trend is at steady-state (Figure 5-1.A) or not 

(Figure 5-1.B). If SOC stocks in the control treatment are approximately stable (e.g. Crécom 

3), calculating the 0.4% increase with Eqs. 4 or 5 sets similar targets of SOC stock increases. In 

both cases, the SOC stocks after 30 years of implementation of the storing practice has to be 

higher than their initial SOC stock level. If SOC stocks in the control treatment are not at 

steady-state (Figure 5-1.B), the two approaches result in different SOC stock increase targets. 

If SOC stocks are decreasing, we can see from Figure 5-1.B that the target based on B allows 

increasing SOC stocks relative to the control treatment. However, SOC stocks are still 

decreasing (though at a weaker rate than the baseline, since the SOC stock target increase 

was set against the baseline).  

To summarize, B (relative to the baseline) sets fixed targets for soils with decreasing, stable 

or increasing SOC stocks, but does not guarantee to have a net increase of SOC stocks after n 

years. On the contrary, T0 (relative to SOC stocks at t0) imposes both stable and decreasing 

SOC stocks to increase (accruing SOC stocks have to increase only if their rate of increase is 

lower than the target rate). However, in this case, soils with decreasing SOC stocks have to 

increase at a much higher rate. Note that we showed the theoretical results for two case 

studies for illustrative purposes. However, these results are generalizable for any soil with 

stable or decreasing SOC stocks that can be approximated with a linear regression (Appendix 

A). 
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Figure 5-1 Theoretical SOC stock evolution needed to reach an average annual 0.4% SOC stock increase for 30 
years, based on two calculation methods (T0 and B, calculated with Eq. 4 and Eq. 5, respectively) for (1) Crécom 
3 and (2) Feucherolles (detailed demonstration available in Supplementary Material). Observed SOC stocks (at 
0-30 cm depth) and predicted SOC stocks (with a linear regression) for the control treatments are normalized 
against initial SOC stocks.  

Table 5-3 Predicted coefficients of the linear regression of soil organic carbon (SOC) stock change in 30 cm depth 
with time for the Crécom 3 and Feucherolles control treatments. 

 

 

Predicted 

coefficients 

Standard 

Error t statistics p value 

Confidence 

interval (95%) 

Crécom 3 Intercept 60.3944 1.897 31.831 0.001 52.231 68.558 

slope -0.0385 0.125 -0.308 0.787 -0.577 0.5 

Feucherolles Intercept 38.7868 0.658 58.991 0 37.178 40.396 

slope -0.2553 0.076 -3.349 0.015 -0.442 -0.069 

 

5.3.3 Temporal changes in topsoil organic carbon stocks at the long-term experiments  

Concerning all the 11 LTEs, in the control treatments SOC stocks were decreasing by 0.98 ± 

0.47 % yr-1 (mean ± standard deviation, SD) on average (i.e. -0.44 ± 0.20 Mg C ha-1 yr-1, mean 

± SD). The average R2 of the linear regressions between SOC stocks and time in the control 

treatments was 0.64. The SOC stocks in the additional C input treatments were increasing by 

0.17 ± 1.35 % yr-1 on average (i.e. 0.07 ± 0.56 Mg C ha-1 yr-1, R2 = 0.57). Predicted SOC stocks 

after 30 years are shown in Table 5-4, together with the 0.1% and 0.4% SOC stock targets 
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calculated with Eq. 4 (T0) and Eq. 5 (B). Overall, almost 50% of treatments increased SOC 

stocks by at least 0.1%, compared to the initial level of SOC stock (T0) and more than 90% of 

treatments increased SOC stocks by at least 0.1% compared to the baseline (B) (Table 5-4). 

33% of C input treatments increased SOC stocks by at least 0.4% yr-1 (T0) and 76% of 

treatments increased SOC stocks by at least 0.4% yr-1 (B) (Table 5-4). Since SOC stocks in all 

control treatments were decreasing or approximately stable, treatments that met the T0 

target also reached target B. Overall, almost 10% of EOM treatments did not reach any 

increase target. 

 



 

 

Table 5-4 Predicted soil organic carbon (SOC) stocks (Mg C ha-1) of the experimental sites. t0 and t30 indicate the 1st and the 30th year of the prediction, respectively. T1, T2, …, 
T6 indicate the EOM treatments’ identification code for each site (detailed description of the EOM treatments are provided in Table S1). The target SOC stock level was 
calculated for a 0.1% and 0.4% average annual increase over 30 years, based on approach T0 and B. 

Sites 

SOC 

stock t0 

control 

treatmen

t 

SOC 

stock t30 

control 

treatmen

t 

SOC 

stock 

t30 at 

T1 

SOC 

stock 

t30 at 

T2 

SOC 

stock 

t30 at 

T3 

SOC 

stock 

t30 at 

T4 

SOC 

stock 

t30 at 

T5 

SOC 

stock 

t30 at 

T6 

SOC 

stock 

0.1%T0 

target 

SOC 

stock 

0.1% B 

target 

SOC 

stock 

0.4%T0 

target 

SOC 

stock 

0.4% B 

target 

Champ Noël 3 39.2 28.7 30.5      40.4 29.5 43.9 33.0 

Colmar 53.4 41.3 56.4 44.2 51.2 55.9 53.2  55.0 42.5 59.8 47.3 

Crécom 3 60.4 59.3 69.7 37.0     62.2 61.1 67.6 66.5 

Feucherolles 38.8 31.4 81.1 81.2 62.8 59.7   40.0 32.3 43.4 35.8 

Jeu-les-Bois 48.5 29.8 62.7 58.7 52.7    50.0 30.6 54.4 34.9 

La Jaillière 2 33.1 19.4 25.3 22.8 17.5 26.8 24.4 18.4 34.1 19.9 37.1 22.9 
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Le Rheu 1 38.2 21.5 25.2      39.4 22.1 42.8 25.5 

Le Rheu 2 37.4 18.7 23.7 30.2     38.5 19.2 41.9 22.5 

Ultuna 40.9 34.8 43.0 43.4 56.4 47.6 44.7 50.3 42.2 35.8 45.8 39.5 

Trévarez 108.2 87.6 95.1 100.3     111.4 90.1 121.2 99.8 



 

 

Figure 5-2 Correlation between annual soil organic carbon (SOC) stock increase (%) (at 20-30 cm depth) and 
additional C input in the EOM treatments (Mg C ha-1 yr-1). Different colors indicate whether the 0.4% SOC stock 
increase target was reached, based on the different approaches used to calculate the target (blue indicates that 
both 0.4% T0 and 0.4% B targets were reached, orange indicates that 0.4% B was reached and green indicates 
that no 0.4% target was reached). Different symbols indicate whether the 0.1% SOC stock increase target was 
reached, based on the different approaches used (squares indicate that both 0.1% T0 and 0.1% B targets were 
reached, inverse triangles indicate that 0.1% Bwas reached and crosses indicate that no target was reached). 
SOC stock increase was calculated relative to the first year of experiment in the control treatment. Additional C 
input consisted of EOM inputs and additional C from increased crop growth, relative to the control treatment. 
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Table 5-5 Amount of additional carbon (C) input (Mg C ha-1 yr-1) (relative to the C input in the control treatment) 
that increased soil organic carbon (SOC) stocks by 0.1% and 0.4% yr-1 on average for 30 years, according to T0 
and B. Additional C input refers to exogenous organic matter (EOM) inputs plus C input from increased crop 
growth relative to the control treatment. 

Statistics Additional C input Target 

 

 0.1% 0.4% 

 

 T0 B Not reached T0 B Not reached 

Min Mg C ha-1 yr-1 1.0 0.62 0.60 1.0 0.75 0.6 

Max Mg C ha-1 yr-1 3.68 2.49 0.74 3.68 2.55 1.66 

Mean Mg C ha-1 yr-1 2.51 1.38 0.66 2.61 1.77 0.99 

SD Mg C ha-1 yr-1 0.19 0.15 0.03 0.27 0.17 0.14 

 

 

Figure 5-3 Additional C input (Mg C ha-1 yr-1) relative to the control treatment for groups of treatments where: 
(1) 0.1% T0 and B targets were reached or not, (2) 0.4% T0 and B targets were reached or not. Boxes extend from 
the lower to the upper quartile values of the data, with a line at the median and a spot at the mean. Whiskers 
show the range of the data and points past the end of the whiskers are flier points. Groups within the same 
panel with different lowercase letters are significantly different (p ≤ 0.05) from each other. 
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5.3.4 Amount of additional carbon input needed to reach the 0.1% and 0.4% soil organic 

carbon stocks increase targets 

The increase in SOC stocks at 20-30 cm depth was positively correlated to the additional C 

input from EOM and increased crop growth (R2 = 0.71) (Figure 5-2). Figure 5-2 shows the 

relationship between additional C input and SOC stock increase, highlighting the levels of C 

input in the treatments where the 0.1% and 0.4% targets were reached, according to T0 and 

B. Table 5-5 shows the additional C input in the treatments where both the 0.1% and 0.4% 

increase target were reached, or not. We found that the amount of additional C in the group 

of treatments that reached a 0.1% T0 target was significantly different (p ≤ 0.05) from the 

group that reached a 0.1% B target (Figure 5-3). However, the average amount of additional 

C input in the group of treatments that reached a 0.1% B target was not significantly different 

from the average amount of additional C in the group of treatments where no 0.1% target 

was reached. Concerning the 0.4% increase target, all groups of treatments were different 

from each other at a significant level of 0.05 (Figure 5-3.B). Treatments where the 0.4% T0 

target was reached, had between 1.0 and 3.68 Mg C ha-1yr-1 inputs (EOM plus additional 

inputs due to enhanced crop growth relative to the control treatment), with an average of 

2.61 ± 0.27 Mg C ha-1yr-1 (mean ± SE) (Table 5-5). To reach a 0.1% T0 target, 2.51 ± 0.19 Mg 

C ha-1yr-1 were sufficient. Treatments that reached the 0.4% B target had 1.77 ± 0.17 Mg C 

ha-1yr-1 inputs on average, while treatments that reached the 0.1% B target had 1.38 ± 0.15 

Mg C ha-1yr-1 inputs. Treatments that reached the B target had a high variability of C input, 

i.e. between 0.75 and 2.55 Mg C ha-1yr-1 for a 0.4% B target and between 0.62 and 2.49 Mg C 

ha-1yr-1 for a 0.1% B target (Table 5-5). Treatments where no target was reached had 0.66 ± 

0.03 Mg C ha-1yr-1 inputs on average. C input in these treatments ranged between 0.60 and 

0.74 Mg C ha-1 annually (Table 5-5). Considering EOM only, the necessary average C input was: 

1.95 ± 0.10 Mg C ha-1yr-1 to reach a 0.4% T0 target, 1.84 ± 0.11 Mg C ha-1yr-1 to reach a 0.1% 

T0 target, 1.38 ± 0.11 to reach a 0.4% B target, and 1.16 ± 0.09 to reach a 0.1% B target. 
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Table 5-6 Results of the linear mixed effect model of Eq. 3. 

 SOC stock variation (T0) SOC stock variation (B) 

 

Predicted 

coefficients 

Standard 

error p value 

Predicted 

coefficients 

Standard 

error p value 

Intercept 3.51 1.79 0.059 2.57 1.84 0.1726 

𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦   -14.64 4.65 0.0037 -9.03 4.80 0.0697 

𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦   -1.82 0.58 0.0039 -1.24 0.60 0.0484 

Interaction effect 6.19 1.48 0.0002 4.49 1.53 0.0064 
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Figure 5-4 Relationship between soil organic carbon (SOC) stock annual variation (%) and 1) total carbon (C) 
input (Mg C ha-1 yr-1) (panel (1) and (3)); 2) retained C input (Mg C ha-1 yr-1)  panel (2) and (4)). Retained C inputs 
were calculated as the total C input, multiplied by the C retention coeffcient for each C input quality (Table S1). 
The SOC stock annual variation was calculated with T0 (panel (1) and (2)) and with B (panel (3) and (4)). 
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5.3.5 Effect of the quality of carbon input on the variation of soil organic carbon stocks 

We found that the quantity of C input and the quality of C input (i.e. the C retention 

coefficient) both had an effect on the increase of SOC stocks (p ≤ 0.05), when this was 

calculated relative to t0 (T0) (Table 5-6). We also found that there was a significant interaction 

effect between 𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  and 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦, meaning that the effect of 𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  depended on the 

value of the 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦  and vice versa (Table 5-6). This interaction was also significant when the 

SOC stock increase was calculated relative to the baseline in the control treatment (B). But in 

this case, while the C input quantity had a significant effect, no main significant effect of the 

C retention coefficient was found (Table 5-6). Figure 5-4 shows the relationship between 

annual SOC stock variation and: 1) total C input in all treatments (Figure 5-4.A and Figure 

5-4.C) and 2) total C input multiplied by the C retention coefficient in all treatments (Figure 

5-4.B and Figure 5-4.D). The annual SOC stock variation was calculated against the initial SOC 

stock in the control treatment or against the baseline. We can see that, when the C retention 

coefficient is taken into account, the R2 between annual SOC stock variation and C input 

slightly improves (from 0.55 to 0.69 when the variation of SOC stocks is calculated with T0 and 

from 0.51 to 0.67 when the variation of SOC stocks is calculated with B). 

5.4 DISCUSSION 

5.4.1 Reaching targets of soil organic carbon stock increase to 20-30 cm depth 

We compared two approaches to calculate the increase of SOC stocks. One where the control 

was the SOC stock at the onset of the experiment (Eq. 4) and one where the control was the 

trend of the SOC stocks in the control treatment (Eq. 5). Both can be used to set quantitative 

targets for the implementation of SOC stock increasing practices, in the context of result-

based incentives. The two case studies of Crécom 3 and Feucherolles illustrated that the two 

approaches set different targets, depending on the initial state of SOC stocks due to previous 

practices. In particular, if SOC stocks are declining in the control treatment, a target calculated 

against a baseline (B), might not be sufficient to induce a net positive SOC storage after 

implementation of the improved practice. In contrast, the T0 target will guarantee decreasing 

SOC stocks to reverse their trend. However, reaching such target requires the implementation 

of practices that supply sufficient levels of additional C input (e.g. from EOM and crop residue 

inputs). 
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Many authors have shown that adding EOM inputs to the soil increases SOC stocks (e.g. 

Maillard and Angers, 2014; Li et al., 2021). In the 11 LTEs studied, the majority of EOM input 

treatments increased SOC stocks by 0.1% and 0.4% yr-1 on average for 30 years, relative to 

the baseline situation where no additional EOM was added to the soil (target B). However, 

we found that the increase of SOC stocks from additional EOM treatments was not sufficient 

to reach a 0.1% or 0.4% SOC stock target relative to the initial SOC stocks after 30 years (target 

T0), unless very high amounts of C input were added to the soil. That is, 2.51 Mg C ha-1 yr-1 for 

a 0.1% T0 target and 2.61 Mg C ha-1 yr-1 for a 0.4% T0 target over 30 years, considering total 

additional C input, and 1.84 and 1.95 ± 0.11 Mg C ha-1 yr-1, respectively, considering EOM 

inputs only. This is in line with Poulton et al. (2018), who found that with similar high amounts 

of additional C input, SOC stocks increased more than 0.4% yr-1 relative to their value at t0 at 

several LTEs in the UK.  

