N

N

Architecture robotique et cognitive pour ’apprentissage
de taches en interaction avec I’humain. Une application
pour la collaboration homme/robot dans I’Industrie 4.0.

Francois Helenon

» To cite this version:

Francois Helenon. Architecture robotique et cognitive pour 'apprentissage de taches en interaction
avec 'humain. Une application pour la collaboration homme/robot dans I'Industrie 4.0.. Traitement
du signal et de I'image [eess.SP]. HESAM Université, 2022. Frangais. NNT: 2022HESAE(007 . tel-
03669479

HAL Id: tel-03669479
https://pastel.hal.science/tel-03669479

Submitted on 16 May 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/tel-03669479
https://hal.archives-ouvertes.fr

HESAM
UNIVERSITE N\ & Vetiors

ECOLE DOCTORALE SCIENCES ET METIERS DE L’INGENIEUR

Laboratoire d’Ingénierie des Systemes Physiques et Numeériques -
Campus de Lille

THESE

présentée par : Francgois Hélénon
soutenue le : 18 janvier 2022

pour obtenir le grade de : Docteur d’HESAM Université

préparée au - Ecole Nationale Supérieure d’Arts et Métiers

Spécialité : Génie informatique, automatique et traitement du signal

Architecture robotique et cognitive pour ’apprentissage de
taches en interaction avec I’humain. Une application pour la
collaboration homme /robot dans I’Industrie 4.0.

THESE dirigée par :
M. Gibaru Olivier

et co-encadrée par :
M. Thiery Stéphane et M. Nyiri Eric

Jury

M. Rachid ALAMI, Directeur de recherche, LAAS, ANITI, Toulouse Président

M. Pedro NETO, Maitre de conférences, HDR, CoRLuc, Université de Coimbra, Portugal Rapporteur
M. Gang ZHENG, Chargé de recherche, HDR, DEFROST, INRIA, Lille Rapporteur
Mme. Hélene CHANAL, Maitre de conférences, HDR, SIGMA, Université de Clermont-Ferrand Examinatrice
M. Martin RIEDMILLER, Professeur des universités, Google DeepMind, Londres Examinateur
M. Olivier GIBARU, Professeur des universités, LISPEN, Arts et Métiers, Lille Examinateur
M. Eric NYIRI, Maitre de conférences, LISPEN, Arts et Métiers, Lille Examinateur

M. Stéphane THIERY, Maitre de conférences, LISPEN, Arts et Métiers, Lille Examinateur

Remerciements

Je tiens tout d’abord a remercier ceux qui m’ont permis d’intégrer cette these : mon directeur
Olivier Gibaru, et mes co-encadrants Stéphane Thiery et Eric Nyiri. Merci pour la confiance que
vous m’avez accordé, pour les apports matériels et pour vos retours avisés, parfois le week-end, dans
la direction et la valorisation de ce travail de recherche. Vous m’avez aidé au fil du temps a prendre

du recul et de la hauteur sur mon travail.

Par ailleurs, je tiens a remercier la région Hauts-de-France et AMValor qui ont cofinancé cette

these et m’ont ainsi permis de m’y consacrer a plein temps.

Je remercie I’ensemble des membres de mon jury pour m’avoir fait I’honneur de s’étre intéressé a
ce projet. Merci a Pedro Neto pour m’avoir accueilli au CoRLuc a Coimbra, ou j’ai pu étre introduit
aux robots collaboratifs, puis pour avoir accepté de rapporter ce travail de these avec Gang Zheng.
Vos relectures attentives, vos retours précis et synthétiques dans vos rapports et au cours de ma
soutenance montrent I'intérét porté a I’ensemble des travaux. Je tiens a remercier Rachid Alami pour
avoir accepté de présider mon jury, ainsi que Martin Riedmiller et Héléene Chanal pour avoir accepté

d’examiner mon travail. Merci a tous pour vos retours bienveillants, curieux et encourageants.

J’ai une pensée pour les nombreuses personnes dont j’ai eu le plaisir de partager un petit bout de
chemin. Sans exhaustivité, merci a : Arthur pour sa gentillesse et m’avoir accompagné avec succes
pour danser le rock ; Eddy pour sa maitrise du café et son aide, aussi bien dans ’accueil des nouveaux
doctorants que pour le départ des futurs docteurs ; Zein pour son flegme et son sérieux ; Michel
pour sa bienveillance et son abnégation ; Vincent et Tiphaine pour leurs chaleureux accueils dans leur
appartement ; Mathieu que j’ai eu le plaisir de retrouver en these et pour de longues discussions ;
Marielle pour son organisation, ses encouragements et pour m’avoir accompagné pour de nombreux

footings ; Marguerite pour sa bonne humeur et son franc-parler ; Martin pour sa curiosité vis-a-vis

REMERCIEMENTS

de I'TA ; Mohammad pour son courage et sa force de caractere ; Modhi pour sa bienveillance et
m’avoir montré que I'on peut étre thésard et (tres) sportif ; Amélie avec laquelle j’ai partagé de beaux
instants musicaux a I’OUL ; Sebastian et ses talents de danseurs ; Maxime pour sa relecture de certains
chapitres et qui garde la péche malgré les caprices des robots et des réseaux de neurones ; Floriane
pour ces courts, mais sympathiques moments passés au laboratoire ; Dorian pour sa gentillesse et sa
rapide intégration dans I’équipe ; Anthony avec qui j’ai partagé la plateforme robotique et les mois
de rédaction ; Merci a Laurent pour son aide et collaboration sur une partie des travaux de recherche
présentés dans ce manuscrit ; Merci a Lei pour son ouverture d’esprit et sa volonté de partage avec
Pensemble du laboratoire (merci encore pour les dumplings !) ; Merci & Olivier (également un petit
fu-tum pour Grecia) pour les ateliers cuisines, les cours d’investissements, et sa relecture de chapitres
; Merci a Lamine pour les couscous, sa positivité et son soutien sans faille aussi bien au cours de la

these qu’en dehors ; ...

Je remercie les personnels de 'ENSAM et d’AMValor pour leur accueil et leur accompagnement
divers au cours de ma these : Sabine, Ludovic, Richard, Olivier T., Vincent D., Vincent I., Adrien,

Estelle, Elo'l'se, .

Merci aux chefs, musiciens et aux chanteurs de ’OUL et du COUL, qui m’ont permis de m’évader

musicalement pendant la these.

Une pensée a tous mes amis de I'LLN.D., de TENSAM et de Supélec et en particulier pour toute ma
famille proche et éloignée, qui m’ont accompagnée dans cette complexe aventure. Merci & mes parents,
Fily et Alain, a ma sceur et meilleure amie Oriane, & mes oncles, tantes, marraine, grands-parents,
et toute ma famille, qui, ou qu’ils soient aujourd’hui, m’ont appris que la vie est un combat et ont

participé a faconner la personne que je suis.

Enfin, j’aimerais remercier ’ensemble des contributeurs et contributrices de ’Open Source. La
réalisation technique de ce travail de these n’aurait pas été possible sans ’exploitation et I'intégration

de ressources issues de programmes libres et ouverts.

ii

Résumé

Des capacités d’interaction flexible et centrée sur I’humain, en robotique collaborative, est un aspect
essentiel de I'industrie 4.0/5.0. Les robots collaboratifs peuvent désormais fournir une assistance dans
de nombreuses taches, contribuant ainsi a réduire les risques de troubles musculo-squelettiques pour
les travailleurs humains. Cependant, le niveau de collaboration reste encore loin du niveau naturel
entre deux collegues humains. En effet, la reconfiguration des robots collaboratifs manque encore de
flexibilité et est souvent hors de portée du travailleur du quotidien, qui n’est ni un programmeur ni
un expert en robotique. Un robot collaboratif idéal devrait devenir un Assistant Robotique Intelligent
(SRA) capable d’adapter dynamiquement son comportement a la diversité de chaque situation, y
compris les taches, les changements d’environnement, les caractéristiques des travailleurs et leurs
préférences. De telles exigences conduisent a un changement de paradigme dans la fagon dont les

robots collaboratifs sont programmeés.

Tout au long de cette these, pour répondre aux spécifications d’'un SRA, nous avons exploré la
conception d’un prototype d’architecture cognitive autour de la notion d’Enseignement Robotisé en
Interaction (IRL). L’agent robotique peut apprendre, en s’appuyant sur des connaissances antérieures,
comment représenter et exécuter des taches inconnues avec des capacités de généralisation, selon les
préférences et les caractéristiques des travailleurs. L’apprentissage se fait tout au long de I'interaction,
dans un cadre d’initiative mixte, de maniére incrémentale, rapide et naturelle, par des personnes non

expertes en programmation.

En nous inspirant d’approches complémentaires de la littérature en Intelligence Artificielle (IA) et
en I'TL, nous avons mis en évidence les avantages d’une architecture hybride, entrelacant les approches
symbolique et connexionniste en IA. Suivant les spécifications du SRA, nous avons choisi de développer
un nouveau systeme cognitif basé sur des modeles de représentations relationnelles et I'intégration

de modules d’apprentissage spécifiques basés sur ’apprentissage profond. En particulier, nous nous

iii

sommes concentrés sur ’exploitation de représentations modulaires pour les comportements du SRA,
intervenant pour le processus d’apprentissage délibératif et incrémental de 'agent. Cela a conduit a
considérer les arbres de comportements réactifs au coeur du modele de comportement de ’architecture.
Cela permet d’apprendre des niveaux hiérarchisés de représentations, de la perception motrice du

monde réel aux représentations symboliques abstraites.

Des validations expérimentales, avec de vrais robots collaboratifs, ont été effectuées tout au long
de la theése pour évaluer le comportement de ’actuel prototype d’architecture par rapport aux spé-
cifications du SRA. Comme les taches de manipulation sont courantes dans de nombreuses applica-
tions industrielles, nous avons choisi de concentrer ces validations expérimentales sur des scénarios de
préhension planaires, orientés vers la tache. Ceci a motivé le développement et 'intégration de modules
d’apprentissage en A basés sur des démonstrations humaines pour 'apprentissage de la préhension.
A partir de quelques démonstrations, un humain peut enseigner rapidement et naturellement les em-

placements autorisés et interdits, en fonction de la tache et/ou de leurs propres préférences.

En outre, et en tant que perspectives d’intégration futures, nous discutons de la fagon dont les
techniques d’incertitude et d’estimation pour I'apprentissage profond pourraient étre exploitées au

coeur de ’architecture, pour les prédictions d’échec et pour I'apprentissage actif.

Abstract

Human-centric and flexible interaction in collaborative robotics is a key aspect of industry 4.0/5.0.
Collaborative robots can now assist in many tasks, helping to reduce musculoskeletal disorders risks
for human workers. However, the level of collaboration remains far from the natural one between two
human coworkers. Indeed, reconfiguration of collaborative robots still lacks flexibility and is often out
of reach of the everyday worker, who is neither a programmer nor a robotics expert. An ideal collabo-
rative robot should become a Smart Robotic Assistant (SRA) that can adapt dynamically its behavior
to the diversity of each situation, including tasks, environment changes, workers characteristics and
their preferences. Such SRA requirements lead to a paradigm shift in the way collaborative robots are

programmed.

Throughout this thesis, to fulfill SRA specifications, we have explored the design of a prototype
of cognitive architecture around the notion of Interactive Robot Learning (IRL). The robotic agent
can be taught, by leveraging prior knowledge, how to represent and carry out unknown tasks with
generalization abilities, according to workers preferences and characteristics. Teaching is done through-
out interactions, in a mixed-initiative setting, incrementally, and in a fast and natural way by non

programming experts.

Taking inspiration from complementary Al and IRL paradigms found in the literature, we have
highlighted the benefits of a hybrid architecture, interleaving symbolic and connectionist approaches.
With SRA specifications in mind, we chose to develop a new cognitive system based on relational rep-
resentations models and integration of specific learning modules based on deep learning. In particular,
we have focused on exploiting modularity of behaviors representations for the agent deliberative and
incremental learning process, which led to consider Behaviors Trees (BT) at the core of the behavior
model. It helps to learn a hierarchical level of representations, from real world moto-perception to

symbolic abstract representations.

ABSTRACT

Experimental validations, with real collaborative robots, were made throughout the thesis to as-
sess the behavior of the current architecture prototype with respect to our SRA specifications. As
manipulation tasks are common in many industrial applications, we chose to focus these experimental
validations on planar, task-oriented grasping scenarios. This has motivated the development and inte-
gration of specific based Al learning modules, leveraging humans demonstrations for learning grasping.
From a few demonstrations, workers can teach quickly and naturally authorized and prohibited loca-

tions concerning the task and/or their own preferences.

In addition and as future integration perspectives, we discuss how uncertainty and estimation
techniques for deep learning could be leveraged in the core of the architecture, for failure predictions

and active learning.

vi

Contents

Remerciements i
Résumé iii
Abstract \4
List of tables xvi
List of figures xxiii
Acronyms XXV
1 Introduction 1
1.1 Motivations: challenges in fully reconfigurable robotics for industry 2
1.1.1 Classical industrial robots: one task specialist for robots programmer experts . 2

1.1.2 Collaborative industrial robots at the dawn of a new social industrial robotic

context oL e 3

1.2 Positioning in the broader cognitive robotics field00, 4
1.2.1 What is a collaborative artificial intelligence 7. 5
1.2.2 Human in the loop for flexible interactive robot learning 7

1.3 Towards a smart robotic assistanto L L Lo 9
1.3.1 Objectives o o e 9

vii

CONTENTS

1.3.2 Contributions and thesis organization 10

2 State of the art on cognitive systems 11
2.1 Connectionist and symbolic approaches 0o, 12
2.1.1 System understandability oo 12

2.1.2 Connectionism e e 13
2.1.3 Symbolic 15
2.1.4 Hybrid o 16

2.2 Main building blocks of a cognitive architecture o000 17
2.2.1 Ontology as an explainable structure for components interoperability 17
2.2.2 Behaviormodel 17
2.2.3 Teaching complex behaviors to robots : Interactive robot learning 23

2.3 Conclusion e 25
3 Design of a cognitive architecture for Industry 4.0 29
3.1 Base ontology for our ITL/IRL 30
3.1.1 Robotic Agent as a goal driven agent 31
3.1.2 Environment representation Lo 31
3.1.3 Utterances o e e 33
3.1.4 Skills and actions primitive 33

3.2 Hierarchical, modular representations L oL L. 35
3.2.1 Semantic declarative memory oL Lo 36
3.2.2 Working memory e e 36
3.2.3 Episodicmemory 37
3.2.4 Procedural memoryo 37
3.2.5 Perceptual memoryo 38

3.3 IRL process with preferences Lo 39

CONTENTS

3.4 Conclusion e

4 Complementary ML approaches for IRL on planar grasping use cases

4.1 Learning planar grasping 0 e e e e
4.1.1 Theoretical general formulation oL oL
4.1.2 Some common techniques Lo oo
4.1.3 Planar grasping formulation L oL oo o
4.1.4 Base approaches in deep learning

4.2 Learning autonomously bin picking Lo oo
4.2.1 Bin picking module
4.2.2 Methodology
4.2.3 Experimental resultso oL
4.2.4 Module conclusion

4.3 Learning grasping location affordance from demonstration
4.3.1 Task oriented grasping L L Lo
4.3.2 Methodology
4.3.3 Experiments results oo
4.3.4 Module conclusion Lo

4.4 Conclusion L

5 Learning under uncertainty

5.1 What does uncertainty means 7 L
5.1.1 Stochasticity and data shift oo
5.1.2 Aleatoric uncertainty 7, oL
5.1.3 Epistemic uncertainty 7. oL Lo
5.1.4 Total uncertainty 7. Lo

5.2 Uncertainty estimation methodso o o

ix

CONTENTS

6

5.2.1 Bayesian and variational inference methods 82
5.2.2 Deep ensemble methods Lo o 83
5.2.3 Distance aware uncertainty modelo 85
5.24 External measure 88
5.2.5 Conclusion on uncertainty review in deep learning 90
5.3 Uncertainty for decision-making Lo 94
5.3.1 Calibration and sharpness 94
5.3.2 Performance metrics of a system oo 97
5.4 Active learning setting L. 100
5.4.1 Uncertainty for active learning setting 100
5.4.2 General active learning process for ITL 101
5.4.3 Uncertainty aware behavior model 0. 103
5.5 Conclusion e 106
Implementation and validation on a planar pick and place learning task 107
6.1 Choices of sensors for IRL perception and interaction 108
6.1.1 Non-verbal communication o L. 109
6.1.2 Verbal communication L L Lo 113
6.2 Perceptual and acting modules integration o Lo 117
6.2.1 Speech recognition and understandingo 117
6.2.2 Prior object segmentation and tracking 0L 118
6.2.3 Joints pose estimation for non verbal interaction 118
6.2.4 Location affordance learning Lo 118
6.2.5 Acting 120
6.3 Validation scenarioo 120
6.4 Conclusion e 124

CONTENTS

7 Conclusion and perspectives

7.1 Main points Lo e e e

7.2 Integration of an uncertainty aware grasping module

7.2.1

7.2.2

7.2.3

Grasping under uncertainty oL Lo
Trustnet L

Extension for active learning by demonstration

7.3 Long terms perspectiveso e e e e

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

Continuous active learning setting L oL
Reasoning about specific uncertainties
Multimodal fusion
Improve preferences generalization

Improve behavior models in terms of learning and representations

7.4 General conclusion

A Evaluation of grasping quality and uncertainty

A1 Jacquard metric L

A.2 GraspNet/Trustnet experimental details

A21

A22

Implémentation details

TrustNet improvement study oo

B Résumé étendu en frangais

B.1 Introduction: vers un Assistant Robotique Intelligent

B.1.1

B.1.2

B.1.3

B.1.4

Motivations e e e
Positionnement L e
Objectifs o o

Contributions et organisation L.

B.2 Conception d'une architecture cognitive inspirée de I’état de 'art

xi

127

128

130

130

131

133

136

136

136

137

139

140

144

147

147

147

147

151

155

CONTENTS

B.3

B4

B.5

B.6

B.2.1 Approches connexionnistes et symboliques
B.2.2 Choix du modele de comportementso
B.2.3 Processus décisionnel du SRA prenant en compte les préférences
B.2.4 Conclusion e
Approche ML pour la préhension planaire

B.3.1 Apprentissage autonome du devracage

B.3.2 Apprendre 'affordance de la position de saisie a partir de quelques démonstrations169

Mise en oeuvre et validation sur une tache d’apprentissage de type "prendre et placer”
B.4.1 Choix des capteurs pour la perception et interaction SRA
B.4.2 Intégration des modules de perception et d’action
B.4.3 Scénario de validation Lo Lo
B.4.4 Conclusion e
Vers plus de flexibilités
B.5.1 Obtenir un niveau d’incertitude L.
B.5.2 Incertitude dans la prise de décision L.
B.5.3 Apprentissage actif
B.5.4 Conclusion e

Conclusion générale L

References

Chapter 1: Introduction

Chapter 2: State of the art on cognitive systems

Chapter 3: Design of a cognitive architecture for Industry 4.0

Chapter 4: Complementary ML approaches for IRL on planar grasping use cases

Chapter 5: Learning under uncertainty L L oL

Chapter 6 : Implementation and validation on a planar pick and place learning task

xii

173

174

175

175

178

178

179

180

182

184

185

187

187

189

196

198

202

206

CONTENTS

Chapter 7: Conclusion and perspectives o

Résumé étendu en francais L L L

xiii

CONTENTS

Xiv

List of Tables

1.1

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

5.1

6.1

Paradigm shift in industrial robotics o

Comparison of properties exhibited in cognitive and interactive robotics learning systems. 26

Control flow and action nodes in the standard behavior tree framework

Summary of existing task oriented grasping works

Results of our grasping test, percentage (number) of good grasps over the 36 unseen

POSItIONS . . . L L e e e

Comparing grasping results with only one authorised area and with both authorised /pro-

hibited areas (in parenthesis) e
Influence of the weighted Ls loss. Training was made with a set of 3 demonstrations. .

Ability of the Network to generalize to an unreferenced similar object. The network
was trained after demonstrations on a referenced object and the test was performed
on unreferenced similar objects. In parenthesis, results obtained in section 4.3.3-1I are

recalled. L e

Grasping accuracy results for groups of similar objects

Contingency table with uncertainty measure 7. Upper a threshold uncertainty, an alarm

is triggered, for instance in an active learning framework.

