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1 Localisation des articulations élastomères dans les liaisons au sol avant, arrière et dans

la suspension GMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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15 Synthèse des essais traction/compression pour le matériau 1 m1t. Haut : Module de

stockage. Bas : Module de perte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13



LIST OF FIGURES
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Résumé long (in French)

Introduction

L’industrie automobile utilise les simulations multi-corps pour les itérations de conception. Ainsi,

des modèles plus précis dès les premières phases peuvent générer d’importantes économies avant les

phases d’essai et aussi éviter des changements tardifs qui peuvent s’avérer assez coûteux.

Les articulations élastomères sont normalement utilisées pour relier des pièces plus rigides. La

figure 1 détaille les endroits où ces articulations sont le plus souvent utilisées. La plupart de ces

articulations sont dans la liaison au sol, et dans le groupe motopropulseur, faisant la liaison entre

différentes pièces métalliques dans une sous-structure, ou entre des sous-structures et la caisse.

Figure 1: Localisation des articulations élastomères dans les liaisons au sol avant, arrière et dans la
suspension GMP.

En termes de conception, le plus habituel est que le constructeur automobile définisse les paramètres

clés, comme la raideur, l’amortissement et l’interface structurelle, pendant que le fournisseur conçoit

et teste l’articulation. Cela signifie que le fournisseur naturellement possède plus de connaissance sur

la pièce, malgré le fait qu’une partie de ces connaissances soit nécessaire pour générer des modèles

système précis.

La procédure actuelle pour modéliser ces articulations dans les routines multi-corps est de faire des

essais dans plusieurs directions pour générer des modèles 0D pour chacune de ces directions, qio sont
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directement introduits dans les modèles multi-corps. Cette approche, malgré son efficacité, présente

quelques problèmes : on ne considère pas la sensibilité à des chargements transverses, les non-linéarités

et les couplages ne sont pas complètement caractérisés du fait d’essais incomplets, il n’existe pas de

lien entre la géométrie de la pièce et les modèles extraits, une modification de la pièce demande la

réalisation de nouveaux essais pour obtenir le modèle 0D correspondant, et le choix du modèle 0D a

un impact direct sur le comportement du système.

L’objectif de cette thèse est de clarifier les stratégies utilisées pour passer des essais à des modèles

d’articulation appropriés aux simulations multi-corps. La figure 2 illustre la décomposition du prob-

lème en objectifs intermédiaires : conception d’essais, choix de modèle au niveau matériau ou niveau

pièce, identification du modèle, optimisation du modèle en termes de temps de calcul et analyse des

simulations par rapport à des différentes métriques de performance et d’autres indicateurs, qui ne sont

pas forcément mesurables comme la dissipation matériau ou modale.

Tests

Fx = f(x, ẋ)
• Imposed displace-
ments with force as
response
• Material and geo-
metric dependence

3D models

σ = f(ε, ε̇, εi)
• NL material and
geometric models
• FEM structure
• Implicit and ex-
plicit time solvers

0D models
F = f(x, ẋ, xi)
• Parameter fitting
• Internal states
• Mix between ma-
terial and geometric
nonlinearities

Multibody simulations

Final utilizations:
• Powertrain and
wheel suspensions
• Comfort and en-
durance analysis

Identification

Material identification Direct implementationHyper-Reduction Identification

Implementation

Hyper-reduction

Figure 2: Stratégies pour l’implémentation de modèles d’articulations élastomères dans des modèles
multi-corps.

La thèse se divise en cinq chapitres, une introduction et une conclusion. Le premier chapitre porte

sur les modèles 0D qui sont utilisés, le deuxième sur l’extension de ces modèles en 3 dimensions, le

troisième sur les essais réalisés pour valider les propositions, le quatrième détaille les implémentations

réalisées en éléments finis, tout comme la réduction de temps de calcul et le dernier sur les modèles

multi-corps utilisés comme exemples.

Modèles système d’articulations 0D

Trois mécanismes de base sont notamment importants dans le comportement élastomère, et seront

pris comme référence pour définir les modèles et étudier le comportement :
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� L’hyper-élasticité, ou la dépendance non-linéaire de la contrainte à long terme à la valeur

courante de la déformation;

� La viscoélasticité, ou la dépendance dynamique de la contrainte à la vitesse;

� Un dernier effet, pour lequel il n’y a pas de consensus sur le fait qu’il doit être catégorisé comme

un effet de très long terme, ou comme choisi ici, une hystérésis indépendante de la vitesse, qui

caractérise la dépendance de la contrainte au parcours des déformations.

De plus, ces trois comportements sont couplés.

La figure 3 illustre ce qu’on souhaite qu’un modèle représente. Le comportement hyper-élastique

sous-jacent est visible sur la ligne rouge. A ce comportement, une contribution associée au comporte-

ment hystérétique vient se rajouter, visible en vert pointillé. Finalement, les essais sinus ont permis

la construction des cartes colorés (basse fréquence en bleu, haute fréquence en jaune), qui montrent

encore une augmentation du module complexe avec la fréquence, du aux effets viscoélastiques.

-30 -20 -10 0 10 20 30 40

Strain (%)

1

2

3

4

5

6

7

8

9

E
' (

M
P

a)

0.10 Hz

10.00 Hz

A=0.5

A=10.0

Figure 3: Raideur hyper-élastique, relaxation hystérétique et module complexe viscoélastique.

L’élasticité non-linéaire peut être assez difficile à extraire et isoler, mais sur tous les essais cet effet

est présent. Pour illustrer cette idée, dans les essais montrés dans la figure 4, il est clair que la courbe

mâıtresse hyper-élastique est présente, même si les essais sinus ont été pensés pour extraire les effets

viscoélastiques, et les essais triangulaires pour extraire le comportement hystérétique.
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Figure 4: Gauche : Réponse contrainte/déformation des essais sinus. Droite : Réponse con-
trainte/déformation des essais triangulaires.

Etant donné que le modèle est non-linéaire, classiquement dans la méthode de balance harmonique

on considère que la réponse est composée d’harmoniques de la sollicitation eikωt. Mais il est aussi

possible de considérer que le système est linéaire et varie dans le temps. Ainsi, on peut définir un

signal à moyenne nulle

ū(t) = u(t)− ω

2π

∫ 2π/ω

0
u(t)dt (1)

et construire une fenêtre glissante de N points pour calculer l’amplitude de ce signal complexe en

résolvant le problème au sens des moindres carrés

min
u1(t1)

∥∥∥∥∥∥∥
 cos(t1) − sin(t1)

...
...

cos(tN ) − sin(tN )

{ℜ(u1(ω))
ℑ(u1(ω))

}
−


ū(t1)
...

ū(tN )


∥∥∥∥∥∥∥ (2)

Le module instantané est obtenu par le ratio E(ω, t1) = σ(ω, t1)/ε(ω, t1).

A partir de l’hyper-élasticité, on doit évaluer aussi la dépendance à la vitesse de déformations.

Quand elle est prise comme linéaire, cela s’appelle de la viscoélasticité dans la communauté des matéri-

aux et un système linéaire invariant dans le temps dans la communauté du contrôle des systèmes. La

réponse des essais peut être considérée comme une représentation non paramétrique, qui caractérise

ces systèmes à travers d’une fonction de transfert, ou module complexe,

σ(ω) = E(ω)ε(ω) or F (ω) = K(ω)x(ω) (3)

La représentation sous forme de fractions rationnelles est classiquement donnée par des pôles et des

zéros dans le domaine fréquentiel, ou séparée en sommes de fractions avec des numérateurs constants

appelés résidus et dénominateurs associés aux pôles. Dans la communauté mécanique, ce modèle est

appelé modèle de Maxwell généralisé et illustré sur la figure 5. La force totale pour ce modèle est

donnée par la somme d’une série de forces sur toutes les branches

F =
N∑
i=0

F i (4)
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où chaque F i peut être calculé en utilisant l’asymptote à haute fréquence,

Ḟ i + ωiF i = giḞ∞(x) = giK∞(x)ẋ (5)

dont l’implémentation peut se faire par le schéma explicite

F in = e−ωi∆tF in−1 + gie− ωi∆t
2 (F∞

n − F∞
n−1). (6)

Ce modèle peut être classé dans la catégorie des modèles paramétrique avec ordre. La notion d’ordre

fait référence au nombre de cellules de Maxwell ou au nombre de pôles et d’états internes qui influent

directement sur la précision du modèle.
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Full model
Elastic cell

Figure 5: Modèle de Maxwell généralisé avec composants linéaires et sa réponse dans le domaine
fréquentiel.

Un deuxième type de dissipation, l’hystérésis indépendante du temps a été prise en compte, mais

dans ce travail, seulement les hypothèses les plus basiques sur l’hystérésis seront appliquées sur les

modèles d’articulations : les règles de Madelung, qui imposent que chaque boucle dans le diagramme

contrainte-déformation doit se refermer, peu importe combien de boucles internes sont réalisées, et la

loi de Masing qui affirme que la première charge a la même forme que les suivantes mais avec moitié

d’intensité. La figure 6 illustre le respect des règles de Madelung.
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Figure 6: Illustration des règles de Madelung rules. Gauche : schéma; Droite : essai.

Comme la discrétisation viscoélastique à partir de cellules de Maxwell, une discrétisation du com-

portement hystérétique peut être réalisée par une série de frotteurs de premier ordre. Dans une

terminologie rhéologique, l’équivalent d’une cellule de Maxwell pour un modèle hystérétique est une

cellule de Jenkins, où l’amortisseur est remplacé par un frotteur, ainsi l’état interne peut être toujours

la force F i ou le déplacement xi. Le modèle complet est un modèle de Iwan et, pour chaque cellule

l’équation différentielle est remplacée par un système d’équations d’évolution non-linéaires

Ḟ i = gi

g0 Ḟ
0, si F isign(ẋ) < F if = gi

g0K
0xif état collé

Ḟ i = 0, si F isign(ẋ) = F if état glissant/saturé
(7)

La courbe de raideur en fonction de la distance du point de rebroussement peut être vu comme

une représentation non-paramétrique de l’hystérésis. La figure 7 illustre deux discrétisations avec dif-

férentes ordres du modèle STS continu. Les modèles hystérétiques partent d’un point de rebroussement

avec une raideur tangente
∑Ncell
i=0 Ki et tendent vers l’asymptote plus basse K0.
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Figure 7: Modèle d’Iwan et sa réponse en termes de relaxation hystérétique et dans le plan contrainte-
déformation.

On peut aussi considérer la raideur hystérétique comme dépendante de l’asymptote petites ampli-

tudes. Ainsi la formulation (7) peut être révisée pour utiliser un gain g qui dépend de la distance du

point de rebroussement

Ḟ i = gi(|x− xTurn|)Ḟ∞. (8)

Au delà des représentations non paramétriques et celles paramétriques où l’on choisit l’ordre,

comme les modèles d’Iwan et de Maxwell, il existe des modèles paramétriques indépendants de

l’ordre. Ces modèles, comme les dérivées fractionnaires pour la viscoélasticité et le STS continu

pour l’hystérésis, diffèrent des modèles à sélection d’ordre, et sont basés sur d’autres connaissances

sur le matériau et ainsi demandent moins de paramètres. En revanche, ils sont normalement plus

complexes et peuvent être représentés par les modèles à sélection d’ordre.

Le premier couplage d’intérêt est entre les dissipations et l’hyper-élasticité. Quand on vient rajouter

des branches hyper-élastiques, il est important de savoir quelle forme de relaxation entre déformation

et contrainte est la plus appropriée. Avec l’utilisation de relaxation en déformation, les efforts visqueux

ne sont pas proportionnels au module hyper-élastique, qui varie avec la précharge. Sur la figure 8 à

gauche, on voit que le module augmente d’un facteur proche de 2 entre -30% et 30% de déformation

statique. Cependant, dans la partie droite de la figure, le ratio avec le module hyper-élastique ne

varie que ±15%. Ainsi, le modèle proposé par l’équation (5), qui est basé sur les fractions de la partie

hyper-élastique donne la meilleur représentation, même si considérer des fractions comme légèrement

non-linéaires serait encore plus précis.
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Figure 8: Gauche : Différence entre les modules hystérétiques et viscoélastiques, et le module hyper-
élastique. Droite : Ratio.

Une deuxième modélisation d’intérêt est la transition entre les dissipations viscoélastique et hys-

térétique. Avec l’idée classique de dépendance des pôles visqueux à l’état du matériau, on peut utiliser

des temps de relaxation réduits. Cette formulation pourrait se réécrire comme l’équation de relaxation

non-linéaire

Ḟ i + ωi(1 + β ∥ẋ∥)F i = giḞ∞ (9)

avec un facteur de correction qui dépend de la vitesse α(∥ẋ∥) = (1 + β ∥ẋ∥), lié à la température

structurelle. Si on assume une branche de base linéaire F 0 = K0x = g0K∞x, et β ∥ẋ∥ ≫ 1, on obtient

une valeur asymptotique pour la force de friction,

F i ≈ giK∞
βωi

ẋ

∥ẋ∥
(10)

ainsi, on obtient la valeur pour l’expression de la constante hystérétique

β = 1
ωixif

(11)

et la formule physiquement plus claire,

Ḟ i +
(
ωi + ∥ẋ∥

xi
f

)
F i = giK∞ẋ (12)

où les paramètres qui contrôlent le comportement sont les fractions gi, la fréquence ωi et la distance

de relaxation hystérétique xif qui donne le dépacement pour lequel la cellule viscoélastique sature.

Cette expression est équivalent au modèle de Bouc pour ωi = 0. La reproduction des résultats par le

modèle, vue dans la figure 9 est assez claire. Cela confirme que l’effet Payne (assouplissement avec

l’amplitude) est lié à l’hystérésis, qui est difficilement distinguable des effets de viscosité non-linéaires

à très basse fréquence.
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Figure 9: Réponse à sollicitation sinus à 1Hz, 2.5 et 10% de déformation. Gauche : essais. Droite:
modèle.

Modèles matériau 3D

Pour étendre le modèle proposé dans le premier chapitre à 3 dimensions, il faut aborder la générali-

sation d’un modèle hyper-élastique. Pour un matériau isotrope, le comportement doit être indépendant

de la rotation. Cela peut être utilisé pour démontrer que le comportement peut toujours être décrit

comme dérivé d’un potentiel des invariants de déformation. La contrainte peut ensuite être décrite

par

Sij = ∂ψ

∂eij
= 2 ∂ψ

∂Cij
= 2 ∂Ik

∂Cij

∂ψ

∂Ik
(13)

Les matériaux utilisés pour les articulations sont normalement incompressibles. La compressibilité

est décrite par la partie isotrope des déformations et demande une discussion spécifique sur ses lois. Le

potentiel qui a été retenu pour la modélisation est celui de Ciarlet-Geymonat, gère la compressibilité

avec un terme de pénalisation logarithmique,

ψI = κ

2
(
(J − 1)2 − ln(J2)

)
∂ψI

∂J
= κ

(
J + 1

J

)
= p

∂2ψI

∂J2 = κ

(
1− 1

J2

) (14)

Pour que le modèle soit stable, il faut que ∂2ψD/∂C2 soit défini positif. Un potentiel assez simple
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qui assure la stabilité, en gardant un bon accord avec les essais, est celui de Carroll,

ψD = αĪ1 + βĪ4
1 + γĪ

1/2
2 = αI1I

−1/3
3 + βI4

1I
−4/3
3 + γI

1/2
2 I

−1/3
3

∂ψD

∂Ii
=

{
αI

−1/3
3 + 4βI3

1I
−4/3
3

γI
−1/2
2 I

−1/3
3

2 −αI1I
−4/3
3

3 − 4βI4
1I

−7/3
3

3 − γI
1/2
2 I

−4/3
3

3

}

∂2ψD

∂Ii∂Ij
=


12βI2

1I
−4/3
3 0 −αI

−4/3
3
3 − 16βI3

1I
−7/3
3

3

0 −γI
−3/2
2 I

−1/3
3

4 −γI
−1/2
2 I

−4/3
3

6

−αI
−4/3
3
3 − 16βI3

1I
−7/3
3

3
γI

−1/2
2 I

−4/3
3

6
4αI1I

−7/3
3

9 + 28βI4
1I

−10/3
3

9 + 4γI1/2
2 I

−7/3
3

9


(15)

Comme le comportement déviatorique est décrit par au moins 2 invariants, un seul essai n’est pas

suffisant pour parcourir l’espace généré par ces deux invariants. Ainsi, au moins deux essais différents

sont nécessaires pour bien caractériser ce comportement.

Le cisaillement simple est un état de déformation qui est obtenu sur une éprouvette de type

“sandwich”. La figure 10 illustre l’éprouvette et le tenseur gradient de déformation associé en supposant

une variation linéaire de la déformation à travers l’épaisseur.

F =

 1 γ 0
0 1 0
0 0 1


Figure 10: Eprouvette de cisaillement simple et son tenseur gradient de déformation.

La contrainte uni axiale est un état caractérisé par l’étirement dans une direction pendant que

les autres sont libres d’efforts. La figure 11 illustre l’éprouvette en traction/compression et le tenseur

gradient de déformation qui caractérise cet état.

F =

 λ 0 0
0 λ−1/2 0
0 0 λ−1/2



Figure 11: Eprouvette de traction/compression et son tenseur gradient de déformation.

La généralisation du modèle de Maxwell à 3 dimensions passe par la définition d’un modèle hyper-

élastique qui remplace la branche non dissipative, en séparant les contributions déviatorique et isotrope.

Ainsi, la contrainte totale peut s’exprimer comme la somme d’une partie hyper-élastique déviatorique
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S0, d’une partie déviatorique visqueuse Si et de la partie isotrope Sp

S = S0 +
∑
i=1

Si + Sp. (16)

Si on considère une relaxation analogue à celle décrite pour le modèle 0D, comparable à l’équation (5),

on peut avoir le schéma

Sin+1 = e−ωi∆tSin + gie−ωi∆t/2(S∞
n+1 − S∞

n ) (17)

Comme pour un modèle 0D, la modélisation de l’hystérésis serait intéressante pour les modèles 3D.

Cela correspondrait à des modèles de plasticité cinématique, mais ce sujet est assez complexe dans le

domaine de grandes déformations. Comme la conclusion sur les modèles 0D était que la viscoélasticité

non-linéaire était suffisante pour avoir des bons résultats, la voie de la plasticité n’a pas été approfondie.

La relaxation non-linéaire peut être décrite à nouveau par le facteur de correction β, mais aussi

avec une saturation en déformation donnée par

ϵif = 1
βiωi

√
2/3

(18)

ce qui consuit à une relaxation de contrainte donnée par

[
Ṡi
]

+
(
ωi + ∥d∥

ϵf

)[
Si
]

= gi
[
Ṡ∞

]
(19)

En simplifiant, on peut utiliser

ω̂i = ωi
(

1 +
√

2
3β

i ∥d∥
)

= ωi + ∥d∥
ϵif

(20)

Pour avoir le schéma récursif

Sin+1 = e−ω̂i∆tSin + gie−ω̂i∆t/2(S∞
n+1 − S∞

n ) (21)

Identification

L’idée initiale des essais était d’identifier la partie hyper-élastique avec une séquence de relaxations

en plusieurs pas (essais multi-pas). Pour le comportement hystérétique, des essais à très basse vitesse

constante (essais triangulaires) ont été retenus pour vérifier l’insensibilité au taux de déformation.

Pour capturer les effets viscoélastiques, les essais sinusöıdaux sont le choix le plus habituel et ont été

aussi retenus pour ce travail. Pour les effets d’amplitude et précharge, les essais triangulaires ont été

réalisés à plusieurs amplitudes et précharges.

Pour les essais pièce, une articulation de traverse déformable illustrée sur la figure 12 a été

choisie. Ses deux matériaux élastomères ont aussi été testés avec les éprouvettes “sandwich” et trac-

tion/compression décrites précédemment, par le fournisseur Vibracoustic.
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Figure 12: Articulation de traverse déformable.

Les techniques d’identification classiques sont normalement basées sur quelques courbes de référence.

Aussi, une routine basée sur quelques résultats a été élaborée pour un modèle 3D avec un potentiel

hyper-élastique de Carroll et quatre cellules viscoélastiques non-linéaires. Même si les résultats étaient

acceptables pour une première implémentation, les extrapolations des courbes n’étaient pas satis-

faisantes. Ainsi, une voie différente, basée sur les résultats d’identification non-paramétrique a-t-elle

été développée.

D’abord, l’obtention de la courbe hyper-élastique a été réalisée avec les résultats des essais triangu-

laires, donnant une représentation non paramétrique de ce phénomène. Ensuite une deuxième exploita-

tion des résultats des essais triangulaires a donné également une représentation non paramétrique de la

relaxation hystérétique, qui a été normalisée par la courbe hyper-élastique. La discrétisation de cette

courbe avec un modèle à sélection d’ordre a été réalisé simplement avec le recalage par niveaux, en

choisissant les distances aux points de rebroussement et les pertes de raideur associées. Le placement

des cellules de Jenkins est détaillé dans la figure 13 pour le premier matériau, sur les deux éprouvettes.
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Figure 13: Relaxation hystérétique et identification graphique pour le matériau 1. Gauche : cisaille-
ment simple, droite: traction/compression.

Pour les essais sinus, le comportement est toujours influencé par l’hystérésis. Pour contourner les

effets de l’hystérésis, on a réalisé la normalisation du module par rapport au module hyper-élastique,

et enlevé les contributions à 0.1Hz. Alors, les courbes de (E(s)−E(0.1Hz))/E0 ont été retenues comme la

représentation non paramétrique de la viscoélasticité, et l’identification à sélection d’ordre basé sur les

gains et fréquences a été réalisée, et illustrée dans la figure 14.

10-1 100 101 102

Frequency [Hz]

0

0.1

0.2

0.3

(E
-E

0.
1H

z
)/

E
0

Experimental
C0 90%

C0 45%

C0 0%

Reference
Maxwell asymptotes

100 101

Frequency [Hz]

0

0.02

0.04

0.06

0.08

(E
-E

0.
1H

z
)/

E
0

Exp

C0 45%

C0 30%

C0 15%

C0 0%

C0 -15%

C0 -30%

Reference

Max. assy.

Figure 14: Comportement viscoélastique et identification graphique pour le matériau 1. Gauche :
cisaillement simple, droite : traction/compression.

La synthèse de tous les résultats a été réalisé pour tous les essais, et ceux du matériau 1 peuvent

être vus sur les figures 15 et 16. En bas et en rouge, le comportement hyper-élastique est illustré à

partir des réponses des essais triangulaires avec une valeur moyennée sur plusieurs essais. En vert

en traits discontinus, la relaxation hystérétique est illustrée, avec les valeurs utilisés pour obtenir la

courbe non paramétrique. Dans la partie haute, comme une sorte de “filet”, on voit le comportement

associé aux essais sinus, avec l’amplitude désignée par l’axe x et les fréquences illustrées par l’échelle

de couleurs. Les lignes pointillées illustrent la relaxation visqueuse associée aux essais multi-pas pour

deux fréquences différentes.
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Figure 15: Synthèse des essais traction/compression pour le matériau 1 m1t. Haut : Module de
stockage. Bas : Module de perte.
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Figure 16: Synthèse des essais cisaillement simple pour le matériau 1 m1s. Haut : Module de stockage.
Bas : Module de perte.

Du 3D au 0D

L’implémentation des modèles 3D qui prennent en compte la géométrie passe par l’implémentation

en éléments finis. A la fin, la réponse du problème structurel se base sur la résolution du principe des

travaux virtuels, qui peut être écrit comme un système d’équations donné par

[M ] {q̈}+ [B] fmaterial([C] {q} ,
{
UI
}

) = Fext (22)

avec M la matrice de masse, q les degrés de liberté, B la matrice de commande tel que BS = F int,
fmaterial la fonction matériau, C la matrice d’observation tel que Cq = ∇u, UI les états internes, Fext

les forces externes. Ces équations peuvent être résolues par deux types de solveurs.
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Les schémas implicites sont ceux qui ne dépendent pas seulement des pas de temps précédents

mais aussi de celui d’après, ce qui permet l’utilisation de pas de temps assez grands. En revanche

la convergence est un sujet beaucoup plus complexe et l’évaluation des pas de temps peut aussi être

assez longue. Les schémas explicites dépendent seulement des pas de temps précédents et l’utilisation

de la matrice de masse comme jacobien rend l’évaluation des pas de temps assez rapide. Par contre,

la stabilité du schéma dépend de la taille du pas de temps qui doit être relativement petit.

Pour accélérer le temps de calcul, la première approche est de réduire le nombre de degrés de liberté

du modèle. La réduction cinématique, aussi connue comme réduction d’ordre du modèle, consiste à

définir une base T telle que

{u(t)}N = [T ]N×NR {q(t)}NR . (23)

Le choix d’un sous-espace approprié restreint la réponse u au sous-espace généré par T en utilisant

les coordonnées réduites q. Il a été historiquement utilisé avec des techniques combinant réponses

statiques, modes et plusieurs approches itératives, mais aujourd’hui ce problème est placé dans la

catégorie de problèmes de classification de sous-espaces. Les modèles éléments finis sont déjà un

premier niveau de réduction, où T est construite comme l’union de polynômes par morceaux. D’autres

techniques peuvent être utilisées en considérant une phase d’apprentissage, une phase de génération

de base et possiblement des méthodes itératives qui combinent les deux phases.

Avec le sous-espace sélectionné, la même approche de Ritz que celle utilisée pour la MEF est

reprise. L’équation (23) donne la réduction cinématique et le principe des travaux virtuels (22) est

réutilisé pour obtenir un système d’équations de la même forme.

[MR] {q̈R}+ [BR] fmaterial([CR] {qR} ,
{
UI
}

) = Fext (24)

A partir d’un ensemble de vecteurs, possiblement provenant d’une combination d’analyses statique,

valeurs propres et analyses transitoires, la phase suivante est la construction d’une base. Des al-

gorithmes de génération de bases doivent assurer l’indépendance des vecteurs, même en présence

d’erreurs machine et possiblement d’autres contributions pour permettre la troncature ou imposer

qu’une matrice soit creuse avec la génération de vecteurs disjoints. Pour l’indépendance de la base,

les algorithmes de Gram-Schmidt ou décomposition LU partielle sont les approches classiques. Pour

combiner des bases orthonormales avec l’idée d’organiser les contributions, la décomposition en valeurs

singulières (SVD) est l’approche classique. La combinaison d’utilisation d’aperçus instantanés de la

réponse (snapshots) avec la SVD est typiquement connue comme décomposition orthogonale en modes

propres (POD).

Après la phase d’apprentissage qui donne n aperçus instantanés des déplacements ql, avecm degrés

de liberté, la SVD donne

[ql]m×n =
∑
i

Ui(x)(ΣiVi(t)), (25)

où UTU = 1m, Σ est diagonale, et V TV = 1n. Chaque vecteur des formes singulières gauches

Ui est une base spatiale, et le produit des valeurs singuliers Σ avec les formes singulières droites V
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décrit l’évolution des formes singulières gauches dans le temps. Une interprétation graphique de cette

procédure se trouve dans la figure 17.

Figure 17: Interprétation graphique de la SVD.

Dans la méthode des éléments finis, le calcul du résidu implique l’évaluation de la loi matériau sur

tous les points d’intégration, même après la réduction cinématique. Pour cette raison, une deuxième

couche de réduction est nécessaire pour réduire sensiblement le temps de calcul, et cette réduction

est appelée hyper-réduction. L’idée générale de la méthode implémentée est de sélectionner seule-

ment quelques points d’intégration pour calculer les efforts internes, en gardant approximativement,

le même travail des déformations dans la base réduite pour le modèle complet dans les conditions

d’apprentissage.

Des conditions d’apprentissage, on garde les contraintes Sl et les matrices d’assemblage B et C. De

la réduction cinématique sur les conditions d’apprentissage, vient la base [T ]N×NR. Les travaux {br}
pour les NR degrés de liberté réduits aux NT aperçus instantanés peuvent être écrits de différentes

manières

{br}NR×NT =
[
T TB

]
NR×NG

{
Slg

}
NG×NT

=
[
[CT ]T JgSg(t)

]
(NR×NT )×NG

{wg}NG×1

= [G](NR×NT )×NG {wg}NG×1

(26)

La première forme est celle utilisée par les routines éléments finis, avec T TB donnant le travail sur

chaque composante de déformation dans la base réduite. La deuxième forme explicite la relation

entre B et les poids wg associés à chaque point d’intégration. La dernière forme réécrit le même

travail comme une combinaison linéaire des poids. Cette dernière forme motive l’algorithme d’hyper-

réduction choisi. On cherche l’ensemble minimal E de colonnes de G (ou également les hyper points

d’intégration), et ses nouveaux poids associés w∗
g , qui donnent une bonne approximation du travail
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calculé dans l’apprentissage projeté sur la base réduite {br}. Dans un langage mathématique, on a

Trouver w∗
g qui minimise

∥∥∥w∗
g

∥∥∥
0
, restreint à

∥∥∥{br} − [G]
{
w∗
g

}∥∥∥
2
< εtol and w∗

g > 0. (27)

Même si une minimisation à norme 0 est un problème avec complexité NP, une approche sous-

optimale appelée méthode des moindres carrés creux non négatifs (SNNLSQ) est utilisé. Cette méthode

consiste à trouver à chaque étape le point qui contribue le plus pour représenter la matrice G, et alors

réaliser la méthode des moindres carrés non négatifs avec tous les points rajoutés préalablement,

jusqu’à ce que la contrainte de précision soit satisfaite.

Comme cas d’étude, le modèle est basé sur l’articulation de traverse déformable, montré dans la

figure 12. Elle mesure 77mm de diamètre extérieur et 45.5mm de diamètre interne, et est composé de

deux matériaux élastomères, qui ont été testés et identifiés part les essais décrits auparavant, entourés

par des coques métalliques. Les parties métalliques ont été considérées rigides et l’élastomère est

modélisé par un potentiel hyper-élastique de Mooney-Rivlin, avec des fractions viscoélastiques.

La SVD des résultats d’apprentissage ne prend que quelques secondes, vu que seulement une

centaine d’aperçus instantanés ont été retenus. Pour la réduction cinématique, 6 formes sont gardés,

avec une précision de 1% sur la valeur singulière la plus importante. Les cinq premières formes sont

illustrés sur la figure 18 avec la décroissance des valeurs singulières.
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Figure 18: Premiers vecteurs de la base réduite et amplitude des valeurs singulières.

Pour l’hyper-réduction, quelques minutes sont nécessaire pour atteindre la convergence à 10−4 de

précision sur les travaux du modèle d’apprentissage. A la fin, 139 points des 196240 ont été retenus.

Ces trois ordres de grandeur sont directement traduites en temps d’implémentation, comme détaillé

dans le tableau 1.
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Table 1: Temps d’implémentation des modèles, transitoire de 3 cycles.

DDL Points d’intégration Temps de calcul

Modèle complet 76084 196240 27.7h

Modèle HR avec 3 cycles 6 (10−2 de précision) 139 (10−4 de précision) 29s

Modèle HR avec 1/2 cycle 4 (10−2 de précision) 48 (10−4 de précision) 12s

Le modèle hyper-réduit est aussi précis pour retrouver les déformations locales et contraintes dans

les points d’intégration choisis, comme l’illustre la figure 19.
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Figure 19: Comparaison de contraintes sur trois points différents. Gauche : zone comprimée. Centre
: zone cisaillée. Droite : coin de la zone comprimée.

Un dernier bénéfice de la réduction cinématique pour l’intégration explicite est la stabilité sur des

pas de temps plus grands, vu que l’élément le plus petit (la restriction majeure pour la taille du pas

de temps) n’est plus pris en compte car les modes hautes fréquences ne sont pas représentés dans la

base réduite. Pour illustrer cet argument, la réponse à une impulsion, présentée sur la figure 20 a été

calculé pour le modèle hyper-réduit avec un pas de temps 20 fois plus grand, sans différence visible.
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Figure 20: Réponse de l’articulation à une impulsion.

Simulations multi-corps

Les simulations multi-corps sont une méthode numérique où les systèmes sont composés de plusieurs

corps, comprenant quelques DDL (pendant que sur la MEF, des centaines de milliers de DDL sont
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habituels). La connexion entre ces corps est habituellement modélisée par des contraintes cinématiques,

ou des éléments de force. Il est aussi possible d’imposer des conditions de bord à chaque corps et joint.

Ce type de modèle supporte aussi plusieurs types de solveurs (statique, dynamique, cinématique, etc.),

ce qui enrichit la généralité de ce type de modèle.

La première application multi-corps a été réalisé sur la suspension d’un groupe motopropulseur

(GMP) thermique. Pour le cas choisi, la suspension GMP comprend 3 articulations, localisées à droite,

à gauche et au-dessous du GMP. Celles qui sont au-dessus du GMP supportent son poids, pendant que

celle qui est au-dessous sert à reprendre le couple moteur sur la caisse. Le modèle 3D de ce montage

est présenté dans la figure 21.

Figure 21: Modèle 3D de la suspension GMP.

