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École des Ponts ParisTech

Jean-Baptiste HIRIART-URRUTY Examinateur
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Résumé

L’insertion des énergies renouvelables dans les réseaux électriques est un
défi majeur de la transition énergétique. Cependant, avec les sources d’énergie
renouvelable viennent aussi de nouveaux problèmes d’ingénierie, notamment
dus à leur comportement aléatoire. Dans cette thèse, nous étudions comment
des techniques issues de l’optimisation convexe et stochastique peuvent être
appliquées, et étendues, pour résoudre certains de ces problèmes. Le document
est organisé en deux parties.

Dans la première partie, Optimisation convexe et stochastique pour inté-
grer l’énergie électrique renouvelable, nous nous concentrons sur des techniques
pour concevoir et évaluer des algorithmes de pilotage de micro-réseaux élec-
triques. Nous commençons avec un benchmark de méthodes issues du contrôle
optimal, appliquées au pilotage d’un micro-réseau alliant production et con-
sommation d’énergie. Nous montrons que les méthodes conçues à partir de
la programmation dynamique stochastique permettent des gains importants,
sur la base de simulations sur une large collection de données de terrain. En-
suite, dans un chapitre plus théorique, nous étudions la différentiabilité des
fonctions valeur paramétriques, introduites pour la résolution de problèmes
d’optimisation stochastique à plusieurs pas de temps, et paramétrées par une
décision amont. Enfin, nous appliquons les résultats obtenus au pilotage d’une
centrale photovoltaïque soumise à des règles d’engagement de puissance la veille.
Nous obtenons des gains conséquents par rapport aux autres méthodes de la
littérature consacrées au même problème.

Dans la seconde partie, Méthodes numériques en convexité généralisée, nous
étudions les applications potentielles des fonctions de couplages dites “one-sided
linear” — une classe de couplages qui comprend la forme bilinéaire employée
en optimisation convexe (au sens classique). Nous commençons par étendre
l’algorithme de mirror descent. Ensuite, nous nous intéressons à l’exemple par-
ticulier du couplage Capra (constant along primal rays) et calculons des formes
explicites du Capra sous-différentiel de la pseudo-norme `0. Enfin, nous discu-
tons des difficultés rencontrées pour appliquer la Capra convexité à la résolu-
tion de problèmes d’optimisation parcimonieux. Bien que nous ne résolvions
pas directement des problèmes d’ingénierie liés à la gestion de l’énergie, notre
contribution réside en un nouveau point de vue original sur l’optimisation parci-
monieuse, omniprésente en statistique et en traitement du signal en grande
dimension, et qui concerne donc un vaste champ d’applications.
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Abstract

Inserting renewable power systems in the electric grid is a key challenge of the
energy transition. However, such systems introduce new engineering problems,
due to the erratic behavior of renewable energy sources. In this thesis, we study
how techniques from convex and stochastic optimization can be applied, and
extended, to address some of these problems. The manuscript is divided in two
parts.

In the first part, Convex and stochastic optimization for renewable power sys-
tems, we focus on techniques for designing and assessing energy management
systems. We start with a benchmark of optimal control methods for manag-
ing a prosumer microgrid, and we highlight, on a large testbed, the potential
gains of methods based on stochastic dynamic programming. Then, in a more
theoretical chapter, we investigate the differentiability properties of parametric
value functions, introduced for solving a class of multistage stochastic opti-
mization problems parametrized by an upstream decision. Lastly, we apply our
previous results to the management of a photovoltaic power plant constrained
by day-ahead commitment rules. We showcase significant gains compared to
state-of-the-art techniques.

In the second part, Numerical methods in generalized convexity, we study
potential applications of the so-called one-sided linear couplings — a class that
encompasses the Fenchel coupling of (standard) convex analysis. We start by
extending the mirror descent algorithm. Then, turning to the Capra (constant
along primal rays) coupling as a particular case, we provide explicit formula-
tions for the Capra subdifferential of the `0 pseudonorm. Lastly, we discuss the
difficulties that arise when trying to use Capra convexity to solve sparse opti-
mization problems. Although we do not directly address energy problems, we
contribute to an original viewpoint on sparse optimization, whose applications
in statistics and signal processing have a huge impact on all engineering fields.
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Introduction

Version française

Contexte

Le groupe d’experts intergouvernemental sur l’évolution du climat (GIEC) ap-
pelle à réduire urgemment l’intensité carbone de l’énergie électrique, tout en
augmentant la part de l’électricité dans notre consommation globale d’énergie.
De récentes études ont confirmé la faisabilité technique et économique de ces
objectifs, tant en France [89], qu’aux États-Unis [74]. Dans ces deux exemples,
les auteurs anticipent une forte hausse de la production d’électricité renouve-
lable, atteignant jusqu’à 70% du mix électrique en France d’ici 2050, et 90% aux
États-Unis d’ici 2035. Cette transition est déjà en route, et pose de nouveaux
défis d’ingénierie pour accompagner la transformation nécessaire des réseaux
électriques. Nous rappelons brièvement l’organisation de ces réseaux, et intro-
duisons certains des défis clefs rencontrés dans leur mutation s’inscrivant dans
les recommandations du GIEC. Nous renvoyons à [47, Appendix B] pour une
présentation succinte de l’infrastructure électrique, et à [59] pour une introduc-
tion plus complète.

Traditionnellement, les réseaux électriques relient deux types d’agents: des
producteurs et des consommateurs. Les producteurs correspondent à des unités
de production, convertissant une source d’énergie primaire (typiquement du
charbon, du gaz, du nucléaire, du solaire) en puissance électrique, acheminée
aux consommateurs domestiques et industriels. Une contrainte majeure dans
la gestion du réseau électrique est d’assurer en permanence l’équilibre entre la
production et la consommation sur le réseau. Cet équilibre est déjà fragile au-
jourd’hui, dans le contexte standard comportant de larges unités de production
centralisées, du fait des incertitudes dans le comportement des consommateurs.
Dans les années à venir, le maintien de cet équilibre sera encore plus délicat,
tandis que les incertitudes vont croître des deux côtés. D’une part, la consomma-
tion électrique est amenée à augmenter, avec des usages nouveaux, comme par
exemple celui des voitures électriques, augmentant les instabilités sur le réseaux.
D’autre part, de nouvelles incertitudes sont attendues du côté des producteurs,
avec l’augmentation de la part de l’énergie issue de sources renouvelables. En
effet, pour une centrale renouvelable, par exemple photovoltaïque ou éolienne,
la production de puissance dépend directement des conditions météorologiques,
qui restent difficiles à prévoir. Ainsi, les spécialistes des réseaux électriques
préconisent de nombreux changements pour augmenter la flexibilité et la pi-
lotabilité des composants des réseaux [47, 74, 89]. En particulier, les marchés
de l’énergie sont en cours de transformation pour accueillir plus de flexibil-
ité dans la production et la consommation d’énergie [61], et des systèmes de

1



Contents

stockage sont en cours de déploiement pour faire face aux saisonnalités dans la
production des centrales renouvelables [55].

En parallèle, la transition énergétique des réseaux électriques coïncide avec
une transition numérique, propulsant la plupart des secteurs industriels dans
l’ère du Big Data. La quantité massive de données collectée sur les réseaux
électriques permet le développement d’algorithmes de pilotage visant à lim-
iter les risques de panne et les coûts de fonctionnement. Dans le développe-
ment d’algorithmes de pilotage pour des systèmes complexes, une approche
standard consiste à formuler un problème d’optimisation, dont les variables
et les contraintes correspondent à une représentation physique du système pi-
loté, et dont la fonction objectif mesure les performances à maximiser (ou, de
manière équivalente, les coûts à minimiser). L’optimisation est une branche
des mathématiques dont les applications ont déjà transformé de nombreuses
industries. Déjà à l’ère préindustrielle, Monge avait formulé le problème ren-
contré en génie civil du terrassement optimal en déblais et remblais comme
un problème d’optimisation, dans son célèbre2 article [62]. Plus tard, au mi-
lieu du 20ème siècle, le développement de la programmation linéaire, initiée
indépendamment par Kantorovitch en URSS, et par Dantzig aux États-Unis,
a révolutionné les problèmes d’ordonnancement rencontrés dans les applica-
tions militaires et industrielles [27]. Dans les décennies suivantes, le spectre
des problèmes d’optimisation dont une solution numérique est considérée at-
teignable en un temps raisonnable s’est très largement étendu. Cette évolu-
tion, notamment due au développement des ordinateurs modernes, trouve ses
bases mathématiques dans les avancées majeures de la théorie de l’optimisation
convexe, avec les travaux précurseurs de Fenchel, Moreau et Rockafellar [44].
A la fin du 20ème siècle, Rockafellar conclut que “la grande fracture en op-
timisation n’est pas entre linéarité et non-linéarité, mais entre convexité et
non-convexité”3 [81]. Simultanément au cours du 20ème siècle, le besoin de
modéliser les incertitudes dans les problèmes appliqués à conduit au développe-
ment de l’optimisation stochastique. L’optimisation stochastique s’inscrit à
l’intersection entre l’optimisation et les probabilités, et vise à formuler et ré-
soudre des problèmes pour lesquels “l’objectif est de prendre une décision qui
donnera de bonnes performances moyennes”4[88]. Aujourd’hui, les techniques
de l’optimisation convexe et stochastique sont très largement utilisées pour la
conception d’algorithmes de pilotage pour des systèmes complexes, et jouent
ainsi un rôle essentiel dans les défis industriels et sociétaux du 21ème siècle [49].

C’est dans ce contexte qu’Efficacity, un institut pour la transition énergé-
tique, l’entreprise Schneider Electric, et le laboratoire CERMICS de l’École
des Ponts ont identifié des intérêts communs dans les techniques d’optimisation
convexe et stochastique, et dans leurs applications à la gestion de l’énergie élec-
trique renouvelable. La collaboration entre ces trois organismes est à l’origine
de cette thèse, supervisée par Michel De Lara, avec la contribution de Jean-
Philippe Chancelier et de Pierre Carpentier.

2Article surtout resté célèbre pour ses travaux précurseurs en géométrie différentielle.
3Traduction personnelle de la citation originale.
4Idem.
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Organisation de la thèse et contributions

La thèse est organisée en deux parties indépendantes Nous détaillons le contenu
de chaque partie et soulignons les contributions apportées.

Partie I: optimisation convexe et stochastique pour intégrer l’énergie
électrique renouvelable

Dans cette thèse, nous nous concentrons sur des applications aux réseaux élec-
triques à l’échelle locale. Nous adoptons la définition d’un micro-réseau élec-
trique donnée dans [70], selon laquelle un tel système est composé de généra-
teurs électriques locaux, de points de consommations, et d’unités de stock-
age, tous reliés au réseau amont par un unique point de connexion. Deux
types d’algorithmes de pilotage sont généralement considérés pour ces systèmes.
D’une part, un contrôleur primaire réagit aux variations de puissance à une
échelle fine (typiquement de l’ordre de 10−3 secondes), en prenant des décisions
sur la base de mesures de tension et de courant pour atteindre les objectifs fixés
par un contrôleur secondaire. D’autre part, ce contrôleur secondaire agit à une
échelle de temps plus large (typiquement de l’ordre de la minute), et vise à
piloter le système afin de respecter des critères de performances établis lors de
sa conception. Les critères de performance classiques sont la sécurité du réseau
et la rentabilité économique. C’est ce contrôleur secondaire qui est appelé com-
munément energy management system (EMS) en anglais. Nous renvoyons à
nouveau à [70] pour une revue détaillée sur les contrôleurs hiérarchiques.

Nous étudions comment des techniques de l’optimisation convexe et stochas-
tique peuvent être appliquées, et étendues, pour concevoir des contrôleurs pour
les micro-réseaux électriques. En particulier, nous considérons des EMS conçus
à partir de techniques issues du contrôle optimal multi-étape [10] et, en par-
ticulier, de la programmation dynamique stochastique [10, 78, 87, 17]. En ce
qui concerne l’optimisation convexe, nous nous intéressons tout particulière-
ment aux notions de différentiabilité pour des fonctions marginales convexes.
Notre intérêt pour ces fonctions est motivé par le rôle central des fonctions
marginales dans la formulation des équations de la programmation dynamique,
telles qu’introduites par Bellman [8]. Nous identifions le cadre convexe comme le
mieux adapté à la propagation de gradients (ou de sous-gradients) de fonctions
marginales de proche en proche, suivant le principe de la programmation dy-
namique. Nous renvoyons à [14] pour une introduction aux fonctions marginales,
et à [82, 5, 35] pour une introduction à l’optimisation et l’analyse convexe.

La Partie I contient trois chapitres. Nous détaillons maintenant le contenu
et les contributions de chaque chapitre.

Chapitre 1. Nous commençons par un benchmark des méthodes de contrôle
optimal pour piloter un système acteur du réseau en tant que producteur et
consommateur. L’originalité de ce benchmark, dénommé EMSx, est triple.
Premièrement, ce benchmark s’appuie sur une large base de données de con-
sommation et de production photovoltaïque, contenant des données historiques
d’observation et de prévision collectées par Schneider Electric sur 70 sites in-
dustriels. Deuxièmement, EMSx introduit des indicateurs clefs et un protocole
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expérimental détaillé pour mesurer la performance d’un EMS sur cette large
base de données. Troisièmement, EMSx est accompagné d’un logiciel qui sim-
plifie l’évaluation de nouveaux algorithmes. Pour assurer la reproductibilité des
expériences conduites dans ce benchmark, tous ses composants sont en accès
libre. Notre principal constat est que les EMS conçus à partir de méthodes
issues de la programmation dynamique stochastique induisent des gains signi-
ficatifs par rapport aux autres méthodes classiques. Ce chapitre correspond à
un article [52] publié dans la revue Energy Systems.

Chapitre 2. Ensuite, dans un chapitre plus théorique, nous introduisons
une classe de problèmes d’optimisation stochastique multi-étapes paramétrés
par une décision amont. S’appuyant à nouveau sur la programmation dy-
namique stochastique, nous introduisons des fonctions valeur paramétriques
pour résoudre ces problèmes, et nous étudions leur différentiabilité par rapport
au paramètre amont. Sous des hypothèses de convexité et de différentiabil-
ité, nous étendons les équations de Bellman usuelles au calcul des gradients
de ces fonctions valeur paramétriques de proche en proche. Dans le cas où
nous perdons notre hypothèse de différentiabilité, nous proposons deux méth-
odes d’approximation. Dans la première méthode, nous utilisons l’enveloppe
de Moreau pour introduire des sous-approximations régulières des fonctions
valeur paramétriques, dont nous pouvons calculer les gradients. Dans la deux-
ième méthode, nous utilisons l’algorithme SDDP (Stochastic Dual Dynamic
Programming) [72] pour introduire des sous-approximations polyhédrales des
fonctions valeur paramétriques, dont nous pouvons calculer des sous-gradients.
Nous commentons aussi les garanties de convergence pour les deux méthodes
d’approximation.

Chapitre 3. Enfin, nous appliquons nos précédents résultats au pilotage
d’une centrale photovoltaïque, soumise à des règles d’annonce d’engagement
de puissance la veille, dans le contexte des zones non-interconnectées (ZNI) en
France [25]. Nous conduisons deux expériences, correspondant à deux contribu-
tions distinctes. Dans notre première expérience, nous formulons un problème
d’optimisation d’optimisation stochastique paramétrique inspiré du contexte des
ZNI. Nous utilisons ce problème pour mesurer la performance des deux méth-
odes d’approximation développées au Chapitre 2, dans le cas où l’hypothèse
de différentiabilité n’est pas valide. Nous observons que les deux méthodes
sont bien adaptées à la résolution du problème, et nous commentons leur per-
formance en terme de temps de calcul. Dans notre seconde expérience, nous
nous inspirons de l’approche du Chapitre 1 pour définir un benchmark dédié à
l’évaluation de contrôleurs consacrés au pilotage de centrales solaires, soumises
au règles des ZNI françaises. Dans cette expérience, un contrôleur prend séquen-
tiellement des décisions la veille et dans l’intervalle des journées de pilotage, sur
un horizon d’un an. Nous proposons des contrôleurs inspirés par nos travaux
du Chapitre 1 et du Chapitre 2, et obtenons des gains importants par rapport
aux autres méthodes proposées dans la littérature.
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Partie II: méthodes numériques en convexité généralisée

Nous étudions les applications potentielles de la sous-différentiabilité en con-
vexité généralisée, une théorie qui englobe le contexte convexe classique de la
Partie II. Nous considérons des fonctions de couplage générales, qui jouent le
rôle du produit scalaire dans la théorie classique de la convexité pour lier un
espace primal et un espace dual. Avec ces fonctions de couplage, les notions
usuelles de conjuguée de Fenchel, de convexité et de sous-différentiel sont na-
turellement étendues [90, 58, 84]. Bien sûr, tous les couplages ne permettent
pas de retrouver l’ensemble des résultats de l’analyse convexe, et ne sont pas
nécessairement liés à des problèmes d’optimisation pertinents. Nous choisis-
sons d’explorer les propriétés d’une classe de couplages dits “one-sided linear”
(OSL), motivés par une récente série de travaux introduisant le cas particulier
du couplage Capra (constant along primal rays) [20, 23, 22, 21]. En particulier,
avec un choix adapté de norme ambiante utilisée dans la définition du couplage
Capra, la pseudo-norme `0 — qui compte le nombre de composantes non nulles
d’un vecteur — est une fonction Capra-convexe.

Notre travail est motivé par la perspective d’établir de nouvelles méth-
odes numériques pour l’optimisation parcimonieuse, fondées sur les récentes
avancées sur la théorie de la Capra-convexité. Comme mentionné précédem-
ment, le flux de données massif collecté sur les systèmes industriels tels que les
réseaux électriques permet d’améliorer le pilotage et l’analyse de ces systèmes
complexes. Cependant, la manipulation de telles quantités de données nécessite
d’importantes puissances de calculs, tandis que bien souvent, un petit nombre
de variables suffit à capturer l’essence d’un phénomène physique. En bref, “les
avantages de la parcimonie sont l’interpretabilité du modèle calibré et la mania-
bilité informatique”5[42]. Pour ces raisons, l’optimisation parcimonieuse est un
domaine de recherche très actif, avec des applications dans tous les domaines
de l’ingénierie, dont les systèmes énergétiques [29, 75, 31].

La Partie II contient trois chapitres. Nous détaillons maintenant le contenu
et les contributions de chaque chapitre.

Chapitre 4. Nous commençons par quelques rappels sur les conjugaisons de
Fenchel-Moreau généralisées, induites par une fonction de couplage. En partic-
ulier, nous rappelons et prouvons quelques propriétés de ces conjuguées obtenues
avec les couplages OSL. Ces résultats sont présentés comme des extensions de
résultats classiques d’analyse convexe. Par la suite, nous généralisons la notion
de divergence de Bregman pour des couplages OSL, une première étape avant
d’étendre aussi l’algorithme dit de “mirror descent” [67] avec des couplages OSL.
Cette contribution introduit un nouvel élément dans le paysage algorithmique
de la convexité généralisée, dominé jusqu’alors par l’algorithme des angles sé-
cants [2]. Nous soulignons les liens entre la formulation originale de l’algorithme
dans le cadre convexe usuel et le notre.

5Traduction personnelle de la citation originale.
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Chapitre 5. Ensuite, considérant le cas particulier du couplage Capra, nous
présentons des formulations explicites pour le Capra sous-différentiel de la pseudo-
norme `0. Nous étendons aussi des résultats précédents en montrant que pour
les normes ambiantes `p et des valeurs de p ∈ {1,∞}, le couplage Capra induit
n’est pas adapté à l’étude de la pseudo-norme `0, qui n’est pas Capra-convexe.
Nous concluons ce chapitre par des visualisations du Capra sous-différentiel de
`0, et par des comparaisons à d’autres notions de sous-différentiel généralisé de
la pseudo-norme `0.

Chapitre 6. Enfin, nous explorons les perspectives d’application du Chapitre 4
et du Chapitre 5 à l’optimisation parcimonieuse. Nous commentons les pro-
priétés de convexité généralisée de deux familles de problèmes d’optimisation
parcimonieuse, obtenues avec le couplage Capra. En particulier, ces propriétés
de convexité font intervenir dans les deux cas un couplage OSL, ce qui ouvre la
possibilité d’appliquer les résultats des précédents chapitres. Dans l’ensemble,
bien que nous ne résolvions pas directement des problèmes liés à la gestion
de l’énergie, notre contribution réside en un nouveau point de vue original sur
l’optimisation parcimonieuse.

Les pages qui suivent sont rédigées en langue anglaise.
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English version

Context

The intergovernmental panel on climate change (IPCC) calls urgently for the
reduction of the carbon intensity of electric power, while improving the share of
final energy consumption provided by electricity [83]. Recent studies have con-
firmed the technical and economical feasibility of decarbonization in the electric
grid, in France [89], and in the United Sates [74]. In both cases, the authors
foresee a high penetration of renewable power generators in the grid, to increase
the share of carbon-free electricity up to 70% by 2050 in France, and up to 90%
by 2035 in the US. This transformation is already happening, and introduces
new engineering challenges to reshape the power grid landscape accordingly.
We briefly introduce the standard organization of electric grids, and some of
the challenges met in its ongoing mutation to follow the recommendations of
the IPCC experts. We refer to [47, Appendix B] for basic notions on electric
power systems, and to [59] for a more complete introduction to the subject.

Traditional grids connect two types of agents: producers and consumers.
Producers correspond to generating units which convert primary energy (typ-
ically coal, gas, nuclear or renewables) into electric power, which is delivered
to domestic and industrial consumers (often called “loads” of the network). A
major constraint in the management of the power grid is to keep the supply
and the demand well balanced on the network at all time. This task is already
difficult for a standard power grid with large and centralized fuel-based power
plants due to the high uncertainty in the load, which corresponds to everyday
electric power usages in the network. In the coming years, maintaining the grid
balance is expected to become even more challenging as uncertainties are grow-
ing from both sides. On the one hand, electric power consumption is expected
to increase, with new sorts of usage such as electric vehicles, that induce addi-
tional load instabilities. On the second hand, as the share of renewable energy
sources increases in power networks, novel uncertainties arise on the produc-
tion side. Indeed, for renewable units such as solar panels and wind turbines,
power production mostly relies on weather conditions, and is difficult to fore-
cast. Therefore, grid experts advocate various changes to improve flexibility in
power grid management [47, 74, 89]. In particular, energy markets are being
adapted to cope with flexible power supply and demand [61], and energy stor-
age systems are being deployed to face seasonalities in the production curves of
renewable units [55].

On top of that, the transition towards renewable power grids is synchronized
with a shift of all major industries in a Big Data era. The large volume of data
collected on power systems allows the design of fine controllers to lower risks
of failure and management costs. A standard approach in controller design for
complex systems is to formulate an optimization problem, with variables and
constraints describing a physical representation of the system, and an objective
function measuring the performance to be maximized (or equivalently, the cost
to be minimized). Optimization is a branch of mathematics whose applications
have already transformed many industrial fields. As early as in the prequel of
the industrial revolution, Monge had formalized the problem of earthworks as an
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optimization problem in his famous6 article [62]. Later, in the mid-20th century,
the development of linear programming, initiated independently by Kantorovich
in the USSR, and by Dantzig in the US, has revolutionized planning problems
arising in military and industrial applications [27]. In the following decades, the
spectrum of numerically tractable optimization problems has greatly expanded.
This expansion, partly due to the development of modern computers, takes its
mathematical roots in the major progress in convex optimization, mainly com-
posed of the work of Fenchel, Moreau and Rockafellar [44]. At the end of the
20th century, Rockafellar concludes that “the great watershed in optimization
isn’t between linearity and nonlinearity, but convexity and nonconvexity” [81].
In parallel to the development of convex optimization, the need to model uncer-
tainties in applied problems has led to the emergence of stochastic programming.
Stochastic programming lies at the intersection between optimization and prob-
ability, and intends to formulate and solve problems where “the objective is to
come up with a decision that will perform well on average” [88]. As of today, all
the aforementioned progresses in convex and stochastic optimization strongly
support algorithms developed for the control of complex systems, and thus play
an essential role in critical industrial and societal challenges met in the 21st
century [49].

It is in this context that Efficacity, a French institute for the energy transi-
tion, the company Schneider Electric, and the CERMICS laboratory at École
des Ponts have identified common interests in techniques from convex and
stochastic optimization, applied to the management of renewable power sys-
tems. The collaboration between all three organizations is at the origin of this
PhD thesis, supervised by Michel De Lara, and with supervising contributions
of Jean-Philippe Chancelier and Pierre Carpentier.

Organization of the thesis and contributions

The thesis is organized in two parts that read independently. We detail the
organization of both parts and highlight the contributions of each chapter.

Part I: convex and stochastic optimization
for renewable power systems

In this thesis, we concentrate on applications to power systems at the microgrid
scale. Following [70], our definition of an electric microgrid designates electric
networks composed with local electric power units, loads, and energy storage
devices, sharing a single point of connection with the global grid. Two types of
controllers are usually deployed to manage such systems. A primary controller
reacts to variations of power at the finest scale (e.g. at the order of magnitude
of 10−3 seconds), taking decisions based on voltage and current measures to
meet targets set by the secondary controller. A secondary controller operates
at a larger time scale (about a few minutes), and aims at managing the mi-
crogrid while respecting the main performance criteria set when designing the

6Mostly famous for laying the ground for the modern theory of differential geometry.
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system. The most common criteria include security of the network and eco-
nomic profitability. It is this secondary controller that is commonly called an
energy management system (EMS). We refer again to [70] for a detailed review
on hierarchical microgrid control.

We study how techniques from convex and stochastic optimization can be
applied, and extended, for designing and assessing controllers for electric micro-
grids. In particular, we consider EMS design techniques based on multistage op-
timal control methods [10] and, specifically, on stochastic dynamic programming
[10, 78, 87, 17]. Concerning convex optimization, we pay a special attention to
differentiability notions for convex marginal functions. Our interest in marginal
functions is motivated by their central role in the formulation of the dynamic
programming equations, as introduced by Bellman [8]. We identify the convex
case as the most favorable context to propagate gradients (or subgradients) of
marginal functions by backward induction, following the dynamic programming
principle. We refer to [14] for background notions on marginal functions, and
to [82, 5, 35] for background notions of convex analysis and optimization.

Part I contains three chapters. We now detail the content and the contribu-
tions of each chapter.

Chapter 1. We start with a benchmark of optimal control methods for man-
aging a prosumer microgrid — which, from the global grid’s viewpoint, acts
both as a producer and a consumer, hence the term prosumer. The originality
of this benchmark, called the EMSx benchmark, is threefold. First, it is based
on a large dataset of load and photovoltaic data, containing both historical ob-
servations and forecasts, collected by Schneider Electric on 70 industrial sites.
Second, the EMSx benchmark introduces key metrics and a detailed experi-
mental protocol for assessing the performance of an EMS on this large dataset.
Third, the EMSx benchmark is packaged in a software that simplifies the eval-
uation of new controllers. For the sake of reproducibility, all components of the
benchmark are detailed and made publicly available. Our main finding is that
microgrid controller methods based on stochastic dynamic programming return
significant gains compared with other standard control methods. This chapter
corresponds to a journal article [52] published in Energy Systems.

Chapter 2. Then, in a more theoretical chapter, we introduce a class of multi-
stage stochastic optimization problems parameterized by an upstream decision.
Building again on the framework of stochastic dynamic programming, we intro-
duce parametric value functions for solving such problems, and we investigate
their differentiability properties with respect to the upstream decision parame-
ter. Under convexity and differentiability assumptions, we extend the standard
Bellman equations to compute the gradients of these parametric value functions
by backward induction. In the case where we lose the differentiability assump-
tion, we propose two approximation methods. In the first method, we use the
Moreau envelope to introduce smooth lower approximations of the parametric
value functions, for which we can compute gradients. In the second method,
we use the stochastic dual dynamic programming (SDDP) algorithm [72] to in-
troduce polyhedral lower approximations of the parametric value functions, for
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which we can compute subgradients. We also discuss the convergence properties
of both approximation schemes.

Chapter 3. Lastly, we apply our previous results to the management of a
photovoltaic power plant constrained by day-ahead commitment rules, in the
context of non-interconnected zones (NIZ) in France [25]. We perform two ex-
periments, corresponding to two different contributions. In our first experiment,
we formulate a parametric multistage stochastic optimization problem inspired
by the NIZ context. We use this problem to attest the performance of the two
approximation methods developed in Chapter 2, to address problems where we
lose our differentiability assumption on parametric value functions. We find
that both methods can be used successfully to solve the problem, and discuss
the performance of both methods in term of computing time. In our second
experiment, we mimic the approach of Chapter 1 to define a benchmark prob-
lem whose purpose is to assess controllers for a power plant managed under the
French NIZ regulatory rules. In this experiment, a controller takes sequential
day-ahead and intraday decisions, over the horizon of one year. We propose
controllers inspired by our previous work in Chapter 1 and Chapter 2, and we
showcase significant gains over state-of-the-art techniques.

Part II: numerical methods in generalized convexity

We study the potential applications of subdifferentiability in general convex
analysis, a theory which encompasses the standard convex setting of Part I.
We consider general coupling functions, which play the role of the scalar prod-
uct in standard convexity to pair a primal space with a dual space. With any
coupling function, the usual notions of Fenchel conjugacy, convexity and sub-
differential extend naturally [90, 58, 84]. Of course, all couplings do not allow
a straightforward extension of the powerful results of standard convex analysis,
and might not be related to relevant optimization problems. We choose to ex-
plore the properties of the class of so-called one sided linear (OSL) couplings,
motivated by a recent series of work introducing the Capra (constant along pri-
mal rays) coupling [20, 23, 22, 21]. In particular, it was shown that, under a
suitable choice of source norm, involved in the definition of the Capra coupling,
the `0 pseudonorm — that counts the nonzero coordinates of a vector — is a
Capra-convex function.

The applications that drive our work in this second part lay in the possibility
to derive new numerical methods in sparse optimization, based on the recent
advances of Capra-convexity. As stated earlier, the huge flow of data collected
in industrial systems such as power grids allows to improve the control and
analysis of these systems. However, tremendous amounts of data require intense
computing facilities to be manipulated, while most often, only a small number
of variables are sufficient to capture the essence of a physical phenomenon. In
short, “the advantages of sparsity are interpretation of the fitted model and
computational convenience” [42]. Therefore, sparse optimization is a highly
active research field, with applications in all engineering domains, including in
power systems [29, 75, 31].
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Part II contains three chapters. We now detail the content and the contri-
butions of each chapter.

Chapter 4. We start with background notions on general Fenchel-Moreau
conjugacies induced by coupling functions. In particular, we review and prove
some properties of these conjugacies that arise with OSL couplings, that let
us retrieve well-known results of the usual convex case. Next, we generalize
the notion of Bregman divergence with OSL couplings, a first step before we
also extend the mirror descent algorithm [67] with OSL couplings. This contri-
bution is an original new step in the algorithmic toolbox of general convexity,
dominated so far by the cutting angle algorithm [2]. We also highlight bridges
between the original formulation of mirror descent in the usual convex case and
ours.

Chapter 5. Then, turning to the Capra coupling as a particular case, we
provide explicit formulations for the Capra-subdifferential of the `0 pseudonorm.
We also extend previous results by showing that when using the `p norms with
p ∈ {1,∞} as source norms in the definition of the Capra coupling, the `0

pseudonorm is not Capra-convex. We conclude this chapter with visualizations
of the Capra-subdifferential of `0, and with comparisons to other notions of
generalized subdifferentials of the `0 pseudonorm.

Chapter 6. Lastly, we explore perspectives in the application of the results of
Chapter 4 and Chapter 5 to sparse optimization problems. We observe the un-
expected generalized convexity properties of two families of sparse optimization
problems, obtained with OSL couplings. This opens the door to the application
of the results of the previous chapters. Overall, although we do not address
directly energy problems, we contribute to an original viewpoint on sparse op-
timization, and point to interesting future research tracks.
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Chapter 1. EMSx: a numerical benchmark for energy management systems

1.1 Introduction
Inserting renewable energy in the electric grid is a key challenge of the energy
transition. As renewable power units are often coupled with a storage system
and envisaged at a local scale (where the demand is more erratic than at a
global scale), this makes the management of such electric microgrids delicate.
In this chapter, we concentrate on Energy Management Systems (EMS), a high
level layer of hierarchical control, responsible for operating electric microgrids
while optimizing security and economic criteria [70].

The design of an EMS for the optimal management of a storage system
supporting renewable energy integration is a well-known challenge. Most ap-
proaches are based on the mathematical theory of multistage deterministic and
stochastic optimization, and the relevance of a microgrid control method is usu-
ally assessed on a representative validation setup. A comparative study of EMS
design techniques was conducted in [79], which includes Model Predictive Con-
trol (MPC, [33, 11]), Open Loop Feedback Control (OLFC, [10, Vol. 1, §6.2],
sometimes referred to as stochastic MPC) and Stochastic Dynamic Program-
ming (SDP [9, 78]). Although providing a large benchmark of control methods,
[79] assesses management strategies on a very specific example, the control of a
braking energy storage system in a subway station. Another example of highly
specific EMS assessment result is found in [48], where the authors apply MPC
for operating a very detailed residential microgrid configuration, mixing ther-
mal and electric energy storage, and providing models for every electric device
accounting for a shiftable load in a standard Swiss household. Due to the speci-
ficity of the case studies, it is not clear that the conclusions of such works can
be generalized, and that they can help researchers and practitioners willing to
deploy an EMS for a new context, with new data.

Novel microgrid controller techniques are published regularly, making it even
harder to establish an up-to-date benchmark. In [41], the authors propose an
innovative EMS architecture which combines Recurrent Neural Networks [34]
with Stochastic Dual Dynamic Programming [86] for managing solar panels
coupled with a battery. They compare their EMS against a heuristic approach
on residential data collected by a research organization which provides free
access to its data for academic purposes. However, their simulation relies on
a commercialized real-time simulator — which may improve the realism of the
assessment method, but complicates the reproduction of the testbed. A similar
microgrid application is considered in [43], where the authors also operate a
battery for photovoltaic power integration in a novel framework, modeling the
electric load by a stochastic differential equation. They rely on real data —
whose access is not documented — from an experimental site in Chile, and
implement their simulation on an open source numerical solver. The same
initiative was taken in [40], where the authors make their implementation of
SDP publicly available, so that their comparison with a heuristic method for
the design of an EMS could be extended to other data and other techniques.

It is in that context that we introduce the EMSx benchmark, composed
of three constituents — a dataset, a mathematical framework, and a simula-
tion software — and designed for the purpose of assessing electric microgrid
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1.1. Introduction

controllers on an open, transparent and unified challenge.
The first component of the EMSx benchmark is a new dataset reporting a

wide range of contrasted microgrid situations. For these data, we rely on sam-
ples collected by the Schneider Electric (SE) company on 70 industrial sites. SE
develops and commercializes microgrid controllers, and is interested in challeng-
ing its current practices with state-of-the art optimization methods developed
in the academic world. In this context, SE puts together a dataset which allows
benchmarking different energy management methods in various situations. This
dataset contains photovoltaic and electric load profiles, detailing both historical
observations and forecasts, which let us closely reproduce the online information
available to an EMS.

The second component of the EMSx benchmark is a mathematical frame-
work for the assessment of electric microgrid control techniques and algorithms.
This framework consists of the mathematical description of a microgrid archi-
tecture — made of one resource, one battery, one load — and of an economic
criterion that depends on how the battery is managed. Indeed, as we focus
on photovoltaic units integrated in local power networks — with uncertainties
arising both from the electric load and from the photovoltaic power generation
— introducing an energy storage system can help to reduce the energy bill. The
battery is managed by means of a microgrid controller, for which we propose a
precise mathematical definition and a score to measure its aggregated perfor-
mance, on the one hand across the uncertainties unique to a site, on the other
hand across the different sites of the dataset.

The third component of the EMSx benchmark is the EMSx benchmark soft-
ware, that we have developed and implemented as a Julia [13] package. This
software makes possible the simulation and assessment of a large range of con-
trollers on the testbed defined by our dataset and our mathematical framework.

We believe that our benchmark is well-suited for assessing the performance
of a large class of control techniques, and we illustrate our claim by measuring
the performance of a selection of controllers — derived from MPC, OLFC, SDP,
and from an extended state formulation of a plain SDP controller that models
uncertainties with an auto-regressive process (SDP-AR , [87, §3.1.1] and [54]).
All in all, EMSx stands out by providing open access to our simulation data
and software, permitting to benchmark microgrid controllers on simulation data
representative of a large panel of industrial microgrid cases, within a clear and
detailed mathematical framework.

This chapter is structured as follows. We introduce the EMSx benchmark
dataset in Sect. 1.2, the EMSx benchmark mathematical framework in Sect. 1.3
— by providing a microgrid simulation model, a definition of a microgrid con-
troller and a score — and the EMSx benchmark EMSx.jl package in Sect. 1.4.
In Sect. 1.5, we detail two main classes of mathematical techniques to design
microgrid controllers, and we provide the numerical results obtained with the
EMSx benchmark. The Appendix 1.A gathers additional material on the nu-
merical experiments of Sect. 1.5.
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Chapter 1. EMSx: a numerical benchmark for energy management systems

1.2 The EMSx benchmark dataset
We present the Schneider Electric (SE) dataset which offers a large collection
of field data for studying the management of electric microgrids. The dataset is
publicly available at URL https://github.com/adrien-le-franc/EMSx.jl.

In §1.2.1, we present generalities about Schneider Electric’s 70 sites. Then,
we detail the content of the dataset by focusing on historical observations
in §1.2.2 and on historical forecasts in §1.2.3. Finally, in §1.2.4, we illustrate
how the 70 sites differ in terms of “predictability”.

1.2.1 Generalities about Schneider Electric’s 70 sites

Indeed, SE has collected a large database of load profiles on real operated mi-
crogrids deployed on a various collection of 70 industrial sites, mainly located in
Europe and in the United States (for data privacy reasons, SE does not provide
specific information on the origin of the sites).

Each site is documented with parameters and time series data. We denote
the set of sites by I (hence |I| = 70). On each site i ∈ I, we provide battery
parameters (ci, l

i
, ρic, ρ

i
d) (see the storage dynamics part in §1.3.1 below). Re-

garding time series, the database contains historical observations and historical
forecasts of the energy demand and of photovoltaic generation for each site.
For this latter, however, SE has selected a single photovoltaic profile from a
site located in South Central United States, and has then rescaled this profile
for each site of the database, taking care to restore the balance between the
energy generation and the load profile. This special treatment of photovoltaic
generation is due to the lack of detailed historical meteorological data for most
of the sites, which is an impediment to compute accurate photovoltaic forecasts.

We sample the continuous time every 15 minutes, giving, for each site i ∈ I,
a time index t ∈ {1, 2, . . . , θi−1, θi}, up to the horizon θi (with at least one year
of historical observations and forecasts per site). Every time interval [t, t+1[
corresponds to 15 minutes.

1.2.2 Historical observations

We have measures of the photovoltaic generation gt and of the energy demand dt
over the last 15 minutes, providing vectors of historical observations for each
site i ∈ I:

gi = (gi1, . . . , g
i
θi) ∈ Rθi , ∀i ∈ I , (1.1a)

di = (di1, . . . , d
i
θi) ∈ Rθi , ∀i ∈ I . (1.1b)

We provide examples of observed daily chronicles for photovoltaic generation
in Figure 1.1a, and for energy demand in Figure 1.1b.
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1.2. The EMSx benchmark dataset

(a) Examples of daily chronicles (histor-
ical observations) of photovoltaic genera-

tion (1.1a) (from Site 25)

(b) Examples of daily chronicles (histori-
cal observations) of energy demand (1.1b)

(from Site 25)

Figure 1.1: Examples of daily chronicles (1.1)

1.2.3 Historical forecasts

On top of observed data, Schneider Electric also provides, every 15 minutes,
historical forecasts ĝit,t+1, . . . , ĝ

i
t,t+96 of photovoltaic profiles and historical fore-

casts d̂it,t+1, . . . , d̂
i
t,t+96 of demand profiles for the next 24 hours (hence 96 = 24×

60/15), hence giving vectors for all sites i ∈ I and for all times t ∈ {1, . . . , θi}

ĝit = (ĝit,t+1, . . . , ĝ
i
t,t+96) ∈ R96 , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (1.2a)

d̂it = (d̂it,t+1, . . . , d̂
i
t,t+96) ∈ R96 , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (1.2b)

and sequences of historical forecasts for all sites i ∈ I

ĝi = (ĝi1, . . . , ĝ
i
θi) ∈ R96×θi , ∀i ∈ I , (1.3a)

d̂i = (d̂i1, . . . , d̂
i
θi) ∈ R96×θi , ∀i ∈ I . (1.3b)

The forecasting method employed by Schneider Electric combines auto-regre-
ssive models with random forests, and is inspired by the top-level methods used
in GEFCom2014 [46].

By combining the chronicles (1.1) of historical observations with the chron-
icles (1.3) of historical forecasts, we can thus closely reproduce the information
available to an online microgrid controller operating a real site.

1.2.4 Illustrating how sites differ in terms of predictability

The dataset covers a large spectrum of situations regarding variability and pre-
dictability. To assess the predictability of the data at a given site i ∈ I, we first
introduce the historical net demand observations

zit = dit − git ∈ R , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (1.4a)

deduced from (1.1), and the historical net demand forecasts

ẑit = d̂it − ĝit ∈ R96 , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (1.4b)
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deduced from (1.3). Second, we normalize the historical net demand observa-
tions by

z̃it =
zit − zi

zi − zi
∈ [0, 1] , ∀t ∈ {1, . . . , θi} , ∀i ∈ I , (1.5a)

where
{
zi = max1≤t≤θi{zit} , ∀i ∈ I ,
zi = min1≤t≤θi{zit} , ∀i ∈ I ,

(1.5b)

and we apply the same transformation to the components ẑit,t+1, . . . , ẑ
i
t,t+96 of

the historical net demand forecasts, yielding

˜̂zit,t+k =
ẑit,t+k − zi

zi − zi
∈ R , ∀k ∈ {1, . . . , 96} , ∀t ∈ {1, . . . , θi} , ∀i ∈ I . (1.6)

Thus normalized, predictability can be compared across the pool of sites. Third,
we define the Root Mean Square Error (RMSE) of the site i ∈ I by

RMSE i =

√√√√ 1

96× θi
θi∑
t=1

96∑
k=1

(
˜̂zit,t+k − z̃it+k

)2
. (1.7)

The diversity of the forecast error over the pool of 70 sites is shown in
Figure 1.2. Here, we ranked sites in increasing order of RMSE. We observe
that the error is quite stable in the wide flat central part of sites distribution,
except for the first 20% (with low forecast error) and for the last 20% (with
high forecast error) of the sites. Thus, our dataset represents a diverse pool of
microgrids, offering thus the possibility to assess the performance of microgrid
management techniques on a large range of realistic industrial applications.

Figure 1.2: RMSE of the net demand forecast (Y -axis) over
the pool of 70 sites, ranked in increasing order of forecast error

along the X-axis
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1.3 The EMSx benchmark mathematical formu-
lation

After Schneider Electric’s dataset presented in Sect. 1.2, the second component
of the EMSx benchmark is a mathematical framework for the assessment of
electric microgrid control techniques and algorithms. We formulate a bench-
mark problem to evaluate generic microgrid controllers in §1.3.1. Then, we
describe the structure of a controller, and how it is assessed by simulation along
a partial chronicle in §1.3.2. In §1.3.3, we detail a score to compare the perfor-
mance of controllers, and, in §1.3.4, we extend it into a score to assess a whole
controller-design technique.

1.3.1 Microgrid control model

We consider an electric microgrid composed of a photovoltaic power unit, an
electric load and an energy storage system. We assume that all components of
the microgrid share a single point of connection with the global grid. At this
point, electric power can be imported or exported so as to satisfy the electric
power demand (total load) at all times. We provide a schematic model of such
a system in Figure 1.3.

We now introduce some notation. We represent the mathematical control of
a microgrid over a finite number of discrete time steps t ∈ {0, 1, 2, . . . , T−1, T},
where unit steps are spaced by ∆t = 15 minutes. We denote a time interval
between two decisions by [t, t+1[, and not by [t, t+1], to indicate that a decision
is taken at the beginning of the time interval [t, t+1[, and that a new one will
be taken at the beginning of the time interval [t+1, t+2[, and that these two
consecutive intervals do not overlap.

Figure 1.3: Schematic microgrid model

Storage dynamics. The storage system is assumed to be a lithium-ion bat-
tery (or a container of aggregated batteries), characterized by the coefficients
(c, l, ρc, ρd) referring respectively to the battery’s capacity (kWh), maximum
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load (kW), charge and discharge efficiency coefficients. The state of charge, at
the beginning of the time interval [t, t+1[, is denoted by

xt ∈ [0, 1] . (1.8a)

The decision ut, taken at the beginning of every time interval [t, t+1[, accounts
for the energy charged (ut ≥ 0) or discharged (ut ≤ 0) during the time inter-
val [t, t+1[. The dynamics of the state of charge is given by

xt+1 = f(xt, ut) , ∀t ∈ {0, . . . , T−1} , (1.8b)

where the dynamics f is given by

f(x, u) = x+
ρc
c
u+ − 1

ρdc
u− , ∀(x, u) ∈ [0, 1]× R , (1.8c)

with u+ = max(0, u) and u− = max(0,−u) .

