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Résumé: Cette thèse porte sur la modélisation et
l’optimisation de la maîtrise d’un agent pathogène
se propageant dans une metapopulation d’animaux
d’élevage via un réseau d’échanges commerciaux, en
tenant compte des processus de décision concernant
l’adoption de mesures de maîtrise.

D’une part, concernant la prise de décision des éleveurs,
un modèle stochastique intégrant la dynamique intra-
troupeau de la maladie (composantes démographiques
et réseau d’échanges) et la dynamique des décisions des
éleveurs a été développé et exploré par simulations in-
tensives et analyses de sensibilité. En particulier, un
mécanisme de décision dynamique qui tient compte
du comportement aléatoire des éleveurs, de leur ap-
prentissage et de la dynamique d’imitation stratégique
a été proposé. Le modèle a été formalisé pour une
dynamique d’infection théorique (modèle SIR), et une
mesure de contrôle spécifique (vaccination). Ce premier
modèle a été étendu et adapté à une maladie réelle, la
BVD (diarrhée virale bovine), où tant la transmission
de l’agent pathogène que les échanges d’informations

entre éleveurs peuvent passer par le réseau d’échanges,
mais aussi par un voisinage géographique.

D’autre part, dans une perspective plus générale, il a
été supposé qu’un planificateur social central cherchait
à allouer dynamiquement et de manière optimale une
ressource limitée entre les différentes sous-populations
d’un réseau de métapopulation donné, afin de réduire
la propagation d’un agent pathogène. L’approche,
basée sur des scores permettant de classer les sous-
populations pour l’allocation des ressources, a été for-
malisée pour le modèle épidémiologique théorique con-
sidéré dans la première partie de la thèse, pour deux
mesures différentes (vaccination et traitement). De
nouveaux scores ont été obtenus par l’adaptation d’une
approche d’optimisation gloutonne au cadre des mé-
tapopulations. Par le biais de simulations, les perfor-
mances de ces nouveaux scores ont été comparées à
celles de plusieurs heuristiques qui pourraient être ap-
propriées lorsque le réseau de métapopulation corre-
spond à un réseau de commerce d’animaux.

Title: Modelling and optimising decision-making for the control of infectious diseases spreading on animal
metapopulation networks

Keywords: epidemiological modelling, metapopulation network, optimisation, human-behaviour, resource alloca-
tion, infectious disease control.

Abstract: This thesis focuses on the modeling and op-
timisation of the control of a pathogen spreading in
a livestock metapopulation via a trade network, tak-
ing into account the decision processes concerning the
adoption of control measures.

On the one hand, regarding farmers’ decision-making, a
stochastic model integrating the intra-herd disease dy-
namics (demographic components and trade network)
and the dynamics of farmers’ decisions was developed
and explored through intensive simulations and sen-
sitivity analyses. In particular, a dynamic decision-
mechanism that accounts for farmers’ random be-
haviour, their learning and strategic imitation dynamics
was proposed. The model was formalised for a theo-
retical infection dynamics (SIR model), and a specific
control measure (vaccination). This first model was ex-
tended and adapted to a real-life disease, BVD (bovine
viral diarrhoea), where both the pathogen spread and
the exchange of information between farmers can oc-

cur through the trade network, but also through a geo-
graphical neighbourhood.

On the other hand, from a more general perspective,
it was assumed that a central social planner sought
to dynamically and optimally allocate a limited re-
source among the different sub-populations of a given
metapopulation network, in order to reduce pathogen
spread. The approach, based on scores allowing to
rank subpopulations for resource allocation, was for-
malised for the theoretical epidemiological model con-
sidered in the first part of the thesis, for two different
measures (vaccination and treatment). New scores were
obtained by adapting a greedy optimisation approach to
the metapopulation framework. Through simulations,
the performances of these new scores were compared
to those of several heuristics that might be appropri-
ate when the metapopulation network corresponds to
an animal trade network.
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Chapter 1

Introduction

1.1 Dynamic control of a disease spreading on a complex
network

The structure of contacts between individuals is a key element to account for to better understand
the spread of infectious diseases, and ultimately to control it (Keeling et al. 2005). This is partic-
ularly true for disease transmission between several sub-populations on a large geographic area.
Although pathogens can be transmitted between sub-populations in several ways, depending on
the particular pathogen and context (e.g. shared environment, wild-animal vectors), one of the
most usual paths for transmission occurs through the movement of infected individuals (Danon
et al. 2011).

Indeed, the movements of individuals between different sub-populations form a network struc-
ture in which the sub-populations are interconnected by the movement links, called a metapop-
ulation network (Keeling et al. 2005). Such a network is directed, as individuals move from one
sub-population to another; weighted, as there is a weight (flow of individuals) associated with
each link; and dynamic, as flows change over time (different movement connections and differ-
ent amounts of individuals). Furthermore, when spatial coordinates are explicitly considered,
the links can connect sub-populations even if there is no geographical proximity between them
(spatial network).

In particular, this context allows to describe two specific phenomena. First, the introduction of a
pathogen in a sub-population where it was not present, known as a colonisation event (Donahue
et al. 2008). The second type of phenomenon is the persistence of pathogen propagation at large
scale despite fade-out at small scale, which is known as a rescue effect (Brown et al. 1977). This
is a well known concept in ecology: there are short-lived epidemics at the sub-population level,
but the disease is maintained at a large scale due to interactions among sub-populations.

The question of controlling a disease spreading on such a complex network rapidly emerges
(Enright et al. 2018). The system is intrinsically dynamic (due to the movements of individu-
als, demographic changes in the sub-populations over time, and disease spread), as can be the
decision-making. Indeed, real-life control of infectious diseases is usually conducted through
repeated decisions over time (vaccine campaigns, temporal movement restrictions, etc.).

Moreover, given the fact that the network is large and encompasses many sub-populations, the
decisions regarding the adoption of control measures to reduce the disease spread can be taken
at two different levels. On the one hand, if there is a human decision-making agent associated
to each sub-population of the system, we are concerned with decentralised human decision-making.
On the other hand, the management can be carried out by a central planner, usually a social plan-
ner. This is referred to as centralised social-planner decision-making. The distinction between these
two types of decision-making is important since depending on the decision-maker, decisions
would respond to different motivations. Furthermore, decentralised human decision-making

9
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can naturally introduce strategic behaviour and heterogeneous implementation of control mea-
sures among the many sub-populations of the system (Kreps 1997).

In this context, the use of suitable mathematical approaches is really helpful and strongly recom-
mended for describing and controlling such a system. In particular, mechanistic epidemiological
models can be useful instruments to represent and understand the complex system involved
in pathogen spread (Keeling et al. 2011). Since human behaviour can have a major role in the
spread of diseases, especially for those whose control is voluntary, taking into account decision-
making related to controlling the spread can increase the accuracy of these models, in terms of
understanding and prediction. Furthermore, on the basis of these mechanistic models, strate-
gies can be designed for controlling the propagation of the disease (Manfredi et al. 2013). Yet, in
the process of modelling and controlling such a system, crucial methodological challenges arise
when accounting for dynamic decision-making, either made by a social-planner or by the human
agents in the system.

Though mathematical mechanistic modelling is increasingly being used in the study of infectious
diseases, most existing models in literature do not refer to voluntary decisions of interacting
agents (Wang et al. 2016), or they do not consider that the decision-making process is dynamic
(Rat-Aspert et al. 2010). Furthermore, classical approaches either consider humans as particles
(Manfredi et al. 2013), or when economic aspects are taken into account agents are considered to
be perfectly rational (e.g. Bauch et al. 2004; Zhang et al. 2012), which is a strong and controversial
hypothesis for human decision-making (Wang et al. 2016). Finally, influences between agents
decisions are often neglected (Shi et al. 2019), despite the fact that it is an important feature of
human behaviour, particularly regarding the management of livestock diseases (Hidano et al.
2018).

Hence, from a modelling perspective, a first challenge consists in building a framework that
appropriately formalises the relation between the dynamics of a disease spreading on a large
metapopulation network, and the dynamics of the voluntary adoption of control measures in
each sub-population, while accounting for relevant psychological, cognitive or economic consid-
erations.

A second challenge consists in developing or adapting methods that can effectively be applied
for optimally controlling the spread of the disease on the network. Among the considerations to
be taken into account, one of the most important should be of computational nature. Indeed, this
is the major challenge for solving an optimisation problem in the present framework, due to the
large dimension of the network (Pellis et al. 2015).

For this reason, research on this matter has mostly been focused on two types of situations: ei-
ther the network is small (e.g. Chernov et al. 2020; Viet et al. 2018), or it is a large network of
individuals, i.e. not a meta-population (e.g. Lorch et al. 2018; Zhang et al. 2015). In the first case,
studies are mostly based on Markov Decision processes (MDP) (Puterman 2014) or game-theory
(Myerson 1997). In the second one, authors usually recur to mean-field approximations inspired
from physics (Lasry et al. 2007), which can be inappropriate if one wishes to account for limited
rationality or heterogeneities among agents. For example, this can concern the influence that
an agent may have on other agents’ decisions, which can be determined by their place in the
network.

The expected advances from these two perspectives, modelling and optimisation, can contribute
to better understand and take into account different characteristics of the complex system in-
volved in pathogen spread on such a network, and ultimately to effectively control it.

1.2 Endemic livestock diseases spreading through animal trade

In essence, the transmission of a disease does not much differ whether the individuals are hu-
mans or animals (wildlife or livestock), yet they present some differences. First, humans tend
to move freely between households, work places, study places, cities, countries, etc. while live-
stock are usually in one farm for a long time before going to another one through animal trade
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(Brooks-Pollock et al. 2015). Second, economic considerations can be more central for the con-
trol of livestock diseases than for human diseases, where the public health aspect generally takes
precedence over the rest. Hence, methodological advances for controlling the first are in principle
more likely to find the compliance of field agents.

Following the crisis on bovine spongiform encephalopathy (commonly known as mad cow dis-
ease) that took place particularly in the United Kingdom between 1986 and 2000, European coun-
tries maintain national databases regarding cattle movements between farms. Indeed, animal
movements caused by trading are a major path on which livestock pathogens can be transmitted
between holdings (Fèvre et al. 2006), e.g. paratuberculosis (Beaunée et al. 2015), foot-and-mouth
disease (FMD) (Ferguson et al. 2001) and bovine tuberculosis (bTB) (Donnelly et al. 2003).

These exchanges occur directly between two farms, or can pass through intermediate structures.
The first ones generally concern farms that are geographically close, so the disease spread is
mostly concentrated in a small geographic area. Also, animal movements can occur via mar-
kets or assembling centres. These structures facilitate animal trade at a large geographical scale,
increasing exchanges of animals that come from a holding that is geographically far from the
destination holding. Hence, they further increase the transmission risk of pathogens over large
areas (Robinson et al. 2007). Figure 1.1 illustrates the example of a cattle trade network formed by
the dairy animal movements between cattle herds, that occurred in 2009 in France based on the
French cattle identification database (FCID), which records the life history of each cattle animal
from birth to death. This figure evidences geographically close and far animal exchanges that
can take place in an animal trade network, and through which a disease spread is susceptible to
attain the whole French territory.

Figure 1.1: Cattle trade flows (dairy animals only) for year 2009 in France, based on the French cattle identi-
fication database. Each node is a commune (the smallest French administrative unit). Source: Gaël Beaunée.

A disease spreading though animal exchange has high chances of becoming endemic in a given
area, i.e. present at a given (generally moderate) prevalence in the whole population for long
periods of time (Carslake et al. 2011). As mentioned for the general metapopulation setting, in
animal metapopulations disease persistence can be observed at large scale by the means of two
processes. First, a long infection duration in a sub-population gives rise to long metapopulation
infection. Second, persistence can be observed if there is a rescue effect due to interactions among
sub-populations (see for example Jesse et al. 2008).

Alternatively, a disease can exhibit epidemic dynamics, which by definition means that a large
and rapid spread in a short period of time is observed. Examples of this type are FMD (Ferguson
et al. 2001), African swine fever (ASF) (Nigsch et al. 2013), and avian influenza (Benincà et al.
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2020). For a given disease, the distinction between endemic and epidemic dynamics is made
using surveillance data. Yet, detailed surveillance data is mainly available for diseases that have
already been labelled as epidemics (Carslake et al. 2011).

Once a disease is associated to an epidemic dynamics, significant political efforts are made in
order to eradicate it. In particular, public policies generally target livestock epidemic diseases by
regulating their control in a mandatory manner. In that case, it is said that the disease is regulated.
Meanwhile, endemic diseases are generally of less interest to public opinion and policy-makers.
Hence, their control is often left to individual or local initiatives, and is therefore not mandatory,
causing endemic diseases to be most often unregulated.

Nevertheless, as they persist over long time periods, endemic diseases can have a large cumu-
lative incidence, leading to a reduction in farms economic profitability and in animal welfare
(Tomley et al. 2009). Furthermore, zoonotic diseases (i.e. infectious diseases that have jumped
from animals to humans) play a major role in the increasing number of human emerging dis-
eases (Lefrançois et al. 2014). Indeed, at least 60% of human emerging infectious diseases are
zoonotic, and in particular over 30% of emerging infectious zoonotic diseases are associated with
food animals (Otte et al. 2021). Hence, the control of livestock endemic diseases represents a ma-
jor challenge for animal health and for sustainable agrifood systems, particularly in a context of
sub-populations that trade animals, and of endemic diseases for which control is not compulsory.

Decision-making for the adoption of one or several health measures is therefore of interest for
assessing the control of animal endemic diseases. As farmers production objectives are not only
driven by animal health but also by criteria of working time, productivity, profitability, etc, the
heterogeneity of the measures implementation is increased (Ezanno et al. 2020). For example, a
central decision-maker may decide to isolate a herd if this implies an overall reduction in disease,
provided that this is the objective. However, if the farmers themselves decide whether or not to
isolate their herd, they will rather make this decision solely on the basis of their own criteria,
which is generally not optimal at the collective level (Krebs et al. 2018).

For unregulated diseases, it is natural to think that decisions concerning herd management are
made mostly by the farmers themselves. Yet, decisions on control measures can also be taken at a
centralised level, even if only by local organisations composed of several farmers. In some French
administrative areas, for example, animal health services (GDS: groupement de défense sanitaire)
may engage in various types of control actions to reduce the local disease prevalence. These
actions may involve, for example, the allocation of health resources for intervening in the system
without requiring all farmers to implement the measure, or the use of campaigns to encourage the
voluntary adoption of the measure by farmers. Intervention can also be achieved by facilitating
access to information on the infection-related status of herds, so that farmers can make more
informed, and possibly better, decisions.

Moreover, many control or prevention measures are possible (application of vaccines or treat-
ments, testing and culling of positive animals, isolation of infected animals, etc.). It can be dif-
ficult to choose, either from the farmer or the social planner point of view, among the different
options whose effectiveness is not always known or comparable. Furthermore, anticipating the
impact of these individual or collective choices on the large-scale dynamics of infectious diseases
remains a challenge.

1.3 Main objective and structure of the thesis

The main objective of this thesis was to identify, adapt and build the suitable approaches for
effectively model and optimise the adoption of control measures for limiting a disease spreading
on a large metapopulation network. The network was specifically considered to be a livestock
trade network through which the disease can spread over a certain region.

The manuscript is structured in the following manner. This introductory chapter is followed
by Chapter 2, that presents the state of the art on epidemiological modelling, particularly on
networks, and on decision-making approaches in systems with several individuals. These two
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categories of modelling approaches are put together for selecting the suitable elements that are
used in the rest of the thesis.

Chapter 3 addresses the modelling challenge, through the development of a new integrative
mechanistic model, with a feedback loop between the dynamics of a (theoretical) pathogen spread-
ing on an animal trade network, and the decision-making of farmers regarding the voluntary
application of control measures. The decision process is governed by a stochastic algorithm. The
work in this chapter was published in Scientific Reports in 2021 (Cristancho Fajardo et al. 2021).

For the optimisation challenge, in Chapter 4, the point of view is the one of a single social planner
distributing a limited resource aimed at reducing the spread of a (theoretical) disease on the
network. At first, the focus is on the construction of optimised indicators to target the nodes of a
metapopulation network. Then, the performances of these analytical scores are explored as well
as those of relevant heuristic indicators, from an epidemiological and feasibility point of view.
This chapter has been published in the Journal of the Royal Society Interface (Cristancho-Fajardo
et al. 2022).

Chapter 5 presents a new variant of the decision making algorithm as an extension of the model
developed in Chapter 3, with application to a specific disease, the bovine viral diarrhoea (BVD).
Here, farmers exchange information relative to their decisions either through the trade network,
or through a geographic proximity network.

The final chapter (Chapter 6) summarises the developed methods and contributions, discusses
their relevance and limitations, and presents some perspectives on the basis of this thesis work,
for the control of diseases spreading on metapopulation networks.





Chapter 2
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This thesis relies on two main topics: epidemiological modelling and decision-making applied
to epidemiology. In this chapter, I present a non-exhaustive state of the art on these two topics
(sections 2.1 and 2.2, respectively), focusing on the mathematical ingredients that could address
(or be involved in) the challenges presented in section 1.3. Finally, some choices regarding such
ingredients are made in section 2.3 to be integrated to approaches developed in the following
chapters.

2.1 Epidemiological modelling

In epidemiology, mathematical models are used to describe the spread of infectious diseases in a
formalised manner. The first known such mathematical model is attributed to Daniel Bernoulli
in 1760 (Hethcote 2000). The next registers of mathematical epidemiological models appear in
the XX century, through the works of Hamer 1906 for measles, and Ross 1910 on malaria. In
particular, Hamer’s work introduces the law of mass action into epidemiology, consisting in the
idea that the number of new infections within a population is proportional to the number of
infected and susceptible individuals. This law implicitly assumes that the population verifies the
homogeneous mixing hypothesis, so the contact rate between two individuals is the same for any
pair of them. The work of Hamer and Ross, as well as that of Kermack and McKendrick in the
1920s, constitute the basic models for describing the spread of infectious diseases: compartmental
models. Then, in the mid-1980s, the work of Klovdahl 1985 and May et al. 1987 paved the way
for the developement of connections between epidemiology and network theory (Danon et al.
2011).
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2.1.1 Compartmental models

Compartmental models consist in dividing the population into homogeneous compartments,
according to their health status regarding the disease. Each compartment contains the number
(proportion) of the individuals in a given state. Their evolution over time is described by a
dynamical system.

From the point of view of the mathematical formalism, models can be deterministic or stochastic,
even if their compartmental structure is the same. Although the spread of infectious diseases is
stochastic, as it is influenced by many random factors, deterministic models are widely used. In
particular, when the stochasticity is only related to the population size, and this one is large, it
can be neglected by using a deterministic model. Indeed, for such type of intrinsic stochasticity,
(and under certain conditions) the deterministic formulation corresponds to the large population
limit of the stochastic formulation (Britton et al. 2019).

In the following, for simplicity reasons, I use the deterministic formalism for describing the main
types of structures that compartmental models can present.

2.1.1.1 Deterministic formalism

Most deterministic models are represented by ordinary differential equations (ODE) and can
therefore be simulated using numerical schemes such as the Euler method (Euler 1794), the sim-
plest algorithm yet not the best one (Keeling et al. 2011).

2.1.1.1.1 SIR-like models The first simple compartmental model is the SIR model of Kermack
et al. 1927. In this model, the population is divided into three compartments: the susceptible (S),
the infected (I), and the recovered (R) compartments. In the most basic form of the model, the
only two possible transitions are: getting infected (going from the S to the I compartment), or
recovering (going from I to R). In its deterministic form, the SIR model can be mathematically
written through the following ODE:

dS(t)

dt
= −λ(t)S(t),

dI(t)

dt
= λ(t)S(t)− γI(t),

dR(t)

dt
= γI(t).

(2.1)

S(t), I(t) and R(t), are the numbers of susceptible, infected and recovered individuals at time
t. The usual initial conditions of the system described by the previous equations are S(0) >
0, I(0) > 0 and R(0) = 0. The parameter γ is the self-recovery rate, and can be defined as the
inverse of the mean duration of the infectious period. This constant recovery rate, independent
from the time since infection, implies that the infectious period follows an exponential distribu-
tion in the stochastic setting (see section 2.1.1.3 for a discussion on this hypothesis).

The force of infection λ(t) is defined as the per capita rate at which a susceptible individual con-
tracts the infection, so λ(t)S(t) is the rate at which new infections are produced in the population.
The model is represented in figure 2.1.

S I R
λ γ

Figure 2.1: SIR flow diagram. λ(t) is the force of infection and γ is the recovery rate.

Concerning the form of λ(t) two options are mostly used (McCallum et al. 2001). First, one can
assume density-dependence, where the contact rate between individuals depends on the size of
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the population, N(t), and therefore the rate at which new infections take place depends on the
density of infected individuals, I(t). So λ(t) = βI(t), where β accounts for the product between
the contact rate of a susceptible and an infected individual, and the probability of transmission
following contact. On the contrary, it is possible to suppose that the transmission is frequency-
dependent, where the contact rate does not depend on the size of the population, so the new
infections depend on the proportion of infected individuals rather than on their density. In this
case λ(t) = βI(t)/N(t). The choice of one of the two hypotheses will be important if N(t) shows
great variation over time, otherwise 1/N(t) can be considered as a multiplicative factor of the
β coefficient. Indeed, it is often assumed that the size of the population is constant in time, in
which case both functions are proportional, i.e. N(t) = N = S(t) + I(t) + R(t),∀t. In other
cases, when population size varies over time, there is no absolute way to know if, for an applica-
tion, the density-dependence or the frequency-dependence is the more appropriate hypothesis.
Yet, frequency-dependence is most often assumed for human diseases, since usually there are
similar social patterns between individuals irrespective of N . Meanwhile, density-dependence
is more often assumed for animal diseases, as animals might be more crowded in the same ge-
ographical area, which would increase their contact rate. However, it has been evidenced that
the frequency-dependence assumption can sometimes show more agreement with experimental
and observation data than the density-dependence assumption, even for small livestock popu-
lations (De Jong et al. 1994). Hence, the frequency-dependence assumption can also be used for
modelling infection transmission in animal populations (e.g. Ruget et al. 2021) .

An important note is that the contact rate can be a function of time β(t). This illustrates seasonal
variation in the transmission due to weather influence, for example for vector-transmitted dis-
eases where vector density depends on the weather season, or periodic behaviour, related for
example to the school calendar for childhood diseases (Altizer et al. 2006).

From the analysis of the system of equations that describe the SIR model, a fundamental quantity
for the study of compartmental epidemiological models like the SIR model can be obtained: the
basic reproduction rateR0, defined as the number of infections one infected individual can generate
in a otherwise susceptible population. IfR0 < 1 the outbreak will fade out at an early stage, while
if R0 > 1 it will be able to invade the population.

On the basis of the SIR model, other models can be constructed by adding or removing compart-
ments and transitions. The SI model for example, can be thought as a particular case of the SIR
model, where there is no recovery from the disease, i.e. γ = 0. Other examples do not consider
the life-lasting immunity assumed in the SIR model. The SIS and the SIRS models are some sim-
ple examples of this, where individuals can reacquire the susceptible status immediately after
being infected, or where immunity lasts for a limited period, respectively.

Another option is to consider additional compartments to account for specific epidemiological
characteristics of individuals. For example, the SEIR model considers an Exposed compartment
(E), for individuals that have been infected but are not yet infectious, so their contact with suscep-
tible individuals does not lead to new infections, if the contact occurs during the latency period,
i.e. the duration between being infected and being infectious.

In the following, I precise some specific extensions of the basic SIR model.

2.1.1.1.2 Models with demography Demographic changes can be easily taken into account
through a birth and a death terms in the model. Newborns are usually assumed to be suscepti-
ble. However, for some diseases, a vertical transmission can be possible. That is, mother-to-child
transmission during pregnancy or childbirth, opposed to the horizontal transmission, where the
pathogen is transmitted among individuals of the same generation. Deaths can occur in any of
the health-state. Furthermore, an additional disease-related mortality can be taken into account
for infected individuals.

The SIR model with demography (births and deaths), without disease-related mortality nor verti-
cal transmission can be represented by equations 2.2, where µ is the birth rate and τ is the natural
death rate. Usually, µ = τ to ensure constant population size.
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dS(t)

dt
= −λ(t)S(t) + µN(t)− τS(t),

dI(t)

dt
= λ(t)S(t)− γI(t)− τI(t),

dR(t)

dt
= γI(t)− τR(t).

(2.2)

The need of inclusion of demographic terms depends on the lifespan of the population, and on
the time scale on which processes are studied. Indeed, for human populations studied on a short
time scale (for example a year or less) demography is usually neglected. This is not the case
for livestock populations, where births and deaths are important to be taken into account for
realistically representing such populations and hence infection-related dynamics.

Furthermore, for some diseases, newborns of mother who have antibodies (i.e. mothers that
were infected or have immunity) can acquire maternal antibodies for a certain amount of time,
protecting them from getting infected (Hethcote 2000). In that case, it is appropriate to consider a
compartment for individuals protected by maternal immunity (M), and newborns will either be
S or M, depending on the health-state of the mother (S or other). The following equations (2.3)
describe an SIR model with demography and maternal protection, which is lost at a rate α:

dM(t)

dt
= µ[N(t)− S(t)]− αM(t),

dS(t)

dt
= αM(t)− λ(t)S(t) + µS(t)− τS(t),

dI(t)

dt
= λ(t)S(t)− γI(t)− τI(t),

dR(t)

dt
= γI(t)− τR(t).

(2.3)

Considering such a maternal immunity compartment is appropriate for diseases such as the BVD
(bovine viral diarrhoea) (Zimmer et al. 2004) or measles (Keeling et al. 2011).

2.1.1.1.3 Structured models by host-heterogeneities In the previous subsections only health
related compartments have been considered, as it was implicitly assumed that individuals only
differed in their health status, and that contacts were random and homogeneous between all
individuals in the population (homogeneous mixing hypothesis). However, populations can be
further structured by other host- characteristics, such as risk classes or age classes (Keeling et al.
2011). Another type of structure in the population is spatial structure, a situation to which I refer
in section 2.1.2.

To limit the homogeneous mixing assumption, one solution is to introduce discrete subcategories
within the compartments involving specific transmission rates for their interactions. In partic-
ular, transitions between groups can be considered, for example when the structure is given by
age (if ageing is compatible with the times scales considered). Figure 2.2 shows the scheme of a
SIR model structured in two categories with possible transitions between them.

The model where individuals can only pass from group 1 to group 2 (age-structured model) can
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Figure 2.2: SIR model structured in two groups. λ(t)kl = βkl
Il(t)
Nl(t)

, where βkl is the infectious contact rate
between a susceptible individual of group k and an infected individual of group l, for k, l = 1, 2

be formalised through the following ODE:

dS1(t)

dt
= −(λ(t)11 + λ(t)12)S1(t)− ηS1(t),

dI1(t)

dt
= (λ(t)11 + λ(t)12)S1(t)− γI1(t)− ηI1(t),

dR1(t)

dt
= γI1(t)− ηR1(t),

dS2(t)

dt
= −(λ(t)21 + λ(t)22)S2(t) + ηS1(t),

dI2(t)

dt
= (λ(t)21 + λ(t)22)S2(t)− γI2(t) + ηI1(t),

dR2(t)

dt
= γI2(t) + ηR2(t),

(2.4)

where η is the rate at which individuals from group 1 pass to group 2. And λ(t)kl = βkl
Il(t)
Nl(t)

,
where βkl is the infectious contact rate between a susceptible individual of group k and an in-
fected individual of group l, for k, l = 1, 2. If groups do not refer to age but to other type of
structure (for example, a risk structure for sexually transmitted infections), then transitions can
occur in both directions.

Alternatively, host-heterogeneities can be taken into account by assuming a continuum between
different categories using partial differential equations (PDE). This seems natural when the het-
erogeneities are due to age, since it is a continuous variable. Yet, the compartmental approach
can be more appropriate if the population is divided in groups in real life. This is the case for
childhood infections, since children are often grouped into school classes of a given age range
(Keeling et al. 2011).

Regarding the basic reproduction rate R0, for deterministic structured epidemiological models it
usually corresponds to the spectral radius (i.e. the largest eigenvalue) of the next-generation ma-
trix, which depends on the group sizes, and the parameters that quantify the level of interaction
between the groups (Diekmann et al. 2010).

2.1.1.1.4 Modelling control measures When considering control strategies, the previous com-
partmental models can be modified, either by adding new relevant compartments, or by mod-
ifying or adding new transitions, hence increasing state and/or parameter space dimension.
Among these, one of the most basic models is the SIRV model, represented in figure 2.3.

In this model, susceptible individuals are vaccinated, i.e. pass to the Vaccinated (V) compart-
ment, at a rate ν, which protects them from getting infected. If the vaccine does not provide
immunity lasting for the duration of the study, they can loose this protection at a rate ζ, and
become susceptible again. Besides the possibility of the effect being limited in time, vaccines can
provide an imperfect protection from infection. Let the force of infection of vaccinated individ-
uals be noted as λ(t)v;λ(t)v < λ(t). In particular, if the vaccine provides a perfect protection,
λ(t)v = 0.
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Figure 2.3: SIRV model. ν is the rate at which individuals are vaccinated, and ζ the rate at which vaccinated
individuals loose their protection. λ(t)v is the force of infection for vaccinated individuals.

Let V (t) be the number of vaccinated individuals at time t. The SIRV model can therefore be
expressed by the following equations:

dS(t)

dt
= −λ(t)S(t)− νS(t) + ζV (t),

dV (t)

dt
= −λ(t)vV (t) + νS(t)− ζV (t),

dI(t)

dt
= λ(t)S(t) + λ(t)vV (t)− γI(t),

dR(t)

dt
= γI(t).

(2.5)

Other vaccination strategies can be designed, such as vaccinating only a part of the population,
e.g. newborns or individuals in risk classes. Furthermore, a similar model can be considered for
a treatment administered to infected individuals, by considering an additional compartment T.
In particular, the treatment can reduce disease-related mortality (if there is one), or reduce the
mean duration of infection for treated individuals. Since infected individuals are supposed to
be under treatment, reducing the entire duration of their symptomatic/infectious period, it is
usually assumed that treated individuals do not return to the I compartment. This model can be
described by the following equations:

dS(t)

dt
= −(λ(t) + λ(t)′)S(t),

dI(t)

dt
= (λ(t) + λ(t)′)S(t)− (γ + ν)I(t),

dT (t)

dt
= νI(t)− γ′T (t),

dR(t)

dt
= γI(t) + γ′T (t),

(2.6)

where λ(t)′ = ( 1
N(t) )β

′T (t), with β′ ≤ β the rate at which a susceptible individual contracts
the infection from a treated individual. Parameter ν denotes here the rate at which infected
individuals are treated and γ′ is the rate at which treated individuals recover.

Measures can also be focused on preventing the contact of infected and susceptible individuals.
For example, through the isolation of infected individuals, which would require to add a new
compartment for these individuals Q (quarantine). The following ODE system describes such
model, where ν denotes here the rate of placement in quarantine of infected individuals, and γ′

is here the recovery rate of individuals in Q:
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dS(t)

dt
= −λ(t)S(t),

dI(t)

dt
= λ(t)S(t)− (γ + ν)I(t),

dQ(t)

dt
= νI(t)− γ′Q(t),

dR(t)

dt
= γI(t) + γ′Q(t),

where under a frequency-dependent transmission assumption, λ(t) = β I(t)
N(t)−Q(t) .

2.1.1.2 Stochastic formalism

Following the classification given in Keeling et al. 2011, there are several types of noise that can
be considered to affect the infection dynamics.

First, stochasticity can arise from the fact that individuals are different, and transitions between
states do not occur in the same way for all of them. This is called demographic stochasticity. It is
higher for small population sizes, or when the number of infected individuals is small (in which
case the probability of an early extinction is positive). This type of stochasticity can be modelled
by event-driven approaches, i.e. approaches that explicitly consider (at the unit scale) the differ-
ent events that can occur in the infection process, or taken into account through the introduction
of additional noise terms in the ODE system that describes the deterministic model. A second
source of noise can be due to exogenous events that affect the course of the infection dynamics,
which is referred to as environmental stochasticity, e.g. climatic or individuals’ behaviour changes.
This is accounted for by considering that the model’s parameters are random. Finally, the observa-
tional noise, i.e. uncertainty in epidemiological data, occurs for instance in case of asymptomatic
infectious or under-reporting.

In the following, I focus on event-driven approaches for modelling demographic stochasticity, as
they mechanistically represent the randomness that arises from the individual level.

2.1.1.2.1 Event-driven approaches One of the most classical ways to explicitly consider de-
mographic stochasticity is to represent the infection dynamics by a Markov jump process. That
is, to assume that each compartment of the model is represented by a discrete random variable,
and that the stochastic process that determines the evolution of such random variables satisfies
the Markov property (Allen 2008). This implicitly assumes that the periods individuals spend in
each of the compartments have an exponential distribution (see a discussion on this hypothesis
in section 2.1.1.3).

In particular, the Markov jump process analogous to the deterministic SIR model with constant
population size (equations 2.1) is the process Xt = (St, It) with values x = (s, i) where s and i,
the number of susceptible and infected individuals, are integer values between 0 and N . Since
the number of recovered Rt is deduced from N , the process Xt is bi-dimensional. There are only
two possible events at the individual level (infection or recovery), that can increase or decrease
the number of individuals in each compartment by one. That is, a hypothesis of this model is
that only one transition can occur at each instant. Under the Markov property, the evolution of
the system can be described by the following instantaneous transition probabilities:

pinfection = P [Xt+dt = (s− 1, i+ 1)|Xt = (s, i)] = λ(t)s× dt+ o(dt),

precovery = P [Xt+dt = (s, i− 1)|Xt = (s, i)] = γi× dt+ o(dt).

The probability of no transition taking place within the time interval of length dt, being equal to
1− pinfection − precovery + o(dt).
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Bretó et al. 2009 proposed a framework for representing a stochastic compartmental model in
terms of flows between compartments, i.e. the number of individuals who have transitioned
from one compartment to another. The model is a continuous-time Markov chain (CTMC) that
is implicitly-defined via the limit of coupled discrete-time multinomial processes. In particular,
this framework allows to also consider environmental stochasticity, through the use of random
rates. In the simplest case where the rates are not random, the model corresponds to a Poisson
system, i.e. there cannot be simultaneous transitions between compartments Bretó et al. 2009.

An alternative to Markov jump processes that is particularly adapted for modelling the beginning
of an epidemic is the branching process specifically modelling infectious individuals dynamics.
The underlying assumption is that the number of S is sufficiently large to be assumed constant
and equal to N (i.e. S depletion is neglected in the first steps of epidemic dynamics). This ap-
proximation facilitates the probabilistic study of the epidemic dynamics, in particular regarding
the probability of a major outbreak (Britton 2010).

Diffusion processes are another possible approximation valid in the limit of large N . A diffusion
process considers a continuous space state, that is the random variables that represent each com-
partment are real-valued (Andersson et al. 2012). Several studies have been devoted to the study
of diffusion processes as approximations of Markov jump processes in the context of epidemio-
logical modelling (e.g. Ethier et al. 2009; Guy et al. 2015).

2.1.1.2.2 Simulation of stochastic models Since the analytical study of stochastic models can
prove to be difficult, an alternative is to study their behaviour through the simulations of their
trajectories.

One of the most used methods for simulating infectious disease spread, is the Gillespie algorithm
(Gillespie 1976), which can exactly simulate the Markov jump process that represents infection
dynamics. The principle of the method is to simulate the transition of each individual from one
state to another, which involves two main steps. The first step consists in simulating the time
of the next jump of the process according to an exponential distribution whose parameter is the
sum of the transition rates among the different compartments. In the second step, the type of
transition is randomly chosen according to probabilities that depend on the state of the process.
In a large population, where many transitions can occur at the same time or almost, Gillespie’s
algorithm can be very costly to use from a computational point of view.

Given this computational cost, several approximations of the direct Gillespie algorithm have
been proposed. The most popular one is called τ -leap algorithm, of which many variants exist.
This approximation, initially proposed in Gillespie 2001, assumes that the jumps take place at
a discrete and fixed time step, τ . Therefore, the rates at which transitions occur are constant
between two time steps t and t + τ . Yet, in reality such rates can change each time there is
an individual transition, so the τ -leap algorithm has a certain approximation error. Hence, the
time step τ should be set small enough for the approximation error to be small. Furthermore,
in the τ -leaping algorithm, the number of transitions of each type follows independent Poisson
laws. Since this law is not bounded, too many reactions can occur during the interval, leading
to negative numbers in some compartments. Therefore, alternatives to the original τ -leaping
algorithm have been proposed. In particular, Anderson 2008 proposed a technique for postleap
checks, which guarantees to never produce negative population values.

The framework developed by Bretó et al. 2009 for representing compartmental models (section
2.1.1.2.1), can be simulated in a straightforward manner through a discrete time-step Euler-
scheme, where the number of transitions (between any two compartments) that take place dur-
ing a small time interval of length δ > 0 are drawn from a multinomial distribution. The use
of the multinomial distribution (instead of an unbounded one such as the Poisson distribution)
for determining the flows between compartments, allows in particular to always have a positive
number of individuals in each compartment.
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2.1.1.2.3 Measures of persistence Several indicators exist to quantify the persistence of a dis-
ease (Keeling et al. 2011). For certain more or less simple models, some results are available (e.g.
time to extinction for the SIR stochastic model). In particular, the classic results regarding the
mean time to extinction are due to (Bartlett 1956, 1957). Then, much work has been devoted to
approximating the expected time to extinction for slightly more complex epidemiological models
(e.g. Andersson et al. 2000; Nåsell 1999). Yet, in general, it can be quite difficult to analytically
study this quantity (Andersson et al. 2012).

From a simulation point of view, the time to extinction can be explored either by starting the
simulations near the deterministic equilibrium and measuring the mean time when the number
of infected individuals extinguishes, or by evaluating the proportion of simulations where this
extinction occurs after a certain time. Another relevant measure of persistence that can be calcu-
lated is the asymptotic rate of extinction conditional on the disease being present in populations
without imports. This can be obtained by simulating populations for many generations, keeping
only those where infection is still present, and then further simulating such populations. Finally,
it is possible to simulate the population dynamics together with a random infection import, and
count the average number of extinctions within a period. Such an approach is biologically re-
alistic yet it is strongly impacted by the pattern of imports, which can be difficult to observe or
model (Keeling et al. 2011).

2.1.1.3 Generalisation of classic hypotheses in epidemiological modelling

Although models based on simplified assumptions are mostly used, Kermack et al. 1927 pro-
posed rather generic models considering infection–age dependent infectivity (the infectivity of
an individual is dependent on the time since the individual was infected), and infection–age de-
pendent recovery rate (the infectious period follows any continuous distribution). Considering
constant rates was only a special case of such generic models that is widely used since it simpli-
fies its analysis (Forien et al. 2021). Indeed, this assumption allows deterministic models to be
written as a system of ODEs.

However, assuming constant rates is a strong hypothesis. The underlying assumption is that
individuals have the same chance of leaving a compartment no matter the time they have spent
in the compartment, which seems biologically not very realistic. This property can be referred to
as the absence of memory in the deterministic formalism, or the markovian property in the stochastic
formalism.

The generic models that do not consider absence of memory can be described by integro-differential
equations (Kermack et al. 1927) or by PDEs (Kermack et al. 1932). In particular, the latter work
additionally considers a recovery-age dependent level of immunity (the susceptibility of a previ-
ously infected individual depends on the time since the individual recovered).

Regarding the recovery rate, a simpler alternative to considering generic non-markovian models
based on integro-differential equations or PDE is the method of stages (Anderson et al. 1980).
Instead of assuming that the infectious period is exponentially distributed with parameter γ, the
method considers that the infectious period follows an Erlang distribution (i.e. the distribution
of the sum of independent and identically distributed exponential variables). Therefore, it can
be modelled by decomposing the infectious compartment into K sub-compartments I1, ..., IK ,
with the same transition rate for all transitions, such that γK = γ × K between them, which
makes it possible to keep an ODE formulation, while keeping track of the time since infection,
and making the chance of recovery dependent on it. This alternative hypothesis has proven to
cause a major destabilisation in the system’s dynamics, which in the presence of seasonality can
lead to complex dynamics patterns with lower levels of seasonality than predicted without this
hypothesis (Lloyd 2001).
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2.1.2 Spatial structure in epidemiological models

Many models can be used to account for spatial structure in disease spread. Their relevance
varies with various factors such as spatial distribution of the population, interaction among hosts,
data-availability, and computational constraints (Keeling et al. 2011).

First, metapopulations models are useful when the study population is naturally divided in sub-
populations, an ecological concept known as metapopulation. Sub-populations have a certain
dynamics, and there may be some interaction between them. Regarding infectious diseases, the
interaction between sub-populations concerns the mechanisms that allow for the transmission
of pathogens. In case of geographical proximity, transmission can occur for example through
small particles suspended in the air, i.e. airborne transmission. When the sub-populations are
not necessarily geographically close, transmission occurs mostly by movements of individuals.

In such a case, the metapopulation SIR-type model with demography for J sub-populations can
be written as:

dSj(t)

dt
= −λ(t)jSj(t) + µjNj(t)− τjS(t)−

J∑

l=1

mjlSj(t) +

J∑

l=1

mljSl(t),

dIj(t)

dt
= λ(t)jSj(t)− γjIj(t)− τjIj(t)−

J∑

l=1

mjlIj(t) +

J∑

l=1

mljIl(t),

dRj(t)

dt
= γjIj(t)− τRj(t)−

J∑

l=1

mjlRj(t) +

J∑

l=1

mljRl(t),

(2.7)

where Sj(t), Ij(t), Rj(t) are respectively the number of susceptible, infected and recovered indi-
viduals in sub-population j = 1, ..., J at time t, and mjl is the rate at which individuals move
from sub-population j to sub-population l. Other parameters have the same interpretation as in
equations 2.2, but are defined at the sub-population scale.

In a stochastic setting, the extinction of the disease at both levels (the sub-population and the en-
tire metapopulation) emerges from the interaction between the sub-populations and is therefore
not easy to predict (Jesse et al. 2011). Indeed, at the sub-population level, an infectious contact
with another sub-population can yield a new invasion of the pathogen, a recolonisation, if the sub-
population had already been infected but had recovered, or an increase in the number of infected
individuals of the sub-population, if this latter is currently infected. At the metapopulation level,
when the pathogen got extinct in some sub-populations, but persisted in others (i.e. asynchronous
epidemics), the recolonisation of disease-free sub-populations is possible. This asynchronicity
further complicates the extinction of the pathogen at the metapopulation level. On the contrary,
when epidemics in the sub-populations are synchronous, disease extinction is easier to be attained
(Hagenaars et al. 2004; Heino et al. 1997).

The spread of a pathogen in a metapopulation occurs at the sub-population level and at the
metapopulation level. For an epidemiological model at a given scale, the dynamics at lower
scales are usually neglected. In particular, for metapopulation models, if the internal dynamics of
each sub-population is ignored, and each one is considered either as infected or not infected, we
refer to a Levins-type metapopulation model, first introduced by Levins 1969. This model assumes
that extinction and recolonisation among the sub-populations are rare events compared to the
standard epidemiological dynamics. Yet, if there is a high heterogeneity among the entities at the
lower scale it may be necessary to explicitly account for both scales, since predictions will not be
accurate otherwise (Keeling 2000). For metapopulation models, this can occur, for example, if the
prevalence of infection can be highly different among the infected sub-populations.

If sub-populations can be considered to be uniformly distributed over space, and interactions
mostly occur with geographically close sub-populations, one may use a lattice model, which is
a type of metapopulation model that places the sub-populations in sites of a grid. A particular
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lattice-based model is the cellular-automata, for which there is a small number of sites in the grid,
and each site generally represents only one individual. Lattice-based models have been useful for
understanding simple effect of the spatial heterogeneity (e.g. Kao 2003; Keeling et al. 2000), and
they generally allow easily to account for stochasticity. Yet, they are rarely relevant for describing
the behaviour of complex real-life problems (Keeling et al. 2011).

If the population is densely geographically distributed, an option is to consider continuous
and deterministic representations, and use continuous-space continuous-population models (Murray
2003). Among these, we find reaction-diffusion models, which use PDEs for describing disease
spatial transmission. Other options are integro-differential and PDE models, which consider
transmission kernels specifying the form in which the risk of transmission decreases with spatial
distance.

Alternatively, it is possible to consider individual-based models (IBM), that is, models where the
state of each individual is explicitly tracked. This allows to know not only how many individ-
uals are in a certain compartment, for example infected, but also which individuals are in the
compartment. Furthermore, IBM allow to consider complex behaviours of the hosts. In partic-
ular, they can consider a spatial heterogeneity that is not restricted to a grid. Yet, such level of
detail in IBM implies a high number of parameters that can be difficult to estimate or calibrate.
Also, they are more computationally intensive than compartmental models (DeAngelis 2018),
even if there are ways to accelerate simulations (Keeling et al. 2011).

A final approach for taking into account spatial structure are networks, although these are not
limited to accounting for spatial heterogeneity. Indeed, they provide an unified representation of
the interaction between individuals or populations (Newman 2010), and are particularly useful
when the entities of the network mostly have few contacts with others. In particular, metapopula-
tion networks can represent a metapopulation in a flexible manner, since they provide an intuitive
graphical representation of it when spatial coordinates of sub-populations are considered, while
directly accounting for the (time-varying) movements of individuals between sub-populations,
or for other transmission ways due to geographical proximity.

2.1.3 Network epidemiology

Although simple compartmental models are useful and relevant when the homogeneous mixing
hypothesis is plausible, they neglect specific and complex contact structures in the population,
which can be important for correctly reproducing the infection-related dynamics in such a pop-
ulation (Keeling et al. 2011). In this context, network theory is a relevant field to accurately
represent and study the contacts between individuals or populations through which pathogens
spread. Indeed, networks are made up of a set of nodes, and a set of links between some of those
nodes, which allows to account for the heterogeneity of contacts, and can therefore generate a
better understanding and control of infectious diseases spread (Keeling et al. 2005).

In the following, I focus on the study of networks and pathogen spreading on networks that are
formed by several interacting populations.

2.1.3.1 Static networks

A network (or graph) can be noted as G = (V, E), where V = {1, ..., J} is defined as the collection
of network’s nodes (or graph’s vertices), and E = {(i, j) : i, j ∈ V} is the set of links between the
nodes (or edges between the vertices). Hence, the link (i, j) ∈ E , if nodes i and j are connected in
the network.

A network can either be represented by a list of its links, i.e. of the elements in E , or by its
adjacency matrix A = (aij), of size J × J , where aij ̸= 0 if there is a link between i to j, i.e. if
(i, j) ∈ E , also noted i− j, and aij = 0 otherwise. If i− j, we say that i and j are adjacent.

Having aij ̸= 0⇔ aji ̸= 0, means the network is undirected (figure 2.4a). Otherwise, the network
is called directed (figure 2.4b), and is noted as

−→
G = (V,−→E ), where

−→E is the set of directed links.
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As the adjacency matrix A is not symmetric, aij ̸= 0 if there is a link from i to j, also noted as
i→ j, and aji ̸= 0 if there is a link from j to i, i.e. j → i.

Finally, if there is a particular weight associated with each link, the network is said to be weighted
(figure 2.4c). We can note it as Gw = (V, Ew), where Ew = {(i, j, wij) : i, j ∈ V, wij ̸= 0}. That
is, (i, j, wij) ∈ Ew. The adjacency matrix of a weighted network is W = (wij), since we assume
wij = 0 if there is no link between two nodes i and j.

(a) Undirected (b) Directed (c) Weighted directed

Figure 2.4: Representations of a undirected network (a), a directed network (b), and a weighted directed
network. Arrows represent directed links.

We call the neighbours of a node j in the network G, nbr(j,G) := {i : (i, j) or (j, i) ∈ E}, i.e. the
set of nodes connected to j in the network. In a directed network

−→
G , we call the parents of the

node j, Par(j,
−→
G) := {i : (i, j) ∈ −→E }. That is, the set of nodes that directly point to j in

−→
G . In

the same way, we can define the children of the node j, Ch(j,
−→
G) := {i : (j, i) ∈ −→E }, i.e. the set of

nodes to which j is directed in
−→
G . In that case, nbr(j,

−→
G) = {i ∈ Par(j,−→G)

⋃
Ch(j,

−→
G)}.

We call a path the finite or infinite sequence of links which joins a sequence of nodes in which all
nodes (and therefore also all links) are distinct. For directed networks, links must be in the same
direction. A shortest path between two nodes in a network is a path with the minimum number
of links, or for a weighted network, a path for which the sum of the links’ weights is minimised.
Finding a shortest path is a classical problem in network theory, and many algorithms exist for
solving it, e.g. Dijkstra’s algorithm (Dijkstra 1959). The distance between two nodes in a network
is the length of a shortest path between them, if there is one, and otherwise the distance is infinite.

A directed network is said to be strongly connected if every node is reachable from every other
node, i.e. if there is a path in each direction between each pair of nodes of the network. That is,
for any pair of nodes i, j of the network, a path exists from i to j, and another path exists from
j to i. The strongly connected components of a directed network form a partition into subgraphs
that are themselves strongly connected. A giant component of a directed network is a strongly
connected component that contains a finite fraction of all the nodes of the network.

2.1.3.1.1 Network connectivity measures The connectivity of a network can be described by
several measures (Newman 2010). In the following, I focus on measures of local connectivity,
and I describe a particular measure that concerns global connectivity.

Topological centrality measures describe local connectivity, i.e. how important or ‘central’ is a
node given the topological characteristics of the network. The most basic centrality measure is
the degree, which is defined as the number of links connected to the node, i.e. the number of
neighbours of the node. Then, the degree of a node j is the size of the set nbr(j,G). In terms of
the adjacency matrix A, for an undirected network the degree of a node j is deg(j) =

∑
i∈V aij .

For a directed network, we can distinguish between incoming degree, in-degree, and outgoing
degree, out-degree. The in-degree of a node j corresponds to the number of links pointing towards
j, i.e. the number of parents of j, which is

←−−−−
deg(j) =

∑
i∈V aij . The out-degree of j is the number

of links coming from it, i.e. the number of children of j, which is
−−−−→
deg(j) =

∑
j∈V aji. The total

degree of the node is therefore the sum of the in and out-degree.
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For weighted networks, we talk instead about the strength of a node or the weighted degree, i.e.
the sum of the weights of its links

∑
i∈V wij . For a directed weighted network, the in-strength of

node j is therefore the sum of the weights of all links going to j, and out-strength is the sum of
the weights of all links coming out of j. Like for the total degree, the total strength of a node, will
be the sum of its in and out strength.

Among other more elaborate centrality measures we find the closeness. It is defined, for a node
j, as: closeness(j) = 1∑

i∈V d(j,i)
, where d(j, i) is the topological distance between j and another

node i. According to this measure, a node is central in the network, if it is ‘close’ to all other
nodes.

Another measure that is also based on shortest paths is the betweenness centrality. For a node j,
it is defined as the ratio of the number of shortest paths passing through j over the number of
all such paths in the network: betweenness(j) =

∑
i̸=j ̸=k

σik(j)
σik

, where σik is the total (weighted)
number of shortest paths between node i and k, and σik(j) is the number of those paths that pass
through j.

The eigenvector is a centrality measure based on the eigenvectors of the adjacency matrix. The
eigenvector score of node j is the j-th element of the eigenvector corresponding to the largest (in
absolute value) eigenvalue ξ of the adjacency matrix. Therefore, the eigenvector score of a node
j has recursive dependence on the eigenvector score of other nodes that point to it. Since for
directed networks, the adjacency matrix is asymmetric, it has two different sets of left- and right-
eigenvectors. One can either use the left eigenvectors, to find nodes that have a large number of
incoming paths, or the right eigenvector, if the interest is in nodes having many outgoing paths.
The (left) eigenvector score for a node j is: eigenvector(j) = 1

ξ

∑
i aij×eigenvector(i). According

to this measure, a node j is central in the network if it is connected to many nodes that are in turn
very connected. It is worth noticing that eigenvector centrality can have issues with directed
networks. Indeed, real-life directed networks are in general not strongly connected. Due to this,
almost only nodes in strongly connected components will have non-zero eigenvector centrality.
Meanwhile, all the other nodes will have a null centrality. This happens because nodes with
no incoming links have, by definition, a null eigenvector centrality. Therefore, nodes that are
pointed only by nodes with a null centrality, will also have a null centrality.

The PageRank is a centrality measure conceived for directed networks, based on the eigenvector
centrality and random jumps, that among other features corrects the previous issue. It is defined
as PageRank(j) = a

∑
i
aij
di
PageRank(i) + b, where a and b are constants, di equals

−−−→
deg(i) if

(i, j) ∈ −→E , 1 otherwise.

Finally, an indicator of global connectivity for directed networks, particularly useful in epidemi-
ology, is the giant strongly connected component (GSCC), the sub-network of maximal size in which
there is a path between each pair of nodes of the sub-graph. Therefore, the GSCC informs about
the maximal proportion of nodes that can be reached from any node of this sub-network (Doro-
govtsev et al. 2001).

2.1.3.1.2 Network models for complex networks There exist many models that search to ex-
plain the probabilistic mechanisms underlying the generation of network structures. They are
usually referred to as network models, or they are sometimes called random networks. The simplest
example of an undirected random network model is the Erdös-Rényi model (Erdös et al. 2011),
initially introduced in 1960. This network can be generated for a certain number n of nodes, by
independently connecting each pair of nodes with a probability p. The resulting degrees follow
a Binomial(n, p) distribution (see an example in figure 2.5a). For its simplicity, much attention
has been given to its analysis (Newman 2010).

Yet, real-systems networks often have non-trivial topological features that do not occur in simple
networks like those generated by the Erdös-Rényi model, we refer to them as complex networks
(Albert et al. 2002). One of the most common features of complex networks is the scale-free prop-
erty. We say a network has the scale-free property, or is scale-free, if its degree distribution follows



28 CHAPTER 2. STATE OF THE ART AND PROBLEM FORMULATION

(a) Erdös-Rényi (b) Barabási–Albert (c) Configuration

Figure 2.5: Representations of networks of n = 1000 nodes generated according to three models. (a) Erdös
-Rényi model with p = 0.5 (the probability of connecting any pair of nodes). (b) Barabási–Albert model with
υ = 2 (the scale parameter). (c) Configuration model where half of the nodes have a degree 2, and half have
degree 100.

a power law, i.e. the proportion of nodes having x neighbours in the network, goes for large val-
ues of x as p(x) ∼ x−υ, where υ is called the scale parameter. This means that in the network
there are nodes, called hubs, with much higher degree than the average. A network model that
might explain the appearance of power-law distributions in real-world networks is the preferen-
tial attachment model, a term initially used for the Barabási–Albert model in Barabási et al. 1999.
This model lies on the idea that a new node prefers to connect with an existing node in the net-
work that has already established some links with others nodes, which would eventually lead to
the appearance of hubs (figure 2.5b).

Contrary to the Erdös-Rényi model, or the Barabási–Albert model, the configuration model gener-
ates a random network from any given degree sequence (see figure 2.5c). Indeed, instead of hav-
ing a distribution from which the given degree is chosen, the degree of each node is predefined.
It is therefore not restricted to a Binomial degree distribution, or to a power-law distribution. For
its flexibility, it is widely used as a model for representing real-life social networks.

The study of scale-free networks are of special interest in epidemiology. One of the reasons is
that the most connected individuals or populations, i.e. the hubs, can play a major role in the
spread of a disease at a large scale (Keeling et al. 2011).

2.1.3.2 Dynamic networks

Until here, I have implicitly assumed that the network is static, since its structure (nodes and
links) does not evolve over time. However, several real-life contact patterns have a temporal
dimension, as nodes and/or links can appear or disappear over time. The network is therefore
referred to as dynamic or temporal (Masuda et al. 2016).

A dynamic network takes into account the chronological order at which links are established.
While the definition of dynamic networks is an extension of static networks, the definition of
their properties is not as straightforward. A path, for example, should respect the chronolog-
ical appearance of links, which complicates its conceptual definition, and in particular makes
the shortest path problem more complex. The previously described centrality measures do not
take into account the temporal dimension. Several alternative centrality measures have been de-
fined, mostly by generalising static centrality measures. In particular, Kim et al. 2012 consider a
temporal betweenness, and Taylor et al. 2017 describe a temporal coupling of eigenvector-based
centralities. However, these methods suffer from a high computational cost, due to the additional
complexity of temporal networks. In this context, Rocha et al. 2014 proposed a measure based on
time-respecting random walks, as an extension to the PageRank centrality. Hoscheit et al. 2021
showed this measure can be efficiently computed using stochastic simulations, so it can be well
suited for large temporal networks.
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Finally, in dynamic networks, it is possible to consider discrete or continuous time. Although
discrete time can theoretically be seen as an approximation, it can be well adapted for certain
contexts, particularly from a practical point of view. Indeed, real-life data-sets that can be repre-
sented as temporal networks are recorded in discrete-time. For example, records on animal trade
movements are usually done on a daily basis, so it is natural to consider daily static networks.
Furthermore, data can be aggregated so as to consider snapshots of the dynamic network, if it
is assumed or verified that the structural characteristics of the aggregated snapshots are similar
(Holme et al. 2012).

2.1.3.3 Infection dynamics on metapopulation networks

The structure of the underlying network (linking individuals of a population, or sub-populations
in a metapopulation) on which a pathogen can spread can strongly affect infection-related dy-
namics (Keeling et al. 2005). In the following, the focus is on infectious diseases spreading on
metapopulation networks.

Many studies have focused on pathogens spreading on networks, both from a theoretical and
applied point of view (e.g. Pastor-Satorras et al. 2015, 2001), particularly in metapopulation net-
works (e.g. Colizza et al. 2008b; Hagenaars et al. 2004; Lloyd et al. 2004; Vergu et al. 2010). In
particular, mathematical models have been used to explore the spread (over time and space) of
a pathogen, by accounting for the individual movements as a source of infection for popula-
tions where a pathogen is not present (e.g. Colizza et al. 2006). As mentioned before, infectious
contacts can either be undirected, for example in social networks of individuals, or directed, for
example in the previously mentioned mobility networks. Additionally, contacts can be assumed
homogeneous, or they can depend on node/link specific factors, i.e. weights can be associated
to the nodes/links of the network, which ultimately implies a different infection risk.

Furthermore, in a meta-population, it is possible to ignore or not the dynamics internal to each
sub-population. The first option is rarely realistic, since it neglects heterogeneities in the severity
of infection of an infected sub-population over time, or among infected sub-populations. Also,
it supposes that the infection spreads rapidly in a sub-population, compared to the setting up
of contacts between sub-populations. On the contrary, considering the within-node infection
dynamics of each sub-population can be more accurately represented when processes occur in
similar time-scales. Yet, this increases the complexity of the model, as it requires a coupling
between the sub-populations internal dynamics, and the dynamics among them, given by inter-
actions. This increased complexity often prohibits the analytical study of model behaviour, and
can make model simulation studies very computationally intensive.