Summary table of sensors and perception modalities with qualitative comparison. Green

sensors were chosen for the validation and the implemantion of the architecture

XV

63

65

66

67

69

97

116

LIST OF TABLES

6.2

6.3

6.4

7.1

Al

A2

B.1

B.2

B.3

B4

B.5

Overview of prior knowledge 122

Synthesis of what will be learned during the incremental interactive learning process of

the unknown task to give 122

Detail of the learning process during the incremental interactive learning process of the

unknown task to give Lo 123

Pearl’s Causal Hierarchy, adapted from Table 1.1 [29]. Appearing correspondences

within the IRL architecture design. 144
Accuracy for various GraspNet architectures and learning scheme 149
Uncertainty metric performance for grasping cornell|jacquard datasets 151

Flux de controle et noeuds d’exécution dans le cadre standard des arbres de comportement 164
Apercu des connaissances @ PriorTi oo e e e e e e e e 176

Synthese de ce qui sera appris au cours du processus d’apprentissage interactif incré-

mentale de la tache inconnue donnero 176

Détail du processus d’apprentissage pendant le processus d’apprentissage interactif in-

crémentiel de la tache inconnue "donner”o 177

Tableau de contingence avec mesure d’incertitude 7. Au-dela d’un seuil d’incertitude

Tehresh, Une alarme est déclenchée, par exemple dans un cadre d’apprentissage actif. . . 180

xvi

List of Figures

1.1

1.2

1.3

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

Evolution of industrial robotics. 2

This figure was reproduced based on Figure 1 from [5] (Creative Commons Attribution
4.0 License). Based on psychological findings, it depicts general landmarks of how in-

fants incrementally learn to build a world model during their early cognitive development. 6

Image taken at ”"Citadelle” park in Lille (59000), France. 8
General hybrid architecture design oL Lo 13
Robotics architecture can be represented through three layers of control. 18

High-level overview of the architecture. The architecture consists of perceptual modules
based on connectionist approaches, symbolic relational representations, and a deliber-
ative process for interactive robot learning with human. The IRL process consists of

two interleaved paths (a plain path with circled number and a dashed path with boxed

number) which are described in section 3.3.o o Lo 30
Base ontology example overview. L L oL oo 31
Base skill model 35
Example of a semantic memory database derived from the ontology 36
Example of the working memory derived from the ontology 37

Transfer learning in deep neural networks is leveraged to allow fast reconfiguration and
ressource management. To simplify the figure, we represent here a dense network but

any kind of neural networks layers can be used if relevant for the sensory modality. . . 38

xXvii

LIST OF FIGURES

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

It is the same figure as figure 3.1 and is reproduced here for reading convenience. . . . 40

The failure handling process triggers interactive learning of symbolic or perceptual

representations. L L L L e e e 41
Reinforcement learning base description o oL 48
Grasping parameterso e e e e e 49
GraspNet architecture e 50

Example of synergy between pushing and gripping. A pile of objects is presented none

of which can be retrieved by direct grasping (a). The robot will first push the pile (b)

and then separate the objects (b) and then grab an isolated object (¢). 52
Hardware pipeline of the algorithm 53
Pipeline of the algorithm Lo 54

First, for a new object, the system learns from operator’s demonstration. After few

minutes of training, the system will be able to retrieve the demonstrated area on a

depthmap. e e e e e 56
Data capture and data augmentation pipeline. 0oL, 59
Overview of our CNN pipeline. 60

Objects used for our experiment, with the name of grasping areas. Green colour (resp
red colour) denotes authorised (resp prohibited) grasping area. The yellow colour is
used to illustrate authorised/prohibited area and vice versa, depending on the task
(for example the accessibility of the screwing operation). For the pliers, two different

authorised areas are tested separately oL 63

Different segmentation quality results. The top images (cups) were trained showing one
authorised grasping area (handle). The bottom images (socket wrench) were trained
showing one authorised (handle) and one prohibited (head) grasping area. The left
column shows bad segmentation resulting in a bad grasping decision, the middle one
shows average segmentation, and the right one shows good segmentation of the object.
For the purpose of illustration, outputs were reoriented and resized. Those outputs

were obtained using networks trained on 3 demonstrations. 64

xviii

LIST OF FIGURES

4.12

4.13

4.14

4.15

4.16

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

9.9

5.10

5.11

5.12

5.13

[lustration of grasping results with respect to the number of demonstrations 65

Qualitative comparison between pipeline output. Networks were trained using 3 demon-

strations L e 66
Similar objects used to test our algorithm generalization abilities 67

Bulbs grasping affordance pixel wise representations. From left to right : referenced

bulb on which the training was done, bulb 1, and bulb 2. 67

The three groups of similar objects used in our test. 68

Behaviors of deep learning classification models given the two moons distribution dataset

with an additional OOD cluster, with and without uncertainty aware leveraged techniques. 78

Two moons classification with an uncertainty aware model (here SNGP). We illustrate
the aleatoric uncertainty 7, and the learned epistemic uncertainty 7. given the two

moons dataset. L e 79

Two moons classification: evolution of prediction (top) and uncertainty (bottom) with

time (learning epochs)o 81
Bayesian methods for uncertainty estimation of deep neural networks 84
Ensemble methods for uncertainty estimation of deep neural networks 86

Ilustration of the general principle of distance aware based model. SNGP is specific

case. Plotting does not come from real data and serve just as an illustration. 88
Ilustration of temperature scaling against standard classification 89
External measures of uncertainty estimation of deep neural networks 90
Classification probability with uncertainty for different uncertainty metrics 7. 92
Regression task with Monte Carlo Dropout 93
Predicted uncertainty inference at the last layer 93
Estimating uncertainty using predictive uncertainty of the ensemble 94

Confidence histogram illustrating ECE metrics applied to the predictive uncertainty
of an uncalibrated classification network based on EfficientNetb0 [30], pretrained on

ImageNet and fine-tuned on cifar100 with coarse label (20 different classes). 96

xix

LIST OF FIGURES

5.14

5.15

5.16

5.17

5.18

5.19

6.1

6.2

6.3

6.4

7.1

7.2

7.3

ROC curve. e e 98
Illustration of Typ,esn usage to limit wrong actions 99
Based on the ROC curve, one can choose a threshold to balance the trade-off between

the amount of true and false positive. L. 100
General pipeline for active learningo 103

General extension of belief behavior trees for condition and action nodes for uncertainty

propagation. Dotted arrow represent what is returned by the node after its termination. 105

The IRL agent can exploit specific BBTs structure to handle uncertainty provided by

lower level modules and the belief state in working memory. 106

Details view of the architecture in terms of integrated modules. 108

Learning authorised and prohibited grasping location : one demonstration (couple input

I, label L) and data augmentation pipeline 119

Convolutional Neural Network (CNN) pipeline and prediction illustration. The ap-
proach used is a regression one, where CNN outputs a pixel-wise affordance map (pixels

values are between -l and 1). Lo 119

The IRL agent can dynamically adapt its affordance prediction according to the inter-
acting human as shown here on a wrench example. On the left, H; has taught the IRL
agent to grasp the wrench by the head. On the right, Hy has taught the IRL agent to
grasp the wrench by the tail. The agent can then dynamically choose the preference

according to the interacting human. oo oL 124

TrustNet architecture e 132

Histogram of 7 for good (green) and bad (red) predictions for different uncertainty
methods on Cornell grasping datasets. Bad predictions are represented by negative

OCCUTITEINICES .« v v v v v v e e e e e e e e e e e e s e e e e e 133

Graspnet and TrustNet integration can be used in a task oriented setting for active

learning by demonstration. L oL 134

XX

LIST OF FIGURES

7.4 Possible integration of the module with BBTs. Uncertainty can be propagated backward

and t leveraged by the IRL agent for active learning.

7.5 Integration and learning pipeline of the TrustNet/GraspNet module with the higher

level processes of the IRL architecture.
7.6 Illustration of Typ.esp Usage to prevent wrong actions, given the uncertainty 7

7.7 Different Bayesian Networks graphical models can represent the same data. But not all
graphs represent causal relations. Gray variables are observed variables, white one is a

hidden variable that could influence object visiblity.

A.1 ROC and S-FPR curves for different uncertainty metrics 7.

A.2 Histogram of 7 for good (green) and bad (red) predictions for different uncertainty
methods on Cornell grasping datasets. Bad predictions are represented by negative

OCCUITEIICES . . .« v v v v v vt et e

A.3 FPR-95%-TPR evolution for different 7. For some 7, we also plot similar histograms

as presented in the qualitative analysis.

A .4 Performances comparaison between Ensemble Weighted Trustnet and the original Trust-

Net (Cornell dataset)

B.1 Evolution des robots industriels.

B.2 Apercu de haut niveau de ’architecture. L’architecture se compose de modules percep-
tifs basés sur des approches connexionnistes, de représentations relationnelles symbol-

iques et d’un processus délibératif pour I'apprentissage en interaction avec I’humain.
B.3 Conception générale de 'architecture hybride
B.4 Exemple haut niveau d’'une ontologie
B.5 L’architecture robotique cognitive peut étre représentée par trois couches de controle.
B.6 Modele de base pour une compétence Lo o

B.7 Le processus de résolution des échecs déclenche 'apprentissage de représentations sym-

boliques ou perceptuelles grace a l'interaction avec 'humain.

xxi

151

153

153

156

159

162

LIST OF FIGURES

B.8 Exemple de synergie entre actions de poussée et de préhension. On présente une pile
d’objets dont aucun ne peut étre récupéré par préhension directe (a). Le robot va

d’abord pousser la pile pour séparer des objets (b) afin de saisir un premier objet isolé

B.9 Dispositif expérimental oL
B.10 Architecture de l'algorithme o

B.11 Tout d’abord, pour un nouvel objet, le systeme apprend a partir de la démonstration de
lopérateur. Apres quelques minutes d’entralnement, le systeme est capable de retrouver

la zone désignée sur une carte de profondeur.
B.12 Capture de données et augmentation L oo
B.13 Apercu de notre pipeline CNN.

B.14 Objets utilisés pour notre expérience, avec le nom des zones de préhension. La couleur
verte (resp. la couleur rouge) indique la zone de préhension autorisée (resp. interdite).
La couleur jaune est utilisée pour illustrer la zone autorisée/interdite et vice versa, en
fonction de la tache. Pour les pinces, deux zones autorisées différentes sont testées

Séparément L. e e e
B.15 Tllustration des résultats de préhension suivant le nombre de démonstrations
B.16 Vue détaillée de I'architecture en termes de modules intégrés.

B.17 L’agent SRA peut adapter dynamiquement sa prédiction d’affordance en fonction de
I’humain avec lequel il interagit, comme le montre ’exemple de la clé. A gauche, H; a
appris a I'agent SRA a saisir la clé par la téte. A droite, Hy a appris a ’agent a saisir
la clé par le manche. En fonction de 'opérateur avec lequel le SRA interagit, le robot

apporte alors la clé dans sa main dominante et selon sa préférence.
B.18 Illustration de I'utilisation de 7yp.05p pour limiter les mauvaises actions
B.19 Processus général pour apprentissage actif

B.20 L’agent SRA peut exploiter la structure spécifique des BBTs pour gérer 'incertitude

fournie par les modules de niveau inférieur L.

xxii

171

LIST OF FIGURES

B.21 Hlustration de 'utilisation de 7yp,¢s5 pour éviter les mauvaises actions, compte tenu de

Vincertitude 7. L

xxiii

LIST OF FIGURES

xxiv

Acronyms

ACC Accuracy.

AGI Artificial General Intelligence.
AT Artificial Intelligence.

AS Action Script.

AUROC Area under the ROC Curve.

BAN Bayesian Networks.
BBTs Belief Behavior Trees.
BN Behavior Networks.

BT Behavior Trees.

CAD Computer Aided Design.

CNN Convolutional Neural Networks.

CP Cram Plan.

DQN Deep Q-Network.

ECE Expected Calibration Error.

FN False Negative.

FP False Positive.

XXV

Acronyms

FPR False Positive Rate.
FPR-a%-TPR False Positive Rate for a given percentage a% of the True Positive Rate.

FSM Finite State Machine.

GP Gaussian Process.

HFSM Hierarchical Finite State Machine.
HRI Human Robot Interaction.
HRL Hierarchical Reinforcement Learning.

HTN Hierarchical Task Network.

IID Independent and Identically Distributed.
IRL Interactive Robot Learning.

ITL Interactive Task Learner.

KPI Key Point Indicators.

Lfd Learning From Demonstrations.

MCE Maximum Calibration Error.
MDP Markov Decision Process.
ML Machine Learning.

MSE Mean Square Error.

NLP Natural Language Processing.
NPC Non Playable Character.

NPV Negative Predictive Value.

XXVI

Acronyms

OOD Out Of Distribution.

PCA Principal Component Analysis.
PNP Petri Net Plan.

POS Part of Speech.

PR Percept-Response.

PRS Procedural Reasoning System.

RAE Refinement Acting Engine.

RAP Relational Activity Processes.

RL Reinforcement Learning.

ROC Receiver Operating Characteristic.

ROS Robotic Operating System.

S-3%-FPR Compute the success rate 8% of the False Positive Rate.
SCM Structural Causal Model.

SGD Stochastic Gradient Descent.

SHP Shared Plans.

SNGP Spectral-normalized Neural Gaussian Process.

SPR Soar Production Rules.

SRA Smart Robotic Agent.

STT Speech To Text.

SWA Stochastic Weight Averaging.

SWAG Stochastic Weight Averaging-Gaussian.

XxXVil

Acronyms

TDL Task Description Language.
TN True Negative.

TP True Positive.

TPR True Positive Rate or sensitivity.

XxViil

Chapter 1

Introduction

Contents

1.1 Motivations: challenges in fully reconfigurable robotics for industry 2
1.1.1 Classical industrial robots: one task specialist for robots programmer experts . 2

1.1.2 Collaborative industrial robots at the dawn of a new social industrial robotic
context L e s 3
1.2 Positioning in the broader cognitive robotics field., 4
1.2.1 What is a collaborative artificial intelligence 7 5
1.2.2 Human in the loop for flexible interactive robot learning 7
1.3 Towards a smart robotic assistant 00 0o o . 9
1.3.1 Objectives o e 9
1.3.2 Contributions and thesis organization 10

In recent years, industrial robots have left their cages to become more collaborative thanks to better
sensors and higher level programming libraries. Yet, in real world scenarios, flexibility and interaction
abilities of robots remains far from the natural interaction expected between two human co-workers.
This new paradigm requires both better hardware and software. Particularly for the latter, artificial
intelligence is playing an increasing role to cope with environment variability and complexity of human
interactions. This chapter introduces the global context of the thesis. Section 1.1 first motivates this
work by drawing through an industrial collaborative perspective, the required paradigm shift to build
a Smart Robotic Assistant (SRA). Then, we introduce in section 1.2 the field of cognitive robots. We
emphasise the need of a cognitive architecture and the integration of several Al paradigms as the basis
of an SRA that learns in interaction with humans. This path has led to contributions to Learning
From Humans Demonstrations and Interactive Robot Learning, described in section 1.3.

1.1. MOTIVATIONS: CHALLENGES IN FULLY RECONFIGURABLE ROBOTICS
FOR INDUSTRY

1.1 Motivations: challenges in fully reconfigurable robotics for industry

In the ideal Industry 4.0, robots are expected to work hand to hand with humans. Collaborative
robots will have a predominant place, but humans will be at the center. It is therefore up to the robot
to adapt to diversity: each person, each task, each situation. This will be the generation of Smart
Robot Assistant (SRA). The road is still long and requires a paradigm shift and the development of
solutions allowing the robot to acquire all these adaptive capabilities in a way that is both generalizable

and explainable.

1.1.1 Classical industrial robots: one task specialist for robots programmer experts

The idea of building complex mechanical systems that can mimic animals or humans capabilities,
inspired humans centuries before the first computer. The first automata, which come from the an-
cient Greek mythological word automaton, were purely mechanical animated devices. For instance in
1734, Jacques de Vaucanson built one of the first documented biomechanical inspired automaton: the
Digesting Duck. It was a purely mechanical device, able to quack, to flap its wing, to process food
and that was programmed by a set of well-designed cams. These mechanical devices of course were

too limited to be more than curiosities, but they can be seen as precursors to modern robotics.

According to a brief historical overview in [1], industrial robotics evolved through four generations

which have been summarized in the timeline Figure 1.1.

Lo
Vo b
[b you
H '
[.

1 1 s
[i Learn, do
I '
b I explain

I I

I

'

|
T A § T ; i i : i
! Industrial robot precursors : ! | Generalization of industrial robot Lo Classical industrial robot | ! Collaborative industrial robot ! i Smart interactive robotic agent !
: ! slectr ics i QOO] n P ' H
! purely hydro-mechanical | electronics Lol In cages \ . close to human v learn and interact !
very specific ' ' in cages . better programming | ' high level programming ' H naturally with human '
specific tasks [specific] specific task H '
__ ' g S S i g gy | g g Sy |
I ! I ! !
T T T T T
IN] AN N) A
& N N N AN The : N . 5 - .
,g° First generation ,§ Second generation S) Third generation & Fourth generation bg Py Next generation
SN N

Figure 1.1: Evolution of industrial robotics.

A few decades after the Industrial Revolution, in the 1950s, the idea of automatizing industrial
processes with mechanical manipulators emerged and gave birth to the first generation of industrial

robots. In 1961, the first true commercialized industrial robot, Unimate, was introduced in General

1.1. MOTIVATIONS: CHALLENGES IN FULLY RECONFIGURABLE ROBOTICS
FOR INDUSTRY

Motors factories. Many competitors followed but as purely hydro-mechanical devices, they were
specifically designed for a task. Therefore, despite many successes, their use was defined at the time

of integration as welding, pick and place or painting, and this was extremely difficult to modify.

With the development of electronics and computer science, the second generation of industrial
robots appeared (1968-1977). They consisted of basic programmable machines leveraging the comput-
ing power of microprocessors and programmable logic controllers to accomplish more complex tasks.
However, here again, because of robots diversity and low-level programming, changing from a task to
another was requiring a high-level of expertise, with vendor-specific language to update the controller.
Several improvements occur in these decades with the development of 6DoF manipulators and the use
of embedded sensors to measure joints positions and velocities. Nevertheless, because of their lack of

versatility, robots early successes were mostly focused on highly specific and redundant tasks.

During 1978-1999, the third generation of robots began to leverage human interaction interfaces
such as pre-programmed vision or voice commands. High-level command libraries were also developed
allowing more high-level control, such as point to point motion planning, in an offline or online context
with a computer. The use of more complex sensors such as cameras allowed to bring more adaptability
in well-controlled environment for mass production or where high-precision was needed such as in
automotive or spatial industry. These robots had in common that they were dedicated to specific

tasks, not very adaptable to changes and dangerous, therefore unsuited to interactions with humans.

A new evolution has led to the fourth generation of industrial robots started from the year 2000
and was marked by the release of a new kind of robot: collaborative industrial robots also called

cobots.

1.1.2 Collaborative industrial robots at the dawn of a new social industrial robotic context

With the development of industrial collaborative robots has emerged a new paradigm shift in the
way workers use and interact with them. While classical robots are used to be isolated from humans
and tailored to very narrow and repetitive tasks in a predictable environment, collaborative robots
evolve close or even in contact with humans. Their commercialization is a first step towards effective
human /robot interaction as they are now able to go outside of their cages, thanks to better sensors
and more accessible high-level programming libraries. For instance, force sensors at the different joints

of the robot can help operators to program a desired trajectory with hand guiding [2] and make them

1.2. POSITIONING IN THE BROADER COGNITIVE ROBOTICS FIELD

safe for human interactions. This makes it easier to program or reprogram robots in a simple industrial
setting. It also provides assistance in hard and tedious tasks that were previously beyond the reach
of robots. Hence, collaborative robots have social benefits, like reducing physical work-load, and thus
preventing many musculoskeletal disorders (MSDs) risks among human workers in a much wider set
of tasks. However, to collaborate with human workers in everyday tasks and to become smart robotics
assistants, collaborative robots have to be endowed with much higher abilities. The authors of [3]
surveyed industry on the general requirements for cobots. Although limited to Finnish industry, their
questions and analysis are relevant to industry in general. We compare in table 1.1 some of the main

asked requirements of cobots against classical robots.

Overall these results shows that cobots are likely to be used in companies of all kinds. Their
integration is still difficult because the environment, tasks and human agents are not taken into account
and are difficult to predict. Moreover, as the tasks can change, the robots need to be reconfigured while
the resources of expert robotics programmers remain scarce. In that context, robots manufacturers
and integrators have developed user interfaces with high-level libraries that non-experts can quickly
learn in order to program specific tasks. Yet these interfaces are far from natural communications
between two human coworkers and programmed tasks are often too specialized and not transferable
to other tasks.

Table 1.1: Paradigm shift in industrial robotics

Classical industrial robots Cobots requirements from [3]

highly repetitive, usually only programmed for one
specific task

multiple reconfigurable tasks by non-expert users

well structured and predictable environment unstructured environment

works on cages far from humans or other unpre-

dictabl t .
tetable agents speech,. ..) and better allocation procedures

works with or even in contact with other agents
such as humans : need of natural HRI (vision,

robots are unsafe

safer but can still be dangerous if bad behaviors
(need of explainable and interpretable behaviors)

1.2 Positioning in the broader cognitive robotics field

This substantial paradigm shift requires a cognitive system defining a Smart Robotic Assistant
(SRA) [4]. It should be able to interpret and react to human natural interactions for incremental

learning. This incremental learning should improve and leverage a knowledge base of modular skills

1.2. POSITIONING IN THE BROADER COGNITIVE ROBOTICS FIELD

that can be used, composed and transferred to a broad set of tasks, with adaptation to individual
preferences and characteristics. These abilities should be integrated in a decision-making process
which should be made as explainable as possible for the non programming experts, with high-level,
trustful explanations. Such a SRA could have a great impact for the next generation of collaborative

industrial robots.

To handle such complexity in a meaningful and understandable way, we need to implement an

artificial agent by leveraging several artificial intelligence and human robot interaction paradigms.

1.2.1 What is a collaborative artificial intelligence ?

Broad understanding of cognitive abilities: Defining Artificial Intelligence (AI) is a complex task with
many scientific, technical, philosophical and ethical ramifications, as there is actually no consensus on
what "Intelligence” is. Yet, progresses has been made in different sub-fields of Al and expectations
are higher and higher. This is especially true with robots, which are embodied agents as they act
in the same real-world environment as us, humans. In this setting, Al field usually distinguishes
several levels of autonomy: narrow Al, broad Al, animal and human level Al and General AI (AGI).
Narrow Al agents learn to solve tasks and generalize only in a very narrow setting close to training.
Broad Al agents are able to leverage prior knowledge in tasks far from training but still with domain
specialization. Animals level Al and especially human level Al can generalize and adapt quickly
across domains with very few data examples. General Al (or strong Al) is sometimes referred to the
human level Al or superhuman level Al in all tasks that could be done by humans. AGI is one of
the ultimate dream goal of some Al research. It has fueled several fantasies since birth of Al, such
as the concept of singularity, where an AGI could achieve consciousness, continuously improving until

creating knowledge and technologies beyond human understanding.

