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Résumé

Au cours des dernières décennies, l’échographie médicale a connu une croissance exponen-
tielle et est devenu aujourd’hui, l’une des modalités d’imagerie médicale les plus utilisées.
Celle-ci permet le diagnostic d’un large spectre de maladies de façon non-invasif et à faible
coût.

L’échographie médical a bénéficié de l’amélioration continue des systèmes électron-
iques. Les sondes sont maintenant constituées d’un grand nombre de transducteurs.
Ceux-ci sont contrôlés de façon indépendante, permettant d’émettre et de mesurer des
champs de pression complexes. De plus, l’accroissement des capacités de calculs des
échographes a ouvert la voie au développement et à l’utilisation de techniques d’imagerie
complexes. Celles-ci permettent d’accéder à une qualité d’image sans précédents et à de
nouveaux outils de caractérisation des tissus mous. Cette thèse s’inscrit dans ce contexte
et pose les bases d’une nouvelle approche matricielle pour l’échographie.

Les techniques d’imagerie confocales sont celles qui permettent aujourd’hui d’obtenir
la meilleure qualité d’image. Elles sont basées sur une double focalisation à l’émission et
en réception en chaque point du milieu, correspondant à chaque pixel de l’image. Deux
hypothèses fondamentales sont nécessaires au processus de focalisation. Tout d’abord,
le milieu est considéré comme homogène avec une vitesse du son constante. Ensuite, les
échos mesurés par la sonde sont traités comme résultant uniquement de phénomènes de
diffusion simple. Néanmoins, ces hypothèses ne sont pas toujours valides. Les tissus mous
peuvent présenter de fortes disparités de vitesse du son. Ces fluctuations distordent les
fronts d’onde incidents et réfléchis, ce qui réduit la qualité de focalisation des faisceaux
acoustiques qui ne sont alors plus limités par les phénomènes de diffraction. De plus, des
variations brutales de la vitesse du son du milieu peuvent générer des artéfacts de réver-
bérations. En outre des phénomènes de diffusion multiple apparaissent nécessairement
entre des diffuseurs du milieu. Ceux-ci génèrent des échos parasites qui induisent un bruit
de fond incohérent dans les signaux RF. Ces deux phénomènes indésirables, c’est-à-dire
les aberrations et la diffusion multiple, dégradent la résolution et le contraste de l’image
échographique et impactent le diagnostic d’un examen médical. Il y a donc un besoin
évident à développer de nouveaux outils afin de quantifier ces phénomènes et d’améliorer
la qualité des images.

L’image échographie mesure la réflectivité locale du milieu. Néanmoins, d’autre pro-
priétés mécaniques peuvent être modifiées par la présence d’une maladie. Dans ce cas,
un indicateur indirect basé sur une telle propriété du milieu est susceptible de devenir un
biomarqueur pour la détection, le diagnostic et le suivit de cette maladie. C’est le principe
de l’imagerie quantitative, dont le but est de fournir des informations quantitatives sur
le milieu sondé. Par exemple, les échos multiplement diffusés, qui traditionnellement
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ont été uniquement considérés comme une source de bruit, contiennent une information
sur la microarchitecture des tissus. Ces échos peuvent donc être utilisés afin de mesurer
les propriétés de diffusion du milieu. De même, il a été montré que l’atténuation, mais
aussi la vitesse du son, sont deux biomarqueurs de la stéatose (maladie non-alcoolique du
foie). Ces paramètres gouvernent la propagation des ondes à l’intérieur des tissus. De
façon similaire, avoir accès à des informations sur les diffuseurs eux-mêmes est tout aussi
utile. Par exemple, les tissus musculaires sont constitués d’un ensemble de fibres. Cette
anisotropie de diffuseurs est une caractéristique fondamentale pour l’imagerie de ces tissus.
De même, la détection et la caractérisation de structures résonnantes peuvent profondé-
ment améliorer l’utilisation de bulles comme agents de contrastes. L’objectif principal
de cette thèse est de développer un nouveau formalisme matriciel permettant de traiter
l’ensemble de ces problématiques à travers un unique processus d’imagerie. La première
étape de cette imagerie matricielle consiste à mesurer la matrice de réflexion à l’aide
d’un ensemble d’insonifications, formant une base d’émission. Cette matrice contient
l’ensemble des réponses impulsionnelles du milieu. Celles-ci sont mesurées par les dif-
férents transducteurs de la sonde qui constituent alors une base de réception. L’ensemble
des informations acoustiques accessible sur le milieu est alors contenu dans cette matrice.
A l’aide de simples produits matriciels, cette matrice peut être projetée dans n’importe
quelle base d’observation. Cela permet alors d’isoler et d’extraire une information utile
pour une application particulière. Cette approche matricielle de la propagation des ondes
est particulièrement flexible et constitue alors un puissant outil permettant le développe-
ment de nouvelles techniques d’imagerie.

La seconde étape du processus d’imagerie matricielle consiste à discriminer les signaux
mesurés par la sonde en fonction de leur origine : (i) signaux issus de phénomènes de
diffusion simple qui peuvent être utilisés pour l’imagerie mais qui ont potentiellement
subit des aberrations lors de leur trajets aller-retour ; (ii) signaux issus de phénomènes de
diffusion multiple qui sont soit filtrés à des fins d’imagerie, soit quantifiés afin de mieux
caractériser le milieu ; (iii) Réflexions multiple et (iv) bruit électronique que l’on cherche à
supprimer. Enfin, chacune de ces contributions est analysée séparément afin de dissocier
les phénomènes induits par la propagation des ondes de ceux générés par la réflectivité
du milieu.

Le premier chapitre a pour but de rappeler les caractéristiques des échos rétrodiffusés
par des tissus mous et de présenter les différentes techniques d’imagerie développées afin
de caractériser ces milieux. Dans un premier temps, nous décrirons en détail le processus
de formation d’image. Alors que les méthodes conventionnelles reposent sur un ensemble
d’excitations focalisées, les techniques d’imagerie avancée combines plusieurs excitations
afin d’effectuer une double focalisation à l’émission et à la réception en chaque point du mi-
lieu. Cette analyse permet de mettre en évidence les limites fondamentales de l’imagerie :
(i) fluctuations de la vitesse du son, (ii) diffusion multiple, (iii) phénomènes d’atténuation,
(iv) manque d’information sur la réflectivité du milieu. Nous présenterons ensuite une
brève revue des techniques développées afin de dépasser chacune de ces limites, soit dans
un but d’améliorer la qualité d’image avec des techniques d’imagerie adaptative, soit afin
de quantifier les propriétés mécaniques des tissus. Plus précisément, nous insisterons sur
la mesure de la vitesse du son, de la diffusion multiple et de l’anisotropie de diffuseur.

Le second chapitre présente les principes fondamentaux de l’approche matricielle ainsi
que les outils de bases qui seront utilisés dans les deux chapitres suivants. Il constitue
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donc le cœur de cette thèse. Nous examinerons tout d’abord les travaux fondateurs qui
ont permit l’émergence d’une approche matricielle de la propagation des ondes. Nous
décrirons ensuite le concept d’imagerie matricielle qui repose principalement sur la sépa-
ration des positions de focalisation à l’émission et en réception. Combiné à une étude
fréquentielle de la matrice de réflexion, ce processus permet d’extraire les réponses im-
pulsionnelles entre transducteurs virtuels localisé à l’intérieur du milieu. L’ensemble de
ces réponses forment la matrice de réflexion focalisée qui constitue la brique de base de
l’approche matricielle. Un des avantages de cette approche réside dans la capacité à
projeter la matrice de réflexion focalisée d’une base d’observation à une autre à l’aide
de simple produits matriciels. Par exemple, cela permet d’observer les réponses impul-
sionnelles depuis la base des transducteurs, la base d’onde plane, ou la base focalisée qui
contient l’ensemble des transducteurs virtuels du milieu. A travers cette analyse, nous dé-
montrons que ce formalisme matriciel permet dans un premier temps de décrire toutes les
techniques d’imageries actuelles. Puis nous utiliserons ces réponses afin (i) de quantifier
la qualité de focalisation à l’aide d’un nouveau critère de focalisation et (ii) de construire
une expérience de retournement temporel numérique permettant d’observer la propaga-
tion des ondes à l’intérieur du milieu à l’aide de films de propagation. Les deux derniers
chapitres exploitent ce formalisme matriciel afin de corriger les aberrations induites par
des fluctuations de vitesse du son [chap. 3] ; et de développer de nouvelles techniques
d’imagerie quantitatives à partir de la matrice de réflexion focalisée [chap. 4].

Dans le chapitre 3, nous développons le concept de la matrice de distorsion. Cet
opérateur connecte chaque point de focalisation à l’intérieur du milieu à la distorsion
subie par le front d’onde généré depuis ce point. Nous montrerons que la décomposi-
tion de cette matrice en valeurs singulières permet dans un premier temps de déterminer
le nombre d’aires d’isoplanétisme contenue dans le champ de vision via l’étude de son
entropie de Shannon. Cette information permet de quantifier le nombre de lois de focali-
sation orthogonales requises afin de corriger parfaitement les aberrations sur l’ensemble de
l’image. Puis nous décrirons comment un processus de retournement temporel basé sur la
matrice de distorsion permet d’estimer la matrice de transmission du milieu. Celle-ci relie
chaque transducteur de la sonde à chaque cellule de résolution du milieu. Les aberrations
peuvent finalement être estimées et compensées afin d’obtenir une image échographique
corrigée dont la résolution est prévue par les limites de la diffraction. Afin d’illustrer ce
processus, nous appliquerons cette technique dans un premier temps à une expérience
in-vitro sur phantom, puis sur une expérience in-vivo sur le mollet d’un volontaire sain.

Le quatrième et dernier chapitre est dédié à la caractérisation des tissus via une ap-
proche matricielle dont le but est de fournir des indicateurs quantitatifs liés aux propriétés
mécaniques des tissus. A partir de la matrice de réflexion focalisée, nous montrerons :
(i) comment les aberrations latérales puis axiales peuvent être utilisées pour construire
des cartes de vitesse du son ; (ii) comment des phénomènes physiques tel que la diffu-
sion cohérente ou la réciprocité spatiale peuvent être utilisés afin de quantifier le ratio
d’intensité de diffusion multiple dans l’image échographique, formant ainsi un nouveau
contraste d’imagerie ; et (iii) comment il est possible de mesurer localement la nature des
diffuseurs et leur anisotropie grâce à des expérience de retournement temporel numériques
qui donnent accès à leur réponse fréquentiel et à leur diagramme de rayonnement.
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Introduction

For the past decades, the field of medical ultrasound has experienced an exponential
growth to become, nowadays, one of the most widely used modality for clinical imaging
and diagnosis. Compared to other medical imaging modalities, ultrasounds are non-
invasive and low cost. Ultrasounds system are able to collect a huge quantity of infor-
mation on various soft tissues that can then be used to diagnose and monitor all kind of
diseases.