Additionally, if the structure of the network varies over time, the order of events occurrence must
be taken into account, since it will affect the propagation among nodes. Indeed, it has been shown
that not taking into account the temporality of the network can result in major differences in the
spread (see figure 2.6 for an example). In particular, static networks fail to capture the predicted
infection dynamics behaviour associated with dynamic networks, as they do not account for
temporal structures that prohibit or allow infectious contacts (Fefferman et al. 2007; Vernon et
al. 2009). The temporal structure of contacts can be taken into account as being exogenous to
the infection dynamics, by plugging in network data (e.g. Beaunée et al. 2015). However, the
predictions concerning the disease spread will necessarily be associated to past observations of
this underlying network. Indeed, there is no guarantee for predictions to hold for another time
period, since the links of the network may have probably changed over time. Another option is
to consider the network as being endogenous to the pathogen spread, by defining the setting up
of links as a transition event jointly occurring with infection dynamics. This approach has the
potential of being well-adapted if one is searching for more potentially generic results, although
it may be harder to implement.

A final important issue that must be considered when studying infectious diseases on networks
is computational complexity (Newman 2010). Indeed, current research is looking at larger and
more complex networks. This has been made possible by advances in the collection and analysis
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Figure 2.6: Representation of a simple dynamic network. The coefficients on the arrows indicate the time
steps at which the link is active. If node A was infected at time 0, the infection could only reach node B, yet
according to the static network (i.e. if the temporality of the links is not accounted for) the infection would
spread to the whole network.

of these data. Even if many standard algorithms for the study and simulation of networks are
already available, computational complexity needs to be considered in order to understand how
to use these pre-made tools and not be limited by what a certain package can do. Computation
must be taken into account even in the way network data is stored, e.g. as an adjacency list, as an
adjacency matrix, etc. Indeed, these aspects can also have an impact on the simulation time and
the amount of used memory. This issue must be of particular attention in temporal networks, as
links occurrence varies over time, so the memory space and speed of simulations can be further
increased.

2.1.3.4 Infection dynamics on animal trade networks

Animal movements databases can all intuitively be represented as directed weighted (dynamic)
networks, where holdings are represented by the nodes of each network and animal flows are
represented by the weighted directed (dynamic) links between the nodes.

Many studies have been devoted to the statistical description of animal movements databases,
such as Dutta et al. 2014 in France, Robinson et al. 2007; Vernon 2011 in the United Kingdom,
Martinez-Lopez et al. 2009 in Spain, Matos Baptista et al. 2007 in Portugal, or Natale et al. 2009
in Italy. Furthermore, numerous studies used this representation along with network-analysis
techniques (e.g. characterising degree distributions, analysing the giant component or the weakly
and strongly components of the network) to study animal trade data, such as Bajardi et al. 2011;
Mweu et al. 2013; Natale et al. 2009; Vernon et al. 2009. In particular, it has been observed that
animal trade networks have the scale-free property (Rautureau et al. 2011).

Additionally, it has been possible to study the potential spread of infectious diseases at a large
scale through these movements. In particular, evaluating the impact of this (time-varying) struc-
ture regarding pathogen spread and control (e.g. Bajardi et al. 2012; Beaunée et al. 2017; Bigras-
Poulin et al. 2006; Dubé et al. 2008; Ezanno et al. 2006; Gilbert et al. 2005; Kao et al. 2007; Nöre-
mark et al. 2011; Volkova et al. 2010). For example, Bajardi et al. 2011; Vernon et al. 2009 show
that the temporal variability of the network is an important factor determining its vulnerability
to disease propagation.

Finally, modelling the spread of pathogens between farms represented as a metapopulation net-
work not only allows for contact or spatial heterogeneity, but also naturally considers hetero-
geneity in the application of control measures across farms in the network (Ezanno et al. 2020)
(e.g. Rautureau et al. 2011).

2.2 Decision-making with application in epidemiology

The study of decision problems is a large and interdisciplinary topic that has been treated from
different perspectives by mathematicians, economists, psychologists, game-theorists, biologists,
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social scientists, computer scientists, etc.

The decision problem can concern a system with only one entity or agent, i.e. decisions solely
concern this agent. Yet, in the following I focus on cases where decisions are made for or by
many agents. I attempt to give a short and not comprehensive review of such problems, and of
the mathematical approaches available to represent and eventually solve them. I emphasise that
for both problem types and mathematical approaches, the state of the art is rendered difficult
since elements can be found in different fields.

2.2.1 Types of decision problems

Decision problems can be classified in several manners depending on the used criterion. In the
following, the first two criteria are relevant both for systems with a single agent or many agents,
while the third one is specific to the latter case.

First, a distinction can be made according to when decisions are taken: just once, or through re-
peated actions. For problems with repeated actions I refer to a sequential decision problem (Diederich
2001). Examples of sequential decision problems are optimal stopping problems (Chow et al.
1971), in which the agent makes a sequence of decisions based on a sequence of observations to
find a time to perform a particular action, in order to maximise an expected reward. The most
studied is the secretary problem, in which an administrator has to hire a secretary among n ap-
plicants. Yet, they are interviewed one by one and the administrator must decide immediately
after the interview whether to hire or reject the person, and cannot call back a previously rejected
applicant. The objective is then to find the time at which the best applicant is the hired person,
finding a strategy that maximises the probability of selecting the best person for the job (Fergu-
son 1989). Other well known sequential decision problems are inventory problems and multi-armed
bandit (MAB) problems. The first one is the problem faced by a firm that must regularly decide
how much of a product to stock in order to meet future demand for its products (Dvoretzky et al.
1952). The latter takes its name from a situation where a gambler faced with several slot machines
(or one-armed bandits) has to decide which machines to play, how many times, in which order,
and whether to change the machine. It concerns therefore the decision-maker that must choose
at each time among several possibilities in order to maximise the overall expected gain, where
there is uncertainty in the result of each choice in advance. The player collects information over
time, i.e. learns, in order to better decide in the following steps (Berry et al. 1985). See section
2.2.2.5 for more details on this problem.

Though the terms sequential and dynamic are sometimes indistinguishably used, we talk about
a dynamic decision problem only if the sequence of decisions are made in order to control and
optimise the performance of a dynamic system (Busemeyer 2001). The dynamic aspect of the
system is given by a state change over time, both due to the system itself and to the previous
actions of the decision maker (Hotaling et al. 2015).

Second, a decision-problem can be classified depending on the degree of certainty that the decision-
maker has on the result of his/her actions. Generally, a deterministic setting will result in a deci-
sion problem without uncertainty, i.e. the decision-maker knows in advance the consequences of
each possible decision. On the contrary, when decisions are made on the basis of outcomes that
are unknown in advance, there is decision-making under uncertainty (Kochenderfer 2015). When
the probability distributions of such outcomes are known by the decision-maker, the decision-
making is said to be under risk, and the term uncertainty only refers to situations where these
distributions are unknown (Etner et al. 2009). When the uncertainty in the probability distribu-
tions is extreme, some authors say that the decision is made under ignorance (e.g. Cohen et al.
1985).

Finally, when the system is composed by more than one agent, one of the main distinctions
regards the decision-maker, i.e. the agent who makes the decisions, with two main options.
If there is a central decision-maker for all the agents in the system, we talk about centralised
decision-making, while if each entity or agent of the system makes its own decisions, we talk
about decentralised decision-making (Xuan et al. 2002).
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In general, irrespective of the centralised or decentralised nature of the decision-making prob-
lem, its formulation can have as objective either to represent how the decision-maker actually
decides i.e. modelling the decision-maker’s behaviour, or to find the way in which the decision-
maker should decide, i.e. optimising the decision-maker’s decisions. However, in epidemiology,
the setting of the problem, centralised or decentralised, strongly shapes its conceptual and math-
ematical formulation, and can therefore define the available approaches to solve it. In particular,
since the agents of the system are humans, the overall objective is to model real-life human be-
haviour. On the contrary, the general objective of a centralised decision problem in epidemiology
is to find the optimal decisions that should be taken by a social planner for each agent in order to
optimise a certain global criterion of the system, i.e. optimising the system.

Hence, in what follows, the framework is that of a system of many interacting human agents, for
which I consider the two main cases given by the previous distinction. That is, on the one hand I
study the decentralised case, where I focus on modelling human decision-making. On the other
hand, I consider centralised decision-making, where the objective is to propose techniques for
the system optimisation.

2.2.2 Decentralised decision-making: modelling human behaviour

In the following I detail the main approaches for representing the decision process of each agent
of a system, where each agent is a human. That is, approaches for representing human behaviour,
with a special focus on voluntary behaviour when agents are faced to the spread of an infectious
disease. However, some of these approaches lie on the assumption that humans are able to
optimise their decisions perfectly. So, human behaviour is essentially modelled as the solution to
an optimisation problem, or as if the decision-maker was a machine.

The classification is somewhat different to the one found in Wang et al. 2016, yet it is based on it.
Indeed, I consider evolutionary game-theory as a category on its own, i.e. not embedded within
psychological models, as the former uses elements both from game-theory and psychology. Fur-
thermore, I consider an additional category on reinforcement learning. The five categories are
therefore: phenomenological models, psychological models, game-theoretical models, evolu-
tionary game-theoretical models, and reinforcement learning. It should be noted that Markov
decision processes are treated both in game-theoretical models and reinforcement learning.

2.2.2.1 Phenomenological models

Phenomenological behaviour models describe the effects of decisions, without posing a mecha-
nism for the decision process.

In this class, we first find models that use mean-field ODEs with a parameter that accounts for
the impact of individual behaviour on disease spread. The first model to take this approach was
the generalised SIR model of Capasso et al. 1978:

dS(t)

dt
= −g(I(t))S(t),

dI(t)

dt
= g(I(t))S(t)− γI(t),

dR(t)

dt
= γI(t).

The functional form g(I(t)) of the force of infection can capture the effects of human behaviour,
such as individuals reducing contacts at high levels of prevalence.

The other type of phenomenological models are the ones that lie on the assumption of spread
of ideas by a diffusion process, or by an unspecified hypothetical awareness-raising event (e.g.
Mendes et al. 2020). This type of model can sometimes neglect important features of real social
behaviour (Alshamsi et al. 2015), such as imitation, or more generally the influence of observing
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the behaviour of other agents (Bandura et al. 1977). However, they can be useful to easily observe
the effect of individuals’ behaviour on disease spread, and to describe through simple ideas how
complex behaviours can emerge in populations (Wang et al. 2016).

A final example of a model that phenomenologically accounts for behaviour is one that divides
population into groups according to a static vaccination profile (such as "vaccinates" vs "does not
vaccinate"), and only explores infection dynamics given the interaction of agents in the different
assigned groups (e.g. Hill et al. 2021). Indeed, such a model does not consider how the agents
can acquire (nor loose) such vaccination profiles.

2.2.2.2 Psychological models

Among the models that do formulate mechanisms to describe individuals’ behaviour we find the
ones that lie on specific psychological theories.

A first example are models that rely on subjective expected utility (SEU) theory (Savage 1972),
which is an extension of expected utility (EU) theory. EU theory supposes that individual decisions
arise from a utility function U(xi) of the possible outcome {xi} of a given decision i, and the
probability of each outcome p(xi) (Machina 1987). Then, if the individual has another option
for the decision with possible outcomes {yi}, it chooses the decision with the highest EU. SEU
theory adds a psychological aspect to EU theory, supposing that the agent only has a personal
belief of the probability of each outcome, and decides based on the subjective expected value of
the utility. That is, for computing the SEU of each option, the agent uses their subjective belief
on the probabilities, and then chooses the decision with the highest SEU. It is to be stressed that
many economic experiments have pointed out that the theory is not consistent with real human
decision-making (Karni 2008). In particular, Ellsberg 1961 used simple hypothetical experiments
to show how sometimes it can be impossible to infer probabilities from the choices made by
an individual, concluding that individuals do not always decide as a function of a probability
distribution on the outcomes.

Another important approach is prospect theory (Kahneman et al. 1979), which belongs to be-
havioural economics, a relatively recent economic field that (contrary to classical economics)
accounts for psychological, cognitive, emotional, cultural and social factors on individuals de-
cisions (Teitelbaum et al. 2018). Unlike EU theory, prospect theory does not consider perfectly
rational agents, i.e. agents that decide by performing a cost-benefit analysis to determine the
option that maximises their benefit at the smallest cost. In particular, it describes individuals
preferring to avoid losses rather than to acquire equivalent gains. Also, it accounts for a cogni-
tive human bias consisting in over-estimating the probability of very rare events. It is therefore
relevant in epidemiology for accounting for the influence of rare events, such as vaccine adverse
events or disease complications, on human decision-making (Wang et al. 2016). It has been more
often used in mean-field models coupling vaccinating behaviour and disease spread. In partic-
ular, Oraby et al. 2015 built a disease-behaviour model in the context of vaccination against a
paediatric infectious disease, accounting for bounded rationality using prospect theory. In this
work, a comparison with a simpler model where individuals behave rationally is made, show-
ing that taking into account cognitive considerations in the first model could profoundly impact
predictions.

A third approach belonging to psychological models are belief-decision models. These models lie
on the Dempster–Shafer theory (Shafer 2020), a general statistical framework for reasoning with
uncertainty. This framework allows for an agent to combine evidence from different sources to
update the belief on the probability of an event, belief that determines his subsequent decisions.
In epidemiology, belief-decision models have been used for coupling vaccination and disease
dynamic decisions, particularly to account for the influence of awareness concerning disease
prevalence and vaccine safety (see Xia et al. 2014).
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2.2.2.3 Classical game theory

Game theory studies mathematical models of strategic interactions among decision-makers (My-
erson 1997). In classical game theory, individuals are generally assumed to be perfectly rational,
i.e. able to perform a cost-benefit analysis to determine whether an option is good for them and
to choose that option.

To be fully defined, a game must specify its players, the information and actions available to each
player at each decision point, and the payoffs for each outcome. Furthermore, the game can be
either cooperative, if players are supposed to be able to form alliances, or non-cooperative other-
wise. Cooperative game theory focuses then on predicting coalitions, joint actions and collective
payoffs. Meanwhile, non-cooperative game theory focuses on predicting individual players’ ac-
tions and payoffs. In particular, it analyses Nash equilibria, a set of strategies for each player
such that, when employed, no player can profit by unilaterally changing strategy.

The most studied non-cooperative game is the Prisoner’s Dilemma, formalised by Albert W.
Tucker in by 1950 (Poundstone 1992). This game consists in two members of an organisation be-
ing imprisoned separately without possibility for communicating with each other. Each prisoner
A and B can either betray by saying that the other committed the crime. It is implicitly assumed
that prisoners cannot punish the other’s betrayal, i.e. the only thing that matters in decision is the
years of conviction they can get according to their decision. If both prisoners betray each other,
each will have 2 years in prison. If one prisoner betrays, but the other remains silent, the one
that betrays will be set free and the other one will have 3 years in prison. Lastly, if both prisoners
remain silent, each will have 1 year in prison.

The pay-off matrix of this game is then:

B silent B betrays
A silent (-1, -1) (-3, 0)

A betrays (0, -3) (-2, - 2)

Table 2.1: The Prisoner’s Dilemma. Terms in parenthesis indicate the pay-off of the players under the given
strategy.

From an individual point of view, betraying always results in a better payoff than keeping silent
regardless of the other’s player action. Then, mutual betrayal is the only strong Nash equilibrium
in the game (i.e. the only outcome from which each player could only do worse by unilaterally
changing strategy). Hence, the dilemma consists in the fact that, although mutual cooperation
would be more beneficial to both players than mutual defection, the most ‘rational’ strategy is
betraying, i.e. is the best strategy from a self-interest point of view, while keeping silent would
be irrational.

Classical game theory is commonly used to model human behaviour, i.e. it is commonly as-
sumed that the Nash equilibria of the studied games can predict human decisions on a similar
real-life problem. This point of view regarding classical game theory has been extensively criti-
cised, arguing that the assumptions made do not hold for real human decision-making processes,
as humans do not always act in a fully rational way (Chang et al. 2019; Newton 2018). On the
one hand, individuals can exhibit bounded rationality, given by cognitive, informational or time
constraints that do not allow them to compute the optimal strategy, so they rather choose a sat-
isfactory option (Sent 2018). On the other hand, humans can simply make irrational decisions.
That is, not choose the best option from their individual point of view, for example when they
imitate others’ behaviour (Pingle 1995).

These criticisms encouraged the emergence of the field of evolutionary game theory, which
searches to resolve these issues by avoiding to assume that individuals are perfectly rational
(Wallace et al. 2015).

In epidemiology, classical game theory has been extensively used to study voluntary vaccination



2.2. DECISION-MAKING WITH APPLICATION IN EPIDEMIOLOGY 35

uptake in human populations (e.g. Bauch et al. 2004, 2003; Jijón et al. 2017; Mohr et al. 2020.
In particular, the Prisoner’s Dilemma has been used for defining optimal strategies from the
individual and from the group point of view. Assuming an initial high level of vaccine coverage,
vaccinators are considered to be the Cooperators, while non-vaccinators are the Defectors, which
free-ride, i.e. benefit from the herd-immunity levels acquired by the vaccinators, without having
to bear the cost of the vaccine. At a low initial level of vaccine coverage, the Prisoner’s Dilemma
is not however a relevant analogy, since what would be optimal for each individual would be to
get vaccinated (Wang et al. 2016).

As mentioned before, classical game theory assumes that individuals optimise their payoffs in a
selfish rational way. However, effects like social learning (i.e. learning by imitation) and bounded
rationality (cognitive, informational or time constraints) are very important in vaccination deci-
sions (e.g. Sturm et al. 2005). Furthermore, classical game theory mostly studies problems of only
two players. In a context of many interacting agents, mean field game theory (Lasry et al. 2007)
studies strategic decision making in such large populations by making a mean field simplifica-
tion. That is, assuming atomic agents determine their strategy by considering the evolution of
the group of players as a whole, rather than the set of individual behaviours. Indeed, each player
searches to minimise an individual cost that depends on the agent’s state and action, and on a
mean criterion based on the global state of the group of players. However, the predictive value
of an approach relying on this simplification is limited for cases where disease and behaviour
dynamics depend on a non-homogeneous population structure (Wang et al. 2016).

A particular game-theoretic framework that is worth mentioning here, is the one of Markov
decision processes (MDP). MDP provide a mathematical approach for modelling decision mak-
ing in situations where outcomes are partly random and partly under the control of a deci-
sion maker. They lie on the assumption that the conditional probability distribution of the fu-
ture states of the dynamic system, given past states and the present state, only depends on
the present state and not on past states (‘absence of memory’ of a Markov process). Hence, a
MDP is given by a set of states X , a set of actions A, a (Markovian) transition model Pa(x, x′) =
P (xt+1 = x′|xt = x, at = a) (probability that action a in state x at time t leads to state x′ at time
t + 1), and a reward function Ya(x, x′) = P (yt+1 = y|xt = x, at = a, xt+1 = x′) (probability that
yt+1, the reward at time t+ 1, equals y after transitioning from state x to state x′ due to action a).

MDP are not specific to game-theory, as they are used and studied in other fields, such as rein-
forcement learning (see section 2.2.2.5). From the game-theory point-of-view, a MDP is a stochas-
tic game with only one player. In epidemiology, it has been used by many authors to formulate
game-theoretic models of vaccinating behaviour using mean-field and rationality assumptions
(Wang et al. 2016). In particular, Reluga et al. 2011 proposes a general framework for vaccination
games lying on three models: one CTMC for epidemiological changes at the individual scale (in-
fluenced by individual’s strategy and external factors such as population state), one mean-field
deterministic model for the infection dynamics at the population level, and one model for indi-
vidual decisions. The decision model lies on a combination of classical game theory postulates
and MDP theory. Indeed, the first one assumes individuals maximise their inter-temporal ex-
pected utility, since they can predict their future evolution in probabilistic terms, i.e. integrate
over the probability distribution of all possible paths of their future states. Meanwhile, MDP
theory is used for the evaluation of decisions, that is, for associating values with events, and
calculating the expected value conditional on each choice.

Yet, the criticisms made to classical game-theory can also be pointed out when using MDP within
the game-theory framework. Indeed, within this framework, the MDP lies on classical game-
theoretical assumptions (i.e. individuals are fully rational), and hence the questioning regarding
the extent to which it can represent actual human decision-making still holds.

2.2.2.4 Evolutionary game theory

Here I discuss models that account for psychological or cognitive features of human behaviour
but in which decisions are based on a certain payoff. I refer to them as evolutionary game-theoretical
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models. Since such models are in a way inspired both by classical game theory and by psychology,
they are sometimes referred to as game theoretical-psychological models.

Evolutionary game theory is the application of game theory to evolving populations in biology.
It originated with the work of Maynard Smith 1982. Maynard Smith’s evolutionary version of
game theory does not require that players are rational, only that they have a strategy. The results
of a game show how good that strategy was, like evolution shows how good strategies are for
surviving and reproducing.

Following the works of Bauch 2005 and Fu et al. 2010, several studies subsequently used evo-
lutionary game theory in human disease epidemiology to represent individual’s vaccination be-
haviour in a social network (Tanimoto 2021) (e.g. Cardillo et al. 2013; Fukuda et al. 2014; Li et al.
2017; Liu et al. 2012; Voinson et al. 2015). The decision of the ’vaccination game’ is usually played
before or after the epidemic season which allows for a ‘strategy updating’, which determines the
form of the influence of the neighbours in the social network on the decisions of each individual.
See figure 2.7 for an example of a two-stage vaccination game considered in evolutionary-game
theory applied to epidemiology.

Figure 2.7: Scheme of a two-stage vaccination game. At stage 1, some individuals decide to vaccinate at a
cost CV . At stage 2, vaccinated individuals cannot get infected (vaccine provides perfect immunity) while
non-vaccinated individuals can get infected (and hence pay a cost of infection CI ), or remain healthy (free-
ride by being indirectly protected by the vaccination of other individuals). Reproduced from Fu et al. 2010.

There are several strategy updating rules in studies of evolutionary game theory applied to epi-
demiology (Tanimoto 2021). First, the Imitation Max (IM) rule, in which each player copies the
strategy of the neighbour that has obtained the largest payoff in the previous decision time. At
each decision time step, this rule is deterministic since the individual always copies the strategy
of such neighbour.

The most studied stochastic updating rule is the Fermi-Pairwise rule (individual or socially based).
A pairwise rule consists in randomly selecting a neighbour and copying the neighbour’s strat-
egy with a probability given by a certain function in which there is a comparison between the
individual’s payoff and the neighbour’s payoff. The Fermi-Pairwise rule uses the Fermi function
(Szabó et al. 1998) which reproduces the non-linearity of human decision-making processes (Pin-
gle 1995; Tanaka et al. 2021). According to this rule, the probability of an individual i switching
to the strategy of a selected neighbour j is

p(dj ← di) =
1

1 + exp[−κ(Πj −Πi)]
, (2.8)
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where di is the previous strategy of i, and dj is the previous strategy of j. The parameter κ cap-
tures the individual’s sensitivity to the difference on the last payoff of j and i, respectively Πj
and Πi. In general, the Fermi-Pairwise rule is considered to be the strategy that most closely rep-
resents individual’s vaccination behaviour, and is therefore the most used one in the literature
(Tanaka et al. 2021). It has also been referred to as IB-RA (Individual Based Risk Assessment) by
Fu et al. 2010. An extension of this rule called SB-RA (Strategy Based Risk Assessment) has been
proposed by Kuga et al. 2019, where the probability of switching strategy depends on the com-
parison between the individual’s payoff and the average payoff of neighbours with the contrary
strategy.

Most of the strategies of evolutionary game theory applied to the vaccination game imply that
the possibility of changing strategy only appears if the comparison occurs with a neighbour or
group of neighbours with the opposite strategy. Then, if most of the population has initially
the same strategy (vaccinate or not vaccinate), there would be a high chance that there are no
changes when updating the individual strategies. An updating rule that does not have this issue
is the Fermi-like myopic updating rule (Zhang et al. 2013). However, this rule does not consider
imitation. Applied to the vaccination game, it assumes that individuals first have a perceived
payoff of vaccinating and of not vaccinating. Then, they update their vaccination preference
according to their own observation of the consequences of vaccinating or not, using a Fermi
function.

The different updating rules have been used for evaluating the effect of subsidy policies on vac-
cination uptake (e.g. Kuga et al. 2019; Zhang et al. 2013). Indeed, since the cost of vaccination is
usually assumed to be simply the cost of a vaccine dose, it is quite straightforward to consider
that a subsidy policy that covers such a cost could impact vaccine willingness to vaccinate. Some
studies have found that the updating rule that is considered for human decision-making can
have an impact on the efficiency of the subsidy policy (e.g. Zhang et al. 2013), or on the pathogen
spread (Ning et al. 2020). In particular, Kuga et al. 2019 found that even if results are qualita-
tively the same, in the case humans behave according to the IB-RA rule more individuals should
be subsidised when compared to the case when they behave according to the SB-RA, since in the
latter case there are more people that would vaccinate without subsidies.

The last point introduces the main limitation of this approach: a priori, it is unclear to what extent
the chosen mechanism of individual decision-making has an impact on the model’s dynamics
(Tanimoto 2021) and therefore it should be carefully chosen (Wang et al. 2016). Indeed, it is often
difficult to test on a representative sample if people actually take decisions in the way postulated
by the updating rule, in particular regarding their response to different external incentives. When
at least small data samples can be obtained, econometrical techniques can be used to statistically
model individual’s decisions (e.g. Sok et al. 2020, 2018). Ultimately, these could provide a data-
driven baseline to compare models issued from an evolutionary game-theoretical approach.

2.2.2.5 Reinforcement Learning

Reinforcement learning (RL), is an area of machine learning in which optimal control policies are
learned by the means of experience (by interacting through actions with a dynamic environment),
as the environment’s state transition probabilities or the rewards (observations) associated with
each possible action are unknown (see figure 2.8). In the following, I review two main instances of
RL: MDP (a discrete-time stochastic control process whose basic structure is described in section
2.2.2.3) and multi-armed bandit (MAB) problems.

Within RL, both MDP and MABs problems are generally concerned with a decision-maker that
is a machine, not a human. Hence, they do not usually search to represent real-life human be-
haviour (i.e. how humans actually make decisions) but search the optimal sequence of actions
that the agent should make, i.e. how the agent should make decisions in order to maximise the
expected sum of rewards. Even when social learning is considered, RL approaches are not usu-
ally concerned with modelling how a group of human agents would make decisions, but with
optimising their collaboration, in particular by enabling or improving communication between
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Figure 2.8: Schematic process of reinforcement learning. Reproduced from RL fundamentals - 2021 RL Virtual
School 2022

them (e.g. Sankararaman et al. 2019). Therefore, MDP and MAB are essentially optimisation
approaches. In a context of modelling human decision-making, they can be mostly useful for
establishing mechanisms through which humans could behave optimally, regarding the max-
imisation of rewards in a non-dynamic system (MAB) or a dynamic system (MDP). This is, in
a sense, the same criticism made to classical game theory, which supposes humans are able to
optimise their expected utility.

However, although RL approaches usually do not refer to human decision-makers (as they do not
consider human cognitive, psychological or social aspects), the MDP and MAB settings can be
an appropriate framework for considering human-decision making through their relation with
evolutionary game-theory. This association could surpass the limitation related to the rationality
assumption when considering MDP with classical game theory (see section 2.2.2.3).

Given the previous considerations, the most important difference between the evolutionary game-
theoretical models used in epidemiology and RL is that the first one considers that decision is
made solely by a human, while the latter one usually considers the decision is taken or at last
supported by a machine. Another important difference that is worth mentioning, is that in the
latter agents learn from their interactions with the system and reinforce the probability of taking
certain decisions (even if they can explore other options with a certain probability) given that
they have memory. Meanwhile, in most evolutionary game-theoretical models, agents fully re-
compute at each time the probability of switching decision as a function of the last payoffs, i.e.
memory is limited to the way agents’ behaviours evolve as a function of the strategies and the
proportions of groups of players with each strategy. That is, there is no memory associated to
each player, i.e. no explicit impact of past decisions and payoff, nor of previous probabilities.
One exception is the recent work of Wang et al. 2020 that considers a certain memory effect.

Regarding MDP, the main obstacle that arises when modelling real-world systems in their frame-
work is the scalability problem. Given that in many applications the space state is combinatorial
and extremely large, it is usually impossible to exactly calculate the action-value function, i.e. the
function that measures long-term cumulative performance of a policy for each state within finite
time, where a policy is a function that gives the probability of taking action a when the system is
in state s (Sutton et al. 2018).

Hence, if the number of states is very large, simpler RL exploration methods can be more useful
(Tokic et al. 2011). Another alternative is to consider an approximation of the value function (Sut-
ton et al. 1999). In particular, Huang et al. 2020 use such an approximation for considering MDP
within a setting of many agents (simulations are made on 400 agents) that interact in a dynamic
environment. The approach shows new insights for the integration of evolutionary game theory
and MDP. However, the association of the two suffers from some limitations related to the use
of MDP itself. Apart from the questioning regarding its relevance in situations where decisions
are not taken or advised by a machine, the approach lies on considering asynchronous decisions
(only one agent decides at a time and other agents still use the actions from the previous decision
time). This is necessary for being able to consider that at each time one agent is in interaction
with a dynamic environment that evolves as a stationary Markov chain, and hence to formulate
the decision-process of each agent as a MDP. This approach implicitly assumes that agents ig-
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nore each other, so the problem is reduced to a single-agent problem, and interactions with other
agents are possible only through the stochastic environment. Yet, under different conditions (in
particular synchronous decisions) the actions of all agents would have to be explicitly consid-
ered in a multi-agent MDP (see section 2.2.3.3.3), and the curse of dimensionality for solving
MDP would be enhanced (Bloembergen et al. 2015).

Since there are alternative RL approaches (such as the MAB problem) that could be scalable, they
could have the potential of also addressing the concern on representing actual human-behaviour,
provided that they imply less cognitive and computational resources for the decision-maker. In
particular, if the process is not Markovian, or if the agent does not truly behaves optimally, the
decision-making process of the agent can still be formulated within the MAB setting.

Regarding MAB, they are a particular type of RL problems, much simpler than MDP. A MAB is a
sequential decision problem under uncertainty where an agent faces a number of options, called
arms in the MAB terminology, each with an associated distribution of rewards. Since the agent
does not know these distributions, it chooses an arm at each decision time, in order to optimise a
previously established objective which depends on the rewards and thus on the agent’s choices
(Kaufmann 2014). In general, the objective on a MAB problem is to maximise the sum of rewards
(in expectation) for a given time horizon T . To do this, the agent must explore the different
options to obtain information on the distributions, but also exploit the options that maximise the
empirical mean of the realised rewards. It will thus have to manage an exploration-exploitation
trade-off.

The most studied MAB problem is the stochastic iid problem: the reward generating process is
random, and reward observations are independent and identically distributed (i.i.d.) over time.
That is, to each option corresponds an unknown distribution of rewards that is fixed in time,
i.e. it is not modified either by the agent’s actions or by external elements. The generalisation of
the stochastic MAB problem which removes all assumptions on the distribution of the arms is
the bandit adversarial problem. It supposes that at each iteration the agent chooses an arm and
an ‘adversary’ simultaneously chooses the payoff structure for each arm. An example for ad-
versarial bandits is the iterated prisoner’s dilemma, where two players play prisoner’s dilemma
more than once in succession and they remember previous actions of their opponent and change
their strategy accordingly. A strategy well adapted for the adversarial bandit problem is the
Exp3 adversarial algorithm (algorithm 1) proposed by Auer et al. 2002b. It consists in exploiting
good arms (i.e. arms with higher weights) with probability 1 − ψ, and possibly exploring other
arms with probability ψ. After receiving the rewards, the weights are updated by exponentially
increasing the weight of good arms.

One can remark the similarity between the exponential weight scheme for updating probabilities
used in the Exp3 adversarial MAB algorithm (algorithm 1), and the one in the Fermi-Pairwise
rule used for computing the probability of switching decision (equation 2.8). Similarities be-
tween evolutionary game theory (not restricted to its application in epidemiology) and RL (not
restricted to MAB) had been previously pointed out, mostly in the economic field (Börgers et al.
1997; Vega-Redondo 2003). Their relation has however received less attention from the RL com-
munity (Tuyls et al. 2005). In the field of epidemiology, Shi et al. 2019 considered RL and evo-
lutionary game theory in a context of human decision-making regarding voluntary vaccination.
Yet the two approaches are not actually combined together, as they refer to two different steps
of the decision-making process. Indeed, a very simple MAB algorithm is used to dynamically
determine if a human agent rationally decides according to the local prevalence of the disease, or
if he/she imitates his/her neighbours.

More generally, evolutionary games settings can directly be formulated as MAB problems, since
most of the heuristics in evolutionary game theory define MAB strategies that do not search to be
optimal (i.e. in which human aspects of decision-making are taken into account). Yet, as stated
before, agents actually learn in MAB strategies, i.e. they explicitly take into account the history
of past decisions to make their following decisions, through the probabilities for the decision
options. Furthermore, from a methodological point-of-view, they are generally described by an
algorithm that mathematically formalises all the steps of the decision-making process.



40 CHAPTER 2. STATE OF THE ART AND PROBLEM FORMULATION

Algorithm 1 Exp3 adversarial MAB algorithm (Auer et al. 2002b)

Input: ψ ∈ (0, 1], K arms.
1: wk(1) = 1 for k = 1, ...,K ▷ Weights initialisation
2: for t = 1, 2, ..., T do ▷ At each decision time
3: pk(t) = (1− ψ) wk(t)∑K

i=1 wl(t)
+ ψ

K ; k = 1, ...,K ▷ Compute the probability of pulling arm
k at time t as a function of the weights of
all arms and the exploration parameter ψ

4: at ←Multinom(1, (p1(t), ..., pK(t))) ▷ Draw an arm at randomly according to
the probabilities p1(t), ..., pK(t)

5: xat(t) ∈ [0, 1] ▷ Observe a reward given by the pulled
armed and the environment

6:
7: for k = 1, ...,K do ▷ For each arm

8: x̂k(t) =

{
xk(t)/pk(t) if k = at

0, otherwise
▷ Standardise the reward of the pulled

armed by the probability of pulling it, to
compensate for a potentially small prob-
ability of getting the observed reward

9: wk(t+ 1) = wk(t)exp(ψx̂k(t)/K) ▷ Update the weight of the pulled arm k
through exponential function of the ob-
served standardised reward. The expo-
nential growth significantly increases the
weight of good arms

10: end for
11: end for

2.2.3 Centralised decision-making: optimising the system

Controlling infectious diseases is a general and important problem that has been extensively
treated in the epidemiology literature. In the following, I begin by precising the usual control
levers that are considered for infectious diseases on metapopulation networks. Then, I describe
some strategies and mathematical approaches that can been used to achieve such control from
a central social planner’s point of view. Even if most of the approaches have been initially and
mostly applied on well-mixed populations, the focus here is on the elements that have or could
be applied on a metapopulation network.

2.2.3.1 Control levers and practical considerations

Measures for controlling pathogen spread on metapopulation networks are generally focused
on either accelerating recovery (reducing illness duration), or decreasing the infection rate of
each sub-population (Nowzari et al. 2015). The measures to attain the first of these two objec-
tives focus on providing treatments to infected individuals, or improving existing conditions of
treatment (for example through investments in health sector facilities). Regarding the second ob-
jective, there are several available measures from a centralised point-of-view, including the two
previous ones as they can also impact the infection rate. Another measure is the distribution of
vaccines among sub-populations. Other types of measures are movement restrictions between
sub-populations (which can particularly imply quarantining some sub-populations), or acting on
the awareness of the agents regarding the disease, for example through information campaigns,
to increase the adoption of control measures (self-isolation, social distancing, hygiene measures)
taken at the individual level. A measure that is specific to animal health is the culling of animals
that have been tested positive, or even culling of all animals, not necessarily in infected herds,
with a more preventive objective (e.g. for herds in the neighbourhood of an infected one).

The more radical is a measure, the less likely it will be considered and adopted, especially for
a disease that does not have a rapid and strong economic and health burden. For example,
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though movement restrictions can be very effective, as they seek to completely eliminate the
risk of contagion by cutting the transmission path, they are also very costly in practice. In the
case of movement restrictions, the agricultural and societal impact should be taken into account.
Furthermore, particularly in the context of animal health, the cost of culling measures is not only
economical (production losses) but it also affects animal well-being.

2.2.3.2 Allocation problems

The above considerations can be formally taken into account by the means of an allocation problem,
consisting in distributing a fixed budget of some sort in order to best mitigate the spread of the
pathogen on the network. The constraint can be for example on the maximal number of sub-
populations to isolate or immunise. The budget constraint prevents the control measure from
being applied to the whole metapopulation, which would certainly quickly reduce the pathogen
spread but is rarely applicable in real-life, mainly due to high economic costs.

The control levers described in section 2.2.3.1, can be distinguished through a main classifica-
tion regarding their effect: measures that impact the network structure and measures that impact
epidemiological parameters within sub-populations. Following Nowzari et al. 2015, from an op-
timisation perspective, one can consider two broad problems related to the first type of measures,
and a third problem regarding the second type of measures:

Problem 1 Given an original network G and a fixed budget C > 0 of nodes, minimise a function
F , by removing (isolating or immunising) at most C nodes from G.

Problem 2 Given an original network G and a fixed budget C > 0 of links, minimise a function
F , by removing at most C links from G.

Problem 3 Given a network G, given epidemiological parameters Θ, and a fixed budget C > 0 of
a resource (that has an impact on Θ), minimise a function F , by distributing the budget among the
N nodes of the network, under the constraint

∑N∗

i f(i) ≤ C, where f(i) is the cost of allocating
the resource to node i, and N∗ is the number of nodes to which the resource is actually allocated.

Usually, these problems are formalised for a static network (Cohen et al. 2003; Tong et al. 2012;
Wang et al. 2003), yet they could also be considered dynamically. The first problem consists in
optimally "removing" (i.e. perfectly immunising or completely disconnecting) some nodes of the
network so as to prevent or reduce pathogen spread, which we refer to as node removal. The
second problem is link removal. This is an even more complex problem than the previous one,
given that the number of links in the network can be much higher than the number of nodes.
Related problems to Problems 1 and 2 can consider, instead of a complete removal, a certain
type of control, consisting for example in reducing the intensity of the contacts on the links. The
third problem consists in optimally allocating a limited budget of a certain resource, such as a
treatment or an (imperfect) vaccine, on the nodes of the network, i.e. resource allocation.

An example of an allocation problem related to the generic problem 3 is worth to be mentioned.
It can be formulated as:

Problem 4 Minimise the quantity of vaccines, such that herd immunity is reached.

In problem 4, the budget to minimise is usually considered to be a quantity of vaccines that
provide perfect and life-long immunity, and the constraint concerns reaching a herd-immunity
threshold. That is, the level at which a ’sufficient‘ percentage of the population has become
immune against an infection to hinder infection-related dynamics.

This problem particularly concerns the first of the approaches that are described in section 2.2.3.3.

2.2.3.3 Control approaches

In the following, I present mathematical tools that can be concerned with either of the problems
described above, i.e. when the budget is expressed in the number of nodes, number of links, or
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in the quantity of a resource. Yet, the focus is made on the third problem, i.e. resource allocation,
as the main motivation of this thesis are endemic livestock diseases, for which a strong control
of such as movement bans is not very relevant. Furthermore, the nature of the budget to allocate
can certainly determine the allocation strategy, e.g. the optimal allocation of imperfect vaccines
may not coincide with the optimal node removal strategy. In addition, some approaches that
are feasible for determining a node removal or resource allocation strategy, could be too costly,
computationally speaking, to be deployed for finding the optimal link removal strategy. See
works on network dismantling (Braunstein et al. 2016) or link rewiring (Schwartz et al. 2010) for
a focus on approaches that are specifically adapted to node or link removal.

2.2.3.3.1 Spectral control For some of the considered problems, the function F to minimise (or
the constraint to satisfy) usually depends on the network structure (Problems 1, 2 and 4). This is
usually related to reaching the herd-immunity threshold.

For classical compartmental epidemiological models, the herd-immunity threshold can be ex-
pressed with respect to R0, the basic reproduction number of the infection (Keeling et al. 2011)
(cf. section 2.1.1.1.1). It is possible to show that if a proportion 1− 1

R0
of susceptible individuals

is perfectly immunised (the herd-immunity threshold), then the disease will be eradicated.

In a context of structured populations, much work has been devoted to determining the minimal
fraction of each group that should be immunised (i.e. Problem 4), i.e. the level of vaccination for
each sub-population that minimises the spectral radius of the next-generation matrix (cf. section
2.1.1.1.3), which is why such works can be grouped under the term of spectral control (Nowzari
et al. 2015). These works usually consider a small number of groups, with strong interaction
between them (e.g. Feng et al. 2017; Zhao et al. 2019). In particular, Hill et al. 2003 studied
the properties of the solution to Problem 4, and computed the solution for an influenza A model
stratified in age groups. However, within the framework of networks, the problem of minimising
the spectral radius by removing a given number of nodes or links are respectively NP-complete
and NP-hard (Mieghem et al. 2011), so heuristics have to be used to approximate its solution.
Recently, Delmas et al. 2021, combined problems 1 and 4 into a bi-objective optimisation problem
on an infinite-dimensional metapopulation SIS model, studied within the framework of a kernel
model, and proved the existence and properties of its solutions.

Spectral control approaches have also been used for solving Problem 3 by assuming it is possible
to tune the epidemiological parameters, such as the node or link dependent infection rates. Solu-
tions often recur to geometric programming (Boyd et al. 2007), a type of constrained-optimisation
problem with a particular form. The first main drawback is that, since they are based solely on
the spectral radius, they do not take into account the state of the system, which can result in use-
lessly allocating resources to some nodes. Additionally, although some variants of the problem
can be solved in polynomial time, this may not be sufficient for very large networks (Nowzari
et al. 2015).

2.2.3.3.2 Optimal control theory Optimal control theory (OCT) is an analytical approach used
for optimising the control of a dynamic system over a period of time (Lenhart et al. 2007). In
epidemiology, it has been widely used for finding the optimal deployment of measures such as
vaccination, treatment, or quarantine, (e.g. Behncke 2000; Sethi et al. 1978). Various costs have
been considered, in particularly integrating economic considerations (e.g. Perrings et al. 2014).

Yet, the mathematical complexity of this method limits its use to the case of dynamic systems
that can be described by simple models. Furthermore, the strategies identified as optimal can be
highly complex, for example needing for a strategy switch at specific times. This can be bene-
ficial for controlling pathogen spread if the exact switch times are known, notably if there is no
uncertainty in model parameters, but can lead to poor results otherwise (Bussell et al. 2019).

Complex population structures are therefore rarely considered in OCT. In particular, Mbah et
al. 2011; Rowthorn et al. 2009 apply it for resource allocation in a metapopulation of only two
groups. Indeed, Zaric et al. 2001 showed that the resource allocation problem among n cou-
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pled sub-populations is intractable. Hence, OCT usually relies on numerical approaches to find
approximate solutions to these problems. However, such methods suffer from a lack of intuitive
interpretation, which greatly limits their usefulness for the control of pathogen spread (Brandeau
et al. 2003).

Bussell et al. 2019 proposed to overcome the limitations related to using optimal control in epi-
demiology, by the means of techniques consisting in approximating the epidemiological model
by a simpler one, which facilitates the mathematical analysis necessary to OCT. A similar ap-
proach by Lemaitre et al. 2021, proposes a novel OCT framework for vaccine allocation on a
metapopulation network of roughly 100 nodes using a deterministic COVID-19 model. This
framework relies on a simplification of the full model that in particular reduces the problem to
a tractable size, by considering only the most important links for deriving the optimal strategy,
and the full network for evaluating it. The optimal control strategy provides a benchmark for the
allocation on such metapopulation, as it outperforms all the other strategies. Yet, as the optimal
strategy is complex and difficult to explain, the questioning regarding whether OCT strategies
would be adopted by decision-makers in real-life control still holds.

2.2.3.3.3 Markov decision processes RL, in particular MDP, can not only be useful for decen-
tralised decision-making as discussed in section 2.2.2.5, but also refer to the decisions taken by a
social planner to control a system of many interacting agents. In this setting, the control can be
formalised in two ways.

On the one hand, the social planner could take a decision for each agent of the system, in which
case its decision process may be formulated as a centralised multi-agent MDP. On the other hand,
decisions can concern the system as a whole (i.e. not be specific to each agent), in which case
the social planner is the agent whose decision process is formalised as a single-agent MDP, as
he/she should decide for the action to take at each decision time, and the interacting agents are
considered to be part of the dynamic system (i.e. their number only increases the dimension of
the MDP state space, not the dimension of the action space). This approach has already been
applied in the context of livestock control by Viet et al. 2018, who proposed a MDP framework
for a central social planner that searches to dynamically determine the incentive to implement a
given measure, in order to optimise the collective financial benefit of a group of farmers. The in-
centive impacts farmers decisions, which are taken into account in a phenomenological manner,
and farmers decisions impact the costs related to the disease and control.

In both cases, the decision-maker does not explicitly consider learning processes corresponding
to each agent (i.e. each agent is not a decision maker on its own), which allows to use standard
MDP policy evaluation algorithms (Xuan et al. 2002). However, this implies that irrespective
to the approach, using MDP for controlling a very large multi-agent system suffers from the
classic limitations of MDP regarding the curse of dimensionality in the system’s space state, which
is combinatorial in the number of agents. In particular Viet et al. 2018 consider a system of only
N = 50 agents (where each agents is a herd). As each herd could either be in one of five health
compartments, the number of states was given by

(
N+4
4

)
. Additionally, from an implementation

point-of-view having such a large state space renders the optimal policy too complex to be used
in the field, which is why authors proposes an approximated policy.

2.2.3.3.4 Score-based approaches The three previous approaches formalise and address the
allocation problem by searching to directly determine the optimal allocation decisions. I refer
here to approaches that, instead of seeking to directly determine the order in which the resource
should be prioritised to the nodes of a network, aim to find the optimal score to rank the nodes
(and not directly the optimal decisions) for the resource allocation. Such approaches are score-
based.

The scores or indicators are most often heuristics, but can alternatively be derived from a certain
optimisation procedure, i.e. optimisation-based. Furthermore, they can be dynamic or static, either
from the network topology perspective, i.e. consider a dynamic or a static network, or from the
pathogen spread perspective, i.e. taking or not into account the infection dynamics.
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For a complex network of individuals, Pastor-Satorras et al. 2002 showed that the strategy con-
sisting in randomly immunising individuals does not allow to eradicate the disease. Particu-
larly for scale-free networks, authors argue that their structural properties should be accounted
for. This implies to design the immunisation strategy taking into account nodes’ connectivity,
which would consist in identifying and targeting the most connected individuals. This is usually
achieved through local metrics of the network topology, i.e. centrality measures, that can be di-
rectly used as heuristic scores to target the nodes. This includes classic static centrality measures
(degree, PageRank, etc.) (cf. 2.1.3.1.1) and more recent temporal centrality measures, such as
TempoRank (cf. section 2.1.3.2). Alternatively, the global network topology can be used to derive
optimal scores. Examples of this are the CURE policy (Drakopoulos et al. 2014) and the maxcut
minimization policy proposed by Scaman et al. 2016, where treatments are allocated according to
a priority-order pre-computed offline, and the chosen priority-order is the one associated to the
solution of a minimisation problem based on the network topology.

All these topologically-based scores do not explicitly consider the dynamics of the pathogen
spread, but only the potential role each node may play in the pathogen spread based on the
node’s place in the network. Yet, this is not necessarily a shortcoming of topological scores, since
detailed information on pathogen spread is rarely available. Therefore, although scores taking
into account such information could be suited for a better control, scores that do not use updated
epidemiological information and yet perform well are eligible for disease control.

An alternative is to use strategies that rely on epidemiological information. For example, it is
possible to use data-driven or simulation-based approaches (Alamo et al. 2021). In particular,
Venkatramanan et al. 2019 propose an optimisation procedure that at each decision step allocates
vaccines to the sub-population that would lead to the maximum marginal reduction in the ob-
jective function according to simulations. This implies to run, at each decision step, a number of
one-step simulations that is equal to the number of sub-populations.

Otherwise, it is possible to build approximations of the objective function (the function related to
pathogen spread that the social planner searches to minimise, e.g. cumulative number of infected
sub-populations over time) and seek to optimise these approximations. For example Dangerfield
et al. 2019, consider the resource allocation problem in a meta-population of independent sub-
populations, and approximate it as a 0-1 knapsack problem, a problem that consists in finding the
subset of items (each with a certain value and a weight) that maximise the total value of the
selected items under a constraint on their total weight. Another example is the LRIE (Largest
Reduction in Infectious Edges) strategy for treatment allocation found in Scaman et al. 2015,
where the LRIE score is derived through a greedy minimisation of a certain function associated
to the pathogen spread on an arbitrary and large network.

Finally, it can be possible to propose heuristics that are ultimately proven to correspond to op-
timal, or at least locally optimal solutions of a certain objective on the pathogen spread. As an
example, the LRIE strategy was initially proposed in Scaman et al. 2014 as an heuristic consisting
in targeting nodes whose recovery would minimise the number of links between infected and
susceptible nodes. Then, it was proven to be the local solution to a certain optimisation problem
(Scaman et al. 2015).

2.3 Decision-making regarding the control of disease spread on
a trade network: problem formulation and selected
approaches

In order to address the methodological challenges posed by dynamic decision-making regarding
the adoption of control measures to limit the spread of a disease over a metapopulation network,
and in the light of the state of the art presented in this chapter, I made the following modelling
and formalism choices.

First, regarding the modelling framework, the motivation of the work (unregulated livestock dis-
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eases spreading on an animal trade network) strongly suggests the use of a metapopulation net-
work. Also, the internal sub-population infection dynamics and demographic changes are im-
portant features to be taken into account. Oversimplifying this internal dynamics could result in
a loss of important characteristics of the system that emerge from this complexity. Furthermore,
regarding the type of measures to consider, I decided to focus on within sub-population health
management such as vaccination, instead of more stringent measures (such as trade movement
restrictions). Indeed, for unregulated diseases and from a decentralised point-of-view it seemed
unlikely that farmers would impose such strong restrictions on themselves. In addition, de-
cisions involving measures that alter the network are more difficult to consider, especially in
optimisation from a centralised perspective.

Second, concerning the decentralised decision approach, the choice was driven by the considerations
in table 2.2, which summarises the main advantages and limitations of each approach presented
in the state of the art. The following remarks were accounted for in the studies presented in chap-
ters 3 and 5. Here, the main considered factor was the extent to which the approach could repre-
sent real-life human behaviour. Therefore, I chose not to consider phenomenological approaches
as they could not show how behaviours emerge in the population. Also, even if classical game-
theory studies strategic interactions among agents, the rationality assumption seemed a strong
limitation in the representation of actual human behaviour under uncertainty. This issue is over-
come by psychological models, yet these generally do not explicitly account for phenomena that
can be important in the emergence of human behaviours, such as imitation dynamics. Finally,
although a complex reinforcement learning approach (using Markov decision processes) could
have been used, it offered little to account for real-life considerations, particularly for cognitive
constraints in the farmers’ decision-process.

Approach Advantages Limitations
Phenomenological Simple way of accounting for human

behaviour
Directly assumes an effect that could
be caused by a decision, not the
decision-making process. Hence, it is
unclear whether the effect can actually
emerge from the behaviour.

Classical
game-theory

Rigorous mathematical framework
under rationality assumption

Does not account for humans having
limited rationality (either for cognitive
or psychological reasons, or because
they imitate each other).

Psychological Accounts for individuals’ limited ra-
tionality for cognitive and psychologi-
cal reasons.

In general, does not consider limited
rationality that can arise in a system of
many interacting agents, for example
through imitation.

Evolutionary
game-theory

Can account for stochastic behaviour
and human decision-making, as it
makes no assumptions on the individ-
ual’s rationality.

In general, individuals are not as-
sumed to actually learn, as the prob-
ability of switching decision is not
updated based on previous decision
times, but only as a function of the
new payoffs.

Reinforcement
Learning

Can account for stochastic behaviour,
learning (reinforcing good choices
over time), and exploring. Algorith-
mic formalisation flexible enough for
generic dynamic decision problems.

The decision-maker is essentially a
machine, i.e. not intended to repre-
sent voluntary human behaviour, but
to optimally solve a sequential deci-
sion problem by learning. Hence, al-
gorithms do not usually consider hu-
man cognitive, psychological, and so-
cial aspects.

Table 2.2: Summary of the main advantages and limitations of decentralised decision-making approaches
for modelling human-behaviour regarding voluntary control of an infectious disease.

There are similarities between the other two approaches, evolutionary game-theory and rein-
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forcement learning, in particular between the Exp3 MAB adversarial algorithm of Auer et al.
2002b (algorithm 1) and the most used rule-of-thumb of evolutionary game-theory in epidemi-
ology, the Fermi-Pairwise rule (equation 2.8). Both approaches, MAB and evolutionary game-
theory, have limitations regarding their suitability to the context presented in this thesis. Indeed,
on the one hand, the simple heuristics of evolutionary game-theory in epidemiology are based
on cognitive considerations for representing human decision-making. Yet, such heuristics do
not usually consider that the decision-makers learn, and are not formalised as algorithms, which
limits their generalisation. On the other hand, MAB algorithms are not really intended to rep-
resent human decision-making. Yet, they seem appropriate for formalising a decision-making
mechanism, since they explicitly consider a learning process.

For the above reasons, the two approaches (evolutionary game-theory and reinforcement learn-
ing) seemed the most suitable way of addressing the challenges regarding decentralised decision-
making, particularly through the use of adapted multi-armed bandit algorithms inspired by the
heuristics of evolutionary game theory.

Third, regarding the centralised decision approach, i.e. the optimisation of the system made by a
social planner, the choice of the method was made by integrating the considerations in table 2.3
that summarises the reviewed approaches concerning allocation problems. These considerations
underlie the work presented in chapter 4.

Approach Advantages Limitations
Spectral control Directly addresses the topology of

the population network
Does not consider the system state.
Intractable for very high dimen-
sions.

Optimal control theory Can take into account the system
state. Theoretical guarantees on the
true optimal strategy.

Intractable for very high dimen-
sions. When approximation-based
approaches are used to address di-
mensionality, no intuitive interpre-
tation of the optimal strategy.

MDP Can take into account the system
state. Theoretical guarantees on
the true optimal strategy. Useful
in the absence of a mathematical
model of the dynamic system, when
used with a RL perspective (learn
through experience).

Intractable for very high dimen-
sions. When approximation-based
approaches are used to address di-
mensionality, no intuitive interpre-
tation of the optimal strategy.

Score-based Some can take into account the sys-
tem state. Approaches can be scal-
able and strategies have an intuitive
interpretation.

No guarantee on achieving a global
optimum, i.e. may not solve the al-
location problem in an optimal way.

Table 2.3: Summary of the main advantages and limitations of centralised decision-making approaches for
optimising the control of an infectious disease on a network-structured system.

Here, the main factor that motivated the choice was the scalability of the approach. Indeed, the
motivation of this work concerns very large networks of animal populations. Approaches en-
sued from spectral control did not appear as computationally feasible for explicitly taking into
account the structure of very large networks. Furthermore, they did not allow to integrate the
system’s epidemiological state. Optimal control theory and MDP approaches seemed in theory
particularly well-suited for controlling the system by determining the sequence of allocation de-
cisions that would optimise a global objective. However, they could not be used for such a large
problem without resorting to approximations that no longer have guarantees of optimality and
that neglect the network structure or the intra-node dynamics. Furthermore, while using such
approximations allows for dealing with relatively large networks, the policies have no intuitive
interpretation and seem therefore not suitable for providing advice to real-life decision-makers
on how to allocate the available resource.

Hence, the choice concerning centralised decision-making fell on score-based approaches. Al-
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though those methods do not necessarily have optimality guarantees, they are scalable and can
allow an intuitive interpretation of the allocation policies, which could motivate their adoption
by a central social planner.
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Accounting for individual decisions in mechanistic epidemiological models remains a challenge,
especially for unregulated endemic animal diseases for which control is not compulsory (section
3.1). We propose an original integrative model built by combining two sub-models. The first one
corresponds to the dynamics of a livestock epidemic on a metapopulation network, grounded
on demographic and animal trade data (section 3.2.1). The second one describes farmers’ be-
haviour regarding the adoption of a control measure against the disease spread in their herd, i.e.
decentralised decision-making (section 3.2.2). The measure is specified as a protective vaccine
(section 3.2.3) with given economic implications (section 3.2.4), and the model is numerically
studied through intensive simulations and sensitivity analyses (sections 3.3 and 3.4). This study
is relevant for the understanding of the interplay between decision related human behaviour and
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livestock epidemic dynamics (detailed discussion in section 3.5). The model can be used for other
structures of epidemic models or different interventions, by adapting its components.

The modelling choices in this chapter were motivated by the state of the art in section 2.1.1.1.2,
section 2.1.1.1.4 and section 2.1.3.4, regarding epidemiological modelling, and in section 2.2.2 and
section 2.3, regarding decentralised decision-making modelling.

3.1 Introduction

Fighting livestock diseases spreading through animal trade is a major issue to guarantee sustain-
able farming, competitive agrifood chains and public health (Tomley et al. 2009). Epidemic pre-
vention and reduction of prevalence require improved methods of control and compliance of the
actors, especially for non-regulated diseases for which control decisions are left to individual or
collective initiatives (Carslake et al. 2011). Mechanistic epidemiological models can provide a re-
fined mathematical description and understanding of the complex system involved in pathogen
spread, and be used to assess the effectiveness of control measures. They are complementary to
observational or experimental approaches (Keeling et al. 2011). However, accounting for human
behaviour in such models in order to increase their predictive power remains a challenge (Hi-
dano et al. 2018; Manfredi et al. 2013), in particular for livestock diseases spreading through a
trade network.

Indeed, most works on infectious diseases that consider the adoption of control measures usually
do not account for human decision-making (Wang et al. 2016) or they do not consider a structured
population (Morin et al. 2013; Perrings et al. 2014). In particular, in models based on a metapopu-
lation over an explicit network (Keeling et al. 2005) such as Colizza et al. 2008a, control decisions
are usually assumed to be taken at a centralised level (e.g. Braunstein et al. 2016; Scaman et al.
2016). Furthermore, when human decision-making is explicitly taken into account, it generally
focuses on the context of human diseases (e.g. Fu et al. 2010; Kuga et al. 2019; Wang et al. 2012),
but it has barely been applied to veterinary epidemiology yet (Horan et al. 2010). However, in
the context of animal diseases, the decision of implementing control measures can be much more
influenced by economic considerations than for human diseases, an aspect that should be taken
into account in the decision model. Finally, in the field of veterinary epidemiology, studies have
been mostly focused on regulated diseases, so human behaviour mainly consists in delaying the
application of a central policy (e.g. Tago et al. 2016). In the few works that investigate control
measures for unregulated animal diseases, there is generally no dynamic feedback on decision
due to epidemic evolution (Rat-Aspert et al. 2010). Additionally, some real-life aspects, such
as farmers having limited rationality or learning are generally missing (Krebs et al. 2018; Shi et
al. 2019). There is therefore a special need for models combining the dynamics of an epidemic
process that takes place on a livestock trade network, and the behaviour of farmers regarding
the voluntary implementation of control measures (Brooks-Pollock et al. 2015; Heesterbeek et al.
2015).