Additionally, we found that the quality of the C input, as expressed by its C retention 

coefficient, had a main significant effect on the SOC stocks’ increase only when this was 

calculated against t0.  This is probably due to the lower target set by B, and because almost 

all EOM input treatments increased SOC stocks compared to a reference situation where SOC 

stocks were decreasing (Table 5-4). However, we found that the interaction effect between C 

input quantity and quality was significant for both calculation approaches. This means that 

not only the quantity but also the quality of the C input has a significant effect on the SOC 

stock increase. The relevance of adequately determining the mineralization and C retention 

coefficients of EOMs for accurate estimations of their long-term effects on soil fertility and 

SOC stocks is well known, as recently summarized by Levavasseur et al. (2021). The work from 

Levavasseur et al. (2021) provides evidence from controlled laboratory experiments that 

some sources of EOM after application remain in soils in higher proportions over time. For 

example, they found that composts generally had a lower C mineralization rate compared to 

other EOMs, such as sewage sludges and animal residues (e.g. animal manures and anaerobic 

digestates) (Levavasseur et al., 2021). This can be expected since the composting process 

converts biodegradable organic matter into more stable organic materials.  

The evolution of the retained C input with time (i.e. the amount of C input multiplied by its 

associated C retention coefficient over time), together with the evolution of the measured 

and predicted SOC stocks over the experiments’ length can be found in Fig. S2 for each 

treatment. Because the number of SOC stock measures in time was small in the majority of 
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the treatments, it was not possible to assess correctly the cross-correlation between retained 

C input and measured SOC stocks with time. Using the predicted SOC stocks (see Eq. 2) instead 

of measured SOC stocks, we found that the average R2 between retained C input and 

predicted SOC stocks was 0.17. While our results suggested that the average SOC stock 

change rates depended on the quality of the C input, more experiments with frequent SOC 

stock measures would be needed to assess the temporal effect of the quality of C input on 

SOC stocks. More frequent SOC stock measures would also allow to predict SOC stock trends 

with more reliability and avoid overfitting the data. This was the case in Crécom 3 T2 and Jeu-

les-Bois treatments, where only two measures of SOC stocks with time were available. 

Furthermore, a higher number of treatments with similar qualities of C input would be 

necessary to assess the effect of “categories” of C inputs (e.g. cow manures, composted cow 

manures, sewage sludges, etc.) on SOC stocks. 

5.4.2 Reaching the 0.1% and 0.4% targets in European croplands 

The Mission Board for Soil Health and Food (Veerman et al., 2020) reported that 23% of 

European soils have low SOC concentration and declining SOC stocks in the top 20 cm, almost 

all being under agricultural use. Panagos et al. (2020) estimated that arable land has 

experienced a loss of SOC stocks, at the same depth, of about 0.06% between 2009/2012 and 

2015 (LUCAS JRC). This loss amounts to 0.5% yr-1 in soils that were under cropland at both 

survey dates (i.e. 2009/2012 and 2015), with a large variability of the SOC stock variation 

across the database (Veerman et al., 2020; Hiederer, 2018). In the LTEs analyzed here, SOC 

stocks in the control treatments (including both fertilized and unfertilized controls) were 

decreasing on average by 0.98 ± 0.47 % yr-1, which is similar to the average situation of SOC 

stocks in European cropland soils. The Mission Board for Soil Health and Food aims to improve 

the health of 75% European soils by 2030. In particular, the current SOC losses in cropland 

soils are expected by the Mission Board for Soil Health and Food to be reversed to an increase 

of 0.1 to 0.4% yr-1 by 2030, compared to current SOC levels. This is equivalent to setting an 

increase target calculated against t0 (T0). Here, we showed that at the plot scale, the necessary 

increase of C input depends both on the objectives and calculation method used, and on the 

quality of the C input. Although the control treatments in the 11 LTEs analyzed have similar 

SOC stock trends as the average cropland soils in Europe, observations from two European 

countries cannot be extrapolated to entire Europe. However, our analyses show that, even 
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considering relatively similar pedo-climatic conditions, the amounts of C input required to 

reach quantitative targets of SOC stock increase were significantly different from each other, 

depending on the approach used to calculate these targets. These results are important for 

policy makers who may want to implement adequate subsidies, depending on specific soil 

conditions and targets aimed.  

It is important to note that we used EOM treatments as a study case since we had access to 

data from 11 LTEs where SOC stocks (at 20-30 cm depth) and C input were monitored over 9 

to 53 years. However, large scale additional increases in SOC stocks through EOM 

management in Europe are unlikely because EOM are already applied to soils (Zhang et al., 

2017; Foged et al., 2011; Soussana et al., 2019). Moreover, although EOM inputs improve soil 

fertility and soil health, they are not per se a climate mitigation measure. In fact, adding EOM 

inputs to the soil does not sequester additional CO2 from the atmosphere but it redistributes 

spatially C that is already fixed.  

In the experiments analyzed, EOM inputs were spread on the soil surface. Hence, the major 

effects on SOC stocks can be expected in topsoil layers. Although there might be an impact of 

the addition of EOM inputs at deeper soil layers because of advection or bioturbation 

processes, deeper soil layers were not considered because data on the biological activity or 

on deeper SOC were not available. 

Our results, together with the recent work from Levavasseur et al. (2021), show that the 

quality of the additional C input is critical to increase SOC stocks. Strategies to enhance SOC 

stocks should increase the quality of the EOM brought to soils, as well as redistributing EOMs 

from lands with high EOM inputs to croplands that do not have sufficient EOMs (Aillery et al., 

2018; Asai et al., 2014). The cost associated to the transportation of EOMs is often a limit to 

the distance at which they are commuted. A study from Asai et al. (2014) reported that the 

maximum distance covered from the majority of farmers involved in manure exchange in 

Denmark ranged between 1 and 5 km. Although the distance was higher for organic farmers, 

the majority of them still hauled less than 10 km. Also, transporting EOM induces GHG 

emissions that might offset the benefits of increased SOC stocks. 

Our results show that SOC stock increase in cropland soils might be feasible using sufficient 

amounts of C input (i.e. between 1.38 Mg C ha-1 yr-1 and 2.71 Mg C ha-1 yr-1 according to the 

11 LTEs analyzed, depending on the SOC stock increase target) and supposing that SOC 

variations are linearly controlled by C input. Such linear relationships remain to be established 
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for other agricultural practices that provide additional C input to the soil, such as cover crops, 

improved crop rotations, temporary leys and agroforestry (Soussana et al. 2019). For instance, 

Cardinael et al. (2018) estimated that, in an agroforestry system in Southern France, 2.73 

additional Mg C ha-1 yr-1  from vegetation, litterfall, and crop residues increased SOC stocks 

by 0.45% yr-1 for 18 years up to 30 cm depth, compared to an agricultural control treatment. 

This is similar to our results with EOM treatments in the first 20-30 cm depth, suggesting that 

a 0.4% target might be feasible with the implementation of other practices, such as 

agroforestry systems. To predict with more confidence the potential of different qualities of 

C input to increase SOC stocks, other LTEs with such practices should be considered. For 

example, Wiesmeier et al. (2020) identified cover cropping and agroforestry systems as the 

practices with the highest potential to increase SOC stocks up to 40 cm depth in Bavaria, 

compared to current land management. However, they estimated that a 0.4% SOC stock 

increase target was not possible. 

5.5 CONCLUSION 

In the 11 cropland LTEs analyzed, reaching quantitative targets of SOC stock increase required 

significantly different amounts of additional C input, whether the targets were calculated 

against the initial level of SOC stocks or against a baseline practice (i.e. a control treatment 

with or without mineral fertilizer inputs and without any EOM, where SOC stocks were mainly 

decreasing). Incentives to implement agricultural practices that increase SOC stocks should 

take into consideration that higher C input are required for soils with decreasing SOC stocks, 

if quantitative targets of SOC stock increase are calculated regardless of the current SOC stock 

trends. Since EOM inputs are already widely applied in European croplands, future works 

should analyze the effect of C input on SOC stocks in LTEs, considering the implementation of 

other practices, such as agroforestry systems and cover cropping. Strategies to implement a 

portfolio of agricultural practices that allow increasing SOC stocks should be considered to 

reach the Mission Board for Soil Health and Food’s targets by 2030. 

5.6 APPENDIX A: GENERALIZATION OF THE TARGETS’ COMPARISON 

Demonstration that T0 target is always higher than B target if SOC stocks in a control 

treatment are decreasing and approximated with a linear regression 
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Imagine that a control treatment can be approximated by a linear regression. Then, it can be 

written as Equation A1: 

SOC𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑚 ∗ 𝑡 + SOC0
𝑐𝑜𝑛𝑡𝑟𝑜𝑙         (A1) 

Where: SOC𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are the soil organic carbon stocks in the control treatment, 𝑡 is time (i.e. 

the number of years since the beginning of the experiment), 𝑚 is the slope of the regression 

line and SOC0
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are the SOC stocks at t = 0. 

The relative slope (i.e. the slope of the SOC stocks, relative to the first year of SOC stocks in 

the control treatment) can be written as Equation A2: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =
𝑚

SOC0
𝑐𝑜𝑛𝑡𝑟𝑜𝑙         (A2) 

If we suppose that the control treatment has a decreasing SOC stock trend, this means that 

the slope (𝑚) is negative, hence the 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is negative too. 

From Eqs. 4 and 5 we derive the targets set, based on T0 (i.e. 𝑆𝑂𝐶𝑇0
) and B (i.e. 𝑆𝑂𝐶𝐵), 

respectively. We calculate the difference between 𝑆𝑂𝐶𝑇0
 and 𝑆𝑂𝐶𝐵  (𝑆𝑂𝐶𝑇0

-𝑆𝑂𝐶𝐵). That is, 

the difference between Eq. 4 and Eq. 5. With a few simple computations, we derive Equation 

A3: 

𝑆𝑂𝐶𝑇0
− 𝑆𝑂𝐶𝐵 =  − SOC0

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∙ 𝑛 ∙ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙    (A3) 

Since SOC0
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 0, 𝑛 > 0 and 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙 < 0, 𝑆𝑂𝐶𝑇0

− 𝑆𝑂𝐶𝐵 > 0. Hence, 

𝑆𝑂𝐶𝑇0
> 𝑆𝑂𝐶𝐵 . 

Similarly, we can demonstrate that T0 target is equal to B target if SOC stocks in the control 

treatment are at steady-state and approximated with a linear regression. 

If SOC stocks are at steady-state, 𝑚 = 0. Hence, 𝑆𝑂𝐶𝑇0
 = 𝑆𝑂𝐶𝐵 . 
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5.8 SUPPLEMENTARY MATERIAL 

 

Supplementary Figure 1 Linear regression of the exogenous organic matter (T1 to T6) and control treatments 

(T0) of the long-term experimental sites. Black spots indicate measured SOC stocks and red solid lines indicate 

the predicted linear regression. 
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Supplementary Figure 2 Measured and predicted SOC stocks with time for each treatment over the experiment 

length and retained C input over time. Retained C inputs (from crop residues and EOM) were calculated as the 

amount of C input, multiplied by its C retention coefficient (Table S1)  



 

Supplementary Table 1 Agronomic information on the experiments. 

Site 

Treatment 

name 

Plot 

size 

Control

/EOM 

type 

Species 

name 

Crop 

rotations

1 

Crops 

botanical 

names 

Percentage 

of 

experiments' 

length for 

which straw 

residue was 

exported 

Maximal 

tillage 

depth2 

Carbon 

retention 

coefficient 

abovegroun

d crop 

Carbon 

retention 

coefficient 

belowgrou

nd crop 

Carbon 

retention 

coefficient 

EOM 

inputs 

    m2         % cm       

Champ 

Noel 3 

(CHNO3) T0 150 Control 
 

sM Zea mays 100 25 0.23 0.40 
 

 
T1 150 

Pig 

slurry 

Sus 

domesti

cus sM Zea mays 100 25 0.23 0.40 0.15 

Colmar 

(COL) T0 90 Control 
 

wW/Mg/

sB/S 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare, 

Beta 

vulgaris 0 28 0.24 0.40 
 

 
T1 90 

Green 

waste 
 

wW/Mg/

sB/S 

Triticum 

aestivum, 0 28 0.24 0.40 0.83 
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and 

biowast

e 

compos

t 

Zea mays, 

Hordeum 

vulgare, 

Beta 

vulgaris 

 
T2 90 

Urban 

sludges 
 

wW/Mg/

sB/S 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare, 

Beta 

vulgaris 0 28 0.24 0.40 0.54 

 
T3 90 

Compos

ted 

Cattle 

manure 

Bos 

taurus 

wW/Mg/

sB/S 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare, 

Beta 

vulgaris 0 28 0.24 0.40 0.61 

 
T4 90 

Green 

waste 

compos

t 
 

wW/Mg/

sB/S 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare, 0 28 0.24 0.40 0.65 
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Beta 

vulgaris 

 
T5 90 

Cattle 

manure 

Bos 

taurus 

wW/Mg/

sB/S 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare, 

Beta 

vulgaris 0 28 0.24 0.40 0.65 

Crécom 

(CREC3) T0 130 Control 
 

wW/sM 

Triticum 

aestivum, 

Zea mays 100 30 0.22 0.40 
 

 
T1 130 

Cattle 

manure 

Bos 

taurus wW/sM 

Triticum 

aestivum, 

Zea mays 100 30 0.22 0.40 0.52 

 
T2 130 

Poultry 

manure 

Gallus 

gallus 

domesti

cus wW/sM 

Triticum 

aestivum, 

Zea mays 100 30 0.22 0.40 0.40 

Feucheroll

es (FEU) T0 450 Control 
 

wW/Mg/

wB 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare3 56 29 0.22 0.40 
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T1 450 

Biowast

e and 

green 

waste 

compos

t 
 

wW/Mg/ 

wB 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare3 56 29 0.22 0.40 0.83 

 
T2 450 

Green 

waste 

compos

t 
 

wW/Mg/ 

wB 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare3 56 29 0.22 0.40 0.65 

 
T3 450 

Cattle 

manure 

Bos 

taurus 

wW/Mg/ 

wB 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare3 56 29 0.22 0.40 0.65 

 
T4 450 

Municip

al solid 

waste 

compos

t 
 

wW/Mg/ 

wB 

Triticum 

aestivum, 

Zea mays, 

Hordeum 

vulgare3 56 29 0.22 0.40 0.53 

Jeu-les-

Bois 

(JEU1) T0 72 Control 
 

wB/R/w

W 

Triticum 

aestivum, 

Brassica 55 30 0.22 0.40 
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napus L., 

Hordeum 

vulgare 

 
T1 144 

Compos

ted 

Cattle 

manure 

Bos 

taurus 

wB/R/w

W 

Triticum 

aestivum, 

Brassica 

napus L., 

Hordeum 

vulgare 55 30 0.22 0.40 0.61 

 
T2 144 

Compos

ted 

Cattle 

manure 

Bos 

taurus 

wB/R/w

W 

Triticum 

aestivum, 

Brassica 

napus L., 

Hordeum 

vulgare 55 30 0.22 0.40 0.61 

 
T3 144 

Cattle 

manure 

Bos 

taurus 

wB/R/w

W 

Triticum 

aestivum, 

Brassica 

napus L., 

Hordeum 

vulgare 55 30 0.22 0.40 0.52 

La Jaillère 

2 (LAJA2) T0 70 Control 
 

sM/wW 

Triticum 

aestivum, 

Zea mays, 93 22 0.23 0.40 
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Brassica 

napus L. 