Medical ultrasound has benefited from the continuous improvement of hardware sys-
tems. Ultrasonic probes now consist in a large number of individually controlled trans-
ducers that can emit and receive ultrasound waves at will. At the same time, ultrasound
systems provide ever greater computing capacity, unlocking the use and development of
complex post-processing techniques to better image and characterize the medium. This
thesis fits into this context and lays the foundation of a new matrix imaging approach for
ultrasound.

State-of-the-art ultrasound images are based on a confocal method that consists in a
double focusing, both in transmit and in receive, on each point of the medium correspond-
ing to one pixel of the image. These focusing processes rely on two major assumptions.
First, the medium is considered as homogeneous with a constant speed of sound. Sec-
ond, the back-scattered wave-field only contains singly-scattered echoes. Nonetheless,
the speed of sound varies greatly in different tissues. These fluctuations give rise to a
distortion of the incident and back-scattered wave-fronts that reduces the ability to fo-
cus acoustic beams in a diffracted limited focal spot. Sharp variations of the medium
speed of sound may also generates reverberation artifacts. Moreover, multiple scattering
events can also occur between the scatterers of the medium. This multiple scattering
contribution manifests itself as an incoherent background noise in the RF signal. Those
two undesirable effects, namely aberrations and multiple scattering, thus lead to a loss
of resolution and contrast in the ultrasound image that may impact the diagnosis of a
medical exam. Therefore there is a strong need to develop new imaging techniques to
assess these phenomenon and to enhance the image quality.

While the ultrasound image probes the medium reflectivity, other mechanical prop-
erties may be impacted by a disease. Any indirect indicator that is based on such prop-
erties then becomes a relevant bio-marker for assessing, monitoring and detecting the
stage of this disease. This is the principle of ultrasound quantitative imaging whose aim
is to provide quantitative information on the tissues under investigation. For instance,
multiply-scattered echoes that have traditionally been seen as a nightmare for classical
wave imaging, could be used to characterize the scattering properties of the medium.
Similarly, it has been shown that attenuation, which imposes a maximal imaging depth
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is also a bio-marker for the diagnosis of non-alcoholic fatty liver diseases. Similarly, the
medium speed of sound could also be used to diagnose various kind of diseases. While
these parameters govern the wave propagation within the tissues, additional knowledge
on the scatterer themselves are equally useful. For instance, the anisotropy of scattering
in tissues is a fundamental feature for mapping the orientation of fibers in muscles. The
detection and characterization of resonant structures can also strongly improve the use
of bubbles as ultrasound contrast agents.

The main objective of this thesis is to address all the aforementioned issues in a single
imaging process. To that aim, the matrix formalism is particularly appropriate since the
wavefield is controlled by an array of independent transducers. A first step in matrix
imaging is the acquisition of the reflection matrix that contains the medium responses
generated by successive insonifications, forming an input basis, and measured by all the
probe transducers, i.e. an output basis. This matrix contains all the available information
on the medium. By means of basic matrix operations that allows one to project these
ultrasound data from one basis to another, relevant information are extracted for a given
problem. Matrix imaging is thus a particularly flexible and powerful tool. It can be
applied to the inspection of any organ or tissues.

A second step is to be able to discriminate the different nature of echoes reflected by the
medium of interest: (i) single scattering contribution that can be directly used for imaging
but that can suffer from aberrations; (ii) multiple scattering that can be taken advantage
for characterization purposes; (iii) multiple reflections that we want to avoid but that
could be in principle used for focusing if they are properly recombined with the single
scattering contribution; (iv) electronic noise that we want to get rid of. Finally, each one
of these above-mentioned contribution are analyzed separately to disassociate phenomena
induced by the wave propagation to those generated by the medium reflectivity.

The first chapter aims to describe the nature of the back-scattered echoes generated
by soft tissues and the various techniques developed to characterize such media. The
whole image formation process is first presented. While conventional methods rely on an
ensemble of focused insonifications, more advanced ones are based on a confocal method.
This precise description points out the fundamental limits of ultrasound: (i) fluctuations
of the medium speed of sound, (ii) multiple scattering process, (iii) attenuation phe-
nomena, (iv) unknown nature of scatterers. We then provide a brief review of all the
state-of-the-art methods used to overcome these limitations, either for improving the im-
age quality via adaptive imaging techniques or characterize the mechanical properties of
the medium. More precisely, we insist on the characterization of the medium speed of
sound, the multiple scattering process and the medium anisotropy.

The second chapter constitutes the core of this thesis as it contains all the first build-
ing blocks of the matrix imaging concept. We briefly review all the major milestones that
enable the emergence of a matrix approach of the wave propagation. We then describe
the matrix imaging concept that basically consists in splitting the locations of the trans-
mitted and received focal spots. Combined with a frequency and temporal analysis of the
back-scattered echoes, this process gives access to the impulse responses between virtual
transducers located within the medium at each pixel location. This set of responses form
a so-called focused reflection matrix that contains all the available information on the
medium under investigation. One of the major asset of the matrix approach lies in its
ability to easily express the reflection matrix from one observing basis, e.g. the trans-
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ducer, plane wave or focal basis to the other by simple matrix products. Throughout
this analysis, we first show that this matrix formalism is able to describe all the current
ultrasound imaging methods. Then we demonstrate how these responses can be taken
advantage of for : (i) quantifying the focusing quality via a new focusing criterion and
(ii) building a numerical time-reversal experiment that enables a propagation movie of
the wave inside the medium. The last two chapters take advantages of this formalism for
: (i) a local aberration correction method based on the distortion matrix concept; (ii)
novel quantitative imaging modes deduced from the focused reflection matrix.

In chapter 3, the distortion matrix concept is developed. This operator essentially
connects any focal point inside the medium with the distortion that a wave-front, emit-
ted from that point, experiences due to heterogeneities. By means of a singular value
decomposition of this matrix, the number of isoplanatic patches can be deduced from the
Shannon entropy of this matrix. It highlights the number of orthogonal focusing laws that
are required to fully correct for aberrations over the entire field of view. A time-reversal
analysis of the distortion matrix enables the estimation of the transmission matrix that
links each sensor and image voxel. Phase aberrations can then be unscrambled for any
point, providing a full-field image of the medium at a diffraction-limited resolution. Here,
we first present an experimental proof of concept on a tissue-mimicking phantom and
then, apply the method to in vivo imaging of human soft tissues.

Finally, the chapter 4 is dedicated to a matrix approach of quantitative imaging. It
aims to provide quantitative information of various mechanical parameters of the medium,
which are relevant biomarkers for the diagnosis of some diseases. Based on the matrix
formalism, we demonstrate : (i) how transverse and axial aberrations can be used to
build maps of speed of sound,(ii) how physical phenomena such as the coherent back-
scattering effect or the spatial reciprocity of the wave propagation can be used to produce
highly resolved spatial maps of the prevalence of multiple scattering in the ultrasound
image, which constitutes a new and unique contrast for ultrasonic imaging, and (iii) how
a local characterization of the scatterers nature and anisotropy could be extracted from
their radiation pattern and frequency response, which are accessible via numerical time
reversal experiments.
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Chapter I

Ultrasound imaging, principles and

limits
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This chapter is divided in three parts and contains all the required information and
notions that will be used in the next chapters for developing the concept of matrix imag-
ing. First, we introduce some basic concepts of medical ultrasound imaging, which is an
estimation of the medium reflectivity. We briefly review some characteristic features of
the pressure field generated by the ultrasound probe. We then analysis in details the con-
ventional image formation process that is based on an ensemble of focused insonifications.
We provide additional information on back-scattered signals generated by soft tissues. We
describe state-of-the-art synthetic beamforming techniques that are used to improve the
image quality and/or frame-rate. Finally, the fundamental limits of ultrasound imaging
are highlighted when faced to an unknown medium. The second part and third part of
this chapter details the techniques developed to overcome those limits. The second part
more precisely deals with the improvement of the image quality via adaptive focusing
techniques. Finally, the third part covers the concept of quantitative imaging, whose aim
is to map physical parameters such as the local speed-of-sound, a multiple scattering rate
and to image specular reflector.

I.1 Basics of ultrasound imaging

I.1.1 Transmission and reception of ultrasound waves

I.1.1.1 Transducers

Soft tissues can be observed with various mechanical waves. However at ultrasonic fre-
quencies, only longitudinal waves can be used. Shear waves are strongly absorbed by
the high shear viscosity. In ultrasound, these longitudinal waves are characterized by a
frequency spectrum that is higher than 20 kHz. For medical purposes, a wide range of
frequencies are used. Due to attenuation phenomenon, the choice of frequency is mainly
linked to the depth of the tissues under investigation. It goes from 1 MHz for deep organ
imaging, e.g. liver imaging, to 40−60 MHz for shallow depth imaging, e.g. skin or eye ul-
trasound imaging. Note that these values are extreme one, most of the ultrasound exam,
are performed in the range from 3 MHz to 15 MHz. Ultrasound waves are generated
and measured using ultrasound probes that are composed by an ensemble of transducer
elements arranged in various geometries. The transducers are piezoelectric elements that
converts an electric signal into a mechanical wave. Thanks to the reversibility of this
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3 Chapter I. Ultrasound imaging, principles and limits

process, they are usually used to both generate and probe the pressure field at the sur-
face of a medium under investigation. In transmission, a mechanical strain is generated
by applying an electrical field while in reception, a mechanical stress induces electrical
charges. In medical imaging, piezoelectric are currently made of a synthetic ceramic,
most often a lead-zirconate-titanate (PZT). They are generally designed in a rectangular
shape defined by a width w, height L and thickness d [Fig. I.1(a)], which defines the
fundamental resonance frequency (f0) [1] :

f0 =
cp

2d
, (I.1)

where cp denotes the compressional speed of sound inside the crystal. Thus, the choice
of the fundamental resonance frequency imposes the thickness of the transducers. For
instance, to design a PZT transducer element operating at 5 MHz, the thickness has to
be set to 0.43 mm, given that the speed of sound in PZT is around cp = 4300 m/s. In
order to characterize a transducer element, we rely on the concept of acousto-electrical
impulse response hae(t), which corresponds to the pressure wave generated by the element
as a response of an electrical pulse. Mathematically, such brief signal is modeled by the
Dirac delta function noted δ(t). Reversely, it also corresponds to the electrical signal
induced by a mechanical stress pulse.