A measure of intelligence can be seen as the ability to learn how to accomplish tasks and to
leverage what was learned to new target tasks. Another interesting property of human intelligence is
that knowledge is built incrementally throughout their lives. Generalization and adaptation could take
root in this ability of autonomous continuous learning capabilities and from exchanging information
with others. It seems that this is done by leveraging a certain level of prior knowledge and common
sense knowledge built at the early stage of life. For instance, cognitive sciences and neurosciences have

shown that during their cognitive development, infants progressively build more and more complex

1.2. POSITIONING IN THE BROADER COGNITIVE ROBOTICS FIELD

knowledge of the world. Figure 1.2 taken from [5], illustrates the emergence of physical concepts that
babies learn, such as visual properties and acting abilities in the real-world. However, the amount
of required prior knowledge in this process is still unknown. This interaction takes place in a social
context which allows infants and other agents to exchange information to built a shared, structured
and abstract representation that is usually referred as common sense knowledge. While human level
AT is probably still far from reach, this encourages the development of broad Al agents which learn
throughout their lives, in an online, incremental and interactive way as we do. The implementation

of such robotic agents could be facilitated by the design of cognitive robotic architectures.

5 helping vs o—na false perceptual
f: track
acetracking l hindering [polntmg lbeliefs
biological I rational, goal-
motion directed actions
I causality gravity, inertia

: : conservation of
momentum
[stability, support

shape

ofaject permanence o
| solidity, rigidity
[natural kind categories
1:2:3:4:5:6:7:8:9:10:11:12:13:14 ?
proto-imitation
emotional contagion |crawling I walking

Figure 1.2: This figure was reproduced based on Figure 1 from [5] (Creative Commons Attribution 4.0
License). Based on psychological findings, it depicts general landmarks of how infants incrementally
learn to build a world model during their early cognitive development.

Cognitive architecture: Cognitive science is concerned with understanding the mechanisms of action
and thought, including the notions of perception, learning, knowledge, reasoning, decision-making
through deliberation. There is still no real consensus on human cognition, but for some cognitive
specialists such as Newell [0], it has appeared necessary to integrate different theories and hypotheses
into a unified theory of cognition. Several visions, based on symbolic and connectionist views have been
conceptualized and developed, giving birth to a large number of software architectures over the last
few decades. Among cognitive systems, called cognitive architectures some focus on psychologically
(ACT-R [7]) or biologically (SPAUN [8, 9]) plausible features in order to study living being cognition.

Some are more pragmatic and focus on exhibiting cognitive abilities for practical applications (such as

1.2. POSITIONING IN THE BROADER COGNITIVE ROBOTICS FIELD

SOAR [10], SIGMA [11], DIARC [12]) without biological plausibility concerns. These approaches are
of particular interest, when one wants to build reliable and flexible agents, as they aim at explaining

how cognition allows us to learn representations and use them to better adapt in the world.

Cognitive robots as embodied cognitive systems: Robots are specific agents are they are embodied.
This means that in contrast to virtual agents such as conversational agent, they have a physical body
that interacts with the real-world and other physical agents. While embodiment is not a subject of
this thesis, keeping in mind the notion in the broader field is important as it has several implications.
Cognition is closely related to body capabilities. A striking example comes from passive dynamic robot
walker [13], which can mimic human walk without involving complex control and planning. Thus, the
kind of high-level representations and reasoning that an embodied agent can build, are likely to be
related to the complex interaction between its body, extension of its body (such as tools) and the
environment including other agents. For instance, a rigid bi-arm industrial manipulator is likely to
solve a storing task, in a different manner than a single rigid arm manipulator or than a compliant
soft robot. Different bodies can lead to different representations. Therefore a SRA needs to have a
good representation of its body and abilities, what is called proprioceptive perception. In the case
of industrial collaborative robotics, we want a SRA to share a certain level of common ground with
human knowledge and representations. This motivates the integration of humans in the embodied

learning process of robots.

1.2.2 Human in the loop for flexible interactive robot learning

Integrating human in the loop, is also of particular interest as it can lead to system with much more
flexibility and potential acceptability. For illustration, we can take the viewpoint of a human interface
designer. Human centered interfaces, including collaborative robots, must often rely on careful human
and task specific requirements. In traditional design, the designer has to think about a great number
of possible interactions situations between humans and the designed object. Of course, in practice this
assumption is unrealistic and limits are quickly reached. One striking visual example, coming from

user experience field and often used in design courses is illustrated in Figure 1.3.

1.2. POSITIONING IN THE BROADER COGNITIVE ROBOTICS FIELD

Figure 1.3: Image taken at ”Citadelle” park in Lille (59000), France.

An architect has defined a certain path walk in a park that people should follow. However, as
each people has preferences, they cross in different ways. Some follow the designed path but it can be
seen by grass wear that, actually, a lot of people just go straight to the shortest path while a fewer
choose a more isolated path on the left. This simple example can be generalized to every interactive
system and bring to light the need of adaptive systems that take people into account. For instance,
Global Positioning System devices (GPS) can be considered as such adaptive systems. For a same goal
destination but different people, a GPS can be reconfigured to favour high-speed highway or touristic
paths with several point of interests, while avoiding toll roads. It can also dynamically adapt its answer
to minimize travel time, with respect to environmental changes, such as traffic jams or a driver which
has not followed the suggested path. In industrial collaborative robotics, task achievements are also
likely to depend on specific tasks and people preferences. The design of an interactive collaborative
robot must be able to take them into account. But in contrast with previous systems, the complexity

of human-robot interactions prevents full a priori specifications, as stated in [11] (chapter 1.1).

Ideally, most of the robot capabilities should be naturally reconfigurable and extendable by end-
users. The designer builds a general task learner, whose learning abilities are directly leveraged by the
end-user for task adaptation. Such systems can be studied from complementary viewpoints in artificial
intelligence for human-robot interaction: learning from demonstrations (LfD) [14], Interactive Task
Learning (ITL)[15], Interactive Machine Learning, or the in our case the more specific Interactive

Robot Learning (IRL) [16].

1.3. TOWARDS A SMART ROBOTIC ASSISTANT

1.3 Towards a smart robotic assistant

1.3.1 Objectives

Overall the design of a SRA requires a multidisciplinary approach. In this thesis, we aimed at
building a core prototype of IRL for Industry 4.0 setting. We have fixed several specifications that
should be fulfilled. An IRL agent should be able to:

e reason and to have at least partial explanations abilities. An industrial collaborative robot must

be able to provide some insights to its predictions and its behaviors.

e interpret and react to human interactions in real-time. A robotic system should be able to

perceive and interpret quickly to humans.

e interact intuitively with non-programmers. The IRL agent should specifically understand human
natural communication means such as vision, speech, gaze, touch. Its explanations should be
understandable by non-programmers. This could help build more acceptable cobots and help

non-expert users to reconfigure the system in an intuitive way.

e learn quickly and incrementally a new task from low level to high-level abstractions. Carrying
out a task requires both knowledges at high-level for general understanding and at low level for
perception and execution in the real-world. This can be done by transferring knowledge and it

needs representations and processes that foster modularity throughout the system.

e leverage a prior knowledge base for tasks execution and learning online. We do not want to teach
everything from scratch to a robot. Therefore, an IRL agent should be able to leverage some

prior knowledge while doing and learning modular skills to solve tasks.

e adapt to preferences and specificities such as disabilities. While the IRL agent learns new tasks, it
must be able to adapt with a certain automation level its behaviors according to each individual

preferences and characteristics.

e handle uncertainty in moto-perception and its inner knowledge. We want the IRL agent to
know what it does not know. For that, the notion of uncertainty is important. As a measure

of confidence in its own actions, it can give the IRL agent, the ability to reason about its own

1.3. TOWARDS A SMART ROBOTIC ASSISTANT

predictions in order to decide to act or not to act. As a measure of curiosity, it can be a drive

for learning.

1.3.2 Contributions and thesis organization

This thesis has aimed at developing and integrating the main building blocks to create a cognitive
robotic architecture for collaborative robotics that is likely to get closer to the aforementioned specifi-
cations. Since pick and place related tasks are common in many industrial applications, we decided to
choose planar grasping as use-case for validation on real robots. A main part of the literature review
is detailed in chapter 2 which presents the main principles in the design of a cognitive architecture
and a state of the art on ITL and IRL. Specific state of the art is then enriched throughout the thesis
chapters. Chapter 3 details the current architecture we proposed, in terms of main building blocks,
interactive learning processes and modules organization at a high-level overview. We then further
detail in chapter 4, different skills learning paradigms that were investigated during the thesis. Learn-
ing grasping with real robots were used as a validation of specifications integration. Specifically, a
contribution to learning from demonstration and task oriented grasping was made by the development
of a specific module, developed in section B.3.2. Chapter 5, reviews the specific problems of learning
uncertainty with deep neural networks and introduces how it can be used in an active learning set-
ting. Chapter 6 describes the implementation of the architecture, integrated modules and validates
the overall thesis approach with a real robot. Finally, chapter 7 introduces ongoing perspectives and

future works.

Work done during this thesis was valorized through international publications:

e Contribution in learning by demonstration and task oriented grasping: [17]

e Contribution in architecture approach for interactive robot learning in industrial collaborative

robotics: [1§]

e An international journal article gathering, and updating the contributions with the last devel-

opments and validations for our ITL architecture, is close to be submitted.

10

Chapter 2

State of the art on cognitive systems

Contents
2.1 Connectionist and symbolic approaches 12
2.1.1 System understandability oo 12
2.1.2 Connectionism 13
2.1.3 Symbolic 15
2.1.4 Hybrid 16
2.2 Main building blocks of a cognitive architecture 0L 17
2.2.1 Ontology as an explainable structure for components interoperability 17
2.2.2 Behavior modelo 17
2.2.3 Teaching complex behaviors to robots : Interactive robot learning 23
2.3 Conclusion v i i i e 25

This chapter describes the main required components to build a cognitive architecture. An em-
phasis was made on various trade-offs between the connectionist and the symbolic view in artificial
intelligence in order to justify the development of an hybrid architecture for skill learning. Works on
interactive robot learning with human in the loop embrace many different research topics in learn-
ing, communications modalities, decision-making and acting in situated interaction. While there is
no consensus on the ideal cognitive architecture, several decades of research work led to core design
principles. Managing reasoning, planning and acting abilities at several temporal and abstract scales
is determinant for smart behaviors whereas modularity is key to knowledge reuse and for architec-
ture long term evolution. We position our work in the extensive taxonomy of cognitive architectures
developed in [1] and compared it to existing ITL/IRL against our specifications, motivating the devel-
opment of our own IRL architecture. Section B.2.1 introduces the two approaches one can adopt on
a cognitive systems: a connectionist and a symbolic point of view. We motivate the use of a hybrid
architecture to develop an IRL agent. Section 2.2 then focus on the main building blocks required to
develop a cognitive system and how such systems have been used for IRL.

11

2.1. CONNECTIONIST AND SYMBOLIC APPROACHES

2.1 Connectionist and symbolic approaches
2.1.1 System understandability

Practical deployment of Al techniques in the industrial collaborative setting needs to have a certain
level of understandability to be trust. In [2], authors draw a comprehensive overview of eXplainable
AT (XAI) field. They emphasize the need of different levels of explainability depending on the target
audience, as an engineer or a non expert, and the importance of a conceptual taxonomy of understand-
ability. In particular, they distinguish interpretability and explainability of a model. Interpretability
is a passive characteristic of the model related to the ability to extract meaning from the model in
understandable terms for human. Explainability is related to an active characteristic of the model,
where the model itself acts to clarify its decision according to a specific audience. In an IRL set-
ting, ideally, we would like models that are both explainable and interpretable. In other words, after
making a prediction, if asked, the model should be able to give some insights on its decision process
(explainability) in a human understandable way (interpretability). In practice, there are two main

research directions in XAI literature [2]:

e Post-hoc explanations of fully black box models, where technical methods are developed to

analyze model predictions after training.

e Inherently interpretable or transparent models such as decision trees or hierarchical symbolic

models, which thanks to their structure, help managing complexity in an interpretable way.

In the IRL setting, we specifically want non experts to trust the robotic agent. To be accepted by
non technical users, we want the IRL agent to present in a common sense manner its prediction and
decision process. As human, we trust each other because we share some common world representations
and we are able to explain at high level our behaviors in an interpretable way. Understanding the
lower level brain processes is not mandatory. For instance, explanations requirements is likely to vary
between non user experts of the system and an engineer. Non user experts of our IRL would likely
expect qualitative information, in an everyday language form or as images about robot behaviors and
decision processes. In that direction, authors in [3] highlight that in the context of social robotics,
robots are likely to be trust by non technical users if they are given the ability to share their intents,

goals and beliefs. Allowing sharing information at that level is important, if we want a non expert

12

2.1. CONNECTIONIST AND SYMBOLIC APPROACHES

being able to provide valuable feedback to teach the IRL agent. On the other hand, an engineer could
be interested in more quantitative information and a finer grained analysis of inner decision processes
and algorithms. This requires some hierarchies in the explanation abilities and therefore in the IRL

architecture.

AT agent systems can roughly be approached given two points of view: a top-down view where
a complex model starts from high level and relational abstract knowledge, where most of reasoning
and planing occurs, (sometimes refers as system 2 in the literature) to the sensory motor capabilities
of the agent. It has usually been the territory of symbolic Al which exploits symbols for internal
representations. At the opposite, bottom-up view is related to connectionist Al and aims at leveraging
the interaction of several simple models from which complex behaviors emerge (at system 1 level).
Both approaches have their upsides and downsides for building a robotics cognitive architecture. We
present some of them to justify a hybrid approach in our architecture. We illustrate in Figure 2.1 the
trade-off, in term of ease of implementation and representations, between symbolic and connectionist
architectures with respect to abstract representations, data efficiency for learning, and explainability

of the system.

Abstraction Data Explainability

Cogniti\./e i Connectionist approach Symbolic approach i Planning and rea- Discrete, symbolic

§}fste111 Afor ! ! | soning representation Explainable. 1

interaction ! !) Combinatorial, it- xplainable, lan-
| i | Behavior model . . guage level, mod-
! Svstem 2 ! erative processing clar
! - s ++ '| Common sense Data efficient ¢

ot | ot
tradeoff level 41 1| e o
(not necessarily l: !
temporally fixed) ! S | Intuition, uncer- Continuous, vec-
! A ystem 1) | taint t | statistical
| | ¥ or and : ‘:,lb 145 Gl lack of inter-
| | representation e
! 1 | Reflexes, low level epresentatio pretability and
R L r e e ' Parallel process- .
[J control . open questions on
Perception Action mg modularit;
Moto-perception Data hungry v
. Teacher with X Flexible
Environment its preferences Sensing

Figure 2.1: General hybrid architecture design

2.1.2 Connectionism

One of the most powerful tools used in connectionist approach are currently deep learning tech-
niques which are now state of the art in many domains [4]. They consist in building end to end deep

neural networks architectures which learn from data in a bottom-up, parallel process. Architectural

13

2.1. CONNECTIONIST AND SYMBOLIC APPROACHES

design and stacking layers have shown improved performances in learning by leveraging higher level of
abstractions. Moreover, these networks are robust to noise provided that inputs are close enough to
the training data. Processing of rare cases, however, as a sample outside of the distribution of training
data is still an open problem. Thus, deep neural networks systems hardly generalize outside of narrow
AT tasks. These techniques are very data-hungry: learning from scratch often requires much more
data than what would be required for a human. Data efficiency is a serious issue when it comes to
online interactive learning in robotics as data is scarce with only one or a few available data examples.
Nevertheless, several techniques such as transfer learning and data augmentation can help mitigate
the amount of data. Finally, high-level learned abstractions are also different from those we learn as
human [, 5]. This leads for instance to failure modes very different from those of humans, as proved
adversarial examples. This lack of interpretability hinders understandability and the ability to enforce

high-level prior knowledge in the system.

In deep reinforcement learning, planning and reasoning seem hard. Indeed, in most of the current
deep learning models, the agent is not enforced to learn a causal model of the world. Thus, it is
difficult for the agent to explain why it did something, to reuse behaviors across tasks or to correct
biases. In the Natural Language Processing (NLP) literature for instance, GPT-3 [0], is one of the
largest and most powerful model. It has shown impressive results on standard benchmarks and even
few shots learning but they are also strong limitations when it comes to understanding with negative
biases in language generation tasks [5]. Such system do not learn as we do in a real-world, they only
learn from a big corpora of unimodal text data. Therefore it might not be enough to get a good

understandability of the world, which is multimodal.

Otherwise, in order to be acceptable and trustable, interactive robots have to explain their behav-
iors as their actions decisions can have annoying consequences. In a real industrial and collaborative
world setting, wrong robot actions could indeed be unsafe for humans, or damage goods including the

cobot itself.

In that context, several promising methods are currently investigated. Most XAl techniques explore
post-hoc explainability. For instance, some techniques try to produce examples to explain predictions
abilities. Given a test input, we can try to find the closest train input example to explain the predictions
[7]. Some works approximate locally a model prediction with more simple model such as linear models

[8]. Finally many techniques rely on features based on features visualization or attribution or by gener-

14

2.1. CONNECTIONIST AND SYMBOLIC APPROACHES

ating input example based on layer activations [9]. While theses techniques improve interpretability of
models predictions, inner decision process of the model can still be hardly understandable, as learned
representations can be far from the one we learned. To learn more efficient, inherently interpretable
and transferable model representations, this require building architecture with more inner constraints
during training. For instance, in vision, authors in [10] build a specific deep neural network architec-
tures for classification, where the model has to learn images classification based on image prototypes.
Prototypes are patches examples, sampled from images of the train dataset, learned during the train-
ing phase and that explain well the network predictions. In deep RL, learning an embedding space for
skill representations [I 1] has shown improvements in data efficiency and for transfer learning. Other
works aim at learning more modular representation such as in meta-learning of distangled features
[12—14] or in bridging causal learning with machine learning [15] which could bring more abilities for
planing and reasoning to deep networks architectures. It is believed that these networks and learning

paradigms, given enough time and data, should be able to learn those high-level Al functions.

2.1.3 Symbolic

In contrast to connectionist approaches, many early advances have relied on the notion of symbolic
programming by modeling relationships and using meaningful symbols to create smart Al systems.
As they use symbols close to human language, their decision-making process is usually more concrete

and understandable (section 5.3 of [2]).

Symbols are also very practical for logical reasoning and to express causality at a high-level [16].
As explicit relations and hierarchical modeling are the bases of symbolic representations, this approach
allows building modular systems, which can generalize quickly and with much fewer data than current
connectionist systems. They can indeed exploit objectness and functional principles. This is especially
useful in the setting of IRL in industrial settings where robots are expected to be reconfigured quickly.
Nevertheless, whereas connectionist approaches can start from almost tabula rasa, symbolic ones re-
quire the system designer to build prior common sense knowledge from scratch. There is no consensus
of what common sense knowledge is and how to build it. This means that the system could embed
biases and misunderstanding about the world because of erroneous designed prior knowledge. When it
comes to low level moto-perception learning, symbolic approach quickly reaches limits as this type of

knowledge is often not verbally explainable even for humans or because the number of rules to describe

15

2.1. CONNECTIONIST AND SYMBOLIC APPROACHES

simple behaviors can potentially explode due to low level variations in the task. Fundamentally, a
unified symbolic representation referring to the outside world through motor-perception is difficult to

construct. This issue is often viewed in cognitive literature as the "Symbol grounding problem” [17].

Finally in terms of understandability, a symbolic model that becomes too complex can also produce
hardly interpretable explanations for humans, such as very deep and wide ensembles of decision trees
(section 4.2.1 of [2]). That means that we might need some trade-off between a model complexity
and its accuracy in the context of understandable IRL agent. These limitations hamper the symbolic
system’s ability to scale and take into account all the data variability and noise that a robotic agent

faces in the real-world.

2.1.4 Hybrid

A purely connectionist or symbolic approaches do not seem to be able to take account for all
the capabilities required by a truly interacting SRA. However, pros and cons of connectionist and
symbolic approaches are complementary. Therefore, more and more works exploit best of both world
paradigms in hybrid systems. For instance early symbolic architectures such as SOAR [18], ACT-R [19]
have progressively integrated or exploited connectionist components to handle more diverse situations
while recent one such as SIGMA [20] are built form start as hybrid. We can refer to [1] for a deep
overview of hybrid cognitive architectures. Most of ITL/IRL systems discussed in section 2.2.3 fall
under hybrid cognitive systems definition. There is no consensus, however, on how such hybridization
should be done [21]. Overall, it is essentially a matter of trade-off between the different views. Usually,
hybrid approaches use connectionist methods to process raw sensory data, while symbolic methods

provides reasoning and planning abilities at higher levels.

Hybrid models allow to build architectures that can leverage modular explainable and interpretable
models integrating more black-box models. Developing a fully explainable agent with good perfor-
mance might be impossible, as humans themselves after all, are not fully explainable agent. However,
decomposing knowledge in a hierarchical and modular way, even with specialized black box modules,

is likely to improve the overall understandability of the system.

The architecture we propose can be classified as hybrid. We have chosen to exploit symbolic struc-
tures for high-level representations and learning of tasks structure whereas a combination connectionist

techniques based on classical methods and deep learning are used for low perceptual learning. Both

16

2.2. MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

approaches are integrated in an interactive decisional process to learn and carry out tasks. Next sec-
tion provides the main building blocks for a general IRL architecture in terms of representations and

behavior models.