We build an integrative model that can meet this need by coupling the dynamic spread of a
livestock disease over a structured metapopulation, and the dynamics of the human decision-
making process for applying a sanitary measure against the epidemic spread. To model the
epidemic spread through a trade network we use a stochastic compartmental model that takes
into account demographic dynamics and animal exchanges. The population structure of the
model is calibrated using real data. Our decision model is inspired by previous studies (Fu
et al. 2010; Kuga et al. 2019; Wang et al. 2012), in which the result of a decision regarding the
voluntary adoption of a control measure for a human disease is evaluated after being applied,
and preferences over the possible decisions are updated through time. We specifically formalise
the dynamic decision problem that each farmer faces, and propose a mechanism that represents
farmers’ decision-making process in such a context. Our formalisation considers some real-life
phenomena that can be present in the context of human decision-making: stochastic behaviour,
learning, and the emergence of imitation and free-riding (Hershey et al. 1994).
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First, we present the two components of the integrative model: the epidemic-demographic model,
and the decision model. Then, we describe the specific control measure we consider, as well as
its economic implications. Later, we describe the setting for simulations and sensitivity analyses
we perform on the model, as well as the results of this simulation studies. Finally, we examine
the model as well as the results of numerical explorations.

3.2 Integrative model

In the following, we describe the two main components of our integrative model: the epidemic-
demographic one, and the decision-making one. We then detail the integrative model by consid-
ering vaccination as a specific control measure.

3.2.1 Epidemic model with demography in a metapopulation based on a trade
network

For this work we place ourselves in the context of a hypothetical livestock infectious disease
that is transmitted only through a contact network structure consisting in herds that exchange
animals. This population structure is inspired by real data on animal movements, extracted from
the French Cattle Identification Database (FCID). We assume this is a closed metapopulation, that
is, we neglect exchanges with herds outside of it. This livestock trade network can be described
as a directed weighted time-varying network, where nodes represent herds and links represent
animal trade. The direction of each link is determined by the transfer’s direction, and its weight
corresponds to the amount of animals exchanged. By nature, this network is time-varying since
links may change over time. In fact, not only trade connections may appear or disappear, but the
amount of animals exchanged can vary on a daily basis.

Given this trade network, we consider an infectious livestock disease that can potentially be
spread on it, and that can only be directly transmitted between animals within the same herd.
The disease is assumed to be spread between herds only by animal transfers, as can be observed
for diseases such as paratuberculosis (Beaunée et al. 2015), bovine tuberculosis when there is no
contact with wildlife (Cousins 2001), and porcine reproductive and respiratory syndrome virus
(Mortensen et al. 2002). In addition, the infection risk and status are assumed independent of
animal breed, age or sex. In the absence of any intervention, the intra-herd disease spread is de-
scribed by a stochastic SIR model (Keeling et al. 2011) with demography, accounting for animal
transfers over the trade network. In a compartmental SIR model, the population is divided into
three compartments: Susceptible (S), Infected (I), and Recovered (R), according to their health
status. The only two possible transitions in a basic SIR model correspond to infection (S→I) and
recovery (I→R). The implicit modelling assumptions we make are the following: intra-herd ho-
mogeneous mixing, meaning that the contact rate is the same among all the animals in a given
herd; absence of a latent period, i.e. animals become infectious as soon as they are infected; acqui-
sition of immunity after recovery; no vertical transmission, i.e. no mother-to-child transmission
during pregnancy or childbirth; frequency-dependent intra-herd transmission, i.e. the transmis-
sion rate depends on the proportion of infected animals in the herd, rather that on their number;
variation in time of herd size due to births, deaths and animal transfers, which we assume are
not affected by the disease prevalence. The intra-herd transmission of the disease (without any
intervention) can therefore be described by the scheme in figure 3.1.
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Figure 1. Schematic representation of the intra-herd epidemic-demographic dynamics for a herd j, without any control measure.
Horizontal arrows represent transitions between health-related compartments, corresponding to the course of infection inside the herd (yellow
rectangle), while vertical arrows represent population flows to and from the herd. The coefficients on the arrows are the transition rates. See
main text in Methods for parameter definitions.

evaluating the effect of the time length between successive decisions on the behavior of the integrative model. Formally, we90

suppose that each farmer j = 1, ...,J searches to solve:91
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where t = ∆d ,2∆d ,3∆d ... are the decision times, so ∆d is the duration (in days) between any two consecutive decisions. It also92

determines the instant at which the first decisions are taken. The term at
j ∈ {0,1} refers to the control decision: if at

j = 1,93

the control-measure is applied in herd j at decision time t, otherwise it is not. Ct
at

j
( j) is the cost in herd j associated with the94

decision taken at time t. This constitutes a dynamic decision-making problem under uncertainty, this latter affecting the cost95

distribution associated with each possible decision.96

To define the farmer’s decision-making process that attempts to solve this problem, we take an approach inspired by [13–15],97

in which farmers evaluate the result of a decision after its application, and update their preferences over time as a function of98

this result. In this particular context, this approach seems suitable for several reasons. First, as we mentioned earlier, costs over99

time not only depend on the epidemic and decision dynamics in the herd where the decision is made, but also on other herds.100

To exactly solve this optimization problem would imply that farmers integrate the actions and epidemic status of other herds.101

This is a very complex problem due to the dimensionality on the number of herds, and on the possible status of the system.102

Second, since we pose a dynamic decision-making problem, there is an effect of learning through repeated decisions. Indeed,103

we have supposed that the cost associated to a decision is observed before making the next decision. Then, it is natural to think104

that farmers learn from the costs they have obtained with their previous choices, to take their next decisions. Finally, through105

this approach we can easily consider social dynamics such as imitation effects between farmers. In our context, this consists in106

considering a stochastic decision mechanism where the probability of applying the measure is updated through the costs each107

farmer observes over time, and the costs observed by his/her neighbors.108

The mechanism we propose (Algorithm 1) works by updating the probability of applying the measure, proportionally to an109

exponential weight that takes into account the last decision taken by the farmer and that taken by one of his/her neighbors,110

through a weighted sum of the associated costs. Then at each decision time, each farmer j = 1, ...,J takes a decision at
j using111

his/her current probability of applying the measure pt
1( j). We assume that this probability is initially the same for all farmers,112

and equal to a value pinit
1 , and that each farmer observes the cost related to his/her decision, and the decision and associated cost113

observed by one of his/her neighbors in the trade network, who is randomly chosen by the farmer. A neighbor of j in the trade114

network is a farmer with whom j exchanges animals according to the daily trade rates, i.e. a farmer j∗ such that θ j j∗ 6= 0, or115

θ j∗ j 6= 0. In the algorithm, we note as B( j) the set of neighbors of j in the trade network.116

The update in the probability is then given by Equation 2. The parameter κ represents farmer’s “sensitivity” to his/her own117

observed costs. A κ close to zero implies that farmers are not very sensitive to their own observed costs, and therefore mostly118

rely on their initial probability of applying the measure, whereas a large κ represents the situation in which farmers are very119

sensitive to their own observed costs for updating their probability of applying the measure. For considering an imitation effect,120

we introduce the parameter ρ that works analogously to κ , but on the cost observed by the chosen neighbor. The parameters κ121

and ρ act then as weights to the farmer’s and the neighbor’s observed cost, respectively. In our model, farmer’s next decision122

can be updated considering any of his/her neighbors, regardless of what the neighbor has decided in the previous step. Finally,123

for updating the probabilities, it is natural that these are set so that the decision with a smaller sum of weighted costs receives124

higher probability. Although there are many ways to turn the sum of weighted costs into probabilities, a simple and popular125

method is to use an exponential weighting scheme. This scheme quickly reduces the probability of the decision that has resulted126
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Figure 3.1: Schematic representation of the intra-herd epidemic-demographic dynamics for a herd j, with-
out any control measure. Horizontal arrows represent transitions between health-related compartments,
corresponding to the course of infection inside the herd (yellow rectangle), while vertical arrows represent
population flows to and from the herd. The coefficients on the arrows are the transition rates.

Formally, we consider J herds in the population. Without any control-related measure, for each
herd j = 1, ..., J the intra-herd transmission of the disease between times t ≥ 0 and t+ δt where
δt > 0, is described by a stochastic SIR model with demography, characterised by the following
updating equations:

Sj(t+ δt) = S∗j (t) +BSj(t) +
←−
Sj(t), (3.1)

Ij(t+ δt) = I∗j (t) +NSj→Ij (t) +
←−
Ij (t), (3.2)

Rj(t+ δt) = R∗j (t) +NIj→Rj
(t) +

←−
Rj(t), (3.3)

where Sj(t), Ij(t), Rj(t) are the number of susceptible, infected and recovered animals in herd j
for t ≥ 0. We suppose Sj(0) > 0 for all j, Ij(0) > 0 for at least one herd j, Rj(0) = 0 for all j. We
note as Nj(t) = Sj(t) + Ij(t) + Rj(t) the size of herd j at time t. The terms NXj→Yj

(t) represent
the number of animals going from epidemic state X to Y in herd j in the time interval ]t, t+ δt].
BSj(t) is the number of births.

←−
Sj(t),

←−
Ij (t),

←−
Rj(t), are the number of susceptible, infected and

recovered animals (respectively) purchased by herd j. Finally, S∗j (t), I
∗
j (t), R

∗
j (t) are the number

of susceptible, infected and recovered at time t that remain in the same state after all outgoing
flows are accounted for. Each one of the terms results from a stochastic process. In order to
precise the probabilities of the different possible change events in the status of an animal, we first
define the following epidemic and demographic daily rates:

• βj : daily rate of transmission of the disease in herd j. That is, the rate at which a susceptible
animal gets infected by contact with an infected one in herd j. It is equal to the product
between the contact rate in the herd, and the transmission rate of the disease if there is
contact. Then, the rate at which a susceptible becomes infected by contact with the Ij(t)
infected is βj

Ij(t)
Nj(t)

.

• γ: self-recovery rate of the disease. That is, the rate at which the infected individuals re-
cover from the disease. Equivalent to the inverse of the mean duration (in days) of the
infectious period.

• τj : daily crude death rate in herd j. That is, the rate at which the animals are removed from
herd j (not related to the disease).

• µj : daily crude birth rate in herd j. It is the rate at which new animals are born in a herd.

•
−→
θj : daily out rate from herd j. It corresponds to

∑
i̸=j θji where θji is the daily out rate from

herd j to herd i, that is, the mean number of animals going from herd j to herd i in a day,
over the mean population of herd j in a day.
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The stochasticity is considered in continuous time, but simulated in discrete time. The simulation
in discrete time appears as more natural given available data, and is computationally more effi-
cient. Formally, we consider a continuous time Markov chain simulated by an Euler simulation
scheme that uses coupled discrete-time multinomial processes, as described in Bretó et al. 2009.
In order to increase computational efficiency, we adapt this scheme by splitting it into two steps:
one for the intra-herd epidemic-demographic dynamics, and one for the inter-herd dynamics.

In the first step, we use the coupled Multinomial chains defined by:

NSj→Ij
(t), NSj→Dj

(t),
−→
Sj(t), S

∗
j (t)←Multin

(
Sj(t),

[
pSIj

, pSDj
, p−→

Sj
, 1−

(
pSIj

+ pSDj
+ p−→

Sj

)])
, (3.4)

NIj→Rj
(t), NIj→Dj

(t),
−→
Ij (t), I

∗
j (t)←Multin

(
Ij(t),

[
pIRj

, pIDj
, p−→

Ij
, 1−

(
pIRj

+ pIDj
+ p−→

Ij

)])
, (3.5)

NRj→Dj
(t),
−→
Rj(t), R

∗
j (t)←Multin

(
Rj(t),

[
pRDj

, p−→
Rj
, 1−

(
pRDj

+ p−→
Rj

)])
, (3.6)

BSj(t)← Bin
(
Nj(t), pBj

)
, (3.7)

where NSj→Dj (t), NIj→Dj (t), NRj→Dj (t) are the number of deaths of susceptible, infected, and
recovered individuals, respectively.

−→
Sj(t),

−→
Ij (t),

−→
Rj(t) are the number of susceptible, infected

and recovered animals (respectively) sold in the same period by herd j. Each term pXYj
refers

to the probability of an animal in herd j of going from epidemiological compartment X to the
compartment Y , and p−→

Xj
refers to the probability that an animal of compartmentX is sold. These

probabilities are defined as:

pSIj
=

1− e
−
(
βj

Ij(t)

Nj(t)
+τj+

−→
θj

)
δt

 βj
Ij(t)

Nj(t)

βj
Ij(t)

Nj(t)
+ τj +

−→
θj

, pSDj
=

1− e
−
(
βj

Ij(t)

Nj(t)
+τj+

−→
θj

)
δt

 τj

βj
Ij(t)

Nj(t)
+ τj +

−→
θj

, (3.8)

p−→
Sj

=

1− e
−
(
βj

Ij(t)

Nj(t)
+τj+

−→
θj

)
δt

−→θj
βj

Ij(t)

Nj(t)
+ τj +

−→
θj

,

pIRj
=

(
1− e−

(
γ+τj+

−→
θj

)
δt

)
γ

γ + τj +
−→
θj

, pIDj
=

(
1− e−

(
γ+τj+

−→
θj

)
δt

)
τj

γ + τj +
−→
θj

, p−→
Ij

=

(
1− e−

(
γ+τj+

−→
θj

)
δt

)
−→
θj

γ + τj +
−→
θj

, (3.9)

pRDj
=

(
1− e−

(
τj+
−→
θj

)
δt

)
τj

τj +
−→
θj

, p−→
Rj

=

(
1− e−

(
τj+
−→
θj

)
δt

)
−→
θj

τj +
−→
θj

, (3.10)

pBj
= 1− e−µjδt . (3.11)

In the second step, we randomly assign a destination to each exiting animal of the herd j = 1, ..., J .
LetCh(j) = {i = 1, ..., J : θji ̸= 0}, and let j∗1 , ..., j∗|Ch(j)| be the elements of that set, where |Ch(j)|
is its cardinality. That is, the herds for which herd j is a seller according to θji; i = 1, ..., J . We
define Sjj∗(t), Ijj∗(t), Rjj∗(t) as the number of susceptible, infected and recovered animals, re-
spectively, sold by herd j to herd j∗ in ]t, t + δt]. So that

−→
Sj(t) :=

∑
j∗∈Ch(j) Sjj∗(t),

−→
Ij (t) :=

∑
j∗∈Ch(j) Ijj∗(t),

−→
Rj(t) :=

∑
j∗∈Ch(j)Rjj∗(t). Then, the assignation of destination for sold ani-

mals of herds j = 1, ..., J is obtained through the following coupled multinomial chains:

Sjj∗1
(t), ..., Sjj∗|Ch(j)|

(t)←Multin

−→Sj(t),

−→p jj∗1
, ...,−→p jj∗|Ch(j)|−1

, 1−
∑

j∗=j∗1 ,...,j∗|Ch(j)|−1

−→p jj∗


 , (3.12)

Ijj∗1
(t), ..., Ijj∗|Ch(j)|

(t)←Multin

−→Ij (t),
−→p jj∗1

, ...,−→p jj∗|Ch(j)|−1
, 1−

∑
j∗=j∗1 ,...,j∗|Ch(j)|−1

−→p jj∗


 , (3.13)

Rjj∗1
(t), ..., Rjj∗|Ch(j)|

(t)←Multin

−→Rj(t),

−→p jj∗1
, ...,−→p jj∗|Ch(j)|−1

, 1−
∑

j∗=j∗1 ,...,j∗|Ch(j)|−1

−→p jj∗


 , (3.14)
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where the probabilities −→p jj∗ ; j∗ = j∗1 , ..., j
∗
|Ch(j)| are defined according to the rates θjj∗ analo-

gously to the previous multinomial chains:

−→p jj∗ =

(
1− e−δt

∑
j∗∈Ch(j) θjj∗

)
θjj∗

∑
j∗∈Ch(j) θjj∗

. (3.15)

Finally, the terms referring to the entries in herd j are computed as:
←−
Sj(t), :=

∑
i ̸=j Sij(t),

←−
Ij (t) :=∑

i ̸=j Iij(t), and
←−
Rj(t) :=

∑
i̸=j Rij(t).

3.2.2 Farmers’ decision-making model

We suppose that farmers can apply a sanitary measure that has a certain efficacy on the disease
spread for a limited amount of time. Then, we assume they search to take the control decision
that allows them to obtain an optimal value of an individual criterion, i.e. an expected cost
resulting from the decision. To consider a simple and clear framework, we restrict ourselves to
binary decisions (the measure is applied or not). Additionally, we make the assumption that
decision times are synchronized, discrete, and equally spaced in time. This proves to be useful
when considering the interaction of farmers’ decisions, and for evaluating the effect of the time
length between successive decisions on the behaviour of the integrative model. Formally, we
suppose that each farmer j = 1, ..., J searches to solve:

min
atj

E
[
Ctatj

(j)
]

; t = ∆d, 2∆d, 3∆d..., (3.16)

where t = ∆d, 2∆d, 3∆d... are the decision times, so ∆d is the duration (in days) between any
two consecutive decisions. It also determines the instant at which the first decisions are taken.
The term atj ∈ {0, 1} refers to the control decision: if atj = 1, the control-measure is applied
in herd j at decision time t, otherwise it is not. Ctatj (j) is the cost in herd j associated with the
decision taken at time t. This constitutes a dynamic decision-making problem under uncertainty,
this latter affecting the cost distribution associated with each possible decision.

To define the farmer’s decision-making process that attempts to solve this problem, we take an
approach inspired by Fu et al. 2010; Kuga et al. 2019; Wang et al. 2012, in which farmers evaluate
the result of a decision after its application, and update their preferences over time as a function
of this result. In this particular context, this approach seems suitable for several reasons. First, as
we mentioned earlier, costs over time not only depend on the epidemic and decision dynamics in
the herd where the decision is made, but also on other herds. To exactly solve this optimization
problem would imply that farmers integrate the actions and epidemic status of other herds. This
is a very complex problem due to the dimensionality on the number of herds, and on the possible
status of the system. Second, since we pose a dynamic decision-making problem, there is an effect
of learning through repeated decisions. Indeed, we have supposed that the cost associated to a
decision is observed before making the next decision. Then, it is natural to think that farmers
learn from the costs they have obtained with their previous choices, to take their next decisions.
Finally, through this approach we can easily consider social dynamics such as imitation effects
between farmers. In our context, this consists in considering a stochastic decision mechanism
where the probability of applying the measure is updated through the costs each farmer observes
over time, and the costs observed by his/her neighbours.

The mechanism we propose (Algorithm 2) works by updating the probability of applying the
measure, proportionally to an exponential weight that takes into account the last decision taken
by the farmer and that taken by one of his/her neighbours, through a weighted sum of the
associated costs. Then at each decision time, each farmer j = 1, ..., J takes a decision atj using
his/her current probability of applying the measure pt1(j). We assume that this probability is
initially the same for all farmers, and equal to a value pinit1 , and that each farmer observes the
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Algorithm 2 Exponential weighting stochastic mechanism with imitation

Input: 2 options = {0,1}, p∆d
1 (j) := pinit1 ∀j, κ≥ 0, ρ≥ 0,B(j) = {i; θij ̸= 0 or θji ̸= 0}; j = 1, ..., J .

1: for t = ∆d, 2∆d, 3∆d... do ▷ At each decision time
2: for j = 1, ..., J do ▷ Each farmer
3: atj ← Bernoulli(pt1(j)) ▷ Takes a decision using his/her current probability of ap-

plying the measure
4: Ctatj

(j) ▷ Observes the cost related to his/her decision
5: j∗ ← Unif(B(j)) ▷ Selects one of his/her neighbours in the trade network
6: (atj∗ , C

t
at
j∗
(j∗)) ▷ Observes the decision taken by j∗ and his/her observed

cost
7:

pt+∆d
1 (j) =

pt1(j)e
−κCt

1(j)−ρC
t
1(j
∗)

pt1(j)e
−κCt

1(j)−ρCt
1(j
∗) + (1− pt1(j))e−κC

t
0(j)−ρCt

0(j
∗)

(3.17)

▷ Updates the probability of applying the measure, where the costs of the non taken options
are equal to 0, i.e. for k = 0, 1

• Ctk(j) = Ctatj
(j) if k = atj , 0 otherwise.

• Ctk(j
∗) = Ctat

j∗
(j∗) if k = atj∗ , 0 otherwise.

8: end for
9: end for

cost related to his/her decision, and the decision and associated cost observed by one of his/her
neighbours in the trade network, who is randomly chosen by the farmer. A neighbour of j in the
trade network is a farmer with whom j exchanges animals according to the daily trade rates, i.e.
a farmer j∗ such that θjj∗ ̸= 0, or θj∗j ̸= 0. In the algorithm, we note asB(j) the set of neighbours
of j in the trade network.

The update in the probability is then given by equation 3.17. The parameter κ represents farmer’s
“sensitivity” to his/her own observed costs. A κ close to zero implies that farmers are not very
sensitive to their own observed costs, and therefore mostly rely on their initial probability of
applying the measure, whereas a large κ represents the situation in which farmers are very sen-
sitive to their own observed costs for updating their probability of applying the measure. For
considering an imitation effect, we introduce the parameter ρ that works analogously to κ, but
on the cost observed by the chosen neighbour. The parameters κ and ρ act then as weights to the
farmer’s and the neighbour’s observed cost, respectively. In our model, farmer’s next decision
can be updated considering any of his/her neighbours, regardless of what the neighbour has
decided in the previous step. Finally, for updating the probabilities, it is natural that these are set
so that the decision with a smaller sum of weighted costs receives higher probability. Although
there are many ways to turn the sum of weighted costs into probabilities, a simple and popular
method is to use an exponential weighting scheme. This scheme quickly reduces the probability
of the decision that has resulted to be very bad (high sum of weighted costs). This form is found
in the Fermi-Pairwise rule, which has been previously used in similar contexts, as its stochastic
behaviour is similar to real-life human decision-making (Nagashima et al. 2019). In this update,
the cost associated to non-taken decisions are zero, i.e. either Ct1(j) or Ct0(j) is zero, and either
Ct1(j

∗) or Ct0(j∗) is zero. The non-zero costs define the final form of the probability update. In or-
der to see the effect of the decisions and the associated observed costs in this update, we remark
that since we consider binary decisions, equation 3.17 can be rewritten as an update on the odds
of applying the measure:

oddst+∆d
1 (j) = oddst1(j)× e

(1−2atj)κC
t
at
j
(j)+(1−2atj∗ )ρC

t
at
j∗

(j∗)
, (3.18)

where oddst1(j) := pt1(j)/(1 − pt1(j));∀t = ∆d, 2∆d, ... From this we can see that the odds are
reinforced or decreased as a result of the farmer’s and the neighbour’s decision and cost. If they
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both apply the measure at time t, the term in the exponential is negative since costs are positive
or zero, so the odds for j applying the measure decrease. Analogously, if neither of them applies
the measure at time t, the term in the exponential is positive and the odds of applying it increase.
Finally, if they do not make the same decision at time t it is the comparison between κCtatj (j) and

ρCtat
j∗
(j∗) that determines the direction of the update.

Additionally, we explore an extension of the model where each farmer considers the decisions
and costs observed by all of his/her neighbours at each decision time. To update his/her prob-
ability of vaccinating, he/she takes into account the costs observed by his/her neighbours who
did not vaccinate at the previous decision time, and the costs observed by those who vaccinated,
as described in Algorithm 3.

Algorithm 3 Exponential weighting stochastic mechanism with imitation

Input: 2 options = {0,1}, p∆d
1 (j) := pinit1 ∀j, κ≥ 0, ρ≥ 0,B(j) = {i; θij ̸= 0 or θji ̸= 0}; j = 1, ..., J .

1: for t = ∆d, 2∆d, 3∆d... do ▷ At each decision time
2: for j = 1, ..., J do ▷ Each farmer
3: atj ← Bernoulli(pt1(j)) ▷ Takes a decision using his/her current probability of ap-

plying the measure
4: Ctatj

(j) ▷ Observes the cost related to his/her decision

5: Ct1(B(j)), Ct0(B(j)) ▷ Observes the mean cost observed by his/her neighbors
that vaccinated, and the one observed by those that did
not vaccinate. If no neighbor vaccinated/did not vacci-
nate, the mean associated cost of this group is zero

6:

pt+∆d
1 (j) =

pt1(j)e
−κCt

1(j)−ρn
t
1(j)C

t
1(B(j))

pt1(j)e
−κCt

1(j)−ρnt
1(j)C

t
1(B(j)) + (1− pt1(j))e−κC

t
0(j)−ρnt

0(j)C
t
0(B(j))

(3.19)

▷ Updates the probability of applying the measure, where nt1(j) and nt0(j) are the number of
neighbors of j that vaccinated, and the number that did not vaccinate, respectively. The costs
of the non taken options are equal to 0, i.e. for k = 0, 1 : Ctk(j) = Ctatj

(j) if k = atj , 0 otherwise.
7: end for
8: end for

3.2.3 An epidemic control measure

For the control measure that can be applied to manage the spread of the disease, we specifically
consider a vaccine that can reduce the rate of disease transmission towards a susceptible vacci-
nated animal. We assume this is the only effect the vaccine has. We make the assumption that the
vaccine maintains a constant efficacy during a certain time period, whose duration is the same
as the decision time-step. Then, if the vaccine is applied on a susceptible animal in herd j at time
t, the rate of transmission towards that susceptible animal during the period ]t; t + ∆d] will be
βvj = βj(1− ev), where 0 ≤ ev ≤ 1 is the protection efficacy of the vaccine.

When considering such a vaccine, the epidemic-demographic model is modified as a conse-
quence. Indeed, the susceptible compartment is divided in two sub-compartments: the non vac-
cinated susceptible animals (SNVj) and the vaccinated ones (SVj). We note as SVj(t) the suscep-
tible animals in herd j at time t that were vaccinated at decision time td (where td < t ≤ td +∆d)
either in herd j or elsewhere, and as SNVj(t) the susceptible animals in herd j at time t that were
not vaccinated. We have then for t ∈]td; td +∆d]:

NSNVj→Ij
(t), NSNVj→Dj

(t),
−−−−→
SNVj(t), SNV

∗
j (t) ← Multin

(
SNVj(t),

[
pSIj

, pSDj
, p−→

Sj
, 1 −

(
pSIj

+ pSDj
+ p−→

Sj

)])
, (3.20)

NSVj→Ij
(t), NSVj→Dj

(t),
−−→
SVj(t), SV

∗
j (t) ← Multin

(
SVj(t),

[
pSV Ij

, pSV Dj
, p−−→

SVj
, 1 −

(
pSV Ij

+ pSV Dj
+ p−−→

SVj

)])
. (3.21)
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Equations 3.20 and 3.21 replace equation 3.4 in the model. The transition probabilities of the non-
vaccinated susceptible animals are exactly defined as before for the susceptible compartment in
the SIR model without vaccination (equation 3.8). For the vaccinated susceptible animals, since
we assume that the vaccine has only an effect on their probability to get infected after contact
hence on the corresponding transmission rate, the related probabilities are modified as:

pSV Ij =

(
1− e

−
(
βv
j

Ij(t)

Nj(t)
+τj+

−→
θj

)
δt

)
βv
j

Ij
Nj

βv
j

Ij(t)

Nj(t)
+ τj +

−→
θj

, pSV Dj =

(
1− e

−
(
βv
j

Ij(t)

Nj(t)
+τj+

−→
θj

)
δt

)
τj

βv
j

Ij(t)

Nj(t)
+ τj +

−→
θj

, (3.22)

p−−→
SVj

=

(
1− e

−
(
βv
j

Ij(t)

Nj(t)
+τj+

−→
θj

)
δt

)
−→
θj

βv
j

Ij(t)

Nj(t)
+ τj +

−→
θj

,

3.2.4 An economic-epidemiological cost function

We assume that the farmers are able to asses the economic impact that their decisions have on
the disease spread in their herd. Therefore, we define the costs on the basis of a simple economic
cost function, related to the epidemiological consequences of the decision taken at t in herd j. We
define it in particular for the considered control measure, a protective vaccine, but it can easily
be modified for a control measure with a different impact on the epidemic transition rates. The
cost function we considered is:

Ctatj
(j) :=

[CFv + CUvNj(t)]a
t
j + ϕrNSj→Ij (t, t+∆d)

Nj(t, t+∆d)
, (3.23)

where in the numerator the first term refers to the cost farmers pay to apply the vaccine, and
the second one to the economic impact of the epidemic consequences of the vaccine. Precisely,
in the first term atj equals 1 if the vaccine is applied on herd j at decision time t, and it equals
0 otherwise. CUv is the unitary cost of the vaccine per animal, and CFv defines a fixed cost
of applying vaccination per herd. This would typically correspond to the cost of a veterinary
visit. In the second term, r is the monetary value of a healthy animal, and 0 ≤ ϕ ≤ 1 is the rate
of reduction of this value if the animal gets infected. So ϕr is the cost of an infection, that is,
the loss in the monetary value of an animal if it gets infected. NSj→Ij (t, t + ∆d) is the number
of new infections in the herd, from the moment decision is taken until the next decision time.
Therefore, the benefit of having healthy animals is implicitly given by the animal not reducing
its value due to an infection. We remark that we make the assumption that each farmer perfectly
observes the number of new infections that occurred during the decision period, or at least the
global loss in the monetary value of the herd ϕrNSj→Ij (t, t+∆d) related to these new infections.
However, farmers can not identify which animals are infected, which is why we assume they
choose to vaccinate the whole herd if vaccination is decided. Finally, in order to account for
differences in the costs that may only be related to the variation of the herd size over the period,
we standardize the cost by the sum of the daily herd size during the concerned period, which
we note as Nj(t, t + ∆d) = Nj(t) + Nj(t + 1) + Nj(t + 2) + ... + Nj(t + ∆d). This is equivalent
to standardizing by ∆dN j(t, t + ∆d), where N j(t, t + ∆d) is the mean daily herd size over the
period.

The scheme of the integrative model for vaccination can be found in figure 3.2. It shows the
feed-back loop between the epidemic-demographic dynamics, and the decision dynamics. The
epidemic-demographic process takes place for a period of length ∆d, until a new decision is
taken. This decision is itself a function of economic and epidemic consequences of the previous
decision.
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Figure 2. Representation of the integrative epidemic-decision dynamical model for a herd j, accounting for vaccinating decisions with a
protective effect (β v

j < β j). See main text in Methods for parameter definitions.
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Figure 3.2: Representation of the integrative epidemic-decision dynamical model for a herd j, accounting
for vaccinating decisions with a protective effect (βv

j < βj).

The flow between the non vaccinated compartment, SNVj(t), and the vaccinated one, SVj(t), is
deterministic once the decision is taken. Indeed, if atj = 1, all susceptible animals in herd j will
enter the SVj(t) compartment for the next decision period. If atj = 0, they will be in SNVj(t). If
decided, vaccination is then applied only once per decision time. Indeed, in livestock diseases,
as opposed to what happens for human diseases, it is not customary that farmers vaccinate new-
borns or the animals they buy after they have already vaccinated the herd, since each vaccination
would then imply a cost for a veterinary visit. Furthermore, if the herd is vaccinated, farmers
generally rely on herd immunity to indirectly protect susceptible animals in the herd.

3.3 Setting for simulations and sensitivity analyses

In this section we describe the methodology used for the simulation and analysis of the model.
The simulation code is available at github.com/CristanchoLina/IntegrativeEpiDecisionModel.

3.3.1 Fixed simulation setting

For our simulation study, the population structure is set close to the one observed in real data
obtained from the FCID. Furthermore, demographic parameters are fixed close to real-life val-
ues. In particular, the simulated trade network is scale-free, as the one observed in the real-life
animal movements, then the in-degree and out-degree distributions follow a power law. That
is, the majority of herds only buy (sell) animals to a few other herds, and very few herds buy

https://github.com/CristanchoLina/IntegrativeEpiDecisionModel
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(sell) to many different herds, which are known as hubs. We simulate this network through the
configuration model, using degree sequences generated from a power law.

The trade network is therefore simulated as a directed, weighted, scale-free network using iGraph
python library calibrated to have herd’s sizes, in-degree, out-degree, etc. distributions similar to
the ones of Finistère’s, a French region whose number of herds is close to 5000 according to the
FCID. Movements of animals coming from outside this metapopulation are neglected. We specif-
ically search to approach the distributions for 3 years (2013-2016). The followed steps are:

1. Simulate the in-degree sequence from a power-law distribution of parameter 2, chosen so
as to be close to the estimated values in Dutta et al. 2014 for the parameter of the in-degree
and out-degree annual distributions, 1.8 and 1.5 respectively.

That is, the fraction P (k) of herds in the network having k ingoing edges for a large kin,
follows: P (kin) ∼ k−ψin with ψ = 2. We take the in-degree sequence also as the out-degree
sequence, in order to build a directed non-weighted network with the given in and out
degree sequences using the Degree_Sequence function of the iGraph python’s module. This
function uses the configuration model for generating random directed or undirected net-
works from given degree sequences. We then simplify the network so that it does not
contain loops or multiple edges, while making sure that every node has at least an ingoing
edge, and an outgoing edge.

2. Simulate the initial herd sizes from a Gamma distribution of shape parameter 9 and scale
12, in order to roughly obtain the shape of the herd size distribution in the FCID. That is
Nj(0) ∼ Γ(9, 12) for j = 1, .., L.

3. Simulate the daily out-rates
−→
θj :=

∑
j∗∈|Ch(j)| θjj∗ as a random sample (with replacement)

of size J , from the interval [0.0006, 1[, where the probabilities of selection are given by a
power-like law of parameter 2. This roughly reproduces the out-strength distribution in
the FCID, that is, the number of animals bought and sold over the 3 years by farm.

4. Assign the initial herd sizes and the daily out-rates proportionally to the out-degrees. This
allows to reproduce the rather high correlation between the out-strength (the total number
of animals sold by each herd over three years) and the out-degree, that is observed in the
data.

5. Assign the daily trade-rates going from a herd j to its buyers j∗1 , ..., j∗|Ch(j)| inversely pro-
portional to the in-degree of each buyer j∗, and directly proportional to the length of the
shortest path going from j∗ to j. The objective is first to prevent that a herd with a lot
of potential sellers receives too many animals, as herds with few sellers could end up not
receiving any, and to avoid generating loops of two herds that only sell and buy to each
other.

Regarding demographic parameters, we consider fixed theoretical birth and death daily rates
across herds. That is µj = µ and τ = τj ; ∀j = 1, ..., J . For the death rate the value used in
all simulations is τ = 0.0009. This value is chosen for animals to have approximately a mean
expectancy life time of three years. The birth rate is chosen the double of the death rate, that
is µ = 0.0018 so that on average an animal has a calf every 1.5 years. We remark that in our
simulations birth rates actually vary across herds, since we consider a soft constraint on the
maximal capacity of each herd defined as Kj = 1.5 × Nj(0) for each herd j. We note as 1x
the indicator function (i.e. it equals 1 if condition x is verified, 0 otherwise). The births and
trades given by the multinomial draws (equations 3.7 , 3.12 - 3.14) are modified as following:

• The births in herd j are given by min(BSj(t),Kj −Nj(t))1Kj−Nj(t)>0.

• Susceptible, infected and recovered animals going from a herd i to a herd j are equal to:

min(Sij ,Kj −Nj(t))1Kj−Nj(t)>0, min(Iij ,Kj −Nj(t))1Kj−Nj(t)>0,
min(Rij ,Kj −Nj(t))1Kj−Nj(t)>0, respectively.
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The comparison between the number of animals in each epidemic state (and the number
of births) to Kj − Nj(t), or simultaneously importing from different herds, can give rise
to situations where the maximal capacity is exceeded at some time instants. Figure 3.3
shows however that only a minimal proportion of herds lightly exceeds the constraint on
Kj/Nj(0) so we allow for this excess in these herds. This is consistent over different simu-
lations.

In figure 3.3 we present population dynamics regarding herd sizes evolution over the simulation
for a single run. Figures 3.3a and 3.3b correspond to the initial and final herd size distributions
of our synthetic data. As for figure 3.3c, it follows each herd size over time, where the color
is given by the ratio between final and initial herd size. We see that the shape of the herd size
distribution is rather stable over time. We remark that most herds quickly increase their size up
to their maximal capacity. Indeed, one can have Nj(t) higher than Kj , if j receives animals from
more than one herd at the same time, which is why the ratio between the final and initial herd
size is for some herds higher than 1.5. This dynamics is qualitatively stable over different runs.

(a) (b)

(c)

Figure 3.3: Population dynamics over 3 years. Results for a single run. (a) Initial herd size distribution, (b)
Final herd size distribution (after 3 years), and (c) Herd size evolution over time. In (c) color is given by the
ratio between final and initial herd size.

In figure 3.4 we present the herd size distribution in Finistère for years 2013 and 2015 according
to the FCID. We roughly reproduce the range and shape of the herd size distribution, but not the
high proportion of herds with very few animals (less than 5). Yet, we remark that the category
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of these small herds is marginal, since it represents less than 0.1% of the total metapopulation (in
number of animals).

(a) (b)

Figure 3.4: Herd size distribution in Finistère from real data (FCID) for years (a) 2013 and (b) 2015.

Figure 3.5a presents on a log scale the in(out)- degree distribution of the generated network using
the previously described procedure. Figure 3.5b and 3.5c contain the respective representation of
the in-strength and out-strength distribution resulting from a single run of the model (equations
3.1 - 3.22) for 3 years, again using a log scale. These two network indicators are respectively
defined as the number of animals bought and sold by each farm over the 3 years simulated. The
generated distributions are qualitatively stable over different runs.

Finally, figure 3.6 presents the respective distributions in real data from the FCID, for Finistère,
corresponding to the 2013-2016 period. The degree distribution of the simulated network closely
resembles the in-degree of the real data, the out-degree distribution being moderately different.
As for the animals sold and bought over a run of our model, we roughly reproduce the shape of
their distributions in the real data. In particular, the shape of the simulated out-strength distri-
bution is quite similar to the one observed for the real network.
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(a)

(b) (c)

Figure 3.5: Distribution of characteristics of the simulated network in log-log scale. (a) In-degree distri-
bution of the simulated trade network as described in the Trade Network section of this document. The
out-degree sequence is the same as the in-degree sequence in our simulation. (b) In-strength distribution,
and (c) out-strength distribution. These correspond respectively to the number of animals bought and sold
over the 3 years for a single run of the model (equations 3.1 - 3.22).
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(a) (b)

(c) (d)

Figure 3.6: Distribution of characteristics of the real network (data from the FCID, for Finistère 2013-2016) in
log-log scale. (a) In-degree distribution, (b) out-degree distribution, (c) in-strength distribution, and (d) out-
strength distribution. The in-strength and out-strength correspond respectively to the number of animals
bought and sold by each farm over the 3 years.
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3.3.2 Parameters of the integrative model

The values of the epidemic, economic and decision related parameters used in the simulation
study are given in Table 3.1.

Parameter Definition Standard value Values tested in the sensitivity analysis

β/γ transmission rate per herd × average duration
of infection

2. [ 1.1 , 2.07 , 3.05 , 4.02 , 5. ]

Ep
id

em
ic 1/γ average duration of infection (in days) 90. [ 10. , 32.5 , 55. , 77.5 , 100. ]

p0Iherds
initial proportion of infected herds 0.10 [ 0.01 , 0.22 , 0.43 , 0.64 , 0.85 ]

p0Ianim
initial proportion of infected animals in infected
herds

0.15 [ 0.01 , 0.25, 0.50 , 0.75, 1. ]

r monetary value of a healthy animal (in euros) 2000. [1000. , 1500. , 2000. , 2500. , 3000. ]

Ec
on

om
ic ϕ reduction in the monetary value of an animal if

it gets infected
0.8 [ 0.01 , 0.25, 0.50 , 0.75, 1. ]

CUv unitary cost of the vaccine per animal (in euros) 5. [ 1. , 4.5 , 8. , 11.5 , 15. ]
CFv fixed cost of applying vaccination per herd (in

euros)
50. [ 1. , 25.75 , 50.5 , 75.25 , 100. ]

ev protection efficacy of the vaccine on susceptible
animals

1. [ 0.01 , 0.25, 0.50 , 0.75, 1. ]

D
ec

is
io

n
re

la
te

d ∆d duration of the decision (time between two con-
secutive decisions). It also determines the time
of the first decision, and is equal to the duration
efficacy of the vaccine (in days)

180. [ 30. , 114 , 198 , 281. , 365. ]

pinitv farmers’ initial probability of vaccinating 0.01 [ 0.01 , 0.25 , 0.5 , 0.74 , 0.99 ]
κ farmers’ sensitivity to their own observed cost 0.5. or 12.5 [ 0.5 , 3.5 , 6.5 , 9.5 , 12.5 ]
ρ/κ farmers’ sensitivity to a neighbour’s cost / farm-

ers’ sensitivity to his/her own observed cost
0.5 [ 0. , 0.25 , 0.5 , 0.75 , 1. ]

Table 3.1: Parameters of the integrative model: description, standard values and values tested in the full
sensitivity analysis.

We remark that these are set close to realistic values, having in mind a standard SIR endemic
disease. In particular, we consider the same transmission rate across herds, so βj = β;∀j =
1, ..., J . As for the duration of the decision it is chosen to be 180 days, which is a reasonable
assumption in practice. The values for κ and ρ are chosen so as to have two potentially contrasted
decision scenarios.

3.3.3 Sensitivity analysis experiments

Sensitivity analysis is useful to study how much the variation in each parameter of the model
contributes to the variation of the model outputs (Saltelli et al. 2008). In our sensitivity analy-
ses we consider 13 input parameters in total. Other parameters, in particular the demographic
ones, are fixed as specified earlier. We consider eight outputs corresponding to the three model
components: epidemic, economic and decision related, and one additional output that combines
epidemic and decision related elements. These outputs are defined in Table 3.2.

The values of the inputs used in the sensitivity analyses are chosen using Fractional Factorial
design (Gunst et al. 2009) with 5 equally spaced levels, which results in 625 combinations of pa-
rameters. To obtain this design we use the R package PLANOR (Kobilinsky et al. 2020). Since
the model is stochastic, we run 50 simulations for each combination, and we consider the mean
and the variance of each output over runs. Table 3.1 contains the values considered for each
input in the full sensitivity analysis. Since we use a IV-resolution design, we are able to esti-
mate main effects unconfounded by two-factor interactions, while limiting the number of runs
required for the analysis. With this design, we can also estimate two-factor interaction effects,
even if these may be confounded, i.e. can not be estimated independently to each other (Mont-
gomery 2017). We study the outputs individually, by groups regarding the nature of the outputs,
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Group Output Definition

pTIherds
(final inter-herd prevalence rate) final proportion of infected herds = 1

J

∑J
j=1 1Ij(T )>0

pTIanim
(final intra-herd mean prevalence rate) mean over final infected herds of the final proportion of infected animals =(∑J

j=1
Ij(T )
Nj(T )

)
/
(∑J

j=1 1Ij(T )>0

)

Ep
id

em
ic

p
[0,T ]
Iherds

(inter-herd cumulative incidence rate) cumulative proportion of newly infected herds ( i.e. herds with new infec-
tions) = 1

J

∑J
j=1 1

∑T
t=0NSj→Ij

(t)>0

p
[0,T ]
Ianim

(mean cumulative intra-herd incidence rate) mean cumulative proportion of new infected animals
over susceptible animals, for newly infected herds =(∑J

j=1
1
T

∑T
t=0

NSj→Ij(t)

Sj(t)

)
/
(∑J

j=1 1
∑T

t=0NSj→Ij(t)
>0

)

I
[0,T ]

anim (mean cumulative intra-herd incidence) mean cumulative number of new infected animals for new infected herds =(∑J
j=1

∑T
t=0NSj→Ij(t)

)
/
(∑J

j=1 1
∑T

t=0NSj→Ij(t)
>0

)

Ec
on

om
ic C [0,T ] (total economic cost of the disease) sum of the non standardized cumulative disease-related

costs (costs of vaccination and costs of new infections):
∑J
j=1

[∑⌊T/∆d⌋
n=0 Cn∆d

a
n∆d
j

(j)∆dNj(t, t+∆d)

]
. Counts costs even before

the first decision and after the last one.

D
ec

is
io

n
re

la
te

d

p
[0,T ]
v (mean vaccination proportion) mean proportion of herds that vaccinate over the different decision times

except the first one =
(∑⌊T/∆d⌋

n=2
1
J

∑J
j=1 1a

n∆d
j =1

)
/ (⌊T/∆d⌋ − 1)

aggregated vaccination patterns vector consisting in three proportions: of herds that never vaccinate, of
herds that vaccinate at least once and at most half of the time, and of herds
that vaccinate more than half of the time but not always. Without taking
the first decision into account.

Ep
id

em
ic

-d
ec

is
io

n
re

la
te

d

mean cumulative intra-herd incidence rate by ag-
gregated vaccination pattern

vector of the mean cumulative intra-herd incidence rate (see output p[0,T ]
Ianim

)
of herds grouped by the aggregated vaccination pattern: herds that never
vaccinate, herds that vaccinate at least once and at most half of the time,
and herds that vaccinate more than half of the time but not always. Without
taking the first decision into account.

Table 3.2: Description of the outputs of the sensitivity analyses.

and by considering all outputs together. For the multivariate analyses, we use PCA (Principal
Component Analysis) to reduce the dimension of the output space, before using Analysis of
variance (ANOVA) for the computation of Global Sensitivity Indices (GSI), which are weighted
means of the sensitivity indices over the retained dimensions in the PCA, as described in Lam-
boni et al. 2011. More precisely, ANOVA is particularly suited for analyzing the outcome of a
factorial design (Van Schepdael et al. 2016). For all the sensitivity analyses we use the R package
multisensi (Bidot et al. 2018). In the PCAs the means are centered and scaled, and the dimension
is selected as the smallest value that keeps at least 95% of the total variability. Among the many
experiments, we retain the results of the three following ones:

(i) First experiment: all 13 inputs. The means and variances of all outputs: by group, and all
outputs simultaneously.

(ii) Second experiment: all inputs except the four epidemic parameters (fixed to their standard
values in Table 3.1). Means and variances of all outputs.

(iii) Third experiment: all inputs except the two epidemic parameters (p0Iherds
and β/γ) and the

two decision related parameters (∆d and pinitv ), fixed to their standard values in Table 3.1.
Means and the variances of decision related outputs.
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3.4 Results of the simulation study and sensitivity analyses

3.4.1 Model predictions for different decision scenarios

Results regarding the inter-herd prevalence, and the intra-herd prevalence for infected herds
are provided for four different scenarios (figure 3.7): no farmer ever vaccinates, never scenario;
every farmer vaccinates at every decision-time , always scenario; farmers vaccinate following the
proposed decision-making mechanism (Algorithm 2) using κ = 0.5, neigh-expw(0.5) scenario; and
the same mechanism using κ = 12.5 , neigh-expw(12.5) scenario.
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Figure 3.7: Temporal dynamics of the epidemic spread for each vaccination scenario over 50 runs. Each
decision instant is represented by a vertical grey line. (a) Inter-herd prevalence. Mean over runs (solid
lines), 10th and 90th percentiles over runs (dotted lines). Mean proportion of herds that vaccinate at each
decision-time in each neigh-expw scenario (light blue and orange dots), and its variation over runs (from
the 10th to the 90th percentile in light blue and orange vertical lines). (b) Intra-herd prevalence for infected
herds. Mean over runs of the means over infected herds (solid lines), 10th percentile over runs of the 10th
percentiles over infected herds, and 90th percentile over runs of the 90th percentiles over infected herds
(dotted lines).

As expected, the worst and best case scenarios are the scenario where farmers never vaccinate,
and the one where they all vaccinate at each decision time. We remark that the vaccination
gain particularly affects inter-herd prevalence (figure 3.7a), but is still observable for intra-herd
prevalence (figure 3.7b). In the intermediate scenarios, farmers’ sensitivity to observed costs
determines the changes in the proportion of herds that vaccinate over time, and therefore in the
control of the pathogen spread. Indeed, in the scenario with higher farmers’ sensitivities to costs
(neigh-expw(12.5) scenario), the proportion of farmers that vaccinate quickly increases after the
first decision, generating a mean inter-herd and intra-herd prevalence dynamics rather close to
the best case scenario. On the contrary, the scenario with smaller farmers’ sensitivities to costs
(neigh-expw(0.5) scenario) exhibits a slow increase in the proportion of herds that vaccinate, which
gives rise to a prevalence behaviour close to the one observed for the worst case scenario, even if
around two years it starts to decline.

Additionally, figure 3.8 presents the temporal dynamics of the vaccination decisions of the two
intermediate scenarios (for a single run as an example). In the neigh-expw(0.5) scenario most herds
never vaccinate (67%). They are followed by herds that only vaccinate at the last decision time,
which are in turn followed by those that only vaccinate at the next to last decision time, etc. Only
28 out of the 64 possible patterns (over 6 decision times) are observed in this scenario. On the
other hand, in the neigh-expw(12.5) scenario the most frequent behaviour (39%) is to not vaccinate
at the initial decision and to always vaccinate afterwards. However, this vaccination pattern
is closely followed by the one where herds never vaccinate (33%). We also observe a higher
variety of behaviours than in the neigh-expw(0.5) scenario, 44 out of the 64 possible patterns,
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which translates into less frequent patterns. Nevertheless, some of them stand out: the one
where herds vaccinate from the second decision time, the one where herds only vaccinate at the
second decision time, and the one where herds vaccinate from the third decision time.
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Figure 3.8: Temporal dynamics of the vaccination decisions using the decision mechanism defined in Algo-
rithm 2 with κ = 0.5 (a), and κ = 12.5 (b). Results for one run. NV and 0 stand for not vaccinating, while
V and 1 for vaccinating. Each color represents a different vaccination pattern, defined by the sequence of
vaccination decisions at each of the six decision times. So the pattern 001111 (or equivalently [NV1, NV2,
V3, V4, V5, V6] ) concerns herds that do not vaccinate at the two first decision times, and always vaccinate
afterwards. In the left plots, each vertical black line represents a decision time, and the width of the flows
between decisions is proportional to the frequency of the pattern. In the right plots, the histogram of the
patterns with a frequency >= 1% is plotted. Hence, in (a), 67% of herds never vaccinate (pattern 000000).
In (b), 39% of farms always vaccinate except in the first instant (pattern 011111), and 33% never vaccinate
(pattern 000000).

The scenarios concerning vaccination exhibit some peaks in the intra-herd prevalence roughly at
each decision time (figure 3.7b). This behaviour is firstly explained by the fact that we consider
this prevalence only for infected herds at each time, so the concerned herds are not the same over
the whole trajectory. Furthermore, since we consider a perfect vaccine, when a herd is vaccinated
all its susceptible animals are completely protected, so that the number of animals that can actu-
ally get infected drops instantaneously to zero, until there are births or imports of non-vaccinated
susceptible animals. Figures 3.9 and 3.10 present an exploration of this behaviour. In particular,
these figures present the epidemic evolution of herds when grouped by their vaccination pat-
tern (i.e. the sequence of individual decisions with respect to vaccination), as well as their main
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characteristics concerning population and trade dynamics. We focus on the most frequent pat-
terns for the two decision scenarios considered: the neigh-expw(0.5) scenario, where farmers have
a low sensitivity to the observed costs (κ = 0.5), and the neigh-expw(12.5) scenario, where their
sensitivity to the observed costs is higher (κ = 12.5). We recall that for both scenarios ρ/κ = 0.5.

In the neigh-expw(0.5) scenario (figure 3.9), the most frequent vaccination pattern (67%) is to not
vaccinate at any of the six decision times: 000000. Followed by 000001, 10% of herds; 000010, 6%
of herds; 000011, 3% of herds; 000100, 3% of herds; and 001000, 2.5% of herds. We observe in
this figure that for each pattern, the change from not vaccinating to vaccinating (0 to 1) follows
a period of strong increase in the number of infected animals in infected herds with the pattern,
and allows for an abrupt reduction in the number of non vaccinated susceptible animals. This
is a consequence of the fact that decision implies the vaccination of all animals in the herd. This
reduction is therefore accompanied by a decline in the number of infected animals, which is easily
explained by the highly effective vaccine (ev = 1), causing the peak to be exactly at the time of
the decision switch from 0 to 1. Furthermore, the number of non vaccinated susceptible stabilizes
after the decision, which can be attributed to birth and imports of animals in this epidemic state.

In the neigh-expw(12.5) scenario (figure 3.10), the most frequent vaccination pattern (39%) is to
vaccinate in all of the six decision times expect the first one: 011111, followed by never vacci-
nating, 000000, 33% of herds; 001111, 4% of herds; and 010000, 2% of herds. Like for the first
scenario, we see in this figure that in all patterns the change from not vaccinating to vaccinating
follows a period of increase on the number of infected animals of the herds, but here the increase
is smaller given the high sensitivity of farmers to costs. At the same time, we also have a sharp
reduction in the number of non vaccinated susceptible animals. This reduction is again accompa-
nied by a decline in the number of infected animals, causing the peak to be exactly at the time of
the decision changes from 0 to 1. The peaks are more pronounced than in the first scenario, given
the stronger reduction in the number of infected herds. Indeed, since we look only at infected
animals among infected herds, and since in the neigh-expw(12.5) scenario there is a higher decline
in the number of infected herds, over time the herds that are concerned are only those that are
still infected, which corresponds to herds with not frequent vaccinating patterns.

Figure 3.11 shows that in both scenarios, herds that never vaccinate tend to be less connected
that the others (smaller out-degree, smaller in-strength), contrary to herds that vaccinate more,
for example, herds that only not vaccinate at the first decision time, in the neigh-expw(12.5) sce-
nario. The in-degree is highly and positively correlated to the out-degree, and the out-strength is
correlated with the in-strength, so their plots are not shown.

In order to analyse model predictions on the long term, we simulated each of the four scenarios
over a trajectory of 9 years (figure 3.12). We observe that for the inter-herd prevalence (figure
3.12a), in the never scenario the pathogen is indeed endemic in the meta-population, reaching
a stable level after 6 years at 38% percent of infected herds. The always and neigh-expw(12.5)
scenario do not change their behaviour after the initial three years. As for the neigh-expw(0.5)
scenario, even if in the first three years it is rather similar to the never scenario, in the following
years the inter-herd prevalence declines to be close to zero at the end of the year 9. The intra-
herd prevalence (figure 3.12b) does not really change in any of the scenarios with respect to
the behaviour observed in the 3-year simulation. There is only an increased variation among
infected herds, for the two intermediate scenarios, that is explained by the fact that infected
herds change over time, and that in the long run the concerned herds are only those with not
frequent vaccination patterns. The dynamics of the total number of infected animals (figure
3.12c) is an alternative quantity to study. Yet, as evidenced by the figure, it is highly correlated to
the proportion of infected herds.

Concerning decisions, in figure 3.12a we observe that for the two intermediate scenarios, the
proportion of herds that vaccinate over time follows the same behaviour as in the three year
simulations, arriving to around 35% at nine years, for both scenarios. This indicates that using
the model, a high proportion of farmers keeps vaccinating even if there are no more infected
herds.
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(a) pattern 000000 : 67% of herds

(b) pattern 000001: 10% of herds

(c) pattern 000010: 6% of herds

(d) pattern 000011: 3% of herds

(e) pattern 000100: 3% of herds

Figure 3.9: Epidemic spread for each vaccination pattern for the most frequent patterns in scenario neigh-
expw(0.5), based on a single run. The plots in the left show intra-herd prevalence among infected herds of the
given pattern (mean, median, 10th and 90th percentiles). The plots in the right show the proportion of non
vaccinated animals among infected herds of the given pattern (mean, median, 10th and 90th percentiles).
Decisions instants are represented by the vertical grey lines. 0 stands for not vaccinating, while 1 stands for
vaccinating.



70 CHAPTER 3. ACCOUNTING FOR FARMERS’ DECISIONS

(a) pattern 011111: 39% of herds

(b) pattern 000000: 33% of herds

(c) pattern 001111: 4% of herds

(d) pattern 010000: 2% of herds

Figure 3.10: Epidemic spread for each vaccination pattern for the most frequent patterns in scenario neigh-
expw(12.5), based on a single run. The plots in the left show intra-herd prevalence among infected herds
of the given pattern (mean, median, 10th and 90th percentiles). The plots in the right show the proportion
of non vaccinated animals among infected herds of the given pattern (mean, median, 10th and 90th per-
centiles). Decisions instants are represented by the vertical grey lines. 0 stands for not vaccinating, while 1
stands for vaccinating.
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(a)

(b)

Figure 3.11: Exploration of network characteristics (intial herd size, out-degree and in-strength) of herds in
the most frequent vaccination patterns in scenarios using the decision mechanism defined in Algorithm 2
with κ = 0.5 (a), and κ = 12.5 (b). 0 stands for not vaccinating, while 1 stands for vaccinating. Results for a
single run.
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(a) (b)

(c)

Figure 3.12: Model predictions over 9 years. Temporal dynamics of the epidemic spread for each vacci-
nation scenario over 50 runs. Each decision instant is represented by a vertical grey line. (a) Inter-herd
prevalence. Mean over runs (solid lines), 10th and 90th percentiles over runs (dotted lines). Mean propor-
tion of herds that vaccinate at each decision-time in each neigh-expw scenario (light blue and orange dots),
and its variation over runs (from the 10th to the 90th percentile in light blue and orange vertical lines). (b)
Intra-herd prevalence for infected herds. Mean over runs of the means over infected herds (solid lines), 10th
percentile over runs of the 10th percentiles over infected herds, and 90th percentile over runs of the 90th
percentiles over infected herds (dotted lines). (c) Total number of infected animals in the metapopulation.
Mean over runs (solid lines), 10th and 90th percentiles over runs (dotted lines). Inter-herd and intra-herd
prevalence rates are defined in Table 3.2.

We now present the model predictions according to Algorithm 3, where each farmer considers
the decisions and costs observed by all of his/her neighbors in the trade network at each deci-
sion time. Two numerical scenarios are considered based on this model: the all-neigh-expw(0.5)
scenario, where κ = 0.5, and the all-neigh-expw(12.5) scenario, where κ = 12.5. Figures 3.13a
and 3.13b show the model predictions over 9 years according to these experiments, as well as
for the scenario where no farmer ever vaccinates, never scenario, and the scenario where every
farmer vaccinates at every decision-time, always scenario. A focus on the epidemic and decision
dynamics over 3 years can be found in figures 3.13c, 3.13d and 3.14.

We observe that results are not very different for both scenarios, all-neigh-expw(0.5) and all-neigh-
expw(12.5), with respect to the neigh-expw(0.5) and neigh-expw(12.5) scenarios (figures 3.8 and
3.12). In both scenarios there are slightly less vaccination patterns, and patterns that are more
frequent, such as 011111 in the all-neigh-expw(0.5) scenario, or 011110 in the all-neigh-expw(12.5)
scenario (figure 3.14). In the all-neigh-expw(0.5) scenario, the proportion of herds that vaccinate in-
creases and stabilizes more rapidly to a smaller value (20% versus 30% using only one neighbor).
The epidemic dynamics is therefore different (figure 3.13): the highest proportion of infected
herds is 30% (versus 40% using only one neighbor), but afterwards the prevalence decreases less
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rapidly. While in the all-neigh-expw(12.5) scenario the proportion of herds that vaccinate increases
more rapidly at the second decision time, and then it continues to decrease. We remark that in
this scenario the proportion of herds that never vaccinate is about 15% smaller, and the propor-
tion of herds that always vaccinate from the second decision time is almost 25% higher than in
the scenario considering only one neighbor. Yet, the prevalence of the disease decreases only
slightly faster.