Other parameters may be used to characterize the spectral bandwidth, such as the
center frequency fc or the fractional bandwidth B:

fc =
f+ + f−

2
and B =

f+ − f−

fc
, (I.2)

where f+ and f− are the upper and lower frequencies of the transducer bandwidth. The
latter ones are generally the frequencies for which the signal is −6 dB lower than its
maximum value. Usually, the bandwidth is expressed as a percentage of the center fre-
quency. In medical imaging, the order of magnitude of the −6 dB bandwidth is generally
around 80% for state-of-the-art ultrasound transducers. Figure I.2 shows an example of
the transducer impulse response hae(t) and its associated spectrum of the transducer el-
ements of the Verasonics L11-5V probe®. Such experiment is performed in a water tank,
where the transducer is placed in front of a hydrophone. This transducer is excited by an
electrical pulse that lasts for instance, one half period of the central frequency. The signal
measured on the hydrophone then defines the impulse response of the transducer. The
spectrum displayed in Fig. I.2(b) is characterized by a large frequency bandwidth (60%)
around a center frequency of 7.8 MHz. Figure I.2(a) shows that the emitted signal is
coherent and that transducer elements can transmit short acoustical pulses, of a fraction
of a µs. We will see in paragraph I.1.2.1 that the duration of such pulses defines the axial
resolution. However, to improve the intensity of the incident wave, and thus the one of
the back-scattered echoes, longer pulses are required. This observation leads to a tradeoff
between axial resolution and signal-to-noise ratio (SNR).

The electrical signal produced by the transducer results from the average pressure
field at the transducer surface. This behavior rules the transducer radiation pattern. For
rectangular transducers, the pressure field generated in the plane ~ex, ~ez is then mainly
governed by its width w along the axis ~ex [Fig. I.1(c)]. In the Fraunhofer approximation,
meaning in the far-field [Par. I.1.2.2], the pressure field P (θ) generated by the transducer
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Fig. I.1 (a) Construction of transducers from a single piezoelectric crystal. (b)
Complete sketch of a linear probe. (c) 3D field of illumination of a focused beam.
Adapted from [1].
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Tissue/material c (m/s) ρ (kg/m3) Z (MRayls)

Breast 1510 1020 1.540

Liver 1578 1050 1.657

Water (20 deg C) 1482.3 1000 1.482

PZT-5A 4350 7.75 33.71

Table I.1 – Properties of soft tissues and piezoelectric transducer materials, first three
rows are from [5] and the last one is from [6].

tissues and piezoelectric transducer materials. To ensure an optimal transmission of the
acoustic wave to the medium and vice versa, matching layers are added to the probe.
This is a key component of an ultrasound probe. If no adaptive impedance is performed,
85% of the intensities of both the incident and back-scattered waves are reflected at the
interface. Even if the matching layers improve the coupling between the transducers and
soft tissues, a perfect adaptive impendence is never reached due to the large frequency
bandwidth of the transducers. It means that a part of the incident wave is reflected within
the probe. In addition, waves that are directly reflected during the transmission event
can then be reflected a second time on the back of the probe, leading to more parasite
signals. Such reflections would modify and enlarge the duration of the transmitted signal.
This phenomenon is commonly circumvented by adding a backing material at the back
of the probe.

Finally, as stated above, the ultrasound image probes only a slice of the medium that
corresponds to the imaging plane defined by {~ex, ~ez}. However, due to their rectangu-
lar shape, transducers also send energy in the elevation plane defined by ~ey, ~ez. This
phenomenon generates unwanted back-scattered signals coming from scatterers located
outside of the imaging plane. To counter this effect, an acoustic lens is added at the sur-
face of the probe [darker part on the edge of ultrasound probes on figures I.1c]. Thanks to
this passive material, the incident beams then remain as much colinear as possible to the
imaging plane. More precisely, acoustic lens is made of a polymer whose speed-of-sound
is lower than studied soft tissue speed of sound. By designing this material in a curved
shape, the waves are focused on a focal length named elevation focus. This distance de-
pends on the target application and on the type of probe. The order of magnitude of the
elevation focus is around 20 mm for linear probes, 60 mm for curved probes and around
70 mm for phased array probes.

I.1.1.3 Probe frame and signal post-processing

Due to the spectral properties of the transducer elements, whose electro-acoustical impulse
response has a frequency content concentrated around the center frequency, the element-
raw data are bandpass signals. They can be directly stored unaltered and called Radio
Frequency (RF) signals or demodulated using a Phase-Quadrature (IQ) demodulation
at the central frequency of the transmitted pulse fc. This demodulation is generally
performed at a hardware stage to reduce the size of the stored data. In addition, if RF
data are used, an enveloped detection is required [see par. I.1.2]. While, the RF signals
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9 Chapter I. Ultrasound imaging, principles and limits

are real ones, the IQ data are complex ones. Their real and imaginary parts are associated
with the in-phase and quadrature component of the original signal, respectively.

Note that, in the following of this thesis, the experiment has been carried out using a
Supersonic Imagine probe SL15-4, which is characterized by w = 0.175 mm, fc = 7.5 MHz,
a frequency bandwidth between 4 and 15 MHz and an angular aperture of around 26 deg
at −6 dB. We will neglect back-scattered echoes generated by scatterers located outside
the imaging plane and use a 2D Cartesian frame whose origin is located at the center
of the ultrasound probe. Each transducer is located by the transverse coordinate of its
surface central point, noted u, (and axial one is null). The subscripts in and out will
denote the transmitted and received parts of the wave propagation between the probe
and the medium, e.g. a transmitting and a receiving transducer are identified by their
lateral coordinates uin and uout, respectively.

Now that medical ultrasound probes have been fully characterized from an acousti-
cal point-of-view, we describe in the next paragraph the conventional image formation
process.

I.1.2 Conventional beamforming for focused insonifications

An ultrasound image also known as B-mode image is an estimation of the medium reflec-
tivity that is constructed from a sequence of incident ultrasonic waves. Short-scale fluctu-
ations of the medium impedance generate back-scattered echoes that are measured by the
transducers. The B-mode image is then constructed using the process of Delay-And-Sum
(DAS) beamforming. It consists in summing coherently all the measured back-scattered
echoes that have been generated by each point of the medium. Each echo is selected by
computing the round-trip time-of-flight (τ = τin + τout) of the incident wave to propagate
from the probe to the image voxel, time-of-flight τin and to go back, time-of-flight τout

[Fig. I.5]. If a bright scatterer is indeed found at this location, the corresponding signals
will constructively interfere, resulting in a high intensity signal associated with a bright
pixel of the image. However, if the image voxel does not contain any scatterer, the se-
lected signals are out-of-phase one compared to the other. Destructive interferences thus
occur during the coherent summation, which results in a low intensity signal associated
with a dark pixel.

The delicate step of computing the times-of-flight for each insonification and each focal
point is achieved in most of clinical devices by assuming the medium as homogeneous with
a constant speed of sound c0. The times-of-flight are then simply computed by measur-
ing the geometrical distance between the transducer and the image voxel. Although this
assumption is required for real-time imaging, it may not be valid for some configurations
where long-scale fluctuations of the medium speed-of-sound impact the wave propaga-
tion [7]. Paragraph I.2.1 provide an exhaustive description of the consequences of these
aberrations on the image reconstruction process. By analyzing the beamforming step, we
assume a direct link between the time-of-flight of a back-scattered echoes and the locations
of the scatterers that generate this echo. This assumption is valid only for singly-scattered
echoes that have interact only once with the medium. However, back-scattered signals
may also contain multiply scattered echoes that have been scattered more than once by
the scatterers in the medium. Even if those echoes are generally considered as a source of
noise that degrade the image contrast, they contain additional information on the medium
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location r = {xin, z} is excited by the incident wave and generates a back-scattered wave
that is measured by the transducers at time:

τ(rin, uout, r) =
z

c0
︸︷︷︸

τin

+

√

(xin − uout)2 + z2

c0
︸ ︷︷ ︸

τout

, (I.7)

where τin and τout are the transmitted and return times-of-flight, respectively. τ will be
refered as the focusing law in the following. We insist on the fact that r is not necessarly
located at the same depth than rin.

The image formation process actually consists in a numerical output beamforming
that estimates the total intensity of the echoes captured by the probe and generated by
each image voxel of coordinate r = {xin, z} of the scan-line. Back-scattered signals are
first delayed in reception to create the realigned signals:

R̆ (uout, rin, r,∆t) = R (uout, rin, τ(rin, uout, r) + ∆t) (I.8)

For conventional ultrasound imaging and for most of common ultrasound techniques, only
the signals corresponding to ∆t = 0 are computed. Thus, this variable will mostly be
reminded only when ∆t 6= 0. Then the realigned signals are coherently summed, hence
the denomination Delay-And-Sum (DAS) beamforming [Fig. I.5(b)]:

Rb(xin, z) =
1

Nout(r)

u+
out(r)
∑

u−

out(r)

R̆ (uout, rin, r,∆t = 0) (I.9)

with u−
out(r) and u+

out(r) the first and last used transducers to perform the beamform-
ing step and Nout(r) the number of used transducers. The selected transducers form
the received aperture Aout(r) [Fig. I.5(b)] and is discussed in the following paragraphs.
Rb(xin, z) corresponds to the beamformed signals associated with the column xin of the
final ultrasound image.

In conventional ultrasound imaging, each column is constructed based on one trans-
mitted event. Consequently, to create images with high contrast, only the scatterers
located close to this scanning-line should be excited. To do so, only the surrounding
transducers are used in transmission to create a focused beam that is associated with a
large field-of-depth δzin

0 . This distance corresponds to the length over which the beam
remains collimated [Fig. I.5(a)]. In absence of aberration, this distance is predicted by
the diffraction theory [8], such as:

δz0
in

(rin) =
2λc

sin2(βin(rin))
with βin(rin) = atan

(
Ain(rin)

2zin

)

. (I.10)

where λc = 2πfc/c is the central wavelength defined at the medium speed of sound and
βin(rin) the maximum angle of illumination. It is generally defined from the transmitted
aperture Ain that selects the transducer to be excited such as: |xin − u| < Ain/2. In
ultrasound imaging, the transmitted f-number = zin/Ain is defined to maintain the same
illumination angle βin for particular cases where the transmitted focal points rin are
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located at varying depth. At the focal depth, the lateral extension δx0
in

(rin) of the incident
beam is [8] [Fig. I.5(b)]:

δx0
in

(rin) =
λc

2 sin(βin(rin))
.F#

in (I.11)

Note that sin(βin) is often known as the transmitted numerical aperture. For linear probe,
the order of magnitude of the focal depth is zin ≈ 20 mm and the transmitted f-number
is F#

in ≈ 3, which corresponds to βin ≈ 10 deg. In this case, the spatial extensions of
the transmitted beam at fc = 7.5 MHz and c0 = 1540 m/s are δz0

in
= 13.6 mm and

δx0
in

= 0.6 mm (to be compared to the wavelength λc ≈ 0.2 mm).
The same equations can be derived for the numerical output operation. Note that

the transmit aperture is not too large in order to create focused beams characterized by
a large depth-of-field. The objective is to insonify only scatterers that are located along
the scan line. However, the receive aperture Aout(r) is chosen as large as possible to get
the highest lateral resolution as possible [Par. I.1.2.1]. However, Aout is limited by the
radiation pattern of the transducer. Indeed, a transducer is not able to fully capture
a back-scattered wave characterized by a large output angle. Therefore, the received f-
number F#

out is thus maintained constant for all focal point in order to defined a constant
maximum angle of collection βout (except at large depth or on the edge of the image where
this aperture cannot be maintained due to the limited size of the transducer array). For
linear probe, the order of magnitude of the received f-number is around F#

out = 1.4 and
is lower (meaning larger aperture) than the transmitted one. The maximum angle of
collection is then around βout = 20 deg.

