
HAL Id: tel-03679032
https://pastel.hal.science/tel-03679032

Submitted on 25 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and analysis of forwarding strategies for host and
content centric networking

Giuseppe Rossini

To cite this version:
Giuseppe Rossini. Design and analysis of forwarding strategies for host and content centric net-
working. Networking and Internet Architecture [cs.NI]. Télécom ParisTech, 2014. English. �NNT :
2014ENST0005�. �tel-03679032�

https://pastel.hal.science/tel-03679032
https://hal.archives-ouvertes.fr

T

H

È

S

E

i

2014-ENST-0005

EDITE - ED 130 Doctorat ParisTech

T H È S E
pour obtenir le grade de docteur délivré par

TELECOM ParisTech

«Spécialité: Informatique et Réseaux »

présentée et soutenue publiquement par

Giuseppe Rossini
le 31 Janvier 2014

Design and Analysis of Forwarding Strategies for Host and
Content Centric Networking

Directeur de thèse: Dario Rossi

Jury
M. James Kurose, Professor, University of Massachusetts Rapporteur
M. Giacomo Morabito, Professore associato, University of Catania Rapporteur
M. Serge Fdida, Professeur, Université Pierre et Marie Curie Examinateur
M. Daniel Kofman, Professeur, Telecom ParisTech Examinateur
M. Fabio Martignon, Professeur, Université Paris-Sud Examinateur
M. James Roberts, Senior Researcher, IRT-SystemX Examinateur
Mme. Giovanna Carofiglio, Head of Research Department, Bell Labs, Alcatel-Lucent Examinateur

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech
46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

ii

To my parents and to my sister.
And to you, my life partner, Dafne.

iii

Acknowledgments

Thanking all the people who helped (voluntarily or not) during these three years would
take at least another thesis. But this adventure has been magic. And even though one
is the protagonist of its life, this tale includes other characters, teachers, magicians and
friends, which I need to thank with all of my heart.

I really thank Dario for showing me the way, for the scoldings and the patience with
my exuberant and distract personality. As a nice anecdote let me recall when I abruptly
tried to move the server in a room without plugs and electricity! Thanks again Dario, I
could not ask for better.

Thanks to my colleagues and friends: Silvio, Paolo, Claudio, Max, Stefano, Mattia,
Andrea, Xavier, Thomas, Amy, Sameh, Yixi, Raffaele, Chiara, Leonardo, Claudio, Gege,
Jessica, Marianna, Davide, Rosa, Matteo, Pina, Davide, Sharon. The list would surely be
longer, and I apologize if I missed someone. However, even with an advice, with a joke or
with a chat, all of you made me feel like home for these three years.

Thanks also to Giovanni, for his company, and for his delicious dishes that bring me
back to Napoli.

Grazie alla mia famiglia. Ai miei zii, ai miei cugini, a mia nonna (con la quale, nonos-
tante abbia oltre 80 anni, ho delle discussioni animatissime sull’Italia e sull’estero). Grazie
anche al ramo allargato della famiglia: ai miei suoceri, a Stefano, ed agli zii Vastesi.

In particolare grazie ai miei genitori, che mi hanno aiutato a cercar casa, mi hanno aiu-
tato a metterla a posto, e mi hanno offerto sempre ottimi consigli. Anche a distanza, anche
se non a casa, sono sempre più convinto che avere una famiglia così accanto rappresenti
davvero una marcia in più. Un punto di riferimento inamovibile.

Grazie anche a mia sorella Daniela. Anche se a volte posso nasconderlo le voglio un
bene dell’anima, e la ringrazio per le sue burrascose visite delle quali ho un ricordo magico.

Infine, un ringraziamento speciale a te, Dafne. Grazie per innumerevoli ragioni, che
prenderebbero anche queste pagine e pagine. Grazie per le nostre infinite risate, per sop-
portare la mia infinita sbadataggine e distrazione, grazie anche per le sgridate, per i litigi,
per le riappacificazioni. Tu che sai farmi sentire protetto, e che allo stesso tempo necessiti
della mia protezione. Che sai essere mamma e principessa allo stesso tempo. Insieme a te
mi sento me stesso, completo. Quindi, grazie davvero per tutto, per essere così come sei, e
per farmi essere così come sono. Ti amo. Sposami.

iv

En fin, quelque mot en français (juste pour montrer d’être vécu trois ans et demi en
France). Merci Paris, oui merci pour m’avoir accueilli dans tes bras, et pour m’avoir fait
vivre des moments inoubliables. Les promenades, les restaurants, les concerts, les fêtes.
J’espère de te rencontrer, peut-être, un jour. Merci.

v

Abstract

Starting from the evidence of the Internet’s actual limits, in this Thesis we investigate
different aspects of two directions the Internet is evolving toward. In particular, we consider
more flexible ways to reach hosts, and to distribute content.

Host Centric Networking (HCN) is the name we give to the umbrella architectures
which try to decouple host location and identifiers. Basically, they identify each device by
the means of flat labels which do not locate the host within the network.

HCN architectures leverage Distributed Hash Table(DHT) approaches for retrieving the
host position from the corresponding label. However, routing and forwarding underlying
the DHT, heavily rely on traditional single path algorithms. Thus, in the first part we
propose Adaptive Probabilistic Link-state for Switching In Autoforwarding(Aplasia), an
alternative routing architecture mainly composed by a path-finding algorithm, namely
Adaptive Probabilistic Link-state(Apl), and by an autoforwarding data plane.

By adding a slight amount of message complexity to the canonical approaches, Apl is
able to find optimal disjoint paths, still reducing computational algorithmic complexity .
The trade-off between communication cost and path optimality is tuned by a single system
parameter, easily set and by the way not critical for the correct Aplasia functioning.
Besides, we provide a model which forecasts static and dynamic costs of our approach.

Aplasia leverages an autoforwarding data plane that completely specifies paths in the
packet header. This kind of design makes removing FIBs from the network core possible,
following the impetus towards simplifying core devices, and shifting complexity to the edge.
Finally, we evaluate Aplasia’s autoforwarding by the means of a Click testbed.

Information Centric Networking (ICN) makes content directly addressable by network
hosts. The basic idea is to send packets carrying the content identifier, rather than the
host address. As content can be easily cached within network devices, an ICN network can
be modeled as a receiver driven network of caches.

Indeed, in the second part of this work, we consider caching algorithms deployed over
a network of caches. Each of these algorithms is a triplet composed by forwarding (which
path is worth following), meta-caching (what content is worth caching), and replacement
(what content is worth replacing) strategies.

vi

We develop ccnSim (distributed like open source software) in order to inspect which (ex-
ogenous and endogenous) factors mostly influence caching performance: popularity models,
topologies, strategies, and henceforth. Then, we focus on the forwarding part, pointing out
that coupling meta-caching and forwarding strategies produces a notable performance gain.
We then propose a theoretical model for an ideal forwarding strategy, in which the nearest
copy of the content is instantaneously provided by an external oracle. Finally, we design
two different forwarding implementations of the oracle-based approach.

vii

Résumé

À partir des limites évidentes d’Internet, dans cette thèse nous étudions différents aspects
des deux directions vers lesquelles l’Internet est en train d’évoluer. En particulier, nous
considérons des moyens plus flexibles pour joindre les hôtes, ou pour distribuer le contenu
dans la réseau.

L’Host Centric Networking (HCN) est le nom que nous donnons à l’ensemble des ar-
chitectures qui tentent de découpler la position et l’identification d’un hôte. En fait, les
architectures HCN identifient chaque nœud par des étiquettes plates qui ne localisent pas
l’hôte dans le réseau.

Les architectures HCN utilisent des Distributed Hash Tables (DHT) pour récupérer la
position de l’hôte à partir de l’étiquette correspondante. Toutefois, l’acheminement et la
transmission sous-jacente à la DHT s’appuient fortement sur des algorithmes tradition-
nels basés sur des chemins uniques. Ainsi, dans la première partie de cette Thèse, nous
proposons Adaptive Probabilisti Link-state for Switching In Autoforwarding(APLASIA),
une architecture de routage alternative composée principalement par un algorithme de
recherche des chemins, à savoir Adaptive Probabilistic Link-state(APL), et par un plan de
données de type autoforwarding.

En ajoutant une petite quantité des messages à la complexité des approches canoniques,
APL est capable de trouver des chemins disjoints optimaux, en réduisant au même temps la
complexité computationnelle. Le compromis entre le coût de communication et l’optimalité
des chemins peut être réglé par un paramètre de système simple à fixer et au même temps
pas critique pour le fonctionnement d’APLASIA. Par ailleurs, nous fournissons un modèle
qui peut prédire les coûts statiques et dynamiques de notre approche.

APLASIA s’appuie sur un plan des données autoforwarding qui spécifie complètement
les chemins dans l’en-tête du paquet. Ce type de conception permet la suppression des FIBs
dans le cœur du réseau, en simplifiant les routeurs du cœur, et en déplaçant la complexité
vers la périphérie du réseau. Enfin, nous évaluons cette proposition par un banc d’essai
Click.

L’Information Centric Networking (ICN) rend le contenu directement adressable par
les hôtes du réseau. L’idée de base consiste à envoyer des paquets portant l’identifiant

viii

du contenu, plutôt que l’adresse de l’hôte. Puisque le contenu peut être facilement stocké
dans une mémoire cache, un réseau ICN peut être modélisé comme un réseau de mémoires
caches dirigé par le clients.

Dans la deuxième partie de ce travail, nous considérons différents algorithmes déployés
sur un réseau de mémoires caches. Chaque algorithme sera constitué par une stratégie
d’acheminement (sélection de chemin), une stratégie de meta-caching(pour décider s’il faut
stocker le contenu), et une stratégie de remplacement (pour décider quel contenu il faut
replacer dans la mémoire cache).

Nous développons ccnSim (distribué sous forme d’un logiciel Open Source) afin de véri-
fier quels facteurs influencent principalement les performances des algorithmes ci-dessus:
les modèles de popularité, les topologies ou la choix des différentes stratégies. Puis, nous
nous concentrons sur la partie d’acheminement, en soulignant que le couplage entre le
méta-caching et les stratégies d’acheminement améliore remarquablement les performances.
Nous proposons ensuite un modèle théorique pour une stratégie idéale d’acheminement,
dans laquelle la copie la plus proche du contenu est instantanément localisée par un oracle
externe. Enfin, nous proposons deux différentes implémentations des stratégies basées sur
l’oracle.

ix

Synthèse en Français

Introduction

Les questions d’extensibilité affectent l’Internet depuis sa naissance. Pour résoudre ces
problèmes, d’habitude ont été seulement présenté des simples patches au lieu de modifier
le cœur de la pile de communication. Dans la Fig. 1 nous montrons comment la couche
de réseau a été resté inchangée dans les derniers 20 ans, tandis que d’autres niveaux ont
été étendus et parfois ajouté dans la pile. Ce phénomène a finalement mené à l’ossification
d’Internet autour du protocole IP. Le problème de l’ossification d’Internet [20–22] provient
de la simple observation que, en changeant le protocole IP, il faut forcement reconfigurer les
routeurs du cœur du réseau. Au contraire, l’évolution des protocoles de plus haut niveau
est plus simple, et peut être progressivement déployé. Cette simple observation pousse à
développer des applications sur la couche TCP/IP qui imitent des réseaux réels, mais sont
composées par connexions virtuelles, de façon que on est pas obligé à modifier les niveaux
plus bas du réseau. Le large développement de boîtes intermédiaire HTTP/TCP (par
exemple, les boites NAT ou pare-feu) a ultérieurement conduit à scléroser la pile autour
de ces protocoles [22–24].

L’ossification d’Internet représente la racine de la plupart des maux qui sont de plus en
plus graves dans le scénario de nos jours: la sécurité, la gestion des réseaux, la performance,
la flexibilité en représentent qu’une petite partie. Même si la nécessité de résoudre ces
problèmes semble toujours pas urgente, décrire les solutions possibles semble obligatoire
pour la communauté scientifique. Ainsi, la recherche dans le domaine des architectures
futures tente de simplifier et optimiser l’état actuel de l’Internet. L’objectif de haut niveau
est d’emprunter des idées et des mécanismes à partir des solutions applicatives, en essayant
de mettre ces mécanismes dans le cœur de l’Internet. En particulier, nous nous concentrons
sur deux approches différents:

• Sous le nom de Host Centric Networking(HCN, ou Réseaux centrés sur les hôtes),
nous classons les architectures de coordination qui mettent l’accent sur le découplage
entre l’identification de l’hôte et son emplacement. Dans ce façon, on essaie de
résoudre le problème de la extensibilité lié a l’expansion des tables du routage dans
le cœur d’Internet [25].

x

Figure 1: Représentation de l’évolution d’Internet dans les dernières années.

• Avec l’Information Centric Networking (ICN, ou Réseaux centrés sur les contenus),
nous nous référons à l’ensemble des futures architectures Internet qui rendent le
contenu directement adressable au sein de la couche réseau IP. ICN essaie de résoudre
les problèmes de scalabilité liés à l’augmentation exponentielle du trafic Internet [26].

Host Centric Networking

Au cours des dernières années, plusieurs projets de recherche ont abordé la question du
découplage du concept d’identification des hôtes et de ses emplacement, soit pour l’Intranet
[27–30] ou, plus récemment, au niveau Internet [31–33]

L’idée de base derrière à un tel découplage est de distribuer l’état des routeurs dans
une Distributed Hash Table (DHT, ou table de hachage distribuée). En fait, dans l’état
actuel, IP emploie un adressage hiérarchique pour agréger hôtes différents sous la même
sous-réseau. Toutefois, la hiérarchie exige noms dépendants de l’emplacement qui com-
pliquent la gestion du réseau (par exemple, la mobilité) et qui donc compliquent la distri-
bution des tables de routage. Les noms dépendants de l’emplacement peuvent fournir assez
d’avantages pour devenir attrayant seulement pour les environnements spécialisés (par ex-
emple, comme dans Portland [34], qui exploite une adressage basée sur la position pour
optimiser l’acheminement dans le centre de traitement de données, ces derniers disposés
dans une topologie de type fat tree). Pour les besoins plus généraux, noms indépendants
de l’emplacement, aussi dit plats, ont reçu un intérêt croissant dans ces derniers temps [33].
Les identifiants plats seront donc stockés dans la table de hachage distribuée, qui, une fois
questionné, récupérera la position réelle de l’hôte dans le réseau.

Souvent, ces architectures utilisent des protocoles de routage traditionnels (par exemple

xi

Table 1: Comparaison d’effort lié.
Architecture Résolution de l’hôte Routage Complexité algo-

rithmique
Complexité de
communica-
tion

Plusieurs
chemins

Rbridges [28] Centralisée
LS (OSPF) O(NlogN +Nδ) O(Nδ)

Non
SEATTLE
[30]

DHT Hop single Non

ROFL [32] DHT Chord Non
SmartBridge
[27]

Centralisée Computation dif-
fusée + BFS

O(Nδ) O(Nδ) Non

BANANAS
[31]

n.a. LS + [35] O(Nδ + NlogN +
kN)

O(Nδ) Oui (k)

Viking [29] n.a. Centralisé +
plusieurs exécu-
tions de [35]

O(N3logN +N3δ) n.a. Oui (2 sur k)

APLASIA n.a. APL O(Nδ) O(Nδ) Oui (2)

OSPF ou IS-IS) pour acheminer soit les requêtes adressées à la DHT, soit les données
réelles. Ces protocoles canoniques nous révèlent leurs limites lorsqu’ils sont utilisés dans
des environnements plats. Notre objectif est de proposer une architecture pour le routage
sur chemins multiples dans des réseaux plats, en ciblant particulièrement les routage intra-
domaine. Notre proposition se trouve à un point radicale, inexplorée jusqu’ici, dans l’espace
de conception de réseau, où nous gagnons de simplicité algorithmique, par rapport à une
légère et réglable incrément du coût de communication. Nous appelons notre architecture
de routage Adaptive Probabilistic for Link-state Architecture Switching in Autoforwarding
(Aplasia) .

D’ailleurs, Aplasia décale l’état du routage dans l’en-tête des messages circulant dans
le réseau, enlevant de facto les FIBs du cœur du réseau du Fournisseur d’Accès à l’Internet
(FAI).

Nous rappelons que, dans ce travail, nous ne nous concentrons pas sur le problème
de résolution de nom, qui peut être traité, par exemple, comme dans [30]. Au contraire,
nous nous concentrons sur deux aspects du système: le routage et l’acheminement. Nous
résumons et comparons les efforts pertinents dans ce domaine dans Tab. 1, en termes soit
de complexité computationnelle, soit de complexité de communication (c.-a.-d., nombre de
messages). Dans Tab. 1 nous énumérons les propositions de routage sur des identifiants
plats, à partir d’une perspective Internet [31–33] ou Intranet [27–30, 36] (ce dernier étant
plus proche de notre travail sur le routage intra-domaine).

xii

Figure 2: Synopsis d’Aplasia le plan de contrôle, et un sketch des trames des données et
de contrôle.

Adaptive Probabilistic Link-state Architecture Switching in Autoforward-
ing

Nous décrivons notre proposition de routage, à savoir Aplasia. Les ingrédients principaux
de notre recette sont (i) l’utilisation de l’algorithme gourmand de routage probabiliste
Adaptive Probabilistic Link-state (Apl) pour découvrir rapidement plusieurs chemins,
proche de l’optimum, dans le plan de contrôle et (ii) l’utilisation de chemins d’accès com-
plets directement dans l’en-tête des trames, qui permet aux appareils d’acheminer les don-
nées sans consulter leur table de routage. Nous simulons, analysons et mettons en œuvre
notre proposition afin de montrer sa solidité. Dans ce qui suive, on décrit le principaux
composants d’Aplasia, montrées dans Fig. 2.

L’architecture des nœuds Les nœuds sont gérés par des identifiants plats qui sont leur
associés de manière univoque (comme dans [30, 32, 33]), et peuvent être choisis in-
dépendamment de la position topologique des nœuds. Chaque fois qu’un nœud veut
envoyer des données vers un autre nœud, il a besoin d’assembler une trame, en pré-
cisant le chemin complète bout-à-bout dans l’en-tête de la trame. La trame est
alors remise au plan de données pour le transfert. Puisque dans l’en-tête est spécifié
eune séquence de chemin d’accès complet, la trame est tout simplement poussée à
l’interface de sortie à laquelle fait référence le champ Current Hop(CH) (rappelons
que CH = 0 lors de la création d’image, et est incrémenté de 1 à chaque saut). En
outre, tous les nœuds au long du trajet effectuent la même opération de transfert, de
sorte que pas de recherche est effectuée dans les tables de commutation. En gros, en
référence à la Fig. 2, nous pouvons identifier deux types de nœuds dans le réseau, à
savoir nœuds de bords et nœuds cœur: les premiers peuvent être des sources de trafic,
alors que les deuxièmes n’effectuent pas de commutation fonctionnalités. Aplasia

xiii

suit le principe de pousser la complexité vers la périphérie du réseau, de sorte que les
nœuds de base doivent garder uniquement (i)un montant minimal d’état (les comp-
teurs de Apl , comme on verra) pour exécuter l’algorithme probabiliste adaptatif
Apl . Les nœuds de bord stockent un cache (ii) des parcours. C’est intéressant de
souligner que les compteurs de l’algorithme Apl sont utilisés dans le plan de contrôle
uniquement pendant l’échange de messages de routage et que, de même, la mémoire
cache contenant les chemins de routage est utilisé par les nœuds du bord seulement
au moment de la génération de la trame. Donc, ces structures sont accessibles à une
vitesse beaucoup plus lente par rapport aux opérations du plan d’acheminement des
données dans le cœur du réseau.

Les trames de données Fournir des détails complets sur la spécification et l’encodage
de la trame d’Aplasia est hors de la portée de ce résumé. Par contre, nous décrivons
les principaux champs à l’aide de la figure Fig. 2, esquissant les trames de données
et de contrôle. Mis à part les champs habituels tels que le type de trame, le ID,
le drapeau, indications de qualité de service et de contrôle, les trames de données
portent une liste des identifiants {OPi}i , qui représente l’ensemble des ports de
sortie à suivre bord-à-bord dans le domaine Aplasia, avec un pointeur CH qui tient
en compte l’interface suivante et un champ de longueur de chemin PL. Par défaut,
chaque OPi consomme 8 octets dans l’en-tête (optimisé pour les nœuds ayant au
plus 256 ports). Ce choix a un certain nombre d’avantages, dont le premier est de
simplifier le reste de l’architecture en produisant un acheminement sans état. Cette
simplicité vient au prix d’un légère augment de la longueur de l’en-tête de trame, qui
croît proportionnellement à la longueur du trajet.

Les trames de contrôle Les messages de contrôle contiennent des informations de chemin
supplémentaires (PI). Toutefois, comme le volume des messages de contrôle est faible
par rapport aux échanges de données, les frais concernant le plan de contrôle résultent
être limitées. Dans le détail, PIi contient, outre l’interface de sortie OPi, l’identifiant
de nœud correspondant IDi (utilisé pour détecter des boucles) et les ports d’input
IPi (utilisés par le nœuds pour inférer le chemin depuis la trame qu’ils voient passer).
La séquence PI croît à chaque saut pendant le processus de calcul de chemin. Des
informations facultatives sur la qualité estimée du chemin peuvent être transportée
dans l’en-tête, sous la forme de triplets type-longueur-valeur (t, l, v) en PIi, pour
faciliter les opérations d’ingénierie du trafic (hors de la portée de ce travail). Puisque
les messages de contrôle portent des informations concernant le chemin, un nœud de
bord, en gérant un paquet, peut déduire des informations topologiques de manière
totalement passive: plus précisément, un nœud qui reçoit un message de contrôle qui
a déjà parcouru i soutes, peut en principe apprendre (en remplissant le mémoire cache
des chemins) les chemins des précédents i − 1 nœuds jusqu’à l’origine. Puisque les
différents messages portent éventuellement des informations différentes, des chemins
multiples vers la même destination sont effectivement trouvés.

xiv

Algorithme Adaptive Probabilistic Link-state (APL)

Dans cette section, nous analysons, modélisons, et évaluons, Apl , l’algorithme proba-
biliste composant Aplasia. Considérons un réseau modélisé comme un graphe non orienté
G = (E, V), composé par |V | = N routeurs. Entre chaque pair de routeurs i, j ∈ V , nous
sommes intéressés à trouver un couple de chemins, c’est à dire des séquences nœuds qui
connectent i à j. On appelle Pi,j et Si,j les chemins primaires et secondaires, respective-
ment, fournis par Apl sur le graphique G. On note lenght(P)et length(S)les longueurs
respectives de ces chemins.

• Le chemin primaire Pi,j est défini comme le chemin le plus court trouvé qui connecte
i et j. On dit que le chemin primaire est optimal si sa longueur est la même obtenu
par un algorithme centralisé (comme Dijkstra).

• Le chemin secondaire Si,j est défini comme le chemin le moins similaire à Pi,j , déter-
miné par Apl . Pour trouver le chemin secondaire optimal, nous considérons un
graphe modifié G′ dans lequel les coûts des liaisons au long du chemin primaire op-
timal sont augmentées par le diamètre du réseau [37], et les autres coûts sur le liens
sont unitaires. En exécutant Dijkstra sur G′, nous retrouvons un chemin S ′i,j min-
imisant la fonction de similarité P ′i,j ∩ S ′i,j . Nous disons que le chemin secondaire
Si,j trouvé par Apl est optimal si |Pi,j ∩ Si,j | = |P ′i,j ∩ S ′i,j | et length(S=)LS′

i,j
,

c’est à dire, la longueur length(S)du chemin secondaire est égale à la longueur LS′
i,j

de l’optimal S ′i,j (comme il peut y avoir plusieurs chemins disjoints minimisant la
similitude avec le chemin le plus court).

Une description du pseudocode de l’algorithme est donnée dans Alg. 1. Un nœud de
source s commence le processus d’annonce par l’inondation d’une paquet m à tous ses
voisins. Le paquet inondé contient une liste d’identifiants ID, initialement fixé à ID[0] =
s par la source, qui ajoute à chaque nœud son propre identifiant. Lors de la réception d’un
paquet d’annoncem, un nœud apprend le chemin (en arrière) vers la source s et à n’importe
quel nœud intermédiaire d = m.ID[i] au long du chemin. Dans le cas où le récepteur j
détecte une boucle (en trouvant son identifiant dans la liste de ID), il ignore le message et
annule la procédure d’inondation. Sinon, il l’analyse et éventuellement mémorise le chemin
appris Oj,d. Le chemin primaire (et secondaire) est d’abord stocké dans le routeur si il ne
existe pas encore. De plus, si le chemin nouvellement entendu est plus court que le chemin
principal length(Lj,d) < length(Pj,d), alors le chemin primaire est mis à jour avec celui
entendu. De même, si le chevauchement entendu |Pj,d ∩Lj,d| < |Pj,d ∩Sj,d| est inférieur au
chemin secondaire courant, ou s’il a égale similitude mais est plus court que le secondaire
|Pj,d ∩Lj,d| = |Pj,d ∩ Sj,d| ∧ length(Lj,d) < length(Sj,d), alors le chemin secondaire est mis
à jour.

xv

Algorithm 1: Pseudocode de l’algorithme Apl exécuté par un nœud j du réseau.
while j is receiving message m do1

`← length(m.ID)2
forall i ∈ [0, `] do3

if m.ID[i] = j then // loop and abort flooding4
return5

else6
d ← m.ID[i] // Destination7
Lj,d←(m.ID[`], . . . ,m.ID[i]) // Path overhearing8
if @Pj,d ∨ length(Lj,d) < length(Pj,d) then9
Pj,d ← Lj,d // Update primary path10

cond1 = |Pj,d ∩ Lj,d| < |Pj,d ∩ Sj,d|11
cond2 = |Pj,d ∩ Lj,d| = |Pj,d ∧ length(Lj,d) < length(Sj,d))12
if @Sj,d ∨ cond1 ∨ cond2 then13
Sj,d ← Lj,d // Update secondary path14

append j to m.ID15
s← m.ID[0] // Source16
forall next ∈ neighbors(j) do17

if next 6= m.ID[`− 1] then18
send m to next w.p. βns // Probabilistic flooding19

nj,s++ // Update counter associated with source s20

Le nœud j inonde un message de contrôle produit par le nœud source s sur tous ses
liens (sauf celui dont il a reçu le message) avec la probabilité :

P = βnj,s (1)

β est défini comme paramètre de backoff et nj,s est un compteur, stocké au nœud i,
du nombre de fois que le nœud j a déjà reçu un paquet produite par le nœud s. Les
décisions d’inondation sont prises indépendamment sur chaque lien et le compteur est
remis périodiquement.

Complexité de l’algorithme probabiliste

Dans cette section, nous quantifions précisément le compromis entre les frais d’ Apl et la
qualité du chemin. Nous évaluons d’abord les frais généraux de l’algorithme à travers un
simple modèle analytique, et nous employons de simulation à évents discrets pour valider
l’analyse et l’évaluation des performances en termes de qualité des chemins découverts.

Les simulations sont effectuées par Omnet++ [38] avec des topologies de réseau dif-
férentes, dont les propriétés sont résumées dans Tab. 2. Plus précisément, Tab. 2 indique le
nombre de nœuds N , la moyenne et l’écart type du degré des nœuds, δ et σ, et le diamètre
D du graphe G .

xvi

Network Segment N δ σδ ∆[ms] D
Qwest Cœur 33 5.0 3.1 5.9 5

DTelekom Cœur 68 10.4 13.3 17.2 3
Level3 Cœur 46 11.7 10.1 8.9 4
Sprint Cœur 315 6.2 6.9 3.2 13
Geant Aggr 22 3.4 1.4 2.6 4
Tiger2 Métro 22 3.6 0.6 0.1 5
Random - 10[2,5] 4 ≈ 4 1 [3, 6]

Table 2: Propriétés topologiques des scénarios des réseaux.

 0

 5

 10

 15

 20

 25

 30

 35

 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
m

es
sa

g
es

p
er

 n
o

d
e

M
/N

Average node degree - δ

N=100
N=1000

N=10000
Model

Qwest

DTelekom

Level3

Geant

Tiger2

Sprint

(a)

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

er
 o

f
m

es
sa

g
es

p
er

 n
o

d
e

M
/N

Backoff parameter - β

N=100
N=1000

N=10000
Model

(b)

Figure 3: Comparaison entre modèle et simulation du nombre des messages par chaque
nœud en variant le degré des nœuds δ, fixant β = 0.7 (a) et le paramètre de backoff β en
fixant δ = 4 (b).

Nous soulignons que nous considérons soit topologies FAI réelles, correspondantes à
différents segments du réseau, ainsi que un ensemble de 50 graphes aléatoires synthétiques
avec N ≤ 10000 et δ = 4. Pour l’instant, nous utilisons des paramètres homogènes (c.-à-d.,
un retard constant et égal sur chaque lien), et on assume qu’aucune panne se produise au
sein du réseau.

Nous évaluons maintenant le coût de l’algorithme Apl en termes de complexité de
communication, d’espace et de calcul.

Complexité de Communication Le nombre total de messages de contrôle M transmis
sur le réseau au cours d’une seule opération d’inondation peut être facilement estimé
en négligeant la topologie réelle du réseau. Nous avons que si le nœud s a entamé
le processus d’avertissement, depuis un nœud générique j départent δ − 1 messages
(c.-à-d. sur toutes les interfaces sauf l’interface à partir de laquelle le message est
venu) avec une probabilité donnée dans Eq. (1) qui dépend du nombre de fois qui

xvii

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n

n
ec

ti
v

it
y
 p

ro
b
ab

il
it

y
 -

 C
S

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Primary connectivity - CP

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
p
ti

m
al

it
y
 p

ro
b
ab

il
it

y
 -

 O
S

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Primary optimality - OP

(b)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
v
er

la
p
 |P

∩
S

| o
f

n
o

n
-o

p
ti

m
al

 p
at

h
s

[H
o
p

s]

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

(c)

Figure 4: Qualité des parcours déterminé par Apl . On montre la connectivité (a)
l’optimalité (b) et le chevauchement entre le parcours primaire et secondaire (c) sur des
topologies balistiques.

il a géré le message du même annonceur. Le nombre de messages totale du réseau
peut être alors recueilli en additionnant simplement toutes les possibles valeurs du
compteur cj ∈ [0,∞], et considérant que tous les nœuds font le même en multipliant
par N :

M ≈ N
(
(δ − 1) + (δ − 1)β + (δ − 1)β2 + · · ·

)
= N(δ − 1)

∞∑
n=0

βn = N
δ − 1
1− β (2)

Surtout, l’Eq. (2) montre que le nombre de messagesM répartis sur le réseau pendant
une avertissement dépend linéairement de la taille du réseau et du degré moyenne δ,
et hyperboliquement de 1− β. On rappelle que (N, δ) sont donnés par le scénario et
ils ne peuvent pas être changés dans le déploiement réel. Par contre, le paramètre
de backoff β donne un bouton très simple pour régler les frais généraux. Le nombre
de messages généraux par une algorithme de type Link State (LS, ou à état de
liens) est δN(N − 1). Donc, Apl augment le coûts de communication d’un facteur
1/(1−β) > 1, assurant que ils soient similaires avec ceux généraux par une algorithme
LS.
Nous validons Eq. (2) par simulation en Fig. 3, où on normalise le nombre de messages
sur la taille du réseau pour simplifier la comparaison sur des réseaux ayant des tailles
hétérogènes. Nous simulons soit des vraies topologies considérées précédemment (cer-
cles pleins, pour montrer la précision du modèle dans la pratique) ainsi que les graphes
aléatoires avec des degrés variables δ ∈ [3, 12] et la taille N ∈ {100, 1000, 10000} (cer-
cles vides). La Fig. 3 indique le nombre de messages traités par nœud M/N pendant
une rond d’inondation, en comparant le modèle et la simulation pour différents degrés

xviii

moyens (Fig. 3(a)) et différents valeurs de β (voyer la Fig. 3(b)), à partir duquel c’est
possible recueillir dans les deux cas une excellente adaptation .

Complexité spatiale Le stockage nécessaire pour exécuter l’algorithme Apl estO(2N)
afin de stocker l’arbre primaire et secondaire/backup du réseau (comme dans [29]).
Nous avons également besoin de O(N) compteurs nj,s pour compter sans risque le
nombre de messages générés par chaque source. Cela pourrait être problématique
dans le cas où la taille du réseau n’est pas connue à priori (toutefois N pourrait être
fixé à un nombre assez grand pour assurer de ne pas avoir de chevauchements).

Complexité computationnelle Dijkstra et les autres algorithmes de graphes ont besoin
d’effectuer O(NlogN) et O(NlogN +E2) opérations pour le calcul du chemin le plus
court et le chemin de backup, une fois que le graphe complet est connu. Apl d’autre
part doit effectuer des opérations simples, paquet par paquet. Plus précisément, à
la réception de chaque message de contrôle, les routeurs doivent effectuer: (i) une
comparaison de la trajectoire la plus courte (Alg. 1, ligne 9), (ii) une intersection
pour le meilleur chemin alternatif (Alg. 1, ligne 12). Comme le nombre des messages
de contrôle global d’ Apl est limité, nous pouvons lier la complexité de Apl à
l’Eq. (2). Il croit avec N2 lorsque toutes les annonces commencent au même instant.
Au lieu de cela, c’est intéressant remarquer que dans les algorithmes à état de liens
(par exemple, OSPF ou IS-IS), un simple annonce d’état pour un changement de
topologie, provoque, pour chaque nœud, une exécution de l’algorithme de Dijkstra
avec une complexité O(logNN).

Performance de l’algorithme

Nous nous focalisons maintenant sur la qualité des chemins que l’algorithme d’affichage
probabiliste adaptative est capable de trouver. Nous laissons chaque nœud annoncer lui-
même une seule fois au temps t = 0 et évaluons la connectivité et l’optimalité des chemins
primaires et secondaires. Puisque l’évaluation de la qualité du chemin des réseaux aléatoires
n’est pas réaliste, nous ne considérons que des topologies FAI, en présentant des résultats
obtenus avec plus de 20 simulations par topologie.

Nous exprimons la qualité du chemin en termes de connectivité au long du chemin
primaire et secondaire (si les chemins Pi,j et Si,j joindre les nœuds i, j ∈ V) et optimalité
(si Pi,j et Si,j sont optimales selon les définitions ci-dessus). Nous exprimons la connectivité
en termes de probabilité CP (CS) que ∀i, j ∈ V les nœuds i et j sont reliés par un parcours
primaire (secondaire). Nous exprimons l’optimalité en termes de probabilité OP que le
chemin principal est aussi le plus court, et en termes de probabilité OS que le parcours
secondaire est le plus court chemin et, au même temps, le plus diversifié du primaire.

Fig. 4(b) reportes la probabilité d’optimalité des chemins primaires (le chemin le plus
court) et secondaires (le plus diffèrent du chemin primaire) en fonction de β: puisque le
chemin le plus court est toujours trouvé, l’optimalité du parcours primaire est garanti.

xix

Ainsi, l’indice d’optimalité n’est significatif que pour le chemins secondaires: nous voyons
qu’un pourcentage important (de 60 % à 85 % , en fonction de la topologie) des chemins
secondaires sont optimales, même pour une très faible valeur de β = 0.1 , et qu’au moins
90% de chemins secondaires sont optimales quand β ≥ 0.8, pour toutes les topologies
considérées. D’ailleurs, nous observons que l’optimalité dégrade lentement en fonction de
β, et aussi avec une pente similaire (à peu près linéaire) dans tous les cas. Ça c’est un
comportement souhaitable: comme il y a aucune transition de phase, ni aucun genou dans
l’allure des courbes, on peut régler β entre une faible surcharge (β ≈ 0.3) ou une haute
qualité des chemins (β ≈ 0.7).

Enfin, nous disséquons la raison derrière la sous optimalité des certaines chemins sec-
ondaires. On rappel que un chemin secondaire Si,j est optimal s’il est le chemin le plus
court et le plus diffèrent (en termes de chevauchement Pi,j ∩Si,j) par rapport au première
Pi,j . Par conséquent, la sous optimalité du chemin secondaire peut être due (i)soit à un
chevauchement entre les chemins primaires et secondaires |Pi,j ∩ Si,j | > 0 , ou (ii) à un
chemin plus long que le chemin secondaire optimal length(Si,j)

LS′
i,j

> 1. Fig. 3.3 représente le

chevauchement, c’est à dire le nombre de nœuds que les chemins primaires et secondaires ont
en commun, conditionné par les chemins sous optimaux (les chevauchements des chemins
secondaires optimales ne sont pas prises en compte). Comme montre la figure, la sous
optimalité semble être liée à des nœuds en commun tel que |Pi,j ∩Si,j | ∈ [1, 1.5]. D’ailleurs,
puisque le chevauchement moyenne est toujours tel que |Pi,j ∩ Si,j | ≥ 1 pour tout β, nous
pouvons conclure que les chemins qui se chevauchent sont nettement plus fréquents que les
chemins plus longs.

Analyse du système dynamique

En cette partie, nous analysons les propriétés temporelles du système, l’examen de la
durée du processus de découverte de chemin, et ses propriétés de terminaison. Comme le
temps de propagation est la composante dominante du retard, nous nous attendons que les
propriétés liées au temps soient affectées par l’extension géographique du réseau, avec une
large variation de la performance sur les différentes scénarios de Tab. 2. Par conséquent,
nous avons également développé un modèle pour recueillir des nouvelles intuitions sur
les propretés liées a la taille du réseau, sans être par contre lié à des cas topologiques
spécifiques.

Rapidité Pour évaluer la rapidité du calcul des chemins nous fixons β = 0.7 comme un
bon compromis entre l’optimalité et le coût supplémentaire. Puisque le chemin pri-
maire est rapidement établis dans Apl , le calcul des trajectoires converge quand
un nœud ne met plus à jour son chemin secondaire (par rapport à la pseudo code de
l’algorithme, ce correspond à la dernière exécution de la ligne 13). Comme fait
précédemment, pour recueillir des performances objectives, nous laissons chaque
nœud démarrer une annonce, en prenant la moyenne sur 20 simulations. Lors de

xx

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12 14

N
u

m
b

er
 o

f
m

es
sa

g
es

 p
er

 n
o
d

e
-

m
(n

)/
N

Round - n

Model
N=100

N=1000
N=10000

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Duration of an advertisement cycle [ms]

Qwest
DTelekom

Level3
Tiger2
Geant
Sprint

(b)

Figure 5: Dynamique des messages pendant un processus d’avertissement(a). Durée d’un
rond d’inondation(b).

chaque tour, on mesure le temps écoulé entre le début de le processus d’avertissement
(à la source) et la convergence du parcours secondaire (à tous les nœuds). La fonction
de distribution cumulative (CDF) des temps de convergence du chemin est indiquée
dans Fig. 4.4 pour tous les réseaux. Comme prévu, la durée brute est principalement
affectée par le retard moyen de lien. Pour tous les réseaux, sauf DTelekom (dont le
retard de liaison moyenne δ = 17.2 ms est beaucoup plus grand que celui d’autres
topologies, cfr. Tab. 2), 90% des chemins secondaires convergent en moins de 60ms,
et en tout cas la convergence prend moins de 100ms dans le pire des cas (alors que
dans [39], la convergence des algorithmes à état du lien prend bien plus de 100 ms
dans le meilleur des cas). Cela confirme la solidité de Aplasia, qui permet une
convergence rapide aux trajets multiples optimales.

Terminaison automatique Nous étudions maintenant l’évolution temporelle de la prop-
agation du message au cours d’un seul cycle d’ Apl . Nous analysons la durée du
processus d’annonce sur la réseau, avant que le backoff exponentiel éteigne le pro-
cessus d’inondation. L’objectif n’est pas de prédire précisément le nombre total de
messages envoyés, qui est de toute façon prédit par Eq. (2), mais pour estimer cer-
taines propriétés temporelles critiques, comme par exemple l’instant où le processus
d’inondation atteint un pic, le temps à lequel il disparaît, l’impact de la taille du
réseau, etc. Nous considérons un seul annonceur et supposons des retards de prop-
agation homogènes afin que le temps puisse être considéré échantillonné. Pour tous
n ≥ 0, le nombre moyen de messages m(n) envoyés par les nœuds N dans le réseau
au temps n vérifie l’équation récursive approximative:

m(n+ 1) ≈ m(n)δe−(1−β)M̄(n) (3)

xxi

L’approximation dans Eq. (3) est valable pour des grands graphes, disons N ≥ 100.
La qualité de l’approximation est illustrée dans Fig. 5(a), comparant des solutions
numériques du Eq. (3) avec simulations de réseaux aléatoires, en variant la taille
du réseau jusqu’à N = 10000, le backoff fixé à β = 0, 7 et le degré δ = 4 (matchs
similaires sont obtenu pour d’autres paramètres). On normalise le nombre des mes-
sages sur la taille du réseau m(n)/N , afin de faciliter la comparaison des tailles de
réseau hétérogènes. Le modèle est très proche à la forme de la propagation des mes-
sages réels, qui confirme que l’hypothèse de Poisson tient bien dans la pratique.
Plus en détail, comme montre la Fig. 4.5(a), la dynamique des messages reflète
une augmentation exponentielle initiale en raison de l’inondation (comme les comp-
teurs sont initialement 0, donc certainement transmis depuis β0 = 1). Dès que les
mêmes trames sont reçues sur le réseau, le backoff exponentiel entre en action en
ralentissant la croissance des messages, jusqu’à ce qu’un pic soit atteint (au rond
npeak = argmin nm(n) ≥ m(n + 1) > 0), après quoi le nombre de messages décroît
progressivement (et s’arrête complètement à 2npeak environ). De l’image, on com-
prend que npeak augmente (i) de façon logarithmique avec la taille du réseau N , ou (ii)
de façon linéaire avec le diamètre du graphe. C’est intuitif, depuis que l’inondation
ralentit lorsqu’un nœud commence à recevoir de multiples copies du message, ce qui
est toujours le cas lorsque la longueur du chemin atteint le diamètre du réseau.

Implémentation Click

Nous avons mis en place les principales fonctionnalités du plan de données d’Aplasia en
un routeur modulaire Click [40]. Nos modules mettent pleinement en œuvre le plan de
traitement de trames de données et des fonctions de maintenance, mais ils partialement
implémentent les fonctionnalités du plan de contrôle. Pour donner une idée de la complexité
de la mise en œuvre, le modules Click d’Aplasia compte pour environ 5000 lignes de code,
24 classes et 65 fonctions.

Principalement, nous avons utilisé la mise en œuvre de Click pour la vérification fonc-
tionnelle des principes de Aplasia. Le banc d’essai est composé de 7 ordinateurs équipés
d’un processeur Intel Xeon E3110 dual-core qui tournent à 3.00GHz, équipé de 4 cartes
Ethernet. Les PCs sont disposés dans une topologie bus, et sont reliés entre eux par
deux 100Mbps Ethernet liens point-à-point. Dans le banc d’essai, nous utilisons seulement
des cartes Ethernet comme émetteurs/récepteurs point-à-point entre toutes les couples de
routeurs: autrement dit, aucune commutation ou d’autres fonctionnalités Ethernet sont
utilisés. Dans notre configuration, le nœud d’origine fonctionne dans l’espace utilisateur
(de sorte qu’il est facile d’accéder à des fonctions d’horodatage sans modifier le code de
Click), tandis que tous les autres nœuds exécutent en mode kernel.

Nous concevons deux scénarios de tests simples et instructifs pour comparer la mise
en œuvre de Click, visant à rassembler la durée de (i)la fonction de transfert du plan de
données tFW et (ii) le traitement des trames du plan de contrôle au cours du processus

xxii

t

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3

R
T

T
 [

m
s]

PDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 25 50

Samples

Model
h=1
h=2
h=3
h=4
h=5
h=6

Figure 6: Fit du coût computationnelle du plane de donnée sous une implémentation Click.

de découverte tcp . Nous déduisons le coût de traitement des messages dans le plan de
données/contrôle en mesurant les temps aller-retour (RTT) à le différentes longueurs de
chemin h.

Les résultats obtenus sont montrées dans Fig. 4.6: le temps de gestions et création des
trames est tg = 54 µs et le temps de transmission est tFW = 45 µs, avec de très petites
erreurs asymptotiques de 0,63% respectivement et 0,33 %.

D’ailleurs, nous avons fait des expériences avec l’annonce des chemins (dans une con-
figuration légèrement modifiée), afin de recueillir le temps pour gérer et créer les trames
du plan de contrôle tCP . Les frais introduites par le plan de contrôle est de tCP = 48µs
(avec une erreur asymptotique de 0,2 %), et donc il est du même ordre de grandeur de
l’opération d’acheminement dans le plan des données. Ces résultats soulignent l’intérêt
pratique de Aplasia et la légèreté du processus d’annonce dans la tâche de contrôle.

Content Centric Networking

Entre les nombreuses propositions ICN, l’approche Content Centric Networking (CCN)
[41] a suscité un intérêt considérable de la communauté scientifique. En tant que tel, et
puisque un cadre unificateur conceptuel pour ICN est toujours en cours de définition au
ICN Research Group (ICNRG), dans ce qui suit, nous plaçons notre travail dans le cadre

xxiii

du CCN, en adoptant sa terminologie. En particulier, on décrive, analyse et modèle des
algorithmes de mémoires caches sur des réseaux CCN.