Constraints. Constraints of the form

ut ∈ U(xt) , ∀t ∈ {0, . . . , T−1} (1.9a)

restrict decisions ut to the admissibility set (related to some of the battery
parameters (c, l, ρc, ρd) by means of the dynamics f in (1.8))

U(x) =
{
u ∈ R

∣∣u ≤ u ≤ u and 0 ≤ f(x, u) ≤ 1
}
, (1.9b)

where u = l ×∆t and u = −l ×∆t are the bounds on the energy that can be
exchanged with the battery during a 15-minutes interval.

Uncertainties. For the purpose of defining the management costs, we intro-
duce the uncertainties

wt = (gt, dt) ∈ R2 , ∀t ∈ {1, . . . , T} (1.10)

which represent a couple of photovoltaic generation gt and of energy demand dt.
As defined, uncertainties are exogenous model variables. When we turn to
numerical experiments in §1.5, sequences (w1, . . . , wT ) ∈ R2×T of uncertainties
are obtained as samples from the historical observations of §1.2.2.

Costs. We now turn to the management costs. The stage cost during the
time interval [t, t+1[ is

Lt(ut, wt+1) = p+
t · e+

t+1 − p−t · e−t+1 , ∀t ∈ {0, . . . , T − 1} , (1.11a)

where
et+1 = dt+1 − gt+1 + ut , ∀t ∈ {0, . . . , T − 1} , (1.11b)

is the energy exchanged with the grid — which, like the uncertainty (gt+1, dt+1),
materializes at the end of the time interval [t, t+1[, hence the index t+1 — and
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where (p+
t , p

−
t ) is the energy tariff (buying at price p+

t and selling at price p−t )
applied during the time interval [t, t+1[.

Given a sequence (w1, . . . , wT ) of uncertainties and a sequence (u0, . . . , uT−1)
of controls, we obtain the total operating cost

L(u0, . . . , uT−1, w1, . . . , wT ) =
T−1∑
t=0

Lt(ut, wt+1) . (1.11c)

In conclusion, we have introduced a dynamical system with dynamics (1.8),
constraints (1.9) and a cost structure (1.11).

1.3.2 Microgrid controller

A microgrid controller is a mathematical device that, given some information at
time t, yields a decision ut. We now detail the structure of the controllers that
we will consider. For this purpose, we introduce chronicles and management
cost.

Partial chronicles. At the beginning of the time interval [t, t+1[, we may use
all the past observations and past forecasts to make a decision ut. For practical
computational reasons, we have chosen to restrict this information to the partial
observations

(wt, wt−1, . . . , wt−95) =
( gt, . . . , gt−95

dt, . . . , dt−95

)
∈ R2×96 , ∀t ∈ {0, . . . , T − 1} ,

(1.12a)
of uncertainties (1.10) over the last 24 hours, and to the partial forecasts

(ŵt,t+1, . . . , ŵt,t+96) =
( ĝt,t+1, . . . , ĝt,t+96

d̂t,t+1, . . . , d̂t,t+96

)
∈ R2×96 , ∀t ∈ {0, . . . , T − 1} ,

(1.12b)
which represent a prediction of the uncertainties (1.10) for the next 24 hours.
Combined together, we obtain the partial observations-forecasts

ht =
( wt, wt−1, . . . , wt−95

ŵt,t+1, . . . , ŵt,t+96

)
∈ H , ∀t ∈ {0, . . . , T − 1} , (1.12c)

where H = R2×96 × R2×96 , (1.12d)

and, stacking them all over the whole time span, we obtain the partial chronicle

h = (h0, . . . , hT−1) ∈ HT . (1.12e)

Controller. A controller φ is a sequence of mappings

φ = (φ0, . . . , φT−1) , (1.13a)
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where, for all t ∈ {0, . . . , T − 1}, we have φt : [0, 1]×H→ R with the constraints

φt(xt, ht) ∈ U(xt) , ∀(xt, ht) ∈ [0, 1]×H , (1.13b)

where the constraint set U(xt) ⊂ R is defined in (1.9b).

Management cost of a controller along a partial chronicle on a given
site. All dynamics (1.8), constraints (1.9) and cost structure (1.11) depend on
parameters relative to a site. Therefore, on a given site i ∈ I, we denote by f i
the dynamics of the battery in (1.8) and by U i the set-valued mapping defining
the constraints as described in (1.9b), as they depend on the local parameters
(ci, l

i
, ρic, ρ

i
d). We also denote by Lit the stage cost in (1.11a) — as it depends on

the energy tariff (p+,i
t , p−,it ) which could possibly be local — and by Li the total

operating cost in (1.11c), as it depends on dynamics f i, set-valued mappings U i
and stage costs Lit.

Besides battery parameters and energy tariffs, sites differ from each other
in their historical data. For instance, the RMSE of the historical forecasts
(Figure 1.2) varies across the pool of sites. Therefore, controllers in (1.13) may
differ accordingly. This is why we denote by φi a controller for the site i ∈ I.

The application of a controller φi in (1.13) along a partial chronicle h ∈ HT

in (1.12e) yields the management cost

J i(φi, h) =
T−1∑
t=0

Lit(u
i
t, wt+1) , (1.14a)

where, for all t ∈ {0, . . . , T − 1}, the uncertainty wt+1 is a component of ht+1,
and the sequence (ui0, . . . , u

i
T−1) of controls is given by

xi0 = 0 , (1.14b)
xit+1 = f i(xit, u

i
t) , (1.14c)

uit = φit(x
i
t, ht) . (1.14d)

The management cost J i(φi, h) will serve the assessment of the controller φi
in §1.3.3.

1.3.3 Designing and assessing a controller on a given site

We consider a given site i ∈ I. We outline how to design and assess a con-
troller φi as in (1.13).

Data partitioning. We have split the database in periods of one week ranging
from Monday 00:00 to Sunday 23:45, each week containing thus T = 672 = 7×
24×4 time steps. With this, the database is now organized as a subset Di ⊂ HT

of chronicles, where H has been defined in (1.12).
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Then, we partition the chronicles in the data set Di in two disjoint subsets,
Ci for calibration (training, in-sample) and Si for simulation (testing, out-of-
sample):

Ci ∪ Si = Di ⊂ HT , Ci ∩ Si = ∅ . (1.15)

For the EMSx benchmark, we select randomly 40% of the weeks for simulation
and let the other 60% be available for calibration.

Calibration data. The calibration data in Ci is available for the design of mi-
crogrid controllers as in (1.13). The design can result from any sort of technique
(see examples in §1.5.1 and in §1.5.2 below).

Simulation data. On top of the weekly periods, every simulation chronicle
in Si is augmented with the data of the Sunday before the period starts, follow-
ing our definition (1.12e). Therefore, when simulating a microgrid controller,
24 hours of past history data is always available to the decision-maker. Simula-
tion chronicles serve for testing only; as such, they cannot be employed for the
design of a controller.

Parameters. Additionally, we have the battery parameters (ci, l
i
, ρic, ρ

i
d) (that

have been adapted by Schneider Electric for the EMSx benchmark). For com-
puting the management cost in (1.14), we use the energy tariff and time of use
(p+
t , p

−
t ), in e/kWh, from the French electricity provider Électricité de France

(EDF); it is the same for all sites. At the beginning of any simulation, we
assume the battery to be empty (i.e. x0 = 0), and we do not impose any fi-
nal cost (which is consistent with the expression Li of the total operating cost
in (1.11c)).

Lower bound for the management cost. For any controller φi as in (1.13)
and any partial chronicle h ∈ HT in (1.12e), the management cost J i(φi, h)
in (1.14) always has the so-called “anticipative” lower bound J i(h), computed
as the minimum of (1.14a) under the same constraints, initial state (1.14b) and
dynamics (1.14c), but where the last constraint ut = φit(xt, ht) in (1.14d) is now
enlarged as ut = ψit(xt, h), for all t ∈ {0, . . . , T − 1}, for any ψit : [0, 1]×HT → R.
This gives a lower bound, because the minimization is done over “anticipative”
control laws ψit : [0, 1]×HT → R, which encompass any controller φi as in (1.13).
Therefore, we easily get for any controller φi, as in (1.13), that we have

J i(h) ≤ J i(φi, h) , ∀h ∈ Si . (1.16)

Performance score. With the battery parameters and energy tariff, and a
given site controller φi as in (1.13), the simulator in (1.14) yields as many man-
agement costs J i(φi, h) as there are chronicles h in the simulation chronicles Si.
Because the volume of energy production and consumption is variable from one
site to another, raw management costs J i(φi, h) are not suitable for a global
performance analysis if we want to assess not only a given controller, but a
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controller-design technique (see examples in §1.5.1 and in §1.5.2, and see §1.3.4
below).

Therefore, we shift the management cost of controller φi over a chronicle
h ∈ Si by subtracting the management cost of a dummy controller φd such that
φd
t = 0, for t ∈ {0, . . . , T−1}. This dummy zero policy φd gives us a baseline

operating cost, the one that we would get when the microgrid is not equipped
with an EMS and a battery. After the shift, we define the gain of controller φi
by the following expression

Gi(φi) =
1

|Si|
∑
h∈Si

(
J i(φd, h)− J i(φi, h)

)
, (1.17)

which expresses the average gain of introducing φi in site i, over the baseline
case of a dummy controller that does not use the battery. The lower bound for
the management cost in (1.16) provides a natural upper bound for the gain

G
i

=
1

|Si|
∑
h∈Si

(
J i(φd, h)− J i(h)

)
, (1.18a)

where Gi(φi) ≤ G
i
. (1.18b)

In order to ease the performance analysis of a controller-design technique over
an aggregated group of sites from I, we scale the gain of φi with the upper
bound Gi, and we define the performance score

Gi(φi) =
Gi(φi)

G
i . (1.19)

The higher the score, the higher the gain allowed by the controller φi. A con-
troller φi that improves on the dummy controller φd gives a score in [0, 1], else
the score is negative.

1.3.4 Assessing a controller-design technique

Controller-design technique. In addition to assessing a given controller, we
also aim at assessing a design technique for controllers. We provide examples
of design techniques in §1.5.1 and in §1.5.2. In particular, when the same
design technique is used across all sites, we will consider a collection {φi}i∈I
of controllers derived from the application of a single design technique, but
adapted to each site i ∈ I.

Performance score of a collection of controllers. For a given collection
{φi}i∈I of controllers, one per site, we average the performance score (1.19) over
sites, yielding the performance score (of a collection {φi}i∈I of controllers)

G
({
φi
}
i∈I

)
=

1

|I|
∑
i∈I

Gi(φi) . (1.20)
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When the controllers φi in the collection {φi}i∈I have been designed by the same
technique, the score G

(
{φi}i∈I

)
in (1.20) is a proxy to measure the performance

of a controller-design technique over a large range of situations, both in time of
the year and in type of microgrid. It permits an immediate interpretation for
practitioners interested in deploying a technique to design controllers on real
microgrids. The higher the score, the higher the gain allowed by the technique.

1.4 The EMSx benchmark software
After Schneider Electric’s dataset presented in Sect. 1.2, and the mathematical
framework presented in Sect. 1.3, the third component of the EMSx benchmark
is the EMSx benchmark software, that we have developed and implemented as
a Julia [13] package named EMSx.jl .

1.4.1 Requirements for the EMSx benchmark software

Performing a simulation loop over the 70 sites i ∈ I, for computing the man-
agement costs (1.14) of a collection {φi}i∈I of controllers on the simulation
chronicles of {Si}i∈I , and finally obtaining the score (1.20), is a time-consuming
computing task. Indeed, our total pool of simulation chronicles {Si}i∈I gathers
data from 2474 testing weeks, each of which requires 672 (7 days in a week ×
96 decisions in a day) calls to a controller, hence a total of 1.6 million calls for
assessing a single control technique.

We have developed a software, called EMSx.jl, to ease the numerical assess-
ment of controllers in the context of the EMSx benchmark. Our first goal is to
provide an efficient and fast computing tool for running every simulation loop.
We have chosen the Julia language, as it is a perfect candidate for processing the
large amount of data made available in the EMSx benchmark dataset. In par-
ticular, Julia makes it simple to distribute the simulation loop on several CPU
cores, which enables us to release the EMSx.jl package with parallel computing
options. Moreover, Julia meets our second expectation, namely that our simu-
lation software should be flexible enough to easily implement a large range of
controllers as defined in §1.3.2. We illustrate such flexibility in Sect. 1.5, where
we outline the numerical results obtained with EMSx.jl for various controller
design techniques.

1.4.2 What the EMSx.jl software package does

Given a site i ∈ I, a controller φi in (1.13) and a partial chronicle h ∈ HT

in (1.12e) (in practice, h ∈ Si, the simulation chronicles in (1.15)), the EMSx.jl
software returns the sequence of states of charge of the battery, the stagewise
costs, and, above all, the management cost J i(φi, h) in (1.14) and the corre-
sponding computing time. To this end, a EMSx.jl user must provide the im-
plementation of her controller φi in Julia code following an API that we briefly
describe now.

Figure 1.4 illustrates how the dummy controller φd
t = 0, t ∈ {0, . . . , T−1}

can be implemented and tested in a few lines of code. First, we define a new
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type for our controller, named DummyController, as a subtype of a built-in
EMSx.jl type, named AbstractController (line 3). Then, we implement the
body of the compute_control function (in Julia jargon, method) for the new
specialized DummyController type (line 5). In the given example, the body is
reduced to a simple zero expression, as we have to implement a method which
always returns zero. Eventually, we create an instance of a DummyController
(line 8) and launch the simulation over all simulation chronicles (line 10) passing
the created instance as argument. Battery parameters (c, l, ρc, ρd) (referred to
as metadata, line 13) and energy tariff (p+, p−) (line 12) can be changed by the
user to run a custom simulation.

� �
1 using EMSx
2

3 mutable struct DummyController <: EMSx.AbstractController end
4

5 function EMSx.compute_control(controller::DummyController,
6 information::EMSx.Information) return 0. end
7

8 const controller = DummyController()
9

10 EMSx.simulate_sites(controller,
11 "home/xxx/path_to_save_folder",
12 "home/xxx/path_to_price",
13 "home/xxx/path_to_metadata",
14 "home/xxx/path_to_simulation_data")� �
Figure 1.4: Example of the implementation and simulation of

the dummy controller with the EMSx.jl package

We can implement more complex examples by using the information object
given in the input arguments of the compute_control function. Figure 1.5
displays the fields of the Information type, an EMSx.jl built-in type. An
instance of this type gives access to the running time step t ∈ {0, . . . , T−1} (line
2), to the state of charge xt in (1.8a) (line 3), and to the content of the partial
observations-forecasts ht in (1.12) (line 4-7). This online information allows us
to define a controller φ as in (1.13). Besides, the Information type has fields
providing access to the energy price (p+, p−) (line 8), to the battery parameters
(c, l, ρc, ρd) (line 9) and to the site reference i ∈ I (line 10), which let us define
a specific controller φi for the site i ∈ I. All-in-all, beyond our toy example
of Figure 1.4, line 5-6, the information object in the input argument of the
compute_control function enables the implementation of more sophisticated
controllers, such as the ones that we introduce and evaluate in §1.5.
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� �
1 struct Information
2 t::Int64
3 soc::Float64
4 pv::Array{Float64,1}
5 forecast_pv::Array{Float64,1}
6 load::Array{Float64,1}
7 forecast_load::Array{Float64,1}
8 price::Price
9 battery::Battery

10 site_id::String
11 end� �
Figure 1.5: Detail of the Information type from the EMSx.jl

package

As an example of using the Information type, a controller that empties
half of the battery would be implemented as in Figure 1.4, with the lines 5-6
replaced by

� �
1 function EMSx.compute_control(controller::HalfController,
2 information::EMSx.Information) return -information.soc / 2. end� �

The code of EMSx.jl and more illustrative controller examples are publicly
available at https://github.com/adrien-le-franc/EMSx.jl.

1.5 Numerical experiments
To illustrate how we can use the EMSx controller benchmark of Sect. 1.3, we
present several controllers and provide their scores. These controllers φ all share
the same structure: for any step t ∈ {0, . . . , T − 1}, the quantity φt(xt, ht)
in (1.13) is not given by an analytical formula, but as the solution of a reference
optimization problem. Controller-design techniques differ according to the na-
ture of this latter problem, which is solved at every step t ∈ {0, . . . , T − 1}, that
is, online (“on the fly”) as a function of the current available quantities (xt, ht),
namely state of charge of the battery and couples of observations-forecasts up to
time t (see (1.12e)) A comprehensive overview of such techniques and algorithms
is given in [10].

Before we start, we introduce some terminology. First, we define a scenario
as a sequence {wt}t∈T of uncertainties wt = (gt, dt) as in (1.10), and where
T ⊆ {1, . . . , T}. Second, we stress the difference between open-loop and closed-
loop solutions and optimization problems. In an intertemporal optimization
problem, one may look either for solutions that are only functions of time (open-
loop), or for solutions that are functions of time and of other variables that are
available up to this time (closed-loop). Therefore, an optimization problem
is said to be open-loop (resp. closed-loop) when its solutions are open-loop
(resp. closed-loop). We refer to [17, §1.1.3] for a discussion about the difference
between open-loop and closed-loop controls.
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In §1.5.1, we present a class of so-called lookahead methods where the ref-
erence optimization problem is multistage open-loop. In contrast, in §1.5.2, we
present a class of so-called cost-to-go methods where the reference optimization
problem, solved online, is one-stage but depends on cost-to-go functions which,
themselves, are the output of closed-loop optimization problems which are com-
puted offline. In §1.5.3, we comment on the results obtained when applying the
controllers above on the EMSx controller benchmark.

1.5.1 Controllers obtained by lookahead methods

In lookahead methods, one solves, for every step t ∈ {0, . . . , T − 1}, a refer-
ence multistage (“looking ahead” from the current step t) optimization problem
which is open-loop, be it deterministic (MPC) or stochastic (OLFC). Stochastic
(scenario-based) lookahead methods are limited by the exponential growth of
the computing time with respect to the number of scenarios.

Model Predictive Control

The Model Predictive Control (MPC) method is one of the most famous looka-
head techniques [10, Vol.1, §6.1]. The MPC method mainly exploits the forecast
data. It yields a controller φMPC = (φMPC

0 , . . . , φMPC
T−1) by solving a sequence of

multistage deterministic optimization problems over a fixed1 horizon H (in the
numerical application, H = 96)

u∗t ∈ arg min
ut

min
(ut+1,...,ut+H−1)

t+H−1∑
s=t

Ls(us, ŵt,s+1) ,

xs+1 = f(xs, us) , ∀s ∈ {t, . . . , t+H−1} ,
us ∈ U(xs) , ∀s ∈ {t, . . . , t+H−1} ,

φMPC
t (xt, ht) = u∗t ,

(1.21)
where only the first value u∗t of an optimal sequence (u∗t , u

∗
t+1, . . . , u

∗
t+H−1) is

kept.
When used in simulation, only the simulation (testing) chronicles in Si in

the partition (1.15) are used in the reference optimization problem (1.21), and
not the calibration (training) chronicles in Ci; moreover, only a subvector (of
available forecasted values) of the whole vector (1.12) of partial observations-
forecasts is used, namely (ŵt,t+1, . . . , ŵt,t+H−1).

Due to the mathematical expressions of the dynamics (1.8), of the con-
straints (1.9) and of the cost function (1.11), the multistage deterministic opti-
mization problem (1.21) formulates here as a linear program.

Open Loop Feedback Control

The Open Loop Feedback Control (OLFC) method belongs to the family of on-
line lookahead methods and its approach is similar to MPC, but for a stochastic

1When the horizon extends further than the period, we truncate the lookahead window to
min(H,T − t+1).
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component. It yields a controller φOLFC = (φOLFC
0 , . . . , φOLFC

T−1 ) by a sequence of
multistage open-loop stochastic optimization problems over a fixed1 horizon H
(in the numerical application, H = 96)

u∗t ∈ arg min
ut

min
(ut+1,...,ut+H−1)

∑
σ∈S

πσt

(t+H−1∑
s=t

Ls(us, w
σ
t,s+1)

)
,

xs+1 = f(xs, us) , ∀s ∈ {t, . . . , t+H−1} ,
us ∈ U(xs) , ∀s ∈ {t, . . . , t+H−1} ,

φOLFC
t (xt, ht) = u∗t .

(1.22)
The reference optimization problem (1.22) is open-loop because the sequence of
controls (ut+1, . . . , ut+H−1) in the (second) min is not indexed by the scenario ref-
erences σ ∈ S. Only the first value u∗t of an optimal sequence (u∗t , u

∗
t+1, . . . , u

∗
t+H−1)

is kept.
The reference optimization problem (1.22) is stochastic because of the sce-

narios (wσt,t+1, . . . , w
σ
t,t+96)σ∈S, together with their probabilities (πσt )σ∈S. These

scenarios and their probabilities are built from two sources: on the one hand,
from the subvector (ŵt,t+1, . . . , ŵt,t+H−1) of available forecasted values given in
the whole vector (1.12) of partial observations-forecasts in the simulation (test-
ing) chronicles in Si in (1.15); on the other hand, from partial observations-
forecasts in the calibration (training) chronicles in Ci in (1.15), from which we
calibrate a scenario generation model. In the forthcoming numerical experi-
ments in §1.5.3, we generate scenarios by modeling the deviations from the net
demand 24-hour forecast as a Markov chain. We detail our scenario generation
method in the Appendix (§1.A.1). In numerical implementations, the number
of samples used varies between 10, 50 or 100 scenarios.

1.5.2 Controllers obtained by cost-to-go methods

In cost-to-go methods, one solves online, for every step t ∈ {0, . . . , T − 1},
a reference single stage stochastic optimization problem, which itself depends
on cost-to-go functions, computed offline. These functions are called cost-to-go
because, ideally, they map any state of the system to the optimal, over strategies
(closed-loop), expected future cost from a given time step to the final horizon.
The Stochastic Dynamic Programming (SDP) method is the most famous of
cost-to-go computation techniques [10]. Cost-to-go methods are limited by the
exponential growth of the computing time with respect to the dimension of the
state space. In SDP methods, we use random variables, defined on an abstract
probability space (Ω,F ,P), and designed by bold capital letters like W.

Stochastic Dynamic Programming

Whereas MPC and OLFC are based on an open-loop reference optimization
problem, Stochastic Dynamic Programming is based on a closed-loop reference
optimization problem, like in (1.24).
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• In the offline phase of the SDP algorithm, one computes a sequence of
so-called value functions (Vt)t=0,1,...,T−1,T by the Bellman (or dynamic pro-
gramming) equation, backward for t ∈ {0, . . . , T − 1},

VT (x) = 0 ,

Vt(x) = min
u∈U(x)

∑
σ∈Soff

πoff,σ
t+1

(
Lt(u,w

off,σ
t+1 ) + Vt+1

(
f(x, u)

))
. (1.23a)

• In the online phase of the SDP algorithm, one computes
u∗t ∈ arg min

u∈U(xt)

∑
σ∈Son

πon,σ
t+1

(
Lt(u,w

on,σ
t+1 ) + Vt+1

(
f(xt, u)

))
φSDP
t (xt, ht) = u∗t .

(1.23b)

The reference optimization problem (1.23a)–(1.23b) is stochastic because of
the scenarios (woff,σ

t+1 )σ∈Soff , together with their probabilities (πoff,σ
t+1 )σ∈Soff , and of

the scenarios (won,σ
t+1 )σ∈Son , together with their probabilities (πon,σ

t+1 )σ∈Son .
The scenarios indexed by σ ∈ Soff , and their probabilities, are built exclu-

sively from partial observations-forecasts in the calibration (training) chronicles
in Ci, in (1.15). The scenarios indexed by σ ∈ Son, and their probabilities, could
additionally integrate partial observations-forecasts in the simulation (testing)
chronicles in Si in (1.15). The reader will find details of our scenario generation
method in Appendix §1.A.2.

The reference optimization problem (1.23a)–(1.23b) is closed-loop because,
under proper assumptions, it provides the optimal solution to the following mul-
tistage stochastic optimization problem (where the minimum is over strategies ψ
which depend both on time and on past uncertainties as in (1.24d))

min
ψ

E
[T−1∑
t=0

Lt(Ut,Wt+1)
]
, (1.24a)

Xt+1 = f(Xt,Ut) , ∀t ∈ {0, . . . , T−1} , (1.24b)
X0 = x0 , (1.24c)
Ut = ψt(W0, . . . ,Wt) , ∀t ∈ {0, . . . , T−1} , (1.24d)
Ut ∈ U(Xt) , ∀t ∈ {0, . . . , T−1} . (1.24e)

Problem (1.24) is optimally solved by the Bellman equation (1.23a) in the
case where the random variables (W0, . . . ,WT ) (noise process) are stagewise
independent [10, 17].

SDP-AR

To account for possible stagewise dependence in the uncertainties (noise process
in (1.24)), one can extend the state space with the observations of the i-th net
demand lags zt−i = dt−i− gt−i, i = 1, . . . , k. This gives a new state x̃t — which
is a compression of the information given by (xt, ht) — and new elements of a
model, like in §1.3.1, with a new dynamics f̃t, new constraints Ũ , and a new
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stage cost L̃t as follows, for all t ∈ {0, . . . , T − 1}:

x̃t = (xt, zt, . . . , zt−k+1) ∈ [0, 1]× Rk ,

x̃t+1 = f̃t(x̃, ut, εt+1) ,

f̃t(x̃t, ut, εt+1) =

( f(xt, ut)∑
j=0,...,k−1 α

j
tzt−j + βt + εt+1

zt, . . . , zt−k+2

)
,

Ũ(x̃t) = U(xt) ,

L̃t(x̃t, ut, εt+1) = Lt(ut,
∑

j=0,...,k−1

αjtzt−j + βt + εt+1) .

The coefficients α0
t , . . . , α

k−1
t and the additive terms βt are the elements of an

auto-regressive model of order k (noted AR(k))

Zt+1 =
∑

j=0,...,k−1

αjtZt−j + βt + εt+1 , ∀t ∈ {0, . . . , T − 1} ,

for the net demand process Z. When the error process ε is assumed to be
stagewise independent, the following algorithm provides an optimal solution to
the multistage stochastic optimization problem (1.24).

• In the offline phase of the SDP-AR algorithm, one computes a sequence
of new value functions (Ṽt)t=0,...,T , backward for t ∈ {0, . . . , T − 1}, by

ṼT (x̃) = 0 ,

Ṽt(x̃) = min
u∈Ũ(x̃)

∑
σ∈Soff

πoff,σ
t+1

(
L̃t(x̃, u, ε

off,σ
t+1 ) + Ṽt+1

(
f̃t(x̃, u, ε

off,σ
t+1 )

))
. (1.26a)

• In the online phase of the SDP-AR algorithm, one computes
u∗t ∈ arg min

u∈Ũ(x̃t)

∑
σ∈Son

πon,σ
t+1

(
L̃t(x̃t, u, ε

on,σ
t+1 ) + Ṽt+1

(
f̃t(x̃t, u, ε

on,σ
t+1 )

))
φSDP-AR
t (xt, ht) = u∗t .

(1.26b)

1.5.3 Using EMSx to compare controller-design techniques

We now comment the results obtained when applying the controller-design tech-
niques introduced in §1.5.1 and in §1.5.2 to the EMSx benchmark. Numerical
experiments were run on an Intel Core Processor of 2.5 GHz with 22 GB RAM.
We used the LP solver CPLEX 12.9 for MPC, OLFC and to compute the lower
bounds J i(h), h ∈ Si, i ∈ I, in (1.16). We have summarized our results in
Table 1.1.

Our goal is to illustrate how EMSx enables a fine comparison of controller-
design techniques. First, we focus on lookahead methods in §1.5.3, second, we
turn to cost-to-go methods in §1.5.3, and finally, we give a comparative analysis
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of the winner control techniques from both family of methods in §1.5.3. We
conclude that, among our pool of candidate techniques, SDP-AR stands out as
the best microgrid control method on the EMSx benchmark.

In what follows, we organize the discussion around three points: i) perfor-
mance scores (1.20) (second column of Table 1.1); ii) (relative) gains2 (1.17)
disaggregated per site (Figures 1.6 and 1.7); iii) CPU time performances. Re-
garding CPU time, we report the online time (fourth column of Table 1.1) as
the average computing time required to yield a single control ut, and the offline
time (third column of Table 1.1) as the average computing time that is to be
spent prior to the simulation step for solving the online control problems defined
in (1.21), (1.22), (1.23b) and (1.26b).

Performance
score

Offline time
(seconds)

Online time
(seconds)

MPC 0.487 - 9.82 10−4

OLFC-10 0.506 - 1.14 10−2

OLFC-50 0.513 - 8.62 10−2

OLFC-100 0.510 - 1.87 10−1

SDP 0.691 2.67 3.09 10−4

SDP-AR(1) 0.794 38.1 4.44 10−4

SDP-AR(2) 0.795 468 5.55 10−4

Upper bound 1.0 - -

Table 1.1: Scores (second column, the higher the better)
G
({
φi
}
i∈I
)
in (1.20) and time performances (third and fourth

column, the lower the better) for collections
{
φi
}
i∈I of controllers

φi designed with techniques (first column) from §1.5.1 and §1.5.2
on the EMSx benchmark. The symbol - indicates an irrelevant

item

Lookahead methods

First, we examine performance scores (second column of Table 1.1). Whereas
MPC uses a single scenario (the forecast), OLFC uses multiple scenarios; this
helps OLFC improving the average score of MPC from 0.487 to 0.513. As ex-
pected, increasing the number of scenarios from 10 to 50 improves the score of
OLFC. However, the performance remains stagnant when pushing up to 100
scenarios, with a slight decrease of OLFC-100 to 0.510. We expect that the
improvement between MPC and OLFC should be sensitive to the scenario gen-
eration method employed. With our method, the progress of OLFC is modest.

Second, we turn to appraise the gains disaggregated per site. In Figures 1.6
and 1.7, we display the gains per site Gi(φi) in (1.17). We omitted OLFC-10
and OLFC-100 to improve readability, given that these methods perform slightly
worse than OLFC-50. We observe that OLFC-50 returns slightly higher gains
than MPC for 58 out of 70 sites. We conclude that the stochastic approach of

2We recall that gains were defined relatively to the cost performance of a dummy controller.
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OLFC makes it a slightly more accurate microgrid controller-design technique
than MPC.

Third, we discuss the computing time. Lookahead methods advantageously
do not include an offline stage (third column of Table 1.1). However, except
for MPC, they require a rather long online computing time (fourth column of
Table 1.1), with an order of magnitude between 10−4 and 10−1 seconds per call
to the controller, for they call a LP solver at each time step. We observe that
OLFC is at least about ten times slower than MPC. As expected, the more we
add sample scenarios, the longer the OLFC computing time. We observe that
improving the amount of scenarios from 50 to 100 doubles the online time. Even
though the online time of OLFC-100 is still reasonable for a field implementation
of a microgrid controller, it took us about 46 hours to run the simulation over
the 2474 simulation weeks. Despite the much longer computing time, OLFC-
100 did not return higher gains than OLFC-50. For this reason, we did not
consider more than 100 generated scenarios.

Cost-to-go methods

Figure 1.6: Gain Gi(φi) (Y -axis) in (1.17) per sites i ∈ I (Y -
axis) of MPC, OLFC-50, SDP and SDP-AR (1); sites are ranked

in increasing order of RMSE along the X-axis

First, we examine performance scores (second column of Table 1.1). We
see that a plain SDP controller yields scores jumping to 0.691. The results of
SDP can be improved up to 0.794 in the SDP-AR formulation. However, We
observe that the gain from extending the lag of an AR(1) model to an AR(2)
model is almost null. Therefore, we do not report the gains of SDP-AR (2) in
Figures 1.6 and 1.7.
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Figure 1.7: Gains (Y -axis) per sites i ∈ I (X-axis): the up-
per bound (dashed line) is the quantity Gi in (1.18a); the hor-
izontal dotted and dashed line represents the null gain of the
dummy controller; the other symbols represent the quantities
Gi(φi) in (1.17) corresponding to the four methods SDP-AR (1),
SDP , OLFC-50, MPC; sites are ranked in increasing order of

gain Gi along the X-axis
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Second, we turn to appraise the gains disaggregated per site. Looking closer
at the per site performances, SDP-AR (1) outperforms SDP for 69 of the 70
sites. As suggested by its performance score, Figure 1.7 reveals that the gains
allowed by SDP-AR (1) are close to the upper bounds Gi

, i ∈ I in (1.18a).
Third, we discuss the computing time. Cost-to-go methods display fast on-

line times (fourth column of Table 1.1), with an order of magnitude between
10−3 and 10−4 seconds per call to the controller. However, cost-to-go methods
require offline CPU time (third column of Table 1.1) for computing value func-
tions. The complexity of SDP is well known for growing exponentially with the
state space, which is well illustrated by our results: from SDP to SDP-AR (1)
to SDP-AR (2), we add one dimension to the state space at each improvement
of the method, which multiplies by a factor of 10 the offline time. Given the
low improvement of gain from SDP-AR (1) to SDP-AR (2), we find the offline
time of the latter method dissuasive. Finally, SDP-AR (1) appear as the best
trade-off between computing time and cost performance.

A comparison between lookahead and cost-to-go methods

We now discuss the comparative performances of OLFC-50 and SDP-AR (1).
Both techniques represent the best candidate of its family of method.

Cost performance. First, we examine performance scores (second column of
Table 1.1). The main observation is that the performance score of SDP-AR (1)
is more than 50% higher than the one of OLFC-50 (second column of Table 1.1).

Second, we turn to appraise the gains disaggregated per site. The observed
aggregated dominance is confirmed when looking closer at the per site perfor-
mances in Figures 1.6 and 1.7. Indeed, we see that SDP-AR (1) outperforms
OLFC-50 for 68 of the total pool of 70 sites. Even more, these two figures re-
veal that lookahead methods lag behind cost-to-go ones for almost all sites, and
that the gap can be significant on a few outlying sites. The underperformance
of OLFC-50 on these sites explains the score gaps of Table 1.1.

Third, we discuss the relationship between the cost performances of both
techniques and the predictability of the sites, measured by the RMSE (1.7).
For this purpose, we comment and detail Figure 1.8. We immediately observe
that, for SDP-AR (1), there is no strong link between cost performance and
predictability. Regarding OLFC-50, a statistical analysis reveals that the cor-
relation between the RMSE value and the OLFC-50 score is moderate, with
a Pearson correlation coefficient of -0.54 (the lower the RMSE, the higher the
score). For most of the sites, the RMSE explains very little of the performance
of OLFC-50, to the point that OLFC-50 performs poorly on some sites with
low RMSE values (and thus high forecast accuracy). Now, we focus on a few
number of sites that appear as outliers: Site 33 and Site 59 (the two circles at
the far right), and Site 48 (the circle at the top left). OLFC-50 achieves its
highest scores 0.965 on Site 33 and 0.910 on Site 59, which both have very reg-
ular and easily predictable load profiles, and its worse score -0.340 on Site 48,
the least predictable site of the pool, with a RMSE of 0.17. Notice that this
negative score of -0.340 means that OLFC-50 performs worse on average than
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the dummy controller φd. In contrast, we observe that SDP-AR (1) scores 0.566
on Site 48, which highlights the robustness of the cost-to-go methods for the
management of a microgrid in a highly unpredictable context.

Computing time performance. Second, we discuss the computing time.
On the one hand, regarding offline time, SDP-AR (1) cannot do better than
OLFC-50, obviously, but the average offline time of SDP-AR (1) (38.1 seconds)
is reasonable for a field implementation of a microgrid controller. On the other
hand, regarding online time, OLFC-50 is not as good as SDP-AR (1) — with
an average online time of OLFC-50 about 100 times longer than the one of
SDP-AR (1) — but its order of magnitude (10−2 seconds) remains acceptable.
Thus, all in all, computing time is not a discriminating point between the two
techniques.

Figure 1.8: Performance score Gi(φi) per sites i ∈ I for the
SDP-AR (1) and OLFC-50 computation methods (X-axis) ver-
sus RMSE (Y -axis); the vertical line recalls the baseline score

positioning of a dummy controller

1.6 Conclusion
We have introduced EMSx, an Energy Management System benchmark to com-
pare electric microgrid controllers, hence controller-design techniques. EMSx is
made of three key components. The dataset provided by Schneider Electric en-
sures a diverse pool of realistic microgrids with photovoltaic power integration.
The mathematical framework is explicit. The simulation code is accessible in the
EMSx.jl package, designed to welcome various sorts of control algorithms. All
components of the benchmark are publicly available, so that other researchers
willing to test controllers on EMSx may reproduce experiments easily.
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Regarding our numerical results, we observe a gap between cost-to-go meth-
ods and lookahead methods. The SDP-AR (1) controller-design technique stands
out as the best trade-off between cost optimality and computing time perfor-
mance. However, there is a range of possible improvements to explore. Among
interesting directions, other scenario generation techniques could be tested to
see how does the OLFC controller reacts. Beyond plain score improvements,
enriching contributions could arise from the reduction of the computing time, or
from changing the performance metrics (for instance with the use of risk mea-
sures), and from further comparative analysis of methods, especially to better
explain the gap between lookahead and cost-to-go methods. We are also looking
forward to controllers inspired from other research fields than multistage deter-
ministic or stochastic optimization, including heuristics, robust optimization
and reinforcement learning.

1.A Appendix

1.A.1 Generation of scenarios for the Open Loop Feed-
back Control algorithm

Our scenario generation method is inspired by [92, 97], which address such gen-
eration for so-called day-ahead energy management problems. We use a simpli-
fied model for tractable generation adapted to dynamical control. Since uncer-
tainties wt = (gt, dt) are directly plugged in the cost (1.11a) as the net demand
zt = dt−gt, we compress the generation of scenarios (wσt,t+1, . . . , w

σ
t,t+96) ∈ R2×96

in (1.22) to the generation of net demand scenarios (zσt,t+1, . . . , z
σ
t,t+96) ∈ R96.

Following the original methods, we choose day part separators to reduce the
96 dimensional vector to a few skeleton points for scenario construction (in-
termediate values are linearly interpolated). We choose to concentrate on
the forecast error at t+15 minutes, t+1 hour, t+2 hours, t+4 hours, t+12
hours and t+24 hours, so that our model only samples values of zσt,t+j for
j ∈ {1, 4, 8, 16, 48, 96}. We select 10 relevant values of the net demand error at
each separator j ∈ {1, 4, 8, 16, 48, 96} by applying the K-means algorithm [32,
§13] on the historical error zit+j − ẑit,t+j, combining the historical observations
(1.1) and forecasts (1.3) of the calibration data of the Site i ∈ I considered.
Then, we compute 10×10 transition matrices for the error between consecu-
tive separators. With this model, we are able to sample net demand scenarios
(zσt,t+1, . . . , z

σ
t,t+96) given a single value forecast and to compute their proba-

bilities πσt . Separate probability distributions of the initial error at t+1 are
calibrated depending on the time of the day, and on whether the initial time
step t corresponds to a week day or a weekend day. We alleviate computing
costs by reusing transition matrices regardless of the initial value of t. However
we calibrate separate matrices for week days and weekend days. Figure 1.9
provides examples of scenarios generated with our method.
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Figure 1.9: Example of scenarios generated from a 24 hours
net demand forecast

1.A.2 Generation of scenarios for the SDP and SDP-AR
algorithms

For SDPmethods, we choose to discretize each dimension of the state space in
10 values, whereas the control space is restricted to 20 values and the noise space
to 10 values. Since uncertainties wt = (gt, dt) are directly plugged in the cost
(1.11a) as the net demand zt = dt−gt, we compress the calibration of the distri-
butions of (W1, . . . ,WT ) to the calibration of the distributions of (Z1, . . . ,ZT ).
We use the K-means algorithm to fit discrete probabilities πoff,σ

t+1 , π
on,σ
t+1 on the

historical observations (gi, di) (1.1) of the calibration data of the Site i ∈ I
considered. These discrete distributions serve the computation of expectations
in (1.23a)–(1.23b). While we could leverage the data available on the fly in the
online phase, we use the same probability distributions in the offline phase and
in the online phase. Separate distributions (of Zt) are calibrated depending on
the time of the day and on whether the time step t+1 corresponds to a week day
or a weekend day. We compute one value function per site for the horizon of one
week. In the SDP-AR formulation, we calibrate the AR(k) models using least
squares regression and calibrate distributions of the residual error (εt) with the
same approach as for Zt.
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2.1 Introduction
We consider optimization problems where an upstream decision is made in the
first place, which stands for a parameter for a downstream multistage stochastic
optimization problem. Our work is motivated by applications in the field of
energy planning, where such decision structures arise naturally. As a typical
example, the regulatory rules considered in [94, 68, 73] impose the following
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production planning to renewable power units: every operating day, a daily
commitment profile should be submitted day-ahead to announce the upcoming
power production, then, during the intraday management phase, the delivered
power is compared with the commitment profile, and penalties are charged
to the producer if the two profiles differ significantly. Using the terminology
introduced above, the engagement profile is an upstream (day-ahead) decision
which stands for a parameter for the downstream (intraday) management of the
power unit.

In this chapter, we propose a standard formulation for parametric multi-
stage stochastic optimization problems where the parameter is typically made
of subvectors of identical size, representing one decision per time interval. In
this context, when the value of the parameter is fixed, Stochastic Dynamic Pro-
gramming (see e.g. [10, 78]) provides us with an efficient method to compute
the value of the downstream problem. On top of that, we investigate on the
possibility to compute efficiently additional first-order information, e.g. gradi-
ents or subgradients of the value function with respect to the parameter, when
these objects exist. Our end goal is to formulate first-order oracles which let us
enter the world of (primal) first-order optimization methods (see [6] for a recent
survey). Although we review the differentiability properties of a value function
in a general context, our analysis conducts us to focus on problems where the
value of the downstream problem is convex with respect to the parameter.

Of course, the interest in such kinds of problems is not new. The reference
textbook of Bonnans and Shapiro [14] gathers numerous results on the value
function of a parameterized optimization problem. In the context of multistage
stochastic programming, the sensitivity analysis of the value of a downstream
problem with respect to some model parameters has been already studied in [19,
39, 95]. However, these works mainly focus on the computation of directional
derivatives, in the case where the stage cost functions of the problem are affine,
whereas we are interested in estimating gradients or subgradients in the gen-
eral convex case. In this direction, the stochastic dual dynamic programming
algorithm (SDDP), introduced by Pereira and Pinto [72], and analyzed further
by Shapiro [86] and Philpott [76, 37], is well-known for offering the possibility
to evaluate a subgradient of the value functions of a multistage convex prob-
lem as a solution of a paired dual problem. We study the applicability of the
SDDP algorithm to our problem, while bearing in mind that a plain application
of the method to our context might be challenging, since it requires to model
the parameter as an additional state variable, which increases considerably the
dimension of the state space. Indeed, since we consider parameters aggregat-
ing one decision per time interval of the downstream multistage problem, the
dimension of the state space grows linearly with the horizon of the downstream
problem. Therefore, we explore new directions. We review the properties of a
convex marginal function and study the relationship between two consecutive
value functions of the downstream multistage problem, which are binded by the
Bellman equations. In the case where the value functions are convex and differ-
entiable, our analysis results in a numerical method for computing a gradient
of the value function of the downstream problem with respect to the parame-
ter chosen at the upstream stage. This strategy does not require to model the
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parameter as a state, and allows us to consider larger parameter scales. In the
case where the value functions are convex but nondifferentiable, we propose two
methods, one that approximates the original nonsmooth problem with regular-
ized value functions defined with the Moreau envelope of the stage costs, and a
second one based on the SDDP algorithm.

The chapter is organized as follows. First, we introduce the definition of
a parametric multistage optimization problem in §2.2. Second, we review the
variational properties of a marginal function in §2.3. Then, we introduce a
method to compute the gradient of differentiable convex value functions with
respect to their parameter argument in §2.4. Finally, in the nonsmooth case,
we introduce lower smooth and lower polyhedral approximate value functions
in §2.5, for which we can efficiently compute, respectively, the gradients and
some subgradients. We also prove two convergence results showing that such
approximations can guarantee a high accuracy. This chapter is mainly dedi-
cated to theoretical considerations. Contextual problems in energy planning
and numerical applications are postponed to Chapter 3.

Notations

We introduce mathematical notations. Let (Ω,F ,P) be a probability space.
We use bold capital letters, e.g. Z, to denote random variables, and denote
by σ(Z) the σ-algebra on Ω generated by the random variable Z. Besides, for
a topological space X, we denote by B(X) its Borel σ-field. We introduce the
extended real line R = [−∞,+∞], and we denote R+ = [0,+∞[ and R∗+ =
]0,+∞[.

2.2 Parametric multistage stochastic optimiza-
tion problems

First, in §2.2.1, we introduce a standard formulation for the class of paramet-
ric multistage stochastic optimization problems discussed in the introduction.
Second, in §2.2.2, we introduce parametric value functions and the stochastic
dynamic programming method for solving such problems.