Each column Rb(z, rin) can be seen as a temporal signal where z = c0t/2. It is then a
bandpass signal that can be expressed as:

Rb(r) = Re
[

I(r)e
i2πfc

2z
c0

+φ
]

, (I.12)

with Re[..] the real part operator, I(r) and φ the envelope and phase shift of the beam-
formed scan-line. For display purpose, the ultrasound images only the envelope as it is a
smoother signal that is more pleasing for the human eye. Hence, the envelope is extracted
by means of either a Hilbert transform or a in Phase-Quadrature (IQ) demodulation. Note
that this step is not necessary for raw IQ data that have already been demodulated. In
this case, I(r) is directly obtained by computing the absolute value of the beamforming
output:

I(r) = |Rb(r)| (I.13)

After the optional envelope extraction step, I(r) is log-compressed within a given dynamic
range and eventually displayed with a gray-scale colormap in real-time. To better visualize
the entire field-of-view and compensate for attenuation, I(r) is often multiplied by an
increasing function of depth called Time-Gating-Compensation (TGC), which is manually
adjusted [Par. I.1.3.4].

Figure I.6(a) displays an ultrasound image of a tissue-mimicking phantom, whose
mechanical properties are similar to the one of soft tissue. This gel is a relevant tool for
ultrasound imaging as it constitutes an ideal medium with known propagating properties,
such as speed of sound or attenuation. Such phantom is generally composed by three types
of scatterers:
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13 Chapter I. Ultrasound imaging, principles and limits

- bright point-like targets that are in fact nylon monofilament placed orthogonally to
the imaging plane. They are used to assess the local resolution of the ultrasound
image.

- the fluctuating background characterized with a granular texture called speckle that
results from the contribution of randomly distributed unresolved scatterers [see par.
I.1.3.2].

- two disks located at depth z = 40 mm and characterized by a brighter granular
texture, which is produced by a higher density of unresolved scatterers. They are
actually cylinders in 3D, whose brightness difference with the background is cali-
brated. They are used to assess the contrast of the ultrasound image.

Figure (b) is an in-vivo ultrasound image of the liver of a healthy anonymousvolunteer.
To perform the acquisition, the probe is placed between the ribs. Shallow depths of the
resulting image are associated with a succession of fat and muscle intercostal tissues. The
bottom part of the image (for depth 25 < z < 70 mm) corresponds to the liver organ.
It shows a characteristic speckle like aspect. We also detect dark circular areas that are
veins. Blood scatterers are known to be weak scatterers.

I.1.2.1 Image resolution

The spatial resolution quantifies the ability of an imaging system to differentiate between
two close points, which is intrinsically linked to the point spread function (PSF), i.e. the
impulse response of the imaging system. In US imaging, the PSF is highly asymmetrical
and we usually differentiate axial from lateral resolution.

The axial resolution is determined by the ability to separate two echoes that arrive
at two different times-of-flight. It is thus linked to the temporal duration of the incident
transmitted pulse. More precisely, the axial axis (along ~ez) can be seen as a temporal
axis. Thus, the axial resolution δz0 is often considered as half the length duration of the
transmitted US pulse. In other words, it can be expressed as the inverse of the incident
pulse bandwidth B :

δz0 =
c0

2fc
(I.14)

The lateral resolution is linked to the capacity of the beamforming process to dis-
criminate between echoes associated with scatterers located at the same depth. In any
imaging system, the lateral resolution is governed by the maximum angle of illumination
or collection βin or βout [Eq. I.11]. In the case of conventional beamforming that requires
a dedicated transmitted event for each column, βin is arbitrarily small to create beams
that stay collimated to the scan-line. The resolution of the ultrasound image is thus given
by the lateral extension of the received focal spot δx0 = δx0

out
[Eq. I.11].

Note that, in practice, a common way to quantify the spatial resolution of an ultra-
sound image consists in measuring the full width at half maximum (FWHM) of a bright
point like scatterer (whose dimensions are smaller than the resolution cell). Such scat-
terer can be found in tissue-mimicking phantom [bright points on figure I.6(a1)]. Actually,
they are generally nylon monofilament wires (whose diameter is equal to 100 µm in this
example).
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I.1.2.2 Model for wave propagation

Modeling the exact pressure field generated by the ultrasound probe is a difficult task
mainly as it should take into account many phenomena: (i) broadband signals, (ii) finite
size of the transducers and probe, (iii) near field configurations, (v) medium attenuation,
(vi) fluctuation of the medium speed of sound, (vii) multiple scattering process,(viii)
coupling between the probe and the medium...

The wave propagation is fully described by the wave equation developed by d’Alembert.
For the pressure field P (r, t) this equation is expressed as:

∆P − 1

c2
0

∂2P

∂2t
= Ps(r, t) (I.16)

with ∆ being the Laplacian operator and Ps(r, t) a source term. In the case of a transducer
located at mathbfu, Ps(r, t) = Ps(t)δ(u − r). To model the wave propagation, we rely
on the temporal green’s function G(r,u, t), which is solution of the wave equation. In
other word, this useful function describes the pressure field P (r, t) at any point of the
medium when a spatial Dirac source (i.e. a point-like source) located at u emits a brief
pulse. However, modeling the wave propagation in the frequency domain is much easier
as temporal convolutions are transformed into simple products. In the monochromatic
regime at frequency f , the wave equation leads to the Rayleigh-Sommerfeld equation:

P (r, f) =
1

jλ

∫

Lx

Ein(u, f)G(r,u, f) cos(θ)du, (I.17)

where cos(θ) = z/|r − u|. This equation links the pressure field P (r) at any point r
of the medium to the distribution of pressure Ein(u) along a surface of sources via the
medium monochromatic green’s function G(r,u, f). Note that this equation assumes that
no multiple scattering event occurs during the wave propagation.

This equation can be derived for 3D and 2D configuration, the difference lies in the
choice of the monochromatic green function. Here, due to the probe lens that collimates
the incident beams and the measured echoes within the imaging plane ({~ex, ~ez}) we con-
sider 2D Green’s Function. In a homogeneous medium, G(r,u, f) is equal to G0(r,u, f)
the free-space 2D monochromatic Green’s function [9]:

G0(r,u) = − i

4
H1

0(k|r − u|) ≈
k|r−u|≫1

−1 + i

2
√

2π

ejk|r−u|

√

k|r − u|
, (I.18)

with H1
0 the Hankel function of the first kind.

As an example, to model a monochromatic focused beam with a focal point located
at rin, the pressure field at the surface of the probe is given by:

E(u) = E0e
−jk|rin−u|WLx(u), (I.19)

where E0 is an amplitude term and WLx(u) a spatial window that account for the limited
size of the ultrasound probe. Figure I.7 displays the corresponding pressure field of a
typical focused beam generated by a linear probe for conventional ultrasound imaging.
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Fig. I.7 Simulated pressure field obtained for a monochromatic focused beam
characterized by focal point located at {xin, zin} = {0, 25} mm (white cross)
using a transmitted f-number F#

in = 4 and a central frequency fc = 7.5 MHz.
The pressure field is normalized by the intensity at the focus and shown in decibel
(dB).

I.1.3 Back-scattered echoes by soft tissues

In the previous section, we describe the conventional image formation process. We now re-
view some basics about ultrasound scattering in tissues that directly influence the imaging
process.

Short scale inhomogeneities of the refractive index, referred to as scatterers, cause
incoming waves to be reflected. In acoustic the refractive index is the medium impedance
Z = ρc, where ρ is the local density and c the local speed of sound, that depends on
the medium compressibility. Back-scattered echoes are then generated by fluctuations
of the density and/or speed of sound in the medium. The pressure field reflected by a
single scatterer depend both on the nature of the scatterer (contrast of compressibility or
density) and on the relation of the scatterer shape or roughness to the incident wavelength.
To distinguish between each type of scatterer, we usually compare its characteristic size a
to the incident wavenumber kc. Scatterers fall roughly into three groups: (i) the specular
scatterers, whose one of its dimensions is larger than the central wavelength, i.e. akc ≫ 1
(ii) unresolved scatterers that are much smaller than the central wavelength, i.e. i.e.
akc ≪ 1 and (iii)the rest that fall in between those extremes. The three types of scatterers
can be found in soft tissues. For instance, the ultrasound image of the liver I.6(b) shows
a speckle like aspect that is generated by unresolved scatterers. The tissue boundaries
are specular scatterer. Indeed, at least one of their dimensions is larger than the central
wavelength.

I.1.3.1 Pressure field reflected by a single scatterer

If the central wavelength is much smaller than at least one of the object dimensions
ka ≫ 1, the reflection process can be approximated by incident rays that are back-
scattered at the surface of the object based on the Snell’s laws. The back-scattered
wavefront then contains information on the shape of the object. Figure I.8 illustrates
this regime called specular regime. More precisely, for each incident angles, the surface
of the scatterer generates back-scattered echoes only in a particular direction. As a
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Fig. I.9 Rayleigh scattering of a plane wave of wavenumber k = 2π/λ on large
reflectors characterized by ka ≫ 1. (a) Sphere of radius a, (b) disk of radius a.

the echoes generated by each one of these selected scatterers. The contribution of each
scatterer is weighted by both the local amplitude of the incident wave that excited the
scatterer and their scattering strength. In practice, the emitted pulse has a finite dura-
tion that enlarges the number of scatterers that contributed to the measured signal at
time t. From this simple experiment, we define the isochronous volume as the ensemble
of positions that share the same round-trip time-of-flight, for a given excitation (here a
single transducer insonification), a given receiver and a given time-of-flight [11]. In other
words, it contains all the potential locations of the medium that may participate to a
given back-scattered signal.