Bien que les détails de CCN sont hors de la portée de cette introduction, nous décrivons
en gros détails le système que nous utilisons. Un réseau CCN peut être considéré comme
un réseau des caches dirigé par les clients. Dans ce qui suit, nous utilisons indifféremment
les termes requête et intérêt, pour indiquer le message d’un utilisateur envoyé afin de
récupérer un contenu donné. Chaque nœud a trois structures des données utilisées dans
la phase d’acheminement: le Pending Interst Table (PIT) mémorise les interfaces entrant
correspondantes aux intérêts acheminés. Le Forwarding Interest Base (FIB) est utilisé
pour acheminer l’intérêt dans le réseau. Quand un client envoie un intérêt pour un fichier,
chaque nœud du réseau décide le chemin que l’intérêt va faire en mémorisant le chemin
qu’a déjà fait. La dernière structure implémentée dans un nœud CCN est le Content Store
(CS): quand les donnés revient vers le client (en suivant les indications lassées dans le PITs
de chaque nœud) chaque CS peut mémoriser les données traitée, ainsi que la successive
fois qu’un client demande le même fichier il sera reprise dans le CS (qui assume le valeur
de mémoire cache) sur le même parcours.

Nous considérons un graphe G = (V,E) de |V | = n caches de taille C(v) v ∈ V , avec des
utilisateurs qui demandent des contenus à un taux de λ(v). Souvent, nous allons envisager
des scénarios homogènes, indiquant avec C la taille du cache de chaque routeur et λ, le
taux d’arrivée de chaque client, c’est à dire C = C(v), λ = λ(v) ∀v ∈ V .

Le catalogue N représente l’ensemble de tous les objets possibles i qu’un utilisateur
peut demander. La taille du catalogue est indiquée par N = |N | . En considérant un
fichier i ∈ N , soit p(i) la popularité du contenu (c.-à-d., la probabilité qu’un contenu i soit
demandé). Les objets peuvent être partagés en blocs. Dans ce dernier cas, nous définissons
d(i) la taille en blocs de contenu i ∈ N , et nous avons P (Di = k) = 1

D

(
1− 1

D

)k−1
, c’est à

dire , dans le cas des fichiers partagés en blocs, la taille de chaque objet a une distribution
géométrique, avec une moyenne de D blocs.

Chaque contenu i est stocké en permanence dans un serveur (aussi dit gardien ou
dépositaire ou dépôt). On note S(i) le dépositaire pour le contenu i .

Nous négligeons le naming, et les aspects de sécurité de CCN: chaque contenu i est
représenté par son rang de popularité (c.-à.-d., le contenu 1 est le plus populaire, et ainsi
de suite). La popularité du contenu i est distribué par une distribution Mandelbrot-Zipf:
p(i) = K

(q+i)α , K =
(∑N

i=1
1

(q+i)α
)−1

. α est dit le facteur de forme de la distribution, car
il indique la pente de la distribution à une échelle logarithmique. Lorsque α << 1 le Zipf
s’approche à une distribution uniforme. q représente le plateau de la distribution MZipf,
et plus il augmente plus le nombre p(i) tend vers une distribution uniforme. Dans Tab. 3,
nous montrons l’espace des paramètres que nous étudions dans ce travail.

Finalement, nous définissons un Network Caching Algorithm (NCA) sur un réseau de
mémoires caches comme un triplet 〈F ,D,R〉 de stratégies pour l’acheminement, le meta-
caching et le remplacement, respectivement. La stratégie d’acheminement F est utilisée

xxiv

Paramètre Explication Valeurs(octets)

Network

Taille de chunk 10 Ko
C Taille de Cache 106 chunks (10Go)
n Taille du réseau

Topologie Générique (réelle),Arbre , Grille, Torus

Catalogue
N Taille du catalogue 108 files(1015 octets)
D Taille de fichier 103 chunks (10Mo, geom.)
C
ND Cache/catalogue ratio [10−5, 10−1]

Popularité α Facteur de forme {1,1.5}
q Mandelbrot-Zipf plateau {0,5}

Caching
F Forwarding SPR, CATT [12], NDN [42],

iNRR§7.3,NRR§7.3, Multipath§7.2
D Meta-caching LCE,FIX [15],LCD [16],ProbCache [17], BTW [19]
R Replacement FIFO,LRU,RND,BIAS

Table 3: Notation et valeurs de défault.

par chaque nœud pour établir le chemin dont envoyer les requêtes. La stratégie de meta-
caching est utilisée par chaque nœud pour décider si stocker effectivement les données qui
retournent vers le client. La stratégie de remplacement est utilisée pour établir, lorsque
une décision positive a été prise, l’objet à effacer dans la mémoire cache (dans le cas que
la mémoire cache est pleine).

Dans Fig. 6.2(b), nous inspectons l’impact de la mise en ouvre des politiques de cache
considérant (α, q) = (1.5, 0). Nous rappelons que le choix d’un tel distribution de popularité
n’est pas destiné à une évaluation absolue des performances d’un NCA, mais plutôt à
une évaluation de l’impact relative de plusieurs paramètres, et elle est donc parfaitement
justifiée.

Algorithmes conscients de la topologies

Nous évaluons maintenant les performances d’un NCA en prenant en compte différents
scénarios topologiques, en déterminant ainsi à quel degré la topologie du réseau affecte
les performances d’un NCA. En raison de la contrainte sur la vitesse d’un router CCN,
il pourrait être donc utile d’examiner d’autres combinaisons outre la plus couramment
utilisée 〈LCE,LRU〉. Par conséquent, nous évaluons l’impact de différentes topologies en
considérant une stratégie aléatoire 〈FIX(9

10),RND〉. Fig. compare le cache hit sur (i)
un arbre binaire, (ii) les 6 topologies de Tab. 5.1, et (iii) montre la moyenne sur toutes
les topologies. On peut constater que, en moyenne les performances entre 〈LCE,LRU〉 et
〈FIX(9

10),RND〉 sont difficilement distinguables: aussi, 〈LCE,LRU〉 n’est pas toujours la
meilleur choix sur toutes les topologies. Nous observons que, comme récemment montré

xxv

 0.4

 0.5

 0.6

 0.7

 0.8

T
re

e

A
b
il

en
e

T
ig

er

G
ea

n
t

D
T

el
ek

o
m

L
ev

el
3

P
h

it

A
v
er

ag
e

<SPR,LRU,LCE> <SPR,RND,FIX(9/10)>

Figure 7: Comparaison de l’efficience d’un NCA sur différentes topologies.

dans [2], en utilisant un triplet 〈SPR,LCE,LRU〉, la topologie a une influence mineure sur
les performances d’un NCA. Dans cette section, nous remarquons les conclusions de [2],
mais on essaye d’exploiter les propriétés topologiques comme un moyen pour augmenter
les performances des NCA.

L’information topologique peut être exploitée à plusieurs couches, et par multiples
plans. Dans le rappel de cette paragraphe, nous illustrons le cas d’un planning de réseau
CCN dépendant de la topologie. Plus précisément, nous considérons plusieurs mesures de
centralité dans un graphe et allouons l’espace de mémoire cache dans une façon hétérogène
sur le réseau CCN et on compare avec les performances d’une allocation homogène.

En étendant le travail de [43] nous calculons plusieurs mesures de centralité dans le
graphe topologique G. Nous utilisons alors les valeurs de centralité de chaque nœud comme
une base pour des stratégies différentes pour distribuer une quantité hétérogène de mémoire
cache, en mesurant le gain de performance (ou la perte) relatif à un réseau CCN homogène
ayant le même montant global de cache. Pour chaque nœud de la topologie ci-dessus, nous
calculons des différentes mesures de centralité, à savoir le Betweenness Centraility (BC),
Degree Centrality (DC) , le Stress Centrality (SC) , le Closeness Centrality (CC), le Graph
Centrality(GC) et le Excentricity Centrality(EC) .

Nous définissons Ctot comme la taille globale des mémoires cache dans la topologie.
Dans le cas d’un réseau homogène, nous fixons la taille des mémoires cache individu-
els C(i) = 10Go [44]. Donc, dans le cas des réseaux homogènes, Ctot = nC(i) avec
|V | = n le nombre de nœuds dans le réseau. Dans le cas des réseaux hétérogènes, nous

xxvi

n18

n6

n5

n3

n7

n19

n20

n0

n2

n14

n17

n16

n13
n21

n1

n15

n8 n9 n10

n11

n4

n12

(a) Homogeneous

n1

n3n4

n5

n7

n9

n12

n14

n15

n18

n21

n6

n0

n19

n20

n17

n16

n13

n11

n10n8

n2

(b) Heterogeneous

Figure 8: La représentation illustrée du dimensionnement des cache, avec la taille des
cache CCN proportionnelle à la taille de nœud dans le graphe correspondant. Les im-
ages montrent un dimensionnement (a) homogène et (b) hétérogènes (dans le dernier cas,
proportionnel à la Betweenness Centrality (BC).

exploitons les métriques de centralité comme suit. Considérons une métrique générique
X ∈ {CC,GC,DC,EC, SC,BC}, où on note X(i) la valeur de X pour le nœud i ∈ V
selon la topologie considérée.

Nous adoptons donc deux critères de dimensionnement des caches:

CPX(i) = Ctot
X(i)∑
j∈V X(j) , ∀i (4)

CQX(i) = max
(
c, dCPX(i)/cec

)
(5)

On remarque que l’Eq. (4) correspond à un parfait critère proportionnelle, lorsque
la taille de mémoire cache Cpx(i) est distribuée au nœud i-ème proportionnellement à la
métrique X(i) normalisée sur la somme des mesures X(i) sur l’ensemble des nœuds.

Alors l’Eq. (4) est une stratégie idéale qui permet de mesurer l’importance relative
des scores de centralité, nous reconnaissons qu’il peut être difficilement réalisable dans
la pratique: en effet, les modules de mémoire CCN seront quantifiés en multiples d’un
module unitaire c, comme c’est le cas pour la mémoire RAM de nos jours. En tant que
tel, nous considérons également une stratégie d’échantillonnage Eq. (5), où la taille des
caches individuels CQX(i) est multiple de c = 1Go. Dans Eq. (5), on assume un modèle
où les FAI vont investir dans un nombre fixe de modules de mémoire Ctot/c qu’ils peuvent
ensuite déployé arbitrairement dans le réseau. Le point de vue que nous adoptons est qu’un
FAI peut vouloir réaffecter le Ctot/c modules à sa disposition (par exemple, passer d’une

xxvii

configuration homogène à une hétérogène), afin d’optimiser les performances réalisables
sans encourir dans des coûts économiques.

Fig. 8 représente des nœuds de taille variable, dont le rayon est proportionnel à la taille
de mémoire cache C(i), pour visualiser où dans le réseau de la ressource de cache ont été
alloués. Plus précisément, Fig. 8 contraste un réseau Géant homogène où C(i) = Ctot/|V |
pour tous les nœuds (graphe à gauche), contre une allocation hétérogène CPBC(i) (graphe
à droite).

On peut observer que le processus d’échantillonnage induit une erreur telle que le mon-
tant global de la mémoire cache est maintenant Ctot(1 + ε) avec ε ∈ R l’erreur induite
par le processus de quantification. Cette erreur est due à deux opérations contrastantes:
l’opération de max imposant une taille minimale du cache Cqx(i) ≥ c∀X, i incrémente ε,
tandis que l’opération de plafond réduit ε. Finalement, l’erreur moyenne est de E[ε] = 2.3%.
C’est possible que la différence en termes de performances (par exemple, le gain de cache
hit) peut être due à un écart dans la taille du cache estimée (par exemple, quand ε > 0).
Pour écarter cette possibilité, nous vérifions l’absence de corrélation entre ces anomalies.
Plus formellement, notons HConst la probabilité de cache hit sur un réseau homogène, avec
la taille globale de mémoire cache Ctot . Notons ensuite par HQ

X = (1 + γ)HConst le cache
hit d’un réseau hétérogène avec des stratégie d’allocation de mémoire cache échantillonné
selon la mesure de la centralité X, avec la taille globale du cache

∑
i∈V C

Q
X(i) = (1+ ε)Ctot.

Le coefficient de corrélation ργ,ε entre la série de paires (γ, ε) collectées sur tous les réseaux
et les mesures de centralité, équivaut à ργ,ε = 0, 05 , en excluant des corrélations entre
ces erreurs. En tant que tel, les différences de performance dans les domaines suivants
dépendent uniquement des mesures de centralité.

Le but de notre campagne de simulation est (i) d’évaluer si un dimensionnement
hétérogène de mémoire cache peut fournir des avantages de performance par rapport à
un réseau homogène et (ii) si le gain de performance est cohérente dans toutes les topolo-
gies pour une répartition métrique X ∈ {CC,GC,DC,EC, SC,BC} .

Nous observons que l’échantillonnage joue en fait un rôle bénéfique. Prenons le métrique
de cache hit H et notons HP

X (HQ
X) le cache hit atteint pour une topologie et une

lois de popularité donnée, en utilisant une répartition proportionnelle (échantillonné) en
fonction d’une métrique de centralité X. On définit alors l’erreur relative induite par
l’échantillonnage sur le cache hit comme (HQ

X−HP
X)/HP

X , qui est représentée dans Fig. 9(b)
pour toutes les topologies et tous les métriques. Sur le graphe, une valeur négatif (zone
grisée) correspond au cas (combinaisons des métrique et topologie) où la répartition propor-
tionnelle donnerait de meilleurs résultats. Fig. 9(b) montre que la répartition proportion-
nelle donne de meilleures performances dans certains cas (partie gauche), mais la différence
de performance avec l’allocation échantillonné correspondant est minime (moins de 2%).
Inversement, il y a des cas dans lesquels la quantification peut apporter un gain presque de
20 % par rapport à une répartition proportionnelle. Essentiellement, cela est dû au fait que
certaines mesures peuvent allouer une très faible quantité d’espace de mémoire cache pour
certains nœuds, qui sont “corrigées” en ayant un minimum de cache dans le processus de

xxviii

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

P
er

ce
n

ta
g

e
re

la
ti

v
e

er
ro

r
b

et
w

ee
n

 p
ro

p
o
rt

io
n

al
 v

s
q
u

an
ti

ze
d

 s
o

lu
ti

o
n

s

Absolute error rank (lowest to highest)

Proportional is better

Quantized is better

α=1.25
α=1.50

(a)

-3
-2
-1
 0
 1
 2
 3

CC EC GC DC SC BC

C
ac

h
e

h
it

P
er

ce
n

ta
g
e

re
la

ti
v

e
er

ro
r

R
E

%

Centrality metric

Zipf α=1.25

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

Zipf α=1.5

Tiger
Abilene

Geant
Level3

DTelekom

(b)

Figure 9: (a) Pourcentage d’erreur relative (HQ
X − HP

X)/HP
X sur le cache hit dans le cas

d’une allocation proportionnelle et quantifiée. (b) Cache hit avec une stratégie d’allocation
quantifié, pour diffèrent topologies et facteurs de forme. L’axe Y reports le pourcentage
d’erreur relative(HQ

X − HConst)/HConst par respect à une allocation homogène. La zone
colorée corresponds à des pertes de performance dans le cas d’une allocation hétérogène.

quantification. Dans ce qui suit, nous considérons donc que les allocations échantillonné:
ce choix est à la fois solide (car nous évitons des valeurs trop petits en raison de biais dans
les mesures de centralité) et réaliste (comme une allocation parfaitement proportionnelle
n’est pas directement applicable).

Nous soulignons que les paramètres de α peuvent en outre modifier les résultats sur une
topologie donnée. Nous illustrons la situation en tenant compte de l’erreur relative entre
le cache hit avec une stratégie d’allocation quantifié induite par la métrique X contre une
répartition homogène constant, c’est à dire (HQ

X−HConst)/HConst selon notre terminologie
précédente. L’erreur relative est représentée dans Fig. 9(a) pour α = 1.5 (en haut) et
α = 1.25 (en bas) pour toutes les topologies (points) et les mesures de centralité (en
abscisse).

On observe que, pour les deux α = 1.5 et α = 1.25, les mesures DC améliorent le
cache hit, sauf dans le cas d’Abilene, où la perte de performance est cependant très limitée
(les performances sont très proches à la ligne de base de répartition constante). Cela peut
s’expliquer par le fait que, dans la topologie Abilene, le degré ne varie pas significativement
entre les nœuds, de sorte qu’une allocation proportionnel pratiquement dégénère en une
répartition (presque) homogène. En revanche, dans les autres cas (HQ

DC−HConst)/HConst >
0 de sorte que certains gains peuvent être recueillies à partir d’une répartition hétérogène.

Enfin nous remarquons que le gain de performance est limité par un modeste 2,5% dans
le meilleur des cas (topologie Level3 avec α = 1, 25 dans l’image en bas de Fig. 9(a)). En
raison de ce gain limité sur les tailles de cache homogènes, il semble tout à fait qu’il n’y

xxix

ait pas de réelle incitation à utiliser des stratégies d’allocation hétérogènes.

Acheminement

Nous considérons maintenant la stratégie d’acheminement F , composant de la triple 〈F ,D,R〉
d’un NCA. L’espace de design que nous considérons est résumée dans Tab. 4. La stratégie
d’acheminement de requêtes F est limitée par les informations disponibles dans le tableau
de routage(FIB).

Dans les cas que le nœuds CCN ont à leur disposition des informations utiles pour
transmettre les requêtes vers un (ou plusieurs) serveur où une copie persistante de stockage
des données (par exemple, le chemin le plus court vers un serveur donné), ces informations
peuvent être exploitées par l’architecture CCN. Le contenu peut être trouvée “en route”
(c.-à-d., le parcours des caches entre le demandeur de contenu et le serveur du contenu),
en manquant les copies dans les mémoires caches voisines (par exemple, qui se trouvent le
long du chemin le plus court d’un autre demandeur). De même, les données seront mises
en cache seulement sur le chemin entre le gardian du contenu et le demandeur (ou client).

À l’autre extrême , dans le cas où aucune information utile est disponible en FIB, le
voisinage doit être exploré pour trouver une copie temporaire. Dans ce cas, les demandes
sont exprimées sur éventuellement plusieurs chemins. Ça peut conduire à les inconvénients
habituels des algorithmes d’inondations (et donc exigeant les contre-mesures habituelles,
comme les approches basés sur le TTL ou l’élagage probabiliste de certaines branches dans
le processus d’exploration). Par contre, les copies temporaires seront alors disponibles à
de multiples nœuds voisins.

Une autre dimension qui peut différentier la mise en ouvre d’une stratégie d’acheminement
dans une réseau des mémoires caches est l’unité de données minimal. Aux deux extrêmes
antipodes, le contenu d’intérêt peut être soit monolithique (mode objet) ou partitionné
en morceaux ou chunks (mode morceau). De toute évidence, il y a une surcharge déter-
ministe quand CCN est utilisé en mode morceau, puisque des demandes multiples doivent
être exprimées pour récupérer les mêmes données. Au même temps, les demandes sont
généralement de taille limitée, et le mode morceau offre une plus grande flexibilité pour
récupérer les données. D’ailleurs, les demandes de la première partie de n’importe quel
objet pourraient être exprimées selon un paradigme d’exploration: cela conduirait à la
découverte du chemin vers une copie de l’objet le plus proche (en cache), qui pourrait être
exploité par des demandes de morceaux successifs du même objet.

Stratégies d’exploitation

Afin d’étudier les stratégies d’exploitation, dans cette section, nous supposons qu’un al-
gorithme de routage externe (et un système de résolution de noms) fournit à la couche
d’acheminement des parcours alternatifs de demandeur à l’origine (le serveur) du contenu.
Nous ne considérons que 2 chemins alternatives. La couche d’acheminement doit ensuite

xxx

FIB Knowledge • None
• Omniscient
• Partial

Request forwarding • Exploration
strategy • Exploitation

• Hybrid
Data unit • Monolithic object-level

• Partitioned chunk-level

Table 4: Espace de design CCN.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5

A
v
er

ag
e

d
o

w
n
lo

ad
 d

is
ta

n
ce

 [
H

o
p

s]

Distance from closest repository [Hops]

H
et

er
o
g

H
o

m
o

g

Rep
osit

ory

Shorte
st-

path

Multi-Repository Alternate
Multi-Path Alternate

Multi-Repository Parallel
Multi-Path Parallel

 0

 1

 2

 3

 4

 5

 6

Alternate

(no retention)

Alternate Parallel

(no retention)

Parallel Shortest
path

In
te

re
st

 c
o

st

Homogeneous Heterogeneous
Delay

Multi-Repositories
Multi-Path

E[sp(x,R1)]

E[sp(x,R2)]

E[ap(x,R1)]

Figure 10: On montre l’impact du strategy layer sur la distance moyenne et les frais
d’intérêts/données.

décider comment utiliser ces chemins, en prenant décisions morceau par morceau.
Nous comparons plusieurs stratégies alternatives des chemins multiples par rapport à

le cas de base d’un seul chemin (le plus court). Plus précisément, nous considérons qu’il y
a (i) deux chemins alternatives vers le même serveur, ou (ii) différents chemins singles vers
plusieurs serveurs.

Dans les deux cas, la couche stratégique doit prendre autres décisions concernant le
processus de sélection de parcours, tels que (i) un nœud peut explorer les deux voies en
parallèle, ou (ii) en alternance entre les chemins (et dans ce cas, si uniformément au hasard
ou déterministe comme en round robin). Le compromis dans ce cas est entre (i) une charge
d’intérêts qui viole le flux d’équilibre et peut entraîner des contentions dans les caches et
(ii) une convergence peut-être plus lente vers le serveurs.

Fig. 10(a) indique la distance moyenne de téléchargement en fonction de la distance
à partir du serveur le plus proche. Les points remplis se réfèrent à un scénario avec des
retards hétérogènes. Les points vides à des retards homogène. Les deux lignes de référence

xxxi

reportent les cas où le contenu est entièrement téléchargé depuis le serveur le plus proche,
ou est téléchargé avec SPR, respectivement. Fig. 10(b) indique le charge d’intérêt moyen,
c.-à-d., le nombre de liens que chaque intérêt a traversé avant de frapper un cache. Le
couleur clair est utilisé en cas de retard hétérogène, foncé pour le retard homogène. Les
trois lignes indiquent la distance moyenne vers le dépôt le plus proche (E[sp(x,R1)]), la
distance la plus courte vers le serveur alternatif (E[sp(x,R2)]) , la longueur du chemin
alternatif vers le dépôt le plus proche (E[ap(x,R1)]).

Comme prévu, lorsque plusieurs chemins sont utilisés, en étant plus longs de la distance
minimale, les distances de téléchargement augmente. En regardant Fig. 10(a), cet effet est
particulièrement visible pour les nœuds qui sont proches au dépôt, avec un pic à deux
sauts. À l’inverse, les nœuds lointains trouveront probablement le contenu mis en mémoire
cache quelque part avant le dépôt, avec des performances qui rapprochent le routage SPR.

Lorsque plusieurs chemins sont utilisés en parallèle, la charge d’intérêt est à peu près
double. En considérant Fig. 10(b), si on essaie le chemin en parallèle juste pour le premier
morceau, on peut atténuer efficacement l’augmentation de la charge d’intérêt, au prix de
préserver le chemin par chaque objet dans les routeurs CCN .

Nous rappelons que dans le cas où des chemins alternatifs sont utilisés, il n’y a pas de
différence entre un critère aléatoire uniforme et un déterministe round robin (donc, nous
ne montrons pas cela dans les dessins). Intuitivement, si les décisions déterministes ne
sont pas coordonnées entre les nœuds, elles sont équivalents aux décisions aléatoires dans
la perspective globale du réseau. Au contraire, quand plusieurs chemins sont utilisés dans
une façon parallèle, cela conduit à une politique plus agressive, qui a plus de chances de
trouver le contenu mis en cache plus proche.

Nous constatons que plusieurs chemins alternatifs vers le même serveur doivent être
préférés à l’utilisation de plusieurs chemins singles vers plusieurs serveurs (ça conduit à des
choix plus robustes en cas de retard hétérogène). Cela malgré le chemin alternatif moyen
vers le serveur plus proche est en moyenne plus long que le plus court chemin vers le serveur
alternatif, c’est-à-dire, E[ap(x,R1)] > E[sp(x,R2)] en Fig. 10(b).

Dans l’ensemble, nous constatons que les stratégies d’acheminement naïves qui ex-
ploitent différents chemins (autre au le plus court) peuvent conduire à explorer une distance
plus longue -en augmentant la charge globale du réseau, et en réduisant la probabilité de
cache hit. Au même temps, nous reconnaissons que les avantages de cette stratégie provi-
ennent d’une meilleure résilience (dans le cas le plus court chemin sûr) et d’un charge
éventuellement réduit au serveur d’origine (dont la bande passante peut être une ressource
rare par rapport aux capacités du routeur). Donc, il semble intéressant explorer des straté-
gies hybrides qui complètent le routage avec une exploration opportuniste d’un voisinage
de nœuds CCN. Nous ainsi évitons que la distance augmente, en laissant que la requête
trouve (idéalement) la plus proche copie dans la réseau.

xxxii

Stratégies d’exploration

Dans cette paragraphe, nous abandonnons les approches d’exploitation, pour nous concen-
trer sur des techniques d’exploration. Comme on a dit ci-dessus, les stratégies d’exploitation
augmentent moyennement (par rapport au chemin le plus court) la distance parcourue par
contenu. Ça c’est car les données sont forcés sur des chemins prédéterminés. Au lieu de
cela, un protocole de routage idéal devrait considérer toutes les copies temporaires sur
le réseau, pour transmettre les requêtes des utilisateurs vers la meilleure copie disponible
(par exemple, le plus proche). Nous appelons cette stratégie idéale (Ideal Nearest Replica
Routing (iNRR)

Ainsi, nous abordons le problème de la définition, l’analyse et la mise en œuvre d’une
politique d’acheminement F d’exploration, adapte au CCN, qui se rapproche cependant
vers l’acheminement iNRR. Notre objectif est de concevoir une stratégie de transport,
que:(i) peut découvrir les copies du contenu temporaires, (ii) exige peu ou pas de connais-
sance a priori, (iii)ne génère pas trop de surcharge de signalisation supplémentaire; (iv)
peut réaliser une coordination implicite de cache.

Nous considérons une grille 10x10 (100 nœuds) et un arbre binaire de 6 niveaux
(26 − 1 = 63 nœuds). Contrairement à [2], puisque les réseaux sont conçus en respec-
tant la tolérance aux pannes et les principes de la résilience, il est extrêmement improbable
pour une topologie d’accès d’avoir exactement un seul lien entre n’importe quelle paire
de nœuds parents et enfants - sinon, couper un seul lien dans la hiérarchie aurait coupé
une sous arborescence. En tant que tel, nous considérons qu’un nœud peut avoir un lien
supplémentaire avec son oncle (le frère de son père direct) qui peut être aussi utilisé pour
la sauvegarde ou l’équilibrage de charge. Nous modélisons la présence de ces liens supplé-
mentaires par une probabilités µ ∈ [0, 1] .

Nous utilisons un rapport entre l’espace de mémoire cache et la grandeur du catalogue
de 0,1% instancié dans un petit (grand) scénario où les mémoires caches sont capables de
stocker 100 (100,000) objets à partir des catalogues de 100,000 (100,000,0000) objets. Ça
nous permet d’explorer respectivement une grande range des réglages, et de recueillir les
performances sur un cas d’utilisation plus réaliste.

Comme mesure de performance, nous ne considérons que la distance moyenne que le
contenu a parcouru dans le réseau CCN. Cette mesure a l’avantage d’être très effective et
compact en même temps: elle se rapporte à la qualité du service d’utilisateur (le retard)
ainsi que la qualité du service du réseau (c.-à-d. charge et cache hit).

En termes de F , au lieu d’être limité par la mise en œuvre (et la configuration) des
précisions sur les nombreux NCA politiques proposées [9–13], nous ne considérons que
(i)iNRR [2], comme la limite supérieure de le performances réalisables pour une stratégie
d’exploration, et (ii) SPR que nous nous attendons à correspondre au limite inférieure
pour les stratégies d’exploitation. En termes de meta-caching D, nous mettons en œu-
vre plusieurs propositions contenues dans Tab. 3. Nous incluons LCE comme terme de
comparaison, qui fourni une représentation de la limite inférieure des performances , car il

xxxiii

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.5 1

A
v
er

ag
e

d
is

ta
n
ce

 [
h
o
p
s]

SPR

Redundancy probability µ

7%

7%

2%

4%

 0 0.2 0.4 0.6 0.8 1

iNRR

8%

8%

6%

LCE
ProbCache

FIX(0.1)
FIX(0.01)

LCD

(a)

 2

 2.5

 3

 3.5

 4

 4.5

 5

D
is

ta
n
ce

 [
h
o
p
s]

〈SPR,LCE,LRU〉

〈iNRR,LCE,LRU〉

〈iNRR,FIX,RND〉

〈iNRR,LCD,LRU〉

13%±0.4%

17%±7.1%

25%±1.1%

Cache/Catalog = 10
2
/10

5
10

3
/10

6
10

5
/10

8

(b)

Figure 11: (a)Analyse de sensibilité 〈F ,D〉 avec R=LRU: arbre binaire avec 6 niveaux,
avec une probabilité de redondance variable µ. (b) Scénarios réalistes.

fournit peu de diversité entre les mémoires caches, et force un taux d’effacement élevé sur
tout le réseau. Enfin, en termes de remplacement R nous expérimentons soit avec LRU
et soit avec un remplacement probabiliste uniforme [44, 45]. On remarque que dans cette
paragraphe on suppose des objets entières (mode objet).

Performance Idéal Fig. 11(a) rapporte une analyse de sensibilité des politiques de méta-
caching, recueillies par simulation en modulant légèrement la redondance du réseau
µ ∈ [0, 1]. Le graphe est annotée avec le gain obtenu en passant d’une stratégie
〈SPR,·〉 à une stratégie 〈iNRR,·〉, ainsi que avec le gain du à la redondance (à par-
tir de µ = 0 pour µ = 1 pour chaque 〈F ,D〉). Comme on peut s’y attendre, la
redondance joue un rôle négligeable pour la stratégie SPR (bien que dans le cas
de plusieurs chemins équivalents, en choisissant SPR entre eux au hasard, il peut
traverser différents caches). Sans surprise, les décisions LCD déterministes toujours
obtient les meilleures performances pour les arbres [15], en présentant une bonne
interaction avec iNRR. Ensuite vient des simples décisions probabilistes (FIX(1

100)),
tandis que des stratégies probabilistes plus complexes entraînés soit sur la distance
(ProbCache [17]) soit sur des propriétés topologiques (par exemple, Btw [19]) qui
atteignent des gains intermédiaire.
Les scénarios petites, moyennes (ou grandes) nous permettent d’explorer respective-
ment une large carnet de réglages des paramètres, et de recueillir les performances
sur un cas d’utilisation plus réaliste (ou extrême). Fixons α = 1 et le rapport entre
le cache et la taille du catalogue C/N à 0,1%, et lassons varier soit le cache C que
la taille du catalogue N . Précisément, nous considérons un scénario de petite échelle
avec C/N = 102/105, de moyenne échelle avec C/N = 103/106 et de grande échelle
avec C/N = 105/108. Comme les applications vidéo sont prééminentes, et compte
tenu de la taille moyenne des vidéos YouTube de 10Mo [46] la taille de la cache varie

xxxiv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

π
s
im

/π
m

o
d
e
l

Node ID

iNRR

aNET

Understimation

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18

π
si

m
/π

m
o
d
el

Distance from repository D(v,S) [hops]

iNRR
aNET

Understimation

(b)

Figure 12: Probabilité de hit de iNRR et aNET exactitude par mode (en haut) et en
fonction de la distance depuis le serveur(en bas). Topologie grille de 10x10 nœuds.

entre un scénario plutôt réaliste de 10Go [44,47] et un scénario plus futuriste de 10TB.
La taille du catalogue du scénario moyen est du même ordre de grandeur de [2] , alors
que le scénarios à grande échelle modèle un scénario YouTube plus difficile [48]. On
peut observer dans Fig. 11(b) que les gains des scénarios de plus grande échelle sont
plus grands que dans celui à petite échelle (ca c’est car la lois de popularité reste
inchangée). Au même temps le gain relatif entre le différentes stratégies est toujours
pareille pour les différents cas.

Le modèle Nous changeons l’ensemble des équations aNet [8] pour modeler la stratégie
d’acheminement iNRR. Sous la stratégie SPR, le contenu peut être éventuellement
trouvé seulement le long du chemin plus court vers un gardien du contenu. La
différence cruciale avec aNet est que, avec la stratégie iNRR, chaque chemin valide
est éventuellement suivi. Par chemin valide, on sous-entend que i) les chemins sont
sans boucle , (ii) dans le cas où plusieurs copies sont stockées à plusieurs nœuds le
long de tout chemin donné, la copie la plus proche est accessible. D’ailleurs, (iii)
dans le cas de plusieurs copies ayant égale distance sur des chemins multiples, chaque
exemplaire est également susceptible d’être choisi.

Quant à aNet, nous savons par [8] que l’impact de l’hypothèse IRM (Independent
Reference Model) augmente avec la taille du réseau (ou, de façon équivalente, diminue
avec la densité de serveurs sur le réseau). C’est parce que l’hypothèse IRM affects
les longs trajets. Quant à iNRR, nous savons à partir des résultats précédentes qu’il
raccourci considérablement la longueur de trajet moyen pour une copie en cache: en
tant que tel, nous pouvons nous attendre un impact mineur de l’hypothèse IRM.

Nous considérons une grille 10x10, où le gain de iNRR sur SPR est visible. Par
conséquent, nous nous attendons aNet d’être affectés négativement par la grande

xxxv

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8

N
R

R
 -

 i
N

R
R

 d
is

ta
n
ce

 [
h
o
p
s]

Exploration radius ρ [hops]

〈NRR’’,LCD〉

〈NRR’’,LCE〉

〈NRR’,LCD〉

〈NRR’,LCE〉

 0 2 4 6 8

Figure 13: Distance additionnelle des implémentations NRR par rapport à iNRR.
Acheminement NRR’ et NRR”, par LCE or LCD meta-caching, en fonction du radius
d’explorationρ. Grille de 10x10 (à gauche) et arbre binaire de 6 niveaux complètement
redondant µ = 1 (a droit).

taille de la topologie, comme la distance au serveur pour SPR peut devenir assez
longue. En revanche, puisque iNRR devrait trouver des copies plus proches, nous
nous attendons un impact IRM violation (voir [8]) . Deuxièmement, sous iNRR
les nœuds partagent leur flux dans chaque voisin: puisque on mélange des fluxes
de défaut indépendants, l’approximation IRM a des affects mineurs par rapport au
routage SPR (de façon similaire à ce qui se passe en augmentant le degré de l’arbre
SPR dans [8]) .

Nous calculons la précision du modèle par rapport à la simulation pour (i) chaque
nœud individuellement (Fig. 12(a)), ainsi que pour (ii) tous les nœuds ayant la
même distance {x : D(x,S) = d} du serveur S (Fig. 12(b)). Plus précisément,
en indiquant la probabilité de hit moyen pour le nœud v avec π̄v, nous évaluons la
précision du rapport π̄simv /π̄modelv . Par souci de lisibilité, en Fig. 12(a) les nœuds
sont classés pour rapports croissantes de π̄simv /π̄modelv . D’ailleurs, en Fig. 12, nous
complétons le ratio moyen avec de barres d’écart type. Les résultats confirment
que l’erreur iNRR est nettement inférieure de ce de aNet. Nous pouvons finalement
observer, depuis Fig. 12, comme l’erreur iNRR est moins affectée, par rapport à aNet,
de la position topologique de chaque nœud (essentiellement, la distance de SPR) .

xxxvi

Implémentation Il doit être clair que iNRR est une politique d’acheminement idéal,
nécessitant un oracle ou, de façon équivalente, la connaissance de l’état de tous les
caches. Nous proposons donc deux implémentations pratiquées que nous appelons
Nearest Replica Routing (NRR). En particulier, nous nous concentrons sur la phase
d’ exploration, dont nous proposons deux implémentations alternatives basées sur
des algorithmes d’inondations limitées, à savoir NRR’ et NRR”, qui nécessitent re-
spectivement une et deux phases. Les deux NRR’ et NRR” inondent le réseau avec
des requêtes, en limitant la portée des inondations à travers un champ TTL qui on
appelle le radius ρ.
Les différences entre NRR’ et NRR” sont dans la façon dont les demandes sont
traitées au cours de la phase d’exploration. L’algorithme NRR’ demande des intérêts
réguliers, afin qu’il génère peut-être plusieurs morceaux de données en retour - un
pour chaque copie en cache trouvée à une distance mineur de ρ. Par conséquent,
NRR’ éventuellement génère un surcoût en termes de taux d’effacement en cache,
bien que la durée de la phase d’exploration est la minimum possible avant que la
copie la plus proche est touchée. Inversement, NRR” inonde la réseau de méta
requêtes. Un drapeau est mis à indiquer que seule une réponse binaire concernant la
disponibilité du contenu est demandé en retour.
Nous comparons NRR’ et NRR” à iNRR en mesurant le nombre de sauts supplémen-
taires nécessaires en moyenne pour trouver le contenu. Pour être complet, on consid-
ère D ∈ {LCE,LCD} et F ∈ { iNRR , NRR’ , NRR”} et nous mesurons le nombre de
sauts supplémentaires par rapport à la stratégie de CCN idéal 〈iNRR , LCD, LRU 〉.
Fig. 13 représente le nombre de sauts supplémentaires en fonction du rayon ρ pour
la grille (à gauche) et l’arbre (à droite). Le dessin indique tous le combinaisons
des paramètres: NRR” (coloré) vs NRR’ (blanc), LCD (cercle) vs LCE (carré). On
peut observer que pour ρ = 0 , NRR dégénère en SPR routage (région en om-
bre). Plusieurs observations intéressantes sont recueillies à partir de Fig. 13. Tout
d’abord, la performance de 〈iNRR , LCD, LRU 〉 peut être arbitrairement proche de
〈NRR”,LCD, LRU 〉, comme la distance supplémentaire tend vers zéro pour ρ ge6,
soit sur les arbres que sur les grilles. D’ailleurs, les effacements se traduisent par une
importants perte des performances dans NRR’. Cela est dû à l’utilisation de paquets
de requêtes régulières dans NRR’, générant des données en retour qui comportent
plusieurs effacements depuis le cache (même sous LCD). Enfin, on remarque que la
distance supplémentaire diminue avec ρ croissant seulement dans le cas des NRR”:
cela signifie que l’exploration de NRR” est non seulement efficace, mais aussi robuste.
Inversement, dans le cas NRR’, quand ρ augmente, l’effacement augmente en raison
de plusieurs chances de trouver le contenu sur des parcours plus longues.

xxxvii

Contents

Acknowledgments iv

Abstract vi

Résumé viii

Synthèse en Français xxxvi

Contents xxxvii

1 Introduction 1
1.1 A bit of history . 1
1.2 Host vs Information Centric Networking . 4

1.2.1 Host Centric Networking . 4
1.2.2 Information Centric Networking . 6

1.3 Structure of this work . 7

I Host Centric Networking 9

2 Background 11
2.1 Aplasia overview . 11
2.2 Routing . 14
2.3 Forwarding and framing . 16
2.4 Part I structure . 17

3 Apl : probabilistic routing algorithm 19
3.1 Algorithm description . 20

3.1.1 Overview . 20
3.1.2 Primary and secondary paths . 22
3.1.3 Pseudocode . 22

3.2 Performance evaluation . 24

xxxviii CONTENTS

3.2.1 Algorithm complexity . 25
3.2.2 Path quality . 27

3.3 Conclusions . 29

4 APLASIA: forwarding on switched paths 31
4.1 Architecture description . 32

4.1.1 Node architecture . 32
4.1.2 Autoforwarding frames . 33

4.2 Enhancing path computation performance 34
4.2.1 Quickest vs shortest path finding . 35
4.2.2 Refining APL . 36

4.3 Dynamic system performance . 37
4.3.1 Path computation timeliness . 37
4.3.2 Advertisement auto-termination . 39
4.3.3 Duration of an advertisement cycle 41

4.4 Click implementation . 41
4.5 Discussion and Open Issues . 43

4.5.1 Larger path sets. 43
4.5.2 Administrative routing weights. 44
4.5.3 Failure resolution and recovery . 44
4.5.4 Amount of control plane state . 45

4.6 Conclusions . 46

II Information Centric Networking 47

5 Background 49
5.1 Content Centric Networking: an overview 49

5.1.1 Routing and forwarding . 50
5.1.2 Naming . 51
5.1.3 Security . 52

5.2 Network Caching Algorithms . 52
5.2.1 Notation . 52
5.2.2 NCA definition . 53
5.2.3 Scale limits . 55

5.2.3.1 CCN models and simulations 55
5.2.3.2 Catalog size . 56
5.2.3.3 Popularity Model . 57

5.3 Part II structure . 57

CONTENTS xxxix

6 Caching: simulative assessment 59
6.1 A realistic scenario . 59

6.1.1 Cache and catalog size . 59
6.1.2 Content Popularity . 60
6.1.3 Performance at a glance . 61

6.2 Topology aware caching design . 63
6.2.1 Caching evaluation on different topologies 63
6.2.2 Exploiting topology heterogeneity 64
6.2.3 Performance evaluation . 69

6.3 Conclusions . 73

7 Forwarding Strategies 75
7.1 Exploitation vs Exploration . 76
7.2 Exploitative strategies . 77

7.2.1 Performance evaluation . 79
7.3 Exploratory strategies: toward iNRR . 80

7.3.1 Coupling forwarding and exploration 81
7.3.2 Performance evaluation . 83

7.3.2.1 Scenarios . 84
7.3.2.2 Performance . 85
7.3.2.3 Sensitivity analysis . 86
7.3.2.4 Comparison with edge-caching 87
7.3.2.5 Small to large-scale scenarios 89

7.3.3 Modeling iNRR . 90
7.3.3.1 aNET model and notation 90
7.3.3.2 iNRR model . 91
7.3.3.3 iNRR vs aNET accuracy 93

7.3.4 Approximate iNRR implementation 95
7.4 Conclusions . 97

8 ccnSim: an Highly Scalable CCN Simulator 99
8.1 Taxonomy of ICN Software . 99

8.1.1 ICN software . 100
8.1.2 CCN software . 103

8.2 Description of ccnSim . 106
8.2.1 Simulator architecture . 106

8.2.1.1 Catalog and popularity model 107
8.2.1.2 Messages and chunks . 108
8.2.1.3 Node architecture . 108
8.2.1.4 Simulation statistics . 109

8.3 Benchmarking of ccnSim . 109

xl CONTENTS

8.3.1 Benchmark scenario . 110
8.3.2 Simulator profiling . 111
8.3.3 Simulator parallelization . 112
8.3.4 Overall performance . 114

8.4 Conclusions . 116

9 Conclusions 117
9.1 Host Centric Networking . 117

9.1.1 Future work . 118
9.2 Content Centric Networking . 118

9.2.1 Future work . 119

Appendices 121

A Publications 123

Bibliography 125

1

Chapter 1

Introduction

Internet only just works [20]. In the current state, the Internet may be improved, either
at “software layer” or at “hardware layer”. In the former case, a set of IP-based protocols
(e.g.,TCP, UDP) can be extended to exploit all the functionalities provided at lower layers
. With respect to the latter case, IP can be deployed on almost every kind of physical layer:
radio, fiber, copper, and henceforth. Each of these physical layers has different properties
made available to higher layers by IP. In the following we disregard hardware solutions on
the behalf of software ones.

In this model IP acts as the narrow waist [21,22,41] of a pictorial hourglass formed by
different architectures/protocols for each layer (starting from the application, and ending
in the physical layer). For instance, Fig. 1.1 reports the evolution of the higher part of
the hourglass through the last 20 years. Indeed, while changing upper and lower layers is
fairly simple [22,49], changing IP (and then the network core) is an extremely challenging
task (e.g., we are still updating the current infrastructure from IPv4 to IPv6 [50]).

Evidently, ISP operators are not disposed toward this task, unless research shows the
real usefulness of such an approach. Nonetheless, to show the utility of an IP modification,
there needs to be large scale deployment by a network operator. This vicious circle is hard
to brake.

As a matter of fact, the actual usage of IP networks stratifies a series of scalability
“patches” introduced when the system either ceases to work or presents serious and up-
coming issues.

1.1 A bit of history

ARPANET represents the actual Internet’s ancestor. It was developed in 1969 to inter-
connect a small researcher community [51], and was mainly based on the Network Control
Program, NCP [52]. NCP provided host-to-host communication, and glued together ad-
dressing and data transfer (e.g., end-host communication, flow control and henceforth).

2 1.1. A bit of history

Figure 1.1: Pictorial evolution of the Internet over the last two decades.