La suspension GMP a pour but de filtrer les vibrations moteur au-dessus du ralenti du moteur, et

ainsi limiter le bruit et les vibrations dans l’habitacle. Pour cette raison, les fréquences des modes de

découplage du GMP déterminés par ces articulations sont placées au-dessous de la fréquence fondamen-

tale de ralenti du moteur. En revanche, au démarrage et à l’arrêt du moteur, les excitations transitoires

viennent exciter les modes de découplage et peuvent causer des problèmes de confort. Les paramètres

de réglage pour résoudre ce problème sont la vitesse de montée/descente et l’amortissement modal, ce

qui implique que la dissipation dans les articulations soit bien modélisée pour prédire précisément les

vibrations dans l’habitacle.

Les essais sur les trois articulations qui composent la suspension GMP ont été réalisés avant

ce travail, et ne sont pas forcément les plus adaptés, mais sont toujours pertinents. Pour chaque

articulation un essai a été réalisé avec déplacement imposé de forme triangulaire à 10mm/min, et les

résultats sont donnés sur la figure 22.

Un modèle élastique non-linéaire a été construit avec la force moyenne entre charge et décharge.

Pour simuler la dissipation, deux modèles ont été placés en parallèle de la raideur élastique non-

linéaire : une dissipation visqueuse de la forme f(u) + cu̇ et une dissipation hystérétique sous la forme

d’un modèle STS. Les deux modèles ont été recalés pour dissiper la même quantité d’énergie à la

fréquence de 10Hz (proche du mode de roulis du moteur), avec la même amplitude que les essais.
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Figure 22: Réponse en force/déplacement pour les trois articulations testées.

Les résultats en temporel sur chacune des articulations ne semble pas demander plus d’efforts sur

l’identification. Ainsi, les résultats sont exploités au niveau système.

Une analyse modale a été réalisée pour savoir par quels modes l’énergie passe avant d’être dissipée.

L’évolution de l’énergie modale est illustrée dans la figure 23, pour les modèles hystérétique et visqueux.

La différence entre les deux cas au niveau système justifie l’investissement d’efforts en caractérisation

et modélisation de ces articulations.
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Figure 23: Energies modales pour chaque modèle. Gauche : modèle visqueux. Droite : Modèle
hystérétique.

La représentation typique dans un modèle multi-corps considère un référentiel qui subit de larges

rotations et de petites déplacements par rapport à cette référence. Le champs de position d’un nœud

X(t) dans le référentiel de coordonnés du corps est donné par

{XB(t)}3Np = {xB}+ [TF ] {qF (t)} (28)

où l’indice B désigne les coordonnées du corps et l’indice F désigne le corps flexible. La position

globale est ainsi obtenue par la translation et rotation des positions dans le référentiel du corps

{XGlobal(t)}3Np = {uB(t)}+ [RB(t)] {XB(t)} = {uB(t)}+ [RB(t)]
(
{xB}+ [TF ]

{
qF (t)

})
(29)
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où {uB(t)} donne la translation de l’origine du corps et [RB(t)] sa rotation non linéaire. Si on considère

l’interface corps/articulation comme rigide, le mouvement d’un point peut être décrit avec un marqueur

{XGlobal(t)} = {uMarker(t)}+ [RMarker(t)] {xLocal − xMarker} (30)

où la position relative xLocal − xMarker est constante dans le référentiel du marqueur.

La possibilité d’introduire des modèles hyper-réduits dans les simulations multi-corps dépend de

la compatibilité des équations (28) à (30), où en d’autres mots, réécrire (30) avec une base constante.

Cela est possible en réordonnant le produit linéaire de (29). Les variables dépendantes du temps,

utilisées comme DDL, forcés par l’interface du modèle d’articulation hyper-réduit sont donnés par

{qLR}T =
{
ui Rij

}T
=
{
x y z cos(α) cos(β) cos(β) sin(γ) . . .

}T
(31)

et la base constante qui combine tous les termes constants de (5.12) est donnée par

[TA]3Np×12 =
[
δx δy δz δi1x1p δi2x1p δi3x1p δi1x2p δi2x2p δi3x2p δi1x3p δi2x3p δi3x3p

]
(32)

L’implémentation finale aurait la forme

{q} =

TA 0 0
0 TC 0
0 0 TB



qALR
qR
qBLR

 (33)

où TA avec 12 colonnes donne l’interface entre le premier marqueur et le modèle EF de l’articulation,

TB, aussi avec 12 colonnes donne l’interface entre l’articulation et le deuxième marqueur, avec une

structure similaire, et TC maintient les mouvements internes, résultant de la réduction cinématique.

Le deuxième cas multi-corps étudié est celui de l’articulation de traverse déformable. Cette pièce

a été décrite dans les autres sections et sera utilisée ici à nouveau. La traverse déformable est un

poutre qui a pour objectif changer le comportement entre roulis et pompage pour donner plus de

manœuvrabilité au véhicule.

Le modèle d’articulation combine des raideurs non-linéaires sur les trois directions et les trois rota-

tions, et une dissipation visqueuse sur chacun de ces 6 DDL. L’identification de chaque direction était

très similaire à celle réalisée pour les articulations de la suspension GMP. Ce modèle est comparable

à celui qui a été testé et identifié dans ce travail, donc des comparaisons ont été réalisées.

On a choisi de représenter seulement deux parties des simulations : une qui fait saturer l’articulation

(dans la direction verticale, avec le passage du véhicule sur 3 barrettes métalliques BM), et une où

l’articulation est forcé dans différentes directions (trois courbes à gauche avec accélération latérale

maximale TR). Les obstacles sont illustrés dans la figure 24.

42



RESUME

Figure 24: Obstacles testés et simulés, BM à gauche, TR à droite.

Pour la simulation BM, les résultats sont comparés sur la figure 25. Pour l’axe x, les pics ne sont

pas bien corrélés car le modèle identifié ne prend pas en compte les mises en butée. Pour l’axe z, les

réponses sont beaucoup mieux corrélés.
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Figure 25: Comparaisons pour les efforts simulés pour BM. Gauche : axe x. Droite : axe z.

Les réponses pour la simulation TR sont affichées dans la figure 26. Pour l’axe x, le modèle est plus

souple que celui identifié avant. Pour la direction z, le modèle identifié dans ce travail est beaucoup

plus rigide que celui d’avant.
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Figure 26: Comparaisons pour les efforts simulés pour TR. Gauche : axe x. Droite : axe z.

Un dernier résultat est lié à l’analyse des forces inélastiques (forces totales moins les hyper-

élastiques), dont la puissance associée donne une indication de la dissipation instantanée. La figure 27

illustre ces quantités pour les simulations BM sur l’axe z. Il est intéressant de voir qu’une des cellules

est bloquée dans un état déformé ce qui entraine un décalage d’environ -200N. Ce blocage pourrait
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être résolu avec l’utilisation d’un modèle viscoélastique non-linéaire, si les temps de stabilisation ne

sont pas trop longs. Une confrontation avec d’autres essais semble nécessaire pour valider si cet effet

est vraiment présent sur les articulations ou si c’est juste l’effet d’une sélection d’ordre grossière.
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Figure 27: Forces inélastiques (gauche) et puissance injectée (droite) pour BM selon l’axe z.

La puissance inélastique injectée montre qu’avec la cellule purement visqueuse, toute l’énergie

est dissipée, alors que pour le modèle identifiée, il y a d’autres modalités de stockage d’énergie qui

peut ainsi revenir sur le système. Cet écart pourrait entrainer des différences notables en simulations

transitoires.

Conclusion

Pour tous les modèles, le premier pas est de déterminer le type de relation entrée/sortie qui

doit être représenté. Basé sur l’expérience de Stellantis et des rapports internes, dont les résultats

sont illustrés dans l’introduction, il a été établi qu’il est important de représenter l’hyper-élasticité, la

viscoélasticité et la dépendance au parcours de déformation, et aussi de coupler les différentes directions

de sollicitation. Cela demande un changement notable des procédures de conception actuels, qui ne

considèrent que des modèles d’élasticité non-linéaire avec viscosité en parallèle.

Pour aborder cette problématique, la décomposition en problèmes plus simples a été réalisée :

optimisation des procédures d’essais pour caractériser et identifier les comportements sélectionnés,

investigation des modèles 0D capables de représenter tous les effets souhaités, l’élaboration de modèles

compatibles avec les simulations multi-corps en passant par des modèles 3D, et finalement l’évaluation

de ces modèles dans une routine multi-corps.

Résultats et apports

La modélisation 0D discuté dans le chapitre 1, a été largement developpée avec la disponibilité des

résultats des essais réalisés par Vibracoustic. Les résultats moyennement satisfaisants de la première

phase d’identification ont conduit à tracer les courbes non paramétriques pour tous les essais et par
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conséquent le cadre qui unifie le comportement non-linéaire à partir d’une courbe mâıtresse hyper-

élastique à laquelle on vient rajouter le comportement hystérétique, ou viscoélastique saturé, et des

forces viscoélastiques pour les hautes fréquences. Une version réduite de ce chapitre a été l’objet d’une

publication à la revue MSSP [3], sous revision.

D’un autre côté, une nouvelle proposition sur ce chapitre est d’utiliser les essais triangulaires

à basse vitesse pour extraire les modèles non paramétriques de l’hyper-élasticité et de la relaxation

hystérétique. Cette représentation non paramétrique de l’hystérésis associée à un module de relaxation

est originale et permet d’établir un clair parallèle avec le concept de la relaxation viscoélastique.

Un deuxième apport associé aux essais était l’introduction du calcul du module instantané en

utilisant le ratio entre les signaux analytiques d’entrée et de sortie. L’implémentation de cette propo-

sition sur essais sinus classiques était fondamentale pour la compréhension du couplage entre les trois

comportements de base, et le choix final pour un modèle basé sur la relaxation de la dérivée de la

force, avec viscoélasticité non-linéaire pour représenter l’hystérésis. Pour ce dernier aspect, une con-

tribution notable était l’interprétation de saturation de charge plutôt que le concept de temps réduit.

L’analyse de l’effet Payne comme le couplage entre la viscoélasticité et l’hystérésis est donc plus claire

que l’analyse du module complexe au premier harmonique. L’hypothèse de fractions constantes pour

tout le domaine n’est pas parfaite, mais donne des résultats raisonnables pour les essais réalisés.

Pour l’évaluation des modèles, il a été prouvé que ceux à sélection d’ordre correspondent à une

discrétisation générique qui s’applique au modèle classique de viscoélasticité et au modèle proposé

de relaxation hystérétique. Les stratégies graphiques d’identification ont été utilisées et donnent une

manière simple de contrôler le compromis entre ordre et précision.

La contribution associée aux modèles indépendants de l’ordre était la démonstration que la sélection

d’ordre est le résultat de l’implémentation numérique, donc l’intérêt de ce type de modèle réside dans

la séparation des phases de paramétrisation et discrétisation, ce qui permet un accès plus simple à

des problèmes de conception comme la définition d’une catégorie de matériaux réalistes pour une

application donnée.

Le chapitre 2 est une suite naturelle du chapitre 1, étant donné qu’il étend à trois dimensions

et aux grandes déformations les modèles 0D proposés. Un problème dans cette transition est que le

modèle purement hystérétique a un équivalent tridimensionnel (plasticité cinématique) qui n’est pas

complètement établi pour les grandes déformations. Comme une des contributions du chapitre 1 était

la constatation que l’hystérésis est une idéalisation de la viscoélasticité non-linéaire, cette dernière a

été implémentée avec des résultats satisfaisants, sans passer par des formulations plastiques. Pour

cette raison, la recherche sur ce sujet a été placé dans l’annexe A.

En termes de développements de logiciel, la contribution était l’implémentation, les essais et la

participation à l’optimisation des routines de lois matériau de grandes déformations dans le logiciel
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d’éléments finis SDT pour simulations 3D. Cela a impliqué la gestion de détails d’implémentation,

comme le schéma numérique, la taille du pas de temps, l’analyse de la dissipation... Le chapitre est

donc une première documentation de l’implémentation finale.

Le chapitre 3 détaille la campagne d’essais conçue pendant le déroulement de la thèse, réalisée

par Vibracoustic, dont le post traitement a engendré beaucoup de propositions formulées dans le

chapitre 1. Dans le chapitre, les choix de conception des essais qui ont permis de confirmer la généralité

des propositions réalisées dans le chapitre 1 sont documentés.

Des nouveles directives peuvent être données à partir des résultats exploités. Les essais triangu-

laires à basse vitesse se sont révélés très pertinents car ils ont permis l’identification de la relaxation

hystérétique et une description plus fine du comportement hyper-élastique. Rétrospectivement, un

échantillonnage plus fin juste après les points de rebroussement pourrait être utile pour les identifica-

tions non paramétriques. Les petites boucles ont aussi permis la vérification des règles de Madelung,

mais un échantillonnage plus fin sur ces essais et possiblement une transition plus subtile seraient

nécessaires pour une meilleure compréhension du comportement proche du point de rebroussement.

Les essais qui ont pris le plus de temps, les multi-pas, n’ont pas été les plus utiles car la partie hyper-

élastique a été mieux décrite par les essais triangulaires. Ils pourraient être plus appropriés pour

caractériser les effets très long terme ou l’effet Mullins. Les essais sinus ont été bien choisis, mais

l’utilisation de données en plus du premier harmonique doit être une priorité.

Une routine d’identification classique a été réalisée et même si les résultats modélisaient raisonnable-

ment le matériau, ils n’ont pas été complétement satisfaisants. En effet une grande quantité de données

n’a pas été utilisée pour générer la fonction objectif et l’extrapolation du modèle obtenu vers les points

d’opération qui n’ont pas été utilisés était assez grossière. Pour cette raison, basé sur les développe-

ments du chapitre 1, une nouvelle identification non paramétrique a été réalisée avec stratégies de

discrétisation de courbes non paramétriques des comportements viscoélastique et hystérétique. Les

résultats ont été analysés pour le matériau et pour la pièce. Cette identification fournit des résultats

directement implémentables dans un code multi-corps mais il faut encore apporter des clarifications

pour l’implémentation sur des modèles 3D.

Après l’illustration des enjeux concernant les modèles 0D et matériau, le chapitre 4 considère les

formulations éléments finis, nécessaires pour permettre la prédiction de l’impact du changement de

géométries ou de considérer le couplage directionnel. Vu que ces calculs prennent plusieurs heures,

alors que les simulations multi-corps demandent des calculs réalisés en secondes, l’objectif était de

montrer que les techniques de réduction peuvent atteindre le gain de performance nécessaire, en

gardant l’utilisation de géométries et matériaux arbitraires. La conclusion est que cette approche

est viable et la contribution associée est la documentation de l’utilisation de techniques de réduction

cinématique pour diminuer sensiblement le nombre de DDL et de l’hyper-réduction pour arriver à
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une approximation rapide des travaux internes sur matériaux non linéaires. Le développement suit

l’originalité de SDT où les non-linéarités sont exprimés à travers de la notion de matrices de commande

et d’observation, qui sont classiques dans la théorie de contrôle, mais assez rares dans le domaine de

la mécanique, et donnent une image assez directe de l’implémentation.

La validation de cette implémentation pour l’articulation utilisée pour les essais avec un modèle

hyper-viscoélastique a été présenté à la conférence ISMA 2020 [4]. La conclusion est que le modèle

hyper-réduit a une performance compatible avec les simulations multi-corps et que les extrapolations

réalisées sur les paramètres matériau, la forme de la sollicitation et l’amplitude donnent toujours des

bons résultats.

Le chapitre 5 revient sur l’objectif final que sont les analyses multi-corps, avec deux cas d’étude

: un sur la suspension d’un groupe motopropulseur (GMP) et l’autre sur une articulation de traverse

déformable.

Le premier cas, réalisé au début de la thèse et présenté à la conférence ECCMR 2019 [5], donne

une motivation claire pour la thèse. Une caractérisation insuffisante des articulations a mené à deux

modèles équivalents au premier regard, mais différents en poussant l’analyse des réponses. Pour une

simulation transitoire les profils de dissipation et les réponses modales sont complètement différents.

Comme cela peut affecter les choix de conception, il est important de placer plus de ressources dans

la caractérisation et l’identification de ces articulations.

Le deuxième cas de l’articulation de traverse déformable correspond à la pièce testée par Vibra-

coustic, et démontrer la capacité d’utiliser les résultats issus des autres chapitres était nécessaire pour

la finalisation du travail. Comme une intégration avec Simpack n’était pas possible à cause de con-

traintes temporelles, l’accent aété mis sur la clarification des besoins pour les implémentations futures,

et l’analyse des articulations de façon isolée en regardant les forces et puissances. L’extraction de

déplacements, angles, forces et couples imposés sur l’articulation à partir d’une simulation du passage

d’un véhicule complet sur différents obstacles a permis la vérification de la cohérence entre le modèle

et les résultats sur Simpack. De façon surprenante, les prédictions de force n’étaient pas parfaitement

consistantes avec le modèle embarqué, ce qui indique des transformations supplémentaires dans le

solveur de Simpack.

Les modèles qui résultent de l’identification du chapitre 3 sont notablement différents de ceux qui

sont déjà implémentés sur Simpack. Le calcul de la puissance inélastique pour les deux modèles indique

que la conclusion issue du premier cas et aussi valable : un modèle plus détaillé des articulations est

important pour simulations des transitoires.
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Perspectives

Les résultats de la campagne d’essais ouvrent plusieurs perspectives. La procédure standard devrait

inclure au-delà des essais sinus classique, des essais triangulaires à basse vitesse et grandes amplitudes,

sans besoin d’essais multi-pas, sauf si la caractérisation de temps plus longs est souhaitée. Le traitement

des donnés devrait automatiser les techniques d’extraction du module hyper-élastique, du module de

relaxation, et de son ratio associé, mais aussi développer l’utilisation du module instantané sur les

essais sinus, au moins sur les graphiques de synthèse des matériaux. L’incorporation de cette stratégie

dans les routines d’essai DMA devraient améliorer sensiblement la caractérisation des matériaux et

des articulations.

Pour les essais triangulaires, une analyse plus détaillée proche des points de rebroussement, avec un

échantillonage plus fin et des transitions plus adoucies peuvent être une voie pour mieux comprendre

la transition entre l’hystérésis indépendante du temps ou la viscoélasticité saturée et la relaxation

viscoélastique. Les essais à petite amplitude introduits pour vérifier les règles de Madelung seraient

les plus appropriés pour réaliser ce type d’étude.

La notion de module instantané ouvre aussi la porte pour beaucoup d’applications à des systèmes

non-linéaires. L’estimation des signaux dans le temps par des filtres de Kalman étendus a déjà donné

des bons résultats. L’application à d’autres formes de non-linéarité au niveau structure avec des

coordonnées modales semblent être de bonnes perspectives. La liaison avec les systèmes LPV (linéaires

à paramètres variables) dans la théorie du contrôle doit aussi être établie.

Pour les modèles matériau 3D, le point manquant le plus visible est la capacité d’utiliser de

multiples courbes non paramétriques directement dans le modèles 3D par la séparation des invariants

associés aux configurations d’essai. Cela est la clé pour étendre les modèles non paramétriques à trois

dimensions avec des cellules séparées.

L’analyse de la cohérence des essais matériau à travers des simulations en éléments finis est aussi

nécessaire pour comprendre ses limitations. En effet dans l’éprouvette traction/compression on sup-

pose que la section centrale présente un état constant, que le matériau est parfaitement incompressible,

et que la dissipation peut être approchée par le comportement de cette section, malgré qu’elle ait lieu

sur toute l’éprouvette. Cela revient à réaliser une hyper-réduction sur un point de la section centrale,

et la validité de cette approche doit aussi être démontrée. Pour l’éprouvette en cisaillement, on a

négligé les contraintes transversales et on assume aussi l’incompressibilité. Ces analyses de cohérence

doivent particulièrement mener à des corrections géométriques dans les courbes hyper-élastiques.

Il y a aussi d’autres problèmes moins critiques pour les implémentations décrites dans cette thèse.

L’implémentation d’une routine stable qui représente l’hystérésis pure a ses intérêts, même si le modèle

hyper-viscoélastique non linéaire représente mieux le matériau. Cela pourrait s’appliquer pour la

modélisation d’autres effets : effet Mullins, effets plastiques, endommagement, cristallisation induite
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par déformation, effets de précharge sur fatigue... L’implémentation de ce type d’approche sur des

modèles 0D est plus simple que sur des modèles 3D, mais il faudrait des essais qui soient conçus pour

les caractériser et aussi des groupes de travail intéressés par les résultats.

Pour l’implémentation de modèles hyper-réduits compatibles avec des simulations multi-corps, il

y a plusieurs voies de développement. La phase d’apprentissage basée sur l’intégration explicite est

assez coûteuse en temps (l’application décrite n’a utilisé qu’un quart du modèle total). Des méthodes

implicites et/ou itératives qui considèrent des linéarisations locales, des réductions cinématiques par

morceaux... sont des voies de développement très claires et doivent être appliquées. La conception

d’une stratégie d’apprentissage qui prend en compte la présence de précontraintes et la construction

d’un schéma d’intégration généralisé demande la résolution de plusieurs détails d’implémentation.

Tester la robustesse de modèles hyper-réduits pour la simulation de l’articulation complète dans des

conditions qui ne sont pas facilement reproductibles sur des machines d’essai ou qui sont en dehors des

conditions d’apprentissage semble être aussi important. D’autres extrapolations sur les paramètres de

loi matériau (ou même le modèle matériau), la sensibilité des cellules, la fréquence de sollicitation, les

chargements transitoires... pour le même sous-espace d’apprentissage doivent être aussi investiguéess.

Dans une perspective plus long terme, la modélisation du contact doit être considérée. Les artic-

ulations présentes dans les véhicules intègrent des mises en butée qui font que la raideur augmente

fortement grâce au contact avec le caoutchouc en grandes déformations, ce qui cause des changements

de comportement assez brusques.

Enfin, pour les applications multi-corps, des modèles 0D à grandes rotations sont déjà implémentés

sur SDT pour le cas de la suspension GMP n’incluant que deux corps et a bien été testé. En revanche,

la généralisation vers un solveur plus générique est nécessaire pour le cas de l’articulation de traverse

déformable. La cosimulation semble être la route la plus simple, mais la communication entre logiciels

peut toujours générer des soucis, même avec des nouveaux standards. L’augmentation du nombre de

cas d’étude facilement accessibles comme celui de la suspension GMP doit permettre d’évaluer avec

plus de précision l’importance de la modélisation des articulations et l’utilisation de critères inhabituels

comme la dissipation et les énergies modales.

La confrontation entre modèles 0D et les modèles hyper-réduits doit aussi être faite pour mieux

comprendre les effets géométriques, et préparer à très long terme la mise en place d’une configuration

idéale, où les essais furnissent les caractéristiques matériaux alors que les géométries pourraient être

modifiées librement dans la phase de conception.
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This work was elaborated in a CIFRE PhD contract between the Structural Mechanics and Material

Sciences (SMMS) division of the Scientific Department and Disruptive Technologies (SD2T) of Group

Stellantis, SDTools and Laboratoire Procédures et Ingénierie en Mécanique et Matériaux (PIMM),

from the engineering school Arts et Métiers Institute of Technology (ENSAM).

The main objective of this work is to propose a coherent procedure for building, identifying and

validating models to represent the dynamic behavior of rubber bushings and mounts in multibody

simulations. This project is at the crossroads of several engineering domains from material modeling

to numerical implementation. This introduction provides a broad vision of the subject as well as some

essential definitions.

Industrial background

The automotive industry relies heavily on simulations for design iterations. Accurate models during

early design stages may save a lot of resources before testing stages and avoid very costly late design

changes. The vehicle performance can be evaluated in different metrics:

� dynamic behavior;

� endurance estimation;

� comfort under vibrations.

Dynamic behavior refers to the vehicle responses when subjected to different requirements, such

as different road obstacles and driver solicitations, or even for active safety issues. The simulations

are made with functional models by multibody simulations, where it is crucial that the bushing and

mount models emulate properly the evolution of dissipation with nonlinear elasticity.

Endurance estimation seeks to reproduce the harshest operation conditions for an automobile,

where a multibody model from the vehicle goes through severe road models. The main objective

is to extract and predict maximal forces that each component may undergo. For this evaluation,

it is essential that bushing and mount models accurately capture nonlinear elasticity, contact and

dissipation.

Comfort under vibrations targets the attenuation of undesired noises and vibrations. In the large

list of sources, a few stands out: engine cyclic solicitations, wheel unbalance, road generated trepi-

dation. Often, this kind of evaluation is made in frequency domain, where linearized conditions are

required. But when nonlinear effects gain importance, their pertinence may be questionable, motivat-

ing the use of multibody time simulations.

For the three different performance aspects, multibody dynamics is a tool of interest, where the

whole vehicle is modeled by several simple bodies (mostly rigid, but they may also be considered as

flexible), connected by different kinematic or dynamic link models, which are the object of interest of
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this thesis. A poorly modeled articulation may induce different system behavior, possibly leading to

incorrect conclusions.

Real mounts and bushings are normally used to link relatively rigid parts. Figure 28 shows a

schematic representation of where this type of bushings and mounts are used. In the figure, one sees

that most of the articulations are in the wheel suspension and on the powertrain, linking metal parts

within the substructures or the whole substructure to the chassis, and more specifically which bushings

and mounts are made of rubber in the front suspension, rear suspension and the powertrain.

Figure 28: Localization of elastomeric bushings and mounts in front suspension, rear suspension and
engine suspension.

The use of flexible links between relatively rigid bodies, induces a number of demands on their

behavior:

� to compensate mounting errors and permanent loads, they must allow permanent large defor-

mations without degradation;

� to act as filtering elements limiting load transmission to low frequencies in suspension mechanisms

which are key to comfort performance, they must have low stiffness and considerable damping

in their standard operating range - normally up to 100Hz;

� to limit motion in extreme loading conditions linked to rapid breaking, steering, and other

maneuvers or speed bumps, the stiffness must increase in a controlled manner. The engine must

always stay within its enclosure and not touch the body, or the twist beam axle must not touch

any other components, for instance. Even though the stiffness of a material increases under

compression, this is often insufficient and higher stiffness is obtained through contact and thus

very specific geometries.

The first two characteristics are the main features of elastomers, the class of materials used for

most automotive mounts and bushings. These articulations are often built with two metallic shells

linked by elastomeric material. Figure 29 shows examples of two powertrain mounts that illustrate

the mechanical stop and how the stiffness and resting positions are controlled by geometry.
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Figure 29: Examples of engine suspension mounts.

In terms of design, the most common practice is for the automobile manufacturer to define the

desired stiffness, damping, structural interface and mainly fatigue life, while the supplier designs and

tests the bushings and mounts. This means that the supplier normally has most of the knowledge

on the part, though part of this knowledge is necessary to generate accurate system level behavior

models.

The current procedure to model these mounts in multibody is to test the bushings and mounts

in multiple directions and generate a 0D model for each direction, which are directly injected into

the multibody model. Such approach, despite being very effective, presents a few issues: there is

no consideration of transverse sensitivity, the nonlinearities are not fully characterized due to partial

tests, the requirement of sample parts may be costly, there’s no link between geometry and behavior,

the choice of the 0D model has a direct impact on the modeled system behavior.

Outline and contributions

The global thesis objective is to clarify strategies used to go from tests to accurate rubber mount

models that can be used in multibody simulations. Figure 30 illustrates the declination into in-

termediate objectives: test design, model choice at the part or material level, model identification,

optimization of model implementation for computational objectives, analysis of simulations in terms of

performance metrics and other indicators such as material and modal dissipation that are not directly

measurable.

The first step of model building is to obtain data that covers a sufficient range of behavior to be

representative. The tests typically used to characterize both rubber as a material and rubber mounts

are uni-axial relaxation, constant speed and sine tests. From these uniaxial tests, one classically builds

0D models which can be both used directly as a mount model for multibody simulation or indirectly

to create a 3D material model later incorporated in a FEM model to account for both material and

geometric effects in the mounts.
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Tests

Fx = f(x, ẋ)
• Imposed displace-
ments with force as
response
• Material and geo-
metric dependence

3D models

σ = f(ε, ε̇, εi)
• NL material and
geometric models
• FEM structure
• Implicit and ex-
plicit time solvers

0D models
F = f(x, ẋ, xi)
• Parameter fitting
• Internal states
• Mix between ma-
terial and geometric
nonlinearities

Multibody simulations

Final utilizations:
• Powertrain and
wheel suspensions
• Comfort and en-
durance analysis

Identification

Material identification Direct implementationHyper-Reduction Identification

Implementation

Hyper-reduction

Figure 30: Strategies for the incorporation of rubber mounts and bushings models in multibody
simulations.

Chapter 1 proposes a unified perspective on system modeling of non-linear dissipative behavior

which applies to 0D models of both materials and bushings. Behavior is discussed in terms of three

base contributions hyperelasticity, viscoelasticity and rate independent hysteresis, which are all non-

linear when coupled. The key aspects of the discussion are the distinction between parametric and

non-parametric approaches, the link between model order selection, internal states, and accuracy, and

finally the analysis of order independent parametric models. The contributions are linked to the unified

perspective which allows a classification of existing models, the novel uses of some tests: low speed

triangular tests to characterize both the hyperelastic behavior and a non-parametric model for the

hysteretic relaxation. The novel idea of instantaneous modulus extraction in sine tests, the selection

of a model that appropriately represents the coupling between all three base behavior with a synthetic

plot that illustrates behavior coupling and will be used for identification.

When uniaxial tests are performed to characterize a material, the next step is to develop a 3D

constitutive material model [6, 7] appropriate for finite element simulations which will allow separation

of material an geometry effects in bushing simulations. Chapter 2 reviews the theory of continuum

mechanics for finite strains and gives details on how the rubber material is represented by a non-

linear hyperviscoelastic model. While this chapter mostly recalls established results, its contributions

are a first documentation of the implementations in SDT [8] and extensions of novel propositions of

chapter 1 to a model that captures amplitude and frequency dependence for finite strains.

With the selected order parametric models chosen, many practical aspects still need discussion.

Test campaigns must be designed to gather knowledge on materials or parts. With an established test
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campaign, identification methods are needed to obtain a model.

Chapter 3 describes the reasoning behind the design of the test campaign performed during this

work, details its execution, and discusses two different identification campaigns: a classic approach, and

a revised strategy based on the non-parametric curves introduced in chapter 1. Notable contributions

are the campaign design, the analysis of the test results performed by the supplier Vibracoustic,

the confirmation that both non-parametric and parametric models proposed earlier are relevant for

material identification in traction and shear, and for bushing identification coupling both material and

geometry effects.

When considering the lower branch of figure 30, the 3D models that combine non-linear material

models and geometries of arbitrary complexity, simulation performance drives later uses. Direct use

of a detailed mount model in a multibody simulation is at least 3 orders of magnitude slower than

expected for multibody models and thus not applicable. Using the FEM model to identify a 0D model,

is a possibility illustrated by the teal branch of the figure, but it suffers from the limitations of 0D

models discussed earlier.

Chapter 4 thus demonstrates the feasibility of combining kinematic reduction and hyper-reduction,

see the synthesis in [9] for example, to achieve high performance 3D model evaluations that would

be compatible with multibody simulations and yet still be based on an arbitrary non-linear material

model and detailed FEM geometry. Contributions are details on the implementation of finite strain

non-linear material models in SDT, expression of kinematic and hyper-reduction techniques in terms

of observation and command matrices allowing a very generic implementation of hyper-reduction

developed during this thesis, and finally performance and extrapolation accuracy illustrations on a

twist beam axle bushing test case.

Chapter 5 addresses multibody simulations, the end objective of figure 30. This is where system

level assessments are made using the identified 0D models and/or the hyper reduced models and

contributions are linked to the analysis of test cases.

A first test case, the stop/start simulation of an engine resting on rubber mounts, illustrate the need

to accurately model dissipation, as classical equivalence for harmonic response give notably different

transients and modal energy contributions. This illustration, while shown at the thesis end, was very

important in developing the discussions of parametric models in chapter 1. It is detailed here to

emphasize the need to analyze the notion of stored and dissipated energy for proper model validation.

A second case with a full vehicle multibody simulation is also presented, and data on the rear

twist beam axle bushing (whose model and test were discussed in earlier chapters) is gathered. While

multibody simulation with the new bushing models could not be obtained due to lack of time, load

and power predictions are used to demonstrate that the current approach can already be shown to be
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insufficient for accurate transient modeling of system level behavior.

Despite detailing each part of the problem in each chapter, the chronological order of the study

was quite different, and directly impacted the direction of the work. After the review of a few 0D

models, the multibody engine suspension case was analyzed and emphasized the needs on the accuracy

of predicting dissipation at different instants, since two seemingly equivalent models led to notably

different system level predictions. Design of the test campaign had to be performed with the available

information and, with post-processing strategies radically different from those classically used, the

test data proved to be quite relevant. While finding a partner able to test a part and the associated

materials, Vibracoustic eventually, and waiting for the experiment to take place during the COVID

crisis, the focus was placed on 3D material modeling and implementing a hyper-reduction strategy

mixing kinematic reduction and reduced integration, and eventually showing that it would be possible

to use it in a multibody routine. With the detailed analysis of test results, the need for a major effort

on giving a clear perspective on 0D/material modeling, changed the focus once again and limited the

time left for extended multibody analysis and confrontation of 0D and 3D hyper-reduced models.