For a more complex configuration where the incident wave is a focused one generated
by an array of transducers, the isochronous volume defined at time t for a given receiver
is deduced from the superposition of all the individual one computed for each couple
emitter/receiver shifted by the transmitted time-delay. Due to the random reflectivity of
the unresolved scatterer, this volume acts as a continuously moving incoherent acoustic
source. Figure I.10(b) displays the isochronous volume associated with four successive
time-of-flight induced by a focused incident beam. In this case, the intensity received by
each scatterer depends on its location compared to the incident beam. The incoherent
virtual sources are then limited to the illuminated field-of-view.

To sum up, each signal of the reflection matrix R(rin, uout, t) is associated with its
own isochronous volume that delimits the spatial extension of the incoherent virtual
source that generates this back-scattered echo. For a given image voxel located at r and
a given excitation, the beamforming consists first in estimating the round-trip time-of-
flight τ(rin, uout, r) for each receiving transducer and then in summing coherently the
corresponding signals. By constructive and destructive interferences, only the common
part of all the selected isochronous volume will constructively interfere, which defines a
new volume named received focal spot that is associated with the beamformed signals.
Each pixel of the ultrasound image then results from an ensemble of unresolved scatterers
randomly distributed within the corresponding focal spot. The back-scattered wavefront
that arises from this area results from the superposition of echoes generated by each one
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where TF[..] is the spatial Fourier Transform operator and E(u) the pressure field gener-
ated at the surface of the transducers [Par. I.1.2.2]. From this equation, the correlation
function of the realigned signals R̆

(
u1

out, rin, r = rin
)

and R̆
(
u2

out, rin, r = rin
)
, noted R̆u1

and R̆u2
respectively, can be deduced from the VCZ theorem as:

S(rin, u1, u2) =
〈

R̆u1
R̆∗

u2

〉

∝ TF(|P |2)

[
u1 − u2

λz

]

(I.21)

where 〈..〉 denotes a required average over multiple realizations of disorder. As the above
equation depends only on the distance ∆u = |u1 − u2|, this average is experimentally
replaced by a spatial one over all couples of receiving transducers u1 and u2 distant of
∆u, to measure the correlation function S(rin,∆u). It is also ingeniously improved by
correlating realigned time-window signals R̆ (uout, rin, r,∆t) where ∆t denotes a centered
time-window on ∆t = 0 and whose temporal width is typically defined by a few periods
of the central frequency.

Note that if the signals are not realigned, the spatial correlation of the back-scattered
echoes shows an additional phase term exp [i2π/λZ(u2

1 − u2
2)] compared to equation I.21,

which is linked to the difference of geometric curvature between the two selected elements.
In absence of aberration and in the case where the transmitted pressure field E0(u) is

proportional to a rectangular function, the pressure field P produced in the focal plane
is a cardinal sinus [Par. I.1.2.2]. Thanks to the Fourier transform properties, the Fourier
transform of a product is the convolution of the Fourier transform of each term. If the
above assumption is fulfilled, it then leads to the fact the spatial correlation function
of the realigned signals S(rin,∆u) is a triangular function that depends on the distance
∆u. In presence of aberrations, the author shows that the size of the input focal spot
increases, which reduces the width of the spatial correlation [Par. I.2.2.3]. Based on this
phenomenon, the author introduced the focusing factor that quantify the quality of focus
in a speckle regime.

I.1.3.4 Attenuation in soft tissues

To complete the description of back-scattered echoes generated by soft-tissues, we briefly
evoke the attenuation phenomenon and how it is handled in B-mode imaging. When
ultrasound waves propagate in soft tissues, it put them in movement, which necessary
generates some friction. This effect results in a loss of acoustic energy that is transformed
in weak local heating. This loss called absorption, is generally described by an exponential
decaying that is a function of the traveled distance (or time-of-flight). The characteristic
length of this phenomenon is called the absorption length la

Absorption is not the only source of losses that impacts the incident wave throughout
its propagation inside the medium. The scattering process also reduces the intensity of
this incident wave. It is characterized by the mean-free-path le, which can be seen as
the mean distance between two scattering events [Par. I.3.2]. Both la and le are two
fundamental properties of the propagation medium. However, separate absorption from
scattering losses is a difficult task that requires a subtle analysis of the back-scattered
echoes to first accurately quantify the multiple scattering process [13]. In wave physics,
the combination of these two phenomena is characterized by the extinction length lex such
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as:
1

lex
=

1

le
︸︷︷︸

scattering

+
1

la
︸︷︷︸

absorption

. (I.22)

In the field of ultrasound, the pressure field generated by a monochromatic plane wave
propagating along the axis ~ez at frequency fc is often modeled as:

P (z, t) = P0e
i(2πfct−kcz)e−α(fc)z (I.23)

where P0 is the pressure field at time t = 0 and z = 0 and α(fc) is the attenuation factor
expressed here in terms of nepers-per-centimeter in this form and defined as lex = 1/α. As
indicated, the attenuation factor strongly depends on the frequency and generally obeys
a frequency power law, defined as [14]:

α(f) = α0 + α1f
y (I.24)

where α0 is often neglected and y is close to one in soft tissues. Consequently, attenuation
in tissue-mimicking phantom is often given in (dB/MHz/cm). This behavior implies that
higher frequencies are more attenuated than lower ones. The spectrum of back-scattered
signals then evolves with the time-of-flight, and thus with the depth of the scatterers.
Figure I.11 illustrates this behavior by showing the average spectrogram of echoes used
during the beamforming process [Par. II.2.3 provides more details on its computational
details]. In addition to a global intensity loss, we observe a shift of the central frequency
towards the low frequencies at large depth, which reduces the resolution of the ultrasound
image (in addition to the potential diffraction phenomena).

For the past thirty years, many studies have investigated the global attenuation en-
counter in soft tissues and it has been shown that the mean free path is much larger
than the absorption length (le ≫ la). Consequently, the attenuation coefficient mostly
described the absorption phenomenon that can be used as a bio-marker for the diagnoses
of some diseases. For instance, inflamed and cirrhotic livers were shown to suffer from
less and higher losses than healthy liver respectively [15]. Three types of techniques have
been proposed to quantify these losses [16]:

- the spectral shift technique that probes the downshift in the center frequency with
respect to depth [17, 18, 19];

- the spectral difference method, which measures the decay of the power spectrum
frequency components with respect to depth to estimate the attenuation coefficient
as a function of frequency. These methods are based on the comparison with mea-
surements performed on known tissue-mimicking phantom [20, 21]; and

- the hybrid method, which is a combination of the first two techniques, i.e. a down-
shift estimation of the center frequency associated with the comparison with tissue
mimicking phantoms [22].

To limit the impact of these losses on the ultrasound image and to avoid a drop of
the image brightness at large depth, I(r) is often multiplied by an increasing function of
depth called Time-Gain-Constant (TGC) that is manually and/or empirically adjusted.
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Fig. I.11 Spectrum of echoes used during the beamforming process as a function
of depth [see Par. II.2.3]. The transmitting sequence is composed by 41 plane
waves spanning −20 to 20 deg and the transmitted pulses have a central frequency
defined at 7.5 MHz. The probe used is the SL15-4 whose bandwidth is between 4
and 15 MHz.Experiment on a homogeneous tissue-mimicking phantom without
targets characterized by an attenuation coefficient: α = 0.5 dB/cm/MHz.

I.1.4 Synthetic beamforming

In the paragraph I.1.2, we introduced the conventional image construction process that
is based on focused insonification. This technique is characterized by the fact that each
pixel of the ultrasound image is constructed based on the back-scattered signals of a
single transmitted event. Inspired by experiments in underwater acoustic and RADAR,
some forty years ago [23, 24], another technique has been proposed to combined the
wavefield obtained from multiple insonifications to construct each pixel of the ultrasound
image. Thanks to the hardware development of ultrasound systems, this technique called
synthetic beamforming has been widely used over the past twenty years to produce high
image quality. We first describe in this paragraph its pro and cons from an acoustical
point-of-view. A more fundamental analysis is developed in paragraph II.1.3 as it contains
many links with the matrix approach developed in chapter 2.
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I.1.4.1 Coherent plane wave imaging

While conventional beamforming based on focused insonification is widely used by clinical
ultrasound systems, one of its major drawbacks is the poor framerate, usually around 30
to 40 Hz (or fps). Even if it is high enough for real-time B-mode imaging, this imaging
technique fails to capture fluctuations of the medium reflectivity that are characterized by
higher frequencies such as heart beats or blood flows. The limiting step lies in the number
of insonifications used to create an image and, more precisely, the need to wait for the
round-trip time-of-flight. To tackle this issue, two different strategies has been developed:
(i) send simultaneously multiple focused beams in order to reconstruct multiple scan-lines
during a single insonification (in practice, the simultaneous insonified scan-line are not
adjacent in order to avoid cross talks) [25]. (ii) Modify the shape of the incident been in
order to insonify larger part of the medium for each insonification. To this aim, Montaldo
et al. (2009) [26] introduced the coherent plane-wave compounding that allows to reach
high frame rate (around 1 kHz) with a decent image quality. This imaging technique
successfully mixes two ingredients plane wave imaging (PWI) and coherent compounding.

Plane wave imaging consists in insonifying the entire medium with a single plane
wave θin. A beamforming is then performed in reception for each focal point [Fig. I.12].
For linear probe, a plane wave with an incident angle θin is created by exciting all the
probe transducers with transmitted time-delays that linearly depend on the location of
the ultrasound transducers:

τex(θin, u) =
u sin(θin)

c0
. (I.25)

The DAS beamforming is then performed by first realigning signals with the appropriate
delay that corresponds to the required round-trip time-of-flight for a plane wave θin to
travel from the probe to the image voxel τin(θin, r) and to come back to each receiver
τout(uout, r):

τ(uout, θin, r) =
x sin(θin) + z cos(θin)

c0
︸ ︷︷ ︸

= τin(θin,r)

+

√

(x− uout)2 + z2

c0
︸ ︷︷ ︸

= τout(uout,r)

. (I.26)

Then the coherent sum is performed for realigned signals at ∆t = 0 [Par. I.1.2]. Eventu-
ally, this sum is weighted by apodisation terms that are linked to the 2D free-space green
function [Par. I.1.2.2 and II.2.1]. Even if this imaging technique produces ultrasound
images with a relatively poor quality [Fig. I.13(c1)], its main advantage is that an entire
ultrasound image is created from a single insonification [27]. This imaging technique al-
lows to reach very high framerates, which allows the observation of fast movements such
as the propagation of shear waves inside soft tissues [28].