(a) (b)

(c) (d)

Figure 3.13: Model predictions considering information from all neighbors in the decision, as described in
Algorithm 3. Temporal dynamics of the epidemic spread for each vaccination scenario over 50 runs. Each
decision instant is represented by a vertical grey line. (a) Inter-herd prevalence over 9 years, and (c) over
3 years. Mean over runs (solid lines), 10th and 90th percentiles over runs (dotted lines). Mean proportion
of herds that vaccinate at each decision-time in each neigh-expw scenario (light blue and orange dots), and
its variation over runs (from the 10th to the 90th percentile in light blue and orange vertical lines). (b)
Intra-herd prevalence for infected herds over 9 years, and (d) over 3 years. Mean over runs of the means
over infected herds (solid lines), 10th percentile over runs of the 10th percentiles over infected herds, and
90th percentile over runs of the 90th percentiles over infected herds (dotted lines). Inter-herd and intra-herd
prevalence rates are defined in Table 3.2.
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(a)

(b)

Figure 3.14: Temporal dynamics of the vaccination decisions using the decision mechanism defined in Al-
gorithm 3 with (a) κ = 0.5 , and (b) κ = 12.5. Results for one run. NV and 0 stand for not vaccinating, while
V and 1 for vaccinating. Each color represents a different vaccination pattern, defined by the sequence of
vaccination decisions at each of the six decision times. So the pattern 001111 (or equivalently [NV1, NV2,
V3, V4, V5, V6] ) concerns herds that do not vaccinate at the two first decision times, and always vaccinate
afterwards. In the left plots, each vertical black line represents a decision time, and the width of the flows
between decisions is proportional to the frequency of the pattern. In the right plots, the histogram of the
patterns with a frequency >= 1% is plotted.

3.4.2 Key determinant parameters of decision-making and epidemiological
dynamics

We present the results for the sensitivity analyses on the means over runs for the concerned
outputs in each experiment in figure 3.15. Overall, in figure 3.15a we see that according to exper-
iment (i), the most influential parameters of the model are the epidemic parameter β/γ, which
contributes to 25% of the variation of the means, and the decision related parameter ∆d, which
contributes to 14%. So only these two parameters account for more than 38% of the variation.
They are followed by other epidemic and decision related parameters, as well as by an economic
parameter. Furthermore, for each group of outputs, the parameters with the highest main ef-
fects on the means are of the same nature as the outputs (epidemic parameters have the greatest
influence on epidemic outputs, economic parameters on the economic output, etc). For the epi-
demic outputs, the most influential parameter, β/γ, has a contribution of 61% to the variation
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of the means. As expected, the exploration of simulation results evidences that this contribution
translates into an increase in the propagation of the pathogen.
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Figure 3.15: Global Sensitivity Indices (GSI) for the means over runs of the outputs considered in each
experiment. Sensitivities are split in main effect and two-factor interactions. Blue colors correspond to
epidemic parameters, green colors to economic parameters, and pink colors to decision related parameters.
(a) GSI for the means of all outputs, and by group of outputs in experiment (i). (b) GSI for the means of all
outputs in experiment (ii). (c) GSI for the means of decision outputs in experiment (iii). See Table 3.1 for
parameters definition, and Table 3.2 for outputs definition.

When focusing on the mean of decision related outputs, even if interactions have the strongest
effect, the most influential main effect is ∆d, i.e. the duration between two consecutive decisions,
which contributes 30% of the variation. It is followed by the initial probability of vaccinating,
which contributes 21% to the variation. We remark that ∆d has an overall negative influence
on vaccination of herds, as it determines if control decisions are taken at early stages of the epi-
demic, and is therefore associated with a higher spread of the pathogen. The initial probability
of vaccinating has, on the contrary, a positive effect on the vaccination and on the limitation of
the epidemic spread. Concerning the interaction effects, epidemic parameters have the highest
influence on the means of each group of outputs, and when considering the means of all out-
puts together. In particular, p0Iherds

is for each group the most influential parameter through its
interaction effects. It mostly interacts with other epidemic parameters such as p0Ianim

, but it has
smaller interactions with other parameters as well.

For experiment (ii), figure 3.15b shows that when fixing epidemic parameters, overall the greatest
main effects are those of the vaccine efficacy ev (29% contribution), the duration of the decision
∆d (19% contribution), and the initial probability of vaccinating pinitv (14% contribution). They
are followed by the main effect of the economic parameter: ϕ (6% contribution). Concerning
higher order effects, we mainly observe interactions between the first three parameters: ev , ∆d,
and pinitv . Overall, ev has the greatest interaction influence. Finally, figure 3.15c shows that in
experiment (iii) the parameters ϕ and κ manage to explain about 50% of the variability of the
means through their main effects, having a 35% and a 16% contribution, respectively. Each of the
other parameters explains less than 10% of the variation.
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Figure 3.16 presents the results of the three sensitivity analysis experiments regarding the vari-
ance of outputs over runs. We remark that in each experiments and for every group of outputs
that we consider, the variation in the variances over runs is mostly explained by interaction ef-
fects between the input parameters.

(a)

(b)

(c)

Figure 3.16: Global Sensitivity Indices (GSI) for the variances over runs of the outputs considered in each
experiment. Sensitivities are split in main effect and two-factor interactions. Blue colors correspond to
epidemic parameters, green colors to economic parameters, and pink colors to decision related parameters.
(a) GSI for the variances of all outputs, and by group of outputs in experiment (i). (b) GSI for the variances
of all outputs in experiment (ii). (c) GSI for the variances of decision outputs in experiment (iii). See Table
3.1 for parameters definition, and Table 3.2 for outputs definition.

3.5 Discussion

In this work we present a new integrative model for the epidemic spread of a livestock disease on
a trade network, accounting for farmers’ dynamic decisions concerning the adoption of a control
measure in their herd. The model consists of an epidemic-demographic and a decision-making
components that are interlinked through a feed-back loop. On the one hand, control decisions
have consequences on the epidemic spread, both at the intra-herd and the inter-herd levels. On
the other hand, the epidemic spread has an impact on the control decisions that farmers sub-
sequently take. For the epidemic-demographic component we use a stochastic compartmental
model with demography on a trade network, that accounts for intra-herd population changes,
in particular those that concern animal transfers. For the decision-making component we as-
sume the same dynamic decision problem for each farmer, and we propose a mechanism that
represents their decision-making strategy.

Whereas most epidemiological models found in literature do not consider the voluntary adop-
tion of a control measure for the spread of a disease (Wang et al. 2016), or consider an exoge-
nous probability of applying the measure in order to only study the observed effects of decisions
(Rat-Aspert et al. 2010), we propose a decision model that considers strategic interactions and
cognitive considerations in the decision-making process. Our model can therefore be consid-
ered as a game-theoretical or a psychological model, according to the conceptual classification
of behavioural epidemiological models found in Wang et al. 2016. The decision-mechanism we
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propose takes into account different phenomena such as learning, stochastic behaviour, and im-
itation dynamics. To our knowledge, these elements are not present in the few existing mod-
els that have aimed at dynamically integrating the epidemic and decision-making processes of
a livestock unregulated disease (Krebs et al. 2018). We remark that the basic structure of the
decision-problem and the decision-mechanism can be found in different fields, particularly in
the field of online optimization (such as multi-armed bandits (Auer et al. 2002a)). However, we
do not seek to find an asymptotically optimal algorithm, which is often the goal in that area, but
rather to describe farmers’ decision-making process for the application of a control measure such
as vaccination. More precisely, we consider an update of the probability of a farmer applying the
measure, that is based on self-obtained results, and on neighbours’ results.

In our model, farmer’s next decision is based on a neighbour regardless of what the neighbour
has decided in the previous step. This is not the case in similar models focused on human dis-
eases (Fu et al. 2010; Kuga et al. 2019; Wang et al. 2012), in which a person only considers other
people’s observations if they have taken the opposite decision. In particular, this allows to al-
ways decrease the odds of a farmer vaccinating if both the farmer and his/her neighbour have
previously vaccinated. Together with the use of the trade network as the information network
in our model, this can amplify the emergence of strategic behaviours, as the farmer can search to
benefit from the vaccination of one of their neighbours, while avoiding the cost of the vaccine.
The behaviour where individuals (consciously or not) benefit from the actions of others without
having to bear the cost, is known as free-riding, and has been previously addressed within vacci-
nation decision-making models for human diseases (Wang et al. 2016). In particular, Ibuka et al.
2014 shows it is possible that individuals will consciously free-ride when making vaccinating
decision.

Overall, our integrative model can be considered as an SIR model with pulsed vaccination (Choisy
et al. 2007) in a metapopulation (Terry 2010), but where the pulse vaccination is asynchronous
among sub-populations, and non equally spaced in time for each population, since the decision
to vaccinate is not made at each decision time by each farmer. Our formalization of the integra-
tive model is presented as general as possible so it can potentially be adapted to more complex
epidemiological models or to other decision-making mechanisms that may be more relevant for
specific contexts. Similar models have been previously proposed for human diseases (Fu et al.
2010; Kuga et al. 2019; Wang et al. 2012), yet none truly establishes the model in a generic man-
ner in order to facilitate its adaptation for other diseases, or control measures. Even if the eco-
nomic cost we propose is associated with vaccination and the consequences of an SIR model,
its basic structure could take into account the epidemiological and economic consequences of
other measures, for example a treatment that would increase the recovery rate of infected ani-
mals. In particular, if the epidemic model was aged-structured, the cost on which farmers base
their decisions could be refined to take into account the age of the animals. The real-life farmers
decision-making being undoubtedly complex, the decision model we propose is reductive. Yet it
provides a complete and adaptive framework with respect to state-of-the-art methods in veteri-
nary epidemiology. In the presence of detailed information on farmer’s real-life behaviour, our
model could be run with other parameter values, or it could be modified to stick closer to reality
if observations on farmers’ decisions denote a different decision-making process.

Among the methodological extensions to consider, we believe that the model could mostly ben-
efit from a relaxation of some hypotheses in the decision-making mechanism. First, we consider
that farmers perfectly observe the costs associated to their control decisions, as well as the de-
cisions and costs of their neighbours, which is not completely realistic. Actually, farmers may
observe costs with some error, or neighbours may not communicate their true actions or costs.
Second, we assume that the trade network is the information network through which farmers
share their observations. But farmers may be informed about other herds control practices in a
more aggregated way, or only from geographical neighbours. Furthermore, from an economic
point of view, in our decision-model we consider only the financial results of the farmer’s deci-
sion, which is in principle a good indicator of what interests him/her. We remark however that
farmers may have social, personal or environmental motivations for taking decisions related to
animal welfare (Hansson et al. 2015). For example, farmers may have a non-use value for their
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animals, that is, a value related to the animal well-being independently of the use the farmer may
make of the animal (Lagerkvist et al. 2011). Even if some refinement could be made in this direc-
tion, this does not seem straightforward from a mathematical modelling perspective. However,
our decision model can implicitly integrate this information through the values of the initial prob-
ability of vaccinating and the parameters κ and ρ. In addition, considering other types of farmers’
behaviour can be of interest in this context. For example, the adaptation of the exchange network
as a function of other farmers’ health state. This intervention is known as network rewiring (Kiss
et al. 2017), and is generally appropriate for regulated diseases for which there is aggregated in-
formation on the health status of each herd, i.e. neglecting the intra-herd epidemic dynamics.
Yet, even with this aggregated information, the adaptation of the network can be quite complex.
Lastly, an exploration on the emergence of collaborative behaviours (Cardillo et al. 2013; Karls-
son et al. 2020; Wang et al. 2017), in particular through network reciprocity (Nowak 2006), can be
an interesting perspective for a deeper understanding of the observed decision dynamics.

Regarding model’s predictions, simulations evidence the retroactive effect between the dynamics
of the epidemic spread, and the dynamics of the vaccination decisions. A deeper examination
of the model through sensitivity analysis confirms that decision-parameters play a role in the
model’s behaviour. Apart from the epidemic parameters, the time between two consecutive de-
cisions has the highest impact overall, and is the main driver in decision related outputs. Indeed,
the shorter the time between decisions, the more frequently farmers evaluate their information
on epidemic spread, and the fastest they start vaccinating if necessary. A constantly updated
local information on the disease spread regularly helps updating farmers’ vaccination decisions
from the beginning of the epidemic, and is therefore crucial for limiting the disease spread. This
is consistent with observations from models for human diseases, where health information can
produce the eradication of the disease if there is a rapid diffusion of this information and if in-
dividuals decide to act based on this information (Kiss et al. 2010). Furthermore, it has been
documented that the impact of locally spreading information is amplified if information and dis-
ease transmission networks overlap (Funk et al. 2009), as it is the case in our model. Finally,
an extension of the model where each farmer considers all of his/her neighbours decisions in
the decision-making process, evidenced small differences with respect to the model considering
only one neighbour per decision instant. In particular, when farmers have a small sensitivity
to costs, taking into account all of their neighbours seems to be slightly better in the short term
for controlling the epidemic diffusion, but not in the long term. When farmers have a very high
sensitivity to costs, considering all of their neighbours does not significantly change the course
of the epidemics with respect to the scenario where they consider only one neighbour.

Overall, we conclude that our model effectively integrates the dynamics of the decision process
regarding the voluntary adoption of a sanitary measure in each herd, and the dynamics of the
epidemic spread over a structured population of herds in a trade network. Hence, we make a
significant step towards accounting for human decision-making in mechanistic epidemiological
models, in particular for endemic animal diseases. Given its integrative structure, its flexibility
and stability in results, our model can be well adapted for simulation studies concerning specific
real-life diseases or other control measures.
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To control the spread of an infectious disease over a large network, the optimal allocation by a
social planner of a limited resource is a fundamental and difficult problem (section 4.1). We ad-
dress this problem for a livestock disease that propagates on an animal trade network according
to an epidemiological-demographic model based on animal demographics and trade data (sec-
tion 3.2.1). We assume that the resource is dynamically allocated following a certain score, up
to the limit of resource availability. We adapt a greedy approach to the metapopulation frame-
work, obtaining new scores that minimise approximations of two different objective functions
(sections 4.3.1, 4.5.1 and 4.7), for two control measures: vaccination and treatment (section 4.3).
Through intensive simulations, we compare the greedy scores with several heuristics (section
4.4). Although topology-based scores can limit the spread of the disease, information on herd
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health status seems crucial to eradicating the disease. In particular, greedy scores are among
the most effective in reducing disease prevalence, even though they do not always perform the
best (section 4.5.2). However, some scores may be preferred in real life because they are easier
to calculate or because they use a smaller amount of resources. The developed approach could
be adapted to other epidemiological models or to other control measures in the metapopulation
setting (detailed in section 4.6).

The modelling choices in this chapter were motivated by the state of the art in section 2.1.1.1.2,
section 2.1.1.1.4 and section 2.1.3.4, regarding epidemiological modelling, and in section 2.2.3 and
section 2.3, regarding centralised decision-making.

4.1 Introduction

Infectious disease spread is a problem that can have important social, sanitary, and economic
consequences. Like for human diseases, this is a major public health concern for animal dis-
eases, for guaranteeing animal welfare and food security (Tomley et al. 2009). In this context,
epidemiological models, together with other relevant mathematical approaches, can help in the
description and understanding of the mechanisms involved in the disease propagation, as well
as in assessing the effectiveness of control measures (Heesterbeek et al. 2015). An approach for
controlling a disease spreading on a population, from a social planner’s point of view, is the al-
location of a resource that has an effect on this spread (Preciado et al. 2013). Many questions
can arise in this context: how much resource is needed to restrain the disease propagation to a
certain level (Enayati et al. 2020; Holme et al. 2017; Tanner et al. 2008), when should it be allo-
cated (Thompson et al. 2018), and where. In this work we are interested in the third question.
More specifically, we are concerned with the problem of dynamically deciding where to allocate
a limited available resource in an optimal manner, in order to minimise disease spread on a large
animal metapopulation network.

On the one hand, most of the research addressing the issue of resource optimal allocation on a
large network (Lorch et al. 2018; Scaman et al. 2016; Wijayanto et al. 2019; Zhan et al. 2017; Zhang
et al. 2015) does not focus on metapopulation networks, i.e. does not account for infection-related
dynamics within each sub-population represented by a node of the network. Even more, works
relying on mean-field theory (e.g. Forster et al. 2007), do not consider structured populations, in
particular as a network.

On the other hand, the existing studies addressing the resource allocation problem on metapop-
ulation networks are based on techniques that lack of scability. For example, optimal control
(Lenhart et al. 2007) and reinforcement learning (Sutton et al. 2018), which would theoretically
give an optimal strategy, cannot be used in the context of very large networks due to the dimen-
sionality in the space state (Andriotis et al. 2019; Dvijotham et al. 2013). Even if we consider a
sub-population as healthy or infected (only two possible states per sub-population), a network
with J sub-populations would have 2J possible health states, which yields an asymptotically in-
tractable optimal allocation when the network is very large. Hence, authors that study resource
allocation on metapopulation networks generally build and evaluate their approach in a small
number of sub-populations, usually less than 50 (Bussell et al. 2019; Carli et al. 2020; Chernov et
al. 2020; Duijzer et al. 2018; Long et al. 2018; Matrajt et al. 2013; Mbah et al. 2011; Rao et al. 2021).
Recently, Lemaitre et al. 2021 proposed a framework built upon optimal control theory that is
able to deal with the dynamic allocation problem in a network of hundreds of sub-populations,
thanks to several simplifications, among which considering only a subset of edges for the op-
timisation. Yet, such a scale does not allow to capture the structural characteristics of complex
networks, such as the animal trade network we consider here. In particular, animal trade net-
works are in general scale-free (Rautureau et al. 2011) (most herds have few trading partners
while a few herds have many) and dynamic, as the amount of exchanged animals can vary over
time (Brooks-Pollock et al. 2015).

Finally, published studies assume the resource is in general distributed only once, before or at
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the beginning of an outbreak (e.g. Dangerfield et al. 2019; Rao et al. 2021). Therefore, the resource
allocation problem is static. However, the allocation problem can be intrinsically dynamic if it
is studied in the long run. For example, if the available resource is a vaccine, these can have a
limited effect in time, so there is need for several vaccination campaigns.

Given the intractability of the optimal strategy, in this work we restrict ourselves to score-based
strategies, i.e. strategies that consist in allocating the resource according to a scoring function (or
indicator), up to the limit given by the available quantity of the resource. Furthermore, given the
practical importance of dynamical aspects of the allocation problem, we include this view in the
present study, i.e. we assume the resource allocation is dynamic.

The contribution of this work is twofold. First, from a methodological perspective, by adapt-
ing the greedy approach in Scaman et al. 2015, we obtain analytic scores for controlling dis-
ease spread on a large animal trade network, where the disease propagation is represented by a
stochastic SIR model that accounts for demography and trade (model introduced in section 3.2.1).
The approach consists in finding the scoring function that minimises a short-term approximation
of a given objective function (sections 4.2, 4.3.1 and 4.5.1). Our generalisation is mainly driven
by the metapopulation framework, which implies that a herd is not only infected or healthy, but
that it has an internal infection and demographic dynamics. In particular, this allows for the pos-
sibility of needing different amounts of resources for different herds. Furthermore, we extend
this approach for two different types of resources (vaccination and treatment) and two different
objective functions (the number of infected animals and the number of infected herds). Second,
regarding real-life disease control for livestock diseases, in section 4.5.2 we evaluate the perfor-
mances of the analytically obtained strategies along with the one of several heuristic strategies
(introduced in section 4.3.2) that can be relevant for this context. Finally, in section 4.6 we extend
the interpretation of the analytically found scores and discuss their suitability in a metapopula-
tion context in the light of simulation-based results. We also consider several perspectives, either
based on the development of other greedy scores or on new simulation studies that could use the
explorations performed in this work.

4.2 Dynamic resource allocation in the metapopulation
framework

We supposed that there is a central social planner seeking to minimise the disease propagation
on the animal trade metapopulation network detailed in section 3.2.1, by distributing a limited
amount of a resource among the herds in the network, dynamically with a given decision time-
step. This dynamic resource allocation problem was formulated as:

min
A
F (A) subject to

J∑

j=1

bj(t)Aj(t) ≤ bfix, ∀t = ∆d, 2∆d, ... (4.1)

F (A) in equation 4.1 is the function that the planner has to minimise, which depends on the
allocation strategy A, i.e. the function that determines the decisions Aj(t),∀j = 1, ..., J, ∀t =
∆d, 2∆d, ..., where j denotes the herd, and ∆d is the decision time-step. We assumed binary
allocation decisions for each herd, i.e. Aj(t) = 1 if the resource is allocated to herd j at time
t, Aj(t) = 0 otherwise. In the condition of equation 4.1, bfix is the quantity of resource that is
available at each decision time and bj(t) is the quantity of the resource that would be needed for
herd j at time t if this herd was selected for the allocation.

We supposed that the resource to allocate could either be a vaccine or a treatment. For the vaccine,
we assumed that if applied to a susceptible animal at time t, the disease transmission rate towards
this susceptible becomes βv = β(1 − ev) during the period ]t; t + ∆d], where 0 ≤ ev ≤ 1 is the
protective efficacy of the vaccine. That is, ∆d is also the duration of the vaccine’s efficacy. We
underline that even if all susceptible animals in herd j are vaccinated at time t, infections can
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occur within j from time t to t + ∆d if new susceptible animals enter the herd, through births
or imports of susceptible animals from other herds. For the treatment, we supposed it increases
the recovery rate of treated infected animals by an additional factor γ′, i.e. reducing the mean
duration of the infectious period for these animals to (γ + γ′)−1.

Regarding the resource constraint, for vaccination we assumed it concerned the number of avail-
able doses, and if a herd j was selected at time t all the animals in the herd would be vaccinated.
So in the condition in equation 4.1, bj(t) = Nj(t) (the size of herd j at time t). For the treatment,
the resource constraint was on the number of herds in which animals were treated at each deci-
sion time, so bj(t) = 1. The choice to consider that the constraint for the treatment involves the
number of herds was mainly motivated by analytical considerations discussed in section 4.3.1.

4.3 Score-based strategies

Score-based strategies consist in ordering herds according to a certain scoring function Ξ and
selecting the top herds, up to the limit given by the condition in equation 4.1. Let ΩΞ(t) be the
set that contains the selected herds according to Ξ(t) (the score values at time t) and bfix (the
available quantity of resource per decision time-step). Then, Aj(t) = 1 if j ∈ ΩΞ(t), 0 other-
wise. Figure 4.1 represents the modelling and optimisation framework of the dynamic resource
allocation of vaccines under a score-based strategy. The treatment allocation differs only in the
infection and demographic dynamics component, and in the control measure component. That
is, for any herd j, there is an additional compartment Tj for treated infected animals, where an-
imals go from Ij to Tj at decision time t, if Aj(t) = 1. Unlike vaccination, the transition from Tj
to Ij is not possible even if Aj(t) = 0, i.e. treated individuals can only recover.

Regarding the scoring function, it can either be optimised or heuristic. In the following we ad-
dress the two possibilities.

4.3.1 Greedy scores

First, following the approach in Scaman et al. 2015 we searched for optimised scoring functions.
This approach consists in finding a scoring function that minimises a short-term approximation
of the objective function:

F (A) :=

∫ ∞

0

e−at E[JAI (t)]dt,

where JAI (t) is a function of the infection-related state of the network at time t. The objective
establishes an infinite time horizon, and a parameter a ≥ 0 which reduces the long term impact
of JAI (t). This means that the larger a, the more we are interested in the short-term behaviour
of the infection dynamics, i.e. the more weight we put on the initial stochasticity of the disease
diffusion.

Let us note X(t) the infection-related state of the network at time t. In the SIR metapopulation
framework, X(t) is a J × 3 matrix where each row j ∈ {1, ..., J} contains the values of Sj(t), Ij(t)
and Rj(t) at time t. Since the allocation strategy has no impact on the initial state, and since the
process is Markovian, the minimisation problem (equation 4.1) is equivalent to:

min
A

∫ ∞

u=0

e−au E
[
JAI (t+ u)

∣∣X(t) = X
]
du, (4.2)

for all decision times t and for all network possible statesX , under the same constrain as in equa-
tion 4.1.
Then, focusing on the short-term behaviour of the system, it is possible to obtain an approxima-
tion of the objective function, which is based on a Taylor expansion of E

[
JAI (t+ u)

∣∣X(t) = X
]
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Figure 4.1: Representation of the modelling and optimisation framework of the score-based dynamic re-
source allocation under constraint, applied to a metapopulation and vaccine allocation. See main text in
sections 3.2.1 and 4.2 for parameter definitions.

for a small value of u. Finally, one must find the scoring function that minimises the obtained
approximation. This approach is therefore called greedy, as it yields locally (i.e. short-term) op-
timal allocation decisions. We stress that the form of the scoring function will not depend on the
parameter a in equation 4.2, i.e. we do not need to fix a value for this parameter when exhibiting
the scoring function. Yet, the higher is a, the lower is the impact of the approximation accuracy.
See section 4.7 for more details on the approach.

We adapted this greedy approach to the metapopulation framework by considering, for each of
the two types of resource (vaccination and treatment), the minimisation of two different objective
functions in equation 4.2. A function on the number of infected animals:

JAI (t) =

J∑

j=1

Ij(t), (4.3)

and a function on the number of infected herds:

JAI (t) =

J∑

j=1

1Ij(t)>0. (4.4)

That is, we treated four different cases, depending on the type of resource (vaccine or treatment)
and the objective to be minimised: the number of infected animals (equation 4.3) or the number
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of infected herds (equation 4.4). In particular, the derivation of the score for the allocation of a
treatment under the objective of equation 4.4 required to consider that the resource constraint of
equation 4.1 was expressed in terms of the number of attainable herds (bj(t) = 1). This allowed
the total number of treated herds to be formulated as the minimum between bfix and the number
of herds that have exactly one infected animal (see section 4.7.2.1 for details).

4.3.2 Heuristic scores

In addition, we considered three types of heuristic scores based on: the topology of the static ag-
gregated network; the demographic changes in the network; the dynamic infection-related state
of the network. Table 4.1 contains the list of the 16 heuristic scoring functions we tested for the
metapopulation framework: 5 topological ones (in-strength, out-strength, closeness, between-
ness, pagerank), 5 demographic ones (Nj(t), purchasesj(0, t), purchasesj(t − ∆d, t), salesj(0, t),
salesj(t −∆d, t)), 5 epidemiological ones (sj(t), ij(t), rj(t), ij(t −∆d, t), rj(t −∆d, t)), and a ran-
dom scoring function. All the topological scoring functions are classical centrality measures in
networks (Newman 2018).

4.4 Simulation setting and numerical explorations

The simulation setting was described in detail in section 3.3.1 of chapter 3. The metapopula-
tion structure was set close to real data, extracted from the French Cattle Identification Database
(FCID): animal movements correspond to the Finistère administrative area in Western France,
which is densely populated with cattle. The trade parameters (θji,∀j, i = 1, ..., J) underlying the
network structure were set to values based on this data. It is scale-free and consists of J = 5000
herds.

Without loss of generality, the values of demographic and epidemiological parameters were set to
the same value for all herds. In particular, death and birth rates were τj = τ, µj = µ,∀j = 1, ..., J ,
where τ = 0.0009 days−1 and µ = 2τ . So, based on field reality, animals have a mean life time
of approximately three years, and on average an animal gives birth to a calf every 1.5 years. As
herd sizes could vary not only through births and deaths, but also through animal movements,
we established a constraint on the capacity of each herd, Nj(t) ≤ 1.5Nj(0), so that these remain
relatively stable over time. Figure 3.3b in chapter 3 shows the final herd sizes distribution for a
run of the epidemiological-demographic model (without resource allocation) on the simulated
trade network. Regarding the epidemiological parameters, we set βj = β,∀j = 1, ..., J , and
considered a disease with moderate immediate impact and long-lasting development (β/γ = 2
and 1/γ = 90 days). A second numerical setting, corresponding to a disease with higher early
peak and smaller infection duration (β/γ = 4, 1/γ = 30 days), was also explored. Finally, for
the available resource, we assumed it could either be a perfectly effective protective vaccine,
i.e. ev = 1, or a treatment that greatly reduces the infectious period of infected animals (but
which is not perfect in order to avoid instantaneous recovery, an unrealistic assumption). More
specifically, the duration of the infectious period with treatment was assumed to be 3% of the
duration without treatment, i.e. the mean duration of the infectious period for a treated infected
animal is (γ + γ′)−1 = 0.03(1/γ) = 2.7 days.

The simulation code is available at github.com/CristanchoLina/DRAAnimalMetapop.

4.4.1 Setting for the exploration of infection-related dynamics with score-
based resource allocation

Given these parameter values, we simulated the infection-related dynamics of the metapopula-
tion during 3 years in 74 (= ([16+3]+[16+2])×2) cases characterised by the type of resource, the
score according to which it is allocated (16 × 3 for vaccination and 16 × 2 for treatment) and the

https://github.com/CristanchoLina/DRAAnimalMetapop
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Scoring function for herd j Description

in-strengthj weighted in-degree, i.e. the sum of the weights of all edges
going to j. Weights≡ daily mean trade rates. Measures how
much j purchases from other herds.

out-strengthj weighted out-degree, i.e. the sum of the weights of all edges
going from j. Weights ≡ daily mean trade rates. Measures
how much j sells to other herds.

To
po

lo
gi

ca
l closenessj inverse of the sum of distances to other herds, based on the

weighted shortest paths going from/to j. Weights ≡ daily
mean trade rates. Measures how ’close’ j is to other herds.

betweennessj ratio of the weighted shortest paths that pass through j over
all such paths in the network. Weights ≡ daily mean trade
rates. Measures the influence of j on the animal exchanges
of the network.

pagerankj stationary density of a discrete-time random walk. Weights
≡ daily mean trade rates. Measures the accessibility to j.

D
em

og
ra

ph
ic Nj(t) current herd size.

purchasesj(0, t)
}

number of animals bought by j over the period ]0, t]
and ]t−∆d, t], respectively.purchasesj(t−∆d, t)

salesj(0, t)
}

number of animals sold by j over the period ]0, t]
and ]t−∆d, t], respectively.salesj(t−∆d, t)

sj(t) current proportion of susceptible animals in j: Sj(t)
Nj(t)

.

Ep
id

em
io

lo
gi

ca
l

ij(t) current proportion of infected animals in j: Ij(t)
Nj(t)

.

rj(t) current proportion of recovered animals in j: Rj(t)
Nj(t)

.

ij(t−∆d, t) increment of the proportion of infected animals in j between
times t−∆d and t: Ij(t)

Nj(t)
− Ij(t−∆d)

Nj(t−∆d)
.

rj(t−∆d, t) increment of the proportion of recovered animals in j be-
tween times t−∆d and t: Rj(t)

Nj(t)
− Rj(t−∆d)

Nj(t−∆d)
.

randomj(t) assigns a random score for j at each decision time t.

Table 4.1: Heuristic scoring functions for herd j at time t. Dependence on t means the score is dynamic in
time, otherwise it is static.

scenario. This last one can be: an epidemic scenario, where initially 10% of the herds (chosen com-
pletely at random) had a random subset of 15% of their animals infected; or an endemic scenario,
where the initial state was given by the state at roughly 3 years (1080 days) without resource al-
location departing from the epidemic scenario. Indeed, figure 3.12 in chapter 3 shows that if the
simulations are extended beyond 3 years, the total proportion of infected animals remains rather
stable, and that there is only a 10% reduction in the proportion of infected herds between levels
attained at 3 and 9 years. Hence, although the infection dynamics after 3 years of simulation
did not reach a steady state state rigorously speaking, this date was chosen as the initial point
of the endemic scenario. Indeed, on the one hand, at this date the pathogen had widely spread
in the metapopulation (see figure 3.12 in chapter 3), and on the other hand, considering 3 years
limits the simulation cost. In each case, we explored the dynamics of the proportion of infected
herds and of the total number of infected animals for a fixed value of the available quantity of
resource, bfix. The values of bfix and ∆d parameters can be found in table 4.2. We supposed vac-
cination decisions were more spaced in time since vaccines have a preventive nature and tend to



86 CHAPTER 4. DYNAMIC RESOURCE ALLOCATION

have long-lasting effect. Meanwhile, we supposed that treatment decisions were more frequent
as they are more prone to being applied in a critic situation.

Resource Parameter Definition Values
Vaccine bfix number of available doses at

each decision time (as a % of the
initial total number of animals).

(25%×∑J
j=1Nj(0))

1 and
([5%− 90%]×∑J

j=1Nj(0))
2

∆d decision step (in days). 180
Treatment bfix number of attainable herds at each

decision time.
251 and [5 - 100] 3

∆d decision step (in days). 15

Table 4.2: Parameter values in the allocation problem depending on the type of resource. 1Values for
infection-related dynamics explorations. 2 Values for percolation analysis of vaccination. From 5% to 30%:
by 0.5%. From 40% to 90%: by 10%. 3 Values for percolation analysis of treatment. From 5 to 75: by 5. From
80 to 100: by 10.

We stress that in all simulations for the vaccine allocation, only herds with at least one susceptible
animal were eligible, and that the treatment allocation only considered herds with at least one
infected animal.

Furthermore, we evaluated how other quantities of interest, raw proxies of ‘costs’, varied with
the chosen scoring function and the amount of available resource. We stress that the quantity
of resource that is actually used may be less than the available quantity (bfix). For vaccination,
we explored the mean proportion of wasted doses over time, i.e. the total number of vaccine
doses allocated to infected or recovered animals, out of the number of available doses. For the
treatment, where we assumed that only infected animals were treated, we evaluated the mean
number of used doses over time, and we explored the mean size of the target population, i.e. the
total number of animals in treated herds.

4.4.2 Setting for percolation analysis

We performed percolation experiments Li et al. 2021; Stauffer et al. 2018 by assessing the final
(after 3 years) proportion of infected herds when the allocation was done using a given scoring
function, and a fixed quantity of resource. We also included in this analysis an exploration of
the raw proxies of costs. The range of values tested for bfix (cf. table 4.2) was chosen so as to
exacerbate differences in the infection-related dynamics by scoring function. The objective was to
analyse the dependence of the relative performances of the scoring functions on limiting disease
spread with respect to the available quantity of the resource. To avoid increasing computation
time, we chose to run the percolation analysis only for a subset of scoring functions. This subset
was determined from the results of the complete exploration setting described in section 4.4.1.

Finally, we investigated the sensibility of the infection-related results of percolation analysis to
the value of the vaccine efficacy ev . More specifically, we evaluated through simulations two
cases where vaccine efficacy is not perfect: ev = 0.9 and ev = 0.7. Lower values for ev were
not considered, since it is very unlikely that a vaccine for a livestock disease with an efficacy
below 0.7 is even considered in the field, as its implementation could induce greater economic
costs than epidemiological benefits. With each of these values we ran the percolation analysis
described above, for three values of the available number of doses: [25%, 40%, 70%] of the initial
total number of animals in the metapopulation.
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4.5 Results

4.5.1 Greedy scoring functions

We obtained four different analytic scoring functions by considering the minimisation problem in
equation 4.2 for each resource and for each objective with the greedy approach. The scoring func-
tions for an objective on the number of infected herds (greedyV_infherds and greedyT_infherds)
were obtained through a second-order Taylor expansion, while the other two scoring functions
(greedyV_infanimals and greedyT_infanimals) were obtained using a first-order approximation.
Details on how the greedy scoring functions were computed in each case can be found as an
appendix in section 4.7.

As mentioned in the previous section, the values of βj , τj , µj were set equal for all herds in our
simulations, so we present in table 4.3 the scores in this setting. The greedy scoring functions
found for the generic framework, where these values can be different across herds, can be found
in table 4.4. In simulations, five scoring functions (directly or indirectly issued from the greedy
approach) were used. Table 4.3 includes in total six scoring functions: the four obtained by op-
timisation, an additional scoring function for vaccination (greedyV_infherds_threshold) and the
scoring function greedyT_infherds_threshold for the treatment, which replaced greedyT_infherds
in our simulations.

Resource JAI (t) Scoring function for herd j Scoring function name
Vaccine inf. animals (eq. 4.3) Ij(t)

Nj(t)
Sj(t) greedyV_infanimals

inf. herds (eq. 4.4) Ij(t)
Nj(t)

Sj(t)
(
1Ij(t)=1(γ + τ +

∑J
i ̸=j θji) +

∑J
i ̸=j θji1Ii(t)=0

)
greedyV_infherds

inf. herds (eq. 4.4) Ij(t)
Nj(t)

Sj(t)
(
10<Ij(t)<20(γ + τ +

∑J
i ̸=j θji) +

∑J
i ̸=j θji1Ii(t)=0

)
greedyV_infherds_threshold

Treatment inf. animals (eq. 4.3) Ij(t) greedyT_infanimals

inf. herds (eq. 4.4)
[
−∑J

i̸=j θji1Ii(t)>0

]
j:Ij(t)=1

greedyT_infherds

inf. herds (eq. 4.4)
[
(−∑J

i ̸=j θji1Ii(t)>0)10<Ij(t)<20

]
greedyT_infherds_threshold

Table 4.3: Greedy scoring functions studied in the numerical explorations. All the greedy scores are dy-
namic.

To minimise the number of infected animals by distributing a vaccine, the greedyV_infanimals
scoring function privileges herds with a large within-herd incidence rate (βIj(t)Sj(t)/Nj(t)), i.e.
many infected animals and a large proportion of susceptible animals. For the treatment, with
greedyT_infanimals the allocation would be made only as a function of the number of infected
animals by herd (Ij(t)).

Regarding the minimisation of the number of infected herds, for vaccination it led to a scoring
function, greedyV_infherds, favouring two types of herds: either herds that have a large within-
herd incidence rate, and that send to many healthy herds (large

∑
i ̸=j θji1Ii(t)=0); or herds with

only one infected animal, also presenting a large proportion of susceptible animals and which
sell many animals (large

∑J
i ̸=j θji ). With the same objective for treatment, the greedyT_infherds

scoring function only concerns herds with exactly one infected animal, and among these, the
priority is on herds that send the smallest flows to infected buyers (small

∑J
i ̸=j θji1Ii(t)>0).

We remark that the minimisation of the function on the number of infected animals for vaccina-
tion and treatment led to scoring functions that only depend on the epidemiological state of herd
j, but not on the states of other herds, and in particular not on the topology of the network. This
is due to the use of a first-order Taylor development for approximating the objective function
(see sections 4.7.1.2 and 4.7.2.2 for details).

The two additional scoring functions considered on the basis of the analytically obtained scores
were built in the following way.
For vaccination, the additional scoring function greedyV_infherds_threshold consists in replac-
ing 1Ij(t)=1 by 10<Ij(t)<20 in greedyV_infherds. This intends to avoid that the first term of the
sum in the scoring function becomes 0 for herds that have few infected animals but not neces-
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sarily just one. Similarly, for the treatment, we replaced greedyT_infherds by a scoring function
with a softer condition on the number of infected animals. The condition in greedyT_infherds
on having exactly one infected animal for a herd to be eligible appeared to be too restrictive.
Indeed, if the quantity of available treatment exceeded the number of herds that satisfy this con-
dition, the rest of the treatment would not be allocated to any herd. Yet, allocating the exceeding
treatment to herds with more than one infected animal could only be beneficial for limiting dis-
ease spread and would satisfy the constraint on the quantity of available treatment. Hence, the
greedyT_infherds_threshold scoring function considers all herds that are potentially eligible with
a non-negligible probability, yet favours herds that have few infected animals (10<Ij(t)<20).

4.5.2 Results of numerical explorations

4.5.2.1 Infection-related dynamics following score-based resource allocation

Figure 4.2 presents the results for the dynamics of the proportion of infected herds, under the
setting described in section 4.4.1 for a subset of the scoring functions. In particular, since the
results for the topological scores were very similar, we present only the results of the pagerankj
score. This is also the case for demographic scores, so we chose the sales over the decision pe-
riod, salesj(t −∆d, t), as the representative score for this group. For the epidemiological scores,
we present only the results for the best performing score, ij(t). In addition, we included as the
best and worst reference cases, results for cases where there is sufficient resource for all herds
(full_budget), and where there is no resource to allocate (no_budget). Figure 4.3 presents the com-
plete results for cases by scenario (epidemic or endemic), type of available resource (vaccine or
treatment) and heuristic or greedy score according to which allocation is performed. We also
included in figure 4.3 results for the dynamics of the total number of infected animals, yet we
remark they were similar to the ones found for the proportion of infected herds.

One of the main remarks emerging from the analysis of figures 4.2 and 4.3, is that topological and
demographic scoring functions were the groups that performed less well for limiting the disease
spread, both for vaccination and for the treatment. This is in comparison with the group formed
by the scoring functions that take into account the health statuses of the herds, i.e. the greedy
scoring functions, and the best performing epidemiological functions, in particular ij(t).

Furthermore, figure 4.3 shows that for vaccination, the scoring function sj(t) (the proportion of
susceptible animals) performed the worst for allocating the available quantity of vaccines (equal
to 25% of the initial number of animals in the metapopulation) in both scenarios. The group
of topological scoring functions performed better than the random scoring function in the epi-
demic scenario, but was not very different from it in the endemic scenario. Demographic scoring
functions performed in general better than the topological ones, in particular salesj(0, t) and
salesj(t − ∆d, t). Apart from sj(t), the epidemiological scoring functions had a good perfor-
mance, except for the proportion of recovered animals (rj(t)) in the endemic scenario, where it
was just as good as the random score.

The second important remark (figure 4.2) is that the best performing scores were the proportion
of infected animals (ij(t)), and greedyV_infanimals. Figure 4.3 shows that this applies both for
reducing the total number of infected animals and the proportion of infected herds. They were
closely followed by greedyV_infherds_threshold in both scenarios. Meanwhile, greedyV_infherds
was not as good as these three, particularly in the endemic scenario.

Figures 4.2 and 4.3 also present results when the resource was a treatment and bfix was equal
to 25 herds. In particular, figure 4.3 shows that the epidemic scenario, sj(t) performed badly
when compared to the other scoring functions. Yet rj(t) arrived to perform worse at the end of
the three years in this scenario, and was the worst-performing scoring function in the endemic
scenario. Even more, these two scoring functions, the topological and demographic ones, and
the difference in the proportion of recovered animals (rj(t − ∆d, t)), all performed worse than
the random score in both scenarios. Regarding the other scoring functions, greedyT_infanimals
(allocating according to the number of infected animals by herd, Ij(t)) had the best performance
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Figure 3: Disease-spread dynamics (proportion of infected herds) under resource allocation based
on different scoring functions. Epidemic (left) and endemic (right) scenarios, for vaccination (a
and b) and treatment (c and d). In vaccination, the available number of doses was bfix = 25%

of the initial total number of animals in the metapopulation. In treatment, bfix = 25 herds, i.e.
the number of attainable herds at each decision time. Each colour represents the scoring function
according to which the allocation decisions were taken. Gray vertical lines represent allocation
times. Mean results over and 95 confidence bands over 50 runs.

which was followed by greedyT_infherds_soft. To sum up, for the treatment allocation, only the317

greedy scores and two epidemiological scores (ij(t) and ij(t−∆d, t))) performed better than318

the random score, in particular greedyT_infanimals was the only one that erradicated the disease319

within the 3 years.320

The dynamics of other quantities of interest in this setting can be found in figure S3 of the ESM.321

In particular, it is shown that the proportion of herds that were vaccinated with the given number322

of available doses varied according to the allocation scoring function. Indeed, the topological and323

demographic scoring functions led to vaccinating slightly less herds than the epidemiological and324

the greedy scores (excluding sj(t)). Meanwhile, sj(t) led to the highest proportion of vaccinated325

herds and did not waste any doses, i.e. only vaccinated herds without infected or recovered326

animals, while rj(t) wasted the highest proportion of available doses. For the treatment, the327

topological and demographic scoring functions led to the smallest number of used doses and328

to the highest size of target population, contrary to the epidemiological and greedy scores.329

Finally, figure S4 of the ESM shows the relationship between allocation decisions among330

different scoring functions at a given decision time. Both for vaccination and treatment, decisions331

according to the topological and demographic indicators were very similar according to the332

Jaccard index [34]. For vaccination, decisions according to epidemiological and greedy scoring333

functions were similar at the first decision time (6 months), yet this similarity diminished over334

time. Regarding decisions through time for a given scoring function (figure S5 in the ESM),335

Figure 4.2: Dynamics of infection spread (proportion of infected herds) under resource allocation based
on different scoring functions. Epidemic (left) and endemic (right) scenarios, for vaccination (a and b)
and treatment (c and d). no_budget (red) represents the case where there is no resource allocated, and
full_budget (grey) the case where the resource is not limited. For other curves, each colour represents
the scoring function according to which the allocation decisions were taken: random (black), topological
(green), demographic (purple), epidemiological (orange), and greedy scoring functions (blue tones). For
vaccination, the amount of available doses by decision time was bfix = 25% of the initial total number
of animals in the metapopulation. For treatment, the number of attainable herds by decision time was
bfix = 25 herds. Gray vertical lines represent resource allocation times. Mean results and 95 confidence
bands over 50 runs.

in both scenarios. It was followed by the score ij(t), i.e. the proportion of infected animals by
herd, though this last one did not manage to eradicate the disease before the 3 years. The next
best performance was given by ij(t−∆d, t), which was followed by greedyT_infherds_threshold.
To sum up, for the treatment allocation, only the greedy scores and two epidemiological scores
(ij(t) and ij(t−∆d, t))) performed better than the random score. In particular greedyT_infanimals
was the only one that eradicated the disease within the 3 years (figure 4.2).

The dynamics of raw proxies of costs can be found in figure 4.4. In particular, it is shown that
the proportion of herds that were vaccinated varied according to the allocation scoring function.
Indeed, topological and demographic scoring functions led to vaccinating slightly less herds
than the epidemiological and the greedy scores (excluding sj(t)). Unsurprisingly, sj(t) led to the
highest proportion of vaccinated herds and did not waste any doses, i.e. only vaccinated herds
without infected or recovered animals, while rj(t) wasted the highest proportion of available
doses. For the treatment, the topological and demographic scoring functions led to the smallest
number of used doses and to the highest size of target population, contrary to the epidemiological
and greedy scores.
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Figure 4.3: Dynamics of infection spread (proportion of infected herds and total number of infected ani-
mals) under resource allocation based on different scoring functions (when β/γ = 2, 1/γ = 90.). Epidemic
(left) and endemic (right) scenarios. Each colour represents the scoring function according to which the
allocation decisions were taken: random (black), topological (green tones), demographic (purple tones),
epidemiological (orange tones), and greedy scoring functions (blue tones). For vaccination (a), the available
doses by decision time was bfix = 25% of the initial total number of animals in the metapopulation. For
treatment (b), the number of attainable herds by decision time was bfix = 25 herds. Gray vertical lines
represent resource allocation times. Mean results over 50 runs.
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Figure 4.4: Exploration of the resource allocation by scoring function (when β/γ = 2, 1/γ = 90). Epidemic
(left) and endemic (right) scenarios. Each colour represents the scoring function according to which the
allocation decisions were taken: random (black), topological (green tones), demographic (purple tones),
epidemiological (orange tones), and greedy scoring functions (blue tones). For vaccination (a), mean over
runs for the proportion of vaccinated herds and wasted doses through time, when bfix = 25% of the initial
number of animals in the metapopulation. For treatment (b), mean over runs for the number of used doses
and size of the target population through time, when bfix = 25 herds. Gray vertical lines represent resource
allocation times. Coloured vertical bars represent the variation between the 5th and the 95th percentiles
over runs. Results for 50 runs.
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The Jaccard index (Levandowsky et al. 1971) measures similarity between two sets as the size of
the intersection divided by the size of the union of the sets. It ranges between 0 and 1. If it is
close to 1, the two sets are similar. If close to 0 they are not. Figure 4.5 shows the relationship
between allocation decisions among different scoring functions at a given decision time. Both for
vaccination and treatment, decisions according to the topological and demographic indicators
were very similar (in terms of targeted herds) according to the Jaccard index. For vaccination,
decisions according to epidemiological and greedy scoring functions were similar at the first
decision time (6 months), yet this similarity diminished over time.

In figure 4.6 we measure similarity for different scoring functions between decisions taken over
time according to the given scoring function, i.e. how much the allocation decisions taken accord-
ing to a fixed scoring function are similar over decision times. Regarding decisions through time
for a given scoring function, topological functions tended to allocate the resource to the same
herds over time. This was also the case for demographic functions, except for the sales scoring
functions in vaccination, for which the first decisions were less and less similar to decisions at
the following decision times. On the contrary, for sj(t) the similarity between consecutive vac-
cination decisions seemed to increase over time. And for each of the other epidemiological and
greedy scoring functions, vaccination decisions were in general less similar over time. Treatment
decisions according to each epidemiological and greedy scoring function were very different over
time as long as the disease was not eradicated, except for decisions according to rj(t).
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Figure 4.5: Jaccard index of similarity at different decision times between decisions taken according to
each pair of scoring functions when β/γ = 2, 1/γ = 90. Results for one run (for illustrative purposes)
of the epidemic scenario. For (a) vaccination with bfix = 25% of the initial number of animals in the
metapopulation, and (b) treatment with bfix = 25 herds. The colour scale is the same for all sub-panels
(centered at 0.5).
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Figure 4.6: Jaccard index of similarity for different scoring functions between decisions taken over time
according to the given scoring function when β/γ = 2, 1/γ = 90. Results for for one run (for illustrative
purposes) of the epidemic scenario. For (a) vaccination with bfix = 25% of the initial number of animals in
the metapopulation, and (b) treatment with bfix = 25 herds. The colour scale is the same for all sub-panels
(centered at 0.5).
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4.5.2.2 Percolation analysis results

Figure 4.7 shows results of the percolation analysis in the endemic scenario for each type of
resource, using a selected subset of scoring functions. Results in the epidemic scenario can be
found in figure 4.8. We ran this analysis using all the epidemiological and greedy scores, since the
infection-related dynamics results in section 4.5.2.1 were quite different for the scores within each
of these groups. In contrast, because the results for the topological scores were very similar, as
were the results of the demographic scores, we considered only one of each type: salesj(t−∆d, t)
for the demographic scoring functions and pagerankj for the topological scores. This figure (also
figure 4.7) confirms the main observations made in section 4.5.2.1: certainly, the best-performing
scoring-functions for reducing disease prevalence, for almost every quantity of resource that we
tested, were the greedy scores along with some epidemiological scores.

For vaccination, figure 4.7(a) shows that when the proportion of vaccinated herds was at least 0.10
of the initial number of animals in the metapopulation, the scoring functions that led to the low-
est final proportion of infected herds were greedyV_inf_animals, greedyV_infherds_threshold
and ij(t). They were followed by the greedyV_infherds scoring function. The topological and
demographic scoring functions pagerankj and salesj(t − ∆d, t) were just as good as the greedy
scores only when the available quantity of resource was very low (particularly when the pro-
portion of vaccinated herds was less than 0.05), but did not perform well as this proportion was
higher. The rj(t −∆d, t) and ij(t −∆d, t) scoring functions had a bad performance for such low
levels of vaccinated herds, performed better for medium levels of vaccination, and performed
worse when the proportion of vaccinated herds was higher than 0.2. In particular, ij(t − ∆d, t)
was better than greedyV_infherds when the proportion of vaccinated herds was less than 0.2.
On the contrary, as the proportion of vaccinated herds was higher, rj(t) performs better. Indeed,
when less than 25% of herds were vaccinated, it was just as bad as the random scoring function,
which was the second worse score after sj(t). But for a proportion of vaccinated herds higher
than 0.45, its performance was close to the one of the best-performing greedy scores. Even when
this proportion was more than 0.6, only rj(t) , ij(t) and the greedy scores arrived to eradicate the
disease.

Regarding the mean proportion of wasted doses (over time and over runs), it was surprisingly
almost zero when the vaccine allocation was done using sj(t) as criterion, irrespective of the
proportion of vaccinated herds. The other scoring functions led to quite similar levels of wasted
doses, except for rj(t) and rj(t − ∆d, t), which led to the highest proportion of wasted doses,
particularly when the proportion of vaccinated herds was lower than 0.15.

In figure 4.7(b), we observe that when the resource to allocate was a treatment, greedyT_infanimals
managed to eradicate the disease when it was possible to treat at least 25 herds per decision time-
step, i.e. 0.5% of the total number of herds. As for ij(t), it could eradicate the disease when this
percentage was higher than 0.6%, and ij(t − ∆d, t) when it was at least 0.7% herds. When bfix
was equal to 0.9% of the total number of herds, greedyT_infherds_threshold, the random scoring
function and rj(t − ∆d, t) also eradicated the disease, in that order. The other epidemiological
scoring functions and the topological and demographic ones performed worse than the random
score for all values of bfix. In particular, salesj(t −∆d, t) only eradicated the disease if bfix was
higher than 1% of the total number of herds, sj(t) could only do it when this percentage was
higher than 1.2%, and the other two scoring functions (rj(t) and pagerankj) eradicated it when
it was possible to treat at least 1.3% and 1.4% of the total number of herds, respectively.

As for the number of used doses of treatment, they were in general lower for bad-performing
scoring functions, and higher for those that performed the best. The exception was rj(t), which
performed badly and led to a high number of used doses. When bfix was high, it used even more
doses in average than the best scoring functions for reducing disease prevalence.

Results in the epidemic scenario (figure 4.8) were quite similar. Yet, for the treatment, only
greedyT_infanimals, ij(t) and ij(t−∆d, t) were always better than the random score.
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Figure 4: Percolation experiments results in the endemic scenario. Each coloured line indicates
that the allocation was done according to the corresponding scoring function: : random (black), a
topological scoring function (green), a demographic one (purple), epidemiological ones (orange
tones), and greedy ones (blue tones). For (a) vaccination, final (at 3 years) mean (over runs)
proportion of infected herds as a function of the mean (over time and over runs) proportion of
vaccinated herds. Each point represents a value of bfix, and its size represents the mean (over time
and over runs) proportion of wasted doses. For (b) treatment, final (at 3 years) mean (over runs)
proportion of infected herds as a function of the proportion of attainable herds at each decision
time. Each point represents a value of bfix, and its size represents the mean (over time and over
runs) number of used doses. The inset shows the mean (over runs) extinction time with each
scoring function, for a restricted range of the quantity of resource. Results for 50 runs.

Figure 4.7: Percolation experiments results in the endemic scenario. Each colour represents the scoring
function according to which the allocation decisions were taken: random (black), topological (green), de-
mographic (purple), epidemiological (orange tones), and greedy scoring functions (blue tones). For (a)
vaccination, final (after 3 years) mean (over runs) proportion of infected herds as a function of the mean
(over time and over runs) proportion of vaccinated herds. Each point corresponds to a value of bfix, and
its size represents the mean (over time and over runs) proportion of wasted doses. For (b) treatment, final
(after 3 years) mean (over runs) proportion of infected herds as a function of the proportion of attainable
herds at each decision time. Each point corresponds to a value of bfix, and its size represents the mean (over
time and over runs) number of used doses. The inset shows the mean (over runs) extinction time with each
scoring function, for a restricted range of the proportion of attainable herds. Results for 50 runs.
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Figure 4.8: Percolation experiments results (when β/γ = 2, 1/γ = 90) in the epidemic scenario. Each colour
represents the scoring function according to which the allocation decisions were taken: random (black),
topological (green), demographic (purple), epidemiological (orange tones), and greedy scoring functions
(blue tones). For (a) vaccination, final (after 3 years) mean (over runs) proportion of infected herds as a
function of the mean (over time and over runs) proportion of vaccinated herds. Each point corresponds to a
value of bfix, and its size represents the mean (over time and over runs) proportion of wasted doses. For (b)
treatment, final (after 3 years) mean (over runs) proportion of infected herds as a function of the proportion
of attainable herds at each decision time. Each point corresponds to a value of bfix, and its size represents
the mean (over time and over runs) number of used doses. The inset shows the mean (over runs) extinction
time with each scoring function, for a restricted range of the proportion of attainable herds. Results for 50
runs.
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The greedyT_infherds_threshold indicator was better than the random score only when bfix was
less than 0.8% of the total number of herds. Additionally, figure 4.9 shows that the variability of
the percolation results were moderate between runs, with no or little overlapping 90% confidence
intervals.
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Figure 4.9: Variation due to intrinsic stochasticity of the model in the percolation experiments results when
β/γ = 2, 1/γ = 90. Epidemic (left) and endemic (right) scenarios. Each colour represents the scoring
function according to which the allocation decisions were taken: random (black), topological (green), de-
mographic (purple), epidemiological (orange tones), and greedy scoring functions (blue tones). For (a)
vaccination, final (after 3 years) mean (over runs) proportion of infected herds as a function of the mean
(over time and over runs) proportion of vaccinated herds. For (b) treatment, final (after 3 years) mean (over
runs) proportion of infected herds as a function of the proportion of attainable herds at each decision time.
Coloured vertical bars represent the variation between the 5th and the 95th percentiles over runs. Results
for 50 runs.

In addition, figure 4.10 shows that when vaccine efficacy is decreased, the loss of performance
is not the same for all scores. In particular, the scores that are not the best but perform rather
well (epidemiological scores and greedyV_infherds) are the ones for which performance is most
depreciated. This results in salesj(t − ∆d, t) performing better than ij(t − ∆d, t) when the av-
erage proportion of vaccinated herds was 55% and vaccine efficacy was 0.9 or less. Yet, despite
the overall loss in efficiency, two of the greedy scores and one epidemiological score (ij(t)) still
performed the best.

Finally, figures 4.11 and 4.12 show that a disease with higher early peak and smaller infection
duration (β/γ = 4, 1/γ = 30 days) spreads and fades out rapidly at the intra-herd level. At the
same time, recurrent outbreaks are observed which are likely due to reintroduction of infected
animals by trade. Figure 4.13 shows that, in such a case, allocating vaccines according to the
historic sales, in particular according to salesj(t − ∆d, t), was among the best strategies in both
the epidemic and endemic scenarios.
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Figure 4.10: Percolation experiments results (when β/γ = 2, 1/γ = 90) for vaccination in the epidemic
(a) and the endemic (b) scenario, with three values of vaccine efficacy. Each colour represents the scoring
function according to which the allocation decisions were taken: random (black), topological (green), de-
mographic (purple), epidemiological (orange tones), and greedy scoring functions (blue tones). Final (after
3 years) mean (over runs) proportion of infected herds as a function of the mean (over time and over runs)
proportion of vaccinated herds. Each point corresponds to a value of bfix. Results for 50 runs.
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Figure 4.11: Temporal epidemic dynamics over 9 years for two sets of epidemic parameters: β/γ = 2, 1/γ =
90, (left), and β/γ = 4, 1/γ = 30, (right). For each set, inter-herd prevalence (above), and intra-herd
prevalence for infected herds (below): mean and median, 5th and 95th percentiles over infected herds.
Results for one run for illustrative purposes.
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Figure 4.12: Proportion of infected animals by herd, for a subset of 36 herds infected at least once over
9 years, when (a) β/γ = 2, 1/γ = 90, and (b) β/γ = 4, 1/γ = 30. Results for one run (for illustrative
purposes).
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Figure 4.13: Percolation experiments results (when β/γ = 4, 1/γ = 30) for vaccination, with variation due
to intrinsic stochasticity of the model. Epidemic (left) and endemic (right) scenarios. Each colour represents
the scoring function according to which the allocation decisions were taken: random (black), topological
(green), demographic (purple), epidemiological (orange tones), and greedy scoring functions (blue tones).
Final (after 3 years) mean (over runs) proportion of infected herds as a function of the mean (over time and
over runs) proportion of vaccinated herds. Coloured vertical bars represent the variation between the 5th
and the 95th percentiles over runs. Results for 50 runs.