The developments of chapter 1 correspond to a paper submitted to MSSP [3]. The chapter 4

implementation of hyper-reduction routines on the bushing model was presented at the ISMA 2020

conference [4]. Finally the first multibody study case of chapter 5 was presented at the ECCMR 2019

conference [5].
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0D system models of bushings

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.2 Hyperelasticity or non-linear static gain . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.2.1 Instantaneous modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.3 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.3.1 Non-parametric transfer: complex and relaxation modulus . . . . . . . . . . . . 67

1.3.2 Selected order base representation: rational complex modulus . . . . . . . . . 68

1.3.3 Order independent parametric models : fractional derivatives . . . . . . . . . . 71

1.4 Rate independent hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.4.1 A non-parametric model: hysteretic relaxation . . . . . . . . . . . . . . . . . . 74

1.4.2 Selected order base representations : Iwan series model . . . . . . . . . . . . . 76

1.4.3 Order independent parametric forms . . . . . . . . . . . . . . . . . . . . . . . . 79

1.4.4 Regularity in first order hysteretic cells . . . . . . . . . . . . . . . . . . . . . . 81

1.5 Unified perspectives through environmental factors . . . . . . . . . . . . . . . . . . . . 82

1.5.1 Classical temperature modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.5.2 Intermediates between viscoelasticity and rate independent hysteresis . . . . . 84

1.5.3 Combined behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.6 Experiment design perspectives and conclusions . . . . . . . . . . . . . . . . . . . . . 88

59



1.1. INTRODUCTION

1.1 Introduction

The current approach for modeling elastic articulations is through testing and model identification.

Identification is the usual name describing an inverse problem where a class of models is chosen and the

associated values are selected to minimize a distance between test results and the model predictions.

The test results used to illustrate this chapter were taken from test campaigns detailed in chapter 3,

where the legends are also described. The main purpose behind the tests was to determine and separate

as much as possible the different mechanisms that will be described here.

To illustrate the different kind of identifications and models, three base mechanisms are known to

be important in rubber mount behavior [10, 11], and will be taken as references:

� Hyperelasticity, or the non-linear dependence of long term stress to the current value of strain;

� Viscoelasticity, or the dynamic dependence of stress on strain history;

� A last effect for which there is no consensus on whether it should be classified as a long term

effect, or, as will be portrayed here as rate independent hysteresis, characterizing the dependence

of stress to the strain path

Eventually, hyperelasticity, viscoelasticity and rate independent hysteresis are coupled. Figure 1.1

illustrates what the model should represent. The underlying hyperelastic behavior is visible as a thick

red line. To that value a first additional stiffness contribution is associated with hysteretic behavior,

visible as the green dashed hysteretic relaxation modulus that will be defined in section 1.4.1 and is

derived from low speed triangular tests. Finally, sine testing leads to small colored maps (from low

frequency in blue to high frequency in yellow) showing complex moduli measured through stepped

sine tests and demonstrating further increase of modulus due to viscosity.
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Figure 1.1: Tangent hyperelastic stiffness, hysteretic relaxation modulus, viscoelastic complex modulus
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Beyond the three mechanisms, one will here distinguish non-parametric identification, where the

model is described by a curve whose values can be derived from test, and parametric identification

where the curve is described as a functional form using a finite number of parameters.

Parametric models are also often used in system dynamics with multiple forms of interest: rational

fractions, pole-zero representations, state space models for which bidirectional transforms exist. In

viscoelasticity, classical parametric forms are the generalized Maxwell, which is a subset of rational

fractions (see [12] for example), and fractional derivative models (see [13]). While both are often

considered as separate models, section 1.3.3 will sustain the argument that finite horizon approxima-

tions of the fractional derivative model (such as the Grünwald approximation [14, 15]) has an explicit

expression as rational fractions. The fractional derivative model can thus be seen as an order indepen-

dent parametrization of a subclass of Maxwell models. The literature in rate independent behavior is

very rich from the mathematical point of view (see [16]), while low order parametric hysteretic models

are often more specific implementations, such as the STS model for rubber mounts [17], and four

parameter Iwan model for bolted joints proposed by Segalman [18].

Parametric forms have the advantage of being high resolution, meaning that they can be used to

build non-parametric models with any degree of accuracy (frequency or time resolution). The inverse

transformation from non-parametric to parametric models is called identification and is a numerical

process that requires a choice of the parametric form and an optimization process to estimate the

parameters. This work also distinguish two forms of parametric models: selected order and order

independent.

Selected order models are simpler to implement, as they are represented by an assembly of basic

components and one may choose as many as the accuracy requires. Order independent models are

normally based on physical assumptions of the material, thus, with a predefined type of behavior, they

demand less data and less parameters for identification and may be used to extrapolate data. Despite

the advantages, inconsistency with data will induce bias and thus be problematic. Model order and

accuracy in the representation of the non-parametric data are also classical discussions which will be

seen as a discretization problem.

This chapter will take a close look at the modeling of rubber bushings. For models assumed to

represent a single material point, one will say that stress σ is a function of strain ε history. For models

representing a macroscopic object, force F will be a function of displacement x and its history. It is

assumed for now that the system stress and strain are scalar quantities (hence, the 0D denomination)

and handling of cases where this is not true will be discussed in later chapters. One will also then seek

to decouple geometric and material effects.

Section 1.2 shows that for every test there is a non-linear backbone that is attributed to hyperelastic

effects, and also provides a manner to extract instantaneous modulus from sine tests which reinforce

the idea of a hyperelastic behavior.
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Section 1.3 reviews classic definitions of viscoelastic behavior and illustrates different features from

these definitions, such as behavior in frequency domain and time domain implementation. Coupling

with hyperelasticity is shown to be necessary to achieve reasonable representation.

Section 1.4 uses classical rules proposed by Madelung and Masing to describe rate independent

hysteresis to motivate a non parametric model of hysteresis where force is obtained by integration of

a hysteretic relaxation curve which is shown to be measurable in experiments. High and low order

parametric models are then introduced and identification procedures are discussed.

Section 1.5, based on the structural temperature theory, provides perspectives unifying all the

three behaviors, and illustrate methods used to take into account those variables.

Section 1.6 summarizes the conclusions from the previous sections and directs them towards test

campaign design.

1.2 Hyperelasticity or non-linear static gain

Rubber materials may undergo very intense deformations. Linear elasticity (or constant static gain

in LTI systems terminology) may not be suitable. It may be very hard to isolate an elastic backbone

curve, but it is present in every test that is made.

Hyperelasticity may be characterized by multi-step relaxation tests [19], partially illustrated in

figure 1.2 left. On the right part of the figure, another part of the test is illustrated along with other

extractions of hyper-elasticity. The tests are further detailed in section 3.2. At the end of each step,

one waits a long time (60 minutes, in this case) to obtain a reasonable estimate of the long term/low

frequency elastic behavior. One can thus extract an asymptotic behavior shown in red in the right part

of the same figure. However, the points on the upward and downward part of the experiment do not

perfectly coincide. There is thus, either a path effect or a long term effect, which can be represented

by either rate independent hysteresis or extremely slow relaxation, respectively. From this experiment,

one identifies a 0D model simply given by a force/displacement curve, which combines both geometric

and material effects, whose separation will be considered in chapter 4.
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Figure 1.2: Left: Multi-step test profile and response. Right: Extracted hyperelastic behavior.

To illustrate the idea, sine or constant speed tests, which will also be detailed in section 3.2,

illustrated in figure 1.3, the backbone is still clearly given by the hyperelastic behavior shown in red,

despite the fact that those tests are designed to capture dynamic effects, which are visible in sine

tests, specifically on the slopes higher than the backbone curve, and the rate-independent dissipation,

present on the low speed triangular test, given by the surface defined by the loading and unloading

phases. The compression end of the triangular tests is detached from the triangular one as it is only

an extrapolation of multi-step tests.
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Figure 1.3: Left: stress/strain response of sine tests. Right: stress/strain response for triangular tests.

The points extracted may be seen as a non parametric representation of the hyperelastic behavior.

A parametric representation would be the interpolation of those points with a polynomial or any other

function. For 3D models, as will be shown in section 2.3, the parametric representations are based on

polynomials of the invariants of the strain tensor.
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1.2.1 Instantaneous modulus

For sine testing, the linear viscoelastic model is associated with the complex modulus (1.4), where

the the time response of a signal containing harmonics 0 and 1 of ω is of the form

u(t) = u0 + ℜ
(
u1(ω)eiωt

)
= u0 + ℜ(u1(ω)) cos(ωt)−ℑ(u1(ω)) sin(ωt), (1.1)

where ℜ denotes the real part and ℑ denotes the imaginary part. If the system is linear time invari-

ant, one can classically obtain the harmonic 1 coefficients u1(ω) through the mean over one period

ℜ(u1(ω)) =
∫ 2π/ω

0 2u(t) cos(ωt). Here however, the hyperelasticity is non-linear and the classic ap-

proach would be to consider harmonic balance where the signal would be composed of harmonics

eikωt. But here, the point of view that the response is linear time-varying will be taken. One thus

defines a zero mean signal

ū(t) = u(t)− ω

2π

∫ 2π/ω

0
u(t)dt (1.2)

and builds a sliding window of N points computing the instantaneous complex amplitude of a signal

by solving the linear least squares problem

min
u1(t1)

∥∥∥∥∥∥∥
 cos(t1) − sin(t1)

...
...

cos(tN ) − sin(tN )

{ℜ(u1(ω))
ℑ(u1(ω))

}
−


ū(t1)
...

ū(tN )


∥∥∥∥∥∥∥ (1.3)

The instantaneous complex modulus is then obtained as the ratio E(ω, t1) = σ(ω, t1)/ε(ω, t1). This

approach is quite sensible to sampling and for current work, a quarter cycle window size was chosen.

Residual of the minimization may also be taken to measure the approximation quality.

Figure 1.4 illustrates that cycles on the left are associated with stiffness variations on the right

with these providing more information on the nonlinear behavior of the material combining both

hyperelasticity and the Payne effect. It also clearly illustrates that the material cannot be considered

as linear time invariant. The instantaneous complex stiffness also illustrates very well that the complex

modulus is almost always higher than the hyperelastic modulus shown as a black dotted line.
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Figure 1.4: Amplitude dependence on uniaxial test for different amplitudes and preloads.

In terms of behavior, the modulus curve is at a maximum right after turning point due to the

hysteretic relaxation, and starts to drop as it goes far from the turning point. Around the middle

of the cycle, the stiffness rise again, as viscoelastic effects are more intense due to highest speeds.

Towards the end of the cycle, the stiffness rise again due to the hysteretic effect of the turning point

being anticipated through the sliding window.

1.3 Viscoelasticity

Dynamic dependence on strain history is first assumed to be linear. This is called viscoelasticity

in the materials community and Linear Time Invariant (LTI) system in the control community. LTI

systems have many equivalent representations. In particular, one distinguishes:

� Continuous time differential equations;

� Their transformation frequency domain transfers in the form of rational fractions characterized

by their poles and zeros, or using the partial fraction expansion as a sum of first order rational

fractions with associated gains;

� The inverse transform of the transfer function is a time domain impulse response and this can

be exploited using convolution products;

� When performing numerical integration with a fixed time step, the z-transform (discrete time)

of the transfer corresponds to a recursion equation with a finite number of steps
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1.3. VISCOELASTICITY

The direct output of tests are non parametric representations that characterize LTI systems either

through frequency dependent transfer functions, called complex modulus in the viscoelastic material

literature [20]

σ(ω) = E(ω)ε(ω) or F (ω) = K(ω)x(ω) (1.4)

or their inverse Fourier transform, known as a time domain impulse response, which corresponds to

the time derivative of the relaxation function [21], as will be further detailed in section 1.3. Figure 1.5

left illustrates the time response of a step relaxation test extracted from the multi-step test. Figure 1.5

center, the amplitude of the corresponding estimated transfer ratio of frequency response of stress and

strain. Naturally, the storage modulus increase with the frequency, while the decreasing loss factor

indicates that the glass transition is located in frequencies/temperatures further below the analyzed

transfer. The last part of the same figure corresponds to the classical characterization of complex

moduli using sine testing in DMA (Dynamic Mechanical Analysis), which is only one of many possible

approaches to characterize complex modulus. The dotted red line in figure 1.5c illustrates the fact that

hyperelasticity and viscoelasticity are coupled as the slope of harmonic loops are clearly dependent on

the static strain.

Figure 1.5: Left: Stress relaxation for a strain step. Center: Estimated transfer or complex modulus.
Right: Sine testing with different initial strains.

Since relaxation functions and complex moduli are Fourier transform pairs, any experiment made

at twice the speed should shift the input spectrum to twice higher frequencies and thus modify the

response. Low speed triangular tests, shown in figure 1.6 indicate that the stress/strain trajectory is

almost insensitive to speed. At low speeds, one still sees a behavior that differs from hyperelasticity but

that does not correspond to viscoelasticity: rate-independent hysteresis. Section 1.4, will introduce a

novel non-parametric representation of hysteresis, called the hysteretic relaxation modulus, which will

be used to analyze low speed triangular tests where hysteresis plays a very important role.
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Figure 1.6: Triangular tests

In this section, the theory of viscoelasticity is reviewed and applied to macroscopic 0D models.

First, the non parametric representation known as complex modulus is analyzed in a system perspec-

tive, then the transition to a selected order parametric model - rational fraction or Maxwell model -

is detailed with its different implementations in frequency and time-domain. Finally an order inde-

pendent model - the fractional derivative model - is presented, and discretization issues are discussed.

Extension to 3D models will be illustrated in section 2.4.

1.3.1 Non-parametric transfer: complex and relaxation modulus

Three equivalent representations of viscoelasticity are considered: a transfer function in the fre-

quency domain (1.5), an impulse response associated with convolution (1.6) or a differential equation

in the time domain (1.11). In material analysis, the transfer is called complex modulus and one has

σ(ω) = E(ω)ε(ω) = E′(ω)(1 + iη(ω))ε(ω) = |E(ω)| eiδε(ω). (1.5)

where the complex modulus may also be separated in its real part E′ and its complex part E′′,

respectively named storage and loss modulus, and the loss factor η = E′′/E′ = tan(δ) is used here

preferably to the transfer phase δ.

Estimation of linear transfers is a classical process [22], which can be performed using broadband

signals (impulse response) or stepped sine testing which is the classical approach in Dynamic Mechan-

ical Analysis (DMA) tests. Estimation of transfers at a set of frequencies is called non-parametric in

the sense that it only gives the estimate of the complex modulus at a selected set of frequencies.

The inverse Fourier transform of the complex modulus is the relaxation modulus

E(t) = R′(t) = F −1{E(ω)} = 1
2πi

∫ +∞

−∞
E(ω)eiωtdω, (1.6)

which can be measured directly through relaxation testing. The relations between stress and strain can

be obtained through convolution of either strain with relaxation modulus or strain rate with relaxation
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function

σ(t) =
∫ +∞

−∞
E(t− r)ε(r)dr =

∫ +∞

−∞
R(t− r)ε̇(r)dr (1.7)

To ease handling of initial conditions, classical texts on viscoelasticity [21] use the Laplace-Carson

transform and the relaxation function R(t), but the Laplace transform can be used for E(t).

The direct use of such curves is not very easy in transient simulation since it requires alternating

between time and frequency domain, which is a very strong reason to prefer parametric models. Any

system identification textbook will describe parametric models in terms of differential equations in time

or rational fraction representations of transfers. But since viscoelasticity term comes from material

modeling, the process is called rheologic modeling and will be detailed next.

1.3.2 Selected order base representation: rational complex modulus

Rational fraction representations of transfers are, in the frequency domain, classically characterized

by poles pi and zeros zi, or separated in a sum of first order rational fractions with constant numerators

called residues and first order denominators associated with poles.

K(s) = F (s)
x(s) = K0

N∏
i=1

1− s/zi

1− s/pi
= K∞

(
1 +

N∑
i=1

−gi
s/ωi + 1

)
= K∞

(
g0 +

N∑
i=1

gi
s

s+ ωi

)
. (1.8)

In the present case, all the poles must have its real part negative, so the system is stable. They are

thus associated with a characteristic time τ i = −2π/ωi, the low frequency asymptotic gain is noted K0,

the high frequency asymptote is noted K∞ and the residue associated with each pole is expressed as

fractions of the high frequency gain Ki = giK∞.

These two equations imply that there are two different manners to see the problem: either in total

force, or in force rate, corresponding to the middle and the right parts, respectively.

In mechanics this standard LTI model is known as the generalized Maxwell model illustrated in

figure 1.7, where the total load is the sum of a series of forces

F =
N∑
i=0

F i, (1.9)

each associated with a first order relaxation equation which contributes with a gain increase and

dissipation maximum centered at the pole frequency. The gain increase is illustrated in figure 1.7

right, where the poles are put in increasing frequency, accordingly to the legend. This might as well

be seen as the time domain differential equation equivalent to the frequency formulation stated above,

and each equation corresponds to the equilibrium of the internal cell point F i = ciẋi = Ki(x − xi)
and is classically given in terms of displacement,

ci

Ki
ẋi = ẋi

ωi
= (x− xi) (1.10)
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but can also be written in terms of relaxation loads to be removed from the high frequency asymptotic

force, as in the middle form of equation (1.8), leading to

Ḟ i

ωi
+ F i = −giF∞(x) = −giK∞(x)x, (1.11)

or written as loads added to low frequency asymptotic force, as in the last form of (1.8), leading to a

load rate relaxation

Ḟ i + ωiF i = giḞ∞(x) = giK∞(x)ẋ. (1.12)

The displacement formulation, given by center and right parts of equation (1.10) does not provide a

simple manner to couple viscoelasticity to hyperelasticity, whereas the force formulations highlight the

potentially nonlinear static gain term F∞(x), or equivalently K∞(x). The utilization of the variable

or its rate for the formulation generates differences when the static gain is nonlinear. The fact that

static gain multiplies ẋ instead of x in force rate formulation generates differences if using a non-linear

expression. In terms of dissipation, the fact that ωi is always constant (meaning that Ki and ci are

not constant when using nonlinear static gain) implies that the loss modulus does not evolve with

amplitude. Eventually, analysis of instant complex moduli in section 1.5.3, will show that the force

rate formulation is the most relevant for building other nonlinear models, despite being a less usual

formulation.
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Figure 1.7: Generalized Maxwell model with linear components and associated frequency domain
response.

Order refers to equivalent notions of number of Maxwell cells, number of poles in the model, or

number of internal states. The relation between Ki, ci, poles and zeros is given in the appendix of

[12].

The term selected order is used here to emphasize the fact that identification of a Maxwell model

should be viewed as a discretization problem. The modulus as a increasing function of frequency, the

poles pi = −2π/τ i are real and negative, and the rational fraction gains giK∞ are positive. Renaud

& al. [12] give a clear overview both graphical and numerical methods used for complex modulus
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approximation methods. Of particular interest, is the discussion that poles can be placed arbitrarily

and the model accuracy is dependent on the number of poles per decade.

To illustrate the discretization argument, it is chosen to discretize the storage modulus interval

and place poles accordingly. In figure 1.8, the order 4 model, illustrates the fact that low order models

are less accurate on storage modulus and loss factors. Even though the 30% error on loss may appear

poor for the order 4 model, the need for more accuracy is actually debatable considering all the other

unknowns. In the end, our design rule is to use more than one pole per decade.
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Figure 1.8: Impact of order on accuracy of storage modulus and loss factor

Time implementation comes through integration schemes. Using a fixed explicit time scheme based

on the load relaxation equation (1.11), a first order recursion equation is given by

F in =
(
1− ωi∆t

)
F in−1 − ωigi∆t

(
F∞
n

)
. (1.13)

Applying the z transform (discrete time) to this scheme, one obtains.

F i

F∞ (z) = gi
−ωi

1− (1− ωi∆t)z−1 , (1.14)

which means that the pole is given by 1 − ωi∆t, and implies that the scheme becomes unstable for

any ωi∆t ≥ 1.

To find a more accurate integration scheme, one may depart from the convolution form of the

problem, and from its solution, apply a recursive scheme and a trapeze rule to integrate forces leading

to the second order accurate scheme given by

F in = e−ωi∆tF in−1 − ωigi∆t e− ωi∆t
2
F∞
n + F∞

n−1
2 (1.15)

which has the z-domain pole e−ωi∆t, which is always stable, but may present numerical conditioning

problems when too close to zero.
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The alternative based on load rate relaxation (1.12) leads to a slightly different recursion,

F in =
(
1− ωi∆t

)
F in−1 + gi

(
F∞
n − F∞

n−1

)
. (1.16)

As the term multiplying F in−1 is the same as the one in the previous scheme, the pole in the z domain

is unchanged as the constraint ωi∆t < 1.

Again, to find the second order accurate scheme, one may use the same procedure to obtain

F in = e−ωi∆tF in−1 + gie− ωi∆t
2 (F∞

n − F∞
n−1). (1.17)

1.3.3 Order independent parametric models : fractional derivatives

Fractional derivatives [20] are known to use a low number of parameters to represent viscoelastic

behavior in broad bands. In such model, the differential equation describing a dissipative cell is

expressed as

F + 1
ωαc

dαF
dtα = K0x+ 1

ωαc
K∞ dαx

dtα . (1.18)

This equation in the Laplace domain is expressed by(
1 +

(
s

ωc

)α)
F (s) =

(
K0 +

(
s

ωc

)α
K∞

)
x(s), (1.19)

giving a direct expression for the complex modulus,

K(s) = K∞ + K0 −K∞

1 + (s/ωc)α
, (1.20)

with expressions of storage and loss moduli,

K ′(ω) =
K0 + (K∞ +K0)(ω/ωc)α cos(πα2 ) +K∞(ω/ωc)2α

1 + 2(ω/ωc)α cos(πα2 ) + (ω/ωc)2α

K ′′(ω) =
(K∞ −K0)(ω/ωc)α sin(πα2 )

1 + 2(ω/ωc)α cos(πα2 ) + (ω/ωc)2α

(1.21)

Storage and loss moduli for different values of α are illustrated in figure 1.9. For smaller α, the stifness

increase and loss peak bandwidth increases. The transition betweenK0 andK∞, now has a bandwidth

dependent on the shape parameter α and is thus independent of model order.
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Figure 1.9: Storage and loss moduli evolution for fractional derivative model.
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Despite the advantage of using a low number of parameters, the implementation of such model in

time domain is more complicated, as by definition, fractional derivatives require a full convolution to

be computed, as the Riemann-Loiuville definition is expressed as

dαf(t)
dtα = 1

Γ(1− α)
d
dt

∫ t

0

f(r)
t− r

dr. (1.22)

There are different approximations to estimate the fractional derivative value, and one of them is

Grünwald approximation [14]

dαf(t)
dtα ≈

(
t

N

)−α N∑
j=0

Aj+1f (t− j∆t) , with Aj = Γ(j − α− 1)
Γ(−α)Γ(j) , (1.23)

with Γ the gamma (continuum factorial) function. Considering fixed values for ∆t, one obtains a

summation over values with a fixed delay, and it becomes interesting to analyze this model in the z

domain. Applying equation (1.23) to (1.18), and the z-transform, one obtains1 + c
N∑
j=0

Aj+1z
−j

F (z) =

K0 +K∞c
N∑
j=0

Aj+1z
−j

x(z), (1.24)

with c = (ωc∆t)−α. Then, separating the ratio between force and displacement, one reaches to the

polynomial transfer function

F

x
(z) =

K0 +
N∑
j=0

(
K∞cAj+1

)
z−j

1 +
N∑
j=0

(
cAj+1

)
z−j

, (1.25)

Using any discrete to continuous approximation, such as Tustin transform z = 1+s∆t/2
1−s∆t/2 , it is possible

to return to Laplace domain with a transfer function in the form

F

x
(s) = K0

N∏
j=1

1− s/zj

1− s/pj
, (1.26)

where zi and pi the zeros and poles from the transfer function. The poles and zeros from this equation

determine the fractions gi and the characteristic frequencies ωi from the equivalent Maxwell model.

It is also possible to affirm that the number of time steps used for the approximation is equivalent to

the number of cells of the equivalent Maxwell model and thus, equivalent to the order of the model of

(1.8).

Figure 1.10 illustrates the response of the equivalent Maxwell model of the Grünwald’s approxi-

mation for a fractional derivative and the analytic response. It is clear that there is a narrow band

defined by ∆t and N∆t where the approximation is appropriate. Placing poles graphically around the

fractional derivative curve might thus be a more effective manner to implement such model.
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Figure 1.10: Numeric implementation of truncated Grünwald’s approximation of a fractional derivative
model.

This section has made a broad overview on viscoelasticity and its relation with system modeling.

The difference between selected order and order independent models was detailed as a discretization

problem, as the first may always represent the second one to any degree of accuracy. The different

formuations, which are equivalent for linear elasticity are will differ when coupled with nonlinear

elasticity. The force rate form (1.12) will be shown to be more appropriate in section 1.5.3.

As stated in section 1.1, viscoelasticity is not the only mechanism that drives dissipation, so the

development of the same formalism for a position dependent dissipation will be made in the next

section.

1.4 Rate independent hysteresis

Hysteresis is a system model assumption where stress is assumed dependent on strain history. As

this definition is broad enough to fit viscoelastic effects, here, hysteretic behavior will refer to the

effects that depend only on the system position and not on the deformation rate, hence, the term rate

independent hysteresis. For the applications in the present work, hysteresis will always be associated

to the force/displacement, or stress/strain.

As an example, figure 1.11 illustrates a low speed triangular test. Right after the turning point, one

first has a relaxation phase with a tangent modulus higher than the hyperelastic one. Such relaxation

will be referred as hysteretic relaxation. More details on the test are given in chapter 3. This is then

followed by a relaxed phase where the tangent stiffness closely matches the hyperelastic response,

shown as solid lines. The match is not perfect since this is test data and some integration is involved

as will be detailed in section 1.4.

73



1.4. RATE INDEPENDENT HYSTERESIS

-20 -10 0 10 20

Strain (%)

2

3

4

5

6

7

8

E
In

st
 (

M
P

a)

-20 -10 0 10 20

Strain (%)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

S
tr

es
s 

(M
P

a)

m1.tt1

Down HE
Down Hyst.
Up HE
Up Hyst.

Figure 1.11: Triangular traction tests. Left: stress. Right: tangent modulus.

This section will review the base principles of hysteresis based on literature background, and then,

as for the viscoelasticity, it will be shown that one may also introduce parametric models of selected

order and order independent ones. Finally, other types of hysteretic approximations that do not

perfectly respect the hysteresis hypothesis are discussed.

1.4.1 A non-parametric model: hysteretic relaxation

There is an extensive mathematical analysis of hysteresis in literature [16], but here, only the most

basic assumptions will be applied to bushing models. The first one is the verification of the Madelung

rules, which state that every loop closes itself where it started, no matter how many internal loops

were made. In more precise terms, and using the illustration in figure 1.12:

� any curve Γ1 emanating from a turning point A of the input-output graph is uniquely determined

by the coordinates of A;

� if any point B on the curve Γ1 becomes a new turning point, then the curve Γ2 originating at B

will eventually lead back to A;

� if the curve Γ2 is continued beyond the point A, then it coincides with the continuation of the

curve Γ which led to A before the Γ1 − Γ2 cycle was traversed.
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Figure 1.12: Illustration of Madelung rules. Left: Principles; Right: large deformation traction test.

The test result shown in the right part of the figure, drawn from experiments detailed in chapter 3,

demonstrate a clear verification of the Madelung rules despite the presence of some noise and imperfect

cycle repetition. The other feature of interest is the hyperelastic change of global slope around zero

strain. One will thus seek to introduce a non-parametric model that allows the automatic verification

of these rules while compatible with non-linear hyperelasticity.

To follow a process similar the one used in section 1.3 for viscoelasticity, the proposition made here

is to state that a system that verifies Madelung’s rules must have a force slope, or tangent stiffness,

that only depends on distance to the turning point

dF
dx (x) = Kf (|x− xTurn|) (1.27)

The function Kf (x) will be called hysteretic relaxation stiffness or modulus since the force is obtained

through

F (x) = F (xTurn) +
∫ |x−xT urn|

0
Kf (r)dr (1.28)

which is similar to the relaxation modulus (1.7) of viscoelasticity.

If force evolution is expressed by (1.27), one can readily see that Madelung’s rules are verified since

the loop closure can be obtained from

0 = F (A)− F (B) + F (B)− F (A) =
∫ xB−xA

0
Kf (|x|)dx+

∫ xA−xB

0
Kf (|x|)dx (1.29)

Figure 1.13 illustrates the different segments described during a force/displacement cycle (using

the continuous STS model described in section 1.4.3). When ignoring coupling with hyperelasticity,

this figure also illustrates that the downward and upward parts of the cycle have the same slope as
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consistent with (1.28) but not with test shown in figure 1.11. Proper strategies for coupling with

hyperelasticity will thus be discussed in the next section.

For the first branch starting from an initial null state, the same range of values is found, but with a

horizontal scaling factor. Masing’s law [23, 24], provides a classic procedure to deal with this branch.

The statements are

� the first descending curve presents the same shape as the first ascending curve with an aspect

ratio of two. Which considering the proposed formulation translates into the fact that when

starting zero state, the convolution (1.28) must use 2dr rather than dr for integration.

� subsequent curves present the same shapes as the last one, which is readily found here.

F
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K

|(x-0)/2| |x-x
Turn

| |x-x
Turn

|

Down
Up
First

Figure 1.13: Hysteretic force/displacement cycle (left) and hysteretic stiffness (right) for model veri-
fying Masing’s law and Madelung rules.

1.4.2 Selected order base representations : Iwan series model

As for viscoelasticity and rational transfer functions presented in section 1.3.2, a discretization

of the relaxation modulus is obtained using a series of first order friction elements. Using rheologic

terminology, the equivalent of a Maxwell cell is a Jenkins cell where the damper is replaced by a friction

element as shown in figure 1.14. Internal friction states xi are introduced and the differential equation

(1.27) is replaced by a set of non-linear evolution equations on displacement rate, distinguishing

sticking and sliding states as

ẋi = 0, if
∥∥x− xi∥∥ < F i

f/Ki sticking state
ẋi = ẋ, if

∥∥x− xi∥∥ = F i
f/Ki sliding state

(1.30)

Thus, realistic hysteretic models combine an elastic branch K0 (potentially hyperelastic), and a
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series of Jenkins cells leading to a global force written as

F (x) = K0x+
Ncell∑
i=1

Ki(x− xi) =
Ncell∑
i=0

F i(x, xi) (1.31)

Rather than considering sliding points, the problem may be seen as load saturation, as for the

Dahl model (detailed in section 1.4.4), which is more readily analyzed in a force rate formulation of

the evolution equation

Ḟ i = gi

g0 Ḟ
0, if F isign(ẋ) < F if = gi

g0K
0xif sticking state

Ḟ i = 0, if F isign(ẋ) = F if sliding/saturated state
(1.32)

Figure 1.14 illustrates two different discretizations of the order independent STS model that will

be described in the next section. Starting from a turning point, the tangent stiffness begins at a high

asymptote
∑Ncell
i=0 Ki and tends to the lower limit K0. Assuming the Jenkins cells to be ordered by

increasing saturation forces, the hysteretic relaxation stiffness for k sliding cells is

Kk
b =

∑
i≤k

Ki (1.33)

with stiffness changes occurring at break points given by

xkf − xturn =
F if
Ki

(1.34)

x, F

K0

K1

F 1
f

x1

KN

FNf

xN

100 105
1

1.2

1.4

1.6

1.8

2

x

F

STS
Iwan 50 cells
Iwan 3 cells

Figure 1.14: Scheme for Iwan model and respective response in terms of hysteretic relaxation and on
force/displacement domain.

In figure 1.14 the hysteretic relaxation stiffness is represented using a log scale to emphasize the

parallel with the complex modulus representation of figure 1.7. Choices in the discretization strategy

will be linked to order and positioning of points on the hysteretic relaxation curve. Here the model
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with three cells does not fit the full data very well because the curve is set to be above the reference

data. Obviously increasing the order gives a better control on the accuracy so that a non-parametric

hysteretic relaxation curve may be fitted to the desired accuracy, just as complex moduli accuracy can

be maintained under any threshold by using more cells.

When accounting for hyperelasticity, which is needed as clearly visible in figure 1.11 and figure 1.12

right, non-linear coupling needs to be considered. Figure 1.15 left clearly shows that the hysteretic

stiffness is much higher for a turning point at -50% strain than at 50%. Considering Ki constant is

thus not appropriate. The ratio of hysteretic by hyperelastic stiffness shown right seems much more

constant despite experimental limitations stiffness estimation (one should notice the different scales).
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Figure 1.15: Difference (left) or ratio (right) of hysteretic and hypereleastic moduli.