2.2.1 Problem formulation

We are interested in solving problems of the form

min
p∈P

Φ(p) , (2.1a)
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in the case where the objective function Φ in (2.1a) is the value of the following
parametric multistage stochastic optimization problem:

Φ(p) = inf
U0,...,UT−1

E
[T−1∑
t=0

Lt(Xt,Ut,Wt+1, pt) +K(XT , pT )
]
, (2.1b)

X0 = x0 , (2.1c)
Xt+1 = ft(Xt,Ut,Wt+1) , ∀t ∈ J0, T − 1K , (2.1d)
Ut ∈ Ut(Xt, pt) , ∀t ∈ J0, T − 1K , (2.1e)
σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ J0, T − 1K . (2.1f)

We now comment on all terms in Problem (2.1). We consider a discrete time
span

J0, T K = {0, 1, . . . , T − 1, T} , (2.2)

with horizon T ∈ N∗. Concerning the upstream problem (2.1a), the variable

p = {pt}t∈J0,T K ∈ Rnp×(T+1) , (2.3a)

where np ∈ N∗, is a parameter, or upstream decision, which is decomposed
stagewise in subparameters

pt ∈ Rnp , ∀t ∈ J0, T K , (2.3b)

by the coordinatewise projections

projt : Rnp×(T+1) → Rnp : p 7→ pt , ∀t ∈ J0, T K , (2.3c)

and may be chosen in the parameter set

P ⊆ Rnp×(T+1) . (2.4)

The parameter p in (2.3a) affects the multistage Problem (2.1b)-(2.1f). Concern-
ing the downstream problem (2.1b)-(2.1f), we introduce the random variables

Xt : (Ω,F ,P)→
(
Rnx ,B(Rnx)

)
, ∀t ∈ J0, T K , (2.5a)

Ut : (Ω,F ,P)→
(
Rnu ,B(Rnu)

)
, ∀t ∈ J0, T − 1K , (2.5b)

Wt : (Ω,F ,P)→
(
Rnw ,B(Rnw)

)
, ∀t ∈ J1, T K , (2.5c)

which denote respectively the state, control and noise variables of Problem (2.1b)-
(2.1f), taking values in real Euclidean spaces of respective finite dimensions
(nx, nu, nw) ∈ N∗3. Note that the constraints (2.1c)-(2.1e) are almost sure (a.s.)
constraints. The control variables are constrained by the parametric admissi-
bility sets, defined by the set-valued mappings

Ut : Rnx × Rnp ⇒ Rnu , ∀t ∈ J0, T − 1K , (2.6)
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and by the nonanticipativity constraints

σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ J0, T − 1K . (2.7)

The state variables are initialized by x0 ∈ Rnx and evolve in (2.1d) according
to the dynamics

ft : Rnx × Rnu × Rnw → Rnx , ∀t ∈ J0, T − 1K . (2.8)

Last, the criterion to be minimized in (2.1b) is the expected value of the sum
of the parametric stage costs

Lt : Rnx × Rnu × Rnw × Rnp → R , ∀t ∈ J0, T − 1K , (2.9a)

with a parametric final cost

K : Rnx × Rnp → R . (2.9b)

Remark 2.2.1 The formulation of the nonanticipativity constraint in (2.7)
corresponds to problems which formulate naturally in the decision-hazard in-
formation structure. In particular, the first decision is deterministic, with
σ(U0) = {∅,Ω}. This formulation is well-adapted to the kind of application
problems which we consider, as we elaborate in Chapter 3.

2.2.2 Parametric value functions

In this work, we are interested in efficient numerical algorithms to solve Prob-
lem (2.1). For this reason, we make the following assumption on the data of
Problem (2.1).

Assumption 2.2.2 (discrete white noise) The sequence of noise variables
{Wt}t∈J1,T K in (2.5c) is stagewise independent, and each noise variable Wt has
a finite support.

The above assumption has a direct consequence on the solutions of the multi-
stage Problem (2.1b)-(2.1f). Indeed, if we consider a fixed value of the parameter
p ∈ Rnp×(T+1) in (2.3a), we retrieve a standard multistage stochastic optimiza-
tion problem. Therefore, Stochastic Dynamic Programming gives us a method
for computing the solutions of the multistage Problem (2.1b)-(2.1f), and thus
to evaluate Φ(p) in (2.1a). We introduce the sequence {Vt}t∈J0,T K of parametric
value functions, defined by backward induction by the Bellman equations

VT (x, p) = K(x, pT ) , ∀(x, p) ∈ Rnx × Rnp×(T+1) , (2.10a)

Vt(x, p) = inf
u∈Ut(x,pt)

E
[
Lt(x, u,Wt+1, pt) + Vt+1

(
ft(x, u,Wt+1), p

)]
, (2.10b)

∀(x, p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T − 1K .

When the sequence of noise variables {Wt}t∈J1,T K in (2.5c) is stagewise inde-
pendent, the value functions {Vt}t∈J0,T K in (2.10) give an optimal solution of the
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multistage Problem (2.1b)-(2.1f), so that

Φ(p) = V0(x0, p) , ∀p ∈ Rnp×(T+1) . (2.11)

We refer to Bertsekas [10] and Puterman [78] for a comprehensive presentation
of the Stochastic Dynamic Programming method. Moreover, when the noise
variables in the sequence {Wt}t∈J1,T K in (2.5c) have a finite support, we are
able to compute accurately the expectations in (2.10b), which explains why
the discrete white noise Assumption 2.2.2 is rather standard in works oriented
toward numerical applications (see e.g. [53, 76, 71]).

We introduce some additional terminology. The name “value function” refers
to the definition of Vt in (2.10b) as the infimum of a certain criterion. Indeed,
functions defined in such a way are usually called “value functions” (in a broader
sense than the one we give here in the context of Dynamic Programming), or
“marginal functions”. We use the latter terminology to design any function
defined as the value of an optimization problem to avoid confusion with the
value functions {Vt}t∈J0,T K in (2.10). Marginal functions have specific properties
which we study later in §2.3. In order to ease the application of the results
of §2.3 to the parametric value functions {Vt}t∈J0,T−1K defined in (2.10b), we
introduce the (parametric) Q-functions

Qt(x, u, p) = E
[
Lt(x, u,Wt+1, pt) + Vt+1

(
ft(x, u,Wt+1), p

)]
, (2.12a)

∀(x, u, p) ∈ Rnx × Rnu × Rnp×(T+1) , ∀t ∈ J0, T − 1K ,

so that the parametric value functions {Vt}t∈J0,T−1K formulate explicitly as marginal
functions:

Vt(x, p) = inf
u∈Ut(x,pt)

Qt(x, u, p) , (2.12b)

∀(x, p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T − 1K .

For the same reason, we also introduce the (possibly empty) solution sets

U∗t (x, p) = arg min
u∈Ut(x,pt)

Qt(x, u, p) , (2.13)

∀(x, p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T − 1K .

2.3 Background on marginal functions
We review some well-known results regarding the variational properties of a
marginal function. Most of the results which we state here are taken from
the textbooks of Rockafellar and Wets [82], Bauschke and Combettes [5], Bon-
nans and Shapiro [14], and from the lecture notes (in French) of Gilbert [35].
Throughout our review, we comment on the applications of these results to
(parametric) multistage stochastic programming.

Let (X,Y) and (U,V) be two pairs of primal and dual vector spaces. Each
pair is endowed with its own bilinear form, which we both denote by 〈· , ·〉 (the
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one we refer to is always clear from context). We consider an extended real
valued bivariate function

Ψ : X× U→ R , (2.14a)

and we define the marginal function

ψ(x) = inf
u∈U

Ψ(x, u) , ∀x ∈ X , (2.14b)

with the constraint set

U ⊆ U , (2.14c)

together with the (possibly empty) solution set

U∗(x) = arg min
u∈U

Ψ(x, u) , ∀x ∈ X . (2.14d)

Note that, in the case where the feasible u ∈ U constraining the infimum in
the definition of the marginal function in (2.14b) are delimited by a set-valued
mapping U ′ : X⇒ U, we can reformulate

inf
u∈U ′(x)

Ψ(x, u) = inf
u∈U

Ψ(x, u) + δgr(U ′)(x, u) , ∀x ∈ X , (2.15)

where
gr(U ′) =

{
(x, u) ∈ X× U

∣∣u ∈ U ′(x)
}

(2.16)

is the graph of set-valued mapping U ′ and

δgr(U ′)(x, u) =

{
0 if (x, u) ∈ gr(U ′) ,
+∞ else ,

(2.17)

is the indicator function of the set gr(U ′). Therefore, our formulation for
marginal functions in (2.14a)-(2.14b) covers a large spectrum of situations, in-
cluding the parametric value functions {Vt}t∈J0,T K in (2.10).

We start with a result which gives a condition for the marginal function ψ
in (2.14b) to be lower semicontinuous (lsc) and for the solution sets U∗(x),
x ∈ X, in (2.14d) to be nonempty.

Theorem 2.3.1 (see [5], Lemma 1.30) Let X and U be two Hausdorff spaces,
let Ψ : X × U → R be the bivariate function in (2.14a), and let the constraint
set U ⊆ U in (2.14c) be compact. If the bivariate function Ψ is lower semicon-
tinuous, then the marginal function ψ defined by

ψ(x) = inf
u∈U

Ψ(x, u) , ∀x ∈ X , (2.18)

in (2.14b) is lower semicontinuous, and for all x ∈ X, the infimum in (2.18) is
attained.
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The following example is an illustration of Theorem 2.3.1.

Example 2.3.2 (from [56], §2) Let the marginal function

ψ(x) = min
u∈R2
−u2 , s.t.


u1 + xu2 ≥ 1 ,

u1 + u2 ≤ 1 ,

u1, u2 ≥ 0 ,

∀x ∈ R . (2.19a)

We introduce the lsc bivariate function Ψ(x, u) = −u2+δ{u1+xu2≥1}(x, u), defined
on R×R2, and the compact constraint set U =

{
u ∈ R2

+

∣∣u1 + u2 ≤ 1
}
, so that

the marginal function in (2.19a) formulates as ψ = minu∈U Ψ(·, u). In view of
Theorem 2.3.1, the marginal function ψ is lsc. Indeed, we have that

ψ(x) =

{
0 if x < 1 ,

−1 if x ≥ 1 .
(2.19b)

The marginal function ψ introduced in Example 2.3.2 reveals that, even when
the function ψ is defined with smooth data as in (2.19a), it might be noncontin-
uous, as observed in (2.19b). Therefore, the notion of Fréchet differentiability
is too strong to study the local variations of a marginal function. Instead, we
review the main properties of the directional derivatives in §2.3.1, and of the
subdifferential in §2.3.2, which are more adapted to the context of marginal
functions. We also discuss the strong connection between the subdifferential of
a marginal function and the solutions of a suitable dual problem in §2.3.3, and
mention further first order information results on marginal functions in §2.3.4.

2.3.1 Directional derivatives

We recall that when X is a real normed vector space, the directional derivative
of a function f : X→ R is defined, at x̄ ∈ X and for a direction d ∈ X, by

f ′(x̄; d) = lim
ε→0+

f(x̄+ εd)− f(x̄)

ε
∈ R , (2.20)

when this limit exists.
Under stronger regularity assumptions than the ones of Theorem 2.3.1, the

next result enforces the local Lipschitz continuity of the marginal function ψ
in (2.14b) and yields its directional derivatives. This result is known as Dan-
skin’s Theorem, a proof of which can be found in [14, Theorem 4.13]. We follow
the formulation given in [19, Theorem 4.3], which we find more convenient for
practical considerations.

Theorem 2.3.3 (Danskin) Let X be the Euclidean space Rn, where n ∈ N∗,
and U be a topological space, let the constraint set U ⊆ U in (2.14c) be nonempty
and compact, and let the bivariate function Ψ : X×U→ R in (2.14a) take finite
values over the set X × U . If Ψ(·, u) is Fréchet differentiable for every u ∈ U ,
and ∇xΨ is continuous on X× U , then the marginal function ψ defined by

ψ(x) = inf
u∈U

Ψ(x, u) , ∀x ∈ X , (2.21a)
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in (2.14b) is locally Lipschitz continuous, directionally differentiable, and we
have that

ψ′(x̄; d) = inf
u∗∈U∗(x̄)

〈d ,∇xΨ(x̄, u∗)〉 , ∀x̄ ∈ X , ∀d ∈ X . (2.21b)

Moreover, if the solution set U∗(x̄) in (2.14d) is a singleton {u∗}, the marginal
function ψ is Fréchet differentiable at x̄ and

∇ψ(x̄) = ∇xΨ(x̄, u∗) . (2.21c)

Danskin’s Theorem 2.3.3 has been used extensively for computing the sen-
sitivity of the value of a marginal function ψ at a point x̄ ∈ X with respect
to perturbations of x̄ in some directions of interest d ∈ X. In the multistage
stochastic programming literature, such applications are investigated in [19, 39,
95]. All three references focus on the linear case, i.e. when the cost function
and the constraints of the problem are affine. The authors are mainly concerned
with the sensitivity of the optimal value of a parameterized problem with re-
spect to some scalar model parameters, which they obtain by estimating direc-
tional derivatives. In [19], the authors further argue that, since Theorem 2.3.3
tells us that the marginal function ψ in (2.14b) is locally Lipschitz continuous,
by Rademacher’s Theorem, it is Fréchet differentiable almost everywhere. A
similar conclusion is drawn in [95], and formulas to compute the gradient ∇ψ
when ψ is differentiable are given in both references. However, regarding our
intention to apply first-order optimization methods, if the marginal function
ψ in (2.14b) is not differentiable everywhere, we need to gain additional first
order information at the points of nondifferentiability of ψ. Indeed, employing
smooth optimization methods to minimize nondifferentiable functions can yield
suboptimal solutions, even in the convex case, as illustrated by the example
discussed in [6, § 8.1.2].

2.3.2 Subdifferential

We recall that when the space X is paired with its dual space Y by a bilinear
form 〈· , ·〉, the subdifferential ∂f(x̄) ⊆ Y of a function f : X→ R is defined, at
x̄ ∈ X, by

y ∈ ∂f(x̄) ⇐⇒ f(x) ≥ f(x̄) + 〈x− x̄ , y〉 , ∀x ∈ X . (2.22)

In order to state the next results in their most compact formulation and to
ease notations in the following discussion, we adopt the unconstrained formu-
lation for the marginal function

ψ(x) = inf
u∈U

Ψ(x, u) , ∀x ∈ X , (2.23a)

and thus the unconstrained formulation for the solution set

U∗(x) = arg min
u∈U

Ψ(x, u) , ∀x ∈ X . (2.23b)
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Since the bivariate function Ψ in (2.14a) takes values in R, we can formulate
equivalently the constraint u ∈ U in (2.14b) by setting Ψ(·, u) = +∞ for u /∈ U ,
so that we remain in the same framework as the one introduced in (2.14a)-
(2.14d).

We start by presenting a theorem which displays the relationship between
the subdifferential of the marginal function ψ in (2.23a) and the subdifferential
of the bivariate function Ψ in (2.14a). Similar or extended formulations of the
following result can be found in [80, Theorem 10.13], in [5, Theorem 16.71] with
more details on the handling of constraints, and in [35, Proposition 3.75].

Theorem 2.3.4 (inspired from [35], Proposition 3.75) Let X and U be two
real Hilbert spaces, let Y be the dual space of X (therefore also a Hilbert space,
identified with X), let Ψ : X× U→ R be the bivariate function in (2.14a), and
let ψ : X→ R be the marginal function defined by

ψ(x) = inf
u∈U

Ψ(x, u) , ∀x ∈ X , (2.24a)

in (2.23a). If at x̄ ∈ X, the solution set U∗(x̄) in (2.23b) is not empty, then for
any u∗ ∈ U∗(x̄), the subdifferential of ψ at x̄ is given by

∂ψ(x̄) =
{
y ∈ Y

∣∣ (y, 0) ∈ ∂Ψ(x̄, u∗)
}
. (2.24b)

Proof. Let x̄ ∈ X and u∗ ∈ U∗(x̄) be given. By definition of the subdifferential,

y ∈ ∂ψ(x̄) ⇐⇒ ψ(x) ≥ ψ(x̄) + 〈x− x̄ , y〉 , ∀x ∈ X ,

⇐⇒ inf
u∈U

Ψ(x, u) ≥ Ψ(x̄, u∗) + 〈x− x̄ , y〉 , ∀x ∈ X , (by definition of ψ)

⇐⇒ Ψ(x, u) ≥ Ψ(x̄, u∗) + 〈x− x̄ , y〉 , ∀(x, u) ∈ X× U ,

⇐⇒ (y, 0) ∈ ∂Ψ(x̄, u∗) . (by definition of the subdifferential)

This ends the proof. 2

Compared with Danskin’s Theorem 2.3.3, the above result does not require
the full knowledge of the solution set U∗(x̄) in (2.14d) at x̄ ∈ X. Indeed, as
we illustrate in Example 2.3.5, the set ∂ψ(x̄) in (2.24b) does not depend on
the choice of the minimizer u∗ ∈ U∗(x̄), even when the subdifferential of the
bivariate function Ψ in (2.14a) is not constant over {x̄} × U∗(x̄).

Example 2.3.5 (from [35], Remarques 3.76) Consider the bivariate func-
tion Ψ(x, u) = max{0, |u| − 1} defined on R2, and the marginal function ψ =
infu∈R Ψ(·, u) = 0. For any x̄ ∈ R, we have that U∗(x̄) = [−1, 1],

∂Ψ(x̄, u∗) =


{(0, 0)} if u∗ ∈]− 1, 1[ ,

{0} × [0, 1] if u∗ = 1 ,

{0} × [−1, 0] if u∗ = −1 ,

(2.25)

and ∂ψ(x̄) = {0} =
{
y ∈ Y

∣∣ (y, 0) ∈ ∂Ψ(x̄, u∗)
}
, ∀u∗ ∈ U∗(x̄) .
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We now introduce the partial subdifferential ∂xΨ of the bivariate function
Ψ in (2.14a), defined, at (x̄, ū) ∈ X× U, by

∂xΨ(x̄, ū) = ∂Ψ(·, ū)(x̄) . (2.26)

In complement to Theorem 2.3.4, we state a result relating the subdifferential
∂ψ of the marginal function ψ in (2.23a), the partial subdifferential ∂xΨ of the
bivariate function Ψ in (2.14a), and the projected subdifferential projX (∂Ψ).
The following result is essentially a corollary of Theorem 2.3.4.

Corollary 2.3.6 Under the assumptions of Theorem 2.3.4, for any u∗ ∈ U∗(x̄),
we have that

∂ψ(x̄) ⊆ projX (∂Ψ(x̄, u∗)) ⊆ ∂xΨ(x̄, u∗) . (2.27)

Proof. From Theorem 2.3.4, if y ∈ ∂ψ(x̄) and u∗ ∈ U∗(x̄), then (y, 0) ∈ ∂Ψ(x̄, u∗)

hence y ∈ projX (∂Ψ(x̄, u∗)), which proves the left inclusion in (2.27). We now turn
to the right inclusion. If y ∈ projX (∂Ψ(x̄, u∗)), there exists v ∈ U such that (y, v) ∈
∂Ψ(x̄, u∗), hence Ψ(x, u) ≥ Ψ(x̄, u∗) + 〈x− x̄ , y〉 + 〈u− u∗ , v〉 , ∀(x, u) ∈ X × U. If
we take u = u∗, Ψ(x, u∗) ≥ Ψ(x̄, u∗) + 〈x− x̄ , y〉 , ∀x ∈ X, hence y ∈ ∂xΨ(x̄, u∗). 2

We provide two examples to stress that the inclusions in (2.27) might be
strict.

Example 2.3.7 Let Ψ(x, u) = max{−x,−u} be defined on R2. The marginal
function ψ in (2.23a) is such that, for x̄ ∈ R, ψ(x̄) = −x̄, ∂ψ(x̄) = {−1}
and U∗(x̄) =

{
u ∈ R

∣∣u ≥ x̄
}
. Taking u∗ = x̄, from [45, §D Example 3.4],

∂Ψ(x̄, u∗) is the convex hull co{(0,−1), (−1, 0)}, so that projX (∂Ψ(x̄, u∗)) =
[−1, 0] 6= ∂ψ(x̄) = {−1}.

Example 2.3.8 (from [5], Remark 16.8) Let Ψ(x, u) = δB(x, u) be defined
on R2 as the indicator function of the Euclidean unit ball B. The marginal
function in (2.23a) is ψ = δ[−1,1], and, if x̄ = 0, u∗ = 1 is in U∗(x̄), with

∂Ψ(0, 1) = NB(0, 1) = {0}×R+ , and ∂xΨ(0, 1) = ∂δB(·, 1)(0) = ∂δ{0}(0) = R ,

so that projX (∂Ψ(x̄, u∗)) = {0} 6= ∂xΨ(x̄, u∗) = R.

In Examples 2.3.7 and 2.3.8, we see that, at x̄ ∈ X, computing an optimal
solution u∗ ∈ U∗(x̄) and a dual element y in ∂Ψ(x̄, u∗) or in ∂xΨ(x̄, u∗) does not
give us automatically a subgradient element of ∂ψ(x̄). However, in the convex
differentiable case, we have a stronger result. We recall that, if the bivariate
function Ψ in (2.14a) is jointly convex in (x, u), then the marginal function ψ
in (2.23a) is convex (see [82, Proposition 2.22]), and that the notions of Fréchet
and Gateaux differentiability coincide for convex, proper, lsc functions when
the space X is a finite dimensional real Hilbert space (see [5, Corollary 17.43]).
The following result is also a consequence of Theorem 2.3.4.

Corollary 2.3.9 Under the assumptions of Theorem 2.3.4, let us assume fur-
ther that the space X is finite-dimensional, that the bivariate function Ψ is con-
vex, proper, lsc, and that Ψ(·, u) is differentiable for every u ∈ projU (dom(Ψ)).
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If at x̄ ∈ X, ψ(x̄) is finite and the solution set U∗(x̄) is nonempty, then ψ is
differentiable at x̄, and we have that

∇ψ(x̄) = ∇xΨ(x̄, u∗) , ∀u∗ ∈ U∗(x̄) . (2.28)

Proof. Since Ψ is convex, so is the marginal function ψ. First, we prove that ψ
is subdifferentiable. By definition of the marginal function in (2.23a), we have that
ψ = infu∈U Ψ(·, u) ≤ Ψ(·, u∗), ∀u∗ ∈ U∗(x̄). Given that Ψ(x̄, u∗) = ψ(x̄) is finite and
that Ψ(·, u∗) is (Fréchet) differentiable, hence continuous, dom(Ψ(·, u∗)) = X, and
therefore dom(ψ) = X. If ψ is improper and convex, it must be equal to −∞ over
int(dom(ψ)) = X [82, Exercice 2.5], which does not hold since ψ(x̄) > −∞. We deduce
that ψ is proper. Thus, ψ is convex, finite valued and X is finite dimensional, so that
ψ is continuous [5, Corollary 8.40], hence subdifferentiable [5, Proposition 16.17] over
X. Second, we prove the differentiability of ψ. Let y ∈ ∂ψ(x̄), from Theorem 2.3.4,
for any u∗ ∈ U∗(x̄), (y, 0) ∈ ∂Ψ(x̄, u∗) hence, from Corollary 2.3.6, y ∈ ∂xΨ(x̄, u∗), so
that y = ∇xΨ(x̄, u∗), hence ∂ψ(x̄) is a singleton. Since X is finite dimensional, ψ is
proper, convex, lsc (in fact, continuous), and ∂ψ(x̄) is a singleton, we obtain that ψ
is differentiable at x̄ and ∇ψ(x̄) = ∇xΨ(x̄, u∗) [5, Proposition 17.45]. 2

2.3.3 Dual problem

In the same context as in §2.3.2, we recall that when the space X is paired with
a dual space Y by a bilinear form 〈· , ·〉, the conjugate function f ? : Y → R of
a function f : X→ R is defined, at y ∈ Y, by

f ?(y) = sup
x∈X

(
〈x , y〉 − f(x)

)
. (2.29)

We introduce a result which highlights the relationship between the subdif-
ferential of the marginal function ψ in (2.23a), defined as the optimal value of
a primal optimization problem, and the solutions of a suitable dual problem.
Analogous results can be found in [82, Theorem 11.39], [5, Proposition 19.14]
and [14, Theorem 2.142].

Theorem 2.3.10 (see [87], Theorem 7.9) Let X and U be two Euclidean
spaces Rn and Rm, where (n,m) ∈ N∗2. Let Ψ : X × U → R be the bivari-
ate function in (2.14a) and let ψ : X → R be the marginal function in (2.23a)
defined, for x̄ ∈ X, as the value of the primal problem

min
u∈U

Ψ(x̄, u) . (2.30a)

Let us consider the dual problem of (2.30a), given by

max
y∈Y

{
〈x̄ , y〉 −Ψ?(y, 0)

}
. (2.30b)
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If the function Ψ is convex, then the marginal function ψ is subdifferentiable
at x̄ iff both ψ is lsc at x̄ and the dual problem (2.30b) possesses an optimal
solution. In such a case, we have that

∂ψ(x̄) = arg max
y∈Y

{
〈x̄ , y〉 −Ψ?(y, 0)

}
. (2.30c)

Considering a multistage stochastic optimization problem, its value func-
tions are connected between time steps t and t+1 by marginalization operations,
as in the Bellman equations (2.10). Under convexity assumptions, the SDDP
algorithm exploits the result of Theorem 2.3.10 to compute subgradients of the
value functions. These subgradients allow us to deduce a collection of affine
minorants to build polyhedral lower approximate value functions, as originally
introduced in [72]. We provide an example which introduces the key mechanism
which lets us compute a subgradient of a value function in the SDDP algorithm.

Example 2.3.11 Let X and U be two Euclidean spaces Rn and Rm, where
(n,m) ∈ N∗2. Let the marginal function ψ = infu∈U Ψ(·, u) be defined with a
convex real valued bivariate function Ψ : X × U → R and a convex nonempty
compact set U ⊆ Rm. For x̄ ∈ X, we introduce the primal Problem

min
x∈X
u∈U

Ψ(x, u) s.t. x = x̄ . (2.31)

If the function Ψ and the set U are e.g. linear, polyhedral or quadratic, we can
use a numerical solver to compute ψ(x̄) as the value of (2.31) and ȳ ∈ Y as a
Lagrange multiplier of the constraint x = x̄ in (2.31).

We show that we have ȳ ∈ ∂f(x̄). For this purpose, we introduce the La-
grangian

L(x, u, y) = Ψ(x, u) + 〈x̄− x , y〉 , ∀(x, u, y) ∈ X× U × Y , (2.32)

of the primal problem (2.31), and we compute

inf
x∈X
u∈U

L(x, u, y) = 〈x̄ , y〉+ inf
x∈X
u∈U

(
Ψ(x, u)− 〈x , y〉

)
, (2.33a)

= 〈x̄ , y〉 − sup
x∈X
u∈U

(
〈x , y〉 −Ψ(x, u)

)
, (2.33b)

= 〈x̄ , y〉 − (Ψ + δU)?(y, 0) , (2.33c)

so that the dual problem of (2.31) is

max
y∈Y

{
〈x̄ , y〉 − (Ψ + δU)?(y, 0)

}
. (2.34)

From Theorem 2.3.1, the marginal function ψ = infu∈U Ψ(·, u) + δU(u) is lsc.
It follows that if ȳ is an optimal Lagrange multiplier of the constraint x = x̄
in (2.31), hence a solution of the dual problem (2.34), then in view of Theo-
rem 2.3.10, we have ȳ ∈ ∂f(x̄).
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2.3.4 Further first order information results

Other lines of work exploring the variational properties of marginal functions
include extended definitions of the subdifferential that we introduced in (2.22).
Indeed, this definition and the results introduced in §2.3.2 mostly make sense for
convex marginal functions. In a more general context, Mordukhovich, Nam, and
Yen [63] study the properties of the Fréchet and limiting subdifferentials, and
derive exact expressions and overestimates of these subdifferentials for marginal
functions, in the spirit of Theorem 2.3.4 and Corollary 2.3.6.

Last, when trying to optimize a nonsmooth and nonconvex marginal func-
tion, we can still refer to the notion of descent direction, which we recall in the
next definition.

Definition 2.3.12 Let X be a vector space, let f : X → R be an extended real
valued function, let x̄ ∈ X and let d ∈ X. We say that d is a descent direction
of f at x̄ if there exists α ∈ R∗+ such that

f(x̄+ dε) < f(x̄) , ∀ε ∈]0, α[ . (2.35)

The next result establishes a relationship between the descent directions of
the bivariate function Ψ in (2.14a) and the ones of the marginal function ψ
in (2.14b). It is not found in the references cited in this section, but could have
interesting algorithmic implications.

Proposition 2.3.13 Let X and U be two vector spaces, let Ψ : X × U → R
be the bivariate function in (2.14a), and let ψ : X → R be the corresponding
marginal function in (2.23a). If at x̄ ∈ X the solution set U∗(x̄) in (2.23b) is
nonempty, and if, for u∗ ∈ U∗(x̄), d ∈ X is a descent direction of the function
Ψ(·, u∗) at x̄, then d is a descent direction of the marginal function ψ at x̄.

Proof. Since d is a descent direction of Ψ(·, u∗) at x̄, from Definition 2.3.12, there
exists α ∈ R∗+ such that Ψ(x̄+ dε, u∗) < Ψ(x̄, u∗) for ε ∈]0, α[. Let us take ε ∈]0, α[,
from the definition of the marginal function ψ in (2.23a), we have that

ψ(x̄+ dε) = inf
u∈U

Ψ(x̄+ dε, u) ,

≤ Ψ(x̄+ dε, u∗) ,

< Ψ(x̄, u∗) , (d is a descent direction of Ψ(·, u∗) at x̄)
= ψ(x̄) , (from u∗ ∈ U∗(x̄))

and therefore d is a descent direction of the marginal function ψ at x̄. 2

2.4 Convex differentiable parametric value func-
tions

We recall that the properties of the objective function Φ : Rnp×(T+1) → R
in (2.1a) are inherited from those of the parametric value functions {Vt}t∈J0,T K

defined in (2.10) through Φ = V0(x0, ·) in (2.11), under the discrete white noise
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Assumption 2.2.2. Our review of the variational properties of marginal functions
in §2.3 reveals that in the case where the functions {Vt}t∈J0,T K are convex and
differentiable, we can compute the gradient ∇pVt based on the knowledge of
∇pVt+1 by application of Corollary 2.3.9, when the required assumptions are
fulfilled.

First, we formulate some assumptions which guarantee the convexity of the
parametric value functions {Vt}t∈J0,T K in §2.4.1. Second, we provide sufficient
conditions for the gradients {∇pVt}t∈J0,T K to be well-defined, and introduce a
method to compute such gradients by backward induction in §2.4.2. In other
words, from the viewpoint of Problem (2.1), we provide sufficient requirements
for the objective function Φ to be convex and differentiable, and a method to
compute its gradient.

2.4.1 Convex value functions

We make some assumptions on the data of Problem (2.1) in order to guarantee
that the parametric value functions {Vt}t∈J0,T K in (2.10), and thus the objective
function Φ in (2.1a) are convex, proper, lsc. Before enumerating assumptions,
we introduce a definition of feasibility adapted to the context of Problem (2.1).
This definition can be interpreted as a weaker formulation of the key concept of
relatively complete recourse as introduced for multistage stochastic optimization
problems in [37, 53].

Definition 2.4.1 We say that the data of the the parametric value functions
{Vt}t∈J0,T K defined in (2.10) satisfy the feasibility assumption if

∀t ∈ J0, T − 1K , ∃(x, p) ∈ Rnx × Rnp×(T+1) , ∃u ∈ Ut(x, pt) , (2.36)

s.t.

P
(

(x, u,Wt+1, pt) ∈ dom(Lt)
)

= 1 ,

P
((
ft(x, u,Wt+1), p

)
∈ dom(Vt+1)

)
= 1 .

Also, we recall that, following the terminology of Bonnans and Shapiro [14,
§2.3], the domain, the range and the graph of a set-valued mapping Ut : Rnx ×
Rnp ⇒ Rnu as in (2.6), for any t ∈ J0, T − 1K, are defined as, respectively,

dom(Ut) =
{

(x, pt) ∈ Rnx × Rnp
∣∣Ut(x, pt) 6= ∅} , (2.37a)

range(Ut) =
{
u ∈ Rnu

∣∣ ∃(x, pt) ∈ Rnx × Rnp s.t. u ∈ Ut(x, pt)
}
, (2.37b)

gr(Ut) =
{

(x, u, pt) ∈ Rnx × Rnu × Rnp
∣∣u ∈ Ut(x, pt)} . (2.37c)

We say that the set-valued mapping Ut is closed if its graph gr(Ut) is a closed
set, and that it is convex if gr(Ut) is a convex set.

Assumption 2.4.2 (convex multistage problem) We assume that

1. the data of the parametric value functions {Vt}t∈J0,T K defined in (2.10)
satisfy the feasibility assumption as defined in Definition 2.4.1,
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2. the cost functions {Lt}t∈J0,T−1K in (2.9a) are jointly convex and lsc in their
state, control and subparameter arguments, and are proper, and the final
cost K in (2.9b) is convex, proper, lsc,

3. the dynamics {ft}t∈J0,T−1K in (2.8) are affine in their state and control
arguments,

4. the set-valued mappings {Ut}t∈J0,T−1K in (2.6) are closed, convex, and have
nonempty domains and compact ranges.

Proposition 2.4.3 Under the discrete white noise Assumption 2.2.2 and the
convex multistage problem Assumption 2.4.2, the parametric value functions
{Vt}t∈J0,T K defined in (2.10) and the Q-functions {Qt}t∈J0,T−1K defined in (2.12)
are convex, proper, lsc.

Proof. We proceed by backward induction. Since VT = K, from Assumption 2.4.2,
the function VT is convex, proper, lsc. Let t ∈ J0, T −1K and assume that the function
Vt+1 is convex, proper, lsc.

First, let us consider the Q-function Qt in (2.12). The function ft is affine in
(x, u) and the function Vt+1 is convex lsc in (x, p). Besides, for w ∈ Rnw , the function
(x, u, p) 7→ Lt(x, u, w, pt) is convex lsc, and, from Assumption 2.2.2, the expectation
in (2.12a) is a finite sum, so that, finally, the function Qt is convex lsc. Moreover, since
the functions Lt and Vt+1 are proper, Qt > −∞, and, from the feasibility assumption
defined in Definition 2.4.1, which holds under Assumption 2.4.2, the function Qt has
a nonempty domain, hence it is proper.

Second, we turn to the properties of the value function Vt, using that, from (2.12b),
for (x, p) ∈ Rnx × Rnp×(T+1),

Vt(x, p) = inf
u∈Ut(x,pt)

Qt(x, u, p) = inf
u∈range(Ut)

Qt(x, u, p) + δgr(Ut)(x, u, pt) . (2.38)

Since the set-valued mapping Ut is convex, the set gr(Ut) is convex, so that the set
range(Ut) = projRnu (gr(Ut)) is convex and the function Qt + δgr(Ut) is convex, which
proves that the function Vt is convex. Moreover, the set gr(Ut) is closed, so that
the function Qt + δgr(Ut) is lsc, and since the set range(Ut) is compact, by applica-
tion of Theorem 2.3.1, the function Vt is lsc, and the infimum in (2.38) is attained.
Since moreover the function Qt is proper, we obtain that Vt > −∞, and from the
feasibility assumption in Assumption 2.4.2, there exists (x, p) ∈ Rnx ×Rnp×(T+1) and
u ∈ Ut(x, pt) such that Qt(x, u, p) < +∞, so that Vt(x, p) < +∞, which proves that
the function Vt is proper. Therefore, the value function Vt is convex, proper, lsc. This
ends the proof. 2

2.4.2 Gradient of a convex differentiable parametric value
function

We now provide further assumptions on the data of Problem (2.1) to enforce the
differentiability of Φ, from the differentiability of the parametric value functions
{Vt}t∈J0,T K in (2.10). In our main result, we also introduce a Bellman-like back-
ward recursion to compute the gradients {∇pVt}t∈J0,T K, and thus the gradient
∇Φ.
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Assumption 2.4.4 (smoothness) We assume that

1. the cost functions {Lt}t∈J0,T−1K and K in (2.9) are differentiable with re-
spect to their subparameter argument pt in (2.3b),

2. for all t ∈ J0, T − 1K, the set-valued mapping Ut in (2.6) is constant with
respect to its subparameter argument pt in (2.3b), i.e. it takes the same
set value for all pt ∈ Rnp; in that case, we use the notation Ut(x) instead
of Ut(x, pt).

We now state our main result.

Theorem 2.4.5 Under the discrete white noise Assumption 2.2.2, the convex
multistage problem Assumption 2.4.2 and the smoothness Assumption 2.4.4,
the value functions {Vt}t∈J0,T K defined in (2.10) are differentiable with respect
to their parameter argument, and their gradients may be computed by backward
induction, with, at stage T ,

∇pVT (x, p̄) = ∇pK(x, p̄T ) , ∀(x, p̄) ∈ dom(VT ) , (2.39a)

and, at stage t ∈ J0, T − 1K, for (x, p̄) ∈ dom(Vt), the solution set U∗t (x, p̄t)
defined in (2.13) is nonempty, and, for any u∗ ∈ U∗t (x, p̄t),

∇pVt(x, p̄) = E
[
∇pLt(x, u

∗,Wt+1, p̄t) +∇pVt+1

(
ft(x, u

∗,Wt+1), p̄
)]
. (2.39b)

Proof. We proceed by backward induction. Since VT = K, the function VT is
differentiable with respect to p and ∇pVT = ∇pK over its domain. Let t ∈ J0, T − 1K
and assume that the function Vt+1 is differentiable with respect to p. By application
of Corollary 2.3.9, we prove the differentiability property of the marginal function Vt
in (2.12b) which, under Assumption 2.4.4, formulates as

Vt(x, p) = inf
u∈Ut(x)

Qt(x, u, p) , ∀(x, p) ∈ Rnx × Rnp×(T+1) . (2.40)

First, let us consider the Q-function Qt in (2.12). Under Assumptions 2.2.2
and 2.4.2, we deduce from Proposition 2.4.3 that the function Qt is convex, lsc
and proper, so that we can consider (x, u, p̄) ∈ Rnx × Rnu × Rnp×(T+1) such that
Qt(x, u, p̄) is finite. As Qt(x, u, p̄) is finite, in view of the discrete white noise As-
sumption 2.2.2, for all w in the support of Wt+1, the functions Vt+1(ft(x, u, w), ·) and
p 7→ Lt(x, u, w, pt) are finite and hence differentiable at p̄. As a consequence, since
the expectation in (2.12a) is a finite sum, the function Qt(x, u, ·) is differentiable at p̄.

Second, we prove the differentiability of the value function Vt with respect to p,
by application of Corollary 2.3.9. We already know that the function Qt is convex,
proper, lsc, and has the required differentiability property. Let (x, p̄) ∈ dom(Vt).
We know that the Q-function Qt is lsc and, from Assumptions 2.4.2 and 2.4.4, the
set Ut(x) is compact and constant with respect to the subparameter pt, so that, in
view of Theorem 2.3.1, the infimum in (2.40) is attained. Since moreover Vt(x, p̄)
is finite, the solution set U∗t (x, p̄t) is nonempty, and, since Rnx is finite-dimensional,
from Corollary 2.3.9, the function Vt(x, ·) is differentiable at p̄, and we have that

∇pVt(x, p̄) = ∇pE
[
Lt(x, u

∗,Wt+1, p̄t) + Vt+1

(
ft(x, u

∗,Wt+1), p̄
)]
.
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Finally, from Assumption 2.2.2, the expectation above is a finite sum, so that we can
invert the gradient and the expectation, and retrieve formula (2.39b). 2

2.5 Convex nondifferentiable parametric value func-
tions

We introduce two methods to handle cases where the parametric value func-
tions {Vt}t∈J0,T K in (2.10) are convex but nondifferentiable. In such cases, the
smoothness Assumption 2.4.4 does not hold, which prevents us from using The-
orem 2.4.5. In §2.5.1, we introduce lower smooth approximations of the original
value functions, for which we can compute the gradients by backward induction,
as in Theorem 2.4.5. Then in §2.5.2, we introduce lower polyhedral approxi-
mations of the original value functions, for which we can compute subgradients
with the SDDP algorithm. In both cases, we give convergence guarantees of the
approximate value functions to the original ones.

2.5.1 Lower smooth approximation

We are going to introduce lower smooth approximations of the value functions
{Vt}t∈J0,T K defined in (2.10), under some further assumptions on the parameter
set P in (2.4) representing the constraints of Problem (2.1). To this end, we
introduce coordinatewise parameter sets

Pt = projt(P) ⊆ Rnp , ∀t ∈ J0, T K , (2.41)

with the coordinatewise projections projt in (2.3c).

Assumption 2.5.1 (parameter set) We assume that

1. the parameter set P in (2.4) is nonempty, convex and compact,

2. for all t ∈ J0, T − 1K, the domain of the set-valued mapping Ut in (2.6) is
such that dom(Ut) ⊆ Rnx × Pt.

We have not made any assumption on the parameter set P in (2.4) so far,
since we are mostly concerned with the differentiability properties of the objec-
tive function Φ in (2.1a). However, asking for P to be nonempty, convex and
compact seems reasonable in order to guarantee the existence of a solution of
Problem (2.1). The second hypothesis of Assumption 2.5.1 is meant to make
sure that the intersection of domain of the objective function Φ in (2.1a) and
the parameter set P is nonempty.

Problem reformulation. We start by introducing a reformulation of Prob-
lem (2.1). Our goal is to move all sources of nondifferentiability with respect
to the parameter p in (2.3a) to a new cost function. In view of the smooth-
ness Assumption 2.4.4 required in Theorem 2.4.5, nondifferentiability might
arise directly from the cost functions {Lt}t∈J0,T−1K and K in (2.9), or from the
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constraints induced by the set-valued mappings {Ut}t∈J0,T−1K in (2.6), as in Ex-
ample 2.3.2. Besides, we also find useful to move the constraint induced by the
set P in (2.4) to the new cost functions to benefit from its compactness later,
in Lemma 2.5.5. We introduce new parametric admissibility sets {U [t }t∈J0,T−1K

as in (2.6), defined as

U [t (x, pt) = range(Ut) , ∀(x, pt) ∈ Rnx × Rnp , ∀t ∈ J0, T − 1K , (2.42)

which are constant valued with respect to the variables (x, pt). We also introduce
new parametric stage costs {L[t}t∈J0,T−1K and a new parametric final cost K[ as
in (2.9), defined as

L[t(x, u, w, pt) = Lt(x, u, w, pt) + δgr(Ut)(x, u, pt) + δPt(pt) , (2.43a)

∀(x, u, w, pt) ∈ Rnx × Rnu × Rnw × Rnp , ∀t ∈ J0, T − 1K ,

K[(x, pT ) = K(x, pT ) + δPT (pT ) , ∀(x, pT ) ∈ Rnx × Rnp . (2.43b)

Finally, we define new parametric value functions
{
V [
t

}
t∈J0,T K as in (2.10), given

by

V [
T (x, p) = K[(x, pT ) , ∀(x, p) ∈ Rnx × Rnp×(T+1) , (2.44a)

V [
t (x, p) = inf

u∈U[t (x,pt)
E
[
L[t(x, u,Wt+1, pt) + V [

t+1

(
ft(x, u,Wt+1), p

)]
, (2.44b)

∀(x, p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T − 1K ,

together with new Q-functions
{
Q[
t

}
t∈J0,T−1K as in (2.12a), given by

Q[
t(x, u, p) = E

[
L[t(x, u,Wt+1, pt) + V [

t+1

(
ft(x, u,Wt+1), p

)]
, (2.45)

∀(x, u, p) ∈ Rnx × Rnu × Rnp×(T+1) , ∀t ∈ J0, T − 1K .

The following proposition explicits the relationship between the value func-
tions {V [

t }t∈J0,T K in (2.44) and the original ones {Vt}t∈J0,T K in (2.10).

Proposition 2.5.2 Let {Vt}t∈J0,T K be the original value functions defined in (2.10),
let {V [

t }t∈J0,T K be the value functions defined in (2.44), and let {Pt}t∈J0,T K be the
coordinatewise parameter sets in (2.41). For t ∈ J0, T K, we have that

V [
t (x, p) =

{
Vt(x, p) if x ∈ Rnx , pi ∈ Pi , ∀i ∈ Jt, T K ,
+∞ else .