4.6 Discussion

To control an infectious disease that spreads in a metapopulation network, allocating a limited
resource is a fundamental yet difficult question, especially for large networks. In this study,
we considered this resource allocation problem for a livestock disease that spreads over a large
animal trade network, where the intra-herd infection and demographic dynamics was specified
as an SIR stochastic model taking into account animal movements and demography.

The problem of resource allocation in networks had been previously addressed from several
perspectives such as optimal control (Bussell et al. 2019) and reinforcement learning (Probert et al.
2019), but mostly for networks where each node is an individual (Wijayanto et al. 2019), or where
the network is rather small (Rowthorn et al. 2009). Yet, in the context of a very large network these
methods lack of scalability for tracking the optimal solution (Scaman et al. 2015). In this work, we
chose to concentrate on strategies based on scoring functions, heuristics and optimised, which
consist in ordering the nodes of the network according to their score and allocating the resource
to the top of the ranking, up to the limit given by the available resource.

First, following the greedy approach in Scaman et al. 2015, we provided new analytic scoring
functions for controlling the disease spread over the animal metapopulation network by op-
timising approximated objective functions. The scoring functions we derived depend on the
infection-related state of the herd, and some are also dependent on the topology of the metapop-
ulation network. They differ according to the objective of the control (minimising the number of
infected animals vs minimising the number of infected herds) and the type of available resource
(a protective vaccine or a treatment that reduces the infectious period). Meanwhile, most sim-
ilar existing approaches for other population structures derive strategies solely for distributing
a vaccine (Tanner et al. 2008; Zhan et al. 2017), or are concerned with only one objective to be
optimised (Forster et al. 2007; Wijayanto et al. 2019).

Through intensive simulations, we observed that these analytically obtained scoring functions
can be optimal for reducing disease prevalence in the metapopulation, though this is not always
the case. For example, even if greedyV_infanimals (the score for greedily minimising a function
on the total number of infected animals in the metapopulation) showed the greatest reduction
in disease prevalence through vaccination, allocating vaccines according to the proportion of
infected animals by herd, ij(t), can be just as good when the number of available vaccine doses
equalled 25% of the initial number of animals in the metapopulation (figure 4.2). Even more, we
observed that this was the case as long as the number of available doses was more than 15% of
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the initial number of animals in the metapopulation (figure 4.7(a)).

For the treatment, most of the scoring functions, in particular topological and demographic ones,
were counterproductive in the sense that they performed worse than randomly allocating the
resource among the infected herds (figures 4.2 and 4.7(b)). We explain this by the fact that in-
fected herds which were central in the network were not the most infected ones (in terms of
the proportion of infected animals). Indeed, figure 4.4 shows that the random allocation among
infected herds also targeted herds with many infected animals, while the scoring functions that
performed badly only targeted high sized infected herds but generally with few infected animals.

Furthermore, we noticed that irrespective of the resource type, the optimised scoring function for
an objective on the number of infected herds was outperformed by the optimised scoring func-
tion for an objective on the number of infected animals. Even if for vaccination, a slightly modi-
fied version of greedyV_infherds provided results almost as good as the ones of greedyV_infanimals
(figures 4.2 and 4.7(a)), this was not the case for the treatment. Indeed, the allocation imple-
mented using the greedyT_infanimals scoring function, i.e. the number of infected animals per
herd, yielded undoubtedly the best results (figures 4.2 and 4.7(b)). This is probably due to the
fact that the scoring functions for minimising an objective on the number of infected herds only
focus on the fast recovery of slightly infected herds (0 < Ij(t) < 20), for vaccination, or on
avoiding that completely healthy herds receive infectious animals (Ij(t) > 0), for the treatment.
Although this is the best way to have a small incremental number of infected herds from one
instant to another according to these scoring functions, it does not take into account new animal
infections which only occur at the intra-herd level once the herd is infected. Our interpretation
is that a scoring function obtained with the greedy approach (which consists in focusing on the
short-term behaviour of the objective function) performs better for limiting the disease spread if
the objective function it is built on directly captures the intra-herd aspect of the disease dynam-
ics. Hence, minimising a first-order approximation for an objective that directly concerns the
number of infected animals can provide more performing scoring functions than that obtained
by minimising a higher-order approximation for an objective that does not.

Numerical investigations also allowed to evidence that intra-herd health information can be cru-
cial for optimally controlling the disease spread of a slowly-spreading disease such as the one
considered in this work. In most combinations, given by the resource’s type and available quan-
tity, even if topology-based scoring functions managed to limit disease spread, scoring functions
based on the infection-related state of herds performed better (figures 4.7 and 4.8). This observa-
tion can give some light into why most control strategies implemented in real systems might fail
to eradicate livestock diseases in areas that lack this kind of information.

A final interesting remark is that the best scoring functions for reducing disease prevalence can
induce a higher number of wasted vaccine doses or a higher number of used treatment doses
compared to other scores that performed less well for controlling the disease spread (figures 4.7,
4.8 and 4.9). However, for vaccination, they are not necessarily those that vaccinate the highest
proportion of herds.

To our knowledge, our work is one of the few studies that explores dynamic resource allocation
in a metapopulation network, for many allocation scoring functions (16 heuristics and at least 2
optimised scores by measure) while varying the available quantity of the resource in two differ-
ent scenarios. Despite the fact that the performances of the scores could have been different if the
network had been static or not scale-free, score-based resource allocation can be a relevant ap-
proach for controlling pathogen spread in other cases, as the complexity of the problem is mainly
due to the large dimension of the network. Furthermore, we stress that the scores we found by
optimisation using the greedy approach are the same irrespective of the network topology as
they are based on fixed trade parameters representing the static aggregated network. Indeed,
they are built on a static view of the network, irrespective if it is actually static or dynamic (as it
is in our study). We believe it would be possible to use the same approach to obtain optimised
scores that take into account the dynamic nature of the network, i.e. scores that are function of
time-dependent trade parameters, although this requires a new formal analysis. Of course, these
new scores could be of a different form than the ones we found and hence their performance
might also be different.
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We assessed the robustness of the results regarding vaccine allocation by considering realistic
values for the vaccine efficacy. This showed a limited impact on the relative performance of the
different scoring functions (figure 4.10). We note that although, in reality, vaccines are rarely
perfect effective, and also take some time to be effective, it did not seem straightforward to de-
termine an appropriate time frame for the vaccine to have an effect. More importantly, it seems
unlikely that a slight delay in the effect of the vaccine would have a significant impact on our
results, given that we were considering a pathogen that spreads rather slowly.

Regarding the limitations of our work, we emphasise that in the context of a fast-spreading
pathogen, the current framework is not really appropriate. In such a case, other decision fac-
tors should be taken into account. For example, if the disease is zoonotic or has a strong eco-
nomic impact, the social planner may consider more radical options, such as mass culling. In
this case, the question of resource allocation thus becomes irrelevant. In particular, we showed
that for a disease with higher early peak and shorter infection duration (β/γ = 4, 1/γ = 30 days)
an intra-herd epidemic extinguishes before a new disease introduction occurs (figures 4.11 and
4.12). Therefore, it is not surprising that vaccinating herds that sell many animals appears as a
good strategy for limiting disease propagation (figure 4.13). So, the resource allocation problem
seems more straightforward in such a scenario and does not necessarily require an optimisation
procedure.

Additionally, a parameter that could impact our conclusions is the decision step, ∆d, for which
we considered a fixed heuristic value. Although the assumption of regular vaccination decisions
defined by the duration of the protection conferred by the vaccine appears to be a realistic hy-
pothesis relative to field practice, a more versatile assumption could be considered to determine
the frequency of allocation decisions. Indeed, the decision step could be determined in an adap-
tive manner by the social planner, for example by taking into account the stability in disease
prevalence, or some external input such as the farmers’ demand for accelerating resource allo-
cation. A second option would be to determine the decision step by optimisation. Yet, these are
essentially different problems from the one we addressed in this chapter: determining when to
allocate instead of where to allocate a limited resource. Optimising both aspects at the same time
is a more complex problem that to the best of our knowledge has only been addressed by heuris-
tic approaches (e.g. Venkatramanan et al. 2019). In particular, it does not seem straightforward
to address with the approach of this study.

Finally, we stress that the performance of the epidemiological and the greedy scoring functions
can be counterbalanced by their difficulty of access. Indeed, having updated knowledge on the
epidemiological state of all the herds of the network is a strong hypothesis in real-life, as this
kind of information can be hard to gather for most livestock diseases (Carslake et al. 2011). For
example, a scoring function calculated as the increment in the proportion of infected animals in
a herd over a certain period can be observed through changes in the herd’s seroprevalence be-
tween two time points, which incurs into increased logistics, can be observed with error and not
in real time. Furthermore, having such updated and detailed health-related information can be
costly, and this cost should be taken into account in the constrained optimisation problem for
the allocation. Among the possible perspectives of this work, the previous point opens an im-
portant one: combining scoring functions for improved performances, and above all for yielding
a scoring function that can be useful in practice. This could be achieved, for example, through
the (linear) combination of scoring functions, or through the selection of herds at the top of the
ranking given by several scoring functions that do not allocate the resource in a similar way.
Additionally, for cases when the value of the score is the same for many herds, the allocation
could be done using a second scoring function that would take different allocation decisions.
As a second, more methodological perspective, the greedy scoring functions built on first-order
approximations could eventually be constructed using higher-order approximations. This could
lead to analytic scores that also depend on network topology, and could improve their perfor-
mance. Although it has to be stressed that they were already among the best-performing scores
for reducing disease prevalence in all cases. Finally, despite the fact that we focused on a protec-
tive vaccine and a treatment that increases the recovery rate, other types of resources could be
studied with the same approach. However, it might not be straightforward to derive the analytic



4.7. APPENDIX: ANALYTICAL DERIVATION OF THE GREEDY SCORING FUNCTIONS 105

expression of the greedy scoring function in such cases. For example, the effect of the restriction
of animal movements, which is a relevant control measure in this context, lies on the connections
of the herd rather than on the intra-herd level, which could further complicate the derivation of
the scoring function.

4.7 Appendix:
Analytical derivation of the greedy scoring functions

We adapted the greedy approach proposed in Scaman et al. 2015, which consists in minimising
a short-term approximation of the objective function, for the metapopulation framework. This
approach finds locally (in time) optimal decisions. Let us note X(t) the epidemic state of the
network at at time t. In the metapopulation framework, X(t) is a J × 3 matrix, where each row
contains the number of susceptible, infected and recovered animals by each herd at time t. Since
the strategy has no impact on the initial state, and since the process is Markovian, the problem
(under the same constraint) is equivalent to:

min
A

∫ ∞

t=0

e−at E
[
JAI (t)

∣∣X(0) = X]dt ∀X

(Markov)⇐⇒ min
A

∫ ∞

u=0

e−au E
[
JAI (t+ u)

∣∣X(t) = X]du ∀X,∀t ≥ 0

⇐⇒ min
A

∫ ∞

u=0

e−auϕt,X(u)du ∀X,∀t ≥ 0

where X = ((S, I,R))J×3 is a possible epidemic state matrix of the network, and ϕt,X(u) :=
E
[
JAI (t+ u)

∣∣X(t) = X]. The idea of the greedy approach is to optimise an approximation of the
short term behaviour of ϕt,X(u) in order to find a scoring function which at each time gives a
locally optimal decision. For this we use Taylor expansion evaluated in 0, to obtain an approxi-
mation of the function to minimise.

Using a second-order Taylor expansion of ϕt,X(u) in 0 yields:

∫ ∞

u=0

e−auϕt,X(u)du

=

∫ ∞

u=0

e−au
[
ϕt,X(0) + uϕ′t,X(0) +

u2

2
ϕ′′t,X(0) +R(u)

]
du

=ϕt,X(0)

∫ ∞

u=0

e−audu+ ϕ′t,X(0)

∫ ∞

u=0

ue−audu+
ϕ′′t,X(0)

2

∫ ∞

u=0

u2e−audu+

∫ ∞

u=0

R(u)e−audu

where R(u) = O(u3).Since R(u) = O(u3), for a positive constant C:

∫ ∞

u=0

−Cu3e−audu ≤
∫ ∞

u=0

R(u)e−audu ≤
∫ ∞

u=0

Cu3e−audu

−C 1

a4
≤
∫ ∞

u=0

R(u)e−audu ≤ C 1

a4

using successive integration by parts. So
∫∞
u=0

R(u)e−audu = O( 1
a4 ). Therefore:
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∫ ∞

u=0

e−auϕt,X(u)du

=ϕt,X(0)

∫ ∞

u=0

e−audu+ ϕ′t,X(0)

∫ ∞

u=0

ue−audu+
ϕ′′t,X(0)

2

∫ ∞

u=0

u2e−audu+O

(
1

a4

)

=
1

a
ϕt,X(0) +

1

a2
ϕ′t,X(0) +

1

a3
ϕ′′t,X(0) +O

(
1

a4

)

Then, we must minimise

1

a
ϕt,X(0) +

1

a2
ϕ′t,X(0) +

1

a3
ϕ′′t,X(0) (4.5)

with respect to A(t).

In some cases, it is not obvious to find ϕ′′t,X(0). In that case, we have to limit ourselves to using a
first-order Taylor expansion of ϕt,X(u) in 0, which yields:

∫ ∞

u=0

e−auϕt,X(u)du =
1

a
ϕt,X(0) +

1

a2
ϕ′t,X(0) +O

(
1

a3

)

In that case, we have to find the scoring function that minimises the approximation:

1

a
ϕt,X(0) +

1

a2
ϕ′t,X(0) (4.6)

Table 4.4 contains the scoring functions obtained for each resource (vaccination and treatment)
and for each objective (defined by the form of JAI (t)) with the greedy approach. In the following,
we detail how these scores were obtained.

Resource JAI (t) Scoring function for herd j Scoring function name

Vaccine
∑J
j=1 Ij(t) βj

Ij(t)
Nj(t)

Sj(t)
(
1Ij(t)=1(γ + τj +

∑J
i ̸=j θji) +

∑J
i̸=j θji1Ii(t)=0

)
greedyV_infherds

∑J
j=1 1Ij(t)>0 βj

Ij(t)
Nj(t)

Sj(t) greedyV_infanimals

Treatment
∑J
j=1 Ij(t)

[
−τj −

∑J
i ̸=j θji1Ii(t)>0

]
j:Ij(t)=1

greedyT_infherds
∑J
j=1 1Ij(t)>0 Ij(t) greedyT_infanimals

Table 4.4: Greedy scoring functions for herd j, found for both types of resource, and for an objective that
depends either on the number of infected herds, or on the total number of infected animals.

4.7.1 Vaccination

For vaccination, we assumed that bfix is an available number of doses. The constraint in the
optimisation problem is therefore by

∑J
j=1Nj(t)Aj(t) ≤ bfix. We assume that if applied to a

susceptible animal at time t, the disease transmission rate towards this susceptible becomes βv =
β(1 − ev) during the period ]t; t + ∆d], where 0 ≤ ev ≤ 1 is the protective effectiveness of the
vaccine. That is, ∆d is also the duration of the effectiveness of the vaccine.

4.7.1.1 Minimise a function of the number of infected herds

In the optimisation problem, we define JAI (t) =
∑J
j=1 1Ij(t)>0.
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Here, we use a second-order approximation of ϕt,X(u) evaluated at 0. So we minimise expression
4.5 with respect to A(t).

• Minimise ϕt,X(0)

ϕt,X(0) = E
[
JAI (t)

∣∣X(t) = X] = E




J∑

j=1

1Ij(t)>0|X(t) = X


 =

J∑

j=1

1Ij>0 (4.7)

which does not depend on A(t)

• Minimise ϕ′t,X(0)

We note that ϕt,X(u) = ϕ0,X(u) = E[JAI (u)] if X(0) = X :

ϕt,X(u) = E
[
JAI (t+ u)

∣∣X(t) = X]

= E
[
JAI (u)

∣∣X(0) = X] (Markov)

= E[JAI (u)] if X(0) = X

Let Q = {Q(x,x′), x, x
′ ∈ N3J} be the infinitesimal generator matrix of the Markov process

{X(t)}t = {(S(t), I(t), R(t))}t.
Let the canonical basis of N3J be written as (eSj , ..., e

S
J , e

I
1, ..., e

I
J , e

R
1 , ..., e

R
J ).

In the present case, where the resource to be allocated is a vaccine that if applied in a herd
decreases the infectious rate towards susceptible animals in the herd, the infinitesimal tran-
sition rates of the process are given by:

Q(x,x′) =



βj
Ij
Nj

Sj(1− evAj(t)) if x′ = x+ eIj − eSj (infection in j)

γIj if x′ = x+ eRj − eIj (recovery in j)
θjiSj if x′ = x+ eSi − eSj (susceptible animal going from j to i)
θjiIj if x′ = x+ eIi − eIj (infected animal going from j to i)
θjiRj if x′ = x+ eRi − eRj (recovered animal going from j to i)
τjSj if x′ = x− eSj (death of a susceptible animal in j)
τjIj if x′ = x− eIj (death of an infected animal in j)
τjRj if x′ = x− eRj (death of a recovered animal in j)
µjNj if x′ = x+ eSj (birth of a susceptible animal in j)
0 otherwise


From now on, we note

−→
θj =

∑J
i̸=j θji. We use Q as the derivation operator of the law

of the process, as described in Méléard 2016, to obtain d
dt E[f(X(t))] = E[g(X(t))], where

g(x) =
∑
x ̸=x′ Qx,x′ [f(x

′)− f(x)], for the function f(X(t)) = 1Ij(t)>0:

d

dt
E[1Ij(t)>0] =E

(1Ij(t)+1>0 − 1Ij(t)>0)

βj(1− evAj(t))
Ij(t)

Nj(t)
Sj(t) +

J∑
i̸=j

θijIi(t)


+ (γ + τj +

−→
θj )E

[
(1Ij(t)−1>0 − 1Ij(t)>0)Ij(t)

]
=E

1Ij(t)=0

βj(1− evAj(t))
Ij(t)

Nj(t)
Sj(t) +

J∑
i̸=j

θijIi(t)


− (γ + τj +

−→
θj )E[1Ij(t)=1Ij(t)]

=

J∑
i̸=j

θij E[1Ij(t)=0Ii(t)]− (γ + τj +
−→
θj )E[1Ij(t)=1]

(4.8)
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Then

d

dt
E[1Ij(t)>0]

∣∣∣∣
t=0

=

J∑

i ̸=j

θij1Ij=0Ii − (γ + τj +
−→
θj )1Ij=1

Thus:

ϕ′t,X(0) =

J∑

j=1




J∑

i̸=j

θij1Ij=0Ii − (γ + τj +
−→
θj )1Ij=1


 (4.9)

which does not depend on A(t)

• Minimise ϕ′′t,X(0)

From equation 4.8, we have:

ϕ′′t,X(u) =
d

du
ϕ′t,X(u) =

∑

j

d

du
E[1Ij(u)>0]

=
∑

ji

θij
d

du
E[1Ij(u)=0Ii(u)]−

∑

j

(γ + τj +
−→
θj )

d

du
E[1Ij(u)=1]

Again, using the generator of the Markov process, we find:

d

dt
E[1Ij(t)=0Ii(t)]

∣∣∣∣
t=0

= −
(
1Ij=0(Ii + 1)− 1Ij=0Ii

)
βiev

Ii
Ni
SiAi(t) + Ξ

= −βiev
Ii
Ni
Si1Ij=0Ai(t) + Ξ

= −βiev
Ii
Ni
Si1Ij=0Ai(t) + Ξ

where Ξ is independent of A(t)1. And:

d

dt
E[1Ij(t)=1]

∣∣∣∣
t=0

= −βjev(1Ij+1=1 − 1Ij=1)Aj(t)
Ij
Nj

Sj + Ξ

= −βjev(1Ij=0 − 1Ij=1)
Ij
Nj

SjAj(t) + Ξ

= βjev1Ij=1
Sj
Nj

Aj(t) + Ξ

where Ξ is independent of A(t). Thus

ϕ′′t,X(0) = −ev
J∑

j=1

J∑

i ̸=j

θij

[
βi
Ii
Ni
Si1Ij=0Ai(t)

]
− ev

J∑

j=1

βj(γ + τj +
−→
θj )

[
1Ij=1

Sj
Nj

Aj(t)

]
+ Ξ

= −ev
J∑

j=1

J∑

i̸=j

θji

[
βj1Ii=0

Ij
Nj

SjAj(t)

]
− ev

J∑

j=1

βj(γ + τj +
−→
θj )

[
1Ij=1

Sj
Nj

Aj(t)

]
+ Ξ

(4.10)

1later we keep noting as Ξ all terms that are not of interest for the minimisation problem, since they do not depend on
A(t), but we remark that their actual value varies though-out the document.
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where Ξ is independent of A(t). Then:

min
A(t)

ϕ′′t,X(0) ⇐⇒ min
A(t)
−ev

J∑

j=1




J∑

i ̸=j

θji1Ii=0βj
Ij
Nj

SjAj(t) + βj(γ + τj +
−→
θj )1Ij=1

Sj
Nj

Aj(t)




⇐⇒ max
A(t)

J∑

j=1


βj(γ + τj +

−→
θj )1Ij=1

Sj
Nj

+ βj
Ij
Nj

Sj

J∑

i ̸=j

θji1Ii=0


Aj(t)

(4.11)

Since expressions 4.7 and 4.9 do not depend on A(t), minimising 4.5 is equivalent to min-
imising 4.10. From 4.11, this can be achieved if we assign the Aj(t) = 1 or 0 according to
the scoring function:


βj

Ij(t)

Nj(t)
Sj(t)


1Ij(t)=1(γ + τj +

−→
θj ) +

J∑

i ̸=j

θji1Ii(t)=0





j=1,...,J

(4.12)

4.7.1.2 Minimise a function of the total number of infected animals

In the optimisation problem, we define JAI (t) =
∑J
j=1 Ij(t).

Here, we use a first-order approximation of ϕt,X(u) evaluated at 0. Indeed, it was not possible to
arrive to an analytic expression of ϕ′′t,X(0) for this case. So we minimise 4.6 with respect to A.

• Minimise ϕt,X(0)

ϕt,X(0) = E
[
JAI (t)

∣∣X(t) = X] = E




J∑

j=1

Ij(t)|X(t) = X


 =

J∑

j=1

Ij (4.13)

which does not depend on A(t)

• Minimise ϕ′t,X(0)

We note that ϕt,X(u) = ϕ0,X(u) = E[JAI (u)] if X(0) = X :

ϕt,X(u) = E
[
JAI (t+ u)

∣∣X(t) = X]

= E
[
JAI (u)

∣∣X(0) = X] (Markov)

= E[JAI (u)] if X(0) = X

In our model:

d

dt
E[Ij(t)]

∣∣∣∣
t=0

= βj
Ij
Nj

Sj(1− evAj(t)) +
J∑

i̸=j

θijIi − (γ + τj +
−→
θj )Ij

Then
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ϕ′t,X(0) =

J∑

j=1

βj
Ij
Nj

Sj(1− evAj(t)) +
J∑

j=1

J∑

i ̸=j

θijIi −
J∑

j=1

(γ + τj +
−→
θj )Ij

= −ev
J∑

j=1

βj
Ij
Nj

SjAj(t) + Ξ

(4.14)

where Ξ is independent of A(t). Then:

min
A(t)

ϕ′t,X(0) ⇐⇒ min
A(t)
−ev

J∑

j=1

βj
Ij
Nj

SjAj(t)

⇐⇒ max
A(t)

J∑

j=1

βj
Ij
Nj

SjAj(t)

(4.15)

Since 4.13 does not depend on A(t), minimising 4.6 is equivalent to minimising 4.14. From
4.15, this can be achieved if we assign the Aj(t) = 1 or 0 according to the scoring function:

[
βj
Ij(t)

Nj(t)
Sj(t)

]

j=1,...,J

(4.16)

4.7.2 Treatment

4.7.2.1 Minimise a function of the number of infected herds

For the treatment, we assumed that bfix is not a number of doses, but is the number of herds that
can be treated, i.e. of attainable herds. The constraint in the optimisation problem is therefore
by
∑J
j=1Aj(t) ≤ bfix. We assume the treatment increases the recovery rate of treated infected

animals by an additional factor γ′. That is, the mean duration of the infectious period for these
animals becomes (γ + γ′)−1.

In the optimisation problem, we define JAI (t) =
∑J
j=1 1Ij(t)>0.

Here, we use a second-order approximation of ϕt,X(u) evaluated at 0. So we minimise 4.5 with
respect to A(t).

• Minimise ϕt,X(0).

ϕt,X(0) = E
[
JAI (t)

∣∣X(t) = X] = E




J∑

j=1

1Ij(t)>0|X(t) = X


 =

J∑

j=1

1Ij>0 (4.17)

which does not depend on A(t)

• Minimise ϕ′t,X(0)

We note that ϕt,X(u) = ϕ0,X(u) = E[JAI (u)] if X(0) = X :

ϕt,X(u) = E
[
JAI (t+ u)

∣∣X(t) = X]

= E
[
JAI (u)

∣∣X(0) = X] (Markov)

= E[JAI (u)] if X(0) = X
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Thus, we are looking for:

ϕ′t,X(u) =
d

du
E[JAI (u)] =

d

du
E


∑

j

1Ij(u)>0


 =

∑

j

d

du
E[1Ij(u)>0]. (4.18)

From now on, we note
−→
θj =

∑J
i ̸=j θji. Now, let Q = {Q(x,x′), x, x

′ ∈ N3J} be the in-
finitesimal generator matrix of the Markov process {X(t)}t = {(S(t), I(t), R(t))}t. Let the
canonical basis of N3J be written as (eSj , ..., e

S
J , e

I
1, ..., e

I
J , e

R
1 , ..., e

R
J ).

In the present case, where the resource to be allocated is a treatment that increases the
recovery rate, the infinitesimal transition rates of the process are given by:

Q(x,x′) =



βj
Ij
Nj

Sj if x′ = x+ eIj − eSj (infection in j)

(γ + γ′Aj(t))Ij if x′ = x+ eRj − eIj (recovery in j)
θjiSj if x′ = x+ eSi − eSj (susceptible animal going from j to i)
θjiIj if x′ = x+ eIi − eIj (infected animal going from j to i)
θjiRj if x′ = x+ eRi − eRj (recovered animal going from j to i)
τjSj if x′ = x− eSj (death of a susceptible animal in j)
τjIj if x′ = x− eIj (death of an infected animal in j)
τjRj if x′ = x− eRj (death of a recovered animal in j)
µjNj if x′ = x+ eSj (birth of a susceptible animal in j)
0 otherwise


We use Q as the derivation operator of the law of the process, as described in Méléard

2016, to obtain d
dt E[f(X(t))] = E[g(X(t))], where g(x) =

∑
x ̸=x′ Qx,x′ [f(x

′)− f(x)], for the
function f(X(t)) = 1Ij(t)>0:

d

dt
E[1Ij(t)>0] =E


1Ij(t)=0


βj

Ij(t)

Nj(t)
Sj(t) +

J∑

i̸=j

θijIi(t)






− (γ + τj +
−→
θj )E

[
1Ij(t)=1Ij(t)

]
− γ′ E

[
1Ij(t)=1Ij(t)Aj(t)

]

=

J∑

i ̸=j

θij E
[
1Ij(t)=0Ii(t)

]
− (γ + τj +

−→
θj )E

[
1Ij(t)=1

]
− γ′ E

[
1Ij(t)=1Aj(t)

]

(4.19)

And so:

d

dt
E[1Ij(t)>0]

∣∣∣∣
t=0

=

J∑

i ̸=j

θij1Ij=0Ii − (γ + τj +
−→
θj )1Ij=1 − γ′1Ij=1Aj(t)

Then:

ϕ′t,X(0) =

J∑

j=1




J∑

i ̸=j

θij1Ij=0Ii − (γ + τj +
−→
θj )1Ij=1 − γ′1Ij=1Aj(t)




=

J∑

j=1

−γ′1Ij=1Aj(t) + Ξ

(4.20)
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where Ξ is independent of A(t). Thus

min
A(t)

ϕ′t,X(0) ⇐⇒ min
A(t)
−γ′

J∑

j=1

1Ij=1Aj(t)

⇐⇒ max
A(t)

γ′
J∑

j=1

1Ij=1Aj(t).

This sum is maximal if only the herds that have 1 infected are chosen, i.e. if Ij(t) ̸= 1 =⇒
Aj(t) = 0. Thus, if we treat only the herds with one infected animal, the total number of
herds we treat will be

∑J
j=1 1Ij=1Aj(t) = min(bfix,

∑J
j=1 1Ij=1).

• Minimise ϕ′′t,X(0)

From 4.19, we have:

ϕ′′
t,X(u) =

d

du
ϕ′
t,X(u) =

∑
j

d

du
E[1Ij(u)>0]

=
∑
ji

θij
d

du
E[1Ij(u)=0Ii(u)]−

∑
j

(γ + τj +
−→
θj )

d

du
E[1Ij(u)=1]− γ′ d

du
E

[∑
j

1Ij(u)=1Aj(u)

]
(4.21)

Again, using the infinitesimal generator of the Markov process, we find:

d

dt
E[1Ij(t)=0Ii(t)]

∣∣∣∣
t=0

= γ′[−1Ij=0IiAi(t)] + Ξ

= −γ′1Ij=0IiAi(t) + Ξ

= −γ′1Ij=0Ai(t) + Ξ

where Ξ is independent of A(t), and where we have used that if Ij(t) ̸= 1 =⇒ Aj(t) = 0.
Also:

d

dt
E[1Ij(t)=1]

∣∣∣∣
t=0

=βj(1Ij+1=1 − 1Ij=1)
Ij
Nj

Sj +

J∑
i̸=j

θij(1Ij+1=1 − 1Ij=1)Ii

+ (γ + τj +
−→
θj )(1Ij−1=1 − 1Ij=1)Ij + γ′(1Ij−1=1 − 1Ij=1)IjAj(t)

=βj(1Ij=0 − 1Ij=1)
Ij
Nj

Sj +

J∑
i̸=j

θij(1Ij=0 − 1Ij=1)Ii

+ (γ + τj +
−→
θj )(1Ij=2 − 1Ij=1)Ij + γ′(1Ij=2 − 1Ij=1)IjAj(t)

=− βj1Ij=1
Ij
Nj

Sj +
J∑

i ̸=j

θij(1Ij=0 − 1Ij=1)Ii + (γ + τj +
−→
θj )(1Ij=2 − 1Ij=1)Ij

+ γ′(1Ij=2 − 1Ij=1)IjAj(t)

=γ′(1Ij=2 − 1Ij=1)IjAj(t) + Ξ

=γ′
1Ij=2IjAj(t)− γ′

1Ij=1Aj(t) + Ξ

=− γ′Aj(t) + Ξ

where Ξ is independent of A(t), and where we have used that if Ij(t) ̸= 1 =⇒ Aj(t) = 0.

Now, following the procedure in Scaman et al. 2015, we show that d
dt E

[∑J
j=1 1Ij(t)=1Aj(t)

]

does not depend on A(t).
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We have that the constraint is
∑J
j=1Aj(t) ≤ bfix. From the minimisation of ϕ′t,X(0) we

obtain that we only treat herds with one infected, i.e. if Ij(t) ̸= 1 =⇒ Aj(t) = 0. The total
number of herds treated will be

∑J
j=1Aj(t) =

∑J
j=1 1Ij(t)=1Aj(t) = min(bfix,

∑J
j=1 1Ij(t)=1).

Let H(t) = min(bfix,
∑J
j=1 1Ij(t)=1). We can calculate d

dt E
[∑J

j=1 1Ij(t)=1Aj(t)
]
:

d

dt
E




J∑

j=1

1Ij(t)=1Aj(t)


 = lim

∆t→0

E[H(t+∆t)]− E[H(t)]

∆t

Let NI(t) =
∑J
j=1 1Ij(t)=1. Let ∆t be a sufficiently small time interval. Three scenarios are

possible:

– NI(t) > bfix. And for t′ ∈ [t, t + ∆t], H(t′) is stationary (since NI(t′) can at most
increase or decrease by 1),

– either NI(t) < bfix. And H(t′) = NI(t
′) for t′ ∈ [t, t+∆t],

– or the last possibility is NI(t) = bfix. And in this case it is sufficient to consider the
case where NI(t + ∆t) = bfix − 1 ( by construction H(t′) will not change if NI(t)
increases).

We can then write:

E[H(t+∆t)|X(t)]

= 1NI (t)>bfix
bfix

+ 1NI (t)=bfix

bfix −
J∑

j=1

βj1Ij(t)=1
Sj(t)

Nj(t)
∆t −

J∑
j=1

J∑
i̸=j

θij1Ij(t)=1Ii(t)∆t

−
J∑

j=1

(γ + τj +
−→
θj )1Ij(t)=1∆t − γ′

J∑
j=1

1Ij(t)=1Aj(t)∆t

]

+ 1NI (t)<bfix

NI(t)−
J∑

j=1

βj1Ij(t)=1
Sj(t)

Nj(t)
∆t +

J∑
j=1

J∑
i̸=j

θij(1Ij(t)=0 − 1Ij(t)=1)Ii(t)∆t

+

J∑
j=1

(γ + τj +
−→
θj )(1Ij(t)=2 − 1Ij(t)=1)Ij(t)∆t − γ′

J∑
j=1

1Ij(t)=1Aj(t)∆t

]
+ o(∆t)

= H(t)

− 1NI (t)≤bfix

 J∑
j=1

βj1Ij(t)=1
Sj(t)

Nj(t)
+

J∑
j=1

J∑
i ̸=j

θij1Ij(t)=1Ii(t)

+

J∑
j=1

(γ + τj +
−→
θj )1Ij(t)=1 + γ′

J∑
j=1

1Ij(t)=1Aj(t)

]
∆t

+ 1NI (t)<bfix

 J∑
j=1

J∑
i̸=j

θij1Ij(t)=0Ii(t) +

J∑
j=1

(γ + τj +
−→
θj )1Ij(t)=2Ij(t)

∆t + o(∆t)
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We have therefore:

d

dt
E

[
J∑

j=1

1Ij(t)=1Aj(t)

]
= lim

∆t→0

E [E[H(t+∆t)|X(t)]]− E[H(t)]

∆t

=− E

1NI (t)≤bfix

 J∑
j=1

βj1Ij(t)=1
Sj(t)

Nj(t)
+

J∑
j=1

J∑
i̸=j

θij1Ij(t)=1Ii(t)

+

J∑
j=1

(γ + τj +
−→
θj )1Ij(t)=1 + γ′H(t)

)]

+ E

1NI (t)<bfix

 J∑
j=1

J∑
i ̸=j

θij1Ij(t)=0Ii(t) +

J∑
j=1

(γ + τj +
−→
θj )1Ij(t)=2Ij(t)


which does not depend on A(t)

All in all, we have:

ϕ′′t,X(0) = −γ′
J∑

j=1

J∑

i ̸=j

θij1Ij=0Ai(t) + γ′
J∑

j=1

(γ + τj +
−→
θj )Aj(t) + Ξ

= −γ′
J∑

j=1

J∑

i ̸=j

θji1Ii=0Aj(t) + γ′
J∑

j=1

(γ + τj +
−→
θj )Aj(t) + Ξ

(4.22)

where Ξ is independent of A(t). And so:

min
A(t)

ϕ′′t,X(0) ⇐⇒ min
A(t)
−γ′

J∑

j=1

(∑

i

θji1Ii=0 − (γ + τj +
−→
θj )

)
Aj(t)

⇐⇒ max
A(t)

J∑

j=1

(∑

i

θji1Ii=0 − (γ + τj +
−→
θj )

)
Aj(t)

Then, the minimisation of ϕ′t,X(0) and ϕ′′t,X(0) in 4.5 can be achieved simultaneously if we
assign the Aj(t) = 1 or 0 according to the scoring function:

[∑

i

θji1Ii(t)=0 − (γ + τj +
−→
θj )

]

j:Ij(t)=1

Since γ, the recovery rate from the disease, is the same for all herds, the scoring function
can be rewritten as:

[
−τj −

∑

i

θji1Ii(t)>0

]

j:Ij(t)=1

(4.23)

4.7.2.2 Minimise a function of the total number of infected animals

We assume that in the optimisation problem, JAI (t) =
∑J
j=1 I

A
j (t).

Here, we use a first-order approximation of ϕt,X(u) evaluated at 0. Indeed, it was not possible to
arrive to an analytic expression of ϕ′′t,X(0) for this case. So we minimise 4.6 with respect to A.
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• Minimise ϕt,X(0)

ϕt,X(0) = E
[
JAI (t)

∣∣X(t) = X] = E




J∑

j=1

Ij(t)|X(t) = X


 =

J∑

j=1

Ij (4.24)

which does not depend on A(t)

• Minimise ϕ′t,X(0)

We note that ϕt,X(u) = ϕ0,X(u) = E[JAI (u)] if X(0) = X :

ϕt,X(u) = E
[
JAI (t+ u)

∣∣X(t) = X]

= E
[
JAI (u)

∣∣X(0) = X] (Markov)

= E[JAI (u)] if X(0) = X

In our model with treatment:

d

dt
E[Ij(t)]

∣∣∣∣
t=0

= βj
Ij
Nj

Sj +

J∑

i ̸=j

θijIi − (γ + τj +
−→
θj )Ij − γ′IjAj(t)

Thus:

ϕ′t,X(0) =

J∑

j=1

βj
Ij
Nj

Sj +

J∑

j=1

J∑

i ̸=j

θijIi −
J∑

j=1

(γ + τj +
−→
θj )Ij − γ′

J∑

j=1

IjAj(t)

= −γ′
J∑

j=1

IjAj(t) + Ξ

(4.25)

where Ξ is independent of A(t). Then:

min
A(t)

ϕ′t,X(0) ⇐⇒ min
A(t)
−γ′

J∑

j=1

IjAj(t)

⇐⇒ max
A(t)

J∑

j=1

IjAj(t)

(4.26)

Since 4.24 does not depend on A(t), minimising 4.6 is equivalent to minimising 4.25. From
4.26, this can be achieved if we assign the Aj(t) = 1 or 0 according to the scoring function:

[Ij(t)]j=1,...,J (4.27)
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This chapter presents an extension and an adaptation of the model in chapter 3. The extension
regards the decision-making component of the model: farmers can either take into account the
decisions and observed costs of their trade neighbours, or of their geographic neighbours. The
adaption is built upon a specific disease, bovine viral diarrhoea (BVD), for which an existing
individual-based stochastic model is considered.

The modelling choices in this chapter were motivated by the state of the art in section 2.1.1.1.2,
section 2.1.1.1.4 and section 2.1.3.4, regarding epidemiological modelling, and in section 2.2.2 and
section 2.3, regarding decentralised decision-making modelling.

5.1 Introduction

Accounting for farmer’s dynamic decision regarding control measures is a key to better under-
stand livestock disease spread at a large scale, and to better predict it. In Cristancho Fajardo et al.
2021 (chapter 3) an integrative model was proposed for this purpose. The model accounted for
the dynamic decision-making process of farmers regarding the adoption of a control measure. In
particular, phenomena such as learning and strategic imitation were considered. Yet, this model
lied on a theoretical SIR infection dynamics, and for the decision dynamics it was assumed that
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farmers shared information relative to their decisions only through the trade network on which
the disease spread. This chapter presents an extension of such model that lies on an application
to a specific disease: bovine viral diarrhoea (BVD).

BVD is a viral disease of cattle that causes economic losses and reductions in animals well-being
(abortions, calving delays, and mortality) worldwide (Gates et al. 2013a; Pinior et al. 2017). In
particular, the infection of a pregnant female during mid-gestation, can lead to the birth of per-
sistently infected (PI) calves (Fray et al. 2000). Although PI animals generally have a reduced
lifespan (Houe 1993), they are highly infectious during their whole lives. Therefore, they can not
only threaten the immunity of the herd they belong to, by causing new infections, but also spread
the infection to neighbouring herds through pasture contacts and trade movements (Gates et al.
2013b; Graham et al. 2016).

It has previously been established that combining testing with compulsory vaccination could
eradicate the virus (Gethmann et al. 2019). However, since such a combined strategy has been
proven not to be economically cost-effective, control is often left to farmers’ voluntary vaccina-
tion. Indeed, regular vaccination can constitute a viable alternative for farmers to reduce new
infections (Gethmann et al. 2019; Moennig et al. 2018). In particular, European countries use
vaccines that can prevent vertical transmission if administered before pregnancy (Moennig et al.
2018). For such vaccines, and for some breeding systems, it has been shown that vaccination can
be an economically interesting measure to control BVD virus spread (Arnoux et al. 2021).

The objective of the present study was two-fold. On the one hand, we sought to extend the
decision-mechanism of the generic model initially proposed, considering several scenarios with
respect to how information is shared among farmers. In particular, we assumed that information
is shared through a neighbourhood defined on the basis of the trade network or by the means of
a proximity network, i.e. the geographic position of herds. On the other hand, the objective was
to adapt the generic model for a specific disease (BVD).

The chapter is structured as follows. First, section 5.2 presents the BVD model and the data on
which it was built on. Then, section 5.3 details farmers’ decision-making regarding vaccination.
In particular, this section presents the extensions made to the original generic model. Section 5.4
defines the scenarios for simulations, whose results are included in section 5.5. Finally, section
5.6 presents a discussion and conclusion of this work on the basis of such results.

5.2 The BVD model

We used a BVD discrete-time stochastic individual-based model conceived by the DYNAMO
team of the BIOEPAR unit of INRAE-Oniris, in which the introduction of the BVD virus into a
BVD-free herd occurs through the purchase of infected animals, or through close contact with
infected neighbours during the grazing season. For animal movements, real observed data were
plugged into the model, so this component of the model is deterministic. For the other compo-
nents of the model, life-cycle dynamics and heath-related dynamics, some transitions were as-
sumed to be deterministic, while others are stochastic. The parameters that determine transitions
were either estimated from data, or fixed according to existing literature or expert knowledge.

5.2.1 Data description

We considered data for a five year period (January 2010- December 2014) relative to holdings in
Saône-et-Loire, a French department densely populated with Charolais, a breed raised of beef
cattle. Indeed, Arnoux et al. 2021 have shown that the combined characteristics of the Charolaise
breeding system can yield to a strong economic impact of BVD virus spread and of vaccination
against it, when compared to other breeding systems.

The data was obtained from the French cattle identification database (FCID), which records the
complete life history of each cattle animal from birth to death. In particular, it includes all move-
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ments between holdings. Hence, for each animal the available data are: country code, national
identification number, sex, breed, birth date, date of entry(exit) into(from) each holding it be-
longed to, and cause (entry: birth or purchase, exit: death or sale).

In order to partly reduce the computational complexity of the model, we restricted ourselves to
holdings whose yearly mean size was at least 30 animals for at least one of the five years i.e. we
excluded holdings that each of the five years had a relatively small yearly mean size, and hence
were unlikely to play a major role in pathogen spread. We remark that all herds that satisfy this
condition were included in the metapopulation, irrespective to whether they exchanged animals
or not. Additionally, 155 holdings were excluded either because they presented a null size on
January 1rst 2010, and could therefore not be initialised for simulation, or because their herd-
specific parameters of the model could not be computed, since there were no births nor gestating
animals in these herds during the study period (see section 5.2.2.1 for the definition of such pa-
rameters). Under this selection, the proportion of animal trade carried by excluded holdings was
only 7%. The selection corresponded to 3685 out of the 5155 herds that were active at least once
during the five years of study. Table 5.1 contains a summary of the distribution of movements
between groups of herd, given by their belonging to the metapopulation, to the department, and
to France.

Origin
Destination

metapop small outside undetermined
metapop 0.139 0.031 0.187 0.418
small 0.015 0.002 0.008 0.018
outside 0.133 0.039 0.000 0.000
undetermined 0.009 0.002 0.000 0.000

Table 5.1: Distribution of movements according to the origin/destination group (as a proportion of the
total movements concerning herds in Saône-et-Loire from 2010-2014): the group of herds included in the
metapopulation to be modelled (’metapop’), the group of excluded herds from Saône-et-Loire (’small’), and
the group of herds in France but outside Saône-et-Loire (’outside’). Movement whose origin/destination
was not known are grouped under the term ’undetermined’.

The herd size distribution for herds in Saône-et-Loire within and outside the selection can be
found in figure 5.1. Figure 5.2 represents all holdings in Saône-et-Loire that were active at some
point during the five years of study, highlighting a heterogeneity in the spatial density of herds.
The exact location of each holding was randomly assigned according to the coordinates of the
administrative area (565 in total) the holding belongs to. Figure 5.3 represents the geographic
location of the selected holdings, and their exchanges over the study period, also indicating a
high spatial heterogeneity in trade patterns. Three geographic groups of holdings can be identi-
fied as being the most active in cattle exchange (in particular having a higher share of buying):
one group in the south-west zone of the department, one in the north, and one in the west. The
first and second groups are very interconnected (many links, some with a high trading volume).
Herds in the latter group are not very connected within the group nor with the rest of the popu-
lation, except from some long distance connections.



120 CHAPTER 5. APPLICATION STUDY

(a)

Figure 5.1: Herd size distributions in Saône-et-Loire French department from real data (FCID) for years
2010-2014. Distribution of the mean herd sizes over the five year period. Gray bars represent the distribution
for all herds that were active (size > 0) at least once within the period (5155 herds). Blue bars (superimposed)
represent the distribution for all herds whose yearly mean size was at least 30 animals for at least one of the
five years (3685 herds). The picture is courtesy of Gaël Beaunée.

Figure 5.2: Geographic location of exchanging cattle holdings in Saône-et-Loire from 2010-2014 (5155 hold-
ings). The location of each holding was randomly assigned according to the coordinates of the administra-
tive area the holding belongs to. The picture is courtesy of Gaël Beaunée.
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Figure 5.3: Geographic location of the selected exchanging cattle holdings in the metapopulation (3685
holdings). The location of each holding was randomly assigned according to the coordinates of the ad-
ministrative area the holding belongs to. The size of a node represents its mean (over years) population.
Colours of nodes represent the mean (over years) share of buying (orange) and selling (blue). The edges
represent the existence (at least once within the period) of a movement between two holdings in the dataset,
with their width indicative of the observed trading volume along this edge. The picture is courtesy of Gaël
Beaunée.



122 CHAPTER 5. APPLICATION STUDY

5.2.2 Within-herd epidemiological-demographic dynamics

The BVD stochastic individual-based model represents each animal and its main characteristics :
sex (Male, Female), race (Beef, Dairy), parity (P0, P1, P2, P3, P4, P5), age (in days), life-cycle and
health-state. Parity P0 corresponds to nulliparous animals (i.e. never having given birth before).
This includes females fattened or to be bred, and males. Parity P1 corresponds to females that
have had a first calving, etc. Parity P5 corresponds to females that have had five births or more.

This model enables to represent most possible herd types: dairy, beef, breeding herds, fattening
unit of veal calves and of young beef bulls.

5.2.2.1 Life-cycle and health-state dynamics

Regarding life-cycle there are seven possible categories. They are specified in table 5.2. Figure
5.4 presents the scheme of the life-cycle dynamics.

Name Description

YJ young juveniles. Female calves kept for breeding, under 6 months of age.

OJ old juveniles. Female calves kept for breeding, between 6 months of age and the
beginning of the first pregnancy.

G gestating females.

NG non-gestating females, i.e. period between calving and the start of the next preg-
nancy.

Fadult fattened adult females, i.e. females in the period between last calving and culling.

YFbirth young animals fattened from birth, i.e. animals under 6 months of age that will
never calve (male and non-breeding female calves).

OFbirth old animals fattened from birth, i.e. animals over 6 months of age that will never
calve (male and non-breeding female animals).

Table 5.2: Life-cycle categories

Regarding health-states, there are five possible categories: P (persistently infected), M (pro-
tected by maternal antibodies), S (susceptible), T (transiently infected), R (recovered). Figure
5.5 presents the scheme for health-state dynamics.

The herd-specific parameters of the model were calculated from the dates of birth, death, calving
and movements in the database, except for (ϕB,FemaleFbirth )−1 and the proportions of culled animals.
The distribution of (ϕB,FemaleFbirth )−1 was set to be the same as (ϕB,Male

Fbirth )−1. This is a good approx-
imation and keeps the total population within reasonable limits. The proportion of culled dairy
and beef animals were respectively set to 0.33 and 0.25 for all herds. Table 5.3 presents the def-
inition and main descriptive statistics (mean, 10th percentile, median, 90th percentile) of these
parameters. Details on their calibration can be found in the public repository specified in section
5.4.

Life-cycle and health-related parameters are defined in table 5.4.
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YJ
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Figure 5.4: Life-cycle dynamics. Arrows represent transitions between life-cycle compartments. The coef-
ficients on the arrows are either transition rates or transition probabilities. Compartment Exit represents
culled breeding females or dead young cattle. Diamond indicates actions to perform: on entering G, vari-
able cull and the health-state of unborn calf are defined; after the duration of gestation, i.e. if calf was not
aborted, calf is born and cow’s parity increases by one. See main text for parameter definition.
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Figure 5.5: Health-state dynamics. Arrows represent transitions between health-state compartments. The
coefficients on the arrows are either transition rates or transition probabilities. Compartment ExitP rep-
resents dead persistently infected animals. Diamond indicates actions to perform: on transitioning from S
to T, if animal is G, the health-state of the future calf can change or calf can be aborted. See main text for
parameter definition.
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Parameter Definition Mean 10th Median 90th

pFemale proportion of females born in the herd 0.49 0.25 0.49 0.75

pDbred proportion of dairy female calves go-
ing to breeding

0.04 0.00 0.00 0.00

pBbred proportion of beef female calves going
to breeding

0.16 0.00 0.00 0.75

(ϕDJ )
−1 duration for dairy animals in J 744.05 710.24 743.44 804.50

(ϕDNG)
−1 duration for dairy animals in NG 163.80 107.25 160.25 201.00

(ϕDFadult)
−1 duration for dairy animals in Fadult 334.39 301.79 345.96 362.94

(ϕBJ )
−1 duration for beef animals in J 789.86 715.20 790.02 859.15

(ϕBNG)
−1 duration for beef animals in NG 131.09 85.58 122.08 180.00

(ϕBFadult)
−1 duration for beef animals in Fadult 321.49 292.78 327.11 346.86

(ϕD,Male
Fbirth )−1 duration for dairy male animals in

Fbirth
339.71 125.00 184.00 696.00

(ϕD,FemaleFbirth )−1 duration for dairy female animals in
Fbirth

558.11 106.00 367.71 1176.50

(ϕB,Male
Fbirth )−1 duration for beef male animals in

Fbirth
697.05 90.00 554.00 1530.00

(ϕB,FemaleFbirth )−1 duration for beef female animals in
Fbirth

697.05 90.00 554.00 1530.00

pDcull proportion of dairy females culled 0.33 0.33 0.33 0.33

pBcull proportion of beef females culled 0.25 0.25 0.25 0.25

pDE proportion of dairy calves dying before
21 days of age

0.01 0.00 0.00 0.00

pBE proportion of beef calves dying before
21 days of age

0.04 0.00 0.00 0.11

Table 5.3: Summary statistics of the herd-specific parameters of the model. All durations are in days.
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Parameter Description Value Source

ϕ−1Y duration of the period when calves are with
their mother in beef herds, determines dura-
tion in YJ and YFbirth

180 expert knowledge

ϕ−1G duration of gestation 274 expert knowledge

τ∗ age before which natural mortality is applied 21 expert knowledge1

pAe
probability to abort when infected in early
gestation (0 to 42 days)

0.8 Fray et al. 2000, Carls-
son et al. 1989, Mc-
Gowan et al. 1993

pAm probability to abort when infected in mid ges-
tation (43 to 150 days)

0.25 Fray et al. 2000, Mc-
Clurkin et al. 1984

ϕ−1M duration of the protection given by maternal
immunity

150 Kendrick 1971

ϕ−1T duration of the transient infection 7 McGowan et al. 1993

pP probability of vertical transmission in mid-
gestation (43 to 150 days)

0.937 Fray et al. 2000, Mc-
Clurkin et al. 1984,
Kendrick 1971

pEP
probability of disease-related mortality, ne-
glecting mortality at birth

0.00189 Houe 1993

βTw transmission rate per transient animal within
its group

0.03 Innocent et al. 19972,
Viet et al. 20042

βPw transmission rate per persistent animal within
its group

0.5 Moerman et al. 1993,
Viet et al. 2004

βPb
transmission rate per persistent animal to
other groups

0.01 Ezanno et al. 20082

βPn transmission rate per persistent animal lo-
cated in neighbours and that can access to
pasture, with a density-dependent transmis-
sion

0.001 Qi et al. 20192

1 According to observed data (FCID) most of natural mortality occurs in the first weeks of age.

2 No experiments nor field studies have allowed to estimate these parameters yet. Therefore, we choose similar values

as in previous modelling studies.

Table 5.4: Life-cycle and health-state parameters of the model
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Other parameters, that are based on the parameters in table 5.3 are:

pbred =1D × pDbred + 1B × pBbred
ϕ−1J =1D × (ϕDJ )

−1 + 1B × (ϕBJ )
−1

ϕ−1OJ =1D ×
(
(ϕDJ )

−1 − ϕ−1Y
)
+ 1B ×

(
(ϕBJ )

−1 − ϕ−1Y
)

(ϕD,Male
OFbirth)

−1 =(ϕD,Male
Fbirth )−1 − ϕ−1Y

(ϕD,FemaleOFbirth )−1 =(ϕD,FemaleFbirth )−1 − ϕ−1Y
(ϕB,Male
OFbirth)

−1 =(ϕB,Male
Fbirth )−1 − ϕ−1Y

(ϕB,FemaleOFbirth )−1 =(ϕB,FemaleFbirth )−1 − ϕ−1Y
ϕ−1OFbirth = 1D ×

(
1Male × (ϕD,Male

OFbirth)
−1 + 1Female × (ϕD,FemaleOFbirth )−1

)

+ 1B ×
(
1Male × (ϕB,Male

OFbirth)
−1 + 1Female × (ϕB,FemaleOFbirth )−1

)

ϕ−1Fadult =1D × (ϕDFadult)
−1 + 1B × (ϕBFadult)

−1

ϕ−1NG =1D × (ϕDNG)
−1 + 1B × (ϕBNG)

−1

pDcull =1P0 × pD,P0
cull + 1P1 × pD,P1

cull + 1P2 × pD,P2
cull + 1P3 × pD,P3

cull + 1P4 × pD,P4
cull

+ 1P5 × pD,P5
cull

pBcull =1P0 × pB,P0
cull + 1P1 × pB,P1

cull + 1P2 × pB,P2
cull + 1P3 × pB,P3

cull + 1P4 × pB,P4
cull

+ 1P5 × pB,P5
cull

pcull =1D × pDcull + 1B × pBcull
cull =Bernoulli(pcull). Defined when a female enters state G .

pA =1Ge × pAe + 1Gm × pAm

pE =1D × pDE + 1B × pBE

where 1 represents the indicator function. Then, for x ∈ [D,B,Male, Female, P0, P1, P2, P3, P4, P5]
(D for dairy, B for beef), 1x = 1 if animal belongs to compartment x, 0 otherwise. Also, 1Ge

= 1 if
the gestating female gets infected during early pregnancy (0 to 42 days), while 1Gm

= 1 if it gets
infected during mid pregnancy (43 to 150 days).

The sex of a calf is determined according to pFemale at the moment of calving. Young male calves
all enter the YFbirth compartment when born. Meanwhile, young female calves can either be
kept for breeding (enter YJ) with a probability pbred, or for fattening (enter YFbirth). Females
in YJ can enter compartment OJ and animals in YFbirth can enter compartment OFbirth after
spending ϕ−1J days in YJ and OJ, respectively. Before that time, they can die due to calf mortality
(if their age is at most τ∗, i.e. if 1age<=τ∗ = 1) with a probability pE .

Non breeding animals (males and non breeding females) are culled after spending ϕ−1OFbirth days
in OJ. Meanwhile, females in OJ enter G after spending ϕ−1OJ days in OJ. At entering G, the health
state of the calf is defined (which can later change during the pregnancy). Furthermore, the
decision to cull the cow at calving or not is also attributed at the beginning of gestation. At the
moment of calving (i.e. after ϕ−1G days if no abortion occurred) the parity of the breeding female
increases by one, unless it is already P5. A female that will be culled enters compartment Fadult,
and is culled after ϕ−1Fadult days. Females that will not be culled enter compartment NG , and
reenter G after ϕ−1NG days. If a G female gets infected during early or mid pregnancy, the calf can
be aborted with a probability pA. Hence in such case, the female can either enter Fadult, if it will
be culled, or NG, if it will not.

The force of infection within herd (λw), and the force of infection through the neighbours in the
metapopulation (λn) are defined as:
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λw = λD,juv + λD,bred + λB,juv + λB,bred + λfat, (5.1)
λn = 1pasture × 1bred × βPn

× Pn, (5.2)

where bred concerns the breeding group (all females in NG or G, and beef animals in YJ or YF-
birth, as unweaned beef calves are located with their mother until weaning), juv concerns the
juvenile group (all animals in OJ and dairy animals in YJ, as dairy unweaned calves are sepa-
rated from their mothers in French farming systems), and fat concerns the fattening group (all
females in Fadult, all animals in OFbirth, and dairy animals in YFbirth). Then, in λw (equation
5.1), each λx,y is the force of infection of animals that are of type x and in group y, for x ∈ {D,B}
and y ∈ {juv, bred}. Similarly, λfat is the force of infection of animals in the fattening group.
These are computed as:

λD,juv =
1D × 1juv
ND,juv

[
βTwT

D,juv + βPwP
D,juv + βPb

(PD,bred + P fat + PB,bred + PB,juv)
]
,

λD,bred =
1D × 1bred
ND,bred

[
βTw

TD,bred + βPw
PD,bred + βPb

(PD,juv + P fat + PB,bred + PB,juv)
]
,

λB,juv =
1B × 1juv
NB,juv

[
βTw

TB,juv + βPw
PB,juv + βPb

(PD,bred + P fat + PB,bred + PD,juv)
]
,

λB,bred =
1B × 1bred
NB,bred

[
βTw

TB,bred + βPw
PB,bred + βPb

(PD,bred + P fat + PB,juv + PD,juv)
]
,

λfat =
1B × 1bred
Nfat

[
βTw

T fat + βPw
P fat + βPb

(PD,juv + PB,juv + PD,bred + PB,bred)
]
,

where Nx,y is the total number of animals that are of type x and that are in group y. T x,y and
P x,y are defined in an analogous manner for transiently and persistently infected animals, re-
spectively. Nfat, T fat, P fat are respectively the total number, the number of transiently infected,
and the number of persistently infected animals in the fattening group.

In λn (equation 5.2), 1pasture equals 1 if current time is during pasture period, 0 otherwise. Pn

is the number of P animals in neighbouring herds, among categories that go on pasture during
pasture period (females in the breeding group and Fadult females), i.e.:

Pn = (PD,NGn + PD,Gn + PB,NGn + PB,Gn + PB,Y Fbirthn + PB,OFbirthn ) + (PD,Fadultn + PB,Fadultn ),

where P x,yn is the number of persistent animals in neighbours, that are of type x and are in state
y.