Soon, it was clear that, for the sake of flexibility [53], machine addressing and file
transfers should occupy two different layers. This conclusion had as consequence the birth,
in March 1978, of two distinct protocols: the Transfer Control Protocol (TCP) and the
Internet Protocol (IP) [53].

Since then, deploying IP over larger scale scenarios represents a continuous challenge
for the Internet’s architects, walking on the thin ice of infeasibility. Besides, given the
actual Internet is composed by more than one billion machines [20], a strongly linked issue
in modifying, updating, and thus changing the actual core protocols is to incrementally
deploy those changes. Indeed, it would be actually impossible to switch off the whole set of
machines (routers and end-hosts) to implement actual protocol modifications. Let’s note
that changes to higher layers (e.g., changes in TCP, HTTP, and henceforth) are definitely
simpler: for instance, they can be introduced by gradually updating operative systems,
leveraging on the layer transparency.

IP layer’s rigidity has been widely analyzed in the recent research, and is known as the
Internet ossification [20–22]. Moreover, the wide development of HTTP/TCP middle-boxes
(e.g., NATs or firewalls) is leading to further ossify the stack around these protocols [22–24].
As a matter of fact, deployable solutions for further scaling the Internet usually come as
patches, implemented at higher levels of the TCP/IP communication stack.

This situation has encouraged the development of overlay applications. Overlays pro-
vide a scalable and incrementally deployable solutions distributed over the top of the
communication stack. An overlay network is a set of virtual application-level connections
(i.e., not physical) built on the top of the lower networking layers. It’s beyond the scope
of this introduction to focus on the description of these applications. In Fig. 1.1 we report
a series of well known overlay applications developed during these last 20 years of the In-

1. Introduction 3

Year Global Internet Traffic (GB/s) Forwarding table size (Entries)
1992 0.001 25000
1997 0.02 50000
2002 100 100000
2007 2000 200000
2012 12000 500000
2017 35000 1200000

Table 1.1: Internet growth of the last two decades in terms of global traffic and routing
table size.

ternet. Content Distribution Networks (CDNs), Peer to Peer (P2P), and, recently, Cloud
Computing, represent the main overlay classes to which these applications belong. Each
of the above applications happens to gain popularity for a certain amount of time, soon
leaving the Internet scenario either for legal issues (we report the notorious Megaupload
closure carried out by the FBI forces in 2009) or for lack of performance.

However, Internet ossification represents the root of most ills that are becoming more
and more serious in today’s scenario: security, management, performance, flexibility rep-
resent only a small subset of them. Even though the need to solve these problems still
seems to lack urgency, outlining possible solutions appears mandatory for the networking
community. Research could and should propose a more general framework for radically
solving the scalability problems affecting the Internet for more than two decades. The only
viable solution is to attempt a deployable modification of the network layer, borrowing
ideas and solutions from the higher tiers, and porting them into the core.

In particular, in this Thesis we focus on two different scalability issues the Internet is
facing:

• The routing tables growth, essentially due to the greater and greater number of hosts
connected to the network.

• The increase of Internet traffic basically due to the wide distribution of content-based
applications (e.g., YouTube, DailyMotion, and henceforth).

In order to have a numeric taste of the problems dimension, we show in Tab. 1.1 the
global internet traffic (as reported in the Cisco VNI forecasts [26, 54]) and the size of the
routers forwarding table (as reported in [25]) from 1992 to 2017. As we can see, in about
twenty years we moved from few Megabytes to Exabytes (1EB = 1018 bytes) of global
traffic and from tens of thousands to millions of routing entries.

4 1.2. Host vs Information Centric Networking

1.2 Host vs Information Centric Networking
Actual research in the field of future Internet architectures is trying to clean the patchwork
slate Internet has become. The high level goal is to borrow ideas and mechanisms from the
overlay solutions, trying to bring these mechanisms within the Internet core. In particular,
we focus on two of these approaches:

• Under the name of Host Centric Networking (HCN), we classify the umbrella ar-
chitectures that focus on decoupling host identification and location. This opens
the possibility of easily distributing the host name-space among the routers of the
network alleviating the routing table explosion.

• Under the class of Information Centric Networking (ICN), we refer to the set of future
Internet architectures that make content directly addressable within the networking
layer, thus enabling caching as a means to cope with the traffic growth.

In the following we provide an overview of each approach, highlighting the points on which
this Thesis is mostly focused. We detail the background of the HCN and ICN proposals in
Ch. 2 and Ch. 5, respectively.

1.2.1 Host Centric Networking

Host Centric Networking (HCN) is a class of clean-slate approaches which aim at squeezing
the routers forwarding tables by decoupling the location/identification pair that charac-
terizes the IP protocol. The basic idea is to design an architecture based no longer on
hierarchical names but rather on flat labels. Everything can be included in a flat label, and
it is by design independent of the location of the objects. Some approaches even propose
simple 48-bit Ethernet identifiers thus electing Ethernet as the future thin waist of the
communication hourglass.

Thus, the base line of this approach is to identify a sort of virtual, global and authen-
ticated name space on which to route host-to-host requests. Usually the basic strategy is
to use a sort of Distributed Hash Table (DHT [55]) implemented within the networking
layer and distributed between the border routers of the ISP. The DHT is usually queried to
identify the successor of the host identifier in the DHT geometry. HCN approaches widely
use on-path caching techniques, in order to store the best paths toward already visited
hosts.

Host Centric Networking borrows additional theory from compact routing approaches.
This latter is a branch belonging to graph theory which tries to scale routing on large
topologies, while still minimizing the length of the determined paths. Compact routing,
and hence most HCN proposals, usually neglect the low level intra-routing component (i.e.,
within ISP boundaries) usually left to a canonical OSPF-like protocol.

Indeed, our work in this field is mostly related to the routing and forwarding inside
the ISP boundaries. We claim that flattening the network also impacts on the traditional

1. Introduction 5

A

D

B

C

F

G

E

Shortest path

Backup path

(a)

A

D

B

C

F

G

E

(b)

Figure 1.2: Pictorial comparison between the traditional hop-by-hop routing infrastructure
(a) and Aplasia(b).

interior end-to-end (and not host-to-host) routing. Thus, we design, model and analyze the
Adaptive Probabilistic Link-state Architecture for Switching In Autoforwarding (Aplasia).
Aplasia is a forwarding architecture that leverages on flat names and is explicitly designed
for the ISP interior. Aplasia is composed by two distinct parts:

• A path-finding algorithm based on the same flooding procedure adopted by OSPF.
Nonetheless, trading off message with computational complexity, Apl is able to
find more than one single path between two different end-points.

• An autoforwarding plane which exploits the paths found by Apl . Autoforwarding
shifts FIBs toward the network edge, highly simplifying the core part of an ISP
network.

In Fig. 1.2, we pictorially show the basic Aplasia’s idea. Traditional intra domain for-
warding (Fig. 1.2(a)) usually stores next-hop shortest path information in each node of the
network. Aplasia(Fig. 1.2(b)) simplifies the network core, by shifting routing state toward
the edge, and at the same time collecting more than a single path between each routers
pair. The first part of this Thesis focuses on modeling and evaluating the two Aplasia’s
components describe above. In particular, we analytically model algorithmic costs, as-
sess algorithmic performance by simulation, and experimentally evaluate autoforwarding
benefits.

6 1.2. Host vs Information Centric Networking

192.10.4.100

192.10.4.100Dest

video1.avi

(a)

video1.avi

(b)

Figure 1.3: Pictorial comparison between the traditional host-based file retrieval (a) and
the ICN paradigm (b).

1.2.2 Information Centric Networking

Nowadays, more than 60% of the Exabyte Internet traffic shown in Fig. 1.1 is consumed
by Video applications [26], and it will exceed 90% in 2017. These data empirically show
that the network is more and more becoming a means to download media content, rather
than simply find hosts.

Most overlay applications, like P2P or CDNs, clearly try to cope with this content
demand explosion. With the P2P approach, users find and download a file most of the time
ignoring from which peer(s) the content has been downloaded. With the CDN approach,
clients obtain contents (e.g., a YouTube video) from an arbitrary and unknown server.

Addressing this content-host indirection represents the core idea of Information Centric
architectures. Indeed, ICN aims at replacing the actual thin waist of the hourglass with the
concept of content, deploying a general purpose content-based protocol above the TCP/IP
stack. Developing most of the current applications in a particular ICN context, would
silently shift the current hourglass waist. This shift will make IP easily replaceable, in the
same way that lower layers are easily replaceable for IP. In other words, the actual IP layer
will be considered as a mere transport layer for a particular ICN protocol.

Most ICN approaches heavily rely on caching, often dealing with receiver oriented
network of caches rather than a simpler network of routers. In Fig. 1.3 we pictorially
show ICN principles. Traditional best effort approaches (Fig. 1.3(a)) let all the flows query
the server hosting video1.avi. Instead, in information-oriented approaches (Fig. 1.3(b))
flows are filtered either by request aggregation (nodes on the left) or by caching (nodes on
the right). Roughly speaking, since the name of the requested content is specified within

1. Introduction 7

Chapter Subject S M E
Ch. 2 HCN background
Ch. 3 Apl analysis and description ? ?
Ch. 4 Aplasia ? ? ?

Ch. 5 ICN background
Ch. 6 Caching assessment ?
Ch. 7 Coupling caching & forwarding ? ?
Ch. 8 ccnSim performance analysis ?

Ch. 9 Conclusions & Future works

Table 1.2: Thesis synopsis. For each chapter, we indicate the methodology followed: sim-
ulation (S), modelling (M), or experiment (E).

the packet header, nodes can detect either if a request for the same file has been sent
(aggregation), or the file is within the local buffer (caching). In particular, this latter is a
clear example of a concept borrowed from overlay approaches (CDNs, Web Proxies, and
henceforth) and fully deployed as a low layer in the ICN context. A caching algorithm
for a general network is different (and less simple to analyze and model) from a caching
algorithm for a single cache. Indeed, a network caching algorithm is composed by:

• A forwarding strategy, for routing requests within the network of caches.

• A decision strategy adopted by each cache for determining if the incoming content
is worth being cached.

• A replacement strategy to decide which element to drop from a (full) cache.

The second part of this Thesis mostly deals with caching in an ICN context: first
determining the most influential exogenous and endogenous factors, and then focusing
on forwarding strategies. Starting from strategies similar to those analyzed in the HCN
section, we show how ICN needs more dynamic forwarding and, above all, it should be
tightly coupled with the decision strategy.

1.3 Structure of this work

The structure of this Thesis is synthetically summarized in Tab. 1.2. We report for each
chapter the methodology followed: S stands for simulation, M for Modelling, and E for
Experiments. We describe in detail the structure of this Thesis in the following:

Host Centric Networking From an HCN perspective, we consider the routing problem
within an ISP: this concerns the first part of the work. In particular, Ch. 2 gives a

8 1.3. Structure of this work

broader perspective about routing and forwarding into a flat network. Then, with the
goal of simplifying the network core, we first develop an algorithm for multiple-path
discovery within the boundaries of an Autonomous System (Ch. 3). Then we plug the
aforementioned algorithm into a forwarding architecture, namely APLASIA (Ch. 4).
In particular, we analytically model the costs of the algorithm,simulatively estimate
the routing performance and, finally, experimentally show the forwarding benefits.

Information Centric Networking From an ICN perspective, we consider a particular
ICN architecture, namely the Content Centric Networking (CCN) proposed by PARC
[56]. As many other ICN architectures, a CCN network can be abstracted as a receiver
driven network of caches. Thus, the second part of this work (Part II) is focused on
analyzing, modelling, and evaluating caching algorithms within a network of caches.
In particular, Ch. 5 provides a detailed background about network caching algorithm,
showing how the current literature is not complete, either in terms of proposals or in
terms of scenarios. Ch. 6 ranks the factors which mostly affect caching performance.
Then, Ch. 7 proposes and analyzes different forwarding strategies within a network
of caches. Finally, Ch. 8 describes ccnSim, our simulator tool through which we
performed all the simulative work of Part II.

The work ends with Ch. 9 which sums up the major contributions of this Thesis, and
indicates the remaining unexplored directions of this work.

9

Part I

Host Centric Networking

11

Chapter 2

Background

In the last few years, several research proposals have addressed the issue of decoupling the
concept of host identification and location at the Intranet [27–30] or, more recently, at the
Internet [31–33] level.

Usually, compact routing [57] represents the theoretical background on which these
approaches are based. Compact routing addresses the problem of routing over a network
(as we will see, even the canonical hierarchical routing represents a compact routing scheme)
by leveraging minimal amount of information (i.e., compact).

Often, these architectures employ traditional routing protocols for their inner-working:
as link-state algorithms, such as OSPF or IS-IS, are about 20 years old, they reveal their
limits when used in flat environments.

Our goal is to propose a new holistic proposal for the underlying multi-path routing of
the above architectures, especially targeting intra-domain routing. Our proposal sits at a
radical point, unexplored so far, in the network design space, where we tradeoff hardware
and algorithmic simplicity for a slightly increased (but tunable) communication cost.

2.1 Aplasia overview

We name our proposal Adaptive Probabilistic Link-state Architecture Switching in Autofor-
warding (Aplasia). In medical terms, Aplasia refers to a congenital absence of an organ or
tissue: in our architecture, this condition refers to the absence of a Forwarding Information
Base (FIB) in the switching fabric of core network nodes.

We tradeoff the absence of FIB information with a minimal increase of frame header
size: in an Aplasia domain, data frames carry a fully specified source-routed path, so that
the next hop interface is always directly available in the frame header (i.e., data frames are
autoforwarding) and does not require any lookup.

We believe Aplasia to be an advantageous condition. Our reasoning is that data-plane
autoforwarding simplifies the nodes hardware architecture (and their cost), as it eliminates

12 2.1. Aplasia overview

the need to implement FIB data structures able to cope with link speeds and thus requiring
fast and expensive memories (e.g., TCAM for longest-prefix match lookup in the IP world,
or CAM for Ethernet switching).

Additionally, to further simplify the nodes inner architecture, we reduce the compu-
tational complexity of the algorithm run by control plane software (further limiting the
hardware requirements in turn), that we again tradeoff for an increased (but tunable)
communication cost.

Under link-state algorithms such as OSPF and IS-IS, topology discovery is performed by
running the Dijkstra algorithm after each node has received all link-state advertisements.
In Aplasia, as the control-messages accumulate the traveled path directly on the header,
there is however no need to run additional algorithms for path discovery, that can be
instead be learnt and updated on each new control message reception.

The tradeoff between the amount of state needed for routing and forwarding functions,
and the quality of the gathered communication path has been explored at all layers of
the protocol stack and contexts – from application-layer peer-to-peer overlays, to Internet
intra- and inter-domain routing and to lower-layer access architectures at the network edge.

In the current state of affairs, for instance, IP attempts at solving scalability via hierar-
chical addressing and aggregation. However, hierarchy requires location-dependent names
that complicate network management (e.g., mobility) already at the IP level. Location-
dependent names can provide enough benefits to become appealing only for specialized
environments (e.g., as in PortLand [34], that leverages positional addressing to optimize
switching on data-centers arranged as a fat-tree topology). For more general purposes,
location-independent (or flat) names have received a growing interest lately (see [33] for a
thorough overview).

While in principle such flat identifiers can be arbitrary bit-strings, Ethernet MAC
addresses represent perhaps the best example. Indeed, as Ethernet is the most widely
deployed fixed access technology as of today, much research effort focused on making Eth-
ernet scalable, with relevant research proposals (such as SmartBridges [27], Rbridges [28],
Viking [29], SEATTLE [30], SPAIN [36]) and normalization effort grouped under the “car-
rier grade” Ethernet umbrella [58] (of which examples are IEEE 802.1ah PBB [59] and its
traffic engineering extension IEEE 802.1Qay PBB-TE [60]).

We summarize and compare relevant related effort in the above areas in Tab. 2.1,
where we list some among the proposal for scalable routing on flat identifiers from an
Internet [31–33] or Ethernet perspective [27–30, 36] (the latter being closer to our work
given our focus on intra-domain routing). We point out that while each of these two
domains has its own specificity, architectural solutions can be shared to some extent. Let
us focus on forwarding state scalability first. For instance, in the Ethernet context, one
of the issues concerns the possibly very large number of hosts – which affects the amount
of state that switches have to keep on the one hand, and the procedure used for the host
resolution on the other hand. In Ethernet, the space of existing solutions ranges from MAC
address encapsulation (as in IEEE 802.1ah PPB, so that only the outer MAC addresses,

2. Background 13

Architecture Host resolution Routing Algorithm com-
plexity

Communication
complexity

Multipath

Rbridges [28] Centralized
LS (OSPF) O(NlogN +Nδ) O(Nδ)

No
SEATTLE
[30]

One-hop DHT No

ROFL [32] Chord DHT No
SmartBridge
[27]

Centralized Diffusing compu-
tation + BFS

O(Nδ) O(Nδ) No

BANANAS
[31]

n.a. LS + k-shortest
path [35]

O(Nδ + NlogN +
kN)

O(Nδ) Yes (k)

Viking [29] n.a. Centralized +
multiple runs
of [35]

O(N3logN +N3δ) n.a. Yes (2 out of
k)

APLASIA n.a. APL O(Nδ) O(Nδ) Yes (2)

Table 2.1: Comparison of related effort: we show for each architecture its underlying (host
resolution and routing) algorithms, and its (computational and communication) complexity
bounds.

but not the inner host MAC, are exposed within the domain), to the use of distributed hash
tables (as in SEATTLE [30] using a One-hop DHT to perform scalable host resolution).
Similarly, ROFL [32] applies techniques from DHTs, though it targets Internet intra- and
inter-domain routing.

Let us now consider the issue of routing and path quality. In the case of Ethernet,
another long studied issue concerns the limits of the Spanning Tree Protocol (STP), whose
main purpose is to provide loop free paths between any two nodes in the LAN: here,
research has focused on a more efficient use of LAN resources (e.g., by the use of multiple
spanning trees) and a faster convergence in case of topology changes or failures. To get
around these limits, again the explored design space is rather wide, with solution ranging
from centralized approaches [29], to the use of IETF GMPLS [61] control plane protocol
suite to configure PBB-TE devices, or the use [30] of classical link-state routing protocols
such as OSPF. Yet, even in this case some commonalities can be identified across domains
of application, as at the Internet level ROFL [32] still assumes an underlying OSPF-like
protocol to detect link and node failures, while Disco [33] resorts to a Distance Vector (DV)
algorithm to propagate addresses.

Aplasia operates at an unexplored point in the routing-state vs path-quality tradeoff,
as it shifts the routing state from within the core network devices to inside the header of
messages traveling in the network. In this work, we do not focus on the name resolution
issue that can be handled, e.g., as in [30]. Rather, we focus on two system aspects, namely
forwarding and distributed routing protocol, that are necessary to enable the state shift.

14 2.2. Routing

2.2 Routing

Broadly speaking, routing algorithms are classified as Distance Vector (DV) or Link State
(LS) approaches. In traditional LS algorithms such as OSPF and IS-IS, a full knowledge of
the network topology is however needed, which is gained by broadcasting local information
among neighbors, after which well-know algorithms such as Dijkstra can be run to compute
the shortest path to any given destination (or more complex algorithms to gather multiple
paths). In DV algorithms, routing tables are updated incrementally at the reception of
each message carrying global reachability information, while loops are resolved by diffusing
computation [62] and multiple paths are also possibly supported [63].

Routing in Aplasia follows an Adaptive probabilistic link-state (Apl) algorithm,
where nodes propagate, as in LS, local connectivity information. At the same time, Apl
performs incremental distributed multi-path computation, and thus inherits some of the
desirable DV properties. In Apl each message accumulates the complete traveled path
from the advertiser, so that paths can be updated at the reception of any new control
message (as in DV) with a greedy algorithm. Moreover, Apl supports the computation
of multiple paths, via simple inspection of Apl frame header and comparison operations
(unlike in LS), requiring only a minimal amount of state.

While it is possible to limit the number of messages exchanged by Apl to match LS
message complexity (that already allows to learn multiple paths), however Apl benefits
of some additional exchanges (to ameliorate the quality of the additional paths). These
extra messages are (probabilistically) sent in such a way that the Apl procedure is not
only auto-terminating (as in DV) and rapidly converging, but the number of messages sent
over the whole network remains of the same order of magnitude (with a fixed, tunable,
multiplicative overhead with respect to LS). The detailed description of Apl is provided
in Ch. 3.

Probabilistic decisions are also used in [64], that employs distributed Ant Colony Opti-
mization (ACO) algorithms, based on swarm intelligence. A set of ants is spread through
the network in order to discover disjoint multiple paths, and the pheromone left by the
ants is employed in order to probabilistically avoid already crossed paths. However, beside
the increased algorithm complexity, we point out that the amount of (pheromone) state
kept at each node scales as O(N2), whereas O(N) in Aplasia1.

Tab. 2.1 reports the computational and communication complexity of some relevant
related work. Given a graph G = (V,E), let us denote with N = |V | the number of nodes
in the graph and by δ = |E|/|V | the average degree. For comparison purposes, let us
consider a classical LS approach, as this is used in close work [30]: on any topology change,
the number of messages sent over the whole network is O(Nδ), while the computation
complexity of Dijkstra is O(NlogN +Nδ).

1Note that our currently ongoing work suggest that this could be bound to O(1) under certain assump-
tions that we briefly discuss on the conclusion section.

2. Background 15

SmartBridges [27] achieve lower computational complexity but is still limited to a sin-
gle (shortest) path forwarding. BANANAS [31] supports instead multiple paths: more
precisely, after topological information is disseminated with an LS algorithm, nodes in
BANANAS run a k-shortest path algorithm [35], that has a well known computational
complexity equal to O(NlogN + Nδ + kN) for finding k shortest paths to each of the N
destinations.

Unfortunately, as paths found by [35] are however not guaranteed to be disjoint, this
may not be sufficient neither for load balancing, nor for resilience. A solution to this
problem comes from Viking [29], that however adopts a centralized incremental approach.
The central node has first to (i) run a k-shortest path algorithm N times (one per each
node), gathering k paths for all (N − 1) destinations, with computational complexity
O (N(NlogN +Nδ + kN)); then (ii) for each N(N − 1) source-destination pairs2, it then
needs to run a k-shortest path algorithm on a modified graph3, each of which has a cost
O(NlogN +Nδ+ k). Overall, the computational complexity for the central node amounts
to (i)+(ii)≈ O(N3logN + N3δ) to compute a set of candidate paths (out of which only
two are then selected). As reported in [29], this possibly leads to large execution times,
on the order of tens to hundreds of seconds, on a 8x8 grid even when only 4 out of 64
possible destinations are considered. Also SPAIN [36] points out that it is “computationally
unfeasible to find the best path set of size k”. Yet, the solution proposed in SPAIN is again
centralized, though greedy and thus less computationally intensive w.r.t [29].

Aplasia aims at finding multiple, as disjoint as possible, paths with a greedy, simple
and distributed approach. In this part, we therefore compare the quality of the path found
by Apl against the centralized optimum computed as in Viking. However, as Viking
follows a centralized approach, it does not make sense to directly compare computational
and message complexity – rather, we take a classic LS approach as a term of comparison.
As shown in Ch. 3, the communication complexity of Apl remains O(Nδ). It follows
that, in case only a primary and a secondary paths are maintained, only k = 2 compar-
ison operations are performed for each control plane message, so that the computational
complexity per node remains O(Nδ) as well.

Multipath routing is not necessarily related to a specific architecture. Indeed, the
set of works about generic multipath routing is quiet broad. [35, 65–69] represents only a
small subset of the multipath literature. The multipath problem is often treated jointly
with traffic routing in the data plane, solving a multi-commodity flow problem [65] where,
given a traffic matrix and a topology, the objective is find the routing that minimizes

2Notice that Viking consider that only an subset of nodes NS < N can be part of a source/destination
pair, whereas the remaining N − NS nodes only perform switching functions and thus should not be
accounted for in the algorithm complexity. While this also the likely application scenario for Aplasia, we
however prefer to give computational complexity bounds for the general case.

3In the modified graph, rather than removing the links, the cost along the k shortest paths is increased
by the original graph diameter: in this way, overlaps are tolerated only when strictly necessary, i.e., when
the path would otherwise be disconnected.

16 2.3. Forwarding and framing

network congestion. Another class of work closest to ours focuses instead on control-
plane topology discovery [35, 64, 66–69]. The simplest link state extension to multipath is
Equal Cost Multiple Paths (ECMP) [66], that splits traffic on different shortest paths (if
there exist) between each pair of nodes. Other works relax the hypothesis of equal cost,
and develop algorithms to find k shortest paths on any given graph [35, 67]. Addressing
multiple different paths (i.e., not necessarily the k shortest ones), [68] proposes a link state
algorithm, modifying the downstream criterion to avoid loops. Notice however that, while
path computation still faces the delay due to link state advertisement, the computation
of alternative paths also adds further complexity beyond the O(NlogN) Dijkstra cost
(respectively, O(E +NlogN + k) in [35], O(k(E +NlogN)) in [67] and O(E2) in [68]).

We point out that in all LS-based approaches [29–31] a major drawback is that path
computation occurs after dissemination of the topological information. Topological dissem-
ination constitutes a first source of delay in the path construction process. Yet, gathering
multiple paths can further slow down the process due to the growing computational com-
plexity, which is especially true in case more sophisticated path properties are required
(e.g., path disjointness as in [29] with respect to simpler k shortest paths in [31]). The
fact that Aplasia allows to gather paths during topological dissemination constitutes a
first advantage, the lack of a costly FIB update process [39] a second speedup, and the
simplicity of the algorithm a last one.

2.3 Forwarding and framing

Aplasia employs source routed paths, with a peculiar path encoding that (i) eliminates
the need for forwarding tables altogether, by fully specifying the sequence of output ports
directly in the frame header. Another nice property of Aplasia framing is the ability
to provide (ii) loop-free paths by design. This is as opposite to what generally happens
in distributed algorithms, where loop-free properties have to be enforced by the protocol,
and are handled e.g., as in DSR [70] by a TTL field (whose setting is however topology-
dependent and may thus compromise the quality of the resulting paths) or as in DUAL [62]
via diffusing computation techniques.

Framing constitutes an architectural aspect that recent Ethernet evolutions (such as
Q-in-Q, MAC-in-MAC, PBB-TE, etc. [58]) have dealt with. However, these approaches
merely define new framing capability to enhance Ethernet scalability, but do not otherwise
impact the forwarding function. Moreover, such architectures loose the holistic view of the
older technology, and are no longer plug-and-play, requiring configuration via a manage-
ment or control plane, so that we consider a more detailed comparison out of scope.

It could be argued that the idea of stacking multiple labels has already been used in
other contexts, as for instance in MPLS. We point out that the label purpose and semantic
drift however significantly from ours. Label stacking in MPLS is indeed generally used for
flexibility and to overcome label space scarcity [71]. Hence, the depth of the label stack is

2. Background 17

generally limited, and a lookup table is still needed to locally translate the label into the
corresponding outgoing port.

Closer work under this angle is represented by Pathlet routing [72], Disco [33] and
BANANAS [31] in the wired domain, and by Dynamic Source Routing (DSR) [70] in the
wireless one. All these proposals go in the direction of specifying the full (or portions of the)
path in the packet header, which as stated in [33,72] introduces low overhead compared to
IPv6 headers.

For instance [72] proposes to specify portions of edge-to-edge paths (but not full paths)
in the header, to extend the routing policy expressiveness in the inter-domain context.
BANANAS [31] instead routes along fully specified path sequences (composed by globally
known nodes and interfaces identifiers) that are however compactly represented by fixed
size hashes. During forwarding operation, a local table lookup is still needed to map local
link indices to global link ID. However, the size of the table at each router is limited to
log2d as it depends on the local node degree d, but not on the network size N – which in
medical terms already constitutes a beneficial atrophy of the FIB, but not a full aplasia.

Finally, in the wireless context, DSR [70] proposes to fully specify paths directly in
the packet header. Differences from Aplasia lay here in the fact that, as the wireless
medium is generally broadcast, the path can simply be identified as addresses instead of
ports. Moreover, to avoid as possible to occupy the wireless medium with route discovery,
DSR makes extensive use of route caching at intermediate nodes (and other techniques
to automatically shorten the path if a node further away in the unexpended portion of
the path overhears a message reaching a preceding relay). Hence, DSR is engineered by
considering the wireless medium a scarce resource –antipodean with respect to the abun-
dance of capacity in Aplasia environments– leading to a completely different architecture
design. We underline that a multipath extension to DSR is proposed in [73], where authors
employ a reactive flooding algorithm, in which the TTL is gradually increased in order to
find more than just one single response. However, while gradual TTL increase is able to
provide multiple paths and is more robust to wrong TTL settings, it brings two shortcom-
ings, namely a (i) slower convergence of the routing process, and a (ii) higher number of
control messages.

2.4 Part I structure
This first part is organized as follows: in Ch. 3 we provide an overview of Apl , which
represents the Aplasia’s baseline algorithm: we detailedly analyze both Apl complexity
and performance.

Then, in Ch. 4, we plug Apl into Aplasia. We extend Apl to the case of dynamic
environments. Finally, we describe Aplasia’s forwarding part, which we evaluate by the
means of a Click testbed.

18 2.4. Part I structure

19

Chapter 3

Apl : probabilistic routing
algorithm

As introduced in Ch. 2, scaling compact routing to very large networks [74] let enterprises
deal with simpler and less expensive hardware, which translates in lower capital expendi-
tures and management costs. Every HCN solution proposed so far tries to get, from one
side, a scalable architecture in which packets are routed on the shortest path; on the other
side, such architecture should be flat [75], self-configuring and possibly self-healing [34].
Many works address this tradeoff, proposing different routing and forwarding schemes,
trying to seamlessly fill the gap between local and wide area protocols: Viking [29], SEAT-
TLE [30], PortLand [34] represent few recent examples of research efforts in this direction.

The routing process of such architectures is usually divided in two parts: the host
routing process [30] aims at resolving each host to a single switch; then, the switch routing
process let each core machine learn the best path to the other switches [33]. The latter
process, to which we focus in the following, is commonly addressed [29,30,34] with a link-
state algorithm (similar to OSPF or IS-IS) implemented at layer-2, and that generally
yields a single, shortest, path to any other switch (with the exception of [29] that also
keeps a backup tree).

We believe that using a link state algorithm at switch level is not the best choice.
First, link state decouples topology distribution and routes computation –in the sense that
all topological information needs to be received by all nodes prior that the routing table
can be computed– which represents a useless waste of time. Then, notice that the core
routing table computation algorithm is represented by Dijkstra algorithm, that results in
a O(NlogN) complexity. However, Dijkstra only provides a single shortest path between
any nodes pair, while additional paths computation produces even higher computational
complexity (though still polynomial).

In this chapter, we propose the Adaptive Probabilistic Link-state(Apl) as a simpler
solution to the aforementioned problem of switch routing, which takes an alternative ap-

20 3.1. Algorithm description

proach for the computation of multiple disjoint paths. Aiming at simplicity, we devise a
distributed greedy algorithm that drops computational complexity still remaining (almost)
stateless and self-terminating. In our design, simplicity tradeoffs with the communication
cost, as Apl generates an higher number of messages with respect to link state algorithms.
At the same time, we can tune (and analytically bound) the number of messages thanks
to a simple parameter that drives the speed of the probabilistic procedure. Moreover, by
means of simulation on several topologies (up to 10,000 nodes), we show that, with as few
as 2-3 times more messages that a link state algorithm, Apl is able to find the shortest
path and optimal backup path in more than 90% of the cases. In the remaining 10% of the
cases, non-optimality is due to a limited amount of overlap between primary and secondary
paths (about 1 node on average).

3.1 Algorithm description
In this section, we focus on description of Apl routing algorithm. Summarizing the
main differences with related literature, Apl sits at a different operational point in the
tradeoff between algorithmic complexity vs. control message overhead. Unlike in link state
algorithms [35, 66–68], since in our approach the whole traveled path accumulates in the
control message as in [73, 76], every message brings useful information for path discovery,
that can thus be computed online. At the same time, unlike in [73,76], our algorithm does
not rely on critical parameters such as TTL. Furthermore, the actions that need to be
taken to handle each message are simple operations, making thus the algorithm viable on
simple hardware. Finally, unlike [64, 69], the algorithm is guaranteed to find the shortest
path, and as our simulation results confirm, the secondary path is very often the optimal
one found by [35,67] link state algorithms.

We report in Tab. 3.1 the notation used for describing Apl ’s and its performance. The
table is divided into three parts: the top part shows algorithm’s parameters, the middle
part system model’s, and the bottom part concerns the performance evaluation.

3.1.1 Overview

We aim at designing a distributed algorithm for path discovery, capable of finding multiple,
possibly disjoint paths between any pairs of nodes. To do so, each node periodically
advertises its presence by means of some flooding procedure described below. Specifically,
each node sends an advertisement message every τa seconds; typical values range from a
few seconds to minutes [77].

During the flooding procedure, each relay node adds its identifier to the advertisement
messages it receives, so that these messages carry information concerning the whole traveled
path. Upon the reception of an advertisement message, a node learns a path from the source
of this message, as well as from any intermediate node on this path, as in [76]. Flooding
decisions are taken independently by each node, and constitute the core of the algorithm.

3. Apl : probabilistic routing algorithm 21

Parameter Meaning
β Exponential back-off
ni,s Number of times node i has seen

node s advertisements
V, E Vertices and edges set
Li,j Generic network path between i and j
Pi,j ,Si,j Primary and secondary path between i, j

length(Li,j) Path Li,j hop length
Li,j ∩ Ki,j Li,j ,Ki,j overlap set

M Network messages for a single advertisement
CP , CS Primary and secondary connectivity probability
OP , OS Primary and secondary optimality probability

Table 3.1: Algorithm notation: algorithms parameter (top), system model (middle), per-
formance evaluation (bottom).

The main idea is that nodes need to flood a received message at least once, so that shortest
paths are discovered. Nodes actually need to flood the message multiple times, in order to
discover further paths beyond the shortest one. The number of flooding decisions is critical
with respect to both the quality of the path discovery and the overhead of the algorithm.

A simple option [73,76] could consist in including a Time To Leave (TTL) field in the
packet, so as to interrupt the flooding process when some pre-configured maximum path
length is reached. The selection of a proper TTL value is critical in this case: if the TTL is
shorter than the graph diameter D for instance, then connectivity cannot be guaranteed;
if the TTL is too large, the overhead of the algorithm becomes prohibitive (as the number
of relayed messages is exponential in the TTL).

We propose an alternative approach based on adaptive probabilistic link-state flooding.
Any node receiving some advertisement message from source s floods this message the first
time, and floods it with some decreasing probability the following times. Specifically, node
i floods an advertisement message generated by source node s over all its links (except the
one from which it has received the message) with probability:

P = βni,s (3.1)

where β is some fixed parameter and ni,s is a counter, stored at node i, of the number
of times node i has already received an advertisement originated by node s. The flooding
decisions are taken independently on each link, and the counter is reset periodically, as
explained later.

Note that node i floods the first advertisement message it receives for source node s since
ni,s = 0 in this case. As further messages are received, flooding will become exponentially
less likely, according to the backoff parameter β. Note also that, if we set β = 0 Apl

22 3.1. Algorithm description

produces the same number of messages of a link state algorithm for propagating the network
topology. The quality of the path discovery is expected to increase with β, at the expense
of larger overhead. However, we shall see that performance is not very sensitive to this
parameter, and rather degrades gracefully with parameter misguidance, which makes the
algorithm robust and practically interesting.

3.1.2 Primary and secondary paths

Consider a network, modeled as an undirected graph G = (E, V), composed of |V | = N
routers, in which any pair of adjacent routers are connected by a single link for simplicity
(the algorithm can be easily extended to the general case of multiple links between any
pair of nodes). Between any two nodes i, j ∈ V , we are interested in finding a pair of paths,
i.e., sequences of nodes i = vi, vi+1 · · · vj = j ∈ V connecting node i to j in V . We denote
by Li,j the generic path connecting i to j, and by Pi,j and Si,j the primary and secondary
paths, respectively, returned by the adaptive probabilistic algorithm on graph G 1. We
denote by lenght(Pi,j) and length(Si,j) the respective lengths of these paths.

To gauge the quality of the primary and secondary paths found by our algorithm, we
need to define target path properties. The primary path is expected to be the shortest
path in number of hops; in other words, we say that Pi,j is optimal if it belongs to the set
of shortest paths from i to j in G (as there may be several such paths). The secondary
path is expected to minimize the similarity with the primary path, |Pi,j ∩ Si,j |. Note that
this choice reduces the share of faith between these paths, improving network resilience
against failures and traffic surges.

To find the optimal secondary path Si,j , we consider a modified graph G′ in which the
cost of links along the primary path Pi,j are increased by the network diameter [37], and
other link costs are unitary. As links belonging to Pi,j are now discarded due to higher
cost, running Dijkstra on G′ we retrieve a path S ′i,j minimizing the similarity function
P ′i,j ∩ S ′i,j (notice that since nodes along the primary path are not removed from G′,
they can be included in S ′i,j only if strictly necessary as the path would otherwise be
disconnected). We say that the secondary path found by the algorithm Si,j is optimal if
|Pi,j∩Si,j | = |P ′i,j∩S ′i,j | and length(Si,j) = length(S ′i,j), i.e., length(Si,j) of the secondary
path is equal to length(S ′i,j) of the optimal S ′i,j (as there may be multiple disjoint paths
minimizing the similarity with the shortest path).

3.1.3 Pseudocode

A pseudocode description of the algorithm is given in Alg. 1. A source node s initiates
the advertisement process by flooding an advertisement packet m to all its neighbors.
The flooded packet contains a list of node identifiers ID, initially set to ID[0]=s by the

1The aggregation of primary and secondary paths at a given node, forms two distinct trees of the network,
as in [29].

3. Apl : probabilistic routing algorithm 23

Algorithm 1: Algorithm pseudocode for a generic node j of the network
while j is receiving message m do1

`← length(m.ID)2
forall i ∈ [0, `] do3

if m.ID[i] = j then // loop and abort flooding4
return5

else6
d ← m.ID[i] // Destination7
Lj,d←(m.ID[`], . . . ,m.ID[i]) // Path overhearing8
if @Pj,d ∨ length(Lj,d) < length(Pj,d) then9
Pj,d ← Lj,d // Update primary path10

cond1 = |Pj,d ∩ Lj,d| < |Pj,d ∩ Sj,d|11
cond2 = |Pj,d ∩ Lj,d| = |Pj,d ∧ length(Lj,d) < length(Sj,d))12
if @Sj,d ∨ cond1 ∨ cond2 then13
Sj,d ← Lj,d // Update secondary path14

append j to m.ID15
s← m.ID[0] // Source16
forall next ∈ neighbors(j) do17

if next 6= m.ID[`− 1] then18
send m to next w.p. βns // Probabilistic flooding19

nj,s++ // Update counter associated with source s20

source, to which each node appends its own identifier. Upon reception of an advertisement
packet m, a node learns a (backward) path to the source s and to any intermediate node
d = m.ID[i] along the path. In case the receiver j detects a loop (finding its identifier
within the ID list), it discards the message and aborts the flooding procedure. Otherwise,
it analyzes, and possibly stores, the newly learned path Oj,d. Specifically, the primary (and
secondary) path is first set if not existent yet. Also, if the newly overheard path is shorter
than the primary path length(Lj,d) < length(Pj,d), then the primary path is updated with
the overheard one. Similarly, if the overheard path has lower similarity than the current
secondary path |Pj,d ∩ Lj,d| < |Pj,d ∩ Sj,d|, or if it has equal similarity but is shorter than
the secondary |Pj,d ∩Lj,d| = |Pj,d ∩ Sj,d| ∧ length(Lj,d) < length(Sj,d), then the secondary
path is updated.

Finally, after having added its own identifier to the m.ID, the node probabilistically
floods the m message, with independent decisions per each neighbor (except the node
m.ID[`-1] from which the message came), and updates the per-source counter ns. Not
shown in the pseudocode for the sake of simplicity, ties in the secondary path selection are
broken at random.

Notice that, we expect (i) messages on the shortest path to reach a node before messages
that take longer paths. This definitively holds in case of homogeneous delay; otherwise, it
may happen that (ii) messages traveling along the quickest path arrive first, which would

24 3.2. Performance evaluation

Network Segment N δ σδ ∆[ms] D
Qwest Core 33 5.0 3.1 5.9 5

DTelekom Core 68 10.4 13.3 17.2 3
Level3 Core 46 11.7 10.1 8.9 4
Sprint Core 315 6.2 6.9 3.2 13
Geant Aggr 22 3.4 1.4 2.6 4
Tiger2 Metro 22 3.6 0.6 0.1 5
Random - 10[2,5] 4 ≈ 4 1 [3, 6]

Table 3.2: Topological properties of the network scenarios.

be then stored as primary path; analogously, (iii) if control messages queue with data-
plane messages without priority, the first message could have as well traveled along the
less congested path. Notice that, by simple priority queuing, case (iii) can be ruled out.
Then, notice that (ii) may only happen in networks having links with very long delays:
in this case, the message traveling along the shortest path is not necessarily the first to
be received. However, one of the subsequent messages will surely have traveled along the
shortest path (since due to ns = 0 the messages are flooded at least once), so that the
primary path is guaranteed to converge to the shortest (unlike [64, 69]). However, we will
deal with the quickest/shortest path problem in Sec. 4.2.2.

3.2 Performance evaluation

In this section, we precisely quantify the Apl overhead vs path quality tradeoff, and that
can be tuned through the β backoff parameter earlier introduced, by proceeding as follows.
We first evaluate the overhead of the algorithm through a simple analytical model, then,
we employ discrete event simulation to validate the analysis and evaluate performance in
terms of the quality of discovered paths.

Simulations are carried on with Omnet++ [38] over four different network topologies
gathered by mean of Rocketfuel [78], whose most significant properties are summarized in
Tab. 3.2. Specifically, Tab. 3.2 reports the number of nodes N = |V |, the average and
standard deviation of the node degree, δ and σ, and the diameter D of the original graph
G.

Note that we consider both real ISP topologies, corresponding to different network
segments, as well as a set of 50 synthetic random graphs with N ≤ 10000 and δ = 4. For
the time being, we use homogeneous settings (i.e., constant and equal delay on every link),
and no failures happen within the network. The evaluation of more complex (heterogeneous
delay, failures, etc.) scenarios is part of our ongoing work.

3. Apl : probabilistic routing algorithm 25

 0

 5

 10

 15

 20

 25

 30

 35

 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

m
es

sa
g

es
p

er
 n

o
d

e
M

/N

Average node degree - δ

N=100
N=1000

N=10000
Model

Qwest

DTelekom

Level3

Geant

Tiger2

Sprint

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
er

 o
f

m
es

sa
g

es
p

er
 n

o
d

e
M

/N

Backoff parameter - β

N=100
N=1000

N=10000
Model

Figure 3.1: Model vs simulation comparison of the number of messages per node for varying
node degree δ when β = 0.7 (a) and backoff parameter β when δ = 4 (b).

3.2.1 Algorithm complexity

We now evaluate the cost of Apl in terms of communication, space and computational
complexity. The average amount of messages handled by any given node during the ad-
vertisement procedure is denoted with M and represents the primary cost sustained by
the algorithm. For comparison purposes, we take any link state algorithms like IS-IS or
OSPF as a reference. We recall that such protocols are composed by two phases: (i) flood-
ing of topological information, and (ii) path computation, usually fulfilled by the mean of
Dijkstra algorithm on the graph information gathered on the first phase.

Communication complexity

The total number of control messages M transmitted over the network during a single
advertisement process can be easily estimated neglecting the actual network topology.
Considering for simplicity a time slotted execution of the Apl algorithm, we have that if
node s has started the advertisement process, a generic node j sends δ − 1 advertisement
messages (i.e., on every interface except for the interface from which the message came)
with a probability Eq. (3.1) that depends on the number of times it previously handled the
message from the same advertiser. The total network message count can then be gathered
by simply summing up over all possible counter values ni,j ∈ [0,∞], and taking into account
that all nodes behave the same multiplying by N :

M ≈ N
(
(δ − 1) + (δ − 1)β + (δ − 1)β2 + · · ·

)
= N(δ − 1)

∞∑
n=0

βn = N
δ − 1
1− β (3.2)

26 3.2. Performance evaluation

Notice that Eq. (3.2) is a conservative estimate of the number of messages, as we do not
take into account that loops form and thus messages get discarded. A trivial refinement to
Eq. (3.2) would be thus to truncate the sum to N , with a minimal impact as βn becomes
negligible for large n.

Above all, Eq. (3.2) shows that the number of messagesM distributed over the network
during an advertisement linearly depends on the network size and average degree δ, and
hyperbolically on 1− β. While (N, δ) are given by the scenario and cannot be changed in
actual deployment, the exponential backoff β gives a very simple knob to tune the overhead
with respect to LS. The number of additional messages is off of at most an overhead factor
1/(1 − β) > 1, ensuring Apl to be scalable as the overhead beyond LS is tunable and
bounded.