Considering that the hysteretic stiffness depends on the local hyperelastic stiffness thus seems ap-

propriate. Using the same definition of fractions (or gains) gi of the hyperelastic part to describe

each Jenkins cell as the one used in section 1.3.2 for viscoelastic models, the non-parametric formula-

tion (1.27) can be revised to use a gain depending on distance to turning point instead (that equals

the actual fraction of the cell before sliding and zero after sliding)

Ḟ i = gi(|x− xTurn|)Ḟ∞. (1.35)

With such coupling with hyperelasticity, a notable difference between the distance dependent

relaxation (1.30) or load saturation (1.32) models is that the breakpoints positions do not depend

on static strain as in the first case and are more widely spaced for lower hyperelastic stiffness in the

second. This is illustrated in figure 1.16, where a voluntarily small order with 3 Maxwell and 3 Jenkins

cells is considered in a triangular test.
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At turning point, velocity changes very rapidly and the hysteretic modulus is discontinuous. It

starts from a high value that relaxes rapidly because of the 3 viscoelastic cells. This relaxation is clearly

something that was hard to see in the considered experiment because of too coarse time sampling and

the procedure should be corrected.

After viscoelastic relaxation, hysteretic relaxation is seen as three sudden drops in the hysteretic

stiffness as sliding/force saturation starts. The spacing of drops on the strain axis is more visibly

different for the segments from -5% to 15% and from 5% to 15%, but happens to all the segments.

This indicates that a stress saturation model was used and seems consistent with figure 1.15 where

the relaxation distance is higher when going down and thus coming from a lower modulus.

-5 0 5 10 15
Strain (%)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

S
tr

es
s 

(M
P

a)

Down 5:-5
Up -5:15
Down 15:5
Up 5:25

-5 0 5 10 15
Strain (%)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
E

hy
st

 (
M

P
a)

Figure 1.16: Simulated triangular test. Left: force displacement cycle, right: hysteretic relaxation
modulus

1.4.3 Order independent parametric forms

The use of an Iwan model may be parameter intensive when trying to establish optimization

routines, so there is a use for order independent models that use much fewer parameters.

Segalman [18] developed a four parameter model, to represent bolted connections and friction

phenomena, but that it is a very appropriate model for representing the rate independent behavior of

rubber bushings. Its force as function of displacement is expressed by

F =
∫ ϕmax

0
R(x− x1(ϕ))ϕχdϕ+ S(x− x1(ϕmax)) (1.36)
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with material parameters FS ,KT , χ, β and intermediate constants defined as

R = FS(χ+ 1)
ϕχ+2
max

(
β + χ+1

χ+2

)
S =

(
FS
ϕmax

) β

β + χ+1
χ+2


ϕmax = FS(1 + β)

KT

(
β + χ+1

χ+2

) ,
(1.37)

and the internal variable x1, whose evolution is given by

ẋ1 = ẋ, if
∥∥x− xi∥∥ = ϕ and ẋ(x− x1) > 0

ẋ1 = 0, otherwise (1.38)

Coveney [17], developed an extension to an infinite number of cells of an arrangement of identical

springs and friction elements illustrated in figure 1.17. For the current development, they will be

considered different at first, indexed accordingly to the figure.

K0

x x1

F̂ 1
f

x2

F̂ 2
f

xk

K̂N+1

F̂Nf

K̂2K̂1

Figure 1.17: Standard triboelastic solid

For a finite order version of the same model, one may have the stiffness after sliding points defined

by

Ki
b = K0 +

 i∑
j=1

K̂j−1

−1

=
N−i∑
j=0

Kj (1.39)

and the distance to the turning points, where the stiffness changes, is defined by

xif = xi−1
f +

F̂ if
Ki
b

=
F if
Ki

(1.40)

which can be used to demonstrate that the finite order STS model has an exact Iwan equivalent.

To obtain an order independent model, the model is extended to an infinite number of cells by

using F̂ if = FCf → 0 and K̂i = KC → ∞, for i > 2, while keeping the product FCf K
C = C constant.

The hysteretic force is then given by

F − FTurn =


√√√√NC|x− xTurn|+

(
NC

2K̂0

)2

− NC

2K̂1

 sign(x− xTurn), (1.41)
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where N is a variable that equals 2 when the level of force has already been reached before and 1,

otherwise. This rule is quite difficult to implement, as there may be an infinite number of turning

points to be stored, leading to a difficult management of internal states.

Ignoring the first loading conditions, the hysteretic relaxation curve is given by

K(x− xTurn) = K0 + C

2

(
C(x− xTurn) + C2

4K2
1

)−1/2

(1.42)

For this order independent hysteretic relaxation, an equivalent Iwan series model can be obtained

selecting breakpoints and the asymptotic behavior, using a maximum amplitude, placing forces using

(1.42) and using (1.39) and (1.40) to obtain the Iwan parameters. Accuracy is, as shown in figure 1.14,

clearly directly linked to the choice of number and position of breakpoints, which are the equivalent

of order for the Iwan model.

1.4.4 Regularity in first order hysteretic cells

The introduction of a discontinuity is often an issue for integration solvers. This is why different

authors created other models to regularize the behavior of a friction element. One of the most used

models with these properties is the Dahl model [25], whose evolution equation for force F i as function

of displacement xi is given by

Ḟ i = Kd

(
1− F i

F if
sign(ẋi)

)α
ẋi, (1.43)

with α a shape parameter, controlling the abruptness of transition between elastic and sliding states,

Kd the initial stiffness and F if the equivalent friction parameter.

The Bouc-Wen model [26] is another differential model often used in the representation of rate

independent dissipative behavior. Its evolution equation is given by

Ḟ i = αẋi
(
A−

(
γ + βsign

(
ẋi
)

sign
(
F i
) ∥∥∥∥∥F iα

∥∥∥∥∥
n))

(1.44)

with α, β, γ, n and A model parameters, with the constraints n > 0, β > 0, A > 0,−β < γ < β.

The Berg model [27] is another common attempt at regularization of Coulomb’s friction model.

Its behavior is described by the formula

F i − FTurn = xi − xTurn
x2
(
1− (F i−FT urn)

Ffmax

)
+ |xi − xTurn|

(Ffmax − sign(x− xTurn)FTurn) , (1.45)

where x2 and Ffmax are model parameters.

Figure 1.18 illustrates the hysteretic relaxation curve for those models. All the models were fitted

based on the dissipation and the apparent stiffness for triangular tests on a wheel suspension bushing.

Clearly all the models begin in a higher stiffness, and Dahl and Berg models do not show perfect
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superposition on loading and unloading. Bouc-Wen model present an unexpected peak in a specific

distance to the turning point, which might be due to the fact that the hysteretic relaxation curve was

not taken into account for the parameters identification, potentially leading to unrealistic choices.
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Figure 1.18: Masing curve for continuous hysteretic models.

The models described in this might be used instead of the Coulomb’s friction elements in Jenkins

cells to provide a continuous sliding, avoiding severe discontinuities throughout a solicitation in single

direction. However, the utilization of absolute and sign functions make that after turning points,

discontinuities are still present. This work will not retain those implementations, but they may be

useful for fitting non parametric models.

1.5 Unified perspectives through environmental factors

Beyond the three detailed mechanisms it is clear that there are other remarkable effects on rubber,

the most notable being temperature effects and amplitude dependence, also known as Payne effect,

that can be related to stress activation where characteristic times are lowered at higher stress ampli-

tudes [15]. Figure 1.19 illustrates stabilized cycles for a different amplitudes. To properly visualize the

trends, each cycle is divided by its amplitude so that one clearly sees how the mean slope decreases

with amplitude.
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Figure 1.19: Amplitude dependence of shear test at 10 Hz with stress and strain divided by amplitude.

Assuming rate-independence for hysteresis or exactly linear behavior for viscoelasticity are ob-

viously idealizations and one should not expect reality to match either behavior. For this reason,

several authors were interested in developing intermediate models. For instance, [28] developed the

STVS model, where the Jenkins cells were also tied to a non-linear damper, [29] developed a model

that combines non-linear elasticity, non-linear hysteresis and non-linear viscoelasticity, [10] developed

a model where these three branches were also present, [30] introduced viscoelastic dependence on the

STS model, among other works.

On the hysteretic side, regularizations of friction behavior are often used to make the behavior

more realistic. On the viscoelastic side, Heymans [15] convincingly argues that characteristic times

depend on a structural temperature which evolves not only with temperature (whose effects will be

explained in section 1.5.1), but also strain history.

These two approaches eventually converge into an attempt to simulate the behavior in a zone

where it is difficult to identify and separate what is rate dependent and what is not, as will be shown

in section 1.5.2. In the end, the combined behavior is assembled into a model, and its response is

compared to test measures in section 1.5.3.

1.5.1 Classical temperature modeling

Temperature is classically considered as the major factor influencing viscoelastic behavior. For

thermoreologically simple materials, one can regularly use the so called frequency/temperature equiv-

alence principle [20, 31] that states that the complex modulus (viscoelastic transfer) does not depend

separately on frequency and temperature but on a single coordinate called reduced frequency obtained

as the product of frequency and a temperature shift factor α(T ). Thus

E(ω, T ) = E(ωred) = E(α(T )ω) (1.46)

where the complex modulus curve is called a master curve illustrated in figure 1.20. Its existence

can be verified using Cole-Cole [32] or Wicket [1] plots (similar to a Nyquist diagrams in systems
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theory). This assumption is consistent with the physical notion that frequency and temperature are

equivalent in terms of particle excitation. Classical parametric expressions of the shift factor are the

the Williams-Landel-Ferry, and Arrhenius models [20].

Figure 1.20: Utilization of master curves for polymeric materials. Source: [1]

The reduced frequency ωred = α(T )ω can directly be used in parametric models since characteristic

relaxation times at a different temperature are simply obtained using

ωi(T ) = α(T )ωi(T0) (1.47)

where the reference temperature T0 is selected such that α(T0) = 1.

The frequency domain rational fraction model (1.8) thus becomes parametrized in temperature as

K(s, T ) = K∞
(

1−
N∑
i=1

gi

s
α(T )ωi(T0) + 1

)
= K∞

(
g0 +

N∑
i=1

gi
s

s+ α(T )ωi(T0)

)
. (1.48)

The implementation of the shift factor into viscoelastic schemes is very simple, as it only demands a

change on the characteristic frequency.

1.5.2 Intermediates between viscoelasticity and rate independent hysteresis

Using a similar idea of viscous poles having a non-linear dependence on the material state, [33] pro-

posed reduced relaxation times. This formulation can be rewritten as the non-linear stress relaxation

equation

Ḟ i + ωi(1 + β ∥ẋ∥)F i = giḞ∞ (1.49)

with a velocity dependent shift factor α(∥ẋ∥) = (1 + β ∥ẋ∥) which is clearly related to the structural

temperature discussed in [15].

For β ∥ẋ∥ ≫ 1 and assuming a linear base branch F 0 = K0x = g0K∞x, the asymptotic value is a

friction force

F i ≈ giK∞
βωi

ẋ

∥ẋ∥
(1.50)
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leading to the expression using hysteretic constants

β = 1
ωixif

(1.51)

and physically clearer form

Ḟ i +
(
ωi + ∥ẋ∥

xi
f

)
F i = giK∞ẋ (1.52)

where the parameters controlling behavior are the load fraction gi, the viscous frequency ωi and the

hysteretic relaxation distance xif which provides a saturation for a force that is viscoelastic at low

velocities and amplitudes. Such saturation may be seen in figure 1.21, where a linear gain of 1N/mm

was used so the saturations are supposed to arrive at 0.1, 0.5, 1 and 3N, for a sine solicitation of 1mm

amplitude. Without any saturation, one would expect an ellipse, while for a pure friction element, one

would have a rectangle. It is clear that for the first cell, the saturation is reached, but for the other

cells, closer to the saturation, the transition is not fully made.
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Figure 1.21: Damping force evolution for different values of xf .

To illustrate the difference between different cells coupled with hyperelasticity, figure 1.22 displays

the branch stress F i and the instantaneous modulus first shown in figure 1.4. Two Jenkins cells are

shown in blue. F 1 shown as a solid line does not slide and its instant modulus shows a nearly constant

value with the small changes due to coupling with the hyperelastic behavior. F 2 shown with dashed

lines has notable sliding and this induces a major drop of instant modulus during the period. The

non-linear viscous version of the same load shown as a dot dashed line, follows (1.52). The drop for

higher velocities is still very much visible but the transition is much smoother.

Two Maxwell cells are shown in red. The solid curve F 3 has a relaxation frequency at 1Hz, so the

modulus is relatively high and nearly constant, especially for 15% static strain where the hyperelastic

modulus varies much less than at 0% (see figure 1.4 left). The dashed F 4 has a much higher relaxation

frequency at 25 Hz so the apparent modulus at 1 Hz is quite small.
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Figure 1.22: Branch stress and stiffness contributions for 1 Hz excitation, 10% strain amplitude and
0 and 15% static strain

In conclusion, non-linear viscoelastic representations such as (1.52) provide an appropriate transi-

tion between viscoelasticity and rate independent hysteresis. Detailing the evolution during harmonic

periods, provides a clear path for the identification of parametric representations for known depen-

dencies discussed in [15]: strain softening, anelastic deformation, stress activation, ...

1.5.3 Combined behavior

The first coupling of interest is with hyperelasticity. When adding viscoelastic branches, it is

important to test whether the strain or stress relaxation forms are more relevant. Using the strain

relaxation (1.10), viscous loads are not proportional to hyperelastic stiffness, which changes with

pre-strain. In figure 1.23 left it appears that the modulus increase due to viscoelasticity varies by

nearly a factor 2 between -30% and 30% static strain. In figure 1.23 right, however, the ratio with

the hyperelastic modulus still varies but only by less than ±15%. The data thus indicate that stress

relaxation (1.12) based on fractions of the full hyperelastic part considered so far gives a more accurate

representation, but the load fractions might need to be considered as slightly non-linear for even better

accuracy.
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Figure 1.23: Left: viscoelastic and hysteretic modulus difference with hyperelastic modulus, right:
modulus ratio.

The second coupling of interest is linked to the interaction between viscoelastic and rate indepen-

dent hysteretic contributions. Using the instant modulus, figure 1.24 compares test and simulation

results while focusing on amplitude variation at 1Hz. When comparing cycles with the same frequency

and prestrain, the instant modulus is clearly lower in average for the test with larger amplitude. This

is known as the Payne effect (also known as Fletcher-Gent effect) [34, 35]. This effect is quite notable

for carbon black filled rubbers and has been extensively studied [36, 10, 37]. Figure 1.1 illustrated this

using the classical first harmonic extraction, but this figure indicates that the effect is present at all

instants.

The reproduction by the model in figure 1.24 right is quite clear. When removing the dependency

of poles on velocity, xif → ∞ in (1.52), the instant stiffness trajectories have the same mean. This

confirms that the Payne effect is linked to rate independent hysteresis, which here is possibly not

distinguishable from non-linear effects on very low frequency viscoelasticity.
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Figure 1.24: Sine test at 1Hz, 2.5 and 10% strain. Left: test. Right: model.
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Figure 1.25 focuses on frequency variations. The modulus cycles only shift up while keeping a

nearly identical shape. This is consistent with the fact that at higher frequencies the change in the

behavior is essentially viscoelastic. The imperfect shift in the model can clearly be attributed to a

fairly coarse identification with manual optimization of parameters.
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Figure 1.25: Sine test at 0.5, 1 and 10Hz at 10% strain. Left: test. Right: model.

1.6 Experiment design perspectives and conclusions

After the realization of the test campaign, in hindsight there are some clear adjustments and

improvements to be made for the next campaigns.

The first fundamental result of the test campaign, was that low speed triangular tests effectively

enabled the characterization of the hyperelasticity and the newly introduced hysteretic relaxation.

Since this was not initially foreseen, the sampling rate was insufficient right after the turning point.

Using faster sampling would improve filtering possibilities. Introducing smoother turning point tra-

jectories seeking to minimize high frequency excitation and thus coupling with viscoelasticity, would

give a better estimation of the hysteretic relaxation. Small loops, that were introduced to verify the

Madelung rules are useful, but much less critical than the large amplitude triangles. An imperfect

verification of Madelung rules seems consistence with presence of viscosity, but detailed analysis would

require rework of sampling and trajectories.

The second major result was the introduction of instantaneous modulus as function of strain

(figure 1.24, for instance) instead of the classical first harmonic modulus extraction. This corresponds

to a major perspective change from considering linearization through mean over a cycle to linearization

through the consideration of a time varying system. This gave a clearer view of the Payne effect and

allowed detail analysis of model behavior during the cycle. Using direct time domain analytic signal

estimation in an extended Kalman filter, would give better control of tests and final results.

Finally, multi-step tests were not found to be really helpful. Hyperelastic behavior is better char-
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acterized using large triangular cycles, where one may disregard early hysteretic effects, and also easily

characterized by taking the harmonic 0 from sine tests. Considering the ramp as a dynamic character-

ization of the relaxation function and its transform (as figure 1.5) was helpful and could be improved

with faster sampling or shorter ramps to excite higher frequencies. On the other end, using even

longer relaxation periods, one might have an interesting insight on very long term effects, as seen in

figure 1.2, where loading and unloading do not converge to the same point. Mullins effect might also

be included on such characterization.

In conclusion, it is very clear that the hyperelastic backbone is necessary for accurate modeling,

whose coupling with other effects should be made with force rate formulations. The gain of the force

rate model can only be considered linear at high frequencies where hysteresis can be neglected, or

at very low velocities where viscoelasticity can be neglected. In the intermediate regime, an affine

dependence of relaxation frequencies on velocity seems to be a good candidate even though more work

is obviously needed.

Beyond the considered effects, there are also models that incorporate other effects such as first

cycles softening [37, 7], plastic effects [6, 10, 38], damage effects [39], strain induced crystallization,

preloading effects in fatigue [40], and amplitude effects [33] with modified viscoelastic models. The

unified perspective proposed does not all of them into account, which may be a perspective for future

work in the subject.

Chapter 2 will extend most of the concepts presented in this chapter to three dimensional tensorial

models, appropriate for finite element implementation, and the test campaign that motivated and

illustrated this chapter will be detailed in chapter 3.
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2.1. INTRODUCTION

2.1 Introduction

As mentioned in the introduction, most of the time 0D models combine both material and geometric

behaviors. For 3D models, geometry can be accurately modeled and material models need to account

for the tensorial nature of large strain and stresses. Adaptations of results shown in chapter 1 are thus

needed.

A brief review on continuum mechanics is made in section 2.2, focusing on the development of

consistent material laws for finite strains. The review ends in the virtual work principle, and ac-

tual implementation of this principle to arbitrary geometries in a finite element code is made in the

chapter 4.

The theory of hyperelasticity is also revisited, detailing usual strategies for rubber materials and

test possibilities. A few invariant based models are fully developed and will be retained for implemen-

tation in section 2.3. Finally, the same relaxation schemes as the ones presented in section 1.3 are

applied to the base hyperelastic behavior, with a nonlinear adaption to represent amplitude effects in

section 2.4.

The implementation of purely hysteretic models in large strains with plastic-like models and kine-

matic hardening is still subject of discussion and there is no prevalent theory. The research made

regarding this subject was ultimately not implemented and the research is documented in appendix A.

2.2 Continuum mechanics

This first section summarizes classical results of continuum mechanics, which are needed for later

discussion of constitutive laws exhibiting hyperelasticity, viscoelasticity and rate independent hystere-

sis under large deformation [21, 41, 42].

2.2.1 Kinematics

Considering a three dimensional euclidean space with base e1, e2, e3, a body Ω may be described

by a region from this space. Each point P of Ω is called a material point and its coordinates are

described by

{x(t)} = x1 {e1}+ x2 {e2}+ x3 {e3} (2.1)

in the reference configuration of a Lagrangian description of the problem. The body position may

evolve with time, and time derivatives give velocity v and acceleration a as

v = ∂x

∂t
, a = ∂2x

∂t2
. (2.2)

The kinematic description is based on the knowledge of the initial and current positions of any

material point. The difference between initial and current positions of material points is the displace-
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ment vector {u}. Material behavior is typically described as a function of strains. The most basic

strain measure is the deformation gradient tensor, given by

F = ∂ {x}
∂ {x0}

= δij + ∂ui
∂xj

= δij + ui,j (2.3)

where δij denotes the Kronecker delta function. This tensor links the reference and the current

configurations, making it a hybrid deformation description. It may be divided in two separate parts:

rotation R and dilatation U in a polar decomposition

F = RU (2.4)

where R is orthonormal, and U positive definite and symmetric. To obtain rotation independent

deformation tensors, quadratic forms of the deformation tensor are used. For a Lagrangian description,

the right Cauchy-Green tensor

C = F TF (2.5)

will be used. The Green Lagrange strain eij = 1/2 (Cij − δij) is a common alternative. The main

difference between the two is that C tends to the identity for nil deformation, while e tends to zero.

2.2.2 Invariants, strain rates

For isotropic materials, properties should not depend of orientation and behavior should not de-

pendent on rotation R. Invariants of the strain tensors are often used in constitutive formulation to

achieve rotation independence. The three classical invariants are

{Ii} =


tr(C)

tr2(C)− tr(C2)
2

det(C)

 (2.6)

where one should note that I3 = det(C) = det2(F ) quantifies the square of the volume change at

the material point, and J =
√
I3 the volume change. The derivatives of invariants with respect to

deformations will also be necessary and are classically given by

∂Ik
∂Cij

=
[
δij I1δij − Cij I3C

−1
ij

]
, (2.7)

and
∂Ik

∂Cij∂Ckl
=
[
0ijkl δijδkl − 1ijkl I3

(
C−1
ij C

−1
kl − 1/2

(
C−1
ik C

−1
jl + C−1

il C
−1
jk

))]
(2.8)

where 1ijkl = 1/2(δikδjl + δilδjk). For highly incompressible materials, it is usual to describe the

potential associated with the deviatoric part of the strain using reduced invariants, defined by

Ī1 = J−2/3I1, Ī2 = J−4/3I2. (2.9)
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Deformation rate tensors are also often needed. The velocity gradient tensor is commonly used

and given by

L = ∂vi
∂uj

= ∂vi
∂xj

∂xi
∂uj

= ḞF−1 (2.10)

As this gradient is not rotation independent, it is handy to decompose it into strain rate and spin

tensors, by taking its symmetric and the skew-symmetric parts,

D = 1
2
(
L+ LT

)
,W = 1

2
(
L− LT

)
. (2.11)

The strain rate tensor may be used in viscoelastic laws, as will be done in section 2.4, while the spin

tensor is usually discussed in finite deformation plasticity models [43].

2.2.3 Stress, equations of motion, time integration at a material point

When computing work of deformable bodies the dual quantities (energy conjugate pair) are stress

and strain, as force and displacement are dual for rigid body mechanics.

In the Lagrangian reference frame, the second Piola-Kirchhoff S tensor is used for stress. The

hybrid reference tensor (initial frame for strains to current frame for stresses) is called first Piola-

Kirchhoff Π (or Boussinesq, or also nominal stress) and is not symmetric. In linearized conditions, the

Eulerian description given by the Cauchy stress σ is used.

Stress and strain energy present different equivalent expressions, forming dual pairs

W = S : e = Π : F = σ : ε. (2.12)

Material or constitutive models are laws that describe the evolution of stresses for an history of

deformations and possibly internal states. They are system models of what happens at a material

point. The parameters of these laws should be identified from experiments as discussed in chapter 1

and further detailed in chapter 3.

Given a displacement gradient tensor evolution, as the ones from section 2.3.4, stress at timestep

n + 1 must be an explicit function of the gradient displacement tensor and its internal states at the

last timestep n (considering explicit implementation),

[Sn+1, u
int
n+1] = f(∇un+1,∇u̇n+1, u

int
n ). (2.13)

The development of material laws should typically be tested and tuned separately from the global

structural application, which may be done by equation (2.13).

With material laws defined, equations of motion at the structure level are derived from the fact

that the work of all forces for any kinematically acceptable virtual displacement field w is equal to

zero. In other words, ∫
Ω0
S : δe(w)−

∫
Ω0
{fv} δw = 0. (2.14)
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The implementation for the virtual work principle in the scope of FE routines will be detailed on

chapter 4.

2.3 Hyperelasticity

Following the usual strategy [41], one will distinguish the effects of compression or isotropic volume

change in section 2.3.2 and deviatoric behavior in section 2.3.3.

2.3.1 General properties: potential, polyconvexity

A material is said to be hyperelastic if its stress only depends on the current strain. It is classically

shown that this is verified if stress is obtained as the derivative of a potential ψ that depends on defor-

mation tensors. Derivation from a potential is a sufficient condition to demonstrate that deformations

are completely reversible, despite being nonlinear. The non-linearities involved are

� geometric: large deformations is typically involved requiring non-linear strain descriptions

� material: as the operating range can be large, there is no physical reason for materials to respond

linearly

For an isotropic material, behavior must be independent of rotation. This can be used to demon-

strate that the potential may always be expressed as a function of strain invariants. The stress is thus

found as

Sij = ∂ψ

∂eij
= 2 ∂ψ

∂Cij
= 2 ∂Ik

∂Cij

∂ψ

∂Ik
(2.15)

where the convention of summing repeated indexes is used. Other consequence of the expression of

the potential in terms of the invariants is that it may always be written in the form [41]

σ = β0(I1, I2, I3)1 + β1(I1, I2, I3)F TF + β2(I1, I2, I3)(F TF )2 (2.16)

with βi functions of the invariants that may be determined according to the model. These three β

functions, therefore can be seen as a non parametric manner of modeling hyperelasticity. Since going

through the whole space spanned by I1, I2 and I3 is unpractical, most common approaches are to use

either selected order representations as polynomials on the invariants or order idependent models that

are not based on invariants, as will be described in section 2.3.3.

The only restriction on the energy potential is its polyconvexity [21, 44] which ensures stability.

For scalar stress or 0D, the potential is the integral of the force/displacement curve seen in section

1.2. This function can be a polynomial or any convex function corresponding to the fact that the

instantaneous stiffness or slope of the force/displacement curve is positive.
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In 3D, ensuring polyconvexity for a tensor is not straightforward but corresponds to the positive

definite nature of the tangent material stiffness. For an isotropic material, this matrix can be expressed

as [45, 46]

Dijkl = 4 ∂2ψ

∂Cij∂Ckl
= 4 ∂2In

∂Cij∂Ckl

∂ψ

∂In
+ 4 ∂In

∂Cij

∂2ψ

∂In∂Im

∂Im
∂Ckl

(2.17)

2.3.2 Compression or volume change behavior

Materials used for bushings are typically incompressible. Compressibility is described by the

isotropic part of strains and a specific discussion of constitutive laws is needed. Remaining behavior

is associated with deviatoric strains and discussed separately.

To achieve this separation for hyperelastic models, one may divide the potential in a deviatoric

and an isotropic part ψ = ψD +ψI , which means that the same decomposition applies to the stresses,

aside from numerical issues. This implies the introduction of two separate models that are superposed

in the end.

As the third invariant is the only one that has no deviatoric components, compression models

are normally based on this invariant, or its square root J . The isotropic potential for linear models

normally used is

ψI = κ

2 (J − 1)2

∂ψI

∂J
= κ(J − 1) = p

∂2ψI

∂J2 = κ

(2.18)

This potential however allows full compression or volume suppression. For this reason, the Ciarlet-

Geymonat [47] potential was developed with a logarithmic penalty term,

ψI = κ

2
(
J2 − ln(J2)

)
∂ψI

∂J
= κ

(
J − 1

J

)
= p

∂2ψI

∂J2 = κ

(
1 + 1

J2

) (2.19)

The stress tensor resulting from the isotropic part may be computed as σp = pδij in an Eulerian

reference frame, which may be transferred to a Lagrangian reference frame by Sp = F−1(σp)F−T .

2.3.3 Deviatoric behavior

Three main groups of hyperelastic potentials are typically [48] distinguished: invariant, principal

strains and physic based potentials.

Invariant based formulations were developed first and are still widely used, because of their simpler

formulation and low numerical cost.
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The neo-hookean model is a linear constitutive model applied to large deformation. One combines

compression with a shear model given by

ψD = µĪ1 = µI1I
−1/3
3

∂ψD

∂Ii
=
{
µI

−1/3
3 0 −µI1I

−4/3
3

3

}

∂2ψD

∂Ii∂Ij
=


0 0 −µI

−4/3
3
3

0 0 0

−µI
−4/3
3
3 0 4µI1I

−7/3
3

9


(2.20)

The Mooney-Rivlin model adds the second invariant to this formulation and is given by

ψD = c1Ī1 + c2Ī2 = c1(I1I
−1/3
3 ) + c2(I2I

−2/3
3 )

∂ψD

∂Ii
=

{
c1I

−1/3
3 c2I

−2/3
3 −c1I1I

−4/3
3

3 − 2c2I2I
−5/3
3

3

}

∂2ψD

∂Ii∂Ij
=


0 0 −c1I

−4/3
3
3

0 0 −2c2I
−5/3
3

3

−c1I
−4/3
3
3 −2c2I

−5/3
3

3
4c1I1I

−7/3
3

9 + 10c2I2I
−8/3
3

9


(2.21)

Stability requires ∂2ψD/∂C2 to be a positive definite matrix, but the above potentials do not verify

stability for all strain. A very simple potential featuring a very good fitting unconditional stability

[49, 50] is the Carroll model given by

ψD = αĪ1 + βĪ4
1 + γĪ

1/2
2 = αI1I

−1/3
3 + βI4

1I
−4/3
3 + γI

1/2
2 I

−1/3
3

∂ψD

∂Ii
=

{
αI

−1/3
3 + 4βI3

1I
−4/3
3

γI
−1/2
2 I

−1/3
3

2 −αI1I
−4/3
3

3 − 4βI4
1I

−7/3
3

3 − γI
1/2
2 I

−4/3
3

3

}

∂2ψD

∂Ii∂Ij
=


12βI2

1I
−4/3
3 0 −αI

−4/3
3
3 − 16βI3

1I
−7/3
3

3

0 −γI
−3/2
2 I

−1/3
3

4 −γI
−1/2
2 I

−4/3
3

6

−αI
−4/3
3
3 − 16βI3

1I
−7/3
3

3
γI

−1/2
2 I

−4/3
3

6
4αI1I

−7/3
3

9 + 28βI4
1I

−10/3
3

9 + 4γI1/2
2 I

−7/3
3

9


(2.22)

As the proof for the stability of invariant based models is not straightforward, the use of potentials

associated with principal strains λi (equivalently, the eigenvalues of the matrix C) ensures the stability,

as the matrix C is symmetric (note that these correspond to the square of the singular values of F ).

The Ogden model [48] is the most used model of this type

ψD =
N∑
n=1

µn
αn

(λαn
1 + λαn

2 + λαn
3 ) (2.23)
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This open form ensures that the model is able to fit any curve, but it comes at the cost of a large

number of parameters and the need to compute eigenvalues at each step.

So called physic based potentials are based on assumptions of how the elastomer behaves at a

microscopic level. The main origin of this type of model is the chain model [48], which assumes that

the elasticity of networked chains is due to the entropic changes, thus it may be determined by the

number of possible states. This chain model gave origin to the widely used Arruda-Boyce model, which

assumes that the chains are distributed in a form that 8 chains are attached to the center and to the

vertices of a cube. More recently the assumption that the chain is restricted to a tube gave origin to

the tube model, and finally the assumption that these chains are continually distributed in a sphere

gave origin to the sphere models which are very good at capturing the behavior with few parameters.

2.3.4 Basic deformations used for material characterization

If behavior is described by 3 invariants, or 2 in the case of incompressible materials where I3 ≈ 1
which is true for most rubbers, a single test is insufficient to map the input range. Multiple tests with

independent variations of invariants are thus needed.

Simple shear deformation can be achieved by a “sandwich” test body. Figure 2.1 illustrates both

the specimen and the assumed deformation gradient tensor, with a linear variation of strain through

thickness.

F =

 1 γ 0
0 1 0
0 0 1


Figure 2.1: Simple shear specimen and respective deformation tensor.

Applying the assumed shear deformation gradient in equation (2.16), one obtains a Cauchy stress

tensor

σ =

 β0 + β1 + β2(1 + γ2) γ(β1 + β2(2 + γ2)) 0
γ(β1 + β2(2 + γ2)) β0 + β1(1 + γ2) + β2(1 + 3γ2 + γ4) 0

0 0 β0 + β1 + β2

 (2.24)

This stress does not verify the free edge conditions (this is known as Poynting effect [41]). The assumed

strain is thus an approximation since the absence of deformations on the free edge is impossible to

enforce exactly. The approximation used here was to neglect those effects and assume that only simple

shear exists leading to

σ12 = F/A (2.25)

with F the measured force, and A the surface of sheared material.
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Uniaxial stress is a state characterized by stretch in one direction while keeping others direc-

tions free of solicitation. Figure 2.2 illustrates both the specimen and the deformation gradient that

characterizes this state, when the model is assumed incompressible.

F =

 λ 0 0
0 λ−1/2 0
0 0 λ−1/2



Figure 2.2: Tension/compression specimen and respective deformation tensor.

It is not simple to ensure a constant deformation gradient in this specimen. Therefore, Vibracoustic

NE developed a specific specimen (with special attachments to the machine and fillet splines) that

ensures a constant deformation on the central section of the specimen. The relation between machine

displacement and strain ε in the central section is obtained using a polynomial spline generated by an

image correlation procedure. Further details on the specimen are kept confidential.