Coherent compound is based on the idea of combining multiple images of the
same scatterers that have been differently insonified. While incoherent compound has
been widely used since the early 1980s [29] for speckle reduction and signal to noise
improvement, coherent compounding, also known as synthetic beamforming, has first
been studied some twenty years later in the 2000s. First mentioned in the context of
limited diffraction beams [30, 31], this technique has been very successful via the pioneer
work of Montaldo et. al. [26], where it constitutes a key part of the transient elastography
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select all potential back-scattered echoes generated by each image voxel for each couple
{θin, uout}, which leads to a double focusing in transmission and in reception. This imag-
ing technique then falls under the scope of confocal imaging that are characterized by at
least an improved SNR as the spatial extension of the isochronous volume is minimized
both by the input and output focusing for each focal point. The resolution of the ultra-
sound image could also be improved if the maximum angle of illumination βin(r) is higher
than the one of collection βout(r) [Par. I.1.2.1]. Figure I.13 displays the reconstructed
ultrasound image of a breast phantom (CIRS, model 0073), based on various number of
transmitted plane waves. We logically observed that the image quality increases with the
number of illuminations and Figure I.13(c4), which is constructed based on the highest
number of plane waves, shows the best image quality, meaning the best resolution and
contrast. The resolution can be assessed by looking at the size of the scatterers located
within the white ellipse that are unresolved micro-calcifications. To compare the contrast
of these US image, we remind the reader that the US images are normalized by their
mean intensity and displayed with the same dynamic. Therefore, the image associated
with the best contrast is the one that show both the darker (e.g. rectangle area) and
brighter structures. More interestingly, figures I.13(c2, c3) are built from the same num-
ber of illuminations but with a different angle step (c2 is based on a larger angle step
and a larger maximum angle of illumination). This example illustrates that while large
angles of illumination are required to improve the resolution of the image, a low angle
step improves the contrast of the ultrasound image.

I.1.4.2 Comparison between focused and plane wave illumination

The transmitted focusing is the major difference between conventional beamforming that
relies on focus insonification and the coherent plane wave compounding that uses plane
wave illuminations (PWI) to perform numerical transmitted focusing. To successfully
perform the numerical transmitted focusing, the PWI assumes that the wave propagation
is a linear process and that the medium stay fixed during the entire transmitting sequence.
If these hypotheses are valid, the two transmitted focusing are strictly equivalent (the
comparison also requires that the energy of the incident waves is the same). Note that
the numerical transmitted focusing requires a larger computational cost. Performing real
time B-mode beamforming based on PWI that uses the same number of illuminations as
the focus one is a real challenge that can be achieved only for state-of-the-art ultrasound
system.

In practice, the PWI is used to reduce the number of illuminations. Figure I.14
compares the ultrasound image obtained via the two techniques in the case of in-vivo
carotid imaging of a healthy volunteer. The probe is placed perpendicularly the artery axis
(the dark disk located at the center of the images). To image approximately the same area,
the medium is insonified successively by the two illumination sequences. The plane wave
image is based on 41 plane waves spanning from −20 to 20 deg, while the conventional
image uses 256 focused insonifications characterized by a focal depth zin = 22 mm and a
transmitted f-number F#

in = 3.3. The transmitted parameters have been arbitrary chosen
and are close to the optimal ones used for each imaging mode related to this example.
Even if those two sequences are not strictly equivalent, they constitute a relevant example
to compare the pro and cons of each techniques.
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θout, for any incident plane wave θin. In other word, this scatterer should be insonified by
all transmitted spatial wave number defined at the central frequency kin = kc sin(θin). In
the case of focus beams, and for scatterers located around the focal plane, the incident
beam contains all the transmitted spatial wave number between k−

in = kc sin(θ−
in) and

k+
in = kc sin(θ+

in). To the contrary, in the case of PWI, the scatterers are only insonified
by some incident transmitted numbers kin, which correspond to the transmitted plane
wave. This phenomenon can be seen as a sampling of the kin-space. As with any kind
of sampling, the kin step must be small enough to fully capture all the back-scattered
information on this scatterer. This criterion is thus linked to the spatial coherence of the
back-scattered echoes that can be observed from one insonification to the other. This
spatial coherence is maximum for unresolved bright stars and can be deduce from the
Van Cittert Zernike theorem for unresolved scatterer.

In addition, some artifacts on the PWI image are observed and pointed out by the
white arrows. These artifacts are due to bright specular reflectors that belong to the
isochronous volume associated with the pixels of interest. Even if those scatterers gener-
ate signals that are out-of-phase for these realigned signals, the destructive interferences
that should erases them during the coherent summation is not optimal due to a lack of
information.

Finally, the hypothesis of a motionless medium is more critical for PWI than focused
illumination. While, each pixel of the conventional ultrasound image is constructed based
on a single illumination, the coherent compounding uses multiple illuminations for each
one of them. If some movement occurs during the transmission sequence, the relative
position of the scatterers will be distorted on both US images. However, in the case of
coherent compounding, such movements will induce in addition some destructive interfer-
ences as back-scattered echoes are out-of-phase from one illumination to the other. Such
situations appear in-vivo around arteries or close to the heart due to heart beats, but also
if the probe is moved relatively to a fixed medium.

These observations explain why plane wave imaging is able to produce very high-
quality images with few plane waves in tissue-mimicking phantom (motionless and without
specular scatterers) [26] but may produce some artifact in more complex configurations.

I.1.4.3 Other insonification sequences for synthetic imaging techniques

The idea of combining multiple insonification to improve the image quality is not limited
to the case of plane wave insonification but can be applied to any type of illumination
including the focused one [32]. Indeed, for small transmitted f-number F#

in (meaning large
apertures) the insonified region is not a straight line but a cone [Fig. I.15b]. Therefore,
scatterers located above or below are insonified by multiple focused beam [Fig. I.15(a)].
Coherent compounding can then be applied to focus insonifications to mimic a transmitted
focusing on each image voxel, leading to a confocal imaging technique characterized by
a better image quality. The versatility of this state-of-the-art imaging technique makes
it useful in a number of applications, from increased image quality in systems using
conventional transmitted focusing, to high framerate, and from high performance systems,
to low-cost high image quality scanners.
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blurred on figure (d), due to the heterogeneities induced by the shallow fat and muscle lay-
ers. Consequently, strong aberrations may impact the diagnosis of a medical exam. More
details on the impact of aberrations on the beamforming process are described in para-
graph I.2.1. In addition to the degradation of the image quality, a wrong model of speed
of sound induces axial aberrations, whose first order impact implies that the location of
the scatterers on the US image is biased. Indeed, the axial axis of the US image is in fact,
a temporal one. It has been translated into a spatial axis based on the hypothesis of speed
of sound. A hypothesis of homogeneous assumes that a back-scattered echo measured at
time t has been generated by scatterer located at depth z = c0t/2. A modification of the
speed of sound hypothesis then produce an axial translation of the resulting image. This
effect then impacts any medical exams that are based on the measurement of distances on
the ultrasound image. For example, the nuchal translucency (NT) scan is used to detect
chromosomal abnormalities in a fetus. This scan simply consist in mesuring the thickness
of the nuchal translucency of a fetus. While normal NT is characterized by a thickness
that is lower than 3 mm, the risk of abnormalities and postnatal death, increases with
NT thickness [34]. Even if statistics takes into account the uncertainties of the measure
due to a wrong speed of sound model, correcting axial aberrations could strongly reduce
the number of false positive and negative, and avoid additional invasive testing. Figure
I.17 shows normal and abnormal NT scan, which illustrates the measurement conditions
and demonstrates the need for any improvement of ultrasound image quality.

Single scattering regime: Independently of the speed of sound of the medium,
the link between the location of the scatterer and the time-of-flight of the back-scattered
echoes is valid only in the single scattering regime where we assume that the waves
interacts only once with the medium. However, in a more realistic description, multiple
scattering process occur, which implies that each back-scattered signal results from the
combination of echoes generated by single and multiple scattering process. For ultrasound
imaging, multiple scattering process acts as a source of incoherent noise which decreases
the contrast of the resulting imaging. More precisely, it enlarges the spatial extent of the
isochronous volumes as multiple scattered paths can have the same time-of-flight than
single one [Fig. I.18a]. Intuitively, the probability to induce a multiple scattering process
increases with the density of scatterers, their scattering strength and the time-of-flight,
which directly influence the ratio of multiple scattering intensity over single intensity γ.
Aubry et. al. [35] confirm that in in-vivo breast imaging, the ratio γ increases with the
time-of-flight and reaches 50% at 40 µs. For singly-scattered echoes, it corresponds to
scatterer located at 35 mm deep [Fig. I.18(b,c)]. Note that this ratio is estimated before
any focusing step, it thus characterized the RF signal and not the US image. More details
on multiple scattering are provided in paragraph [Par. I.3.2].

Speckle regime: the choice of the received aperture during the beamforming process
derives from two phenomena. First it is limited by the radiation pattern of the trans-
ducer. Second, it stems from an assumption on the radiation pattern of the scatterers
and thus on the direction of back-scattered echoes. By using a received aperture that
is centered on the lateral position of the pixel of interest, we assume that this region
generates back-scattered echoes in every direction and thus that this region is composed
by unresolved scatterers. In the case of specular objects such as biopsy needle or muscle
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following sections of this chapter provide a description of the state-of-the-art techniques
developed for these two purposes.

I.2 Ultrasound adaptive imaging of heterogeneous media

In this section, we first describe the impact of aberrations on the US image construction
process. We then detail the principle of adaptive imaging that is used to correct for
aberrations, and finally we analyze the state-of-the-art techniques used to correct for
these aberrations in the particular case of soft tissues imaging, characterized by a speckle
regime.

I.2.1 Impact of aberrations on the beamforming process

I.2.1.1 Aberrations in transmission and reception

As stated above, ultrasound imaging results from a double focusing that are performed by
applying time delays in transmission and in reception. These delays are computed based
on times-of-flight estimations of the wave propagation, which stem from a speed of sound
model. In the case of aberrations, this model is no longer valid. The times-of-flight are
no longer accurate, which damage the focusing quality. More precisely, during the trans-
mitted focusing, the wave is no longer confined in a diffraction limited area [Fig. I.19a]. It
reduces the pressure field of the exciting wave at the focal spot and generates unwanted
back-scattered signals coming from surrounding areas. In reception, the coherent summa-
tion is not optimal as it mixes echoes coming from different part of the medium [Fig. I.19b].
In other word, the isochronous volumes associated with each pixel are increased, which
strongly degrade the image resolution and contrast. Astronomers were the first to deal
with aberration issues in wave imaging. Their approach to improve image quality was to
measure and compensate for the wave front distortions induced by the spatial variations
of the optical index in the atmosphere. Based on deformable mirrors, this concept is
known as adaptive optics and proposed as early as the 1950s [36]. Similarly, ultrasound
adaptive imaging consists in inserting additional time delays [Fig. I.19e] in transmission
and in reception in order to compensate for the medium heterogeneities [Fig. I.19c,d]. In
transmission, this correction enables to create a diffraction limited focal spot, while in
reception it selects echoes coming from this region. In this case, aberrations are typically
modeled as a near-field phase screen A(u) located at the face of the transducer, which
induces both time-shifts called aberration laws and attenuation. Generally, the attenu-
ation term is not compensated as it implies enhancing low SNR signals (corresponding
to signals that have been largely attenuating), which is a delicate operation that may
degrade the image quality instead of improving it. Therefore, only the time-shifts noted
τab(u) are generally investigated. The difficult task of any adaptive imaging technique
lies in the determination of these additional time-delay (or phase mask in the frequency
domain) that would adaptively compensate for the medium heterogeneities [37].