We validate Eq. (3.2) against simulation in Fig. 3.1, where we normalize the number of
messages over the network size to simplify the comparison over networks having heteroge-
neous sizes. We simulate both the real network topologies early considered (filled circles, to
show model accuracy in practice) as well as random graphs with varying degree δ ∈ [3, 12]
and size N ∈ {100, 1000, 10000} (empty points, to stress test Apl). Fig. 3.1 reports the
number of messages handled per node M/N during an advertisement round, comparing
model and simulation for varying network degrees (Fig. 3.1(a)) and β values (Fig. 3.1(b)),
from which is easy to gather in both cases an excellent matching.

Aside the model accuracy, notice that the number of messages generated is very similar
for β ≤ 0.3: hence, the path quality results shown earlier for β = 0.3 can be considered
as a lower bound for Aplasia performance. Intuitively, this happens due to the fact that
messages are certainly flooded the first time, which already allows to discover more than
the primary path. Any further message transmission, for higher values of β, contributes to
the refinement of the path quality. However, these refinements may come to the cost of an
increase of M , so that alternative techniques (e.g., LoN heuristic) may be preferable than
a mere increase of β.

Space complexity

Space needed by Apl to run is O(2N) in order to store primary and secondary/backup
tree of the network (as in [29]). Additionally, we need also O(N) counters ns to safely
count the number of messages generated by each source. This could be problematic in
case the size of the network is not known a priory (though N could be set to a fairly
large number for safe operation). At the same time, a staggered advertisement solutions
as proposed above, implies that instead of keeping O(N) counters (one for each source
in case of advertisements in parallel), the system could perform advertisement in series
and keep a small number of O(1) counters. This could be achieved by desynchronizing
the start of each advertisement either with a simple policy (e.g., periodically at random
within [0, 2τa]) or with more sophisticated schemes (e.g., CSMA-like solutions). This is an
interesting direction for future research, that we aim at pursuing in the following.

3. Apl : probabilistic routing algorithm 27

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

n
n

ec
ti

v
it

y
 p

ro
b

ab
il

it
y

 -
 C

S

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Primary connectivity - CP

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
p

ti
m

al
it

y
 p

ro
b

ab
il

it
y

 -
 O

S

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Primary optimality - OP

(b)

Figure 3.2: Apl path quality. We show connectivity (a) and optimality (b) for realistic
ISP topologies.

Computational complexity

If Dijkstra and the other graph algorithms need to perform O(NlogN) and O(NlogN+E2)
for the computation of the shortest and backup path respectively once the full graph is
known, Apl on the other hand needs to perform simpler operations on a packet-by-packet
basis. More precisely, on the reception of each control message, switches need to perform:
(i) a comparison for the shortest path (Alg. 1, line 9); (ii) an intersection for the best
alternate path (Alg. 1 line 12). Since the overall number of Apl control messages is
bounded, we can bound Apl computational complexity as well – which grows with N
when all advertisements start at the same time. Instead, it’s worth to note that in link
state algorithms, a single link state advertisement for a topology change causes to start,
for each node, another run of a O(NlogN) Dijkstra algorithm.

3.2.2 Path quality

Let us now focus on the quality of the paths that the adaptive probabilistic flooding
algorithm is able to find. For simplicity, we let each node advertise itself once at time t = 0
and evaluate the connectivity and optimality of the primary and secondary paths. Since
evaluating path quality of random networks is unrealistic, we now only consider the ISP
topologies, reporting results over 20 simulations per topology.

We express path quality in terms of connectivity along the primary and secondary path
(i.e., whether paths Pi,j and Si,j joining any two nodes i, j ∈ V exist) and optimality
(i.e., whether Pi,j and Si,j are optimal according to the above definitions). We express
connectivity in terms of the probability CP (CS) that, ∀i, j ∈ V , nodes i and j are connected
by some primary (secondary) path. We express optimality in terms of the probability OP

28 3.2. Performance evaluation

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
v
er

la
p
 |P

∩
S

| o
f

n
o
n
-o

p
ti

m
al

 p
at

h
s

[H
o
p
s]

Backoff parameter β

Tiger2
Geant

Abilene
DTelekom

Figure 3.3: Apl secondary overlap for realistic ISP topologies.

that the primary path is also the shortest, and in terms of probability OS that the secondary
path is the shortest most diverse path from the primary.

Fig. 3.2(a) depicts the connectivity probability of the primary and secondary paths as
a function of β: as expected, primary connectivity does not depend on β and is always
guaranteed. Since a primary path is always found, the connectivity index is relevant for
the secondary path only: we see that all secondary paths are connected in all networks
when β ≥ 0.7 (which correspond to limited overhead in Fig. 3.1(b)).

Fig. 3.2(b) reports the optimality probability of the primary and secondary paths as
a function of β: again, since the shortest path is always eventually found, the optimality
of the primary path is guaranteed. Thus, the optimality index is relevant only for the
secondary path: we see that a significant percentage (from 60% to 85%, depending on the
topology) of secondary paths are optimal even for a very low value of β = 0.1, and that
at least 90% of secondary paths are optimal for all considered topologies when β ≥ 0.8.
Moreover, we observe that optimality gracefully degrades β, and furthermore with similar
(roughly linear) slope across all topologies. This is a desirable behavior: as no phase
transition nor knee appear in the path quality slopes, tuning β between low overhead (low
β) vs high path quality (high β) is not critical.

Finally, we dissect the reason behind the sub-optimality of some secondary paths. Recall
that a secondary path is optimal if it is the shortest and most diverse path compared to the
primary. Hence, sub-optimality of the secondary path may be due to either (i) a non-zero
overlap between primary and secondary paths, |Pi,j ∩Si,j | > 0, or (ii) a path with a stretch

3. Apl : probabilistic routing algorithm 29

over the optimal secondary path larger than one length(Si,j)/length(S ′i,j) > 1. Fig. 3.3
depicts the overlap, i.e., the number of nodes that primary and secondary paths have in
common, conditioning over the sub-optimal paths (i.e., the overlap of optimal secondary
paths is not accounted for in the picture). As shown by the figure, sub-optimality seems to
be tied to slightly more than one node in common as |Pi,j ∩Si,j | ∈ [1, 1.5]. Furthermore, as
the average overlap is always |Pi,j ∩ Si,j | ≥ 1 for any β, we can conclude that overlapping
paths are significantly more common that long-stretching paths.

3.3 Conclusions
We have presented a novel flooding based algorithm for multiple-path discovery: the algo-
rithm trades a small amount of state in routers, i.e., O(N) counters, in order to significantly
limit the number of messages generated by flooding through an adaptive probabilistic al-
gorithm.

Simple analytical bounds, confirmed by simulation results, show the overhead entailed
by the advertisement procedure to be low (with respect to the amount of messages needed
by classical link state algorithms) and auto-terminating (due to the multiplicative decrease
of the flooding probability).

Simulation results also testify excellent performance in terms of path quality: connec-
tivity and optimality of the primary path are achieved by design, while 90% of secondary
paths are also optimal when β ≥ 0.8 (or otherwise decrease linearly for lower β). Inter-
estingly, the low percentage of low path is due to a very limited amount of share of faith
between paths.

In the next chapter, we use Apl as routing component of Aplasia. We analyze
its dynamic properties (e.g., advertisement duration, peak communication cost, and hence
forth), and then show how Apl can be easily coupled with an autoforwarding data plane.

30 3.3. Conclusions

31

Chapter 4

APLASIA: forwarding on switched
paths

In this chapter, we introduce Aplasia, an holistic architecture with a radical design.
Aiming at simplifying the inner network devices (and so their cost), we tradeoff node-
and algorithmic-complexity for an increased (but tunable) communication cost. The main
ingredients of our recipe are (i) the use of complete paths directly in the frames header,
that allows core devices to perform data-plane switching functions without lookup and (ii)
the use of the Apl (see Ch. 3) greedy probabilistic routing algorithm to quickly discover
multiple, near optimal, paths in the control plane. We extensively simulate, analyze and
implement our proposal to testify its soundness.

From the algorithmic point of view, we precisely model the duration of a single Apl
advertisement round showing as the model fits well simulation results. Finally, some prac-
tical considerations are made in order to improve the quality of the paths discovered (e.g.,
in terms of path disjointness).

From the architecture point of view we accurately design and prototype the forwarding
plane of Aplasia. Such design is carried by the practical observation that the original al-
gorithmic solution is well suitable for a source routed forwarding. Additionally, in this work
we prototype part of Aplasia concepts in a Click [40] module, and provide experimental
results from a small-size testbed.

Aplasia offers a simple, multi-path, flexible, loop-free, fast, efficient, tunable and plug-
and-play connectivity layer. To reach these goals, we take an holistic approach and jointly
design new forwarding and routing mechanisms. To simplify the forwarding in an Aplasia
domain, edge-to-edge paths are completely specified in the header of each frame. Hence,
forwarding decisions do not require a table lookup, as the next hop interface is carried in
the header.

The remainder of this Chapter is organized as follows. Sec. 4.1 details Aplasia’s two
main components, namely (i) the autoforwarding data plane and (ii) the Apl algorithm.

32 4.1. Architecture description

We investigate Aplasia performance by simulation (Sec. 4.2), analysis(Sec. 4.3) and ex-
periments (Sec. 4.4). Finally, Sec. 4.6 concludes the chapter.

4.1 Architecture description
Aplasia supports multiple paths toward the same destination, that can be used in a flexible
way on the data plane. We underline that Aplasia specifies only how to determine multiple
disjoint paths between two end points within the AS boundaries. How to exploit these
paths (e.g., for backup or load balancing) is left as future research (as briefly discussed in
Sec. 4.5). While the underlying Aplasia algorithm does not limit the number of paths
a priori, in this work we limitedly consider two paths for the sake of simplicity, and as
ultimately selected in Viking [29].In practice, both load balancing and resilience [79] may
benefit from the use of multiple k > 2 paths.

Furthermore, our adaptive probabilistic link-state algorithm yields to a path creation
process that is loop-free (by design), fast (quickly providing the primary and secondary
paths), efficient (as it very often finds optimal paths) and tunable (in terms of the number
of control messages overhead).

Finally, Aplasia operations rely mainly on a single parameter, to whose settings we
offer guidance through analytical models, and that simulation results show to be non-
critical in case of misconfiguration. Hence, Aplasia can be safely shipped with a default
configuration, offering plug-and-play operations as it requires no configuration effort.

4.1.1 Node architecture

Aplasia nodes are addressed by flat identifiers that are univocally associated with them
as in [30,32,33], and can be chosen irrespectively of nodes topological position.

Whenever a node intends to send data to another node, it needs to assembly a frame,
specifying the complete Aplasia edge-to-edge path in the frame header (more details on
framing in Sec. 4.1.2). The frame is then handed over to the data-plane for forwarding.
As a complete path sequence is specified in the header, the frame is simply pushed to the
output interface to which the Current Hop (CH) frame field points to (CH = 0 at frame
creation, and is incremented by 1 at each hop). Moreover, all nodes along the path perform
the same forwarding operation, so that no switching table lookup is performed in the data
plane.

Roughly speaking, with reference to Fig. 4.1, we can identify two kind of nodes in
the network, namely edge and core nodes: the former can be traffic sources, whereas the
latter only performs switching functionalities. Aplasia follows the principle of pushing
complexity to the edge of the network, so that core nodes need to keep only a (i) minimal
amount of state (APL counters) to run the adaptive probabilistic link-state algorithm.
Additionally, edge nodes store a (ii) cache of source routed paths (e.g., stored as an hash-
table or as multiple-disjoint network slices as in [79]). It is worth pointing out that APL

4. APLASIA: forwarding on switched paths 33

counters are used in the control plane only during the exchange of routing messages and
that, similarly, the source-routing path cache is used by edge nodes only at frame generation
time. Hence, these structures are accessed at a much slower rate with respect to the
data plane forwarding operation deep in the core of the network, where a higher level of
aggregation translates into higher speed.

4.1.2 Autoforwarding frames

While providing full details of Aplasia framing specification and encoding is out of the
scope, we describe the main fields with the help of figure Fig. 4.1, sketching data and
control frames.

Aside from usual fields such as frame type, node ID, flags, QoS indications and check-
sum, data frames carry an output path {OPi}i, that represents the set of output ports to
follow edge-to-edge in the Aplasia domain, along with a CH pointer to the next output
port and a path length field PL. By default, each OPi consumes 8 bits in the header, which
is optimized for nodes having at most 256-ports1.

This choice has a number of advantages, the first of which is to simplify the rest of
the architecture by stateless forwarding. This simplicity comes at the price of a (possibly)
slightly increased overhead in the frame header, that grows proportionally to the path
length. To make a rough comparison, consider for instance the amount of header space
devoted to addresses in architectures such as IEEE 802.1ah PBB [59] or paths in BANANAS
[31]: in the former, MAC-in-MAC frames carry four 48-bits MAC addresses for a total of
192 bits, while the latter considers 128 bits as “a reasonable bit budget” for encoding the
path in the frame header. Sticking for the sake of simplicity to 8-bits individual OPi, these
bit budgets translate to 16-24 hops-long paths. Notice however that while in [31, 59] the
128- or 192-bits overhead is a fixed one, in Aplasia the overhead is instead variable, as it
depends on the length2 of the data-plane path.

To sustain the routing operations in Aplasia, the control plane makes use of Apl
frames. Instead of merely carrying information about individual links (as in classical link-
state algorithms), Apl frames accumulate information about the whole traveled path.
While algorithms based on diffusing computation [63] already propose to complement link-
state exchanges with information about the path (e.g., the second-to-last hop), avoiding
loops within the network still remains a fairly complex task. In contrast, Aplasia pushes
this trend even further: as paths are fully specified, it becomes trivial to avoid loops during
path computation (Sec. 3.1).

1Aplasia poses no limit to the number of ports per device. An header flag turns on variable-size output
ports identifiers, whose size depends on a prefix-based notation, inspired by the old classful IP addressing:
i.e., 8 bits for identifiers starting with 0 (allowing to address 27 = 128 ports), 16 bits for 10 (allowing to
address 214 ports, and used only when the port identifier exceeds 27) and so on.

2Hence, in practice the overall overhead can be even lower with respect to [31,59], since the path length
for some data frames will likely be shorter than 16-24 hops.

34 4.2. Enhancing path computation performance

Figure 4.1: Synopsis of Aplasia control-plane routing state and sketch of data and control
frame headers.

With respect to data messages, control messages carry additional path information
(PI). However, as the volume of control messages is low with respect to data exchanges,
the overall control plane overhead is expected to be limited. In more detail, PIi contains,
besides output path OPi, the corresponding node identifier IDi (useful for loop detection)
and input port IPi (useful for path inference). The PI sequence grows at each hop during
the path computation process. Additionally, optional information about the estimated path
quality can be conveyed in the header, in the form of type-length-value (t, l, v) couplets in
PIi, to assist traffic engineering operations (out of the scope of this work).

As control message carries path information, any edge node, handling or overhearing
it, can infer topological information in a completely passive way: more precisely, any node
receiving a control message that has already traveled i hops, can in principle learn paths to
any of the previous i−1 nodes up to the origin, that can (at node will) populate the source
routing cache. As different messages possibly carry different information, multiple paths
toward the same destination are actually found. Also, while in principle several criteria are
possible for primary and secondary selection, for the remainder of this work the primary
path is expected to be the shortest path (in terms of hops count). As secondary path, we
instead retain the shortest path most disjoint from the primary: as this choice reduces the
share of faith between these paths, it improves network resilience against both failures and
traffic surges.

4.2 Enhancing path computation performance

In this section, we dissect several aspects of Aplasia path computation. To gather repre-
sentative performance of Apl , we simulate a single complete advertisement round (i.e.,

4. APLASIA: forwarding on switched paths 35

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ec

o
n

d
ar

y
 p

at
h
 o

p
ti

m
al

it
y

 (
O

s)

Backoff factor β

Qwest
Dtelecom

Level3
Geant

Tiger2
Sprint

(b)

Figure 4.2: Toy case example: quickest vs shortest path(a). Optimality of secondary Apl
paths(b).

where each node performs a single advertisement), and exhaustively consider all the multi-
ple computed paths interconnecting any two nodes pair in the network. For each parameter
setting, results are averaged over 20 simulations runs (i.e., to smooth out different random-
ized advertisement orders and probabilistic decisions). Notice that we do not expect, in
practice, all nodes to learn advertised paths: indeed, core devices performing only switch-
ing functionality will likely remain stateless. At the same time, this approach allows to
assess quality of the primary and secondary paths that Aplasia is able to find between
any node pair, thus allowing to get an unbiased picture of Apl performance.

4.2.1 Quickest vs shortest path finding

As figured within Sec. 3.1, we expect Apl messages traveling on the shortest path to
reach a node before messages that take longer paths: this definitively holds in case of
homogeneous delay. Otherwise, it may happen that messages traveling along the quickest
path arrive first, which could be then stored as primary path. As shown by the toy-case
of Fig. 4.2(a), this can happen in networks having links with very long delays. In Fig. 4.2,
whenever the 2x > 3y condition on the link delay holds, an advertisement from a will reach
node e on the path a− c−d− e before a− b− e: hence, in this toy case, node f will receive
the message having traveled over the shortest path from a with probability β.

In practice, simulation results testify excellent connectivity and quality properties of
the primary path, as (i) Aplasia nodes are always connected irrespectively of β and of
the network topology, (ii) when β > 0 the shortest path is found in more than 95% of the
cases and (iii) the quickest path is selected as primary in the remaining cases.

Similarly, Aplasia nodes are always connected on more than one path. Hence, a more
challenging goal is that of finding optimal secondary paths, whose quality depends on the

36 4.2. Enhancing path computation performance

 1

 2

 3

 4

 5

 0 1 2 3 4 5

P
at

h
 l

en
g

th
 [

h
o
p

s]

Overlap position [hops]

Qwest
DTelekom

Level3
Geant

Tiger2
Sprint

Last hop overlap

(a)

 0.6

 0.7

 0.8

 0.9

 1

Qwest
DTelekom
Level3

Tiger
Geant
Sprint

Op Cs Os Os
LoN

 0.6

 0.7

 0.8

 0.9

P
at

h
 q

u
al

it
y

 O
p
,

C
s,

 O
s,

 O
sL

o
N

 0

 10

 20

 30

 40

β
 =

 0
.3

 0

 10

 20

 30

M

β
 =

 0
.7

40 1

P
er

-n
o

d
e

m
es

sa
g

e
co

st
 M

/N

(b)

Figure 4.3: Scatter jittered plot of the secondary overlap position versus the length of the
primary path(a). Refined performance with LoN heuristic(b).

backoff β. Fig. 4.2(b) reports the probability that the secondary path found by Apl is
optimal, for all topologies and varying β (we recall that β = 0 corresponds to the case where
Apl sends no additional messages w.r.t a classic LS routing algorithm). As Fig. 4.2(b)
shows, higher values of β translate into higher quality of the secondary path (e.g., over 80%
of the secondary paths are optimal for all networks except Sprint when β = 0.7), although
in case of parameter misguidance (i.e., too low β) the path quality degrades gracefully.

4.2.2 Refining APL

We now pin-point the root cause of non-optimality and propose an effective counter-
measure. As pointed out in [80], in most ASs failures happen nearby to the edge nodes
(at most two hops far), and rarely internally to the AS topology: hence, paths should be
as disjoint as possible next to the edge origin and destination. Motivated by [80], we cope
with this issue close to the source of the advertisement, by letting the advertiser introduce
PI information for the whole list of its neighbors (LoN) in the advertisement frame. LoN
information is useful to nodes whose primary and secondary paths overlap next to the
advertiser: as nodes may have gathered paths toward any of the LoN neighbors during
previous advertisement rounds, they may decrease the overlap of the secondary path by
selecting a more disjoint path through one of the advertiser neighbors.

We report in Fig. 4.3(a) the relevance of the above observation by plotting the position
of the overlap in case LoN is not included in the advertisement frame. Position expresses the
distance in hops from nodes receiving the advertisement to the advertisement originator,
so that higher values correspond to overlap next to the advertiser. Fig. 4.3(a) reports
a scatter plot of the overlap position versus the path length, using random jittering to
enhance the visual presentation. Along the diagonal, we report the percentage of cases

4. APLASIA: forwarding on switched paths 37

(over all topologies) where carrying LoN in the advertisement message could have helped
in reducing the share of faith (i.e., the overlap) between paths.

Fig. 4.3(b) reports, at a glance, the quality of the multiple discovered paths along with
the communication cost, for different networks and values of the backoff parameter β. Cost
is reported on the left y-axis, expressed in terms of the number of messages M/N handled
by each node during a single advertisement procedure (averaged over all advertisements).
Path quality metrics are instead reported on the right y-axis: namely, the probability to
find optimal primary path OP , the probability of being connected CS on the secondary
path, and the probability that the secondary is optimal respectively with (OLoNS) and
without (OS) the LoN heuristic (we avoid reporting CP as nodes are always connected on
the primary).

Notice that the raw number of messages is very limited for both values of β, so that we
report β = 0.3 as an example of Aplasia performance under wrong parameter settings.
Then, notice that the shortest path is discovered in most of the cases and that, especially
for high β, a secondary path is always found. The quality of the secondary path (i.e.,
the fact that this secondary path is the shortest path most disjoint from the primary) is
instead strongly affected by the LoN heuristic. Notice indeed that LoN affects optimality
more than β, as can be easily gathered by comparing OLoNS vs OS . Moreover, as OS value
without LoN is already high, the use of the LoN heuristic is able to cope with the remaining
overlaps in Fig. 4.3(a), so that Aplasia is very often able to find optimal secondary paths
OLoNS as well. More precisely, with LoN heuristic and β = 0.7, more than 80% of the
secondary paths are optimal over all networks including Sprint (or more than 98% for all
networks excluding Sprint).

4.3 Dynamic system performance

We next turn our attention to the temporal properties of the system, examining the du-
ration of the path discovery process, and its auto-termination properties. Since the prop-
agation time is the dominant delay component, we expect time-related properties to be
affected by the geographical extension of the network, with possibly wide performance
variation across scenarios of Tab. 3.2. Hence, we also develop a model to gather further
intuitions on how time-related properties scale with the network size, without being bound
to specific topological instances.

4.3.1 Path computation timeliness

First, we assess the path convergence time under Apl , contrasting it with that of classic
LS. As it is delicate to directly translate LS computational complexity in a temporal
duration (as this depend on the processing speed of the network device), we prefer to resort

38 4.3. Dynamic system performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Secondary path convergence time [ms]

Qwest
Dtelekom

Level3
Tiger2
Geant
Sprint

Figure 4.4: CDF of the time employed to converge on the selection of the secondary path
(i.e., last execution of line 13 of Apl , see Sec. 3.1.3).

to real-world performance of LS algorithms known in the literature [39] for a comparison.
Furthermore, [39] analyzes a subset of the topologies we consider in this work (namely,
Geant and a large ISP with topology size slightly smaller than Sprint), so that their findings
are relevant for our analysis.

As [39] points out, the main source of delay in the convergence of OSPF and ISIS is (i)
the FIB update process, with times on the order of hundreds of milliseconds, that depend on
the processor speed (e.g., GRP, PRP1, PRP2, etc.). The second source is the (ii) execution
of shortest path algorithm that requires tens of milliseconds at the highest processing speed
on large networks (while, clearly, more sophisticated multi-path algorithms such as those
used in BANANAS [31] or, worse, Viking [29], could significantly raise the impact of
algorithm execution on the convergence time). The third source is (iii) the duration of the
flooding process.

We point out that in Aplasia steps (i) and (ii) are skipped altogether and that multiple
paths are already available during the flooding process, with thus a significant gain in the
convergence speed. To evaluate the timeliness of the path computation process we now fix
β = 0.7 as a good compromise between path optimality and extra message cost. Since the
primary path is quickly established in Apl , path computation converges when a node
no longer updates its secondary path (with respect to the algorithm pseudocode, this time
correspond to the last execution of line 13). As before, to gather unbiased performance,
we let each node start an advertisement, repeating simulation 20 times to average the

4. APLASIA: forwarding on switched paths 39

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12 14

N
u

m
b

er
 o

f
m

es
sa

g
es

 p
er

 n
o
d

e
-

m
(n

)/
N

Round - n

Model
N=100

N=1000
N=10000

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Duration of an advertisement cycle [ms]

Qwest
DTelekom

Level3
Tiger2
Geant
Sprint

(b)

Figure 4.5: Message dynamics (a) and duration (b) of an advertisement cycle.

probabilistic decisions. During each round, we measure the time elapsed between the start
of the advertisement at the source and the secondary path convergence at all nodes.

The cumulative distribution function (CDF) of the path convergence time is reported
in Fig. 4.4 for all networks. As expected, the raw duration is mostly affected by the average
link delay: for all networks except DTelekom (for which the average link delay ∆ = 17.2ms
is much larger than that of the other topologies, cfr. Tab. 3.2), 90% of the secondary paths
converged in less than 60ms, and in any case convergence takes less than 100ms in the
worst case (while in [39], LS convergence takes more than 100ms in the best case). This
confirms the soundness of Aplasia design, that provides fast convergence of multiple paths.

4.3.2 Advertisement auto-termination

We now investigate the temporal evolution of the message propagation during a single Apl
cycle. With respect to Sec. 4.3.1, we take a complementary view and focus on the duration
of the flooding process over the whole network, i.e., before the exponential backoff let the
flooding die out.

The objective is not to accurately predict the number of sent messages, which is in any
case bounded by Eq. (3.2) in Sec. 3.2.1, but to estimate some critical temporal properties,
as for instance the time at which the flooding process reaches a peak, the time at which it
vanishes, the impact of the network size, etc.

We consider again a single advertiser and assume homogeneous propagation delays so
that time can be considered as slotted. For all n ≥ 0, the mean number of messages m(n)
sent by the N nodes in the network at round n satisfies the approximate recursive equation:

m(n+ 1) ≈ m(n)δ
∞∑
k=0

P (k, n)βk, (4.1)

40 4.3. Dynamic system performance

where P (k, n) is the probability that a node has received k messages until round n. By
convention, the advertiser starts the flooding at round 0 so that m(0) = 1.

The approximation in Eq. (4.1) is valid for large graphs, say N ≥ 100. For smaller
graphs, errors in Eq. (4.1) comes both from (i) loops that stop the flooding process and
from (ii) the number of edges on which each message is transmitted, which is approximated
by δ. Since a message arriving at some node is not sent on the corresponding incoming
interface in the actual system, the number of edges on which the message is broadcasted has
a binomial distribution with parameters N−1, δ/N : the corresponding mean is (N−1)δ/N ,
which is close to δ for large N . With respect to our previous notation, we have that∑∞
i=0m(i) ≈M : while M counts the number of messages sent on output interfaces, m(n)

counts all messages in flight at a given round (i.e., including the one received from the
interface where Apl avoids flooding).

Still, the probability distribution P (k, n) in Eq. (4.1) needs to be estimated. We model
P (k, n) by noticing that each node has handled M̄(n) =

∑n
i=0m(i)/N messages on average

up to round n. Since a large number of messages are sent, the distribution of the number of
received message is approximately Poisson of parameter M̄(n) at each node, i.e., P (k, n) ≈
e−M̄(n)M̄(n)k/k!. Using Eq. (4.1), we deduce:

m(n+ 1) ≈ m(n)δe−(1−β)M̄(n) (4.2)

that we can compute numerically. The quality of the approximation is illustrated in
Fig. 4.5(a), showing comparison of the numerical solutions of Eq. (4.2) with simulation
of random networks, varying the network size up to N = 10000 at fixed backoff β = 0.7
and degree δ = 4 for the sake of illustration (similar matches are gathered for any other pa-
rameter settings). For convenience, we normalize the number of messages over the network
size m(n)/N , to ease the comparison over heterogeneous network sizes.

The model closely captures the bell shape of the message propagation, which confirms
that the Poisson assumption holds well in practice. In more details, as shown in Fig. 4.5(a),
message dynamics reflect an initial exponential rise due to flooding (as counters are initially
0, hence certainly transmitted since β0 = 1). As soon as frame duplicates are received over
the network, the exponential backoff kicks in and slows down the message increase, until a
peak is reached (at round npeak = argminnm(n) ≥ m(n+ 1) > 0), after which the number
of messages progressively decreases (and completely stops at about 2npeak).

From the picture, we gather that npeak increases (i) logarithmically with the network
size N , or (ii) linearly with the graph diameter (since in random graphs the diameter scales
logarithmically with the network size [81]). This is intuitive, since the flooding slows down
as soon as a node starts receiving multiple copies of the message, which is always the case
when the path length reaches the network diameter.

4. APLASIA: forwarding on switched paths 41

4.3.3 Duration of an advertisement cycle

While Eq. (4.2) is useful to show the auto-termination property of Apl , it is however not
helpful in determining the duration of the process in real networks, for which we resort to
simulation. Fig. 4.5(b) reports the CDF of the duration of a single Apl advertisement,
averaging over 20 repetitions. Comparing Fig. 4.5(b) against Fig. 4.4, we gather that
secondary path usually converges earlier with respect to the whole advertisement duration.
Moreover, the advertisement still remains short, as it never exceeds 250ms for the real
topologies of Fig. 4.5(b) (nor it would in a N = 10000 nodes random graph with 10ms
links delay as for Fig. 4.5(b), since the number of in-flight messages goes to 0 before the
15-th round).

4.4 Click implementation

We have implemented the core Aplasia functionalities in a Click modular router. Our
modules fully implement the data plane frame processing and maintenance capabilities,
but only partly implement Apl control plane functionalities for the time being. To give
a rough idea of the implementation complexity, Aplasia Click modules account for about
5000 lines of code, 24 classes and 65 functions.

To summarize the main functional blocks, each physical interface is connected to an
Aplasia Port (AP) module, consisting of two distinct Edge Origin (EO) and Edge Desti-
nation (ED) sub-blocks. These blocks handle the communication to and from the physical
interface, the encapsulation/decapsulation of data from/to the upper layer, the generation
of path discovery request/reply, etc. To each AP module is associated an Apl module,
that assists the AP by duplicating discovery frames to the other ports for path compu-
tation. All AP modules of a node are interconnected through a single Aplasia Matrix
(AM), whose main aim is to perform the stateless switching function (by inspection of the
Aplasia autoforwarding header) and that holds node-wide state (such as the path cache
and Apl counters).

Primarily, we used the Click implementation for functional verification of the Aplasia
principles. In this section, however, we report on preliminary experimental results gathered
in a small size testbed, that we use to assess the limits and capabilities of our current
implementation.

The testbed is composed by seven PCs equipped with dual-core Intel Xeon E3110
CPUs, clocked at 3.00GHz, equipped with 4 line cards (i.e., four AP and Apl blocks
each). PCs are arranged as a bus topology, and are interconnected by two point-to-point
100 MbpsEthernet links3. In our setup, the origin node runs in user space (so that it is

3In the testbed, we merely use Ethernet cards as point-to-point transceivers between any couple of
routers: in other words, no switching, learning or other Ethernet functionalities are used. As a side
effect, encapsulation of Aplasia in an Ethernet frame testifies that Aplasia principles are agnostic to the
underlying layer.

42 4.4. Click implementation

easy to access timestamping functions without modifying the Click code), while all the
others nodes run in kernel mode4.

We devise two simple yet instructive test scenarios to benchmark the Click implemen-
tation, aiming at gathering the atomic duration of (i) data plane forwarding function tfw
and (ii) handling of control plane frames during the discovery process tcp. In order for
the benchmark to be the least intrusive as possible, we avoid to explicit instrumenting the
Click code (e.g., by means of timestamping and click_chatter calls). Moreover, we avoid
relying on time synchronization, as the precision needed to gather reliable figures exceeds
NTP capabilities. Therefore, we decide to infer the atomic cost of message handling in the
data/control plane from Round Trip Time (RTT) measurements at different path lengths
h. We devise two simple models that account for the data RTTdp(h) and control planes
RTTcp(h) respectively, that we later fit on experimental data from our testbed:

RTTdp(h) = 2tg + 2h(ttx + tfw) (4.3)
RTTcp(h) = 2tg + 2h(ttx + tfw + tcp) (4.4)

In the above expressions, h represents the path length, tg is unknown value accounting for
the message generation time in the AP functional block (counted twice due to the response
message), ttx accounts for the message transmission time over the line card (which is known
and given by the ratio of the actual frame size over the link capacity). The duration of
the stateless switching operation performed by the AM block on a single data frame is
represented by tfw (i.e., header inspection and message passing to the right output port),
while tcp accounts for messages handling in AP.

We start by determining tg and tfw by fitting Eq. (4.3) with a first set of experiments,
after paths have been established. We carry on experiments for varying path lengths
h ∈ [2, 6], generating 200 RTT samples per h value. In order to measure the RTT, we use
an Aplasia OAM tool behaving as the classic ICMP ping command of IP networks (i.e.,
automatically generating response messages). OAM messages have known size, which is
accounted for in ttx.

Experimental results are reported in Fig. 4.6, that depicts, for each hop length, the
PDF of RTTdp(h) (shaded curves in the left plot) and the first 50 samples gathered during
the experiment (points in the right plot). Both plots also show, with a solid black line,
the fitting of Eq. (4.3) gathered using an implementation of the nonlinear least-squares
(NLLS) Marquardt-Levenberg algorithm. The fit converges to tg = 54µs and forwarding
of tfw = 45µs, with very small asymptotic errors of 0.63% and 0.33% respectively: notice
indeed the good match between the model and experimental data (despite a few outliers,
possibly due to the user-space device).

We finally perform path advertisement experiments (in a slightly modified setup not de-
tailed for lack of space), to gather tcp by fitting Eq. (4.4) on further experimental data. The

4We point out that, as user-space process can be pre-empted at kernel level, we gather conservative
results that may slightly underestimate the actual Aplasia performance.

4. APLASIA: forwarding on switched paths 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3

R
T

T
 [

m
s]

PDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 25 50

Samples

Model
h=1
h=2
h=3
h=4
h=5
h=6

Figure 4.6: Fit of computational cost of data-plane forwarding operation in the Click
implementation.

fitting yields an estimate for the control plane overhead of tcp = 48µs (with an asymptotic
error of 0.2%), which is thus of the same order of magnitude of the forwarding operation
in the data plane. These results further highlight the practical interest of Aplasia and
the lightweight of the control plane advertisement task.

4.5 Discussion and Open Issues

This work testifies the overall interest of Aplasia, in terms of control path efficiency, fast
convergence time, and path optimality. Notwithstanding, it also leaves some open points,
that we discuss in the following and that are part of our future work.

4.5.1 Larger path sets.

While it may be computationally unfeasible to find the best path set of size k > 2 as [36]
points out, it is however possible to simply find a set of k paths. Let consider that the
algorithm has just found the primary path (often, the shortest is among the first to be
selected). On the reception of a new message, the new path will be stored as the secondary
(irrespectively of the path quality, since a secondary is not existent yet). On a further
message reception, the latest received path will either be elected secondary (and shifts the
secondary in the third position according to some criterion, which is possibly more complex

44 4.5. Discussion and Open Issues

than merely requiring disjointness from the primary path), or will be appended at the end
of the list. Later, when the set of k paths is full, a replacement is possibly needed, and if the
decision does not involve comparison among multiple paths, then a greedy algorithm would
need to perform (at most) k comparison to take this decision. Hence, the computational
complexity of a k-path extensions would remain tolerable O(Nδk): at the same time, while
the quality of the resulting set may be good enough in practice, we acknowledge that this
point requires a careful investigation.

4.5.2 Administrative routing weights.

Another open point, that partly goes against the holistic, plug-and-play nature of Apla-
sia, concern the ability of “emulating” administrative routing weights. In our evaluation,
Aplasia treats all link as having equal weight wi = 1, ∀i: yet, we acknowledge that this
choice may clash with the current ISP practice of employing administrative weights to bias
the construction of the overall topology by specifying arbitrary costs for given links.

An interesting question that remains open is whether it would be possible to tweak
administrative weights by using heterogeneous βi values for different links i (let aside the
problem of configuring the individual devices with heterogeneous βi), and how to map wi
into βi.

4.5.3 Failure resolution and recovery

While Aplasia finds multiple paths, it does not specify how failure resolution should be
handled. In case route cache is stored only at the edge of the network, then in the worst case
(i.e., when failure happens near the destination), the recovery time would be on the order
of 1.5 RTT (i.e. one RTT to notify the source, plus the one-way delay for retransmission
along the backup path).

More efficient failure resolutions could happen in case that (at least some) core devices
would be equipped with a path cache: in this case, the message could backtrack toward
the source until a node equipped with a path cache is found, that could relay the message
on the alternate path (other possible techniques are surveyed in [82]). As [79] points out,
by letting traffic to switch between paths at intermediate hops, a source gains access to
as many as kl paths to a destination, with k the number of slices and l the number of
switching point on the path.

Notice that the presence of a path cache on a core device would not affect stateless
autoforwarding in the data-plane under normal operation. At the same time, as now some
of the core devices need to be equipped with a FIB, interesting questions would be thus: (i)
to explore the tradeoff between the increased capital expenditure versus the improvement
on failure handling and (ii) the optimal placement of switching points in the topology.

4. APLASIA: forwarding on switched paths 45

From the recovery perspective, we should distinguish between stateful and stateless
nodes. Clearly, nothing changes for stateless nodes: as they store no paths, no state
needs to be updated. For stateful nodes, recovery from failure behaves quite similarly to
OSPF [83]. A path computation should be triggered by the node(s) which detects the
failure, and the caches are refilled with new discovered paths. In this case, nodes should
dispose of fast mechanisms for discarding old and failed paths, substituting new computed
ones.

4.5.4 Amount of control plane state

To simplify the description, we assumed that each node keeps a set of O(N) counters
to take its probabilistic decision. While this amount of state is scalable with respect to
the O(N2) state required by [64], however it is possible to further reduce the state space
requirements. We point out that the main issue is not on the raw amount of state, which
is very limited as counters have byte-size (as for practical purposes β255 can be considered
0), but to ensure scalability and make a more efficient use of all hardware resources, in
spirit with Aplasia (and Ockham’s razor).

In the normal mode of operation, it will be unlikely for all nodes to contemporary
start advertisement cycles, though it would be desirable to tolerate some contemporary
advertisements. From the evaluation, we know that advertisement has a short duration,
moreover slowly growing with the network size. In normal operation it could be thus easy
to desynchronizing the start of advertisement operations, by simply employing techniques
similar to the Carrier Sense Multiple Access (CSMA) based approach employed in the
original IEEE 802.3 Ethernet LANs.

Without entering in details, we have preliminarily tested a CSMA-based approach,
requiring that nodes sense whether there is some advertisement ongoing prior to start a new
one: in case they receive some advertisement messages during a carrier sense interval, they
backoff (as in p-persistent CSMA), otherwise they start the advertisement. The mechanism
is imperfect: when other advertisements already have started in some faraway region of
the network, but no message attains a node while it performs carrier sense, the latter can
start a new advertisement in turn. However, as opposite to destructive interference in
medium access protocols, the start of contemporary advertisement do not lead to severe
issue provided that the ongoing advertisement are counted on a independent counters.
In practice, since the whole duration of the advertisement cycle is subsecond, is easy to
bound the number of concurrent advertiser (e.g., less than ten with very high probability)
by choosing a carrier sense interval on the order of the duration of an advertisement (e.g.,
on the order of hundreds of milliseconds) – leading to a tolerable delay in normal operation.

As counters need to be reset at each new advertisement cycle, we can implement the
counter set as a FIFO queue: when a new control message is overheard, the oldest counter
is pushed out of the FIFO, and a new one is inserted and reset. Note that this approach
would not only reduces the amount of state to O(1), but could also further contribute in

46 4.6. Conclusions

making Aplasia plug-and-play as the good’ol Ethernet.

4.6 Conclusions
We propose Aplasia, a new, flexible network architecture, requiring simple nodes hardware
and little or no configuration. Stateless operation in the data plane is achieved by trading
switching tables for header space, as frames carry a fully specified source-routed sequence of
output ports identifiers in the frame header. This choice has two important consequences:
first, Aplasia frames are autoforwarding, so that core devices need not to be equipped
with (nor to maintain) FIB entries. Second, it becomes trivial to ensure that paths are
loop-free.

Aplasia supports discovery of multiple disjoint paths through a simple yet effective
distributed algorithm, able to discover nearly optimal path at bounded computational and
communication complexities. The number of messages exchanged in the control plane
remains of the same order of magnitude of classical link-state algorithms, i.e., O(Nδ), as
the use of probabilistic exponential backoff limits the overhead to a fixed multiplicative
factor 1

1−β . The algorithm requires simple comparison operations at each packet reception,
so that the computational complexity is of the same order of magnitude when the set of
paths is limited to k = 2.

We investigate the main Aplasia performance by means of extensive simulation (on
real topologies and synthetic ones up to 10,000 nodes), analytical modeling of main systems
aspects, and testbed experiments of our ongoing Click implementation. Our results high-
light several desirable properties (such as auto-termination, rapid path creation process,
near-optimal quality of the primary and secondary paths, graceful degradation in case of
wrong parameter settings, etc.), that testify the overall interest for Aplasia.

47

Part II

Information Centric Networking

49

Chapter 5

Background

Information Centric Networking (ICN) is a novel network paradigm which places “content”
at the thin waist of the hourglass model (see Ch. 1). Despite a large number of ICN
architectures have been proposed during the last years (that are overviewed in [1]) nowadays
we are still quite far from having operational deployments of ICN at a scale comparable to
that of the Content Distribution Networks (CDN) in the current Internet. Prior that large
scale ICN deployment will start to rival CDN, a number of challenges need to be solved.

Part of these challenges lay in the design, planning and operation of ICN. While all
architectures are unique in some aspects [1], however all ICN proposals agree on the central
role that caching has in the design – which makes thus sense to consider as primary aspect
of ICN. Furthermore, the majority of proposals agree in considering an ICN network as
a receiver-driven network of caches – from which it follows that practical guidelines con-
cerning the caching aspect that we address in this part will be useful irrespectively of the
underlying ICN technology.

At the same time, we also point out that among the many ICN proposals, the Content
Centric Networking (CCN) [84] approach has raised significant interest from the scientific
community. As such, and since a conceptual unifying framework for ICN is still a work in
progress at ICN Research Group (ICNRG) of the Internet Research Task Force (IRTF), in
the following we place our work in the context of CCN, and adopt the CCN terminology
for the sake of readability.

5.1 Content Centric Networking: an overview

Through this section, we provide a thorough overview of a Content Centric Network (CCN)
in order to better contextualize and motivate our work.

50 5.1. Content Centric Networking: an overview

(a) (b)

Figure 5.1: Pictorial CCN descriptions: CCN forwarding engine(a) and hourglass(b) (these
pictures were directly taken from the seminal PARC paper [41]).

5.1.1 Routing and forwarding

Let’s now describe the basic forwarding primitives of a CCN scenario. This section will
support the reader through the remainder of this second part of the thesis by introducing
the basic CCN terminology. In a Content Centric Network, users ask for contents by the
means of Interests. The user sends an interest for a given chunk of the content she seeks.
In this sense, the chunk represents the smallest transfer unit within a CCN network. The
interest travels all the network, until it hits either a cache with a temporary copy of the
chunk, or the repository storing the permanent copy of the content. Then, a data chunk is
sent back toward the client, consuming the interest.

We now describe the main data structures used by CCN nodes to forward interests
and data chunks. For the sake of description, we report the interiors of a CCN node in
Fig. 5.1(a).

• Nodes forward interests by looking up their Forwarding Information Base (FIB) that
points, for each content, to the right output faces. In CCN terminology a face is a
generalization of interface (see Fig. 5.1(a)): for instance, even a simple application
socket, sending and receiving interests, can represent a face. Usually, the FIB is filled
by a routing algorithm (e.g., [85]), and the set of faces points to one (or more) of the
permanent copies of the object. Nevertheless, we will see as the FIB can be updated
also with dynamic information (see Sec. 7.3).

• Data chunks are forwarded back to the client by following breadcrumbs left in the
Pending Interest Table (PIT) during the interest forwarding phase. In other words,

5. Background 51

when the interest gets forwarded by the means of the FIB, each nodes stores the
incoming interface within the PIT, discarding interests for which a PIT entry al-
ready exists. When the corresponding data come back to the client, these interested
interfaces are followed back and then deleted.

• Every router is equipped with a Content Store (CS), to temporarily cache received
data chunks. When an interest hits the CS, the corresponding data is sent back in
reply, if cached in the CS.

The Strategy (or forwarding) layer, sits below the CCN core structures just described
(see Fig. 5.1(b)), and basically handles the interest forwarding. As previously said, the FIB
contains more than one single interface per chunk. The forwarding layer’s task is to choose
one among different interfaces available in the FIB to forward the interest it is actually
handling.

In figure Fig. 5.1(b) we report the CCN hourglass model. The upper side of the hour-
glass is meant for application development (e.g., video, web browsing, and hence forth).
The bottom side, instead, is implemented by every node of the network, and represents the
core of CCN architecture. As in IP, what decouples application from core development is
the thin waist of the hourglass, namely Content Chunks and the data structures described
above (PIT, FIB, and CS). Indeed, it’s worth stressing that CCN architects do not push
for a sudden IP replacement. IP is still there in the model. Nonetheless, if all applications
are developed in terms of content data chunks, this will result in a complete shift of the
thin waist of the hourglass, from IP to CCN based protocols.