2.2 Main building blocks of a cognitive architecture
2.2.1 Ontology as an explainable structure for components interoperability

Many architectures relies on more or less complex ontologies. An ontology is informally “an explicit
specification of a conceptualization”[22] or, in other words, it is an object oriented conceptual repre-
sentation build around classes, attributes/properties, and relations between these concepts. Cognitive
systems often come with an ontology which provides a base symbolic structure that eases compatibility
between the different modules and sub-systems, or even across different independent systems (such
as other robots) [23]. An ontology allows to model and integrate expert knowledge over a domain.
Composed of explicit symbols, it helps in building transparent knowledge as required for our IRL.
However, building a whole ontology from scratch can be a hard task, as it requires programming
abilities to build and update the ontology on complex system such as robots. Therefore, learning the
ontology in an IRL setting by leveraging interaction principles with domain experts is a convenient
way to build this complex ontology for real-world use cases. Conversely, ontologies have been used
as bases to build coherently different kind of semantic memories, that the IRL agent can leverage to
learn, reason and act more efficiently [241]. Practically ontology can be seen as a graph knowledge base

that can be queried and updated depending on the current situation faced by the agent.

2.2.2 Behavior model

As robots are acting agents, we also need a behavior model that can exploit the prior and learned
ontology. To act in the real-world, an IRL agent has to develop the ability to generate relevant complex
behaviors. For this, it needs to be controlled to simultaneously plan and react while learning in an

online way.

Robotic cognitive architecture have progressively identified three main layers of interest |

, 20]

(see Figure 2.2): a functional layer tailored to action, perception and learning; a decision layer tailored

to planning or supervision; and an execution layer where the behavior model intervenes, for interfacing

17

2.2. MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

and coordinating other layers of the system according to the current task requirements.

e N

Deliberative ¢ Reactive to events from lower levels
(Planning/Scheduling)

i}

Executive o Converts goals to a sequence of actions

Upper level
e Time and computationnaly intensive

Intermediate level .
(Task level sequencing) o Interprets sensing as events

o Environment monitoring

Lower perceptions and actions
(Functional level)

o Sense/act processes
Below level

e Small time constants

e Need of modularity

Physical and Social
‘World

Figure 2.2: Robotics architecture can be represented through three layers of control.

Planning is used to predict actions effects and to search for the best sequence of actions in order
to reach a given goal, while acting consists in the executive parts. As the environment dynamically
changes during execution, due to agent own actions or external effect, it might need to re-plan and
refine its plan, given new and past information (see for instance section 2.6 of [27]). In order to account
for the tight integration between planning, acting and learning in an architecture, behavior models
are needed to encompass the descriptive part (the what) and the executive part (the how) of the skill

while being open and modular enough to have adaptation capabilities.

Adaptation capabilities should also be extended to preference learning and handling. Indeed,
cobots could interact with different human workers, having, even for the same task, their own char-
acteristics and preferences during interaction. It has been shown in [28] that preferences learning is
associated with higher confidence in robots motivating this integration in the architecture. In the
literature several methods has been used for specific tasks, such as the use of Markov Decision Pro-
cess (MDP) in closed scenarios [29], , implicit discovery based on user defined constraints [30] or on

bayesian networks (BAN) [31] for words to actions learning.

Finally, we can determine the following requirements for an interactive robot. The behavior model

should:

e be explainable. With respect with our specifications and section 2.1.1, the behavior of the robot

18

2.2.

MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

should be at least partly understandable. Therefore, the behavior should be complex enough to
allow the agent to execute tasks but also simple and interpretable enough to be understood by

non-expert users.

e describe both the descriptive and executive parts of behaviors. The IRL agent must especially

be able to describe the what, why and the how of its actions.

e interface with databases of priors knowledge (such as users preferences). The behavior model
should allow integration of prior knowledge of different types such as rule based knowledge like
users specificities and preferences. For instance, this can be the dominant hand, or bio-metrics

information for security access in industrial restricted area.

e be interoperable with world model built from sensing and acting modalities (such as speech,
gestures, touch). As the agent builds a world model, the behavior model must be able to use it

with respect to the ontology.

e interface low level and high-level skills in a multimodal way. Learning skills need both information

at high and at low level and therefore the behavior model acts as a bridge between them.

e interface with learning techniques such as deep neural networks. As deep learning techniques
has emerged as very powerful tools for learning, the behavior model must easily interface with

those systems

e allow fast learning and strong generalization thanks to behavior reuse with composable and
parameterizable representations. In the IRL setting, learning is done online when interacting
with a human teacher. Therefore, we want learning to be fast while keeping good generalization
abilities. This can be done by exploiting parameterized modular behaviors, as actions template.

It allows, indeed, to reuse a learned behavior in several related task with minimal updates.

e allow refining actions in a reactive way. As environment is dynamic and can change under the
IRL actions or other agent actions, the robot must permanently alternate between perception

coming from sensory streams, learning, planing and acting in a deliberative loop.

In order to choose the paradigm to implement, we have reviewed the literature on ITL/IRL and

the behavior models they used. We based our comparison by updating the state of the art in [32]

19

2.2. MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

(part 2.) with regards to our requirements. We can distinguish procedural models that explicit the
temporal structure of behaviors and those that only map state to actions. For instance, in [33], use of
probabilistic models in order to learn a mapping between the best action command given the current
utterance. In [29, 31] authors extend the MDPs framework with relational activity processes (RAPs)
[35], giving them more relational representation power to model concurrent actions between the robot
and the instructor. They use these models to learn a RAP where instructor preferences are learned as
specific paths in the overall process. Communication modality is limited to touch screen interface to
send utterances to the robot. These techniques are interesting to produce efficient behaviors. However,
they roughly maps a state to the best action according to the learned policy without modelization
and understanding of the effects of actions. Moreover, because they rely purely on data driven with
gradient based learning technique, learning a new policy could take several trials even for simple tasks.
These limitations hamper the symbolic system’s ability to scale and take into account all the data

variability and data noise that a robotic agent will face the real-world.

Many more ITL use classical behavior models based on symbolic procedural models [31, 32, 36-61].
This is interesting because the symbolic nature of these models make them explainable, and it allows
them to learn fast (typically in a one shot manner) by leveraging the use of high-level abstractions. In
the simplest models, procedural knowledge can be represented as a mere sequence of primitive actions
(SEP) [14, 18, 56]. It eases the implementation of behaviors but it limits the modularity of the system
and the ability for action branching. Complex reasoning such as changing actions procedure based
on preferences could not be handle in this framework. Most ITL/IRL however rely on more complex
representations with skills than can be modeled in terms of preconditions which are conditions that
must hold true before carrying out the action, postconditions (or effects) which will be true action and
operating conditions which must hold true during the action. In contrast to simple action sequence
it allows more modularity and the integration with standard planning techniques. There are several
technical frameworks that were used in the literature. There is no widespread framework for IRL

architecture, but most of them share common characteristics, with slight nuances:

e Finite State Machine (FSM) and Hierarchical Finite State Machine (HFSM) [62]. A Finite state
machine defines a list of states and an explicit set of transitions between states. When complexity
of behaviors grows, FSM can become unmanageable due to state-space explosion. HFSM is an

evolution of FSM as one can now define one transition between set of states (superstates), rather

20

2.2.

MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

than individual transitions for all sub-states. Thus, they are easier to design and implement, as

they reduce the state explosion problem in complex scenario. They were used in [(0)]

Action Script (AS) [63] (section Action Representation) specifically used in DIARC cognitive
architecture [59, 63, (4], is described as a compact way of specifying hierarchical robot behavior.
An AS is an expression «(py : t1,p2 : t2,...,Pm : tm)) where « is an action symbol and p; : ¢; a
parameter p; of type ¢; (such as a reference to a graspable object). Types are used as abstract
classes for generalization. Each AS contains a sequence of action ay, s, ..., a;; and is associated
with a set of pre-conditions, post-conditions and operating conditions. Each action «; can be an

action script or an action primitive which contains a single action.

Operator with production rules used in the Soar cognitive architecture (SPR) and with pre and
post conditions in Rosie ITL agent [16, 57, 65]. To achieve a goal, production rules conditions
are matched to the SOAR working memory and trigger other operators acting on inner memories

or on external modules for action.

Percept-Response (PR) which is essentially event-driven behavior. Used in [10], perceived events

directly associated to a sequence of actions. Modularity and refinement abilities seem limited.

Shared Plans (SHP) with preconditions and postconditions in [11, 12, 45] which integrates rep-

resentation of other agents to deal with behavior synchronization for collaboration.

Task Description Language (TDL) used in [66]. TDL is a language used to describe tasks as

sequence of actions or conditionals and are represented as a Petri Net Plan (PNP) [67].

CRAM Plan (CP) used in [68] with KnowRob [51, 52]. CRAM uses a custom language called
CPL (for CRAM plan language) based on Common Lisp for both planning and reasoning at task
level. It exploits KnowRob, a web knowledge base of skills and facts with reasoning capabilities

based on Prolog [69].

Some models do not seem to have been used in interactive learning setting but interesting
properties in terms of action refinement such as Procedural Reasoning System (PRS) [70, 71]

and Refinement Acting Engine (RAE) [27] (chapitre 3.2) in [72].

21

2.2. MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

e Hierarchical Task networks (HTN) [73, 74] used in [32, 47, 19, 54, 75]. HTN is a tree that
consists of primitive task nodes that can be executed directly and non primitive nodes (called
compound tasks) that can be decomposed and refined before execution. Different decompositions

are allowed and depend of specific methods.

e Behavior Networks (BN) used in [31, 38, 39]. A behavior maps a set of inputs such as sensor
information to a set of actions. A BN is a graph of behavior where each edge represent a
transition between different behaviors. Internally, every behavior is defined as a finite state
machine with an explicit start state (preconditions) and termination states (postconditions),

depending on whether the behavior reach or does not reach the goal.

e Network Abstract Behavior (NAB) [76] used in [37]. A NAB is a hierarchical representation
of Abstract Behaviours (AB). An abstract behavior is a process composed of several input
ports and output ports. Input ports consists of action status of the behavior, its preconditions,
sensory inputs, activation and inhibition levels by other behaviors. Output ports consists of
primitive action activation/deactivation, and postconditions status. There are different types of
preconditions depending on wether conditions must be valid during the whole action (permanent

preconditions) or can change during action (enabling conditions).

e Behavior Trees (BT) [77] used in [50, 60] and in our architecture [61]. BTs are introduced here

after and detail in section 3.1.4 of chapter 3.

In our architecture, we chose Behavior Trees (BTs) as the behavior model. BTs are tree based
models which allows a clear separation between the tree structure (the descriptive part as a control
flow of behaviors) and the implementation of the nodes (the executive part). They are heavily used in
the game industry over FSM that are prone to state explosion as behaviors become more complex. The
use of explicit parallel nodes also ease the execution of parallel processes as required in a multimodal
interactive setting. Failure handling is much easier and is at the core of the learning process in our
architecture (see section 3.3 in next chapter for more information). The hierarchical nature of BTs
eases the implementation of refinement methods: given high-level actions, it is possible according to
environment changes, to branch in a reactive way through different and more concrete sub actions.

This appealing properties in terms of behavior modularity make them a relevant alternative to HFSM.

22

2.2. MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

Furthermore, subtrees can be added or removed anywhere in the BT without modifying other compo-
nents, while in FSM such modifications implies to redefine all transitions leading to or starting from
the state. Finally, the flexibility of these models allows to extend standard BTs with preconditions

and postconditions nodes [78], which helps build representations for planning.

PR on its own does not seem to be able to propose refinement methods as it only maps one
perception to one behavior. In contrast, refinement methods are also at the core of the following
models: TDL, AS, CRAM Plan, PRS, RAE, HTN, BN. In Soar, SPR, thanks to sub-goaling is also
capable to provide re-planning ability. One drawback is that those models are either tightly integrated
within the underlying architecture, which make them hard to transfer to another one or because they
use specific language that are not easily integrable and interoperable with python and deep learning

frameworks (Common Lisp for CRAM, C/C++ for openPRS and SPR, java for RAE).

HTN and BTs are close in terms of representation as they both leverage a graph structure with
refinement abilities. HTN has traditionally been more focused on long term planning, while BTs, are
specifically designed for execution of behaviors with reactivity concerns. This of particular interest for
the online interactive learning setting of the IRL. Therefore, BTs might be not the most suitable tool
for long term planning. However, thanks to pre/post conditions extension, it has been shown that
they can be combined with proven traditional planners such as HTN planners [78, 79], bringing best

of both frameworks.

2.2.3 Teaching complex behaviors to robots : Interactive robot learning

Once we have an ontology and a behavior model we can organize an architecture for IRL. In the
literature, most IRL have particularly focused on learning high-level procedural knowledge through
the chosen behavior model. Usually low level perception such as object recognition and low level
motor abilities are given a priori and are a fixed knowledge. Only a few works in IRL have tackled
and demonstrated interactive learning of both high-level and low level skills requirements to solve a
given task, we focus on these works. In [54], the IRL agent learns action primitives by observing the
human during the interaction. In [10], author teaches pick and place tasks to a simulated tabletop
arm. The agent can learn online, through KNN classifiers, simple perceptual cues such as color,
size and shape. Similarly in [30], authors also teach online to a real-world manipulator, color, size

and shape of unknown objects. Visual perception is based on clustering objects based on color and

23

2.2. MAIN BUILDING BLOCKS OF A COGNITIVE ARCHITECTURE

depth. Nevertheless, learning online more complex perceptual features in an IRL setting is rare. Such
features can be location affordance and complex visual features learned by deep neural networks. Our
architecture aims at learning both high-level procedural knowledge about the tasks but also complex
low perceptual features necessary to solve a tasks. Another point of discrepancies concerns the way
behaviors are taught to the agent. A behavior can be taught in a one sided way where the teacher
explain sequentially all the tasks to the agent. This method is not always adapted as it puts a lot of
cognitive burden on the teacher. It is indeed not easy for the teacher to know what the agent does
not know. IRL can use a mixed initiative approach [31] with an emphasis on language as suggested
in collaborative discourse theory [32] or with active learning by demonstration [33]. In these settings,
during the interaction, the IRL asks the teacher for the missing knowledge it needs to carry out the
task. This enables a flexible, natural and incremental way to teach new behaviors to the IRL agent.
Finally, to our knowledge, preferences learning to adapt the behavior according to the human in ITL
architecture has rarely been demonstrated, such as in [29, 341]. As stated in ours specifications, a
robotic agent in an industrial setting is likely to be used by several different humans with specificities
or disabilities. Being able to quickly reconfigure learned behavior according to an identified human
is therefore an import feature we added in our architecture. As learning knowledge happens both at

high and low levels, preferences learning has also to take into account both of them.

We synthesize in table 2.1 a general comparison of different ITL/IRL agents and some cognitive
agent in interaction with humans and we show that to our knowledge, our IRL is the only one to
handle all our specific requirements. We point out interaction modalities leveraged by the agent, the
modularity and reusability of the learned behaviors, the ability of the agent to adapt behaviors to
preferences, the type of used robotics plateforms, exhibition of perceptual and procedural learning in

a mixed initiative and incremental way.
We list here the legends used in the table:
e v : implemented
e x : not implemented/no real robot

o ¥)! : speech modality

!These icons were used from open source repositories at and

24

https://fonts.google.com/about
https://fontawesome.com/
https://fontawesome.com/

2.3. CONCLUSION

o ¥ gesture demonstration
e [J ! GUI, tactile or mouse

(]
° ﬁ\ L kinestetic demonstration, imitation

e o5l ease of behaviors composition, 7 behaviors composition is limited or not possible

o itu’&!: preferences learning,

e &': demonstration of speaker location and/or skeleton
e E3': written words (on keyboard)
e [J!: touch screen,

° r.‘ : mobile robot

° flz manipulator
. o ,f: mobile robotic manipulator

e @' humanoid torso, AIBO humanoid robot, multiple humanoid social robot such as iCub,

Baxter

2.3 Conclusion

In this chapter, we have developed a state of the art of IRL agents and cognitive systems within a
symbolic/connectionist view and how these approaches exhibit complementary upsides and downsides.
Exploiting existing I'TL was difficult, as most ITL/IRL were either platform specifics, not open source
or seem not maintained. Moreover, most IRL agents could not validate all our specifications in the same
and unique approach, in particular learning both high-level and complex low level features, related to
human preferences and with ease of integration of deep learning modules. This has motivated exploring
the development of our own hybrid cognitive architecture for our collaborative industrial use cases.
Eventually, our main objective and contribution is to integrate several complementary ideas from the
literature in a single architecture, to build an IRL exhibiting interactive and incremental learning

capabilities, not only at high-level but also at low level, with deep learning modules, while being able

25

2.3. CONCLUSION

Table 2.1: Comparison of properties exhibited in cognitive and interactive robotics learning systems.

Publi Behavior Prefer- U p tual Proce- Incre-
.u 1eas Modalities | Modular- ences s¢ case ercep ua dural mental
tions . . plateform | learning . .
ity learning learning learning
[84]] & X X X x x
[85] = o+ SPR X X X v v
) ses n
[50] *) SAwPP | * ¢ X v X
[37] L D) it NAB X) x v v
[38]), 4 52 BN X () X v X
[39] <) 4, st BN X) X v v
[] ")) ..""iPR X |a| X v v
[] "))7 D i‘:". SHP X |@|, f v v v
[42] o), !,D a2 SHP X & X v v
[] ")) FI{BAN X |Q| v v X
[86] <) & MDP | x © x X v
[44] B3 aSA X g X v v
& MDP
’) (1] n
33 “ = MDP | . . y y
[45] W), ©p |4 SHP | x -] x v v
[46, 65] %), [i PR X © v v v
[47] o i HTN | x X X v v
[48] <) % SA X -] X v v
[49] L D) it HTN X -} X v v
[] @7 D l'-:-i BT X f X \/ X
[51, 52] &3 i CP X 1O I N X v X
[29, 34] G A% RAPs | sl © x v v
3 * ses
[] ‘))7 - SAWPP X lal \/ \/ \/
. & HT-
[80] W), &, NMpP | % © v v v
[] o) ..""iHTN |Q| X v %
[54, 75] W), ©p | HIN ® 3 v v v
[55]) &5 SPR X X v v X
@7D7
[56] . 4 SA x © X v x
5
[57, 87] o) itz SPR X o) X v v
[63, 64] o) e AS X P © v v v
3 s [T X n
160} V.4 HFSM,BT | ~ Lt x X x
[61] HEN i BT X g v v v
chapitre 6 | W)E a5 BT e © Vg v v

2.3. CONCLUSION

to be quickly reconfigured according to human preferences. The next chapter (chapter 3) focuses on

the design of this hybrid architecture.

27

2.3. CONCLUSION

28

Chapter 3

Design of a cognitive architecture for
Industry 4.0

Contents
3.1 Base ontology for our ITL/TRL v vttt ittt ettt e i e e 30
3.1.1 Robotic Agent as a goal driven agent 31
3.1.2 Environment representation Lo Lo 31
3.1.3 Utterances o .o e 33
3.1.4 Skills and actions primitive L Lo 33
3.2 Hierarchical, modular representations, 35
3.2.1 Semantic declarative memory oL Lo 36
3.2.2 Working memory e 36
3.2.3 Episodic memoryo 37
3.2.4 Procedural memory 37
3.2.5 Perceptual memory L L 38
3.3 IRL process with preferences i il 39
3.4 Conclusion . . . v v v i i e e e e e e e e e e e e e e 41

By taking inspiration from the state of the art in IRL/ITL, cognitive architecture, and recent
advances in deep learning architectures, several design choices were made to build a base architecture
that could handle our specifications. This chapter illustrates and details the architecture organization
in terms of representation and decision processes at the symbolic level. We first focus in section 3.1
on the base ontology used in the system, for knowledge interoperability and high-level abstractions
for IRL. We further detail in section 3.2, the complementary inner symbolic memories of the system
that are used as high-level relational representations, grounded by connectionist learning components
to real-world data. Finally, we explain in section 3.3, the main deliberation processes used by the IRL
agent for learning a task structure and related skills by leveraging an incremental and mixed initiative
interaction process. This process is based on the concept of failure and success of goal-driven behaviors
while representations are leveraged to learn and take into account human specificities and preferences

during interaction.

29

3.1. BASE ONTOLOGY FOR OUR ITL/IRL

We detail in this chapter the main organization of our architecture, its representations and its

learning processes. Figure 3.1 provides a high-level overview of the architecture. It presents the

different representations and how they interact in order to build complex behaviors. Each block is

explained in this section.

ITL/IRL Agent (3.3)
(6) Action (3.1.4)
—] e steps @ - ® — generates behaviours from utterance and knowledge (as BT)
e steps @— — generates questions from failure type and knowledge
@ Grounding E Concept lcarnlng
v With contextual preferences
Working Memory and :{ Semantic Memory (3.2.1) } ' @ Prior
current model of the { Procedural Memory (3.2.4) }(— ; '
ived world (3.2.2) : j| Knowledge
percerve o :{ Episodic Memory (3.2.3) }<— Ontology (3.1) !

(3]or (2)

Dialog

@ Anchoring

Cognitive Reasoning Module

Perception of
humans

Perception of the
environmental
working space

Proprioceptive
perception

Perception Memory (3.2.5)
with prior knowledge @

F

©

Human
>
(Instructor)

Working
Space

Perception based on
deep neural networks

Perception learning
with contextual preferences

Environment (3.1.2)

Figure 3.1: High-level overview of the architecture. The architecture consists of perceptual modules
based on connectionist approaches, symbolic relational representations, and a deliberative process for
interactive robot learning with human. The IRL process consists of two interleaved paths (a plain
path with circled number and a dashed path with boxed number) which are described in section 3.3.

3.1 Base ontology for our ITL/IRL

As stated in section 2.2.1, an IRL agent needs an ontology for the interoperability of its components.