 
T1 70 

Compos

ted 

Cattle 

manure 

Bos 

taurus sM/wW 

Triticum 

aestivum, 

Zea mays, 

Brassica 

napus L. 93 22 0.23 0.40 0.61 

 
T2 70 

Compos

ted Pig 

manure 

Sus 

domesti

cus sM/wW 

Triticum 

aestivum, 

Zea mays, 

Brassica 

napus L. 93 22 0.23 0.40 0.61 

 
T3 70 

Compos

ted 

Poultry 

manure 

Gallus 

gallus 

domesti

cus sM/wW 

Triticum 

aestivum, 

Zea mays, 

Brassica 

napus L. 93 22 0.23 0.40 0.61 

 
T4 70 

Cattle 

manure 

Bos 

taurus sM/wW 

Triticum 

aestivum, 

Zea mays, 

Brassica 

napus L. 93 22 0.23 0.40 0.52 
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T5 70 

Pig 

manure 

Sus 

domesti

cus sM/wW 

Triticum 

aestivum, 

Zea mays, 

Brassica 

napus L. 93 22 0.23 0.40 0.53 

 
T6 70 

Poultry 

manure 

Gallus 

gallus 

domesti

cus sM/wW 

Triticum 

aestivum, 

Zea mays, 

Brassica 

napus L. 93 22 0.23 0.40 0.40 

Le Rheu 1 

(RHEU1) T0 60 Control 
 

sM Zea mays 100 30 0.23 0.40 
 

 
T1 60 

Compos

ted 

Cattle 

manure 

Bos 

taurus sM Zea mays 100 30 0.23 0.40 0.61 

Le Rheu 2 

(RHEU2) T0 60 control 
 

sM Zea mays 100 30 0.23 0.40 
 

 
T1 60 

Compos

ted Pig 

manure 

Sus 

domesti

cus sM Zea mays 100 30 0.23 0.40 0.61 

 
T2 60 

Pig 

manure 

Sus 

domesti

cus sM Zea mays 100 30 0.23 0.40 0.40 
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Ultuna 

(ULTU) T0 4 Control 
 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 

mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 100 20 0.23 0.40 
 

 
T1 4 

Straw 

residue 

Cereal 

straw 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 100 20 0.23 0.40 0.23 
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mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 

 
T2 4 

Green 

manure 

Grass 

hay 

(differe

nt 

species) 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 

mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 100 20 0.23 0.40 0.76 
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T3 4 Peat 

 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 

mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 100 20 0.23 0.40 0.93 

 
T4 4 

Farmyar

d 

manure 

Bos 

taurus 

and 

straw 

residue 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 100 20 0.23 0.40 0.52 
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mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 

 
T5 4 

Sawdus

t 

Tree 

secies 

(not 

specifie

d) 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 

mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 100 20 0.23 0.40 0.45 
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T6 4 

Sewage 

sludge 
 

O/sT/Mu

/sW/sB/F

b/OsR/F

R/M 

Avena 

sativa, 

Brassica 

napus, 

Sinapis 

alba and 

Brassica 

nigra 

mixture4, 

Triticum 

aestivum, 

Hordeum 

vulgare, 

Beta 

vulgaris, 

Zea Mays5 100 20 0.23 0.40 0.54 

Trévarez 

(TREV1) T0 156 Control 
 

RG/Mg/

wW/sM 

Triticum 

aestivum, 

Zea mays, 

Lolium 

perenne L. 100 30 0.23 0.40 
 

 
T1 156 

Cattle 

manure 

Bos 

taurus 

RG/Mg/

wW/sM 

Triticum 

aestivum, 

Zea mays, 100 30 0.23 0.40 0.52 
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Lolium 

perenne L. 

 
T2 156 

Pig 

manure 

Sus 

domesti

cus 

RG/Mg/

wW/sM 

Triticum 

aestivum, 

Zea mays, 

Lolium 

perenne L. 100 30 0.23 0.40 0.53 

Avrillé 

(AVRI) T0 360 Control 
 

wW/sM 

Triticum 

aestivum, 

Zea mays, 

Lolium 

perenne L. 78 30 0.23 0.40 
 

 
T1 360 

Cattle 

manure 

Bos 

taurus wW/sM 

Triticum 

aestivum, 

Zea mays 78 25 0.23 0.40 0.52 

1Rotations legend: M = maize / wM = winter maize / sM = silage maize / Mg = maize grain / gM = green maize / W = wheat / wW = winter wheat / sW = spring 

wheat / B = barley / wB = winter barley / sB = spring barley / O = Oats / P = potato / S = sugar beet / R = rapeseed / Sf = sunflower / sT = Swedish turnip / Mu 

= mustard / Fb = fodder beet / OsR = oilseed rape / FR = fodder rape / RG = ray grass / wR = winter rye / Oflax = oil flax / fPea = fodder peas / Pea = peas 

2For Ultuna, tillage depth (cm) 

3 Winter Barley (Hordeum vulgare) only in 2007 

4 Most likely hypothesis on the crop species for mustard 

5 Zea mays grown every year since 2000 to get a 13C signal in SOM 



 

Supplementary Table 2 Annual average CO2 fluxes (Mg CO2eq ha-1 yr-1), calculated from the annual average SOC 

stock variation in the control treatments, and potential annual average CO2 fluxes if the SOC stock increase 

targets (0.1% T0, 0.1% B, 0.4% T0, and 0.4% B) are reached implementing CO2 storing practices. Negative values 

represent net CO2 emissions from the soil to the atmosphere, while positive values represent potential CO2 

storage. 

 Annual average CO2 fluxes 

 Mg CO2eq ha-1 yr-1 

 
Control 

treatment 

Target T0 

0.1% 

Target B 

0.1% 

Target T0 

0.4% 

Target B 

0.4% 

CHNO3 -1.33 0.14 -1.18 0.57 -0.75 

COL -1.53 0.20 -1.33 0.78 -0.75 

CREC3 -0.14 0.22 0.08 0.89 0.74 

FEU -0.94 0.14 -0.79 0.57 -0.37 

JEU1 -2.37 0.18 -2.19 0.71 -1.66 

LAJA2 -1.73 0.12 -1.61 0.49 -1.25 

RHEU1 -2.11 0.14 -1.97 0.56 -1.55 

RHEU2 -2.36 0.14 -2.23 0.55 -1.81 

ULTU -0.80 0.15 -0.65 0.62 -0.18 

TREV1 -2.61 0.40 -2.21 1.59 -1.02 

AVRI -2.01 0.17 -1.84 0.69 -1.33 

Mean ± 

SD 
-1.63 ± 0.73 0.18 ± 0.07 -1.45 ± 0.72 0.73 ± 0.29 -0.90 ± 0.72 
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6 CHAPTER 6  GENERAL DISCUSSION, CONCLUSIONS AND FUTURE DIRECTIONS 

One of the land-based solutions that are expected to reduce atmospheric CO2, while 

increasing soil fertility and enhancing food security, is the increase of SOC stocks (Lal, 2016; 

Minasny et al., 2017; Martin et al., 2021). At the European scale, the possibility to reach an 

annual 4‰ SOC stock increase, as targeted by the Mission Board for Soil Health and Food, is 

still under debate. Recent works focused on the estimation of the amount of C input required 

to reach the 4‰ target at national or regional levels (Poulton et al., 2018; Riggers et al., 2021; 

Martin et al., 2021). As of today, a global assessment of the 4‰ target at the European scale 

is missing.  

In this thesis, we built an inverse modelling tool to assess the amount of C input required to 

reach a quantitative target of SOC stock increase, according to the simulation of SOC models. 

After testing it on LTEs at local scale, we applied it at the European level to provide a first 

estimate of the spatial variability of the C input required to reach a 4‰ target under future 

scenarios of climate change. 

6.1  SETTING QUANTITATIVE TARGETS FOR SOC STOCK INCREASES IN EUROPEAN CROPLANDS 

In the 5th Chapter, we have shown that there are different approaches to calculate 

quantitative targets of SOC stock increase. For example, we could use one measurement of 

SOC stocks at the onset of the experiment to calculate the desired increase (T0), or we could 

calculate the increase relative to the baseline SOC stocks in a reference practice (B) (Figure 

5.1). Although both approaches are valuable for different purposes, they might set very 

different targets if SOC stocks are not close to steady-state (Figure 5.1). This was discussed by 

Soussana et al. (2019) and Pellerin et al. (2017), who showed the different targets set with 

the two approaches mentioned above in a few theoretical examples. As pointed out by 

Soussana et al. (2019), setting the increase target relative to the level of SOC stocks at the 

onset of the experiment is particularly relevant because it puts the pressure on soils with 

decreasing SOC stocks. This is in line with the objective of the UNCCD to reach land 

degradation neutrality by 2030 (Soussana et al., 2019), as well as the recently adopted 
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European Green New Deal, which aims to bring the EU to climate-neutrality by 2050. 

Furthermore, topsoil OC stocks are often decreasing in European croplands (Clivot et al., 

2019; Goidts and van Wesemael, 2007; Meersmans et al., 2011; Saffih-Hdadi and Mary, 2008; 

Sanderman et al., 2017; Fernández-Ugalde et al., 2011, Veerman et al., 2020). In the 5th 

Chapter, we analyzed a set of cropland LTEs where EOM inputs were added to the soil and 

SOC stocks were monitored over time. We showed that the amount of C input required to 

reach quantitative targets calculated relative to the SOC stock at the onset of the experiment 

were significantly higher (p ≤ 0.05) than the C input required to reach the targets calculated 

against a baseline treatment, where SOC stocks were mainly decreasing. Policy makers who 

may want to incentivize the implementation of agricultural practices that increase SOC stocks 

should take into consideration that significantly higher C input are likely to be required for 

soils with decreasing SOC stocks, if quantitative increase targets are calculated regardless of 

current SOC stock trends. Lands where SOC stocks are decreasing may require substantial 

management changes to provide sufficient C inputs to the soil (e.g., transformation from 

mono to rotational cultures, adoption of agroforestry systems, and use of cover crops) 

(Wiesmeier et al., 2020; Corbeels et al., 2019) 

In order to be in line with the European targets of SOC stock increase and the land degradation 

neutrality objective of the UNCCD, in our modelling exercise we set the 4‰ target relative to 

the SOC stocks at the onset of experiment. 

6.2 UNCERTAINTY QUANTIFICATION IN PROCESS-BASED MODELLING 

Process-based models are increasingly used to explore the impact of climate change and land 

use management on SOC stocks, and to evaluate the potential feedbacks of SOC 

decomposition rate changes on the climate system (e.g., Wieder et al., 2015b; Wiesmeier et 

al., 2016; Shi et al., 2018). Large uncertainties associated with input data and parameter 

values, as well as lacking knowledge about SOC processes, limit the predictive abilities of the 

SOC models (Luo and Schuur, 2020). To improve the reliability of SOC stock projections, it is 

of primary importance to assess and eventually reduce the uncertainties of model 

simulations.  
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In this thesis, we addressed the issue of uncertainty quantification in manifold ways. In the 

2nd Chapter, we used a Monte Carlo approach to assess the uncertainty of the C input required 

to reach the 4‰ target, simulated by the Century model. In the 3rd Chapter, we used a multi-

model ensemble to estimate the uncertainty of the required C input, according to different 

representations of the SOC dynamics. Finally, in the 4th Chapter we developed and evaluated 

a calibration technique to improve model simulations of SOC stock and assessed the 

uncertainty of the required C input change, relative to different configurations of parameters. 

6.3 ESTIMATION OF THE CARBON INPUT 

One important input data of SOC models is the C input deriving from plants and EOMs (e.g., 

organic amendments and fertilizers) to the soil  (Eq. 1). In agricultural experiments, EOM 

inputs are usually measured. In contrast, direct measurements of C input from crops are rare 

because they include both aboveground and belowground crop residues, and these latter are 

especially difficult to sample. Instead of total crop C input measurements, crop yields can be 

measured and linked to the total C in the plant via allometric equations (Keel et al., 2017). In 

the literature, there are different allometric approaches to estimate the C input from crop 

yields (e.g. Bolinder et al., 2007; Franko et al., 2011; Jacobs et al., 2018). In Chapter 2 and 3, 

the C input from crop material was calculated using allometric equations, following the 

Bolinder approach (Bolinder et al., 2007), and its adaptation to European cropland 

experiments from Clivot et al. (2019). Keel et al. (2017) tested several allometric equations 

for the estimation of the C input to the C-TOOL model on a Swiss experiment and found that 

the choice strongly affected the simulations of SOC stocks. Since we worked with relative 

changes of C inputs (i.e., the relative C input change required to increase SOC stocks by 4‰ 

yr-1, compared to initial C input), our exercise remains relatively less sensitive to the C input 

estimation. However, future works should assess the uncertainty related to the calculation 

method used to estimate the C input from crops, such as in Riggers et al. (2021) and Clivot et 

al. (2019). 

In addition, we considered that the C input to the soil was constant over time. This may have 

introduced an additional error to the simulations, because C input actually vary over time, at 
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a monthly or daily time-scale. However, the hypothesis of constant C input was necessary to 

solve the inverse problem of optimal C input calculation. In the 2nd Chapter, we used a Monte-

Carlo approach to quantify the uncertainty of the C input change requirement introduced by 

this hypothesis, considering the variability of the interannual C input at each site (see Figure 

2.9). This provided an estimate of the variability of the C input required to reach the 4‰ 

target, considering a larger range of potential C input at the experimental sites. However, the 

variation of the C input with time was still not considered and this could have introduced 

simulation errors that should be further investigated, by considering intra-annual and 

interannual C input variations. 

In the 4th Chapter, we approximated the C input in European croplands with the average NPP 

between 2000 and 2009 from MODIS satellite data, adjusted with the fractions of harvested 

NPP from Plutzar et al. (2016). Other global databases of annual NPP are available from model 

simulations (e.g. from ISIMIP, Grieser et al., 2006; Rosenzweig et al., 2014; Zhang et al., 2020; 

Del Grosso et al., 2008) that could be used to estimate the variability of projected SOC stocks 

according to different NPP data sources. Furthermore, the estimated proportion of NPP 

removed from the soil through harvest was also dependent on the approach used (Plutzar et 

al., 2016). In the analyzed cropland sites, the average proportion of NPP removed was 38% ± 

23% (mean ± SD), according to the Plutzar et al. (2016) approach. This is similar to Wolf et al. 