(2.46)

Proof. We proceed by backward induction. From the definitions of VT in (2.10) and
K[ in (2.43), when (x, p) is such that pT ∈ PT , we have that VT (x, p) = K(x, pT ) =
K[(x, pT ). In the case where pT /∈ PT , the result follows from δPT (pT ) = +∞. Let
t ∈ J0, T − 1K, and assume that (2.46) holds at stage t + 1. Let (x, p) be such that
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pi ∈ Pi for i ∈ Jt, T K. From the definition of the parametric value function Vt in (2.12),

Vt(x, p) = inf
u∈Ut(x,pt)

Qt(x, u, p) ,

= inf
u∈range(Ut)

Qt(x, u, p) + δgr(Ut)(x, u, pt) + δPt(pt) ,

(by definition of the range and the graph in (2.37) and from δPt(pt) = 0)

= inf
u∈U[t (x,pt)

E
[
L[t(x, u,Wt+1, pt) + Vt+1

(
ft(x, u,Wt+1), p

)]
,

(by definition of U [t in (2.42), L[t in (2.43) and Qt in (2.12a))

= V [
t (x, p) . (since Vt+1 satisfies (2.46))

In the case where pi /∈ Pi for some i ∈ Jt, T K, Vt(x, p) = +∞ as either L[t(·, ·, ·, pt) or
Vt+1(·, p) is equal to +∞. This ends the proof. 2

Under further assumptions, we obtain the following lemma.

Lemma 2.5.3 Under the discrete white noise Assumption 2.2.2, the convex
multistage problem Assumption 2.4.2 and the parameter set Assumption 2.5.1,
we have that

• the data of the parametric value functions {V [
t }t∈J0,T K defined in (2.44) satisfy

the feasibility assumption as defined in Definition 2.4.1,

• the cost functions {L[t}t∈J0,T−1K in (2.43a) are jointly convex and lsc in their
state, control and subparameter arguments, and are proper, and the final cost
K[ in (2.43b) is convex, proper, lsc,

• the set-valued mappings {U [t }t∈J0,T−1K in (2.42) are closed, convex, have nonempty
domains and compact ranges,

• the value functions {V [
t }t∈J0,T K in (2.10) and the Q-functions {Q[

t}t∈J0,T K in (2.45)
are convex, proper, lsc.

Proof. We consider t ∈ J0, T − 1K.
• From the feasibility assumption guaranteed by Assumption 2.4.2, there exists (x, p) ∈
Rnx × Rnp×(T+1) and u ∈ Ut(x, pt) ⊆ U [t (x) such that

P
(
(x, u,Wt+1, pt) ∈ dom(Lt)

)
= P

((
ft(x, u,Wt+1), p

)
∈ dom(Vt+1)

)
= 1 .

Moreover, we have that δgr(Ut)(x, u, pt) = 0, and, from Assumption 2.5.1, p ∈ P
hence δPt(pt) = 0. It follows that P

(
(x, u,Wt+1, pt) ∈ dom(L[t)

)
= 1, from the defini-

tion of L[t in (2.43), and P
((
ft(x, u,Wt+1), p

)
∈ dom(V [

t+1)
)

= 1, since dom(V [
t+1) ⊇

dom(Vt+1) ∩ (Rnx × P), from Proposition 2.5.2.
• The function projt in (2.3c) is linear and, from Assumption 2.5.1, the set P is
nonempty, convex and compact, therefore the set Pt in (2.41) is nonempty, convex
and compact, hence closed. It follows that the function (x, u, w, pt) 7→ δPt(pt) is con-
vex, proper, lsc. Then, under Assumption 2.4.2, the set gr(Ut) is closed and convex,
and is nonempty since the set-valued mapping Ut has a nonempty domain. It follows
that the function (x, u, w, pt) 7→ δgr(Ut)(x, u, pt) is convex, proper, lsc. From the prop-
erties of the function Lt in Assumptions 2.4.2, we deduce that the cost function L[t
in (2.43a) is jointly convex and lsc in its state, control and subparameter arguments,
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and that L[t > −∞. Then, it follows from the feasibility assumption as in Defini-
tion 2.4.1, satisfied by the data of {V [

t }t∈J0,T K, that dom(L[t) 6= ∅, and finally that L[t
is proper. The proof for K[ is analogous.
• By definition of U [t in (2.42) and by definition of the graph in (2.37), we have that
gr(U [t ) = Rnx × range(Ut)× Rnp . Under Assumption 2.4.2, the set range(Ut) is com-
pact, hence closed, and the set gr(Ut) is convex, so that range(Ut) = projRnu

(
gr(Ut)

)
is convex. It follows that the set gr(U [t ) is closed and convex, so that the set-valued
mapping U [t is closed and convex. Moreover, from Assumption 2.4.2, the domain
of Ut is nonempty, hence so is the set range(Ut), therefore, following the definitions
in (2.37), we have that dom(U [t ) = Rnx×Rnp is nonempty, and range(U [t ) = range(Ut)
is compact.
• The fact that the functions {V [

t }t∈J0,T K and {Q[t}t∈J0,T K are proper, convex, lsc follows
from Proposition 2.4.3, using the other results of Lemma 2.5.3 here above. 2

Smoothing cost functions via the Moreau envelope. Next, we recall the
definition of the Moreau envelope, also known as the Moreau-Yosida regular-
ization [65, 100].

Definition 2.5.4 Let n ∈ N∗, let f : Rn → R be an extended real valued
function and µ ∈ R∗+ be a regularization parameter. The Moreau envelope of f
is the function

fµ : Rn → R , z 7→ inf
z′∈Rn

(
f(z′) +

1

2µ
||z − z′||22

)
. (2.47)

We refer to [82, Chapter 1, §G] and [5, Chapter 12, §4] for a review of the
properties of the Moreau envelope. Given values of (x, u, w) ∈ Rnx × Rnu ×
Rnw and a regularization parameter µ ∈ R∗+, we introduce the Moreau en-
velopes {Lµt (x, u, w, ·)}t∈J0,T−1K and Kµ(x, ·) of the parametric cost functions
{L[t}t∈J0,T−1K and K[ in (2.43), with respect to the subparameter pt in (2.3b),
defined as

Lµt (x, u, w, pt) = inf
p′t∈Rnp

(
L[t(x, u, w, p

′
t) +

1

2µ
||pt − p′t||22

)
, (2.48a)

∀t ∈ J0, T − 1K , ∀pt ∈ Rnp ,

Kµ(x, pT ) = inf
p′T∈R

np

(
K[(x, p′T ) +

1

2µ
||pT − p′T ||22

)
, ∀pT ∈ Rnp . (2.48b)

The cost functions {Lµt }t∈J0,T−1K and Kµ in (2.48) have more regularity proper-
ties than the original ones in (2.9), as we prove in the following Lemma.

Lemma 2.5.5 Let µ ∈ R∗+ be a regularization parameter. Under the convex
multistage problem Assumption 2.4.2 and the parameter set Assumption 2.5.1,

• the cost functions {Lµt }t∈J0,T−1K in (2.48a) are jointly convex and lsc in their
state, control and subparameter arguments, and are proper, and the final cost
Kµ in (2.48b) is convex, proper, lsc,

• the cost functions {Lµt }t∈J0,T−1K and Kµ in (2.48) are differentiable with respect
to their subparameter argument pt in (2.3b).
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Proof. Let t ∈ J0, T − 1K. We recall that under Assumptions 2.2.2, 2.4.2 and 2.5.1,
we can apply Lemma 2.5.3. However, since we are only concerned with the properties
of the cost functions, we do not need the discrete white noise Assumption 2.2.2 here
since it does not affect the properties of the cost functions.
• From Lemma 2.5.3, the function (x, u, w, pt, p

′
t) 7→ L[t(x, u, w, p

′
t) + 1

2µ ||pt − p′t||22
is jointly convex and lsc in (x, u, pt, p

′
t), and is proper. Therefore, from [82, Propo-

sition 2.2], the marginal function Lµt in (2.48) is convex in (x, u, pt). Moreover, by
definition of the cost function L[t in (2.43), the infimum in (2.48a) can be restricted to
p′t ∈ Pt. Since the function projt in (2.3c) is linear and, from Assumption 2.5.1, the set
P is compact, then the set Pt in (2.41) is compact. It follows from Theorem 2.3.1 that
the marginal function Lµt in (2.48) is lsc in (x, u, pt), and that the infimum in (2.48a) is
attained. Last, since the infimum in (2.48a) is attained and since, from Lemma 2.5.3,
L[t is proper, we have that Lµt is proper. The proof for Kµ is analogous.
• From Lemma 2.5.3, the partial functions {L[t(x, u, w, ·)}t∈J0,T−1K and K[(x, ·) are
convex, proper, lsc, so that the Moreau envelopes {Lµt (x, u, w, ·)}t∈J0,T−1K in (2.48a)
and Kµ(x, ·) in (2.48b) are differentiable, from [5, Proposition 12.30]. 2

Lower smooth value functions. We are now ready to introduce the lower
smooth parametric value functions. For a regularization parameter µ ∈ R∗+, we
define

˜V µ
T (x, p) = Kµ(x, pT ) , ∀(x, p) ∈ Rnx × Rnp×(T+1) , (2.49a)

˜V µ
t (x, p) = inf

u∈range(Ut)
E
[
Lµt (x, u,Wt+1, pt) + ˜V µ

t+1

(
ft(x, u,Wt+1), p

)]
,

∀(x, p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T − 1K . (2.49b)

The lower smooth parametric value functions {˜V µ
t }t∈J0,T K have several interest-

ing properties, which we gather in Proposition 2.5.6.

Proposition 2.5.6 Let µ ∈ R∗+ be a regularization parameter, and let {˜V µ
t }t∈J0,T K

be the lower smooth parametric value functions defined in (2.49). Under the
discrete white noise Assumption 2.2.2, the convex multistage problem Assump-
tion 2.4.2 and the parameter set Assumption 2.5.1, the functions {˜V µ

t }t∈J0,T K

• provide lower bounds on the parametric value functions {Vt}t∈J0,T K defined
in (2.10) over Rnx × P, that is,

˜V µ
t (x, p) ≤ Vt(x, p) , ∀(x, p) ∈ Rnx × P , ∀t ∈ J0, T K , (2.50)

• are convex, proper, lsc,

• are differentiable with respect to their parameter argument, and their gradients
can be computed by the backward induction (2.39).

Proof.
• From a basic property of the Moreau envelope (see [5, Proposition 12.9]), we have
that

Lµt ≤ L[t , ∀t ∈ J0, T − 1K , and Kµ ≤ K[ . (2.51)
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Then, we easily prove by backward induction that

˜V µ
t (x, p) ≤ V [

t (x, p) , ∀(x, p) ∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T K ,
= Vt(x, p) , ∀(x, p) ∈ Rnx × P , ∀t ∈ J0, T K . (from Proposition 2.5.2)

• From Lemma 2.5.3, for t ∈ J0, T −1K, the set-valued mapping (x, pt) 7→ range(Ut) =

U [t (x, pt) satisfies the hypotheses of Assumption 2.4.2. Similarly, from Lemma 2.5.5,
the cost functions {Lµt }t∈J0,T−1K and Kµ in (2.48) satisfy the hypotheses of Assump-
tion 2.4.2. Last, since the data of the parametric value functions {V [

t }t∈J0,T K defined
in (2.44) satisfy the feasibility assumption as in Definition 2.4.1, so do the data of the
lower smooth value functions {˜V µ

t }t∈J0,T K, given that dom(L[t) ⊆ dom(Lµt ), from the
definition of Lµt in (2.48a), and dom(V [

t ) ⊆ dom(˜V µ
t ), from ˜V µ

t ≤ V [
t as discussed in

the first point of this proof. Then, it follows from Proposition 2.4.3 that the functions
{˜V µ

t }t∈J0,T K are convex, proper, lsc.
• Using again Lemma 2.5.3 and Lemma 2.5.1, we see that the constraints and the cost
functions in the definition of {˜V µ

t }t∈J0,T K in (2.49) satisfy the hypotheses of the smooth-
ness Assumption 2.4.4, so that the result follows by application of Theorem 2.4.5 to
the functions {˜V µ

t }t∈J0,T K. 2

Convergence properties. Finally, we prove some convergence properties of
the lower smooth parametric value functions {˜V µ

t }t∈J0,T K defined in (2.49), which
show that they are suitable candidates to approximate the original value func-
tions {Vt}t∈J0,T K in (2.10) for solving Problem (2.1). We refer to the definition
of pointwise convergence in [82, §7.A] and to the definition of epiconvergence
in [82, §7.B].

Proposition 2.5.7 Let {µn}n∈N ∈ (R∗+)N be a nonincreasing sequence such that
limn→+∞ µn = 0, let {˜V µn

t }t∈J0,T K,n∈N be lower smooth parametric value functions
as defined in (2.49), and let {V [

t }t∈J0,T K be the parametric value functions de-
fined in (2.44). Under the discrete white noise Assumption 2.2.2, the convex
multistage problem Assumption 2.4.2 and the parameter set Assumption 2.5.1,
we have both the pointwise convergence and the epiconvergence

˜V µn
t

p−−−−→
n→+∞

V [
t , and ˜V µn

t
e−−−−→

n→+∞
V [
t , ∀t ∈ J0, T K . (2.52)

Proof.
First, we proceed by backward induction to prove, for t ∈ J0, T K, the statement

˜V µn
t

p−−−−−→
n→+∞

V [
t , and ˜V µn

t ≤ ˜V µn+1

t , ∀n ∈ N . (2.53)

We start by proving (2.53) at stage T . Let n ∈ N, from (2.49a), ˜V µn
T = Kµn ,

where for x ∈ Rnx , Kµn(x, ·) is defined in (2.48b) as the Moreau envelope of K[(x, ·).
From Lemma 2.5.3, K[ is convex, proper, lsc, so that either K[(x, ·) = +∞ , in which
case ˜V µn

T (x, ·) = Kµn(x, ·) = +∞; or K[(x, ·) is convex, proper and lsc, in which
case ˜V µn

T (x, ·) = Kµn(x, ·) converges pointwise to K[(x, ·) and is a nondecreasing
sequence, from the properties of the Moreau envelope (see [5, Proposition 12.33]).
This proves (2.53) at stage T .
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Next, let t ∈ J0, T − 1K, we suppose that (2.53) holds at stage t+1. Let n ∈ N and
(x, u, p) ∈ Rnx × Rnu × Rnp×(T+1), we define the lower smooth Q-function

˜Qµnt (x, u, p) = E
[
Lµnt (x, u,Wt+1, pt) + ˜V µn

t+1

(
ft(x, u,Wt+1), p

)]
+ δrange(Ut)(u) .

As a first step, we show that the sequence of functions {˜Qµnt (x, ·, p)}n∈N epi-
converges to Q[t(x, ·, p) + δrange(Ut), with Q[t defined in (2.45). From the properties
of the Moreau envelope, the sequence {Lµnt }n∈N in (2.48a) is nondecreasing, and
from Lemma 2.5.5, each function Lµnt is lsc. Similarly, by assumption, the sequence
{˜V µn

t+1}n∈N is nondecreasing, and from Proposition 2.5.6, each function ˜V µn
t+1 is lsc. It

follows that (i) {˜Qµnt (x, ·, p)}n∈N is nondecreasing; and since the expectation above is
finite, and range(Ut) is compact from Assumption 2.4.2, hence closed, (ii) each func-
tion ˜Qµnt is lsc. Therefore, from [82, Proposition 7.4(d)], we have the epiconvergence

˜Qµnt (x, ·, p) e−−−−−→
n→+∞

sup
n∈N

(
lsc
(˜Qµnt )(x, ·, p)) = sup

n∈N

(˜Qµnt (x, ·, p)
)
.

Moreover, the nondecreasing sequences {Lµnt }n∈N and {˜V µn
t+1}n∈N converge pointwise

respectively to L[t in (2.43), from the properties of the Moreau envelope (see [5, Propo-
sition 12.33(ii)]), and to V [

t+1, following our assumption, so that supn∈N
(˜Qµnt (x, ·, p)

)
=

Q[t(x, ·, p) + δrange(Ut), from the expression of Q[t in (2.45).
As a second step, we show that (2.53) holds at stage t. Since dom(˜Qµnt (x, ·, p)) ⊆

range(Ut), where range(Ut) is compact from Assumption 2.4.2, hence bounded, the
sequence {˜Qµnt (x, ·, p)}n∈N is eventually level-bounded (see [82, Exercice 7.32(a)]).
Therefore, by application of [82, Theorem 7.33], we have the convergence

inf
u∈range(Ut) ˜Qµnt (x, ·, p) = ˜V µn

t (x, p) −−−−−→
n→+∞

inf
u∈range(Ut)

Q[t(x, ·, p) = V [
t (x, p) .

Moreover ˜V µn
t ≤ ˜V µn+1

t , since {˜Qµnt (x, ·, p)}n∈N is nondecreasing. We conclude that
(2.53) holds, which ends the backward induction proof.

Second, the sequence {˜V µn
t }n∈N is nondecreasing, and from Proposition 2.5.6, each

function ˜V µn
t is lsc, so that from [82, Proposition 7.4(d)], we have the epiconvergence

˜V µn
t

e−−−−−→
n→+∞

sup
n∈N

(
lsc
(˜V µn

t

))
= sup

n∈N

(˜V µn
t

)
= V [

t ,

where the last equality follows from the pointwise convergence of the nondecreasing
sequence {˜V µn

t }n∈N to V [
t . This ends the proof. 2

As a consequence, we obtain the following corollary.

Corollary 2.5.8 Under the assumptions of Proposition 2.5.7, let x0 be the
initial state in (2.1c) and let Φ∗ = infp∈P Φ(p) be the optimal value of Prob-
lem (2.1), we have that

inf
p∈P ˜V µn

0 (x0, p) ≤ Φ∗ , ∀n ∈ N , and inf
p∈P ˜V µn

0 (x0, p) −−−−→
n→+∞

Φ∗ . (2.54)

Proof. From Proposition 2.5.7, the sequence {˜V µn
0 }n∈N converges pointswise and

epiconverges to V [
0 in (2.44). Moreover, under Assumption 2.5.1, δ{x0}×P is lsc. It

follows from [82, Proposition 7.46] that {˜V µn
0 + δ{x0}×P}n∈N epiconverges to V [

0 +
δ{x0}×P = V0 + δ{x0}×P , from Proposition 2.5.2. Then as dom(˜V µn

0 + δ{x0}×P) ⊆
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{x0} × P is bounded, the sequence {˜V µn
0 + δ{x0}×P}n∈N is eventually level-bounded

(see [82, Exercice 7.32(a)]). Therefore, by application of [82, Theorem 7.33], we have
the convergence

inf
p∈P ˜V µn

0 (x0, p) −−−−−→
n→+∞

inf
p∈P

V0(x0, p) = Φ∗ .

Then for n ∈ N, infp∈P ˜V µn
0 (x0, p) ≤ Φ∗ follows from ˜V µn

0 ≤ ˜V µn+1

0 as shown in the
proof of Proposition 2.5.7. 2

2.5.2 Lower polyhedral approximation

As an alternative approach to the lower smooth approximation method of §2.5.1,
we are going to introduce lower polyhedral approximations of the value functions
{Vt}t∈J0,T K defined in (2.10).

Problem reformulation. Similar to the approach of §2.5.1, we reformulate
Problem (2.1) in order to fit it into the framework of the SDDP algorithm. We
adopt a state extension to model explicitly the parameter p in (2.3a) as a state
variable, redefining the state variables as

x]t =

(
xt
p

)
∈ Rnx × Rnp×(T+1) , ∀t ∈ J0, T K , (2.55a)

which evolves according to the new dynamics

x]0 =

(
x0

p

)
, (2.55b)

x]t+1 = f ]t (x
]
t, ut, wt+1) , ∀t ∈ J0, T − 1K , (2.55c)

where, for t ∈ J0, T − 1K,

f ]t (x
], u, w) =

(
ft(x, u, w)
p

)
, ∀(x], u, w) ∈

(
Rnx × Rnp×(T+1)

)
× Rnu × Rnw .

(2.55d)
We also redefine the admissibility sets as

U ]t (x]) = Ut(x, pt) , ∀x] ∈
(
Rnx × Rnp×(T+1)

)
, ∀t ∈ J0, T − 1K , (2.56)

and the cost functions as

L]t(x
], u, w) = Lt(x, u, w, pt) , (2.57a)

∀(x], u, w) ∈
(
Rnx × Rnp×(T+1)

)
× Rnu × Rnw , ∀t ∈ J0, T − 1K ,

K](x]) = K(x, pT ) , ∀x] ∈
(
Rnx × Rnp×(T+1)

)
. (2.57b)
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With our new notations, the objective function Φ in (2.1a) is equivalently given,
for p ∈ Rnp×(T+1), by

Φ(p) = inf
U0,...,UT−1

E
[T−1∑
t=0

L]t(X
]
t,Ut,Wt+1) +K](X]

T )
]
, (2.58a)

X]
0 =

(
x0

p

)
, (2.58b)

X]
t+1 = f ]t (X

]
t,Ut,Wt+1) , ∀t ∈ J0, T − 1K , (2.58c)

Ut ∈ U ]t (X]
t) , ∀t ∈ J0, T − 1K , (2.58d)

σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ J0, T − 1K . (2.58e)

Again, under the discrete white noise Assumption 2.2.2, Problem (2.58a)-(2.58e)
is solved by Dynamic Programming, with the value functions

{
V ]
t

}
t∈J0,T K defined

as

V ]
T (x]) = K](x]) , ∀x] ∈

(
Rnx × Rnp×(T+1)

)
, (2.59a)

V ]
t (x]) = inf

u∈U]t (x])

E
[
L]t(x

], u,Wt+1) + V ]
t+1

(
f ]t (x

], u,Wt+1)
)]
, (2.59b)

∀x] ∈
(
Rnx × Rnp×(T+1)

)
, ∀t ∈ J0, T − 1K .

The SDDP algorithm. The SDDP algorithm runs a sequence of k̄ ∈ N∗
forward and backward passes, in order to compute polyhedral lower approxima-
tions {V k

t }t∈J0,T K of the value functions
{
V ]
t

}
t∈J0,T K in (2.59), where k ∈ J1, k̄K.

We briefly recall the computation performed during the forward and backward
passes of the algorithm. We assume that after k ∈ J1, k̄K passes, we have a
polyhedral lower approximation {V k

t }t∈J0,T K.

Forward pass: we sample randomly a scenario (wk1 , . . . , w
k
T ) ∈

(
Rnw

)T , and
compute (forward in time) a state trajectory (x] k0 , . . . , x

] k
T ) ∈

(
Rnx × Rnp×(T+1)

)T+1

with, for t ∈ J0, T − 1K, x] kt+1 = f ]t (x
] k
t , u

k
t , w

k
t+1), where the decision ukt is made

based on the last polyhedral lower approximation V k
t+1 as

ukt ∈ arg min
u∈U]t (x] kt )

E
[
L]t(x

] k
t , u,Wt+1) + V k

t+1

(
f ]t (x

] k
t , u,Wt+1)

)]
. (2.60)

Backward pass: we compute (backward in time) new affine functions along
the state trajectory (x] kT−1, . . . , x

] k
0 ). Knowing an updated lower approximation

V k+1
t+1 , we solve

βk+1
t = min

x],u
E
[
L]t(x

], u,Wt+1) + V k+1
t+1

(
f ]t (x

], u,Wt+1)
)]
, (2.61a)

u ∈ U ]t (x
] k
t ) , (2.61b)

x] = x] kt , (2.61c)
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together with the Lagrange multiplier αk+1
t ∈

(
Rnx × Rnp×(T+1)

)
of the con-

straint (2.61c). As explained in Example 2.3.11, αk+1
t is a subgradient of the

value function V k+1
t , so that we improve our polyhedral approximation with a

new affine minorant, defining

V k+1
t = sup

{
V k
t , β

k+1
t +

〈
· − x] kt , αk+1

t

〉}
. (2.62)

Numerical properties. We recall some practical and theoretical aspects of
the SDDP algorithm that motivate its use in our case to estimate subgradients
of the objective function Φ in (2.1a).

The SDDP algorithm was first introduced in [72], and then further in-
vestigated in [86]. A proof of convergence of the SDDP algorithm is given
in [37, Theorem 3.1], under conditions that mirror the discrete white noise As-
sumption 2.2.2 and the convex multistage problem Assumption 2.4.2, but for
problems formulated in the hazard-decision framework. However, as explained
in [93], problems stated in decision-hazard can be reformulated to fit the for-
mer decision scheme, so that the above mentioned convergence result applies in
our case. Therefore, the more forward and backward passes we run, the more
accurate the polyhedral lower approximations {V k

t }t∈J0,T K in (2.62) of the value
functions {V ]

t }t∈J0,T K in (2.59). We refer to [50] for an analysis of the conver-
gence rate of the SDDP algorithm relatively to the number of forward-backward
passes performed and to the dimension of the components of the problem to be
solved.

Besides its convergence property, another appealing factor of the SDDP al-
gorithm is that once the lower polyhedral approximations {V k

t }t∈J0,T K are consid-
ered to be sufficiently accurate, after k̄ ∈ N∗ iterations, we can easily compute
elements in the subdifferential of V k̄

0 by solving Problem (2.61). For exam-
ple, in the case where the convex cost function L]t in (2.57a) is polyhedral,
Problem (2.61) is efficiently solved by a linear programming solver. If the ap-
proximation error between V k̄

0 and V ]
0 is bounded by some accuracy parameter

ε ∈ R+, this procedure allows us to evaluate an ε-subgradient of the objective
function Φ in (2.1a), as we show in the following proposition. We introduce the
coordinatewise projection

Π : Rnx × Rnp×(T+1) → Rnp×(T+1) : (x, p) 7→ p , (2.63)

and we recall that the ε-subdifferential ∂εf(x̄) ⊆ Rn, n ∈ N∗, of a function
f : Rn → R, at x̄ ∈ Rn, is defined by

y ∈ ∂εf(x̄) ⇐⇒ f(x) ≥ f(x̄) + 〈x− x̄ , y〉 − ε , ∀x ∈ Rn . (2.64)

Proposition 2.5.9 Let x]0 = (x0, p̄) ∈
(
Rnx × Rnp×(T+1)

)
. Suppose that after

k̄ ∈ N∗ forward-backward passes of the SDDP algorithm, the approximation er-
ror at x]0 of the value function V

]
0 in (2.59) by the lower polyhedral approximation

V k̄
0 in (2.62) is bounded by ε ∈ R+, in the sense that

V ]
0 (x]0)− V k̄

0(x]0) ≤ ε . (2.65a)
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Then, if we compute φ = V k̄
0

(
(x0, p̄)

)
and q ∈ ∂V k̄

0

(
(x0, p̄)

)
, we have that

|Φ(p̄)− φ| ≤ ε , (2.65b)
Π(q) ∈ ∂εΦ(p̄) . (2.65c)

Proof. First, from (2.58), and by definition of the value functions {V ]
t }t∈J0,T K in (2.59),

we have that Φ(p̄) = V ]
0

(
(x0, p̄)

)
, hence |Φ(p̄) − φ| = V ]

0 ((x0, p̄)) − V k̄
0((x0, p̄)) ≤ ε .

Second, we have that

q ∈ ∂V k̄
0

(
(x0, p̄)

)
⇐⇒ V k̄

0

(
(x, p)

)
≥ V k̄

0

(
(x0, p̄)

)
+ 〈(x, p)− (x0, p̄) , q〉 ,
∀(x, p) ∈ Rnx × Rnp×(T+1) ,

=⇒ V k̄
0

(
(x0, p)

)
≥ V k̄

0

(
(x0, p̄)

)
+ 〈p− p̄ ,Π(q)〉 ,

∀p ∈ Rnp×(T+1) , (taking x = x0)

=⇒ V ]
0

(
(x0, p)

)
≥ V k̄

0

(
(x0, p̄)

)
+ 〈p− p̄ ,Π(q)〉 ,

∀p ∈ Rnp×(T+1) , (since V ]
0 ≥ V k̄

0)

=⇒ V ]
0

(
(x0, p)

)
≥ V ]

0

(
(x0, p̄)

)
+ 〈p− p̄ ,Π(q)〉 − ε ,
∀p ∈ Rnp×(T+1) , (from (2.65a))

=⇒ Π(q) ∈ ∂εΦ(p̄) ,

since Φ(p) = V ]
0

(
(x0, p)

)
, ∀p ∈ Rnp×(T+1), and by definition of the ε-subdifferential

in (2.64). 2

2.6 Conclusion
We have studied the differentiability properties of a class of parametric mul-
tistage stochastic optimization problems. Our main finding is that, under
smoothness and convexity assumptions, we manage to compute the gradient
of the value function of the problem with respect to the parameter by backward
induction. This inductive computing method can be interpreted as an extension
of the Bellman equation to the gradient of the stagewise value functions with
respect to the parameter. Therefore, it benefits from the strengths and the
weaknesses of dynamic programming. In particular, its complexity increases
drastically with the dimension of the state space.

In the case where the smoothness assumption breaks, we have proposed
two methods. In the first method, we approximate the original parametric
value functions by smooth lower approximations that have enough regularity
properties to compute their gradient by backward induction, as in the first place.
One advantage of this method is that the regularization parameter involved can
be taken as small as required for the approximation to be tight. In the second
method, we approximate the original parametric value functions by polyhedral
lower approximations, using the SDDP algorithm. This second method has
the disadvantage to increase considerably the state space, as it introduces a
new state variable including the parameter. Besides, the accuracy of these
approximations is ruled by the complexity of the SDDP algorithm, meaning that
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the higher the desired accuracy, the longer the computation time. Nevertheless,
the SDDP algorithm remains numerically efficient on higher dimensional state
spaces that standard dynamic programming, so that this second methods seems
also competitive.

In the following Chapter 3, we explore the numerical applications of our
results to the management of a solar power plant where day-ahead open-loop
decisions are taken, standing for a parameter to the downstream multistage
management problem.
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Day-ahead and intraday
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3.1 Introduction
Renewable energy units are progressively integrated in electric grids, as they
offer an attractive solution to lower the carbon intensity of electric power.
In particular, photovoltaic and wind units are extensively developed in non-
interconnected zones (NIZ), which are isolated from national or regional power
grids and therefore heavily depend on fossil fuel to generate electric power. In-
tegrating a large amount of solar or wind energy in the grid requires to smooth
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the production curve of such renewable units, typically perturbed by the uncer-
tainties in the weather forecast, so as to ease power load scheduling at the grid
scale. In this chapter, we study the case of a photovoltaic power plant equipped
with an energy storage system deployed in the French non-interconnected zones,
which experience a high penetration of renewable power in their grid. To achieve
this, the French energy regulatory authority has set up a production planning
[25] for the management of a solar unit, organized as follows: every operating
day, a daily commitment profile is submitted day-ahead to announce the up-
coming power production; then, during the intraday management phase, the
delivered power is compared with the engagement profile, and penalties are
charged to the producer if the two profiles diverge significantly.

The application problem that motivates us has already fueled previous re-
search works, see for example [68, 26, 73], but few of them model the manage-
ment of the solar plant within the stochastic optimization framework. Stochastic
optimization has yet already been introduced successively to optimize day-ahead
commitment profiles for renewable power plants deployed in other contexts, as
in [101], using chance constraints programming for inserting wind power in the
Nord Pool spot market, and in [18], using two stage stochastic programming
with risk aversion for the daily operation of aggregated renewable units in-
serted in the US wholesale market. However, few references propose intraday
controllers based on stochastic dynamic programming, despite the success of
the method in other microgrid control applications, such as in [79, 41, 52].

The contribution of this chapter is twofold. First, we propose a numerical
experiment to attest the performance of the methods developed in Chapter 2 for
solving parametric multistage stochastic optimization problems. We formulate
a parametric problem inspired by the NIZ day-ahead power commitment rules,
where we minimize the expected intraday costs of a solar plant parametrized
by the commitment profile. We compare methods based on lower smooth and
lower polyhedral approximations of the intraday value functions, as introduced
in §2.5, and evaluate the profiles obtained with each method by Monte-Carlo
simulation. Second, we compare a set of controllers, defined as a combination
of day-ahead and intraday control strategies, for the management of a solar
plant in the French NIZ context. Among our candidate controllers, we feature
two innovative strategies. On the one hand, we introduce a day-ahead control
strategy based on daily parametric multistage stochastic optimization problems,
as developed in Chapter 2, and on the other hand, we propose an intraday
control strategy based on stochastic dynamic programming, motivated by the
results of Chapter 1. We simulate the management of a solar power plant over a
sequence of historical data representing one year of consecutive operating days,
and showcase up to 11.6% of gains over state-of-the-art techniques.

This chapter is structured as follows. First, we introduce a solar plant
management model for the French NIZ context in §3.2. Second, we attest the
numerical performance of the methods introduced in Chapter 2 on a paramet-
ric multistage stochastic optimization problem inspired by day-ahead power
commitment rules, in §3.3. Third, we evaluate a pool of controllers combin-
ing day-ahead and intraday strategies for the management of a solar plant in
the French NIZ context, in §3.4. This chapter is oriented toward numerical
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applications, in the continuity of the work exposed in Chapter 2.

Notations

We introduce mathematical notations. Let (Ω,F ,P) be a probability space,
We use bold capital letters to denote random variables. We denote by B(X)
the Borel σ-field of a topological space X. We introduce the extended real line
R = [−∞,+∞], and we denote R+ = [0,+∞[, R∗+ = ]0,+∞[, R− = ] −∞, 0],
and R∗− = ]−∞, 0[.

3.2 Solar plant microgrid management model
We introduce the components of a dynamical system for modeling the man-
agement of a solar power plant. We consider an electric microgrid composed
of photovoltaic panels, chained with a controllable DC/AC power inverter, and
a battery. Note that in practice, the battery is also coupled with a DC/AC
inverter, that we omit to represent here as we use a single control variable for
a battery-inverter system. A schematic organization of the power plant is pro-
vided in Figure 3.1. We now comment on the components of Figure 3.1 and
introduce all model variables.

DC/AC

−
+

g
vc

−+
p̃

vb

Figure 3.1: Schematic organization of the solar power plant

Time scale. We consider the management of a solar plant over a finite number
of discrete time steps

J0, T K = {0, 1, . . . , T − 1, T} , (3.1)

of horizon T ∈ N∗, where unit time steps are spaced by time intervals [t, t+ 1[
of length ∆t ∈ R∗+, which do not overlap. In the NIZ context, the peak time
corresponds to a period of higher demand on the power grid, and induces specific
costs and constraints. This time period depends on the zone considered, but
typically spans over [19:00, 21:00]. We introduce notations to distinguish the
subsets of off-peak and on-peak time steps, respectively

T off ⊆ J0, T − 1K and T on ⊆ J0, T − 1K , (3.2a)
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such that

T off ∩ T on = ∅ and T off ∪ T on = J0, T − 1K . (3.2b)

Commitment profile. For each time interval [t, t + 1[, the solar plant is
engaged to deliver a certain value of committed power

pt ∈ R , ∀t ∈ J0, T − 1K , (3.3a)

composing all together the commitment profile

p = {pt}t∈J0,T−1K ∈ RT . (3.3b)

Dynamics of the battery. The storage system is assumed to be a lithium-
ion battery (or a container of aggregated batteries), characterized by the coef-
ficients (s, vb, vb, ρc, ρd) referring respectively to the battery’s capacity (MWh),
minimum load (MW), maximum load (MW), charge and discharge efficiency
coefficients. The dynamics of the state of charge

st ∈ [0, 1] , ∀t ∈ J0, T K , (3.4a)

is given by

st+1 = f(st, v
b
t ) , ∀t ∈ J0, T − 1K , (3.4b)

where the dynamics f is defined as

f(s, vb) = s+
(
ρc(v

b)+ − 1

ρd
(vb)−

)∆t

s
, ∀(s, vb) ∈ [0, 1]× R , (3.4c)

with v+ = max(0, v) and v− = max(0,−v). The battery control

vbt ∈ [vb, vb] , ∀t ∈ J0, T − 1K , (3.5)

taken at the beginning of every time interval [t, t+ 1[, accounts for the charging
power (vbt ≥ 0) or discharging power (vbt ≤ 0) applied to the battery during [t, t+
1[. Combined with the dynamics (3.4), constraints of the form

vbt ∈ V(st) , ∀t ∈ J0, T − 1K , (3.6a)

restrict decisions vbt to the admissibility set (related to the battery parameters
(s, vb, vb, ρc, ρd))

V(s) =
{
vb ∈ R

∣∣ vb ≤ vb ≤ vb and 0 ≤ f(s, vb) ≤ 1
}
,∀s ∈ [0, 1] . (3.6b)

Solar panels and curtailment. The solar panels are characterized by the
installed peak power p ∈ R∗+ (MW), and the uncertainties of the model arise
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from sun availability, introducing randomness in the generated power

gt ∈ [0, p] , ∀t ∈ J1, T K , (3.7)

where gt+1 stands for the amount of power generated during the time interval
[t, t+1[, for t ∈ J0, T − 1K, and observed at the end of this interval. Besides
battery controls vbt in (3.5), we may also adjust the power delivery by performing
power curtailment

vct ∈ R+ , ∀t ∈ J1, T K , (3.8a)

where the amount of curtailed power is at most equal to the total generated
power, that is,

vct ≤ gt , ∀t ∈ J1, T K . (3.8b)

During the time interval [t, t+1[, the interplay between decisions and uncertain-
ties is organized as the sequence

vbt  gt+1  vct+1 ,

where vct+1 is decided after observing gt+1, and can be thought as a recourse
to the decision vbt . Such a decision model is well-adapted to the French NIZ
context, detailed in §3.4.1, where overproduction is strongly penalized, hence
the importance of curtailment as a recourse variable. The resulting delivered
power is given by

p̃t+1 = gt+1 − vbt − vct+1 ∈ R , ∀t ∈ J0, T − 1K . (3.9)

The above equation summarizes the organization of the solar power plant as
depicted in Figure 3.1.

Management costs. Stage management costs are computed based on the
unitary energy price

ct ∈ R+ , ∀t ∈ J0, T − 1K , (3.10a)

expressed in e/MWh. In the NIZ context, it typically takes two values

ct =

{
c , ∀t ∈ T off ,

c , ∀t ∈ T on ,
with 0 ≤ c ≤ c , (3.10b)

reflecting the attractive peak tariff designed to encourage power delivery during
the evening peak hours.

Over each time interval [t, t + 1[, where t ∈ J0, T − 1K, the power delivery
p̃t+1 ∈ R in (3.9) is compared with the value of the committed power pt ∈ R
in (3.3a) to compute the stage cost

Jt(p̃t+1, pt) = Je
t (p̃t+1) + Jp

t (p̃t+1, pt) ∈ R , (3.11a)
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where the energy cost Je
t is defined as

Je
t (p̃t+1) = −ct∆tp̃t+1 ∈ R , (3.11b)

and the penalty cost

Jp
t : R× R→ R+ , (3.11c)

measures the deviation between the committed power pt and the delivered power
p̃t+1. We specify instances of penalty costs later in §3.3 and in §3.4. Finally, at
the end of the time span J0, T K, the energy left in the battery is valued at the
energy price, hence the final cost

R(sT ) = −cT sT s ∈ R− . (3.12)

3.3 Stochastic optimization of the day-ahead com-
mitment profile

We consider a simplified version of the NIZ context for the purpose of testing
the methods introduced in Chapter 2.

First, in §3.3.1, we formalize the problem of minimizing the expected intra-
day management cost of the solar plant introduced in §3.2 with respect to the
day-ahead commitment profile pt in (3.3b). We obtain a convex nondifferen-
tiable optimization problem, whose criterion formulates itself as the value of a
parametric multistage stochastic optimization problem, as introduced in §2.2.
Second, in §3.3.2, we detail how to apply the lower smooth and lower polyhe-
dral approximation techniques introduced in §2.5 to solve this problem. Third,
in §3.3.3, we showcase the results obtained with both approximation techniques
on a numerical experiment.

3.3.1 Problem statement

We introduce a parametric multistage stochastic optimization problem as defined
in §2.2 for the daily management of the solar unit of §3.2. We consider the time
span of one operating day, with time intervals of length ∆t = 30 minutes, hence
a problem horizon of T = 48.

Variables. We model the generated power gt in (3.7) as a Markovian process1

G : ω ∈ Ω 7→ (G0, . . . ,GT ) ∈ [0, p]T+1 , (3.13a)

following a linear dynamics given by
1We extend the generated power gt in (3.7) with g0 = 0, reflecting the absence of sun at

midnight.
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G0 = 0 , (3.13b)
Gt+1 = αtGt + βt + Wt+1 , ∀t ∈ J0, T − 1K , (3.13c)

where
(αt, βt) ∈ R2 , ∀t ∈ J0, T − 1K , (3.13d)

are the coefficients of the linear dynamics (3.13b)-(3.13c), and

W : ω ∈ Ω 7→ (W1, . . . ,WT ) ∈ RT (3.14)

is the error noise process for the dynamics (3.13b)-(3.13c). We assume the se-
quence of random variables {Wt}t∈J1,T K to be stagewise independent, and that
each noise variable Wt has a finite support, as in the discrete white noise As-
sumption 2.2.2. In this simplified model, we consider a single control variable

ut = vbt , ∀t ∈ J0, T − 1K , (3.15a)

where vbt is the battery control defined in (3.5), so that we have the control
process

U : ω ∈ Ω 7→ (U0, . . . ,UT−1) ∈ RT . (3.15b)

Moreover, we introduce the state variable

xt =

(
xst
xgt

)
=

(
st

gt

)
∈ R2 , ∀t ∈ J0, T K , (3.16a)

where st is the state of charge in (3.4a) and gt is the generated power in (3.7).
The state xt evolves according to the dynamics

x0 =

(
s0

0

)
, (3.16b)

xt+1 = ft(xt, ut, wt+1) , ∀t ∈ J0, T − 1K , (3.16c)

where, for t ∈ J0, T − 1K,

ft(x, u, w) =

(
f(xs, u)
αtx

g + βt + w

)
, ∀(x, u, w) ∈ R2 × R× R , (3.16d)

with x = (xs, xg) in (3.16a) and the dynamics f defined in (3.4). Due to
uncertainties in the evolution of the state variable in (3.16d), we also introduce
the state process

X : ω ∈ Ω 7→ (X0, . . . ,XT ) ∈ (R2)T+1 . (3.17)
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Constraints. With the formulation of the state in (3.16a), controls are con-
strained by the admissibility sets

Ut(x) = V(xs) , ∀x = (xs, xg) ∈ R2 , ∀t ∈ J0, T − 1K , (3.18)

defined with the set V in (3.6). Besides, given the stagewise independence
assumption on the noise process W in (3.14) and the expression of the state
variable xt in (3.16a), the nonanticipativity constraint written as

σ(Ut) ⊆ σ(W0, . . . ,Wt) , ∀t ∈ J0, T − 1K , (3.19a)

in standard form, can be reformulated as

σ(Ut) ⊆ σ(Xt) , ∀t ∈ J0, T − 1K , (3.19b)

without loss of optimality [17, §4.4].

Costs. Lastly, for t ∈ J0, T−1K, we formulate the penalty cost Jp
t in (3.11c) as

the distance in absolute value, weighted by a penalty coefficient λ ≥ 1, where,
for a value of delivered power p̃t+1 ∈ R in (3.9) and a value of committed power
pt ∈ R in (3.3a),

Jp
t (p̃t+1, pt) = λct∆t|p̃t+1 − pt| . (3.20)

Given the expression of the delivered power p̃t+1 in (3.9), we reformulate the
stage cost, for t ∈ J0, T − 1K and (x, u, w, pt) ∈ R2 × R× R× R, as

Lt(x, u, w, pt) = Je
t (αtx

g + βt + w − u) + Jp
t (αtx

g + βt + w − u, pt) , (3.21a)

with x = (xs, xg) in (3.16a) and the energy cost Je
t defined in (3.11b), and we

write the final cost as

K(x) = R(xs) , ∀x ∈ R2 . (3.21b)

Optimization problem. Gathering all components introduced above, we de-
fine the intraday value function

Φ :
RT → R ,
p 7→ Φ(p) ,

(3.22a)
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as the value of a parametric multistage stochastic optimization problem as de-
fined in §2.2, given by

Φ(p) = min
U0,...,UT−1

E
[T−1∑
t=0

Lt(Xt,Ut,Wt+1, pt) +K(XT )
]
, (3.22b)

X0 = (s0, 0) , (3.22c)
Xt+1 = ft(Xt,Ut,Wt+1) , ∀t ∈ J0, T − 1K , (3.22d)
Ut ∈ Ut(Xt) , ∀t ∈ J0, T − 1K , (3.22e)
σ(Ut) ⊆ σ(Xt) , ∀t ∈ J0, T − 1K . (3.22f)

Finally, we introduce the set of admissible profiles

P = [0, p]T , (3.23)

and we consider the day-ahead optimization of the expected management cost
in (3.21a) with respect to the commitment profile p ∈ P , that is, we want to
solve

min
p∈P

Φ(p) . (3.24)

3.3.2 Resolution methods

We turn to the resolution of Problem (3.24). Since the sequence of noise vari-
ables {Wt}t∈J1,T K is stagewise independent, we have that the intraday value
function Φ in (3.24) is related to the parametric value functions {Vt}t∈J0,T K de-
fined by the backward induction (2.10) via

Φ(p) = V0(x0, p) , ∀p ∈ RT , (3.25)

following the discussion of §2.2.2. We now outline the properties of Prob-
lem (3.24) and introduce two families of resolution methods, based on the work
of Chapter 2.