We describe in this section the base ontology that our IRL agent leverages during the interaction to

express and to learn new behaviors, or relevant perceptual features with preferences. For now, the

ontology is quite standard as our current goal is more focused on the global architecture foundations

and validation. More complex ontology could serve as a basis, such as the DOLCE ontology [!]

leveraged in the IRL from [2] (chapter 4.2) or KnowRob [3] used in CRAM architecture [!]. Figure

30

3.1. BASE ONTOLOGY FOR OUR ITL/IRL

3.2 illustrates a simple ontology.

Qo o>
T GEDICIOIO)=
QDS G > &

w ShapeFeatures > GO

Figure 3.2: Base ontology example overview.

3.1.1 Robotic Agent as a goal driven agent

The IRL agent, represented as Self, has to solve tasks that are driven by Goals. A Goal can be
described as a first-order logic statement of predicates over the environment, that the IRL agent must
satisfy to validate the goal (i.e each predicate is considered True). For that, it builds a plan based on
its Skills. Goals are built from Utterances of humans and from agent inner representations in terms
of post-conditions requirements. The IRL agent has also proprioceptive abilities such as its Location,
joints or Cartesian state in space, that are leveraged to carry out actions. The IRL agent is also able

to Focus its attention on an Object.

3.1.2 Environment representation

The environment is seen as a continuous 3D space which is composed of entities. Among entities,
we specifically distinguish Human and Physical Object. Entities are given a Location (a 3D vector
coordinate) and a 2D surface Area. Moreover, it is possible to describe some spatial relations between
entities such as right of, in, left of. Those symbolic representations can be grounded to language and

real-world data by specialized connectionist modules for scene and human detection and understanding.

Human: The human agent is represented in the ontology as Human. Human is a complex, structured
class that consists of specificities such as Name or sub-parts like its dominant Hand, which help

represent the human characteristics.

A Human can communicate Utterances to the robot, equivalent to a set of rules, that should be

31

3.1. BASE ONTOLOGY FOR OUR ITL/IRL

interpreted and executed by the IRL agent to learn how to solve a task. Currently we make the
limited assumption that the human is an oracle. Therefore, it always provides unambiguous, trustful
information to the robot and there is no implemented corrective feedbacks [5] of previously learned

rules.

The Focus of the IRL agent can be triggered by a Human. Hence, it allows a shared and explicit

representation of which Object of the working space the human wants to work on.

Example of technical integration of connectionist modules to ground Human to the real-world are

given in the experimental validation in chapter 6, section 6.2.3.

Physical Objects: The world is assumed to be composed of salient physical objects. They consist of a
set of perceptual properties which are built from a stream of data provided by sensors. It assumes that
the IRL agent has prior segmentation capabilities that are used to discover proto-objects [6]. These
proto-objects are given by a Location, an Area, and can be tracked according to perceptual features,

and are used as object precursors.

For instance, by equipping an industrial manipulator with an RGBD camera, an Object can be
categorised from a detected proto-object according to different perceptual properties such as its Color,

Visual Patterns, Shape, Affordances, Locations, Areas.

More specifically, for an affordance, we use the classical definition with contextualization [7, &]: an
affordance aff is a triplet aff = (0;ca;e) where o is an object, ca a contextualized action, and e the
effect of the action on the world. A contextualized action ca is an action accounting for a context that
can be for instance preference learning. A contextualized action will be validated if the effect e are in

the relevant postconditions.

Learning connectionist components can be leveraged to ground those symbolic representations
into data. The IRL agent can then learn objects perceptual properties such as visual features and
affordance, given the context of the task and Human preferences and characteristics. An example
of technical integration of such connectionist modules will be given in the experimental validation

chapter (chapter 6), section 6.2.2 and 6.2.4.

32

3.1. BASE ONTOLOGY FOR OUR ITL/IRL

3.1.3 Utterances

An Utterance can be built from a verbal or a non verbal perceived interactions act such as speech,
pose, gesture. It is either interpreted as a Goal to achieve or as information for learning events. This is
done through the use of a communication protocol and semantic analysis. Connectionist components
are used to ground perceived interaction into a symbolic Utterance of words which are then further
mapped into Human’s intents. Each word is given a type called a Part Of Speech (POS) tags. Verbs
in sentences are related to the tasks and actions to carry out. Nouns are related to objects on which
to accomplish the task. Adjectives can refer to object attributes. Prepositions refer to temporal or
spatial relations between several objects. Each word in the Utterance has to be grounded to the
physical world, giving the IRL agent a better understanding. An integration example of connectionist

components is provided in the experimental validation chapter (chapter 6), section 6.2.1.

3.1.4 Skills and actions primitive

With respect to the comparison in section 2, we chose Behavior Trees (BTs) [9] as the behav-
ior model of our architecture. BTs were originally developed in the video games industry [10] for
virtual agents, commonly known as Non Playable Characters (NPC). While NPC evolve in known

environments, robots usually evolve in partially known or unknown ones.

Yet, BTs have several interesting properties which explain their growing use in control architecture
for robotics. They have been proven to generalize several well-known control architectures such as
the one based on finite state machines or decision trees [9] (chapter 2). Their graphical nature fosters
modularity and explainability, as each individual BT can be run independently or can be combined

with other trees. Furthermore, they allow to design reactive behaviors to unexpected events.

As such, they have been used and extended in various robotics contexts such as learning from

demonstrations [11, 12], mobile robotics [13], unmanned aerial vehicle [141] and more general robotics
architecture [15, 16]. In terms of BTs technical development, there is a growing amount of libraries
available in various languages [17, 18]. They can leverage different programming paradigms for their

practical implementations, such as multithreading with preemption, or asynchronous programming
[19]

Behavior trees (BTs) are composed of several (usually six) kinds of nodes illustrated in Table 3.1:

33

3.1. BASE ONTOLOGY FOR OUR ITL/IRL

a set of control nodes that helps manage the decision flow, a set of executive nodes that carry out
actions, a decorator node that helps build more complex control nodes such as retrying an action or a
subtree until success. Each node can return a status, usually success or failure. Control nodes return

success or failure according to the return status of their children and the rules defined in table 3.1.

In order to define complex modular behaviors, compatible with planning and reasoning purposes,
we have designed skills with BTs using the traditional precondition, execution, postconditions (also
called effects) model (see Figure 3.3). In [9], authors provide a detailed formal overview of BTs and
their use in robotics. The fallback node executes children in order (from left to right). If the first child
fails, the execution continues to the following child, which act as a fallback. If a child succeeds, the
fallback returns success without visiting the following child. The sequence node tries to execute all its

children in order. If any child fails, the sequence stops and propagates the failure back.

In our architecture, we specifically exploit BT's failures mechanisms as a high-level signal for learn-
ing purposes by leveraging the fallback node. This allows to incrementally refine or expand the tree
during the interaction of the IRL agent similarly to [20]. Transparency, modularity, and efficiency of
BTs appear naturally as behaviors reuse, update and composition can be done by leveraging graphs.
Finally, the parallel node is used for simultaneous multimodal sensing. For now, modalities are assumed
to have orthogonal effect on memory, so that there is no need for low level and complex concurrency
management. Postconditions help in checking if the skill execution is a success while preconditions
determine if the agent has the knowledge to carry out the skill. Another interesting property of skills
modularization with conditions is the fact that it helps the agent in doing active perception: the agent

only checks conditions that are relevant to the task, according to the previously learned skills.

A primitive action is a leaf in the overall behavior model. Therefore, it is directly performed
without further refinement by the robot. Examples of primitive actions are the opening or closing of

a gripper, point to point motion, sending questions to the human.

34

3.2. HIERARCHICAL, MODULAR REPRESENTATIONS

Table 3.1: Control flow and action nodes in the standard behavior tree framework

Execution nodes Symbol | Success Failure
Action L] Execution is carried out Exception during execution
Condition O Condition is true Condition is false

Control nodes

Sequence — All children must succeeds One child fails

Parallel = More than M € N* children succeeds | More than N € N* children fail
Fallback (or Selector) | ? One child succeeds All child fail

Decorator ‘ & User defined User defined

sub skills \ ?2)

primitive action failure handling

Figure 3.3: Base skill model

3.2 Hierarchical, modular representations

Given our ontology, we exploit different kind of memories, useful for different aspect of task learning:

a Semantic Declarative Memory

a Working Memory

an Episodic Memory

a Procedural Memory

We leverage relational graph representations for modularity, better explainability and learning with

respect to our specifications.

35

3.2. HIERARCHICAL, MODULAR REPRESENTATIONS

3.2.1 Semantic declarative memory

A semantic declarative memory is a kind of database of semantic expressions. It stores terms in a
way that is grounded to language. This allows to represent the high-level knowledge base on concepts
and facts. By querying the semantic memory, one can then leverage language to get access to the agent
knowledge. Figure 3.4 illustrates an example of semantic memory. Practically, this is implemented as
a semantic graph network, whose nodes point to the conceptual instances provided by the ontology.
This memory can be linked to other databases of facts such as humans specificities for preferences

handling.

Gue> O Gomnd

Human instances

Object instances

T "E Ontology I~

Figure 3.4: Example of a semantic memory database derived from the ontology

3.2.2 Working memory

The working memory is a short-term memory that provides an explainable representation tool for
learning and reasoning on the current situation. This is where links between the low-level perception
and the high-level symbolic representations take place. This enables to instantiate objects of the
ontology and to ground symbols with the current perception and belief of the agent. It is represented

and implemented as a semantic, relational graph network. This memory contains:

e entities that are categorized for instance as objects or humans and the robot (Self).

e predicates which are relations and properties over entities, for instances: spatial relations, colors,

affordance, neural networks features.

36

grammatical
structure

other

3.2. HIERARCHICAL, MODULAR REPRESENTATIONS

During a session, each entity and predicate is given a unique integer Id when it is first created. This
Id allows to have a general cross-referencing system in memories. It is used as a standard querying

cue in the different inner representations.

Figure 3.5 present an example of the working memory representation when an object is detected

by the IRL agent.

A

id
139690255408272

pose
[77.37057872 146.24976046 436. 1 [336 300 64 180]

Figure 3.5: Example of the working memory derived from the ontology

3.2.3 Episodic memory

The episodic memory is a set of working memory episodes that are stored across the time according
to specific rules. Thanks to this memory, an agent can remember previous encountered situations and
decisions. It can also track objects properties within time. Defining the right rule to decide when
to store an episode is not a straightforward task as change in the environment can be the fact of
observable or partially observable external events. Ideally the agent should be able to detect these
changes and build hypothesis about the causal nature of these changes. In the current architecture
state, we store episodes between two actions of the robot. This rule is enough to limit the memory
requirements of the system while allowing some interesting temporal reasoning: bringing back an
object which was first taken by querying its location property. The memory is session dependent and

therefore it is erased when the agent is shut down.

3.2.4 Procedural memory

The procedural memory is a set of skills that are represented as specific BT's. As describe in section

3.1.4, skills can be related thanks to the modular properties of BTs.

37

3.2. HIERARCHICAL, MODULAR REPRESENTATIONS

3.2.5 Perceptual memory

The perceptual memory is set of isolated or interacting modules based on connectionist approaches,
mostly deep learning, and traditional signal processing approaches specific to each modality such as
vision, speech, torque sensing. Humans are likely to expect that an IRL agent can quickly learn to
recognize and interact with various objects. Reaching these needs in terms of reconfigurability is hard

with classical deep learning modules because of their data requirements.

In that context, transfer learning [21, 22] is used as a way to leverage in a hierarchical manner
features learning, where prior deep networks are pre-trained on the sensory modality, in a supervised
or unsupervised manner. This first training is usually long, data-hungry and is done offline. Once the
network learns features, these can be leveraged by transfer learning to define new, specialized networks
that are more quickly optimized, online, with less data. This neural modularity has also a positive
side effect as it allows to better manage memory resources which can be limiting in some settings.
Figure 3.6 illustrates the main architectural principles in the perceptual memory. For instance for
vision modality, popular variations of pretrained neural networks can be used such as Densenet [23]

or MobileNet [21] .

E Hidden E
| Layers Discriminatives! 7 i
! features o~
; S ;g e
N . ’ .
Sensory ! : I
Input i ! —:>: :
— ! : :
i i =
: S !
| iTransfer ! !
| ! -,

oo ! Specific networks
General pretrained network
for downstream tasks

Figure 3.6: Transfer learning in deep neural networks is leveraged to allow fast reconfiguration and

ressource management. To simplify the figure, we represent here a dense network but any kind of
neural networks layers can be used if relevant for the sensory modality.

38

3.3. IRL PROCESS WITH PREFERENCES

3.3 IRL process with preferences

The interactive learning process is based on error handling called failure or impasse during the
program execution flow. It is built in the architecture by leveraging the tree structure and the on-
tological representations in the behavior trees framework. Figure B.7 illustrates more specifically the
decisional process that occurs during a skill execution. Here we mainly focus on the deliberative
interaction process. More details on the architecture implementation and the choice of sensors and
interaction modalities are given in chapter 6. Figure 3.7 describes two paths, one in plain line and
one in dashed line. Plain line path represents what happens when the agent has all the knowledge to
act, the steps ordering are represented by surrounded numbers. Dashed path represents what happens
when a failure occurs, the steps ordering are represented by boxed number. The interleaved execution
of these two paths is at the core of the mixed initiative interaction cycle during which the robotic

agent acts according to human instructions or learns from failure and interaction.

For the plain line path, the typical interactive cycle is the following: we suppose the agent has
some prior knowledge (@) The agent proprioceptive state, the working space and the instructor
interaction means are perceived by various sensors and deep learning perceptual modules (@) The
agent build a symbolic representation of its environment by anchoring perceived information to sym-
bolic representations and processes (@) according to its prior knowledge. It asks request for a task
(@) Once it has a determined human’s intents through semantic analysis (@), goal formulation
and grounding to memories (@) and behaviors selection (@), the agent tries to carry out the task
according to its skills (@) When executing its skills, the core decision-making IRL process browses
the agent’s knowledge by checking sequentially or in parallel the conditions ¢; (figure B.7) that are
grounded to the current perception and world belief. The agent determines if it knows how to solve

the task and exploits the corresponding BT before executing it.

When it deals with a lack of information (@), however, a failure is generated (), leading to build
a request from the interaction state ((2]). The TRL agent then make a request to the human ([3)):
learning the missing parts in the skill knowledge () A failure can be a lack of perceptual (the what)
or procedural (the how) knowledge. BT control flow lets us easily design failures handling as they
necessary happen in conditions nodes during the execution. We can thus easily and automatically

define a new branch in the BT that leverages the known information about the task, the current state

39

3.3. IRL PROCESS WITH PREFERENCES

of the world and the failure type, in order to have an explainable description of the failure properties.
Currently in our architecture, we rely on the mixed initiative teacher/learner setting to overcome

failures and incrementally learn perceptual or procedural features to complete new tasks ()

Humans’ identity and preferences knowledge are managed in by the use of a specific preconditions
before executing skills. In the current implementation, the IRL agent interacts only with one human
at a time and a human teacher must be identified by the system in order to link the teacher id to his
preferences. If the system does not know the human, while checking the precondition, the IRL agent
asks for some basic information such as the name of the human. A new branch is built in the BTs skill
representation. Branch selection is then governed by the current human identifier. The first branch
represents a default skill that is used to drive preferences learning. Each branch represents a preference
for a different person. Hence, while learning a skill, learned perceptual and procedural information are
personalized in function of the interacting human. This is done by leveraging specific preconditions in
the procedural skill structure. Therefore, once a skill has been learned, these preconditions allow the

agent to branch to the personalized behaviors.

ITL/IRL Agent)

@ Action

— e steps @ - ® — generates behaviours from utterance and knowledge (as BT)

e steps [0}1[3] — generates questions from failure type and knowledge

@ Grounding : Concept learning

¢ With contextual preferences

. E{ Semantic Memory }«— i
Working Memory : : @ Prior

and current model of —>

Knowledgd

the perceived world

{ Procedural Memory) J

Episodic Memory) }(— Ontology

(or @) @ Anchoring Cognitive Reasoning Module
Dialog

Perception of the
environmental
working space

Proprioceptive
perception

Perception of
humans

Perception Memory)
with prior knowledge @

@ Perception based on
deep neural networks

Perception learning
with contextual preferences

Human Working
>
(Instructor) Space

Environment

Figure 3.7: It is the same figure as figure 3.1 and is reproduced here for reading convenience.

40

3.4. CONCLUSION

-f: can be a symbolic
or perceptual test

-¢;: conditions that are

| |
! !
-wm: Working Memory PRGN
| |
| |

@ test(wm) %@ Failure type handling

i —)
. Asking and Perceptual or
Searihmg collecting data | | symbolic learning
v \

Figure 3.8: The failure handling process triggers interactive learning of symbolic or perceptual repre-
sentations.

3.4 Conclusion

In this chapter, we introduced the core design of our cognitive architecture for collaborative in-
dustrial robotics in the context of IRL. We have described its organization in terms of ontology and
hierarchical relational memories. This has led to semantically meaningful, high-level symbolic repre-
sentations for complexity management and better explainability of the systems behavior. The IRL
deliberative process leverages these representations to drive connectionist learning modules, through
a goal-driven and mixed initiative human/robot interactive process. Reciprocally, these connectionist
modules help anchor lower level data to the higher symbolic representations. By this way, the IRL
agent can incrementally learn new task and related skills both at high-level and low level representa-
tions. The next chapter (chapter 4) focuses on complementary machine learning approaches that have
been used during the thesis in order to develop, with co-authors, connectionist modules for the IRL

setting.

41

3.4. CONCLUSION

42

Chapter 4

Complementary ML approaches for IRL on
planar grasping use cases

Contents
4.1 Learning planar grasping ¢ o v i i it e e e e e e e 45
4.1.1 Theoretical general formulation o o000 45
4.1.2 Some common techniques L 0L 46
4.1.3 Planar grasping formulation L oL oo 49
4.1.4 Base approaches in deep learning oL 0oL 49
4.2 Learning autonomously bin picking 0000 oo oo 51
4.2.1 Binpicking module. oL o1
4.2.2 Methodology e 593
4.2.3 Experimental results 55
4.24 Module conclusion L L 55
4.3 Learning grasping location affordance from demonstration 55
4.3.1 Task oriented grasping Lo 56
4.3.2 Methodology e 58
4.3.3 Experiments results L 61
4.3.4 Module conclusion L L 69
4.4 Conclusion i i i i i e e e e e e e e e e e e e e e e e e 69

As the IRL agent learns interactively a task and related skill structure, we saw that it needs to
ground its representations by learning from real-world data. In this chapter, we further detail for
that purpose, how the IRL agent can exploit complementary Machine Learning (ML) paradigms in
a connectionist approach. Following our ITL specifications, we want to exploit modules that allow
a fast online learning, from datasets built on the fly, during interaction. Because of the importance
of pick and place related tasks in many industrial applications, we focus our use-case on planar
grasping related tasks. We first present in section 4.1 the general ML approaches that we leveraged
for learning planar grasping relevant parameters. Then, we present two learning modules tailored to
grasping related skills. The first one, presented in section B.3.1, leverages a deep reinforcement learning

43

approach from [l] for autonomous learning of bin picking. We adapted their work for an industrial
context. The second and most important contribution, developed in section B.3.2, presents a module
for learning task oriented grasping affordance from a few human demonstrations, with respect to our
IRL specifications. Individual modules were developed in collaboration with a co-author, Laurent
Bimont.

44

4.1. LEARNING PLANAR GRASPING

4.1 Learning planar grasping
4.1.1 Theoretical general formulation

We first define some important notions in machine learning to better understand what we means

by learning from data and how this notions are used in the learning modules for planar grasping.

Dataset: Machine Learning (ML) techniques rely on the use of data, and require building datasets.
We usually consider an input domain X and a target domain Y. In the IRL setting, we aim to build
online predictive models based on a finite datasets Diygin(Xtrain C X, Yirain C Y'), which represent
the associative nature of the problem the robot is facing. These datasets can be a mix of prior data

and data collected, online, during the interaction.

Risk minimization: A ML model f, aims to learn a map from the input domain X to the target
domain Y, given datasets Dipain. From a very general point of view, this is expressed as a minimization

optimization problem.

We would like to be able to predict from x € X the value y € Y. For that we have to introduce a
loss (or cost) function £, such as the Mean Square Error (MSE), which measures a notion of distance
between predictions f(z) and the real target data y. Then, we can compute a theoretical quantity,
the risk R(f), which is the expectation of the loss function, evaluated for the model, given an infinite

amount of data:

R(f) = Ep(L(f(x),y)) (4.1)

A learning problem then consist in finding a model f which minimizes R(f).

J = argmin (B(/) (4.2)

Of course, in practice and especially in the IRL setting, we are only given a finite amount of data, a

training dataset Dyirqain(Xtain, Yirain) = (1,91), (Ziy Yi)s -y (Tny Yn). We can only search f* minimizing

45

4.1. LEARNING PLANAR GRASPING

an empirical risk Rey,p(f) while targeting R(f) minimization.

Rengf) = -3 2(2(f). (43
=1
fr= arg;nin (Remp(f)) (4.4)

When considering a parametric model such as in deep learning, we use specific family of function
fo parameterized by weights #. Minimizing the empirical risk consists then in finding 6* such that fy

minimize Repmp(fo).

0" = arg min Repp(fo) (4.5)
0

In general f is different from f*. Moreover, as f is trained on finite data, a valid solution for the
empirical risk minimization can be to overfit the dataset by simply learning a one/one correspondence
between Xirqin and Yirqin. Such solutions do not generalize to the real risk minimization. Many
techniques can be used to limit overfitting, and lack of data for real risk minimization improvements.