Even if the near-field phase screen model accurately describes aberrations that are
concentrated in a thin layer near the transducers, it constitutes a helpful approximation for
theoretical studies that can be extended to more complex configurations. As aberrations
take place at the surface of the probe in this model, they are easily modeled by delaying
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Fig. I.19 (a, b) Impact of transmitted and received aberrations on the image
construction process. (c) Adaptive focusing consists in modifying the initial
focusing laws by means of suitable additional delays (the aberrated component).
(d,e) This process enable to compensate for the impact of aberrations both in
transmission and reception, leading to a high quality of focus.

the transmitted pressure field induced by the surface of the transducers E(u, t):

Eab(u, t) = E(u, t− τab(u)). (I.29)

Following the work done in optic [36], it is more convenient to study aberrations in the
frequency domain as a time shift is translated into a frequency shift thanks to the proper-
ties of the Fourier transform, hence the name of adaptive phase aberration correction [38].
Aberrations then behave as a simple complex transmittance function:

Eab(u, fc) = E(u, fc)e
−i2πfcτab(u) (I.30)

Impact of aberrations on the incident wave can then be investigated based on Fourier
acoustic laws [3].

Nonetheless, this principle only corrects first order aberrations and do not take into
account any other phenomena, such as interferences, diffraction or multiple scattering that
may occur during the wave propagation. To correct more complex aberrations, the green
function of the heterogeneous media under investigation has to be determined. Based on
the principle of time-reversal mirror [39], some techniques have demonstrated the ability
to focus on isolated bright target through a complex reverberating media in a reflection
configuration [See Par. II.1.1].
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(a)

(c) (d)

(b)

Fig. I.20 Adaptive focusing in ultrasound imaging. (a) Adaptive focusing con-
sists of adjusting the time delays added to each emitted and/or detected signal
in order to focus on certain position inside the medium. (c) Tilting the same
adaptive phase law allows the focal spot to be scanned over the vicinity of the
initial focal point. The area over which adaptive focusing remains effective is
called an isoplanatic patch. (C and D) Beyond this zone, the correction is no
longer efficient. Figures are extracted from [40]

I.2.1.2 Memory effect and isoplanatic patches

For heterogeneous tissues and organs such as the breast, or for body types that have
large subcutaneous layers the accuracy of the near-field phase screen model dropped as
a phase mask is only valid over a restricted area called an isoplanatic patch [Fig. I.20].
This is the region over which the aberration phase law is spatially invariant. To better
understand this phenomenon, we consider two focal points closed enough one the other
i.e. in the same isoplanatic patch. Their incident wavefront (and back-scattered echo)
travel through the same area of the aberrator, resulting in the same distortion of the
wavefront [[Fig. I.20](b)]. We can intuit from this visualization that the dimensions of the
isoplanatic patches depend on the complexity of the heterogeneities that are characterized
by their correlation length, on their location (near field or far field) and on the shape of
the incident wavefront (focused, plane wave or diverging wave).

This physical phenomenon is often referred as the memory effect [41, 42, 43] or iso-
planatism [36, 44] in wave physics. Usually, this phenomenon is considered in a plane
wave basis. When an incident plane wave is rotated by an angle θ, the far-field speckle
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image is shifted by the same angle θ [41, 42] (or −θ if the measurement is carried out
in reflection [45, 46]). Interestingly, this class of field–field correlations also exists in real
space: waves produced by nearby points inside a complex medium can generate highly
correlated, but tilted, random speckle patterns in the far field [47, 11, 48, 38, 49]. Con-
sequently, the point spread function (or focal spot) is invariant over an area called the
isoplanatic patch.

The size of the isoplanatic patch is a key parameter for adaptive imaging techniques
as it sets the required number of independent aberrations laws used for correcting a single
image [Fig. I.20]. It also delimits the region of interest used to determine each aberration
law. Unfortunately, it is often an unknown parameter. If the hypothesis of a near field
phase screen aberration is correct, meaning that the aberrations is located at the surface
of the transducers, then the spatial extension of the isoplanatic patch is infinite and
aberration are perfectly corrected by this model. Indeed, aberrations are in fact located
in the plane where wavefronts can be adjusted and controlled. However, if the aberration
appears between the control plane and the imaging plane, its associated isoplanatic patch
size is reduced. One can refer to the work of Mertz et al. in optics (2005) [44], who
demonstrated that in the case where the wavefront is controlled in the pupil plane, i.e.
in the far field, then the order of magnitude of the lateral extension lx of the isoplanatic
patch can be deduce from the statistics of the aberration laws:

lx =
2lφ

√

1 + 2σ2
φ

, (I.31)

where the phase mask is deduced from a normal distribution of standard deviation σφ

and a correlation length lφ. This demonstration is based on the properties of the Fourier
transform that links the pupil plane to the focal plane.

In acoustic, few studies have tried to characterize the dimension of the isoplanatic
patches for in-vivo experiment. However, they studied different configurations with dif-
ferent techniques leading to various results:

- Ng (1997) [50] reported simulation measurements of the isoplanatic patch size using
a 5 MHz linear array. Echoes from a point target were propagated through aber-
rating screens located at varying distances from the transducer surface. The array
of transducers was translated in the lateral direction, and the radio frequency (RF)
signals from the point target were correlated. Ng illustrated the near-infinite sta-
bility of near-field phase screens, and demonstrated that the size of the isoplanatic
patch shrinks as the aberrating screen is moved further away from the transducer.
As a result, at a distance of 20 mm between the transducers and the aberrating
layer, the isoplanatic patch size was approximately lx = 13.9 mm.

- Liu and Waag (1998) [51] measured the lateral and axial isoplanatic patch size of
20 mm thick post-mortem abdominal tissues using a time-shift compensation tech-
nique, and a linear array operating at 3.63 MHz. In this experiment, the abdominal
tissue was placed directly beneath the transducers in water, and a point target was
placed beneath the tissue layer, at a distance of 95 mm from the transducers. They
applied identical compensation to the received waveforms from a point target as the
target was translated in lateral and axial dimensions. The isoplanatic patch size
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was determined to be twice the distance required to increase the width of the point
target image by 10%. The average lateral and axial dimension of the isoplanatic
patch was determined to be [lx, lz] = [16.7, 39.0] mm.

- Tanter et al. (1998) [52] studied the time reversal process in absorbing media.
More precisely, they recorded an enhancement of the focusing quality for targets
located 15 mm away from the location where the aberration law has previously
been estimated.

- Dahl et al. (2005) [53] studied the spatial stability of measured aberration profiles
in breast, liver, and thyroid tissues at 5 MHz (λ = 0.3 mm). Relatively high
stability was measured in breast and thyroid, with less stability in the liver. At
70% correlation, for example, lateral isoplanatic patch sizes lx for breast, liver, and
thyroid tissue were determined to be 1.1, 0.44, and 1.0 mm. For the same amount of
correlation, axial isoplanatic patch sizes lx were 2.0, 1.2, and 2.9 mm, respectively.

To illustrate the impact of aberrations on the focusing process, figures I.21(a,b) show
simulated pressure field without and with an aberrated phase screen depicted on figure
I.21(c). The simulation is performed at 5 MHz with a transmitted f-number F#

in = 3. The
aberration stems from a random process based on a normal distribution and is character-
ized by a standard deviation σphi = 40 µs and a correlation length lphi = 5 mm. These
values where chosen to fit the one obtained by Dahl et. al. [53]. In this example, we
observe that the centered of the focal spot is deviated both laterally and axially from the
initial target.

I.2.2 Estimation of the aberration laws for ultrasound imaging of soft

tissues

First adaptive imaging techniques developed for astronomers benefit from the presence
of nearby bright stars or beacons to estimate the aberration laws that is valid for a
region of interest. Based on the memory effect, this phase mask is then tilted in order
to correct for aberration over the entire isoplanatic patch [Fig. I.20(b)]. Unfortunately,
soft tissues are not embedded by such bright point-like scatterers that can be used as a
reference. Ultrasound adaptive imaging technique have then been developed to deal with
the particular case of speckle regime.

To simplify the determination of the transmitted and received aberration laws, only
one is generally estimated. The other one is often determined based on the reciprocity
of the wave propagation, which could induce some errors. We distinguish three types of
techniques to estimate the aberrations law.

I.2.2.1 Optimization based on an image parameter

A first alternative to adaptive focusing is to correct for aberrations not by measuring
the distortion of the wavefronts, but by simply optimizing the image quality. However,
such process requires an indicator that characterizes the image quality. Nock et al. [54]
proposed to optimize the image brightness.

Such methods generally imply a time-consuming iterative focusing process with poten-
tial converging issues. In addition, while the proof-of-concept is performed for a phantom
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Eikonal equation:

|∇τ |2 =
1

c(r)
(I.32)

where τ defines the time-of-flight from a certain source define by initial condition and
∇τ is a vector perpendicular to the wavefront. The eikonal equation accurately models
refraction and can be solved efficiently using the fast-marching method [58]

I.2.2.3 Spatial correlations of aberrated wavefronts

A third strategy consists in extracting the aberrating phase laws from the spatial or angu-
lar coherence of the reflected wavefield, without estimating the fluctuation of the medium
speed of sound. To benefits from the best imaging conditions, most adaptive imaging tech-
niques estimates aberrations by investigating confocal signals that are obtained either by
a physical transmitted focusing or a synthetic method.