(2015), who estimated a crop-specific proportion of harvested NPP, and found that in 

Western Europe around 39% of NPP biomass was harvested (mean across 2005-2011). 

However, local differences might arise from the different estimation method used. 

Further improvements to the simulations could also be achieved by considering a crop growth 

module. This would allow simulating the interactions between increased SOC stocks and plant 

growth, which could potentially trigger positive feedbacks to the SOC storage. However, it is 

worth to consider that such positive feedbacks may be limited by the availability of the plants 

to the nutrients (see Annex I). Also, one thing that most models do not consider, although it 

has been widely observed, is that root C – especially from rhizodeposits – tends to have a 

longer residence time in soil, compared to aboveground C input (Rasse et al., 2005; Sokol et 

al., 2019). 
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6.4 THE IMPORTANCE OF CONSIDERING MULTI-MODEL ENSEMBLES 

In addition to uncertainties in the input data, models also lack to explicitly incorporate all the 

mechanisms and factors involved in the SOC dynamics. In fact, models are just an abstraction 

of real-world processes, and rely on the limited knowledge that is available about SOC 

dynamics. One way to consider different mechanisms and factors involved, and to include a 

larger range of possible representations of SOC processes, is to use multi-model ensembles 

(Tebaldi and Knutti, 2007). 

In the 3rd Chapter, we used a multi-model ensemble to estimate the uncertainty of the C input 

required to reach the 4‰ target, according to different representations of the SOC dynamics. 

We found that the simulated C input required to reach an annual 4‰ SOC stock increase at 

17 LTEs in European croplands was strongly uncertain, according to the multi-model 

ensemble. Under default parametrization, SOC stock simulations diverged strongly within the 

six different models (Figure 3.1). The differences in the simulated SOC stock could partly 

explain the different C input requirements predicted by the models (Figure 3.4). However, 

when models when calibrated to fit the evolution of SOC stocks at the LTEs, C input 

requirements were still highly variable across models (Figure 3.4). Possible explanations to 

these differences are: the initialization technique used for the different models, the choice of 

the calibrated parameters, the mechanistic structure of the models, and the mathematical 

formalism used to describe them. On the one side, including more recent models likely 

updates model assumptions to contemporary understanding of soil microbial activity and 

metabolic traits (Wieder et al., 2015b; Abramoff et al., 2018). However, the use of older but 

highly evaluated models allows to capture many essential features of ecosystem dynamics, 

which these models have proven to correctly simulate (e.g. Parton et al., 1983, 1988, 1989a, 

b). 

The use of multi-model ensembles has been a consolidated practice in climate modelling for 

decades (Tebaldi and Knutti, 2007; Parker, 2010; Jebeile and Crucifix, 2020). In soil modelling, 

increasingly more papers have been using multi-model ensembles to simulate long-term SOC 

evolution and assess the associated uncertainty (e.g., Palosuo et al., 2012; Sulman et al., 2018; 
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Farina et al., 2021; Riggers et al., 2021). Our findings contribute to highlighting the importance 

of multi-model ensembles, to assess the uncertainty of SOC stock predictions and related 

processes. 

Our work could be improved by uniformizing the optimization and resolution techniques used 

for the different models, in order to isolate the mechanistic structure effect of the models on 

the simulated outputs. 

6.5 MODEL PARAMETRIZATION 

Multi-model ensembles allow to estimate the uncertainty of SOC simulations by considering 

different types of processes involved in SOC dynamics. However, there are always processes 

that the models do not explicitly include. These processes are called “processes at unresolved 

scales” (Luo and Schuur, 2020). In an attempt to deal with processes at unresolved scales, the 

soil community has made major efforts to explicitly represent microbes in SOC models (Allison 

et al., 2010; Wieder et al., 2015b, a; Georgiou et al., 2017; Abramoff et al., 2018, 2022). 

However, even extremely complex models could not represent all SOC processes explicitly. 

Hence, interactions between processes at unresolved scales with those at resolved scales 

should be reflected in model parameters (Luo and Schuur, 2020). Parameters are commonly 

considered constant in SOC models. For example, the decomposition rate parameters of SOC 

are usually kept constant over time and space (e.g., Parton et al., 1988a; Coleman and 

Jenkinson, 1996; Andriulo et al., 1999). Nevertheless, ecosystem properties have been 

frequently shown to change over time, space and pedo-climatic conditions. Thus, parameters 

should also vary to capture the changing properties of the ecosystem processes that they 

represent. 

In the 4th Chapter, we proposed a calibration technique for large scale simulations of SOC 

models, where parameter values were allowed to vary over space. In an attempt to capture 

changes in ecosystem properties through changes in parameter values, we estimated the 

statistical relationships between on-site calibrated parameters and observed pedo-climatic 

conditions, and applied them at larger scale to test the validity of the approach on 

independent sites.  
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Our simulations proved to better represent the spatial distribution of first-year SOC stocks, 

compared to default parametrization (Figure 5.4). However, there was still a high uncertainty 

in the projected SOC stocks across models (Figure 5.6). In fact, the three SOC models used for 

the analysis predicted divergent SOC stock trends under future climate change, and these 

trends were even steeper when the models were statistically calibrated (Table 5.4). As a 

consequence, the uncertainty around projected SOC stocks were propagated to the inverse 

modelling calculations, and estimated C input changes required to reach the 4‰ target in 

European croplands varied largely across models (Figure 5.7). Our results show that model 

parameters may be largely responsible for uncertainties in SOC model predictions, as it has 

been previously demonstrated (e.g., Post et al., 2008; Shi et al., 2018; Luo and Schuur, 2020). 

Furthermore, higher uncertainties across model predictions may be expected if parameters 

are allowed to vary over space following spatial variations of pedo-climatic factors.  

What we did in this chapter should be considered as a of ‘proof of concept’ showing the 

feasibility of optimizing model parameters at large scale. However, since the proposed 

technique is based on statistical relationships, we are confident that these results could be 

improved by using a higher number of LTEs to link parameter values to specific environmental 

conditions. Furthermore, improving initial conditions of models initialized with spin-up, and 

systematically selecting the parameters to calibrate though sensitivity analysis, may also 

reduce the uncertainty of SOC model simulations. 

6.6 FEASIBILITY OF THE 4‰ TARGET IN EUROPEAN CROPLANDS UNDER FUTURE CLIMATE 

CHANGE 

The uncertainties of SOC stock predictions across different models partly derived from their 

representation of the C input - SOC stocks relationship. In fact, the estimated C inputs 

required to reach the 4‰ target were highly variable across models, and under both default 

and calibrated configurations. 

In the 1st Chapter, we used the Century model to estimate at 14 cropland sites the amount of 

C input required to increase SOC stocks by 4‰ yr-1 over 30 years, compared to initial SOC 

stocks. We found that C inputs had to increase by 43%, compared to initial C inputs. In 
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comparison, the additional C input actually used in the 14 LTEs (i.e., from additional EOM 

inputs and crop growth, or from improved crop rotations) was approximately 160% higher 

than the C input in the control treatments. However, the model was likely overestimating the 

effect of the additional C input on the SOC stocks (Figure 2.5). This means that the C input 

required to reach the 4‰ target could have been much higher. In the 2nd Chapter, we ran a 

similar analysis using six different SOC models over 17 LTEs in European croplands. We found 

that Century was indeed underestimating the C input required to reach the 4‰ target, 

compared to the other models (Figure 3.4). Furthermore, there was a high uncertainty across 

all models in both their non-calibrated and calibrated configurations. The multi-model 

ensemble predicted that the C input would have to more than double in order to reach the 

4‰ target over 30 years. That is, C input had to increase by 107% on average, compared to 

initial conditions (Table 3.3). This result is similar to the predictions at the European cropland 

level, over the period 2015-2100. We found that the C input had to increase by 129% and 

108% on average under RCP 2.6, according to the non-calibrated and calibrated multi-model 

ensembles, respectively (Table 4.5). Results were similar under RCP 6.0 (i.e. C input had to 

increase by 129% in the non-calibrated configuration, and by 106% in the calibrated 

configuration). The C input increase requirements were higher in Northern Europe, compared 

to lower latitudes (Figure 4.7). In the European South, we found larger uncertainties around 

model simulations. This suggests that model simulations may actually be underestimating the 

amount of C input required in those regions. In the 5th Chapter, we used EOM treatments to 

discuss how the quantitative definition of SOC stock increase targets affected the C input 

change requirement. We found that, the average C input required to reach the 4‰ target 

calculated against initial SOC stocks, was significantly different to the average C input to reach 

the 4‰ target, when it was calculated against the SOC stock trend in a control plot without 

any EOM addition (Figure 5.3). That is, an average 142% and 136% increase of C input was 

required, respectively (i.e., average C input required/ average C input in the control treatment 

*100). This suggests that the multi-model ensemble may be still underestimating the amount 

of C input required (see also Figure 4.3). 
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We used data from the long-term experimental sites to compare model requirements to the 

EOM input used in the treatments (Figure 2.9). However, the amount of C input used in the 

LTEs was much higher than the average C input used in European croplands from livestock 

manures (Zhang et al., 2017). Furthermore, EOM inputs are currently already added to the 

soil in European croplands, thus they cannot be considered as additional C input (Foged et al., 

2011). Also, since EOM inputs are only lateral transfers of C that was already sequestered 

from the atmosphere, they do not account as an additional climate mitigation potential 

(Poulton et al., 2018).  

In this context, increasing the C input by more than 100% will likely demand for drastic 

changes in the agricultural practices at the European scale. Increasing the quantity and the 

stability of the C input to the soil will require the adoption of diverse agronomic practices that 

have proven to increase SOC stocks. For instance, crop species and varieties with greater root 

mass and deeper roots, crop rotations providing greater C input, N-fixing legumes where soils 

have limited available N, use of cover crops during fallow periods, and adoption of 

agroforestry systems (Soussana et al., 2019; Chenu et al., 2019). Not only it will be necessary 

to adopt new practices, but it will also be crucial to ameliorate the current management of 

agricultural soils, through improved crop residues retention and organic amendment addition 

(Soussana et al., 2019).  

6.7 PERSPECTIVES 

Although model simulations are still highly uncertain, there is compelling evidence that a 

radical change in agricultural management will be required to cope with climate change and 

food security in the near future. The European Commission has been suggested to set 

ambitious targets to increase SOC stocks and improve the health of European soils (Veerman 

et al., 2020). Yet, we are far from being optimistic. The last fifty years of international 

agreements about the response of world nations to climate change have proven that, no 

matter how compelling evidence the scientific community provides, indicators of adverse 

change are still on a rise (Glavovic et al., 2021). Thus, governments have to take action before 

it is too late.  
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In the last decades, thousands of works have been published on the effects of land 

management, land-use change and climate change on SOC (Beillouin et al., 2022). However, 

studies are narrowed to a selected number of specific drivers and geographical regions 

(Beillouin et al., 2022). In fact, studies on agricultural management practices mostly focused 

on mineral fertilization, organic amendments, and tillage. Furthermore, drivers of SOC 

changes have only occasionally been studied in North and Central Africa, and in the Middle 

East and Central Asia (Beillouin et al., 2022). Future research should focus on more local and 

diversified knowledge on how to preserve and restore SOC stocks, while covering 

understudied geographical regions. Besides, increased knowledge on the effects of diversified 

practices on SOC stock changes, under different pedo-climatic conditions, will help to improve 

model simulations and provide reliable SOC stock projections under future climate change. 
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Abstract 

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, 

and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but 

not sufficient. Large-scale deployment of other climate mitigation strategies is also 

necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever 

because carbon in soils can be stored for long periods and land management options to 

achieve this already exist and have been widely tested. However, agricultural soils are also 

an important source of nitrous oxide (N2O), a powerful greenhouse gas, and increasing SOC 

may influence N2O emissions, likely causing an increase in many cases, thus tending to offset 

the climate change benefit from increased SOC storage. Here we review the main agricultural 

management options for increasing SOC stocks. We evaluate the amount of SOC that can be 

stored as well as resulting changes in N2O emissions to better estimate the climate benefits 

of these management options. Based on quantitative data obtained from published meta-

analyses and from our current level of understanding, we conclude that the climate 

mitigation induced by increased SOC storage is generally overestimated if associated N2O 

emissions are not considered but, with the exception of reduced tillage, is never fully offset. 
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Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease 

N2O emissions. 

7.1 INTRODUCTION 

The United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement 

adopted in 2015 aimed at keeping global warming below 2°C by 2100, and at possibly further 

limiting the temperature increase to 1.5°C. This requires not only drastic reductions in GHG 

emissions in the near future, but also net negative emission technologies because not all 

emissions will be reducible to zero within this time scale (Rogelj et al., 2015; Seneviratne et 

al., 2018). To a large extent, these negative emissions imply land-based mitigation strategies 

(IPCC, 2018), mostly involving the production of organic matter by plant photosynthesis 

coupled with carbon storage in living biomass and/or soil organic matter (SOM; Paustian et 

al., 2016). 

A pathway frequently discussed known as bioenergy with carbon capture and storage 

(BECCS) comprises generating energy using biomass, capturing the CO2 evolved from this 

process and storing it in geological reservoirs. The deployment of BECCS faces both technical 

challenges and most likely limitations due to high costs and adverse environmental impacts 

such as increased pressure on land and water resources (Obersteiner et al., 2018; Smith et 

al., 2016). On the other hand, the net removal of atmospheric CO2 taken up by plants in 

agricultural soils (i.e. carbon sequestration) has recently come under sharp focus as a more 

affordable and practical alternative, potentially associated with positive economic outcomes 

and possibly applicable at large scale in managed lands (Hepburn et al., 2019; Minasny et al., 

2017). 

The role of soils as a key component of the global carbon cycle is now recognized by the 

scientific community and also by policy-makers (Obersteiner et al., 2018; Smith et al., 2016). 

Soils have never been harnessed at large scale for the purpose of sequestering carbon, 

although they currently make up the largest reservoir of organic carbon in the terrestrial 

biosphere, with a size of 1,500–2,400 Pg C to a depth of 1 m (Ciais et al., 2013). However, the 

ecosystems which contain the largest stocks of soil organic carbon (SOC) are unmanaged 
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(comprising boreal forests, permafrost soils and wetlands), whereas only soils from managed 

ecosystems, in particular agricultural soils, may be managed to increase SOC stocks (i.e. 

carbon sequestration). Agriculture is also a key target sector for the reduction of methane 

(CH4) and nitrous oxide (N2O) emissions (IPCC, 2019; Tian et al., 2016; Wollenberg et al., 

2016). Yet, few countries have included agriculture in their nationally determined 

contributions—a roadmap volunteered by national governments as part of the Paris 

Agreement to express their efforts to reduce GHG emissions— because of potential trade-

offs with food production and uncertainties on achievable potentials (Frank et al., 2017). 