We discuss in next section some common ML paradigms we used to develop our learning modules.
4.1.2 Some common techniques

There are several learning paradigms in machine learning depending on the problem considered
(classification or regression) and how data is used to train the model (supervised learning, unsupervised
learning and reinforcement learning). Various principles can be used to improve data efficiency and

improve generalization of these learning paradigms, such as transfer learning and data augmentation.

Classification: Given data inputs x and a finite discrete number of classes y, the goal of classification
is to separate those inputs and assign a class to each one of them. In the IRL setting, it is linked to
categorize perceptual inputs x by assigning a meaningful, human understandable concept (y) to these

data.

Regression: Regression allows to learn and predict continuous representations. In the IRL setting,
it can be used to explicit non verbal concepts. For instance when grasping a part, the agent can learn
to categorize the object (classification task) or directly output a grasping location in the continuous

space (regression task).

46

4.1. LEARNING PLANAR GRASPING

Supervised: In a supervised learning context, data is collected as pairs of inputs x and output targets
provided by a human. In an IRL setting, this is one of the most used paradigm. Target collection
is done through Learning from Demonstration (LfD) [2], therefore, these type of learning is costly in
terms of human resources. However, as stated in our specification, it is necessary to build a common
ground between humans and the IRL agent. This requires the ability for knowledge sharing between

humans and the IRL agent.

Unsupervised learning/Self-supervised learning: In an unsupervised learning context, data is col-
lected without explicit targets. This type of learning is cheap as the agent do not need supervision. In
that setting, data can be grouped by various similarity measures, depending on the nature of the data.
Similarity measures can then be used with unsupervised clustering techniques to classify the data
without supervision [3]. Learning can also be done through various specific techniques which apply
known transformations to the dataset before training a model to reconstruct original data, based on
the transformed ones. Ideally, the model learns relevant features leveraging structure in the data. As
no labels are explicitly given by humans, the agent learns in a self-supervised manner. The simplest
technique is to train the model to predict its input, without transformation. Such model is called
an autoencoder [1]. Another common technique is to mask part of the data to predict the remaining
data. For instance, in natural language processing, some models are pre-trained on text corpora [7]
by predicting hidden words in the text, taking into account adjacent words. In our architecture, we
do not exploit directly unsupervised learning but some modules exploit deep learning models which

were pretrained in an unsupervised fashion (see chapter 6).

Reinforcement learning: The last major ML learning paradigm is Reinforcement Learning (RL) [0].
RL allows to deal with a sequential decision-making and control problem and is well adapted for
robotics. Indeed, in the reinforcement framework, a robotic agent can be controlled in a partially
unknown environment without necessarily needing to know its dynamic model (see Figure 4.1). To
do so, an agent learns by trial and error after each action A; and in interaction with its environment,
the best way to reach its goal: maximizing the expected cumulative rewards, given reward feedback

R; from the environment when it arrives at state S;.

Of course, at startup, the robotic agent does not know which state will give which reward. Therefore

47

4.1. LEARNING PLANAR GRASPING

the agent needs to explore the world first in order to discover what is good or bad for him. On the
other hand, it also wants to maximize reward, and therefore have to ezploit its knowledge of the world.
This is referred as the exploitation/exploration dilemma. A common choice to deal with this trade-off
is the epsilon-greedy method where the agent can choose with a certain time-decreasing probability, a

random action instead of the best action according to the current policy.

Agent

Zji action A;
. Rt

B (Environment ——

' Sitt

Y N

state S; reward R;

Figure 4.1: Reinforcement learning base description

Transfer learning: Transfer learning [7, 8] is related to any techniques that help transfer knowledge
acquired in some domain to another domain. This is useful when a model has to be trained on a
domain with few data or costly access to data. In deep learning models this can be done between
closely related domains, by pretraining a model on a domain with rich available datasets and/or with
unsupervised techniques. By leveraging these prior learned knowledge, another model can learn quickly
on a new adjacent domain with much fewer data. For instance, by leveraging hierarchical nature of
neural networks, one can extract discriminating features from hidden layers of a model and use them

to train another model on a close domain.

Data augmentation: Data augmentation represents a set of techniques which consists in leveraging a
dataset, in our context collected during the IRL interaction, and prior knowledge about a task to create
artificial data. For instance, in visual classification tasks, classes are often invariant given orientation.
In that case, datasets can be augmented with rotation and flipping to account for this invariance. We

can also have some knowledge about sensors noise and augment data accordingly.

These different learning techniques are at the core of the connectionist components we can integrate
in the architecture. We develop in the next section how they were leveraged to develop planar grasping

modules.

48

4.1. LEARNING PLANAR GRASPING

4.1.3 Planar grasping formulation

The planar robotic grasping problem aims to find a good set of grasping parameters, given an
image Z of a single object as input. For a vertical antipodal grasp, parameters (Figure 4.2) can be
expressed as the Cartesian position (x,y) of the tool center point of the gripper in image coordinate
system, the angle 6 relative to the abscissa of the image, the width opening of the gripper w, the height
h (representing the maximum gripper size) and finally the z coordinate of the gripper elevation, in
the frame of the local plan on which lie the object: g = (x,y, z,0,w,h). According to the task some
of parameters of g can be fixed. For instance one can fix the opening of the gripper. An example of

common metric to evaluate planar grasping quality is the Jacquard metric (see appendix A.1).

4.1.4 Base approaches in deep learning

Many approaches have been developed to address this vision challenge, based on various techniques
such as geometric calculation [9], SVM [10]. Many of them use an underlying deep learning model
for robotic grasping. Theses deep learning approaches can be split up into two categories: quality

evaluation of grasp candidates [1] and direct regression of grasping parameters [12].

In the case evaluation of grasp candidates, one defines a quality metric S depending on the grasp
parameters and the state of the object [11]. Such metric can be based, for instance, on the ability to lift
the object or based on force closure. Then, given grasp candidates, the idea is to train a binary neural
network classifier which predict, given the image, if the grasping candidates are good according to the
chosen metrics. Through a direct regression approach, several methods have been developed [13-15].

They mostly rely on end-to-end deep learning architecture predicting g from an image Z. Learning

Figure 4.2: Grasping parameters

49

4.1. LEARNING PLANAR GRASPING

is usually done using online available datasets such as the Cornell dataset [10] (~ 885 images) or
the Jacquard dataset [16] (~ 22.000 images) ones. They are composed of vertical RGB views z € 7
of objects with several acceptable grasping parameters ¢;n.. When it comes to learning with few
data, such as in the online IRL setting, different methods can be used such as decreasing the input
space size, using data augmentation or/and using transfer learning to initialise the network. In [17,
18], authors reduced their input space size using only the depth from the RGB-D camera. Data
augmentation techniques increase the size and variance of the training set, while Convolutional Neural
Networks (CNN) pretrained on image classification tasks are leveraged for transfer learning. The very
rich ecosystem of image classication research provides access to a lot of high-performance architectures
(VGG [19] , Resnet [20], Densenet [21]), pre-trained on large image databases (ImageNet [22], Coco
[23]). Despite being trained on RGB images, we can use those architectures for the creation of CNN
processing depth images. In the grasping domain, many works have used this technique to create a

grasping predictor.

For instance, some co-authors developed a variant of the uni-modal architecture proposed by [11].
This architecture is an end-to-end approach achieving an accuracy of 88.4% on image-wise split of
Cornell Grasping dataset. The complete module, called GraspNet, uses VGG16 [21] extracted features
(Figure 4.3). Since several grasping parameters g,y are available for the same image, training can be

made with the minimzation of the mean squared error loss function:

L = min (gi_gpred)2- (46)
giEGtruc
— [75) — T
HNE
g a1l 191 & v
s lsl s olel ¢ &
VGGI6 | =212l 2 29
: < Q gl & =
=3 c\]ﬁﬁgc\]fﬁﬂé (=}
= +EE |5 T
— h

[1 Fully connected layersE___1 Dropout layers

Figure 4.3: GraspNet architecture

In the following section, we now explain how we deal with planar grasping in bin picking and task

50

4.2. LEARNING AUTONOMOUSLY BIN PICKING

oriented grasping tasks by developing deep learning modules. For a comprehensive and more general

overview on the use of deep learning for grasping, one can refer to [27].

4.2 Learning autonomously bin picking

All tasks in an IRL setting cannot be explained easily in a procedural manner. In that context, we
would just like to fix the goal, constrained available actions and let the agent learns intuitively, how

to carry out this specific task.

4.2.1 Bin picking module

Collaborative industrial robots often use parallel-plates gripper for manipulating objects. However,
in industrial tasks, objects are often cluttered, in highly disorganized heaps such as in bin picking
industrial applications. This is a very challenging task because of occlusion, unknown dynamics of
objects and noise which limits the use of traditional grasping techniques. Traditionally, a CAD model
of a part is used in problems of part gripping. However, it is not always possible to have a model of a

part and it can be expensive to make one.

To overcome these challenges, bin picking techniques based on deep learning and reinforcement
learning approaches have started to emerges [26], to predict the best grasp given an image of the heap.
Yet, because parts are very close, there can still have grasp failures. A solution is to give more action
capabilities to the robot. For instance, the IRL agent can be allowed not only to grasp but also to
push objects. Pushing can help spread parts in the heap in order to ease future grasping. Authors in
[1] proposed to adapt deep Q-Learning [27], a deep reinforcement learning algorithm, to learn grasping
and pushing actions. They validated their approach on examples with toys. We developed a module
based on an extension of their work, presented in section B.3.1 and validated with screw and bolts as

can be found in an industrial setting.

The bin picking use case is a typical example of action where it can be hard to explain procedurally
how to carry it out. Actually, explaining in a procedural manner how to carry out such a task is hard
even for a human. We could hardly explicit why we would spread the heap in one way rather than in

another way. Still, we have some goal which is to pick all the parts.

Reinforcement learning fit well to learn such task in an autonomous way. Therefore, we reproduced

51

4.2. LEARNING AUTONOMOUSLY BIN PICKING

[1] and have extended it experimentally to our industrial context. We addressed the bin picking
problems as an autonomous reinforcement learning strategy where the robot agent learns synergies
between pushing and grasping as illustrated in Figure 4.4. Moreover, the use of reinforcement and
deep learning allows the robot to learn to pick-up parts without the need of any CAD model. This is
important as collaborative robots can be expected to work with parts that were not modeled by CAD

specialists, especially in small scale industry.

(a) Heap of objects (b) Pushing action to spread parts (c) Grasping of an isolated part

Figure 4.4: Example of synergy between pushing and gripping. A pile of objects is presented none of
which can be retrieved by direct grasping (a). The robot will first push the pile (b) and then separate
the objects (b) and then grab an isolated object (c).

This work was valorized through a demonstration during the closing day of the European project
ColRobot ! in the presence of members of the European Commission, various academic partners and

industrial partners (Renault and Thales). A video of this work can be found 2,

The experimental setup was the following (Figure 4.5): we installed an industrial grade, high
definition depth sensor (a photoneo3D camera?®) on top of a UR5 collaborative robot equipped with
a Robotiq two-finger gripper. For industrial validation, we collected screws and bolts as objects of

interest for the bin picking operation and carried out the experiment in a warehouse.

The task is to catch all objects from a cluttered heap of objects present in the workspace. So, the

state is represented as an image of the global workspace using the affordance formalism.

52

https://www.youtube.com/watch?v=T592ye7RPxQ
https://colrobot.eu/
https://www.youtube.com/watch?v=T592ye7RPxQ
https://www.photoneo.com/products/phoxi-scan-l/

4.2. LEARNING AUTONOMOUSLY BIN PICKING

3D Scan

3D Scan to
computer

URS5 Robot+F/T
sensor

Smart picking

Stack of bolt and screw Hardware

Figure 4.5: Hardware pipeline of the algorithm

4.2.2 Methodology

We reproduced the architecture of the network by implementing a DQN (Deep Q network) al-
gorithm, illustrated in the learning pipeline (see Figure 4.6). The DQN algorithm allows to exploit
neural networks to infer Q-maps (see outputs on Figure 4.6) from the state of the workspace. For a
given action, a Q-map associates to each pixel of the input image a value determining the quality of

the action at the considered location to maximize expected return.

As the state/action space can be large, following [1], we discretize the actions by considering 8
pushing acts, in the plane parallel to the working space, following 8 different directions. In the same
way, for gripping, we consider 8 actions corresponding to 8 different angles of rotation of the gripper,
always supposed to be perpendicular to the working space. The reward is sparse. Each action is
associated to a Q-map. A pretrained neural network is used for transfer learning in order to reduce

the amount of needed data.

In [1] for the gripping actions, if an object is picked up then the agent receives a reward of 1,
otherwise he receives nothing. Pushing actions are rewarded if there is a change in the image by
measuring the euclidean distance between the image before pushing and the image after pushing.

As grasping is more important that pushing to solve the task, pushing actions get a 0.5 reward. In

93

4.2. LEARNING AUTONOMOUSLY BIN PICKING

practice, this has led in some training failures where the model optimized for the wrong objectives. In
some training sequences, the robot was likely to push all parts outside of the working space rather than
spreading parts for better grasping success. This is actually not surprising given the pushing reward
function; pushing actions which spread parts outside of the working space lead to a high distance
between successive images. In order to have better stability in the learning process, we investigated a
simple change of the reward function. As we want to spread object to have room for grasping, a better
reward function is to actually compute a metrics telling how well parts spread apart after pushing.
For that we compute objects dispersion, between two images after pushing. If dispersion increases,

there is a 0.5 reward, else their is no reward.

At each cycle, the action with the highest Q-value is selected among the Q-maps. In order to explore
environment, during the training phase, an epsilon-greedy strategy is leveraged with a decreasing
probability over training. After a few hours, the robot is able to pick-up and store a bunch of screws

and bolts without any CAD model of the parts.

Reward

i

H

n

High 3
Confidence H

Learning

Grasp
Reward
confidence

Low :
Action Confidence ngh
—» . = b
Decision Grasp

Deep Neural Network

224 x 224 Image
Push
Reward
confidence

2 - Prediction and

1 - Inputs "
Learning

3 - Outputs

o o o
)]

Figure 4.6: Pipeline of the algorithm

o4

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

4.2.3 Experimental results

The results presented in [1] are as follows: the completion rate (i.e., all objects in the workspace
have been removed) reaches 82.7% and the rate of pushing actions that were followed by successful
grasping is 60.9%. Once trained, we obtained close results in terms of performance. On our system, the
best performance is achieved after 2000 moves, with a success rate of 82%. On our implementation,
this represents a time of about 11h (20 seconds per iteration). We made several training and we

qualitatively observe less training failures with the updated reward function.

4.2.4 Module conclusion

In the end, the agent improves its performance over time and is able to adapt to objects it has
never seen autonomously. However, there are some limitations. During our tests, we noticed that the
robot can learn to catch coins in an unstable way depending on the first successes. For example, in
some cases the robot learned to take the screws by the net, which shows the difficulty of developing a
good reward function given a target goal. Indeed, taking the screws by the net was seen as a success
since the robot was indeed taking “something”. On the other hand, in an industrial context, objects
may have specifications and should be captured in very specific way according to the object and the

task. This motivates the fact that this type of learning is not enough.

There should be more interaction between the operator and the robot during the learning process,
so that the robot can learn to adapt to the specific needs of the operators, always with our IRL

specifications in mind.

4.3 Learning grasping location affordance from demonstration

With this module, we investigate the problem of an operator wanting to configure a robot to grasp
an industrial object in a specific area. Our motivation is to create a fast learner grasping system which
does not require any databases, CAD models or simulators, so that it can be easily reconfigured by the
operator himself, which is a non programming expert. The transfer of knowledge from the operator
to the robot is done through the most natural interaction: manual demonstrations of authorised and

prohibited grasping locations (Figure 4.7).

This work was valorized in the following conference article [25]. A synthetic video of presentation

55

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

can be found on

Input : shape image

>

Learn
i, -
>

from

Prohibited grasping location

Our system

({
" Output : grasping location

el

Grasping location

Operator's demonstrations

Figure 4.7: First, for a new object, the system learns from operator’s demonstration. After few minutes
of training, the system will be able to retrieve the demonstrated area on a depthmap.

4.3.1 Task oriented grasping

In task oriented grasping, the IRL agent faces different use case:

e grasp a tool by the handle or head depending on the task the robot has to perform.

e grasp an industrial object so that it can be placed in a chosen orientation as part of a pick and

place operation
e grasp a fragile object in a safe area.
The use of Convolutional Neural Networks (CNN) partly solves this problem since they offer great

results for object recognition and grasping [29-31]. However, they come with constraints such as the

use of specific databases (Cornell database [29]) or huge training time [32].

4

96

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

In Table 4.1 , we provide a summary of some task-oriented grasping works and compare them with

our approach in section B.3.1-I1.

Table 4.1: Summary of existing task oriented grasping works

Ref Data generation CAD model Observation
& simulator
133] From CAD model v Training took 6 hours on Titan X
GPU
[34] From simulation v 1.5' M of data are generated for
training
[35] ShapeNet and ModelNet40 v Bayesian Optimization
RGB-D Part Affordance
[30] Dataset Large dataset
) 20 minutes to reconstruct 3D map-
[37] From few views X . .
ping of object
. < 5 minutes of training on RTX
our 28] From few demonstration X 9080 GPU
Task-oriented grasping uses the concept of affordance introduced by Gibson [38] which describes

parts of objects according to their functional utility. In robotics, this concept is used for gripping and

handling objects considering the work to perform afterwards [39, 40]. A task-oriented grasper can
be created using behavior grounded affordance [31] or spatial maps [39] for instance. The semantic
labels technique on images can also be applied [33, 11, 12] : using specic large datasets such as UMD

[36] or shape database [35], each pixel is labelled independently according to the part of the object to
which it belongs. Our work uses semantic labelization of images without databases, learning from a

few examples demonstrations.

Demonstration learning can be used to transfer knowledge from an operator to a system, in our
case to teach a robot a precise grasping location. Most previous works address this problem with a
trial and error phase via a simulator or directly on the real system (Table 4.1). In [13], the authors
propose a network architecture and data augmentation pipeline to design a controller able to grasp
very simple objects (cube, cylinders...) from a single demonstration. However, the controller can not
integrate important constraints into task-oriented grasping, like prohibited locations while defining
such constraint is relevant to increase safety by putting emphasis on what can be done and what

cannot be done.

In [37] authors learns a dense descriptors map for objects after building a 3D dense reconstruction

o7

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

model of the object. As a result, they obtain a semantic representation of the object allowing them
to grasp the desired location. In our work, we decided to work directly on images without any 3D

reconstruction techniques which may take time.

4.3.2 Methodology

We study the problem of performing an antipodal grasp perpendicular to a planar surface, on
a specific object for which an operator has taught authorised/prohibited grasping areas. A RGB-D

camera is mounted on the robot’s wrist and capture a fixed height top view.

We define a pixel-wise semantic segmentation pipeline, based on grasping from a few demonstra-
tions methods, where the input is a depth image of the scene and the output is the grasping parameters
g = (z,y, z,0) for grasping the object on the demonstrated area. Coordinates (x,y, z) represent the
tool-centre of the gripper, and 0 is the angle of the gripper in the plane. Grasping parameters are
directly derived from the image segmentation. We define a structure of our pipeline allowing fast
training from a few demonstrations. This problem creates constraints that motivated the design of

our pipeline:

e learn fast authorised /prohibited grasping areas

e generalize from a few demonstrations.

4.3.2-1 Training dataset:

Data Capture: Training is done directly from an operator’s demonstration without using any
external databases. The operator’s thumb and index fingers are covered with coloured pads so that
they can be easily identied by the camera. Grasping gestures on authorised and/or prohibited areas

are stored by recording the fingers coordinates (Figure 4.8 -a).

Then (Figure 4.8 -b), a 2D shape of the object is obtained from the binarization of the depth
image: the table’s pixels are set to 0, and the objects’ pixels (above the table) are set to 1. We note
it as I € {0,1}"*™ where (n,m) are the dimensions of the image. Labels are generated as images
L € {-1,0,1}"*™ where authorized pixels have value of 1, 0 for pixels without information and —1
for prohibited pixels. The use of 2D shape I reduces the size of the input space and contributes to our

goal of generalization. If necessary, several demonstrations of the same object in different locations

58

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

are collected and stored as tuples (Input, Label). Note that demonstration can be done in several
ways like with a computer interface. We chose to use the operator’s fingers to benefit directly from
human-robot interaction without any hardware intermediate. In the remainder of this article, objects
with/without demonstrations (i.e. for which we trained or not a specific network) will be referred to

as referenced/unreferenced objects.

Data Augmentation: The number of tuples (I, L) is then increased by random translations and

rotations (Figure 4.8 -c). We also randomly erase some areas of the input image to give variability
in the training data, to reflect both the noise of the camera’s depth sensor and the objects’ shapes

variations with its relative position according to the camera.

In an industrial context, the solution also needs to be robust in a dynamic setting such as lighting
conditions and background variations. Since input 2D shapes I do not incorporate any brightness,
color and texture information, our pipeline is robust provided that effects of such variations on the

resulting 2D shape are reflected in the data augmentation.

) ’ -
Data Augmentation :

1 rotation and translation
e

| O

¢ s ° - N .
© Authorized Grasping location 2D shape (1)

@ Prohibited Grasping location
(a) (b) (c)

Generated Label (L)

Figure 4.8: Data capture and data augmentation pipeline.

4.3.2-I1 Network pipeline:

Architecture: To map I to L, we address this problem as a regression one, and use a CNN composed
of a partial pre-trained Densenet 121 [11] and a light CNN. The overall architecture is presented in
Figure 4.9 -b, activation functions are "RELU” except at the output where we use the "tanh” function
to distribute the values between —1 and 1. Dropout rates are set to 40% to prevent the network from
over-fitting and to generalize well to unseen data. This small convolutional network only has 6914
parameters and can be trained with our training dataset in a few batches using an appropriate loss

function.