The section in the middle of the sample sees an enforced F11 = λ, and the in plane F22 = F33 =
λ−1/2, for an isotropic material, result from the section surface change linked to the fact that edges are

free and that there is no volume change.

The supposed stress tensor from the test has only the component σ11 as non zero, while the stress

issued for the model has the σ11 and σ22 = σ33 components. To reach a stress tensor comparable to

the test one, an arbitrary pressure (which does not affect the model, as it is supposed incompressible)

may be added. Using a pressure of −σ22 to the tensor diagonal would generate the stress tensor with

only one nonzero component, comparable to the supposed tested stress tensor, thus

σD11 = F/A = σ11 − σ22 (2.26)

with A the area of the section with constant deformation gradient.

Equibiaxial solicitation may be obtained by an equal elongation in two directions. This state may

be generated by the stretch of a plane band (this procedure may provide an uneven deformation

gradient), or from bubble inflation [6]. The deformation gradient tensor that characterizes this state

for an incompressible material is given by

F =

 λ 0 0
0 λ 0
0 0 λ−2

 . (2.27)

Exactly like for the tension/compression load, the strain tensor is meant to be diagonal and, thus the

stress as well. Again, as the machine imposes a pressure and model where the displacement gradient
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is imposed does not generate pressure, the same strategy of using the difference between the principal

stresses is used to relate the force to the stress,

σD = F/A = σ11 − σ33 (2.28)

where A designates the surface of the elastic band.

Hydrostatic strain requires an equal pressure over the whole specimen. It may be obtained by any

specimen shape in a closed container. The deformation tensor should only have values on the diagonal.

The force is thus related to the trace of the Cauchy stress matrix.

Figure 2.3 shows the evolution of the two reduced invariants with respect to each of those tests.

As all of them present independent evolutions with respect to strain, any combination of two tests

(except for the hydrostatic) should be enough to characterize the deviatoric behavior of an hyperelastic

material.

0.4 0.2 0.0 0.2 0.4 0.6
Deformation

3

4

5

6

7

8

I 1

Simple shear
Pure shear
Hydrostatic
Equibiaxial

0.4 0.2 0.0 0.2 0.4 0.6
Deformation

3

4

5

6

7

8

9

I 2

Simple shear
Pure shear
Hydrostatic
Equibiaxial

Figure 2.3: Evolution of invariants with deformation for standard tests.

The hydrostatic test acts only on the third invariant, so the values of I1 and I2 for this test remains

constant at 3.

2.4 Viscoelasticity in finite strains

Viscoelasticity expresses the dependency of the behavior to the history of strains. Section 1.3

provided a full background for this behavior in scalar 0D models, and the results will here be extended

to 3D finite strains. As large deformation and hyperelasticity is considered, the models are non linear

and only time domain formulations will be covered in this section.

2.4.1 Finite strain deviatoric viscoelasticity - Simo formalism

The formulation proposed by Simo and Hughes in their book [42] is a generalization of the Maxwell

model to deviatoric finite strains. The first step is to define the hyper-elastic potential that replaces
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the non-dissipative branch of the Maxwell model, with deviatoric and isotropic contributions split, as

illustrated in section 2.3, without restriction on a model choice. Then, the total stress is expressed

as the sum of a deviatoric hyperelastic part S0, deviatoric viscoelastic branch contributions Si and

isotropic stress Sp

S = S0 +
∑
i=1

Si + Sp. (2.29)

Equation (2.15) is thus used to evaluate S0 = g0S∞, and viscoelasticity is introduced by considering

a stress relaxation equation for each branch, given by[
Ṡi
]

+ ωi
[
Si
]

= gi
[
Ṡ∞

]
(2.30)

where parameters are the branch fraction gi > 0, and characteristic relaxation frequency ωi. Note

that here the SDT convention, also used in (1.12), assumes load fractions such that
∑Ncell
i=0 gi = 1,

corresponding to the use the high frequency modulus as reference. But the Simo-Hughes model

implemented in Abaqus uses a different scaling convention with ĝi = gi/g0.

Since this expression is directly comparable to (1.12), a fixed time step ∆t recursion is simply given

by

Sin+1 = e−ωi∆tSin + gie−ωi∆t/2(S∞
n+1 − S∞

n ) (2.31)

with S∞
n and Sin hyperelastic and viscous stresses from the precedent time step, respectively stored as

internal states.

To avoid round-off errors with hydrostatic pressure in these computations, the deviatoric constraint

may be enforced by transforming the 2nd Piola Kirchhoff stress into the Cauchy stress (σ = FSF )

and removing its isotropic part (σ̄ = σ − 1 =dev(σ)) [42]. In other words using

S̄∞ = F−1dev
(
FS∞F T

)
F−T (2.32)

2.4.2 Bulk viscoelasticity

If viscoelastic dissipation is only applied to the deviatoric part, non-dissipative isotropic waves

(p-waves) [51] are propagated without dissipation in the material, and as long as energy is injected,

these waves will grow in amplitude and cause high frequency instabilities.

To mitigate this problem, one may either use a dissipative integration scheme, or impose viscoelastic

dissipation on the isotropic component [52]. Here, the material level solution will be privileged to

provide a proper response independently from solver adjustments. Given that this component is not

identified, and this effect is only desired for numerical reasons, a single viscoelastic cell is implemented,

so the full pressure can be computed by p = p1 + p0 with p0 obtained from (2.19), and p1 relaxation

described by

ṗ1 + ωpp1 = gpṗ0 (2.33)
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or the recursion scheme,

p1
n+1 = p1

ne
−ωp∆t + gpe−ωp∆t/2(p0

n − p0
n−1) (2.34)

where the parameters using exponent p are relative to the isotropic behavior.

To limit instabilities is it classical to place this cell near the p-wave frequency given by

fp−wave =

√
λ+ 2µ
ρ

l2elt
(2.35)

where λ and µ are the linearized Lamé coefficients, ρ the mass density, and lelt element characteristic

length. As each element has its own length, it is important that every element present a similar size

to avoid a large dispersion on this value, or to impose this coefficient for each element.

2.4.3 Non-linear transition between viscoelasticity and hysteresis

As for 0D models, rate independent hysteresis would be interesting for 3D models. This corresponds

to the use of plasticity models. This is a topic known to be difficult for finite strains. Significant effort

was spent gaining understanding of the difficulties of kinematic hardening in the context of finite

strains and some details are given in appendix A for future reference. Eventually, the conclusion of

work on 0D models in section 1.5 was that non-linear viscosity gave very appropriate results.

This choice was in particular motivated by material modeling work in [33] where the idea was

introduced using the term reduced time ξi, computed for each cell using

ξi = ∆t
(

1 +
√

2
3β

i ∥d∥
)

(2.36)

with d the deformation rate gradient given by

d = 1
2F

−T (F T Ḟ + Ḟ TF )F−1 (2.37)

Here we prefer to state, as in section 1.5, that relaxation frequencies are non-linear with a reference

strain saturation given by

ϵif = 1
βiωi

√
2/3

(2.38)

leading to the stress relaxation is given by[
Ṡi
]

+
(
ωi + ∥d∥

ϵf

)[
Si
]

= gi
[
Ṡ∞

]
(2.39)

To simplify equations, one may use

ω̂i = ωi
(

1 +
√

2
3β

i ∥d∥
)

= ωi + ∥d∥
ϵif

(2.40)
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Leading to the recursion scheme

Sin+1 = e−ω̂i∆tSin + gie−ω̂i∆t/2(S∞
n+1 − S∞

n ) (2.41)

To avoid the computation of exponential functions at every time-step, one may assume small values

for ω̂i∆t, to obtain the first order relaxation scheme

Sin+1 = (1− ω̂i∆t)Sin + gi(S∞
n − S∞

n ) (2.42)

The pseudo-algorithm in figure 2.4 details the implementation made for 3D models.

Hyperelastic computation
Fn+1, Ḟn+1, S

i
n, S

0
n,p

0
n,p

1
n Get deformation and internal states

Cn+1 = F Tn+1Fn+1 Main deformation tensors

dn+1 = 1
2F

−T
n+1(F Tn+1Ḟn+1 + Ḟ Tn+1Fn+1)Fn+1

I1n+1 = tr(Cn+1) Invariants
I2n+1 = tr2(Cn+1) + tr(C2

n+1)
Jn+1 = det(Fn+1)

S∞
n+1 = 2

∑
k

∂Ik
∂Cij

∂ψ

∂Ik
(Cn+1) Deviatoric hyperelastic stress

Relaxation of cells i Loop on viscous cells

ω̂in+1 = ωi + ∥dn+1∥
ϵif

Non-linear relaxation frequency

Sin+1 = e−ω̂i
n+1∆tSin + gie−ω̂i

n+1∆t/2
(
S∞
n+1 − S∞

n

)
Viscous stress

Compressive stress

p0
n+1 = ∂ψI

∂J
Elastic pressure

p1
n+1 = p1

ne
−ωp∆t + gpe−ωp∆t/2(p0

n+1 − p0
n) Bulk viscosity

Spn+1 = (p0
n+1 + p1

n+1)F−1
n+1F

−T
n+1 Pressure

Output
Sn+1 = g0S∞

n+1 +
∑
i S

i
n+1 + Spn+1 Output stress

Uint =


p0
n+1
p1
n+1
S∞
n+1
Sin+1

 Internal state propagation

Figure 2.4: Pseudo algorithm for constitutive law integration.

2.5 Perspectives and conclusions

The model developed illustrated in this chapter was fully integrated into SDT with robustness and

stability ensured after verification tests. Computational time optimization of these routines are still a

perspective.
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In terms of model development, a few of the same remarks applied to 0D models also apply here:

damage can be taken into account in the long term, while kinematic plasticity may also be added to

represent pure path effects, and the first steps in this direction are illustrated in appendix A. As for

the 0D models, a single model of the transition between pure hysteresis and pure viscoelasticity is

proposed.

Beyond these implementations, there is also the possibility to split the deviatoric potential to be

able to independently identify the different tests for the same 3D model, as suggested in section 3.4.1.
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3.1. INTRODUCTION

3.1 Introduction

Chapter 1 focused on model choices and used a few test results to gain understanding on their

properties. This chapter seeks to compare results of the full test campaign and discuss identification

procedures.

The conception of the tests began with what was sought to be modeled, which in the case was quite

clear: frequency, amplitude, preload and path effects. The next step was the choice of the specimen,

going from a specific vehicle part to its materials. Finally, the test parameters were set based on

coherence between part solicitations and resources available. The conception procedure is detailed in

section 3.2.

Few results were selected from the large pool of generated data to create a classic identification

procedure, detailed in section 3.3. These few selected results were compared to a 3D model, as the

one described in section 2.4, to create an objective function to be minimized. The results of such

identification were compared to the selected results.

As the results from the classical identification routine were not completely satisfying, a novel

identification routine is proposed in section 3.4. Such routine consists of the extraction of a base

hyperelastic behavior, a hysteretic curve from triangular tests, and a viscoelastic contribution. The

two dissipative branches are normalized with respect to the hyperelastic one and they are graphically

identified using selected order parametric models, as described in sections 1.4.2 and 1.3.3. The obtained

models are compared to the synthesis of the test results.

Finally, the test results are summarized in a single plot, already introduced in the first chapter,

and the perspectives for future work in this field are discussed, in section 3.5.

3.2 Tests conception

3.2.1 Introduction: test objectives

As first analyzed for the 0D case in chapter 1, the main phenomena that one seeks to character-

ize through tests are hyperelasticity, rate-independent hysteresis, viscoelasticity and their non-linear

dependencies. All these phenomena may be dependent on both material and geometry, so special

attention must be made on the test body selection to limit sensitivity to geometric effects in material

tests, while it is impossible to make this separation for part tests.

The first difficulty was to design and deploy of a test campaign able to capture all these effects.

Later exploitation led to propositions in non-parametric and parametric identification phases that

were detailed in chapter 1. It is however worth mentioning the initial choices used to design the

test campaign. For hyperelastic identification, a sequence of relaxations or multi-step relaxation test

was retained as suggested in ref. [10]. For hysteretic behavior, constant low speed tests (triangular
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3.2. TESTS CONCEPTION

loading) were considered to allow a verification of insensitivity to strain rate. For viscoelastic response,

sinusoidal solicitation is the classical approach and was kept here. To visualize amplitude effects, the

triangular and sine tests were performed at different amplitudes.

The preload effects are often studied for fatigue design, as statically loaded polymers present

longer life cycles [53], but since this work focuses on multibody aspect, one also sought to visualize the

nonlinear effects that preloading has on viscous and hysteretic behavior and interpret whether theses

are dependent on strain state.

3.2.2 Specimen and testing machine

To characterize materials, the test body should provide a known deformation field as function of

the applied displacement, as discussed in section 2.3.4. As the material will be described with invariant

based hyperelasticity and considered incompressible, at least two specimen should be used. The speci-

mens chosen to characterize the deviatoric behavior are the simple shear and the tension/compression

ones, also presented in section 2.3.4 and shown in figure 3.1a,b.
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(a) Shear specimen. (b) Tension/compression specimen.

(c) Part test on x axis. (d) Part test on z axis.

(e) Tested part.
(f) Elastomer material distribution on the bushing.

Figure 3.1: Specimens used and tested part illustration

For the part tests, a rear twist beam axle bushing shown in figure 3.1e will be considered. The

selected part often undergoes coupled solicitations as it transmits lateral, longitudinal and vertical

forces that may happen simultaneously, making it particularly interesting for the intended multibody

implementations.

The bushing mesh illustrated in figure 3.1f concerns only the elastomer compounds. The outer

edge is vulcanized into the external metallic interface, and the inner edge is vulcanized into the internal

metallic interface connected to the blade. The colors in the scheme designate two different materials,

later labeled m1 and m2. Thus all material tests are made for both compounds, and the part will be

108



3.2. TESTS CONCEPTION

subjected to its two main working directions, denoted px and pz, as in figure 3.1c to f. The four

voids are filled with a plastic piece that ensures contact generating a stiffening effect. Such piece was

removed due to the fact that there were no short-term plans to consider contact effects and that the

setup with the plastic limiter is too stiff for the testing machine.

One of the main solicitations in this part happens in the vertical direction where it transmits the

road noise to the chassis. For this reason, the material in the z direction of this part is relatively

less damped to avoid stiffening. As the other main solicitation direction is not perfectly aligned to

the vehicle, a component between x and y directions (mainly in x axis) is responsible to transmit

longitudinal forces to the chassis. The material in the x direction is thus more damped to dissipate

undesired suspension lateral modes.

The machine used for material specimen tests is a MTS Landmark 200Hz Elastomer Test System,

whose data sheet suggests a maximal load of 25kN and stroke of 120mm.

3.2.3 Test parameters

To select the parameter for the tests, each individual specimen was analyzed.

For the uniaxial tests, the base values for strains was set according to the ability of the specimen

to sustain a constant section under loading/unloading, which is between -30% and 60%. Thus, multi-

step tests for this specimen were set with 10% intervals between those values. Two relaxation times -

5min and 1h - were selected to verify if the material relaxes in a longer timescale. For the triangular

tests, a few variations were defined: at null prestrain several amplitudes were tested in a logarithmic

scale to verify Payne effect; at fixed amplitude several prestrains were tested to verify the Madelung

rules; and finally, a few high amplitude cycles are made in fixed amplitude and varying prestrain and

speed to verify rate-independence at those operation points. As this test was conceived with imposed

displacements, the strain-rate is not perfectly constant (there is a confidential non-linear relation

between displacement and strain for this specimen), conferring a different allure to the triangular tests.

Finally for the sine tests, due to the long waiting time between each preload (waiting for relaxation),

the steps between prestrain were set to 15% instead. For each prestrain, variations in amplitude and

frequency were set. The prestrain restrictions were given by the specimen (-30%to 60%), while the

lowest frequency was set to 0.1Hz (below this frequency effects are supposed to be considered rate-

independent), while the highest one is set to 100Hz, which was already past the machines capabilities.

In terms of amplitude, 0.1% was already on the edge of the machine sensing capacity and 10% is close

to the dynamic limit of the machine (specially at 100Hz).

As all the verifications on the materials were meant to be in the tension/compression tests, and it

was thought that the viscoelastic and hysteretic behavior would be similar for both specimen, the shear

tests were significantly less sampled. For shear tests, the maximum of 100% of strain was selected, as

strains are not supposed to reach this level on the selected part. Given the symmetry of the strain
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tensor with respect to negative strains, the minimal strain was set to 0%. The same approach for

the multi-step tests was used, with 10% strain steps. As the verification of the Payne effect and the

Madelung rules were supposed to be made in the tension/compression specimen, it was decided to

repeat only the last part of the triangular tests: two different speeds and two different prestrain, with

amplitude variations for null prestrain. For the sine tests, the same amplitudes and frequencies as the

tension/compression tests were applied, but this specimen was less sampled in prestrain (0, 45% and

90%).

The profiles for imposed strains are illustrated in figure 3.2, and a table describing specifically all

the sampling points is available in appendix B.
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Figure 3.2: Strain profiles for each test: Multi-step, triangular and sine (columns) for shear and
tension/compression specimen (lines).

Figure 3.3 zooms on the sine tests after an amplitude sweep at a fixed frequency.
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Figure 3.3: Detail on sine profile: changing frequency after amplitude sweep.

For the part tests, it was also sought to verify all the effects at part level. As the part is symmetric

with respect to the x and z planes, the parameters were identically set. The multistep tests in the
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part were limited by the machine capabilities at 4mm, while the minimum is set at 0mm due to the

symmetry of the part. The steps for the multistep test were set at 0.5mm with 1h of relaxation time.

For the triangular tests, the amplitude sweep was made at null prestrain, then a prestrain sweep

at fixed amplitude, and finally the rate-independence test with two different speeds at two different

prestrains, similarly to the tension/compression tests. For the sine tests, the same principles were

used, but here, the prestrain steps were set to 1mm, while amplitudes were swept from 0.1mm (close

to the sensing capacity) to 1mm (close to the machine dynamic capacity at 100Hz), finally, the same

frequencies from material tests (0.1Hz to 100Hz) were retained. The enforced displacements for part

tests is summarized in figure 3.4, while the detailed parameters for all the tests is also summarized in

appendix B.
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Figure 3.4: Displacement profiles for part tests: Multi-step, triangular and sine.

The acquisition rate for all multistep tests is set at 1Hz for the relaxation phase and 20Hz for the

ramps. For the triangular tests, the acquisition rate is set at 3Hz for tests at 10mm/min and 0.3Hz for

tests at 1mm/min. The acquisition frequency for sine tests is set at 50 times the solicitation frequency,

and the relaxation phases after the prestrain change (which takes 20 minutes) have an acquisition rate

of 1Hz.

3.2.4 Low speed test: filtering

The notion of hysteretic relaxation was introduced in chapter 1, and will be here discussed for low-

speed triangular wave tests. As the machine was designed to measure force and not force variations, it

was not obvious that measurements contained high frequency components. These are however strongly

present as visible in figure 3.5 and must be filtered.

As first attempt, a double second order low-pass Butterworth filter (forward and backward to avoid

phase differences) with a cutoff frequency of 1/10 of the acquisition rate was applied to the triangular

test signals. With this approach, there is a significant loss of data near the turning points, where

unreasonable values are found, illustrated in figure 3.5 in red. A better approach separates upward

and downward parts of the cycle and filters each separately. The results, in figure 3.5 illustrates the

application of both filters and its comparison with unfiltered data for one of the tests. Despite the fact

that the hysteretic relaxation is not lost with the filter, the end of the curves are still quite noisy (not

sufficiently sampled). For future tests, the acquisition rate should be increased right after the turning
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points and work should be done on improving the noise levels.
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Figure 3.5: Difference between considered filters and unfiltered data.

In figure 3.6, one considers three tests with different initial offsets C0 = −20, 0, 20%. Interpreting

the stress/strain curves is not obvious, but qualitatively away from the turning point, the slopes only

depend on position - meaning an underlying hyperelastic behavior. And for some distance away from

the turning point, the slope is higher. This phase was called hysteretic relaxation.
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Figure 3.6: Triangular wave test results: underlying hyperelasticity and hysteretic relaxation

Distinguishing hysteretic relaxation and hyperelastic parts is somewhat arbitrary. But it is not

quite clear whether the differences between various curves in the hyperelastic areas, seen in figure 3.6,

are due to reproductibility issues or noise filtering effects. Thus a manual selection of distances was

performed for identification, and thoroughly in section 3.4. On the part model, the separation is even

less evident as strain is not uniform throughout the body, so the hysteretic relaxation is not the same

as the materials.
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3.2.5 Sine tests: instantaneous modulus and 1st harmonic

To extract data from sine tests, the classic strategy is to extract (or approximate) the first harmonic

component of the response and consider non-linearities as frequency and amplitude dependence. These

data will be used to identify models in sections 3.3 and 3.4.

Despite providing all the needed data, some tests in this elaborate campaign failed. The main

issues are the small amplitudes and high frequencies in sine tests. Figure 3.7 illustrates that yellow

and green points (50Hz and 100Hz for smaller amplitudes) in the storage modulus map are notably

lower, indicating wrong data, which is not particularly surprising since high frequency excitation is

always more difficult to enforce in a high load machine. These data were later removed from all

identification and plots.

Figure 3.7: Failed HF tests

Looking at the stress-strain plot for the time domain reconstitution of the Fourier series for those

results up to the fourth harmonic, in figure 3.8, the responses do not seem to provide a reasonable

behavior for the material.
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Figure 3.8: Stress-strain curves for failed HF tests.

Considering the system as linear time varying, the proposed instantaneous modulus illustrate fairly

well how the non linearities of the system may be expressed, as was already shown in section 1.5.3.

This is illustrated in figure 3.9 where the instantaneous modulus varies strongly within the cycle, also

allowing to visualize the Payne effect by showing the modulus for lower amplitudes above the larger

amplitude. The use of this modulus in terms of evaluation and identification will however remain as

a perspective, though it provides a qualitative view on the modeled behavior.
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Figure 3.9: Instantaneous modulus extraction from sine tests.
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3.2.6 Mullins and long term effects

Beyond effects that are viewed in a timescale of hours, the Mullins effect, which is commonly seen

as the softening that filled rubbers go through after the first loading cycles, may also be present after

a few months [54]. This effect is clearly visible in figure 3.10 illustrates, but after the first few cycles,

it is completely negligible with respect to the other effects, so when emulating utilization conditions

or a large number of cycles, it is often disregarded.
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Figure 3.10: Mullins effect illustration for two materials in shear (left) and in tension/compression
(right).

From a practical perspective this effect will be disregarded by loading the specimen with five cycles

right before each test, with larger amplitudes than the ones associated to the tests.

Determining long term effects is not very simple due to the time scaling difficulty. From the

viscoelastic point of view, relaxation tests like the steps of the multi-step tests are the simplest manner

to extract the complex modulus in very long timescales. The steps are actually 20s ramps followed by

an hour of relaxation. The relaxation associated with such ramps excites frequencies up to 0.05Hz, so

that one can use standard transfer function estimation [22] to obtain the complex moduli. Figure 3.11

illustrates the extraction of this modulus for shear tests.

Figure 3.11: Relaxation modulus extraction for multi step tests.
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In a different perspective, computing the storage and relaxation moduli for both specimen and

plotting them as function of strain for multi-step tests, it is clear that the map is not symmetric

with respect to loading and unloading, as seen in figure 3.12. This might be an indication that there

is a history effect in the time scale of hours which might be related to the Mullins effect. Plots in

section 3.5 illustrate how the relaxed modulus is placed with respect to the estimation of hyperelastic

curve.
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Figure 3.12: Maps for relaxation modulus in function of step amplitude. Top: tension/compression
specimen. Bottom: shear specimen.

3.3 Classical material identification procedure

Classical material identification procedures are based on a few reference curves, i.e. non parametric

identification, the choice of a model form and the definition of an objective function measuring the
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difference between model and non-parametric test results. As three different tests with different

identification goals were chosen, a different objective is established for each, with the initial idea that

each should give different parameters.

The chosen model is the one presented in figure 2.4 and stress/strain curves are obtained using

the evolution equation (2.13), for both tension/compression and simple shear solicitations. The base

hyperelastic part is represented with Carroll deviatoric hyperelastic potential and Ciarlet-Geymonat

bulk potential, presented in sections 2.3.3 and 2.3.2. Nonlinear viscoelastic coefficients are used for

hysteretic behavior obtained with triangular tests. Finally viscoelastic fractions and frequencies are

used for viscoelasticity obtained with sine tests.

3.3.1 Hyperelastic coefficients

As detailed in section 2.3 the model contains a deviatoric part to be identified and a bulk part that

is assumed almost incompressible - quite common assumption for elastomers. However, for numeri-

cal implementation it much simpler to implement compressible models than perfectly incompressible

ones. Thus, a bulk modulus was set to 30MPa for both materials, which is more than one order of

magnitude larger than the expected linearized shear modulus, ensuring that the model behavior is

almost incompressible.

The identification of hyperelastic coefficients c1, c2 and c3 is based on the average stress from the

relaxed stresses of the multi-step tests (even though it later appeared that triangular tests give more

information). For the simulation, all the viscous fractions were set to zero, so only one step is enough

to compute the hyperelastic response. The objective function used is

fHE =
∑
nstep

(
σcalcrelax − σtestrelax

)2
, (3.1)

where σcalcrelax is the value simulated by the model and σtestrelax represent the test results. Figure 3.13

shows points taken for stresses and the fitting results for both materials and both specimen.
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Figure 3.13: Comparison between hyperelastic identification and reference multi-step tests. Left:
shear, right: tension/compression. Top: material 1, bottom: material 2

Further details on invariant based non-parametric identification will be given in section 3.4.1.

3.3.2 Hysteretic rate independent dissipation

As discussed in section 2.4.3, the transition between viscoelasticity and pure hysteresis may be

done with a nonlinear viscous cell, and its parameters g1 and ϵ1f should be determined. At first, a

single cell with a fixed frequency of 0.005Hz (more than a decade below the slowest sine test). The

tests used for reference for this behavior are the triangular ones with no prestrain.

Since the two values are attached to the same cell, they must be determined simultaneously.

Although, as they do have different natures, the objective must use features that are sensitive to

different aspects: stiffness and dissipation. This defines a multiobjective optimization, meaning that

the objectives must be normalized to avoid the possibility of one outweighing the other.

For dissipation, which is mostly sensitive to the load fraction g1, one uses the dissipated power

over one period

Wd =
∫ T

0
σε̇dt (3.2)
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and defines a objective as

fgLF (g1, ϵ1f ) =
∑
namp

(
W comp
d

AσAε
− W test

d

AσAε

)2

, (3.3)

with normalization with respect to stress and strain amplitudes given by

Aσ = max(σ)−min(σ), Aε = max(ε)−min(ε), (3.4)

For the stiffness, which is sensitive to ϵ1f , the secant modulus decreases with amplitude. The chosen

objective is based on such secant modulus,

Ks = Aσ
Aε

(3.5)

and measures the drop in this modulus with amplitude using

fβLF
(g1, ϵ1f ) =

namp−1∑
i=1

((
Kcomp
t |iamp

− Kcomp
t |iamp+1

)
−
(
Ktest
t

∣∣∣
iamp

− Ktest
t

∣∣∣
iamp+1

))2
, (3.6)

Figure 3.14 illustrates computed and tested evolution for secant modulus with the triangular cycles

amplitudes for both tension/compression specimens, with differences below 15%.
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Figure 3.14: Comparison between tested and identified secant modulus softening with amplitude for
tension/compression specimen. Left: material 1, right: material 2

A more visual evaluation for this identification is provided in figure 3.15, where the simulated

triangular cycles in the strain/stress plane are plotted and compared with the tested ones for different

amplitudes. The plot in shear present a good agreement for both tested amplitudes, meanwhile in

tension/compression the model apparently highly overestimates the dissipation when in compression.
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Figure 3.15: Comparison between tested and identified behavior for triangular solicitations. Top:
material 1, bottom: material 2, left: shear specimen; right: tension/compression specimen.

A posteriori, the objective on secant stiffness dependence on amplitude also measures hyperelas-

ticity for large amplitudes and better choices could be made, such as using ratios with respect to the

hyperelastic stiffness, as used in section 1.5.3.

3.3.3 Viscoelasticity

The deviatoric nonlinear Maxwell cells are fixed at 50Hz, 5Hz, 0.5Hz. As it was unclear if these cells

should keep an intermediary behavior, they also kept the nonlinear part, meaning that the coefficients

gi and ϵif should be determined here for the cells with higher frequency (i ≥ 2), in a second multi-

objective identification. A bulk cell was also defined with a frequency at 1KHz (which may change

depending on the FE model and the mean size of the elements) and a gp = 10% fraction.

The tests taken to compute the viscous fraction, are the ones with no prestrain, moderate amplitude

(2.5%) and every available frequency. The first part of objective function is based on dissipated energy

and is given by

fgHF (gi, βi) =
∑
nfreq

(
W comp
d

AσAε
− W test

d

AσAε

)2

. (3.7)

For the second part of the functional, the tests used as reference were the ones with no prestrain,
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moderate frequency (5Hz), and every amplitude available. The second part of this functional is based

on the loss of secant modulus and may be expressed as

fβHF
=

∑
namp−1

((
Kcomp
t |iamp

− Kcomp
t |iamp+1

)
−
(
Ktest
t

∣∣∣
iamp

− Ktest
t

∣∣∣
iamp+1

))2
. (3.8)

Again, both objective functions were normalized to avoid domination of one function over the other.

Figure 3.16 illustrates the experimental moduli used as reference for identification in frequency

and its respective identified model curve.
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Figure 3.16: Comparison of tangent modulus evolution with frequency between identified model and
experimental results. Left: shear specimen, right: tension/compression specimen. Top: material 1,
bottom: material 2

Figure 3.17, on the other hand, illustrates the moduli evolution with amplitude and the comparison

between identified model and experimental results.
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Figure 3.17: Comparison of tangent modulus evolution with amplitude between identified model and
experimental results. Left: shear specimen, right: tension/compression specimen. Top: material 1,
bottom: material 2

Despite not perfectly capturing perfectly the evolutions with frequency and amplitude, the errors

are no larger than 15%, and the errors on the tension/compression specimens are more likely tied to

the hyperelastic moduli difference rather than the viscoelastic cell identification itself. The stiffening

with frequency and the softening with amplitude seem to be fairly well reproduced by the model.

3.3.4 Identification results

To ensure the robustness and stability of the procedure, sequential optimization of the three ob-

jectives was performed until convergence. The final results are displayed in table 3.1.

The extremely low value for c2 in the two material indicate very low stiffening for large strains.

Regarding the viscous cells, there is a clear concentration on the mid frequency cell, which may reflect

too much weight on the second part of the viscoelastic functional (established at 5 Hz), which could

be compensated with better weighting on the objective functions. The difference in the values of ϵf

also indicates that the high frequency cells are far from the hysteretic transition.

The higher dissipative fractions on the second material indicate that it is much more damped than

the first one. The difference in the stiffening in shear and in tension/compression may justify another
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Table 3.1: Identification results.

c1 [MPa] c2 [MPa] c3 [MPa] g ϵf f [Hz]

Material 1 0.37 0 2.2

29.6%
0

9.2%
0

2.5× 10−2

4.4× 10−2

2.6× 10−3

1.7× 10−4

0.005
0.5
5
50

Material 2 0 0 3.55

30.6%
0

39.5%
0

2.2× 10−2

1.9× 10−2

2.3× 10−3

1.7× 10−4

0.005
0.5
5
50

separation of behaviors and the utilization of different Maxwell cells. The possibility to use different

reference curves and place Maxwell cells accordingly may present better results while demanding a

more elaborate model.

From a practical point of view, this kind of identification provided acceptable parameters to simu-

late realistically the material. More accurate parameters may be found using the same type of routine,

by tweaking or changing the objective functions, using more cells and use more data for identification.

Although, the utilization of more cells and more data for those routines deemed to be unpractical as

the more data and parameters are added, the more local optima are added and more time is spent on

the optimization. For these reasons, the focus was placed on a different identification method.

3.4 Non-parametric and selected order identification

Since the results of the initial classical optimization were not sufficiently convincing, the later

developments detailed in chapter 1 were used. Non parametric identification was performed first and

order selection allowed easier nearly graphical initialization of selected parametric models.

For the hyperelastic part, non parametric identification consists in the extraction of the instanta-

neous stiffness from different triangular tests, after the threshold of the hysteretic relaxation, as shown

in section 3.4.1.

For hysteretic relaxation, section 3.4.2 considers relaxation phases extracted from triangular tests

and proposed a low order Iwan model fit.

For viscoelastic behavior, instant modulus computations were still under developements and first

harmonic complex modulus approximations were used to identify load fractions and choose appropriate

frequencies.
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3.4.1 Hyperelastic behavior

To obtain a continuous representation of the hyperelastic component, the triangular tests were

used. The separation of hysteretic relaxation was made by defining a specific distance from the turning

point. To generate a continuous model, a 3rd order polynomial piece-wise interpolation (ensuring 2nd

derivative continuity) was made on these curves.