Recent emphasis on promoting SOC storage has resulted in international initiatives such as 

the ‘4 per mil’ initiative launched by France during the UNFCCC conference of the parties 

(COP) 21 (Minasny et al., 2017; Soussana et al., 2019). It relies on the concept that even a 

very small relative increase in SOC pools worldwide could offset a significant fraction of CO2 

emissions. Preliminary evaluation indicated that increasing global agricultural SOC stocks at 

an annual rate of 4‰ would result in a C sequestration potential of 2–3 Pg C/year (Minasny 

et al., 2017). This may contribute significantly to the objectives of the land sector to achieve 

the Paris agreement target (Roe et al., 2019). Moreover, even if it would not be sufficient to 

totally offset anthropogenic emissions, SOC increase is generally associated with several 

positive feed backs on biodiversity, crop yields, soil water retention, etc. (Mäder et al., 2002; 

Soussana et al., 2019). Nevertheless, several stud ies have discussed and criticized the 

feasibility of enriching soils at a rate of 4‰ over a sustained period of years (Chabbi et al., 

2017; Poulton et al., 2018; Van Groenigen et al., 2017) because: (a) it requires large amounts 

of new organic matter inputs, (b) it requires large amounts of nutrients, (c) it is difficult to 

achieve this target rate in all agricultural systems, and (d) it may be hampered by the climate 

change-induced enhancement of SOC decomposition. Moreover, altered management 

practices may impact farm ers' income and imply trade-offs with food production (Poulton 

et al., 2018). Data from long-term experiments show that it is very difficult to achieve the 4 

per mil rate in temperate arable systems without drastic changes in management (Batjes, 

2019; Poulton et al., 2018). Finally, the annual rate of SOC increase generally levels off over 

time as the SOC pool increases and approaches a new equilibrium level (Stewart et al., 2007). 
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Nevertheless, concrete management options exist to increase SOC stocks such as cover crops, 

tillage management, crop rotations, organic amendments, agroforestry and biochar 

amendments with effects depending on local conditions (Chenu et al., 2019; Corbeels et al., 

2019; Dignac et al., 2017). These options have socio-economic impacts on farmers and land 

managers and indirect effects on ecosystem services, through changes in crop yields, water 

consumption, nitrate leaching and CH4 and N2O emissions which have to be considered when 

evaluating the feasibility and the relevance of implementing SOC storage options. For 

instance, maintaining SOC storing practices may incur costs, thus affecting farmers' 

profitability and implying a need for governmental payments, depending on CO2 price. Smith 

et al. (2008) estimated that 47%, 65% and 86% of the technical potential SOC storage in 

agricultural lands could be reached at costs of 20, 50 and 100 USD per ton of CO2 respectively. 

The SOC storage potential of the various practices has been extensively assessed in the recent 

scientific literature (Cardinael, et al., 2018; Chenu et al., 2019; Fujisaki et al., 2018; Ogle et al., 

2019; Paustian et al., 2016; Poulton et al., 2018), and recently revised by IPCC in its 2019 

report on climate change and land (IPCC, 2019). However, implications for the N cycle (in 

particular N2O emissions), and other biogeochemical cycles or crop yields have not been thor- 

oughly documented so far (Bossio et al., 2020; Lugato et al., 2018; Oldfield et al., 2019). 

Neither have been the consequences of large-scale deployment of these measures, and 

constraints related to the nitrogen (N), phosphorous (P) and potassium (K) cycles. These 

aspects are important because they determine the overall GHG abatement efficiency of 

mitigation measures and set limits on their potential deployment. C and N cycles are strongly 

interlinked (Figure 1) in particular in soils and, we assume that the deployment of land-based 

mitigation options to increase SOC may impact the N cycle and the associated N2O emissions. 

A recent modelling study suggests that measure to increase SOC sequestration might be 

offset by increased N2O, depending on the crop rotation and on the duration of the land 

management practices (Lugato, et al., 2018). Recent progress in modelling SOC may help to 

better understand SOC dynamics and how we can enhance SOC storage (Abramoff et al., 

2018; Cotrufo et al., 2013; Zhang et al., 2018, 2020), but so far the interaction between C and 

N cycles is still poorly represented in models. A better understanding of such interactions is 
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necessary to evaluate the benefits of different management practices aimed at increasing 

SOC storage and to predict the full GHG balance of each practice. Nevertheless, measuring 

N2O fluxes is challenging and large uncertainties exist due to difficult methodology 

(Chapuislardy et al., 2007). Indeed, most of the existing data are measured using chamber 

systems and several authors considered that a net N2O uptake by the soils was due to 

technical limitation, in partic- ular when measurements had been carried out close to 

detection limits (Chapuis-lardy et al., 2007). Recent publications using other methods clearly 

showed that a net N2O uptake is possible mainly during daytime (Keane et al., 2019; Shurpali 

et al., 2016). Despite such large uncertainties in the raw measurements of N2O fluxes, when 

comparing a given management option against a control we may assume that the 

methodological bias are similar and the relative effect is still valid. 

Here we focus on the interactions between soil C and nutrient dynamics, and in particular on 

N dynamics and N2O emissions. The aims of the paper are to (a) describe the mechanisms 

linking the C and N cycles in soils, (b) assess how N2O emissions may be affected by increased 

SOC pools as a land-based mitigation option, (c) review our knowledge on the other impacts 

of these practices. 
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Figure 1 A schematic representation of C–N interactions in the terrestrial ecosystem. Note that biological 

nitrogen fixation and denitrification are process performed by microorganisms that also need C as substrate and 

that the schematic is more representative of agroecosystems.
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7.2 INTERTWINED SOIL CARBON AND NITROGEN CYCLES 

Because C and N cycles are tightly coupled in soils, and altering one will affect the other as 

shown in Figure 1. In soils the C and the N cycles are sometimes totally interdependent, in 

particular when both are in organic forms but are sometimes uncoupled when C or N are 

present as minerals. This section summarizes the main mechanisms explaining how changes 

in the soil C cycle and SOC sequestration interact with N cycle processes, and in particular 

N2O emissions (Figure 1). The first reason why soil C and N dynamics are interdependent is 

that both elements are stored predominantly as organic forms in the soil, sometimes within 

the same compounds (amino acids, proteins, etc.), thus mineralization generally affects both. 

Moreover, the availability of mineral N in the soil controls a number of processes in both 

cycles and vice versa. For instance, mineral N transformations depend on carbon availability 

and plant dry matter production is limited by N availability. Nitrogen is needed to sustain 

photosynthesis and other physiological processes (Engels et al., 2012); therefore higher N 

availability would likely lead to greater primary productivity and inputs of plant-derived 

organic matter to the soil (Glendining et al., 1996). On the other hand, higher N availability 

also tends to lower the allocation of photosynthates to the root system (Pausch & Kuzyakov, 

2018). As root-derived C inputs contribute at least 2–3 times more than shoot-derived C 

inputs to SOC storage (Kätterer et al., 2011; Rasse et al., 2005), a high soil N availability could 

theoretically increase the plant biomass but the plant biomass produced might not be 

transformed into SOC as efficiently because of a reduced amount of root-derived C entering 

the soil (Han et al., 2016). 

Soil organic matter turnover (i.e. rate of mineralization and transformation of SOM) also 

depends on the availability of N to microorganisms. While a low mineral N availability may 

limit the mineralization rate of plant residues and amendments (Fang et al., 2018; Recous et 

al., 1995), the combination of regular inputs of fresh organic C with a low soil N availability 

can lead to positive priming effect, that is, a higher rate of SOM mineralization, and a lower 

SOC storage potential (Chen et al., 2014; Fontaine et al., 2004). Moreover, because of the 

relatively narrow range of C:N ratios of SOM in mineral layers (Van Groenigen et al., 2017) 
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and because of the importance of soil microbial processing for building up stable SOM 

(Cotrufo et al., 2013) in some ecosystems, large amounts of N are inevitably required to 

stabilize large amounts of SOC (Bertrand et al., 2019; Cotrufo et al., 2019). Because of this 

stoichiometric requirement, it might seem acceptable to maintain a high availability of N in 

the soil by applying large amounts of mineral fertilizers. Such a strategy would, however, 

lead to potential N losses, for example, as N2O emissions or nitrate leaching from soil, and 

further increase GHG emissions during fertilizer production. Thus the modest increases in 

SOC resulting from N fertilizer applications up to sensible agronomic rates are welcome in 

the context of C sequestration, but it would be counterproductive and inappropriate to 

recommend higher rates of N application aimed at promoting an additional increase in soil 

C. 

Input of N to terrestrial ecosystems by biological N2 fixation is another example of a close link 

between C and N resources. Root-associated or free-living N2-fixing bacteria depend on the 

availability of organic C resources for sustaining their heterotrophic needs, which may explain 

why N2 fixation is only triggered when the amount of soil mineral N is low. In particular, the 

en ergy cost of N2 fixation represents between 5% and 23% of daily photo-assimilated C 

(Lambers, 1987). The associated CO2 losses by respiration may therefore decrease the amount 

of plant C entering the soil. However, the consequence of this on the potential of SOC storage 

remains unclear. For example, the presence of leguminous plants can result in lower below-

ground C inputs compared to gramineous plants, leading to lower SOC concentrations (Bessler 

et al., 2009; Lange et al., 2015). However, the net inputs of N to soils by leguminous plants 

have been shown to correlate with a net accumulation of SOC, by providing the organic N 

required to stabilize an additional amount of SOC in soils (Jensen et al., 2012). Similarly, crop 

rotations that include leguminous plants appear to store more SOC than conventional 

monocultures (Drinkwater et al., 1998), although this effect may be mainly due to longer 

periods of plant cover, and to the presence of deeper root systems than to biological N2 

fixation itself (Jensen et al., 2012). These feedbacks also depend on which non-leguminous 

plants are associated (King & Blesh, 2018) to the N2-fixing plant, and may lead to contrasting 

results in terms of SOC storage (Pellerin et al., 2019). Of course, obtaining N from legumes, 
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where this is practicable, rather than from N fertilizer does eliminate the GHG emissions 

associated with N fertilizer manufacture. 

N2O emissions represent a particular case that illustrates how the soil N cycle may be 

influenced by the C cycle. First, as N2O mainly originates from the nitrification of ammonium 

(NH4
+) or the denitrification of (NO3

−) by specific groups of microorganisms, any process that 

can affect the total amount of mineral N in soils, such as N uptake by plants or plant residue 

mineralization, is likely to affect N2O emissions. Moreover, fresh C inputs to the soil through 

root exudates or amendments may temporarily decrease or increase soil pH, affecting the 

magnitude of N2O emissions. Consumption of these organic products by microorganisms may 

also decrease the local concentration of oxygen, leading to anaerobic conditions which are 

favourable to denitrification and N2O emissions (Chen et al., 2013). Furthermore, because 

organic materials generally act as electron donors in the denitrification process and because 

SOM content may lower the redox potential of the soil (Quin et al., 2015), increasing the 

amount of SOM may also increase the activity of denitrifiers and therefore increase N2O 

emissions (Brettar et al., 2002; Li et al., 2005). These mechanisms likely explain why higher 

SOC contents in soils have indeed been shown to correlate with larger N2O emissions 

(Hénault et al., 2012; Stehfest & Bouwman, 2006). As a rule, net N2O emissions from the soil 

at a given soil water-filled pore space (WFPS) will usually be lower when the soil mineral N 

content is low and when soil pH is alka-line or when C availability is reduced. Furthermore, 

because a low soil redox potential (<400 mV; Brettar et al., 2002) is required for 

denitrification, N2O emissions have been suggested to have their optimum at 70%–80% 

WFPS, while prolonged waterlogging conditions may result in complete nitrate reduction to 

N2 instead of N2O (Butterbach-Bahl et al., 2013). This view is consistent with the classical 

model proposed by Firestone and Davidson (1989) but, recent results suggest that N2O can 

be reduced to N2 by non-denitrifier bacteria (Hallin et al., 2018). Thus, N2O reduction rate 

might be higher than previously assumed explaining some net uptakes sometimes observed 

but generally considered as methodological artefacts (Chapuis-lardy et al., 2007). N2O uptake 

is also controlled by environmental factors including pH or SOC (Assémien et al., 2019). 

Therefore, any modifications of soil conditions (e.g. redox potential, soil moisture, etc.) due 
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to land management practices may affect N2O uptake. 

Several mechanisms can therefore explain why attempts to modify the soil C cycle may also 

affect N2O emissions. On a longer timescale, the build-up of SOC by various strategies may 

be expected to increase the retention of water and fertilizer-N in the rooting zone through 

improved soil properties (e.g. water holding capacity, porosity, hydrophilicity). This might 

trigger a higher primary production and enhance further SOC storage, but also increase the 

risk of N2O emissions because of the increase in N sources and the shift to soil environmental 

conditions more favourable to N2O emissions. In the remainder of this paper, we consider 

possible interactions between increased SOC and changes in N2O emission for a range of 

management practices designed to increase SOC (Table 1). 

  



 

 229 

Table 1 Summary of the effects of management practices on soil organic carbon (SOC) storage and N2O 

emissions 

Management practice Effect on soil C stocks Effect on N2O emissions 

Reduced tillage/zero 

tillage 

Reduced C loss/increased C inputs to soils 

when associated with a reduced weed 

management (Angers & Eriksen-Hamel, 

2008; Virto et al., 2011) 

Promote denitrification (anaerobiosis; Mei et al., 

2018) 

Erosion control 

(contour plowing, 

terracing) 

Reduced C loss (Moraru & Rusu, 2010) Unclear 

Addition of non-

pyrogenic organic 

amendments 

(compost, manure, 

crop residues) 

Increased C input but in some cases (e.g. 

manure) rather a transfer from one 

terrestrial location to another than a 

transfer of C from atmosphere to soil 

(Diacono & Montemurro, 2011) 

Enhanced denitrification rate (via 

anaerobiosis and the supply of electron 

donors), and soil N availability (Charles et 

al., 2017) 

Use of cover crops Reduced C loss/increased C input 

(Poeplau & Don, 2015) 

Decreased denitrification because of N uptake 

by plants; may be compensated for by N 

inputs from biological nitrogen fixation 

(Lugato, et al., 2018; Thapa et al., 2018) 

Biochar Increased C input (Lehmann et al., 2006) Decreased nitrification due to adsorption of 

mineral N with biochar (Borchard et al., 2019) 

Agroforestry Increased C input, reduced C loss, increased Decreased denitrification (lower soil moisture, 

increased 

 aggregate stability (Feliciano et al., 2018) soil porosity, increased nitrogen uptake), except 

for 

  N2-fixing trees (increasing soil available N; Kim 

et al., 

2016) 



 

7.3  HOW SOC STORING PRACTICES AFFECT N2O EMISSIONS 

7.3.1 Balancing the nitrogen inputs 

Since mineral N availability drives N2O emissions as well as crop productivity and C inputs into 

the soil (Ladha et al., 2011; Wang et al., 2019), N fertilization should be carefully managed. A 

balance should be obtained between N inputs (including fertilizers, manures and biological 

nitrogen fixation through symbiosis between N2-fixing bacteria and some plant species) and 

N exported in harvested products in order to reduce a N surplus that can be source of N2O, 

but without a major negative effect on crop productivity. This N surplus should ideally be 

zero, but it is actually large and positive in many regions of the world, that have intensive 

agriculture (e.g. parts of China, India, Europe, North America), and negative in other regions 

(e.g. Africa; Gruber & Galloway, 2008). Excess N associated with a positive surplus is a major 

cause of N2O emissions on farms, but also of nitrate leaching losses, part of which contributes 

to indirect N2O emissions if nitrate is denitrified within surface waters. Overall, N surplus is a 

strong driver of N2O emissions, especially when considering that the rate of emission is no 

longer linear for high N input (Shcherbak et al., 2014). The relatively low cost of mineral N 

fertilizers in developed countries compared to the price of agricultural products incentivizes 

farmers to apply more N than recommended by good practices, as an 'insurance' against 

unforeseen N losses due to climate variability. In some regions of the world, but not all, there 

is considerable potential to lower agricultural N2O fluxes in inten- sive farming by reducing 

the N surplus without affecting farmers' incomes (Hoben et al., 2011). Therefore, the use of 

mineral N to increase crop productivity may induce an increase of C input into the soil but a 

complex balance must be found to avoid excessive N2O emissions and N leaching. 