99

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

Output: Once trained, this network outputs a grasping affordance pixel-wise representation G €
[—1,1]"*™ (Figure 4.9 -c). To determine the grasping parameters g, we post-process the raw output
G. First, all pixels belonging to the table (0 in I) are set to 0 in G. Then, to determine grasping
parameters, we select the highest grasping affordance pixel (uy,v,) = arg max, ,) G(u, v) as the target
tool-centre point. The grasping angle « in the image’s frame is calculated by performing a PCA on
a sub-region of the input centred around the grasping point (Figure 4.9 -d). Finally, geometrical
transformations based on hand eye calibration are made to convert (ug, vg, &) to g. Therefore, the

robot can directly perform a grasping action in its workspace.

We also tried to address this problem as a classification one, where output GG provides class prob-
abilities (prohibited/neutral/authorised) for each pixel. Tests have shown lower performances than

those of the regression approach, with convergence issues in some cases.

Q.
2 3
a8 . 2 £
S8 g 3 % d=
) |8 g g =8
5 £ 3 x| g 2 9%
5 £ ol x |E X | § 3
z 5 o (Bla |8, 1285 o ©E
3 = wz2|S| e [E2F |2 ’é} - = 58
=2 wSle| g8 |B X255 % s o8
== gl g <] X
T E SE|S| & |2 >§x: % 2~ 5 % =2
% = Ex|2| E Alzg |82l 2= o EE
S 3 601 Sl E |= S A8 5 & = 52
E= A & 2|0 é O —~ 5 2%
Z 2) * -
= & [as] fc{'g
e
X 4 Predicted Grasp
Input (I) 224 x 224 CNN Output (G) 41 x 41 asy

(a)) (c) (d)

Figure 4.9: Overview of our CNN pipeline.

The Loss function (L) should allow our pipeline to generalize from a few demonstrations and to
classify a pixel-wise representation with unbalanced area sizes (as shown in Figure 4.8 -b , prohibited,
neutral, and authorised areas have different sizes). In order to accomplish this, we introduce a modified

version of the pixel-wise L2-loss function [15] by multiplying each pixel error by a specific weight:

1 nxm
Lueighted—L2 = pv—" ; Wi tabel; (pred; — label;)? (4.7)

The weighted factor w; jqper; is chosen as follows:

60

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

Wi label; = |pred;| + A1 X (4.8)

1
Niabe;

where Njgper; represents the number of pixels in L containing label value label;. The first component
|pred;| in Equation 4.8 used to focus the network’s attention on interesting parts by focusing the
gradient descent over areas of interest. The second component is used to accentuate learning over
underrepresented areas of the label map by reducing the importance of large areas. The parameter A\q
balances the two components. The benefit of this weighted loss function is studied in section 4.3.3-1V.
To prevent overfitting, we use the L2-regularization loss L2 .4 applied on the weights and bias of the

network. The finale composite loss-function is:
L= [fweighted—L2 +)\2 »CL2 reg

We trained the network using stochastic gradient descent, with a learning rate of 10™#, a momentum

of 0.9, A\; = 20 and Ay = 5.107°.

4.3.3 Experiments results

To evaluate the proposed algorithm, we plan a series of experiments. We studied 5 points:

1. grasping referenced objects at the right area in different positions

2. the benefits of our modified Ly — loss function

3. the benefits of using both authorised and prohibited demonstrations

4. the ability of the algorithm to generalize to unreferenced similar objects

5. performing grasp in an environment composed of several unreferenced similar objects

4.3.3-1 real-world experiment:

We use a modified Python version of the Matlab Kuka sunrise toolbox [16] to control a Kuka
iitwa LBR 7 DOF robot equipped with a Robotiq 2F-140 gripper. The robot’s workspace is a 30 x 30
cm flat square. An Intel®Realsense™ Depth Camera D415 is mounted on the wrist of the robot.

Computations were made on a PC with an Nvidia RTX 2080 8Gb graphic cards and Intel®8 Core™

61

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

i7 9700K 3.6 GHz CPU. The implementation was done in Python 3.6 using Tensorflow 1.13. We train
a network using online data augmentation generating 1600 tuples randomly. On average the training

lasts 250 seconds per object.

4.3.3-I Grasping in the right area:

We measure the ability of our network to find a specific grasping area learned during the demon-
stration phase. In Figure 4.10, we present our panel of referenced objects with the name of their

grasping areas. We focus on simple industrial objects.

Protocol: For each object, we train a specific network from 1 to 3 demonstrations of the same
authorised grasping area (with eventually a prohibited grasping area) under different object positions.
Then we evaluate the network’s ability to find those areas on 36 unseen positions of the referenced
object. The evaluation is done by placing the object at 9 points of the workspace and by rotating it
in 4 orientations (0°, 90°, 180° and 270°). A grasp is considered valid each time the object is caught

by the authorised area.

Results & Discussion: Our pipeline achieved good results (Table 4.2) with only one demonstration.

For bulb, screw and pliers, the grasp success in the authorised area is over 90%. For socket wrench
(81% and 86%) and cup (70%), the decrease in performance comes respectively from the geometric
similarity of the authorised/prohibited grasping area and a more complex geometry. Adding 1 or 2
demonstrations from other positions seems to solve that issue. For socket wrench and cup grasping,
results raised over 90% of success with 2 demonstrations. In these worst cases, we suppose that data
augmentation does not reproduce efficiently the different possible views of the shape of an object.
Prediction quality evolves depending on the input image. In Figure 4.11, we can see different cases
where the system outputs a good, an average and a bad segmentation of the object. Bad segmentation
occurs when the current shape is very different from the demonstrated one. It shows a limitation in

the generalization abilities of our system.

62

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

Figure 4.10: Objects used for our experiment, with the name of grasping areas. Green colour (resp
red colour) denotes authorised (resp prohibited) grasping area. The yellow colour is used to illustrate
authorised /prohibited area and vice versa, depending on the task (for example the accessibility of the
screwing operation). For the pliers, two different authorised areas are tested separately

Object | Area 1 Numl:|)er of de2m0nstra|tion(s) .
Socket | handle || 81% (29/36) | 92% (33/36) | 94% (34/36)
wrench | head || 86% (31/36) | 97% (35/36) | 100% (36,/36)
Pliers handle || 97% (35/36) | 100% (36/36) | 100% (36/36)
head || 92% (33/36) | 97% (35/36) | 97% (35/36)
Bulb | foot | 97% (35/36) | 100% (36/36) | 100% (36,/36)
Cup | handle || 70% (25/36) | 92% (33/26) | 97% (35/36)
Screw | head || 97% (35/36) | 100% (36/36) | 100% (36/36)

Table 4.2: Results of our grasping test, percentage (number) of good grasps over the 36 unseen

positions

63

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

-'-l— .! - "
! 5 4

Figure 4.11: Different segmentation quality results. The top images (cups) were trained showing
one authorised grasping area (handle). The bottom images (socket wrench) were trained showing one
authorised (handle) and one prohibited (head) grasping area. The left column shows bad segmentation
resulting in a bad grasping decision, the middle one shows average segmentation, and the right one
shows good segmentation of the object. For the purpose of illustration, outputs were reoriented and
resized. Those outputs were obtained using networks trained on 3 demonstrations.

4.3.3-II1 Benefits of learning both authorised and prohibited areas: We measure the benefits of

indicating both authorised and prohibited areas on objects.

Protocol: We train our pipeline with exactly the same training data than in section 4.3.3-11, but
without prohibited areas (by replacing -1 by 0 in the labels L), and we compare performances on the

same inputs.

Results & Discussion: In Table 4.3 and Figure 4.12 we present the grasping success rate for this

experiment. In parenthesis, we recall the grasping success obtained while training with both authorised
and prohibited areas. Performance is less than or equal to that of the experience in section 4.3.3-11.
The rate drop is particularly significant when only one demonstration is provided or for the socket
wrench caught by the handle. Indeed, for the socket wrench, the similarity between the handle and the
head makes a task-oriented grasping more difficult, by learning only from authorised area. This shows
a first relevance of indicating both an authorised and prohibited areas. This relevance is even more
important when comparing qualitatively networks’ outputs trained with and without a prohibited area.
In Figure 4.13, on the top row (without prohibited areas), the semantic segmentation is inaccurate
resulting in values close to +1 for undesired areas (instead of value close to 0). Indicating prohibited
areas is, therefore, a safety guarantee since their outputs tend to have negative values (bottom row).

As a result, even if the network fails, the robot will tend to catch an object in a neutral area rather

64

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

than in a prohibited one, thus avoiding to damage fragile objects.

Object Area Number of demonstration(s)
1 | 2 | 3
Socket handle || 42% (81%) | 72% (92%) 75% (94%)
wrench (Figure 4.12a) | head || 77% (86%) | 97% (97%) | 100% (100%)
Bulb (Figure 4.12b) | foot || 77% (97%) | 97% (100%) | 97% (100%)

Table 4.3: Comparing grasping results with only one authorised area and with both authorised/pro-
hibited areas (in parenthesis)

Grasping success rate for socket wrench handle (36 trials)

100 Grasping success rate for a light bulb (36 trials
92 94] 0
41 100 100
- —— -
81 - 100 97 97 97 ’ ‘
g % 75 S
2 2 =
g s 90 2
g =
S eof ﬁ g
«\ 3
w0
801 77 . ‘
42
40 |_| 8 |_|
1 demo 2 demo 3 demo
1 demo 2 demo 3 demo

||:|Elw/ o prohibited demollTw/ prohibited demo |
[08w/o prohibited demo [l w/ prohibited demo |

(a) Results for the wrenches handle (b) Results for the bulbs

Figure 4.12: Illustration of grasping results with respect to the number of demonstrations

4.3.3-1V Benefits of the weighted L2 loss function: We measure the impact of our weighted loss

function by comparing networks trained with our proposed loss function and with its non weighted

version.

Protocol: We followed the same protocol as presented in section 4.3.3-I1 and we only changed
the training method by setting all weights wj jape;, to 1 (regularization parameter Ao remains equal to

5.107%). Training is performed using 3 demonstrations and results are compared with the correspond-

ing ones of the previous experiment.

Results & Discussion: Table 4.4 highlights that adding our weights in the Ly cost function has

improved the system performances in every case. Moreover, without weights, we noticed that bad
behavior could occur: the training fails to focus on the important area (+1 and —1) and does not

converge to a solution. This experiment validates the relevance of our proposed loss function.

65

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

o=, g W
-y | g

Figure 4.13: Qualitative comparison between pipeline output. Networks were trained using 3 demon-
strations

Authorized
locations only

Authorized
& Prohibited
locations

| Object ‘ Area || Lo loss ‘ weighted Lo loss ‘
Socket | handle || 61% (22/26) 94% (34/36)
wrench | head || 86% (31/36) | 100% (36/36)
handle || 92% (33/36) | 100% (36/36)

()

()

()

Pliers

head || 72% (26/36) | 97% (35/36)
Bulb | foot || 94% (34/36) | 100% (36/36)
Cup | handle || 75% (27/36) | 97% (35/36)

Table 4.4: Influence of the weighted Lo loss. Training was made with a set of 3 demonstrations.

4.3.3-V Grasping similar unreferenced objects: We measure the ability of our algorithm to gener-

alize the grasping area learned for an object to another similar one.

Protocol: We used specific networks trained in section 4.3.3-1I to perform the test with similar

unreferenced objects (Figure 4.14). Similar objects were close from the referenced one varying in their

size and geometry.

Results & Discussion: In Table 4.5 | except for bulb 2, we can observe a good ability of the

network to generalize grasping area to other similar unreferenced objects with no degradation of the
performances compared to those obtained on the referenced one. By taking a closer look at the different

bulbs grasping affordance pixel-wise representations (Figure 4.15), the demonstrated knowledge is

66

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

Figure 4.14: Similar objects used to test our algorithm generalization abilities

quite well transferred to bulb 1 with a precise segmentation of the unreferenced object. However, the
shape of bulb 2 is quite different from the one of the referenced bulb, and the segmentation gives an
inaccurate result, especially for the authorised area where grasping affordance values are low. In an

industrial context, if a grasp fails for a similar object, then a (or a few) demonstration(s) can be done

by the operator to train a specific network for this object (i.e.g bulb 2).

133

LI

Figure 4.15: Bulbs grasping affordance pixel wise representations. From left to right : referenced bulb
on which the training was done, bulb 1, and bulb 2.

Number of demonstration(s)

Object | Loc. T | 5 | 3
Smaller |\ a | 78% 81%) | 92% (92%) | 94% (94%)
wrench

E‘X hand. | 97% (97%) | 100% (100%) | 100% (100%)

Bulb 1 | foot || 100% (100%) | 92% (92%) | 97% (97%)
Bulb 2 | foot | 89% (100%) | 78% (92%) | 81% (97%)

Table 4.5: Ability of the Network to generalize to an unreferenced similar object. The network was
trained after demonstrations on a referenced object and the test was performed on unreferenced similar
objects. In parenthesis, results obtained in section 4.3.3-1I are recalled.

67

4.3. LEARNING GRASPING LOCATION AFFORDANCE FROM
DEMONSTRATION

Comparison with other works presented in section 4.3.1:. In some other works, the ability to

generalize has also been quantified. In [33] authors achieved a grasping success rate between 69% and

82% while in [31], authors obtained results between 71.1% and 86.6%.

In an industrial situation, those methodologies are not applicable since it would require the operator
to generate a 3D CAD model for each new unreferenced object. In [17], generalization ability was not
quantified explicitly and requires more than 20 minutes to create a precise 3D representation of an

object. However it requires more than 20 minutes to create a precise 3D representation of an object.

4.3.3-VI Grasping several similar objects: Grasping several identical or similar objects laying on a
workspace surface is an important skill to the industry. It allows thereafter to place these objects in
boxes for example. We measure the ability of our pipeline to grasp several similar objects laying on a

surface while being trained with only one of them.

Protocol: Experiments are done on three different groups of similar objects (Figure 4.16) with
their corresponding specific network trained from 3 demonstrations. For each group, several objects
are placed in the robot’s workspace without touching each other. We let the robot grasp the objects
one by one until the workspace is cleared. When a failure occurs, we remove the object manually. We

repeat this process with other object’s configurations until we reach 20 attempts for each group.

Figure 4.16: The three groups of similar objects used in our test.

Results & Discussion: Table 4.6 shows performances slightly under those of individual objects. It

is a promising result as our proposed algorithm, despite being trained with one object in its workspace,
achieves relevant actions when several spaced similar objects are presented to it. We also evaluate
the grasping capacity of our system when objects are in contact with each other. However it leads to
failed grasping predictions because of very different 2D images. This highlights the limitation of our

2D representation in a cluttered environment, for example in the context of a bin picking task.

68

4.4. CONCLUSION

Bulbs ‘ Socket wrench ‘ Screws
19/20 (95%) | 17/20 (85%) | 19/20 (95%)

Table 4.6: Grasping accuracy results for groups of similar objects

4.3.4 Module conclusion

In this work, we have shown that a fast reconfiguration of a grasping robot is possible with one
(or a few) demonstration. Furthermore, our proposed pipeline is able to generalize grasping strategies
for several unreferenced similar objects. Our method combines a reduced state space, a light CNN
and a weighted loss function. It is able to quickly learn from few data without requiring any datasets,
CAD models or simulations. Our CNN network pipeline fulfills our initial motivation of creating a
task-oriented grasping system that can be fastly and easily reconfigured by an operator. Moreover, the
learning of prohibited areas, makes this process safer. Thus, it shows a good potential for integration

in an industrial context.

This work is a powerful module that the IRL architecture can leverage for better teacher/learner

interaction and for affordance location learning.

However, it presents limits that suggest further work. The selected input space limits our algorithm
to simple 2D shapes. Working directly with the depthmap from the RGB-D camera will allow to
consider more complex 3D objects and cluttered environments. In addition, the semantic segmentation
of objects might be erroneous in some cases. Detecting these failures would allow to ask the operator

for help when needed in a continuous learning scenario.

4.4 Conclusion

We have presented two modules in this chapter that leverage different learning paradigms according
to the IRL situation. Given some reward function and constrained actions, we can teach an IRL agent
how to carry out some tasks in an autonomous way. This is useful when teaching the procedure is
hardly explainable. However, the behavior of the agent depends on how well the reward is defined,
which is a hard task. Moreover, the learning duration can be quite long (several hours) for an online
IRL setting. We have studied and developed a learning from demonstration module [28], which can

learn fast and from a few natural demonstrations, object grasping affordance, with respect to our initial

69

4.4. CONCLUSION

specifications. A comprehensive experimental validation of this module has been made highlighting the
interest of this approach. Finally, each module can be used for specific needs, and could be integrated
and even coupled in the wider architecture in order to carry out more complex tasks. Integration
and validation of the specific learning from demonstration module is discussed on chapter 6. But at
first, we can observe that without a notion of known and unknown, these models will predict grasping
location even on objects, or objects views far from the training ones. This could lead to potential
wrong predictions and thus, to risky behaviors. In order to improve robustness, modules should also
be able to account with the uncertainty of their predictions, which is investigated in next chapter

(chapter 5).

70

Chapter 5

Learning under uncertainty

Contents
5.1 What does uncertainty means 7 L L e e e e e e e e 73
5.1.1 Stochasticity and data shift 73
5.1.2 Aleatoric uncertainty 7, 79
5.1.3 Epistemic uncertainty 7. o 80
5.1.4 Total uncertainty 7. 80
5.2 Uncertainty estimation methods 81
5.2.1 Bayesian and variational inference methods 82
5.2.2 Deep ensemble methods oL 83
5.2.3 Distance aware uncertainty model o000 85
5.2.4 External measure 88
5.2.5 Conclusion on uncertainty review in deep learning 90
5.3 Uncertainty for decision-making it 94
5.3.1 Calibration and sharpnesso 94
5.3.2 Performance metrics of a system oL L oL 97
5.4 Active learning setting L Lo e e e e e 100
5.4.1 Uncertainty for active learning setting 100
5.4.2 General active learning process for ITL 101
5.4.3 Uncertainty aware behavior model 103
5.5 Conclusion o i it e e e e e e e e e e e e e 106

Until now, we have described skills learning abilities in terms of symbolic and connectionist compo-
nents. We showed that a lack of symbolic knowledge about a task, in terms of procedural or perceptual
information, leads to a failure and triggers a mixed initiative, interactive learning event. However, this
is not sufficient as perceptual modules, such as modules based on deep neural networks, can be brittle
when facing new situations. As a consequences, failed predictions can lead to erroneous decisions.
The TRL agent needs to know the level of certainty or uncertainty in its perceptual and reasoning

71

processes. This is a key indicator to endow the IRL agent with more insight about what it knows,
what it does not know and what it is not certain about before taking a decision.

This chapter first develops in 5.1, through examples, the main principles of uncertainty that can be
used for an IRL agent. We further illustrate in 5.2, several estimations techniques to derive uncertainty
in learning modules. A focus has been made on the main underlying uncertainty principles and the
state of the art for deep learning techinques. Then, we introduce how this uncertainty can be leveraged
for decision-making (section 5.3) as a base for active learning (section 5.4). We specifically introduce
in section 5.4.3, how uncertainty can be integrated in the IRL architecture by extending the behavior
model. Uncertainty integration for active learning in our architecture is an on going work, which is
further investigated in terms of short term perspectives in chapter 7.

72

5.1. WHAT DOES UNCERTAINTY MEANS ?

5.1 What does uncertainty means ?

5.1.1 Stochasticity and data shift

Some machine learning models, especially in deep learning, give only prediction values without
relevant tools to assess for the quality of these predictions. However, many physical phenomena are
inherently stochastic and the lack of experiments and therefore of training data can lead to under-
confident or overconfident predictions. As in most machine learning problems, we can distinguish

categorical classification problems and regression ones.

For classification, a model should output a label with its confidence. For instance, asking a deep
neural network to predict a result with 100% of confidence for a "head or tails” when flipping a coin
is meaningless. We would like the network to be uncertain about its prediction and ideally, to output
a distribution of possible outcomes (1/2 — head, 1/2 — tails). In a general way, for a classification
problem, uncertainty should output a prediction distribution over the classes. By this way, confidence
in a predicted class, as well as particular confusions with other classes, can be highlighted. Even if
softmax outputs of a classification network looks like such a distribution, they are known to be prone
to miscalibration and overconfidence [1]. Consequenlty, they can not be trusted as a confidence and

uncertainty measure.

For regression, a model should output a mean value with its variance which can be interpreted
as a confidence interval around the predicted value. For instance, in our grasping location learning
module, we mitigated risks of grasping in forbidden area, by learning a separating neutral area. Even
in that case, the self-occluded cup example presented in previous chapter (Figure 4.11), shows that
failures are still possible when the agent has not seen enough demonstrations, for some of the objects.

The agent needs a way to estimate the relevance of the predicted authorized grasping location.

An TRL agent is most likely, especially in its infancy, to face things it does not know rather than
things it does know. This is related to the fact that most of the world is unknown and that new
perceived data can be far from the known world. In the machine learning literature, it is referred as

Out-of-Distribution (OOD) robustness.