5.1.2 Naming

In the seminal paper [41] the authors propose a hierarchical name scheme in order to
identify the given data chunk. Application inserts the name within the corresponding field
of the Interest packet, and sends it over the network.

A CCN name has a hierarchical structure. Each component is separated by a given
delimiter. Routing and forwarding is performed on component bases. Note that the nam-
ing structure is thoroughly application driven. At the lower levels, names represent only a
sequence of bytes, used as indexes in PIT and FIB. Thus, the naming choice is completely
transparent at the transport layers. Consequently there is not a common naming frame-
work, and each application (e.g., YouTube, Facebook, Netflix, and hence forth) can choose
its own naming structure.

For instance, consider the name /enst.fr/videos/mythesis.mpg. In this case the
(arbitrary) delimiter is represented by the slash, and the name is structured in three com-
ponents. Being the name a hierarchical entity, FIBs can contain information for only a
part of the name, for instance only for the root. Once in the domain /enst.fr, FIBs will
probably contain more detailed information about the whole data name.

52 5.2. Network Caching Algorithms

In this sense, routing and forwarding can be quite similar to those of the classical host-
centric case (e.g., IP). However, there are two remarkable differences with, for instance,
IP routing: on the one hand, the number of first tier domains is much more larger than
the number of IP hosts; on the other hand, the CCN names are, by definition, of variable
length. Thus, doing an exact matching at FIB level can raise some difficulties (see, for
example [47,86]).

5.1.3 Security

The security mechanisms governing a CCN networks are complex, and it is out of the scope
of this thesis describe them in details.

Briefly speaking, under the CCN approach, we shift from securing hosts to securing
contents. End hosts retrieving contents from a given repository are to be assured of content
validity and trustworthy. This is achieved by signing the whole interest packet with the
public key of the publisher. In this way, the publisher binds the name and the content she
is publishing. The validation can be done either on a hop-by-hop basis (depending of the
router resources) or directly by the end hosts. Keys are represented just as another kind
of CCN data, and can be recovered in the same way described above.

Finally, we point out that attacking a single host is not an option within a CCN network.
Indeed, the concept of hosts leave space to the concept of content. Denial of Service attacks
represent the only type of threats the network could suffer. However, the aggregation
provided by the PIT makes data/interest flooding difficult: even though multiple replicas
enter within a given router, only a single packet will be actually forwarded.

5.2 Network Caching Algorithms

Having summarily described the CCN architecture, in this section we provide the system
model considered throughout the remainder of this work. Besides, we contextualize and
compare the model properties with respect to the most recent literature.

5.2.1 Notation

A CCN network may be thought as a receiver driven network of caches. Within the
following we interchangeably use the terms request and interest, for indicating the message
a user sends in order to retrieve a given content.

We consider a graph G = (V,E) of |V | = n caches of size C(v), v ∈ V , in which
aggregate of users connected to a node v ∈ V request contents at a rate of λ(v). Often, we
will consider homogeneous scenarios, denoting C the cache size of each router and λ the
arrival rate at each client, i.e., C = C(v), λ = λ(v) ∀v ∈ V .

The catalog N represents the set of all possible objects i a user can request. The
size of the catalog is indicated by N = |N |. Given a content i ∈ N we let p(i) be the

5. Background 53

content popularity (i.e., the probability that a given content i is requested). Objects may
be divided in chunks (as described in the previous chapter). In this latter case, we define
d(i) the size in chunks of the content i ∈ N , and we have P (d(i) = k) = 1

D

(
1− 1

D

)k−1
,

i.e., in the case of chunked contents, the size of each object is geometric distributed, with
an average of D chunks.

Each content i is permanently stored within a given repository1(also said server, or
custodian). We denote S(i) the custodian for content i.

We neglect naming, and security aspects: each content i is represented by its popularity
rank (i.e., content 1 is the most popular, and so forth). The popularity for content i is
distributed as a Mandelbrot-Zipf: p(i) = K

(q+i)α , K =
(∑N

i=1
1

(q+i)α
)−1

. α is said the
shaping factor of the distribution, since it indicates the distribution slope in a log-log scale.
When α << 1 the Zipf approaches to a uniform distribution. q is said the plateau of the
MZipf, and as more it increases as more p(i) tends to a uniform distribution. In Tab. 5.1
we show the parameter space we investigate in this work.

5.2.2 NCA definition

We define a Network Caching Algorithm(NCA) on a network of caches as a triplet 〈F ,D,R〉
of forwarding, meta-caching and replacement strategies, respectively. Given a node i ∈ V ,
and a request for a generic file, the forwarding strategy F has the task to route the request,
choosing the right path among those available at node i (e.g., within its FIB). Once data
come back (as previously described) node i’s decision strategy D establishes if it’s worth
caching the current object. In the case of a positive caching decision, a replacement strategy
R, selects the element to drop from node i’s cache.

The choices considered are listed in Tab. 5.1, and briefly described below. As pointed
out in [15], much attention has been devoted to replacement policies R (over 40 policies
are overviewed in [87]), while meta-caching has being studied sporadically (to the best of
our knowledge, only by [15,17,19,88,89]). Even less amount of work has been produced in
the field of forwarding policies F . To the best of our knowledge, [12–14] are the only work
which studies alternative forwarding policies within a network of caches. In the following
we describe the NCA literature in terms of forwarding F , meta-caching D, and replacement
R.

Forwarding policies - F Usually FIB are supposed to be pre-filled with routing infor-
mation toward the nearest repository for each content i. This kind of forwarding
is said Shortest Path Routing (SPR). Trough Multipath routing (see Sec. 7.2), the
routing process specifies more than one single path per content (either because there
are actually more paths toward the custodian, or because there are multiple custodi-
ans). Being constrained on the shortest path(s), reduces the possibility of discovering

1We can occasionally violate this assumption, providing more replication. Unless otherwise stated, this
is the default scenario.

54 5.2. Network Caching Algorithms

nearest cached copies off-path. In Breadcrumbs [14] the authors propose a forward-
ing scheme for which data flowing toward the users leaves a trail of breadcrumbs.
Nodes decide hop-by-hop if forwarding the subsequent request up toward the repos-
itory or down following the breadcrumbs previously remained. In NDN [42], nodes
randomly try other interfaces for the same content. In CATT [12], forwarding is
done on a per-distance basis: nodes limitedly communicate (by flooding) information
about the distance for a given content, and nodes forward request toward the nearest
known copy. The final goal of each of the aforementioned policies is to route interests
toward the nearest replica (either temporary or permanent) in the network. As such,
iNRR asks to an ideal oracle to localize this replica, and NRR implements the oracle
abstraction by the means of a scoped flooding (see Sec. 7.3).

Decision policies - D Generally the assumption is to Leave a Copy Everywhere (LCE),
i.e., new content gets always cached. Few exceptions to this rule come from the Web
[15,88,89] or CCN [44] contexts: however, the approach in [88] doesn’t apply to CCN
due to implementation complexity, while DEMOTE [89] is known to poorly perform
on network of caches. With this respect, only the Leave Copy Down (LCD) policy [15]
is simple enough to be worth implementing in CCN. Again, an even simpler policy
is considered by [44], where caching decisions are taken uniformly at random with a
fixed probability p. More recently, other decision policies started to appear [17, 19]
(not yet published at the submission time), where caching decisions depend either on
the position of a node in the topology [19] (expressed by its betweenness centrality)
or on the distance traveled by a packet [17]. Finally, we point out that explicit cache
coordination policies (e.g., see [90] for Web, and [91] for ad hoc domain) would likely
violate CCN line of speed constraint.

Replacement policies - R Least Recently Used (LRU) has been used in the context of
CCN [3, 4, 17, 92] and of the more general ICN context [14, 93, 94]. Only few work
considers other policies, such as Most Recently Used (MRU) and Most Frequently
Used (MFU) in ICN [94]. Still, due to the fact that CCN caching operations must
happen at line speed, most of the existing decision and replacement policies are not
of practical relevance, as [44] points out. Thus, even a simple LRU policy –often
used in turn as a good enough approximation of Least Frequently Used (LFU)– may
be too complex to implement, so that uniform random replacement RND may be
preferable to keep CCN simple and scalable [44]. We even evaluate a variant of the
canonical RND replacement. The BIAS replacement algorithm takes two element at
randoms, dropping the most popular. The principle of the BIAS replacement is that
more popular items will be more often requested. Thus, choosing the least popular
out of two randomly chosen element, increases the probability of finding a popular
object within the cache.

Moreover, among the most influencing factors affecting NCA performance, we individ-

5. Background 55

Parameter Meaning Values(bytes)

Network

Chunk size 10 KBytes
C Cache size 106 chunks (10GB)
n Network size

Topology Generic (real), Tree, Grid, Torus

Catalog
N Catalog size 108 files(1015 bytes)
D File size 103 chunks (10MB, geom.)
C
ND Cache/catalog ratio [10−5, 10−1]

Popularity α Shaping factor {1,1.5}
q Mandelbrot-Zipf plateau {0,5}

Caching
F Forwarding SPR,iNRR§7.3,NRR§7.3, Multipath§7.2
D Meta-caching LCE,FIX [15],LCD [16],ProbCache [17], BTW [19]
R Replacement FIFO,LRU,RND,BIAS

Table 5.1: Algorithmic notation and default values.

uate cache and catalog size (Sec. 6.1.1) and content popularity (Sec. 6.1.2). Yet, these
factors are constrained by technological limits (e.g., cache size) or determined by the envi-
ronment (e.g., catalog size and popularity). In this work, a great care is taken to evaluate
CCN and NCA under realistic operational points (e.g., as it will be clear on the following,
one cannot simply increase the cache size to ameliorate performance).

5.2.3 Scale limits

We now stress what are, in our opinion, limits in terms of scale of the past literature, and
why the existing work is not fully faithful of CCN performance in an Internet environment,
considering both analytical and simulation based studies.

5.2.3.1 CCN models and simulations

An evident limit of current caching work is that, with few exceptions [3, 4, 44, 47, 92–95],
entire objects are generally cached. In CCN, content is instead partitioned in sub-objects
(or chunks), so that different chunks of the same object may end up being cached on
different CCN routers. This design decision partly follows from the efficiency of chunk-
based diffusion shown by, e.g., BitTorrent in P2P networks, that lately was brought into
CDN [96] as well.

Moreover, most of previously developed models rely on different assumptions that are
not fit to CCN due to either (i) chunks partitioning or (ii) topological assumption. As CCN
requests for consecutive chunks of the same objects are now correlated, the independent
reference model (IRM, where all requests are i.i.d.), popular in caching studies, no longer

56 5.2. Network Caching Algorithms

holds: correlated arrivals are only studied in recent work [3, 4], though the analysis is
limited to simple cascade or tree topologies.

Similarly, while authors in [95] provide exact analytic expression for cache hit using
either LRU or LFU replacement, and futher consider realistic large scale catalog scenarios,
their model still applies to tree topologies, and can thus limitedly represent performance
of the access network – but cannot be applied to the network core. Conversely, though
the approximate cache model in [8] applies to general network topologies, it considers an
object granularity (and further assumes that on a cache miss, the object is instantaneously
downloaded before the next request for the same object hits the cache). Hence, to the best
of our knowledge, an analytical work overcoming both limits has yet to appear.

Yet, even simulation-based studies of information-oriented networking are often sim-
plistic in their (i) topological assumptions or due to the (ii) scale of the considered sys-
tem. Indeed, with the exception of [93, 94] (employing synthetic topologies generated
with GT-ITM), most simulative work still considers simple topologies (e.g., cascade or
trees [3, 4, 44, 92]) and is thus not suitable to investigate multi-path issue, which is in the
genes of CCN [84]. Even more important, the scale of the considered system is often un-
derestimated. Notice indeed that, in Web caching it was reasonable to assume pretty large
amount of caches (e.g., disks), which implied that an accurate estimate of the ratio between
the cache size and the catalog size was not an issue (e.g., add disks). In CCN instead, due
to the fact that interest and data packets need to be serviced at the Network Interface
Card (NIC) speed, cache size is technologically limited by memory access speed [44, 47].
As it is not possible to arbitrarily increase size of caches on board of CCN routers, it
becomes thus imperative to more accurately estimate the size of the catalog that CCN is
expected to service, in order to assess whether CCN is able to really achieve the promised
breakthrough.

5.2.3.2 Catalog size

The catalog size N can be as low as 250 objects [8], topping to 20K [3, 4] objects for the
largest ones. Taking into account also the object size (in chunks) considered in those work,
largest catalogs vary between 2Mchunks [4] and 13.8Mchunks [3], i.e., 20GB and 138GB
respectively. Yet, we believe these sizes to be extremely small compared to Internet catalogs
– which is easily confirmed by summing up the storage size of our portable devices.

We expect system performance to be determined by the ratio of the cache C over the
catalog size (in chunks) ND. We point out that this ratio varies in the ICN literature
between a minimum of 0.25% [4]-0.5% [94] to a maximum of 10% [8]-20% [94]. Yet,
considering realistic CCN cache and Internet catalog sizes, this ratio seems more likely to
be on the order of 10−5, hence much smaller than the one considered in previous studies:
as a consequence, ICN benefits may therefore be overestimated by current literature.

5. Background 57

5.2.3.3 Popularity Model

Another very important aspect that concurs in determining the system performance is the
content popularity model. Rather typically [3, 4, 8, 15], CCN studies consider (variants
of) Zipf popularity, which is simply tuned by a single parameter α, (i.e., the exponent
characterizing the distribution). Yet, no consensus has been reached on the exact model,
as for instance [94] resorts to a Mandelbrot-Zipf (MZipf for short) distribution, while [14]
also includes uniform popularity, and [3, 4] consider several classes distributed with Zipf
popularity (with objects within each class uniformly popular).

Moreover, no consensus has been reached on the actual settings either, as the considered
value of α varies in a rather wide range 0.6 [94]-2.5 [3]. For instance, the minimum of 0.6 [94]
is taken from a MZipf fitting of Gnutella catalog [97] – where, in this case, the distribution
is also determined by the plateau parameter (q ∈ [3, 121] depending on the Autonomous
System under observation, and typically q ≤ 50). Values of α ∈ [0.6, 1.2] are adopted
in [3, 8, 15, 93], where the extremes are typical of lightly loaded and busy Web servers
respectively [98], while large values of α such as 2 [4] and 2.5 [3] derive from the very same
analysis of YouTube [48] we used early to determine a realistic Internet catalog size.

Hence, the range of α values are, at least apparently, well motivated. Yet, if we consider
more closely the YouTube popularity, for the sake of the example, we see that the α ≥ 2
value reported in [48] only fits part of the tail, while the body of the distribution appears
more likely to follow a Mandelbrot-Zipf law2.

5.3 Part II structure
The structure of this second part is as follows: in Ch. 6, we start by evaluating caching al-
gorithms over realistic scenarios. In the same chapter we study the impact of the topology
on which the caching 〈F ,D,R〉 is deployed. Then, in Ch. 7, we deeply study forwarding
strategies F . First, we use the underlying multipath routes provided by an hypothetical
routing protocol. Then, we show and analyze strategies which dynamically build the for-
warding table, and that require almost no knowledge within router’s FIB. Finally, Ch. 8
gives a detailed description of ccnSim, the open source CCN simulator we developed and
widely used for carrying on the simulations shown through this second part of the thesis.

2We have not access to the popularity data shown in Fig.3 of [48] to perform a fitting, however the
dissimilarity from a Zipf shape (and the similarity with Mandelbrot-Zipf) is evident.

58 5.3. Part II structure

59

Chapter 6

Caching: simulative assessment

In this chapter, we conduct a simulative campaign in order to understand NCA’s benefits
in a realistic CCN scenario. Among the parameters we explore in this chapters we account
the cache size C, the catalog size N , and the popularity distribution. Particular attention
has been given to the network structure. Indeed, we analyze the impact of the topology
and of its properties. The simulative work has been carried out by the means of ccnSim,
a network simulator we developed and fully described in Ch. 8.

6.1 A realistic scenario
In this section, we start by defining a fairly realistic scenario under a CCN perspective.
Then, we conduct a thorough simulative campaign in order to rank the main influential
factors, affecting the caching performance considering a realistic scenario.

6.1.1 Cache and catalog size

First, CCN chunks are expected to be packet-size (1KB [92]-10KB [3, 4]), hence much
smaller w.r.t other ICN architectures (16MB [94]). We select 10KB chunks as in [3, 4]:
despite a CCN chunk size is not specified in [84], we believe that in reason of the CCN
overhead –due to interest packets and large headers for content naming and security issues–
chunk sizes smaller than 10KB would be an overkill.

As we previously argued, the scale of the considered system is often underestimated, or
at least the operational point at which the system is evaluated is not always realistic. As far
as CCN router cache size C is concerned, both [44, 47] reach the conclusion that 10GB is
about the maximum size that core routers can serve nowadays at line speed. Notice that to
forward a packet at line speed, the decision logic only needs to know if the content is cached
or not (while the content can be served from a slower, larger, memory). Thus the main
bottleneck is the speed at which the index lookup can be performed. Authors in [47] explore
the speed/capacity tradeoff of different memory technologies (DRAM, SRAM, RLDRAM,

60 6.1. A realistic scenario

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.5 1 1.5 2 2.5

R
an

k
 o

f
th

e
9
9
-t

h
 p

er
ce

n
ti

le
 N

9
9

Zipf α parameter

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.5 1 1.5 2 2.5

R
an

k
 o

f
th

e
9
9
-t

h
 p

er
ce

n
ti

le
 N

9
9

Zipf α parameter

Figure 6.1: Rank of the 99-th percentile of popular requests, modeled according to a MZipf
distribution with catalog size |F |, exponent α and plateau q.

and so forth). Due to the line speed constraints, [47] concludes that content store indexes
should be stored on SRAM: given SRAM size constraint, this in turns caps to about 10GB
the size of DRAM content store itself. Authors in [44] instead start from the observation [99]
that about half of the caching benefits at packet level happen in the first 10 sec.: considering
a capacity of 1Gbps, by employing a two-levels address scheme [44] sizes to about 12GB
the amount of memory that can be addressed at line speed. In spite of these arguments,
the cache sizes typically considered in simulation are much smaller (from 6.4MB [92] to
50MB [4] and 2GB [3]), although no proper justification for these selections is given. Hence,
we select cache sizes of 10GB (1010 Bytes or 106 chunks) as a realistic case study of CCN
performance.

We consider a realistic Internet catalog, namely the YouTube portal, due to its wide
popularity and growth of video content. Given the approximate number of videos (about
108 [48]) and their size (geometrically distributed with average 10MB [46]), the catalog size
is on the order of PB (i.e., 1015 Bytes) and the cache/catalog ratio is C

ND = 10−5.

6.1.2 Content Popularity

Though this might seem, at a first sight, only a minor issue, in reality it is not. The α
parameter of the Zipf distribution significantly shapes the request arrival pattern, practi-
cally limiting the request to a (possibly very narrow) subset of the whole catalog. Let us
evaluate the rank |F99| of the 99-th percentile for different values of the MZipf catalog size

6. Caching: simulative assessment 61

|F | ∈ {104, 108}, and plateau1 q ∈ {0, 5, 50} parameters, which we depict in Fig. 6.1 as a
function of the MZipf exponent α ∈ [0.5, 2.5]. Intuitively, the 99-th percentile rank repre-
sents the number of objects in the catalog that make up the 99% bulk of users’ requests.

From the picture, it is easy to grasp that for α ≤ 1, almost the whole catalog needs to
be cached to satisfy 99% of the requests irrespectively of the plateau q parameter : in this
operational region, we expect caching to be hardly effective, due to the unfavorable 10−5

cache/catalog ratio early estimated.
Considering the Zipf case, for high values of α ≥ 2 the 99-th rank converges to the same

value irrespectively of the catalog size. Moreover, even in the case of very large catalogs
consisting of 108 objects, 99% of the requests are directed to slightly more than a dozen
of objects. Hence, we get that if α = 2.5 would hold for the YouTube catalog, a 150MB
cache would suffice to store the bulk of the popular objects. Considering the MZipf case,
notice that though the curves still converge for high α irrespectively of the catalog size, a
higher number of objects needs to be cached to satisfy 99% of the requests (roughly, |F99|
grows by one order of magnitude for each step from q = 0 to q = 5 and q = 50).

Hence, we expect CCN performance to be drastically determined by the popularity
exponent α (and by the plateau q at a second order). Yet, as there is no consensus so
far on the settings of the above parameters, rather than sticking to a specific parameter
choice, in the following we explore a wide range of α and q values (as reported in Tab. 5.1)
so to assess the boundaries of CCN usefulness. As reference, we will also consider α = 1.5
as the centerfold of the [0.5, 2.5] range, and as it corresponds to the phase transition shown
in Fig. 6.1.

6.1.3 Performance at a glance

We conduct a thorough simulation campaign, consisting of more than 10,000 simulations
exploring over 1,000 individual system parameter settings. In this section, we report the
most interesting results obtained from the campaign: our aim is not to provide an ex-
haustive coverage of our results, but rather to convey a few relevant messages in the most
compact way.

To gather performance metrics of interest, we operate as follows. At time t = 0 we run
the centralized path discovery algorithm, that yields a set of multiple paths between any
two node pairs. Starting from empty caches, we simulate the system until caches fill up, at
which point we start the collection of all statistics, that continues until the cache hit metric
converges to a stationary value. Unless otherwise stated, each simulation point reported
in the following represents the average value gathered over 10 simulation runs. By default,
we consider a single YouTube-like repository served by CCN routers, to which aggregates
of clients are attached, issuing 10 requests per second. We underline that network routers
run an SPR forwarding strategy.

1Notice that MZipf with q = 0 degenerates into a Zipf distribution.

62 6.1. A realistic scenario

 0
 0.3
 0.6
 0.9

0 5 0 5

P
h

it

MZipf q

 0

 1

 2

 3

D
is

ta
n
ce

 0

 1

 2

 3

1 1 1.5 1.5

In
te

re
st

 l
o

ad
 (

x
1

0
0

0
)

MZipf α

(a)
 0.4

 0.5

 0.6

 0.7

 0.8

L
C

E

L
C

D

F
IX

(3
/4

)

F
IX

(9
/1

0
)

L
R

U

F
IF

O

R
N

D

B
IA

S

C
ac

h
e

h
it

Decision
Replacement

(b)

Figure 6.2: NCA performance at a glance: (a) popularity and (b) caching policies. In both
figures caches implement an F = SPR forwarding.

Caching performance is usually expressed in terms of the cache hit probability. Addi-
tional metrics may be needed in order to capture the network-wide perspective of a NCA.
As user centric-metric, beyond the usual cache hit probability, we consider the distance in
terms of the number of CCN backbone hops d that the data chunk has actually traveled in
the network (that correlates with user delay). Finally, as network-wide metric, we consider
the interest load, i.e., the number of links that interests have crossed before hitting a cache.
Interest load correlates with CCN router cost (as interest processing must be done at line
speed) and with network load (as data is generated in reply to interests, and will flow
backtracking the PIT).

Considering a YouTube-like scenario (D,N,C) = (103, 108, 106), we report overall sys-
tem performance in Fig. 6.2(a) for varying popularity skews α ∈ {1, 1.5}, using a basic
〈SPR,LCE,LRU〉 triplet. As expected, low α yields to poor system performance, that fur-
ther worsen for increasing q. It can be seen that performance metrics are highly correlated:
when α = 1, the closest cache does not necessarily have the chunk of interest, hence data
travels a longer distance. This in turns lowers the cache hit rate of individual content
stores, and translates into a higher interest cost as well. For highly skewed popularity
α = 1.5 the same content replicates everywhere, so that content of interest is often found
in closer caches, hence with a reduced interest cost. We see that α may undermine whether
CCN will be able to deliver the promised breakthrough: in case of α ≈ 1, it seems that
a technology change (i.e., the speed and size of memories for content stores) is evidently
needed to increase the cache over catalog ratio, and so CCN performance. In the mean-

6. Caching: simulative assessment 63

Table 6.1: Network topologies.
Segment |V | |E|/|V | CoV δ[ms] D

(a) Abilene Core 11 2.54 0.19 11.3 8
(b) Tiger2 Metro 22 3.60 0.17 0.11 5
(c) Geant Aggr 22 3.40 0.41 2.59 4
(e) Level3 Core 46 11.65 0.86 8.88 4
(d) DTelekom Core 68 10.38 1.28 17.21 3

while, a refined estimation of object popularity may be necessary to evaluate how CCN fits
to serve different Internet catalogs (e.g., YouTube, BitTorrent, Netflix, etc.).

Finally, for each routing strategy and all network topologies, we report in Fig. 6.2(b)
the average cache hit (i) conditioning over a given decision policy D(and averaging over
all replacement policies R, red bars) or (ii) conditioning over a replacement policy R(and
averaging over all decision policies D, green bars). Considering shortest path routing SPR
with a single repository, this case corresponds to a non-regular tree, where the hetero-
geneity of link propagation delays further shapes the interest (and chunk) arrival process
at the different caches. Yet, rather surprisingly, the performance difference across cache
replacement and decision policies is minimal.

We remark that this represents an high-level analysis, useful for providing a relative
ranking between different aspects of the system. Furthermore, in this analysis we only
consider an SPR forwarding strategy. In Ch. 7 we will show that replacement and decision
strategies still have a big performance impact especially if coupled with different forwarding
strategies.

6.2 Topology aware caching design
We now evaluate NCA performance considering different topological scenarios, thus de-
termining to what extent the network topology affects NCA performance. We anticipate
here that, as recently shown in [2], by using a 〈SPR,LCE,LRU〉 triplet, the topology has a
minor influence on NCA performance. In this section we remark [2] findings, but then try
to exploit the topology design as a means for increase NCA performance.

6.2.1 Caching evaluation on different topologies

To promote cross comparison we resort to real network topologies that are publicly available
(some of which gathered through Rocketfuel [100]).

Our selection of topologies is heterogeneous to provide a good span over different net-
work segments. We point out that we consider either metro networks (Tiger2), or back-
bone/POP networks (Abilene, Geant, DTelekom, Level3). The latter category can be
further subdivided in sparse (Abilene,Geant) or more densely meshed (DTelekom, Level3)

64 6.2. Topology aware caching design

topologies. For each topology, we only consider the AS backbone by eliminating all single
homed nodes (this is with no consequence, as the last CCN edge router is expected to serve
multiple clients). We consider that the system operates at a load well below congestion:
hence, as propagation delays dominate transmission delays in the range of expected capac-
ities of CCN routers, we consider infinite backbone link capacity. Tab. 6.1 reports the main
characteristics of each graph G = (V,E), namely, the network size |V |, the average degree
|E|/|V |, the coefficient of variation of the node degree CoV , the average link propagation
delay δ and graph diameter D.

We make these topologies directly available in the simulator [101], so that alternative
approaches can be compared on the very same set of topologies. In a similar spirit, we also
consider a standard binary tree topology with 15 nodes and 8 leaves, as typically done in
the literature.

Finally, notice that the size of the topologies varies up to a maximum of about 70 nodes
(DTelekom). While we argue that these sizes are already non negligible (e.g., since not all
nodes in a network may be CCN routers), this also follows from more practical limits of
the simulator. Namely, as detailed in Ch. 8 there is a tradeoff between catalog vs network
size that can be simulated given a limited RAM memory budget. Instead, we tuned this
tradeoff slightly in favor of larger catalog sizes – since they are expected to grow even
further.

We inspect the impact of caching policies in Fig. 6.2(b) considering (α, q) = (1.5, 0). We
point out that the choice of such a skewed content popularity is not meant for an absolute
assessment of NCA performance, but rather for a relative assessment of the impact of
several parameters, and is thus perfectly justified.

In reason of wire-speed constraint of CCN, it could be thus worth investigating other,
simpler, combination than the most commonly used 〈SPR,LCE,LRU〉 pair. Hence, we as-
sess the impact of different topologies considering also random decision and replacement
strategies 〈SPR,FIX(9

10),RND〉, yet fixing F=SPR. Fig. 6.2.1 compares cache hit on (i) a
binary tree, (ii) the 6 topologies of Tab. 5.1, and (iii) the average over all topologies. Notice
that, average 〈SPR,LCE,LRU〉 vs 〈SPR,FIX(9

10),RND〉 performance is hardly distinguish-
able: furthermore, 〈SPR,LCE,LRU〉 is not always the best choice overall topologies.

Topological information can be exploited at multiple layers, and by multiple planes.
In the reminder of this section, we illustrate the case of topology-aware CCN planning.
Specifically, we consider several graph-related centrality metrics (e.g., betweenness, close-
ness, stress, graph, eccentricity and degree centralities) to allocate content store space
heterogeneously across the CCN network, and contrast the performance to that of an ho-
mogeneous allocation.

6.2.2 Exploiting topology heterogeneity

In the previous section, we evaluate NCA on arbitrary networks topologies, nonetheless
considering homogeneous cache sizes, i.e., CCN content stores have all equal size: C(v) =

6. Caching: simulative assessment 65

 0.4

 0.5

 0.6

 0.7

 0.8

T
re

e

A
b
il

en
e

T
ig

er

G
ea

n
t

D
T

el
ek

o
m

L
ev

el
3

P
h

it

A
v
er

ag
e

<SPR,LRU,LCE> <SPR,RND,FIX(9/10)>

Figure 6.3: Caching efficiency comparison above different topologies.

C ∀v ∈ V . In this section we explore whether heterogeneous cache size can improve
CCN caching performance. With this regard, closest work to our is [43], that studied
hierarchies of Web caches, reaching the conclusion that “stream aggregation (perhaps more
than network topology) is a key factor in optimizing cache placement”. In [43] the topology
is however abstracted by considering several traces, captured at different depths in the end-
to-end path connecting a Web browser to a Web server (i.e., end-user client, client proxy
after browser cache, network proxy and end-server).

By expanding the work of [43] we compute several centrality metrics over the topology
graph G (e.g., betweenness, closeness, stress, graph, eccentricity and degree centralities).
We then use the centrality values of each node as a base for different strategies to hetero-
geneously distribute a given amount of cache, measuring the performance gain (or loss)
relative to an homogeneous CCN network having the same overall cache amount.
For each of the topology shown above, we compute the following graph-related metrics.

• Degree Centrality: DC(n) is defined as the number of links incident upon node n
(as we consider bidirectional graphs, we do not differentiate between indegree/outdegree).

• Stress Centrality: SC(n) reflects the total number of shortest paths (or geodesics)
between all other nodes which run through n. It is defined as SC(n) =

∑
∀s,t∈V \n σ(s, t, n),

with σ(s, t, n) the number of shortest paths from s to t through n.

• Betweenness Centrality: BC(n) reflects how often the node n lies on the short-
est paths between all the other nodes of the network. It is defined as BC(n) =

66 6.2. Topology aware caching design

Table 6.2: Correlation coefficient E[ρ] among centrality metrics.
E[ρ] DC BC CC EC GC SC
DC 1 0.802 0.846 -0.523 0.538 0.903
BC . 1 0.884 -0.655 0.674 0.949
CC . . 1 -0.790 0.794 0.906
EC . . . 1 -0.984 -0.633
GC 1 0.652
SC 1

Note: E[ρ] is averaged over the 6 topologies: the standard deviation is std(ρ) < 0.167 for
any metric-pair, and the coefficient of variation is always below std(ρ)/E[ρ] < 0.310

∑
∀s,t∈V \n δ(s, t, n), where δ(s, t, n) = σ(s, t, n)/σ(s, t) is the fraction of all shortest

paths between s and t which run through n. In a sense, it is a normalized version of
SC.

• Closeness Centrality: CC(n) relates to the distance of n to all the other nodes in
the network: the lower the total distance toward all other nodes, the more the node is
central in the topology. It is defined as the invert sum of the shortest path distances
of node n from all other nodes, CC(n) = 1/

(∑
∀s∈V \n d(n, s)

)
where d(n, s) is the

length of the shortest path from n to s.

• Graph Centrality: GC(n) relates to the distance of n to the farthest node: nodes
with high GC have short distances to all other nodes in the graph. It is defined as
the invert of the maximum of all geodesic distances from a node to all other nodes
in the network, i.e., CC(n) = 1/max∀s∈V d(n, s) where d(n, s) is the length of the
shortest path from n to s.

• Eccentricity Centrality: EC(n) reflects how far, at most, is node n from every
other node. It is defined as the largest geodesic distance EC(n) = max∀s∈V d(n, s)
and thus mirrors the GC definition.

The relationship among the different criticality scores is expressed in Tab. 6.2, that reports
the average over all topologies of the correlation coefficient between any two sets of cen-
trality values2. Though this list is non exhaustive, as other metrics (e.g., the lobby index,
etc.) could be included as well, it is nevertheless already fairly representative. It could
be rather objected that it is redundant to consider so many centrality metrics, especially
since some of them are similar (e.g., BC and SC) or strongly negatively correlated (e.g.,

2To simplify the visual presentation, we report only the matrix values above the diagonal: we point out
that the correlation coefficient is invariant to the order of the vectors, and hence the matrix is actually
symmetrical.

6. Caching: simulative assessment 67

 0 5 10 15 20

C
a
c
h

e
 s

iz
e
 o

f
th

e
 i

-t
h

 n
o

d
e
 [

c
h
u

n
k

s]

C
C

Node ID

E
C

G
C

D
C

S
C

B
C

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

C
C

N
 c

o
n

te
n

t
st

o
re

 s
iz

e
(n

o
rm

al
iz

ed
 t

o
 t

h
e

o
v

er
al

l
ca

ch
e

si
ze

 |V
|C

)

Node ID sorted by increasing BC index
(normalized to the network size |V|)

DTelekom
Level3
Geant

Abilene
Tiger

Constant

(b)

Figure 6.4: Cache size for different ranking metrics applied on the Geant topology (a) and
for the same BC ranking applied on different topologies (b).

EC and GC). Still, we point out that each metric has its own pros and cons. Consider for
instance EC and GC. On the one hand, it could be argued to give more cache space to
high-GC nodes, as they have short distance to all other nodes in the graph, and may thus
act as “shared hubs” for content requests passing by. Conversely, it could also be argued
to give more cache space to high-EC nodes exactly since they are faraway in the topology:
otherwise, their requests may induce higher load on many CCN routers in the path, unless
they could be filtered out by having access to a larger amount of cache.

Let us define Ctot as the overall size of cache in the topology. In the case of homogeneous
network, we fix the size of the individual caches to Ci = 10GB, that [44] points out to be
about nowadays technological limit due to line speed requirement. In other words, CCN
routers must be able to service each interest packet by doing a lookup for content in real
time (similarly to IP longest prefix matching lookup for addresses). Hence, memory access
speed (and cost) limits the practically achievable content store size [44].

In the case of homogeneous networks, Ctot = |V |Ci with |V | the number of nodes in the
network. In the case of heterogeneous networks, we exploit the centrality scores as follows.
Consider a generic metric X ∈ {CC,GC,DC,EC, SC,BC}, where we denote by X(i) the
value of X for node i ∈ V for the considered topology. We then adopt two criteria for
cache sizing:

CPX(i) = Ctot
X(i)∑
j∈V X(j) ,∀i (6.1)

CQX(i) = max
(
c, dCPX(i)/cec

)
(6.2)

Notice that Eq. (6.1) corresponds to a perfectly proportional criterion, where the cache

68 6.2. Topology aware caching design

n18

n6

n5

n3

n7

n19

n20

n0

n2

n14

n17

n16

n13
n21

n1

n15

n8 n9 n10

n11

n4

n12

(a) Homogeneous

n1

n3n4

n5

n7

n9

n12

n14

n15

n18

n21

n6

n0

n19

n20

n17

n16

n13

n11

n10n8

n2

(b) Heterogeneous

Figure 6.5: Pictorial representation of cache sizing, with CCN content store size propor-
tional to the size of node in the corresponding graph. The picture reports (a) homogeneous
and (b) heterogeneous cache sizes (in the latter case, proportional to the betweenness cen-
trality BC index).

size CPX(i) is distributed to the i-th node proportionally to the metric X(i) normalized
over the sum of the X(i) score over the whole graph. An example of the Eq. (6.1) strategy
computed for all centrality metrics on the Geant network is reported in Fig. 6.4(a) (where
the centrality metrics X are sorted top to bottom by decreasing coefficient of variation of
the score σ(X)/E[X]).

While Eq. (6.1) is an ideal strategy that allows to gauge the relative importance of the
centrality score, we acknowledge that it may be hardly feasible in practice: indeed, CCN
content store modules will be quantized in multiples of a unit module c, as it happens for
nowadays RAM memory. As such, we also consider a quantized strategy Eq. (6.2), where
the size of individual caches CQX(i) is multiple of c = 1GB units. The model assumed by
Eq. (6.2) is that ISPs will invest in a fixed number of memory modules Ctot/c that they can
then arbitrarily deploy in the network. The viewpoint we adopt is that an ISP may wish to
reallocate the Ctot/c cache modules at its disposal (e.g., moving from an homogeneous setup
to an heterogeneous one), so to optimize the achievable performance without incurring in
further capital expenditure.

For the sake of illustration, Fig. 6.5 depicts nodes of variable size, whose radius is
proportional to the cache size C(i), to visualize where in the network the cache resource
have been allocated. Specifically, Fig. 6.5 contrasts an homogeneous Geant network where
C(i) = Ctot/|V | for all nodes (left plot) with the heterogeneous CPBC(i) allocation (right
plot) corresponding to the largest skew in the cache resource allocation (as seen in the top
plot of Fig. 6.4(a)). Clearly, the other centrality metrics will provide allocation skews in

6. Caching: simulative assessment 69

between these two extremes.
Notice that the quantization process induces an error so that the overall cache amount

is now Ctot(1 + ε) with ε ∈ R the error induced by the quantization process. This error
is due to two contrasting operations3 in Eq. (6.2) that somehow compensate (the average
error is E[ε] = 2.3%). It could be argued that any difference in terms of performance
(e.g., cache hit gain) may be due to discrepancy in the quantized cache size (e.g., when
ε > 0). To rule out this possibility, we verify the absence of correlation between these
discrepancies. More formally, denote HConst the cache hit probability of the homogeneous
network, with overall cache size Ctot. Denote then by HQ

X = (1 + γ)HConst the cache
hit of an heterogeneous network with quantized cache allocation strategy according to the
centrality measure X, with overall cache size

∑
i∈V C

Q
X(i) = (1 + ε)Ctot. The correlation

coefficient ργ,ε between the series of (γ, ε) pairs gathered over all networks and centrality
measures, equals ργ,ε = 0.05, ruling out any correlation between these errors. As such,
performance differences in the following solely depend on the centrality metrics.

Notice that Fig. 6.4(a) and Fig. 6.5 highlight variation in the cache allocation according
to different centralities for the same topology. In Fig. 6.4(b) we finally report a comple-
mentary view, showing the same centrality index (namely, BC) for all topologies. The
x-axis represents the normalized node ID i/|V |, sorted by increasing BC index; the y-axis
instead reports the cumulated fraction of content store size

∑i
j=0C

P
BC(i)/Ctot, where we

consider a proportional allocation strategy for the sake of illustration. It can be seen that
in the DTelekom and Level3 network, BC index defines a very skewed allocation, with few
nodes taking the most of the cache. Conversely, Geant, Abilene and Tiger provide a more
balanced allocation (approaching the constant allocation depicted as a reference).

6.2.3 Performance evaluation

The aim of our wide-range simulation campaign is (i) to assess whether heterogeneous
cache sizing can provide performance benefits over an homogeneous network and (ii) if
performance gain are consistent across all topologies for some allocation metric X ∈
{CC,GC,DC,EC, SC,BC}. As such, we adopt the simplest strategies namely 〈SPR,LCE,LRU〉
for carrying on the aforementioned campaign.

We express caching performance with two output metrics. We consider cache hit prob-
ability H as the usual network-centric metric. As user-centric metric we consider the path
stretch d/|P | as the number of CCN backbone hops d that the data chunk has actually
traveled in the network, normalized over the path length |P | until the content originator
(i.e., without caching). Note that d = 0 when users find the content at the edge CCN router
and d = |P | when the content is not cached by any CCN router, so that d/|P | ∈ [0, 1].

First, we observe that quantization actually plays a beneficial role. Let us consider
the cache hit metric H and as before denote by HP

X (HQ
X) the cache hit metric achieved

3The max operation imposing a minimum cache size CQX(i) ≥ c ∀X, i increases ε, while the ceiling
operation reduces ε.

70 6.2. Topology aware caching design

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

P
er

ce
n
ta

g
e

re
la

ti
v
e

er
ro

r
b
et

w
ee

n
 p

ro
p
o
rt

io
n
al

 v
s

q
u
an

ti
ze

d
 s

o
lu

ti
o
n
s

Absolute error rank (lowest to highest)

Proportional is better

Quantized is better

α=1.25
α=1.50

Figure 6.6: Percentage relative error (HQ
X −HP

X)/HP
X for the cache hit metric of quantized

vs proportional allocation, all topologies and allocation metrics.

for a given topology and popularity settings by using a proportional (quantized) allocation
according to centrality metric X. We then define the relative error induced by quantization
on cache hit as (HQ

X − HP
X)/HP

X , which is depicted for all topologies and metrics in a
monotonously increasing fashion in Fig. 6.6. In the picture, a negative value (gray shaded
zone) corresponds to cases (i.e., metric and topology combinations) where proportional
allocation would yield better cache hit results. Interestingly, Fig. 6.6 shows that though
proportional allocation yields better performance in some cases (left part), however the
performance difference with the corresponding quantized allocation is minimal (below 2%).
Conversely, there are cases in which quantization can bring almost up to 20% gain with
respect to a proportional allocation. Essentially, this is due to the fact that some metrics
(especially, BC and SC, recall Fig. 6.4(a)) may allocate a very low amount of cache space to
some nodes, which is “corrected” by having a minimum amount of cache in the quantization
process. In the following, we thus consider only quantized allocations: this choice is both
robust (as we avoid outliers due to skew in the centrality metrics) and realistic (as a
perfectly proportional allocation is not directly applicable).

To represent at a glance the impact of network topology and allocation criterion on the
system performance, we depict in Fig. 6.7 a scatter plot of the cache hit versus path stretch
for different criterion and topologies (reporting only α = 1.5 for the sake of brevity). Each
box is centered around the average cache hit and stretch performance, while box width and
height represent their standard deviations respectively. For the sake of illustration, each

6. Caching: simulative assessment 71

 0.05

 0.06

 0.07

 0.08

 0.09

 0.79 0.8 0.81 0.82 0.83 0.84 0.85

P
at

h
 s

tr
et

ch

Cache hit

EC

GC

CC

SC

BC

DC

EC

GC

CC
SC

BC

DC

EC
GC

CC
SCBC

DC

EC

GC

CC
SC

BC

DC

EC

GC

CC

SC

BC

DC

Tiger
Abilene
Geant
Level3
DTelekom

Figure 6.7: Scatter plot of cache hit versus path stretch for different ranking (explicitly
labeled) and topologies (represented with different points and box colors) when α = 1.5.
Each box is centered around the the average hit and stretch performance, with box width
and height extending to the standard deviation of the above respective metrics.

topology is represented using different points and box colors, while centrality metrics are
explicitly labeled in the figure.

Notice that for Level3 and DTelekom, the cache hit is only modestly affected by cen-
trality metrics. That happens despite a significant unbalance in the network topology,
with the vast majority of the cache resources possibly allocated to few nodes only (as per
Fig. 6.4(b)). For instance, for Level3 all boxes roughly spans along the same x-axis support,
meaning that heterogeneous allocation can hardly make any difference on the cache hit per-
formance. Conversely, a slightly more pronounced separation is visible along the y-axis,
entailing that the number of hops traveled before a cache is hit can instead be affected by
the ranking function. Similar considerations hold for DTelekom, where performance gaps
are only slightly more noticeable.

Centrality metrics have a larger impact instead on the Tiger, Abilene and Geant topolo-
gies, for both cache hit and path stretch metrics: notice indeed that boxes now separate
across centrality metrics. Due to the cache hit and path stretch semantic, the bottom-right
part of the plot corresponds to better performance, so that allocation criteria resulting in
bottom-right boxes for all topologies should be preferred. Due to the previously observed
correlation in the size of the resulting caches (Tab. 6.2) it is not surprising to observe sim-
ilarity across allocations of different centrality metrics. Yet, there is no clear winner that

72 6.2. Topology aware caching design

stands out from the plot – such as an optimal strategy, furthermore yielding consistently
superior results over all4 topologies.

We stress the Zipf popularity settings may further alter the results for a given topology.
We exemplify the situation by taking into account the relative error between the cache hit
gained by a quantized allocation strategy induced by metricX over a constant homogeneous
allocation, i.e., (HQ

X −HConst)/HConst according to our previous terminology. The relative
error is depicted in Fig. 6.8 for α = 1.5 (top) and α = 1.25 (bottom) and for all topologies
(points) and centrality metrics (x-axis).

It can be seen that, e.g., eccentricity centrality EC may have an opposite behavior
depending on whether the popularity is highly skewed or not: apparently, putting more
cache capacity to nodes that are somehow “confined” in faraway networks region can be
a reasonable choice only for highly skewed content (α = 1.5) as it otherwise can yield to
cache hit reduction. More generally, even for a single performance metric, it is again hard
to find a metric robust under all networks and popularity settings – with the exception of
degree-based CQDC(i) allocation.