Properties of Problem (3.24). First, we discuss the convexity properties of
Problem (3.24). We consider solving Problem (3.24) under the discrete white
noise Assumption 2.2.2, and the model components introduced in §3.3.1 satisfy
the convex multistage problem Assumption 2.4.2. In particular, the feasibility
assumption of Definition 2.4.1 is fulfilled, with e.g. (x, p) ∈

(
[0, 1]× [0, p]

)
×

P and u = 0. It follows that, from Proposition 2.4.3, the parametric value
functions {Vt}t∈J0,T K are convex, proper, lsc. Therefore, we deduce from (3.25)
that the intraday value function Φ is convex, and since the set P in (3.23) is
convex, Problem (3.24) is a convex optimization problem.

Second, we discuss the differentiability properties of the objective function Φ
in Problem (3.24). For all t ∈ J0, T − 1K, the cost function Lt defined in (3.21a)
is nondifferentiable with respect to the committed power pt in (3.3a). More
precisely, we observe that the cost functions of the multistage Problem (3.22b)-
(3.22f) are polyhedral, due to the term Jp

t in (3.20), and that the constraints
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are linear. In this context, the parametric value functions {Vt}t∈J0,T K are poly-
hedral (see e.g. arguments given in [87, §3.2.1]). It follows that the intraday
value function Φ in Problem (3.24) is nondifferentiable. Therefore, we turn to
the lower approximation techniques developed in §2.5 to compute numerical
solutions of Problem (3.24).

Lower smooth approximation. We introduce smooth approximations of
the stage costs {Lt}t∈J0,T−1K in (3.21a) by means of the Moreau envelope, fol-
lowing the methodology developed in §2.5.1. However, we simplify the smooth-
ing procedure by omitting the indicator functions δgr(Ut) and δPt in the refor-
mulation of the stage costs as in (2.43a). Concerning δgr(Ut), we argue that
there is no need to move the constraints induced by the set-valued mappings
{Ut}t∈J0,T−1K in (3.18) to the new cost functions, since the values taken by Ut
in (3.18) do not depend on the committed power pt in (3.3a). Thus, we only
need to regularize the stage costs {Lt}t∈J0,T−1K in (3.21a) to fulfill the smooth-
ness Assumption 2.4.4. As for δPt , the compactness of Pt serves the proof of
Lemma 2.5.5 in the general formulation, the result of which can be proved here
equivalently thanks to the coercivity of the stage costs {Lt}t∈J0,T−1K in (3.21a)
with respect to pt. The partial Moreau envelope of the stage cost with respect
to the committed power pt is given, for a regularization parameter µ ∈ R∗+, by

Lµt (x, u, w, pt) = inf
p′t∈R

(
Lt(x, u, w, p

′
t) +

1

2µ
(p′t − pt)2

)
, (3.26a)

∀t ∈ J0, T − 1K , ∀(x, u, w, pt) ∈ R2 × R× R× R ,

which, skipping easy computation steps, takes values

− ct∆tp̃t+1 + λct∆t ×

{
1

2µ′
(p̃t+1 − pt)2 , if |p̃t+1 − pt| ≤ µ′ ,

|p̃t+1 − pt| − µ′

2
, if |p̃t+1 − pt| > µ′ ,

(3.26b)

where µ′ = µλct∆t, and we recall that p̃t+1 = αtx
g + βt + w − u, from the

expression of the delivered power p̃t+1 in (3.9). We illustrate the partial Moreau
envelope of the stage cost in Figure 3.2.

Then, we define lower smooth parametric value functions, as in (2.49), given
inductively by

˜V µ
T (x, p) = K(x) , ∀(x, p) ∈ R2 × RT , (3.27a)

˜V µ
t (x, p) = inf

u∈Ut(x)
E
[
Lµt (x, u,Wt+1, pt) + ˜V µ

t+1

(
ft(x, u,Wt+1), p

)]
, (3.27b)

∀(x, p) ∈ R2 × RT , ∀t ∈ J0, T − 1K .

We stress that the infimum in (3.27b) is performed over the set Ut(x), whereas
it is performed over the set range(Ut) in the original expression of ˜V µ

t in (2.49b),
due to the introduction of the indicator function δgr(Ut) in (2.43a) which is not
introduced here for the reasons given above.
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Finally, we approximate a solution of Problem (3.24) by solving the convex
smooth optimization problem

min
p∈P ˜V µ

0 (x0, p) , (3.28)

where we compute the function ˜V µ
0 (x0, ·) with (3.27) and the gradient∇p˜V µ

0 (x0, ·)
using the Bellman-like recursion (2.39), following Proposition 2.5.6.

Figure 3.2: Stage cost Lt(x, u, w, ·) in (3.21a) and partial
Moreau envelopes Lµt (x, u, w, ·) in (3.26) for µ = 100, µ = 1000,
for a fixed value of p̃t+1 = αtx

g + βt + w − u = 600kW, a stage
t ∈ T off, and λ = 2

Lower polyhedral approximation. We introduce a second method based
on lower polyhedral approximations of the original parametric value function V0

in (3.25). We model the commitment profile p in (3.3b) as a state variable, and
define lower polyhedral value functions {V k

t }t∈J0,T K as detailed in §2.5.2, with a
fixed value k ∈ N∗ of forward-backward passes of the SDDP algorithm. Then,
we approximate a solution of Problem (3.24) by solving the convex polyhedral
optimization problem

min
p∈P

V k
0(x0, p) , (3.29)

where for a given value of p̄ ∈ P , after running k ∈ N∗ forward-backward passes
of the SDDP algorithm, we compute the value V k

0

(
(x0, p̄)

)
and a subgradient in

∂pV
k
0

(
(x0, p̄)

)
, following the methodology developed in §2.5.2.

Optimization methods. We introduce three optimization methods for com-
puting numerical solutions of (3.24).

µSDP+IPM. In our first method, that we designate as µSDP+IPM, we
embed the first order oracle p̄ 7→

(˜V µ
0 (x0, p̄),∇p˜V µ

0 (x0, p̄)
)
described above for

solving (3.28) within the interior point method [98]. The name µSDP+IPM
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refers to the computation of the objective function and of its gradient by ap-
plication of Stochastic Dynamic Programming to a regularized formulation of
the original problem (hence µSDP), combined with the interior point method
(hence IPM), implemented in a nonlinear solver. Note that the interior point
method usually requires second order information on the objective of the prob-
lem, but we use an approximation the Hessian of ˜V µ

0 (x0, ·) as in the L-BFGS
algorithm [69], provided by our solver.

kSDDP+PSM. In our second method, that we designate as kSDDP+PSM,
we embed the first order oracle p̄ 7→

(
V k

0(x0, p̄), q ∈ ∂pV k
0(x0, p̄)

)
described above

for solving (3.29) within the projected subgradient algorithm [6, §8.2]. The
name kSDDP+PSM refers to the combined use of SDDP with the projected
subgradient method (hence PSM).

µSDP+PGD. In our third method, that we designate as µSDP+PGD, we
modify the method µSDP+IPM to replace the interior point method with a
standard projected gradient descent algorithm [12] (hence PGD). This method
performs exactly the same iterative update rule as kSDDP+PSM, but with
the smooth first order oracle of µSDP+IPM. Its purpose is to distinguish the
role of the iterative method employed in the comparison of µSDP+IPM versus
kSDDP+PSM, while taking benefit of the possibility to use an efficient smooth
nonlinear solver for µSDP+IPM.

3.3.3 Numerical experiments

We perform numerical experiments with a single computer equipped with 4
Intel Core i7-7700K CPU and 15 GB of RAM. We use the nonlinear solver
Ipopt [96] for the µSDP+IPM method, and the package SDDP.jl [30] for the
kSDDP+PSM method together with the LP solver of CPLEX 12.9. Apart from
the two solvers, all our code is implemented with the Julia language [13].

Our goal is to evaluate the cost and time performances of the methods intro-
duced in §3.3.2 for solving Problem (3.24). First, we introduce the data used for
this experiment and provide implementation details. Second, we describe our
experimental protocol. Third, we comment on the results of the smooth approx-
imation methods µSDP+IPM and µSDP+PGD. Fourth, we perform the same
analysis of the results of the polyhedral approximation method kSDDP+PSM.
Finally, we confront the results of all methods.

Data and implementation details. First, we detail the implementation
of our probabilistic model introduced in §3.3.1. We use one year of historical
photovoltaic power data from the publicly accessible platform of the Australian
transmission system operator Ausgrid [3]. We scale the generated power data to
simulate the operating of a solar power plant with an installed peak power p = 1
MW. Then, we use a standard linear regression to calibrate the weights of the
linear model in (3.13b)-(3.13c), and, we perform a quantization of the support
of the error noise process {Wt}t∈J1,T K in (3.14) with the K-means algorithm.
This latter technique lets us compute discrete probability laws for each random
variable in {Wt}t∈J1,T K. We refer to [85] for the theoretical motivations of this
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quantization scheme. Due to the nature of the data, that we illustrate in Fig-
ure 3.3, we let the amount of quantization points in the support of each random
variable Wt vary between 1 and 10, depending on the value of t ∈ J1, T K. This
allows us to handle the difference of stochasticity between night time, where
P(Gt = 0) = 1, and day time, where the support of Gt contains more elements.

Second, we provide implementation details for the oracles of the three meth-
ods introduced in §3.3.2. We use the same oracle for both µSDP+IPM and
µSDP+PGD. For our implementation of the backward recursions in (3.27) (for
value functions) and in (2.39) (for gradients), we parallelize computations across
a discrete grid of states. We also use a discrete grid for controls, and a reg-
ularization parameter µ = 0.1 for the Moreau envelopes in (3.26). As for the
oracle of the kSDDP+PSM method, we use the built-in parallelization scheme
of SDDP.jl to run forward-backward passes in asynchronous mode.

Lastly, concerning other parameters, we take s = 1 MWh, vb = −vb = 1
MW, and ρc = ρd = 0.95 for the battery parameters (s, vb, vb, ρc, ρd) in (3.4);
c = 0.4 e and c = 0.6 e for the energy price in (3.10a); and λ = 2 for the
penalty cost in (3.20).

Figure 3.3: Example of 5 daily scenarios of generated power
gt in (3.7), data from Ausgrid

Experimental protocol. We consider several instances of the three methods
introduced in §3.3.2. For µSDP+IPM and µSDP+PGD, an instance is char-
acterized by the size of its discrete grids for state and control variables. For
kSDDP+PSM, an instance is characterized by the number of forward-backward
passed k ∈ N∗ run by the SDDP algorithm. For this experiment, we have a
total pool of 33 instances. Considering a single instance, we now describe our
experimental protocol, which we repeat for all instances.

First, we compute a commitment profile p∗ ∈ P as a solution of the day-
ahead optimization Problem (3.24), using one of the three methods of §3.3.2.
For all methods, we initialize the iterative update rules of either IPM, PSM
or PGD with p0 = 0 ∈ RT . Then, at each iteration of the method, we use a
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dynamic step size of ηi = 103

i
for PSM and PGD, and we rely on Ipopt’s line

search for IPM. As for our stopping rule, we stop the computation if we exceed
100 iterations, or if the progress of the objective value is not larger than ±0.5%
for 5 consecutive iterations.

Second, given the solution commitment profile p∗ ∈ P , we evaluate the
performance of the instance by computing an estimation of the intraday value
Φ(p∗) in (3.22b)-(3.22f) using the SDDP algorithm. At this evaluation stage, we
do not assume that the commitment profile p in (3.3b) is a state, as in §2.5.2,
so that we compute the value functions

V T (x) = K(x) , ∀x ∈ R2 , (3.30a)

V t(x) = inf
u∈Ut(x)

E
[
Lt(x, u,Wt+1, p

∗
t ) + V m

t+1

(
ft(x, u,Wt+1)

)]
, (3.30b)

∀x ∈ R2 , ∀t ∈ J0, T − 1K ,

where the state variable is reduced to xt in (3.16a). We run the SDDP algorithm
for 2000 forward-backward passes. Then, we use the resulting policy

πt(x) ∈ arg min
u∈Ut(x)

E
[
Lt(x, u,Wt+1, p

∗
t ) + V t+1

(
ft(x, u,Wt+1)

)]
, (3.31)

∀x ∈ R2 , ∀t ∈ J0, T − 1K ,

to simulate the management of the solar plant, that is, we estimate the expected
simulation cost

V 0(x0) = E
[T−1∑
t=0

Lt
(
Xt, πt(Xt),Wt+1, p

∗
t

)
+K(XT )

]
, (3.32)

as in (3.22), where the above expectation is computed by Monte-Carlo simu-
lation, generating 25.000 scenarios with the discrete probability laws fitted for
{Wt}t∈J1,T K in (3.14). Since SDDP provides a polyhedral under estimate of the
true value function, {πt}t∈J0,T−1K in (3.31) is a suboptimal policy, so that we
have the inequality

V 0(x0) ≤ Φ(p∗) ≤ V 0(x0) . (3.33)

Third, we gather numerical performance metrics. In Figure 3.4, we report
cost performance (Y -axis, the lower the better) with respect to time perfor-
mance (X-axis in log scale, the lower the better), expressed in term of average
computing time used per oracle call during the computation of p∗. Then, in
Figure 3.5, we report again cost performance (Y -axis, the lower the better)
with respect to time performance (X-axis in log scale, the lower the better),
but this time expressed in term of overall computing time used for the compu-
tation of p∗. For both figures, each marker represents one of the 33 instances.
The height of a marker spans over the interval [V 0(x0), V 0(x0)] on the Y -axis,
thus representing an estimation of the intraday value Φ(p∗), from (3.33), and
the color of a marker refers to the computing method (blue for µSDP+IPM,
orange for µSDP+PGD, green for kSDDP+PSM). Note that for each instance,
the gap between the lower bound V 0(x0) in (3.30) and the expected simulation

84



3.3. Stochastic optimization of the day-ahead commitment profile

cost V 0(x0) in (3.32) is lower than 1.7%. In the following discussion, we focus
on Figure 3.4 and Figure 3.5. Additional details on numerical performances are
given in Appendix 3.A.1.

Figure 3.4: Estimate of Φ(p∗) ∈ [V 0(x0), V 0(x0)] in (3.33) (marker span on
the Y -axis) for instances of µSDP+IPM (in blue), µSDP+PGD (in orange) and
kSDDP+PSM (in green); and average computing time per oracle call for the com-
putation of p∗ (X-axis in log scale). For both axis, the lower the values the better

Results of the smooth approximation methods. We comment on the
results of instances of µSDP+IPM and µSDP+PGD. The performance of these
instances is related to the size of the discrete grid introduced for the state and
control variables (x, u) in (3.16a) and (3.15a). In this experiment, we use 12 grid
sizes ranging from (5×5, 11) points to (101×101, 201) points for both methods,
hence a total of 24 instances.

First, we comment on the results of Figure 3.4 for µSDP+IPM instances
(blue markers) and µSDP+PGD instances (orange markers). We expect that
the finer the discretization, the more accurate the computation of the value
function ˜V µ

0 and of the gradient ∇p˜V µ
0 , but also the longer the computing time

per oracle call. Indeed, we observe that the two instances that perform the worst
in cost values (highest estimated values of Φ(p∗) on the Y -axis) correspond to
instances for which the discretization is performed with the fewest grid points
(lowest average computing times per oracle call, reported on the Y -axis). We
obtain better cost performances when using a finer grid. For example, with
µSDP+IPM, when improving the grid size from (5×5, 11) points to (11×21,
41) points, we increase the time per oracle call from 0.17 seconds to 1.7 seconds,
but we observe a decrease in the value of the expected simulation cost V 0(x0)
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Figure 3.5: Estimate of Φ(p∗) ∈ [V 0(x0), V 0(x0)] in (3.33) (marker span on
the Y -axis) for instances of µSDP+IPM (in blue), µSDP+PGD (in orange) and
kSDDP+PSM (in green); and overall computing time for the computation of p∗ (X-

axis in log scale). For both axis, the lower the values the better

in (3.32) from -619 e to -658 e (upper value of the span of the markers on
the Y -axis). However, pushing the discretization further continues to degrade
computing times, while not returning better cost performances.

Second, we comment on the results of Figure 3.5 for µSDP+IPM instances
(blue markers) and µSDP+PGD instances (orange markers). The key difference
between µSDP+IPM and µSDP+PGD lies in the iterative update rule employed
for the optimization process. At each iteration, µSDP+IPM tends to consume
more computing time as it performs an approximation of the Hessian of ˜V µ

0 and a
line search to calibrate the step size for its update rule. Although each iteration
takes longer, we observe that µSDP+IPM converges with less iterations than
µSDP+PGD for all instances (as reported in Appendix 3.A.1). Besides, using
the same discrete grid size, µSDP+IPM converges faster in term of overall (wall
clock) computing time than µSDP+PGD for 7 out of 12 cases. In particular,
we see that the three instances that converge the fastest (lowest overall com-
puting time, reported on the X-axis) are µSDP+IPM instances. However, the
instance that converges the slowest is also an instance of µSDP+IPM (highest
overall computing time, reported on the X-axis). This instance corresponds to
the finest discretization of the state-control grid in (101×101, 201) points, and
thus consumes a lot of time for line search, while not returning better cost per-
formances. Lastly, we report that using the same discrete grid size, µSDP+IPM
instances yield better cost performances than µSDP+PGD instances for 9 out
of 12 cases, with expected simulation cost V 0(x0) in (3.32) up to 5.6% lower.
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Results of the polyhedral approximation method. We comment on the
results of instances of kSDDP+PSM. The performance of these instances is
related to the number k ∈ N∗ of forward-backward passes performed by the
SDDP algorithm at each iteration of the method. We report results for a total
of 9 instances, with k ∈ {10, 20, 40, 80, 150, 250, 500, 750, 1000}.

First, we comment on the results of Figure 3.4 for kSDDP+PSM instances
(green markers). We expect that the more forward-backward passes of the
SDDP algorithm we run, the more accurate the approximation of the value
function V0 by V k

0 and thus of the subdifferential ∂pV0 by ∂pV k
0, but also the

longer the computing time per oracle call. Indeed, we observe that the per-
formance in cost values gets better (the estimated value of Φ(p∗) decreases on
the Y -axis) with higher values of k (the average computing time per oracle call
increases on the Y -axis). The gains in performance cost are significant, as we
observe a decrease in the value of the expected simulation cost V 0(x0) in (3.32)
from -438 e to -653 e (upper value of the span of the markers on the Y -axis)
when improving from k = 10 to k = 150, at the cost of an average comput-
ing time per oracle call jumping from 1.5 seconds to 21.7 seconds. However,
pushing the value of k further continues to degrade computing times, while not
returning better cost performances.

Second, we comment on the results of Figure 3.5 for kSDDP+PSM instances
(green markers). For low values of k ∈ {10, 20}, the SDDP algorithm only sam-
ples a few scenarios and fails to obtain accurate representations of the value
function V0. As a consequence, we observe that the optimization process stag-
nates and stops after a few iterations (as reported in Appendix 3.A.1), with a
solution p∗ returning low cost performances (highest estimated values of Φ(p∗)
on the Y -axis). Then, for values of k ∈ {40, 80, 150}, we observe that the
method achieves much better cost performances. However, the oracle remains
quite noisy as the SDDP algorithm stops far before convergence at each oracle
call. Consequently, the iterative optimization process does not converge before
our limit of 100 iterations. Lastly, for higher values of k, we observe a sta-
bilization of the oracle values in the optimization process, as SDDP performs
more forward-backward iterations. It follows that the corresponding instances
of k ∈ {250, 500, 750, 1000} reach convergence in respectively {34, 15, 16, 12}
iterations.

Cross-method comparison. We compare the results obtained with smooth
and polyhedral methods. Since we have already discussed the differences be-
tween µSDP+IPM and µSDP+PGD instances above, we concentrate on the
comparison of µSDP+PGD versus kSDDP+PSM. This appears to us as a fairer
comparison, given that these two methods only differ by the nature of their or-
acle (they use the same iterative update rule).

We observe in Figures 3.4 and 3.5 that µSDP+PGD (orange markers) almost
attains its best cost performance with a value of the expected simulation cost
V 0(x0) in (3.32) of -648 e (upper value of the span of the markers on the Y -
axis) with only 0.25 seconds spent per oracle call (Figure 3.4, X-axis) and only
17 seconds of overall computing time (Figure 3.5, X-axis). Comparatively, for
kSDDP+PSM instances (green markers), we need to perform at least k = 80
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forward-backward passes of the SDDP algorithm to attain V 0(x0)= -646 e
(upper value of the span of the markers on the Y -axis). For this value of k,
we spend on average 10.2 seconds per oracle call (Figure 3.4, X-axis), and the
overall computing time is of 1061 seconds (Figure 3.5, X-axis). We conclude
that, in general, µSDP+PGD instances, and hence also µSDP+IPM instances,
perform better that kSDDP+PSM ones in our experiments, both in term of
time performance and in term of cost performance.

3.4 Co-optimization of day-ahead commitment
profiles and intraday microgrid controls

We now turn to a more applied problem than the one considered in §3.3, moti-
vated by industrial applications. Our goal is to design and evaluate controllers
for the management of a solar plant, as introduced in §3.2, in the French NIZ
context.

First, in §3.4.1, we detail the regulatory rules of [25] for solar plants in the
French NIZ context. Second, in §3.4.2, we introduce a mathematical framework
for assessing a solar plant controller, inspired by the framework of the EMSx
benchmark of Chapter 1. Third, in §3.4.3, we introduce controller models,
inspired by the results of Chapter 1 and Chapter 2. Finally, in §3.4.4, we
perform numerical experiments and comment on the results that we obtain.

3.4.1 Regulatory rules for non-interconnected zones

We consider a solar plant deployed in a non-interconnected zone in France (e.g.
Corsica, Guadeloupe, Reunion Island...). We detail the specific regulatory rules
set in [25] for a solar plant equipped with an energy storage system, which
is enrolled in the optional engagement of power delivery during evening peak
hours.

Time scale. We consider the management of a solar plant over several con-
secutive days. To reflect the periodicity of this specific timeline, we introduce
two different time scales. First, we call the intraday time scale the original
time scale introduced in §3.2, that we use for the intraday management of the
solar plant over a single operating day, with time intervals of length ∆t = 15
minutes and a horizon T = 96. Second, we embed the intraday time scale into a
daily time scale, for which we introduce a sequence D of consecutive operating
days. We denote by d (respectively d) the first (respectively last) day of the
sequence D, and for d ∈ D, we denote by d+ the day that follows day d in the
chronological order. Consequently, for all variables introduced in §3.2, we add
a daily subscript to stress that their value depends on the day considered. For
instance, we now denote the committed power in (3.3a) by

pd,t ∈ R , ∀t ∈ J0, T − 1K , ∀d ∈ D , (3.34a)
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and the commitment profile in (3.3b) by

pd = {pd,t}t∈J0,T−1K ∈ RT , ∀d ∈ D . (3.34b)

Chronology of the commitment profile. For every operating day d ∈
D, an initial commitment profile pd as in (3.34b) must be supplied day-ahead
at 16:00, then, during the day, the values of the commitment profile prior to
19:00 can be adjusted at three decision times. In this work, we simplify this
decision framework by considering that the decision profile pd is decided day-
ahead once and for all at 00:00 for the upcoming operating day d, in line with
the experimental set up of [68].

Admissible profiles. For every operating day d ∈ D, the commitment profile
pd as in (3.34b) must respect a set of constraints imposed by the regulator,
related to the off-peak and on-peak intraday time steps T off and T on in (3.2).
First, we have constraints on each committed power value pd,t in (3.34a),

pd,t ∈ [−0.05× p, p] , ∀t ∈ T off , ∀d ∈ D , (3.35a)

pd,t ∈ [0.2× p, p] , ∀t ∈ T on , ∀d ∈ D . (3.35b)

Second, we have constraints on the consecutive values of the profile,

|pd,t − pd,t+1| ≤ 0.075× p , ∀t ∈ T off , ∀d ∈ D , (3.36a)

|pd,t − pd,t+1| ≤ 0.15× p , ∀t ∈ T on , ∀d ∈ D . (3.36b)

All together, the constraints (3.35a)-(3.36b) define the set of admissible profiles

P ⊆ RT . (3.37)

Penalty cost. Management costs are computed based on the energy price ct
in (3.10a), on the energy cost Je

t in (3.11b), and on the penalty cost Jp
t in (3.11c).

At step t ∈ J0, T − 1K, the formulation of the penalty cost Jp
t in (3.11c) involves

the tolerance bounds

b(q) = q + 0.05p , ∀q ∈ R , (3.38a)
b(q) = q − 0.05p , ∀q ∈ R , (3.38b)

so that, for a value of delivered power p̃d,t+1 ∈ R in (3.9) at day d ∈ D, and a
value of committed power pd,t ∈ R in (3.34a), the penalty cost Jp

t (p̃d,t+1, pd,t)
takes values

ct∆t

[(
p̃d,t+1−b(pd,t)

)2

p
− 0.2

(
p̃d,t+1 − b(pd,t)

)]
, if p̃d,t+1 < b(pd,t) ,

−Je
t (p̃d,t+1) , if p̃d,t+1 > b(pd,t) ,

0 , else.

(3.38c)
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3.4.2 Assessing a solar plant controller

We introduce an assessment method that mirrors the framework of the EMSx
benchmark as detailed in §1.3.2. For this purpose, we provide new definitions
for daily simulation chronicles, for controllers, and for the management cost of
the system.

Daily simulation chronicles. At a given day d ∈ D and time step t ∈ J0, T K,
we may use all the past observations and past forecasts to make a curtailment
decision vcd,t in (3.8), decided at the end of the time interval [t−1, t[, and a bat-
tery decision vbd,t in (3.5), decided at the beginning of the time interval [t, t+1[.
For practical computational reasons, we have chosen to restrict this information
to the partial observations

(gd,t, gd,t−1, . . . , gd,t−95) ∈ R96 , ∀t ∈ J0, T K , ∀d ∈ D , (3.39a)

of the generated power (3.7) over the last 24 hours, and to the partial forecasts

(ĝt+1
d,t , . . . , ĝ

t+96
d,t ) ∈ R96 , ∀t ∈ J0, T K , ∀d ∈ D , (3.39b)

which represent a prediction of the generated power (3.7) for the next 24 hours.
Combining them together with the initial partial forecasts

(ĝ1
d,0, . . . , ĝ

96
d,0) ∈ R96 , ∀d ∈ D , (3.39c)

available at t = 0 for d ∈ D, we obtain the partial observations-forecasts

hd,t =

( gd,t, . . . , gd,t−95

ĝt+1
d,t , . . . , ĝ

t+96
d,t

ĝ1
d,0, . . . , ĝ

96
d,0

)
∈ H , ∀t ∈ J0, T K , ∀d ∈ D , (3.39d)

where H = R96 × R96 × R96 . (3.39e)

Note that again, for practical computational reasons, we do not consider all
past partial forecasts in the composition of hd,t in (3.39d). We only keep the
partial forecast (3.39b) at step t, which stands for the latest hence most reli-
able prediction available at this time, and the initial partial forecast (3.39c),
which lets us measure our prediction error made when submitting day-ahead a
commitment profile based on this forecast. Then, stacking partial observations-
forecasts (3.39d) all over the whole intraday time span, we obtain the daily
simulation chronicle

hd = (hd,0, . . . , hd,T ) ∈ HT+1 , ∀d ∈ D . (3.39f)

Controller. A controller is a tuple (π, φ, ψ), where the day-ahead controller

π = {πd}d∈D , (3.40a)
πd : [0, 1]×H→ RT , ∀d ∈ D , (3.40b)
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is a sequence of commitment policies mapping an initial state of charge sd,0
in (3.4a) and an initial partial observation-forecast hd,0 as in (3.39d), available
at the initial intraday step t = 0, to a commitment profile pd in (3.34b); the
battery intraday controller

φ = {φd,t}t∈J0,T−1K,d∈D , (3.41a)
φd,t : [0, 1]×H→ R , ∀t ∈ J0, T − 1K , ∀d ∈ D , (3.41b)

is a sequence of battery policies mapping a state of charge sd,t in (3.4) and a
partial observation-forecast hd,t in (3.39d) to a battery decision vbd,t in (3.5); and
the curtailment intraday controller

ψ = {ψd,t}t∈J1,T K,d∈D , (3.42a)
ψd,t : [vb, vb]×H→ R , ∀t ∈ J1, T K , ∀d ∈ D , (3.42b)

is a sequence of curtailment policies mapping a battery decision vbd,t−1 in (3.5)
and a partial observation-forecast hd,t in (3.39d) to a curtailment decision vcd,t
in (3.8).

Management cost of a controller. The application of a controller (π, φ, ψ)
as defined in (3.40a)-(3.42b) along the daily simulation chronicles in (3.39f)
yields the management cost

J
(

(π, φ, ψ), {hd}d∈D
)

=
∑
d∈D

T−1∑
t=0

Jt(gd,t+1−vbd,t−vcd,t+1, pd,t)+R(sd,T ) , (3.43a)

where the stage cost Jt is defined in (3.11a), the final cost R is defined in (3.12),
the generated power gd,t+1 defined in (3.7) is a component of hd,t+1 in (3.39d),
and all other variables in the expression of the management cost (3.43a) are
ruled by the controller (π, φ, ψ) and given by

pd = πd(hd,0) , ∀d ∈ D , (3.43b)
vbd,t = φd,t(sd,t, hd,t) ∈ V(sd,t) , ∀t ∈ J0, T − 1K , ∀d ∈ D , (3.43c)

vcd,t = ψd,t(v
b
d,t−1, hd,t) ∈ [0, gd,t] , ∀t ∈ J1, T K , ∀d ∈ D , (3.43d)

sd,0 = 0 , (3.43e)

sd+,0 = sd,T , ∀d ∈ D \
{
d
}
, (3.43f)

sd,t+1 = f(sd,t, v
b
d,t) ∈ [0, 1] , ∀t ∈ J0, T − 1K , ∀d ∈ D . (3.43g)

The performance of a controller (π, φ, ψ) is measured by its ability to min-
imize the management cost (3.43a), or equivalently, to maximize the manage-
ment gain

G
(

(π, φ, ψ), {hd}d∈D
)

= −J
(

(π, φ, ψ), {hd}d∈D
)
. (3.44)
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3.4.3 Controller models

We introduce solar plant controller models, inspired by our results of Chapter 1
and Chapter 2, and by the controllers considered in [68].

First, we comment on the management cost in (3.43) to simplify the search
for optimal intraday controllers (φ, ψ) as in (3.41a)-(3.42b). Second, we in-
troduce a mathematical framework for stochastic optimization. Finally, we
introduce two families of controllers (π, φ, ψ) as in (3.40a)-(3.42b) with, on the
one hand, controllers based on stochastic optimization, and on the other hand,
controllers based on deterministic optimization.

Simplified intraday controllers. We analyse the cost structure of the man-
agement cost in (3.43) to simplify the search for optimal intraday controllers
(φ, ψ) as in (3.41b)-(3.42b). Given a day d ∈ D and a time step t ∈ J0, T − 1K,
we introduce the constraint

−vbd,t ≤ b(pd,t) , (3.45)

on the battery controls vbd,t in (3.5) and the closed form expression

ψ∗d,t+1(vbd,t, hd,t+1) =
(
gd,t+1 − vbd,t − b(pd,t)

)+
, (3.46)

for the optimal curtailment policies ψd,t in (3.42b), that we briefly justify with
physical arguments2. Let us consider the time interval [t, t+1[, we recall that
the delivered power is given by p̃d,t+1 = gd,t+1−vbd,t−vcd,t+1 in (3.9), and that the
curtailment control vcd,t+1 ∈ [0, gd,t+1] in (3.8) is a recourse decision made after
observing the generated power gd,t+1 in (3.7) to avoid overproduction, which is
strongly penalized when p̃d,t+1 > b(pd,t) in the expression of the penalty cost Jp

t

in (3.43a).
First, we justify the constraint (3.45). If −vbd,t > b(pd,t), then from the

expression of p̃d,t+1 in (3.9) and from gd,t+1 − vcd,t+1 ≥ 0 in (3.8), we have that
p̃d,t+1 > b(pd,t) so that we hit overproduction regardless the values of gd,t+1 and
vcd,t+1, leading to suboptimal management policies, as already observed in [68].

Second, we justify the closed form expression in (3.46). We observe that
the curtailment control vcd,t+1 only impacts the management cost in (3.43a)
at the stage cost of the time interval [t, t+1[, as neither the dynamics of the
state of charge sd,t in (3.43e)-(3.43g), nor the commitment and battery policies
in (3.43b)-(3.43c) take vcd,t+1 as an argument. In other words, we can safely
choose vcd,t+1 for [t, t+1[ without consequences on future costs. Then, we distin-
guish two cases, (i) if gd,t+1−vbd,t ≤ b(pd,t), overproduction is avoided regardless
the value of vcd,t+1 and we set vcd,t+1 = 0 to minimize the energy cost Je

t in (3.11b);
(ii) if gd,t+1 − vbd,t > b(pd,t), we need to apply curtailment to avoid overproduc-
tion, while keeping the energy cost Je

t in (3.11b) as low as possible, so that
we set vcd,t+1 = gd,t+1 − vbd,t − b(pd,t) which is an admissible curtailment control
vcd,t+1 ∈ [0, gd,t+1] as in (3.8), from constraint (3.45). We obtain the closed form
expression in (3.46) by gathering the conclusions of these two cases.

2A mathematical formal proof would rely on monotonicity arguments
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Stochastic optimization framework. We introduce noise, control and state
random processes, and reformulate the dynamics and the stage cost of the solar
power plant model of §3.2 to fit the multistage stochastic optimization frame-
work as formalized in [10, 17].

First, we introduce model variables and random processes. We model the
generated power gd,t in (3.7) as a Markovian process3

G : ω ∈ Ω 7→ (Gd,0, . . . ,Gd,T , . . . ,Gd,0, . . . ,Gd,T ) ∈ [0, p](T+1)×|D| , (3.47)

following a linear dynamics given, for every day d ∈ D, by

Gd,0 = 0 , (3.48a)
Gd,t+1 = ĝt+1

d,0 + αt(Gd,t − ĝtd,0) + βt + Wd,t+1 , ∀t ∈ J0, T − 1K , (3.48b)

where
(αt, βt) ∈ R2 , ∀t ∈ J0, T − 1K , (3.49)

are the coefficients of the dynamics (3.48), that we choose to be identical in this
model for every day d ∈ D,

ĝ0
d,0 = 0 , (3.50a)

and {ĝtd,0}t∈J1,T K ∈ RT , (3.50b)

is the initial partial forecast in (3.39c)4, a component of the partial observation-
forecast hd,t in (3.39d), and last,

W : ω ∈ Ω 7→ (Wd,1, . . . ,Wd,T , . . . ,Wd,1, . . . ,Wd,T ) ∈ RT×|D| , (3.51)

is the error noise process for the dynamics (3.48). We assume that the sequence
of random variable in (3.51) fulfills the discrete white noise Assumption 2.2.2.
Given the closed form expression ψ∗d,t in (3.46) for the curtailment control vcd,t
in (3.8), the control variable is reduced to the battery control

ud,t = vbd,t , ∀t ∈ J0, T − 1K , ∀d ∈ D , (3.52a)

defined in (3.5), so that we have the control process

U : ω ∈ Ω 7→ (Ud,0, . . . ,Ud,T−1, . . . ,Ud,0, . . . ,Ud,T−1) ∈ RT×|D| . (3.52b)

We also introduce the state variable

xt =

(
xsd,t
xgd,t

)
=

(
sd,t

gd,t − ĝtd,0

)
∈ R2 , ∀t ∈ J0, T K , ∀d ∈ D , (3.53)

3We extend the generated power gd,t in (3.7) with gd,0 = 0, reflecting the absence of sun
at midnight.

4For the same reason, we set ĝ0d,0 = 0.
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which incorporates the state of charge st in (3.4a) and the forecast error gd,t −
ĝtd,0, and is ruled by the new dynamics

xd,0 =

(
0
0

)
, xd+,0 = xd,T , ∀d ∈ D \

{
d
}
, (3.54a)

xd,t+1 = ft(xd,t, ud,t, wd,t+1) , ∀t ∈ J0, T − 1K , ∀d ∈ D , (3.54b)

where, for t ∈ J0, T − 1K,

ft(x, u, w) =

(
f(xs, u)
αtx

g + βt + w

)
, ∀(x, u, w) ∈ R2 × R× R , (3.54c)

with x = (xs, xg) in (3.53) and with the definition of the dynamics f in (3.4).
Due to uncertainties in the evolution of the state variable in (3.54c), we also
introduce the state process

X : ω ∈ Ω 7→ (Xd,0, . . . ,Xd,T , . . . ,Xd,0, . . . ,Xd,T ) ∈ (R2)(T+1)×|D| . (3.55)

Second, we introduce constraints. The state variables xd,t in (3.53) and the
committed profile pd in (3.3b) induce constraints on the control variables ud,t
in (3.52a) via the admissibility set V in (3.6) and the battery constraint (3.45),
merged in the parametric admissibility sets

Ut(x, pd,t) = V(xs) ∩
{
u ∈ R

∣∣ − u ≤ b(pd,t)
}
, (3.56)

∀x = (xs, xg) ∈ R2 , ∀pd,t ∈ R , ∀t ∈ J0, T − 1K .

Besides, given the stagewise independence assumption on the noise process W
in (3.51) and the expression of the state variable xt in (3.53), the nonanticipa-
tivity constraint

σ(Ud,t) ⊆ σ(Wd,0, . . . ,Wd,T , . . . ,Wd,0, . . . ,Wd,t) , ∀t ∈ J0, T − 1K , (3.57a)

simplifies without loss of optimality [17, §4.4] as

σ(Ud,t) ⊆ σ(Xd,t) , ∀t ∈ J0, T − 1K , ∀d ∈ D . (3.57b)

Finally, we introduce cost functions. We reformulate the stage cost Jt
in (3.11a) by defining, for d ∈ D, t ∈ J0, T−1K and (x, u, w, pd,t) ∈ R2×R×R×R,

Ld,t(x, u, w, pd,t) = Je
t (p̃d,t) + Jp

t (p̃d,t, pd,t) , (3.58a)

where p̃d,t = gd,t+1 − u−
(
gd,t+1 − u− b(pd,t)

)+
, (from ψ∗d,t in (3.46))

and gd,t+1 = ĝt+1
d,0 + αtx

g + βt + w , (from (3.48))
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with x = (xs, xg) in (3.53), Je
t in (3.11b), Jp

t in (3.38c), and we write the final
cost as

K(x) = R(xs) , ∀x ∈ R2 , (3.58b)

where the function R is defined in (3.12).

Stochastic optimization based day-ahead controller. We introduce a
day-ahead controller π as in (3.40a) based on stochastic optimization. For
every day d ∈ D, we formulate a parametric multistage stochastic optimization
problem as in (2.1), by defining the intraday value

Φd :
RT → R ,
pd 7→ Φd(pd) ,

(3.59a)

as, for pd ∈ RT ,

Φd(pd) = min
Ud,0,...,Ud,T−1

E
[T−1∑
t=0

Ld,t(Xd,t,Ud,t,Wd,t+1, pd,t) +K(Xd,T )
]
, (3.59b)

Xd,0 = (sd,0, 0) , (3.59c)
Xd,t+1 = ft(Xd,t,Ud,t,Wd,t+1) , ∀t ∈ J0, T − 1K , (3.59d)
Ud,t ∈ Ut(Xd,t, pd,t) , ∀t ∈ J0, T − 1K , (3.59e)
σ(Ud,t) ⊆ σ(Xd,t) , ∀t ∈ J0, T − 1K . (3.59f)

We want to define a commitment policy πd as in (3.40b) that returns a minimizer
of the intraday value Φd in (3.59). The stage cost functions {Ld,t}t∈J0,T−1K

in (3.58a) are nonconvex and nondifferentiable with respect to the committed
power pd,t in (3.3a), due to the expression of the penalty cost Jp

t in (3.38c).
Therefore, computing a minimizer of the function Φd in (3.59) looks difficult
at first sight. Adapting the methodology of §2.5.1, we reformulate the battery
constraint (3.45) using the indicator function

δ−u≤b(pd,t)(u, pd,t) =

{
0 if − u ≤ b(pd,t) ,

+∞ else ,
(3.60)

so that we introduce the new admissibility set

U(x) = V(xs) , ∀x = (xs, sg) ∈ R2 , (3.61)

and the new stage costs

L[d,t(x, u, w, pd,t) = Ld,t(x, u, w, pd,t) + δ−u≤b(pd,t)(u, pd,t) , (3.62)

∀(x, u, w, pd,t) ∈ Rnx × Rnu × Rnw × Rnp , ∀t ∈ J0, T − 1K .

The functions {L[d,t}t∈J0,T−1K in (3.62) are convex but nondifferentiable with
respect to the committed power pd,t in (3.3a), as illustrated in Figure 3.6, so that
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we introduce the partial Moreau envelope of L[d,t with respect to the committed
power pd,t in (3.3a) given, for a regularization parameter µ ∈ R∗+, by

Lµd,t(x, u, w, pd,t) = inf
p′d,t∈R

(
L[d,t(x, u, w, p

′
d,t) +

1

2µ
(p′d,t − pd,t)2

)
, (3.63)

∀t ∈ J0, T − 1K , ∀(x, u, w, pd,t) ∈ R2 × R× R× R ,

whose analytical expression is detailed in Appendix 3.A.2. The regularized stage
costs {Lµd,t}t∈J0,T−1K in (3.63) are convex and differentiable with respect to the
committed power pd,t in (3.3a), as illustrated in Figure 3.6. Then, we define
lower smooth parametric value functions, as in (2.49), given by

˜V µ
d,T (x, pd) = K(x) , ∀(x, pd) ∈ R2 × RT , (3.64a)

˜V µ
d,t(x, pd) = inf

u∈U(x)
E
[
Lµd,t(x, u,Wd,t+1, pd,t) + ˜V µ

t+1

(
ft(x, u,Wd,t+1), pd

)]
,

∀(x, pd) ∈ R2 × RT , ∀t ∈ J0, T − 1K , (3.64b)

where the value function ˜V µ
d,0(x0, ·) provides a convex differentiable lower smooth

approximation of the function Φd in (3.59b), from Propositions 2.5.6 and 2.5.7,
and the gradient ∇pd˜V µ

d,0(x0, ·) can be computed by the backward induction
(2.39), from Theorem 2.4.5. Finally, we define the stochastic optimization based
day-ahead controller πµ,Sto as in (3.40a), where each commitment policy πµ,Stod

in (3.40b) is given by

πµ,Stod (sd,0, hd,0) ∈ arg min
pd∈P ˜V µ

d,0(x0, pd) , ∀d ∈ D . (3.65)

Figure 3.6: Stage cost L[d,t(x, u, w, ·) in (3.62) and partial
Moreau envelopes Lµd,t(x, u, w, ·) in (3.63) for µ = 100, µ = 1000,
for fixed values of ĝt+1

d,0 = 300kW, x = (0.5, 0), u = −200kW,
w = 0, and a stage t ∈ T on
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Stochastic optimization based intraday controller. We introduce an in-
traday controller (φ, ψ) as in (3.41a) and (3.42a) based on the Stochastic Dy-
namic Programming (SDP) method (see [10, 78]), following the same method-
ology as in §1.5.2. For every day d ∈ D, given a value of committed profile
pd in (3.3b) returned by a day-ahead controller π in (3.40a), we compute value
functions

Vd,T (x) = K(x) , ∀x ∈ R2 , (3.66a)

Vd,t(x) = inf
u∈Ut(x,pd,t)

E
[
Ld,t(x, u,Wd,t+1, pd,t) + Vt+1

(
ft(x, u,Wd,t+1)

)]
,

∀x ∈ R2 , ∀t ∈ J0, T − 1K , (3.66b)

which, as opposed to the value functions in (3.64), only take the state variable
x in (3.53) as argument, since the committed profile pd in (3.3b) has been
fixed day-ahead. Then, we define the stochastic optimization based intraday
controller (φSto, ψ∗) as in (3.41a) and (3.42a), where each battery policy φStod,t

in (3.41b) is given by

φStod,t (sd,t, hd,t) ∈ arg min
u∈Ut(x,pd,t)

E
[
Ld,t(x, u,Wd,t+1, pd,t) + Vd,t+1

(
ft(x, u,Wd,t+1)

)]
,

∀t ∈ J0, T − 1K , ∀d ∈ D , (3.67)

and the curtailment policies ψ∗d,t in (3.42b) are given in (3.46).

Deterministic optimization based day-ahead controller. We introduce
a day-ahead controller πDet as in (3.40a) based on a deterministic optimization
problem. For every day d ∈ D, based on the initial partial forecast {ĝtd,0}t∈J1,T K

in (3.39c), we define the commitment policy πDet
d as in (3.40b) by

πDet
d (sd,0, hd,0) ∈ arg min

pd∈P
min
vbd ,v

c
d

sd

T−1∑
t=0

Jt(ĝ
t+1
d,0 − v

b
d,t − vcd,t+1, pd,t) +R(sd,T ) ,

(3.68a)
vbd,t ∈ V(sd,t) , ∀t ∈ J0, T − 1K , (3.68b)

−vbd,t ≤ b(pd,t) , ∀t ∈ J0, T − 1K , (3.68c)

vcd,t =
(
ĝt+1
d,0 − v

b
d,t − b(pd,t)

)+
, ∀t ∈ J1, T K , (3.68d)

sd,t+1 = f(sd,t, v
b
d,t) ∈ [0, 1] , ∀t ∈ J0, T − 1K . (3.68e)

The constraint (3.68d) is an adaptation of the curtailment policy ψ∗d,t in (3.46)
where, at time t = 0, we replace the future generated power values {gd,t}t∈J1,T K

by the initial partial forecast {ĝtd,0}t∈J1,T K. We refer to [68] for a detailed imple-
mentation of such controllers as Mixed Integer Quadratic Programming (MIQP)
problems.