The link with 3D coefficients can be made by analytic developments tying the reduced invariants

to the theoretic imposed deformations illustrated in 2.3.4, by using, for simple shear

Css =

1 γ 0
γ 1 + γ2 0
0 0 1

 (3.9)

Īss1 (γ) = γ2 + 3 (3.10)

Īss2 (γ) = γ4 + 5γ2 + 6 (3.11)

and for tension/compression

Ctc =

λ2 0 0
0 λ−1 0
0 0 λ−1

 (3.12)

Ītc1 (λ) = λ2 + 2λ−1 (3.13)

Ītc2 (λ) = λ4 + 2λ+ 3λ−2 (3.14)

These equations imply that for a 3D model, any invariant based hyperelastic model may be seen

as a parametric form that fits stress based on these deformation polynomials. By selecting specific

models, such development can be made upto build stress in function of strain for both cases, and

finally check if the model is capable to appropriately represent specific behaviors, such as the stiffness

drop on simple shear specimen, and eventually tune the model to do so. This procedure should remain

as a perspective.

The extracted non parametric curves for the materials is illustrated in figure 3.18, and used all the

triangular tests available after the removal of the hysteretic relaxation.
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Figure 3.18: Non-parametric hyperelastic material models. Left: shear, right: tension/compression.

The same procedure was made to the part tests where all triangular tests were used after removal

of hysteretic relaxation, yielding the curves in figure 3.19.
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Figure 3.19: Non-parametric hyperelastic part models.

3.4.2 Hysteretic relaxation

The hysteretic curves are extracted from triangular tests. As section 1.4.2 illustrated, the best fit is

made through ratios to the hyperelastic modulus. Indeed, normalizing those curves and plotting them

altogether seems to provide proper reference non-parametric hysteretic model. The distance from the

turning point where behavior is considered hysteretic is visible in figure 3.20, 50% for shear and 20%

for tension/compression. In the figure, all the material triangular tests (instantaneous modulus as

function of distance to the turning point normalized by the hyperelastic modulus) are plotted in gray

dotted line, and the mean value for all of them is marked as the solid black line.

The discretization of this curve with a selected order model (Iwan model), may be done simply by

choosing distances to the turning point and relaxation gains associated with drops. The placement
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of the Jenkins cells is illustrated in figure 3.20 for the material specimens, in green, using the mean

curve as reference. As found earlier with the first identification, the hysteretic dissipation is much

more pronounced for the second material.
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Figure 3.20: Hysteretic relaxation. Left: shear , right: tension/compression. Top: material 1, bottom:
material 2

For the part test, the distance to the turning point used to separate the hyperelastic behavior is

1.5mm for both directions, as seen in figure 3.21. Again, all triangular test data is plotted n the figure

as gray dotted line, with the black solid curve representing the mean value of all of them, used as

reference for the green solid line, correspondent to the identified model behavior.
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Figure 3.21: Hysteretic relaxation for part tests. Left: x axis, right: z axis.

3.4.3 Viscoelastic frequency evolution

For the sine tests, the vicoelastic behavior is always influenced by the hysteresis (Payne effect).

It is thus not possible to obtain a non-parametric model of purely viscoelastic behavior. To circum-

vent the effects of hysteresis on sine tests, one may either try to compensate for the amplitude, or

select a single low amplitude (as was made for the initial identification routine). The solution retained

is first to normalize by the hyperelastic modulus as seen in figure 1.25 and second to work on vis-

coelastatic gains by removing the low frequency offset at 0.1Hz. The identification is then performed

on (E(s)−E(0.1Hz))/E0.

In figure 3.22, the first harmonic storage modulus (less the low frequency contribution, normalized

by the hyperelastic modulus) extracted from all exploitable sine tests are plotted as light dotted lines.

The mean moduli for all amplitudes at a given level of prestrain (denoted in the legend as C0) lead

to thick dashed lines. The mean of all curves is shown as a solid black line, used as reference for the

identification.

The selected order parametric representation may be achieved by a Maxwell cell placement which

is largely discussed by [12]. Here, the Mawxell asymptotes, defined by a cell frequency and a gain

were used to graphically place the cells. The solid green curve in figure 3.22 illustrates the expected

asymptotic behavior in frequency for the material specimens.

Again, as for the hysteretic, the same conclusion may be drawn regarding the dissipation for the

material 2. Here, though, the effect of prestrain is much more visible in the tension/compression test,

which may suggest the utilization of a non-linear gain with static strain. Although, the utilization of

a single curve was deemed to be accurate enough for the present work.
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Figure 3.22: Viscoelastic fitting for materials. Left: shear , right: tension/compression. Top: material
1, bottom: material 2

The same procedure was applied to the part test, also using all exploitable sine tests, and illustrated

in figure 3.23, but here the results are much less dispersed as function of the prestrain. This might

be an indication that that areas with high strain levels inside the part are sufficiently small to have

smaller global effect than seen in material tests.
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Figure 3.23: Viscoelastic fitting for part. Left: x axis, right: z axis.

Despite retaining almost all data, there are a few points in the part test with low amplitude and
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high prestrains that show negative modulus evolution with frequency, which means an unrealistic

behavior, and should be examined.

3.5 Synthesis and perspectives

3.5.1 Test synthesis

To synthesize all the data collected from each test, a synthetic plot is proposed in figures 3.24

to 3.29. In the top, in a kind of map, one sees the results of the mean first harmonic of sine tests, with

the amplitude depicted in the x-axis, and the frequencies illustrated in the color scale. The red solid

lines shows the hyperelastic curve extracted from the triangular tests, with an averaged value for the

ranges with more than one test. The green dashed ones shows the hysteretic relaxation, also associated

to triangular tests, which were used to determine the associated non-parametric model. The dotted

lines show two different extraction points from the relaxation modulus (two different points of the

curve in figure 3.11 right for all the steps). The data for the first material is shown in figures 3.24

and 3.25.
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Figure 3.24: Summary of tension/compression tests for material 1 m1t. Top: Storage modulus. Bot-
tom: loss factor.
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Figure 3.25: Summary of shear tests for material 1 m1s. Top: storage modulus. Bottom: loss factor.

The points extracted from the relaxation functions are only reasonable representations for the

higher frequency (0.04Hz) in shear. The fact that there are several outliers and unreasonable val-

ues (especially those with more than 20% in loss) indicate that viscoelasticity is not an appropriate

hypothesis for those levels of frequency.

Figures 3.26 and 3.27 summarize the test results for the second material.
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Figure 3.26: Summary of tension/compression tests for material 2 m2t. Top: storage modulus. Bot-
tom: loss factor.
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Figure 3.27: Summary of shear tests for material 2 m2s. Top: storage modulus. Bottom: loss factor.

The second material show much higher loss factors and modulus drop more than the first material,

which indicates a much stronger material damping. The same take may be made on the multi-step

relaxations extracted as for the first material.

Figures 3.28 and 3.29 illustrate the summary from the part tests in x and z axis, respectively.
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Figure 3.28: Stiffness and loss summary for part test in x px. Top: storage stiffness. Bottom: loss
factor.
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Figure 3.29: Stiffness and loss summary for part test in z pz. Top: storage stiffness. Bottom: loss
factor.

The behavior at 0.04Hz for the part is in line of what is seen in the literature of viscoelasticity, while

the behavior at lower frequency (0.01Hz) does not seem to respect this hypothesis, indicating that the

slowest relaxation cells should be put in the range between these two frequencies, if one seeks a very

refined representation of viscoelasticity. One may see that the x axis is more dissipative, and it is due

to the fact that the second material m2 is mostly oriented in this direction. This direction is aligned

to the vehicle longitudinal direction and it is more damped to dissipate the energy injected by steep

obstacles. Meanwhile, the other direction is aligned to the vertical direction and is less damped to

avoid stiffening in low amplitudes and thus filter HF road noises that would otherwise be transmitted

to the chassis.
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3.5.2 Perspectives and conclusions

The obtained results from classical identification routines may be directly exploitable into finite

element models. The proposed non-parametric routine, on the other hand provides results readily

implementable as 0D models into multibody models.

The utilization of a single material to emulate the different behaviors (in simple shear and ten-

sion/compression) means that the material would have to split contributions, and instead of analyzing

the model in terms of a single deviatoric core, from where the relaxation is computed, one may divide

in two different deviatoric parts. For instance use as potentials ψ(f(γ)) and ψ(g(λ)), and associate

different viscoelastic and hysteretic relaxations to them.

Beyond the extension of the proposed identification to 3D models, the tests should be verified.

Hypothesis made on the constant state within a section must be verified, which can be made via a

finite element model. The other major simplification was the assumption of incompressibility for both

material tests, which can also be addressed with a FE simulation, by testing different bulk moduli.

Validation of the identified chosen materials could be made with a part simulation that could be

directly compared to tests, if one accounts for pre-strain. The utilization of hyper-reduction techniques,

which will be described and illustrated in chapter 4 should be used to enable the possibility to simulate

the whole test campaign.

In terms of extrapolation, the simulation of the whole bushing in coupled loads (displacements

imposed in several directions/angles at the same time, for instance) could be generated to emulate

real use conditions, as will be shown in chapter 5. These conditions are quite difficult to replicate in

controlled conditions or even in testbeds, albeit they are necessary for generating 0D models capable

of representing such coupling effects. Other perspective would be to add contact, as the removed

plastic limiter plays a fundamental role when it comes to the stiffening within larger displacements,

generating a bump stop effect.
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From 3D to 0D
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4.1. INTRODUCTION

4.1 Introduction

The finite element method (FEM) is the most established tool for solid structural analysis. It pro-

vides a direct well controlled process to address simulation accuracy by accounting for spatial detail

and wavelengths. Following the system model perspective used for FEM implementations throughout

the MATLAB based SDT [8], section 4.2 summarizes classical development of FEM formulation using

the notion of strain observation and stress command with a focus on configurations where materials

undergo large deformation which were first discussed for material behavior in section 2.2. The sec-

tion then discusses the respective advantages and limitations of implicit and explicit time integration

schemes.

The model size of FEM model is driven by geometric detail, gradient sizes and wavelengths which

decrease with frequency. In terms of system response, the driving factors are spatial distribution of

loads and frequency content of the associated inputs. As a result, the actual kinematics can typically

be represented by a subspace that is orders of magnitude smaller than the model size. Section 4.3

discusses classic techniques to learn kinematics, build bases and thus generate reduced order models

with a lower number of generalized degrees of freedom.

When considering non-linear material behavior, possibly including internal states as discussed in

chapter 2, kinematic reduction still leaves the costly evaluation of material evolution laws at a large

number of points. Hyper-reduction is thus introduced as a second phase of model reduction, where

one seeks a sparse set of integration hyper-points allowing an accurate approximation of non-linear

dependencies at a much lower numerical cost. Section 4.4 reformulates existing Discrete Empirical

Interpolation Method (DEIM) and Energy Conserving Sampling and Weighting (ECSW) method in

the light of the input/output formulation detailed in section 4.2.

After the first contribution of reformulating kinematic reduction and hyper-reduction methods in a

input/output perspective, the chapter ends with an application section 4.5 where the potential of the

proposed methods is evaluated for the case of a rear twist beam axle articulation (this corresponds the

ISMA 2020 Paper [4]). Details of the actual implementation are analyzed, performance is discussed

and capabilities for extrapolation are illustrated. With the experience drawn from this example, the

chapter ends with discussion of perspectives.

4.2 Finite element method

4.2.1 Principles

The finite element method is detailed in many texts [55, 52]. The objective of this section is to

clarify the input/output formalism used for non-linear simulations in SDT [8]. The method com-

bines a kinematic description of fields and a derivation of equations of motion using the virtual work
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4.2. FINITE ELEMENT METHOD

principle (2.14).

Within elements whose shape is simple enough to use piecewise polynomial shape functions N

that depend only on position, kinematic fields are described as a linear combination of shape functions

with time dependent degrees of freedom (DOF). In other words, displacements u are linearly related

to time dependent degrees of freedom q by shape functions so that

ugi (t) = [Ng
i ] {q(t)} , (4.1)

with g the sample points, which are typically taken to be those of a Gauss quadrature. For strain,

the base operation is to observe the deformation gradient at a given observation point. As it is also

a linear function of degrees of freedom, it can be written as a time independent linear observation

equation or matrix product

F gij = δijui,j =
∑
i∈Ω

[
Ng
i,x,y,z

]
(xg, yg, zg) {q} = δij +

[
Cgij
]
{q} (4.2)

with C the constant observation matrix that gives the polynomial derivatives at the integration points.

The virtual work principle (2.14) derives equations of motion from the fact that the difference

between internal forces and external plus inertial forces must be zero. In other words, one has

{r} =
∑
g

wgJg

([
Cgij
]T [

F̂ (q)
]T
Sg − [Ng

i ]T {fvi}
)

= 0 (4.3)

with wg the weights of the chosen integration rule, Jg the Jacobian of the geometric transformation

from the reference geometry to the current one, and

[
F̂ (u(q))g

]
=



1 + u1,1 0 0 u2,1 0 0 u3,1 0 0
0 u1,2 0 0 1 + u2,2 0 0 u3,2 0
0 0 u1,3 0 0 u2,3 0 0 1 + u3,3
u1,2 1 + u1,1 0 1 + u2,2 u2,1 0 u3,2 u3,1 0
0 u1,3 u1,2 0 u2,3 1 + u2,2 0 1 + u3,3 u3,2
u1,3 0 1 + u1,1 u2,3 0 u2,1 1 + u3,3 0 u3,1


(4.4)

or equivalently, extending the 4th order index to further lines and columns,

F̂ = 1ijklFkl =



F11 0 0 F21 0 0 F31 0 0
1/2F12 1/2F11 0 1/2F22 1/2F21 0 1/2F32 1/2F31 0
1/2F13 0 1/2F11 1/2F23 0 1/2F21 1/2F33 0 1/2F31
1/2F12 1/2F11 0 1/2F22 1/2F21 0 1/2F32 1/2F31 0

0 F12 0 0 F22 0 0 F32 0
0 1/2F13 1/2F12 0 1/2F23 1/2F22 0 1/2F33 1/2F32

1/2F13 0 1/2F11 1/2F23 0 1/2F21 1/2F33 0 1/2F31
0 1/2F13 1/2F12 0 1/2F23 1/2F22 0 1/2F33 1/2F32
0 0 F13 0 0 F23 0 0 F33


(4.5)

In this expression, the link with command matrix B, defined as

B = CTwgJg, (4.6)
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is obtained considering the integration of all stress components as inputs in a large {Sg}, giving internal
forces,

F int = BSg. (4.7)

Considering the inertia forces, virtual work principle can be written as a set of structural equations

given by

[M ] {q̈}+ [B] fmaterial([C] {q} ,
{
UI
}

) = Fext (4.8)

where stress observations give the fmaterial vector and UI are the material internal states which are

associated with spatially independent material evolution equations such as 2.42, which use strains

[C] {q} as inputs.

For a number of iterative algorithms it is useful to compute the derivative of the residual with

respect to states. For the material laws this corresponds to the model tangent stiffness.

The derivative of the stress with respect to its dual strain yields a fourth order tensor, called

material tangent stiffness tensor, expressed as

Dijkl = ∂Sij
∂ekl

, (4.9)

which may be transformed into a second order tensor using the engineering notation,

S =

S11 S12 S13
S21 S22 S23
S31 S32 S33

→


S11
S22
S33
S23
S31
S12


, (4.10)

as both S and e are symmetric. For linear materials, this tensor is constant and defines completely the

material law, while for nonlinear models, the material stiffness tensor must be updated at the current

point which depends on displacements and internal states.

The derivative of the residual with respect to degrees of freedom is called the tangent stiffness,

given by

[KG] =
∫

Ω0
Sijδuk,idul,j +

∫
Ω0
δe : ∂S

∂e
: de

=
∑
g

wgJg [Cg]T
([
F̂
]T

[D]
[
F̂
]

+ Ŝ

)
[Cg]

(4.11)

where Ŝ is the injection of the components of the second Piola-Kirchhoff stress tensor into the following
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4.2. FINITE ELEMENT METHOD

matrix

Ŝ =



S11 0 0 S12 0 0 S13 0 0
0 S11 0 0 S12 0 0 S13 0
0 0 S11 0 0 S12 0 0 S13
S21 0 0 S22 0 0 S23 0 0
0 S21 0 0 S22 0 0 S23 0
0 0 S21 0 0 S22 0 0 S23
S31 0 0 S32 0 0 S33 0 0
0 S31 0 0 S32 0 0 S33 0
0 0 S31 0 0 S32 0 0 S33


. (4.12)

In the implementation of (4.11), the computation of the gradient as [C] {q} is a base functionality

of the FEM code, while the computation of the inner matrix

([
F̂
]T

[D]
[
F̂
]

+ Ŝ

)
is considered to be

part of the constitutive law implementation which thus includes the large deformation effect.

For solving the remaining differential equation in time, there are two main types of integration

schemes - explicit and implicit, and each one has its pros and cons.

4.2.2 Implicit schemes

Implicit schemes [56] are the ones where the integration depends not only on the last time-steps,

but also on the next one, which allows the use of larger timesteps. There are several different ex-

plicit schemes, and the one implemented for this work is a Newmark scheme with Newton iterations.

Figure 4.1 summarizes the implementation made for the implicit scheme.

DoStep
tn+1 = tn + ∆t Time step

q0
n+1 = qn + ∆tq̇n +

(
1
2 − α

)
∆t2q̈n Predict displacements

q̇0
n+1 = q̇n + (1− β) ∆tq̈n Predict velocity
q̈0
n+1 = 0 Predict acceleration
Iter k: while

∥∥rk
n+1/Fext

n

∥∥ > tol Iteration loop

If (Jacobian update criterion), JN = ∂rn
∂qn

Compute Jacobian

Residual // loop on for each NL
∇ukn+1 = Cqkn+1 Compute strains and get internal states[
Skn+1,UI

k

n+1

]
= fmaterial

(
∇ukn+1,UIn

)
Compute stresses and internal states

rk = BSkn+1 +Mq̈kn+1 −Fextn+1 Compute residuals on DOF

qk+1
n+1 = qkn+1 + J−1

N rk

q̇k+1
n+1 = q̇kn+1 + β

∆tαJ
−1
N rk

q̈k+1
n+1 = q̈kn+1 + 1

∆t2αJ
−1
N rk

Compute corrections

StoreState increment storage strategy
qn+1 = qkn+1, q̇n+1 = q̇kn+1, q̈n+1 = q̈kn+1 Propagate DOF values

UIn+1 = UIk

n+1 Propagate internal states

Figure 4.1: Implementation of the implicit Newmark scheme in SDT
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It is important to remind [57] that the values of α = 0.5 and β = 0.25 ensure the unconditional

stability of the scheme and there is no extra dissipation or energy injected on the differential equation,

but those may be changed if one seeks different convergence parameters.

Implicit schemes may have severe convergence issues, especially on stiffening conditions, like contact

or high compression. Jacobian matrix may be assembled either by taking the derivative of the residual

or by assembling the geometric stiffness matrix KG, taking into account inertial and external forces

terms. Both methods of assembly are very costly both in time and memory. Thus, Jacobian update

criterion is the most critical issue for this type of scheme as it involves a delicate tradeoff between

radius of convergence and implementation time.

Other characteristic from implicit schemes is that its larger timesteps also act as a filter to high

frequency oscillations. Due to the use of larger timesteps, models require formulations that are accurate

relatively far from linearization point.

4.2.3 Explicit schemes

Explicit schemes [56] depend only on the last timestep to predict the next one, by using iterations

based on acceleration and a Jacobian corresponding to a mass matrix built as diagonal by using

integration at nodes.

DoStep
tn+1 = tn + ∆t Time step

qn+1 = qn + ∆tq̇n+1/2 Compute displacements

Residual // loop on for each NL

∇un+1 = Cqn+1 Compute strains and get internal states[
Sn+1,UIn+1

]
= fmaterial

(
∇un+1,UIn

)
Compute stresses and evolve internal states

rn+1 = BSn+1 −Fext Compute residuals on DOF

q̈n+1 = M−1 (−rn+1) Compute accelerations

q̇n+1 = q̇n + dt
2 q̈n+1 + dt

2 q̈n Compute velocities

q̇n+ 3
2

= q̇n+1 + dt
2 q̈n+1 Estimate speed

StoreState increment storage strategy

U0
n+1 ←

{
0
UIn+1

}
Propagate internal states to U0

Figure 4.2: Implementation of the explicit Newmark scheme in SDT.

The use of a diagonal Jacobian and lack of need to evaluate the geometric stiffness makes timestep

evaluations considerably faster than for implicit schemes, but comes at the price of a conditionally

stable schemes. Time steps must be smaller than the inverse highest characteristic frequency in the

model, dependent on the smallest element size and the wave speed. A classic evaluation [52] is done
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at element level using

δt = min
(

2
ωmaxelt

)
= min

(
Le
cd

)
= min(Le)

max
(√

λ+ 2µ
ρ

) (4.13)

with ωmaxelt the greatest eigenvalue for an element, cd the dilatational wave speed, µ and λ are Lamé’s

parameters, Le is the element length, and ρ the density. Since nonlinear models have evolving stiffness,

the linearized parameters also evolve, and the time step given by the formulation above applied to the

initial position may be too large for some points of the trajectory.

Explicit schemes have frequency content up to the maximum element frequencies and thus present

high frequency waves/modes that are not representative of the physical behavior and should be

damped, either using numeric dissipation of the time scheme [58, 59], or damped through material

laws, or filtering the results. In particular, bulk waves must be treated as described in section 2.4.2.

4.3 Kinematic reduction

4.3.1 Motivation

In order to make the computations faster, the first approach is to reduce the number of degrees of

freedom (DOF) of a model. The kinematic reduction, more commonly known as model order reduction

in the literature, consists of defining base T such that

{u(t)}N = [T ]N×NR {q(t)}NR . (4.14)

The choice of a proper subspace restraining the response u to the subspace spanned by a selected base

T using reduced coordinates q, has been historically viewed using ad hoc techniques combining static,

eigenvalue and various iterative approaches, but would now often be placed in the broad category of

subspace classification problems.

Finite element models are a first level of reduction where T is built as a union of piecewise polyno-

mials. Other techniques [60, 9, 61] can be analyzed by considering a learning, a basis generation phase

and possibly iterative methods combining the two phases as will be detailed in the next sections.

With the subspace selected, the same Ritz approach as the one used for FEM is used. Equa-

tion (4.14) gives the kinematic reduction and the principle of virtual work which led to (4.8) is reused

to obtain a reduced set of equations of the same form

[MR] {q̈R}+ [BR] fmaterial([CR] {qR} ,
{
UI
}

) = Fext (4.15)

with reduced observation given by CR = [C] [T ], reduced command given by BR = T TB, reduced
mass given by Mr = T TMT . Mass normalization of the base T is a good strategy to accelerate

computations in explicit schemes where M−1 is needed, as with the normalization, one has Mr = 1.
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While kinematic reduction limits the number of kinematic states (degrees of freedom), it does not

change the size of fmaterial which is defined at all material points used for full model integration.

Thus if integrating material evolution equations represents a significant time, the model cost is still

great. Generating a sparse approximation of fmaterial by using the a limited number of material

points, reduces the number of columns of B and rows of C, will be the object of the next section on

hyper-reduction.

4.3.2 Learning methods

Learning phases should reproduce behavior of interest. The learning phase is thus a tradeoff

between numerical cost and representativity of trajectories to be reproduced by the reduced model.

Classical component mode synthesis uses a combination of static and eigenvalue computations for

learning. More recently, the use of snapshots extracted from transients has gained interest. It is worth

noting that using snapshots is the principle of experimental modal analysis and has been used for

much more time than for numerical applications.

When the behavior is static and described by displacements at a restricted number of points Guyan

condensation [62] or Schur complement is used. Separating the model in master and slave DOF and

considering a linearized model, one has[
Kmm Kms

Ksm Kss

]{
qm
qs

}
=
{
F
0

}
, (4.16)

leading to the reduced basis given by{
qm
qs

}
=
[

I
K−1
ss Ksm

]
{qm} = [T ] {qm} . (4.17)

Note that static responses to loads have also been considered with marginal differences in the

presence of rigid body modes [63].

When the only available information is bandwidth, modal truncation is relevant. The modes,

solution of the eigenvalue problem

[
K −Mω2

j

]
{ϕj} = {0} , (4.18)

form an ordered series and one can keep the vectors associated with frequencies within the band of

interest.

Since load locations and simulation bandwidth are typically known, component mode synthesis

methods [63] combine static responses and modes. Classical combinations are enforced static displace-

ment and fixed interface loads, the Craig-Bampton method, and applied load static and free interface
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modes, the McNeal method. Extensions of these methodologies are linked to the consideration of

additional loads for parameter or non-linear changes [64].

While combining static and eigenvalue solution is very practical for linear systems, choosing lin-

earization points can be a difficulty. A number of authors have thus considered transient based learning

assuming that a reasonable reduction subspace is generated by the span of a number of snapshots [65]

span[T ] = span
[
q(t1) . . . q(tN )

]
(4.19)

Finally, it is worth noting that a last traditional approach is to introduce error evaluation as a

basis enrichment mechanism. A first reduced model is used to obtain an approximation of the response

and a residue evaluation is used to enrich the basis in a direction allowing error minimization, see for

example [66] for applications to component mode synthesis.

4.3.3 Basis generation

From a set of vectors, possibly combination of static, eigenvalue and transient learning methods,

the second phase is to build a basis. Basis generation algorithms must guarantee vector independence

even in the presence of round off errors and possibly order contributions to allow truncation or seek

to induce sparsity by generating vectors with disjoint support.

For basis independence, Gram Schmidt algorithms or partial LU decomposition are the classical

approaches. To combine orthonormal bases with the idea of ordering contributions, the Singular Value

Decomposition SVD is the classical approach. Thus the combination of snapshot learning and SVD is

typically known as a POD (Proper Orthogonal Decomposition) [65].

Using a learning phase, which yields n displacement ql, containing m DOF, the singular value

decomposition of the response is given by

[ql]m×n =
∑
i

Ui(x)(ΣiVi(t)), (4.20)

where UTU = 1m, Σ is diagonal, and V TV = 1n. Each vector of the left singular shapes Ui is a spatial

base vector, while the product from the singular values Σi with the right singular shapes is a degree of

freedom that describes the evolution of each of the left singular shapes in time. Numeric procedures for

the decomposition will not be discussed here, though a visual interpretation is illustrated in figure 4.3.
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Figure 4.3: Visual interpretation of a singular value decomposition.

With a proper choice of norms [67], SVD and modal decomposition can be shown to be equivalent.

Thus as high frequency modes were truncated as being not relevant because less likely to be excited

by low frequency signals, shapes associated with low singular values are often truncated to generate a

small rank base. Sometimes this reduction is called principal component analysis.

For parametric problems described by a large number of dimensions, higher order variable separa-

tion like

ur(t, x, p1, . . . , pn) ≈
∑
i

fi(x)igi(t)
n∏
k=1

hki (pk) (4.21)

provides a framework which received a lot of attention. For a parametric set of data ur that could be

computed using a full FEM model, one seeks a separated variable approximation (4.21). Taking only

time and space as the only separate functions, one has exactly a singular value decomposition, if one

sees fi(x) as each vector of the retained base and gi(t) as their evolution in time.

The argument of the proper generalized decomposition (PGD) method [68] is that it can be less

costly to approximate parametric evolution of responses in the form (4.21) than to restrict the as-

sumption using a linear combination of fi(x) spatial shapes. This argument has motivated a body

literature on iterative procedures to build separated variable approximations.

The gain can be significant when using more parameters, where one needs to compute the response

only for each value i. If such separation is not used, one must compute the whole response for each

parameter. But the approach may be completely impractical if the parameters correspond to transient

excitation signals for which no small order separated variable approximation exists.

For the application considered in this work, the choice to retain the material behavior on the model

representation, and the necessity to run the model on transient inputs of multibody models, for which

variable separation will have a large order, motivates the use of classical reduction based on spatial
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bases.

4.4 Hyper reduction: lower cost integration of non-linear terms

As expressed in section 4.2, for both explicit and implicit schemes, the residual computation

involves the evaluation of the material law on every integration point, despite the kinematic reduction

involving the base T . Thus, a second layer of reduction is needed and it is usually called hyper-

reduction. The main idea is to compute the internal forces with reduced computational cost.

These methods build reduced integration routines to compute stress only in a few points and

rebuild internal forces accurately for displacements spanned by the reduced base. In the present work,

the DEIM method will be described, and the ECSW method will be used, as it ensures stability.

4.4.1 Discrete Empirical Interpolation Method (DEIM)

The idea of Chaturantabut and Sorensen [69] is to project the forces exerted by the elements into

a reduced base,

F intl = BS ≈ Af (4.22)

where F intl is the internal forces yielded from a learning simulation, A is the projection base and f

corresponding amplitudes obtained from SVD of F intl .

Choosing to observe internal forces on only a few DOF by using a Boolean observation matrix E,

leads to

ETF intl = ETAf (4.23)

so the reduced force amplitudes may thus be estimated using

f ≈ (ETA)−1ETF intl . (4.24)

As a result, in reduced simulations, the internal forces may be computed using the form

F intr ≈ A(ETA)−1ETF int (4.25)

which is sparser since non-linear material behavior is only computed at elements selected by matrix

E. Those elements may be optimally selected by algorithms specialized on rebuilding the full internal

forces.

There are iterative variants, for this method, such as the one proposed by [70] whose idea is to

generate a base for each internal variable field, introduce a residual evaluation and possibly perform

some full steps when this evaluation indicates notable error levels.
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4.4.2 Energy Conserving Sampling and Weighting (ECSW)

As the DEIM only relies on ensuring that internal forces are properly projected, it does not ensure

accuracy or stability. This motivated the method proposed in [71] to affordably compute the nonlinear

forces, also with the idea to select only few integration points to compute the internal forces, but now

with the objective that the computed work of deformations in the reduced base is approximately the

same as the work for the full model in the learning conditions.

From the learning conditions, one retains the stresses Sl, and the assembly matrices B and C. From
a kinematic reduction on such learning conditions, one obtains a kinematic reduction base [T ]N×NR.

The work contribution {br} for the NR reduced DOF at NT time snapshots may then be written in

different forms,

{br}NR×NT =
[
T TB

]
NR×NG

{
Slg

}
NG×NT

=
[
[CT ]T Sg(t)

]
(NR×NT )×NG

{Jgwg}NG×1

= [G](NR×NT )×NG {Jgwg}NG×1

(4.26)

The first form is the one actually used in the FE routines with T TB giving the work or each strain

component on the reduced basis. The second form explicits the relation between the B at the weights

wg associated with each integration point. The last form rewrites the same reduced work components

{br} as a linear combination of weights. This last form motivates the proposed algorithm. One seeks

a minimum set E of columns of G, or hyper integration points, and the associated positive weights

w∗
g that give a good approximation of the learning work contributions {br}. In other words, one seeks

Find w∗
g that minimizes

∥∥∥w∗
g

∥∥∥
0
, subject to

∥∥∥{br} − [G]
{
w∗
g

}∥∥∥
2
< εtol and w∗

g > 0. (4.27)

Although, a minimization with a zero-norm is a problem with NP complexity, a sub-optimal

approach, called Sparse non negative least square method (SNNLSQ), consists in finding the point

that contributes the most to represent the matrix G, and then perform a regular LSQ with this point

and all previously added, until the constraints are satisfied. A summary of the implementation is

shown in figure 4.4.
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Learning simulation
B, C, wg, Slg, T , G Assembly, learning, kinematic reduction{
F lint

}
= [G] {wg} Get internal forces for training conditions

Initialize E = ∅, w∗
g = {0} Initialize set of active points and weights

Initialize εtol,r = 1 Initialize hyper-reduced command and tolerance
SNNLSQ

While r =

∥∥∥∥∥∥
F lint −G

{
w∗
g

}
F lint

∥∥∥∥∥∥ > εtol Optimization loop

r0 = F lint − [G]
{
w∗
g

}
Get difference from full internal load learning points

µ = [G]T r0 Compute points contributions for current residue
Find index jµ of max(µ) Get point with most contribution
E = E ∪ jµ Add Gauss point to active points set

η = minw∗
g

(∥∥∥F lint − [G]w∗
g

∥∥∥
2

)
Least square method to find optimal weights

Find index jneg of η < 0 Find computed negative weights
E = E\jneg Remove negative weights from active set

w∗
g(Ē) = 0 and w∗

g(E) = η Assign weights to active elements

BER = T TB(E)w∗
g , CER = C(E)T Update observation and command

Figure 4.4: Implemented hyper reduction scheme

Using the relations in equation (4.26), with the selected integration points E, one may define a

different assembly matrices BE and CE , so the numeric schemes defined in figures 4.1 and 4.2 remain

unchanged.

Another interpretation of this method is to consider the whole structure as a single element, with

the kinematic reduction giving the element shape functions and the selected points, the integration

rules [72].

Other developments on this method were made, such as [73] for contact implementation, [74] with

a on the fly reduction method and [75] which uses the DEIM method to expand the values of internal

variables to the whole structure.