Notice indeed that, for both α = 1.5 and α = 1.25, the DC metrics yield to cache
hit improvements for all topologies except Abilene, where the performance loss keeps how-
ever very limited (i.e., performance are very close to the baseline constant allocation for
Abilene). This can be explained with the fact that, in the Abilene topology, the degree
does not significantly vary across nodes, so that a degree-proportional allocation practi-
cally degenerate into an (almost) homogeneous allocation. Conversely, in all other cases
(HQ

DC − HConst)/HConst > 0 so that some gain can be gathered from a heterogeneous
allocation.

Overall, it seems that a simple quantized degree-based allocation policy CQDC is the
most robust across all topologies. On the one hand, this is positive, since very simple
operational rules of thumb can be defined (e.g. “if you add a line card, add a content store
module as well”). On the other hand, we also observe that a degree-based selection may
tradeoff with technological constraints, such as the ability to perform memory lookups at
line speed when both the memory size and the node network capacity grows. As a result,
further architectural analysis beyond [44] may be needed to assess whether the quantized
degree-based allocation policy is also feasible, and thus relevant.

Finally, from a higher level viewpoint, we notice that performance gain is upper-
bounded by a modest 2.5% in the best case (Level3 topology, α = 1.25 in the bottom
plot of Fig. 6.8). In reason of such a limited gain over homogeneous cache sizes, it seems as
there may be no real incentive in using heterogeneous cache allocation policies altogether.

4We prefer to ensure that gain hold over a larger number of topologies that simply requiring a larger
average gain, as the latter may hide performance drops for some topologies.

6. Caching: simulative assessment 73

-3
-2
-1
 0
 1
 2
 3

CC EC GC DC SC BC

C
ac

h
e

h
it

P
er

ce
n
ta

g
e

re
la

ti
v
e

er
ro

r
R

E
%

Centrality metric

Zipf α=1.25

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

Zipf α=1.5

Tiger
Abilene

Geant
Level3

DTelekom

Figure 6.8: Cache hit under quantized ranking allocation strategies, for different topologies
and Zipf settings. Y-axis reports the percentage relative error (HQ

X −HConst)/HConst with
respect to a baseline constant allocation. Dark shaded zone corresponds to a performance
loss for heterogeneous allocation.

6.3 Conclusions

In this chapter we assess which factors most influence a network caching algorithm. We
gather that (i) catalog and popularity settings play by far the largest impact in determining
NCA performance. While this is an expected result, it also means that much remains to
be done in order to fully assess whether CCN can deliver the promised breakthrough.
The lack of common evaluation scenario is a critical point that the ICN community should
address in the short term: due to its tremendous impact, this calls for broad and systematic
measurement work beyond [46,48,97] to gather reliable popularity models.

Second, we find that (ii) simple randomized caching decision and replacement policies
perform as well as more complex ones. On the one hand this partly confirms the importance
of correlated arrivals, that void the IR assumption. On the other hand, this is a positive
finding, as it also suggests that simple policies are able to provide good enough performance
in CCN. At the same time we point out that this finding does not include other recent
decision schemes worth investigating further [17,19].

Third, (iii) the impact of the chosen topology is minimal, with respect to the other
parameters. This is again not surprising, as [2, 43] suggest request stream aggregation,
more than network topology, to be a key factor in cache placement. This also means that,

74 6.3. Conclusions

provided that latency heterogeneity is properly accounted for, the network topology is a
less important detail with respect to the previous scenario parameters.

Fourth (iv) this chapter contrasts the performance of NCA under homogeneous vs het-
erogeneous cache sizes. Specifically, we consider that a given amount of memory resources
need to be allocated across a network of arbitrarily connected CCN nodes. We then define
several allocation criteria resorting to standard graph centrality metrics – such as between-
ness, closeness, stress, graph, eccentricity and degree centralities. Our criteria are either
simplistic (i.e., proportional to the centrality metrics) or also incorporate a first degree of
technological constraints (i.e., memory quantization in multiple of a given amount).

Although our evaluation is carried out in the context of Content Centric Networks
(CCN) it is worth discussing to what extent our findings could apply to other architectures
under the Information Centric Networks (ICN) umbrella. We are assisted in this by [1],
that overviews similarities and differences between several ICN proposals (namely, DONA,
CCN, PSIRP, NetInf), naming, security, routing and forwarding – of which only the latter
two are relevant for our purpose. We argue that, in order for our guidelines to apply to an
ICN architecture other than CCN, three main assumptions need to hold. First, the ICN
architecture must operate as a receiver-driven network of caches. Second, the architecture
must partitions objects in chunks. Third, data chunks must backtrack the trail of crumbs
left by the request – i.e., data backward path must mirror the request forward path.
While the first two assumptions generally hold for any ICN architecture, the latter bares
additional discussion. At the same time, even though forward/backward path symmetry
behavior is not mandatory for some architectures (e.g., NetInf, Dona), however [1] points
out this to be a possible behavior in almost every ICN architecture. Hence, the reach of
findings reported in the following may be larger than the narrow CCN scope.

75

Chapter 7

Forwarding Strategies

In this chapter we focus our attention on the forwarding strategy F , composing a NCA
triple. The design space we consider is summarized in Tab. 7.1. The request forwarding
strategy F is constrained by the information available in the forwarding table (FIB). In
case CCN nodes have at their disposal FIB information useful to forward requests towards
one (or more) server where a persistent copy of the data is stored (e.g., the shortest path
to a given content originator), this information can be exploited by the CCN architecture.
Content can be found only on “en-route caches” (i.e., caches between the content requester
and the content originator), possibly failing to find nearby cached copies (e.g., that lie
along the shortest path of another close requester). Similarly, data will be cached on the
path between the content originator and the requester only.

On the other extreme, in case no useful FIB information is available, then the neigh-
borhood needs to be explored to find a temporary copy. In this case, requests are expressed
over possibly multiple paths, which can lead to the usual drawbacks of flooding-based al-
gorithms (and require the usual counter-measures, like TTL-based scoping or probabilistic
pruning of some branches in the exploration process). Similarly, temporary copies will then
be available at multiple neighbor nodes.

Hybrid strategies can be devised when nodes have only partial knowledge of existing
routes towards available content items, or in order to exploit nearby temporary replicas.
Indeed, given the large mount of content available in the network and the volatility of
cached copies, it is not feasible to design a scalable routing protocol able to address all
available copies of every item. Accordingly, only part of the requests are deterministically
sent over “known” routes, while the others are forwarded via flooding schemes to find
“unknown” copies.

Yet another dimension that may draw the exploitation vs exploration design is the
minimal data unit. At two antipodean extremes, content of interest can be either mono-
lithically requested by users and cached by intermediate routers (object-level) or partitioned
in chunks (chunk-level). Clearly, there is a deterministic overhead when CCN is used in

76 7.1. Exploitation vs Exploration

FIB Knowledge • None
• Omniscient
• Partial

Request forwarding • Exploration
strategy • Exploitation

• Hybrid
Data unit • Monolithic object-level

• Partitioned chunk-level

Table 7.1: NCA forwarding design space.

chunk-mode, as multiple requests have to be expressed to retrieve the same data. At the
same time, requests are generally of limited size, and chunk-mode offers a greater flexibility
for data retrieval. Furthermore, requests for the first chunk of any given object could be
expressed according to an exploration paradigm: this would lead to the discovery of the
path toward the closest (cached) object copy, that could be stored in a soft-state FIB cache
and exploited by requests for subsequent chunks of the same object.

7.1 Exploitation vs Exploration

Based on the previous discussion, in this section we assess pros and cons of the above
families of approaches. As our assessment involves both qualitative as well as quantitative
observations, we define and implement a few representative strategies for each family.

Exploitation. Nodes have FIB knowledge concerning the placement of the (possibly
multiple) permanent copies of any object in the system. In case multiples original copies
are stored in the system, a (uniformly) randomized selection of the server toward which re-
quests are sent is performed. Furthermore, the selection is randomized for each new chunk
request in case of chunk-mode CCN architectures. Under the exploitation paradigm, while
the number of messages and requests sent is possibly lower, FIB management (i.e., routing,
lookup) may have a non-negligible cost, and caching can only happen en-route in the back-
ward path to the originator (so that possibly closest cache is not found with this strategy).
Exploitative strategies are the subject of Sec. 7.2.

Exploration. Nodes have no FIB knowledge and are forced to flood requests. Instead
of a fixed-scope limit (e.g., by requiring the number of hops n to be n < TTLmax), we
limit the flooding scope probabilistically, such that at the n-th hope, the request message
is flooded with exponentially fading probability βn (as typical in reinforcement learning).
Additionally, aggregating requests at nodes, to avoid sending subsequent requests when

7. Forwarding Strategies 77

a first outstanding request for the same object has not been satisfied yet. As previously
introduced, the network is explored only for the first chunk in the case of chunk-mode
partitioning. Under exploration, closest copies are expected to be found, at the expense of
a more intense communication, that is however possibly limited to the first chunk. Sec. 7.3
is devoted to analyze ideal and realistic exploratory strategies

Hybrid. Nodes may have partial FIB knowledge that allows them to forward requests
in an exploitation-based approach, whereas the rest of the catalog will be served by an
exploration-based scheme. For instance, since it is likely for popular content to be stored
in nearby caches, exploration can be used for the first Kth percentile of the request dis-
tribution. Instead, for the remaining part of the catalog, the hybrid strategy exploits FIB
knowledge (since least popular content it may be necessary to go up to the content origina-
tor). Notice that the hybrid case, K acts as a cutoff parameter, tuning the predominance
of exploitation (K= 0) or exploration (K= 1). In this Thesis we do not focus on hybrid
strategies, which we widely treat in [10,11].

7.2 Exploitative strategies
In order to investigate the exploitative strategies, in this section we assume that an external
routing process (and name resolution scheme) provides to the strategy layer multi-path
alternatives from the requester to the content originator. For the sake of simplicity, we
limitedly consider at most two alternative paths. The strategy layer has then to decide
how to use these paths, on a chunk-by-chunk basis.

We exemplify the situation with a toy-case network in Fig. 7.1, where we consider
decisions taken at node A to reach content located in possibly multiple repositories R1, R2

1.
On the one hand, (i) in case node A serves requests of user u1 employing only the shortest-
path (single-path, red arrow) to the closest repository R1 (that pass through B,D), it
may miss previous requests of user u3 (stored at C,E). On the other hand, if strategy
layer exploits more than a single path, it can either (ii) employ multiple alternative2 paths
to the same repository (multi-path, green arrow), or (iii) employ multiple shortest paths
to different repositories (multi-repository, blue arrow). These multi-path policies tradeoff
between (i) the fact that shortest path routing cannot fully exploit the benefit of in-network
caching, as caching happens only en-route toward the repository, potentially missing closer
cached copies; (ii) the fact that alternate repositories may be faraway, so that the interest
may travel longer paths; (iii) the fact that path diversity toward the closest repository may
be poor, so that few alternative caches are visited beyond those visited by shortest path
routing.

1In this case S(i) ⊆ [D,F],S(i) 6= ∅,∀i ∈ N In other words, each content i ∈ N can be replicated in one
or both repositories R1, R2

2As primary path, we consider the shortest path between the requester and the originator. As secondary
path, we instead use [37] to find the shortest path that is the most diverse from the primary.

78 7.2. Exploitative strategies

Figure 7.1: Toy-case example.

In both cases, the strategy layer faces further decisions concerning the multi-path selec-
tion process, such as (i) exploring both paths in parallel, or (ii) alternating between paths
(and in this case, if uniformly at random, or deterministically as in round robin). The
tradeoff is in this case between between (i) an increased interest load, that violates the
flow-balance and possibly causes cache contention and (ii) a possibly slower convergence
to the repository.

Finally, the selection process can happen either (i) every chunk or (ii) once per object
(keeping thus a per-object state about the path). We denote this choice as multi-path
retention. In case (i), decisions are taken for every chunk, so no path is retained. Con-
versely, in case (ii) an interest3 is sent over all the possible paths at time 0, and the path
retained is the one along which the first data will come. The path retention tradeoffs (i)
simplicity for (ii) greater efficiency, as it may be preferable to forward interest toward the
closest cached copy (as opposite to the closest repository). As we have seen that caching
policies and topologies play a limited role in determining system performance, we now fix
the 〈LCE,LRU〉 caching policies and limitedly consider the Geant network to assess the
impact of the strategy layer. In this case we use α = 1 to consider a more realistic scenario.
We further consider the case where all links have homogeneous propagation delay, and the
heterogeneous case with real delays reflecting the interconnection lengths.

3In case parallel path are used, the same interest is expressed over multiple paths; otherwise, a different
chunk is requested over each alternative path.

7. Forwarding Strategies 79

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5

A
v

er
ag

e
d
o

w
n

lo
ad

 d
is

ta
n
ce

 [
H

o
p

s]

Distance from closest repository [Hops]

H
et

er
o

g

H
o

m
o

g

Rep
osit

ory

Shorte
st-

path

Multi-Repository Alternate
Multi-Path Alternate

Multi-Repository Parallel
Multi-Path Parallel

 0

 1

 2

 3

 4

 5

 6

Alternate

(no retention)

Alternate Parallel

(no retention)

Parallel Shortest
path

In
te

re
st

 c
o

st

Homogeneous Heterogeneous
Delay

Multi-Repositories
Multi-Path

E[sp(x,R1)]

E[sp(x,R2)]

E[ap(x,R1)]

Figure 7.2: Impact of strategy layer on average distance from a cache, and interest/data
cost.

To promote cross comparison we resort to Geant publicly available network topology
(see Tab. 5.1). Overall, we tested 12 multi-path strategy layers, and we report only the
most interesting combinations in the following.

7.2.1 Performance evaluation

Fig. 7.2(a) reports the average download distance as a function of the node distance from
the closest repository. Notice that filled points refer to scenario with heterogeneous delay,
empty ones to homogeneous delay. Two lines report reference for cases where the content
is entirely downloaded from the closest repository, or is downloaded with shortest path
routing. Fig. 7.2(b) reports instead the average interest load, i.e., the number of links that
each interest has crossed before hitting a cache. Light-gray color is used for heterogeneous
delay, dark-gray for homogeneous delay. Three lines report the average distance from the
closest repository E[sp(x,R1)], the shortest path distance from the alternate repository
E[sp(x,R2)], the length of the alternate path toward the closest repository E[ap(x,R1)].

As expected, when multiple paths are used, these are longer than the distance to the
closer repository, hence the download distance increases. Looking at Fig. 7.2(a), this effect
is especially noticeable only for nodes that are close to the repository, with a peak at
two hops; conversely, faraway nodes will likely find the content cached somewhere before
the repository, with performance closer to shortest path routing. Similarly, when multiple
paths are used in parallel, the interest load roughly doubles. Considering Fig. 7.2(b), path
retention may however successfully mitigate the interest load increase, at a price of keeping
per-object state in CCN routers.

We point out that in case paths are used in an alternate fashion, there is no difference
between a uniform randomized criterion and a deterministic round-robin one (hence, we do
not show this in the plots). Intuitively, if deterministic decisions are not coordinated be-

80 7.3. Exploratory strategies: toward iNRR

tween nodes, they are equivalent to random decisions from the overall network perspective.
When instead multiple paths are used in a parallel fashion, this lead to a more aggressive
probing policy, that has higher chances to find closer cached content.

Also, we see that multiple alternative paths toward the same repository should be
preferred to the use of multiple shortest paths toward several repositories (furthermore this
lead to more robust choices in case of heterogeneous delay). Intuitively, this is because CCN
values diverse paths as they explore different caches, more than because they ultimately
lead to different repositories. Interestingly, this happens despite the average alternate
path toward the closest repository is on average longer than the shortest path toward the
alternate repository, i.e., E[ap(x,R1)] > E[sp(x,R2)] in Fig. 7.2(b).

The above observation has an important consequence. First, this means that, unless
the ultimate aim is to reduce load at the repositories, information concerning a single
repository suffices. Furthermore, in CCN efficiency is maximum when the closest cached
copy is found: since cache update dynamics are much faster than routing dynamics possibly,
this information will likely not be available in the FIB. Hence, there may no need for the
routing protocol to disseminate information about optimal alternate paths to the repository
either, since an opportunistic exploration of a CCN node neighborhood may suffice.

Overall, we find that naïve multi-path strategies exploiting other paths than the short-
est one may lead to explore a longer distance – increasing the overall network load, and
reducing the cache hit rates. At the same time, we recognize that multi-path benefits
come from an increased resilience (in case shortest path fail) and to a possibly reduced
load at the repository (whose uplink bandwidth can be a scarce resource with respect to
router capacities). In this case, it seems that multi-path hybrid strategies that complement
single-path routing with an opportunistic exploration of a CCN node neighborhood may
be worth exploring. In this case, indeed, we avoid the issue of distance increase, letting
the interest find the nearest copy.

7.3 Exploratory strategies: toward iNRR

In this section, we leave exploitation approaches, on the behalf of exploration techniques.
As said above, exploitative strategies tend to averagely increase (compared to the shortest
path) the distance traveled by data content. This is because data is constrained on pre-
determined paths. Instead, an ideal name-based routing protocol would have to address all
temporary copies of every content item in order to forward user requests towards the “best”
available replica (e.g., closest). We name this ideal strategy iNRR(ideal Nearest Replica
Routing). iNRR is clearly unfeasible in a realistic CCN network for different reasons:

• The network scale; CCN paradigm applies to content of different applications and is
not intended to be confined to small, controlled network regions.

• The time scale; temporary copies stored at network nodes are highly volatile and the

7. Forwarding Strategies 81

signaling overhead involved by frequent route updates would be excessive.

• The forwarding table (FIB) size, that is already a matter of concern within all CCN
designs, even considering only permanent content copies rather that network-cached
temporary replicas [102].

Thus, we tackle the problem of the definition, analysis and implementation of a scal-
able forwarding policy F , suitable for CCN, which however approaches toward the iNRR
forwarding. Our goal is to design a forwarding strategy that: (i) can discover tempo-
rary content replicas and forward requests accordingly; (ii) requires little or no a priori
knowledge; (iii) does not generate too much additional signaling overhead; (iv) can achieve
implicit cache coordination.

7.3.1 Coupling forwarding and exploration

Given the pervasiveness of caches in CCN, meta-caching is considered a crucial element of a
NCA to differentiate content of individual caches. Forwarding is instead essential to extend
the reach beyond caches that lay on the path toward the repository, possibly reaching off
path copies. Yet, while NCA performance are dependent on the triple 〈F ,D,R〉, with few
exceptions (see Sec. 7.2), research has so far limitedly considered a single of the above
aspect in isolation. More specifically, work focusing on F aims at implementing policies
to efficiently reach off-path caches, and assumes that newly arriving content is always
cached [9–14], [3–8] – generally referred to as Leave a Copy Everywhere (LCE) in meta-
caching terms. Work focusing on D instead aims at implementing policies to reduce cache
redundancy, and assumes that requests are forwarded according to Shortest Path Routing
(SPR) [15–19]. Most importantly, a debate has been recently ignited around the usefulness
of ubiquitous caching [2, 103].

In particular, very recent work [2] shows that the most of the caching gain is attainable
by simply (and painlessly) caching at the edge of the network. Yet, we argue that [2] misses
a crucial point: i.e., that the interaction of the above policies concurs in determining the
global NCA performance. While authors of [2] correctly select an ideal forwarding policy
F , that achieves optimal forwarding decisions, their (implicit) selection of the 〈D,R〉 pair
(and especially of the meta-caching policy D that, as we will see, plays a paramount
role) yields to significant underestimation of the achievable NCA performance. Tab. 7.2
reports a taxonomy of related work. The table is split in two portions, meta-caching
(top) and forwarding (bottom): it clearly emerges that F and D aspects have been so
far studied separately. Work focusing on meta-caching usually assumes Shortest Path
Routing (SPR) as underlying request forwarding strategy. In this context, many policies
have been proposed that are either deterministic (LCE, LCD [15, 16], Betweenness [19])
or probabilistic (Fix [15,44], ProbCache [17], WAVE [18]). These policies exploit different
information (ranging from simple distance [15, 17] to more complex topological properties
[19]) and possibly explicitly take into account CCN chunking [18].

82 7.3. Exploratory strategies: toward iNRR

Similarly, work focusing on forwarding policies usually assumes that new contents are
always cached, which is commonly referred to as Leave a Copy Everywhere (LCE) in meta-
caching terms. The interest of alternative strategies to SPR is that there may be closer
cached copies laying off path between the requester and the custodian of the permanent
copy, that thus SPR is unable to reach. To achieve this purpose, the ICN community
has tested several forwarding approaches, ranging from multiple disjoint source routed
paths [9], to dynamic approaches based on flooding [10], learning [11,13], or routing using
potential [12]. Of particular interest, [2] considers an ideal Nearest Routing Replica (iNRR)
scheme that allows to reach the closest, possibly off path, cached copy. While iNRR is not
a practical scheme, as it requires instantaneous knowledge of the status of all caches in the
network, however it provides an ideal upper-bound to F performance, and as such is worth
considering. Additionally, we offer two distributed NRR implementations in Sec. 7.3.4,
that can attain performance arbitrarily close to that of iNRR.

Modeling. Concerning modeling work, separation of F , D and R is easily understood:
due to the complexity in analysing caching networks, studies have tackled each aspect
in isolation. In particular, considering simple topologies (e.g., cascades or trees), [16]
models LCD meta-caching (D policy), while [6] addresses LRU and random replacement
(R policies), and [3, 4] explicitly account for the fact that objects are split in chunks.
Considering instead more complex networks, [8] models object-level cache hit of Shortest
Path Routing (SPR) on arbitrary topologies.

We point out that despite CCN introduces a number of new challenges (e.g., chunk vs
object level, pervasive caching, request routing over complex topologies, etc.), caching is
not a new problem. As such, in terms of modeling techniques, the above work possibly
extends to the NCA context previous seminal work. More precisely, [6, 16] build over the
Che [7] approximation, while the MMPP model in [3, 4] extends Jelenkovic [5] to the case
of multiple chunk and [8] extends the Dan and Towsley [104] LRU approximation from a
single cache to a network of caches. In Sec. 7.3.3 we extend [8] by considering alternative
forwarding policies to SPR, and in particular iNRR (in reason of its performance as we
will see shortly).

Simulation. Separation of F , D and R is instead less justified in simulative work. In part,
this is due to the fact that concerning R a natural choice is the Latest Recently Used
(LRU) replacement, though it has been pointed out that random replacement (i) exhibits
similar performance at a lower complexity [6, 9, 45] (ii) it may be preferable to LRU due
to line rate constraint [44, 47]. We further point out that, while the joint impact of meta-
caching D and replacement R policies has gained limited attention (among others, by our
own work [9]), to the best of our knowledge, the forwarding F and meta-caching D policies
have not been jointly considered so far. As the performance impact of the 〈·,D,R〉 couplet
is limited with respect to that of 〈F ,D, ·〉, in this work we mostly focus on the latter. We
start by showing this impact in Sec. 7.3.2. Then, we critically contrast recent results that

7. Forwarding Strategies 83

Table 7.2: Meta caching and forwarding strategies.
Meta-caching D Type Knob Ref
LCE Deterministic - [2–19]
Fix Probabilistic p [9, 15,44]
ProbCache Probabilistic Distance [17]
LCD Deterministic Distance [9, 15,16]
WAVE Probabilistic Distance [18]
Btw Deterministic Centrality [19]

Forwarding F Type Knob Ref
SPR Deterministic - [2–19]
Source routing Probabilistic - [9]
Flooding Probabilistic Distance [10]
INFORM Probabilistic Delay [11]
CATT Deterministic Distance [12]
NDN Deterministic Dist/Delay [13]
iNRR Deterministic - [2]

(too) quickly dismiss ubiquitous caching [2].

7.3.2 Performance evaluation

We start by showing that, provided that forwarding and meta-caching decisions are jointly
considered, gain of ubiquitous caching can be quite significant. Simulation results are ob-
tained with ccnSim [105], an highly scalable chunk-level4 simulator that we have developed
and optimized over the last few years. To give an idea of ccnSim scalability, the large-scale
scenario reported in Sec. 6.1, corresponding to one billion worth of object requests, out of
a 100 million object catalog, with caches storing 100,000 objects, can be simulated by a
common off-the-shelf PC equipped with 8GB of RAM memory in few hours [105]. For this
work, we extended ccnSim to include a number of meta-caching5 (e.g., ProbCache [17],
Btw [19]) and forwarding (e.g., iNRR [2]) algorithms, that we will soon make available in
a new ccnSim release [101].

4To facilitate comparison with [2, 8] that consider object-level caching, in this work we use ccnSim at
object level.

5As we do consider object-level caching, we point out it does not make sense to include WAVE [18] in
the comparison.

84 7.3. Exploratory strategies: toward iNRR

Core router

Edge router

Redundant link

Tree link
1

2 3

4 5 6 7

8 109 11 12 1413 15

Figure 7.3: Redundant 4-level binary tree. Dashed links are present with probability
µ. Shadowed blocks represent aggregate caches seen by lower level nodes in presence of
redundancy (µ > 0).

7.3.2.1 Scenarios

To facilitate comparison with [2] in this section and with [8] in Sec. 7.3.3, we consider
network scenarios as similar as possible to those introduced there, namely grid [8] and
access tree topologies [2]. We point out that [2] additionally considers access trees to
be attached to PoP of realistic backbone networks (gathered with Rocketfuel as in our
previous work [9]). Despite great effort is made in [2] to describe the scenario, however the
lack of crucial parameters (e.g., repository placement, content redundancy and allocation
to repositories, etc.), makes a 1-to-1 comparison difficult. As such, to promote cross-
comparison, we make our scenarios available to the scientific community, under the form
of configuration files for ccnSim, so that independent research can confirm (or disprove)
our findings.

Specifically, we consider a 10x10 grid (100 nodes) and a 6-level binary tree (26 − 1=63
nodes). Since networks are engineered adhering to fault tolerance and resilience principles,
it is extremely unlikely for an access topology to have exactly a single link between any pair
of parent and child nodes as in [2] – as otherwise, cutting a single link up in the hierarchy
would cut a whole subtree. As such, we consider that a node may have an additional link
to its aunt (i.e., the immediate sibling of its direct parent) that can be used for backup or
load balancing. We model the presence of these additional links (represented with dashed
lines in the 4-level tree of Fig. 7.3) by the means of i.i.d. probability µ ∈ [0, 1].

For simplicity, we consider topologies with uniform delay (1ms), as heterogeneity plays
a minor role [9,106], and consider to operate below congestion (links have infinity capacity).

7. Forwarding Strategies 85

As in [2], that offers fitting over global Akamai dataset6, we consider object popularity to
follow a Zipf distribution with α ≈ 1. We use a cache to catalog size ratio of 0.1% (much
more conservative that 5% in [2]) instantiated in a small (large) scenario where caches are
able to store 100 (100,000) objects out of a 100,000 (100,000,0000) objects catalog. Small
to large scale scenarios allow us to respectively explore wide parameter settings, and gather
performance on a more realistic use case. We adopt the following methodology. Simulations
start from empty caches, but statistics are gathered after that caches are filled, and the
hit ratio converges: in other words, we consider the system in steady state. Results are
averaged over 20 runs.

7.3.2.2 Performance

As performance metric, we consider the average distance that the content has traveled in
the CCN network. This metric has the advantage of being very insightful and compact at
the same time: it relates to user QoE (i.e., delay) as well as network QoS (i.e., load and
cache hit). Moreover, while [2] additionally expresses cache hit and repository load (see
Sec. 6.1.3), it however mostly reports relative error between iNRR and alternate strate-
gies: as direct comparisons are de facto impossible, and to limit redundancy given space
constraints, we hence avoid reporting additional metrics beyond the content distance.

In terms of F , instead of being limited by implementation (and configuration) details
of the numerous NCA forwarding policies proposed [9–13], we consider (i) iNRR [2] as
upper-bound of the achievable performance for off-path caching, and (ii) SPR which we
expect to correspond to the on-path caching lower-bound. In terms of meta-caching D,
we instead implement several of the proposals in Tab. 7.2. We include LCE as a term of
comparison, that we again expect to provide a performance lower-bound as it provides poor
cache diversity and forces high eviction rates over the whole network. Finally, in terms
of replacement R we experiment with LRU and uniform probabilistic replacement [44, 45]
(though we mostly report results concerning the former due to secondary R impact).

Fig. 7.4 reports the average distance at which content is found in the CCN network as
function of the meta-caching policies, for SPR (left) and iNRR (right) forwarding, on tree
(top, without additional links µ = 0) and grid topologies (bottom). The plot is annotated
with percentage gain that could be achieved by moving from the 〈SPR,LCE〉 worst case to
other, more sensible, ICN configurations.

First, recall that the top plots of Fig. 7.4 report the scenario of [2]: in this case, [2]
correctly points out that the difference between 〈SPR,LCE〉 and 〈iNRR,LCE〉 is below
10%. Yet, as authors limitedly experiment with a naive LCE meta-caching, they ignore
potential gain due to LCD (about 21% even considering SPR) or the joint use of LCD and
iNRR (about 26%). Additionally, we point out that gains in this scenario are limited by
the poor path diversity that the tree offers to iNRR. For instance, in the example provided

6Actually, Fig1 and Tab1 of [2] are in disagreement, since the number of objects is larger than the
number of requests. Hence, “Request” in Tab1 of [2] is a misspell for “Objects”.

86 7.3. Exploratory strategies: toward iNRR

3

4

SPR

21%

A
v
er

ag
e

d
is

ta
n
ce

 [
h
o
p
s]

max

min

2
6
 T

re
e

(µ
=

0
)

iNRR

18%

7%

26%

max

min

4

5

6

7

L
C

E

B
T

W

F
IX

(0
.0

1
)

L
C

D

P
ro

b
C

ac
h
e

26%

max

min

L
C

E

B
T

W

F
IX

(0
.0

1
)

L
C

D

P
ro

b
C

ac
h
e

1
0
x
1
0
 G

ri
d

23%

37%

60%

max

min

Figure 7.4: 〈F,D〉 performance at a glance: average content distance as a function of
meta-caching policies, for SPR (left) and iNRR (right) forwarding, on tree (top) and grid
(bottom) topologies.

in Fig. 7.3 for a 4-level tree, starting at node 15, on-path caching with SPR traverses 4
caches from the edge to the root (i.e., 15, 7, 3, 1): iNRR disposes of only 2 additional
off-path nodes when µ = 0 (i.e., 6, 14), but of 6 nodes when µ = 1 (i.e., 4, 5, 6, 12, 13, 14).

Hence, gains of 〈iNRR,LCD〉 are potentially higher on more meshed topologies, that
allow iNRR to explore a larger (and closer) neighborhood. This clearly reflects in the
bottom plot of Fig. 7.4, obtained on a 10x10 grid: in this case, the difference between
〈SPR,LCE〉 and 〈iNRR,LCE〉 is about 37%. Additional gain could be attained by coupling
iNRR forwarding to LCD or fixed probabilistic FIX decisions, for a reduction of the average
distance of about 60%. Clearly, as content travels less than half the path in 〈SPR,LCE〉,
the network load also divides by over a factor of two, and similarly happens for user latency
– shortly, opposite to findings in [2], there seems to be a case for ubiquitous caching after
all.

7.3.2.3 Sensitivity analysis

Fig. 7.5 reports a sensitivity analysis of the meta-caching policies, gathered via simulation
over smoothly varying network redundancy µ ∈ [0, 1]. The plot is annotated with gain
from 〈SPR,·〉 to 〈iNRR,·〉, as well as with gain due to the redundancy (from µ = 0 to µ = 1
for any given 〈F ,D〉 setting).

As it can be expected, redundancy plays a negligible role for SPR (though in case of

7. Forwarding Strategies 87

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.5 1

A
v
er

ag
e

d
is

ta
n
ce

 [
h
o
p
s]

SPR

Redundancy probability µ

7%

7%

2%

4%

 0 0.2 0.4 0.6 0.8 1

iNRR

8%

8%

6%

LCE
ProbCache

FIX(0.1)
FIX(0.01)

LCD

Figure 7.5: Sensitivity analysis of 〈F ,D〉 when R=LRU: 6-level binary tree topology, with
varying redundancy probability µ.

multiple equivalent paths, SPR chooses between them at random, possibly traversing dif-
ferent caches). Unsurprisingly, deterministic LCD decisions consistently achieve best per-
formance for trees [15], exhibiting furthermore a good interplay with iNRR. Next comes
simple probabilistic decisions FIX(1

100), while complex probabilistic strategies driven on
either distance (ProbCache [17]) or topological properties (e.g., Btw [19]) achieve interme-
diate gain. In reason of the added complexity (as it is often pointed out, simpler solutions
are preferable due to line rate constraints [44,47]) and limited gain, we thus disregard the
latter meta-caching policies, while we point out simple probabilistic decisions to be a good
enough candidate for ICN.

Overall, it can be seen that average path length increases from slightly less than 3 hops
for 〈iNRR,LCD〉 to about 4 hops for 〈SPR,LCE〉, i.e. a sizeable 33% increase (though gain
may be larger for more meshed topologies). Finally, we experiment with different Zipf skew
settings: while we do not report pictures for reason of space, we observe that gain increases
for growing α.

7.3.2.4 Comparison with edge-caching

We perform an exhaustive comparison with some of the edge-caching techniques (namely,
Edge, EdgeCoop) that [2] offers as “good enough” replacement for ICN/CCN. We again
focus on the access tree topology, to mimic scenario in [2], and additionally consider that
networks are possibly engineered with fault tolerance (i.e., redundancy probability µ).

88 7.3. Exploratory strategies: toward iNRR

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

d
is

ta
n
ce

 [
h
o
p
]

Redundancy probability µ

naive CDN

on-path ICN
smart CDN

naive off-path ICN

smart off-path ICN

Edge

EdgeCoop

<SPR,LCE>

<iNRR,LCE>

<iNRR,LCD>

µ
〈SPR, Edge 〈iNRR, 〈iNRR,
LCE〉 Coop LCE〉 LCD〉

0 2% 5% 9% 28%
1 2% 11% 18% 37%

Figure 7.6: Comparison with Edge and EdgeCoop caching strategies [2]: average distance
E[dX] of strategy X, as a function of the redundancy probability µ. Additionally, the figure
tabulates the gain of strategy X over Edge, measured as

(
E[dEdge]− E[dX]

)
/E[dEdge].

We consider the Edge strategy where only leaf nodes have caching space, corresponding
to a Content Distribution Network (CDN) scenario. We next consider 〈SPR,LCE〉 where
caching is ubiquitous but, due to SPR forwarding strategy, only on-path caches can be
exploited. We further include 〈iNRR,LCE〉 that [2] (wrongly) considers to achieve best
ICN performance. We then implement EdgeCoop where “CDN routes can do a scoped
lookup in sibling cache” [2]. As the terse EdgeCoop description in [2] does not allow to
understand whether only caches having a common parent can cooperate, we opt for an
approach that is as favorable as possible to EdgeCoop, to avoid any bias toward ICN. Our
implementation of EdgeCoop allows caching only at leaf nodes, but exploits iNRR routing
strategy: thus, any temporary copy that is cached at a distance shorter than or equal to
that of the permanent copy stored at the custodian above the root of the tree is possibly
accessed (in practice, only half of the leaf nodes are accessible when µ = 0, while all leafs
are accessible for µ = 1). Finally, we include the 〈iNRR,LCD〉 configuration, representing
the (true) best baseline for CCN.

Two shaded regions are shown in the plot. On the basis of the light-gray region
separating EdgeCoop from 〈iNRR,LCE〉, authors in [2] conclude that ICN does offer
only minimal performance improvement over sensibly configured CDN scenarios. The
dark-gray region between 〈iNRR,LCE〉 and 〈iNRR,LCD〉 instead represents the poten-
tial gain due to joint meta-caching and forwarding that other work, including [2], has

7. Forwarding Strategies 89

 2

 2.5

 3

 3.5

 4

 4.5

 5

D
is

ta
n
ce

 [
h
o
p
s]

〈SPR,LCE,LRU〉

〈iNRR,LCE,LRU〉

〈iNRR,FIX,RND〉

〈iNRR,LCD,LRU〉

13%±0.4%

17%±7.1%

25%±1.1%

Cache/Catalog = 10
2
/10

5
10

3
/10

6
10

5
/10

8

Figure 7.7: Small- vs medium- and large-scale scenarios. Relative gain of over
〈SPR,LCE,LRU〉 remains similar over all scenarios.

missed so far. Finally, the figure tabulates gain of a strategy X over Edge, computed as(
E[dEdge] − E[dX]

)
/E[dEdge] where E[dX] represents the average distance of strategy X.

It can be seen that 〈iNRR,LCD〉/Edge gain is significantly higher than EdgeCoop/Edge
gain, for both binary trees (µ = 0) and trees with full redundancy (µ = 1).

7.3.2.5 Small to large-scale scenarios

Small, medium (or large) scale scenarios allow us to respectively explore wide parameter
settings, and gather performance on a more realistic (or extreme) use case. We fix α = 1
and the cache to catalog size ratio C/N to a conservative 0.1%, and let the cache C and
catalog sizes N vary. Precisely, we instantiate a small-scale scenario with C/N = 102/105,
a medium-scale with C/N = 103/106 and a large-scale with C/N = 105/108. As video
is preeminent, and given an average size of YouTube videos of 10MB [46], medium and
large scale cache sizes vary in the feasible 10GB [44, 47] to challenging 10TB [107] range.
Catalog size of the medium scenario is of the same order of magnitude of [2], whereas the
large-scale scenario models a more challenging YouTube scenario [48].

Average distances are reported in Fig. 7.7 (along with the coefficient of variation) for
naive on-path caching 〈SPR,LCE,LRU〉, naive off-path caching 〈iNRR,LCE,LRU〉, simple
probabilistic off-path meta-caching and replacement 〈SPR,FIX,RND〉, and the best off-
path strategy 〈SPR,LCD,LRU〉. Each strategy is annotated with the average gain over
〈SPR,LCE,LRU〉 (± standard deviation across different scales).

90 7.3. Exploratory strategies: toward iNRR

We see that performance improve (i.e., distance decreases) for large catalogs. This can
be explained considering that, for fixed Zipf α = 1 and fixed cache to catalog ratio C/N , a
larger cache C can accommodate a larger fraction of top content out of the entire catalog N .
Formally,

∑C
i i
−α/

∑N
i i
−α increases from small to large catalog, so that C=100 (100,000)

most popular cached objects corresponds to the 43% (63%) of the whole requests for a
N=100,000 (100,000,000) catalog.

Hence, we gather that small scale scenario (i) corresponds to conservative cache hit
results and (ii) allows a reliable estimate of the relative gain of ubiquitous caching over
on-path caching – as the relative gain over 〈SPR,LCE,LRU〉 is the same for all scenarios
(except the simplistic 〈SPR,FIX,RND〉 case we disregard in the following).

7.3.3 Modeling iNRR

As shown in the previous section, iNRR achieves interesting performance with respect
to SPR forwarding. Furthermore, iNRR benefits are especially apparent with topologies
having redundant links. As such, it would be useful to have an approximate iNRR model
valid for arbitrary network of caches. We tackle this challenge by extending the aNET
model proposed in [8], that unlike other caching models is applicable to any topology [8]
but limitedly focuses on Shortest Path Routing.

7.3.3.1 aNET model and notation

According to our terminology, aNET [8] models a 〈SPR,LCE,LRU〉 network. aNET ap-
proximates network behavior by decomposing the problem and computing the LRU approx-
imation [104] for each cache in the network. Network is represented as a graph G = (V,E)
with v ∈ V a vertex node having a cache of size |v| objects. We denote the content catalog
with N , with size N = |N |. As 〈SPR,LCE,LRU〉 forwards the miss stream of each cache
along the SPR toward the permanent replica, it follows that the incoming request stream
at each cache accounts for both exogenous user request, as well as the miss stream of neigh-
boring caches. aNET takes into account this incoming stream by iterating the solution of
individual caches, and reevaluating the miss stream until the stabilization of the whole
system. aNET iteratively solves the following set of equations:

ri,v = λi,v +
∑

u:R(u,S(i))=v
mi,u (7.1)

pi,v = ri,v∑N
j=1 rjv

(7.2)

~πv = LRU(~pv, |v|) (7.3)
mi,v = ri,v(1− πi,v) (7.4)

Incoming requests at node v for content i ∈ N are expressed in Eq. (7.1). The first term
in Eq. (7.1) represents the exogenous arrival rate λi,v for content i. The second term of

7. Forwarding Strategies 91

Eq. (7.1) accounts for the miss stream mi,u coming from neighboring nodes u having v as
their next hop R(u,S(i)) in the shortest path toward the repository S(i) for content i ∈ N .
The local popularity pi,v is expressed by Eq. (7.2), representing the relative proportion of
request of content i at node v. Given the steady state local request distribution over all
contents ~pv and a cache size |v|, each cache v applies in Eq. (7.3) the LRU algorithm [104]
to determine the probability ~πv that any given content i ∈ N is present in the cache of v
at any given time. Finally, the miss stream mi,v is computed as in Eq. (7.4).

Two crucial points in the above set of equations are worth stressing. First, Eq. (7.4)
was only proven to hold for an Independent Reference Model (IRM) [8]. Second, the
approximate LRU algorithm Eq. (7.3) was designed only for IRM streams [104]. However,
as the request stream also consists of miss stream of the neighbors as per Eq. (7.1), the
aggregate request stream is not IRM: hence, steps Eq. (7.3)-Eq. (7.4) consist in an IRM
violation, and are potential sources of error in the approximation.

7.3.3.2 iNRR model

We extend the set of aNET equation to model iNRR forwarding strategy. Under SPR
forwarding, content can be possibly found only along the shortest path toward a custodian
of permanent content replicas: hence, the miss stream Eq. (7.1) aggregates requests of
shortest paths passing through v. The crucial difference from aNET is that, under iNRR
forwarding, any valid path is possibly followed. By valid path, we imply that (i) paths are
loop free, (ii) in case multiple copies are stored at several nodes along any given path, the
closest copy is accessed. Additionally (iii) in case of multiple copies having equal distance
over multiple paths, each copy is equally likely to be chosen.

To model the above observations (i)–(iii), we introduce the following notation. As in
aNET, the SPR routing matrix for the network R(v, u), v, u ∈ V indicates v’s next hop to
reach node u. Nodes are directly connected to v when R(u, v) = v, and we indicate with
N(v) = {u : R(u, v) = v} the set of v’s neighbors. For convenience, S = S(i), ∀i ∈ N
indicates the unique repository in the network (the model can be easily extended to the
case of multiple repositories), so that R(v,S) represents the FIB information used by SPR
to reach the custodian.

In addition to SPR FIB information (possibly hitting content cached on-path to S as
in aNET), iNRR is able to find any off-path content that is not located further than the
repository (so that caches as close as the repository, can offload the latter). To identify
such content, we define D(v, u) as the SPR distance between any two nodes v, u ∈ V .
We next define B(v, u) as the ball centered in v having ray D(v, u), i.e., B(v, u) = {x ∈
V : D(v, x) ≤ D(v, u)}. Thus, B(v, u) represents the set of nodes that are not further
away than u from v. For convenience, we also define the border and interior of B(v, u)
as Bb(v, u) = {x ∈ V : D(v, x) = D(v, u)} and Bi(v, u) = {x ∈ V : D(v, x) < D(v, u)}
respectively. For instance, Bb(v,S) represents the set of nodes that are as far from v as the
server S, while Bi(v, u) represents the set of nodes closer than u to v. Finally, we denote

92 7.3. Exploratory strategies: toward iNRR

with mi,u,v the proportion of miss stream for content i coming from u to v. Then, our
iNRR model iteratively solves the following set of equations ∀i ∈ N , v ∈ V :

ri,v = λi,v +
∑

u:u∈N(v)
mi,u,v (7.5)

pi,v = ri,v∑N
j=1 rjv

(7.6)

~πv = LRU(~pv, |v|) (7.7)
mi,v = ri,v(1− πi,v) (7.8)

si,v,u =
∑

x:R(v,x)=u
∧x∈B(v,S)

 ∏
y∈Bi(v,x)

(1− πi,y)

 π2
i,x∑

z∈Bb(v,x) πi,z
(7.9)

mi,v,u =


mi,vsi,v,u u 6= R(v,S)

mi,v(1−
∑
w 6=u

si,v,w) u = R(v,S) (7.10)

Shortly, while Eq. (7.6), Eq. (7.7) and Eq. (7.8) perform the same steps as in aNET, iNRR
modifies Eq. (7.5) to account for a proportion of miss stream of neighboring nodes, and
further adds equations Eq. (7.9) and Eq. (7.10) to precisely quantify this proportion.

As per observation (iii), any node u will split its miss stream equally among its neigh-
bors N(u). This is modeled by Eq. (7.5), where all v’s neighbors N(v) contribute to request
arrival at v, with mi,u,v the proportion of miss stream for content i coming from u. Obser-
vations (i) and (ii) are instead expressed through Eq. (7.9) and Eq. (7.10). More precisely,
Eq. (7.9) defines the split ratio si,v,u among neighboring nodes, and Eq. (7.10) applies the
split ratio to the miss stream mi,v, depending on whether u lays on the shortest path to
the server u = R(v,S) or not.