Deterministic optimization based intraday controller. We introduce
a deterministic intraday controller (φ, ψ) as in (3.41a) and (3.42a) based on
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the Model Predictive Control (MPC) method (see [10]), following the same
methodology as in §1.5.1. For every day d ∈ D and time step t ∈ J0, T −
1K, given a value of committed profile pd in (3.3b) returned by a day-ahead
controller π in (3.40a) and the partial forecast {ĝt+id,t }i∈J1,T K in (3.39b), we define
the deterministic optimization based intraday controller (φDet, ψ∗) as in (3.41a)
and (3.42a), where each battery policy φDet

d,t in (3.41b) is given by

φDet
d,t (sd,t, hd,t) ∈ arg min

vbd,t

min
vbd,t+1,...,v

b
d,T−1

vcd,sd

T−1∑
i=t

Ji(ĝ
i+1
d,t − v

b
d,i − vcd,i+1, pd,i) +R(sd,T ) ,

(3.69a)
vbd,i ∈ V(sd,i) , ∀i ∈ Jt, T − 1K , (3.69b)

−vbd,i ≤ b(pd,i) , ∀i ∈ Jt, T − 1K , (3.69c)

vcd,i =
(
ĝi+1
d,t − v

b
d,i − b(pd,i)

)+
, ∀i ∈ Jt+ 1, T K , (3.69d)

sd,i+1 = f(sd,i, v
b
d,i) ∈ [0, 1] , ∀i ∈ Jt, T − 1K . (3.69e)

The constraint (3.69d) is an adaptation of the curtailment policy ψ∗d,t in (3.46),
where at time t ∈ J0, T − 1K, we replace the future generated power values
{gd,i+1}i∈Jt,T−1K by the partial forecast {ĝi+1

d,0 }i∈Jt,T−1K. The curtailment poli-
cies ψ∗d,t in (3.42b) are given in (3.46). Again, we refer to [68] for a detailed
implementation of such controllers as MIQP problems.

3.4.4 Numerical experiments

We perform numerical experiments with a single computer equipped with 4
CPUs Intel Core Processor (Haswell, no TSX) and 22 GB of RAM. For solving
instances of the nonlinear convex optimization problem in (3.65), we use the
solver Ipopt [96], and for solving instances of the MIQP problems in (3.68)
and (3.69), we use the solver CPLEX 12.9. Apart from the two solvers, all our
code is implemented with the Julia language [13].

We present the results obtained for the numerical simulation of the manage-
ment of the solar plant described in §3.2 under the regulatory rules of §3.4.1,
with the controllers introduced in §3.4.3. First, we detail the implementation
of the experiments. Second, we comment on the overall management gain ob-
tained by each controller. Third, we give a closer look at the results obtained
with the day-ahead controllers πµ,Sto in (3.65) and πDet in (3.68). Finally, we
discuss further questions raised by our work and possible improvements.

Throughout our discussion, we shorten our notation for controllers, denoting
now (π, φ) = (π, φ, ψ∗), where the curtailment intraday controller ψ∗ given
in (3.46) is adopted for all experiments.

Detail of the experiments. We detail parameter values and data. For the
battery parameters (s, vb, vb, ρc, ρd) in (3.4), we take s = 1 MWh, vb = −vb = 1
MW, and ρc = ρd = 0.95. For the energy price in (3.10a), we take the maximum
price values allowed in [25], with c = 0.4 e and c = 0.6 e. Concerning data,
we use the data of the EMSx benchmark as introduced in §1.2 for the daily
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simulation chronicles in (3.39f). We recall that the data of EMSx is based on a
single photovoltaic profile, rescaled for each of the 70 sites. We scale this profile
to simulate the operating of a solar power plant with an installed peak power
p = 1 MW. We use one year of consecutive data for the simulation days d ∈ D
employed for computing the management cost in (3.43a). For the controllers
based on stochastic optimization, we use another year of consecutive data for
the calibration of the model. We compute the coefficients (αt, βt)t∈J0,T−1K of the
generated power dynamics in (3.49) with a linear regression. Then, we compute
discrete probability laws with at most 10 atoms for each random variable of
{Wd,t}t∈J1,T K in (3.51), using a quantization method based on the K-means
algorithm, as in [85].

We detail our protocol for computing the oracle
(˜V µ

d,0(x0, ·),∇pd˜V µ
d,0(x0, ·)

)
in (3.65), for each day d ∈ D. We discretize the two dimensional state space
[0, 1]× [−0.5p, 0.5p], as in (3.4a) and (3.37), in a grid of 11×111 discrete values,
and the one dimensional control space [vb, vb], as in (3.6b), in 81 values. Al-
though the results of §2.5.1 show that the smaller the regularization parameter
µ ∈ R+, the better the approximation of Φd in (3.59b) by ˜V µ

d,0(x0, ·), we report
that our numerical method is less efficient for low values of µ, as the absolute
values of the on-peak gradient coordinates t ∈ T on tend to get smaller. Empiri-
cally, we find that µ = 1000 yields satisfying results. Then, we embed the oracle(˜V µ

d,0(x0, ·),∇pd˜V µ
d,0(x0, ·)

)
in a nonlinear solver. As a stopping rule, we stop the

computation if the wall clock time exceeds 10 minutes, or if the progression of
the objective value is not larger than ±0.5% for 5 consecutive iterations.

We detail our protocol for computing the value functions {Vd,t}t∈J0,T−1K

in (3.66), for each day d ∈ D. We discretize the two dimensional state space
[0, 1]× [−0.5p, 0.5p] as in (3.4a) and (3.37), in a grid of 21×111 discrete values,
and the one dimensional control space [vb, vb], as in (3.6b), in 201 values.

Gain performance. We display the gain G
(
(π, φ, ψ∗), {hd}d∈D

)
in (3.44)

obtained for each pair of controllers (π, φ) among the controllers of §3.4.3
in Table 3.1. We also report the relative gain G

(
(πµ,Sto, φ, ψ∗), {hd}d∈D

)
−

G
(
(πDet, φ, ψ∗), {hd}d∈D

)
displayed day by day in Figure 3.7, for fixed intraday

controllers φ = φDet in (3.69) (Figure 3.7a) and φ = φSto in (3.67) (Figure 3.7b).
These two figures let us analyze further the role of the day-ahead controller, and
detail the columnwise performance gaps in Table 3.1.

First, we comment on the gains obtained with the intraday controller φDet

in (3.69) based on deterministic optimization (second column). When using as
a day-ahead controller πDet in (3.68), also based on deterministic optimization,
the pair (πDet, φDet) achieves a gain of 561 ke. This result is improved when
using a day-ahead controller based on stochastic optimization instead, as the
pair (πµ,Sto, φDet) returns 577 ke of gains, increasing the management gain by
3% with respect to (πDet, φDet). On a daily basis, we see in Figure 3.7a that the
controller (πµ,Sto, φDet) outperforms (πDet, φDet) for 181 days out of 365 (days
with positive relative gains), with an average daily relative gain of 44 e.

Second, we comment on the gains obtained with the intraday controller φSto
in (3.67) based on stochastic optimization (third column). We observe that
with φSto as an intraday controller, the effect of the day-ahead controller on
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gains is reversed. Indeed, the pair (πµ,Sto, φSto) achieves a gain of 619 ke, while
the pair (πDet, φSto) yields gains 1% higher, amounting to 626 ke. The relative
gain displayed day by day in Figure 3.7b highlights that the difference of gains
is tighter between (πµ,Sto, φSto) and (πDet, φSto) than in Figure 3.7a, with an
average daily relative gain of -19 e. However, the controller (πDet, φSto) yields
higher gains more often (days with negative relative gains), for 273 days out of
365.

Third, we conclude that all methods introduced in our work, whose novelty is
to design controllers based on stochastic optimization techniques, perform better
than the deterministic controller (πDet, φDet) of [68]. For the specific context of
the regulatory rules of the French NIZ detailed in §3.4.1, this controller stands
for the state-of-the-art method, for which we showcase improvements ranging
from 3%, with (πµ,Sto, φDet), to 11.6%, with (πDet, φSto).

Gain of
(π, φ) in ke φDet φSto

πDet 561 626

πµ,Sto 577 619

Table 3.1: Gain G
(
(π, φ, ψ∗), {hd}d∈D

)
in (3.44) for ψ∗

in (3.46), day-ahead controllers (first column) πDet in (3.68) and
πµ,Sto in (3.65), and intraday controllers (first row) φDet in (3.69)

and φSto in (3.67). The higher the better

(a) (πµ,Sto, φDet) vs (πDet, φDet) (b) (πµ,Sto, φSto) vs (πDet, φSto)

Figure 3.7: Relative gain G
(
(πµ,Sto, φ, ψ∗), {hd}d∈D

)
−

G
(
(πDet, φ, ψ∗), {hd}d∈D

)
(Y -axis), where G in (3.44), displayed

day by day for d ∈ D (X-axis), for both φ = φDet in (3.69),
Figure 3.7a, and φ = φSto in (3.67), Figure 3.7b

Analysis of the day-ahead controllers. While it is clear from Table 3.1
that φSto performs better than φDet, the performance gap between the day-
ahead controllers is more subtle. Therefore, we further analyse the behavior of
the day-ahead controller πµ,Sto, based on stochastic optimization in (3.65), and
πDet, based on deterministic optimization in (3.68). We choose to look closer at
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daily data for the controllers (πµ,Sto, φSto) and (πDet, φSto), as its yields higher
gains than their counterparts with φDet.

First, we comment Figure 3.8, which reports managing data of the power
plant for a day where the gain achieved by the controller (πDet, φSto) is 52 e
higher than the one performed by (πµ,Sto, φSto). We observe in Figure 3.8a that
the commitment profile pd in (3.3b) returned by πDet displays higher power
values during the evening peak time of 19:00-21:00 than the ones of πµ,Sto in
Figure 3.8b. The strategy of πDet is advantageous here, since the generated
power gd,t in (3.7) turns out to exceed the initial forecast ĝtd,0 in (3.39c) in Fig-
ure 3.8d. Consequently, the controller (πDet, φSto) makes the battery perform
a full cycle in Figure 3.8c (red color), as it fills the battery completely during
the day, and empties all the stored energy during the evening peak time to
deliver the large amount of committed power. This results in a high managing
gain, since the energy price ct in (3.10a) is higher during peak time. As for
(πµ,Sto, φSto), although the generated power exceeds the initial forecast in Fig-
ure 3.8d, the controller cannot deliver the exceeding power during the evening
peak time, due to the stage cost in (3.11a) which strongly penalizes over pro-
duction. Therefore, the exceeding power is stored in the battery which is not
empty at the end of the day, as shown in Figure 3.8c (blue color).

Second, we comment Figure 3.9, which reports managing data of the power
plant for a day where the controller (πµ,Sto, φSto) outperforms (πDet, φSto) in
gain by 88 e. As in the previous case, we see that the power values of the
commitment profile pd in (3.3b) returned by πµ,Sto are moderate during the
evening peak time of 19:00-21:00. However, the initial forecast ĝtd,0 in (3.39c)
turns out to be overoptimistic on that day, as the generated power gd,t in (3.7)
is lower than expected in Figure 3.9d. For such a day, the moderate on-peak
commitment strategy of (πµ,Sto, φSto) reveals advantages in two points. On the
one hand, since the on-peak committed power values are not too high, power
delivery is achieved while maintaining power delivery around 250 kW for most of
daytime, from 10:00 to 18:00. On the other hand, daytime power delivery is also
supported by the energy saved in the battery on the previous days, as revealed in
Figure 3.9c (blue color). In this case, the strong on-peak commitment strategy
of (πDet, φSto) reveals disadvantageous, as the intraday controller needs to lower
power delivery during daytime to deliver the high amount of power committed
for peak time, as shown in Figure 3.9a. Indeed, we observe that the delivered
power fluctuates around 200 kW for most of daytime, from 10:00 to 18:00, and
that moreover, there is no additional energy stock saved in the battery to face
this challenging situation (Figure 3.9c, red color).

Discussion. We interpret the strong on-peak commitment strategy of the
day-ahead controller πDet in (3.68), analysed from Figures 3.8 and 3.9, as a
consequence of the use of a deterministic optimization method. Indeed, this
day-ahead controller tends to maximize benefits during the evening peak time
when the energy price ct in (3.10a) is higher, based on the initial forecast ĝtd,0
only, and no other scenario. When the associated intraday controller is φDet

in (3.69), the strong on-peak committed profile is challenging to achieve, and the
gain obtained are lower than with a stochastic day-ahead controller, as revealed
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(a) (πDet
d , φStod,t ) (b) (πµ,Stod , φStod,t )

(c) State of charge st in (3.4a) (d) ĝtd,0 in (3.39c) and gd,t in (3.7)

Figure 3.8: Managing data of 31/07/2015: committed power
pd,t in (3.3a), tolerance bounds (b, b) in (3.38), and delivered
power p̃d,t in (3.9) for controllers (πDet

d , φStod,t ) (Figure 3.8a) and
(πµ,Stod , φStod,t ) (Figure 3.8b); state of charge st in (3.4a) for both
controllers (Figure 3.8c); initial forecast ĝtd,0 in (3.39c) and ob-

served generated power gd,t in (3.7) (Figure 3.8d)
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(a) (πDet
d , φStod,t ) (b) (πµ,Stod , φStod,t )

(c) State of charge st in (3.4a) (d) ĝtd,0 in (3.39c) and gd,t in (3.7)

Figure 3.9: Managing data of 01/04/2016: committed power
pd,t in (3.3a), tolerance bounds (b, b) in (3.38), and delivered
power p̃d,t in (3.9) for controllers (πDet

d , φStod,t ) (Figure 3.9a) and
(πµ,Stod , φStod,t ) (Figure 3.9b); state of charge st in (3.4a) for both
controllers (Figure 3.9c); initial forecast ĝtd,0 in (3.39c) and ob-

served generated power gd,t in (3.7) (Figure 3.9d)
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in Table 3.1, second column. However, the stochastic intraday controller φSto
manages to take benefit of the strong on-peak commitment strategy of πDet,
as (πDet, φSto) yields the highest gain in Table 3.1. Our question is: how does
this phenomenon extend to other regulatory market rules than the ones of the
French NIZ detailed in §3.4.1? In particular, the good performance of the
(πDet, φSto) controller might be backed by the fixed high on-peak energy price c
in (3.10a) which offers arbitrage opportunities, and thus introduces a recourse
for the intraday controller, which can buy power at a lower price to respect
strong on-peak commitment values.

We interpret the moderate on-peak commitment strategy of the day-ahead
controller πµ,Sto in (3.65), observed in Figures 3.8 and 3.9, as a consequence
of the use of a stochastic optimization method. As opposed to determinis-
tic methods, the stochastic method takes into account several scenarios and
their probabilities for the realization of the upcoming daily generated power gd,t
in (3.7). While this strategy returns lower gains when comparing (πµ,Sto, φSto)
with (πDet, φSto) in Table 3.1, third column, it appears to be more robust when
using a φDet as an intraday controller, as shown in Table 3.1, second column.
Concerning possible improvements for πµ,Sto, we believe that our probability
model would benefit the use of a daily probabilistic forecasting method as de-
veloped in [97], whereas in our model, {Wd,t}t∈J1,T K in (3.51) is identically dis-
tributed for all days d ∈ D. Also, the role of the regularization parameter µ
in the efficiency of the numerical method for computing the value returned by
πµ,Sto in (3.65) should be further investigated. Finally, as for πDet, we look
forward to see how the results obtained with πµ,Sto for the French NIZ context
extend to other regulatory rules, and to other data.

3.5 Conclusion
We have introduced a microgrid control model for the operation of a solar power
plant under regulatory constraints imposing the coordination of day-ahead and
intraday decisions.

In a first numerical experiment, we have considered a simplified context and
formulated a parametric multistage stochastic optimization problem, for the
purpose of testing the methods introduced in Chapter 2. We have attested
numerically that our Bellman-like recursion algorithm computes efficiently the
gradient of the parametric objective function, in the case where the intraday
problem is approximated by a smooth lower estimate, and displays convexity.
The insertion of this algorithm in a standard descent method gives an efficient
new approach for optimizing the commitment profile, which returns better re-
sults for our experiments than a subgradient method combined with the SDDP
algorithm.

In a second numerical experiment, we have implemented the simulation of
the management of a solar plant in the French NIZ context. In this cases, both
day-ahead and intraday decisions alternate sequentially. We have proposed new
controller models based on stochastic optimization methods, including some of
the methods introduced in Chapter 1 and Chapter 2. Compared with state-of-
the-art controllers, we obtain up to 11.6% of improvement in yearly management
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gain. We also point to further directions to investigate on the replicability of
the method to other contexts, and on possible improvements.

3.A Appendix

3.A.1 Detailed performances for all methods instances

We provide additional details on the numerical performances of each instance
of the µSDP+IPM, µSDP+PGD and kSDDP+PSM methods considered in the
experiments of §3.3.3.

k
Iterative
steps

Overall
time

(seconds)

Avg. time /
oracle call
(seconds)

V 0(x0)
in (3.30)

(e)

V 0(x0)
in (3.32)

(e)

Gap
(%)

10 7 11 1.5 -440.0 -438.1 0.4
20 60 155 2.6 -575.4 -566.7 1.5
40 100 504 5.0 -643.5 -642.9 0.1
80 100 1061 10.6 -654.2 -646.4 1.2
150 100 2173 21.7 -658.7 -652.9 0.8
250 34 1428 42.0 -655.1 -644.1 1.7
500 15 1622 108.2 -653.4 -648.0 0.8
750 16 3448 216.9 -653.7 -644.5 1.4
1000 12 3912 323.4 -651.6 -645.0 1.0

Table 3.2: Detailed numerical performances for instances of the kSDDP+PSM
method, characterized by k in the first column. Other columns report the number of
iterations performed (second column), time performances (third and fourth columns),
together with the lower bound V 0(x0) in (3.30) (fifth column), the expected simula-
tion cost V 0(x0) in (3.32) (sixth column), and the estimation gap (seventh column),
expressed as a percentage of V 0(x0). For columns 2-6, the lower the values the better

the performance of the instance
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(x, u)
grid size

Iterative
steps

Overall
time

(seconds)

Avg. time /
oracle call
(seconds)

V 0(x0)
in (3.30)

(e)

V 0(x0)
in (3.32)

(e)

Gap
(%)

5×5, 11 20 10 0.17 -621.9 -619.5 0.4
5×6, 11 22 11 0.19 -653.5 -649.9 0.6
6×6, 11 21 13 0.22 -649.3 -645.7 0.6
6×6, 21 31 31 0.25 -644.5 -637.3 1.1
6×11,
21 20 27 0.42 -659.5 -657.2 0.4

11×11,
21 16 31 0.69 -657.3 -656.4 0.1

11×11,
41 13 38 0.96 -653.5 -644.9 1.3

11×21,
41 14 74 1.7 -658.9 -658.0 0.1

21×21,
41 15 158 3.2 -658.1 -650.5 1.1

21×21,
201 23 500 11.0 -656.6 -651.4 0.7

21×101,
201 30 5385 50.9 -658.6 -650.1 1.3

101×101,
201 27 20707 269 -652.0 -646.4 0.8

Table 3.3: Detailed numerical performances for instances of the µSDP+IPM
method, characterized by the size of the discrete grids for state and control vari-
ables in the first column. Other columns report the number of iterations performed
(second column), time performances (third and fourth columns), together with the
lower bound V 0(x0) in (3.30) (fifth column), the expected simulation cost V 0(x0) in
(3.32) (sixth column), and the estimation gap (seventh column), expressed as a per-
centage of V 0(x0). For columns 2-6, the lower the values the better the performance

of the instance
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(x, u)
grid size

Iterative
steps

Overall
time

(seconds)

Avg. time /
oracle call
(seconds)

V 0(x0)
in (3.30)

(e)

V 0(x0)
in (3.32)

(e)

Gap
(%)

5×5, 11 97 16 0.16 -613.6 -609.6 0.7
5×6, 11 78 14 0.19 -648.5 -642.4 0.9
6×6, 11 69 14 0.20 -648.8 -643.6 0.8
6×6, 21 66 17 0.25 -651.0 -647.7 0.5
6×11,
21 63 25 0.40 -653.1 -647.5 0.9

11×11,
21 54 41 0.67 -653.1 -648.9 0.6

11×11,
41 93 87 0.94 -639.4 -633.4 0.9

11×21,
41 72 121 1.7 -649.7 -649.1 0.1

21×21,
41 54 168 3.1 -647.1 -638.7 1.3

21×21,
201 42 442 10.5 -652.3 -638.7 1.3

21×101,
201 42 2092 49.8 -654.2 -651.5 0.4

101×101,
201 41 10781 263.4 -650.4 -643.5 1.0

Table 3.4: Detailed numerical performances for instances of the µSDP+PGD
method, characterized by the size of the discrete grids for state and control vari-
ables in the first column. Other columns report the number of iterations performed
(second column), time performances (third and fourth columns), together with the
lower bound V 0(x0) in (3.30) (fifth column), the expected simulation cost V 0(x0) in
(3.32) (sixth column), and the estimation gap (seventh column), expressed as a per-
centage of V 0(x0). For columns 2-6, the lower the values the better the performance

of the instance

3.A.2 Regularized stage cost

We provide the analytical expression of the regularized stage cost {Lµt }t∈J0,T−1K

in (3.63), for some regularization parameter µ ∈ R∗+, obtained thanks to com-
puting rules detailed in [77]. For (x, u, w, pd,t) ∈ R2 × R × R × R, denoting
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gd,t+1 = ĝt+1
d,0 + αtx

g + βt + w as in (3.48), Lµt (x, u, w, pd,t) takes values

ct∆tu+ 1
2µ

(−u− 0.05p− pd,t)2 , if pd,t < −u− 0.05p− µct∆t ,

−ct∆t(pd,t + 0.05p)− µ
2
(ct∆t)

2 , if − u− 0.05p− µct∆t ≤ pd,t ,

and pd,t < gd,t+1 − u− 0.05p− µct∆t ,

−ct∆t(gd,t+1 − u) + 1
2µ

(pd,t − gd,t+1

+u+ 0.05p)2 , if gd,t+1 − u− 0.05p− µct∆t ≤ pd,t ,

and pd,t < gd,t+1 − u− 0.05p ,

−ct∆t(gd,t+1 − u) , if gd,t+1 − u− 0.05p ≤ pd,t ,

and pd,t < gd,t+1 − u+ 0.05p ,

−ct∆t(gd,t+1 − u) + 1
2µ

(pd,t − gd,t+1

+u− 0.05p)2 , if gd,t+1 − u+ 0.05p ≤ pd,t ,

and pd,t < gd,t+1 − u+ 0.05p+ 0.2µct∆t ,

−ct∆t(gd,t+1 − u) + fµ1 (x, u, w, pd,t) if gd,t+1 − u+ 0.05p+ 0.2µct∆t ≤ pd,t ,

where

fµ1 (x, u, w, pd,t) = ct∆tJ
p
t

(
gd,t+1 − u, fµ2 (x, u, w, pd,t)

)
+

1

2µ

(
pd,t − fµ2 (x, u, w, pd,t)

)2
,

fµ2 (x, u, w, pd,t) =
ppd,t

2µct∆t + p
+

2µct∆t(gd,t+1 − u)− 0.1µct∆tp

2µct∆t + p
.
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Chapter 4

Mirror descent with one-sided
linear (OSL) couplings
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4.1 Introduction
The Fenchel conjugacy plays a central role in convex analysis. For instance,
starting from a primal optimization problem, it introduces a systematic way to
derive a dual problem, in the well-known framework of the Fenchel-Rockafellar
duality (see e.g. [82, Chapter 11], [5, Chapter 15]). Beyond famous results
in optimization, the Fenchel conjugacy also makes a bridge between a geo-
metrical and an analytical conception of convexity. Roughly speaking, proper
lower-semicontinuous convex functions are fonctions that can be expressed as
the pointwise supremum of a collection of affine functions. Geometrically, their
epigraph is described exactly as a collection of supporting hyperplanes. Ana-
lytically, these functions are equal to their Fenchel biconjugate.

In view of the success of convex analysis, especially for solving convex opti-
mization problems, a natural question is: can some of these results extend to a
more general context? Positive answers to this question have flourished in the
second half of the 20th century, and have led to the emergence of a global theory
of generalized (or abstract) convexity. We refer to [90, 84, 58] for a review of
the main concepts developed in this direction. In this chapter, we concentrate
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on general Fenchel-Moreau conjugacies induced by a coupling function, pairing
a primal set with a dual set (in the standard Fenchel conjugacy, this coupling
is a bilinear form). With such conjugacies come naturally extended notions of
generalized convexity and subdifferentials. In particular, we pay a specific at-
tention to the so-called one-sided linear (OSL) couplings, which let us retrieve
some results of the classical convex framework.

Our main concern lies in numerical methods. One of the most famous algo-
rithms for addressing generalized convex optimization problems is the cutting
angle method [2, 84], based on the iterative construction of a global representa-
tion of the objective function, obtained as the supremum of generalized affine
functions, derived from generalized subgradients. This method can be thought
as an extension of the cutting plane algorithm. However, as opposed to the
convex cutting plane framework, solving the nonconvex subproblems at each it-
erations can be difficult (see discussions in [84, Chapter 9]), so that applications
are limited so far.

In the spirit of previous approaches, we intend to solve optimization prob-
lems based on generalized subgradients. We explore the possibility to extend
the so-called mirror descent algorithm to generalized convex problems, when
convexity is induced by a OSL coupling. The mirror descent algorithm is con-
sidered to be first introduced in [67]. A similar algorithm can also be traced
contemporarily in [24], and further investigations on this method can be found
in [7, 6]. Whereas the cutting plane method has a more global approach, the
mirror descent method constructs successive local approximations of the objec-
tive function based on the evaluation of a subgradient (as e.g. in the subgra-
dient method, considered as a particular case). In the (translated) words of
Nemirovski and Yudin, a key advantage of the method is that “its laboriour-
ness does not depend explicitely on the dimension of the problem” [67]. We
find that the mirror descent algorithm extends well to the generalized convex
setting induced by a OSL coupling, with the same complexity with regard to
the dimension of the problem. To our knowledge, the extension of the mirror
descent algorithm to generalized convex optimization is new. Finally, as in the
cutting angle algorithm, the sequence of subproblems that we find might not
be straightforward to solve, but is of different nature than the one of cutting
angle. We address such practical questions later, in Chapter 6.

The chapter is organized as follows. First, we start with background notions
and a few extended results on couplings and generalized Fenchel-Moreau conju-
gacies in §4.2. Second, we introduce a generalization of the Bregman divergence
with OSL couplings, in §4.3. Third, we extend the mirror descent algorithm
with OSL couplings and give a proof of convergence in §4.4.

We warn the reader that this chapter focuses on the introduction of theo-
retical notions, and paves the way for Chapters 5 and 6, where we turn to more
applied considerations.

Notations

When we manipulate functions with values in the extended real line R =
[−∞,+∞], we adopt the Moreau lower and upper additions [64] that extend

112



4.2. Couplings and Fenchel-Moreau conjugacies

the usual addition with (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ and (+∞) u
(−∞) = (−∞)u (+∞) = +∞.

Given a set U, we denote by RU the set of functions f : U → R. For a
function f ∈ RU, its domain is the set dom f =

{
u ∈ U

∣∣ f(u) < +∞
}
. We say

that the function f is proper if it never takes the value −∞ and if dom f 6= ∅.

4.2 Couplings and Fenchel-Moreau conjugacies
We review general concepts and notations about generalized couplings and con-
jugacies in §4.2.1. Then, we consider special cases by introducing the sum
coupling in §4.2.2, and by turning to the one-sided linear couplings in §4.2.3.

4.2.1 Background on couplings and conjugacies

We review some definitions and properties of general conjugacies induced by
a coupling function. We refer to [90, 58] for a more complete introduction to
the subject. First, we review properties of couplings and conjugacies in the
general case. Second, we introduce the notion of subdifferential with respect to
a conjugacy.

General couplings and conjugacies. Let be given two sets U (“primal”)
and V (“dual”), together with a coupling function

c : U× V→ R . (4.1)

With any coupling, we associate conjugacies from RU to RV and from RV to
RU as follows.

Definition 4.2.1 The c-Fenchel-Moreau conjugate of a function f : U → R,
with respect to the coupling c in (4.1), is the function f c : V→ R defined by

f c(v) = sup
u∈U

(
c(u, v) ·+

(
−f(u)

))
, ∀v ∈ V . (4.2a)

With the coupling c, we associate the reverse coupling c′ defined by

c′ : V× U→ R , c′(v, u) = c(u, v) , ∀(v, u) ∈ V× U . (4.2b)

The c′-Fenchel-Moreau conjugate of a function g : V → R, with respect to the
coupling c′, is the function gc′ : U→ R defined by

gc
′
(u) = sup

v∈V

(
c(u, v) ·+

(
−g(v)

))
, ∀u ∈ U . (4.2c)

The c-Fenchel-Moreau biconjugate of a function f : U→ R, with respect to the
coupling c, is the function f cc′ : U→ R defined by

f cc
′
(u) =

(
f c
)c′

(u) = sup
v∈V

(
c(u, v) ·+

(
−f c(v)

))
, ∀u ∈ U . (4.2d)
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As a special case, when the sets U and V are vector spaces coupled by
a bilinear form c = 〈 , 〉, the corresponding conjugacy is the classical Fenchel
conjugacy, and we denote by f ? the Fenchel conjugate function as in (4.2a); g?′

the reverse Fenchel conjugate function1 as in (4.2c); and by f ??
′ the Fenchel

biconjugate fonction as in (4.2d).
With Definition 4.2.1 comes a series of results relating functions with their c-

conjugate in (4.2a) and c-biconjugate in (4.2d). We recall the following notable
facts:

• the c-biconjugate of a function f : U→ R satisfies

f cc
′
(u) ≤ f(u) , ∀u ∈ U , (4.3a)

• for any function f : U→ R, we have the (Fenchel-Young) inequality

f c(v) ≥ c(u, v) ·+
(
−f(u)

)
, ∀(u, v) ∈ U× V , (4.3b)

• for any pair of functions f : U→ R and h : U→ R, we have the inequality

sup
v∈V

((
−f c(v)

)
·+
(
−h−c(v)

))
≤ inf

u∈U

(
f(u)u h(u)

)
, (4.3c)

where the (−c)-Fenchel-Moreau conjugate is given by

h−c(v) = sup
u∈U

((
−c(u, v)

)
·+
(
−h(u)

))
, ∀v ∈ V , (4.3d)

• for any function f : U→ R, we have the equality

f cc
′c = f c (4.3e)

which expresses that conjugacies are closure operators.

Finally, the coupling c in (4.1) induces a class of c-elementary functions

c(·, v) ·+ (−t) : U→ R , (4.4)

or c-affine functions, parametrized by v ∈ V and t ∈ R. This induces the
following generalized notion of convexity for functions.

Definition 4.2.2 We say that a function f : U → R is c-convex if it is the
pointwise supremum of c-elementary functions, defined by (4.4).

Equivalently, c-convexity can be expressed in term of c-biconjugacy.

Proposition 4.2.3 (from [58], Corollary 6.1) A function f : U → R is c-
convex iff it is equal to its c-biconjugate f cc′ in (4.2d).

1In convex analysis, one does not use the notation ?′ , but simply the notation ?, as it is
often the case that U = V in the Euclidean and Hilbertian cases.
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Subdifferential with respect to a conjugacy. As the c-Fenchel-Moreau
conjugacy induces a duality, the notion of subdifferential with respect to a
duality leads to the following definition, taken from [1].

Definition 4.2.4 The c-subdifferential of a function f : U→ R at u ∈ U, with
respect to the coupling c in (4.1), is the subset ∂cf(u) ⊆ V defined equivalently,
either by

v ∈ ∂cf(u) ⇐⇒ f c(v) = c(u, v) ·+
(
−f(u)

)
, (4.5a)

or by

v ∈ ∂cf(u) ⇐⇒ c(u, v) ·+
(
−f(u)

)
≥ c(u′, v) ·+

(
−f(u′)

)
, ∀u′ ∈ U . (4.5b)

As in the case of the classical Fenchel conjugacy, the c-subdifferential is
strongly related to the c-Fenchel-Moreau conjugate (4.2a) and biconjugate (4.2d),
by (4.5a).

4.2.2 The sum coupling

In optimization theory and problems, we often have to deal with composite ob-
jective functions, where we sum a first criterion with a second term representing
constraints or a regularization penalty. With such applications in mind, we now
show that the lower addition of two generalized convex functions gives a func-
tion which is also generalized convex, for a specific coupling that we introduce
next.

Let the (primal) set U be paired with two (dual) sets V1 and V2 by the
couplings c1 : U × V1 → R and c2 : U × V2 → R. We introduce the sum
coupling c⊕ defined by

c⊕
(
u, (v1, v2)

)
= c1(u, v1) ·+ c2(u, v2) , ∀u ∈ U , ∀(v1, v2) ∈ V1 × V2 . (4.6)

Proposition 4.2.5 Let f1 : U → R and f2 : U → R be two functions. If f1 is
c1-convex and f2 is c2-convex, then the sum f1 ·+ f2 is c⊕-convex.

Proof. Let u ∈ U, given that f1 is c1-convex (resp. f2 is c2-convex), it is equal to its
c1-biconjugate (resp. to its c2-biconjugate), from Proposition 4.2.3, so that

f1(u) ·+ f2(u) = f
c1c′1
1 (u) ·+ f

c2c′2
2 (u) ,

= sup
v1∈V1

(
c1(u, v1) ·+

(
−f c11 (v1)

))
·+ sup
v2∈V2

(
c2(u, v2) ·+

(
−f c22 (v2)

))
,

= sup
(v1,v2)∈V1×V2

(
c1(u, v1) ·+

(
−f c11 (v1)

)
·+ c2(u, v2) ·+

(
−f c22 (v2)

))
,

= sup
(v1,v2)∈V1×V2

(
c⊕
(
u, (v1, v2)

)
·+
(
−f c11 (v1)

)
·+
(
−f c22 (v2)

))
.

Therefore, the function f1 ·+ f2 is the pointwise supremum of c⊕-elementary functions,
which means that it is c⊕-convex, following Definition 4.2.2. 2

We also prove a property that relates the c⊕-subdifferential of the function
f1 ·+ f2 to the c1-subdifferential of f1 and the c2-subdifferential of f2.
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Proposition 4.2.6 Let the function f1 : U→ R be c1-convex and the function
f2 : U → R be c2-convex. Let the sum coupling c⊕ be defined as in (4.6). We
have that

∂c1f1(u)× ∂c2f2(u) ⊆ ∂c⊕
(
f1 u f2

)
(u) , ∀u ∈ U . (4.7)

Proof. Let u ∈ U, v1 ∈ ∂c1f1(u) and v2 ∈ ∂c2f2(u), by definition of the generalized
subdifferential in (4.5b), we have that{

c1(u, v1) ·+
(
−f1(u)

)
≥ c1(u′, v1) ·+

(
−f1(u′)

)
, ∀u′ ∈ U ,

c2(u, v2) ·+
(
−f2(u)

)
≥ c2(u′, v2) ·+

(
−f2(u′)

)
, ∀u′ ∈ U ,

=⇒
(
c1(u, v1) ·+ c2(u, v2)

)
·+
((
−f1(u)

)
·+
(
−f2(u)

))
≥
(
c1(u′, v1) ·+ c2(u′, v2)

)
·+
((
−f1(u′)

)
·+
(
−f2(u′)

))
, ∀u′ ∈ U , ( ·+ is commutative and associative)

then, from (−a) ·+ (−b) = −(au b), ∀(a, b) ∈ R2, and by definition of c⊕ in (4.6),

=⇒ c⊕
(
u, (v1, v2)

)
·+
(
−
(
f1(u)u f2(u)

))
≥ c⊕

(
u′, (v1, v2)

)
·+
(
−
(
f1(u′)u f2(u′)

))
, ∀u′ ∈ U ,

=⇒ (v1, v2) ∈
(
f1 u f2

)
(u) . (by definition of the c⊕-subdifferential)

This ends the proof. 2

4.2.3 One-sided linear couplings (OSL couplings)

We now recall the definition of the so-called one-sided linear (OSL) couplings,
introduced in [20]. This class of couplings encompasses the classical bilinear
form c = 〈 , 〉 involved in the Fenchel conjugacy. Our interest in such couplings is
motivated by several results of standard convex analysis which extend naturally
to OSL couplings, and that play a central role in the optimization theory and
practice.

First, we review some definitions and properties of OSL couplings and factor-
ization mappings. Second, we introduce some properties of the c-subdifferential
induced by a OSL coupling.

General definition and factorization mappings. We start with a general
definition of OSL couplings.

Definition 4.2.7 Let W be a set and V be a vector space. We say that a finite
valued coupling c : W×V→ R is one-sided linear (OSL) if, for all w ∈W, the
function c(w, ·) : V→ R is linear.

In particular, we can construct OSL couplings induced by a factorization (or
primal valued) mapping, proceeding as follows.

Definition 4.2.8 (from [20], Definition 3) Let U and V be two vector spaces,
paired with a bilinear form 〈 , 〉. Let W be a set and θ : W→ U a mapping. We
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define the one-sided linear coupling cθ between the set W and the vector space V
by

?θ : W× V→ R , ?θ(w, v) = 〈θ(w) , v〉 , ∀(w, v) ∈W× V . (4.8)

It is worth mentioning that, in the context of Definition 4.2.7, if V is a
Hilbert space, and if for all w ∈ W, the linear function c(w, ·) : V → R is
continuous (as is always the case if the dimension of V is finite), then from the
Riesz representation theorem (see e.g. [5, Fact 2.24]), there exists a mapping
θ : W→ V such that

c(w, v) = 〈θ(w) , v〉 , ∀(w, v) ∈W× V . (4.9)

Therefore, the particular case of OSL couplings introduced in Definition 4.2.8
covers in fact a large panel of situations2.

When a OSL coupling can be factorized by a mapping θ as in (4.8), there
exists several links between the induced ?θ-Fenchel-Moreau conjugacy and the
standard Fenchel conjugacy. We gather some of these useful results in the
following proposition, for which we introduce some definitions and notations.

Definition 4.2.9 (from [20], Definition 4) Let h : W → R be a function.
We define the conditional infimum (of the function h knowing the mapping θ)
as the function inf

[
h | θ

]
: U→ R given by(

inf
[
h | θ

])
(u) = inf

{
h(w)

∣∣w ∈W , θ(w) = u
}
, ∀u ∈ U . (4.10)

Also, for any subset W ⊆ W, δW : W → R denotes the indicator function
of the set W :

δW (w) = 0 if w ∈ W , δW (w) = +∞ if w 6∈ W , (4.11)

and for any subset U ⊆ U, σU : V → R denotes the support function of the
set U :

σU(v) = sup
u∈U
〈u , v〉 , ∀v ∈ V . (4.12)

Proposition 4.2.10 (mainly from [20]) Under the assumptions of Defini-
tion 4.2.8, the ?θ-conjugacy displays the following properties. For any function
g : V→ R, the ?′θ-Fenchel-Moreau conjugate g?θ ′ : W→ R is given by

g?θ
′
= g?

′ ◦ θ . (4.13a)

For any function h : W → R, the ?θ-Fenchel-Moreau conjugate h?θ : V → R is
given by

h?θ =
(
inf
[
h | θ

])?
, (4.13b)

and the ?θ-Fenchel-Moreau biconjugate h?θ?θ ′ : W→ R is given by

h?θ?θ
′
=
(
h?θ
)?′ ◦ θ =

(
inf
[
h | θ

])??′ ◦ θ . (4.13c)

2Note that as a Hilbert space, V is self dual here, so that we can introduce U = V to fit
exactly in the notations of Definition 4.2.8.
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Moreover, h is ?θ-convex iff there exists a closed convex function f : U → R
such that h = f ◦ θ. In this case, we have that

v ∈ ∂f
(
θ(w)

)
=⇒ v ∈ ∂?θh(w) , ∀w ∈W . (4.13d)

For any subset W ⊆W, we have

δ?θW = σθ(W ) . (4.13e)

Proof. All results are taken from [20, Propositions 5 and 6], except for (4.13d), which
we prove next. Let w ∈W, v ∈ ∂f

(
θ(w)

)
, by definition of the subdifferential,

〈θ(w) , v〉 − f
(
θ(w)

)
≥
〈
u′ , v

〉
− f(u′) , ∀u′ ∈ U ,

=⇒ 〈θ(w) , v〉 − f(θ(w)) ≥
〈
θ(w′) , v

〉
− f

(
θ(w′)

)
, ∀w′ ∈W , (as θ(W) ⊆ U)

=⇒ v ∈ ∂?θh(w) ,

since h = f ◦ θ, ?θ = 〈θ(·) , ·〉, and by definition of the ?θ-subdifferential in (4.5b). 2

Properties of the c-subdifferential induced by a OSL coupling. We
now review some properties of the c-subdifferential that arise when c is a OSL
coupling. These properties extend some results of standard convex analysis
playing a major role in optimization theory and practice, to the case of conju-
gacies induced by a OSL coupling.

As already mentioned in §4.2.2, composite objective functions are ubiquitous
in optimization. Therefore, we start with a result which characterizes the c-
subdifferential of the sum of two functions, when c is OSL. This result can be
interpreted as an extension of a well-known property of the subdifferential in
standard convex analysis (see e.g. [5, Proposition 16.42]). Similar formulations
for generalized conjugacies can be found in [57, 90].

Proposition 4.2.11 (inspired by [57, 90]) Let W be a set, V be a vector
space, and c : W × V → R be a OSL coupling as in Definition 4.2.7. Let
f1 : W→ R and f2 : W→ R be two proper functions. We have that

∂cf1(w) + ∂cf2(w) ⊆ ∂c
(
f1 + f2

)
(w) , ∀w ∈ domf1 ∩ domf2 . (4.14a)

If, moreover, we have the equality(
f1 + f2

)c
(v) = min

(v1,v2)∈V2

{
f c1(v1) + f c2(v2)

∣∣ v1 + v2 = v
}
, ∀v ∈ V , (4.14b)

meaning that the equality in (4.14b) is achieved by a minimizer (v1, v2) ∈ V2,
then we have that

∂cf1(w) + ∂cf2(w) = ∂c
(
f1 + f2

)
(w) , ∀w ∈ domf1 ∩ domf2 . (4.14c)

Proof. First, we prove the inclusion in (4.14a). Let w ∈ domf1∩domf2, v1 ∈ ∂cf1(w),
v2 ∈ ∂cf2(w), from the definition of the c-subdifferential in (4.5b), using that c is finite
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valued, we have that{
c(w, v1)− f1(w) ≥ c(w′, v1)− f1(w′) , ∀w′ ∈W ,

c(w, v2)− f2(w) ≥ c(w′, v2)− f2(w′) , ∀w′ ∈W ,

=⇒ c(w, v1 + v2)−
(
f1 + f2

)
(w) ≥ c(w′, v1 + v2)−

(
f1 + f2

)
(w′) , ∀w′ ∈W ,

using the fact that c is a OSL coupling, and therefore v1 + v2 ∈ ∂c
(
f1 + f2

)
(w), using

again (4.5b).
Second, let us assume that the equality (4.14b) holds, and that it is always achieved

by a minimizer (v1, v2) ∈ V2. We prove the reciprocal inclusion of (4.14a). Let w ∈W
and v ∈ ∂c

(
f1 + f2

)
(w), from the definition of the c-subdifferential in (4.5a),(

f1 + f2

)c
(v) = c(w, v)−

(
f1 + f2

)
(w) , (as c is OSL, c(w, v) is finite)

=⇒ f c1(v1) + f c2(v2) = c(w, v)− f1(w)− f2(w) , (by assumption, with v = v1 + v2)

=⇒
(
f c1(v1) + f1(w)− c(w, v1)

)
+
(
f c2(v2) + f2(w)− c(w, v2)

)
= 0 ,

rearranging terms, using that f1(w), f2(w) are finite, and thus f c1(v1) ≥ c(w, v1) −
f1(w) > −∞ and f c2(v2) ≥ c(w, v2) − f2(w) > −∞, by definition of the c-conjugate
in (4.2a). Then, according to the (Fenchel-Young) inequality (4.3b), both terms in
the left-hand side are nonnegative, and therefore, we deduce that{

f c1(v1) + f1(w)− c(w, v1) = 0 ,

f c2(v2) + f2(w)− c(w, v2) = 0 ,

and thus, using again (4.5a) and that all quantities are finite, that v1 ∈ ∂cf1(w) and
v2 ∈ ∂cf2(w). It follows that v = v1 + v2 ∈ ∂cf1(w) + ∂cf2(w). This concludes the
proof. 2

Moreover, we prove the following properties of the c-subdifferential induced
by a OSL coupling.