4.5 Sample application

4.5.1 Model description

The full model is based on a rear suspension twist beam axle bushing shown in figure 3.1. It has

77mm of outer diameter and 45.5mm of inner diameter. It is composed of two different elastomer

materials surrounded by metal plates, but for this sample application (which happened earlier than

the identifications) a single material model was used.

Metal parts are considered rigid and the elastomer volume is modeled by the constitutive law pre-
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sented in section 2.4, without the nonlinear viscous coefficients with an underlying deviatoric Mooney-

Rivlin potential and linear isotropic model. The simulation constants are given in table 4.1. To reduce

the learning phase computational cost, the model is cut in four using its symmetry planes. The re-

tained model uses 24530 hexahedric elements with eight integration points each and a total of 76084

DOF. The exterior shell is fixed and a force is applied to the inner shell.

Table 4.1: Material constants used in simulation.

c1 c2 κ κv g τ ρ

1MPa 2MPa 20MPa 0.2MPa 1/3,1/3 1/12s,1/50s 2.33 ton/m3

4.5.2 Performance and accuracy of base implementation

The retained learning phase consists in the simulation of 3 cycles at 20Hz, with the explicit scheme

described in figure 4.2. The computation took 27.7 hours in a Core i5-6300HQ CPU at 2.3GHz.

Timestep used is 30% smaller than that computed by equation (4.13), based on the high frequency

asymptote. The constitutive law was called 49.06 × 109 times, for 250 × 103 timesteps. The peak

deformation is 37%. 30 snapshots per cycle are kept for the hyper-reduction step.

The SVD from the learning phase results takes only a few seconds as less than a hundred snapshots

are used. For kinematic reduction, 6 shapes are retained, defined by a threshold of 1% from the most

significant singular value. The first five shapes are shown in figure 4.5 along with the decrease of

singular values. The least important singular shapes already show localized deformations, which

indicates that retained shapes should be enough to capture global deformations in the model.
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Figure 4.5: First 5 vectors from the reduced model base and singular values amplitudes

For the hyper-reduction, a few minutes are needed to converge with the chosen kinematic base

and a tolerance of 10−4 on full internal work contributions. The final model retains 139 Gauss points
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out of 196240, meaning a 3 orders of magnitude reduction, which can be directly translated to CPU

time as illustrated in table 4.2. An important remark is that the error may be reduced to zero if one

decides to perfectly constrain the vector br, by using Nt ×Nr points (540 in the present case).

Table 4.2: Model characteristics. CPU time is for 3 cycle transient.

Number of DOF Number of Gauss points CPU time

Full model 76084 196240 27.7h

HR with 3 cycles 6 (10−2 on tolerance) 139 (10−4 on tolerance) 29s

HR with half cycle 4 (10−2 on tolerance) 48 (10−4 on tolerance) 12s

Figure 4.6 illustrates the distribution of the chosen integration points. They are mainly concen-

trated on tension/compression zones, indicating, as expected, that these regions are those where the

material behavior is more non-linear, and that most of the energy is concentrated there. The point

concentration would likely change if there were solicitations of the same magnitude in the transverse

direction.

Figure 4.6: Localization of integration points selected by the hyper-reduction.

Simulation on the hyper-reduced model takes less than 30 seconds on the same CPU, corresponding

to a speedup factor above 2000 (as shown in table 4.2). Figure 4.7 shows the very good match of the

global displacement of the full and hyper-reduced models.

A second hyper-reduction was made for only half cycle, from 1/4 cycle to 3/4 cycle, of the full

simulation to evaluate the possibility of using less data on learning phase. Figure 4.7 illustrates that

outside the transition associated with the first quarter cycle, the match is still quite accurate. The

differences in the first 1/4 cycle and the up part of the cycle are rather limited.
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Figure 4.7: Comparison between the force displacement diagram and the displacement on time for full
and hyper-reduced models.

The hyper reduced model is also accurate for predicting local deformations and stresses in the

selected points, as illustrated by figure 4.8.
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Figure 4.8: Stress comparison on three different points. The first on the center of the compressed
zone, the second on the sheared zone and the last in the edge of the compressed zone.

4.5.3 Extrapolations

Harmonic loading at low frequency is an interesting tool for performance assessment in terms of

comfort analysis, but there are other fields that require different solicitations. For example, lower

amplitude and higher frequency solicitations may be pertinent for evaluating vibro-acoustic behavior

when going over a rough road. Figure 4.9 show the response of the articulation at 100Hz and 50N of

amplitude. Both local and global behaviors are well represented by the hyper-reduced model, even if

these conditions are very far from the learning conditions.

Another benefit of hyper-reduction for explicit integration is the increased stability over timestep

size, since smallest element length is no longer taken into consideration, and also, high frequency

modes are filtered by the kinematic reduction. To illustrate the difference, articulation response to

a force impulse in Ricker form with 5kN amplitude and 5ms duration is shown in figure 4.10. For

the hyper-reduced model an explicit integration with a timestep increased by a factor 20 leads to a

response with no visible difference.
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Figure 4.9: Articulation response to high frequency and low amplitude: global behavior on the left
and localized stress on the right.
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Figure 4.10: Articulation impulse response.

4.6 Perspectives and conclusions

A first clear perspective is to perform the simulation in the full model (6 directions) and verify if

the responses are consistent on the hyper reduced model. Linear combinations of initial solicitations

(angle and compression for instance) could also be used to check the validity domain of the hyper

reduced model.

Another foreseeable possibility is to use the linearized geometric stiffness around a few different

points to build modal bases to generate the first reduction, and static solutions to span the stresses

to be used in a hyper-reduction attempt. Other possibility is the use of substructuring techniques [9]

to perform reductions in smaller and simpler subsections of the whole volume. Enrichment of the

objective function by weighting the energy at the interfaces also seems to be a good perspective for

multibody representation.

In terms of the model, one may try extrapolations on material parameters and possibly change

material models. Implementation of the materials developed in chapter 2 and identified in chap-

ter 3 is a very clear perspective in sight, with different post processing techniques such as computing

instantaneous dissipation, whose importance will be shown in chapter 5.
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In further perspectives, the utilization of the nominal pre-stress that is imposed to the material by

the manufacturing procedure should be accounted for. Other main unaccounted feature of the part

is the plastic limiter, which ensures the contact to the rubber earlier, generating a severe increase in

stiffness, and thus is vital for accurate models in large deformations, which was already developed in

[76, 73].
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Multi-body simulations
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5.1. INTRODUCTION

5.1 Introduction

Multibody simulation is a method of numerical simulation where systems are composed of various

bodies, normally with few DOF each (unlike for FEM, where hundreds of thousands of DOF are

usual). Connections between bodies may be modeled with kinematic constraints (such as planar joints,

universal joints, etc.) or force elements (such as springs, dampers or more elaborate user models, as

control elements). There is also the possibility of imposing boundary conditions in the joints and on

the bodies. There are also several types of solvers (static, kinematics, dynamics, eigensolvers, etc.)

enlarging the amount of information that can be extracted from such models.

This work is particularly interested on the force elements that connects the bodies and the in-

stantaneous dissipation on these elements is particularly addressed in section 5.2. The instantaneous

dissipation is introduced for hysteretic models, and is proven to be a crucial feature to be addressed

with a sample application on a powertrain suspension case, where two models with different instanta-

neous dissipations lead to different system-level behaviors.

In a second example, the simulation of a full vehicle going through obstacles was performed. The

computed forces on the twist beam axle articulation were directly compared to test results. Meanwhile,

the theoretic bases for an implementation of a hyper-reduced model are set and the forces are computed

for a 0D model identified in 3. The detailed reasoning for this case is presented in section 5.3. The

perspectives are discussed in 5.4 the first steps to integrate the developed models in chapters 1 and 2

are made.

5.2 Dissipated power: Powertrain suspension case

A new development is used here to clarify energy dissipation computations. The dissipation either

in time-domain or in frequency domain for linear viscoelasticity is well known and established [20].

For hysteretic dissipation, subsection 5.2.3 illustrates how it can be computed, while subsection 5.2.4

compares both dissipations for selected order models.

5.2.1 Model description

The first multibody application will be a thermal powertrain suspension. For the chosen vehicle,

the suspension consists of three mounts, located left right and below the engine. The ones at the top

hold the weight of the powertrain unit, and the one below (called anti-torque) transmits part of the

torque from the unit to the chassis. The scheme and the vehicle 3D model are shown in figure 5.1.

Those vibrations are usually predicted by a multi-body simulation of the powertrain unit, where

its components are simplified for faster implementation. For the current application the powertrain is

modeled by its inertia matrix and its gravity center. It is attached to a left mount, a right mount and
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5.2. DISSIPATED POWER: POWERTRAIN SUSPENSION CASE

an anti torque mount, which is located under the engine as figure 5.1 shows. Those three mounts are

attached to the chassis which is supposed to be fixed.

Figure 5.1: Left: Schematic positioning of engine mounts. Source: [2]. Right: 3D model of the engine
suspension

The powertrain suspension is meant to filter the engine vibrations above the idle engine regimen,

and thus limit noise and vibrations in the vehicle cabin. Therefore, the six rigid modes of the powertrain

unit are determined by these mounts and intentionally placed below the idle engine frequency. While

starting/stopping the engine, the ramp up/down of the regimen excites different frequencies that may

cause comfort issues. The parameters that are normally tuned to limit this issue are the ramp speed

and the modal damping, which means that the mounts dissipations need to be appropriately modeled

to accurately predict vibrations on the cabin.

5.2.2 Bushing models

The test on three mounts that compose the powertrain suspension were made before this work and

the understanding gained in chapter 1 and are thus not perfectly suitable, yet still quite relevant. Low

speed 10mm/min triangular displacement was enforced, and the results are illustrated by figure 5.2.
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Figure 5.2: Force/displacement response for the three tested mounts

A nonlinear elastic model was built using the mean test load for each displacement and is shown

in figure 5.3 left. An a posteriori view indicates that it would be a better approach to discard the
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beginning of the curves for a hyperelastic behavior.
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Figure 5.3: Non-linear elastic response (left) and dissipative forces (right) for the tested mounts

The remaining forces, shown in figure 5.3 right, computed subtracting the nonlinear elastic model

(figure 5.3 left) from the test raw results (figure 5.2) and are supposed to be the generated by a

dissipative model in parallel with the nonlinear elastic model. The left mount and the anti torque

mount, on a smaller scale, present significantly less dissipation around null displacement. It is probably

because a significant part of the rubber is not excited within small displacements, and after a certain

level, it is solicited by a self-contact. Such increase in stiffness coupled with increased dissipation

might actually be captured by the models proposed in chapter 1 with a proper test campaign.

Plotting the stiffness as function of distance to the turning point without the nonlinear elastic

contribution, in figure 5.4, as it was suggested in section 1.4.2, one can see that its evolution for small

distances to the turning point is quite similar to the ones provided by hysteretic models. The absence

of dissipation around zero displacement creates bumps in the curves between 6 and 10 mm, more

visible for the left mount. The end of the curve shows strong negative stiffness, due to the removal of

the poorly extracted nonlinear elastic part.
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Figure 5.4: Stiffness as function of the distance to the last turning point without non-linear elastic
component.

Considering the mean curve as the hyperelastic part was shown to be a poor approach chapter 1
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and in section 3.4, as it illustrates that removing hysteretic relaxation is a more accurate way to do it.

Using the strategy proposed in those parts, one reaches the curves illustrated in figure 5.5. Although,

all further analysis were carried using the mean hyperelastic model, with dissipation in parallell.
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Figure 5.5: Nonlinear elastic force and stiffness as function of turning point with new extraction
strategy.

To emulate the dissipation in parallel of the non-linear elasticity, two different models were used: a

viscous dissipation or mount force of the form f(u) + cu̇ and a hysteretic STS model, equation (1.42).

Both models were tuned to dissipate the same amount of energy for a harmonic solicitation with

frequency close to the powertrain idle frequency (around 10Hz), with the same amplitude as the

identification tests.

Figure 5.6 shows the dissipated power for both models of the right mount under the stated load,

and even if the total dissipation is the same, the profiles during the period notably differ. More details

on the computation of dissipated power for different models will be given in the following section.
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Figure 5.6: Dissipated power for a STS model and a viscous model under harmonic solicitation

The procedure provides a satisfactory fitting on both the right and the anti-torque mounts, though

for the left mount the difference is quite visible, as it is possible to see in figure 5.7. The left mount

present a different hysteretic loop, probably due to a contact that changes abruptly the stiffness. This

contact may have its non-linear elastic part modeled by the proposed procedure, but the associated
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dissipation cannot be modeled by viscous or hysteretic models uncoupled with non-linear stiffness. The

viscoelastic effects are concentrated right after the turning point due to the slow imposed velocity.
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Figure 5.7: Rubber mount test data and fitting with non linear stiffness and hysteretic or viscous
dissipation.

The parameters for each model are summarized in table 5.1.

Table 5.1: Model parameters

Mount STS Viscous

Right mount
K1 = 246.9N/mm
C = 23381N2/mm

c = 638.66Ns/m

Left mount
K1 = 321.6N/mm
C = 8842.5N2/mm

c = 477.84Ns/m

Anti-torque mount
K1 = 2239.3N/mm
C = 11959N2/mm

c = 578.4Ns/m

5.2.3 Dissipated power

As shown in figure 5.6 dissipated power notably depends on the model and understanding how to

compute and separate stored and dissipated energy is important.

Time domain instant power computation for a Maxwell model is quite simple, as one has for each

cell

P id = F iẋi = ciẋi
2

(5.1)
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which transcribes the fact that all the power injected into the damper is dissipated.

Figure 5.8 shows that dissipation for a Maxwell model responds with twice the solicitation fre-

quency, since both loading and unloading generate dissipation peaks. Power reaches a maximum that

depends on the gap between solicitation frequency and cell resonance (positioned at 1Hz). For solic-
itations below the cell resonance, the dissipation occurs at maximum speed (or low displacements).

For a solicitation far beyond the cell resonance, the dissipation peaks at low deformation rates (max

displacements), and for a solicitation at the relaxation frequency, the dissipation peaks exactly at a

quarter period of deformation. This delay/phase shift is due to the the fact that above relaxation

frequency, the dashpot becomes stiffer on average than the spring. It is also worth noticing that if the

cell is forced into its resonance, dissipation is much more intense, as seen in the bell-shaped curves in

figure 1.8.
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Figure 5.8: Dissipation as function of cycle position for different solicitation frequencies for 1Hz solic-
itation.

For a model with multiple cells and thus different characteristic frequencies, the dissipated power is

always strictly positive, as there is always phase difference between one of the cells and the solicitation.

In the previous section a viscous cell was placed in parallel to the spring, dynamic stiffness of the form

K + Cs, and adjusted to dissipate the same energy over a period, that is have the same transfer

or complex modulus at that frequency. But with this model, dissipated power is strictly null for

no velocity. This implies that just having the phase difference between force and displacement is

insufficient to properly predict instantaneous power dissipation which will be shown to have a role in

transients.

For rate independent hysteretic models, first discussed in section 1.4, friction elements dissipate

energy while elastic elements store it. For a given power injected into the mount, it is thus interesting

to distinguish the power that is stored as purely (hyper)elastic energy and the dissipated power.

For the selected order parametric model (1.32), computation of dissipated power is quite simple,

as for every friction element one has

P id = F if ẋ
i. (5.2)
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which describes the fact that all energy injected into the friction element is dissipated.

For a sinusoidal cycle on a 3 cell model, the power dissipated in each cell and in the full model is

illustrated in figure 5.9. The energy is dissipated for sufficient distance from the last turning point.

For example 0.25 is a turning point, and one sees the blue cell dissipate first, the red second, ... The

total dissipation is thus concentrated in the second half of the half cycle that ends at 0.75. This is

not like the viscous model where peak dissipation changed position within the period depending on

frequency.
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Figure 5.9: Instant dissipation on an Iwan model under sine solicitation

For the non-parametric model discussed in section 1.4.3, some assumptions are needed. The energy

dissipation must depend only on the distance to the turning point, as it is composed only by friction

elements. Thus, the model dissipates half the energy it would dissipate in a complete one. So the

dissipated energy in a complete loop is given by

Ed(x− xturn) =
∫ x
xturn

Khyst(x− xturn)dx
2 +

∫ xturn
x Khyst(xturn − x)dx

2
=

∫ x
xturn

Khyst(x− xturn)dx
(5.3)

This means that supposing slow speeds, to disregard viscoelastic effects, for a hysteretic model one

might simulate a closing cycle to compute the theoretical dissipation. Thus, half of this theoretic

dissipation is the amount of energy that was dissipated in the supposed half cycle. Figure 5.10

presents a visual interpretation of the dissipated energy for a supposed closed cycle.
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Figure 5.10: Dissipated power on a half cycle, supposing perfect closure.
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5.2.4 Stop/start transient

To analyze the impact of the dissipation model in a realistic setting, one considers a stop/start

transient. The model input is the engine torque, applied in the direction of the torque roll axis, which

is the axis around where the powertrain turns when there are no efforts acting. Its time and frequency

domain evolution are illustrated in figure 5.11. The model outputs are the forces exerted by the three

mounts on the chassis.
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Figure 5.11: Measured engine torque used as an engine for the simulation.

The torque was measured in starting engine situation. Its components in frequency domain are

very well spread in the spectrum, with strong components at 20Hz and 40Hz, which should correspond

to the idle engine frequency and its first harmonic. A significant amount of residue is also present in

all the considered spectrum (up to 4kHz).

Figure 5.12 shows the experimental results along with computed forces for both dissipative models

in the direction of the vehicle motion. The models are quite accurate for predicting the highest loads

on left and right mounts, and an error of the order of 30% is made for the estimated forces acting

on the anti-torque mount. The viscous response tend to underestimate the forces with respect to the

measurements, while STS model has a tendency to slightly overestimate the response.
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Figure 5.12: Measured and computed forces at the mounts. Left: Left mount. Middle: Anti-torque
mount. Right: Right mount

163



5.2. DISSIPATED POWER: POWERTRAIN SUSPENSION CASE

To illustrate the importance of considering dissipated power computations, the approaches dis-

cussed in section 5.2.3, were computed for the two models considered. In figure 5.13, both models

indicate a larger dissipation on the right mount, with left mount being the least dissipative. But

dissipated energy totals present a considerable difference, around 30%.
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Figure 5.13: Dissipated energy for each model

5.2.5 Modal responses

The differences in terms of local behavior illustrated so far do not seem to justify the need for

more detailed characterization, but system level should also be addressed. Hence, a modal analysis

was carried around the resting position of the engine. As expected, the six powertrain modes are

mainly three translational modes and three rotational modes. Considering as x-axis the one aligned

to the crankshaft, and z the vertical one, the modes are listed in table 5.2.

Table 5.2: Powertrain suspension modes

Mode description Frequency

Translation in x 4.00Hz
Translation in y 6.04Hz
Translation in z 7.13Hz
Powertrain pitch x 9.18Hz
Powertrain yaw 11.66Hz
Powertrain roll 13.38Hz

Translation in y and z correspond to rigid displacements in the directions perpendicular to the

vehicle motion. Translation in x is a rigid displacement in the direction of the vehicle motion. Power-

train pitch represent the engine turning around its crankshaft axis, and the other ones represent the

other powertrain rotations.

Modal amplitudes [77] are the decomposition of the displacement on the directions of the eigen-

vectors. This decomposition of the displacement vector q is given by

qj = ϕj
TM {q} (5.4)
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with ϕ the mass normalized eigenvectors and M the mass matrix, and qj the amplitude associated to

the mode j.

The time derivative of those amplitudes yield the modal speeds, which are also necessary for

estimating modal energies as

2Ej = q̇2
j + ω2

j q
2
j (5.5)

with Ej the energy and ωj the frequency. This information is useful to analyze where the energy flows

before its dissipation. Modal energy evolution through time is shown in figure 5.14, for both hysteretic

and viscous models.
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Figure 5.14: Modal energies for each model. Left: Viscous model; Right: Hysteretic model

Modes 4 and 5 take most of the imposed energy on the system, which is natural, as they represent

the rotations along the direction of the imposed torque. The different dissipation models impact

strongly on how the energy is transmitted to modes. For the viscous model, the fourth mode is clearly

the only one which should be taken into account, while the fifth mode is equally important for the

hysteretic dissipation.

Despite both models being acceptable in terms of local behavior, the differences regarding the type

of dissipation lead to very different conclusions in terms of system level response. Such difference

illustrate the demand for more elaborate identification techniques, aiming to describe both dissipative

behaviors, as made afterwards in chapters 1 and 3.

5.3 Steps for a complete multibody integration: rear twist beam axle bush-
ing case

The second multibody case studied in this work is that of a twist beam axle articulation. The part

was first described in section 3.2.2 and will be used here again. The twist beam axle is a beam that

aims to change cinematic behavior between roll and pumping to have better handling responses. The

beam and the bushing are illustrated in figure 5.15.
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Figure 5.15: Twist beam axle with highlighted bushings.

A full vehicle simulation of the car going through different maneuvers was performed internally in

Stellantis group on Dassault Simpack environment, which can be compared to equivalent tests on an

instrumented vehicle.

This section will analyze the data collected by those simulations on the bushing model (theoretically

the one described in chapter 2), test different 0D models for the trajectory obtained on the multibody

simulation.

5.3.1 Current model description

The multibody model consists on a full vehicle description with rigid bodies except for the twist

beam axle, which is described by a reduced finite element structure with modes up to 3kHz (130

modes) with 0.13% modal damping. A scheme of the model is shown in figure 5.16

Figure 5.16: Full vehicle multibody model and suspension substructure (screenshots taken from Sim-
pack).

The bushing model combines a nonlinear stiffness in three directions and the three rotations

and a linear viscous dissipation on each of the 6 DOF. The nominal forces are set to zero. The

force/displacement curves and stiffness in x,y,z directions are shown in figure 5.17, and the rotational

stiffness in α, β and γ are plotted in figure 5.18. The stiffness was estimated with prior quasi static

tests. The viscous coefficients are given in table 5.3 and derived from a comparison with test at the
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roll mode frequency.

-6 -4 -2 0 2 4 6

Displacement [m] 10-3

-2

0

2

F
or

ce
 [N

]

104

x axis
y axis
z axis

-6 -4 -2 0 2 4

Displacement [m] 10-3

2

4

6

8

10

12

14

S
tif

fn
es

s 
[N

/m
]

106

x axis
y axis
z axis

Figure 5.17: Force and stiffness as function of displacement from bushing in the MBS.
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Figure 5.18: Torque and rotational stiffness as function of angle from bushing in the MBS.

Table 5.3: Viscous coefficient value for each direction

Direction Coefficient value

x 1386.3 Ns/m

y 294.64 Ns/m

z 1763.8 Ns/m

α 0.20347 Nm/sm

β 0.26306 Nm/sm

γ 0.18777 Nm/sm

As the articulation corresponds to the one identified in chapter 3, but without the plastic limiter,

one compares the hyperelastic curves in figure 5.19. For low displacements, the x axis is almost

superposed between both models. At larger amplitudes, the lack of measurements in the identified

model is shown as a constant. For the z axis, the identified model is a bit stiffer than the model

present in Simpack.
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Figure 5.19: Hyperelastic models compared for x axis (left) and z axis (right).

5.3.2 Integrating 0D models

In the Simpack [78] environment used by Stellantis, rubber articulations are represented as bushing

components detailed in Simpack documentation and user interface. The standard setup for these

components is to be defined with respect to two reference frames, each one attached to a body, and

those frames are called From Marker and To Marker. The opposite forces and torques are applied to

the To Marker body at location XB(t), also in the coordinate directions of the From Marker reference.

For the From Marker body, forces must still be applied at the same location so that additional reaction

torques F ∧ (XA −XB) are needed to account for the fact that forces are assumed applied at XB.

The angular velocities are computed in the so called Cardan order α− β − γ as

ωrel =


α̇+ sin(β)γ̇

− sin(α) cos(β)γ̇ + cos(α)β̇
cos(α) cos(β)γ̇ + sin(α)β̇

 , (5.6)

based on the transformation matrix

A(α, β, γ) =


cos(β) cos(γ) − cos(β) sin(γ) sin(β)

cos(α) sin(γ) + sin(α) sin(β) cos(γ) cos(α) cos(γ)− sin(α) sin(β) sin(γ) − sin(α) cos(β)
sin(α) sin(γ)− cos(α) sin(β) cos(γ) sin(α) cos(γ) + cos(α) sin(β) sin(γ) cos(α) cos(β)

 (5.7)

which presents gimbal locks for cos(β) = 0.

One thus obtains a generalized strain vector ∆x,∆y,∆z,∆α,∆β,∆γ, and its time derivative or

velocity ∆ẋ,∆ẏ,∆ż,∆α̇,∆β̇,∆γ̇. The Simpack bushing, then expresses bushing loads and moments
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in the form 

Fx
Fy
Fz
Tα
Tβ
Tγ


=



fkx(∆x) + fvx(∆ẋ)
fky(∆y) + fvy(∆ẏ)
fkz(∆z) + fvz(∆ż)
fkα(∆α) + fvα(∆α̇)
fkβ(∆β) + fvβ(∆β̇)
fkγ(∆γ) + fvγ(∆γ̇)


(5.8)

where the values of fki and fvi may be given as a table or be assigned as a constant value that multiplies

the displacement/angle. Offsets or nominal forces and moments can also be present as fki(0).

This does not allow for cross coupling (an expression such as fkx(∆x,∆y,∆z) or for behavior that
depends on history as in the 0D models discussed in chapter 1. Indeed history dependence requires the

integration of an evolution equation that contains internal states. Strategies envisioned to generate

such behavior are Fortran or C++ coded user functions or co-simulation calling SDT via Simulink or

calling Abaqus.

5.3.3 Integrating 3D hyper-reduced models

The kinematic reduction considered as the first phase of hyperreduction in section 4.3, assumed

the existence of a constant basis T and associated degrees of freedom qR leading to

{q} = [T ] {qR(t)} (5.9)

The typical representation of a multibody model considers a body frame undergoing large rotations

and small deformations within this frame. The node position field X(t) in the body coordinate system

is thus given by

{XB(t)}3Np = {xB}+ [TF ] {qF (t)} (5.10)

where the index B designates the body coordinates and the index F designates the flexible body. The

global position is then obtained by translating and rotating the positions in the the body frame

{XGlobal(t)}3Np = {uB(t)}+ [RB(t)] {XB(t)} = {uB(t)}+ [RB(t)]
(
{xB}+ [TF ]

{
qF (t)

})
(5.11)

where {uB(t)} is the translation of the body origin and [RB(t)] its non-linear rotation.

When considering a body/bushing interface as rigid, the motion of a point can be described using

a marker point leading to

{XGlobal(t)} = {uMarker(t)}+ [RMarker(t)] {xLocal − xMarker} (5.12)

where the relative positions xLocal − xMarker are constant in the marker frame.

The ability to introduce hyper-reduced models in multibody simulations is thus dependent on the

possibility to reconcile (5.10) to (5.12), or in other words, rewrite (5.12) using a constant basis. This
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is indeed possible by reordering the linear product in (5.11). The time dependent variables, to be used

as degrees of freedom, enforced on the edge of the hyper-reduced bushing model, are given by

{qLR}T =
{
ui Rij

}T
=
{
x y z cos(α) cos(β) cos(β) sin(γ) . . .

}T
(5.13)

and the constant basis combining all the constant terms of (5.12) is given by

[TA]3Np×12 =
[
δx δy δz δi1x1p δi2x1p δi3x1p δi1x2p δi2x2p δi3x2p δi1x3p δi2x3p δi3x3p

]
(5.14)

where it appears that the subspace dimension associated with large angle rigid rotations is 12.

In a multibody learning phase, generating 12 independent vectors on the two rigid surfaces of a

mount can be simply obtained by selecting appropriate trajectories for the full system model learning

phase. The current proposition, that could not be fully implemented within the scope of this work,

would be to focus non-linear simulations on the main solicitation axes and only add a few snapshots to

complete the order 12 basis needed on the edges. Singular value decomposition used for basis generation

should also separate edge and interior as done in [79] for example. The final implementation would

have the form

{q} =

TA 0 0
0 TC 0
0 0 TB



qALR
qR
qBLR

 (5.15)

where TA with 12 columns gives the interface between the first marker and the articulation FEM, and

TB, again with 12 columns, the interface between the articulation and the second marker in a similar

structure, while TC keeps the internal motion resulting from the kinematic reduction.

Integration of hyper-reduced models into a generic multibody simulation package would thus simply

require to have the ability to write a user defined constitutive model with internal states. Marker coor-

dinates can then be transformed to generalized edge coordinates enforcing qALR and qBLR, using (5.13),

and the evolution of other internal variables qR and material states at integration points kept by the

hyperreduction could be managed inside the user defined model. The roadmap for an hyper-reduced

multibody solver is thus quite clear.

5.3.4 Validation data for consistence checks

As the project development did not give time to really implement the mount models chosen in

the end within a multibody simulation environment, consistence checks were performed as validations.

The simulations can only be accurate if mount forces are correctly predicted. Using displacements

obtained from multibody simulations with the reference mount representation, forces and power are

computed and consistence between the reference and detailed force models gives an indication of the

current model validity and need for refinement.
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The reference inputs are the forces which were measured with an instrumented tire on a course

track presenting different obstacles, and for the current implementation, the output was considered to

be the measured forces in the bushing x and z directions.

It was chosen here to represent two different parts of the tests/simulations, one that brings the

bushing to its saturation (in the vertical direction with the the car passing through 3 metal bars

BM), and one where the bushing is forced in more than one direction (with three curves to the left in

maximum lateral acceleration TR). The obstacles are illustrated in figure 5.20.

Figure 5.20: Tested and simulated obstacles BM (left), TR (right).

Test response is illustrated in figure 5.21 and compared with the Simpack simulation. The response

is satisfactory for the BM test, while tehre is a significant difference in the TR test for the x axis. From the

Simpack displacement response (figure 5.23), one may see that the strong angles might be the source

of this difference, possibly due to coupling between angular solicitation and translation solicitations.

Such difference justifies the need for better characterization, but coupled tests can be very costly and

difficult to make.
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Figure 5.21: Comparison of tested (red) and Simpack (black) results in x (left) and z (right) directions.
Top: BM. Bottom: TR

Displacement and force displacement diagrams for the multibody simulation are shown in fig-

ures 5.22 and 5.23.
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Figure 5.22: Responses from simulation of passing over a metallic bar BM.
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Figure 5.23: Responses from simulation of three left turns TR.

5.3.5 Consistence of mount forces

A first consistence check was performed on the Simpack model itself. From the bushing parameters

detailed in section 5.3.1 the forces were rebuilt in a SDT environment with a cbush element. Figure 5.24

173



5.3. STEPS FOR A COMPLETE MULTIBODY INTEGRATION: REAR TWIST
BEAM AXLE BUSHING CASE

shows that values are not coincident with difference mainly found for the static loads and the largest

peaks. This indicates that some processing of the input data occurs before actually getting the model

truly used by Simpack.
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Figure 5.24: Comparisons for simulated forces. Solid lines: post-processed forces. Dotted line: Sim-
pack results.

For the second consistence check, the model with 3 Maxwell and 3 Jenkins cells identified in

section 3.5 is used to predict forces. In this consistence check, the displacements extracted from

Simpack were imposed to the identified cbush element in the SDT environment, where the extracted

forces are compared to the ones computed in Simpack.

For the BM test, the results are compared in figure 5.25. For the x direction, the peaks are quite

poorly correlated. The difference is due to the fact that the identification did not reach contact levels,

so the model was capped in force to avoid false extrapolations. For the z axis, the responses are much

closer.
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Figure 5.25: Comparisons for simulated forces for BM test. Left: x axis. Right: z-axis.

The response comparison for the TR test is shown in figure 5.26. For the x axis direction, the iden-

tified model is softer than the Simpack model. For the z direction, the identified model is considerably

stiffer than the Simpack model, as it stays far from saturation points, and figure 5.19 illustrates.
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Figure 5.26: Comparisons for simulated forces for TR test. Left: x axis. Right: z-axis.

A last interesting result is linked to the analysis of inelastic forces (total forces less the hyperelastic

ones) and the associated power which gives an indication of instant dissipation. Figure 5.27 illustrates

these quantities for BM test on the z axis. It is interesting to see that one of the Iwan cells locks

in a deformed position leading to an inelastic force offset close to -200 N. The cell locking could be

resolved by using the nonlinear viscoelastic model, though very long stabilization times might occur.

Confrontation with experiment seems necessary to really validate whether this is actually found or is

an artefact of coarse order selection.
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Figure 5.27: Inelastic forces (left) and injected power (right) for BM simulation in z direction.

The inelastic injected power plots illustrate that with the purely viscous cell from Simpack model,

all energy injected is dissipated while with the more general identified model, some of the energy is

stored and then released back into the system. One can thus expect notable difference in transient

simulations.

5.4 Perspectives and conclusions

For the powertrain suspension case, the most obvious approach to ensure better representation

would be to conceive better identification routines to extract both viscoelastic and hysteretic behaviors

separately. The modal computations seems to be a solid approach to assess system behavior and a

good approach to adjust the compromise between comfort and stiffness. Beyond those perspectives,

one of the main outcomes from this case is the illustration that hysteretic and viscoelastic dissipation

models may be provide very different responses in transient state, even if they are equivalent in terms

of stationary regime.