The health-state of a calf is initialised at the beginning of the mother’s gestation: P for calves
born to P mothers, S for calves born to S mothers, and in all other cases the calf will be M. Calves
born with maternal antibodies are immune to infection during ϕ−1M days, when they enter the
S compartment. Susceptible animals can become transiently infected either by contact with in-
fected (T or P) animals within the herd, with a rate λw (equation 5.1), or by contact with P animals
of neighbouring herds at a maximum distance of 2 km (expert knowledge) during the pasture
period (which takes place every year from March 1st to November 1st (expert knowledge), with
a rate λn (equation 5.2). See figure 5.6 for the distribution of the number of neighbours according
to different values of the threshold distance.

If the new transiently infected animal is a G cow then the health-state of the future calf changes,
if not aborted: M if infection occurs during early gestation, P with a probability pP if it occurs
during mid gestation, and R in all other cases.
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Figure 5.6: Distribution of the number of neighbours when the radius to define neighbourhood is fixed to
6km , 3km and 2km (for the selection of 3685 holdings). The bottom figure is a zoom of the distributions of
the number of neighbours up to 40 neighbours.

5.2.2.2 Handling trade movements

Since the FCID does not contain information on life-cycle or health state, these elements must be
initially assigned. Regarding health-state, unless specified differently in the initial conditions, the
initial health-state of all animals is assigned to S, either at the beginning of a simulation or when
entering the metapopulation from outside (i.e. there is no risk of virus entering the metapopu-
lation from outside). To study infection dynamics, an initial number of infected animals (P or T)
needs to be specified for some herds of the metapopulation (together with their life-cycle). For
those herds, the health-state of the specified number of animals with the required life-cycle is
updated from S to the specified state (P or T). If the specified herd does not have animals in the
required life-cycle, there will be no initially infected animals in the herd.

Regarding life-cycle, it is assigned from available data of the animal (age, sex, breed, etc.) and
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the parameters of the source herd (if it belongs to the metapopulation), or of the destination herd
(if the source herd does not belong to the metapopulation). Males are sent to fattening: they are
assigned to YFbirth if their age is less than ϕ−1Y , OFbirth otherwise. Females can either be sent
to breeding or fattening. If information on a next calving date is found in the FCID, the female
belongs to the breeding group. In that case, it can be a juvenile if its age is less than ϕ−1J (YJ
if less than ϕ−1Y , OJ otherwise), or it can be G or NG (G if the time to the next calving is less
than ϕ−1G , NG otherwise). If the animals is G, the gestation stage is obtained from the time of
the next calving. If there is no information on a next calving, the female is sent to fattening. In
that case, if the age of death is known and at most equal to τ∗, the female is assigned to YJ or
YFbirth uniformly at random. If there is no information on age of death, or if such age is higher
than τ∗, the female is assigned to a fattening category, depending on its parity and age. If there
is no parity information or if parity is P0, the female can be YFbirth, if its age is less than ϕ−1Y ,
OFbirth otherwise. Finally, if its parity is at least P1, the female is assigned to Fadult. At the
beginning of a simulation, the step to exit the life cycle state is assigned, considering the duration
in the corresponding life-cycle, and that the animal entered the life cycle when entering the herd,
except for G females (for which it corresponds to the time of next calving).

Selling is handled by identifying the animals that each herd is expected to sell at the end of that
time step according to data. The right amount of animals is selected to be sold by choosing them
uniformly at random among the animals in the origin holding that have the required characteris-
tics. If the destination herd is within the metapopulation, animals to be sold are sent. Otherwise,
they are simply removed from the origin herd. If the origin herd does not have enough animals
to sell with the right specifications (breed, sex, parity, life cycle, age, step to exit the life cycle),
such an animal is created in the destination herd. This also occurs if trade is coming from herds
which are not within the metapopulation. In both cases, the incoming animal is assumed to be
susceptible, so the associated infection risk is null. Movements whose origin and destination are
both outside the metapopulation are ignored.

5.2.2.3 Epidemiological effect of vaccination

On the basis of the previously described model, we consider that a vaccine can have the effect
of preventing vertical transmission of BVD virus if applied before the beginning of breeding.
Then, the probability that a female vaccinated before being G produces a P calf if infected in
mid-gestation is pvP = pP × (1 − ev) during mid-gestation. Other parameters are not modified,
so animals can still get infected, be contagious, etc. In particular, if a G cow was not vaccinated
right before breeding, the probability of producing a P calf in mid-gestation will remain to be pP
in mid-gestation.

In theory, ev could be between 0 and 1, yet since available BVD vaccines are quite effective, so we
set ev = 0.95.

5.3 Farmer’s decision-making on vaccination

If not applied before the breeding period, vaccination can have adverse effects, yet in the fol-
lowing we assume that this is never the case as farmers avoid these problems by applying the
vaccine (if vaccination is adopted) at the right period. Furthermore, we assume vaccination only
concerns breeding females.

5.3.1 Decision-mechanism

We adapt (Algorithm 4) the decision-mechanism presented in Cristancho Fajardo et al. 2021
(chapter 3).
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Algorithm 4 Adapted exponential weighting stochastic mechanism with strategic imitation

Input: 0 < pinitv < 1; κ ≥ 0; ρ ≥ 0, B : neighbourhood
1: aj(0)← Bernoulli

(
pinitv

)
; j = 1, ..., J ▷ All farmers take an initial decision

2: for t = ∆d, 2∆d... do ▷ For other decision times t
3: for j = 1, ..., J do ▷ Each farmer j
4: Cjaj(t−∆d)

(t) ▷ Observes the cost associated to his/her
last decision (integrated over ]t−∆d, t])

5: B∗j (t) ⊆ Bj(t) ▷ Chooses a subset of neighbours among
the set of eligible neighbours at time t

6:
{
al(t−∆d), C

l
al(t−∆d)

(t)
}
l∈B∗j (t)

▷ Observes neighbours’ last decision and
associated cost

7:

pjv(t) =
pjv(t−∆d)e

−κCj
1(t)−ρZ

B∗j (t)

1

pjv(t−∆d)e−κC
j
1(t)−ρZ

B∗
j
(t)

1 +
(
1− pjv(t−∆d)

)
e−κC

j
0(t)−ρZ

B∗
j
(t)

0

(5.3)

▷ Updates the probability of vaccinating, where for k ∈ {0, 1}

Z
B∗j (t)

k =
n
B∗j (t)

k

nB
∗
j (t)

∑

l∈B∗j (t)

Clk(t),

n
B∗j (t)

k = Card
({
l ∈ B∗j (t) s.t. al(t−∆d) = k

})
, nB

∗
j (t) = Card

(
B∗j (t)

)
, and the

costs of the non taken decisions are equal to 0, i.e. ∀i ∈ {j}⋃B∗j (t): Cik(t) =

Ciai(t−∆d)
(t) if k = ai(t−∆d), 0 otherwise

8: aj(t)← Bernoulli
(
pjv(t)

)
▷ Takes a decision

9: end for
10: end for

At the first decision time, each farmer j decides to vaccinate or not, according to pinitv , i.e. his/her
initial probability of vaccinating, which is assumed equal for all farmers. From the second deci-
sion time, each farmer observes the costs associated to the previous decisions (his/her own and
the one of his/her chosen neighbours(s) at that time), updates his/her probability of vaccinat-
ing (as a function of such decisions and costs) and takes a new decision based in this updated
probability. Note that we consider the first decision to take place at time t = 0.

In the update of the probability to vaccinate, parameters κ and ρ, represent farmer’s sensitivity
to his/her own observed cost and to the cost observed by his/her selected neighbours. Then, the
probability of vaccinating is updated proportional to the previous probability and an exponen-
tial function of a weighted sum. This weighted sum concerns the farmer’s cost of vaccinating
(equal to 0 if the farmer did not vaccinate at the previous decision time), whose weight is κ,
and the mean cost observed by the farmer’s neighbours that vaccinated at the previous decision
time (weighted by the proportion of neighbours that vaccinated), whose weight is ρ. Then, this
product is standardised to yield a probability. This exponential weighting system accounts for
cognitive considerations regarding human decision-making, and the algorithm itself accounts
for farmers learning. In particular, since farmers account for their neighbours decisions and ob-
servations, the algorithm accounts for social learning, which allows for farmers having specific
behaviours such as strategic imitation: beginning to vaccinate/not vaccinate if neighbourhood
vaccinates/does not vaccinate, or consciously free-riding, i.e. searching to benefit from neigh-
bours’ vaccination without having to bear the economic cost. See chapter 3 for a more in depth
discussion on the form of this decision-mechanism.

Regarding the definition of B (the neighbourhood that could influence a farmer’s decision on
vaccination), we considered either the geographic neighbourhood Bg or the selling neighbour-
hood Bs. More specifically:

• geographic neighbourhood: based on geographic proximity and fixed in time. That is, the
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neighbours are defined as a function of the maximum threshold distance used for defining
pathogen transmission through pasture, i.e. 2km. With this value, the mean number of
neighbours is 6.37, and there is a certain heterogeneity in this number across herds. Figure
5.6 shows the distribution of the number of neighbours when this radius is fixed to 6km,
3km, and 2km.

• selling neighbourhood: based on the trade network and therefore time-dependent. The
selling neighbours of herd j at time t are the herds from which j has bought animals within
the period ]t−∆d, t].

At a given decision time, only herds that are active at that time (i.e. that have animals) can be
eligible for being part of the neighbourhood of any other herd. Furthermore, only herds that
have actually taken a decision at time t − ∆d (i.e. that had gestating females within the period
]t − ∆d, t]), could share this information with their neighbours. Hence, for a given definition of
neighbourhood B (Bs or Bg), the set of eligible neighbours of herd j at time t, Bj(t), is the set of
neighbours of herd j at time t that have taken a decision at the previous decision step. That is,
neighbours at time t that had a non-null quantity of gestating females within the period ]t−∆d, t]

Regarding the way each farmer j chooses the subset of neighbours B∗j (t) ⊆ Bj(t), we considered
three options:

• random: choosing a neighbour uniformly at random at each decision time among the set of
eligible neighbours at that time.

• friend: always choosing the same neighbour (initially chosen uniformly at random). If the
chosen friend is not eligible at a given decision time, farmer decides only as a function of
his/her own observed cost.

• all: using information of all eligible neighbours at each decision time.

Finally, we considered a all-all option (B = Bs
⋃
Bg), were farmer uses at the same time infor-

mation of all his/her trade neighbours and of all his/her geographic neighbours.

Figure 5.7 presents the scheme of the full integrative model for vaccination decision-making in a
context of BVD dynamic spread.

5.3.2 Economic-epidemiological cost

For the cost function we adapted the one in Cristancho Fajardo et al. 2021 (chapter 3), in the
following way. The cost Cjaj(t−∆d)

(t) that each farmer observes at time t, associated with decision
aj(t−∆t) is computed as:

Cj
aj(t−∆d)

(t) =
cv(t−∆d, t)× aj(t−∆d) + ci(t−∆d, t)

N→G(t−∆d, t)
, (5.4)

where

cv(t−∆d, t) =cfv + [cuv ×N→G(t−∆d, t)],

ci(t−∆d, t) =r1[N→P (t−∆d, t) +N→A(t−∆d, t)]

+r2N→T (t−∆d, t),

This standardised cost gathers the cost farmers pay to apply the vaccine to all the new gestating
females within a given decision period, cv(t−∆d, t), and the cost of the following new infections
within the same period, ci(t−∆d, t).

Indeed, the first term in the numerator of equation 5.4 is non-zero if the vaccine was applied
(aj(t −∆d) = 1). First, cv(t −∆d, t) considers a fixed cost of applying vaccination per herd cfv ,



132 CHAPTER 5. APPLICATION STUDY

Figure 5.7: Scheme of the epidemiological-decision dynamical model for a herd j regarding BVD dynamics
and farmers’ vaccination decision-making.

which could correspond to the veterinary fees for vaccination. Second, cuv , is the unitary cost of
the vaccine per animal, which is multiplied by the number of vaccinated females for the period,
if vaccination is decided. Neglecting breeding females that did not gestate within the period,
this number is supposed to equal N→G(t − ∆d, t), the number new gestating females over the
period [t − ∆d, t[. Since we supposed that farmers apply their vaccination decision right before
the breeding period, then all new gestating females over this period must have been vaccinated
before becoming G, if vaccination was decided for that decision time.

Even if vaccines only have a direct effect on preventing vertical transmission, we can consider a
broader indirect impact. Indeed, the presence of P animals in the herd can impact the number
of new infections. On the one hand, these new infections can concern gestating females, which
can cause more P newborns to be born, if infection occurs in mid-pregnancy, or can cause their
abortion, if infection occurs in early or mid-pregnancy. On the other hand, there can be new
infections of young animals (i.e. YJ or YFbirth), which can become transitory infected (T) by the
contact with P animals. These animals are known to be at higher risk of enteric and respiratory
disease (Stott et al. 2010). Hence, in ci(t−∆d, t), r1 is the monetary value of a healthy calf, which
is completely lost if this calf is aborted or born but persistently infected (P). And r2 is the loss
associated with a new transient infection of a young animal.

Then N→A(t−∆d, t), N→P (t−∆d, t) and N→T (t−∆d, t) are respectively the cumulative number
of aborted animals, the cumulative number of calves P, and the cumulative numbers of young T
in the herd within the period ]t−∆d, t].
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Finally, to account for differences among the cost in different herds, related to the variation of the
number of new G over the period, the cost is standardised by N→G(t−∆d, t).

The definition and values of economic and decision-related parameters are summarised in table
5.5. For the parameters in cv(t−∆d, t), we arbitrarily supposed cfv = 50 euros, as in Cristancho
Fajardo et al. 2021, cuv = 5.11 euros, the mean cost of one vaccine dose for four different brands
of BVD vaccines (Arnoux et al. 2021). For the parameters in ci(t−∆d, t), we set r1 = 800 euros, i.e.
roughly the price of a calf of the Charolais breed (Chambres d’agriculture de Bourgogne Franche-
Comté 2022). Parameter r2 is somewhat more difficult to fix as the precise loss associated to an
animal becoming T is harder to estimate, although it is expected to be much lower than r1. Yet, the
associated overall cost may be high, by the means of having many new T animals. We choose to
set r2 = 0.01×r1 = 8 euros. We note that in Stott et al. 2010 a value of 3 £ is assumed for the cost of
a immunocompromised calf, and 31£ for a calf born with congenital defects, growth retardation,
etc. Yet it is unclear how these expected costs were calculated. Regarding the values of decision-
related parameters, we set pinitv , κ and ρ arbitrarily. Finally, since farmers are assumed to decide
whether to vaccinate females before gestation (roughly 9 months), the decision periodicity to be
of 1 year, i.e. farmers take a decision for each year on January 1st.

Parameter Description Value Source

cfv fixed cost of applying vaccination per herd 50 e arbitrarly chosen

cuv unitary cost of the vaccine per animal 5.11 e Arnoux et al. 2021

r1 monetary value of a healthy calf 800 e Chambres d’agriculture
de Bourgogne Franche-
Comté 2022

r2 loss associated with a new transient infec-
tion of young animal (YJ or YFbirth)

8 e arbitrarily chosen

pinitv initial probability of vaccinating 0.01 arbitrarily chosen

κ farmer’s sensitivity to his/her own ob-
served cost

1 arbitrarily chosen

ρ farmer’s sensitivity to the cost observed by
his/her selected neighbours

0.5 arbitrarily chosen

∆d decision periodicity 1 year expert knowledge

Table 5.5: Economic and decision-related parameters of the model

5.4 Simulation setting

The simulation step was set to 7 days, due to the short duration of transiently infections. Stochas-
tic transitions determined by a probability were converted accordingly, when necessary.

We explored infection-dynamics, and the decision-dynamics during four years (from January
2010 to December 2013) for (2 × 3 + 1 + 1) scenarios. Simulations for the year 2014 were not
included for the moment, as they exhibited problems regarding a strong decrease in the number
of animals for some life-cycle categories. Such a problem is most probably related to the param-
eter calibration for that year, and will be looked into in the near future. The scenarios are given
by the combination of the neighbourhood definition (geographic or selling), the way the neigh-
bour is selected (random, friend, all) and the all-all scenario. An additional base-line scenario
(no_decision) was considered for the dynamics without the vaccination decision component of
the model.

Given the intrinsic stochasticity and the computational cost of the model, we considered 5 runs
(as a first attempt, more runs will be further considered) for each scenario. For each run, we
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considered that for a subset of 4% herds, 0.2% of their calves (YJ + YFbirth) were initially P. That
is, 147 (=3685*0.04) herds were initially infected with 1 P calf each. Indeed, the initial total number
of calves (YJ + YFbirth) in the metapopulation for the year 2010 was 66549. Hence, the 0.2% P
calves corresponded to 133 P calves in total, and each positive herd had 1 (= 133/147) P calf. We
defined these initial conditions on the basis of the information from the animal health services
(GDS: groupement de défense sanitaire) of Saône-et-Loire (GDS de Bourgogne - Franche-Comté 2022)
for the year 2021, indicating 273 positive calves out of 184,930 tested (i.e. 0.2%), belonging to
109 of the 2900 herds tested. That is 3.8% (=109/2900) of the herds had at least one P among the
tested. We note however, that there was no measurement of vaccination practices in such study,
which can partly explain such a low prevalence for a first generalised screening.

The P calf for each initially infected herd was chosen among the YJ or YFbirth, beef or dairy
animals of the selected herd, according to a multinomial distribution, where the probabilities of
the P animal being a dairy/beef YJ/YFbirth animal were set proportional to the initial proportion
of young animals in the chosen herd that were dairy/beef YJ/YFbirth. We remark that only herds
that had initially at least 1 YJ or YFbirth animal were eligible to be initially infected, so as to ensure
the same initially infected P animals, and the same initial number of infected herds.

The simulation code of the model and parameter calibration can be found in the public repository
github.com/CristanchoLina/BVD_farmersdecisions.

5.5 Results

In the following, preliminary results over 5 runs are presented. As the number of runs is low,
such results are not yet conclusive and additional explorations are needed.

Figure 5.8 presents infection dynamics in the metapopulation for each of the considered sce-
narios. Without the vaccination component (no_decision scenario) the pathogen spreads quite
rapidly, and at the end of the fourth year 50% of herds have at last 1 P calf. The proportion of
P animals among calves presents a seasonal behaviour, with waves whose peaks are attained
roughly at the end of each year, from the second year. The highest peak (almost 0.12) occurs at
the end of the third year. The final (at the end of the fourth year) proportion of P calves in the
metapopulation is roughly 0.11.

Regarding the proportion of T animals in the metapopulation, figure 5.9 shows seasonal peaks,
this proportion being almost 0.01 at the largest peak, attained between the second and third
year, and concerning 35% herds. Yet, between the third and the fourth year, the proportion of T
animals in the metapopulation attains levels in the previous year. Even more, the proportion of
herds concerned by the presence of T animals increases (to 0.37) with respect to the highest level
registered during the third year (0.35).

Regarding scenarios with decision-making, the first remark is that all of them achieve to de-
crease pathogen spread (P and T animals and herds) when compared to the no_decision scenario
(figures 5.8 and 5.9). Unsurprisingly, the group of scenarios were the pathogen spread is better
controlled is the one were farmers take into account all the information of their neighbourhood,
through a weighted mean, constituted by the selling-all, geographic-all and all-all scenarios. For
this group, the highest peak in the proportion of infected calves in the metapopulation (figure
5.8(b)) is decreased to less than 0.03, attained at the end of the second year. In the following
years, this proportion almost consistently decreases, even if a small peak is still observed before
the end of the third year, until reaching less than 0.005 at the fourth year. Of the three scenarios in
this group, the worst control is obtained when decisions rely only on selling neighbours (selling-
all scenario). In particular, figure 5.9 shows that it is the only scenario of this group for which a
peak is clearly observed in the proportion of T animals (at almost 0.003), and in the proportion of
herds with T animals (0.15), in the third year. Similarly, the proportions of P animals and of herds
with P animals (figure 5.8) are higher than in the other two scenarios of the group, from the sec-
ond year to the end of the fourth year. Indeed, the final values attained for this two proportions
are respectively almost 0.002 and 0.05 higher for the selling-all scenario than in the other two

https://github.com/CristanchoLina/BVD_farmersdecisions
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Figure 5.8: Dynamics of BVD virus spread in the metapopulation. Proportion of herds with P calves (a) and
proportion of P calves (out of all calves) in the metapopulation (b). Each colour represents the neighbour-
hood (geographic or selling) and the way neighbours are selected for observation (random, friend or all),
together with the all-all selection. Gray vertical lines represent decision times. Mean results and confidence
bands (min to max) over 5 runs.

scenarios. Clearly, the performance of the all-all scenario is driven by that of the geographic-all
scenario, as in the first both the geographic and the selling neighbours are taken into account.
In particular, for both of these scenarios, the final levels of each of the fourth studied outputs
are almost the same to the ones given by initial conditions. The group of scenarios where only
the information of a single neighbour is taken into account at each decision time is found to be
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Figure 5.9: Dynamics of BVD virus spread in the metapopulation. Proportion of herds with T animals
(a) and proportion of T animals in the metapopulation (b). Each colour represents the neighbourhood
(geographic or selling) and the way neighbours are selected for observation (random, friend or all), together
with the all-all selection. Gray vertical lines represent resource decision times. Mean results and confidence
bands (min and max) over 5 runs.

in between the no_decision scenario and the previously mentioned group. With respect to the
baseline scenario in the scenarios of this group the proportion of herds with P calves shows a
lower increase, to attain roughly 0.3 at the end of the fourth year. For the proportion of P calves
in the metapopulation, the highest peak is reduced to 0.05, attained at the end of the third year
(figure 5.8). A similar behaviour is observed for the proportion of herds with T animals, and the
proportion of T animals in the metapopulation, whose highest peaks are respectively reduced to
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0.30 and 0.008 (figure 5.9). As in the scenarios where all information was taken into account, the
geographic scenarios when using only one neighbour led to a better control of pathogen spread
when compared to the respective selling scenarios, even if the difference is not as striking as
when using all neighbours. For both the geographic and selling neighbours, randomly choosing
the neighbour exhibited a better result in average, yet showed more variation.

Regarding vaccination dynamics, figure 5.10 shows that the proportion of herds that vaccinate in-
creases from the initial value (roughly 0.01) to 0.25 in the geographic-random and the geographic-
friend scenarios, to 0.27 in the selling-random and the selling-friend scenarios. The gap between
these two sets of scenarios increases over time, and at the end of the simulation (which corre-
sponds to the beginning of a fifth year), in the geographic scenarios (random and friend) the
proportion that vaccinates is around 0.42, while in the respective selling scenarios this propor-
tion attains 0.52. No difference can be appreciated regarding the way farmers choose their ob-
served neighbour (random or friend), once the neighbourhood is fixed. Regarding the scenarios
where all information from the chosen neighbourhood is used, in the cases where the geographic
neighbourhood was considered (either alone or with the selling neighbourhood), the proportion
that vaccinates increases to more than 0.98 from the first to the second decision time and stays
at the same level throughout the years. Meanwhile, when considering solely the selling neigh-
bourhood, this proportion increases to 0.7 at the beginning of the second year, and progressively
increases to attain roughly 0.9 at the beginning of the fourth year. Such a proportion is slightly
increased at the beginning of a fifth year.
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Figure 5.10: Dynamics of the proportion of herds that vaccinate. Each colour represents the neighbourhood
(geographic or selling) and the way neighbours are selected for observation (random, friend or all), together
with the all-all selection. Mean results and confidence bands (min and max) over 5 runs.

The exploration of the vaccination patterns (for one run only) shows that in the scenarios where
farmers use their geographic neighbours to decide, the proportion that never vaccinates is higher
by at least 0.05 with respect to the scenarios where farmers use the selling neighbourhood, and
that the vaccination patterns where herds vaccinate most of the time are also more frequent in the
selling scenarios (figure 5.11). Finally, figure 5.12 shows that, as expected, the proportion of herds
that always vaccinate (excluding the first decision time) is higher (almost 1) in the geographic-all
and the all-all scenarios, than in the selling-all scenario (0.7). Even if the pattern where herds
vaccinate from the second decision time is the next more frequent one for the latter scenario
(almost 0.15), the proportion of herds that never vaccinate is higher (0.06) when compared to the
other two scenarios (less than 0.02).



138 CHAPTER 5. APPLICATION STUDY

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
proportion

00000
00001
10000
00111
01000
00010
00011
01111
01100
01101
00101
01001
00110
00100
01010
01011
10010
01110
10011
10111
10100
10101
11101
11111
11001
10001
10110
11010
11110
11011
11000

va
cc

in
at

io
n 

pa
tte

rn

geographic-random
geographic-friend
selling-random
selling-friend

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
proportion

00000
00001
10000
00111
01000
00010
00011
01111
01100
01101
00101
01001
00110
00100
01010
01011
10010
01110
10011
10111
10100
10101
11101
11111
11001
10001
10110
11010
11110
11011
11000

va
cc

in
at

io
n 

pa
tte

rn

Figure 5.11: Vaccination patterns for the scenarios where farmers observe the information from only one
neighbour (random or friend). 0 stands for not vaccinating, while 1 for vaccinating (e.g. the pattern 00010
concerns herds that only vaccinated at the beginning of the fourth year). The bottom figure is a zoom of the
top figure that focuses on vaccination patterns that were observed at most in 15% of herds. Results for one
run.
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Figure 5.12: Vaccination patterns for the scenarios where farmers observe the information from all their
neighbours in the chosen neighbourhood (geographic and/or selling). 0 stands for not vaccinating, while
1 for vaccinating (e.g. the pattern 00010 concerns herds that only vaccinated at the beginning of the fourth
year). The bottom figure is a zoom of the top figure that focuses on vaccination patterns that were observed
at most in 15% of herds. Results for one run.
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5.6 Discussion

In this chapter, the generic integrative model proposed in Cristancho Fajardo et al. 2021 (chapter
3) is adapted for a real-life specific disease: the BVD. The adaptation concerned from one part,
the economic-epidemiological cost on which farmers base their decisions. Indeed, the fact that
BVD model used is structured according to host-heterogeneities (in particular age and life-cycle),
and the vaccine has an effect on vertical transmission, allowed for a more detailed evaluation
of the economic and epidemiological consequences of vaccination decisions. Furthermore, as
BVD virus can spread through different ways (geographical proximity or the trade network), the
initially proposed decision-mechanism was generalised to account for different neighbourhoods
and ways of selecting neighbours that can influence farmers decisions regarding the adoption of
a control measure (vaccination).

Preliminary simulations show that in all three scenarios where farmers observed at each decision
time the previous actions and costs of all their neighbours (geographic and/or selling), BVD virus
did not spread as much as in the scenarios where only one neighbour was observed at a time
(figures 5.8 and 5.9). Even more, for the scenarios where the full information of the geographic
neighbourhood was observed, the prevalence of the pathogen was the same at the one given
at the beginning of simulations. Additionally, for the scenarios where farmers only choose a
single neighbour from which they obtain information, the geographic neighbourhood appeared
to be slightly better for pathogen control than the selling neighbourhood (figures 5.8 and 5.9).
Quite surprisingly, this occurs although under the geographic neighbourhood the proportion of
herds that vaccinate is almost always less than under the selling neighbourhood (figure 5.10), the
proportion that never vaccinates is lower, and vaccination patterns where herds mostly vaccinate
are less frequent.

Two main remarks can be made out of such observations. First, regardless of the chosen neigh-
bourhood, using the full information of all neighbours at each decision time seems to have the
most important impact for BVD control. Second, sharing information through the geographic
neighbourhood seems to be consistently better for targeting herds that should get vaccinated
to reduce BVD virus spread. Meanwhile with the selling neighbourhood, even in cases where
more herds slightly get vaccinated, vaccination is not adopted by some herds that are key for the
control of such spread.

It is to be stressed however, that such observations are not conclusive as many important aspects
of the simulations have been neglected for the moment. To the very short term, the calibration of
herd-specific parameters will be reevaluated, as some of these parameters presented unexpected
ranges. In particular, the duration for animals in Fbirth presented some very high values that
may unrealistically increase herd sizes in the simulations. For the proportion of culled and beef
animals, although their values were set to realistic values, in the future they will be calibrated
from data and will depend not only on the herd, but also on the parity of the female. For the
moment, this is not the case as in the calibration procedure the value of this parameter could not
be computed for several herds. This reevaluation of the herd-specific parameters may allow to
stabilise the dynamics of the number of animals in each life-cycle category that are observed in
simulations for the year 2014 (excluded in the present study). Once this issue is settled, the next
point to address will be the low number of runs (only 5 runs were considered for each scenario).
More simulations should be performed so as to consider the observations conclusive. And a
numerical analysis should be done regarding the values of decision-parameters (pinitv , κ and ρ) as
they were arbitrarily chosen. Indeed, qualitative remarks may not hold under different numerical
settings, and hence it will be of interest to explore the variation in results, as a function of the
variation in the values of these parameters. Finally, we could further explore and describe results,
for example through an association between geographic position and vaccination patterns.

This work gives insights for the control of BVD virus spread through vaccination, by focusing
on a zone densely populated with Charolais cattle, a breeding system for which vaccination has
proven to be a health measure of interest (Arnoux et al. 2021). The model represents how farmers
voluntary vaccination practices can be determined by their own past experiences (vaccinating
or not), and the information shared through their neighbourhood regarding other herds experi-



5.6. DISCUSSION 141

ences.

Regarding the limitations of this study (excluding those mentioned before, as they will soon be
addressed), we may include the same one made for the original integrative model in (Cristan-
cho Fajardo et al. 2021) (chapter 3) regarding the fact that in the model farmers perfectly observe
costs associated to their own and their neighbours decisions. Additionally, farmers consider in
the same way the observations of any of their chosen neighbours. In reality, farmers could give
greater weight to the observations made by their ’closer’ neighbours, i.e. account for their ge-
ographic neighbours proportionally to the distance to their herd, and account for their selling
neighbours proportional to the amount of animals sold. Through this mechanism, the model
could consider an additional strategic behaviour of farmers, as they could better account for
how the vaccination practices of their neighbours can impact the health status of their own herd.
Finally, regarding the BVD virus spread model itself, we assumed that the metapopulation was
initially infected, but that there was no risk of introduction of the virus from outside the metapop-
ulation. As the area modelled is not that large, this assumption could be revisited and exposure
to trade and geographic neighbours from other areas could be accounted for.
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This thesis is concerned with the dynamics of infectious diseases spreading on a large metapop-
ulation network, and the dynamic decision-making processes there can exist regarding the adop-
tion of control measures to contain such spread, particularly in a context of livestock endemic
diseases spreading through trade. In particular, in such a multi-agent framework, there can be
dynamic decisions that are taken locally (i.e. by the agents of the system themselves), and/or
dynamic decisions taken in a centralised manner (i.e. by a central authority).

Although in epidemiology, a large diversity of mechanistic mathematical models are used for
describing and predicting the spread of infectious diseases, the precise study of decision-making
in this context is most often neglected, particularly for the management of livestock diseases (Hi-
dano et al. 2018). On the one hand, the behaviour of the individuals with a decisionary aptitude
in the system where the pathogen spreads is usually not taken into account at all. When it is, the
focus is often on how a certain decision or behaviour could impact disease spread, but not on
how the behaviour itself can emerge as a function of the infection dynamics (Wang et al. 2016).
On the other hand, regarding decisions made by a central entity for an optimal management of
the disease, their study most often concerns unstructured and/or relatively small populations,
as the solution to a most general problem is computationally intractable (Nowzari et al. 2015).

6.1 Main contributions

In the context described above, this thesis proposed two methodological contributions, and one
contribution regarding an application study. In the following, each of these contributions is
briefly summarised.
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6.1.1 Integrative model for pathogen spread over an animal trade network
accounting for farmers’ dynamic decisions regarding the adoption of a
health measure

The first contribution (Chapter 3) concerned an integrative model of pathogen spread on an an-
imal trade metapopulation network, that accounts for farmers’ voluntary decision-making re-
garding the adoption of a health control measure against infection in their own herd. The epi-
demiological component is built upon a stochastic SIR intra-herd model with demography, that
accounts for inter-herd animal transfers. The decision-making component consists in setting
a dynamic decision problem under uncertainty, and proposing a dynamic decision-mechanism
that accounts for farmers’ stochastic behaviour, learning, and strategic imitation dynamics. Thus,
there is a dynamic feed-back loop between the two components, as the control decisions are func-
tion of the observed disease spread, and the disease spread is impacted at its turn by the decisions
previously taken. The model was detailed and simulated for a specific measure (vaccination).
The infection and vaccination decision dynamics for contrasted scenarios were studied, and the
robustness regarding the values of the model’s parameters was assessed. Experiments showed
that decision related parameters highly impact vaccination decisions, and therefore the course of
the disease spread.

Previous studies (Bauch 2005; Fu et al. 2010) were pioneers in accounting for real-life aspects of
human behaviour regarding vaccination against human diseases, such as stochastic behaviour
and imitation. Yet, such type of study has rarely considered an explicit learning process for rep-
resenting human-decision making. Furthermore, these works had not yet been adapted for the
specificities related to the management of livestock diseases. Hence, the first model proposed
in this thesis is a significant step towards accounting for human behaviour in epidemiological
models. Additionally, its generic formalisation allows it to be relevant for a variety of epidemio-
logical models or measures. Potential extensions and uses can be further facilitated by the public
availability of the simulation code.

6.1.2 Strategies for the dynamic resource allocation of a limited resource for
controlling disease spread on a metapopulation network

The second contribution (Chapter 4) concerned the optimisation of a social planner’s decisions
regarding the allocation of a limited resource among the sub-populations of a metapopulation
network. This problem was studied for a livestock disease spreading on an animal trade net-
work. Again, for each sub-population (herd) of the network, a stochastic SIR intra-herd model
with demography was used, accounting for inter-herd animal transfers and grounded on data for
its non epidemiological components. The contribution is based on an extension to this metapop-
ulation framework of an approach initially proposed for networks without epidemiological-
demographic within-node dynamics (i.e. a node of the network corresponded to an individual,
not a sub-population). The approach consists in deriving analytic scores minimising an approx-
imated variant of an objective function and then dynamically allocating the resource to each
sub-population according to their ranking given by the sub-populations scores, and the limited
amount of resource. Such optimised scoring functions were obtained for two different objective
functions, and for two different types of resources (vaccine and treatment). Their performances
in containing disease dynamics and their relevance in practice for allocating the resource were
assessed, along with the ones of several heuristic scores. It was shown that the analytic scoring
functions can allow for a significant control of the pathogen spread, although they are not al-
ways truly optimal in practice. However, they perform in general much better than the scoring
functions based only on information on demographic or trade data, as in most of the evaluated
scenarios, information on epidemiological status appeared as necessary to achieve disease erad-
ication.

This work represents an advance into optimising socially planned interventions in a complex
system of disease propagation on a large metapopulation network. Indeed, related studies refer
either to small metapopulation networks (e.g. Mbah et al. 2011), or to large non metapopulation
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networks (e.g. Wijayanto et al. 2019). The same approach could also be used for different epi-
demiological compartmental models in the metapopulation framework. Moreover, other mea-
sures can be studied leading to other specific greedy scores, to be obtained. Finally, like for the
work in Chapter 3, the simulation code was made available in a public repository.

6.1.3 Study on farmers’ vaccination decisions integrated in a model of BVD’s
spread at a large scale

The final contribution (Chapter 5) consists of an application and extension of the integrative
model in Chapter 3, to a specific real-life disease (BVD), supposing that farmers’ decision-making
can be influenced in other ways than the one initially considered. In this application, the method-
ological framework was extended to consider that farmers can make decisions as a function of
the decisions and observations of their neighbours, not only in the animal trade network, as as-
sumed in the original generative model, but also in their geographical neighbourhood (i.e. based
on geographical proximity to other farms). Furthermore, several alternative ways on how the
neighbours are chosen were evaluated. Finally, this ongoing work highlights how the compo-
nents of the integrative model can be adapted to the study of a different type of epidemiological
model (an individual-based model) for the control of a real-life disease, in this case BVD, through
the adoption of a health measure (vaccination) that has been proven to be of interest for certain
contexts (Arnoux et al. 2021).

6.2 Perspectives

The assumptions made throughout this thesis are accompanied by some advantages and limita-
tions. Such limitations can be of inspiration for subsequent works as they can open up to perspec-
tives of interest. In the following, certain perspectives are described. Some of these perspectives
concern elements mentioned in the discussions of previous chapters, that are here summarised
or deepened, while other perspectives are more detailed as they can have a wider opening.

6.2.1 On decentralised decision-making

First, regarding the works relative to farmers’ decision-making (Chapters 3 and 5), four points
could be addressed: observation of costs, variation of the decision algorithm, parameter robust-
ness, and the consideration of more relevant health measures.

6.2.1.1 Noisy observation of costs

The epidemiological and farmer’s decision-making components are linked through an economic
cost that is function of the epidemiological dynamics following the previous decision, and on
which the following decision is taken. For updating their decisions, it was supposed that farmers
could perfectly observe the costs associated to their own previous action and the previous actions
and associated costs of their neighbours, either by observing the number of new infected animals,
or by directly observing the associated financial loss.

However, it can be a strong assumption that the observed cost precisely corresponds to the loss
associated with the true number of new infections within the period. In reality, even if farm-
ers could observe an increase/decrease in the number of infected animals (for example, through
symptomatic animals, which would already be a noised signal of the number of infected ani-
mals), they would probably not be able to exactly know the number of new infections in the
herd, i.e. distinguishing infected animals whose infection occurred within the herd, from im-
ported infected animals (whose health status could reflect a decision of the origin herd), and also
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because most of the time infection remains undetected. Furthermore, farmers most probably
only have a rough idea of the observed costs of their neighbours.

Relaxing this hypothesis could impact the observed decision patterns and the local or overall dis-
ease dynamics. To this end, the cost could be reformulated to be dependent not on the number of
true new infections, but on the increase of infected animals with respect to the previous decision
period, i.e. assuming that farmers perfectly observe prevalence, not incidence. Alternatively, an
appropriate additive noise could be accounted for in observed number of infections (or in the
observed increase in the number of infected animals) within the period. Such an additive noise
could be, for example, distributed as a binomial random variable whose parameters would need
to be calibrated.

6.2.1.2 Variations of the decision-making algorithm

An algorithm intended to represent farmers’ decision-making process was proposed and evalu-
ated within the context of both a theoretical and a real-life infection relying on real-life aspects of
human decision-making such as learning and strategic imitation. Although the algorithm con-
siders heterogeneity in decision outcome, it has a structural homogeneity (i.e. all farmers have
the same decision-making process). In particular, for vaccination, the same values for decision-
related parameters were assumed: same initial probability of vaccinating, same sensitivity to
their own observed costs and same sensitivity to the observed costs of neighbours. Aside from
the fact that it is actually unknown to what extent this algorithm reflects the true decision process
of a typical farmer, considering that such a typical farmer is a representative decision-maker for
all the farmers in the trade network might be a strong assumption, as farmers could have dif-
ferent values of decision-related parameters, or even alternative decision-making processes. Yet,
instead of considering more than one decision-making mechanism present in the metapopula-
tion, a simple option to address this limitation would be for instance to assign, on the basis of the
proposed decision-making mechanism, a low probability of applying the measure to half of the
farmers, and a high probability to the other half, which could allow for additional explorations on
the decision patterns. More generally, the hypothesis could be alleviated by considering different
decision profiles, using a distribution for each of the three previously mentioned parameters.

Another assumption in the farmers’ decision process was to consider in the same way any neigh-
bour whose observation of actions and associated costs is explicitly included in the decision. In-
deed, the neighbours are chosen uniformly at random. Furthermore, the sensitivity to the results
of any neighbour is the same.

Although this seems an acceptable hypothesis as a starting point, more potentially realistic as-
sumptions could be made. In particular, the probability of selecting a given neighbour in the
trade network could be proportional to the amount of animals purchased from the neighbour.
Such a weight could also be considered for the parameter regarding the sensitivity to neigh-
bour’s observed costs. Hence, farmer’s decision-making would be not only based on the costs
observed by his/her neighbours, but would also, in a way, take into account the impact that
the neighbours’ decisions may have on his/her own herd as a function of the amount of animals
purchased. That is, by integrating the potential risk of importing infected animals, farmers might
focus on the health practices of the herds from which they purchase most animals. A similar ap-
proach could be taken for the geographical neighbour, weighting by the geographical distance
between herds. This could, in principle, strengthen the impact that a different neighbourhood,
or a different way of choosing the neighbour, may have.

6.2.1.3 Robustness to parameter values

The robustness of the initial integrative model presented in chapter 3 to the parameters was as-
sessed through several sensitivity analysis experiments. However, the adaptation of the cost
function for vaccination decisions on BVD involved new parameters with respect to the original
generic model. The values of some of the parameters (the decision-related ones) were arbitrarily
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chosen. Therefore, results and conclusions may be different for other values of such parame-
ters. Additionally, the impact of the variation of the tested parameters of the model might have
changed in the presence of new parameters (Saltelli et al. 2008).

Hence, a new sensitivity analysis should eventually be performed for this new model, in partic-
ular on the new parameters, in order to evaluate the qualitative impact of their variation on the
conclusions of this work.

6.2.1.4 More relevant field measures

The generic formulation of the integrative model allows it to be adapted to different epidemio-
logical state structures, including other compartmental models, as evidenced by the BVD appli-
cation study. Furthermore, the adaptation could also concern the use of other types of control
measures.

However, only vaccination was explicitly modelled and simulated. Although this seemed the
most important measure to look at for endemic unregulated diseases, other measures more rel-
evant in the field could be evaluated. In particular, for the application study on BVD, a classical
measure is to test animals at birth in order to detect persistently infected calves on ear tag sam-
pling. Such a policy could be modelled (like vaccination in chapter 5) by making a decision at the
beginning of each period of time, and applying the measure at each birth occurring within this
period. Another measure consisting in changing pasture practices could be considered: delay-
ing the pasture period according to the economic losses related to infected animals. Considering
such a measure could widen the use of this model to other administrative areas, where vacci-
nation might not to be an appropriate measure for controlling BVD, e.g. the French region of
Brittany, mainly populated with dairy cattle, as BVD has been controlled in dairy herds without
using vaccination. Additionally, as opposed to countries that use vaccination as the BVD eradica-
tion plan (e.g. Germany, Belgium, Ireland, Scotland), some countries (e.g. Switzerland, Austria)
have chosen an approach without vaccination (Moennig et al. 2018), since their policies are based
on the detection of BVD through serology, and vaccination interferes with serological results.

Depending on the measure, the adaptation of the decision-making model, and in particular of
the economic-epidemiological cost, may not be so straightforward. For example, for test-and-
cull, bulk tank milk could be followed to highlight new virus circulation in a herd, and then a
decision could be taken as a function of such measurement. This could also imply that decisions
are not taken at regular time steps, but following a change in herd status based on such screening
(see section 6.2.3.2 for a discussion on this point).

6.2.2 On centralised decision-making

Second, concerning the work on centralised dynamic resource allocation on a large metapopula-
tion network (Chapter 4), three aspects could be considered: the availability of health informa-
tion, the observation of a sub-network, and the dynamic nature of the network.

6.2.2.1 Noisy or partial health information

For the resource allocation problem, it was assumed that the social planner could exactly com-
pute the scores (heuristic or optimised) based on real-time health information. However, in the
field, there is rarely such detailed information regarding the health-status of the farm, particu-
larly for endemic animal diseases. Hence, such scores may not be possible to be observed, in
particular those based on real-time intra-herd incidence or prevalence.

To overcome this limitation, an option on the basis of the work presented in this thesis would
be to build a composite score as a linear combination of uncorrelated scoring functions with no
necessarily highest performance but that are likely to be observed.
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6.2.2.2 Sub-network

Instead of having partial information, like in the previous point, it may be possible to have no
information at all for some sub-populations (health-related or not), and the resource may be hard
to allocate for some of them (deployment constraints). A less restrictive hypothesis would be to
assume that the social planner can only observe and access a sub-network for the resource alloca-
tion. This perspective could be addressed in the light of the work in Fekom et al. 2020 regarding a
restricted dynamic resource allocation (RDRA) problem, in which at each time the social planner can
allocate the resource only among random sample of reachable nodes of a (non metapopulation)
network.

6.2.2.3 Dynamic network

In chapter 4, new optimisation based scores were found for allocating a resource (vaccine or
treatment) among the sub-population of an arbitrary metapopulation network.

However, even if these new scores were evaluated through simulation on a dynamic metapopu-
lation network, they were built on a static aggregated view of such network. Although this may
be seen as an advantage, as their performance does not depend on real-time information on the
topology of the network, scores that would actually take into account the time-varying struc-
ture of the network could potentially achieve better performances that the ones observed for the
derived scores. The possibility of finding such scores could be explored with a new formal anal-
ysis. If obtained, such scores could be compared by simulation to the scores initially derived and
give insights regarding the importance of the availability of real-time topological information for
resource allocation in a metapopulation network.

6.2.3 On decentralised and centralised decision-making

6.2.3.1 Coupled centralised-decentralised decision-making

It would be of interest to revisit the assumption of separating the social planner’s and the farmers’
decision-making. This could be done by considering in the resource allocation problem, that
farmers’ behaviour is not limited to doing what the social planner finances. The objective would
be to couple the farmers’ decision model, and the social planner’s resource allocation problem
and proposed strategies. For a complete coupling, the planner should take into account farmers’
behaviour and vice-versa.

Regarding the social planner, a possible approach is to consider that a score-based strategy is
applied only on a group of sub-populations. This is not necessarily the same framework as the
restricted dynamic resource allocation (RDRA) problem, as here the social planner can observe
and have access to the whole metapopulation network, yet decides not to allocate the resource to
some sub-populations so that farmers control the pathogen spread themselves, to a certain extent.
There are several choices for the eligible group for resource allocation, yet the implications of one
or another should be carefully studied (Zhang et al. 2013). A first simple approach, recently taken
for a human theoretical disease in Meng et al. 2022, would be to allocate the resource on some
sub-populations based on a predefined score, and leave the rest of the sub-populations decide
whether to apply the measure or not, i.e. not actually coupling the decision-making processes
but only assuming they occur in a certain order. As an alternative, it could be assumed that
the social planner would only allocate the resource to the sub-populations that did not apply
a control measure for themselves. However, in both options, counter-productive effects should
be taken into account, as such options can represent an incentive for farmers not to apply the
measure for themselves. Indeed, farmers could anticipate that they can be indirectly or directly
protected from infection through the resource allocation performed by the social planner, even if
they decided not paying the price of applying the measure. Another option could be to allocate
the resource for sub-populations that did apply the measure (at the previous decision period),
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hence rewarding them. This could, in principle, be an incentive for farmers to further apply
the measure, but could cause overspending resources (e.g. the cost of increasing vaccination
could be greater than the cost of infection) (Kuga et al. 2019). Finally, a more developed strategy
for resource allocation could be based (apart from the allocation score) on the full history of
information regarding control related practices of the farmers, similarly to what is proposed for
a theoretical model of a human seasonal disease in (Ding et al. 2018).

A final important aspect to take into account on this matter is how to define decision times. For
example, if farmers and the social planner make simultaneous decisions, the social planner might
allocate resources to herds that would have applied a measure for themselves. Yet, if decisions
were interspersed, farmers may change their decision in anticipation of the social planner’s re-
source allocation policy.

Regarding farmers, independently of the strategy chosen by the social planner, a term could be
added in the cost function to decrease the probability of a farmer applying the measure if, at the
last decision step, the planner allocated the resource to the herd. Alternatively, farmers’ decision-
making could be left unmodified, and it could be explored to what extent the social planner’s
decisions influence farmers’ decisions only through the bias of variations in pathogen spread.

6.2.3.2 Decision-step optimisation: when to allocate?

Either for farmers’ or social planner’s decision-making, a fixed heuristic value was considered
for the decision-step ∆d, which for vaccination, also defines the duration of the vaccine efficacy.
Even if this assumption is not unrealistic when compared to field practice for vaccination, other
manners to determine the decision step are more appropriate depending on the control mea-
sure in mind (see section 6.2.1.4). These alternative ways of determining decision times rely on
considering that decisions can be made asynchronously across herds. A first option would be
to consider a decision step for each herd that is determined adaptively as a function of an ex-
ternal input. A second, more elaborate option, would be to build an optimisation procedure to
determine when to take decisions. Such methodological variations of the model are not straight-
forward, especially when considering the second option (i.e. determine the decision-step by
optimisation) together with the problem considered in this thesis (i.e. determine the resource
allocation by optimisation).

6.3 Conclusion

The work presented in this thesis provides insights on modelling and optimisation of the control
of pathogens spreading on animal trade networks, when such control is carried out voluntarily
by farmers or by a central authority. Through identifying and exploiting the bridges between
epidemiology and fields related to control decisions in a multi-agent setting, important questions
and elements for such control at a large scale have been raised and addressed, either to model
the voluntary behaviour of system agents, when they are humans, or to optimise the control of
the system as a whole.

Research works on this topic are useful to better understand and predict real life phenomena
that are not only dependent on biological processes, but also on other aspects such as human
behaviour or governmental decision-making. Such better understanding and predictions have
the potential of improving coordination among the different actors of the system. In particular,
regarding the management of livestock diseases, a better coordination could ultimately account
for the practices, interests and motivations of farmers, and at the same time allow for a better
global control of the pathogen spread on complex networks through animal trade.

To this end, an integrative point of view seems to be particularly appropriate for such a cross-
sectional problem. This should account not only for approaches from epidemiological field, but
also from all the fields that study, in some way or another, decision-making. Indeed, in epidemi-
ology, the control of pathogens could be improved by the expertise of the other fields regarding
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decision-making, while such fields could be enriched by the complexity of the problems dealt
with in epidemiology.
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7.1 Contexte

L’objectif principal de cette thèse était d’identifier, d’adapter et de construire les approches appro-
priées pour modéliser et optimiser efficacement l’adoption de mesures de gestion pour limiter
la propagation d’une maladie sur un grand réseau de métapopulation. Le réseau a été spéci-
fiquement considéré comme un réseau commercial de bétail à travers lequel la maladie peut se
propager entre fermes dans une certaine région.

7.1.1 Gestion dynamique de la propagation d’une maladie sur un réseau com-
plexe

La structure des contacts entre individus est un élément clé à prendre en compte pour mieux
comprendre la propagation de maladies infectieuses et finalement pour la contrôler (Keeling et
al. 2005). Ceci est particulièrement vrai pour la transmission de maladies entre plusieurs sous-
populations sur une grande zone géographique. Bien que les agents pathogènes puissent être
transmis entre les sous-populations de plusieurs façons, en fonction de l’agent pathogène et du
contexte (par exemple, environnement partagé, vecteurs animaux sauvages), l’une des voies de
transmission les plus courantes est le déplacement d’individus infectés (Danon et al. 2011).
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En effet, les mouvements d’individus entre différentes sous-populations forment une structure
appelée réseau de métapopulation (Keeling et al. 2005), dans laquelle les noeuds sont les sous-
populations et les liens sont représentés par les mouvements. Un tel réseau est dirigé, car les indi-
vidus se déplacent d’une sous-population à l’autre; pondéré, car il y a un poids (flux d’individus)
associé à chaque lien; et dynamique, car les flux changent dans le temps (les liens ne sont pas
pérennes et/ou le nombre d’individus qui se déplacent entre deux sous-populations peut varier
dans le temps.). De plus, lorsque les coordonnées spatiales sont explicitement prises en compte,
les liens peuvent connecter des sous-populations même s’il n’y a pas de proximité géographique
entre elles (réseau spatial).

En particulier, ce contexte permet de décrire deux phénomènes spécifiques. D’abord, l’introduction
d’un agent pathogène dans une sous-population où il n’était pas présent, appelé événement de
colonisation (Donahue et al. 2008). Le second type de phénomène est la persistance de la propa-
gation d’un pathogène à grande échelle malgré son extinction à petite échelle, ce que l’on appelle
un rescue effect (effet de sauvetage) (Brown et al. 1977). Il s’agit d’un concept bien connu en écolo-
gie: des épidémies de courte durée ont lieu au niveau des sous-populations, mais la maladie se
maintient à grande échelle en raison des interactions entre les sous-populations.

La question de la gestion d’une maladie se propageant sur un réseau aussi complexe se pose rapi-
dement. Le système est intrinsèquement dynamique (en raison des mouvements des individus,
des changements démographiques des sous-populations au fil du temps et de la propagation
de la maladie), tout comme peut l’être la prise de décision. En effet, la gestion de maladies in-
fectieuses dans la vie réelle est généralement effectuée par des décisions répétées dans le temps
(campagnes de vaccination, restrictions temporelles des mouvements, etc.)

De plus, étant donné que le réseau est vaste et englobe de nombreuses sous-populations, les
décisions concernant l’adoption de mesures de gestion pour réduire la propagation de la mal-
adie peuvent être prises à deux niveaux différents. D’une part, s’il existe un agent décisionnel
humain associé à chaque sous-population du système, nous sommes en présence d’un prise de dé-
cision humaine décentralisée. D’autre part, la gestion peut être assurée par un planificateur central,
généralement un planificateur social. On parle alors de prise de décision centralisée du planifica-
teur social. La distinction entre ces deux types de prise de décision est importante car, selon le
décideur, les décisions répondront à des motivations différentes. En outre, la prise de décision
humaine décentralisée peut naturellement introduire un comportement stratégique et une mise
en œuvre hétérogène des mesures de gestion parmi les nombreuses sous-populations du système
(Kreps 1997).

Dans ce contexte, l’utilisation d’approches mathématiques appropriées pour décrire et contrôler
un tel système s’avère très utile. En particulier, les modèles épidémiologiques mécanistes peu-
vent être des instruments pour représenter et comprendre le système complexe impliqué dans
la propagation des agents pathogènes (Keeling et al. 2011). Comme le comportement humain
peut avoir un rôle majeur dans la propagation des maladies, en particulier pour celles dont la
gestion est volontaire, la prise en compte des décisions liées à la gestion de la propagation peut
augmenter la précision de ces modèles, et donc aider à mieux comprendre et prédire cette propa-
gation. De plus, sur la base de ces modèles mécanistes, il est possible de concevoir des stratégies
pour la gestion de la propagation de maladies infectieuses (Manfredi et al. 2013). Cependant,
dans le processus de modélisation et de la gestion d’un tel système, des défis méthodologiques
se posent lorsqu’il s’agit de prendre en compte les décisions dynamiques, qu’elles soient prises
par un planificateur social ou par les agents humains du système.

Bien que la modélisation mathématique mécaniste soit de plus en plus utilisée dans l’étude des
maladies infectieuses, la plupart des modèles existants dans la littérature ne font pas référence
aux décisions volontaires d’agents en interaction (Wang et al. 2016), ou ils ne considèrent pas que
le processus de prise de décision est dynamique (Rat-Aspert et al. 2010). En outre, les approches
classiques considèrent les humains comme des particules (Manfredi et al. 2013), ou lorsque les as-
pects économiques sont pris en compte les agents sont considérés comme parfaitement rationnels
(par exemple Bauch et al. 2004; Zhang et al. 2012), ce qui est une hypothèse forte et controversée
pour la prise de décision humaine (Wang et al. 2016). Enfin, les influences entre les décisions des
agents sont souvent négligées (Shi et al. 2019), malgré le fait qu’il s’agisse d’une caractéristique



7.1. MALADIES ENDÉMIQUES DU BÉTAIL SE PROPAGEANT PAR LE BIAIS DU COMMERCE153

importante du comportement humain, notamment en ce qui concerne la gestion des maladies du
bétail (Hidano et al. 2018).

Par conséquent, du point de vue de la modélisation, un premier défi consistait à construire un
cadre qui formalise de manière appropriée la relation entre la dynamique de la propagation d’une
maladie sur un grand réseau de métapopulation et la dynamique de l’adoption volontaire de
mesures de gestion dans chaque sous-population, tout en tenant compte de considérations psy-
chologiques, cognitives ou économiques pertinentes.

Un deuxième défi consistait à développer ou adapter des méthodes qui puissent être effective-
ment appliquées pour gérer de manière optimale la propagation de la maladie sur le réseau.
Parmi les considérations à prendre en compte, l’une des plus importantes concernait la complex-
ité computationnelle du problème. En effet, il s’agissait du principal défi pour la résolution d’un
problème d’optimisation dans le cadre actuel, en raison de la grande dimension du réseau (Pellis
et al. 2015).

Pour cette raison, les recherches sur ce sujet se sont principalement concentrées sur deux types
de situations, soit le réseau est petit (par exemple Chernov et al. 2020; Viet et al. 2018), soit il s’agit
d’un grand réseau d’individus, c’est-à-dire qu’il ne s’agit pas d’une métapopulation où chaque
noeud du système a une dynamique interne propre (par exemple Lorch et al. 2018; Zhang et al.
2015). Dans le premier cas, les études se fondent le plus souvent sur les processus de décision
de Markov (MDP) (Puterman 2014) ou sur la théorie des jeux (Myerson 1997). Dans le second,
les auteurs ont généralement recours à des approximations de type champ moyen inspirées de la
physique (Lasry et al. 2007), qui peuvent être inappropriées si l’on souhaite prendre en compte
une rationalité limitée ou des hétérogénéités entre les agents. Cela peut concerner par exemple
l’influence qu’un agent peut avoir sur les décisions des autres agents, qui peut être déterminée
par sa place dans le réseau.

Les avancées dans ces deux objectifs, modélisation et optimisation, contribuent à mieux com-
prendre les différentes caractéristiques du système complexe impliqué dans la propagation des
agents pathogènes sur un tel réseau, et finalement à le contrôler efficacement.

7.1.2 Maladies endémiques du bétail se propageant par le biais du commerce
des animaux

Les modalités de transmission des maladies entre individus sont proches que l’on considère des
humains ou des animaux (faune sauvage ou bétail), mais quelques différences existent néan-
moins. Tout d’abord, les humains ont tendance à se déplacer librement entre les foyers, les
lieux de travail, les lieux d’étude, les villes, les pays, etc., tandis que le bétail reste générale-
ment longtemps dans une exploitation avant d’en rejoindre une autre par le biais du commerce
d’animaux (Brooks-Pollock et al. 2015). Deuxièmement, les considérations économiques peuvent
être plus centrales pour la gestion des maladies du bétail que pour les maladies humaines, où
l’aspect santé publique prime généralement sur le reste. Ainsi, les avancées méthodologiques
pour la gestion des premières ont en principe plus de chances de trouver l’adhésion des agents
de terrain.

Suite à la crise de l’encéphalopathie spongiforme bovine (communément appelée maladie de la
vache folle) qui a eu lieu notamment au Royaume-Uni entre 1986 et 2000, les pays européens
maintiennent des bases de données nationales concernant les mouvements de bovins entre ex-
ploitations. En effet, les mouvements d’animaux occasionnés par les échanges constituent une
voie majeure de transmission des agents pathogènes du bétail entre les exploitations (Fèvre et al.
2006), par exemple la paratuberculose (Beaunée et al. 2015), la fièvre aphteuse (FMD) (Ferguson
et al. 2001) et la tuberculose bovine (bTB) (Donnelly et al. 2003).