7.3.2 Reduced tillage/non tillage 

The effect of reduced tillage has attracted attention as a practice leading to increased SOC 

storage. However, recent metaanalyses demonstrate only a small positive effect of no-tillage 

on SOC stocks in the topsoil (0–30 cm layer) compared to conventional tillage, while it may 

vary widely across pedoclimatic situations (Angers & Eriksen-Hamel, 2008; Luo et al., 2010; 

Meurer et al., 2018; Powlson et al., 2016; Virto et al., 2011). Moreover, it must be recognized 

that the largest impact of reducing tillage is a redistribution of SOC towards the soil surface 
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(Angers & Eriksen-Hamel, 2008; Baker et al., 2007; Meurer et al., 2018; Ogle et al., 2019; 

Powlson et al., 2016). As a consequence, data from field trials must be carefully examined to 

distinguish between a genuine increase in SOC stocks in the surface soil layers from a simple 

change in the vertical distribution of SOC concentration. There has been considerable 

discussion as to whether the increased SOC in soil under zero tillage, especially near the 

surface, might increase N2O emissions, because: (a) increased organic matter content can 

increase N2O release (Mei et al., 2018), either because of increased energy supply to 

denitrifying organisms or because increased biological activity utilizes oxygen in soil, thus 

possibly leading to anoxic conditions at some microsites and (b) reducing tillage can be 

associated in the short term with a less porous soil structure, conducive of anoxy (Linn & 

Doran, 1984; Table 1). However, increased anoxia may have the opposite effect on N2O 

emissions by accelerating N2O reduction to N2 as recently shown. This is due to the complex 

soil physical structure creating anoxic microsites that may simultaneously produce more N2O 

but also accelerate N2O reduction to N2 (Buchen et al., 2019; Parkin, 1987). The different 

meta-analysis we compiled here (Figure 2) suggest that N2O emissions may offset the C 

storage in no-till system when both fluxes are compared in CO2 equivalents. However, there 

is conflicting evidence on whether or not this risk is actually realized (Mei et al., 2018; van 

Kessel et al., 2013). Recent meta-analyses suggest that, in the majority of situations, N2O 

emissions are either unchanged or slightly decreased under zero or reduced tillage; the result 

will certainly be influenced by soil type and local climate and weather conditions so it may 

not be possible to draw a conclusion that is universally valid (Mangalassery et al., 2014; van 

Kessel et al., 2013). Furthermore, in some studies, N2O emissions were expressed on both an 

area basis and a yield-scaled basis (van Kessel et al., 2013); because crop yields were slightly 

decreased under reduced tillage in some environments, N2O emissions per unit of grain (or 

other product) were sometimes increased compared to conventional tillage. 

7.3.3 Erosion control—Terracing 

Erosion control practices are able to maintain or increase SOC content at the plot scale 

(Moraru & Rusu, 2010), although on a larger scale whether erosion is net C sink or a net 

source is still debated (Berhe et al., 2018; Lugato, et al., 2018; Van Oost et al., 2007). 

Erosion control encompasses a wide range of practices such as protecting the soil surface 

with cover crops or unharvested biomass (pruned fronds and other plant residues), 
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agroforestry, crop rotations, conservation tillage, or terracing on steep slopes. Some of 

these practices are already addressed in other sections of this paper (3.2, 3.4 and 3.5), and 

the following focuses on terracing. 

Terracing is an ancient form of erosion control and a soil conservation method performed 

for thousands of years in steep landscape regions (Dotterweich, 2013; Tarolli et al., 2014). 

Despite its importance, studies focusing on quantifying soil erosion rates and the resulting 

C fluxes and SOC stocks in terraced areas are limited, especially at regional scales. 

Generally, terracing reduces soil erosion by reducing the slope gradient and length, and 

can decrease soil erosion rates by up to 95% (Fu, 1989; Upadhyay et al., 2005). It 

accordingly preserves SOC and nutrients. A meta-analysis on the ecosystem benefits of 

terracing shows that, compared to unterraced slopes, soil in terraced slopes contains 

28.1% and 41.7% more N and C, respectively (Wei et al., 2016). However, the overall net 

effect of terracing on erosion depends on the terrace structure and maintenance, crop 

type, soil conditions, crop management practices or agricultural machinery. To maximize 

its positive effects, terracing needs to be combined with other soil conservation measures 

such as cover crops, agroforestry, organic amendments or no-till (Chen et al., 2017; 

McLauchlan, 2006). Furthermore, terraces need to be sustained, otherwise abandoned 

terraces can become sources of substantial land degradation due to gully formation. This 

is the case in the Mediterranean region where over 50% of the terraces have been 

abandoned (Tarolli et al., 2014; Wei et al., 2016). 

The N2O emissions associated with terracing are still poorly known. Terracing decreases the 

aggregate breakdown and transport of soil by erosion, which would lead to reduced N2O 

emissions. However, as stated previously, N2O emissions may increase with increased SOC. 

In addition, terracing tends to change the soil C:N ratio (Wei et al., 2016) and this may 

change the N availability for nitrifying/denitrifying bacteria and thus affect N2O emissions. 

Finally, to fully estimate the effect of erosion control on N2O budgets, it is important to 

measure emissions at the catchment scale not only at the field scale. Since erosion control 

aims to avoid lateral losses of soil material (containing various forms of N) ending up in rivers 

or in floodplains, it is necessary to combine measurements in the terraced or unterraced 

fields with measurements and modelling on the fate of eroded N in floodplains and rivers. 
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Figure 2 Estimation of the soil organic carbon storage and N2O emissions of land-based mitigation options 

expressed in CO2 equivalents. Negative values indicate a net reduction in GHG emissions in terms of CO2 

equivalents, while positive values show a net increase of CO2 equivalent emissions. All values refer to the 

difference between the land-based mitigation option in question and a ‘control’ land (e.g. no-tillage vs. 

conventional tillage). For agroforestry, the control land is cropland and different types of agroforestry 

systems were considered. NB: In Kim et al. (2016) the majority of soil C storage data comes from 

intercropping, improved fallows and rotational woodlots, which are systems with high tree density. This 

could partially explain the very high estimation of soil C storage found in Kim et al. (2016) compared to other 

papers. Organic amendments do not include biochar. The control used for comparison with organic 

amendments is an experiment managed with inorganic fertilizers. For cover crops meta-analysis, Vicente-

Vicente et al. (2016) only consider Mediterranean woody crops (olive, almond and vineyards), which could 

also explain the large soil C rates estimated. Uncertainty is given as standard error (SE) for every paper. If it 

was provided as a confidence interval (CI) or standard deviation (SD) it has been adequately transformed to 

unify the units. (*Reviews; **For these meta-analysis the values reported in the graph have been 

recalculated as the weighted mean across all experiments, from the database provided by the authors, 

because the values coming from the papers could not be used as they were reported as a percentage only) 

(Abdalla et al., 2019; Du et al., 2017; Skinner et al., 2014; Vicente-Vicente et al., 2016) 

7.3.4 Cover crops 

Planting cover crops is an effective management practice to increase SOC content. 

According to a recent meta-analysis, it leads to SOC accumulation rates in the order of 1.18 
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t CO2-eq. ha−1 year−1 over 50 years (Poeplau & Don, 2015) in the topsoil, with a positive ef 

fect independent of tillage method, climatic zone or plant type (leguminous vs. non-

leguminous). The impact of cover crops on SOC will depend on their duration and the 

frequency with which they are included in a crop rotation, and this information is sometimes 

unclear in published reports of field trials (Poeplau & Don, 2015). It is also necessary to 

interpret reviews of SOC data from cover crop experiments with caution because annual 

rates of increase are greatest in the early years following their introduction, so it is incorrect 

to assume that these rates can be sustained over long periods. As the majority of 

experiments reported in Figure 2 are short term (e.g. often only 2 years in Abdalla et al., 

2019), all the average values shown for SOC increases from cover crops are likely to be 

overestimates. In addition the large rates shown by Vicente-Vicente et al. (2016) are for 

situations where cover crops were grown between rows of woody perennial crops; in this 

situation cover crops cover a larger area than in arable agriculture with annual crops and 

may be present permanently. The main driver of SOC storage seems to be the extra C input, 

as suggested by the high correlation between rates of SOC stock change and the amounts 

of C returned to the soil by cover crop biomass (Soane et al., 2012). However, there are 

limitations to the use of cover crops depending on cropping systems and climate conditions. 

For example, in temperate regions they can be readily utilized during the winter period prior 

to sowing a spring- sown crop, when the soil would otherwise be bare. But if only autumn-

sown crops are grown, there is very limited time between harvesting and the sowing of the 

subsequent crop. The effects of cover crops on N2O emissions are more variable and 

contrasted than those on SOC changes (Table 1). Many factors influence the magnitude of 

N2O emissions, such as the C:N ratio of cover crop residues, their rate of decomposition, the 

extra inputs of fertilizer N sometimes applied to cover crops, whether the residues are 

ploughed or left to decay on the soil surface. Current evidence points to a negative 

relationship between N2O emissions and the C:N ratio of residues (Chen et al., 2013). A low 

C:N ratio will increase the availability of soil N for microbial transformations (e.g. nitrification 

and denitrification), whereas larger ratios will result in N immobilization and deplete the soil 

inorganic N pool (Gentile et al., 2008). Additional C inputs from cover crops may stimulate 

the activity of denitrifier bacteria, which use these organic compounds as a source of energy 

(Mitchell et al., 2013). A meta-analysis (Basche et al., 2014) reported a significant increase 

in N2O emission when leguminous cover crops were introduced. However, another review 
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(Han et al., 2017) found out that the incorporation of either legume and non-legume cover 

crops tended to increase N2O emissions but the magnitude of the effect was not significant 

due to the high variability of data. The small average increase in N2O emission shown by 

Abdalla et al. (2019) in figure 2 is somewhat misleading as there was a considerable range 

in emissions in the data they summariszd, including both increases and decreases. The effect 

of cover crops on N2O emissions is therefore not yet fully understood and may well be highly 

site specific. One of the key points controlling cover crop effect on N2O emissions is how 

often leguminous crops are integrated within the crop rotation. Leguminous cover crops 

generally have a lower C:N ratio than non-leguminous crops, and can fix substantial amounts 

of atmospheric N, reaching up to 0.1–0.2 t N ha−1 year−1 (Anglade et al., 2015). These rates 

may lead to an N surplus if all the leguminous cover crop biomass is incorporated. A recent 

study, using a biogeochemistry model framework at European scale, estimated that 

systematic planting of N-fixing cover crops may lead to a N surplus of about 0.04 t N ha−1 

year−1, compared to the use of non-legumes as cover crop (Lugato, et al., 2018). In this 

scenario, the cumulative climate change mitigation effect of SOC sequestration was, on 

average, totally offset after 50 years since the adoption of cover crops, due to enhanced 

N2O emissions. While cover crops may induce higher N2O emissions, in particular if 

leguminous crops are extensively used, they can also reduce nitrate leaching, by about 56% 

on average (Thapa et al., 2018). This is beneficial for water quality and would be expected 

to lead to decreased indirect N2O emission through denitrification of nitrate entering 

surface water. Finally, another indirect effect of leguminous cover crops on N2O emissions 

will strongly depend on whether or not mineral N fertilization rates are reduced to take 

account of N provided by biological fixation. The meta-analyses we compiled here indicate 

that, on average, additional N2O emissions decrease the SOC storage benefit of cover crops, 

but do not fully offset it (Figure 2). But, as discussed above, the overall effects may be highly 

site specific. 

7.3.5 Agroforestry 

Agroforestry systems include a diversity of practices ranging from complex associations 

found in homegardens, multistrata systems or agroforests to simpler systems such as alley 

crops, silvopastoral systems, riparian plantings, shelterbelts, windbreaks or hedgerows 

(Nair, 1985). Despite this broad diversity, recent reviews and meta-analyses consistently 
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suggest that the conver sion of arable land to agroforestry systems increases SOC stocks 

(Feliciano et al., 2018; Kim et al., 2016; Lorenz & Lal, 2014). In temperate regions, SOC 

accumulation rates are usually around 0.92 t CO2-eq. ha−1 year−1 in the topsoil (0–30 cm; 

Cardinael, et al., 2015; Cardinael et al., 2017). They are highly dependent on local 

pedoclimatic conditions and on the type and design of agroforestry systems (tree density, 

tree species, pruning management, etc), but rarely exceed 3.67 t CO2-eq. ha−1 year−1 

(Cardinael, et al., 2018; Corbeels et al., 2019). However, the spatial distribution of SOC stocks 

in agroforestry systems is usually very heterogeneous, with higher stocks under the tree 

canopy or along tree rows (Bambrick et al., 2010; Cardinael, et al., 2015). Several 

mechanisms contribute to explain SOC sequestration in agroforestry systems. The main one 

is probably being linked to higher organic inputs to the soil compared to treeless agricultural 

land (Cardinael, et al., 2018), including litterfall, pruning residues and root inputs (Germon 

et al., 2016). A recent synthesis of N2O emissions under agroforestry compared to adjacent 

agricultural lands only found minor differences in net emissions, with no clear overall 

direction of change (Kim et al., 2016). However, several authors found increased N2O 

emissions in agroforestry, related to a greater N supply through N2- fixing trees (Chikowo et 

al., 2004; Dick et al., 2006; Hall et al., 2006; Hergoualc'h et al., 2008) or to the incorporation 

of tree residues (Baggs et al., 2006; Millar & Baggs, 2004). By contrast, N2O emissions are 

often reduced in silvoarable systems and in riparian buffers (Kim et al., 2016). Some authors 

suggest that concerns over N2O emissions from N2-fixing trees are unwarranted since fluxes 

from soils planted with N2-fixing trees are similar to those fertilized with mineral N 

(Rosenstock et al., 2014). Furthermore, the yield of crops in tropical agroforestry systems 

may be boosted as a result of higher N inputs from trees. In temperate regions where 

agroforestry systems are generally planted with non-legume trees, N2O emissions are often 

reduced (Kim et al., 2016), with several processes contributing to the trend. Increased 

nitrogen utilization at the plot scale may be due to the presence of deep-rooted trees 

(Cardinael, et al., 2015), which are capable of taking up nitrate-N that has leached below 

crop rooting depth (Andrianarisoa et al., 2016; Bergeron et al., 2011; Tully et al., 2012). This 

process can potentially reduce the amount of N available for nitrification and denitrification, 

and thus reduce indirect N2O emissions. Soil water content is often lower in agroforestry 

than in treeless plots (Zhu et al., 2019), due to a higher daily water consumption by trees 
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and crops (Sarmiento-Soler et al., 2019). A drier soil profile in agroforestry systems could 

therefore lower N2O emissions. In temperate silvoarable systems, tree rows are usually 

uncropped and unfertilized. This reduction in the fertilized cropping area indirectly leads to 

lower N2O emissions per hectare. An obvious consequence of agroforestry, especially as 

tends to be practiced in temperate regions, is that a smaller area of land is devoted to the 

agricultural crop being grown. So the impact of decreased N2O emissions may be different if 

expressed on an area basis compared to per unit of production. 