Especially, Eq. (7.9) bares additional discussion. The term si,v,u represents the propor-
tion of the miss stream of node v sent through v’s immediate neighbor u to reach node x
for content i. The conditions upon which iNRR forwards such requests are:

• Next hop for x from v passes through u = R(v, x), and the distance D(v, x) is shorter
than or equal to the distance toward the server R(v,S), i.e., x falls in the ball B(v,S)
(external sum).

• Any node y closer than x to v, i.e., laying in the interior ball Bi(v, x), does not
own the content i, which happens with probability 1 − πi,y for each node (internal
product).

• The selected node x owns the item i (with probability πi,x), and it is chosen among
all the nodes z ∈ Bb(v, x) at the same distance from v (terms πi,x/

∑
z πi,z).

7. Forwarding Strategies 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

π
s
im

/π
m

o
d
e
l

Node ID

iNRR

aNET

Understimation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18

π
si

m
/π

m
o
d
el

Distance from repository D(v,S) [hops]

iNRR
aNET

Understimation

Figure 7.8: iNRR vs aNET hit rate π accuracy: per-node (top) and as function of the
distance from the repository (bottom). Grid 10x10 topology.

Finally, by means of Eq. (7.10), we differentiate the case in which the neighbor u =
R(v,S) is the immediate next hop toward the repository or not, giving preference to cached
copies to offload the repository. Hence, the miss stream that finds objects in the ball B(v,S)
flows through off-path neighbors, whereas the rest of the miss stream flows through the
next hop u = R(v,S), thus on-path to S. As in aNET, we iterate the solution of Eq. (7.5)-
Eq. (7.10), until convergence (average distance between two consecutive steps of Eq. (7.5)
to be < 10−5).

7.3.3.3 iNRR vs aNET accuracy

Our model inherits IRM assumption of aNET, hence it also inherits possible inaccuracy
due to IRM violation. As aNET vs. iNRR model different ICN architecture, namely on-
path vs. off-path caching, their result cannot be directly compared. Thus we evaluate
their accuracy against simulation of 〈SPR,LCE,LRU〉 and 〈iNRR,LCE,LRU〉 respectively,
for the small-scale scenario.

As for aNET, we know from [8] that the impact of IRM violation grows with the size
of the network under study (or, equivalently, decreases with the density of repository in
the network). This is because the IRM assumption does not hold especially for long paths,
as miss stream prevails over the exogenous arrivals. As for iNRR, we know from results
in the previous section that it possibly significantly shortens the average path length to a
cached copy: as such, we can expect IRM violation to affect iNRR less than aNET.

We compute accuracy with respect to simulation for (i) each node individually, as well
as for (ii) all nodes having the same distance {x : D(x,S) = d} from the repository. More
precisely, indicating the average hit probability for node v as π̄v, we evaluate accuracy as
the ratio π̄simv /π̄modelv .

We consider a 10x10 grid, where the iNRR gain over SPR is visible (recall Fig. 7.4).
Consequently, we expect aNET to be negatively affected by the large topology size, as the

94 7.3. Exploratory strategies: toward iNRR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
er

-n
o
d
e

av
er

ag
e

ca
ch

e
h
it

 (
M

o
d
el

)

Per-node average cache hit (Simulation)

iNRR
aNET

Figure 7.9: Scatter plot of the average cache hit per node π̄v obtained via simulation vs
model, for aNET and iNRR, on a 10x10 grid.

SPR distance to S can grow quite large. Conversely, as iNRR should find closer copies, we
expect it to limit the impact of IRM violation (see Sec. III-A of [8]). Secondly, under iNRR
nodes split their miss stream across each neighbor: as this mixes independent miss streams
flows, it results in a more IRM-like miss flows with respect to SPR routing (similarly to
what happens by increasing the k-arity of the SPR tree in Sec. III-A of [8]). Hence, we
point out comparison on the same scenario to be unfair, as aNET and iNRR are neither
operating on the same distance, nor on the same neighbor fanout. To partly compensate
for this bias, we attach clients to each grid node, i.e., λi,v > 0,∀v, so to reinforce the IRM
component of the request arrival.

For the sake of readability, in top plot of Fig. 7.8 nodes are ranked for increasing
π̄simv /π̄modelv ratios. In the bottom plot of Fig. 7.8, we complement the average ratio
with standard deviation bars. First, results confirm that iNRR error is significantly lower
than aNET. We can further observe that the iNRR error is less affected by the topological
position (essentially, SPR distance) from the repository with respect to aNET7. We further
show a scatter plot of the average cache hit per node π̄v obtained via simulation vs model
in Fig. 7.9, showing that under iNRR model overestimation reduces especially for nodes
with low cache hit.

7In case of aNET, ratio becomes closer to 1 as the distance from the repository increases: notice the
large plateau of about 20 nodes (corresponding to leaves of the SPR distribution tree rooted at S) having
unity ratio in top of Fig. 7.8, that are aggregated at d = 18 in bottom of Fig. 7.8.

7. Forwarding Strategies 95

We additionally compare accuracy results on a 4x4 grid and on a binary tree (not
shown). As expected, in the 4x4 grid the accuracy of aNET improves (as the difference in
the average distance induced by SPR an iNRR forwarding shrinks). In the tree case, iNRR
and aNET performance are very close (as iNRR cannot fully exploit nodes neighborhood
due to lack of alternative paths, hence miss streams mix less under iNRR).

7.3.4 Approximate iNRR implementation

It should be clear that iNRR is an ideal forwarding policy, requiring an oracle or, equiva-
lently, the knowledge of the state of all caches to instantaneously propagate of in the whole
network. We therefore propose two alternative, and practically viable, implementations of
Nearest Neighbor Routing (NRR). We cast these solutions on the ground of the general
framework we develop in [10,86], that we briefly recall here.

We assume ICN nodes to be equipped with a FIB data structure, proactively populated
by a SPR routing protocol, containing information that allows to follow the shortest path
toward a permanent copy of the repository. Requests forwarded along the FIB have thus the
chance to find on path cached copies, and in case no cached copy is found, they ultimately
access the permanent replica stored at the custodian.

Additionally, we require ICN nodes to be equipped with a Temporary FIB data struc-
ture (TFIB), reactively populated by an off path exploration of the ICN network, triggered
by user demand on a new request. We assume that the exploration phase is carried only
for the first (or few) chunk(s) of a new content, and is aimed at dynamically constructing
a path toward the closest cached replica. The path is then stored in the TFIB. In the
subsequent exploitation phase, the forwarding process can use the new TFIB entry for the
next chunks requests of the same content (overriding thus FIB entries). While it is outside
the scope, we point out that TFIB is possibly managed as a LRU cache, so that TFIB
entries span over subsequent requests of different users for the same content.

In this section, we focus on the exploration phase, of which we provide two alternative
implementations based on scoped flooding, namely NRR’ and NRR”, that respectively
require one and two phases. Both NRR’ and NRR” flood requests over the network,
limiting the flooding scope via a TTL field. In modeling terms, NRR limits the radius ρ
of the ball centered around v, i.e., Bρ(v) = {u : D(v, u) ≤ ρ}.

Differences from NRR’ and NRR” arise in the way requests are treated during the ex-
ploration phase. NRR’ floods regular request packets, so that it generates possibly multiple
data chunks in return – one per each cached copy found in Bρ(v). Hence, NRR’ possibly
generates an overhead in terms of load and cache eviction rate, though the duration of the
exploration phase is the minimum possible before the closest copy is hit. Conversely, NRR”
floods meta request packets, with a flag set to indicate that only a binary reply concerning
content availability, but not the whole content data, is requested in return8. Replies of this

8This technique is already commonly used, e.g., in HTTP GET vs HEAD request methods: in the
former case, the HTTP response encapsulates the whole object data, in the latter case, only the headers

96 7.3. Exploratory strategies: toward iNRR

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8

N
R

R
 -

 i
N

R
R

 d
is

ta
n
ce

 [
h
o
p
s]

Exploration radius ρ [hops]

〈NRR’’,LCD〉

〈NRR’’,LCE〉

〈NRR’,LCD〉

〈NRR’,LCE〉

 0 2 4 6 8

Figure 7.10: Additional distance of NRR implementations with respect to iNRR. NRR’ vs
NRR” forwarding, for LCE or LCD meta-caching, as a function of the exploration radius
ρ. 10x10 grid (left) and 6-level fully redundant binary tree µ = 1 (right).

first phase populate the TFIB with a negligible load and do not force cache eviction (as
only meta information about the chunk is sent), but however introduce a delay (as after
the first phase the TFIB has been populated, but the content has not been downloaded
yet).

Before considering the tradeoff induced by NRR’ vs NRR” in terms of load vs delay,
let us first analyze their impact on cache eviction. We compare NRR’ and NRR” to iNRR
by measuring the number of additional hops needed on average to find the content. For
completeness, we consider D ∈ {LCE,LCD} and F ∈ {iNRR,NRR’,NRR”} and measure
the number of additional hops with respect to the ideal ICN strategy 〈iNRR,LCD,LRU〉.
Fig. 7.10 depicts the number of additional hops as a function of the radius ρ for the grid
(left) and tree (right) topologies. The picture reports all 〈F ,D〉 combinations of NRR”
(black) vs NRR’ (white) and LCD (circle) vs LCE (square) settings. Notice that for ρ = 0,
NRR degenerates in SPR routing (shadowed region).

Several interesting insights are gathered from Fig. 7.10. First, performance of 〈iNRR,LCD,LRU〉
can be approximately arbitrarily close with 〈NRR”,LCD,LRU〉, as the additional distance
goes to zero for ρ ≥ 6 on trees and grids. Second, cache eviction due to LCE implies an
important performance penalty for both NRR’ and NRR” (as expected due to results in
previous section). Third, cache eviction translates into an important performance penalty

concerning the object.

7. Forwarding Strategies 97

as well. This is due to the use of regular request packets in NRR’, generating data in return
that possibly yields multiple cache evictions (even under LCD). Fourth, notice that addi-
tional distance decreases for growing ρ only in the case of NRR”: this means that NRR”
exploration is not only effective but also robust. Conversely, in the NRR’ case, whenever ρ
increases, eviction increases as well due to both higher chance to find the content on the one
hand, and longer paths up to ρ on the other hand. This phenomenon is especially evident
for the tree under LCE meta-caching: as soon as ρ becomes comparable with the distance
to the repository, this allows a significantly larger portions of the tree to be explored, with
consequent massive eviction9. We therefore conclude that 〈NRR”,LCD〉 with (arbitrarily
large) ρ values is able of (arbitrarily close) iNRR approximation.

We now comment on the load and delay induced by NRR’ and NRR”. As far as load
is concerned, NRR” is clearly more lightweight than NRR’. Indeed, while the number of
requests sent by NRR’ and NRR” is the same, the amount of data chunks sent in return
equals either (i) the number of cache hits for NRR’, or (ii) the single closest hit for NRR”.
As chunks travel multiple links, NRR” significantly reduces the load not only because it
sends a single chunk (major impact on load), but also because it sends the closest among
all cached chunks (second order impact).

As far as delay is concerned, NRR’ is possibly faster than NRR” due to the fact that
whenever the data is found, it is immediately sent back, whereas NRR” requires an addi-
tional phase. While at a first glance it may seem that delay under NRR” would be roughly
double with respect to NRR’, however this is not the case. Observe first that exploration
delay only affects the first chunk, and not subsequent chunks that instead exploit read-
ily available TFIB information. Hence, the delay penalty of the first chunk diminishes
weighted over the whole content transmission. Additionally, Fig. 7.10 shows that content
is closer in NRR” than in NRR’: for instance, in the 10x10 grid, the median number of
hops is 2 under NRR” and 3 under NRR’. Denoting with δt the average link delay, the
median duration of the two phases in NRR” takes 2(2δt), while the median duration of the
single phase in NRR’ is 3δt (a modest 25% difference, that additionally applies to the first
chunk only).

7.4 Conclusions

Through this section, we studied and analyzed forwarding strategies for network caching.
Basically we show that: i) exploitation strategies perform bad, as the forwarding is con-
strained on pre-determined paths; ii) exploration strategies like iNRR, coupled with meta
caching produce the best results, with a maximal 60% gain; iii) modeling iNRR lowers
the approximation error introduced by neglecting the IRM hypothesis; iv) implementing

9Intuitively, under LCE cache pollution extends to the other side of the tree. Under LCD, as popular
content is pulled toward the edge of the network, requests do not explore the whole network, successfully
limiting cache pollution.

98 7.4. Conclusions

iNRR by the means of meta requests does not introduce caching pollution, and rapidly
approaches to the ideal iNRR forwarding.

Under this light, though [2] dismisses ubiquitous caching due to its limited gains, it
nevertheless misses the most important piece of the puzzle – namely the meta-caching
policy. Our results show indeed that 〈iNRR,LCD,LRU〉 can obtain significant gains beyond
the 〈iNRR,LCE,LRU〉 strategy advertised in [2] as the ICN optimum. Clearly, business
considerations will answer whether such gains are economically worth the deployment of
ICN – yet, business considerations should be taken on the ground of all relevant technical
information.

99

Chapter 8

ccnSim: an Highly Scalable CCN
Simulator

In this conclusive chapter, we describe ccnSim, our tool used throughall the second part of
the thesis. We start by doing a description of the available CCN/ICN software and then
show the internal of ccnSim, describing its architecture and performance.

8.1 Taxonomy of ICN Software

We report in Tab. 8.1 the list of ICN open source software we consider in this census:
to the best of our knowledge, the list includes all publicly available software. We instead
purposely exclude scientific publications available in the literature whose evaluation is
based on software that is not publicly available.

As previously anticipated, about half of the available software pertains to different ICN
proposals (top portion of Tab. 8.1), while the other half pertains a specific ICN proposal
(namely, CCN [41], bottom of Tab. 8.1), that we treat separately in this section.

For each software, the table reports the latest release and its date, that correlates with
the development activity (notice that some software reports no explicit tags for its release
date, for which we inspect the file headers). The table then reports the language used
by the core library (that correlates with the startup cost) and the additional languages
for accessory software (either bindings of the main library API for a number of scripting
languages, or languages used to develop the accessory applications). Operating system
upon which the software have been tested (or mentioned to run) is reported next, and
represent a potential barrier to development. Finally, the type of software and the project
under which the software have been released are mentioned. We believe that architectural
properties will guide the selection of a specific ICN paradigm. Yet, we argue that, after
a specific ICN paradigm has been selected, the startup cost will be an important factor
in letting new user select between potential software alternatives – to which we thus pay

100 8.1. Taxonomy of ICN Software

Table 8.1: Taxonomy of ICN and CCN open source software
Scope Software Latest Release Language Operating Sofware type Project(and URL) Release date Core Extra† System

ICN

MobilityFirst [108] none Exp. 08/2012 C++ - Linux Click prototype [109]
Blackhawk [110] 0.3 06/2010 C P,R FreeBSD Prototype [111,112]
Blackadder [113] 0.3.1 09/2012 C++ P,R,J Linux Click prototype [112]
ICNsim [114] n.a. 06/2012 C++ Linux Omnet++ simulator [115]
NetInf (nilib) [116] 0.2 10/2012 C P,J,R,PH,cl *NIX Prototype [117]
openNetInf [118] 1.0 10/2011 Java Portable Prototype [117,119]
PeerKit [120] - 12/2011 Java Portable Prototype [121]
Conet [122] 12/2012 C Linux Prototype [121]

CCN

CCNx [123] 0.7 12/2012 C J Linux, Android Prototype [124]
ns3 CCNx [125] C P Linux ns3 CCNx simulator [126]
NDNsim [127] n.a. 05/2012 C++ P Linux, MacOS ns3 Simulator [124]
ccnpl-sim [128] 0.1 11/2012 C++ Linux Custom simulator [126]
ccnSim [101] 0.1 03/2012 C++ Linux Omnet++ Simulator [126]

†Extra language legend: P=Python, J=Java, PH=PHP, R=Ruby, cl=clojure

close attention in the following.
As a final remark, we voluntarily kept the table simple to allow to grasp the ICN

software census at a glance. As a result, the table is missing some relevant information
(such as the software license), as well as other information that though relevant (such as
the amount of lines of code, the existence of proper documentation, etc.) could quickly
become outdated.

8.1.1 ICN software

The scope of the ICN software can be further divided into classes according to the project
they pertain to: namely, tools can be reconducted to either the MobilityFirst [109] project1,
or the PSIRP [111] and PURSUIT [112] project suite, or the 4WARD [119] and SAIL [117]
suite, or the CONVERGENCE [121] project2.

We instead omit from the list projects such as COMET [129] or COAST [130] that,
although closely related in scope, have no explicit commitment in releasing their software
tools as open source to the scientific community. As previously outlined, most of the soft-
ware released in the ICN scope represent prototype implementation of a reference ICN
architecture. Notice that it is possible that multiple software implementations of the same
architecture is released by the same (or followup) projects as for the Blackhawk/Blackadder
implementations of the PSIRP/PURSUIT project suite, or openNetInf/nilib implemen-
tations of the 4WARD/SAIL NetInf suite. We now briefly overview each software and

1Remark: although the MobilityFirts project has not released any software to date, we include it in the
list since it has already been demonstrated at multiple venues [109] and the software release was expected
during August 2012 and is thus likely only delayed.

2The knowleadgeable reader will notice that though CONVERGENCE builds over CCN, it also modifies
some aspects with respect to its original proposal [41], which is why we prefer to include it under a larger
ICN umbrella.

8. ccnSim: an Highly Scalable CCN Simulator 101

compare alternative software in the same class.

PSIRP/PURSUIT Blackhawk is a prototype implemented in C that integrates the
publish/subscribe system directly in the FreeBSD kernel. To reduce the duration of
the initial learning phase, wrapper for the low level library are provided in several
high-level scripting languages, such as Python and Ruby, that are obtained through
SWIG [131]. Similarly, to lower the initial adoption barrier, ready to use FreeBSD
virtual images running Blackhawk are provided for KVM, VMware or VirtualBox.
However, the most recent Blackhawk software was relased on June 2010, and the
PSIRP/PURSUIT development was continued in Blackadder. Most notable changes
are the implementation as a Click [132] modular router component (supporting both
kernel and user mode), using C++ on Linux (instead of C and FreeBSD), the addition
of some wrappers (e.g., Java and C), and applications (a pub/sub video application
based on VLC).
An important side-effect of Blackadder implementation as a Click modular router
component [132] is worth highlighting: indeed, though the software is primarily ment
to be a full-blown prototype, it follows that is possible to run simulations through
the Click vs ns2/ns3 integration, that are known as nsclick and ns-3-click exten-
sions [133]. However, further effort [134] in the PSIRP area seems to suggest that
this approach lacks of the necessary flexibility and involves a non negligible overhead
– since, by hacking low level calls of the OS networking stack the actual prototype
code is run in a simulated environment, development is significantly more complex
with respect to simpler abstractions (and dirty hacks) commonly used in simulation.
This motivated the development of an Omnet++ based simulator ICNsim [114], that
follows the publish-subscribe approach introduced by PSIRP. ICNsim is developed in
the context of the PAL [115] project, that is aimed at offering personal health-care
services. ICNsim does not aim at faithfully representing the whole PSIRP architec-
ture and instead mainly focuses on the topology manager design, to assist the design
of network path computation algorithms. As for the scalability properties of ICNsim,
they remain unclear in that [134] only consider a toy-case topology consisting of 12
routers, 4 publishers and 4 subscribers for the sake of the example. Additionally, the
use of the INET/MANET frameworks suggests the simulator to perform operations
at packet level, entailing that simulation are performed at the finest possible grain.

4WARD/SAIL The 4WARD [119] and SAIL [117] projects have released two open
source implementation of their Network of Information (NetInf) architecture. open-
NetInf [118] is the oldest between the two, is implemented in Java and therefore
portable over a number of platform (including Microsoft Windows), was released
during [119] and last updated on October 2011. The core library has a significant
amount of documentation and is complemented by plugins for popular applications,
such as Firefox and Thunderbird, that let browse NetInf enabled servers and send

102 8.1. Taxonomy of ICN Software

emails to Information Object (IO) identifiers rather than email addresses respectively.
As for Blackhawk, openNetInf is also available as an Ubuntu-based Linux virtual im-
age for VirtualBox. Interestingly, open testbed facilities are available, with 3 nodes
(nn1.testbed.netinf.org . . . nn3.testbed.netinf.org) running the openNetInf
software that can be publicly accessed instead of setting up a local NetInf node for
testing purposes – which can lower startup cost significantly.

More recently, nilib [116], a C implementation of NetInf with wrappers in Python,
Java, Ruby and clojure was released in October 2012. Notable difference with respect
to openNetInf is the implementation of the Named Information (NI) URI schemes
including truncated hash suites, binary vs human-readable name format under dis-
cussion at the IETF [135, 136]. As the authors explicitly state, the library has been
used in interoperability tests, though the code is work in progress and the ecosystem
surrounding it is at time of writing, less mature with respect to the openNetInf one
(e.g., absence of virtual machines or testbed). At the same time, with openNetInf
no longer active developed3 and with nilib software releases about every quarter, it
is likely that the latter ecosystem will soon reach the same level of the former.

CONVERGENCE Finally, the CONVERGENCE [121] project has released proto-
type implementations of its architecture, available in two software packages, namely
PEERKIT4 [120] and COMET [122] (the latter partly in cooperation with the OFE-
LIA [137] project).

In more details, PEERKIT [120] is a (Java) middleware extension of the new MPEG-
M standard to support distributed applications that create, trade and consume digital
objects. Network level functionalities are provided by the CONVERGENCE Net-
work (CoNet), that embraces a publish/subscribe paradigm inspired on CCN, but
that also remains backward compatible (e.g., supporting “un-named-data”), takes an
evolutionary approach (i.e., it is integrated in existing IP networks by using a new
header option [138]) and uses alternative lookup methods based on a name-system
(with respect to a full dissemination of names via a routing protocol as in CCN).
The released software includes a simple sample application that allows for a simple
photo/document sharing.

Finally, in cooperation with the OFELIA [137] project that focuses on Software De-
fined Network (SDN), and specifically aims at providing OpenFlow-based experimen-
tal facilities publicly and free-of-charge, a lower-level implementation of the CoNet
architecture has also been released. Namely, CONET [122] is implemented in the

3The mercurial branch has been tagged as v1.0_prePg3 and v2.0_pg3_final on Nov. 4th, 2011.
4Remark: to download the middleware, beware that the project download page points to a non-existing

URL http://147.102.9.7/convergence_files/cpk/CPK.zip. With simple trial and error we have deter-
mined the correct link to be [120].

http://www.ict-convergence.eu/demodownloads
http://147.102.9.7/convergence_files/cpk/CPK.zip

8. ccnSim: an Highly Scalable CCN Simulator 103

OpenFlow 1.0 framework [139], and is heavily based on the CCNx 0.6.2 prototype5

that we cover in the next section. Notice that the implementation is not straigthfor-
ward, since while CONET provides content-name as IP option in the IPv4 header,
however the version 1.0 of the OpenFlow implementation cannot parse IP options,
so that workaround are necessary as described in [140]. The software has been first
released on December 2012, with (thin) instructions on how to setup a CONET
demonstration, but the codebase will likely mature as projects enter their final year.

8.1.2 CCN software

Among the many ICN architectures sprouted in the last decade, the one which has received,
by far, the largest attention is the Content Centric Networking (CCN) paradigm [41]. This
is also testified by the greater diversity of tools available in the CCN context, that explore
different operational points in simplicity vs realism design space (or, equivalently in the
scalability versus complexity cost space), as schematized in Fig. 8.1.

Shortly, if we were about to describe each CCN-related software6 with a single keyword,
we might say that CCNx [123] aims at deployment and experiments, ns3 CCNx-DCE
[125] at faithful simulation, ndnSIM [127] at completeness, CCPN-Sim [128] at fine-grained
packet-level simulation and ccnSim [101] at scalable chunk-level simulation. Notice that,
although we have developed one of such tools, our view of the usefulness of each tool is not
biased. Rather, we argue that each of these tools, that we briefly describe, fills a necessary
gap in the spectrum of Fig. 8.1.

CCNx In more detail, CCNx [123] is a fully operational prototype of CCN. Low level
portion of the prototype are written in C, with ongoing effort to port part of them
(e.g., forwarding) in kernel-space. New applications that run natively over CCN being
continuously developed in Java and C. Example applications include a simple text
chat tool (that allows users to communicate and is often used for testing connections
and managing testbed operations) and an audio conferencing tool. An Internet-
wide testbed [142] building over CCNx (sending CCNx chunks over UDP tunnels)
is available, that is planned to be open on the long term but is now available for
NDN partners only the time being (due to substantial on-going work on routing,
forwarding, and network management that currently requires more control over the
topology and users).
However, CCNx does not provide per se any testing, validation or experimentation
capabilities. As such, users have to instrument ad hoc local testbeds or use dedicated

5Remark: it is unclear to what extent CONET should be considered as a fork from the CCNx prototype,
and to what extent (or at which complexity) it could benefit from later updated of the CCNx codebase.

6Though another Omnet++ simulator of CCN was presented at CCNxCon’12, neither the code is
however not available, at time of writing, nor an URL is available in the presentation [141], so we do
not consider in this chapter.

104 8.1. Taxonomy of ICN Software

infrastructures such as Grid5000 [143] or PlanetLab [144], which is a rather complex
task. As such, a preliminary simulation step is required in order to understand system
dynamics and define and select the best performing algorithms to implement in the
prototype.

ns3 CCNx-DCE An intermediate step toward the above solution is represented by ns3
simulation with Direct Code Execution (DCE) [125] of the (opportunely recompiled)
CCNx prototype. Shortly, the DCE ns3 module provides facilities to execute within
ns3 existing implementations of user-space and kernel-space network protocols. For
instance, the Quagga routing protocol and recent versions of the Linux network stack
run under DCE, so that faithfulness to real-world implementation is not only guar-
anteed for the CCNx prototype but for lower layers of the networking stack as well.

This approach has the advantage of using the same codebase of CCNx and addi-
tionally simplifies the experimentation. Hence, ns3 CCNx-DCE can be seen as a
mandatory step for anybody having a strong commitment to do CCNx prototyping,
greatly simplifying the development phase and assisting debugging, troubleshooting
and (small-scale) performance evaluation of the CCNx prototype.

At the same time, maintaining a single codebase is however not without cost, espe-
cially in terms of a greater development effort – as it is rather complex to modify the
prototype to explore different design approaches. Furthermore, as the whole CCNx
stack is run (e.g., including crypto due to security), this hinders scalability of the
simulation. Alternatively, to avoid incurring in this performance penalty, the CCNx
prototype might be opportunely tweaked so to turn on/off some features that are
supposedly irrelevant for the aspect under study7. For these reasons, simpler simula-
tor environments –such as those introduced next– may be preferable for anyone that
does not necessarily plan to invest a possibly significantly amount of manpower in
CCNx prototyping.

ndnSIM Another option is to perform ns3 simulation with the ndnSIM [127] simulator –
notice that patches to ns3 are required to run ndnSIM. The primary goal of ndnSIM is
completeness, and the design of ndnSIM follows the philosophy of network simulations
in ns3, which devises maximum abstraction for all modeled components. A thorough
description of ndnSIM components is available in [145]. Basically, ndnSIM faithfully
ports CCNx implementation in a modular ns3 simulator, which also means that the
number of currently implemented policies is small (e.g., ndnSIM only provides LRU,
FIFO and random cache replacement policies [145]).

At the same time the design makes easy to intercept and modify the default behavior
– as every step of an Interest and Data packet handling, including Content Store,

7Though regression tests are needed in order to factor out possible unexpected protocol behavior due to
some features being turned off, which may not payoff the cost.

8. ccnSim: an Highly Scalable CCN Simulator 105

Figure 8.1: Simplicity vs realism in CCN-related software

PIT, FIB lookups, is represented as a virtual function, they can be overridden by
user-defined classes. Yet, completeness does not comes without cost – as e.g., storing
metadata associated to chunks requires about 1KB of RAM memory [146], which may
still pose scalability problems. Hence, ndnSIM represents a fairly good compromise
between completeness (and it thus may be a good fit for many CCN aspects including
security) and scalability (though slightly more inclined to the former).

CCNPL-Sim CCN Packet Level Simulator (CCNPL-Sim) is a packet level CCN simula-
tor. It is based in part on CBCBsim [147] from which it imports part of the forward-
ing layer and the name-based routing protocol, namely the Combined Broadcast and
Content-Based (CBCB) routing scheme [148], while the CCN protocol features have
been developed from scratch. The simulator has been used to model the per-hop
forwarding behavior of CCN nodes [149] and the receiver based congestion control
protocol tuning interest ingestion [150], where a fine-grained control over individual
packets is imperative to get accurate performance results.
Differently from CCNx-DCE and ndnSIM (both based on ns3) and from ccnSim
(based on Omnet++), CCNPL-Sim has the drawback of using a custom discrete-
event simulator, that is unfamiliar to most of the researchers and thus could require
an additional learning cost. Additionally the mandatory usage of CBCB narrows the
possible experimentation area, making it CCNPL-Sim unfit for, e.g., routing studies
(for which ndnSIM is a better fit) or large scale studies (for which ccnSim is a better
fit).

ccnSim ccnSim is a scalable chunk-level CCN simulator, written in C++ under the
Omnet++ framework, and allows to assess CCN performance in scenarios with large
orders of magnitude for CCN content stores (up to 106 chunks) and Internet catalog
sizes (up to 108 files) on off-the-shelf hardware (i.e, a PC with a fair amount of RAM).
ccnSim focuses on the performance of caching replacement, decision and forwarding

106 8.2. Description of ccnSim

policies, and neglect routing and security aspects (for which ndnSIM is a better fit)
or congestion control policies (for which CCNPL-Sim is a better fit).

Hence, a large number of policies is implemented with respect to e.g., ndnSIM (that
only provides LRU, FIFO and random replacement policies and shortest path rout-
ing [145]), that allow to explore wider boundaries of the design space. Moreover the
naming scheme is not faithfully represented, which on the one hand limits the use-
fulness of ccnSim for, e.g., routing studies, but on the other hand greatly enhance
the scalability – as the memory footprint of individual PIT and CS entries is about
64bits, which is about 2 orders of magnitude smaller with respect to ndnSIM. We
describe ccnSim in details in Sec. 8.2 and offer a thorough analysis of its performance
in Sec. 8.3.

8.2 Description of ccnSim

ccnSim was designed aiming at scalability, for which we traded off realism in favor of
simplicity. Our work was motivated by the fact that, while ICN and CCN is expected to
serve Internet wide content, the majority of performance evaluation studies were only able
to deal with rather simple and small-scale scenarios, especially in terms of dominant factors
like catalog, network topologies, and cache size (see Sec. 6.1. For instance, the YouTube
catalog is estimated to be on the order of 1PB i.e., 1015 Bytes (details in Sec. 8.3.1): yet,
largest catalogs considered in the literature are off by some orders of magnitude (i.e., 20K
object or 138GB [4]). Similarly, while [44] sizes to about 10GB the amount of memory
that can be addressed at line speed in ICN architectures, current simulations operate with
much smaller caches (e.g., 6.4MB [92]-50MB [4]).

Over the last years, we have developed and optimized ccnSim, an highly scalable chunk-
level simulator especially suitable for the analysis of CCN caching performance, that we
have released to the scientific community as open source software [101]. As we will briefly
overview in the following, ccnSim is a modular, flexible, and fast CCN simulator, capable
to deal with different caching algorithms/policies, forwarding strategies, topologies, and
popularity laws. Specifically, two crucial aspects have been taken into account in the design
of ccnSim: namely, (i) memory occupancy, in reason of the size of caches and catalog and
(ii) CPU time, in reason of per-chunk operations.

While in previous chapters we focused on the performance of CCN gathered through
ccnSim, in the context of this chapter we rather focus on the implementation (this section)
and performance (Sec. 8.3) of the ccnSim tool itself.

8.2.1 Simulator architecture

Basically, ccnSim is a C++ package built on the top of the Omnet++ framework [151].
In the following, we give an overview of the set of ccnSim classes, that are illustrated in

8. ccnSim: an Highly Scalable CCN Simulator 107

Core Layer

Strategy Layer

Caching decision

LCD/LCE/RND

Data forwarding

chunk ID [face ID]

content ID face ID

Interest forwarding

Content

ID

Repo

IDs
Size

1 [1,5...] 100

2
3

[2,8...]

Content

IDs

2

4

2

60

C
a
ch

in
g
 L

a
ye

r

LRU/LFU/RND/FIFO

Data caching

Caching replacement
CCN node

Clients

Catalog

[1,4...] 90

Interest

D
a

ta

Repository

FIB

CS

PIT

Chunk id

Figure 8.2: ccnSim main components at a glance.

Fig. 8.2, highlighting the key design choices.

8.2.1.1 Catalog and popularity model

Clients represent an aggregate of users who request contents with a given popularity dis-
tribution. Requests for new content follow a Poisson process, with a customizable rate. In
ccnSim, users are not CCN nodes, thus they do not implement the whole CCN stack. Each
aggregate is implemented as an STL multi-associative map8 that keeps track of different
contents downloaded by individual users.

Popularity model, and hence catalog and content size, represents a crucial aspect of
every ICN architecture. We have designed and accurately tuned the catalog and popularity
model according to recent literature in Internet metrology (details in [9]). Size of the files
in the catalog is a configurable parameter, and follows a geometric law by default [46]. For
matters of efficiency, the size of each file is computed during the simulation bootstrap, and
is stored within a large static array (named catalog in Fig. 8.2).

We model popularity distribution with a Mandelbrot-Zipf (M-Zipf), shaped by parame-
ters (q, α), that we statically initialized during the startup of the simulator, and we employ
a log(N) binary search for each M-Zipf random number (with N size of the catalog). Notice
that while this may seem a minor implementation detail, a binary search rather becomes a
requirement when the catalog size reaches N = 108 objects as for YouTube [48]. The popu-
larity model possibly includes a spatial heterogeneity to account for skew in the popularity

8A multimap is like a simple map, but it considers the possibility of having more entries with the same
key.

108 8.2. Description of ccnSim

law due to geographical/cultural barriers [106].

8.2.1.2 Messages and chunks

At low level, interests and data messages carry a 64-bit unsigned integer, namely the chunk
identifier. This is a simplification with respect to the original naming structure of CCN,
that however gives ccnSim an advantage of several orders of magnitude in terms of memory
scalability (e.g., PIT and CS entries consume about 64bits in ccnSim with respect to about
1KB in ndnSIM [146]).

The chunk ID stores information about the content name (most significant 32 bits) and
the chunk sequence number (least significant 32 bits). This design represents a tradeoff
between space and flexibility. On the one hand, we minimize the space needed for moving
content all over the network. On the other hand, we have 32-bit content identifiers (up to
4 billions of individual contents).

8.2.1.3 Node architecture

This simulator is not targeted for a particular topology, and the user can freely arrange
the nodes following her needs. However, we provide 8 built-in topologies: five of them
are realistic ISP networks (Geant, Abilene, Level3, Qwest, Sprint), and three are synthetic
(random, torus and tree). For each network, ccnSim is able to build different routing
FIBs (either precomputing the shortest-path and multiple-path based on standard graph
algorithms [9] or possibly with a dynamic flooding-based exploration(see Sec. 7.2). As we
can observe from Fig. 8.2, a CCN node comprises three different submodules: core, cache,
and strategy layer.

Core layer. Is the responsible for PIT management, and communicates with caching and
forwarding layers. Any new interest raises a CS lookup. If the data is not in the CS, but
a repository for the given content is attached to the node, the CCN node returns the data
packet back. Otherwise, it deflects the interest to the forwarding layer. Any data chunk
raises a PIT lookup, that eventually sends the content back on all the PIT interfaces for
that chunk. The PIT is implemented as an associative map of arrays, indexed by the 64bit
chunk identifier.

Caching layer. Caching is one of the crucial aspects of any ICN architecture. CS acts
according to a caching decision policy (i.e., whether to store the data in CS or not) and a
replacement policy (i.e., what to drop from CS in case it is full). While we already provide
a fairly large number of decision (LCD [16], Random [19], LCE) and replacement policies
(LRU, Random [45], FIFO) we have designed the CS in a modular fashion. Specifically, new
replacement algorithms are implemented as modules overwriting the caching polymorphic
methods store() and lookup(); a similar trick is done for new decisions policies with the

8. ccnSim: an Highly Scalable CCN Simulator 109

polymorphic method isToCache().
At low level, CS is an associative map. Since CS lookups are very frequent operations in

CCN, we optimized their implementation. In fact, while naive LRU implementations can
represent a drastic bottleneck in large-scale simulation, we resort to an efficient LRU im-
plementation through a map of pointers [44] (the map speeds-up the access to the elements
in cache, while pointers are used to take the elements order).

Strategy layer. The strategy layer basically takes decisions about interest forwarding,
through the getDecision() method. This polymorphic function returns a bit mask with
the same cardinality of the output interfaces set. A 1 in the i-th position of the mask will
forward an interest toward the i-th interface.

The default strategy layer in ccnSim sends messages toward the nearest repository
over the shortest path (to speed-up simulation, FIB of each node are pre-filled at the
simulation startup and getDecision() spoofs from the catalog the repositories who store
permanent copies). Other multi-path strategies, both static (see Sec. 7.2) and dynamic (see
Sec. 7.3) are already available, while further strategies can be implemented by overwriting
the getDecision() method.

8.2.1.4 Simulation statistics

Statistic collection starts only when the cache hit metric has reached a stationary state.
In more details, we start with empty caches and, as soon as caches fill up, every node
samples its hit rate every ts simulated time (usually ts is about hundreds of milliseconds),
and the variance of the collected samples is computed every tw (usually tw is about tens of
seconds).

Only when the cache hit variance falls under a given threshold, the node declares itself
stabilized. Statistic collection starts only after all nodes are stable. The stationary state
is then simulated for a customizable duration (typically one or two hours of simulation
time) after which statistics of interest are collected (e.g., hit rate, distance, cache diversity,
download time, and so forth).

8.3 Benchmarking of ccnSim

We now extensively benchmark ccnSim, considering a challenging YouTube-like scenario,
that we describe in Sec. 8.3.1. Our benchmark focuses on two main aspects, that possibly
become a bottleneck in terms of simulation feasibility and duration:

• Memory occupancy: the simulation of very large catalogs and very large cache size
is essential to gather CCN performance under realistic settings. Yet, the CDF of
commonly used (i.e., Zipf-based) popularity distributions cannot be expressed in a
closed form: hence, huge catalogs swell up the memory demand of the simulator.

110 8.3. Benchmarking of ccnSim

• CPU time: system dynamics have to be represented at chunk level, i.e., a mini-
mal data unit, which is typically packet-size or slightly larger (e.g., 10KB). Clearly,
efficient operation require a careful engineering and optimization of the most compu-
tationally intensive tasks CCN has to deal with.

Our evaluation is structured along two main axis. The first axis goes along a profiling of
the simulator, in order to pinpoint the function call representing the major CPU bottleneck.
Based on the profiling results, we refactory part of the code to reduce the execution time
as much as possible (Sec. 8.3.2).

The second axis investigates parallel execution using Message Passing Interface (MPI)
capabilities. The main driver here is the fact that, even though the simulator has been
designed to have a small RAM memory footprint, the execution of large-scale simulation
(in terms of the catalog, network and cache size) will nevertheless sooner or later pose a
RAM bottleneck. Since the typically available off-the-shelf servers have a large number of
cores (typically 4-8, if not more), it is worth investigating whether the simulation run can
be speed-up by parallelizing the execution of multiple cores (Sec. 8.3.3).

Finally, we investigate the scalability of the simulation in terms of the network size,
always under the challenging YouTube scenario, developing a simple model of the require-
ments in terms of memory and execution time that ccnSim user can expect (Sec. 8.3.4).
Overall, our careful engineering of ccnSim allows to simulate very large scale scenarios
in a reasonable time: to give an idea of ccnSim performance, a common off-the-shelf PC
equipped with 8GB of RAM memory is able to simulate 2-hours of a 50-nodes CCN net-
work, where each node is equipped with 10GB caches, serving an Internet-like 1PB catalog
in about 20min CPU time.

8.3.1 Benchmark scenario

As target application for our benchmark, and in reason of the growing importance of video
application in the future Internet, we consider one of the most popular VoD application
nowadays, namely YouTube. Further details and motivations with respect to the choice of
scenario parameters, that we briefly recap below, is given in Ch. 6.

The YouTube catalog is sized at about 1PB, as it consists of about 108 files [48] having
geometrically distributed size with average 10MB [46]. Contents are partitioned in 10KB
chunks, thus the average file size in chunks turns to be D=1000 chunks.

As we are not interested on the CCN performance, we select a synthetic torus topology,
and let the network size grow from 10-50 nodes (specifically, from 3×3 to 7×7 torus). Nodes
are equipped with 10GB [44] (or 106 chunks). The decision/replacement pair considered
here, is LCE/LRU (the most used within the ICN proposals). As for the strategy layer,
interest packets are forwarded toward the nearest repository along the shortest path.

Clients aggregate are attached to each node, and users request have average arrival rate
of λ = 20Hz. We instrument ccnSim to simulate T = 2 hours of simulated time after the
cache hit rate stabilizes. Overall, the number of per-chunk operation in steady state can

8. ccnSim: an Highly Scalable CCN Simulator 111

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 10 100 1000

P
er

ce
n
ta

g
e

o
f

ex
ec

u
ti

o
n

 t
im

e

Function ID

(a)

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

E
la

p
se

d
 t

im
e

(m
s)

Number of map locations (x 10
7
)

Boost library
Standard library

(b)

Figure 8.3: ccnSim profiling. Functions ordered by decreasing execution time(a). Access
time comparison of STL and Boost libraries(b).

be evaluated as ρDTd, with d average path length, and is thus on the order of [108, 109]
depending on the specific scenario.

Results reported in this chapter are gathered on a off-the-shelf server equipped with
Intel Xeon E5620 8-cores CPU (running at 2.4GHz), and with 12MB L3 cache and 24GB
RAM memory.

8.3.2 Simulator profiling

For profiling, we used the standard GNU profiler gprof, whose results are shown in Fig. 8.3
– where for the sake of the illustration we show only the first thousand functions. In the
picture, functions are ranked by decreasing execution time percentage. For instance, from
Fig. 8.3 is easy to see that if the total execution time is 100 seconds, the CPU has been
busy with function having rank 1 for about 3.5 seconds. We see that the curve is slowly
decreasing for most of the ccnSim functions: this means that each function is individually
accounting for only a small fraction of the total execution time. This is a bad scenario
for optimization, as after profiling, one would reimplement only the few functions that are
representative of the bulk of the CPU time. However, Fig. 8.3 shows that such “quick win”
approach does not apply to ccnSim.

Still, the very first handful of functions are responsible for about 15% of the CPU time.
A more in-depth inspection, reveals these functions to be responsible for providing access
to CCN data structures (CS, PIT, FIB, catalog, etc.) that are implemented as associative
maps, array, and so forth in C++. As these structures are accessed very often in CCN
(basically, most chunk-based operations will require multiple accesses into the structures,
on multiple nodes), we can reduce execution time by adopting their most efficient C++
implementation.

112 8.3. Benchmarking of ccnSim

We thus consider the two most common libraries to implement such structures, namely
the Standard Template Library (STL) [152] and the Boost library [153]. The comparison
is shown in Fig. 8.3(b), that plots the elapsed time of a stress-test program filling the
associative map with different integer sequences. Even for very simple operations, the
Boost library outperforms the STL of a factor of 4-5. This performance gap is due to
the fact that while STL maps are ordered and implemented through a red-black tree,
Boost maps are fully unordered and implemented through more efficient hash functions.
Apparently, the Red-Black tree maintenance introduces a significant overhead especially
for large structures.

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8

E
x
ec

u
ti

o
n
 t

im
e

-
se

c

Number of processors

Figure 8.4: Simulation duration vs parallelism degree.

The comparative experiments let us conclude that Boost is more efficient with respect
to the STL implementation we were using so far. We therefore refactor ccnSim code using
unordered Boost hash-map for any associative map. Notice that while there is a factor of
4-5 speedup in using Boost, this will affect only the first handful of functions related to
data structure access. Since these were accounting for about the 15% of the CPU time,
we can expect the overall CPU time after refactoring with Boost to be about 85% of the
previous execution time under STL.

8.3.3 Simulator parallelization

A Parallel Discrete Event Simulation (PDES) has basically two meanings: distributing
the model over different computers as a meaning to reduce the memory occupancy of the

8. ccnSim: an Highly Scalable CCN Simulator 113

 0

 50

 100

 150

 200

 250

 300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x

ec
u

ti
o

n
 t

im
e

-
[s

ec
]

Laziness - λ

Multi processor
Single processor

(a)

 50

 100

 150

 200

 250

 300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x

ec
u

ti
o

n
 t

im
e

-
[s

ec
]

Laziness - λ

Multi processor
Single processor

(b)

Figure 8.5: Simulation duration vs vs laziness in case of cold (a) and hot (b) startup phase.

simulator; or distributing the model over multiple processors for optimizing its execution
time. In our case, we’re interested in pursuing the second goal only, since otherwise RAM
may become a bottleneck, leaving many core possibly unused.