Ces échanges se font directement entre deux exploitations, ou peuvent passer par des structures
intermédiaires. Les échanges directs concernent généralement des exploitations géographique-
ment proches, de sorte que la propagation de la maladie est surtout concentrée dans une petite
zone géographique. Par ailleurs, les mouvements d’animaux peuvent se faire via des marchés



154 CHAPTER 7. RÉSUMÉ EN FRANÇAIS: CONTEXTE ET CONTRIBUTIONS DE LA THÈSE

ou des centres de rassemblement. Ces structures facilitent le commerce d’animaux à une grande
échelle géographique, en augmentant les échanges d’animaux provenant d’une exploitation géo-
graphiquement éloignée de l’exploitation de destination. Elles augmentent donc encore le risque
de transmission d’agents pathogènes sur de vastes zones (Robinson et al. 2007). La figure 7.1 il-
lustre l’exemple d’un réseau commercial de bovins formé par les mouvements d’animaux laitiers
entre les troupeaux de bovins, qui s’est produit en 2009 en France selon la base de données na-
tionale d’identification (BDNI), qui enregistre l’histoire de vie de chaque bovin de la naissance
à la mort. Cette figure met en évidence les échanges d’animaux géographiquement proches et
éloignés qui peuvent avoir lieu dans un réseau commercial d’animaux, et par lesquels une prop-
agation de la maladie est susceptible d’atteindre l’ensemble du territoire français.

Figure 7.1: Flux commerciaux de bovins (animaux laitiers uniquement) pour l’année 2009 en France, à partir
de la base de données française d’identification des bovins. Chaque nœud est une commune (la plus petite
unité administrative française). Source: Gaël Beaunée.

Une maladie qui se propage par le biais des échanges entre animaux a de fortes chances de de-
venir endémique dans une zone donnée, c’est-à-dire présente à une prévalence donnée (générale-
ment modérée) dans l’ensemble de la population pendant de longues périodes (Carslake et al.
2011). Comme mentionné pour le cadre général des métapopulations, dans les métapopulations
animales, la persistance de la maladie peut être observée à grande échelle par le biais de deux
processus. Premièrement, une longue durée d’infection dans une sous-population donne lieu à
une longue infection de la métapopulation. Ensuite, la persistance peut être observée s’il existe
un rescue effect dû aux interactions entre les sous-populations (voir par exemple Jesse et al. 2008).

Par ailleurs, une maladie peut présenter une dynamique épidémique, ce qui signifie par définition
que l’on observe une propagation importante et rapide sur une courte période de temps. Des
exemples de ce type sont la fièvre aphteuse (Ferguson et al. 2001), la peste porcine africaine
(PPA) (Nigsch et al. 2013), et la grippe aviaire (Benincà et al. 2020). Pour une maladie donnée, la
distinction entre dynamique endémique et dynamique épidémique se fait à partir des données
de surveillance. Or, les données de surveillance détaillées sont principalement disponibles pour
des maladies qui ont déjà été qualifiées d’épidémiques (Carslake et al. 2011).

Une fois qu’une maladie est associée à une dynamique épidémique, des efforts politiques impor-
tants sont déployés afin de l’éradiquer. En particulier, les politiques publiques ciblent générale-
ment les maladies épidémiques du bétail en réglementant leur gestion de manière obligatoire.
Dans ce cas, on dit que la maladie est réglementée. En revanche, les maladies endémiques in-
téressent généralement moins l’opinion publique et les décideurs politiques. Par conséquent,
leur gestion est souvent laissée aux initiatives individuelles ou locales, et n’est donc pas obliga-
toire, ce qui fait que les maladies endémiques sont le plus souvent non réglementées.
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Néanmoins, comme elles persistent sur de longues périodes, les maladies endémiques peuvent
avoir une incidence cumulée importante, entraînant une réduction de la rentabilité économique
des exploitations et du bien-être des animaux (Tomley et al. 2009). En outre, les zoonoses (les
maladies infectieuses qui qui peuvent se propager entre animaux et humains) jouent un rôle ma-
jeur dans le nombre croissant de maladies humaines émergentes (Lefrançois et al. 2014). En effet,
au moins 60% des maladies infectieuses humaines émergentes sont des zoonoses et, en partic-
ulier, plus de 30% des zoonoses infectieuses émergentes sont associées aux animaux destinés à
l’alimentation (Otte et al. 2021). Par conséquent, la gestion de maladies endémiques du bétail
représente un défi majeur pour la santé animale et pour des systèmes agroalimentaires durables,
en particulier dans un contexte de sous-populations qui échangent des animaux, et de maladies
endémiques pour lesquelles la gestion n’est pas obligatoire.

La prise de décision pour l’adoption d’une ou plusieurs mesures sanitaires est donc intéres-
sante pour évaluer la gestion des maladies endémiques animales. Les objectifs de production
des éleveurs n’étant pas seulement motivés par la santé animale mais aussi par des critères de
temps de travail, de productivité, de rentabilité, etc., l’hétérogénéité de la mise en œuvre des
mesures est accrue (Ezanno et al. 2020). Par exemple, un décideur central peut décider d’isoler
un troupeau si cela implique une réduction globale de la maladie, à condition que ce soit l’objectif
visé. Cependant, si les éleveurs décident eux-mêmes d’isoler ou non leur troupeau, ils prendront
cette décision uniquement sur la base de leurs propres critères, ce qui n’est généralement pas
optimal au niveau collectif (Krebs et al. 2018).

Pour les maladies non réglementées, il est naturel de penser que les décisions concernant la ges-
tion du troupeau sont principalement prises par les agriculteurs eux-mêmes. Pourtant, les dé-
cisions relatives aux mesures de lutte peuvent également être prises à un niveau centralisé, ne
serait-ce que par des organisations locales composées de plusieurs agriculteurs. Dans certaines
régions administratives françaises, par exemple, les GDS (groupements de défense sanitaire)
peuvent s’engager dans divers types d’actions de gestion pour réduire la prévalence locale d’une
maladie. Ces actions peuvent impliquer, par exemple, l’allocation de ressources sanitaires pour
intervenir dans le système sans exiger de tous les agriculteurs qu’ils appliquent la mesure, ou
le recours à des campagnes pour encourager l’adoption volontaire de la mesure par les agricul-
teurs. L’intervention peut également se faire en facilitant l’accès aux informations sur le statut
infectieux des troupeaux, afin que les éleveurs puissent prendre des décisions plus éclairées.

En outre, de nombreuses mesures de gestion ou de prévention sont possibles (application de
vaccins ou de traitements, tests et abattage des animaux positifs, isolement des animaux infectés,
etc.) Il peut être difficile de choisir, tant du point de vue de l’éleveur que du planificateur social,
entre les différentes options dont l’efficacité n’est pas toujours connue ou comparable. De plus,
anticiper l’impact de ces choix individuels ou collectifs sur la dynamique à grande échelle des
maladies infectieuses reste un défi.

7.2 Contributions

Dans le contexte décrit ci-dessus, cette thèse a proposé deux contributions méthodologiques prin-
cipales et une contribution concernant une étude d’application. Dans ce qui suit, chacune de ces
contributions est brièvement résumée.

7.2.1 Modèle intégratif pour la propagation d’agents pathogènes sur un réseau
de commerce d’animaux rendant compte des décisions dynamiques des
agriculteurs concernant l’adoption d’une mesure sanitaire

La première contribution (chapitre 3) aborde le défi de la modélisation, à travers le développe-
ment d’un nouveau modèle intégratif de propagation d’agents pathogènes sur un réseau de mé-
tapopulation de commerce animal, qui tient compte des décisions volontaires des agriculteurs
concernant l’adoption d’une mesure de gestion sanitaire contre l’infection dans leur propre trou-
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peau. La composante épidémiologique est construite sur la base d’un modèle stochastique SIR
intra-troupeau avec démographie, qui tient compte des transferts d’animaux entre troupeaux.
La composante décisionnelle consiste à poser un problème de décision dynamique sous incer-
titude et à proposer un mécanisme de décision dynamique qui tient compte du comportement
stochastique des éleveurs, de l’apprentissage et de la dynamique d’imitation stratégique. Ainsi,
il existe une boucle de rétroaction dynamique entre les deux composantes, car les décisions de
gestion sont fonction de la propagation observée de la maladie, et la propagation de la maladie
est à son tour impactée par les décisions prises précédemment. Le modèle a été détaillé et simulé
pour une mesure spécifique (la vaccination). Les dynamiques d’infection et des décisions de vac-
cination pour des scénarios contrastés ont été étudiées, et la robustesse concernant les valeurs
des paramètres du modèle a été évaluée. Les expériences ont montré que les paramètres liés aux
décisions ont un impact important sur les décisions de vaccination, et donc sur l’évolution de la
propagation de la maladie.

Des études précédentes (Bauch 2005; Fu et al. 2010) ont été pionnières dans la prise en compte des
aspects réels du comportement humain concernant la vaccination contre les maladies humaines,
tels que le comportement stochastique et l’imitation. Pourtant, ce type d’étude a rarement pris en
compte un processus d’apprentissage explicite pour représenter la prise de décision humaine. De
plus, ces travaux n’avaient pas encore été adaptés aux spécificités liées à la gestion des maladies
du bétail. Ainsi, le premier modèle proposé dans cette thèse est un pas important vers la prise
en compte du comportement humain dans les modèles épidémiologiques. De plus, sa formalisa-
tion générique lui permet d’être pertinent pour une variété de modèles ou de mesures épidémi-
ologiques. Les extensions et utilisations potentielles peuvent être facilitées par la disponibilité
publique du code de simulation.

Les travaux de ce chapitre ont été publiés dans Scientific Reports (Cristancho Fajardo et al. 2021).

7.2.2 Stratégies pour l’allocation dynamique d’une ressource limitée pour la
gestion de la propagation des maladies sur un réseau de métapopula-
tion

La deuxième contribution (chapitre 4) concernait l’optimisation des décisions d’un planifica-
teur social concernant l’allocation d’une ressource limitée entre les sous-populations d’un réseau
de métapopulation. Ce problème a été étudié pour une maladie du bétail se propageant sur
un réseau de commerce d’animaux. Là encore, pour chaque sous-population (troupeau) du
réseau, un modèle stochastique SIR intra-troupeau avec démographie a été utilisé, tenant compte
des transferts d’animaux entre troupeaux et s’appuyant sur des données pour ses composantes
non épidémiologiques. La contribution est basée sur l’extension à ce cadre de métapopula-
tion d’une approche initialement proposée pour les réseaux sans dynamique épidémiologique-
démographique intra-nœud (i.e. un nœud du réseau correspondait à un individu et non à une
sous-population). L’approche que nous avons proposée consiste à dériver des scores analy-
tiques minimisant une approximation d’une fonction objectif, puis à allouer dynamiquement
la ressource à chaque sous-population en fonction de leur classement donné par les scores des
sous-populations, et de la quantité limitée de la ressource. De telles fonctions de score optimisées
ont été obtenues pour deux fonctions objectives différentes (le nombre d’animaux infectés dans
la métapopulation et le nombre de troupeaux infectés) et pour deux types de ressources dif-
férents (vaccin et traitement). Leurs performances pour contenir la propagation de la maladie
et leur pertinence en pratique pour l’allocation des ressources ont été évaluées, ainsi que celles
de plusieurs scores heuristiques. Il a été démontré que les fonctions de scores que nous avons
obtenues analytiquement peuvent permettre une meilleure gestion de la propagation de l’agent
pathogène, bien qu’elles ne soient pas toujours vraiment optimales en pratique. Cependant, elles
sont en général beaucoup plus performantes que les fonctions de score basées uniquement sur
des informations démographiques ou topologiques, car dans la plupart des scénarios évalués,
les informations sur le statut épidémiologique sont apparues comme nécessaires pour parvenir
à éradiquer la maladie.
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Ce travail représente une avancée dans l’optimisation des interventions socialement planifiées
dans un système complexe de propagation de maladies sur un grand réseau de métapopulation.
En effet, les études similaires se réfèrent soit à de petits réseaux de métapopulation (par exemple,
Mbah et al. 2011), soit à de grands réseaux d’individus (par exemple, Wijayanto et al. 2019).
La même approche pourrait également être utilisée pour différents modèles épidémiologiques
compartimentaux dans le cadre des métapopulations. De plus, d’autres mesures peuvent être
étudiées conduisant à d’autres scores analytiques spécifiques, à obtenir. Enfin, comme pour le
travail du chapitre 3, le code de simulation a été mis à disposition dans un dépôt public.

Ce chapitre a été publié dans le Journal of the Royal Society Interface (Cristancho-Fajardo et al.
2022).

7.2.3 Etude sur les décisions de vaccination des agriculteurs intégrées dans
un modèle de propagation de la diarrhée virale bovine à grande échelle

La dernière contribution (chapitre 5) consiste en une application et une extension du modèle
intégratif du chapitre 3, à une maladie spécifique de la vie réelle, la diarrhée virale bovine (BVD),
en supposant que la prise de décision des agriculteurs peut être influencée de manière différente
de celle initialement considérée. Dans cette application, le cadre méthodologique a été étendu
pour considérer que les agriculteurs peuvent prendre des décisions en fonction des décisions
et des observations de leurs voisins, non seulement dans le réseau de commerce des animaux,
comme le suppose le modèle générique original, mais aussi dans leur voisinage géographique (en
fonction de la proximité géographique avec d’autres exploitations). En outre, plusieurs méthodes
alternatives sur la façon dont les voisins sont choisis ont été évaluées. Enfin, ce travail en cours
met en évidence la façon dont les composantes du modèle intégratif peuvent être adaptées à
l’étude d’un type différent de modèle épidémiologique (un modèle basé sur l’individu) pour
la gestion d’une maladie réelle, dans ce cas la BVD, par l’adoption d’une mesure sanitaire (la
vaccination) qui s’est avérée être intéressante pour certains contextes (Arnoux et al. 2021).

Le travail de chapitre a été consolidé et soumis pour publication dans Veterinary Research.

7.3 Conclusion

Le travail réalisé dans cette thèse fournit des informations sur la modélisation et l’optimisation de
la gestion des agents pathogènes se propageant sur les réseaux de commerce animal, lorsque cette
gestion est effectué volontairement par les éleveurs ou par une autorité centrale. En identifiant et
en exploitant les ponts entre l’épidémiologie et les domaines liés aux décisions de gestion dans
un cadre multi-agents, des questions et des éléments importants pour une telle gestion à grande
échelle ont été soulevés et traités, soit pour modéliser le comportement volontaire des agents du
système, lorsqu’il s’agit d’humains, soit pour optimiser la gestion du système dans son ensemble.

Les travaux de recherche sur ce sujet sont utiles pour mieux comprendre et prédire les phénomènes
de la vie réelle qui ne dépendent pas seulement des processus biologiques, mais aussi d’autres
aspects tels que le comportement humain ou la prise de décision par les pouvoirs publics. Cette
meilleure compréhension et ces prévisions ont le potentiel d’améliorer la coordination entre les
différents acteurs du système. En particulier, en ce qui concerne la gestion des maladies du bétail,
une meilleure coordination pourrait tenir compte des pratiques, des intérêts et des motivations
des agriculteurs, tout en permettant une meilleure gestion globale de l’agent pathogène qui se
propage sur des réseaux complexes par le biais du commerce des animaux.

À cette fin, un point de vue intégratif semble particulièrement approprié pour un problème
aussi transversal. Il doit prendre en compte non seulement les approches issues du domaine
de l’épidémiologie, mais aussi de tous les domaines qui étudient, d’une manière ou d’une autre,
la prise de décision. En effet, en épidémiologie, la gestion des agents pathogènes pourrait être
améliorée par l’expertise des autres domaines concernant la prise de décision, tandis que ces
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domaines pourraient s’enrichir de la complexité des problèmes traités en épidémiologie.
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Szabó, G. and Tőke, C. (1998). “Evolutionary prisoner’s dilemma game on a square lattice”. In:

Physical Review E 58.1, p. 69.
Tago, D., Hammitt, J. K., Thomas, A., and Raboisson, D. (2016). “The impact of farmers’ strategic

behavior on the spread of animal infectious diseases”. In: PLOS One 11.6, e0157450.
Tanaka, M. and Tanimoto, J. (2021). “Proposal of an apposite strategy-updating rule for the vacci-

nation game where hubs refer to hubs and lower-degree agents refer to lower-degree agents.”
In: Biosystems 209, p. 104532. ISSN: 0303-2647. DOI: https://doi.org/10.1016/j.
biosystems.2021.104532.

Tanimoto, J. (2021). “Evolutionary Game Theory: Fundamentals and Applications for Epidemi-
ology”. en. In: Sociophysics Approach to Epidemics. Ed. by Tanimoto, J. Evolutionary Economics
and Social Complexity Science. Singapore: Springer, pp. 13–60. ISBN: 978-981-336-481-3. DOI:
10.1007/978-981-33-6481-3_2.

Tanner, M. W., Sattenspiel, L., and Ntaimo, L. (2008). “Finding optimal vaccination strategies un-
der parameter uncertainty using stochastic programming”. In: Mathematical biosciences 215.2,
pp. 144–151.

Taylor, D., Myers, S. A., Clauset, A., Porter, M. A., and Mucha, P. J. (2017). “Eigenvector-based cen-
trality measures for temporal networks”. In: Multiscale Modeling & Simulation 15.1, pp. 537–
574.

Teitelbaum, J. and Zeiler, K. (2018). Research handbook on behavioral law and economics. eng. Research
handbooks in law and economics. Northampton, MA: Edward Elgar Pub. ISBN: 978-1-84980-
567-4.

Terry, A. J. (2010). “Pulse vaccination strategies in a metapopulation SIR model”. In: Mathematical
Biosciences & Engineering 7.2, p. 455.

Thompson, R. N., Gilligan, C. A., and Cunniffe, N. J. (2018). “Control fast or control smart: When
should invading pathogens be controlled?” In: PLoS computational biology 14.2, e1006014.

Tokic, M. and Palm, G. (2011). “Value-Difference Based Exploration: Adaptive Control between
Epsilon-Greedy and Softmax”. en. In: KI 2011: Advances in Artificial Intelligence. Ed. by Bach, J.
and Edelkamp, S. Vol. 7006. Series Title: Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp. 335–346. DOI: 10.1007/978-3-642-24455-1_33.

Tomley, F. M. and Shirley, M. W. (2009). “Livestock infectious diseases and zoonoses”. In: Philo-
sophical Transactions of the Royal Society B: Biological Sciences 364, pp. 2637–2642.

Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M., and Faloutsos, C. (2012). “Gelling, and
melting, large graphs by edge manipulation”. In: Proceedings of the 21st ACM international con-
ference on Information and knowledge management. CIKM ’12. New York, NY, USA: Association
for Computing Machinery, pp. 245–254. ISBN: 978-1-4503-1156-4. DOI: 10.1145/2396761.
2396795.

Tuyls, K. and Nowé, A. (2005). “Evolutionary game theory and multi-agent reinforcement learn-
ing”. en. In: The Knowledge Engineering Review 20.1. Publisher: Cambridge University Press,
pp. 63–90. ISSN: 1469-8005, 0269-8889. DOI: 10.1017/S026988890500041X.

Van Schepdael, A., Carlier, A., and Geris, L. (2016). “Sensitivity analysis by design of experi-
ments”. In: Uncertainty in Biology. Springer, pp. 327–366.

https://doi.org/10.1111/1477-9552.12249
https://doi.org/10.1016/j.tvjl.2009.05.020
https://doi.org/10.1016/j.tvjl.2009.05.020
https://doi.org/10.1097/00004703-200512000-00009
https://doi.org/https://doi.org/10.1016/j.biosystems.2021.104532
https://doi.org/https://doi.org/10.1016/j.biosystems.2021.104532
https://doi.org/10.1007/978-981-33-6481-3_2
https://doi.org/10.1007/978-3-642-24455-1_33
https://doi.org/10.1145/2396761.2396795
https://doi.org/10.1145/2396761.2396795
https://doi.org/10.1017/S026988890500041X


172 BIBLIOGRAPHY

Vega-Redondo, F. (2003). Economics and the Theory of Games. en. Cambridge University Press. ISBN:
978-0-521-77590-8.

Venkatramanan, S., Chen, J., Fadikar, A., Gupta, S., Higdon, D., Lewis, B., Marathe, M., Mortveit,
H., and Vullikanti, A. (2019). “Optimizing spatial allocation of seasonal influenza vaccine un-
der temporal constraints”. en. In: PLOS Computational Biology 15.9. Publisher: Public Library
of Science, e1007111. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1007111.

Vergu, E., Busson, H., and Ezanno, P. (2010). “Impact of the Infection Period Distribution on
the Epidemic Spread in a Metapopulation Model”. en. In: PLOS ONE 5.2. Publisher: Public
Library of Science, e9371. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0009371.

Vernon, M. C. (2011). “Demographics of cattle movements in the United Kingdom”. In: BMC
veterinary research 7.1, pp. 1–16.

Vernon, M. C. and Keeling, M. J. (2009). “Representing the UK’s cattle herd as static and dynamic
networks”. In: Proceedings of the Royal Society B: Biological Sciences 276.1656, pp. 469–476.

Viet, A.-F., Fourichon, C., Seegers, H., and Guihenneuc-Jouyaux, C. (2004). “A model of the
spread of the bovine viral-diarrhea virus within a dairy herd”. In: Preventive veterinary medicine
63, pp. 211–36. DOI: 10.1016/j.prevetmed.2004.01.015.

Viet, A.-F., Krebs, S., Rat-Aspert, O., Jeanpierre, L., Belloc, C., and Ezanno, P. (2018). “A mod-
elling framework based on MDP to coordinate farmers’ disease control decisions at a regional
scale”. en. In: PLOS ONE 13.6. Ed. by Zia, A., e0197612. ISSN: 1932-6203. DOI: 10.1371/
journal.pone.0197612.

Voinson, M., Billiard, S., and Alvergne, A. (2015). “Beyond Rational Decision-Making: Modelling
the Influence of Cognitive Biases on the Dynamics of Vaccination Coverage”. en. In: PLOS
ONE 10.11. Ed. by Bauch, C. T., e0142990. ISSN: 1932-6203. DOI: 10.1371/journal.pone.
0142990.

Volkova, V., Howey, R., Savill, N., and Woolhouse, M. (2010). “Potential for transmission of infec-
tions in networks of cattle farms”. In: Epidemics 2.3, pp. 116–122.

Wallace, C. and Young, H. P. (2015). “Chapter 6 - Stochastic Evolutionary Game Dynamics”. en.
In: Handbook of Game Theory with Economic Applications. Ed. by Young, H. P. and Zamir, S.
Vol. 4. Elsevier, pp. 327–380. DOI: 10.1016/B978-0-444-53766-9.00006-9.

Wang, J., He, J., Yu, F., Guo, Y., Li, M., and Chen, W. (2020). “Realistic decision-making process
with memory and adaptability in evolutionary vaccination game”. en. In: Chaos, Solitons &
Fractals 132, p. 109582. ISSN: 09600779. DOI: 10.1016/j.chaos.2019.109582.

Wang, Y., Chakrabarti, D., Wang, C., and Faloutsos, C. (2003). “Epidemic spreading in real net-
works: an eigenvalue viewpoint”. In: 22nd International Symposium on Reliable Distributed Sys-
tems, 2003. Proceedings. ISSN: 1060-9857, pp. 25–34. DOI: 10.1109/RELDIS.2003.1238052.

Wang, Z., Bauch, C. T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathe,
M., and Zhao, D. (2016). “Statistical physics of vaccination”. In: Physics Reports 664, pp. 1–113.

Wang, Z., Moreno, Y., Boccaletti, S., and Perc, M. (2017). “Vaccination and epidemics in net-
worked populations—An introduction”. In: Chaos, Solitons & Fractals 103, pp. 177–183. ISSN:
0960-0779. DOI: https://doi.org/10.1016/j.chaos.2017.06.004.

Wang, Z., Szolnoki, A., and Perc, M. (2012). “If players are sparse social dilemmas are too: Impor-
tance of percolation for evolution of cooperation”. In: Scientific Reports 2, p. 369.

Wijayanto, A. W. and Murata, T. (2019). “Effective and scalable methods for graph protection
strategies against epidemics on dynamic networks”. In: Applied Network Science 4.1, pp. 1–31.

Xia, S. and Liu, J. (2014). “A belief-based model for characterizing the spread of awareness and its
impacts on individuals’ vaccination decisions”. In: Journal of The Royal Society Interface 11.94.
Publisher: Royal Society, p. 20140013. DOI: 10.1098/rsif.2014.0013.

Xuan, P. and Lesser, V. (2002). “Multi-agent policies: from centralized ones to decentralized ones”.
In: Proceedings of the first international joint conference on Autonomous agents and multiagent
systems: part 3. AAMAS ’02. New York, NY, USA: Association for Computing Machinery,
pp. 1098–1105. ISBN: 978-1-58113-480-3. DOI: 10.1145/545056.545078.

Zaric, G. and Brandeau, M. (2001). “Resource allocation for epidemic control over short time
horizons”. In: Mathematical Biosciences 171.1, pp. 33–58. DOI: 10.1016/S0025-5564(01)
00050-5.

Zhan, J., Rafalski, T., Stashkevich, G., and Verenich, E. (2017). “Vaccination allocation in large
dynamic networks”. In: Journal of Big Data 4.1, pp. 1–17.

https://doi.org/10.1371/journal.pcbi.1007111
https://doi.org/10.1371/journal.pone.0009371
https://doi.org/10.1016/j.prevetmed.2004.01.015
https://doi.org/10.1371/journal.pone.0197612
https://doi.org/10.1371/journal.pone.0197612
https://doi.org/10.1371/journal.pone.0142990
https://doi.org/10.1371/journal.pone.0142990
https://doi.org/10.1016/B978-0-444-53766-9.00006-9
https://doi.org/10.1016/j.chaos.2019.109582
https://doi.org/10.1109/RELDIS.2003.1238052
https://doi.org/https://doi.org/10.1016/j.chaos.2017.06.004
https://doi.org/10.1098/rsif.2014.0013
https://doi.org/10.1145/545056.545078
https://doi.org/10.1016/S0025-5564(01)00050-5
https://doi.org/10.1016/S0025-5564(01)00050-5


BIBLIOGRAPHY 173

Zhang, H.-F., Wu, Z.-X., Xu, X.-K., Small, M., Wang, L., and Wang, B.-H. (2013). “Impacts of
subsidy policies on vaccination decisions in contact networks”. en. In: Physical Review E 88.1,
p. 012813. ISSN: 1539-3755, 1550-2376. DOI: 10.1103/PhysRevE.88.012813.

Zhang, H., Fu, F., Zhang, W., and Wang, B. (2012). “Rational behavior is a ‘double-edged sword’
when considering voluntary vaccination”. en. In: Physica A: Statistical Mechanics and its Appli-
cations 391.20, pp. 4807–4815. ISSN: 0378-4371. DOI: 10.1016/j.physa.2012.05.009.

Zhang, Y. and Prakash, B. A. (2015). “Data-aware vaccine allocation over large networks”. In:
ACM Transactions on Knowledge Discovery from Data (TKDD) 10.2, pp. 1–32.

Zhao, H. and Feng, Z. (2019). “Identifying optimal vaccination strategies via economic and epi-
demiological modeling”. en. In: Journal of Biological Systems 27.04, pp. 423–446. ISSN: 0218-
3390, 1793-6470. DOI: 10.1142/S0218339019400011.

Zimmer, G. M., Van Maanen, C., De Goey, I., Brinkhof, J., and Wentink, G. H. (2004). “The ef-
fect of maternal antibodies on the detection of bovine virus diarrhoea virus in peripheral
blood samples”. eng. In: Veterinary Microbiology 100.3-4, pp. 145–149. ISSN: 0378-1135. DOI:
10.1016/j.vetmic.2004.03.008.

https://doi.org/10.1103/PhysRevE.88.012813
https://doi.org/10.1016/j.physa.2012.05.009
https://doi.org/10.1142/S0218339019400011
https://doi.org/10.1016/j.vetmic.2004.03.008


1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9581  | https://doi.org/10.1038/s41598-021-88471-6

www.nature.com/scientificreports

Accounting for farmers’ control 
decisions in a model of pathogen 
spread through animal trade
Lina Cristancho Fajardo1,2*, Pauline Ezanno2 & Elisabeta Vergu1

Accounting for individual decisions in mechanistic epidemiological models remains a challenge, 
especially for unregulated endemic animal diseases for which control is not compulsory. We propose 
a new integrative model by combining two sub-models. The first one for the dynamics of a livestock 
epidemic on a metapopulation network, grounded on demographic and animal trade data. The second 
one for farmers’ behavior regarding the adoption of a control measure against the disease spread in 
their herd. The measure is specified as a protective vaccine with given economic implications, and 
the model is numerically studied through intensive simulations and sensitivity analyses. While each 
tested parameter of the model has an impact on the overall model behavior, the most important 
factor in farmers’ decisions is their frequency, as this factor explained almost 30% of the variation in 
decision-related outputs of the model. Indeed, updating frequently local health information impacts 
positively vaccination, and limits strongly the propagation of the pathogen. Our study is relevant for 
the understanding of the interplay between decision-related human behavior and livestock epidemic 
dynamics. The model can be used for other structures of epidemic models or different interventions, 
by adapting its components.

Fighting livestock diseases spreading through animal trade is a major issue to guarantee sustainable farm-
ing, competitive agrifood chains and public  health1. Epidemic prevention and reduction of prevalence require 
improved methods of control and compliance of the actors, especially for non-regulated diseases for which 
control decisions are left to individual or collective  initiatives2. Mechanistic epidemiological models can provide 
a refined mathematical description and understanding of the complex system involved in pathogen spread, and 
be used to assess the effectiveness of control measures. They are complementary to observational or experimental 
 approaches3. However, accounting for human behavior in such models in order to increase their predictive power 
remains a  challenge4,5, in particular for livestock diseases spreading through a trade network.

Indeed, most works on infectious diseases that consider the adoption of control measures usually do not 
account for human decision-making6 or they do not consider a structured  population7,8. In particular, in mod-
els based on a metapopulation over an explicit  network9 such  as10, control decisions are usually assumed to be 
taken at a centralized  level11,12. Furthermore, when human decision-making is explicitly taken into account, it 
generally focuses on the context of human  diseases13–15, but it has barely been applied to veterinary epidemiol-
ogy  yet16. However, in the context of animal diseases, the decision of implementing control measures can be 
much more influenced by economic considerations than for human diseases, an aspect that should be taken into 
account in the decision model. Finally, in the field of veterinary epidemiology, studies have been mostly focused 
on regulated diseases, so human behavior mainly consists in delaying the application of a central  policy17. In 
the few works that investigate control measures for unregulated animal diseases, there is generally no dynamic 
feedback on decision due to epidemic  evolution18. Additionally, some real-life aspects, such as farmers having 
limited rationality, free-riding or learning are generally  missing19,20. There is therefore a special need for models 
combining the dynamics of an epidemic process that takes place on a livestock trade network, and the behavior 
of farmers regarding the voluntary implementation of control  measures21,22.

We build an integrative model that can meet this need by coupling the dynamic spread of a livestock dis-
ease over a structured metapopulation, and the dynamics of the human decision-making process for applying 
a sanitary measure against the epidemic spread. To model the epidemic spread through a trade network we 
use a stochastic compartmental model that takes into account demographic dynamics and animal exchanges. 
The population structure of the model is calibrated using real data. Our decision model is inspired by previous 
 studies13–15, in which the result of a decision regarding the voluntary adoption of a control measure for a human 
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disease is evaluated after being applied, and preferences over the possible decisions are updated through time. 
We specifically formalize the dynamic decision problem that each farmer faces, and propose a mechanism that 
represents farmers’ decision-making process in such a context. Our formalization considers some real-life phe-
nomena that can be present in the context of human decision-making: stochastic behavior, learning, and the 
emergence of imitation and free-riding23.

This paper is structured as follows. First, “Methods” section presents the two components of the integrative 
model: the epidemic–demographic model, and the decision model. Then, we describe the specific control meas-
ure we consider, as well as its economic implications. We emphasize that the main contribution of our work is 
methodological, so this integrative model is a result in itself. At the end of this section, we describe the setting 
for simulations and sensitivity analyses we perform on the model, whose findings can be found in “Results” 
section. Finally, the model as well as the results of numerical explorations are examined in “Discussion” section.

Methods
In the following, we describe the two main components of our integrative model: the epidemic–demographic 
one, and the decision-making one. We then detail the integrative model by considering vaccination as a specific 
control measure. Finally, we describe the methodology used for the simulation and analysis of the model.

Epidemic model with demography in a metapopulation based on a trade network. For this 
work we place ourselves in the context of a hypothetical livestock infectious disease that is transmitted only 
through a contact network structure consisting in herds that exchange animals. This population structure is 
inspired by real data on animal movements, extracted from the French Cattle Identification Database (FCID). 
We assume this is a closed metapopulation, that is, we neglect exchanges with herds outside of it. This livestock 
trade network can be described as a directed weighted time-varying network, where nodes represent herds 
and links represent animal trade. The direction of each link is determined by the transfer’s direction, and its 
weight corresponds to the amount of animals exchanged. By nature, this network is time-varying since links 
may change over time. In fact, not only trade connections may appear or disappear, but the amount of animals 
exchanged can vary on a daily basis.

Given this trade network, we consider an infectious livestock disease that can potentially be spread on it, 
and that can only be directly transmitted between animals within the same herd. The disease is assumed to be 
spread between herds only by animal transfers, as can be observed for diseases such as  paratuberculosis24, bovine 
tuberculosis when there is no contact with  wildlife25, and porcine reproductive and respiratory syndrome  virus26. 
In addition, the infection risk and status are assumed independent of animal breed, age or sex. In the absence 
of any intervention, the intra-herd disease spread is described by a stochastic SIR  model3 with demography, 
accounting for animal transfers over the trade network. In a compartmental SIR model, the population is divided 
into three compartments: Susceptible (S), Infected (I), and Recovered (R), according to their health status. The 
only two possible transitions in a basic SIR model correspond to infection (S → I) and recovery (I → R). The 
implicit modelling assumptions we make are the following: intra-herd homogeneous mixing, meaning that the 
contact rate is the same among all the animals in a given herd; absence of a latent period, i.e. animals become 
infectious as soon as they are infected; acquisition of immunity after recovery; no vertical transmission, i.e. no 
mother-to-child transmission during pregnancy or childbirth; frequency-dependent intra-herd transmission, 
i.e. the transmission rate depends on the proportion of infected animals in the herd, rather that on their number; 
variation in time of herd size due to births, deaths and animal transfers, which we assume are not affected by 
the disease prevalence.

Formally, we consider J herds in the population. Without any intervention, for each herd j = 1, . . . , J the 
intra-herd transmission of the disease can be described by the scheme in Fig. 1. We note Sj(t), Ij(t) and Rj(t) the 
number of susceptible, infected and recovered animals in herd j at time t. We suppose Sj(0) > 0 for all j, Ij(0) > 0 
for at least one herd j, and Rj(0) = 0 for all j. We note as Nj(t) := Sj(t)+ Ij(t)+ Rj(t) the size of herd j at time 
t. The parameters βj , τj and µj are the herd specific daily rates of disease transmission, death and birth in herd j. 
As for γ , it is the recovery rate from the disease. Finally, θji is the daily out rate from herd j to herd i, representing 
the mean daily proportion of animals of herd j going to herd i. We consider a continuous-time Markov chain 
model for the stochastic epidemic–demographic dynamics of each herd which we simulate through an Euler 

Figure 1.  Schematic representation of the intra-herd epidemic-demographic dynamics for a herd j, without any 
control measure. Horizontal arrows represent transitions between health-related compartments, corresponding 
to the course of infection inside the herd (yellow rectangle), while vertical arrows represent population flows 
to and from the herd. The coefficients on the arrows are the transition rates. See main text in “Methods” for 
parameter definitions.
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discrete-time scheme using multinomial distributions for numerical efficiency (as described  in27 but with non 
random rates). Transition probabilities between compartments, corresponding to birth, death, infection, recovery 
and transfer events, are defined by pXY = [1− exp(−

∑

X �=Y ηXY )]ηXY/
∑

X �=Y ηXY , where ηXY is the daily rate 
concerning the transition from a compartment X to a compartment Y. See Supplementary Equations S1–S15 
for further details.

Farmer’s decision-making model. We suppose that farmers can apply a sanitary measure that has a cer-
tain efficacy on the disease spread for a limited amount of time. Then, we assume they search to take the control 
decision that allows them to obtain an optimal value of an individual criterion, i.e. an expected cost resulting 
from the decision. To consider a simple and clear framework, we restrict ourselves to binary decisions (the meas-
ure is applied or not). Additionally, we make the assumption that decision times are synchronized, discrete, and 
equally spaced in time. This proves to be useful when considering the interaction of farmers’ decisions, and for 
evaluating the effect of the time length between successive decisions on the behavior of the integrative model. 
Formally, we suppose that each farmer j = 1, . . . , J searches to solve:

where t = �d , 2�d , 3�d . . . are the decision times, so �d is the duration (in days) between any two consecutive 
decisions. It also determines the instant at which the first decisions are taken. The term atj ∈ {0, 1} refers to the 
control decision: if atj = 1 , the control-measure is applied in herd j at decision time t, otherwise it is not. Ct

atj
(j) 

is the cost in herd j associated with the decision taken at time t. This constitutes a dynamic decision-making 
problem under uncertainty, this latter affecting the cost distribution associated with each possible decision.

To define the farmer’s decision-making process that attempts to solve this problem, we take an approach 
inspired  by13–15, in which farmers evaluate the result of a decision after its application, and update their prefer-
ences over time as a function of this result. In this particular context, this approach seems suitable for several 
reasons. First, as we mentioned earlier, costs over time not only depend on the epidemic and decision dynamics 
in the herd where the decision is made, but also on other herds. To exactly solve this optimization problem would 
imply that farmers integrate the actions and epidemic status of other herds. This is a very complex problem due 
to the dimensionality on the number of herds, and on the possible status of the system. Second, since we pose 
a dynamic decision-making problem, there is an effect of learning through repeated decisions. Indeed, we have 
supposed that the cost associated to a decision is observed before making the next decision. Then, it is natural 
to think that farmers learn from the costs they have obtained with their previous choices, to take their next deci-
sions. Finally, through this approach we can easily consider social dynamics such as imitation effects between 
farmers. In our context, this consists in considering a stochastic decision mechanism where the probability of 
applying the measure is updated through the costs each farmer observes over time, and the costs observed by 
his/her neighbors. 

Algorithm 1 Exponential weighting stochastic mechanism with imitation

Input: 2 options = {0,1}, p�d
1 (j) := pinit1  ∀j , κ ≥ 0 , ρ ≥ 0 , B(j) = {i; θij �= 0 or θji �= 0}; j = 1, . . . , J.

For: t = �d , 2�d , 3�d . . . (at each decision time):

         For: j = 1, . . . , J (each farmer):

            –    atj ← Bernoulli(pt1(j))    (takes a decision using his/her current probability of applying the measure)

            –    Ct
atj
(j)    (observes the cost related to his/her decision)

            –     j∗ ← Unif (B(j))    (selects one of his/her neighbors in the trade network)

            –    (atj∗ ,C
t
at
j∗
(j∗))    (observes the decision taken by j∗ and his/her observed cost)

            –    (updates the probability of applying the measure):

                           
p
t+�d
1 (j) =

pt1(j)e
−κCt

1
(j)−ρCt

1
(j∗ )

pt1(j)e
−κCt

1
(j)−ρCt

1
(j∗ )

+(1−pt1(j))e
−κCt

0
(j)−ρCt

0
(j∗ )           (2)

            where the costs of the non taken options are equal to 0, i.e. for k = 0, 1 :

               *   Ct
k(j) = Ct

atj
(j) if k = atj , 0 otherwise.

               *   Ct
k(j

∗) = Ct
at
j∗
(j∗) if k = atj∗ , 0 otherwise.

The mechanism we propose (Algorithm 1) works by updating the probability of applying the measure, pro-
portionally to an exponential weight that takes into account the last decision taken by the farmer and that taken 
by one of his/her neighbors, through a weighted sum of the associated costs. Then at each decision time, each 
farmer j = 1, . . . , J takes a decision atj using his/her current probability of applying the measure pt1(j) . We assume 
that this probability is initially the same for all farmers, and equal to a value pinit1  , and that each farmer observes 
the cost related to his/her decision, and the decision and associated cost observed by one of his/her neighbors 
in the trade network, who is randomly chosen by the farmer. A neighbor of j in the trade network is a farmer 
with whom j exchanges animals according to the daily trade rates, i.e. a farmer j∗ such that θjj∗ �= 0 , or θj∗j �= 0 . 
In the algorithm, we note as B(j) the set of neighbors of j in the trade network.

The update in the probability is then given by Eq. (2). The parameter κ represents farmer’s “sensitivity” to 
his/her own observed costs. A κ close to zero implies that farmers are not very sensitive to their own observed 
costs, and therefore mostly rely on their initial probability of applying the measure, whereas a large κ represents 

(1)min
atj

E

[

Ct
atj
(j)

]

; t = �d , 2�d , 3�d . . .
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the situation in which farmers are very sensitive to their own observed costs for updating their probability of 
applying the measure. For considering an imitation effect, we introduce the parameter ρ that works analogously 
to κ , but on the cost observed by the chosen neighbor. The parameters κ and ρ act then as weights to the farmer’s 
and the neighbor’s observed cost, respectively. In our model, farmer’s next decision can be updated considering 
any of his/her neighbors, regardless of what the neighbor has decided in the previous step. Finally, for updating 
the probabilities, it is natural that these are set so that the decision with a smaller sum of weighted costs receives 
higher probability. Although there are many ways to turn the sum of weighted costs into probabilities, a simple 
and popular method is to use an exponential weighting scheme. This scheme quickly reduces the probability of 
the decision that has resulted to be very bad (high sum of weighted costs). This form is found in the Pairwise 
Fermi (PW-Fermi) rule, which has been previously used in similar contexts, as its stochastic behavior is similar to 
real-life human decision-making28. In this update, the cost associated to non-taken decisions are zero, i.e. either 
Ct
1(j) or Ct

0(j) is zero, and either Ct
1(j

∗) or Ct
0(j

∗) is zero. The non-zero costs define the final form of the probability 
update. In order to see the effect of the decisions and the associated observed costs in this update, we remark that 
since we consider binary decisions, Eq. (2) can be rewritten as an update on the odds of applying the measure:

where oddst1(j) := pt1(j)/(1− pt1(j)); ∀t = �d , 2�d , . . . From this we can see that the odds are reinforced or 
decreased as a result of the farmer’s and the neighbor’s decision and cost. If they both apply the measure at time 
t, the term in the exponential is negative since costs are positive or zero, so the odds for j applying the measure 
decrease. Analogously, if neither of them applies the measure at time t, the term in the exponential is positive 
and the odds of applying it increase. Finally, if they do not make the same decision at time t it is the comparison 
between κCt

atj
(j) and ρCt

at
j∗
(j∗) that determines the direction of the update.

Additionally, we explore an extension of the model where each farmer considers the decisions and costs 
observed by all of his/her neighbors at each decision time. To update his/her probability of vaccinating, he/she 
takes into account the costs observed by his/her neighbors who did not vaccinate at the previous decision time, 
and the costs observed by those who vaccinated, as described in Supplementary Algorithm S1.

An epidemic control measure. For the control measure that can be applied to manage the spread of the 
disease, we specifically consider a vaccine that can reduce the rate of disease transmission towards a susceptible 
vaccinated animal. We assume this is the only effect the vaccine has. We make the assumption that the vaccine 
maintains a constant efficacy during a certain time period, whose duration is the same as the decision time-step. 
Then, if the vaccine is applied on a susceptible animal in herd j at time t, the rate of transmission towards that 
susceptible animal during the period ]t; t +�d] will be βv

j = βj(1− ev) , where 0 ≤ ev ≤ 1 is the protection 
efficacy of the vaccine.

An economic–epidemiological cost function. We assume that the farmers are able to asses the eco-
nomic impact that their decisions have on the disease spread in their herd. Therefore, we define the costs on the 
basis of a simple economic cost function, related to the epidemiological consequences of the decision taken at t 
in herd j. We define it in particular for the considered control measure, a protective vaccine, but it can easily be 
modified for a control measure with a different impact on the epidemic transition rates. The cost function we 
considered is:

where in the numerator the first term refers to the cost farmers pay to apply the vaccine, and the second one to 
the economic impact of the epidemic consequences of the vaccine. Precisely, in the first term atj equals 1 if the 
vaccine is applied on herd j at decision time t, and it equals 0 otherwise. CUv is the unitary cost of the vaccine per 
animal, and CFv defines a fixed cost of applying vaccination per herd. This would typically correspond to the cost 
of a veterinary visit. In the second term, r is the monetary value of a healthy animal, and 0 ≤ φ ≤ 1 is the rate of 
reduction of this value if the animal gets infected. So φr is the cost of an infection, that is, the loss in the monetary 
value of an animal if it gets infected. NSj→Ij (t, t +�d) is the number of new infections in the herd, from the 
moment decision is taken until the next decision time. Therefore, the benefit of having healthy animals is implic-
itly given by the animal not reducing its value due to an infection. We remark that we make the assumption that 
each farmer perfectly observes the number of new infections that occurred during the decision period, or at least 
the global loss in the monetary value of the herd φrNSj→Ij (t, t +�d) related to these new infections. However, 
farmers can not identify which animals are infected, which is why we assume they choose to vaccinate the whole 
herd if vaccination is decided. Finally, in order to account for differences in the costs that may only be related to 
the variation of the herd size over the period, we standardize the cost by the sum of the daily herd size during the 
concerned period, which we note as Nj(t, t +�d) = Nj(t)+ Nj(t + 1)+ Nj(t + 2)+ · · · + Nj(t +�d) . This is 
equivalent to standardizing by �dNj(t, t +�d) , where Nj(t, t +�d) is the mean daily herd size over the period.

The scheme of the integrative model for vaccination can be found in Fig. 2. It shows the feed-back loop 
between the epidemic–demographic dynamics, and the decision dynamics. The epidemic–demographic process 
takes place for a period of length �d , until a new decision is taken. This decision is itself a function of economic 
and epidemic consequences of the previous decision.

(3)odds
t+�d
1 (j) = oddst1(j)× e

(1−2atj )κC
t
atj
(j)+(1−2at

j∗
)ρCt

at
j∗
(j∗)

(4)Ct
atj
(j) :=

[CFv + CUvNj(t)]a
t
j + φrNSj→Ij (t, t +�d)

Nj(t, t +�d)
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The flow between the non vaccinated compartment, SNVj(t) , and the vaccinated one, SVj(t) , is deterministic 
once the decision is taken. Indeed, if atj = 1 , all susceptible animals in herd j will enter the SVj(t) compartment 
for the next decision period. If atj = 0 , they will be in SNVj(t) . If decided, vaccination is then applied only once 
per decision time. Indeed, in livestock diseases, as opposed to what happens for human diseases, it is not custom-
ary that farmers vaccinate newborns or the animals they buy after they have already vaccinated the herd, since 
each vaccination would then imply a cost for a veterinary visit. Furthermore, if the herd is vaccinated, farmers 
generally rely on herd immunity to indirectly protect susceptible animals in the herd.

Simulation setting. For our simulation study, the population structure is set close to the one observed 
in real data obtained from the FCID. Furthermore, demographic parameters are fixed close to real-life values. 
Details on the values used for these parameters and the procedures to generate population structure are speci-
fied in the Supplementary Methods. In particular, the simulated trade network is scale-free, as the one observed 
in the real-life animal movements, then the in-degree and out-degree distributions follow a power law. That is, 
the majority of herds only buy (sell) animals to a few other herds, and very few herds buy (sell) to many differ-
ent herds, which are known as hubs. We simulate this network through the configuration model, using degree 
sequences generated from a power law. We consider J = 5000 herds, roughly the number of herds in the Fin-
istère region in France, a cattle densely populated region, which we follow during T = 1095 days (i.e. 3 years). 
The values of the epidemic, economic and decision-related parameters used in the simulation study are given 
in Table 1.

We remark that these are set close to realistic values, having in mind a standard SIR endemic disease. In 
particular, we consider the same transmission rate across herds, so βj = β; ∀j = 1, . . . , J . As for the duration of 
the decision it is chosen to be 180 days, which is a reasonable assumption in practice. The values for κ and ρ are 
chosen so as to have two potentially contrasted decision scenarios.

Sensitivity analyses. Sensitivity analysis is useful to study how much the variation in each parameter of 
the model contributes to the variation of the model  outputs29. In our sensitivity analyses we consider 13 input 
parameters in total. Other parameters, in particular the demographic ones, are fixed as specified earlier. We 
consider eight outputs corresponding to the three model components: epidemic, economic and decision-related, 
and one additional output that combines epidemic and decision-related elements. These outputs are defined in 
Table 2.

The values of the inputs used in the sensitivity analyses are chosen using Fractional Factorial  design30 with 5 
equally spaced levels, which results in 625 combinations of parameters. To obtain this design we use the R pack-
age  PLANOR31. Since the model is stochastic, we run 50 simulations for each combination, and we consider the 
mean and the variance of each output over runs. Table 1 contains the values considered for each input in the full 
sensitivity analysis. Since we use a IV-resolution design, we are able to estimate main effects unconfounded by 
two-factor interactions, while limiting the number of runs required for the analysis. With this design, we can also 
estimate two-factor interaction effects, even if these may be confounded, i.e. can not be estimated independently 

Figure 2.  Representation of the integrative epidemic-decision dynamical model for a herd j, accounting for 
vaccinating decisions with a protective effect ( βv

j < βj ). See main text in “Methods” for parameter definitions.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9581  | https://doi.org/10.1038/s41598-021-88471-6

www.nature.com/scientificreports/

to each  other32. We study the outputs individually, by groups regarding the nature of the outputs, and by consid-
ering all outputs together. For the multivariate analyses, we use PCA (Principal Component Analysis) to reduce 
the dimension of the output space, before using Analysis of variance (ANOVA) for the computation of Global 
Sensitivity Indices (GSI), which are weighted means of the sensitivity indices over the retained dimensions in 
the PCA, as described  in33. More precisely, ANOVA is particularly suited for analyzing the outcome of a factorial 

Table 1.  Parameters of the integrative model: description, standard values and values tested in the full 
sensitivity analysis.

Parameters Definition Standard value Values tested in the sensitivity analysis

Epidemic

β/γ Transmission rate per herd × average duration of infection 2 [1.1, 2.07, 3.05, 4.02, 5]

1/γ Average duration of infection (in days) 90 [10, 32.5, 55, 77.5, 100]

p0Iherds
Initial proportion of infected herds 0.10 [0.01, 0.22, 0.43, 0.64, 0.85]

p0Ianim Initial proportion of infected animals in infected herds 0.15 [0.01, 0.25, 0.50, 0.75, 1]

Economic

r Monetary value of a healthy animal (in euros) 2000 [1000, 1500, 2000, 2500, 3000]

φ Reduction in the monetary value of an animal if it gets infected 0.8 [0.01, 0.25, 0.50, 0.75, 1]

CUv Unitary cost of the vaccine per animal (in euros) 5 [1, 4.5, 8, 11.5, 15]

CFv Fixed cost of applying vaccination per herd (in euros) 50 [1, 25.75, 50.5, 75.25, 100]

Decision-related

ev Protection efficacy of the vaccine on susceptible animals 1 [0.01, 0.25, 0.50, 0.75, 1]

�d

Duration of the decision (time between two consecutive decisions). It also deter-
mines the time of the first decision, and is equal to the duration efficacy of the 
vaccine (in days)

180 [30, 114, 198, 281, 365]

pinitv Farmers’ initial probability of vaccinating 0.01 [0.01, 0.25, 0.5, 0.74, 0.99]

κ Farmers’ sensitivity to their own observed cost 0.5. or 12.5 [0.5, 3.5, 6.5, 9.5, 12.5]

ρ/κ
Farmers’ sensitivity to a neighbor’s cost over farmers’ sensitivity to his/her own 
observed cost 0.5 [0, 0.25, 0.5, 0.75, 1]

Table 2.  Description of the outputs of the sensitivity analyses.

Group Output Definition

Epidemic

pTIherds (final inter-herd prevalence rate) Final proportion of infected herds: 1J
∑J

j=1
1Ij(T)>0

pTIanim (final intra-herd mean prevalence rate)
Mean over final infected herds of the final proportion of infected animals: 
(

∑J
j=1

Ij(T)

Nj(T)

)

/

(

∑J
j=1

1Ij(T)>0

)

p
[0,T]
Iherds

 (inter-herd cumulative incidence rate)
Cumulative proportion of newly infected herds (i.e. herds with new infections): 
1

J

∑J
j=1

1∑T
t=0

NSj→Ij (t)>0

p
[0,T]
Ianim

 (mean cumulative intra-herd incidence rate)
Mean cumulative proportion of new infected animals over susceptible animals, for newly 
infected herds: 

(

∑J
j=1

1

T

∑T
t=0

NSj→Ij (t)

Sj(t)

)

/

(

∑J
j=1

1∑T
t=0

NSj→Ij (t)
>0

)

I
[0,T]
anim (mean cumulative intra-herd incidence)

Mean cumulative number of new infected animals for new infected herds: 
(

∑J
j=1

∑T
t=0

NSj→Ij(t)

)

/

(

∑J
j=1

1∑T
t=0

NSj→Ij (t)
>0

)

Economic C[0,T] (total economic cost of the disease)

Sum of the non standardized cumulative disease-related costs (costs of vaccination and costs of 

new infections): 
∑J

j=1

[

∑⌊T/�d⌋
n=0 C

n�d

a
n�d
j

(j)�dNj(t, t +�d)

]

 . Counts costs even before the first 

decision and after the last one

Decision-related

p[0,T]v  (mean vaccination proportion)
Mean proportion of herds that vaccinate over the different decision times except the first one: (

∑⌊T/�d⌋
n=2

1

J

∑J
j=1

1
a
n�d
j =1

)

/(⌊T/�d⌋ − 1)

Aggregated vaccination patterns
Vector consisting in three proportions: of herds that never vaccinate, of herds that vaccinate at 
least once and at most half of the time, and of herds that vaccinate more than half of the time 
but not always. Without taking the first decision into account

Epidemic-decision 
related

Mean cumulative intra-herd incidence rate by 
aggregated vaccination pattern

Vector of the mean cumulative intra-herd incidence rate (see output p[0,T]Ianim
 ) of herds grouped by 

the aggregated vaccination pattern: herds that never vaccinate, herds that vaccinate at least once 
and at most half of the time, and herds that vaccinate more than half of the time but not always. 
Without taking the first decision into account
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 design34. For all the sensitivity analyses we use the R package multisensi35. In the PCAs the means are centered 
and scaled, and the dimension is selected as the smallest value that keeps at least 95% of the total variability. 
Among the many experiments, we retain the results of the three following ones: 

 (i) First experiment: all 13 inputs. The means and variances of all outputs: by group, and all outputs simul-
taneously.

 (ii) Second experiment: all inputs except the four epidemic parameters (fixed to their standard values in 
Table 1). Means and variances of all outputs.

 (iii) Third experiment: all inputs except the two epidemic parameters ( p0Iherds and β/γ ) and the two decision-
related parameters ( �d and pinitv  ), fixed to their standard values in Table 1. Means and the variances of 
decision-related outputs.

Results
Model predictions for different decision scenarios. Results regarding the inter-herd prevalence, and 
the intra-herd prevalence for infected herds are provided for four different scenarios (Fig. 3): no farmer ever 
vaccinates, never scenario; every farmer vaccinates at every decision-time , always scenario; farmers vaccinate 
following the proposed decision-making mechanism (Algorithm 1) using κ = 0.5 , neigh-expw(0.5) scenario; 
and the same mechanism using κ = 12.5 , neigh-expw(12.5) scenario.

As expected, the worst and best case scenarios are the scenario where farmers never vaccinate, and the one 
where they all vaccinate at each decision time. We remark that the vaccination gain particularly affects inter-herd 
prevalence, but is still observable for intra-herd prevalence. In the intermediate scenarios, farmers’ sensitivity 
to observed costs determines the changes in the proportion of herds that vaccinate over time, and therefore 
in the control of the pathogen spread. Indeed, in the scenario with higher farmers’ sensitivity to costs (neigh-
expw(12.5) scenario), the proportion of farmers that vaccinate quickly increases after the first decision, generating 
a mean inter-herd and intra-herd prevalence dynamics rather close to the best case scenario. On the contrary, 
the scenario with smaller farmers’ sensitivity to costs (neigh-expw(0.5) scenario) exhibits a slow increase in the 
proportion of herds that vaccinate, which gives rise to a prevalence behavior close to the one observed for the 
worst case scenario, even if around 2 years it starts to decline. Model predictions over a longer time horizon (9 
years) can be found in Supplementary Fig. S8. The scenarios concerning vaccination exhibit some peaks in the 
intra-herd prevalence roughly at each decision time. For intra-herd prevalence dynamics this behavior is firstly 
explained by the fact that we consider this prevalence only for infected herds at each time, so the concerned 
herds are not the same over the whole trajectory. Furthermore, since we consider a perfect vaccine, when a herd 
is vaccinated all its susceptible animals are completely protected, so that the number of animals that can actu-
ally get infected drops instantaneously to zero, until there are births or imports of non-vaccinated susceptible 
animals (see Supplementary Figs. S5–S7 for an exploration of this behavior). The dynamics of the total number 
of infected animals (Supplementary Fig. S8(c)) is an alternative quantity to study. Yet, as evidenced by the figure, 
it is highly correlated to the proportion of infected herds.

Additionally, Fig. 4 presents the temporal dynamics of the vaccination decisions of the two intermediate 
scenarios (for a single run as an example). In the neigh-expw(0.5) scenario most herds never vaccinate (67%). 

Figure 3.  Temporal dynamics of the epidemic spread for each vaccination scenario over 50 runs. Each decision 
instant is represented by a vertical grey line. (a) Inter-herd prevalence. Mean over runs (solid lines), 10th and 
90th percentiles over runs (dotted lines). Mean proportion of herds that vaccinate at each decision-time in 
each neigh-expw scenario (light blue and orange dots), and its variation over runs (from the 10th to the 90th 
percentile in light blue and orange vertical lines). (b) Intra-herd prevalence for infected herds. Mean over runs 
of the means over infected herds (solid lines), 10th percentile over runs of the 10th percentiles over infected 
herds, and 90th percentile over runs of the 90th percentiles over infected herds (dotted lines).
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They are followed by herds that only vaccinate at the last decision time, which are in turn followed by those that 
only vaccinate at the next to last decision time, etc. Only 28 out of the 64 possible patterns (over 6 decision times) 
are observed in this scenario. On the other hand, in the neigh-expw(12.5) scenario the most frequent behavior 
(39%) is to not vaccinate at the initial decision and to always vaccinate afterwards. However, this vaccination 
pattern is closely followed by the one where herds never vaccinate (33%). We also observe a higher variety of 
behaviors than in the neigh-expw(0.5) scenario, 44 out of the 64 possible patterns, which translates into less 
frequent patterns. Nevertheless, some of them stand out: the one where herds vaccinate from the third decision 
time, the one where herds only vaccinate at the second decision time, and the one where herds vaccinate from 
the fourth decision time.

Results concerning the alternative decision rule, where the information on the costs related to decisions is 
available for all trade neighbors, slightly differ (Supplementary Figs. S9–S10). For both scenarios where κ = 0.5 , 
and κ = 12.5 , there are slightly less and hence more frequent vaccination patterns with respect to the scenarios 
with the same parameter values but considering only one neighbor. For κ = 0.5 , the proportion of herds that vac-
cinate increases and stabilizes more rapidly to a smaller value. The highest proportion of infected herds is slightly 
smaller, but afterwards it decreases less rapidly. For κ = 12.5 , the proportion of herds that vaccinate increases 
more rapidly at the beginning and then it continues to decrease. The prevalence of the disease decreases only 
slightly faster than when using only one neighbor, the epidemic behavior being almost the same.