7.3.6 Non-pyrogenic organic amendments 

A literature review (Diacono & Montemurro, 2011) reported increases in SOC (sometimes 

expressed as stocks and sometimes as concentration) after prolonged large applications of 

organic amendments under several different agroclimatic conditions. These increases ranged 

from 20% to 90% of the initial total SOC after few years (3–60 years), compared to unfertilized 

controls or treatments receiving only synthetic mineral N fertilizers, with most being in the 

range of 20%–45%. A meta-analysis (Maillard & Angers, 2014) based on 130 observations 

worldwide quantified the response of SOC stocks to manure application over periods ranging 

from 3 to 82 years. The mean manure-C retention coefficient defined as the average 

proportion of manure-C remaining in the soil was estimated at 12% for an average study 

duration of 18 years. The authors finally estimated a relative SOC stock change factor of 26% 

which was also related to cumulative manure inputs. Concerning Mediterranean cropping 

systems, and shorter durations, a meta-analysis (Aguilera et al., 2013) reported that the 

application of organic amendments increased SOC stocks by 23.5% with an average SOC 

storage rate of 4.81 t CO2-eq. ha−1 year−1 calculated for an average duration of 7.9 years. 

From these meta-analyses, it seems that there is a consensus that organic amendments lead, 

on average, to a relative increase of SOC stocks in the top soils (roughly 20–30 cm) of about 

25% on a 20 year time frame (or three times the ‘4 per mil’ target). In one example (Poulton 

et al., 2018) where manure was applied an nually at a high rate compared to what is usual in 

agrosystems, the annual rate of SOC accumulation averaged 18‰ per year in the first 20 

years, then declined to 6‰ per year after 40–60 years, and to only 2‰ per year after 80–100 

years. However, from the perspective of mitigating climate change, it is arguable whether 

any increase in SOC stocks resulting from applications of manure or similar mate rials can be 

considered as C mitigation in the sense of either a trans-fer of C from atmosphere to land or 
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an avoided emission. Manure is generated in agricultural systems and is almost always used 

in some way by application to soils, though often quite inefficiently. Thus, an increase in SOC 

stocks at a given location mainly represents a transfer of C from one site to another as 

opposed to a net removal of atmospheric carbon (Poulton et al., 2018). Local additional SOC 

storage may not represent a CO2 sink, that is, a net transfer of carbon from the atmosphere 

to the soil at the landscape scale. Because organic amendments such as manures contain 

readily decomposable N-rich compounds, there is a significant risk that they may enhance 

N2O emissions (Cayuela et al., 2010; Laville et al., 2014; Obriot et al., 2016). Conversely, their 

use permits decreased use of mineral N fertilizers, thereby saving N2O emission from this 

source and fossil energy and the associated GHG emissions from fertilizer manufacture. A 

further complicating factor in assessing the overall impact of manure use is that indirect 

emissions due to storage or management are not negligible (Venterea et al., 2011). There are 

few reports in the literature of long-term monitoring of N2O emissions compared to data on 

SOC stock changes, primarily because the former are much more difficult to measure. 

However, the effects of multiple types of organic amendments on SOC storage and N2O 

emissions have been evaluated in short-term experiments for various soil types, climates, soil 

incorporation practices and amendments types including crop residues, manure, composts 

of various origin and maturation stages and sewage sludge. A meta-analysis (Charles et al., 

2017) concluded that the N2O emission factors (EFs) related to N inputs were mainly 

controlled by the C:N ratios of the added material, but that many other factors influenced 

emission, such as soil properties (texture, drainage, SOC and N content), and climatic factors. 

For instance, the authors observed that the EFs were on average 2.8 times greater in fine-

textured soils compared to coarse-textured, consistent with a previous meta-analysis (Chen 

et al., 2013). However, we should mention that the value of meta-analyses is often limited 

due to numerous controlling factors that are not always correctly reported in the papers 

reviewed, and the general paucity of organic amendments' characterization in the literature. 

For instance, the two meta-analyses mentioned in this paragraph only involved 28–38 

individual journal articles (Charles et al., 2017; Chen et al., 2013). Another approach is to 

compare organically managed soils with those managed without organic amendments 

(Skinner et al., 2014). Results from such a comparison seem to indicate reduced N2O 

emissions compared to situations relying totally on mineral fertilizers, as shown in Figure 2. 

It should be noted that there is limited data from long-term studies on N2O emissions 
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associated with additions of organic amendments; the data cover only a limited diversity of 

pedoclimatic conditions, and especially the range of soil water filled pore space values 

explored. 

7.3.7 Biochar amendments 

Biochar (pyrolyzed organic matter amended to the soil) technology is considered by some 

authors to be one of the methods with the highest potential to sequester carbon in soils 

compared to natural C cycle without biochar production step (Paustian et al., 2016). The aim 

of biochar production from biomass pyrolysis is to produce recalcitrant organic matter (i.e. 

charcoal and biomass-derived black C) which is then added to the soil. For this reason, biochar 

can be considered as a negative emission technology different from other soil C sequestration 

methods (Smith et al., 2016). Biochar properties and effects on SOC stabilization strongly 

depend on the feedstock material and pyrolysis conditions (e.g.. maximum temperature, 

heating rates; Baveye, 2014; Fang et al., 2014; Singh et al., 2012; Weldon et al., 2019; 

Zimmerman et al., 2011), as well as biochar ageing and soil properties (Luo et al., 2011; 

Paetsch et al., 2018). The efficiency of biochar for C sequestration is twofold as compared to 

simply relying on soil stabilization processes. First, slow pyrolysis for biochar production 

results in a much higher proportion of the feedstock C bound in persistent molecular 

structures than through in situ stabilization by addition of unprocessed organic matter to soil 

(Lehmann et al., 2006). With a slow pyrolysis at about 500°C, approximately 50% of the 

carbon contained in a feedstock of Miscanthus or maize cobs ended up within the biochar 

and can therefore be assumed to be more stable than carbon in the raw bio mass (Budai et 

al., 2014). This compares with only 8%–12% of straw residue returned to the field being 

transformed into longer-lived SOM forms (Bolinder et al., 1999; Fujisaki et al., 2018). Thus, 

pyrolysis is about four times more efficient than SOM-formation processes to produce 

persistent C in soils. Second, field studies show that biochar has a longer mean residence time 

in soils than SOM, that is, >100 years (Rasse et al., 2017) versus about 50 years for the latter 

(Schmidt et al., 2011). Combining effects of the higher persistent C yield with that of the 

longer mean residence time, biochar appears at least eight times more efficient at storing 

SOC than the return of non-pyrolysed residues. In meta-analyses, biochar amend-ment tends 

to increase the SOC stocks by 40% but the studies used were generally short term (no more 

than 4 years; Liu et al., 2016). Nevertheless, this result must be considered with due care 
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since it is not straightforward to measure the effect of biochar, which is mainly C, on native 

SOC but one published study suggests that biochar amendment increases total SOC including 

non-biochar C (Liang et al., 2010). 

In addition to the direct inputs of pyrolyzed biomass to the soil, recent studies showed that 

biochar amendments could increase (positive priming), decrease (negative priming) or have 

no effect on the mineralization of native SOM. The biochar effect on the magnitude and 

direction of priming is influenced by the incubation period and pyrolysis temperature (Fang 

et al., 2014; Kerré et al., 2016; Zimmerman et al., 2011). Positive priming, which would cause 

destabilization of SOM, thus offseting part of the increased SOC storage, could result from 

the biochar affecting microbial biomass activity and enzyme production (Lehmann et al., 

2011) through changes in availability of organic substrates and nutrients, and modification of 

microorganism habitat associated with the great porosity and large specific surface area of 

charcoal particles (Lehmann et al., 2011). Conversely, some studies showed that biochar-

induced negative priming, leading to further SOC storage in addition to direct biochar-C 

inputs, resulted from the enhancement of organo-mineral interactions and soil aggregation 

with biochar (Pituello et al., 2018; Singh & Cowie, 2014), and a greater adsorption of dissolved 

organic carbon onto biochar particles (Hernandez-Soriano et al., 2016). In addition, biochar 

amendments have been shown to increase soil water holding capacity, the availability of 

some nutrients (Ca2+, Mg2+ in particular) and to increase soil pH. All of these mechanisms 

could further enhance crop productivity and biomass inputs into soil (Atkinson et al., 2010; 

Biederman & Harpole, 2013; Hardy et al., 2017; Jeffery et al., 2011), with clearer effects on 

crop yields in highly weathered tropical soils (Crane-Droesch et al., 2013). Nevertheless, to 

process biomass into biochar, transport it and incorporate it to the soil, some energy is 

needed (possibly produced by pyrolysis) and the related GHG emissions associated with this 

process must be accounted for to calculate a full GHG balance for biochar. Life cycle 

assessments (LCA) have shown that a positive balance can be obtained, illustrated by GHG 

reductions up to 2.74 t CO2 equivalent per ton of biochar amended on volcanic soils from 

Southern Chile (Muñoz et al., 2017). The balance can also significantly increase when plant 

biomass production is accompanied by an efficient use of the bioenergy produced during the 

pyrolysis process in order to maximize climate benefits from biochar production followed by 

addition to soil, as shown by an LCA performed in Spain (Peters et al., 2015); implementation 
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costs were also decreased. One simulation study suggests that the maximum sustainable 

technical potential of biochar to mitigate climate change, involving the widespread use of 

biochars, without threatening food security and landscapes, could be a mitigation of 12% of 

current anthropogenic CO2 emissions (1.8 Pg CO2-C equivalent per year; Woolf et al., 2010). 

The C:N ratio of SOM approximates 14 (Cleveland & Liptzin, 2007) while that of biochar is 

generally higher than that of its feedstock, that is, generally >50 for straw biochar and >100 

for wood biochar. It takes therefore at least five times less N to stabilize organic C in the form 

of biochar than in the form of SOM. Beyond this critical observation, biochar has other 

important interactions with the N cycle, notably: (a) volatilization and immobilization of N 

during the pyrolysis process (Mandal et al., 2016), (b) reduction of N2O emissions after 

application to arable fields (Borchard et al., 2019), (c) reduction of NO3 and NH4 leaching 

(Lehmann et al., 2003). Emissions of N2O fromsoils are in most cases substantially reduced by 

biochar addition: a recent meta-analysis reported an average decrease of 38% across studies 

(Borchard et al., 2019). However, most measurements are short term, the majority in this 

meta-analysis being <30 days; the impact over an entire growing season under field 

conditions has rarely been measured. This effect appears consistent when bio-char is 

produced at over ~450°C, so that the product has both a high pH and a high surface area 

while containing very little labile C (Weldon et al., 2019). The contribution of N2O emissions 

attenuation with biochar was shown to be negligible in the LCA performed in Southern Chile, 

compared to the climate change mitigation associated to C storage (Muñoz et al., 2017). 

Furthermore, reductions in N2O emission with biochar appears only significant for the first 

year after application, which suggests that frequent applications are necessary to maintain 

such an effect. In view of the large quantities of biochar usually applied in such studies, this 

may greatly limit the practical and/or economical potential for using biochar as a method for 

decreasing N2O emissions. One approach to capitalizing on the positive interactions between 

biochar properties and the N cycle is through the development of biochar-based fertilizers 

made by mixing biochar with mineral or organic sources of nutrients (Hagemann et al., 2017). 

This method aims at reducing nitrate losses and N2O emissions, and at in creasing N use 

efficiency. Moreover, biochar tends to adsorb mineral N and the mixing with a nutrient-rich 

material prevents potential N deficiency created by field application of large amounts of raw 

biochar. Some biochar structures have been successfully loaded with ni-trate ions through 

co-composting, which could greatly increases the fertilization value of the product (Kammann 
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et al., 2015). Producing biochar fertilizers requires the development of appropriate technol- 

ogies. For example, mixing raw biochar—a high pH product—with manure and slurries can 

result in large amounts of NH3 being volatilized. Therefore, biochar acidification is generally 

required when making biochar fertilizers from organic feedstocks. However, biochar is also a 

strong sorbent for NH3 (Taghizadeh-Toosi et al., 2012), which may be captured from the 

atmosphere during the pyrolysis process and made available to plants later. This is a 

promising tech- nology to abate anthropogenic emissions of NH3 (Taghizadeh-Toosi et al., 

2012) as well as directly reduce NH3 volatilization from soils (Mandal et al., 2016). In 

conclusion, pending proper technology, bio-char may be intimately mixed with N sources and 

applied each year as a fertilizer to maximize reductions in both N2O emissions and nitrate 

leaching, while sequestering C in a structure requiring little N. However, further studies are 

needed to validate the scant results currently available. 

7.3.8 Overview of the current evidence 

Figure 2 summarizes published data on rates of change in SOC and rates of emission of N2O 

resulting from four prominent sets of practices designed to increase SOC, namely 

agroforestry, cover crops, no-tillage and organic amendment. All fluxes are expressed in CO2 

equivalents, using a global warming potential value inte- grated over 100 years and including 

global warming potential (GWP) of 298 for N2O as recommend by last IPCC report (Myhre et 

al., 2013). GWP is the time-integrated radiative forcing induced by a pulse emission of a given 

component (here N2O), relative to a pulse emission of an equal mass of CO2 (Myhre et al., 

2013). The data in Figure 2 were taken from several meta-analyses and re view papers. Here 

we did not re-analyse the data gathered by such meta-analysis, but rather presented the 

mean effect size from each study converted in CO2 equivalents. When results were given for 

the whole experiment duration, we divided by the duration of the experiment to obtain the 

mean annual SOC storage/N2O emissions (see Supporting Information for detailed methods). 