Proposition 4.2.12 Let W be a set, V be a vector space, and c : W× V→ R
be a OSL coupling as in Definition 4.2.7. For any function f : W → R, we
have that

w ∈ arg min f ⇐⇒ 0 ∈ ∂cf(w) . (4.15a)

For any v ∈ V, we have that

∂c
(
f + c(·, v)

)
= ∂cf + v . (4.15b)

If the function f is proper, we have that(
∀w ∈W

)
∂cf(w) 6= ∅ =⇒ −∞ < f(w) < +∞ . (4.15c)

Proof. First, we prove (4.15a). By definition of the c-subdifferential in (4.5b),

0 ∈ ∂cf(w) ⇐⇒ c(w, 0)− f(w) ≥ c(w′, 0)− f(w′) , ∀w′ ∈W ,
(as c is finite valued)

⇐⇒ −f(w) ≥ −f(w′) , ∀w′ ∈W ,
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as for any w′ ∈W, v ∈ V, c(w′, 0) = c(w′, v−v) = c(w′, v)−c(w′, v) = 0, given that the
coupling c is OSL, and which is equivalent to w ∈ arg max(−f) ⇐⇒ w ∈ arg min f .

Second, we prove (4.15b). From (4.5b), we have that

v′ ∈ ∂c
(
f + c(·, v)

)
(w)

⇐⇒ c(w, v′)−
(
f(w) + c(w, v)

)
≥ c(w′, v′)−

(
f(w′) + c(w′, v)

)
, ∀w′ ∈W ,

(as c is finite valued)

⇐⇒ c(w, v′ − v)− f(w) ≥ c(w′, v′ − v)− f(w′) , ∀w′ ∈W , (since c is OSL)
⇐⇒ v′ − v ∈ ∂cf(w) . (from (4.5b))

Third, we prove (4.15c). Let w ∈W be such that ∂cf(w) 6= ∅, and let v ∈ ∂cf(w).
From (4.5b), we have that

c(w, v)− f(w) ≥ c(w′, v)− f(w′) , ∀w′ ∈W , (as c is finite valued)
=⇒ −f(w) ≥ c(w̄, v)− f(w̄)− c(w, v) ,

choosing w̄ ∈ W such that f(w̄) is finite, which we can do since f is proper. Since
moreover the coupling c is OSL, all terms in the right hand side of the above inequality
are finite. Clearly, f(w) = +∞ leads to a contradiction, and finally −∞ < f(w) <

+∞, because f is proper. 2

Remark 4.2.13 Observe that we only need the coupling c to be finite-valued
(and not necessary OSL) to prove the implication (4.15c).

4.3 The Bregman divergence with OSL couplings
In the usual convex framework, the mirror descent algorithm is often considered
as an extension of the projected subgradient method to contexts where the
underlying spaces are not Hilbertian. The key idea is to replace the distance
induced by the `2 norm with a Bregman divergence, which generalizes the notion
of distance. The original motivation behind the Bregman divergence is that
it lets us address a much larger family of problems (beyond the Hilbertian
context). Moreover, it offers the possibility to adapt the optimization method
to the nature of the problem, as detailed in [6, §9.1].

First, we generalize the Bregman divergence with couplings in §4.3.1. Sec-
ond, we prove that a fundamental property of the Bregman divergence extends
with OSL couplings in §4.3.2. Throughout this section, we guide the reader
with references to the classical convex framework depicted in [6].

4.3.1 The Bregman divergence with couplings

We introduce a general definition for the Bregman divergence with couplings,
extending the usual definition given in [6, Definition 9.2].

Definition 4.3.1 Let W and V be two sets, and let c : W×V→ R be a finite-
valued coupling. Let κ : W →] −∞,+∞] be a proper (divergence generating)
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function. We define the c-Bregman divergence associated with κ as the function

Dc
κ : W×

( ⋃
w∈dom(∂cκ)

{w} × ∂cκ(w)
)
→]−∞,+∞] , (4.16a)

given by

Dc
κ(w,w

′, v′) = κ(w)− κ(w′)− c(w, v′) + c(w′, v′) ,

∀(w,w′) ∈W× dom(∂cκ) , ∀v′ ∈ ∂cκ(w′) .
(4.16b)

Note that, from Remark 4.2.13, the term κ(w′) in (4.16b) is always finite,
as ∂cκ(w′) 6= ∅.

The choice of the divergence generating function3 κ in Definition 4.3.1 plays
an important role in the properties of the Bregman divergence Dc

κ in (4.16b).
In particular, we pay a specific attention to the notion of strong convexity,
extended to c-convex functions.

Definition 4.3.2 Let W and V be two sets. Let c : W×V→ R be a coupling,
and d : W2 → R+ be a pseudometric. The function f : W → R is said to be
c-strongly convex with respect to the pseudometric d if

c(w, v) ·+
(
−f(w)

)
≥ c(w′, v) ·+

(
−f(w′)

)
+ d(w,w′)2 ,

∀(w,w′) ∈W2 , ∀v ∈ ∂cf(w) .
(4.17)

We recall that a pseudometric shares the same properties as a distance,
except that d(w,w′) = 0 6=⇒ w = w′. We now prove the following properties
of the c-Bregman divergence.

Proposition 4.3.3 Let Dc
κ be the c-Bregman divergence associated with κ, as

in Definition 4.3.1. We have the following properties

Dc
κ(w,w

′, v′) ≥ 0 , ∀(w,w′) ∈W× dom(∂cκ) , ∀v′ ∈ ∂cκ(w′) , (4.18a)

Dc
κ(w,w

′, v′) +Dc
κ(w

′, w′′, v′′)−Dc
κ(w,w

′′, v′′) = c(w′, v′)− c(w, v′)
−
(
c(w′, v′′)− c(w, v′′)

)
,∀w ∈ domκ , ∀(w′, w′′) ∈ dom(∂cκ)2 ,

∀v′ ∈ ∂cκ(w′) , ∀v′′ ∈ ∂cκ(w′′) .

(4.18b)

Moreover, if the function κ : W→]−∞,+∞] is c-strongly convex with respect
to the pseudometric d : W2 → R+ (as in Definition 4.3.2), then we have that

Dc
κ(w,w

′, v′) ≥ d(w,w′)2 , ∀(w,w′) ∈W× dom(∂cκ) , ∀v′ ∈ ∂cκ(w′) . (4.19)

Proof.
• Let (w,w′) ∈ W × dom(∂cκ) and v′ ∈ ∂cκ(w′). From (4.5b) we have that

c(w′, v′) − κ(w′) ≥ c(w, v′) − κ(w) , ∀w ∈ W . From Remark 4.2.13, as c is finite

3Sometimes called “distance generating function”, although in general Dc
κ in (4.16b) is not

a distance with respect to (w,w′) ∈W× dom(∂cκ).
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valued, all terms but κ(w) must be finite, from which we deduce (4.18a), by definition
of Dc

κ in (4.16b).
• Let w ∈ domκ, (w′, w′′) ∈ dom(∂cκ)2, v′ ∈ ∂cκ(w′), v′′ ∈ ∂cκ(w′′). By definition

of Dc
κ in (4.16b), we have that (where all terms are finite)

Dc
κ(w,w′, v′) +Dc

κ(w′, w′′, v′′)−Dc
κ(w,w′′, v′′) = κ(w)− κ(w′) + c(w′, v′)− c(w, v′)

+ κ(w′)− κ(w′′) + c(w′′, v′′)− c(w′, v′′)
− κ(w) + κ(w′′)− c(w′′, v′′) + c(w, v′′)

= c(w′, v′)− c(w, v′)− c(w′, v′′) + c(w, v′′) .

• By Definition 4.3.2 of the c-strong convexity of κ with respect to the pseudomet-
rics d, using that the coupling c is finite-valued, for all (w,w′) ∈ domκ × dom(∂cκ)
and v′ ∈ ∂cκ(w′), we have that

c(w′, v′)− κ(w′) ≥ c(w, v′)− κ(w) + d(w′, w)2 , (all terms are finite)

=⇒ Dc
κ(w,w′, v′) ≥ d(w,w′)2 . (from Dc

κ in (4.16b), and by symmetry of d)

Then, for w /∈ domκ, we get that Dc
κ(w,w′, v′) = +∞ ≥ d(w,w′)2, as the function κ

is proper. 2

Proposition 4.3.3 extends some basic properties of the usual Bregman diver-
gence found in [6, Lemmas 9.4, 9.11] to the general context of couplings.

4.3.2 The Bregman divergence with OSL couplings

The fundamental result in the architecture of the mirror descent method is
given in [6, Theorem 9.12]. We now prove that this result generalizes to the
c-Bregman divergence, when c is a OSL coupling.

Proposition 4.3.4 Let W be a set and V be a vector space. Let c : W×V→ R
be a one-sided linear coupling between W and V, as in Definition 4.2.7. Let
κ : W →] −∞,+∞] be a proper (divergence generating) function, and let h :
W →] − ∞,+∞] be a proper function, such that dom(∂cκ) ∩ domh 6= ∅. Let
w′ ∈ dom(∂cκ) ∩ domh, and let v′ ∈ ∂cκ(w′). If there exists (w∗, v∗) ∈ W × V
such that

w∗ ∈ arg min
w∈W

(
h(w) +Dc

κ(w,w
′, v′)

)
, (4.20a)

v∗ ∈ ∂cκ(w∗) , (4.20b)
v′ − v∗ ∈ ∂ch(w∗) , (4.20c)

then, we have that

h(w)+Dc
κ(w,w

′, v′) ≥ h(w∗)+Dc
κ(w

∗, w′, v′)+Dc
κ(w,w

∗, v∗) , ∀w ∈W . (4.21)

Proof. Let be (w∗, v∗) ∈W× V satisfying (4.20a)-(4.20c).
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First, we prove an inequality. Since c is a OSL coupling, it takes finite values, and

h(w)− c(w, v′) = h(w)− c(w, v′ − v∗)− c(w, v∗) , ∀w ∈W ,

≥ h(w∗)− c(w∗, v′ − v∗)− c(w, v∗) , ∀w ∈W ,
(as v′ − v∗ ∈ ∂ch(w∗), by definition of the c-subdifferential in (4.5b))

= h(w∗)− c(w∗, v′) + c(w∗, v∗)− c(w, v∗) , ∀w ∈W . (as c is OSL)

Second, we prove (4.21). From (4.15c), κ(w′) is finite. Besides, we observe that

h(w∗) +Dc
κ(w∗, w′, v′) ≤ h(w′) +Dc

κ(w′, w′, v′) , (from (4.20a))
= h(w′) , (by definition of Dc

κ in (4.16b))
< +∞ , (as w′ ∈ domh)

from which we deduce that h(w∗) and κ(w∗) are finite, by definition of Dc
κ in (4.16b).

Then, for any w ∈ W, all terms but h(w) and κ(w) must be finite in the following
lines:

h(w) +Dc
κ(w,w′, v′) = h(w) + κ(w)− κ(w′) + c(w′, v′)− c(w, v′) , (Dc

κ in (4.16b))
=
(
h(w)− c(w, v′)

)
+ κ(w)− κ(w′) + c(w′, v′) ,

≥
(
h(w∗)− c(w∗, v′) + c(w∗, v∗)− c(w, v∗)

)
+ κ(w)− κ(w′) + c(w′, v′) ,

(from the just established inequality above)

= h(w∗) +
(
κ(w∗)− κ(w′) + c(w′, v′)− c(w∗, v′)

)
+
(
κ(w)− κ(w∗) + c(w∗, v∗)− c(w, v∗)

)
,

= h(w∗) +Dc
κ(w∗, w′, v′) +Dc

κ(w,w∗, v∗) . (Dc
κ in (4.16b))

This ends the proof. 2

4.4 The mirror descent algorithm with OSL cou-
plings

We now turn to our main result, where we prove that the mirror descent al-
gorithm generalizes to situations where a primal set W is paired with a dual
vector space V by a OSL coupling.

First, we give a general definition for a regularity property of OSL couplings.

Definition 4.4.1 Let W be a set and V be a vector space. Let c : W × V →
R be a one-sided linear coupling as in Definition 4.2.7, d : W2 → R+ be a
pseudometric and ϕ : V → R be a function. The coupling c is said to be
ϕ-Lipschitz with respect to the pseudometric d if

c(w, v)− c(w′, v) ≤ ϕ(v)d(w,w′) , ∀(w,w′) ∈W2 , ∀v ∈ V . (4.22)

Second, we prove our main result.
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Theorem 4.4.2 Let W be a set and V be a vector space. Let f : W →] −
∞,+∞] be a proper function, and let W ⊆ W be a constraint set such that
domf ∩W 6= ∅. We consider the optimization problem

min
w∈W

f(w) . (4.23a)

We suppose that there exists

w∗ ∈ arg min
w∈W

f(w) , (4.23b)

and we denote
f ∗ = f(w∗) = min

w∈W
f(w) ∈ R . (4.23c)

Let d : W2 → R+ be a pseudometric. Let c : W × V → R be a one-sided
linear coupling as in Definition 4.2.7, supposed to be ϕ-Lipschitz with respect to
the pseudometric d (as in Definition 4.4.1), where ϕ : V→ R.

Let κ : W→]−∞,+∞] be a proper (divergence generating) function, such
that W ⊆ dom(∂cκ), and that κ + δW is c-strongly convex with respect to the
pseudometric d (as in Definition 4.3.2).

Let N ∈ N, and suppose that there exists sequences {wn}n∈J0,NK ∈ WN+1,
{vn}n∈J0,NK ∈ VN+1,

{
vfn
}
n∈J0,NK ∈ VN+1, {αn}n∈J0,N−1K ∈ RN

+ , such that

v0 ∈ ∂c
(
κ+ δW

)
(w0) , (4.24a)

vf0 ∈ ∂cf(w0) , (4.24b)

and, for n ∈ J0, N − 1K,

wn+1 ∈ arg min
w∈W

(
κ(w) + c(w, αnv

f
n − vn)

)
, (4.25a)

vn+1 = vn − αnvfn , (4.25b)

vfn+1 ∈ ∂cf(wn+1) . (4.25c)

Then, if

max
0≤n≤N

Dc
κ+δW

(w∗, wn, vn) ≤ R2 , max
0≤n≤N−1

ϕ(vfn)2 ≤ G2 , (4.26)

we have that

min
0≤n≤N−1

(
f(wn)− f ∗

)
≤
R2 + G2

4

∑N−1
n=0 α

2
n∑N−1

n=0 αn
. (4.27)

Proof. We proceed in two steps, and adopt the notation κ] = κ+ δW .
First, supposing that such sequences {wn}n∈J0,NK, {vn}n∈J0,NK, and {v

f
n}n∈J0,NK

exist, we prove that for n ∈ J0, N − 1K,

Dc
κ](w

∗, wn+1, vn+1) ≤ Dc
κ](w

∗, wn, vn)− αn
(
f(wn)− f∗

)
+
α2
n

4
ϕ(vfn)2 . (4.28)
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For any n ∈ J0, N − 1K, we define the function

fn : W→ R , w 7→ αn
(
f(wn) + c(w, vfn)− c(wn, vfn)

)
.

Note that as the coupling c is OSL, the function f is proper, and ∂cf(wn) 6= ∅ (from
(4.25c)), we have from (4.15c) that f(wn) is finite, and thus fn is finite valued. Let
us show that we can apply Proposition 4.3.4 with the function fn and the divergence
generating function κ]. Expanding the expressions of fn and Dc

κ]
in (4.16b), we easily

obtain that

wn+1 ∈ arg min
w∈W

(
fn(w) +Dc

κ](w,wn, vn)
)
,

⇐⇒ wn+1 ∈ arg min
w∈W

(
κ(w) + c(w,αnv

f
n − vn)

)
, (which holds, from (4.25a))

⇐⇒ 0 ∈ ∂c
((
κ+ δW

)
(wn+1) + c(wn+1, αnv

f
n − vn)

)
, (from (4.15a))

⇐⇒ vn+1 = vn − αnvfn ∈ ∂cκ](wn+1) . (from vn+1 in (4.25b) and from (4.15b))

Moreover, from (4.25b), vn−vn+1 = αnv
f
n, and using again (4.15b), αnv

f
n ∈ ∂cfn(wn+1).

In summary, we have proved that (wn+1, vn+1) satisfies (4.20a)-(4.20c). As a conse-
quence, by application of Proposition 4.3.4, we obtain that for all w ∈W,

fn(w) +Dc
κ](w,wn, vn) ≥ fn(wn+1) +Dc

κ](wn+1, wn, vn) +Dc
κ](w,wn+1, vn+1) .

Taking w = w∗ in the above inequality, and using that all quantities are finite,

Dc
κ](w

∗, wn+1, vn+1) ≤ Dc
κ](w

∗, wn, vn) + fn(w∗)− fn(wn+1)−Dc
κ](wn+1, wn, vn) ,

= Dc
κ](w

∗, wn, vn) + αn
(
c(w∗, vfn)− c(wn+1, v

f
n)
)

−Dc
κ](wn+1, wn, vn) , (by definition of fn)

= Dc
κ](w

∗, wn, vn) + αn
(
c(w∗, vfn)− c(wn, vfn)

)
+ αn

(
c(wn, v

f
n)− c(wn+1, v

f
n)
)
−Dc

κ](wn+1, wn, vn) .

Then, we use the following three inequalities,

c(w∗, vfn)− c(wn, vfn) ≤ f∗ − f(wn) ,

(from vfn ∈ ∂cf(wn), all quantities are finite)

c(wn, v
f
n)− c(wn+1, v

f
n) ≤ ϕ(vfn)d(wn, wn+1) , (from the ϕ-Lipschitz property of c)

−Dc
κ](wn+1, wn, vn) ≤ −d(wn, wn+1)2 , (from (4.19), with κ] c-strongly convex)

which give us the following bound:

Dc
κ](w

∗, wn+1, vn+1) ≤ Dc
κ](w

∗, wn, vn)− αn
(
f(wn)− f∗

)
+ αnϕ(vfn)d(wn, wn+1)− d(wn, wn+1)2 ,

≤ Dc
κ](w

∗, wn, vn)− αn
(
f(wn)− f∗

)
+
α2
n

4
ϕ(vfn)2 ,

using that 2ab ≤ a2 + b2, ∀(a, b) ∈ R2. This concludes the first step of the proof.
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Second, we sum the inequalities in (4.28) over n ∈ J0, N − 1K, and we obtain

Dc
κ](w

∗, wN , vN ) ≤ Dc
κ](w

∗, w0, v0)−
N−1∑
n=0

αn
(
f(wn)− f∗

)
+
N−1∑
n=0

α2
n

4
ϕ(vfn)2 ,

=⇒
N−1∑
n=0

αn
(
f(wn)− f∗

)
≤ R2 +

N−1∑
n=0

α2
n

4
G2 , (from (4.26))

=⇒ min
0≤n≤N−1

(
f(wn)− f∗

)
≤
R2 + G2

4

∑N−1
n=0 α

2
n∑N−1

n=0 αn
.

This ends the proof. 2

As a concluding remark, we observe that the bound on the optimality gap
in (4.27) is the same as the one given in [6, Lemma 9.14] in the usual convex
case. Therefore, the same convergence rules apply for the choice of a dynamic
step size {αn}n∈J0,N−1K ∈ RN

+ as the ones dicussed in [6, §9.2.3].

4.5 Conclusion
After introducing background notions on general Fenchel-Moreau conjugacies,
we have identified conjugacies induced by one-sided linear couplings as a promis-
ing field to extend results from usual convex analysis. The main novelty lies in
the generalization of the mirror descent algorithm to solve optimization prob-
lems where the objective and the constraints display c-convexity properties,
with c a OSL coupling.

With such notions in hands, we can now turn to more applied considerations.
In Chapter 5, we introduce a particular case of OSL coupling, and we compute
generalized subdifferentials. In Chapter 6, we identify famous optimization
problems which display the desired c-convex properties, and discuss perspectives
in the application of the mirror descent algorithm with OSL couplings.
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Chapter 5

Capra-subdifferential of the `0
pseudonorm

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Background on norms . . . . . . . . . . . . . . . . . . 128

5.3 Background on the Capra coupling . . . . . . . . . . 131

5.4 Capra-subdifferential of `0 for the `p source norms . 132

5.4.1 Explicit formulation for Vl . . . . . . . . . . . . . . . 133

5.4.2 Explicit formulation for NBsn
(p,l)
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5.4.3 Capra-subdifferential and Capra-convexity of `0 . . . 137
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5.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 Introduction
The `0 pseudonorm is a function which counts the number of nonzero elements
of a vector. This function appears in numerous optimization problems to enforce
the sparsity of the solution. As this function is nonconvex and noncontinuous,
the powerful framework of convex analysis is unadapted to address such prob-
lems, unless considering a convex relaxation. In a recent series of work [23, 21,
22], it was shown that conjugacies induced by the so-called Capra (constant
along primal rays) coupling, a special kind of one-sided linear coupling as in
§4.2.3, are well-suited to handle the `0 pseudonorm. In particular, the authors
show in [22] that for a large class of source norms (that encompasses the `p
norms for p ∈]1,∞[) employed in the definition of the Capra coupling, the
`0 pseudonorm is equal to its Capra-biconjugate, meaning that it is a Capra-
convex function. They also provide formulae for the Capra-subdifferential of
`0 in [23], and prove that this subdifferential is nonempty for the same class of
source norms that guarantee the Capra-convexity of `0 in [22].
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The formulation of the Capra-subdifferential of the `0 pseudonorm in [23]
involves the coordinate-k and dual coordinate-k norms, defined by variational
expressions in [21], and is not readily computable. The main contribution of this
chapter is to derive explicit formulations to compute the Capra-subdifferential
of the `0 pseudonorm for all `p source norms with p ∈ [1,∞]. Subsequently, we
comment on the domain of these subdifferentials, and extend previous results
by showing that when p ∈ {1,∞}, the `0 pseudonorm is not Capra-convex. We
also illustrate the Capra-subdifferential of `0 that we find, and compare it with
other notions of generalized subdifferentials for `0 found in [51].

The chapter is organized as follows. First, we recall background notions on
norms in §5.2. Second, we recall background notions on the Capra coupling in
§5.3. Third, we derive explicit formulations for the Capra-subdifferential of `0

in §5.4. Finally, we provide a numerical example and discuss the positioning of
the Capra-subdifferential of `0 with respect to other notions of subdifferentials
in §5.5.2.

5.2 Background on norms
For any norm |||·||| on Rd, we introduce subsequent norms and some of their
properties.

Dual norms

We denote the unit sphere and the unit ball of the norm |||·||| by

S =
{
u ∈ Rd

∣∣ |||u||| = 1
}
, or more explicitly by S|||·||| , (5.1a)

and B =
{
u ∈ Rd

∣∣ |||u||| ≤ 1
}
, or more explicitly by B|||·||| . (5.1b)

Recall that the following expression

|||v|||? = sup
|||u|||≤1

〈u , v〉 , ∀v ∈ Rd (5.2)

defines a norm on Rd, called the dual norm |||·|||?. We denote the unit sphere
and the unit ball of the dual norm |||·|||? by

S? =
{
v ∈ Rd

∣∣ |||v|||? = 1
}
, (5.3a)

B? =
{
v ∈ Rd

∣∣ |||v|||? ≤ 1
}
. (5.3b)

|||·|||-duality, normal cone

By definition of the dual norm in (5.2), we have the inequality

〈u , v〉 ≤ |||u||| × |||v|||? , ∀(u, v) ∈ Rd × Rd . (5.4a)

We are interested in the case where this inequality is an equality. One says
that v ∈ Rd is |||·|||-dual to u ∈ Rd, denoted by v ‖|||·||| u, if equality holds in
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Inequality (5.4a), that is,

v ‖|||·||| u ⇐⇒ 〈u , v〉 = |||u||| × |||v|||? . (5.4b)

It will be convenient to express this notion of |||·|||-duality in terms of geo-
metric objects of convex analysis. For this purpose, we recall that the normal
cone NC(u) to the (nonempty) closed convex subset C ⊆ Rd at u ∈ C is the
closed convex cone defined by [45, Definition 5.2.3]

NC(u) =
{
v ∈ Rd

∣∣ 〈v , u′ − u〉 ≤ 0 , ∀u′ ∈ C
}
. (5.5)

Now, easy computations show that the notion of |||·|||-duality can be rewritten
in terms of normal cones NB and NB? as follows:(
v ‖|||·||| u ⇐⇒ v ∈ NB

( u

|||u|||
)
⇐⇒ u ∈ NB?

( v

|||v|||
))

, ∀(u, v) ∈ Rd\{0}×Rd\{0} .

(5.6)

Restriction norms

For any u ∈ Rd and subset K ⊆ {1, . . . , d}, we denote by uK ∈ Rd the vector
which coincides with u, except for the components outside of K that vanish:
uK is the orthogonal projection of u onto the subspace1

RK = RK × {0}−K =
{
u ∈ Rd

∣∣uj = 0 , ∀j 6∈ K
}
⊆ Rd , (5.7)

where R∅ = {0}.

Definition 5.2.1 (from [21], Definition 1) For any norm |||·||| on Rd and
any subset K ⊆ {1, . . . , d}, we define three norms on the subspace RK of Rd,
as defined in (5.7), as follows.

• The K-restriction norm |||·|||K is defined by

|||u|||K = |||u||| , ∀u ∈ RK . (5.8)

• The (?,K)-norm |||·|||?,K is the norm
(
|||·|||?

)
K
, given by the restriction to

the subspace RK of the dual norm |||·|||? (first dual, then restriction),

• The (K, ?)-norm |||·|||K,? is the norm
(
|||·|||K

)
?
, given by the dual norm (on

the subspace RK) of the restriction norm |||·|||K to the subspace RK (first
restriction, then dual).

Generalized top-k and k-support norms

Definition 5.2.2 (from [21], Definition 9) For k ∈ {1, . . . , d}, we call gen-
eralized top-k norm (associated with the source norm |||·|||) the norm defined

1Here, following notation from Game Theory, we have denoted by −K the complementary
subset of K in {1, . . . , d}: K ∪ (−K) = {1, . . . , d} and K ∩ (−K) = ∅.
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by
|||u|||tn(k) = sup

|K|≤k
|||uK ||| , ∀u ∈ Rd , (5.9)

where we recall that uK is the vector which coincides with u, except for the
components outside of K that are zero. We call generalized k-support norm the
dual norm of the generalized top-k norm, denoted by2 |||·|||?sn(k) :

|||·|||?sn(k) =
(
|||·|||tn(k)

)
?
. (5.10)

The notation sup|K|≤k is a shorthand for supK⊆{1,...,d},|K|≤k. It is easily verified
that |||·|||tn(k) indeed is a norm, for all k ∈ {1, . . . , d}.

Coordinate-k and dual coordinate-k norms

Definition 5.2.3 (from [23], Definition 3) For k ∈ {1, . . . , d}, we call coordinate-
k norm the norm |||·|||R(k) whose dual norm is the dual coordinate-k norm, denoted
by |||·|||R(k),?, with expression

|||v|||R(k),? = sup
|K|≤k
|||vK |||K,? , ∀v ∈ Rd , (5.11)

where the (K, ?)-norm |||·|||K,? is given in Definition 5.2.1, and where the nota-
tion sup|K|≤k is a shorthand for supK⊆{1,...,d},|K|≤k.

Also, following [23, §3.2], we extend the dual coordinate-k norms in Defini-
tion 5.2.3 with the convention |||·|||R(0),? = 0, also this is not a norm on Rd but a
seminorm.

Orthant monotonicity

In the following definition, we introduce an important characterization of the
source norm |||·|||. For any u ∈ Rd, we denote by |u| the vector of Rd with
components |ui|, i = 1, . . . , d:

u = (u1, . . . , ud)⇒ |u| = (|u1|, . . . , |ud|) . (5.12)

Definition 5.2.4 (from [22], Definition 1) A norm |||·||| on the space Rd is
called

• orthant-monotonic [38] if, for all u, u′ in Rd, we have
(
|u| ≤ |u′| and u ◦ u′ ≥

0⇒ |||u||| ≤ |||u′|||
)
, where |u| ≤ |u′| means |ui| ≤ |u

′
i| for all i = 1, . . . , d,

and where u ◦ u′ = (u1u
′
1, . . . , udu

′
d) is the Hadamard (entrywise) product,

• orthant-strictly monotonic [21, Definition 3] if, for all u, u′ in Rd, we
have

(
|u| < |u′| and u ◦ u′ ≥ 0⇒ |||u||| < |||u′|||

)
, where |u| < |u′| means

that |ui| ≤ |u
′
i| for all i = 1, . . . , d, and there exists j ∈ {1, . . . , d}, such

that |uj| < |u
′
j|.

2We use the symbol ? in the superscript to indicate that the generalized k-support norm
|||·|||?sn(k) is a dual norm.
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5.3 Background on the Capra coupling
We introduce the Capra coupling, a special case of one-sided linear coupling as
in Definition 4.2.7.

Definition 5.3.1 (from [23], Definition 8) Let |||·||| be a norm on Rd, called
the source norm. We define the coupling ¢, or Capra, between Rd and Rd by

∀v ∈ Rd ,


¢(u, v) =

〈u , v〉
|||u|||

, ∀u ∈ Rd\{0} ,

¢(0, v) = 0.

(5.13)

Let us denote
S(0) = S ∪ {0} . (5.14)

From Definition 5.3.1, we see that if we introduce the primal normalization
mapping

n : Rd → S(0) , n(u) =

{
u
|||u||| if u 6= 0 ,

0 if u = 0 ,
(5.15)

the Capra coupling is the one-sided linear coupling expressed as

¢(u, v) = 〈n(u) , v〉 , ∀(u, v) ∈ (Rd)2 , (5.16)

following Definition 4.2.7. We stress the point that, in (5.13), the Euclidean
scalar product 〈u , v〉 and the norm term |||u||| need not be related, that is, the
norm |||·||| is not necessarily Euclidean. We sometimes use the notation n|||·||| for
n in (5.15) and ¢|||·||| for ¢ in (5.13) when we need to put emphasis on the nature
of the source norm |||·|||.

It was shown in [22] that, with a judicious choice of source norm |||·|||,
the Capra coupling is well-suited for optimization problems involving the `0

pseudonorm. We recall the definition of `0 and of its level sets.

Definition 5.3.2 Let d be a positive integer (dimension of regression vari-
ables). The `0 pseudonorm is the function `0 : Rd → {0, 1, . . . , d} defined by

`0(u) =
∣∣{j ∈ {1, . . . , d} ∣∣uj 6= 0

}∣∣ , ∀u ∈ Rd , (5.17a)

where |K| denotes the cardinality of a subset K ⊆ {1, . . . , d}. We introduce the
level sets

`≤k0 =
{
u ∈ Rd

∣∣ `0(u) ≤ k
}
, ∀k ∈

{
0, 1, . . . , d

}
. (5.17b)

The following theorem is one of the main result relating the Capra coupling
and the `0 pseudonorm.
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Theorem 5.3.3 (from [22], Theorem 15) If both the norm |||·||| and the dual
norm |||·|||? are orthant-strictly monotonic as in Definition 5.2.4, then we have

`
¢¢′
0 = `0 , (5.18)

that is, the pseudonorm `0 is a Capra-convex function.

As a complement to Theorem 5.3.3, further results in [23], [22] discuss the
Capra-subdifferentiability properties of the `0 pseudonorm. We recall the defi-
nition of the Capra-subdifferential of the `0 pseudonorm, for which we introduce
the sets

Vl =
{
v ∈ Rd

∣∣ l ∈ arg max
j=0,...,d

(
|||v|||R(j),? − j

)}
, ∀l ∈ J0, dK . (5.19)

Proposition 5.3.4 (from [23], Proposition 14) Let |||·||| be a norm on Rd.
Let {|||·|||R(j)}j∈J1:dK and {|||·|||R(j),?}j∈J1:dK be the associated sequences of coordinate-
k and dual coordinate-k norms, as in Definition 5.2.3, and let {BR(j)}j∈J1:dK and
{BR(j),?}j∈J1:dK be the corresponding sequences of unit balls for these norms. Let
¢ be the Capra coupling associated to |||·|||, as in Definition 5.3.1, the Capra-
subdifferential of the function `0 is given by,

• if u = 0,
∂¢`0(0) =

⋂
j∈J1:dK

jBR(j),? , (5.20a)

• if u 6= 0 and `0(u) = l,

∂¢`0(u) = NBR
(l)

(
u

|||u|||R(l)
) ∩ Vl . (5.20b)

Finally, in complement to Proposition 5.3.4, we recall the current state of
knowledge regarding the Capra-subdifferentiability of the `0 pseudonorm.

Proposition 5.3.5 (from [22], Proposition 14) If both the norm |||·||| and
the dual norm |||·|||? are orthant-strictly monotonic as in Definition 5.2.4, then
we have

∂¢`0(u) 6= ∅ , ∀u ∈ Rd , (5.21)

that is, the pseudonorm `0 is Capra-subdifferentiable on Rd.

5.4 Capra-subdifferential of `0 for the `p source
norms

We provide explicit formulas for the Capra-subdifferential of the `0 pseudonorm
as introduced in Proposition 5.3.4 for the `p source norms |||·||| = ||·||p, when
p ∈ [1,∞]. Before we start, we recall some properties of the coordinate-k and
dual coordinate-k norms in Definition 5.2.3 for such source norms.
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Proposition 5.4.1 (from [23], Table 1) Let the `p source norms |||·||| = ||·||p,
where p ∈ [1,∞], and let q ∈ [1,∞] such that 1

p
+ 1

q
= 1. The coordinate-k and

dual coordinate-k norms in Definition 5.2.3 are given, for k ∈ J1, dK, by

|||·|||R(k),? = ||·||tn(k,q) and |||·|||R(k) = ||·||sn(p,k) , (5.22a)

where, for v ∈ Rd, if ν is a permutation of J1, dK such that |vν(1)| ≥ . . . ≥ |vν(d)|,
the top (k, q)-norm ||·||tn(k,q) is given explicitly by

||v||tn(k,q) =
( k∑
i=1

|vν(i)|q
) 1
q
, q ∈ [1,∞[ , and ||v||tn(k,∞) = ||v||∞ , (5.22b)

and the (p, k)-support norm ||·||sn(p,k) is the dual norm of the top (k, q)-norm
||·||tn(k,q), as defined in [60, §8.1].

Then, we proceed in three steps. First, in §5.4.1, we provide an explicit
formulation for the set Vl in (5.19). Second, in §5.4.2, we provide an explicit for-
mulation for the normal cone in (5.20b). Finally, we gather both results to pro-
vide an explicit formulation of the Capra-subdifferential of the `0 pseudonorm
in §5.4.3.

5.4.1 Explicit formulation for Vl
We derive explicit formulations of the sets Vl in (5.19) for the `p source norms
|||·||| = ||·||p, when p ∈ [1,∞]. We start with two preliminary results. We state
our first preliminary result in Lemma 5.4.2.

Lemma 5.4.2 Let v ∈ Rd, q ∈ [1,∞[ and k ∈ J0, d− 1K. We have that

||v||tn(k+1,q)−||v||
tn
(k,q) ≤ 1 =⇒ ||v||tn(k+j,q)−||v||

tn
(k,q) ≤ j , ∀j ∈ J1, d−kK . (5.23)

Moreover, the same result holds if inequalities are strict in (5.23).

Proof. Let v ∈ Rd and ν denote a permutation of J1, dK such that |vν(1)| ≥ . . . ≥
|vν(d)|, let be q ∈ [1,∞[, k ∈ J0, d− 1K and j ∈ J1, d− kK. We denote

vΣ
k,q =

k∑
i=1

|vν(i)|q , (5.24)

so that, from Proposition 5.4.1, we have that ||v||tn(k,q) =
(
vΣ
k,q

) 1
q .

First, we prove the inequality(
vΣ
k,q + j|vν(k+1)|q

) 1
q −

(
vΣ
k,q

) 1
q ≤ j

[(
vΣ
k,q + |vν(k+1)|q

) 1
q −

(
vΣ
k,q

) 1
q

]
. (5.25)
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By concavity of the function x 7→ x
1
q (as q ≥ 1), we have that

1

j

(
vΣ
k,q + j|vν(k+1)|q

) 1
q +

(
1− 1

j

)(
vΣ
k,q

) 1
q ≤

(1

j

(
vΣ
k,q + j|vν(k+1)|q

)
+
(
1− 1

j

)
vΣ
k,q

) 1
q
,

⇐⇒
(
vΣ
k,q + j|vν(k+1)|q

) 1
q +

(
j − 1

)(
vΣ
k,q

) 1
q ≤ j

(
vΣ
k,q + |vν(k+1)|q

) 1
q
,

⇐⇒
(
vΣ
k,q + j|vν(k+1)|q

) 1
q −

(
vΣ
k,q

) 1
q ≤ j

[(
vΣ
k,q + |vν(k+1)|q

) 1
q −

(
vΣ
k,q

) 1
q

]
.

Second, we prove the implication in (5.23) in its nonstrict inequality version. Let
us assume that ||v||tn(k+1,q) − ||v||

tn
(k,q) ≤ 1,

||v||tn(k+j,q) − ||v||
tn
(k,q) ≤

(
vΣ
k,q + j|vν(k+1)|q

) 1
q −

(
vΣ
k,q

) 1
q ,

(from (5.24) and |vν(k+1)| ≥ |vν(k+2)| ≥ . . . ≥ |vν(k+j)|)

≤ j
[(
vΣ
k,q + |vν(k+1)|q

) 1
q −

(
vΣ
k,q

) 1
q

]
, (from (5.25))

= j
[
||v||tn(k+1,q) − ||v||

tn
(k,q)

]
, (from the expression of ||·||tn(k,q))

≤ j . (by assumption)

The proof of the strict inequality version of (5.23) is analogous. 2

We state our second preliminary result in Lemma 5.4.3.

Lemma 5.4.3 Let v ∈ Rd, q ∈ [1,∞[ and k ∈ J0, d− 1K. We have that

||v||tn(k+1,q)−1 ≤ ||v||tn(k,q) ⇐⇒ |vν(k+1)|q ≤
(
||v||tn(k,q) + 1

)q−(||v||tn(k,q))q . (5.26)

Moreover, the same result holds if inequalities are strict or replaced with equal-
ities in (5.26).

Proof. For v ∈ Rd and k ∈ J0, d− 1K, we have that

||v||tn(k+1,q) − 1 ≤ ||v||tn(k,q) ⇐⇒
( k∑
i=1

|vν(i)|q + |vν(k+1)|q
) 1
q − 1 ≤ ||v||tn(k,q) ,

⇐⇒
k∑
i=1

|vν(i)|q + |vν(k+1)|q ≤
(
||v||tn(k,q) + 1

)q
,

(x 7→ xq is nondecreasing on R+)

so that finally,

||v||tn(k+1,q) − 1 ≤ ||v||tn(k,q) ⇐⇒ |vν(k+1)|q ≤
(
||v||tn(k,q) + 1

)q − (||v||tn(k,q))q .
The proof of the strict inequality and equality versions of (5.23) is analogous. 2

We now provide explicit formulations of the sets Vl in (5.19) for the `p source
norms |||·||| = ||·||p, when p ∈ [1,∞].

Proposition 5.4.4 Let the source norm be the `p norm |||·||| = ||·||p, where
p ∈ [1,∞], and let q ∈ [1,∞] be such that 1

p
+ 1

q
= 1. For l ∈ J0, dK, let the set

Vl be as in (5.19). We have that
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• if p = 1,

Vl =

{
Rd if l = 0 ,

∅ else,
(5.27a)

• if p ∈]1,∞], for v ∈ Rd and ν be a permutation of J1, dK such that |vν(1)| ≥
. . . ≥ |vν(d)|, we have that

v ∈ Vl ⇐⇒

{
|vν(k+1)|q ≥

(
||v||tn(k,q) + 1

)q − (||v||tn(k,q))q , ∀k ∈ J0, l − 1K ,
|vν(l+1)|q ≤

(
||v||tn(l,q) + 1

)q − (||v||tn(l,q))q .
(5.27b)

Proof. When the source norm is |||·||| = ||·||1, we have, for k ∈ J1, dK, |||·|||R(k),? = ||·||∞
[23, Table 1], hence (5.27a) from the expression of Vl in (5.19). Next, we consider
p ∈]1,∞], and proceed in two steps to prove the equivalence in (5.27b).

In the first step (⇐= ), let us take v ∈ Rd and make the two following assumptions:

• if |vν(k+1)|q ≥
(
||v||tn(k,q) + 1

)q − (||v||tn(k,q))q , ∀k ∈ J0, l − 1K ,

then, from Lemma 5.4.3, we have that

||v||tn(k+1,q) − 1 ≥ ||v||tn(k,q) , ∀k ∈ J0, l − 1K ,

=⇒ ||v||tn(k+1,q) − (k + 1) ≥ ||v||tn(k,q) − k , ∀k ∈ J0, l − 1K ,

=⇒ l ∈ arg max
j=0,...,l

(
||v||tn(j,q) − j

)
;

• if |vν(l+1)|q ≤
(
||v||tn(l,q) + 1

)q − (||v||tn(l,q))q ,
then, from Lemma 5.4.3, we have that

||v||tn(l+1,q) − 1 ≤ ||v||tn(l,q) ,

=⇒ ||v||tn(l+j,q) − j ≤ ||v||
tn
(l,q) , ∀j ∈ J1, d− lK , (from Lemma 5.4.2)

=⇒ ||v||tn(l+j,q) − (l + j) ≤ ||v||tn(l,q) − l , ∀j ∈ J1, d− lK ,

=⇒ l ∈ arg max
j=l,...,d

(
||v||tn(j,q) − j

)
.

Therefore, v ∈ Vl , which concludes the first step.
In the second step ( =⇒ ), we proceed by contraposition, assuming that either

one of the two assumptions above breaks:

• if ∃k ∈ J0, l − 1K , |vν(k+1)|q <
(
||v||tn(k,q) + 1

)q − (||v||tn(k,q))q ,
then, from Lemma 5.4.3, we have that

∃k ∈ J0, l − 1K , ||v||tn(k+1,q) − 1 < ||v||tn(k,q) ,

=⇒ ∃k ∈ J0, l − 1K , ||v||tn(k+1,q) − (k + j) < ||v||tn(k,q) − k , ∀j ∈ J1, d− kK ,
(from Lemma 5.4.2)

=⇒ l /∈ arg max
j=0,...,l

(
||v||tn(j,q) − j

)
;

• if |vν(l+1)|q >
(
||v||tn(l,q) + 1

)q − (||v||tn(l,q))q ,
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then, from Lemma 5.4.3,

||v||tn(l+1,q) − 1 > ||v||tn(l,q) ,

=⇒ ||v||tn(l+1,q) − (l + 1) > ||v||tn(l,q) − l ,

=⇒ l /∈ arg max
j=l,...,d

(
||v||tn(j,q) − j

)
.

In either case, v /∈ Vl, which concludes the second step, and finally proves the equiva-
lence in (5.27b). 2

5.4.2 Explicit formulation for NBsn
(p,l)

We turn to the explicit formulation of the normal cone in (5.20b) for the `p
source norms |||·||| = ||·||p, when p ∈ [1,∞]. We start with the following Lemma.

Lemma 5.4.5 Let the source norm be the `p norm |||·||| = ||·||p, where p ∈
[1,∞]. Let u ∈ Rd, l = `0(u), L = supp(u). If l ∈ J1, dK, we have that
u′ = u

||u||sn(p,l)
satisfies

||u′||p = 1 , (5.28a)

v ∈ NBsn
(p,l)

(u′) ⇐⇒ ||v||tn(l,q) = 〈u′ , vL〉 , (5.28b)

v ∈ NBsn
(p,l)

(u′) =⇒ ||v||tn(l,q) ≤ ||vL||q . (5.28c)

Proof. Let q ∈ [1,∞] be such that 1
p + 1

q = 1.
First, we prove (5.28a). From [23, Proposition 6], `0 ≥ 1 and `0(u′) = l gives us

that |||u′||| = |||u′|||R(l), thus in our case from Proposition 5.4.1, ||u′||p = ||u′||sn(p,l) = 1.
Second, we prove (5.28b). We have the equivalence

v ∈ NBsn
(p,l)

(u′) ⇐⇒ ||u′||sn(p,l)||v||
tn
(l,q) =

〈
u′ , v

〉
(by definition of the normal cone)

⇐⇒ ||v||tn(l,q) =
〈
u′ , vL

〉
. (from ||u′||sn(p,l) = 1 and L = supp(u′))

Third, we prove (5.28c). We have that

v ∈ NBsn
(p,l)

(u′) ⇐⇒ ||v||tn(l,q) =
〈
u′ , vL

〉
Rl , (from (5.28b))

=⇒ ||v||tn(l,q) ≤ ||vL||q . (from the Hölder inequality and (5.28a))

2

We now provide an explicit expression of the normal cone in (5.20b) for the
`p source norms |||·||| = ||·||p, when p ∈ [1,∞].