Currently, most deep learning systems assume an Independent and Identically Distributed (IID)

data setting. Therefore, the network assumes test data domain Dy.s and train data domain Dypgn

73

5.1. WHAT DOES UNCERTAINTY MEANS ?

are taken from the same distribution: p((x,y) € Diest) = p((x,y) € Dirain), with y the target value
and x the input features. In classification problems, y is a class label commonly represented as the
vector of the theoretical softmax output (1 for the class of the input, 0 for other classes). Concerning
regression, y is the vector(scalar) of real output(s). Same distribution assumption, however, is regularly

broken as in most real-world settings, Dy is a mixture of a train and OOD domain Dpop leading
to p(($7 y) € Dtest) = p((xa y) € Dirain U DOOD) 7‘é p((x, y) S Dtrain)-

p((z,y) € Diest) can differ from p((x,y) € Dyrain) in various biased ways that can appear si-
multaneously. This has resulted in an active fields of research in OOD robustness specification and

mitigation. We list below some of the main types of dataset shifts found in the literature:

e Covariate shift occurs when distribution of features p(z) changes but p(y|x) is fixed. Often
covariate shift occurs when x causes y. For instance, in classification based on vision, this can
be related to a change of view, noisy data such as illumination of a previously learned object:
the raw image or computed features vary while the object label remains the same. In the case of
a regression problem, such as in our module for affordance location prediction, a change of light
or view change features x and therefore might affect prediction. This kind of shift, if detected,
can be mitigated by collecting relevant data such as more examples or data augmentation as

proved our approach in B.3.2.

o Label shift or prior distribution shift [2] occurs when distribution of label p(y) changes and p(z|y)
is fixed. Often label shift occurs when y causes x, so when we try to learn an inverse model that
is not stationary across time or space. Such setting has been studied a lot in medical setting
for disease diagnostic modelling. For instance in [3], authors argue that one can train a binary
classification model p(z,y) to predict the diagnostic y to have flu based on symptoms x. The
distribution p(y) of flu prevalence (the number of case at a given time) varies throughout the
year, but as symptoms are caused by the flu, p(z|y) does not change. However, p(y|z) does
change, as given the same symptoms z, it is more likely to have flu y during an epidemic (i.e.
p(y|x) increases). Therefore, if the model has been trained on data outside of the epidemic, it
might underestimate flu prevalence during the epidemic. In our case, let’s imagine an ideal IRL
agent observing the behavior of a human to induce, among several tasks, the current procedure

he is working on. For instance, it could learn an intent classification model, predicting the task

74

5.1. WHAT DOES UNCERTAINTY MEANS ?

intent y based on some observed features x such as facial expressions and human movements.
Because a task procedure is well-defined, one can assume that the task specification causes x
and that p(z|y) is mostly fixed. However, across time, tasks relative frequency, and thus p(y),

can change according to demand or supply chains.

e Open-set-recognition issues occurs when new classes appears at test time. An overview on recent
advances in this field is presented in [1]. For an IRL agent, for instance, it occurs when new

objects are learned.

e Subpopulation shift occurs when a model has to generalize at test time to new sub-classes that
were not seen in training [5]. For instance, if a network has been trained to recognize different
tools, but that the dataset contains some biases such as only blue screwdrivers, the model might

underperform when trying to predict the class of a red screwdriver.

Standard deep learning networks are not efficient and usually overconfident given these shifts [1],
especially for deep neural networks using ReLu activation function [6] (almost all modern architec-
tures). Overall, a good uncertainty estimation and taxonomy could help in quantifying the confidence
that one can have in the IRL architecture predictions. Moreover, it could serve as a quantified basis
to help cope with those biases. From the human perspectives, it could improve safety guarantees
and acceptability which are strong requirement for industry. From the IRL agent side, it is a way to
question and reason about its own behavior in a flexible way. In the rest of the chapter, we will focus

on dealing with covariate shift and open-set-recognition as they are the most studied shifts.

There is an extensive literature on uncertainty taxonomy (see [7] for a comprehensive survey). We
briefly describe the main characteristics of an uncertainty metrics. First, in general, uncertainty 7 of
machine learning model can be decomposed in two types of uncertainty, aleatoric (1,) and epistemic

(Te) uncertainty.

An intuitive way and quite general way to obtain this decomposition, in the supervised learning
context, is through the traditional decomposition of mean square error into bias, variance and noise [8,
| (equation 5.2). Given a finite dataset D(x,y) with x the inputs and y labels, let’s assume that there
is some data generative process h and a zero-mean noise N(z) such that y = h(x) + N(x). Ideally,
we would like to approximate h by learning a function f given a rich family of function from some

hypothesis space. In case of deep learning it is a function fy parameterized by weights 6. The classical

75

5.1. WHAT DOES UNCERTAINTY MEANS ?

training method is to minimize the mean squared error (y — fg(x|D))? for the training dataset and to
expect generalization for test data. Because of the noise, of limitations of the chosen family function
and of non infinite data, learning h is near impossible in real wold use case. In general, the learning
algorithm can produce many fy that can be compatible with the dataset D. We can then compute the
mean predictor jy between different model solutions given the data and decompose the error in terms

of uncertainty.

py(x) = Eolfo(2)|D] (5.1)

The total expected error of the model given the data is then computed as [3, 9]:

E|[(fo(x) — y)*|D] =E| fo(@) = pp() + s (2) = h(z) = N(@)]*|D

——
|4 B N
= E[V?D| +E[B?D]+E[(N -0)*D] (5.2)
——— —_— —
Model variance Biases Variance of noise

Let’s illustrate uncertainty estimation with simple examples. We first develop the case of classifi-
cation which has been the most studied. The different method are extensible to regression task which

is briefly illustrated in section 5.2.5.

For classification let’s exploit the traditional two moons distribution datasets with an additional
out-of-distribution data cluster. We based this work on the following libraries: uncertaintypaselines
Edward2 [10], Tensorflow Probability [l 1], which add high-level probabilistic layers to Keras and
Tensorflow [12]. The dataset was produced with scikit-learn [13] utility tools (Figure 5.1a presents the
dataset). There is an additional OOD cluster that the network cannot see during its training phase.
We train a neural network based on ResNet to classify the dataset in two classes using a distance aware
learning method to reproduce work presented in [14]. This method is explained in section 5.2.3 and is
use here for illustration. The method is called Spectral-normalized Neural Gaussian Process (SNGP).
This network is compared with a traditional ResNet deep network that is not trained with uncertainty

handling in mind. Once training is done, we can plot for all points in the plan, the class probability

1

76

https://github.com/google/uncertainty-baselines

5.1. WHAT DOES UNCERTAINTY MEANS ?

p and the corresponding predictive uncertainty p(1 — p) (variance for a Bernoulli distributed random

variable). It is then possible to analyse how confident the network is about its prediction.

Figure 5.9a, and Figure 5.9b represents respectively the probability prediction and the predictive
uncertainty for the ResNet network with a traditional training procedure. Figure 5.9a shows that as
the network has not be trained with dataset shift awareness, it simply learns to separate the plan in
two regions. Unfortunately, Figure 5.9b shows that the network, is also highly overconfident in its
prediction, except at the separation boundary. It is no surprise that the third cluster is classified with

high confidence as belonging to the blue moon (upper moon on the Figure 5.9a).

On the other hand, Figure 5.1d, and Figure 5.1e illustrate the probability prediction and the
predictive uncertainty for an uncertainty aware based on a residual network ([14]). We can observe
in this setting that now the model learns to classify data by proximity and not by merely cutting the
plan in half. Therefore, even if the third cluster is still classified as belonging to the blue moon, it is

now associated with an uncertainty which increases as the cluster get farther from the moons.

7

5.1. WHAT DOES UNCERTAINTY MEANS ?

3r

20 ® |

—1}|* Moon 1]
Moon 2

—21| OO0D cluster

2 -1 0 1 2 3

(a) Two moons distribution dataset with an OOD clus-
ter

(b) Two moons classification: standard predictions for (¢) Two moons classification: standard uncertainties
a trained ResNet [15] for trained ResNet

3 3
P . 2|
1 . 1
0 of
-1 —1)
- 2|

(d) Two moons classification predictions with the (¢) Two moons classification uncertainties with SNGP
SNGP (Spectral-normalized Neural Gaussian Process)
[14] uncertainty method

Figure 5.1: Behaviors of deep learning classification models given the two moons distribution dataset
with an additional OOD cluster, with and without uncertainty aware leveraged techniques.

78

5.1. WHAT DOES UNCERTAINTY MEANS ?

5.1.2 Aleatoric uncertainty 7,

Aleatoric uncertainty refers to the inherent stochasticity of physical phenomena. This is the ir-
reducible part of uncertainty as it is not linked to IRL agent representations but it is purely related
to nature. In other words, even with an unlimited amount of data, it is not possible to reduce this
uncertainty. For instance, aleatoric uncertainty about the coin flipping problem could no go below 1/2.
In the case of the two moons distribution dataset, the aleatoric uncertainty, denoted 7, is associated
with the variance of data around the true moon represented in dark blue in Figure 5.2. The network,
whatever the amount of train samples, will never be able to predict a sharper representation of the
moon without better sensing or without additional assumptions such as the physical nature of the

noise.

-2 -1 0 1 2 3

Figure 5.2: Two moons classification with an uncertainty aware model (here SNGP). We illustrate the
aleatoric uncertainty 7, and the learned epistemic uncertainty 7. given the two moons dataset.

The notion of aleatoric uncertainty can even be further decomposed in heteroscedastic and ho-

moscedastic uncertainty given a model.

Homoscedastic uncertainty: it is the part of uncertainty that stays constant for different inputs and
through time. For instance aleatoric uncertainty in head and tails does not depend on the coin and

date. It will be the same for all instance of coins on earth and at every time.

Heteroscedastic uncertainty: it is the part of uncertainty that depends on model inputs and can vary

with time.

79

5.1. WHAT DOES UNCERTAINTY MEANS ?

Aleatoric uncertainty can be learned from data. For instance, in [16], author learn heteroscedastic
aleatoric uncertainty in visual segmentation tasks as a loss attenuation by computing the following

loss for the neural network fy:

1 1 1
LNN(z,y,0) = Nzi]\ilm”yi — folzo)” + 5108 o(xi,0)%, where 0° =7, (5.3)

By minimizing this loss over weights 6 and o (which is an output of the network), they are able

to learn implicitly heteroscedastic uncertainty in various visual segmentation tasks.

5.1.3 Epistemic uncertainty 7,

Epistemic uncertainty on the other hand is the part of uncertainty that is linked to the inner
model ignorance, not to the physical underlying process. Therefore, this uncertainty can be reduced by
collecting more data and by updating the model. In Figure 5.2, we represent the epistemic uncertainty;,
T. which is associated with the predictive uncertainty of the model. Far from the moons, aleatoric

uncertainty is low, therefore epistemic uncertainty can be supposed equal to the predictive uncertainty.

5.1.4 Total uncertainty 7

The total uncertainty for an input x is then 7(x) = 74(x) + 7e(x). Ideally, as the IRL agent collect
more data, it should be able to reduce its epistemic uncertainty 7.(z) to zero. The only remaining
uncertainty is then the irreducible aleatoric uncertainty. If the predicted physical phenomenon is

deterministic, then 7,(x) ~ 0. If it is stochastic, then 7,(z) > 0.

In Figure 5.3, we can observe as expected that epistemic uncertainty is reducing, during training
over epochs, around data close to training domain while increasing on unseen points. As expected, at
the end of training the epistemic uncertainty is almost zero close to data, only aleatoric uncertainty

remains.

80

5.2. UNCERTAINTY ESTIMATION METHODS

Ll M

2 1 0 1 2

Learning epochs

Figure 5.3: Two moons classification: evolution of prediction (top) and uncertainty (bottom) with
time (learning epochs)

5.2 Uncertainty estimation methods

Representing a neural network uncertainty is an open topic in deep learning. A good uncertainty
metric 7 should be least intrusive by limiting the amount of architectural modification. Ideally, it
should not decrease the performance and additional computation requirements should be minimized.
In the literature, several approaches are being investigated to learn such models. The main techniques
are based on models which rely on external measures and the ones that learn their own uncertainty.

In the latter, we can further distinguish :

e bayesian based learning techniques

ensemble methods

distance aware model

external measure

81

5.2. UNCERTAINTY ESTIMATION METHODS

5.2.1 Bayesian and variational inference methods

In deep bayesian learning methods (illustrated in Figure 5.4), one model fg(z) of parameters 6 is
explicitly built to learn an output distribution p(y|z,6) of mean u(x) and variance o(z)? based on a

given input x € R™ (see equation 5.4. This is done through different variational inference techniques:
(@) = Epglay) (p(yl2,0)) and 7(z) = o(2)® = Epgx,v) ((yl2, 0) — p(2))?). (5.4)

Standard variational inference techniques for deep learning [17], such as stochastic variational
inference or sampling based on variational inference, learn a Gaussian distribution at each weights of
the neural network, see Figure 5.4a. If the target value y is a vector composed of N components, the
uncertainty metric is given as the mean value of the variances over each components o;: 7 = % Zfil 0.
With a mean p and a standard deviation o, the amount of required parameters is doubled compared
to standard networks. Therefore training such networks, can be computationally difficult as it requires
much more data and memory. For this reason, some works learn a distribution only at last layer, see
Figure 5.4b. This kind of network is then referred as proper scoring networks [18]. In this approach,
each neuron on the output layer learns a Gaussian distribution N (p;(z),02(x), with 7;(z) = o2(x)
output both, for each component i of target vector y, a prediction p;(x) with its uncertainty aiz. As
each neuron learns a mean and a variance, it doubles the number of outputs parameters. Training
of these Gaussian distributions is done using the negative likelihood loss function (equation 5.5).
Learning log(c?) is sometimes prefer to o2 for numerical stabilities.

1 N

og o2 — 2
£, (), 0(a)) = 5 S 2870 4 (- P) (5.5

n=1
These methods require a change of architecture, but many other approximation methods, like

Monte Carlo dropout for instance, have been developed allowing to minimize architecture changes.

Monte Carlo Dropout method, proposed by [19] makes this approximation by using Dropout layers
[20]. Dropout layers are already widely used in standard neural architectures to prevent overfitting by
deactivating a neuron with a probability p. Performing several inferences with active dropout layers
on the same input z* is equivalent having an ensemble of networks sharing some weights in contrast
to ensemble presented in 5.2.2 and is illustrated in Figure 5.5a. This technique is easy to implement

since it requires minor changes in the original architecture or no changes if dropout is already used.

82

5.2. UNCERTAINTY ESTIMATION METHODS

Reported performances of this approach in the literature are not even. While working well in some

cases as regression task [19] or image segmentation [21], this approach does not perform well in others
like in some active learning scenario [22] or classification’s failure prediction [23]. An updated version
called Monte Carlo Concrete Dropout [24] consists in learning the dropout parameter p during the

training process. Each dropout layer is replaced by a continuous concrete distribution relaxation
allowing to compute gradient and to tune parameter p. This technique requires to replace common
Dropout layers by custom ones, however the learning scheme remains unchanged. It has been shown

to perform slightly better than standard dropout in uncertainty estimation [24].

In complex tasks, dropout approach might be too simple and underperforms. More recent works,
such as SWAG (Stochastic Weight Averaging-Gaussian) [25], take a different approach by exploiting
the space of solution during the gradient descent optimization process. The key idea of SWAG is
to leverage iterations of Stochastic Gradient Descent (SGD) via a specific learning rate schedule [20]
based on Stochastic Weight Averaging (SWA). Learned weights at the end of each iteration are seen
as samples from a Gaussian distribution. We illustrate this idea in Figure 5.4c. Authors store the
network weight parameters § and the average weights parameters fgy 4 and weight covariance 6 over
different epochs. The weights covariance matrix is then exploited to provide a measure of uncertainty.
In that setting only 6 is learned during training, and 6 can easily be computed as a moving weights
average. In practice, that means that computation overhead is low. Memory requirements is tripled

but additional variables, § and @ can be stored outside of the GPU memory according to authors [27].

Dropout methods are less memory and computationally intensive than standard variational infer-
ence methods. However, as several forward passes are required to estimate uncertainty, the inference
cost can still be prohibiting in high rate demanding tasks such as in vision. Most recent approaches,
like SWAG, reduce the amount of computational power while still being competitive but it requires

learning an architecture from scratch, preventing the used of most of pretrained networks.

5.2.2 Deep ensemble methods

In [27], authors proposed a method based on a pure ensemble approach (see Figure 5.5b). From
different weight’s initialization, they trained an ensemble of networks using the same architecture on
the same data. Trained networks have different weights values ;. The idea is that in the prediction

features space, regions with fewer training points should have greater uncertainty, which is reflected in

83

5.2. UNCERTAINTY ESTIMATION METHODS

Softmax
layer

M5, Ts
Ha, T4
M3, T3

e o o -
M2, T2
M1, T1

Standard bayesian deep network

(a) Illustration of a bayesian deep network. In this
setting gaussian parameters are learned for each indi-
vidual neurons.

k . Bs (/
[]

Oscp,a
095G D0
Oswea
Osw a

(¢) Mustration of the SWAG principle. After each
epoch, SGD can get stuck at some boundary in the
optimal parameter plan. By computing means and co-
variance of networks weights, one can get closer to the
optimal parameter while having a notion of weights un-
certainty.

Softmax
layer
i H5,T5
| 4, T4
¢ i M3, T3
M2, T2
M1, T1

Bayesian deep network at the last layer

(b) Illustration of a bayesian deep network where only
the last layer learn an output distribution.

Figure 5.4: Bayesian methods for uncertainty estimation of deep neural networks

84

5.2. UNCERTAINTY ESTIMATION METHODS

greater variance in the predictions. Prediction and uncertainty estimation are then straightforward to
compute using equation 5.4. Additionally, they also proposed to use proper scoring networks by mixing
ensemble with the bayesian techniques seen in previous section 5.2.1, where the network learns its own
uncertainty during training. Finally, by gathering T proper scoring networks within an ensemble,
prediction and uncertainty can be computed as the mean and the variance of a mixture of Gaussian

distributions [27]:

1 X1 1 X
- N Z (Z Utn + Mtn - :u_n) with = T Zﬂt,n . (5'6)
t=1

n=1 t=1

5.2.3 Distance aware uncertainty model

The last type of model estimates uncertainty by computing a relevant distance between the features

space and the input space or between samples in the feature space.

Learning a distance between the feature space and the input space: In this first approach, we want
the measure to be low if the test data is close to training and high in the contrary. In [28], authors train
a deep auto-encoder in visual navigation tasks, to reconstruct data seen during training. Denoting
x — f(x) the input reconstruct from latent learned features, we want the lowest discrepancy between
x and f(x) on the training data i.e. (f(Z¢rqin) = Tirain). The chosen discrepency function 7(f(z) — z)
can be simply the euclidean distance over images as features are the outputs. Test inputs close to
training are likely to have a low reconstruction error while OOD data are badly reconstructed and
have a high reconstruction error. Therefore, authors exploit this error as a proxy of the network

uncertainty.

Learning a distance in the feature space: Another approach is to learn directly a latent features space
where, if predicted features are close, then input are also likely to be close. Conversely, if predicted
features are distant, then input features are distant. This motivates training distance aware uncertainty
models, which can quantify the uncertainty of new data, by preserving a notion of distance between
points in the input space and points in a latent features space. Figure 5.6 illustrates the general

principle:

85

5.2. UNCERTAINTY ESTIMATION METHODS

— out;

1% Dropout inference

: P

— outy

N Dropout inference)

(a) Mustration of dropout principles. Colored neurons,
without arrows, represent the set of neurons that are in-
activated during inference with probability p; for each
layer i.

— out;

1** Deep network instance

— out,

N™ Deep network instance
Same architecture but different weights)

(b) Tlustration of deep ensembles

Figure 5.5: Ensemble methods for uncertainty estimation of deep neural networks

86

5.2. UNCERTAINTY ESTIMATION METHODS

Formally and ideally, for a predictive model f, such as a neural network, for every input z1, xo,

we would like to have:

killzy — 22| features < ||f(x1) = f(22)|linput < k2l|z1 — 22|| features With k1, kz € R and
(5.7)
|[-|input and ||.|| features, respectively a distance in input and features space

In that case, features that are close in the input space are more guarantied to be close in the
output space. In other words, we would like to reduce the class of learnable function to bi-Lipschitz
functions. While this setting is interesting in terms of uncertainty estimation and for safer learning, it
reduces the expressive power and consequently might affect the accuracy of the network if the problem
to solve is more complex than what the learned space can represent. Authors in [29] reviews some
related techniques in the area of safe robotics and control. Authors notably show that integrating
Lipschitz deep network with reinforcement learning and more traditional techniques on control theory
help in building safe and more general controllers. One can indeed build a controller with a trade-off
between safety guaranty, provided by stability analysis, and prediction accuracy provided by Lipschitz-
constrained deep networks. Moreover theses methods are especially suitable for out-of-distribution
detection as shown in the simple two moons distribution dataset presented in 5.1. One of the of
the current advanced method on distance awareness at current writing is SNGP (Spectral-normalized
Neural Gaussian Process) in [30]. SNGP combines standard deep neural networks, which do not handle
uncertainty by default, with traditional gaussian processes which are the standard when it comes to
uncertainty estimation in classical machine learning. This last approach can adapt to several existing
residual architecture by applying spectral normalization (SN) to the hidden residual layers and by
replacing the dense output layer with a Gaussian process (GP) based layer. Spectral normalization
detailed in the paper, allows a residual network to be distance preserving and therefore bound || f(z1)—
f(@2)||input relatively to ||z — x2||, as required. Features output can then be fed to a distance aware

GP that model uncertainty.

87

5.2. UNCERTAINTY ESTIMATION METHODS

Layers are constrained
to enforce relative distances preservation

Complex input space

. s . : e ; Less complex features space
with some intrinsic distance metrics e : with compatible distances

Distance aware, trained network

Uncertainty aware final layer
Provides 7, and p

Figure 5.6: Illustration of the general principle of distance aware based model. SNGP is specific case.
Plotting does not come from real data and serve just as an illustration.

5.2.4 External measure

External metrics can refer to methods that compute uncertainty based on a post<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>