The twist beam axle case is considerably more complex. As the models are not connected as

spherical joints, one must consider the six directions and their coupling. The preexisting test campaign

focused on obtaining the full model characteristics. The one presented in this work focused on the

validation of the material models and the FE implementation while confirming results for a limited

range in two axes. Neither of the test campaigns give results on directional coupling which appears to

be very important in the vehicle test shown in figure 5.21. The main foreseeable method to obtain a

reasonable estimate of this coupling is to implement a FE model. To obtain reasonable performance,

this would certainly need to be a hyper-reduced model based on the material tests of the second

campaign. Regarding the full vehicle test, the force as the only output is not necessarily the most

pertinent manner to evaluate the validity of the model, as the mount plays a smaller role in the

full dynamics of the vehicle. A better approach would be to view and compare force/displacement

trajectories, which should be captured in the test.

As the theoretical background for integrating hyper-reduced models into multi-body routines is
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presented, its implementation in SDT is a short-term perspective. In the long term, the proposed

bushing models should communicate with the Simpack solver. A first strategy would be the elabora-

tion of user defined routines, but their development is often very time consuming, as it involves the

programming in a different language (C++ or Fortran) and meeting all the template restrictions. A

more promising lead is the communication of SDT with Simpack via the Simulink environment, as

SDT is native to Matlab, and Simpack supports the integration. Another final possibility is to use

the fact that Simpack supports co-simulation with Abaqus, but this would require the implementa-

tion of the developments made in this work into it, which might present unexpected issues in both

implementation and performance.
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For all models, the first step is to determine the type of input/output relation that needs to be

represented. Based on Stellantis experience and internal reports, whose results are illustrated in the

introduction, it was determined that it is important to represent hyperelastic, viscoelastic and path

dependency effects, while also being able to couple different solicitation directions. This requires a

notable change from the current design practice that considers hyperelasticity in parallel with a viscous

damper without directional coupling.

To address this broad problematic, subproblems were considered: optimization of test procedures

to characterize and identify selected behaviors, investigation of different 0D models capable of rep-

resenting all the sought effects, elaboration of models compatible with multibody simulation going

through 3D models, and also the evaluation of these models inside a multibody routine.

Outcomes and contributions

While 0D modeling, discussed in chapter 1, is the base of all modeling efforts, availability of the

Vibracoustic test data and the relatively poor results of the initial identification efforts discussed in

section 3.3 meant that the last 6 months were actually focused on this chapter. The results, submitted

as an article to MSSP [3], give a clear unified framework of the non-linear coupling of a base hyperelastic

behavior to which hysteretic, or saturated viscoelastic, forces are first added and non-linear viscoelastic

forces affect higher frequencies.

On the test side, a first novel proposition was to use and exploit low speed triangular tests to

extract non-parametric models of both hyperelastic stiffness and the hysteretic relaxation modulus.

The use of a non-parametric representation of hysteresis associated with a relaxation modulus is fairly

original and allows a clear link with the established concept of viscoelastic relaxation.

A second important contribution associated with tests was the introduction of the computation of

an instantaneous modulus using the ratio of analytic input/output signals. The resulting exploitation

of classical sine tests was fundamental in understanding coupling between the three base non-linear

behavior and thus the end choice of a model form based on the relaxation of load fractions depending on

force rate, with non-linear viscoelasticity used to represent hysteresis. For this last aspect, a notable

contribution was to use the concept of load saturation instead of the much less intuitive notion of

reduced times. The analysis of the Payne effect as a coupling between viscoelasticity and hysteresis

is then much clearer than the classical first harmonic handling of sine tests. The assumption that the

fractions are constant throughout the whole tested domain is not perfect, but still provide a reasonable

fit for the tests.

On the modeling side, selected order models were shown to correspond to a generic discretization

strategy that applies to both the classical viscoelastic case and the more original hysteretic relaxation.

Graphical strategies were shown to give a simple control on the order/accuracy trade-off.
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For order independent models, such as fractional derivatives, the contribution was to demonstrate

that order selection is the result of a numerical implementation, so that the real interest of such models

is in the separation of parametrization and discretization phases, thus allowing a simpler access to

design problems such as defining a class of realistic materials.

Chapter 2 is a natural sequel to chapter 1, as it extends to 3D and finite strains the proposed

0D parametric models. A problem in this transition is that the purely hysteretic model has a three

dimensional equivalent (kinematic plasticity) that is not fully established for finite strains. As one

of the contributions of chapter 1 was that hysteresis may actually be an idealization of non-linear

viscoelasticity, the latter was fully implemented and judged satisfactory, without going through plastic

formulations, which is an important outcome from the work. The research on the subject of kinematic

plasticity was thus placed in appendix A.

In terms of numerical developments, the major contribution was to implement, test, and partic-

ipate in the optimization of these finite-strain non-linear laws into the FEM software SDT used for

3D simulations. This involved management of implementation details, special attention to numeric

scheme, timestep size, analysis of dissipation ... The written chapter is a first documentation of the

actual implementation.

Chapter 3 gives the details of the experimental campaign that was designed during the thesis,

realized by Vibracoustic, and whose post-processing led to the many propositions given in chapter 1.

Since much insight was gained and a major outcome was the proposition of a new unified framework,

the presentation details initial choices and documents the various tests to confirm the generality of

propositions made in chapter 1.

Test design guidelines can be drawn from the experience. Using low speed triangular tests proved

particularly insightful as it enabled the identification of the hysteretic relaxation and a quite fine

description of the base hyperelastic modulus. With the current hindsight, better sampling right after

the turning points would provide better non parametric identifications. Smaller loops on triangular

tests also gave the possibility to verify Madelung rules, but better sampling and possibly a smoother

transition would be needed for accurate understanding of behavior very close to the turning point.

The most time consuming tests (multi-steps) are really not very useful as hyperelastic behavior was

considered to be based on triangular tests. They could find some use if Mullins effect (and/or very

long term effects) characterization was sought. Sine tests were properly chosen but the data extracted

should be much richer than the usual first harmonic.

A classical identification routine was performed, and despite the fact that the results could represent

the material reasonably, they were judged unsatisfactory. Indeed, a large amount of data that could

be used was dropped to generate the objective function and the extrapolation of the obtained model to

the dropped data was far from perfect. For such reason, a novel non parametric identification, based on
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the developments in chapter 1 was also made, selecting non-parametric curves (both viscoelastic and

hysteretic) and providing discretization strategies. Results were analyzed for the material specimens

and the part. The results from the novel identification provide 0D models readily implementable in

multibody solvers, while some supplementary work is needed for a full 3D implementation.

Having addressed issues with 0D and material modeling, chapter 4 considers finite element for-

mulations, which are needed to allow predictions of the impact of geometry changes or directional

coupling (change of properties in a direction when another is loaded). Since such computations take

hours when the requirement for practical multibody design simulations is seconds, the objective was

to demonstrate that model reduction schemes could achieve the performance gain while retaining the

use of arbitrary geometries and material laws. The conclusion is that the approach is clearly feasible

and the contribution was to implement and document the use of standard kinematic reduction to

reduce the number of degrees of freedom and hyper-reduction to provide a fast approximation of the

work of non-linear materials. The development follows the originality of SDT where non-linearities are

expressed through notions of observation and command matrices which are classical in control theory

but not in mechanics and gives a fairly direct image of implementation.

Validation of the implementation for the tested bushing with a hyperviscoelastic model was pre-

sented at ISMA 2020 [4]. The main conclusions were that the hyper-reduced model has a performance

compatible with multibody simulations and that extrapolations made on the material parameters, on

solicitation shape and amplitude all provided very good agreements.

Chapter 5 comes back to the global objective of multibody simulations be analyzing two test cases:

an engine suspension and a full vehicle simulation.

The first case, performed at the project beginning and presented at the ECCMR 2019 conference [5],

gives a clear motivation for much of the work. An insufficient characterization of the mounts led to two

different, yet at first glance equivalent, models. For a transient system level evaluation, the dissipated

power profiles and modal responses are completely distinct. As this could affect major design decisions,

characterization and identification are clear needs.

The second case of a twist beam axle bushing corresponds to the parts tested by Vibracoustic

and demonstrating the ability to use the results of earlier chapter was needed for closure. As inte-

gration with Simpack was not possible due to time constraints, the work focused on clarifying future

implementation needs and analyzing bushing models using forces and power. The extraction of the

displacements, angles, forces and torques imposed on the bushing through the obstacles enabled the

verification of consistency between model and results on Simpack. Surprisingly, force predictions were

not perfectly consistent with the input model indicating some transformation within Simpack.

The models resulting from identification efforts of earlier chapter notably differ from the non-

linear elasticity in parallel to viscous dissipation. The simulation of inelastic power being very notably
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different, it appears that the conclusion of the engine case still applies: having a detailed model of the

bushing is important for transient simulations.

Perspectives

The results of the test campaign open a number of perspectives. The standard protocol should

now include large amplitude triangular tests and the classical sine tests, while dropping multi-step

relaxation except if seeking characterization of first cycles (Mullins effect) or longer time frames. The

data processing should automate the novel extraction strategies for hyperelastic modulus, relaxation

modulus and the associated ratio, as well as instant modulus characterization and extend the proposed

synthetic representation of results within stress/strain maps. Incorporating the proposed strategy in

standard DMA testing would clearly improve the characterization of both materials and mounts.

For the triangular tests, detailed analysis close to the turning points, with increased sampling and

possibly smoother transitions, seems a path to understanding the transition between hysteretic or

saturated viscoelastic loads and viscoelastic relaxation. Small amplitude triangular tests that were

introduced to verify Madelung rules will need to be reworked with a detailed understanding of the

transient very close to the instant where the strain direction changes.

The notion of instant modulus obtained by computing the ratio of analytic signals opens a ma-

jor range of applications to non-linear systems. A time domain analytic signal estimation using an

extended Kalman filter was already shown to give better estimators. Applications to other forms of

non-linearity at the bushings, but also the structure levels using modal coordinates seem promising

perspectives. The link with LPV (linear parameter varying) systems considered in control theory will

also need to be established.

For 3D material models, a missing step is the ability to link the multiple non-parametric test

curves to a three dimensional, invariant-based hyperelastic model. An eventual separation of the

hyperelastic potential into one for each non-parametric model (one for each specimen) would also

enable the utilization of the different identified cells within the same material model. This will be key

to the desirable extension of selected order parametric models.

Consistence analysis of material testing configurations through detailed FE simulations of tests are

also necessary to understand test limitations. Indeed, in the traction/compression specimen one uses

the assumption that states are constant within a section, that the material is perfectly incompressible

and that power dissipation can be approximated by behavior at the mid section, despite taking place

at the whole specimen. This is essentially the same as performing hyper-reduction with a single

Gauss point at the mid section, an assumption whose validity needs to be demonstrated. For the

shear specimen, one neglects transverse stresses and still assumes incompressibility, which is only

imperfectly true. Such consistence analysis are in particular expected to lead to geometric corrections
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of the hyperelastic curves obtained from test.

It is worth citing a few longer term or less critical to mutibody simulation issues. Implementing a

stable routine that represents pure hysteresis is of interest even though nonlinear hyperviscoelasticity

is probably a more physically accurate representation. Purposes like comfort and road behavior also

lead to other modeling needs: first cycles softening, plastic effects, damage effects, strain induced

crystallization, preloading effects in fatigue. Implementation of those characteristics in 0D models is

simpler than for 3D models, but there should be tests aiming to characterize them and non-vibration

design groups are interested in the results.

For the implementation of hyper-reduced models compatible multibody simulations, a number of

further steps are identified. The current learning phase based on explicit time integration is quite

costly (the demonstration used a quarter model). Implicit and/or iterative methods considering local

linearizations, piecewise kinematic reduction, ... are fairly obvious and need testing. Designing the

learning strategy, accounting for all directions and for the presence of prestress, and building the

associated generalized integration scheme requires working out a number of important implementation

details.

Testing robustness of the hyper-reduced model for the simulation of the whole bushing in conditions

that cannot be easily reproduced in testbeds or are outside learning conditions seems important. Other

extrapolations on material parameters (or even models), cell sensibility, solicitation frequency, transient

loads, ... for the same learning space should also be understood.

Contact should also be considered in the reduced model. The real part contains plastic limiters

which increase stiffness through contact occurring in high amplitude deformations and must be con-

sidered in practice.

Finally for multibody applications, 0D large rotation models are now deployed in SDT for the

engine suspension case which only involves two bodies and has been well tested. But the generalization

to a generic multibody solver such as Simpack is needed for the twist beam axle application. Using

cosimulation seems the easiest implementation route but, as always, software communication may be

a problem despite the emergence of standards. Extending the number of easily accessible cases will

allow running analysis such as the engine mount case where the importance of mount modeling and

the usefulness of non-classical criteria such as power dissipation and modal energies clearly appeared.

Testing 0D models against hyper-reduced 3D models will also be needed to gain understanding of

the impact geometric effects and prepare the way for an ideal configuration where tests would lead to

material models and geometries that could be modified at will in the design phase.
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Rate independent 3D models
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A.1. PLASTICITY FORMALISM

As for 0D models, it is useful to represent rate independent behavior, but this is difficult because

it implies extending the concept of turning point to three dimensions.

The most appropriate extension of Jenkins cells seems to be the kinematic hardening plasticity

models. Such models are often used for metals under the plastic zone, but they might as well be

appropriate for elastomers [6]. A brief discussion of these models will be given here.

A.1 Plasticity formalism

Before illustrating the problems with finite strains, a review of a few concepts on plastic models is

needed.

To define the moment where a tridimensional material will plastify - or equivalently, where the

friction element is activated - a criterion f must be defined as a function of the stress tensor [41]. This

criterion is defined by a yield surface

f = f(σ, (A;V )) (A.1)

where σ is the stress and (A;V ) is a dual pair of thermodynamic forces and internal states, respectively.

Thermodynamic consistency demands the evolution laws to be written in the form

ε̇p = Λ̇∂P
∂σ

, V̇ = −Λ̇∂P
∂A

, (A.2)

with P the plastic potential, Λ the plastic multiplier and εp the plastic deformation. The equation

that describes the evolution of the plastic deformation is called plastic flow. If the plastic potential is

exactly the same as the yield criterion, P = f , the model is said to have an associated flow.

Hardening may be defined as the stress rule that takes place beyond the elastic domain. Classically

there are two forms in material modeling: isotropic and kinematic, which respectively consist in an

expansion of the yield surface and a displacement of the yield surface as illustrated in figure A.1.

O+

α

σ3

σ2σ1

O+

K
σ3

σ2σ1

Figure A.1: Kinematic and isotropic hardening surface evolution.
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A.2. KINEMATIC HARDENING MODEL - INFINITESIMAL STRAINS

For isotropic hardening, the internal variable to be stored is the size or the yield surface, denoted

K, while for kinematic hardening, the internal variable is the center of the yield surface, denoted α.

The determination of the plastic multiplier is done based on the maximal dissipation principle

(Hill), which is mathematically equivalent to Karush-Kuhn-Tucker (KKT) optimization conditions,

Λ ≥ 0, f(σ, (A;V )) ≤ 0, and Λf = 0. (A.3)

Beyond this constraint to compute those values, there is also the Prager consistency condition,

which states that the model should always remain in the elastic domain after hardening,

Λdf(σ, (A;V )) = 0, if f(σ, (A;V )) = 0; (A.4)

These conditions make the radial return algorithm the most interesting choice for implementation.

This formulation is well posed for infinitesimal strains, as all stress and strain rates are objective

(rotation independent) allowing an additive strain decomposition ε = εel+εpl. Finite strain plasticity is

a more complicated subject as an addictive decomposition must involve objective stress rates (leading

to problematic hypoelastic models), and multiplicative decomposition involves unicity issues due to the

plastic spin. As consequence of those issues, there is a large number of theories and none is prevalent.

After presenting the case of kinematic hardening for infinitesimal strains, this work will only present

two specific implementations in finite strains.

A.2 Kinematic hardening model - infinitesimal strains

Kinematic hardening models are used to simulate inelastic dissipative behavior of materials sub-

jected to cyclic loading (also known as Bauschinger effect) [52]. If several yield surfaces are used, it

may be seen as a 3D version of an Iwan model.

The classical yield criterion for this model is the second invariant I2, which is also known as the

von Mises criterion, which defines a maximal shear energy. As elastomers are nearly incompressible,

this criterion is also adequate here. The yield criterion is given by

f = σvm − σy − α ≤ 0, (A.5)

with σvm the second invariant of the deviatoric part of the linearized stress tensor σ.

The second characteristic is the flow rule, and here we take an associative one

εpl = Λ∂f
∂σ

. (A.6)

The third part is the hardening rule which describes the evolution of the yield surface with the

inelastic strains, such that the yield function f remains always semi-definite positive. In the case, the
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A.2. KINEMATIC HARDENING MODEL - INFINITESIMAL STRAINS

hardening rule chosen will be kinematic linear, which means that the yield surface will not expand

with strain increments, and the center of the yield surface (the so called backstress α) will evolve

linearly with the plastic strains,

α = µhεpl, (A.7)

with µh the hardening modulus.

The implementation is made, firstly with an elastic trial stress

σtr = 2µ(ε− εpl) + λtr(ε− εpl), (A.8)

with λ and µ the Lamé parameters. This stress is used for the criterion evaluation

f = vm(σtr)− σy (A.9)

If f is negative or null, there is no plastic flow, and the problem is analog to the elastic case, with

no evolution of internal states and the output stress is simply σtr. If f is positive, one needs to

compute the plastic flow and verify the Prager’s condition. As equation (A.6) implies, the flow must

be perpendicular to the yield surface, the flow direction is taken to be as the direction of dev(σtr)−α,
named n̂. With a known direction, the flow amplitude is computed by solving for Λ the consistency

conditions,

vm(σtr − λn̂)− σy = 0. (A.10)

where Λ is the amplitude of the plastic flow, and the term Λn̂ is the evolution of the backstress α.

Equation A.10 may be solved with any nonlinear solving algorithm, which may be heavily time

consuming, depending on the size of the model and the quality of the initial guess.

With the Lagrange multipliers computed, the value of dε is taken as

dεpl = Λn̂
µh

= dα
µh

(A.11)

The scheme for the model in the stress space may be seen in figure A.2.

This model responds in a quite similar form to the Iwan model for both shear and uniaxial solici-

tations, as figure A.3 illustrates.
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σy

O+

α+

σtr+Λn̂

Figure A.2: Kinematic hardening scheme on the stress space
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Figure A.3: Response for uniaxial stress and simple shear for kinematic plasticity model.

A.3 Finite strains

For finite strains, there must be an objective description of the elastic-plastic strains. Additive split

only works for hypoelastic formulations, which are often problematic due to parasite dissipations and

the imposition of non physical objective rates [41, 80, 81]. Multiplicative decomposition decomposition

is the most seen in literature

F = F eF p. (A.12)

This decomposition implies that Ċp is not objective, which poses problems on the unicity of the

solution. So [82] introduces an intermediate ‘stres-free’ configuration is introduced, associated to a

fictional displacement gradient F̃ , leading to the kinematic conditions

F e = FF p
−1

Ce = F eF e
T

C̃ = F̃ T F̃

(A.13)
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with the constitutive relations,

Σ = 2Ce ∂ψ
∂Ce

B = 2C̃ ∂ψ
∂C̃

K = ∂ψ

∂κα

(A.14)

and as evolution laws (plastic flows),

Ḟ p = Λ
(
− ∂g
∂Σ + lp,n

Λ

)
F p

˙̃F = ΛF̃
(
− ∂g
∂P

+ βn

Λ

)
κ̇ = −Λ ∂g

∂K

(A.15)

and the the consistency condition of ḟ = 0, with f being the yield criterion, ψ the energy potential,

Σ the Mandel stress, dual to the velocity gradient tensor l, B the kinematic hardening Mandel-like

backstress, β its dual strain-like variable, where the exponent n designates its skew symmetric part

(spin), K the isotropic hardening yield parameter, κ its dual strain variable, Λ the plastic multiplier

and g the plastic potential

For the current implementation, there is no interest on the modeling of isotropic hardening or

particular forms of spin tensors, which are, thus set to zero, and choosing an associated flow, so the

equations remaining are

F e = FF p
−1

Ce = F eF e
T

C̃ = F̃ T F̃

Σ = 2Ce ∂ψ
∂Ce

B = 2C̃ ∂ψ
∂C̃

Ḟ p = λ

(
− ∂f
∂Σ

)
F p

˙̃F = λF̃

(
− ∂f
∂B

)
(A.16)

In terms of implementation, as for the linearized model, one imposes at first the elastic stress

Σe = Ce2 ∂ψ
∂Ce

(A.17)

Linear backstress

B = J̃−4/3C̃µh (A.18)

Then verify criterion
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A.3. FINITE STRAINS

f = vm(Σe −B)− σy (A.19)

Again, if f ≤ 0, there is no plastic flow, so the elastic trial is the actual response. If f > 0, then
there is plastic flow and the plastic evolution that satisfies the Prager’s condition should be sought.

For this purpose, one must find the value of the plastic multiplier that makes f = 0. To do this,

an iterative process on a function that computes f in function of Λ must be used. This function is

described by the equations A.20 to A.26 below

First an auxiliary scalar is defined as

A = 3
2σy (B(Σe −B)− (Σe −B)B) (A.20)

Then, the spin plastic velocity gradient and backstress are computed

lp∗ = ηlA β∗ = ηbetaA (A.21)

with ηl and ηβ material parameters. The total plastic deviatoric velocity gradient and backstress are

thus computed with the plastic multiplier

lpn = Λ3
2σ

y(Σ−B) + lp∗ β = Λ3
2σ

y(Σ−B) + β∗ (A.22)

With the total evolution from both backstress and plastic velocity gradient, the update on both plastic

deformation gradient the intermediate one may be computed, as well as the elastic deformation

Ḟ p = lpnF p F pn = F pn−1 + Ḟ pdt (A.23)

˙̃F = F̃ β F̃n = F̃n−1 + ˙̃Fdt (A.24)

elastic deformation update

F e = FF p
−1

(A.25)

With the elastic gradient, it is finally possible to verify the criterion again

f = vm(Σ(F e)−B(F̃ ))− σy (A.26)

With the proper value of Λ, one can use equations A.20 to A.25 again, along with A.17 to compute

the stress output.

This model was not fully tested, but early tests on integration point shows that this model seems

to be capable of properly representing kinematic plasticity in large strains, as figure A.4 illustrates.
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Figure A.4: Response of described finite strain kinematic hardening model in shear and uniaxial
strains.

A.4 Kinematic hardening model + viscoelastic model in series

Other interesting model is proposed by [6], which might be symbolically represented by a rheologic

assembly with a friction cell (kinematic hardening) in series with a viscoelastic Maxwell assembly, as

figure A.5 illustrates.

Visc1

...

Viscn

Disp

Plast

Figure A.5: Österlöf model

The model uses a neo-Hookean model for the deviatoric hyper-visoelastic part and a model analog

to the works of [83] for kinematic hardening plasticity, where the hardening modulus is a function of

distance to the yield surface.

Regarding implementation, the first step is to decompose the strain into pure deformation and

rotation, as F = RU with a polar decomposition. This might be done by taking R = uvT , and

U = vsvT , with u, v, s the left and right singular vectors and the singular values of F , respectively.

Thus one have ∆U = Un − Un−1, and the strain rate

Dn = ∆UU−1
n + U−1

n ∆U
2∆t . (A.27)

This model makes a difference between the displacements at each Maxwell cell, thus, one recovers the
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deformation on each Maxwell cell

Ci = τ i

µi
(A.28)

with µi the shear coefficient for each cell, and τ i the Kirchhoff stress for each cell. The hydrostatic

component to be removed from each viscoelastic deformation Ci is the only positive root from the

polynomial on q,

det(Ci + qi1) = 1 (A.29)

Thus, the deformation for each Maxwell cell is taken as

U ie =
√
Ci − 1qi (A.30)

With the pure dilation on each cell, one can compute the viscoelastic prediction, to be corrected

by the plastic part evolution,

Pred =
∑
i

dev
(

2µi∆tU ie

(
D − τ i

ηi

)
U ie

)
(A.31)

with ηi the loss factor for each cell.

The first part is to compute plastic part is to compute the direction of the predictor m = Pred
∥Pred∥ .

Then, the tensor that gives the distance from the stress to center of the plastic zone on current

prediction is τ∗ =
∑
i(τ i)− β. The projection from this tensor on the viscoelastic predictor direction

is given by b0 = m : τ∗, and b1 = τ∗ : τ∗, its norm. Thus, the distance between the current stress and

the yield surface is expressed by

δ =
√
b2

0 +R2 − b1 − b0 (A.32)

where R is the size of the elastic limit. Finally the flow direction is computed

n =
∑
i τ

i + δm− β
∥
∑
i τ

i + δm− β∥
(A.33)

The scheme in figure A.6 presents a graphical interpretation of all the norms and distances intro-

duced for this model

∑
i τ

i+
δm

R

O+

β+

nτ∗

+

Figure A.6: Österlöf flow model.
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After computing directions and norms, the correction is computed, firstly by the factor

G =
∑
i

2µitrace
(
ndev

(
U ienU

i
e

))
(A.34)

and then by the factor

H = h0 + h
δ

δch − δ + ϵ
(A.35)

where h0 represents the initial hardening modulus, h a parameter that tunes its evolution, ϵ a numeric

parameter that prevents singularities on turning points and δch another parameter that tunes the

hardening evolution.

The plastic multiplier change is given by

∆Λ = trace(nPred)
H +G

(A.36)

Now the center of elastic domain is updated

βn+1 = β +H∆Λn (A.37)

And finally, viscoelastic stresses are computed with the plastic correction

τ in+1 = τ i2µidev
(
U ie

(
D − τ i

ηi
− n∆Λ

∆t

)
U ie

)
∆t (A.38)

Hydrostatic pressure is computed separately by

p = κ

2 (J − J−1) (A.39)

The total stress is the computed by

S = F−1J

(
p1 + J−1R

∑
i

τ in+1R
T

)
F−T . (A.40)

As expected the model is perfectly capable of capturing the Payne effect as seen in figure A.7, and

frequency evolution as well.
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Figure A.7: Payne effect in Österlöf model
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Test parameters
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APPENDIX B

Tables B.1 and B.2 give the parameter for material specimen and part tests.

Table B.1: Matrix of test conditions on specimens

Sine

Specimen Pre loads (%) Frequencies (Hz) Amplitudes (%)

Shear 0 , 45, 90
0.1, 0.5, 1, 5, 10

50, 100
0.01, 0.05, 0.1, .5, 1

0.01, 0.05, 0.1, .5, 1, 5, 10

Traction -30, -15, 0, 15, 30, 45, 60
0.1, 0.5, 1, 5, 10

50, 100
0.01, 0.05, 0.1, .5, 1

0.01, 0.05, 0.1, .5, 1, 5, 10
Triangular

Specimen Test speed (mm/min) Pre loads (%) Amplitude (%)

Shear
1, 10
10

0, 20
0

50
90

Traction
1, 10

10

-10, 0, 10
-30 -20 -10 0 10 20 30

0

20
5

0.1, 0.5, 1, 10, 50
Multi step

Specimen Relaxation times (s) Amplitude levels (%)

Shear 360 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Traction 360, 3600 -30, -15, 0, 15, 30, 45, 60

Table B.2: Individual part tests

Sine

Preloads (mm) Frequencies (Hz) Amplitudes (mm)

0, 1, 2, 3 0.1, 0.5, 1, 5, 10, 50, 100 0.05, 0.1, 0.25, 0.5, 1
Triangular

Test speed (mm/min) Pre loads (mm) Amplitude (mm)

1, 10 1,2,3,4 0.05, 0.1, 0.25, 0.5, 1, 4.5
Multi step

Relaxation time (s) Amplitude levels (mm)

3600 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5
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Rafael PENAS FERREIRA

Models of dissipative bushings in multibody
dynamics

Résumé : Les simulations multi-corps sont utilisées dans l’industrie automobile pour garantir le respect des principaux objectifs de

conception. Un point clé de la précision de ces simulations est la modélisation des articulations élastomères. En effet, elles nécessitent

une modélisation précise des grandes déformations pour les manœuvres à fortes sollicitations, généralement associées à la sécurité

active, et une modélisation correcte de la dissipation, pour la plupart des applications de confort. Le processus actuel de modélisation

de ces articulations utilise des essais séparés dans chaque direction pour générer des modèles 0D avec une dissipation visqueuse

linéaire. Les essais proposés et réalisés dans ce travail ont été utilisés pour caractériser séparément les effets des grandes déformations,

de l’hystérésis indépendante de la vitesse et de la viscoélasticité. Les modèles pour chacun de ces comportements sont classés en

modèles non-paramétriques, extraits directement des données, modèles paramétriques d’ordre ajustable, dont la précision dépend du

nombre d’états internes, et modèles indépendants de l’ordre. L’utilisation de ratios de la branche statique non-linéaire avec les autres

branches s’avère être un moyen efficace de modéliser le couplage entre la dissipation et les grandes déformations. La transition entre

l’hystérésis et la viscoélasticité est présentée comme une conséquence de la viscoélasticité non linéaire et conduit à un bon accord avec

les essais, démontré par la comparaison du module instantané proposé. L’influence du chargement dans les directions transversales

à un axe donné est très difficile à obtenir à partir d’essais, mais nécessaire pour des modèles d’articulation précis. Les calculs par

éléments finis sont tout à fait appropriés pour telles études, et comme ils nécessitent des modèles 3D, la transformation du modèle

0D proposé en un modèle matériau 3D est détaillée. Deux routines d’identification différentes pour les modèles 3D et 0D ont été

proposées : une avec des fonctions objectif classiques pour le modèle de matériau et une graphique avec sélection d’ordre basée sur

les modèles non-paramétriques. Malgré l’utilité des routines FE pour relier la géométrie et le comportement matériau, leurs temps

de calcul caractéristiques sont trop importants pour être acceptables pour les applications multi-corps envisagées. Une combinaison

de réduction cinématique et d’intégration hyper-réduite des équations du modèle est donc détaillée et il est démontré qu’elle atteint

une précision suffisante et l’accélération nécessaire des temps de calcul. Le cadre mathématique pour l’intégration des modèles 3D

réduits dans les routines multi-corps est décrit. Finalement, deux illustrations multi-corps sont détaillées. Le premier cas met en

évidence le fait que les dissipations hystérique et visqueuse peuvent conduire à des réponses transitoires sensiblement différentes,

confirmant la nécessité des propositions réalisées pour les modèles 0D. Le deuxième cas montre que le remplacement des modèles

0D actuels, relativement grossiers, par ceux développés dans ce travail devrait engendrer des modifications importantes sur les réponses.

Mots clés : Elastomère, Hystérésis, Hyper-élasticité, Viscoélasticité, Identification paramétrique,
MEF non-linéaire, Hyper-réduction, Multi-corps

Abstract: Multibody simulations are used in the automotive industry to ensure that important design targets are met. A key point

in the accuracy of such simulations is the proper modeling of rubber bushings and mounts. Indeed, they do require precise modeling

of large deformation for high loading maneuvers, typically associated with active safety, and a correct modeling of dissipation, for

most comfort applications. The current modeling process of these mounts and bushings considers tests to generate 0D models in each

separate direction with linear viscous dissipation. The tests proposed and realized in this work were used to characterize the effects of

large deformation, rate independent hysteresis and viscoelasticity separately. Models for each one of those behaviors are categorized

into non-parametric models, extracted directly from data, selected order parametric models, whose accuracy depend on the number of

internal states, and order independent models. Utilization of ratios of the nonlinear static branch for all the other branches is shown

to be an effective way to model coupling of dissipation with large deformations. Transition between hysteresis and viscoelasticity is

presented as a consequence of nonlinear viscoelasticity and provides good agreement with tests demonstrated by the comparison of the

proposed instant modulus. The influence of loading in transverse directions on a given axis is very difficult to obtain from tests, yet

necessary for accurate bushing models. Finite element computations are quite suitable for such studies, and as they require 3D models,

the translation of the proposed 0D model into a 3D material model is detailed. Two different identification routines for both the 3D

and 0D models were proposed: one with classic objective functions for the material model and a graphic one with order selection based

on the non-parametric models. Despite the usefulness of FE routines to link geometry and material behavior, their typical computation

times are orders of magnitude too large to be acceptable for the envisioned multibody applications. A combination of kinematic

reduction and hyper-reduced integration of the model equations is thus detailed and shown to provide sufficient accuracy and the needed

speedup in computation times. The mathematical frame for integrating the reduced 3D models into multibody routines is described.

Finally, two multibody illustrations are detailed. The first case highlights the fact that hysteretic and viscous dissipations may lead

to notably different transient responses, confirming the need for the propositions made for 0D models. The second one shows that

replacing the current relatively coarse 0D models with those developed in this work should induce notable modifications of the response.

Keywords: Elastomer, Hysteresis, Hyperelasticity, Viscoelasticity, Parametric identification, Non-
linear FEM, Hyper-reduction, Multibody
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