Omnet++ has native support of PDES through Message Passing Interface (MPI). As
MPI is a built-in feature, changes in the underlying ccnSim code are minimal. Among
different parallel algorithms supported, especially worth of interest is the Ideal Simula-
tion Protocol (ISP) introduced by [154], as it helps to determine the maximum speed-up
achievable by any PDES algorithm for a particular model and simulation environment.

We start our experiment plotting the simulation duration as function of the number of
parallel processors over which the simulations are split up. We set ccnSim for simulating
half an hour of a simpler CCN network (w.r.t. the one described in Sec. 8.3.1) after the
transient period ended. Results are shown in Fig. 8.4, and are rather counterintuitive. In
fact, performance significantly worsens when we increase the number of parallel processors.

To explain these results, we have to briefly introduce PDES concepts of lookahead and
laziness. The lookahead is associated with the ability of a logical process (LP) to predict
its future behavior: at any simulation time t, if an LP can predict that the earliest event
it will cause to occur in another LP is no sooner than t + `, its lookahead turns to be
`. Intuitively, we can say that a small lookahead value badly affects the performance of
the overall PDES system, as LPs have to very often synchronize among themselves. The
system laziness is then correlated with the frequency at which synchronization messages
are exchanged between different LPs. In more detail, the laziness is indicated with λ ∈ [0, 1]
and represents the synchronization rate, with maximum (minimum) synchronization rate is
achieved for λ equal to 1 (0). Generally, a rule of thumb in PDES is to roughly approximate
the synchronization period with the system lookahead.

In Fig. 8.5(a,b) we plot the simulation duration, with (b) and without (a) a cache warm-

114 8.3. Benchmarking of ccnSim

up phase, as a function of the laziness λ. The plot shows that increasing λ (i.e., increasing
the synchronization rate) ccnSim performance tends to ameliorate. At the same time, the
number of synchronization messages grow with λ: therefore, increasing λ increases the
percentage of time that each individual CPU devotes to the synchronization task, which
can also turn into an excessive overhead for large λ (see that execution time increases for
λ > 0.8).

The most important takeaway from Fig. 8.5 is however that in most case, single-
processor execution of ccnSim is more efficient than its multi-processor counterpart. Specif-
ically, only minimal PDES gain can be observed when λ ∈ [0.6 − 0.9] and only the hot-
startup case of Fig. 8.5(c). Hot-startup means that CCN caches are pre-fill at time t = 0
with random content (proportionally to the catalog popularity), while in the cold-startup
case CCN caches are empty at t = 0. Since cache warm-up does not need synchronization
(as each cache is independent), the warm-up phase may result in shorter execution time
in PDES (at least for some laziness values). However, gains are ephemeral since cache
warm-up can possibly induce longer convergence time of the cache hit metric in case of a
mismatch between the initial cache content and the replacement policy9 Conversely, with
cold-startup of Fig. 8.5(b) the single processor is always better than PDES. We conclude
that the bulk of the CCN operation requires high synchronization frequencies, which en-
tails that CCN simulation has an inherently small lookahead ` and is thus inherently non
parallelizeable.

8.3.4 Overall performance

Finally, we report the expected simulation time and memory occupancy for large-scale CCN
simulation under the scenario described in Sec. 8.3.1. Fig. 8.6(a) plots the running time
of a simulation, as function of the network size. We can breakdown the total simulation
duration ttot (i.e., the CPU time) as the sum of the bootstrap time tB (e.g., fill the catalog,
build the network, allocate data structures, build reverse index to speed-up lookup, etc.),
plus the cache fill time tF (especially important in case of cold startup with empty caches),
plus a transient period until the cache hit rate reaches a steady state tT , plus the CPU time
tS needed to run 1 hour of simulated time (in this case of figure). Simplifying, we can write
ttot = tB +Ntsim where tB accounts for the one-time startup cost and tsim = tF + tT + tS
aggregates the time spent in running the CCN dynamics per-node. A linear regression
yields to a bootstrap time of tB = 7min and tsim = 0.3min/node as for the CPU time
needed to simulate 2 hour of YouTube catalog. This simple model tells us that (letting
aside RAM bottlenecks) about 2-days of CPU time are sufficient to simulate 2 hours of
YouTube catalog over a 10,000 nodes network with ccnSim.

9In our case, we use LRU replacement and fill caches with content proportionally to its popularity;
however, due to filtering effect, the most popular content can be evicted from some caches, and in case of
non-LRU replacement, naive warm-up phases can result in an overall lengthen of the simulation duration.
For such reasons, hot start is disabled by default in ccnSim.

8. ccnSim: an Highly Scalable CCN Simulator 115

 8

 12

 16

 20

 24

 28

9 16 25 36 49

E
x

ec
u

ti
o

n
 t

im
e

-
[m

in
]

Number of nodes - N

Execution time
Linear fitting

(a)

 4

 5

 6

 7

 8

 9

9 16 25 36 49

M
em

o
ry

 o
cc

u
p

an
cy

 -
 [

G
B

]

Number of nodes - N

Memory occupancy
Linear fitting

(b)

Figure 8.6: ccnSim (a) Execution time and (b) Memory occupancy.

Fig. 8.6(b) depicts the memory occupancy for each individual simulation. As we can
see, the largest simulated 50-nodes network requires about 8GB of RAM: thus, despite we
cannot parallelize a single simulation with PDES, we can in principle run several single-
core simulations in parallel10. To estimate RAM requirements, consider that the catalog
stores several useful information (e.g., the repositories who own the permanent copies of
each content), and that furthermore every CCN node implements a CS and PIT data
structures11. Fig. 8.6(b) plots the memory consumption as a function of the network size.
A linear regression over Fig. 8.6(b) data yields mtot = mC +NmN where mC = 4.5GB is
the baseline memory occupancy for handling a YouTube-like catalog (and all its associated
fields), and mN = 80MB/node accounts for CCN nodes memory requirement (to store
FIB, PIT and 106 chunks-long CS data structures).

Summarizing, we find that the major factor affecting ccnSim scalability, either in terms
of memory and latency, is not related to the size of the network. Rather, the main factor
is the size of the catalog, especially for what concerns RAM memory occupancy, that
we have seen to represent the crudest bottleneck. In future work, we aim at reducing
these catalog memory requirement by implementing a memory efficient approximation of
Zipf-like functions. For instance, a sizeable improvement could be achieved by faithfully
representing only the 99th bulk of the catalog with a Zipf, while serving the remaining 1th
percentile of the requests for rare content with a fictitious incremental ID. For the sake of
the example, on a 108 catalog with α = 1, this trick would save about 20% of the memory

10Consider however that this kind of parallelism may tradeoff with the scale of the scenario. Indeed, the
catalog already represents a significant memory footprint (a 108 array of 64bit integers requires about 1GB
of RAM), and clearly memory requirement grows with the catalog size, the number of chunks per file, the
size of individual CCN caches and the size of the CCN network.

11The FIB does not directly impact RAM requirement, as it could be responsible for significant RAM
footprints only for huge networks.

116 8.4. Conclusions

(reducing the catalog footprint from 4.GGB to 3.7GB). We are currently investigating the
use of variable lenght prefixes (e.g., use fewer bits for the most frequently accessed content)
to represent content names in PIT/CS/FIB structures, that could bring further advantages
in terms of the memory footprint.

8.4 Conclusions
This chapter surveys open source software tools for Information Centric Networking. On
the one hand, our census testifies that, overall, a rather large number of simulators, em-
ulators and real prototypes are available. On the other hand, we also see that generally
only prototype implementations of specific ICN architectures are available.

Exceptions to this are represented by the Publish Subscribe Internet Routing Paradigm
(PSIRP) and Content Centric Network (CCN) architectures. As for PSIRP, an Omnet++
simulator is available along with a couple of prototype implementations. As for CCN, not
only a prototype, but also several other simulators are available. These tools correspond
to different compromise between the realism vs complexity design space, and are indeed
all necessary as they cover different aspects and scales of a complete CCN performance
picture. Moreover, the availability of both custom simulators and of tools based on standard
frameworks (such as ns3 and Omnet++) can further lower the startup cost (especially for
users having previous experience with the ns3 or Omnet++ frameworks).

We next presented and benchmarked ccnSim, one of the available CCN simulators
that is based on Omnet++ framework and that especially targets caching and strategy
layer performance, and whose extreme scalability is the joint result of key design choice,
as well as a careful engineering (i.e., profiling and code refactoring). Briefly, our ccnSim
benchmarking shows that (i) a common off-the-shelf PC equipped with 8GB of RAM
memory is able to simulate 2-hours of a 50-nodes CCN network, where each nodes is
equipped with 10 GB caches, serving a 1 PB catalog in about 20 min CPU time; (ii)
scalability issues are mainly tied to memory consumption, tied to catalog size more than
content store of network nodes; (iii) parallel execution of ccnSim is not a viable solution,
as the major part of the additional CPU power is wasted in the synchronization among
processes.

Overall, our census shows that few exceptions, ICN lacks of simulation tools that are
commonly used to assist the algorithm design tasks of each ICN architecture in isolation.
Moreover, the ICN domain as a whole misses so far any tool that could allow a comparative
evaluation of ICN architectures – which will likely need more attention in the coming years.

117

Chapter 9

Conclusions

In this thesis we have studied, analyzed, modeled, and improved forwarding strategies
for host and content centric networking. In this conclusive part, we summarize the best
findings of this thesis, giving an overview about future and ongoing works.

9.1 Host Centric Networking

HCN philosophy replaces the thin waist of the communication hourglass with the concept of
host. The overall idea is to directly query for the host flat identifier rather than hierarchical
IP addresses. DHT-based approaches are widely used, nonetheless the underlying routing
is based on traditional routing algorithms (usually, OSPF). Thus, in this field we consider
the issue of multipath routing within the ISP boundaries (Part I), aim at finding an efficient
replacement. The main findings are summarized below:

Apl analysis and evaluation We propose Apl (Ch. 3), a multipath algorithm suit-
able for interior AS boundaries. First we analyze Apl ’s costs and benefits, showing
the message vs optimality trade-off: by slightly increasing the messages spread over
the network, we can gather optimal disjoint end-to-end paths. The only knob for
tuning the aforementioned trade-off is β, a system parameter representing the back-
off base of the adaptive probabilistic procedure on which Apl is based. However, β
is easy to tune, and Apl performance show to be robust against wrong β settings.

Aplasia evaluation We finally plug Apl within Aplasia(Ch. 4). In particular, Apla-
sia exploits Apl paths by the means of an autoforwarding data plane. First, we
extend our previous statical Apl analysis by providing an Apl time complexity
model: we prove Apl termination, and evaluate its duration. Finally, we evaluate
Aplasia autoforwarding plane by the means of Click experiments deployed on small
scale testbeds. The coupling of Apl with an autoforwarding data plane produces a
fast convergent routing algorithm, jointly with a fast data plane which exploits the

118 9.2. Content Centric Networking

paths provided by Apl . The performance increase trade-offs with a slight increase
in the communication cost of the control plane algorithm, which remains however
similar to that of a simpler OSPF routing.

9.1.1 Future work

Even though HCN has been widely studied in terms of host-to-host forwarding, few works
tackle the problem from an interior routing perspective. In this sense, Aplasia represents
a novel architecture that can be easily extended. We list below the major future and
ongoing directions in improving Aplasia’s design. The final goal is to produce a valid
(i.e., multipath, fast, automatic, self-configuring) OSPF substitute, suitable for the higher
level HCN architectures.

Amount of control plane state Having an approach for precisely estimate the number
of overlapping control plane message, we could reduce the control plane state to a
O(1) 8-bit counters, thus simplifying Aplasia’s control plane. Indeed, overlapping
advertisements represents the issue solved by retaining more than one single counter.
By enhancing the analytical Apl models, it is possible to calculate the probability
that two different advertisements overlap, thus fixing a constant set of them without
deteriorating performance.

Failure Resolution and Recovery As mentioned within Sec. 4.6, an important aspect,
neglected within Aplasia’s description, is represented by the failure resolution and
recovery mechanisms. Upon a link failure, two different and parallel procedures have
to happen: path caches must be updated , and new routes have to be recalculated
(failure recovery). A failure mechanism should accurately trade-off between the com-
plexity of the core routers and the recovery speed. Indeed, core nodes which detect
the failure may just redirect data on the other path they have in cache. Edge nodes,
instead, have to roll back the data up to the first core router able to switch the path
and run another advertisement round.

9.2 Content Centric Networking
Information Centric Networking (ICN) moves a step further HCN, indicating pointing con-
tents as the new thin waist of the hourglass model. Thus, instead of caching routes toward
hosts, nodes can cache directly contents. This means that the thorough caching theory can
be applied, but at a larger extent. Indeed, instead of single caches, ICN philosophy deals
with (general) network of caches, and Network Caching Algorithms (NCA).

NCA assessment We assess performance of caching algorithms (Ch. 6), ranking the dif-
ferent factors affecting NCA behaviour. We consider large scale scenarios, to be sure
of gathering a significant assessment. In particular, we show that the most influential

9. Conclusions 119

variable turn to be the popularity distribution: for instance, slightly changing the
shaping factor of the Zipf distribution, may completely change algorithms perfor-
mance. Then comes the algorithms strategies F , D, R. Finally, the topology has
minor impact: even trying to exploit its properties (e.g., betweenness centrality, con-
nectivity, and hence forth) slightly improves the overall performance. For fulfilling
this assessment, we designed, developed and optimized ccnSim, whose implementa-
tion and core design is discussed in Ch. 8. We distributed ccnSim as open source
software, available at http://www.enst.fr/~drossi/ccnsim.

Forwarding strategies We particularly focus on forwarding strategies F (Ch. 7). We
discuss exploitative strategies (i.e., strategies for which the paths are predetermined
by some unspecified routing algorithm), showing that in some cases it can even wors-
ens performance, especially when multiple paths are considered. Thus, we focus on
exploratory forwarding strategies (flooding based). First, we investigate the perfor-
mance of an ideal technique, the ideal Nearest Replica Routing (iNRR). iNRR nodes
query an oracle for each content, retrieving its exact location. We show that iNRR
reaches the best performance only if coupled with meta caching policies D. Based
on this insight, we develop two different Nearest Replica Routing (NRR) approaches,
both based on TTL-scoped flooding:

• NRR’ floods real interests, triggering the replacement and decision mechanisms
at each node they traverse.

• NRR” floods first meta interests over the network, looking for the exact position
of the content within the network. Then, the real interest is sent for downloading
the content just discovered.

NRR” greatly outperforms NRR’: this is because flooding real interests forces higher
pollution within the caches. NRR”, although slightly slower than NRR” shows to be-
have remarkably better. Roughly speaking, with small TTL values we fairly approach
ideal performance.

9.2.1 Future work

This part has been mostly focused on the understanding of the dependencies between the
different strategies 〈F ,D,R〉 of an NCA’s triplet. In particular, we focus on a sort of quest
for determining the best strategy coupling (e.g., 〈NRR”,LCD,LRU〉).

The real issue in this analysis has been the absence of a ground truth: a best theoretical
bound against which comparing our results. For instance, in the case of a single cache (with
a static popularity law), the ground truth is well approximated by the LFU replacement.
Thus, it is quite simple comparing each replacement strategy versus LFU for gathering the
best one. This is not the case for NCAs, as the choice of which element to cache does

http://www.enst.fr/~drossi/ccnsim

120 9.2. Content Centric Networking

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

d
o
w

n
lo

ad
 d

is
ta

n
ce

 -
 #

H
o
p
s

Path length - #Hops

LB(analytic)
LB(sim)

always
lcd

fix0.1
ProbCache
No caching

Figure 9.1: Optimal solution vs meta-caching strategies within a bus network of increasing
size.

not solely depend by the popularity law. In the following, we summarize our ongoing and
future work on the field of network caching algorithms.

Optimal forwarding In Fig. 9.1, we consider a bus of n caches: users are connected at one
end and the single repository at the other end of the bus. In this case, the forwarding
F is irrelevant. Fixing R to LRU, D represents the only free element to change of
the 〈F ,D,R〉 triplet. As we can observe, on such a scenario the best strategy turns
to be the FIX(10

100) meta-caching, which is the strategy which gets closest to the
lower bound. The analytic lower bound is fairly simple to estimate. The key insight
is that, in the above scenario we should store popular content closer to the users
and the unpopular one farther (possibly in the server). By supposing replicas placed
in this way, and with some simple algebraic operations, we can calculate the lower
bound of the average distance d̃ = z log

[
(nC)n
n!

]
, z = (

∑
p(i)).

While the analytic lower bound results easy to determine in this particular case, we
should try to generalize the analysis to more complex networks. By now, the only
feasible solution comes from solving the huge optimization problem [155]. This latter
turns to have Nn2 variables, and resulting computationally prohibitive to solve on
realistic scenarios.

Dynamic popularity From a wider system perspective, we consider through all the sec-
ond part a fixed probability law, space and time independent. While some investiga-

9. Conclusions 121

tion about space dependent popularity has been already inspected by our previous
work [106], there is a lack of investigation about time dependent popularity. We
remark that having a time dependent catalog may increase NCA performance: in-
deed, roughly speaking, this could result in a sort of smaller catalog, within a given
time interval. Thus, understanding how the popularity of a given content changes
(e.g.,identifying a well-defined analytical model) is crucial for NCA performance and
surely represents one of the right direction to investigate.

Increasing cache size Instead of grasping complex 〈F ,D,R〉 strategies, we can apply
a really simpler approach: increasing the cache space. Usually, this sort of naïve
solution incurs in the technological limits [47] of the DRAM and SRAM chips, em-
ployed for implementing caches (and indexes) in CCN/ICN routers (see also Sec. 6.1).
Nonetheless we know that, in particular for the CCN architecture, objects can be sub-
divided in chunks (see Sec. 5.1) to be sequentially downloaded. The basic idea on
which we are currently working is to leverage on the correlation among subsequent
requests for the same content, thus implementing a fast and larger two layer cache
router. Its basic functioning is as follows: a first slow cache (first layer) stores the
whole file, while a faster cache (second layer) stores only some chunks of the same
object. When an interest arrives (and if it is actually present in the slow cache),
the fast cache returns back the first chunks of the content. Meanwhile, the file is
transferred into the fast memory to be seamlessly downloaded by the next requests.
In this way, users actually see a huge and fast cache, suffering delays at most for the
very first chunk of the object – in the case the content is in the slow memory, but
not in the fast one.

122 9.2. Content Centric Networking

123

Appendix A

Publications

Journals

1. G. Rossini, D. Rossi, Evaluating CCN multi-path interest forwarding strategies .
Elsevier Computer Communication, SI on Information Centric Networking, 2013.

2. Giuseppe Rossini, Dario Rossi, Christophe Betoule, Remi Clavier and Gilles Thouenon,
FIB Aplasia through Probabilistic Routing and Autoforwarding . Elsevier Computer
Networks (to appear), 2013.

3. G.Rossini, D.Rossi, Exploiting topology knowledge in Information Centric Networks:
Guidelines and challenges. MMC E-LETTER, 2013

Conferences

1. G. Rossini, D. Rossi, M. Garetto, E. Leonardi, Multi-Terabyte and Multi-Gbps In-
formation Centric Routers. In IEEE INFOCOM 2014 (To Appear)

2. R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, G. Rossini, INFORM: a Dynamic
Interest Forwarding Mechanism for Information Centric Networking . In ACM SIG-
COMM Worskhop on Information Centric Networking

3. Chiocchetti, Raffaele, Rossi, Dario and Rossini, Giuseppe, ccnSim: an Highly Scal-
able CCN Simulator . In IEEE International Conference on Communications (ICC),
june 2013.

4. G. Rossini, D. Rossi, A dive into the caching performance of Content Centric Net-
working . In IEEE 17th International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD’12), 2012.

124 A. Publications

5. G. Rossini, A Tutorial on ccnSim, an Highly Scalable CCN simulator, Talk at
RESCOM 2013

6. Raffaele Chiocchetti, Dario Rossi, Giuseppe Rossini, Giovanna Carofiglio and Diego
Perino„ Exploit the known or explore the unknown: Hamlet-like doubts in ICN. In
ACM SIGCOMM, ICN Workshop, 2012.

7. G. Rossini and D. Rossi, Large scale simulation of CCN networks. In Algotel 2012 ,
La Grande Motte, France, May 2012.

8. C. Betoule, T. Bonald, R. Clavier, D. Rossi, G. Rossini and G. Thouenon,Adaptive
Probabilistic Flooding for Multi-path Routing . In IFIP NTMS, Best paper award,
2012.

9. D. Rossi and G. Rossini, On sizing CCN content stores by exploiting topological
information . In IEEE INFOCOM, NOMEN Worshop, , Orlando, FL, March 25-30
2012.

Patents
1. D. Perino, G. Carofiglio, D. Rossi and G. Rossini, Dynamic Interest Forwarding

Mechanism for Information Centric Networking . Patent EP 13 306 124.2, filed
5/8/2013.

2. D. Perino, G. Carofiglio, R. Chiocchetti, D. Rossi and G. Rossini, Device and method
for organizing forwarding information in nodes of a content centric networking .
Patent EPO13161714.4 - 1856, filed 28/03/2013.

125

Bibliography

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of
information-centric networking,” Communications Magazine, IEEE, vol. 50, no. 7,
pp. 26 –36, july 2012.

[2] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. M. Maggs,
K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain: Incrementally deploy-
able icn,” in ACM SIGCOMM, 2013.

[3] G. Carofiglio, M. Gallo, and L. Muscariello, “Bandwidth and Storage Sharing Per-
formance in Information Centric Networking,” in ACM SIGCOMM, ICN Worskhop,
2011, pp. 1–6.

[4] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling Data Transfer in
Content-Centric Networking,” in ITC, 2011.

[5] P. R. Jelenković, “Asymptotic approximation of the move-to-front search cost dis-
tribution and least-recently used caching fault probabilities,” The Annals of Applied
Probability, vol. 9, no. 2, 1999.

[6] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for
lru cache performance,” in ITC, 2012.

[7] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical web caching
systems,” in IEEE INFOCOM, 2001, pp. 1416–1424.

[8] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate Models for General
Cache Networks,” IEEE INFOCOM, pp. 1–9, 2010.

[9] G. Rossini and D. Rossi, “Evaluating ccn multi-path interest forwarding strategies,”
Computer Communications, vol. 36, no. 7, 2013.

[10] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino, “Exploit the
known or explore the unknown?: hamlet-like doubts in icn,” in ACM SIGCOMM
ICN, Helsinki, Finland, August 2012.

126 BIBLIOGRAPHY

[11] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini, “INFORM: a
dynamic interest forwarding mechanism for information centric networking,” in ACM
SIGCOMM, ICN, 2013.

[12] S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga, “CATT: potential
based routing with content caching for icn,” in ACM SIGCOMM , ICN, 2012.

[13] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case for
stateful forwarding plane,” Computer Communications, vol. 36, no. 7, 2013.

[14] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-Effort Content Loca-
tion in Cache Networks,” IEEE INFOCOM, 2009.

[15] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta Algorithms for Hierarchical Web
Caches,” in IEEE ICPCC, 2004.

[16] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of LRU caches
and its analysis,” Performance Evaluation, vol. 63, no. 7, 2006.

[17] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching for
information-centric networks,” in ACM ICN, 2012.

[18] K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi, and S. Pack, “Wave: Popularity-
based and collaborative in-network caching for content-oriented networks,” in IEEE
NOMEN, 2012.

[19] W. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more” in information-
centric networks,” in IFIP NETWORKING, 2012, vol. 7289, pp. 27–40.

[20] M. Handley, “Why the internet only just works,” BT Technology Journal, vol. 24,
no. 3, 2006.

[21] A. Passarella, “A survey on content-centric technologies for the current internet:
CDN and P2P solutions,” Computer Communications, vol. 35, no. 1, 2012.

[22] L. Popa, A. Ghodsi, and I. Stoica, “Http as the narrow waist of the future internet,”
in HotNets, 2010.

[23] A. M. Odlyzko, “Internet traffic growth: sources and implications,” vol. 5247, 2003,
pp. 1–15.

[24] B. Ford and J. Iyengar, “Breaking up the transport logjam,” in ACM HotNets, Oc-
tober, 2008.

[25] X. Zhao, D. Pacella, and J. Schiller, “Routing scalability: An operator’s view,”
Selected Areas in Communications, IEEE Journal on, vol. 28, no. 8, 2010.

BIBLIOGRAPHY 127

[26] Cisco visual networking index: Forecast and methodology, 2009-2014.

[27] T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson, “Smartbridge: a scalable
bridge architecture,” in ACM SIGCOMM, August 2000.

[28] R. Perlman, “Rbridges: transparent routing,” in IEEE INFOCOM, March 2004, pp.
1211 – 1218.

[29] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Viking: a multi-spanning-tree
ethernet architecture for metropolitan area and cluster networks,” in IEEE INFO-
COM, March 2004.

[30] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: a scalable Ethernet
architecture for large enterprises,” in ACM SIGCOMM, August 2008, pp. 3–14.

[31] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A. Gandhi, “Bananas: an
evolutionary framework for explicit and multipath routing in the internet,” in ACM
FDNA, August 2003, pp. 277–288.

[32] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica, “ROFL:
routing on flat labels,” in ACM SIGCOMM, August 2006, pp. 363–374.

[33] A. Singla, P. B. Godfrey, K. Fall, and S. Iannaccone, G. Ratnasamy, “Scalable routing
on flat names,” in ACM CoNEXT, November 2010.

[34] N. R. Mysore, A. Pamboris, N. Farrington, P. Huang, N. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat, “Portland: a scalable fault-tolerant layer 2 data
center network fabric,” in ACM SIGCOMM, August 2009.

[35] D. Eppstein, “Finding the k shortest paths,” IEEE FOCS, pp. 154–165, November
1994.

[36] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul, “Spain: Cots data-center
ethernet for multipathing over arbitrary topologies,” in USENIX NSDI, April 2010,
pp. 18–34.

[37] R. Ogier, V. Rutenburg, and N. Shacham, “Distributed algorithms for computing
shortest pairs of disjoint paths,” IEEE Information Theory, vol. 39, no. 2, pp. 443
–455, Mar. 1993.

[38] A. Varga, “Omnet++ website,” http://www.omnetpp.org, 2010.

[39] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-second igp
convergence in large ip networks,” ACM SIGCOMM CCR, vol. 35, pp. 35–44, July
2005.

128 BIBLIOGRAPHY

[40] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular
router,” ACM Transactions on Computer Systems, pp. 263–297, August 2000.

[41] V. Jacobson, D. Smetters, N. Briggs, J. Thornton, M. Plass, and R. Braynard, “Net-
working Named Content,” in ACM CoNEXT, August 2009.

[42] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive forwarding in
named data networking,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 3, 2012.

[43] R. Fonseca, M. Crovella, and B. Abrahao, “On the Intrinsic Locality Properties of
Web Reference Streams,” in IEEE INFOCOM, 2003.

[44] S. Arianfar and P. Nikander, “Packet-level Caching for Information-centric Network-
ing,” in ReArch Workshop, 2010.

[45] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy, “Performance
evaluation of the random replacement policy for networks of caches,” in ACM SIG-
METRICS, 2012.

[46] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: a view
from the edge,” in ACM IMC, 2007, pp. 15–28.

[47] D. Perino and M. Varvello, “A reality check for content centric networking,” in ACM
ICN, 2011.

[48] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon, “I tube, you tube, everybody
tubes: analyzing the world’s largest user generated content video system,” in ACM
IMC, 2007.

[49] D. Rossi, C. Testa, and S. Valenti, “Yes, we ledbat: Playing with the new bittorrent
congestion control algorithm,” in PAM, 2010.

[50] Y. Cui, P. Wu, M. Xu, J. Wu, Y. Lee, A. Durand, and C. Metz, “4over6: network
layer virtualization for ipv4-ipv6 coexistence,” Network, IEEE, vol. 26, no. 5, 2012.

[51] P. H. Salus, Casting the Net: From ARPANET to Internet and Beyond... Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[52] C. S. Carr, S. D. Crocker, and V. G. Cerf, “Host-host communication protocol in the
arpa network,” in ACM AFIPS, 1970.

[53] D. Clark, “The design philosophy of the darpa internet protocols,” ACM SIGCOMM
Comput. Commun. Rev., vol. 18, no. 4, 1988.

[54] Cisco visual networking index: Forecast and methodology, 2009-2014.

BIBLIOGRAPHY 129

[55] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” in ACM SIGCOMM,
2001.

[56] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM, 1988.

[57] M. Thorup and U. Zwick, “Compact routing schemes,” in ACM SPAA, 2001.

[58] R. Sanchez, L. Raptis, and K. Vaxevanakis, “Ethernet as a carrier grade technology:
developments and innovations,” IEEE Communications Magazine, vol. 46, pp. 88–94,
2008.

[59] “Ieee standard 802.1ah - provider backbone bridges (pbb),” June 2008.

[60] “Ieee 802.1qay - provider backbone bridge traffic engineering (pbb-te),” Jan. 2009.

[61] E. Mannie, “Generalized multi-protocol label switching (gmpls) architecture,” in
IETF RFC3945,.

[62] J. J. Garcia-Lunes-Aceves, “Loop-free routing using diffusing computations,”
IEEE/ACM Trans. Netw., vol. 1, February 1993.

[63] W. Zaumen and J. Garcia-Luna-Aceves, “Loop-free multipath routing using gener-
alized diffusing computations,” in IEEE INFOCOM, March 1998, pp. 1408–1417.

[64] M. J. Blesa and C. Blum, “Ant colony optimization for the maximum edge-disjoint
paths problem,” in Applications of Evolutionary Computing, vol. 3005, 2004, pp.
160,169.

[65] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “Mate: Mpls adaptive traffic engineering,”
in ACM SIGCOMM, vol. 3, 2001, pp. 1300 –1309.

[66] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC 2992
(Informational), Internet Engineering Task Force, Nov. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2992.txt

[67] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest simple paths: A new
algorithm and its implementation,” ACM Trans. Algorithms, vol. 3, November 2007.

[68] P. Merindol, J. Pansiot, and S. Cateloin, “Low complexity link state multipath rout-
ing,” in IEEE INFOCOM Workshop, april 2009, pp. 1 –6.

[69] N. Lin and Z. Shao, “Improved ant colony algorithm for multipath routing algorithm
research,” in IEEE IPTC, oct. 2010, pp. 651 –655.

http://www.ietf.org/rfc/rfc2992.txt

130 BIBLIOGRAPHY

[70] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing Protocol (DSR)
for Mobile Ad Hoc Networks for IPv4,” IETF RFC 4728, Feb. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4728.txt

[71] F. Solano, T. Stidsen, R. Fabregat, and J. Marzo, “Label space reduction in mpls
networks: How much can a single stacked label do?” IEEE/ACM Transactions on
Networking,, vol. 16, no. 6, 2008.

[72] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,” in ACM
SIGCOMM, August 2009, pp. 111–122.

[73] M. J. Kim, D. H. Lee, and Y. I. Eom, “Enhanced non-disjoint multi-path source
routing protocol for wireless ad-hoc networks,” in ACM ICCSA, 2007, pp. 1187–
1196.

[74] A. Myers, T. Eugence, and H. Zhang, “Rethinking the service model: Scaling ethernet
to a million nodes,” in ACM Hotnet, August 2004.

[75] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting route caching: The world
should be flat,” in ACM PAM, April 2009, pp. 3–12.

[76] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing Protocol (DSR)
for Mobile Ad Hoc Networks for IPv4,” IETF RFC 4728, Feb. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4728.txt

[77] S. Nelakuditi and Z.-L. Zhang, “On selection of paths for multipath routing,” in
IEEE IWQoS, vol. 2092, 2001, pp. 170–184.

[78] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with rocketfuel,”
in ACM SIGCOMM, August 2002, pp. 133–145.

[79] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,” in ACM
SIGCOMM, August 2008, pp. 27–38.

[80] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek, “Measuring the
effects of internet path faults on reactive routing,” ACM SIGMETRICS, pp. 126–137,
June 2003.

[81] B. Bollobas, Random Graphs. Cambridge University Press, 2001.

[82] A. Raj and O. C. Ibe, “A survey of ip and multiprotocol label switching fast reroute
schemes,” Computer Networks, vol. 51, June 2007.

[83] J. Moy, “OSPF Version 2,” RFC 2328 (Standard), Internet Engineering Task Force,
apr 1998. [Online]. Available: http://www.ietf.org/rfc/rfc2328.txt

http://www.ietf.org/rfc/rfc4728.txt
http://www.ietf.org/rfc/rfc4728.txt
http://www.ietf.org/rfc/rfc2328.txt

BIBLIOGRAPHY 131

[84] V. Jacobson, D. K. Smetters, N. H. Briggs, J. D. Thornton, M. F. Plass, and R. L.
Braynard, “Networking Named Content,” in CoNEXT, 2009.

[85] L. Wang, A. K. M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFn: An OSPF
based routing protocol for named data networking,” Tech. Rep., March 2012.

[86] D. Perino, G. Carofiglio, R. Chiocchetti, D. Rossi, and G. Rossini, “Device and
method for organizing forwarding information in nodes of a content centric network-
ing,” Patent EPO13 161 714.4/2013.

[87] S. Podlipnig and L. B. Osz, “A Survey of Web Cache Replacement Strategies,” vol. 35,
no. 4, pp. 374–398, 2003.

[88] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, design
and experimental results,” IEEE JSAC, vol. 20, no. 7, pp. 1305–1314, 2002.

[89] T. Wong, G. Ganger, and J. Wilkes, “My cache or yours? making storage more
exclusive,” in USENIX Annual Technical Conference, 2002.

[90] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy,
“On the scale and performance of cooperative Web proxy caching,” in ACM SOSP,
1999, pp. 16–31.

[91] M. Fiore, F. Mininni, C. Casetti, and C.-F. Chiasserini, “To cache or not to cache?”
in IEEE INFOCOM, 2009, pp. 235 –243.

[92] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling and
Evaluation of CCN-Caching Trees,” IFIP Networking, 2011.

[93] J. Choi, J. Han, E. Cho, T. T. Kwon, and Y. Choi, “A Survey on Content-Oriented
Networking for Efficient Content Delivery,” IEEE Communications Magazine, pp.
121–127, 2011.

[94] K. Katsaros, G. Xylomenos, and G. Polyzos, “MultiCache : An overlay architecture
for information-centric networking,” Computer Networks, pp. 1–11, 2011.

[95] J. Ardelius, B. Gronvall, L. Westberg, and A. Arvidsson, “On the effects of caching
in access aggregation networks,” in ACM ICN, Helsinki, Finland, 2012.

[96] K. Park and V. Pai, “Scale and performance in the coblitz large-file distribution
service,” in USENIX NSDI, 2006.

[97] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial caching for
peer-to-peer systems,” IEEE/ACM Transactions on Networking, vol. 16, no. 6, 2008.

132 BIBLIOGRAPHY

[98] M. Busari and C. Williamson, “ProWGen: a synthetic workload generation tool for
simulation evaluation of Web proxy caches,” Computer Networks, vol. 38, no. 6, 2002.

[99] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy in network
traffic: findings and implications,” in ACM SIGMETRICS, 2009, pp. 37–48.

[100] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with rocketfuel,”
in ACM SIGCOMM, 2002.

[101] ccnSim homepage. http://www.infres.enst.fr/~drossi/ccnSim.

[102] A. Narayanan and D. Oran, “Content Routing using Internet Routing
Protocols: Can it scale?” IETF-82, ICNRG BAR BOF, 2011, uRL:
http://trac.tools.ietf.org/group/irtf/trac/wiki/icnrg.

[103] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox,
“Information-centric networking: seeing the forest for the trees,” in Proceedings of
the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011, p. 1.

[104] A. Dan and D. Towsley, “An approximate analysis of the lru and fifo buffer replace-
ment schemes,” ACM SIGMETRICS, 1990.

[105] G. Rossini and D. Rossi, “ccnSim: an highly scalable ccn simulator,” in IEEE ICC,
2013.

[106] ——, “A dive into the caching performance of content centric networking,” in IEEE
CAMAD, 2012.

[107] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-terabyte and multi-gbps
information centric routers,” Tech. Rep., 2013.

[108] http://mobilityfirst.winlab.rutgers.edu/Prototype.html.

[109] NSF FIA MobilityFirst. http://mobilityfirst.winlab.rutgers.edu/.

[110] http://users.piuha.net/blackhawk/0.3/.

[111] FP7 Publish Subscribe Internet Rouring Paradigm (PSIRP). http://www.psirp.org/.

[112] FP7 PPURSUIT . http://www.fp7-pursuit.eu/.

[113] https://github.com/fp7-pursuit/blackadder.

[114] http://privatewww.essex.ac.uk/~nvasta/ICNSim.htm.

[115] TSB/EPSRC Personal and Social Communication Services for Health and Lifestyle
Monitoring (PAL). http://palproject.org.uk.

http://www.infres.enst.fr/~drossi/ccnSim
http://mobilityfirst.winlab.rutgers.edu/Prototype.html
http://mobilityfirst.winlab.rutgers.edu/
http://users.piuha.net/blackhawk/0.3/
http://www.psirp.org/
http://www.fp7-pursuit.eu/
https://github.com/fp7-pursuit/blackadder
http://privatewww.essex.ac.uk/~nvasta/ICNSim.htm
http://palproject.org.uk

BIBLIOGRAPHY 133

[116] https://sourceforge.net/projects/netinf.

[117] FP7 Scalable and Adaptive Internet Solutions (SAIL). http://www.sail-project.eu/.

[118] http://code.google.com/p/opennetinf/.

[119] FP7 4WARD. http://www.4ward-project.eu/.

[120] http://www.ict-convergence.eu/wp-content/uploads/CPK.zip.

[121] FP7 CONVERGENCE. http://www.ict-convergence.eu/.

[122] http://netgroup.uniroma2.it/CONET/.

[123] Ccnx homepage. http://www.ccnx.org/.

[124] NSF Named Data Networking (NDN). http://www.named-data.org/.

[125] http://www-sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/.

[126] Content-Oriented Networking: a New Experience for Content Transfer (CONNECT).
http://anr-connect.org/.

[127] “Ns-3 based named data networking (ndn) simulator,” http://ndnsim.net.

[128] http://code.google.com/p/ccnpl-sim/.

[129] FP7 COntent Mediator architecture for content-aware nETworks (COMET). http:
//www.comet-project.org.

[130] FP7 Content Aware Searching retrieval and sTreaming (COAST). http://www.
coast-fp7.eu.

[131] http://swig.org/.

[132] The click modular router project. http://www.read.cs.ucla.edu/click/.

[133] Getting started with ns-3-click and nsclick. http://www.read.cs.ucla.edu/click/
nsclick.

[134] K. Y. M. R. N. Vastardis, A. Bontozoglou, “Simulation Tools Enabling Research on
Information-centric Networks,” in IEEE ICC 2012 Workshop on the Network of the
Future (FutureNet V), June.

[135] S. F. et al., “Naming things with hashes.”

[136] P. H.-B. et al., “The named information (ni) uri scheme: Optional features,.”

https://sourceforge.net/projects/netinf
http://www.sail-project.eu/
http://code.google.com/p/opennetinf/
http://www.4ward-project.eu/
http://www.ict-convergence.eu/wp-content/uploads/CPK.zip
http://www.ict-convergence.eu/
http://netgroup.uniroma2.it/CONET/
http://www.ccnx.org/
http://www.named-data.org/
http://www-sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/
http://anr-connect.org/
http://ndnsim.net
http://code.google.com/p/ccnpl-sim/
http://www.comet-project.org
http://www.comet-project.org
http://www.coast-fp7.eu
http://www.coast-fp7.eu
http://swig.org/
http://www.read.cs.ucla.edu/click/
http://www.read.cs.ucla.edu/click/nsclick
http://www.read.cs.ucla.edu/click/nsclick

134 BIBLIOGRAPHY

[137] FP7 OpenFlow in Europe Linking Infrastructure and Application (OFELIA). http:
//http://www.fp7-ofelia.eu/.

[138] N. B.-M. A. Detti, S. Salsano.

[139] www.openflow.org/.

[140] S. S.-N. B.-M. A. D. L. Veltri, G. Morabito, “Supporting information-centric func-
tionality in software defined networks,” in IEEE ICC Workshop on Software Defined
Networks (SDN),.

[141] A. T.-G. Jonas Eymann, Yunqi Luo, “OMNeT++ based Simulator for Content Cen-
tric Networking,” in CCNxCon’12, September 2012.

[142] http://www.named-data.net/testbed.html.

[143] https://www.grid5000.fr/.

[144] http://planet-lab.org/.

[145] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang, “ndnSIM: NDN simulator
for NS-3.”

[146] L. Z. Alex Afanasyev, Ilya Moiseenko, “ndnSIM: A ns-3 Based NDN Simulator,” in
CCNxCon’12, September 2012.

[147] http://www.inf.usi.ch/carzaniga/cbn/routing/index.html.

[148] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for content-based
networking,” in IEEE INFOCOM, 2004.

[149] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-by-hop and receiver-driven
interest control protocol for content-centric networks,” in ACM SIGCOMM Workshop
on Information-centric networking (ICN), 2012.

[150] ——, “Icp: Design and evaluation of an interest control protocol for content-centric
networking,” in IEEE INFOCOM Workshop of Emerging Design Choices in Name-
Oriented Networking (NOMEN’2012), 2012.

[151] “Omnet++ homepage,” http://www.omnetpp.org/.

[152] B. Stroustrup, The C++ Programming Language. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2000.

[153] Boost homepage. http://www.boost.org/.

http://http://www.fp7-ofelia.eu/
http://http://www.fp7-ofelia.eu/
www.openflow.org/
http://www.named-data.net/testbed.html
https://www.grid5000.fr/
http://planet-lab.org/
http://www.inf.usi.ch/carzaniga/cbn/routing/index.html
http://www.omnetpp.org/
http://www.boost.org/

BIBLIOGRAPHY 135

[154] R. L. Bagrodia and M. Takai, “Performance evaluation of conservative algorithms
in parallel simulation languages,” IEEE Transactions on Parallel and Distributed
Systems, vol. 11, pp. 395–411, 2000.

[155] I. D. Baev and R. Rajaraman, “Approximation algorithms for data placement in ar-
bitrary networks,” in ACM SODA. Society for Industrial and Applied Mathematics,
2001.

	Acknowledgments
	Abstract
	Résumé
	Synthèse en Français
	Contents
	Introduction
	A bit of history
	Host vs Information Centric Networking
	Host Centric Networking
	Information Centric Networking

	Structure of this work

	I Host Centric Networking
	Background
	Aplasia overview
	Routing
	Forwarding and framing
	Part I structure

	 Apl : probabilistic routing algorithm
	Algorithm description
	Overview
	Primary and secondary paths
	Pseudocode

	Performance evaluation
	Algorithm complexity
	Path quality

	Conclusions

	APLASIA: forwarding on switched paths
	Architecture description
	Node architecture
	Autoforwarding frames

	Enhancing path computation performance
	Quickest vs shortest path finding
	Refining APL

	Dynamic system performance
	Path computation timeliness
	Advertisement auto-termination
	Duration of an advertisement cycle

	Click implementation
	Discussion and Open Issues
	Larger path sets.
	Administrative routing weights.
	Failure resolution and recovery
	Amount of control plane state

	Conclusions

	II Information Centric Networking
	Background
	Content Centric Networking: an overview
	Routing and forwarding
	Naming
	Security

	Network Caching Algorithms
	Notation
	NCA definition
	Scale limits
	CCN models and simulations
	Catalog size
	Popularity Model

	Part II structure

	Caching: simulative assessment
	A realistic scenario
	Cache and catalog size
	Content Popularity
	Performance at a glance

	Topology aware caching design
	Caching evaluation on different topologies
	Exploiting topology heterogeneity
	Performance evaluation

	Conclusions

	Forwarding Strategies
	Exploitation vs Exploration
	Exploitative strategies
	Performance evaluation

	Exploratory strategies: toward iNRR
	Coupling forwarding and exploration
	Performance evaluation
	Scenarios
	Performance
	Sensitivity analysis
	Comparison with edge-caching
	Small to large-scale scenarios

	Modeling iNRR
	aNET model and notation
	iNRR model
	iNRR vs aNET accuracy

	Approximate iNRR implementation

	Conclusions

	ccnSim: an Highly Scalable CCN Simulator
	Taxonomy of ICN Software
	ICN software
	CCN software

	Description of ccnSim
	Simulator architecture
	Catalog and popularity model
	Messages and chunks
	Node architecture
	Simulation statistics

	Benchmarking of ccnSim
	Benchmark scenario
	Simulator profiling
	Simulator parallelization
	Overall performance

	Conclusions

	Conclusions
	Host Centric Networking
	Future work

	Content Centric Networking
	Future work

	Appendices
	Publications

	Bibliography