Proposition 5.4.6 Let the source norm be the `p norm |||·||| = ||·||p, where
p ∈ [1,∞]. Let u ∈ Rd, l = `0(u) and L = supp(u). If l ∈ J1, dK, we have that

v ∈ NBsn
(p,l)

( u

||u||sn(p,l)

)
⇐⇒

{
vL ∈ NB||·||p ( u

||u||p ) ,

|vj| ≤ mini∈L |vi| , ∀j /∈ L .
(5.29)
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Proof. Let q ∈ [1,∞] be such that 1
p + 1

q = 1. Let v ∈ Rd, we introduce the notations
I = supp(v) and u′ = u

||u||sn(p,l)
.

First, we prove that

v ∈ NBsn
(p,l)

(u′) =⇒ ||v||tn(l,q) = ||vL||q . (5.30)

We consider two cases. In the first case, we assume |I| ≤ |L| = l. Since v has at most l
nonzero coordinates, from the expression of ||·||tn(l,q) in Proposition 5.4.1, we have that
||v||tn(l,q) = ||vI ||q. It follows that

v ∈ NBsn
(p,l)

(u′) =⇒ ||vI ||q ≤ ||vL||q , (from (5.28c))

=⇒ ||vL||q = ||vI ||q = ||v||tn(l,q) . (from ||vL||q ≤ ||v||q = ||vI ||q)

In the second case, we assume |I| > |L| = l. Since v has more than l nonzero
coordinates, from the expression of ||·||tn(l,q) in Proposition 5.4.1, we have that ||v||tn(l,q) ≥
||vL||q. Combined with (5.28c), we have that v ∈ NBsn

(p,l)
(u′) =⇒ ||v||tn(l,q) = ||vL||q.

Gathering the conclusions of both cases, we obtain (5.30).
Second, we prove (5.29). We have that

v ∈ NBsn
(p,l)

(u′) ⇐⇒

{
||u′||p||vL||q = 〈u′ , vL〉 ,
||v||tn(l,q) = ||vL||q ,

(from (5.28a), (5.28b), (5.30))

⇐⇒

{
vL ∈ NB||·||p ( u

||u||p ) ,

|vj | ≤ mini∈L |vi| , ∀j /∈ L ,

by definition of the normal cone, observing that u′ = u
||u||p from (5.28a), and by the

expression of of ||·||tn(l,q) in Proposition 5.4.1. This ends the proof. 2

5.4.3 Capra-subdifferential and Capra-convexity of `0

Finally, we gather the explicit expressions of the Capra-subdifferential of the
pseudonorm `0, for the `p source norms |||·||| = ||·||p, when p ∈ [1,∞].

Proposition 5.4.7 Let the source norm |||·||| = ||·||p, where p ∈ [1,∞], let
q ∈ [1,∞] such that 1

p
+ 1

q
= 1, and let the associated Capra coupling ¢ as in

Definition 5.3.1.

• The Capra-subdifferential of the function `0 at u = 0 is given by

∂¢`0(0) = B||·||∞ . (5.31)

• The Capra-subdifferential of the function `0 at u 6= 0, where l = `0(u) and
L = supp(u), is given by,

I if p = 1,
∂¢`0(u) = ∅ , (5.32a)
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I if p ∈]1,∞[, then dom
(
∂¢`0

)
= Rd, and

v ∈ ∂¢`0(u) ⇐⇒


vL ∈ NB||·||p ( u

||u||p ) ,

|vj| ≤ mini∈L |vi| , ∀j /∈ L ,
|vν(k+1)|q ≥

(
||v||tn(k,q) + 1

)q − (||v||tn(k,q))q , ∀k ∈ J0, l − 1K ,
|vν(l+1)|q ≤

(
||v||tn(l,q) + 1

)q − (||v||tn(l,q))q ,
(5.32b)

I if p =∞, {0} ( dom
(
∂¢`0

)
( Rd, and

v ∈ ∂¢`0(u) ⇐⇒


vL ∈ NB||·||∞ ( u

||u||∞ ) ,

|vj| ≤ mini∈L |vi| , ∀j /∈ L ,
|vν(k+1)| ≥ 1 , ∀k ∈ J0, l − 1K ,
|vν(l+1)| ≤ 1 ,

(5.32c)

where, for a dual element v ∈ Rd, ν denotes a permutation of J1, dK such that
|vν(1)| ≥ . . . ≥ |vν(d)|.

Proof. • From (5.20a), ∂¢`0(0) =
⋂
j∈J1:dK jBR(j),?. If p = 1, from Proposition 5.4.1,

|||·|||R(j),? = ||·||∞, ∀j ∈ J1, dK, hence ∂¢`0(0) = B||·||∞ . We now assume that p ∈]1,∞],

so that, from Proposition 5.4.1, |||·|||R(j),? = ||·||tn(j,q), ∀j ∈ J1, dK, where q ∈ [1,∞[. For
j = 1, from (5.22b), ||·||tn(1,q) = ||·||∞, hence Btn

(1,q) = B||·||∞ . Let j > 1, we prove an
inclusion:

v ∈ B||·||∞ =⇒ |vν(1)|q ≤ 1 ,

=⇒
j∑
i=1

|vν(1)|q ≤ j , (from |vν(1)| ≥ . . . ≥ |vν(d)|)

=⇒
( j∑
i=1

|vν(1)|q
) 1
q ≤ j

1
q ,

=⇒ ||v||tn(j,q) ≤ j (by definition of ||·||tn(j,q) in (5.22b) and from j ≥ j
1
q )

=⇒ v ∈ jBtn
(j,q) ,

so that B||·||∞ ⊆ jBtn
(j,q). We conclude that ∂¢`0(0) = B||·||∞ .

• First, we prove the expressions of ∂¢`0 in (5.32). For u 6= 0, from (5.20b),
∂¢`0(u) = NBR

(l)
( u
|||u|||R

(l)

) ∩ Vl . I If p = 1, from (5.27a), Vl = ∅, hence ∂¢`0(u) = ∅.
I If p ∈]1,∞], the expressions of ∂¢`0(u) in (5.32b)–(5.32c) are obtained combining
Proposition 5.4.6 and Proposition 5.4.4.

Second, we prove our claims on dom
(
∂¢`0

)
. If p ∈]1,∞[, the norm ||·||p and the

dual norm ||·||q are orthant-strictly monotonic, following Definition 5.2.4, so that `0
is Capra-subdifferentiable on Rd, from [22, Proposition 14]. We now consider the case
p =∞. Let us for example take u ∈ Rd defined, for some i ∈ J1, dK and ε ∈]0, 1[, by{

uj = 1 , ∀j 6= i ,

ui = ε .
(5.33)
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We prove that ∂¢`0(u) = ∅ by contradiction. Let v ∈ ∂¢`0(u). From (5.32c), v ∈
NB||·||∞ ( u

||u||∞ ), so that 〈u′ − u , v〉 ≤ 0 for any u′ ∈ B||·||∞ . In particular, for j 6= i,
taking u′ = u − ej , where {ek}k∈J1,dK is the canonical basis of Rd, we obtain that
vj ≥ 0. Moreover,

||u||∞||v||1 = 〈u , v〉 , (by definition of the normal cone)

=⇒
∑
j 6=i

vj + |vi| =
∑
j 6=i

vj + εvi , (from our definition of u)

=⇒ vi = 0 . (from ε ∈]0, 1[)

However, since `0(u) = d, we deduce from (5.32c) that we must have vi ≥ 1. We arrive
at a contradiction, and conclude that ∂¢`0(u) = ∅, and therefore that dom

(
∂¢`0

)
(

Rd. Finally, if ε = 1 in (5.33), it is straightforward to check in (5.32c) that (1, . . . , 1) ∈
∂¢`0(u), so that {0} ( dom

(
∂¢`0

)
. This ends the proof. 2

In complement to Proposition 5.4.7, we gather and actualize results on the
Capra-convexity and the Capra-subdifferentiability of the `0 pseudonorm for
the `p source norms |||·||| = ||·||p, when p ∈ {1,∞}.

Proposition 5.4.8 (gathering and extending results from [23], [22]) Let
the source norm |||·||| = ||·||p, where p ∈ [1,∞].

• If p = 1, the `0 pseudonorm is not Capra-convex, and only Capra-subdifferentiable
at u = 0. Its Capra-subdifferential at u = 0 is given by (5.31), and its Capra-
biconjugate is

`
¢¢′
0 : u 7→

{
0 , if u = 0 ,

1 , if u 6= 0 .
(5.34a)

• If p ∈]1,∞[, the `0 pseudonorm is Capra-convex and Capra-subdifferentiable
everywhere on Rd, and its Capra-subdifferential is given by (5.31) and (5.32b).

• If p =∞, the `0 pseudonorm is not Capra-convex, and not Capra-subdifferentiable
everywhere on Rd. Its Capra-subdifferential is given by (5.31) and (5.32b), and
its Capra-biconjugate is

`
¢¢′
0 : u 7→

{
0 , if u = 0 ,
||u||1
||u||∞ , if u 6= 0 .

. (5.34b)

Proof. Results about Capra-subdifferentiability are taken from Proposition 5.4.7, and
the Capra-convexity of `0 for p ∈]1,∞[ is taken from Theorem 5.3.3. Thus, we only
need to prove that `0 is not Capra-convex for p ∈ {1,∞} by proving the expressions
of the ¢-biconjugate in (5.34a) and (5.34b). To this end, we recall that from [23,
Proposition 11] and Proposition 5.4.1, if q ∈ {1,∞} is such that 1

p + 1
q = 1, then

`
¢
0 (v) = max

j=1,...,d

(
||v||tn(j,q) − j

)+
, ∀v ∈ Rd . (5.35)
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First, we consider p = 1. From (5.35) and (5.22b),

`
¢
0 (v) = max

j=1,...,d

(
||v||∞ − j

)+
=
(
||v||∞ − 1

)+
, ∀v ∈ Rd , and thus,

`
¢¢′
0 (u) = sup

v∈Rd

(〈u , v〉
||u||1

−
(
||v||∞ − 1

)+)
, ∀u ∈ Rd , (from (4.2d))

= max
(

sup
||v||∞≤1

〈u , v〉
||u||1

, 1 + sup
||v||∞≥1

〈u , v〉
||u||1

− ||v||∞
)
, ∀u ∈ Rd ,

= 1 , ∀u ∈ Rd \ {0} ,

since sup||v||∞≤1 〈u , v〉 = ||u||1, by ||·||1 =
(
||·||∞

)∗, and 〈u , v〉 ≤ ||u||1||v||∞, by
Hölder’s inequality. This proves (5.34a).

Second, we consider p =∞. From (5.35) and (5.22b), for v ∈ Rd and ν a permu-
tation of J1, dK such that |vν(1)| ≥ . . . ≥ |vν(d)|,

`
¢
0 (v) = max

j=1,...,d

( j∑
k=1

|vν(k)| − j
)+

=
d∑

k=1

(|vν(k)| − 1)1|vν(k)|≥1 , ∀v ∈ Rd , and thus,

`
¢¢′
0 (u) = sup

v∈Rd

(〈u , v〉
||u||∞

−
d∑

k=1

(|vν(k)| − 1)1|vν(k)|≥1

)
, ∀u ∈ Rd , (from (4.2d))

=
d∑

k=1

sup
vk∈R

( ukvk
||u||∞

− (|vk| − 1)1|vk|≥1

)
, ∀u ∈ Rd ,

=

d∑
k=1

max
(

sup
|vk|≤1

ukvk
||u||∞

, 1 + sup
|vk|≥1

ukvk
||u||∞

− |vk|
)
, ∀u ∈ Rd ,

=

d∑
k=1

|uk|
||u||∞

=
||u||1
||u||∞

, ∀u ∈ Rd ,

using similar arguments as above. This proves (5.34b), and ends the proof. 2

5.5 Graphical visualizations and discussion
First, we provide a numerical example to illustrate the Capra-subdifferential of
the `0 pseudonorm in §5.5.1. Second, we compare our expression of the Capra-
subdifferential of the `0 pseudonorm with other notions of subdifferential in
§5.5.2.

5.5.1 Visualization with the `2 source norm

As a numerical example, we compute the Capra-subdifferential of `0 for the `2

source norm |||·||| = ||·||2. According to Proposition 5.4.7, we have that

∂¢`0(0) = B||·||∞ , (5.36a)
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and for u 6= 0, v ∈ Rd, denoting l = `0(u), L = supp(u), and ν a permutation
of J1, dK such that |vν(1)| ≥ . . . ≥ |vν(d)|,

v ∈ ∂¢`0(u) ⇐⇒


vL = λu , λ ≥ 0 ,

|vj| ≤ mini∈L |vi| , ∀j /∈ L ,
|vν(k+1)|2 ≥

(
||v||tn(k,2) + 1

)2 −
(
||v||tn(k,2)

)2
, ∀k ∈ J0, l − 1K ,

|vν(l+1)|2 ≤
(
||v||tn(l,2) + 1

)2 −
(
||v||tn(l,2)

)2
.

(5.36b)

In particular, we illustrate in Figure 5.1 the Capra-subdifferentials obtained
with (5.36) in the two-dimensional case, for `0 : R2 → N. In Figure 5.1a,
we display the Capra-subdifferential of `0 at three points, covering the three
possible cases in R2, with `0(u) = 0 (green color), `0(u) = 1 (red color), and
`0(u) = 2 (blue color). Then, using the same colors, we display in Figure 5.1b
the Capra-subdifferential of `0 at all points in R2.

5.5.2 Discussion

We now compare the Capra-subdifferential of the `0 pseudonorm that we give
explicitly in Proposition 5.4.7 with other notions of subdifferentials.

First, we recall that the standard subdifferential of convex analysis obtained
with the Fenchel conjugacy is given by

∂`0(0) = {0} , and ∂`0(u) = ∅ , ∀u ∈ Rd \ {0} , (5.37)

following [23, Table 3]. Therefore, this subdifferential provides very little infor-
mation about the local and global properties of `0, except at u = 0.

Second, we recall other notions of generalized subdifferentials established for
the `0 pseudonorm. We refer to [51] for the definitions of the Fréchet, viscosity,
proximal, Clarke and limiting subdifferentials, where the author establishes that
all these notions coincide for the `0 pseudonorm, and are equal to the set-valued
mapping

M : Rd ⇒ Rd , u 7→
{
v ∈ Rd

∣∣ vL = 0
}
, (5.38)

where L = supp(u), from [51, Theorems 1, 2].
We deduce that the Capra-subdifferential of the `0 pseudonorm is signifi-

cantly different form previous notions of generalized subdifferentials of `0, sum-
marized by (5.38). In particular, we have that

0 ∈M(u) , ∀u ∈ Rd , (5.39)

whereas, if the Capra coupling is defined with the `p source norms |||·||| = ||·||p
and p ∈]1,∞[, since `0 is a Capra-convex function, we have that

0 ∈ ∂¢`0(u) ⇐⇒ u ∈ arg min
Rd

`0 = {0} , (5.40)

from the properties of the one-sided linear couplings in §4.2.3.
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u1

u2

(a) ∂¢`0(0, 0) , ∂¢`0(1, 0) , ∂¢`0(−
√

3
2 ,−

1
2)

u1

u2

(b) ∂¢`0(0)
⋃{ ⋃

`0(u)=1

∂¢`0(u)
}⋃{ ⋃

`0(u)=2

∂¢`0(u)
}

Figure 5.1: Capra-subdifferential of the `0 pseudonorm in R2

with the `2 source norm |||·||| = ||·||2, illustrated for three points
(Figure 5.1a) and for all points in R2 (Figure 5.1b)
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5.6. Conclusion

More generally, we argue that since the `0 pseudonorm displays the Capra-
convex properties recalled in Proposition 5.4.8, the Capra-subdifferential is a
natural object to study the local and global properties of `0. As another exam-
ple, combining the Fenchel-Young inequality in (4.3b) and the definition of the
c-subdifferential in (4.5a), we obtain exact elementary Capra-convex minorants
(generalizing exact affine minorants for proper lsc convex functions) of the `0

pseudonorm.

5.6 Conclusion
We have derived explicit formulations for the Capra-subdifferential of the `0

pseudonorm for the `p source norms with p ∈ [1,∞]. With these formulations,
it is now possible to compute elements in such Capra-subdifferentials, that we
have illustrated by a graphical representation. On top of that, we have ex-
tended previous knowledge on `0, establishing that it is neither Capra-convex
nor Capra-subdifferentiable everywhere in the limit cases where p ∈ {1,∞}.

The formulation that we obtain differs drastically from previous notions of
generalized subdifferential for the `0 pseudonorm. Whereas most other notions
coincide, the Capra-subdifferential enriches this collection and provides inter-
esting tools to study the local and global properties of `0, in the spirit of the
usual notion of subdifferential for proper lsc convex functions.
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Chapter 6

Perspectives of generalized
convexity in sparse optimization
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6.1 Introduction
Sparse optimization search for the solutions of a problem that have as few
nonzero coordinates as possible. Typically, exact sparse optimization problems
involve the `0 pseudonorm introduced in Chapter 5, either in their constraints
or in their objective function. In applications, this serves the handling of huge
flows of data collected on complex systems. A statistical model fitted with
sparse optimization captures the main variables, among thousands of others,
that explain the system’s behavior. Unfortunately, sparse optimization prob-
lems formulated with the `0 pseudonorm are difficult to solve in general [66]. A
common and successful practice to bypass this difficulty is to replace the orig-
inal problem by a convex counterpart [4, 42]. In some contexts, such convex
relaxation techniques even yield global optimal solutions [28]. However, this is
not always guaranteed, and the interest for exact sparse formulations, or for
more exact nonconvex relaxations, is still alive [99, 91].

Motivated by this situation, we discuss the perspectives of generalized con-
vexity in exact sparse optimization problems, based on the strong relationship
between the `0 pseudonorm and the Capra coupling, as introduced in Chap-
ter 5. We see possible applications for two classes of problems. For a first class
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of problems, we consider the minimization of `0 among elements of a constraint
set. This raises the question of a general characterization for Capra-convex
sets. For a second class of problems, we consider the minimization of a convex
function summed with a `0 penalty. In both cases, we identify the potential
c-convex property of the objective function, for a coupling c that is one-sided
linear. Therefore, we discuss perspectives in numerical methods, based on the
results of Chapter 4.

The chapter is organized as follows. First, in §6.2, we identify Capra-convex
sets, and provide some examples of these sets. Second, in §6.3, we discuss the
potential applications of generalized convexity in sparse optimization.

6.2 Capra-convex sets
By analogy with convex analysis, we provide the following definition of Capra-
convex sets.

Definition 6.2.1 Let |||·||| be a source norm. Let ¢ be the corresponding Capra-
coupling, as in Definition 5.3.1. We say that the set U ⊆ Rd is Capra-convex if
the indicator function δU is a Capra-convex function, as in Definition 4.2.2.

We now identify Capra-convex sets. First, we recall background notions
on sets in §6.2.1. Second, we identify Capra-convex sets in §6.2.2. Third, we
provide some examples of such sets in §6.2.3.

6.2.1 Background on sets in convex analysis

We start with some background notions of convex analysis related to sets. For
a subset U ⊆ Rd, we denote by coU the convex hull of U (defined as the
smallest convex subset of Rd containing U), and by coU the closed convex hull
of U (defined as the closure of coU). We recall that, if σU denotes the support
function of U as in (4.12), then σU = σcoU (see e.g. [5, Proposition 7.13]). We
pay a special attention to cones, which are subsets K ⊆ Rd such that

K =
{
λu
∣∣u ∈ K and λ > 0

}
, (6.1)

and following the terminology of [5, Definition 6.5], we say that the cone K
in (6.1) is pointed if

K ∩ (−K) ⊆ {0} . (6.2)

A cone can be constructed from any subset U ⊆ Rd, by means of the conical
hull of U , defined in [5, Definition 6.1] as

cone(U) =
{
λu
∣∣u ∈ U , λ > 0

}
, (6.3)

and of the positive hull of U , defined in [82, Chapter 3, §G] as

pos(U) = cone(U) ∪ {0} =
{
λu
∣∣u ∈ U , λ ≥ 0

}
. (6.4)
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6.2.2 Characterization of Capra-convex sets

We recall that, from Proposition 4.2.3, the indicator function δU is Capra-convex
iff it is equal to its Capra-biconjugate, defined in (4.2d), which we characterize
in the following lemma.

Lemma 6.2.2 Let |||·||| be a source norm on Rd. Let ¢ be the corresponding
Capra-coupling, as in Definition 5.3.1, and let n : Rd → S(0) be the correspond-
ing normalization mapping in (5.15). Let U ⊆ Rd be a nonempty set. We have
that

δ
¢¢′
U = δ

co
(
n(U)
) ◦ n . (6.5)

Proof. The coupling ¢ in Definition 5.3.1 is one-sided linear and factorizes with the
normalization mapping n : Rd → S(0) in (5.15). Therefore, we get that

δ
¢¢′
U = δ

¢?′
U ◦ n , (from (4.13c))

=
(
σn(U)

)?′ ◦ n , (from δ
¢
U = σn(U) in Proposition 4.2.10)

=
(
σ

co
(
n(U)

))?′ ◦ n , (see e.g. [5, Proposition 7.13])

=
(
δ

co
(
n(U)

))??′ ◦ n , (see e.g. [5, Example 13.3])

= δ
co
(
n(U)

) ◦ n . (as co
(
n(U)

)
is nonempty, closed and convex)

This ends the proof. 2

We deduce an immediate characterization of Capra-convex sets.

Proposition 6.2.3 Let |||·||| be a source norm on Rd. Let ¢ be the corresponding
Capra-coupling, as in Definition 5.3.1, and let n : Rd → S(0) be the correspond-
ing normalization mapping in (5.15). Let U ⊆ Rd be a nonempty set. We have
that

U is Capra-convex ⇐⇒ δU = δ
co
(
n(U)
) ◦ n , (6.6a)

⇐⇒ U = n−1
(

co
(
n(U)

))
. (6.6b)

Proof. This follows directly from Definition 6.2.1, Proposition 4.2.3 and Lemma 6.2.2.
2

Beyond this immediate characterization, we now turn to more explicit con-
ditions to characterize Capra-convex sets. We start with the following Lemma.

Lemma 6.2.4 Let |||·||| be a source norm on Rd. Let ¢ be the corresponding
Capra-coupling, as in Definition 5.3.1. Let K ⊆ Rd be a cone, we have that

K is Capra-convex ⇐⇒ K ∩ S(0) = co(K ∩ S(0)) ∩ S(0) . (6.7)
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Proof. First, considering the normalization mapping n defined in (5.15), we show
that

n(K) = K ∩ S(0) . (6.8)

We start with the ⊆ inclusion. By definition of n in (5.15), n(K) ⊆ S(0). Moreover
since K is a cone, we also have that n(K) ⊆ K. We conclude that n(K) ⊆ K ∩ S(0).
We turn to the ⊇ inclusion. Let u ∈ K ∩ S(0). If u = 0, then 0 ∈ K, and thus
u = 0 = n(0) ∈ n(K). If u 6= 0, then u ∈ K ∩ S and thus u = n(u) ∈ n(K). We
conclude that n(K) ⊇ K ∩ S(0). Finally, (6.8) holds.

Second, we show the equivalence in (6.7).
( =⇒ ) Let us assume that K is Capra-convex. We notice that

δK ◦ n = δK , (as K is a cone, and by definition of n in (5.15))
= δ

co
(
n(K)

) ◦ n . (as K is Capra-convex, and from Lemma 6.2.2)

By definition of n in (5.15), n(Rd) = S(0). We deduce that

K ∩ S(0) = co
(
n(K)

)
∩ S(0) ,

= co(K ∩ S(0)) ∩ S(0) . (from (6.8))

This concludes the first implication.
(⇐= ) Let us assume that K ∩ S(0) = co(K ∩ S(0)) ∩ S(0). We have that

δK∩S(0) = δco(K∩S(0))∩S(0) ,

=⇒ δK ◦ n = δco(K∩S(0)) ◦ n , (as n(Rd) = S(0), by definition of n in (5.15),)

=⇒ δK = δ
co
(
n(K)

) ◦ n . (as K is a cone, and using (6.8))

This proves that K is Capra-convex, from (6.6a), and concludes the second implica-
tion. 2

Then, restricting us to the case of `p source norms, p ∈]1,∞[, for which we
know from Proposition 5.4.8 that the `0 pseudonorm is Capra-convex, we prove
the following result.

Lemma 6.2.5 Let the source norm be the `p norm |||·||| = ||·||p, where p ∈]1,∞[.
Let K ⊆ Rd be a cone. If we have that{

K ∪ {0} is closed ,
K ∩ {0} = co

(
n(K)

)
∩ {0} ,

(6.9a)

then
K ∩ S(0) = co(K ∩ S(0)) ∩ S(0) . (6.9b)

Proof. Let us suppose that the cone K satisfies (6.9a). It is straightforward to
see that K ∩ S(0) ⊆ co(K ∩ S(0)) ∩ S(0). We concentrate on the reciprocal inclusion.
Let us take u ∈ co(K ∩ S(0)) ∩ S(0). We consider two cases.
• Let us assume that u = 0. We deduce that 0 ∈ co(K ∩ S(0)) = co

(
n(K)

)
, since

K is a cone (see (6.8)). Then, as K ∩{0} = co
(
n(K)

)
∩{0}, we conclude that 0 ∈ K,

and thus that u = 0 ∈ K ∩ S(0).
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• We now turn to the case u 6= 0. We observe that

K ∩ S(0) =

{(
K ∪ {0}

)
∩ S(0) , if 0 ∈ K ,(

K ∪ {0}
)
∩ S , if 0 /∈ K .

Since K ∪ {0} is closed, we deduce that K ∩ S(0) is closed, and thus compact. It
follows that the convex hull of K ∩ S(0) is compact (see e.g. [82, Corollary 2.30]),
and thus that co(K ∩ S(0)) = co(K ∩ S(0)). We deduce that u ∈ co(K ∩ S(0)), and
therefore, from Carathéodory’s Theorem (see e.g. [82, Theorem 2.29]), that there
exists {αi}i∈J1,d+1K ∈ [0, 1]d+1, {ui}i∈J1,d+1K ∈ (K ∩ S(0))d+1 such that

u =
d+1∑
i=1

αiui , and
d+1∑
i=1

αi = 1 .

Moreover, as u 6= 0, there exists j ∈ J1, d + 1K such that uj ∈ S and αj 6= 0. Since
u ∈ S and |||·||| is a `p norm, p ∈]1,∞[, we obtain by Minkowski’s inequality that

1 = |||u||| ≤ αj |||uj |||+ |||
d+1∑

i 6=j,i=1

αiui||| ≤
d+1∑
i=1

αi|||ui||| ≤
d+1∑
i=1

αi = 1 ,

using that {ui}i∈J1,d+1K ∈ (S(0))d+1. We conclude that

|||u||| = αj |||uj |||+ |||
d+1∑

i 6=j,i=1

αiui||| .

This case of equality in Minkowski’s inequality implies that one of the two following
statements holds (see e.g. [16, §2.4, Theorem 9]):{

αjuj = λ
(∑d+1

i 6=j,i=1 αiui
)
, for some λ > 0 ,∑d+1

i 6=j,i=1 αiui = 0 .

In both cases, it follows that we can write u = µuj , for some µ > 0, so that u ∈ K,
as K is a cone, and thus u ∈ K ∩ S(0).

We conclude that K ∩ S(0) ⊇ co(K ∩ S(0)) ∩ S(0), and thus that (6.9b) holds. 2

We now show an explicit characterization of Capra-convex sets, when the
source norm is a `p norm with p ∈]1,∞[.

Proposition 6.2.6 Let the source norm be the `p norm |||·||| = ||·||p, where
p ∈]1,∞[. Let ¢ be the corresponding Capra-coupling, as in Definition 5.3.1,
and let n : Rd → S(0) be the corresponding normalization mapping in (5.15).
Let U ⊆ Rd be a nonempty set. Then, we have the equivalence

U is Capra-convex ⇐⇒


U is a cone ,
U ∪ {0} is closed ,
U ∩ {0} = co

(
n(U)

)
∩ {0} .

(6.10)

Proof. First, let us suppose that the set U is Capra-convex, and prove the implication
( =⇒ ) in (6.10).
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• We prove that U is a cone. Let u ∈ U and λ > 0. We have that

δU (λu) = δ
co
(
n(U)

) ◦ n(λu) , (from (6.6a))

= δ
co
(
n(U)

) ◦ n(u) , (by definition of n in (5.15))

= δU (u) (using again (6.6a))
= 0 . (as u ∈ U)

We conclude that λu ∈ U , and thus that U is a cone.
• We prove that U ∪ {0} is closed. Let {uk}k∈N ∈ (U ∪ {0})N be a sequence

converging to ū ∈ Rd. Let us prove that ū ∈ U ∪ {0}. Clearly, if ū = 0 then
ū ∈ U ∪ {0}. We now consider the case ū 6= 0. Since the sequence {uk}k∈N converges
to ū 6= 0, there exists k̄ ∈ N such that k ≥ k̄ =⇒ uk 6= 0. Therefore, we introduce
the sequence

{
uk
|||uk|||

}
k≥k̄, which converges to ū

|||ū||| . Let us observe that for k ≥ k̄,

uk
|||uk|||

∈ U ∩ S(0) , (as uk ∈ U , U is a cone, and by definition of S(0) in (5.14))

= co(U ∩ S(0)) ∩ S(0) . (from Lemma (6.2.4), as U is a Capra-convex cone)

Moreover, observing that co(U ∩ S(0))∩S(0) is closed, we deduce that the limit ū
|||ū||| of

the converging sequence
{

uk
|||uk|||

}
k≥k̄ belongs to co(U ∩ S(0)) ∩ S(0). We deduce that

ū

|||ū|||
∈ U ∩ S(0) , (using again Lemma (6.2.4))

=⇒ ū ∈ U . (since ū
|||ū||| ∈ U and U is a cone)

We conclude that U ∪ {0} is closed.
• The fact that U ∩ {0} = co

(
n(U)

)
∩ {0} follows from n(0) = 0 in (5.15), which

implies that δU (0) = δ
co
(
n(U)

)(0) in (6.6a), hence 0 ∈ U ⇐⇒ 0 ∈ co
(
n(U)

)
.

Second, let us suppose that the set U satisfies the three conditions in the right-
hand side of the equivalence in (6.10). We deduce from Lemma 6.2.5 that U ∩ S(0) =

co(U ∩ S(0)) ∩ S(0). We conclude from Lemma 6.2.4 that U is a Capra-convex set. 2

6.2.3 Examples with the `2 source norm

Let us consider the source norm |||·||| = ||·||2. We recall that with this choice of
source norm, Capra-convex sets are cones characterized by Proposition 6.2.6.
We provide in Figure 6.1 examples of cones in R2 and comment on their Capra-
convexity.

Given that if 0 ∈ K, problems like

min
u∈K

`0(u) (6.11)

are trivially solved by u = 0, we pay a specific attention to sets for which 0 /∈ K.
All three cones of the sequence {Ki}i∈{1,2,3} displayed in Figure 6.1 (left column)
are such thatKi∪{0} is closed, and 0 /∈ Ki. First, we observe that the condition
Ki∩{0} = co

(
n(Ki)

)
∩{0} required for Capra-convex sets by Proposition 6.2.6 is
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not fulfilled for K1, as 0 ∈ co
(
n(K1)

)
∩{0} (Figure 6.1b). We deduce that K1 is

not a Capra-convex set. Second, we observe that this condition is fulfilled for the
other two cones, as 0 /∈ co

(
n(K2)

)
∩{0} (Figure 6.1d), and 0 /∈ co

(
n(K3)

)
∩{0}

(Figure 6.1f). We deduce that K2 and K3 fulfill the characterization given in
Proposition 6.2.6, and thus that these sets are Capra-convex.

The example K2 of Figure 6.1c reveals that a cone needs not be convex
to be Capra-convex. However, as convex sets are ubiquitous in optimization
problems, convex cones are examples of particular interest. We show that some
of these sets are Capra-convex.

Lemma 6.2.7 Let K ⊆ Rd be a closed convex cone. If K is pointed, then we
have that

0 /∈ co(K ∩ S) . (6.12)

Proof. Let us assume that K is pointed and that 0 ∈ co(K ∩ S). We prove that this
leads to a contradiction.

Since K is closed, the set K ∩ S is compact, and therefore so is its convex hull
(see e.g. [82, Corollary 2.30]), which is thus equal to co(K ∩ S). It follows from
Carathéodory’s Theorem (see e.g. [82, Theorem 2.29]) that there exists {αi}i∈J1,d+1K ∈
[0, 1]d+1, {ui}i∈J1,d+1K ∈ (K ∩ S)d+1 such that

0 =
d+1∑
i=1

αiui , and
d+1∑
i=1

αi = 1 .

Let j ∈ J1, d + 1K be such that αj 6= 0. We have, by construction, that uj ∈ K and
that

−uj =
∑

i∈J1,d+1K,i 6=j

αi
αj
ui .

As K is a convex cone, we deduce from the above expression that −uj ∈ K (see e.g.
[5, Proposition 6.3(i)]). Then, since K is pointed, necessary uj = 0, which contradicts
the fact that uj ∈ S. 2

In addition to our previous examples given in Figure 6.1, we identify the
following notable cases of Capra-convex sets.

Proposition 6.2.8 Let K ⊆ Rd be a cone. If K is nonempty, closed and
convex, then K is a Capra-convex set. If moreover K is pointed, then K \ {0}
is also a Capra-convex set.

Proof. First, we consider the cone K. Since K is closed, so is K ∪ {0}, and 0 ∈ K.
It follows that 0 ∈ n(K), by definition of the normalization mapping n in (5.15), and
thus that 0 ∈ co

(
n(K)

)
. We conclude that K ∩ {0} = co

(
n(K)

)
∩ {0} = {0}, and

therefore that K is Capra-convex, from Proposition 6.2.6.
Second, we consider the cone K ′ = K \{0}. We have that K ′∪{0} = K is closed,

and 0 /∈ K ′. It follows that K ′ ∩ S(0) = K ′ ∩ S, so that n(K ′) = K ′ ∩ S (see (6.8)).
As K is pointed, so is K ′, and we deduce from Lemma 6.2.7 that 0 /∈ co

(
n(K ′)

)
. We

conclude that K ′∩{0} = co
(
n(K ′)

)
∩{0} = ∅, and therefore that K ′ is Capra-convex,

from Proposition 6.2.6. 2
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u1

u2

(a) K1 (blue color)

u1

u2

(b) co
(
n(K1)

)
(blue color)

u1

u2

(c) K2 (blue color)

u1

u2

(d) co
(
n(K2)

)
(blue color)

u1

u2

(e) K3 (blue color)

u1

u2

(f) co
(
n(K3)

)
(blue color)

Figure 6.1: Three cones {Ki}i∈{1,2,3} (left column) and the
closed convex hull of their image by the normalization mapping
n in (5.15) defined with the `2 source norm (right column).

For i ∈ {1, 2, 3}, 0 /∈ Ki
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6.3 Generalized convexity in sparse optimization
We identify generalized convexity properties in two classes of famous sparse
optimization problems.

First, in §6.3.1, we identify a class of sparse optimization problems that can
be tackled by another problem with conic constraints, which suggests that in
some situations, this second problem could be Capra-convex. Second, in §6.3.2,
we show that for a second class of sparse problems, the objective function is
c-convex, for specific coupling that we introduce. Third, in §6.3.3, we discuss
numerical perspectives for both problems.

6.3.1 Capra-convex problems

Let |||·||| be a (source) norm on Rd. We consider the corresponding Capra-
coupling ¢, as in Definition 5.3.1. We recall that, with a `p norm as a source
norm, and p ∈]1,∞[, the `0 pseudonorm is a Capra-convex function, following
Proposition 5.4.8. We have interest in optimization problems that formulate as

min
u∈Rd

`0(u) , s.t. u ∈ U , (6.13)

where the set U ⊆ Rd is a constraint set. As an example, the formulation (6.13)
includes problems like

min
u∈Rd

`0(u) , s.t. Au = b , u ≥ 0 , (6.14)

where A ∈ Rm×d is a matrix, m ∈ N, and b ∈ Rm is a vector. Problem (6.14)
corresponds to the search of the sparse nonnegative solutions of a linear system,
a famous problems in the sparse optimization literature (see e.g. [28, 15, 36]).

To address problems of type (6.13), we propose to consider the problem

min
u∈Rd

`0(u) , s.t. u ∈ cone(U) . (6.15)

It is straightforward to see that Problem (6.15) provides a lower bound for
Problem (6.13). In fact, since `0 is constant along rays, by definition of the
conical hull in (6.3), we deduce that both problems have the same value.

This observation suggests perspectives to Capra-convexify sparse optimiza-
tion problems. In further works, we wish to identify cases for which cone(U) is
Capra-convex, by means of our characterization of Capra-convex sets in Propo-
sition 6.2.6.

6.3.2 Sum-convex problems

As a second class of problems, we also pay attention to sparse optimization
problems that formulate as

min
u∈Rd

f(u) + λ`0(u) , (6.16)
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where f : Rd →]−∞,+∞[ is a proper, lsc, convex function, and λ ≥ 0. As an
example, the formulation (6.16) includes problems like

min
u∈Rd

||Au− b||22 + λ`0(u) , (6.17)

where A ∈ Rm×d is a matrix, m ∈ N, and b ∈ Rm is a vector. Problem (6.17)
corresponds to a linear regression with a sparse penalty, one of the most frequent
problems met in the sparse optimization litterature (see e.g. [4, 91, 42]).

By introducing a sum coupling c⊕ : Rd × (Rd)2 → R, defined as

c⊕
(
u, (v1, v2)

)
= 〈u , v1〉+ ¢(u, v2) , ∀u ∈ Rd , ∀(v1, v2) ∈ R2d , (6.18)

we observe that the objective function f + λ`0 is c⊕-convex, following Proposi-
tion 4.2.5. Moreover, note that the coupling c⊕ in (6.18) is one-sided linear.

6.3.3 Numerical perspectives

We now discuss numerical perspectives for solving Problem (6.15), when cone(U)
is Capra-convex, and Problem (6.17). Our main observation is that both prob-
lems display a c-convex objective function, in the sense of Proposition 4.2.3.
Moreover, in both cases, the coupling c is one-sided linear, as in Definition 4.2.7.
Therefore, we can apply the results of Chapter 4 to solve Problem (6.14) and
Problem (6.17). In particular, we see two main perspectives in numerical ap-
plications.

Our first perspective lays in the possibility to apply the mirror descent al-
gorithm with one-sided linear couplings. As in the case of the standard mirror
descent algorithm, the divergence generating function κ : Rd →]−∞,+∞] in-
volved Definition 4.3.1 for the Bregman divergence is a key component for the
success of the method. On top of the standard ingredients of the mirror descent
method, we also need to choose a pseudometric d : (Rd)2 → R+, inducing a
generalized notion of strong convexity, as in Definition 4.3.2. We are currently
working on such applications for Problem (6.15), for cases where cone(U) is
Capra-convex.

As a second perspective, we see opportunities to derive global optimality
conditions for both problems. Concerning Problem (6.15), we deduce from
Proposition 4.2.12 that when cone(U) is Capra-convex, we have that

u ∈ arg min
u∈cone(P )

`0(u) ⇐⇒ 0 ∈ ∂¢
(
`0 + δcone(P )

)
(u) . (6.19)

We hope that we can exploit our formulae for ∂¢`0 obtained in Proposition 5.4.7.
We recall that from Proposition 4.2.11, since the coupling ¢ is OSL, we already
know that

∂¢`0(u) + ∂¢δcone(P )(u) ⊆ ∂¢
(
`0 + δcone(P )

)
(u) , ∀u ∈ cone(P ) . (6.20)
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For this, we need to further investigate the possibility to have an equality
in (6.20). As for Problem (6.17), Proposition 4.2.11 gives that

u ∈ arg min
u∈Rd

(
f + λ`0

)
(u) ⇐⇒ 0 ∈ ∂c⊕

(
f + λ`0

)
(u) . (6.21)

Although we have not studied the subdifferential of the sum coupling c⊕ so far,
we already know that it is related to ∂f and ∂¢`0 via Proposition 4.2.6. This
is also an interesting direction to explore in future works.

6.4 Conclusion
In this chapter, we have first characterized Capra-convex sets, a key step in
the identification of Capra-convex optimization problems. In future works, we
plan to use this characterization to identify Capra-convex sparse optimization
problems of interest. We have also identified generalized convexity in sparse
optimization problems featuring the sum of a convex objective function with
a `0 penalty. In both cases, convexity arises from a one-sided linear coupling,
which opens new perspectives in the application of the results of Chapter 4 to
compute numerical solutions of these problems.

Overall, we contribute to an original viewpoint on sparse optimization. We
highlight that some problems possess unexpected structure, and point to inter-
esting future research tracks.
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Conclusion

We gather the contributions and the perspectives of each chapter, following the
plan of the thesis.

Chapter 1. We have released the EMSx, a benchmark to attest controller
techniques for microgrids composed with loads, photovoltaic generators, and an
energy storage system. This benchmark is made of three constituents, namely
a large dataset of observations and forecasts collected by Schneider Electric;
a mathematical assessment framework; and a software. All components of
the benchmark are publicly available, and we hope that it can serve other re-
searchers in their work.

Concerning numerical results, we have tested microgrid controllers derived
from standard optimal control methods, and observed that controllers based on
stochastic dynamic programming induce significant gains on the EMSx bench-
mark. In complement to the experiments conducted so far, we believe that other
scenario generation methods than the one that we have used for OLFC could be
tested by experts of the field. Also, this benchmark only reflects partially the
performance of an EMS deployed on a real site. As discussed with our colleagues
from Schneider Electric, the modeling of the primary (or local) controller, that
operates at a finer scale, would enrich the realism of the experiments. This
could be the next step to take EMSx further.

Chapter 2. We have introduced a class of parametric multistage stochastic
optimization problems, a solution of which is given by stochastic dynamic pro-
gramming, using parametric value function. Studying further the properties
of such parametric value function, we have identified key hypotheses of con-
vexity and of differentiability, that guarantee the existence of their gradients.
When such gradients are well-defined, we have obtained formulae to compute
them by backward induction, following the dynamic programming principle.
When the differentiability assumption breaks, we have proposed two approxi-
mation methods for the parametric value functions, one based on smooth lower
approximations via the Moreau envelope, and one based on polyhedral lower ap-
proximations via the SDDP algorithm. In the first case, we retrieve a favorable
context, and we compute gradients. In the second case, we obtain subgradients
from our polyhedral approximations.

We believe that interesting further contributions reside in numerical applica-
tions, to understand better the strengths and weaknesses of both approximation
schemes. Such contributions are initiated in Chaptre 3.

Chapter 3. In this chapter, we have conducted two experiments, inspired by
the context of a solar plant constrained by day-ahead power commitment rules.
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The first experiment is a natural test case to challenge numerically the meth-
ods developed in Chapter 2. We find that our new method based on smooth
lower approximations of parametric value functions outperforms the polyhedral
method based on SDDP in term of computing time. We look forward to see how
such results generalize to other test cases. In particular, for our class of para-
metric problems, the smooth method’s complexity is sensitive to the dimension
of the state, as state spaces are discretized. The polyhedral method should be
more resilient to an augmentation in the number of state variables.

The second example introduces a numerical challenge to evaluate solar plant
controllers mixing day-ahead and intraday sequential decisions, for a horizon of
one year. In the spirit of the EMSx benchmark, we introduce controllers based
on the results of Chapter 1 and Chapter 2. We find that intraday controllers
based on stochastic dynamic programming yield up to 11.6% of gains compared
to state-of-the-art controllers. The role of the day-ahead controller seems less
impacting on the problem that we consider. We look forward to see how our
conclusions generalize to other contexts, especially in cases where not only power
generation but also energy prices display stochasticity.

Chapter 4. We have gathered and extended the main properties of the so-
called one-sided linear (OSL) couplings. Then, pushing further the resemblance
with the usual convex analysis world, we have extended the notion of Bregman
divergence for OSL couplings, that we have used to introduce an extension
of the mirror descent algorithm with OSL couplings. This appears as a new
contribution to the algorithmic toolbox of generalized convexity.

With additional time, we wish to try our algorithm to compute numerical
solutions of the generalized convex problems related to some OSL coupings
highlighted in Chapter 6.

Chapter 5. It was already known that the Capra (constant along primal
rays) coupling is a well-suited coupling to handle the `0 pseudonorm. In partic-
ular, under a judicious choice of source norm employed in the definition of this
coupling, `0 is Capra-convex and Capra-subdifferentiable. We have computed
explicitly these Capra-subdifferentials, and proposed some visualizations for a
particular example in R2. We have also proved that `0 is not Capra-convex in
the case where the source norm is the `p norm with p ∈ {1,∞}.

In term of future work, we wish to exploit the possibility offered by the
properties of OSL coupings outlined in Chapter 4 to derive applications to the
Capra-convex sparse optimization problems identified in Chapter 6.

Chapter 6. In this last chapter, we have obtained an explicit characterization
of Capra-convex sets, in the case where the source norm is the `p norm with
p ∈]1,∞[. Then, we have listed some perspectives in the application of the
results of Chapter 4 and Chapter 5 in sparse optimization.

As for future research tracks, we have identified two main directions. First,
we would like to push further the identification of Capra-convex problems in
sparse optimization. Second, for generalized convex problems of interest arising
in sparse optimization, we wish to explore the application of the mirror descent
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algorithm, and the possibility to formulate global optimality conditions for these
problems.
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