Figure 4.  Temporal dynamics of the vaccination decisions using the decision mechanism defined in 
Algorithm 1 with κ = 0.5 (a), and κ = 12.5 (b). Results for one run. NV and 0 stand for not vaccinating, 
while V and 1 for vaccinating. Each color represents a different vaccination pattern, defined by the sequence 
of vaccination decisions at each of the six decision times. So the pattern 001111 (or equivalently [NV1, NV2, 
V3, V4, V5, V6]) concerns herds that do not vaccinate at the two first decision times, and always vaccinate 
afterwards. In the left plots, each vertical black line represents a decision time, and the width of the flows 
between decisions is proportional to the frequency of the pattern. In the right plots, the histogram of the 
patterns with a frequency >= 1% is plotted. Hence, in (a), 67% of herds never vaccinate (pattern 000000). In 
(b), 39% of farms always vaccinate except in the first instant (pattern 011111), and 33% never vaccinate (pattern 
000000).
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Key determinant parameters to decision-making and epidemiological dynamics. We present 
the results for the sensitivity analyses on the means over runs for the concerned outputs in each experiment in 
Fig. 5. Results regarding the variances over runs can be found in Supplementary Fig. S11. Overall, in Fig. 5(a) we 
see that according to experiment (i), the most influential parameters of the model are the epidemic parameter 
β/γ , which contributes to 25% of the variation of the means, and the decision-related parameter �d , which 
contributes to 14%. So only these two parameters account for more than 38% of the variation. They are followed 
by other epidemic and decision-related parameters, as well as by an economic parameter. Furthermore, for each 
group of outputs, the parameters with the highest main effects on the means are of the same nature as the outputs 
(epidemic parameters have the greatest influence on epidemic outputs, economic parameters on the economic 
output, etc.). For the epidemic outputs, the most influential parameter, β/γ , has a contribution of 61% to the 
variation of the means. As expected, the exploration of simulation results evidences that this contribution trans-
lates into an increase in the propagation of the pathogen.

When focusing on the mean of decision-related outputs, even if interactions have the strongest effect, the 
most influential main effect is �d , i.e. the duration between two consecutive decisions, which contributes 30% 
of the variation. It is followed by the initial probability of vaccinating, which contributes 21% to the variation. 
We remark that �d has an overall negative influence on vaccination of herds, as it determines if control decisions 
are taken at early stages of the epidemic, and is therefore associated with a higher spread of the pathogen. The 
initial probability of vaccinating has, on the contrary, a positive effect on the vaccination and on the limitation 
of the epidemic spread. Concerning the interaction effects, epidemic parameters have the highest influence on 
the means of each group of outputs, and when considering the means of all outputs together. In particular, p0Iherds 
is for each group the most influential parameter through its interaction effects. It mostly interacts with other 
epidemic parameters such as p0Ianim , but it has smaller interactions with other parameters as well.

For experiment (ii), Fig. 5(b) shows that when fixing epidemic parameters, overall the greatest main effects are 
those of the vaccine efficacy ev (29% contribution), the duration of the decision �d (19% contribution), and the 
initial probability of vaccinating pinitv  (14% contribution). They are followed by the main effect of the economic 

Figure 5.  Global Sensitivity Indices (GSI) for the means over runs of the outputs considered in each 
experiment. Sensitivities are split in main effect and two-factor interactions. Blue colors correspond to epidemic 
parameters, green colors to economic parameters, and pink colors to decision-related parameters. (a) GSI 
for the means of all outputs, and by group of outputs in experiment (i). (b) GSI for the means of all outputs 
in experiment (ii). (c) GSI for the means of decision outputs in experiment (iii). See Table 1 for parameters 
definition, and Table 2 for outputs definition.
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parameter: φ (6% contribution). Concerning higher order effects, we mainly observe interactions between the 
first three parameters: ev , �d , and pinitv  . Overall, ev has the greatest interaction influence. Finally, Fig. 5(c) shows 
that in experiment (iii) the parameters φ and κ manage to explain about 50% of the variability of the means 
through their main effects, having a 35% and a 16% contribution, respectively. Each of the other parameters 
explains less than 10% of the variation.

Discussion
In this paper we present a new integrative model for the epidemic spread of a livestock disease on a trade network, 
accounting for farmers’ dynamic decisions concerning the adoption of a control measure in their herd. The model 
consists of an epidemic–demographic and a decision-making components that are interlinked through a feed-
back loop. On the one hand, control decisions have consequences on the epidemic spread, both at the intra-herd 
and the inter-herd levels. On the other hand, the epidemic spread has an impact on the control decisions that 
farmers subsequently take. For the epidemic–demographic component we use a stochastic compartmental model 
with demography on a trade network, that accounts for intra-herd population changes, in particular those that 
concern animal transfers. For the decision-making component we assume the same dynamic decision problem 
for each farmer, and we propose a mechanism that represents their decision-making strategy.

Whereas most epidemiological models found in literature do not consider the voluntary adoption of a control 
measure for the spread of a  disease6, or consider an exogenous probability of applying the measure in order to 
only study the observed effects of  decisions18, we propose a decision model that considers strategic interactions 
and cognitive considerations in the decision-making process. Our model can therefore be considered as a game-
theoretical or a psychological model, according to the conceptual classification of behavioral epidemiological 
models found  in6. The decision-mechanism we propose takes into account different phenomena such as learning, 
stochastic behavior, and imitation dynamics. To our knowledge, these elements are not present in the few existing 
models that have aimed at dynamically integrating the epidemic and decision-making processes of a livestock 
unregulated  disease19. We remark that the basic structure of the decision-problem and the decision-mechanism 
can be found in different fields, particularly in the field of online optimization (such as multi-armed  bandits36). 
However, we do not seek to find an asymptotically optimal algorithm, which is often the goal in that area, but 
rather to describe farmers’ decision-making process for the application of a control measure such as vaccina-
tion. More precisely, we consider an update of the probability of a farmer applying the measure, that is based on 
self-obtained results and on neighbors’ results.

In our model, farmer’s next decision is based on a neighbor regardless of what the neighbor has decided 
in the previous step. This is not the case in similar models focused on human  diseases13–15, in which a person 
only considers other people’s observations if they have taken the opposite decision. In particular, this allows to 
always decrease the odds of a farmer vaccinating if both the farmer and his/her neighbor have previously vac-
cinated. Together with the use of the trade network as the information network in our model, this can amplify 
the emergence of strategic behaviors, as the farmer can search to benefit from the vaccination of one of their 
neighbors, while avoiding the cost of the vaccine. The behavior where individuals (consciously or not) benefit 
from the actions of others without having to bear the cost, is known as free-riding, and has been previously 
addressed within vaccination decision-making models for human  diseases6. In  particular37, shows it is possible 
that individuals will consciously free-ride when making vaccinating decision.

Overall, our integrative model can be considered as an SIR model with pulsed  vaccination38 in a 
 metapopulation39, but where the pulse vaccination is asynchronous among sub-populations, and non equally 
spaced in time for each population, since the decision to vaccinate is not made at each decision time by each 
farmer. Our formalization of the integrative model is presented as general as possible so it can potentially be 
adapted to more complex epidemiological models or to other decision-making mechanisms that may be more 
relevant for specific contexts. Similar models have been previously proposed for human  diseases13–15, yet none 
truly establishes the model in a generic manner in order to facilitate its adaptation for other diseases, or control 
measures. Even if the economic cost we propose is associated with vaccination and the consequences of an SIR 
model, its basic structure could take into account the epidemiological and economic consequences of other 
measures, for example a treatment that would increase the recovery rate of infected animals. In particular, if the 
epidemic model was aged-structured, the cost on which farmers base their decisions could be refined to take into 
account the age of the animals. The real-life farmers decision-making being undoubtedly complex, the decision 
model we propose is reductive. Yet it provides a complete and adaptive framework with respect to state-of-the-art 
methods in veterinary epidemiology. In the presence of detailed information on farmer’s real-life behavior, our 
model could be run with other parameter values, or it could be modified to stick closer to reality if observations 
on farmers’ decisions denote a different decision-making process.

Among the methodological extensions to consider, we believe that the model could mostly benefit from a 
relaxation of some hypotheses in the decision-making mechanism. First, we consider that farmers perfectly 
observe the costs associated to their control decisions, as well as the decisions and costs of their neighbors, which 
is not completely realistic. Actually, farmers may observe costs with some error, or neighbors may not commu-
nicate their true actions or costs. Second, we assume that the trade network is the information network through 
which farmers share their observations. But farmers may be informed about other herds control practices in a 
more aggregated way, or only from geographical neighbors. Furthermore, from an economic point of view, in 
our decision-model we consider only the financial results of the farmer’s decision, which is in principle a good 
indicator of what interests him/her. We remark however that farmers may have social, personal or environmental 
motivations for taking decisions related to animal  welfare40. For example, farmers may have a non-use value for 
their animals, that is, a value related to the animal well-being independently of the use the farmer may make of 
the  animal41. Even if some refinement could be made in this direction, this does not seem straightforward from 
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a mathematical modelling perspective. However, our decision model can implicitly integrate this information 
through the values of the initial probability of vaccinating and the parameters κ and ρ . In addition, considering 
other types of farmers’ behavior can be of interest in this context. For example, the adaption of the exchange 
network as a function of other farmers’ health state. This intervention is known as network  rewiring42, and is 
generally appropriate for regulated diseases for which there is aggregated information on the health status of each 
herd, i.e. neglecting the intra-herd epidemic dynamics. Yet, even with this aggregated information, the adaptation 
of the network can be quite complex. Lastly, an exploration on the emergence of collaborative  behaviors43–45, in 
particular through network  reciprocity46, can be an interesting perspective for a deeper understanding of the 
observed decision dynamics.

Regarding model’s predictions, simulations evidence the retroactive effect between the dynamics of the epi-
demic spread, and the dynamics of the vaccination decisions. A deeper examination of the model through sen-
sitivity analysis confirms that decision-parameters play a role in the model’s behavior. Apart from the epidemic 
parameters, the time between two consecutive decisions has the highest impact overall, and is the main driver in 
decision-related outputs. Indeed, the shorter the time between decisions, the more frequently farmers evaluate 
their information on epidemic spread, and the fastest they start vaccinating if necessary. A constantly updated 
local information on the disease spread regularly helps updating farmers’ vaccination decisions from the begin-
ning of the epidemic, and is therefore crucial for limiting the disease spread. This is consistent with observations 
from models for human diseases, where health information can produce the eradication of the disease if there is 
a rapid diffusion of this information and if individuals decide to act based on this  information47. Furthermore, 
it has been documented that the impact of locally spreading information is amplified if information and disease 
transmission networks  overlap48, as it is the case in our model. Finally, an extension of the model where each 
farmer considers all of his/her neighbors decisions in the decision-making process, evidenced small differences 
with respect to the model considering only one neighbor per decision instant. In particular, when farmers have 
a small sensitivity to costs, taking into account all of their neighbors seems to be slightly better in the short term 
for controlling the epidemic diffusion, but not in the long term. When farmers have a very high sensitivity to 
costs, considering all of their neighbors does not significantly change the course of the epidemics with respect 
to the scenario where they consider only one neighbor.

Overall, we conclude that our model effectively integrates the dynamics of the decision process regarding the 
voluntary adoption of a sanitary measure in each herd, and the dynamics of the epidemic spread over a struc-
tured population of herds in a trade network. Hence, we make a significant step towards accounting for human 
decision-making in mechanistic epidemiological models, in particular for endemic animal diseases. Given its 
integrative structure, its flexibility and stability in results, our model can be well adapted for simulation studies 
concerning specific real-life diseases or other control measures.

Code availability
The Python simulation code is available at https:// github. com/ Crist ancho Lina/ Integ rativ eEpiD ecisi onMod el. 
The R packages used for the sensitivity analysis are referenced in “Methods”.
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To control the spread of an infectious disease over a large network, the opti-
mal allocation by a social planner of a limited resource is a fundamental and
difficult problem. We address this problem for a livestock disease that pro-
pagates on an animal trade network according to an epidemiological–
demographic model based on animal demographics and trade data. We
assume that the resource is dynamically allocated following a certain
score, up to the limit of resource availability. We adapt a greedy approach
to the metapopulation framework, obtaining new scores that minimize
approximations of two different objective functions, for two control
measures: vaccination and treatment. Through intensive simulations, we
compare the greedy scores with several heuristics. Although topology-
based scores can limit the spread of the disease, information on herd
health status seems crucial to eradicating the disease. In particular, greedy
scores are among the most effective in reducing disease prevalence, even
though they do not always perform the best. However, some scores may
be preferred in real life because they are easier to calculate or because they
use a smaller amount of resources. The developed approach could be
adapted to other epidemiological models or to other control measures in
the metapopulation setting.

1. Introduction
Infectious disease spread is a problem that can have important social, sanitary and
economic consequences. Like for human diseases, this is a major public health
concern for animal diseases, for guaranteeing animal welfare and food security
[1]. In this context, epidemiological models, together with other relevant math-
ematical approaches, can help in the description and understanding of the
mechanisms involved in disease propagation, as well as in assessing the effective-
ness of control measures [2]. An approach for controlling a disease spreading on a
population, from a social planner’s point of view, is the allocation of a resource
that has an effect on this spread [3]. Many questions can arise in this context:
how much resource is needed to restrain the disease propagation to a certain
level [4–6], when should it be allocated [7] and where. In this work, we are inter-
ested in the third question. More specifically, we are concerned with the problem
of dynamically deciding where to allocate a limited available resource in an
optimal manner, in order to minimize disease spread on a large animal
metapopulation network.

On the one hand, most of the research addressing the issue of resource opti-
mal allocation on a large network [8–12] does not focus on metapopulation
networks, i.e. does not account for infection-related dynamics within each
sub-population represented by a node of the network. Even more, works rely-
ing on mean-field theory [13] do not consider structured populations, in
particular as a network.

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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On the other hand, the existing studies addressing the
resource allocation problem on metapopulation networks
are based on techniques that lack of scalability. For example,
optimal control [14] and reinforcement learning [15], which
would theoretically give an optimal strategy, cannot be
used in the context of very large networks due to the
dimensionality in the state space [16,17]. Even if we consider
a sub-population as healthy or infected (only two possible
states per sub-population), a network with J sub-populations
would have 2J possible health states, which yields an asymp-
totically intractable optimal allocation when the network is
very large. Hence, authors that study resource allocation on
metapopulation networks generally build and evaluate
their approach in a small number of sub-populations, usually
less than 50 [18–25]. Recently, [26] proposed a framework
built upon optimal control theory that is able to deal with
the dynamic allocation problem in a network of hundreds
of sub-populations thanks to several simplifications, among
which is considering only a subset of edges for the optimiz-
ation. Yet, such a scale does not allow one to capture the
structural characteristics of complex networks, such as the
animal trade network we consider here. In particular,
animal trade networks are in general scale-free [27] (most
herds have few trading partners while a few herds have
many) and dynamic, as the amount of exchanged animals
can vary over time [28].

Finally, published studies assume the resource to be in
general distributed only once, before or at the beginning of
an outbreak [21,29]. Therefore, the resource allocation pro-
blem is static. However, the allocation problem can be
intrinsically dynamic if it is studied in the long run. For
example, if the available resource is a vaccine, this can have
a limited effect in time, so there is need for several
vaccination campaigns.

Given the intractability of the optimal strategy, in this
work we restrict ourselves to score-based strategies, i.e. strat-
egies that consist of allocating the resource according to a
scoring function (or indicator), up to the limit given by the
available quantity of the resource. Furthermore, given the
practical importance of dynamical aspects of the allocation
problem, we include this view in the present study, i.e. we
assume that the resource allocation is dynamic.

The contribution of this work is twofold. First, from a
methodological perspective, by adapting the greedy
approach in [30], we obtain analytic scores for controlling dis-
ease spread on a large animal trade network, where the
disease propagation is represented by a stochastic SIR
model that accounts for demography and trade (model intro-
duced in §2.1). The approach consists of finding the scoring
function that minimizes a short-term approximation of a
given objective function (§§2.2, 2.3.1 and 3.1). Our generaliz-
ation is mainly driven by the metapopulation framework,
which implies that a herd is not only infected or healthy,
but that it has an internal infection and demographic
dynamics. In particular, this allows for the possibility of
needing different amounts of resources for different herds.
Furthermore, we extend this approach for two different
types of resources (vaccination and treatment) and two differ-
ent objective functions (the number of infected animals and
the number of infected herds). Second, regarding real-life dis-
ease control for livestock diseases, in §3.2, we evaluate the
performances of the analytically obtained strategies along
with the one of several heuristic strategies (introduced in

§2.3.2) that can be relevant for this context. Finally, in §4,
we extend the interpretation of the analytically found scores
and discuss their suitability in a metapopulation context in
the light of simulation-based results. We also consider several
perspectives, based either on the development of other
greedy scores or on new simulation studies that could use
the explorations performed in this work.

2. Methods
2.1. SIR stochastic epidemiological model with

demography in a metapopulation based on
a trade network

We considered a livestock disease that spreads on a large animal
trade network composed of J herds. We supposed that the disease
introduction in a herd could only be due to animal transfers, and
that it could only be transmitted between animals of the same
herd. This livestock trade network underlies a metapopulation
network where nodes represent herds and links represent
animal transfers from one herd to another. For representing this
system, we used the stochastic intra-herd SIR epidemiological–
demographic model described in [31], which takes into account
animal exchanges. The model is summarized in figure 1. Sj(t),
Ij(t) and Rj(t) are the number of susceptible, infected and recov-
ered animals in herd j at time t. Parameters βj, μj and τj are the
daily rates of disease transmission, birth and death in herd j,
assuming newborns are all susceptible. As for γ, it is the daily
recovery rate from the infection, reasonably assumed equal for
all herds. Finally, θji is the daily out rate of animals going from
herd j to herd i, assuming animals in any health state can be
exchanged. We denote as Nj(t) the size of herd j at time t. The
model was specified as a continuous-time Markov chain, and its
simulation was built on an Euler discrete-time scheme using mul-
tinomial distributions, as described in [32]. Details can be found in
the electronic supplementary material of [31].

2.2. Dynamic resource allocation problem in the
metapopulation framework

We supposed that there is a central social planner seeking to mini-
mize the disease propagation on the animal trade network, by
distributing a limited amount of a resource among the herds in
the network, dynamically with a given decision time-step. This

mjNj(t) + SiqijSi(t) SiqijIi(t) SiqijRi(t)

Sj Ij Rj

[tj +  Siqji]Sj(t) [tj + Siqji] Ij(t) [tj + Siqji]Rj(t)

bj

Ij(t)

Nj(t)
Sj(t) g Ij(t)

Figure 1. Schematic representation of the intra-herd infection and demo-
graphic dynamics for a herd j, without resource allocation. Horizontal
arrows represent transitions between health-related compartments, corre-
sponding to the course of infection inside the herd (curved rectangle),
while vertical arrows represent animal flows to and from the herd. Coeffi-
cients on the arrows are transition rates. See main text in §2.1 for
parameter definitions.
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dynamic resource allocation problem was formulated as:

min
A

FðAÞ subject to
XJ

j¼1

bjðtÞAjðtÞ � bfix,

8t ¼ Dd, 2Dd, . . .

ð2:1Þ

F(A) in equation (2.1) is the function that the planner has to
minimize, which depends on the allocation strategy A, i.e. the
function that determines the decisions AjðtÞ, 8j ¼ 1, . . . , J,
8t ¼ Dd, 2Dd, . . ., where j denotes the herd, and Δd is the decision
time-step. We assumed binary allocation decisions for each herd,
i.e. Aj(t) = 1 if the resource is allocated to herd j at time t, Aj(t) = 0
otherwise. In the condition of equation (2.1), bfix is the quantity of
resource that is available at each decision time and bj(t) is the
quantity of the resource that would be needed for herd j at
time t if this herd was selected for the allocation.

We supposed that the resource to allocate could be either a
vaccine or a treatment. For the vaccine, we assumed that if applied
to a susceptible animal at time t, the disease transmission rate
towards this susceptible animal becomes βv = β(1− ev) during the
period ]t; t + Δd], where 0≤ ev≤ 1 is the protective efficacy of the
vaccine. That is, Δd is also the duration of the vaccine’s efficacy.
We underline that even if all susceptible animals in herd j are vac-
cinated at time t, infections can occur within j from time t to t + Δd
if new susceptible animals enter the herd, through births or
imports of susceptible animals from other herds. For the treat-
ment, we supposed that it increases the recovery rate of treated
infected animals by an additional factor γ0, i.e. reducing the
mean duration of the infectious period for these animals to
(γ + γ0)−1.

Regarding the resource constraint, for vaccination we
assumed it concerned the number of available doses, and if a

herd j was selected at time t all the animals in the herd would
be vaccinated. So in the condition in equation (2.1), bj(t) =Nj(t)
(the size of herd j at time t). For the treatment, the resource con-
straint was on the number of herds in which animals were
treated at each decision time, so bj(t) = 1. The choice to consider
that the constraint for the treatment involves the number of
herds was mainly motivated by analytical considerations
discussed in §2.3.1.

2.3. Score-based strategies
Score-based strategies consist of ordering herds according to a
certain scoring function J and selecting the top herds, up to
the limit given by the condition in equation (2.1). Let VJðtÞ be
the set that contains the selected herds according to JðtÞ (the
score values at time t) and bfix (the available quantity of resource
per decision time-step). Then, Aj(t) = 1 if j [ VJðtÞ, 0 otherwise.
Figure 2 represents the modelling and optimization framework
of the dynamic resource allocation of vaccines under a score-
based strategy. The treatment allocation differs only in the infec-
tion and demographic dynamics component, and in the control
measure component. That is, for any herd j, there is an additional
compartment Tj for treated infected animals, where animals go
from Ij to Tj at decision time t, if Aj(t) = 1. Unlike vaccination,
the transition from Tj to Ij is not possible even if Aj(t) = 0, i.e.
treated animals can only recover.

Regarding the scoring function, it can be either optimized or
heuristic. In the following, we address the two possibilities.

2.3.1. Greedy scores
First, following the approach in [30] we searched for optimized
scoring functions. This approach consists of finding a scoring
function that minimizes a short-term approximation of the

SNVj

SVj

Aj(t) = 1 Aj(t) = 0

W (t + Dd) containing the herds to be controlled
(given by the descending order in  (t + Dd) and bfix)

mjNj(t) + SiqijSNVi(t) Si iqijIi(t) Si iqijRi(t)

SNVj

SVj

Ij Rj

[tj + Si iqji]SVj(t)

[tj + Si iqji]SNVj(t)

Si iqjiSVi(t)

[tj + Si iqji] Ij(t) [tj + Si iqji]Rj(t)

bj

Ij(t)

Nj(t)
SNVj(t)

b j
v Ij(t)

Nj(t)
SVj(t)

g Ij(t)

herd j

at time t + Dd

decision component

 (t + Dd) = [score1 (t + Dd), ... , scorej (t + Dd), ... , scoreJ (t + Dd)]    scores

Aj (t + Dd) = 1, if j  W (t + Dd), 0 otherwise

control
measure

infection and demographic dynamics component
from time t to t + Dd

Figure 2. Representation of the modelling and optimization framework of the score-based dynamic resource allocation under constraint, applied to a metapopula-
tion and vaccine allocation. See main text in §§ 2.1 and 2.2 for parameter definitions.
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objective function

FðAÞ :¼
ð1
0

e�atE½JAI ðtÞ�dt,

where JAI ðtÞ is a function of the infection-related state of the net-
work at time t. The objective establishes an infinite time horizon,
and a parameter a≥ 0 which reduces the long-term impact of
JAI ðtÞ. This means that the larger a, the more we are interested
in the short-term behaviour of the infection dynamics, i.e. the
more weight we put on the initial stochasticity of the disease
diffusion.

Let us deote by X(t) the infection-related state of the network
at time t. In the SIR metapopulation framework, X(t) is a J × 3
matrix where each row j ∈ {1,…, J} contains the values of Sj(t),
Ij(t) and Rj(t) at time t. Since the allocation strategy has no
impact on the initial state, and since the process is Markovian,
the minimization problem (equation (2.1)) is equivalent to

min
A

ð1
u¼0

e�au E[JAI ðtþ uÞjXðtÞ ¼ X] du, ð2:2Þ

for all decision times t and for all network possible states X,
under the same constraint in equation (2.1). Then, focusing on
the short-term behaviour of the system, it is possible to obtain
an approximation of the objective function, which is based on
a Taylor expansion of E½JAI ðtþ uÞjXðtÞ ¼ X� for a small value of
u. Finally, one must find the scoring function that minimizes
this approximation. This approach is therefore called greedy, as
it yields locally (i.e. short term) optimal allocation decisions.

We stress that the form of the scoring function will not
depend on the parameter a in equation (2.2), i.e. we do not
need to fix a value for this parameter when exhibiting the scoring
function. Yet, the higher is a, the lower is the impact of the
approximation accuracy. See the electronic supplementary
material, S1, for more details on the approach.

We adapted this greedy approach to the metapopulation
framework by considering, for each one of the two types of
resource (vaccination and treatment), the minimization of two
different objective functions in equation (2.2). A function on the
number of infected animals

JAI ðtÞ ¼
XJ

j¼1

IjðtÞ, ð2:3Þ

and a function on the number of infected herds

JAI ðtÞ ¼
XJ

j¼1

1IjðtÞ.0: ð2:4Þ

That is, we treated four different cases, depending on the type of
resource (vaccine or treatment) and the objective to be mini-
mized: the number of infected animals (equation (2.3)) or the
number of infected herds (equation (2.4)). In particular, the deri-
vation of the score for the allocation of a treatment under the
objective of equation (2.4) required to consider that the resource
constraint of equation (2.1) was expressed in terms of the number
of attainable herds (bj(t) = 1). This allowed the total number of
treated herds to be formulated as the minimum between bfix
and the number of herds that have exactly one infected animal
(see electronic supplementary material, S1.2.1, for details).

2.3.2. Heuristic scores
In addition, we considered three types of heuristic scores based
on: the topology of the static aggregated network; the demo-
graphic changes in the network; and the dynamic infection-
related state of the network. Table 1 contains the list of the 16
heuristic scoring functions we tested for the metapopulation fra-
mework: five topological ones (in-strength, out-strength,
closeness, betweenness and pagerank), five demographic ones

(Nj(t), purchasesj(0, t), purchasesj(t− Δd, t), salesj(0, t), salesj-
(t− Δd, t)), 5 epidemiological ones (sj(t), ij(t), rj(t), ij(t− Δd, t),
rj(t− Δd, t)), and a random scoring function. All the topological
scoring functions are classical centrality measures in networks
[33].

2.4. Simulation setting and numerical explorations
The simulation setting was described in detail in the electronic
supplementary material of [31]. The metapopulation structure
was set close to real data, extracted from the French Cattle Identi-
fication Database (FCID): animal movements correspond to the
Finistère administrative area in western France, which is densely
populated with cattle. The trade parameters (u ji, 8j, i ¼ 1, . . . , J)
underlying the network structure were set to values based on
these data. The network is scale-free and consists of J = 5000
herds. The initial herd size distribution can be found in the elec-
tronic supplementary material, figure S1a. Details on the trade
parameters and on the herd size distribution can be found in
electronic supplementary material, fig. S3 of [31].

Without loss of generality, the values of demographic and
epidemiological parameters were set to the same value for
all herds. In particular, death and birth rates were
tj ¼ t, mj ¼ m, 8j ¼ 1, . . . , J, where τ = 0.0009 days−1 and μ = 2τ.
So, based on field reality, animals have a mean life time of approxi-
mately three years, and on average an animal gives birth to a calf
every 1.5 years. As herd sizes could vary not only through births
and deaths but also through animal movements, we established
a constraint on the capacity of each herd, Nj(t)≤ 1.5 Nj(0), so that
these remain relatively stable over time. Electronic supplementary
material, figure S1b, shows the final herd size distribution for a
run of the epidemiological–demographic model (without resource
allocation) on the simulated trade network. Regarding the
epidemiological parameters, we set bj ¼ b, 8j ¼ 1, . . . , J, and
considered a disease with moderate immediate impact and
long-lasting development (β/γ = 2 and 1/γ = 90 days). A second
numerical setting, corresponding to a disease with higher early
peak and smaller infection duration (β/γ = 4, 1/γ = 30 days), was
explored in the electronic supplementary material, S2. Finally, for
the available resource, we assumed it could either be a perfectly
effective protective vaccine, i.e. ev = 1, or a treatment that greatly
reduces the infectious period of infected animals (but which is
not perfect in order to avoid instantaneous recovery, an unrealistic
assumption). More specifically, the duration of the infectious
period with treatment was assumed to be 3% of the duration with-
out treatment, i.e. the mean duration of the infectious period for a
treated infected animal is (γ + γ0)−1 = 0.03(1/γ) = 2.7 days.

2.4.1. Setting for the exploration of infection-related dynamics
with score-based resource allocation

Given these parameter values, we simulated the infection-related
dynamics of the metapopulation during 3 years in 74 ( = ([16 +
3] + [16 + 2]) × 2) cases characterized by the type of resource,
the score according to which it is allocated (16 × 3 for vaccination
and 16 × 2 for treatment) and the scenario. This last one can be:
an epidemic scenario, where initially 10% of the herds (chosen
completely at random) had a random subset of 15% of their ani-
mals infected; or an endemic scenario, where the initial state was
given by the state at roughly 3 years (1080 days) without resource
allocation departing from the epidemic scenario. Indeed, elec-
tronic supplementary material, figure S9, shows that if the
simulations are extended beyond 3 years, the total proportion
of infected animals remains rather stable, and that there is only
a 10% reduction in the proportion of infected herds between
levels attained at 3 and 9 years. Hence, although the infection
dynamics after 3 years of simulation did not reach a
steady state rigorously speaking, this date was chosen as the
initial point of the endemic scenario. Indeed, on the one hand,
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at this date the pathogen had widely spread in the metapopula-
tion (electronic supplementary material, figure S9), and on the
other hand, considering 3 years limited the simulation cost. In
each case, we explored the dynamics of the proportion of
infected herds and of the total number of infected animals for
a fixed value of the available quantity of resource, bfix. The
values of bfix and Δd parameters can be found in table 2. We sup-
posed that vaccination decisions were more spaced in time since
vaccines are preventive and tend to have long-lasting effect.

Meanwhile, we supposed that treatment decisions were more
frequent as they are more prone to being applied in a critical
situation.

We stress that in all simulations for the vaccine allocation,
only herds with at least one susceptible animal were eligible,
and that the treatment allocation only considered herds with at
least one infected animal.

Furthermore, we evaluated how other quantities of interest,
raw proxies of ‘costs’, varied with the chosen scoring function

Table 1. Heuristic scoring functions for herd j at time t. Dependence on t means the score is dynamic in time, otherwise it is static.

Table 2. Parameter values in the allocation problem depending on the type of resource.

resource parameter definition values

vaccine bfix number of available doses at each decision time (as a % of the initial total

number of animals)

(25%�PJ
j¼1 Njð0Þ)a and

ð½5%� 90%� �PJ
j¼1 Njð0ÞÞb

Δd decision step (in days) 180

treatment bfix number of attainable herds at each decision time 25a and [5− 100]c

Δd decision step (in days) 15
aValues for infection-related dynamics explorations.
bValues for percolation analysis of vaccination. From 5% to 30%: by 0.5%. From 40% to 90%: by 10%.
cValues for percolation analysis of treatment. From 5 to 75: by 5. From 80 to 100: by 10.
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and the amount of available resource. We stress that the quantity
of resource that is actually used may be less than the available
quantity (bfix). For vaccination, we explored the mean proportion
of wasted doses over time, i.e. the total number of vaccine doses
allocated to infected or recovered animals, out of the number of
available doses. For the treatment, where we assumed that only
infected animals were treated, we evaluated the mean number
of used doses over time, and we explored the mean size of the
target population, i.e. the total number of animals in treated herds.

2.4.2. Setting for percolation analysis
We performed percolation experiments by assessing the final
(after 3 years) proportion of infected herds when the allocation
was done using a given scoring function, and a fixed quantity
of resource. We also included in this analysis an exploration of
the raw proxies of costs. The range of values tested for bfix
(cf. table 2) was chosen so as to exacerbate differences in the
infection-related dynamics by scoring function. The objective
was to analyse the dependence of the relative performances of
the scoring functions on limiting disease spread with respect to
the available quantity of the resource. To avoid increasing com-
putation time, we chose to run the percolation analysis only for
a subset of scoring functions. This subset was determined from
the results of the complete exploration setting described in §2.4.1.

Finally, we investigated the sensibility of the infection-related
results of percolation analysis to the value of the vaccine efficacy
ev. More specifically, we evaluated through simulations two cases
where vaccine efficacy is not perfect: ev = 0.9 and ev= 0.7. Lower
values for ev were not considered, since it is very unlikely that a
vaccine for a livestock disease with an efficacy below 0.7 is even
considered in the field, as its implementation could induce greater
economic costs than epidemiological benefits. With each of these
values we ran the percolation analysis described above, for three
values of the available number of doses: ½25%, 40%, 70%� of the
initial total number of animals in the metapopulation.

3. Results
3.1. Greedy scoring functions
We obtained four different analytic scoring functions by con-
sidering the minimization problem in equation (2.2) for each
resource and for each objective with the greedy approach.
The scoring functions for an objective on the number of
infected herds (greedyV_infherds and greedyT_infherds)
were obtained through a second-order Taylor expansion,
while the other two scoring functions (greedyV_infanimals
and greedyT_infanimals) were obtained using a first-order
approximation. Details on how the greedy scoring functions
were computed in each case can be found in the electronic
supplementary material, S1.

As mentioned in the previous section, the values of βj, τj, μj
were set equal for all herds in our simulations, so we present in
table 3 the scores in this setting. The greedy scoring functions
found for the generic framework, where these values can be
different across herds, can be found in electronic supplemen-
tary material, table S1. In simulations, five scoring functions
(directly or indirectly issued from the greedy approach) were
used. Table 3 includes in total six scoring functions: the four
obtained by optimization, an additional scoring function for
vaccination (greedyV_infherds_threshold) and the scoring
function greedyT_infherds_threshold for the treatment,
which replaced greedyT_infherds in our simulations.

To minimize the number of infected animals by distribut-
ing a vaccine, the greedyV_infanimals scoring function
privileges herds with a large within-herd incidence rate
(βIj(t)Sj(t)/Nj(t)), i.e. many infected animals and a large pro-
portion of susceptible animals. For the treatment, with
greedyT_infanimals the allocation would be made only as a
function of the number of infected animals by herd (Ij(t)).

Regarding the minimization of the number of infected
herds, for vaccination it led to a scoring function, greedy-
V_infherds, favouring two types of herds: either herds that
have a large within-herd incidence rate, and that send to
many healthy herds (large

P
i=j u ji1IiðtÞ¼0); or herds with

only one infected animal, also presenting a large proportion
of susceptible animals and which sell many animals (largePJ

i=j u ji ). With the same objective for treatment, the greedy-
T_infherds scoring function only concerns herds with exactly
one infected animal, and among these, the priority is on
herds that send the smallest flows to infected buyers (smallPJ

i=j u ji1IiðtÞ.0).
We remark that the minimization of the function on the

number of infected animals for vaccination led to scoring func-
tions that only depend on the epidemiological state of herd j,
but not on the states of other herds, and in particular not on
the topology of the network. This is due to the use of a first-
order Taylor development for approximating the objective
function (see electronic supplementary material, S1, for
details).

The two additional scoring functions, considered on the
basis of the analytically obtained scores, were built in the fol-
lowing way. For vaccination, the additional scoring function
greedyV_infherds_threshold consists of replacing 1IjðtÞ¼1 by
10,IjðtÞ,20 in greedyV_infherds. This intends to avoid that
the first term of the sum in the scoring function becomes 0
for herds that have few infected animals but not necessarily
just one. Similarly, for the treatment, we replaced greedy-
T_infherds by a scoring function with a softer condition on
the number of infected animals. The condition in

Table 3. Greedy scoring functions studied in the numerical explorations. All the greedy scores are dynamic.

resource JAI ðtÞ scoring function for herd j scoring function name

vaccine inf. animals (equation (2.3)) (Ij(t)/Nj(t))Sj(t) greedyV_infanimals

inf. herds (equation (2.4)) ðIjðtÞ=NjðtÞÞSjðtÞð1IjðtÞ¼1ðgþ tþPJ
i=j u jiÞ þ

PJ
i=j u ji1IiðtÞ¼0Þ greedyV_infherds

inf. herds (equation (2.4)) ðIjðtÞ=NjðtÞÞSjðtÞð10,IjðtÞ,20ðgþ tþPJ
i=j u jiÞ þ

PJ
i=j u ji1IiðtÞ¼0Þ greedyV_infherds_threshold

treatment inf. animals (equation (2.3)) Ij(t) greedyT_infanimals

inf. herds (equation (2.4)) ½�PJ
i=j u ji1IiðtÞ.0� j : IjðtÞ¼1 greedyT_infherds

inf. herds (equation (2.4)) ½ð�PJ
i=j u ji1IiðtÞ.0Þ10,IjðtÞ,20� greedyT_infherds_threshold
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greedyT_infherds on having exactly one infected animal for a
herd to be eligible appeared to be too restrictive. Indeed, if
the quantity of available treatment exceeded the number of
herds that satisfy this condition, the rest of the treatment
would not be allocated to any herd. Yet, allocating the
exceeding treatment to herds with more than one infected
animal could only be beneficial for limiting disease spread
and would satisfy the constraint on the quantity of available
treatment. Hence, the greedyT_infherds_threshold scoring
function considers all herds that are potentially eligible
with a non-negligible probability, yet favours herds that
have few infected animals (10,IjðtÞ,20).

3.2. Results of numerical explorations
3.2.1. Infection-related dynamics following score-based resource

allocation
Figure 3 presents the results for the dynamics of the proportion
of infected herds, under the setting described in §2.4.1 for a
subset of the scoring functions. In particular, since the results
for the topological scores were very similar, we present only
the results of the pagerankj score. This was also the case for
demographic scores, so we chose the sales over the decision
period, salesj(t− Δd, t), as the representative score for this
group. For the epidemiological scores, we present only the

results for the best performing score, ij(t). In addition, we
included as the best and worst reference cases, results
for cases where there was sufficient resource for all herds
( full_budget), and where there was no resource to allocate
(no_budget). Electronic supplementary material, figure S2, pre-
sents the complete results for cases by scenario (epidemic or
endemic), type of available resource (vaccine or treatment)
and the heuristic or greedy score according to which the allo-
cation was performed. We also included in electronic
supplementary material, figure S2, results for the dynamics
of the total number of infected animals, yet we remark they
were similar to the ones found for the proportion of infected
herds.

One of the main remarks emerging from the analysis of
figure 3 and electronic supplementary material, figure S2, is
that topological and demographic scoring functions were
the groups that performed less well for limiting the disease
spread, both for vaccination and for the treatment. This is
in comparison with the group formed by the scoring func-
tions that take into account the health statuses of the herds,
i.e. the greedy scoring functions and the best performing
epidemiological functions, in particular ij(t).

Furthermore, electronic supplementary material, figure
S2, shows that for vaccination, the scoring function sj(t) (the
proportion of susceptible animals) performed the worst for
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Figure 3. Dynamics of infection spread (proportion of infected herds) under resource allocation based on different scoring functions. Epidemic (left) and endemic
(right) scenarios, for vaccination (a,b) and treatment (c,d ). no_budget (red) represents the case where there was no resource allocated, and full_budget (grey) the
case where the resource was not limited. For other curves, each colour represents the scoring function according to which the allocation decisions were taken:
random (black), topological (green), demographic ( purple), epidemiological (orange) and greedy scoring functions (blue tones). For vaccination, the amount of
available doses by decision time was bfix ¼ 25% of the initial total number of animals in the metapopulation. For treatment, the number of attainable herds
by decision time was bfix = 25 herds. Grey vertical lines represent resource allocation times. Mean results and 90% confidence bands over 50 runs.
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allocating the available quantity of vaccines (equal to 25% of
the initial number of animals in the metapopulation) in both
scenarios. The group of topological scoring functions per-
formed better than the random scoring function in the
epidemic scenario, but was not very different from it in the
endemic scenario. Demographic scoring functions performed
in general better than the topological ones, in particular
salesj(0, t) and salesj(t− Δd, t). Apart from sj(t), the epidemio-
logical scoring functions had a good performance, except for
the proportion of recovered animals (rj(t)) in the endemic
scenario, where it was just as good as the random score.

The second important remark (figure 3) is that the best per-
forming scores were the proportion of infected animals (ij(t)),
and greedyV_infanimals. Electronic supplementary material,
figure S2 shows that this applies both for reducing the total
number of infected animals and the proportion of infected
herds. They were closely followed by greedyV_infherds_thres-
hold in both scenarios. Meanwhile, greedyV_infherds was not
as good as these three, particularly in the endemic scenario.

Figure 3 and electronic supplementary material, figure S2,
also present results when the resource was a treatment and
bfix was equal to 25 herds. In particular, electronic supplemen-
tary material, figure S2, shows that in the epidemic scenario,
sj(t) performed badlywhen compared to the other scoring func-
tions. Yet rj(t) arrived to performworse at the end of the 3 years
in this scenario, andwas theworst-performing scoring function
in the endemic scenario. Even more, these two scoring func-
tions, the topological and demographic ones, and the
difference in the proportion of recovered animals (rj(t− Δd, t)),
all performed worse than the random score in both scenarios.
Regarding the other scoring functions, greedyT_infanimals
(allocating according to the number of infected animals by
herd, Ij(t)) had the best performance in both scenarios. It was
followedby the score ij(t), i.e. the proportion of infected animals
by herd, though this last one did not manage to eradicate the
disease before the 3 years. The next best performance was
given by ij(t− Δd, t),whichwas followed bygreedyT_infherds_-
threshold. To sum up, for the treatment allocation, only the
greedy scores and two epidemiological scores (ij(t) and ij(t−
Δd, t)) performed better than the random score. In particular,
greedyT_infanimals was the only one that eradicated the
disease within the 3 years (figure 3).

The dynamics of raw proxies of costs can be found in elec-
tronic supplementary material, figure S3. In particular, it is
shown that the proportion of herds that were vaccinated
varied according to the allocation scoring function. Indeed,
topological and demographic scoring functions led to vaccinat-
ing slightly fewer herds than the epidemiological and the
greedy scores (excluding sj(t)). Unsurprisingly, sj(t) led to the
highest proportion of vaccinated herds and did not waste
any doses, i.e. only vaccinated herds without infected or recov-
ered animals, while rj(t) wasted the highest proportion of
available doses. For the treatment, the topological and demo-
graphic scoring functions led to the smallest number of used
doses and to the highest size of target population, contrary
to the epidemiological and greedy scores.

Finally, electronic supplementary material, figure S4,
shows the relationship between allocation decisions among
different scoring functions at a given decision time. Both for
vaccination and treatment, decisions according to the topolo-
gical and demographic indicators were very similar (in terms
of targeted herds) according to the Jaccard index [34]. For
vaccination, decisions according to epidemiological and

greedy scoring functions were similar at the first decision
time (six months), yet this similarity diminished over
time. Regarding decisions through time for a given scoring
function (electronic supplementary material, figure S5), topo-
logical functions tended to allocate the resource to the same
herds over time. This was also the case for demographic func-
tions, except for the sales scoring functions in vaccination, for
which the first decisions were less and less similar to
decisions at the following decision times. On the contrary,
for sj(t) the similarity between consecutive vaccination
decisions seemed to increase over time. And for each of the
other epidemiological and greedy scoring functions, vacci-
nation decisions were in general less similar over time.
Treatment decisions according to each epidemiological and
greedy scoring function were very different over time as
long as the disease was not eradicated, except for decisions
according to rj(t).

3.2.2. Percolation analysis results
Figure 4 shows results of the percolation analysis in the ende-
mic scenario for each type of resource, using a selected subset
of scoring functions. Results in the epidemic scenario can be
found in electronic supplementary material, figure S6. We
ran this analysis using all the epidemiological and greedy
scores, since the infection-related dynamics results in §3.2.1
were quite different for the scores within each of these
groups. By contrast, because the results of the topological
scoreswere very similar, aswere the results of the demographic
scores, we considered only one of each type: salesj(t− Δd, t)
for the demographic scoring functions and pagerankj for the
topological scores. This figure (also figure 4) confirms the
main observations made in §3.2.1: certainly, the best-
performing scoring functions for reducing disease prevalence,
for almost every quantity of resource that we tested, were the
greedy scores along with some epidemiological scores.

For vaccination, figure 4a shows that when the proportion
of vaccinated herds was at least 0.10 of the initial number of
animals in the metapopulation, the scoring functions that
led to the lowest final proportion of infected herds were
greedyV_inf_animals, greedyV_infherds_threshold and ij(t).
They were followed by the greedyV_infherds scoring func-
tion. The topological and demographic scoring functions,
pagerankj and salesj(t− Δd, t), were just as good as the
greedy scores only when the available quantity of resource
was very low (particularly when the proportion of vaccinated
herds was less than 0.05), but did not perform well as this
proportion was higher. The rj(t− Δd, t) and ij(t− Δd, t) scoring
functions had a bad performance for such low levels of
vaccinated herds, performed better for medium levels of
vaccination, and performed worse when the proportion
of vaccinated herds was higher than 0.2. In particular, ij(t−
Δd, t) was better than greedyV_infherds when the proportion
of vaccinated herds was less than 0.2. On the contrary, as the
proportion of vaccinated herds was higher, rj(t) performs
better. Indeed, when less than 25% of herds were vaccinated,
it was just as bad as the random scoring function, which was
the second worse score after sj(t). But for a proportion of vac-
cinated herds higher than 0.45, its performance was close to
the one of the best-performing greedy scores. Even when
this proportion was more than 0.6, only rj(t), ij(t) and the
greedy scores arrived to eradicate the disease.
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Regarding the mean proportion of wasted doses (over
time and over runs), it was almost zero when the vaccine allo-
cation was done using sj(t) as criterion, irrespective of the
proportion of vaccinated herds. The other scoring functions
led to quite similar levels of wasted doses, except for rj(t)
and rj(t− Δd, t), which led to the highest proportion of
wasted doses, particularly when the proportion of vaccinated
herds was lower than 0.15.

In figure 4b, we observe that when the resource to allocate
was a treatment, greedyT_infanimals managed to eradicate
the disease when it was possible to treat at least 25 herds
per decision time-step, i.e. 0.5% of the total number of
herds. As for ij(t), it could eradicate the disease when this
percentage was higher than 0.6%, and ij(t− Δd, t) when it

was at least 0.7% herds. When bfix was equal to 0.9% of
the total number of herds, greedyT_infherds_threshold, the
random scoring function and rj(t− Δd, t) also eradicated
the disease, in that order. The other epidemiological scoring
functions and the topological and demographic ones per-
formed worse than the random score for all values of bfix.
In particular, salesj(t− Δd, t) only eradicated the disease if
bfix was higher than 1% of the total number of herds, sj(t)
could only do it when this percentage was higher than
1.2%, and the other two scoring functions (rj(t) and
pagerankj) eradicated it when it was possible to treat at
least 1.3% and 1.4% of the total number of herds, respectively.

As for the number of used doses of treatment, they were
in general lower for bad-performing scoring functions, and
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Figure 4. Percolation experiments results in the endemic scenario. Each colour represents the scoring function according to which the allocation decisions were
taken: random (black), topological (green), demographic ( purple), epidemiological (orange tones) and greedy scoring functions (blue tones). For (a) vaccination,
final (after 3 years) mean (over runs) proportion of infected herds as a function of the mean (over time and over runs) proportion of vaccinated herds. Each point
corresponds to a value of bfix, and its size represents the mean (over time and over runs) proportion of wasted doses. For (b) treatment, final (after 3 years) mean
(over runs) proportion of infected herds as a function of the proportion of attainable herds at each decision time. Each point corresponds to a value of bfix, and its
size represents the mean (over time and over runs) number of used doses. The inset shows the mean (over runs) extinction time with each scoring function, for a
restricted range of the proportion of attainable herds. Results for 50 runs.
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higher for those that performed the best. The exception was
rj(t), which performed badly and led to a high number of
used doses. When bfix was high, it used even more doses
on average than the best scoring functions for reducing
disease prevalence.

Results in the epidemic scenario (electronic supplemen-
tary material, figure S6) were quite similar. Yet, for the
treatment, only greedyT_infanimals, ij(t) and ij(t− Δd, t)
were always better than the random score. The greedyT_inf-
herds_threshold indicator was better than the random
score only when bfix was less than 0.8% of the total number
of herds. Additionally, electronic supplementary material,
figure S7, shows that the variability of the percolation results
were moderate between runs, with no or little overlapping
90% confidence intervals.

In addition, electronic supplementary material, figure S8,
shows that when vaccine efficacy is decreased, the loss of
performance is not the same for all scores. In particular, the
scores that are not the best but perform rather well (epidemio-
logical scores and greedyV_infherds) are the ones for which
performance is most depreciated. This results in salesj(t−
Δd, t) performing better than ij(t− Δd, t) when the average
proportion of vaccinated herds was 55% and vaccine efficacy
was 0.9 or less. Yet, despite the overall loss in efficiency, two
of the greedy scores and one epidemiological score (ij(t)) still
performed the best.

Finally, electronic supplementary material, figures S9 and
S10, show that a disease with higher early peak and smaller
infection duration (β/γ = 4, 1/γ = 30 days) spreads and fades
out rapidly at the intra-herd level. At the same time, recurrent
outbreaks are observed which are likely due to reintroduction
of infected animals by trade. Electronic supplementary
material, figure S11, shows that, in such a case, allocating vac-
cines according to the historic sales, in particular according to
salesj(t− Δd, t), was among the best strategies in both the
epidemic and endemic scenarios.

4. Discussion
To control an infectious disease that spreads in a metapopu-
lation network, allocating a limited resource is a fundamental
yet difficult question, especially for large networks. In this
study, we considered this resource allocation problem for a
livestock disease that spreads over a large animal trade
network, where the intra-herd infection and demographic
dynamics was specified as an SIR stochastic model taking
into account animal movements and demography.

The problem of resource allocation in networks had
been previously addressed from several perspectives such
as optimal control [23] and reinforcement learning [35], but
mostly for networks where each node is an individual [10],
or where the network is rather small [36]. Yet, in the context
of a very large network these methods lack scalability for
tracking the optimal solution [30]. In this work, we chose to
concentrate on strategies based on scoring functions, heuristic
and optimized, which consist of ordering the nodes of the
network according to their score and allocating the resource
to the top of the ranking, up to the limit given by the avail-
able resource.

First, following the greedy approach in [30], we provided
new analytic scoring functions for controlling the disease
spread over the animal metapopulation network by

optimizing approximated objective functions. The scoring
functions we derived depend on the infection-related state
of the herd, and some are also dependent on the topology
of the metapopulation network. They differ according to
the objective of the control (minimizing the number of
infected animals versus minimizing the number of infected
herds) and the type of available resource (a protective vaccine
or a treatment that reduces the infectious period). Meanwhile,
most similar existing approaches for other population
structures derive strategies solely for distributing a vaccine
[5,11], or are concerned with only one objective to be
optimized [10,13].

Through intensive simulations, we observed that these
analytically obtained scoring functions can be optimal for
reducing disease prevalence in the metapopulation, though
this is not always the case. For example, even if greedyV_in-
fanimals (the score for greedily minimizing a function on the
total number of infected animals in the metapopulation)
showed the greatest reduction in disease prevalence through
vaccination, allocating vaccines according to the proportion
of infected animals by herd, ij(t), can be just as good when
the number of available vaccine doses equalled 25% of the
initial number of animals in the metapopulation (figure 3).
Even more, we observed that this was the case as long as
the number of available doses was more than 15% of the
initial number of animals in the metapopulation (figure 4a).

For the treatment, most of the scoring functions, in particu-
lar topological and demographic ones, were counterproductive
in the sense that they performed worse than randomly allocat-
ing the resource among the infected herds (figures 3 and 4b).
We explain this by the fact that the infected herds which
were central in the network were not the most infected ones
(in terms of the proportion of infected animals). Indeed, elec-
tronic supplementary material, figure S3b, shows that the
random allocation among infected herds also targeted herds
with many infected animals, while the scoring functions that
performed badly only targeted high sized infected herds but
generally with few infected animals.

Furthermore, we noticed that irrespective of the resource
type, the optimized scoring function for an objective on the
number of infected herds was outperformed by the optimized
scoring function for an objective on the number of infected ani-
mals. Even if for vaccination, a slightly modified version of
greedyV_infherds provided results almost as good as the
ones of greedyV_infanimals (figures 3 and 4a), this was not
the case for the treatment. Indeed, the allocation implemented
using the greedyT_infanimals scoring function, i.e. the number
of infected animals per herd, yielded undoubtedly the best
results (figures 3 and 4b). This is probably due to the fact
that the scoring functions for minimizing an objective on the
number of infected herds only focus on the fast recovery of
slightly infected herds (0 < Ij(t) < 20), for vaccination, or on
avoiding that completely healthy herds receive infectious ani-
mals (Ij(t) > 0), for the treatment. Although this is the best way
to have a small incremental number of infected herds from one
instant to another according to these scoring functions, it does
not take into account new animal infections, which only occur
at the intra-herd level once the herd is infected. Our interpret-
ation is that a scoring function obtained with the greedy
approach (which consists of focusing on the short-term behav-
iour of the objective function) performs better for limiting
the disease spread if the objective function it is built on directly
captures the intra-herd aspect of the disease dynamics. Hence,
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minimizing a first-order approximation for an objective that
directly concerns the number of infected animals can provide
more performing scoring functions than that obtained by
minimizing a higher-order approximation for an objective
that does not.

Numerical investigations also allowed evidencing that
intra-herd health information can be crucial for optimally con-
trolling the propagation of a slowly spreading disease such as
the one considered in this work. In most combinations, given
by the resource’s type and available quantity, even if topology-
based scoring functions managed to limit disease spread,
scoring functions based on the infection-related state of
herds performed better (figure 4; electronic supplementary
material, figure S6). This observation can give some insight
into why most control strategies implemented in real systems
might fail to eradicate livestock diseases in areas that lack this
kind of information.

A final interesting remark is that the best scoring functions
for reducing disease prevalence can induce a higher number of
wasted vaccine doses or a higher number of used treatment
doses compared to other scores that performed less well for
controlling the disease spread (figure 4; electronic supplemen-
tary material, figures S3 and S6). However, for vaccination,
they are not necessarily those that vaccinate the highest
proportion of herds.

To our knowledge, our work is one of the few studies that
explores dynamic resource allocation in a metapopulation
network for many allocation scoring functions (16 heuristics
and at least 2 optimized scores by measure), while varying
the available quantity of the resource in two different scen-
arios. Despite the fact that the performances of the scores
could have been different if the network had been static or
not scale-free, score-based resource allocation can be a rel-
evant approach for controlling pathogen spread in other
cases, as the complexity of the problem is mainly due to
the large dimension of the network. Furthermore, we stress
that the scores we found by optimization using the greedy
approach are the same irrespective of the network topology,
as they are based on fixed trade parameters representing
the static aggregated network. Indeed, they are built on a
static view of the network, irrespective of whether it is actu-
ally static or dynamic (as it is in our study). We believe it
would be possible to use the same approach to obtain opti-
mized scores that take into account the dynamic nature of
the network, i.e. scores that are function of time-dependent
trade parameters, although this requires a new formal analy-
sis. Of course, these new scores could be of a different form
from the ones we found, and hence their performance
might also be different.

We assessed the robustness of the results regarding
vaccine allocation by considering realistic values for the
vaccine efficacy. This showed a limited impact on the relative
performance of the different scoring functions (electronic
supplementary material, figure S8). We note that although
in reality vaccines are rarely perfectly effective, and also
take some time to be effective, it did not seem straightforward
to determine an appropriate time frame for the vaccine to
have an effect. More importantly, it seems unlikely that a
slight delay in the effect of the vaccine would have a signifi-
cant impact on our results, given that we considered a
pathogen that spreads rather slowly.

Regarding the limitations of ourwork,we emphasize that in
the context of a fast-spreading pathogen, the current framework

is not really appropriate. In such a case, other decision factors
should be taken into account. For example, if the disease is zoo-
notic or has a strong economic impact, the social planner may
consider more radical options, such as mass culling. In this
case, the questionof resource allocation thusbecomes irrelevant.
In particular, we showed that for a disease with higher early
peak and shorter infection duration (β/γ = 4, 1/γ = 30 days) an
intra-herd epidemic extinguishes before a newdisease introduc-
tion occurs (electronic supplementary material, figures S9 and
S10). Therefore, it is not surprising that vaccinating herds that
sellmanyanimals appears as agoodstrategy for limitingdisease
propagation (electronic supplementarymaterial, figure S11). So,
the resource allocation problem seems more straightforward in
sucha scenario anddoesnot necessarily require anoptimization
procedure.

Additionally, a parameter that could impact our con-
clusions is the decision step, Δd, for which we considered a
fixed heuristic value. Although the assumption of regular
vaccination decisions defined by the duration of the protec-
tion conferred by the vaccine appears to be a realistic
hypothesis relative to field practice, a more versatile assump-
tion could be considered to determine the frequency of
allocation decisions. Indeed, the decision step could be deter-
mined in an adaptive manner by the social planner, for
example by taking into account the stability in disease preva-
lence, or some external input such as the farmers’ demand for
accelerating resource allocation. A second option would be to
determine the decision step by optimization. Yet, these are
essentially different problems from the one we addressed in
this article: determining when to allocate instead of where
to allocate a limited resource. Optimizing both aspects at
the same time is a more complex problem that, to the best
of our knowledge, has only been addressed by heuristic
approaches [37]. In particular, it does not seem straightfor-
ward to address with the approach of this study.

Finally, we stress that the performance of the epidemiologi-
cal and the greedy scoring functions can be counterbalanced by
their difficulty of access. Indeed, having updated knowledge on
the epidemiological state of all the herds of the network is a
strong hypothesis in real life, as this kind of information can
be hard to gather for most livestock diseases [38]. For example,
a scoring function calculated as the increment in the proportion
of infected animals in a herd over a certain period can be
observed through changes in the herd’s seroprevalence
between two time points, which incurs into increased logistics,
can be observed with error and not in real time. Furthermore,
having such updated and detailed health-related information
can be costly, and this cost should be taken into account in
the constrained optimization problem for the allocation.
Among the possible perspectives of this work, the previous
point opens an important one: combining scoring functions
for improved performances, and above all for yielding a scor-
ing function that can be useful in practice. This could be
achieved, for example, through the (linear) combination of scor-
ing functions, or through the selection of herds at the top of the
ranking given by several scoring functions that do not allocate
the resource in a similar way. Additionally, for cases when the
value of the score is the same for many herds, the allocation
could be done using a second scoring function that would
take different allocation decisions. As a second, more methodo-
logical perspective, the greedy scoring functions built on first-
order approximations could be eventually constructed using
higher-order approximations. This could lead to analytic
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scores that also depend on the network topology, and could
improve their performance. Although it has to be stressed
that they were already among the best-performing scores for
reducing disease prevalence in all cases. Finally, despite the
fact that we focused on a protective vaccine and a treatment
that increases the recovery rate, other types of resources
could be studied with the same approach. However, it might
not be straightforward to derive the analytic expression of
the greedy scoring function in such cases. For example, the
effect of the restriction of animal movements, which is a rel-
evant control measure in this context, lies on the connections
of the herd rather than on the intra-herd level, which could
further complicate the derivation of the scoring function.
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