The data in Figure 2 are based on over 700 measurements of SOC change and 200 

measurements of N2O. Even allowing for some papers being cited in more than one meta-

analysis, this is a large body of data and, to our knowledge, has not previously been 

assembled in this way. At first sight it appears that SOC increases produced by the four sets 

of treatments varied widely from −0.52 ± 0.46 to −6. 74 ± 1.21 t CO2-eq. ha−1 year−1, the 

negative sign representing accumulation of SOC that is; transfer of C from atmosphere to soil. 
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However, this wide range is somewhat deceptive as the two largest values are from very 

specific situations. The value of −6.74 ± 1.21 t CO2-eq. ha−1 year−1 for agroforestry (Kim et al., 

2016) is from 34 sets of data for systems with a particularly high tree density (see legend to 

Figure 2); the other two meta-analyses for agroforestry, based on >200 data sets, give values 

of less than half this at around −3 t CO2-eq. ha−1 year−1. For cover crops the majority of data, 

based on 186 data sets, lead to mean rates of C accumulation in the range of −1.2 to −2.0 t 

CO2-eq. ha−1 year−1. The highest value observed for cover crop was 3.67 t CO2-eq. ha−1 year−1 

but it specifically refers to cover crops included between the wide rows of Mediterranean 

woody crops (olive, almond and vineyards) where the soil would otherwise be bare (Vicente-

Vicente et al., 2016). This is clearly an important management change within this 

environment but represents a much greater input of plant material than, say, cover crops 

grown during winter within temperate arable cropping systems. For both agroforestry and 

cover crops, and even ignoring the two sets of data for SOC increases that are especially large, 

it appears from the summarized data in Figure 2 that SOC increases resulting from these two 

changes in management considerably outweigh increased N2O emissions when both are 

expressed on a CO2-eq basis and these management changes can be expected to beneficial 

for climate change mitigation. However, the annual rates of SOC increase shown in Figure 2, 

especially for cover crops, are probably overestimates because they are based on short-term 

measurements, in some cases only 2 years; over longer periods the annual rate will decline 

as SOC moves towards a new equilibrium value. For no-tillage the situation is different: the 

relatively small rates of SOC accumulation are approximately equal to the increases in N2O 

emission when both are expressed on a CO2-eq basis, so there appears to be no overall 

climate change benefit. For organic amendments the results indicate that N2O emissions are 

decreased and thus reinforce the SOC benefit, though this is based on a very limited amount 

of data and also, as discussed earlier, it is questionable whether SOC increases from addition 

of organic amendments can be fully regarded as climate change mitigation. It should be noted 

that most of the studies are performed over a few years and assessment of GHG balance in 

the long term, especially for N2O, are still missing (Lugato, et al., 2018). Some practices were 

too little documented or with not enough information to be compared with the others (e.g. 

biochar or erosion control). 
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7.4 DISCUSSION AND OUTLOOK 

Overall, the meta-analysis we gathered here (Figure 2) suggest that, with the exception of 

reduced tillage practices, increased N2O emissions are not sufficient to invalidate the GHG 

abatement potential achieved by SOC sequestration strategies. Some sequestration 

strategies (e.g. biochar or non-pyrogenic organic amendment application) may even generate 

win–win situations through a decrease in N2O emissions, although the experimental 

evidences are still scant. This N2O emissions reduction is more and more scrutinized 

(Assémien et al., 2019; Buchen et al., 2019; Conthe et al., 2019; Shurpali et al., 2016) and 

some win–win practices may emerge in the near future from increasing SOC to reduce N2O 

emissions. For instance, biochar application known to im- prove SOC storage (Lehmann et al., 

2006) may also be associated with an N2O emissions reduction by decreasing labile N 

availability, N-cycling enzymatic activity and nitrification/denitrification rates (Song et al., 

2019). In addition, the economic impacts and large-scale effects of the options examined here 

warrant further assessment. Some practices may affect crop yields or farmers' income, 

depending on pedoclimatic conditions and the details and practicalities of the cropping 

systems. For instance, conservation practices, and especially no-till may slightly decrease 

crop yields under temperate climates but be beneficial in drier conditions (Pittelkow et al., 

2015). Similarly, the yield of arable crops is usu ally reduced in agroforestry systems in 

temperate regions (Pardon  et al., 2018) but in more arid climates, crops perform better 

(Bright et al., 2017). Nevertheless, for agroforestry, trees produce timber, firewood, honey, 

fruits, etc. that are also a source of incomes for the farmers and may lead to greater overall 

sustainability. Beyond yield impacts, some socio-cultural or economic factors come into play 

that may hinder the adoption of carbon sequestration practices. For example, in the United 

States, the cost of carbon capture through Natural Resources Conservation Service programs 

is estimated at US $32–442 per tonne of CO2, with an average of US $183 (Biardeau et al., 

2016). A carbon price much higher than the present value (around US $10 as a global average; 

Ramstein et al., 2019) would be necessary to promote carbon sequestration practices, as well 

as a regulation to direct the financial flow of in dustrial and energy emitters to the agricultural 

sector. For biochar, there are still questions about whether a sufficient quantity could be 

produced in order to make the approach realistic at large scale, in addition to the ongoing 

debate regarding the actual impacts of biochar on soils and crops and the mechanisms 
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involved. To be deployed at large scale and to enter emission trading systems, the GHG fluxes 

of each change in agricultural practices should be estimated precisely. Various models may 

be used to account for scale or leakage effects such as indirect land-use changes (Qin et al., 

2016). The methods currently available include data-driven approaches based on worldwide 

measurement networks (Shang et al., 2019), statistical or empirical flux-upscaling models 

(Shang et al., 2019; Wang et al., 2019), process-based models and, lastly, integrated 

assessment models (IAM; Zomer et al., 2016). Process-based models include a representation 

of N cycling processes, which are an essential tool in assessing and predicting the terrestrial 

N cycle and N2O fluxes in response to multi-factor global changes. Such models have been 

used to estimate N2O emissions from natural and agricultural soils at various scales, from 

field to global level via the integration of a prognostic N cycle into different land surface 

models (Tian, et al., 2018). As an example, Figure 3 shows the results of simulations by various 

models at global scale. Most of N2O emissions from cropland are due to the use of min-eral 

fertilizers (Figure 3a) and are mainly located in United States, Europe, India and China. They 

may be used to quantify carbon sequestration in soil minus the N2O emission trade-off at 

global scale, based on ensemble runs as was initiated in the global N2O Model Inter-

Comparison Project (Tian, et al., 2018). Integrated assessment models focus on the 

interactions between the economic activities and earth system responses and are vital for 

estimating what socio-economic changes would be needed to reduce GHG emissions across 

sectors and increase biospheric C sinks (IPCC, 2014). Until recently, most IAMs did not 

explicitly take into account SOC restoration practices (Smith et al., 2016). A recent study that 

did include them found that soils could be a sink of 3.5 Gt CO2-eq/year by 2050 under a 

carbon price of 190 USD/tCO2 (Frank et al., 2017). This carbon mitiga tion option, if achievable 

in practice, would reduce the burden of climate stabilization for all sectors of the economy, 

including agriculture. In addition, SOC increases are often correlated with higher crop yields 

and contribute to a range of other environ mental benefits and increased sustainability of 

agricultural systems. Practices designed to increase SOC can offer a win–win solution vis a vis 

food security, by mitigating food calorie losses resulting from the application of emission 

reduction targets (e.g. through decreased applications of mineral fertilizers) and reducing 

undernourishment. Finally, many of the practices reviewed (Table 1) here may be combined 

on a given field: for example, no-till can be combined with cover crops, organic amendments 

or agroforestry. Such combinations have been little tested in practice and in particular 
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synergetic effects between them have not been evaluated in depth (Autret et al., 2016, 2019). 

Conversely, they may come with trade-off, antagonistic or synergistic effects regarding SOC 

storage rates, as well as N2O emissions or other impacts and these needs to be identified and 

quantified. Furthermore, proper assessment of carbon sequestration measures raises 

classical GHG accounting issues, such as double counting, improper setting of system 

boundaries and counterfactual scenarios (Smith et al., 2016). Although further research is still 

needed to quantify the potential of SOC sequestration options on a local to regional basis, it 

appears that their potential to mitigate climate change, even when factoring in N2O emissions 

is still significant and that they deserve further consideration in climate stabilization 

scenarios. Including the state-of-the-art knowledge re- viewed here on the effectiveness of 

such measures in land system or integrated assessment models could be a prime target to 

assess their impacts at global scale. 
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Figure 3 Spatial and latitudinal patterns of contributions of fertilizer (a) and manure (b) on cropland soil N2O 

emissions obtained during the global N2O Model Intercomparison Project (Tian, et al., 2018). Average over 

the 2006–2015 period 
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7.7 SUPPORTING INFORMATION 

Additional methods 

It was necessary that the meta-analyses selected in this study must provide information on 

SOC storage and/or N2O emissions for one of the land management practices we presented. 

We therefore excluded some studies that focused on C or N cycles for a given practices but 

which may not directly measure SOC storage or N2O emissions (Abdalla et al., 2016). For each 

of the practices, when directly given in the main text or in the supplementary materials, we 

evaluated the effect on SOC storage and/or N2O emissions by comparing with a control 

corresponding to conventional practice. For C, in every study, only SOC storage (excluding 

belowground and aboveground biomass) was considered. If the results were already 

presented in in t CO2eq ha-1 y-1, the results we presented are directly taken from the meta-

analysis. If not, all the fluxes are converted in t CO2eq ha-1 y-1 with a 3.67 mass conversion 

coefficient for SOC and using a global warming potential value integrated over 100 years and 

including climate carbon feedbacks of 298 for N2O as recommend in the last IPCC report 

(Myhre et al., 2013). We use negative values to represent a net removal of GHG gases from 

the atmosphere and positive vales for net emissions. When the values were not given per 

year by the meta-analysis considered we converted them using the average duration of the 

study. The error is expressed as the standard error (SE) for all meta-analysis. It was 

appropriately converted from the standard deviations (SD) or confidence intervals at 95% (CI 

95%) provided by the authors with, respectively, the following equations: 

SE =  
SD

√n
                    (1) 
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SE =  
CI(95%)uppper limit− CI(95%)lower limit

3.92
        (2) 

 

Where n is the number of experiments in the meta-analysis. 

For instance, mean absolute change in SOC storage under agroforestery was calculated from 

the supplementary materials provided by the authors(Feliciano et al., 2018) as the weighted 

mean between all experiments (n=73). We estimated ΔSOC as -2.39 ± 1.48 t CO2eq ha-1 y-1, 

where ΔSOC is the difference between the control land management (cropland) and any 

agroforestry system.  The same procedure was applied for another study(Kim et al., 2016) to 

calculate the mean absolute change in SOC storage and we obtained a ΔSOC =-1.83 tC ha-1 yr-

1 *3.67 = -6.74 t CO2eq ha-1 y-1 ± 1.21 (n = 34). Finally, we also considered a greatly extended 

database (Cardinael et al., 2018) of Feliciano et al. (2017) (n=141) and obtained a value of -

2.75 ± 0.36 t CO2eq ha-1 y-1. Increased SOC sequestration was found in all cover crops meta-

analysis with different values observed (0.32 tC ha-1 y-1, (n=139) (Poeplau & Don, 2015) and 

1.03 tC ha-1 y-1, (n=61, with only Mediterranean woody crops (olive, almond and vineyards)) 

(Vicente-Vicente et al., 2016)) all converted in in t CO2eq ha-1 y-1 as explained above. For no-

tillage, a mean absolute change in SOC storage over the experiments duration of -3.40 tC ha-

1 was estimated by some authors (Virto et al., 2011). Dividing this value by the mean duration 

(15 years) of the experiments we estimated a ΔSOC of  -0.83 ± 0.01 t CO2eq ha-1 y-1 (n=92). 

Two different approaches (based on depth or on soil mass) to calculate the mean SOC storage 

absolute changes between tilled and no-tilled plots, over 95 experiments were also used (Du 

et al., 2017). In that case, the fixed-depth approach provided a ΔSOC of -0.30 tC ha-1 yr-1 that 

is equivalent to -1.01 ± 0.46 t CO2eq ha-1 y-1. The equivalent soil mass approach gave a lower 

value (ΔSOC = -0.52 ± 0.45 t CO2eq ha-1 y-1). We selected the equivalent mass method since it 

is more accurate (Angers & Eriksen-Hamel, 2008). A mean absolute change in SOC storage of 

-0.23 tC ha-1 yr-1 was observed when shifting from high intensity to no-tillage(Meurer et al., 

2018). We converted this value to CO2 equivalents and obtained -0.84 ± 0.40 t CO2eq ha-1 y-1 

(n=43). For organic amendments, we only considered in the meta-analysis experiments where 

control plot was amended with inorganic fertilizers (Maillard & Angers, 2014). The authors 

found an absolute change of SOC storage of -5.6 tC ha-1 over the entire experiments duration. 

Dividing this value by the average experiments duration (21.7 years) and converting it to CO2 

equivalents, we obtained an annual SOC storage change of -0.26 ± 0.15 t CO2eq ha-1 y-1 (n=42). 
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For N2O emissions, much less meta-analysis data was available. In agroforestry, a net change 

of 0.80  ± 1.63 t CO2eq ha-1 y-1 was calculated when shifting from agriculture to agroforestry 

(n=22) (Kim et al., 2016). For cover crops, a non-significant increase in net N2O emissions was 

observed when considering direct emissions (Abdalla et al., 2019). Indeed, direct emissions 

were -0.08 t CO2eq ha-1 y-1, meaning there has been a small positive gain of CO2 equivalents 

by the soil, while indirect emissions were found to be 0.16 t CO2eq ha-1 y-1 (i.e. positive 

emissions from the soil). Considering both direct and indirect emissions, we calculated a net 

increase of N2O emissions of 0.08 ± 0.06 t CO2eq ha-1 y-1. For reduced or no till treatments, 

we calculated the absolute change in N2O emissions from a database provided in 

supplementary materials (Mei et al., 2018). The authors stated that no-tillage increased N2O 

emissions by 19.2% compared to conventional tillage. Hence we calculated the annual mean 

of N emissions from no-tillage only experiments (n=61) and divided this value by 1.192 to 

calculate the associated conventional tillage departure value. The difference in emissions was 

estimated by subtracting the emissions from conventional tillage to no-tillage emissions and 

we came up with a value of 0.17 kgN ha-1 y-1. This is equal to 0.167 t CO2eq ha-1 y-1. Since 

experimental errors were not provided in this meta analysis, we estimated the mean SE as 

follows. First, we calculated the SD as a percentage of the mean from another meta-analysis 

on N2O emissions under reduced or no till (van Kessel et al., 2013). Then we multiplied this 

SD by the mean N2O emissions previously estimated for Mei et al. (2018). We finally converted 

the SD to the SE by dividing SD by the square root of the number of studies considered in Mei 

et al. (2018). Kessel et al. (2013) provided us with the entire dataset of N2O emissions from 

tilled and no-tilled experiments. We calculated the net change of N2O emissions as 2.35 kg 

N2O ha-1 y-1, which duly converted to tons of CO2 equivalents (0.7± 0.13 tCO2eq ha-1 y-1). For 

organic amendments, it was found that N2O emissions were reduced by 492 kg CO2eq ha-1 y-

1 when shifting from a mineralized to an organically managed plot (Skinner et al., 2014). This 

corresponds to -0.492 ± 0.16 t CO2eq ha-1 y-1 (negative sign to express a positive uptake of 

CO2 equivalents from the soil).  
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