Early techniques studied the correlation between the RF signals measured by neigh-
boring sensors for focused insonification [47, 11]. In the case of speckle regime, Mallart
and Fink (1994) [11] adapted the Van Cittert Zernike theorem to the pulse-echo configura-
tion [Par. I.1.3.2] and used it for the estimation of a phase screen aberration. Transmitted
aberrations damage the focusing quality and enlarge the transmitted focal spot that acts
as an incoherent virtual source in speckle. In a monochromatic regime, the intensity
distribution of the incoherent source is given by the Fourier transform of the aberrated
transmitted beam Eab(u). In reception, confocal realigned signals R̆u1

and R̆u2
measured

by sensors u1 and u2 respectively, are out-of-phase due to aberrations on the way back,
leading to an additional term in the spatial correlation matrix of the realigned signal
[Eq. I.21]:

Sab(rin, u1, u2) =
〈

R̆u1
R̆∗

u2

〉

∝ ei2πf [τab(u1)−τab(u2)]TF
(

|TF(Eab)|2
) [u1 − u2

λz

]

. (I.33)

As the phase of this matrix is not exactly defined, the author first proposed to estimate
the aberration law by correlating the realigned signals with an arbitrarily chosen one,
set as a reference. Figure I.19 illustrates the impact of aberrations on the back-scattered
signals R(uout, rin, t) generated by a converging wave that focuses at rin in speckle. In
absence of aberration [Fig. I.22(a)], the back-scattered signals are characterized by a large
spatial coherence, visible between each line of the figure. This observation is expected by
the conventional Van Cittert Zernike theorem. This spatial coherence drops in presence
of aberrations [Fig. I.22(b)]. More precisely, the drop is due to the correlation term in
equation I.33, which depends directly on the size of the incoherent virtual source, i.e. the
aberrated transmitted focal spot. By correcting the aberration in transmission [Fig. I.22c],
we create a diffraction limited input focal spot, which restores the spatial coherence. One
can clearly see the shape of the aberrated wavefronts that can be decomposed into two
contributions: (i) a geometric component, which contains the ideal wave-front induced
by the transmitted focal spot that would be obtained in the homogeneous medium used
to model the wave propagation; (ii) a distorted component induced by the aberrations
[Fig. I.19(e)]

More efficiently, it has been shown that the entire correlation matrix can be used to
extract the aberration laws (2003) [59]. Notably, Angelsen et. al. (2003-2004) [38, 60]
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same isoplanatic patch contain invariant aberrated components while their geometrical
components are location dependent [Fig. I.23(a,b)]. In addition, these wavefronts are
generated by various incoherent sources (input focal spot in speckle). They are thus
out-of-phase one compared to the others, due to the random reflectivity of the medium
[Par. I.1.3.2]. As the geometrical components are fully described by the speed of sound
model used to perform the beamforming, they can be manually adjusted to simulate
signals that artificially originates from a reference virtual source located at rin

ref but
which are still associated with the reflectivity of their initial virtual source [Fig. I.23(c)].
By manually compensating the phase-shift due to the random reflectivity, Montaldo et.
al. (2011) [62] coherently summed these tilted realizations of disorder and managed to
artificially create the back-scattered signals generated by a bright star located at rin

ref .
The aberration law associated with the studied isoplanatic patch can then be extracted
from such beacon [Fig. I.23(e)] and time reversed to correct for transmitted aberrations
[Par. III.2.3], [Fig. I.23(f)]. This process called time reversal of speckle noise, is then
iterated to improve the estimation of the aberration laws. In the particular case of a
moving speckle that can be observed for instance within veins, Osmanski et. al. (2012) [63]
successfully increased the number of independent realizations associated with a chosen
isoplanatic patch by investigating back-scattered signals that originates from successive
transmitted sequences.

More directly, the geometrical component of the back-scattered signals is compen-
sated when computed the realigned back-scattered signals, i.e. the signals that will be
coherently summed during the conventional beamforming process. Consequently, the
most recent studies investigate the correlation matrices of the realigned signals, which
are spatially averaged over multiple realizations of disorder associated with each confocal
focusing [65, 66, 40]. In order to developed real-time adaptive imaging, these techniques
use synthetic beamforming i.e. single transducer insonifications [65] or plane wave insoni-
fications [66, 40] and differ from several key points that will be deeply studied in chapter
3. (i) insonification sequence, (ii) pre-filtering, (ii) transmitted or received aberration
estimation, (iv) amplitude and phase correction or just phase correction, (v) iteration
process.

Finally, using moving windows that select the virtual sources that are supposed to
belong to the same isoplanatic patch, allow these recent techniques to correct for multiple
isoplanatic patches within a single image. However, such process requires to define the
size of the moving window that should match the spatial dimension of the isoplanatic
patches.

I.3 State-of-the-art of quantitative imaging

The first and second part of this chapter provide an extensive review on ultrasound image
formation processes and on adaptive imaging techniques, respectively. These methods are
used to perform optimal US images that faithfully estimate the medium reflectivity. How-
ever, the reflectivity is not the only mechanical property that characterizes the medium
under investigation. In this part, we now review some of the techniques used to provide
indicators based on quantitative measurements of mechanical parameters. We now turn
our attention to the quantification of the medium speed of sound, the propagation prop-
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Fig. I.23 Time reversal of speckle noise. (a,b) By focusing on multiple closed
focal spot that belong to the same isoplanatic patch, back-scattered signals
are impacted by the same aberrations. (c,d) They are then tilted and coher-
ently summed to numerically simulate echoes generated by a bright star. (e,f)
This beacon is then used to estimate the aberration laws. Figures are inspired
from [64].

erties that rule the generation of multiply-scattered echoes and the detection of specular
reflector within the medium. These indicators have been studied during this thesis and
illustrate the wide range of applications that can be tackled by the matrix approach.

A disease generally modifies some of the mechanical properties of the medium. Any
indirect indicator that is based on such properties then becomes a relevant bio-indicator for
assessing, monitoring and detecting the stage of this disease. In addition, these indicators
may provide useful information on the medium under investigation that can be used to
improve the image quality during the beamforming process.

I.3.1 Speed-of-sound estimation

Speed of sound (SoS) quantification constitutes a major candidate for the diagnosis of liver
diseases. More precisely, it has been shown that it is a relevant biomarker for non-alcoholic
fatty liver diseases (NAFLD), also known as steatosis [64], which are characterized by the
accumulation of fat droplets within the liver cells. Speed of sound of fat tissues differs
from the one of a healthy liver tissues (cfat ≈ 1480 m/s vs cliver ≈ 1600 m/s). From the
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ultrasound point of view, those droplets are unresolved scatterers that will impact the
effective SoS of the medium. To produce a useful indicator for clinical purposes, a near
real-time map of SoS with an accuracy of around 10 m/s is required, which corresponds
to an error of around 0.5%.

The major difficulty, once again, lies in the determination of the round-trip time-of-
flight between scatterers (or resolution cells) and the array of transducers. This time-of-
flight only contains a global information on the traveled path. Many techniques have been
developed for the last thirty years. They fall into two categories: integrated sound-speed
estimators, which estimate the average SoS between the surface of the transducers and
the focal depth, and local sound speed estimators, which estimate the SoS in a localized
region.

One of the simplest ideas consists in observing that the image quality is optimal
when the assumed SoS model coincides with the medium one. Therefore, it is possible
to estimate an integrated SoS by imaging the same region with different SoS hypothesis
and picking the one that maximizes the image quality. Based on the Van-Citter-Zernike
theorem, the image quality can be assessed by maximizing the spatial coherence of the
realigned signals [67]. More directly, this spatial coherence is directly linked to the
enhancement factor that occurs during the beamforming process due to constructive in-
terference. Therefore, similar results can be derived by maximizing the brightness and/or
sharpness of the ultrasound image [68], or more ingeniously the coherent energy (beam-
formed signals) normalized by the incoherent intensity (resulting from an incoherent sum
over realigned signals). More recently, Lambert et. al (2020) [69] introduced the focusing
criterion that is based on a local quantification of the resolution of the US image. It is
thus able to highlight aberrated areas [Par. II.2.4]. Note that a special attention must
be paid on the fact that the axial component of the ultrasound image is actually a time
axis that is translated into a distance thanks to the SoS model. A change of the SoS
model implies an axial translation of the resulting image. This difficulty is overcame by
working at a constant time-of-flight. In this case, only the curvature of the focusing law is
changed from one SoS hypothesis to another. Note that to probe only the impact of the
SoS model, diffraction phenomena should be similar from one hypothesis to the other [70].
A simple way to ensure this, consists in studying confocal signals obtained with a constant
transmitted and received apertures for each SoS hypothesis. For in-vivo imaging, such
techniques are thus particularly suited to synthetic beamforming and more precisely to
the case of plane wave beamforming. In this case, only the transmitted angles need to be
updated according to the Snell-Descartes laws:

sin(θ)

c
= constant. (I.34)

Even if these techniques are able to measure integrated SoS with a high accuracy (a few
m/s), they are computationally intensive as they require to produce multiple US images
of a region of interest and only provide an averaged SoS.

SoS quantification and aberration correction are deeply linked as aberrations stems
from a wrong SoS model. The second idea then simply consists in estimated the medium
SoS based on an estimation of an aberrated wavefront. By assuming that the medium
is homogeneous with an unknown speed-of-sound c, the round-trip time-of-flight I.7 of
confocal signals located at r = {x, z} can be developed using a Taylor expansion based
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on the hypothesis that z = ct >> |x− u|:

τ(r, uout) = 2
z

c
+

|x− uout|2
2zc

(I.35)

We observe from this equation that the integrated SoS can be extracted from the curvature
of the aberrated wavefront as a function of |x − uout|. Almost all techniques developed
for aberration correction in the contest of adaptive imaging have been derived to the
estimation of the medium SoS [71, 64, 72]. Nonetheless, an iteration process is required
to obtain accurate measurements of the medium integrated SoS.

These techniques provide accurate measurement of the integrated speed of sound.
However, they have low accuracy in the presence of inhomogeneities, which makes them
unsuitable for in vivo measurements through layers of subcutaneous fat and connective tis-
sue. For instance, the average SoS estimator proposed by Anderson and Trahey (1998) [71]
yields highly accurate measurements in homogeneous media (bias less than 0.2% ≃ 3 m/s
and standard deviation less than 0.52% ≃ 8 m/s). In a stratified medium, the integrated
SoS should not be directly used as an estimation of the local medium SoS. For instance,
Anderson and Trahey show a 30 m/s biases in a two-layer phantom composed of water
and agar-graphite.

The second category of techniques aims to produce local speed of sound measurements
and are based on the resolution of an inverse problem. Three different ideas have been
investigated. The first one consists in deducing the local SoS of the medium based on
a profile or a map of an integrated SoS estimation. Local SoS profiles are then deduced
from a numerical inversion [72] or a physical one, where the SOS model is considered
as a stratified one that is determined from shallow to deep depth [69]. The second one
proposed by Byral et al. (2012) [73] is based on the estimation of times-of-flight required to
travel between two virtual detectors or sensors embedded within the medium [Fig. I.24b].
To do so, this technique is decomposed in two steps. The first one aimed to measure
the return time-of-flight associated with each virtual sensor. This is done by measuring
half the delay of the leading edge of the aberrated wavefronts [Fig. I.24a]. The second
step then consists in generating a diverging wave whose source is aligned with the two
virtual detectors. By comparing the round-trip time-of-flight associated with these virtual
detectors, the time-of-flight between those two virtual detectors can be estimated by
deducting the return time-of-flight established during the first step, which directly gives
access to the integrated SoS between the two transducers. The last idea, which is the
most promising one, estimates the aberrations, i.e. additional time delays, as a function
of the transmitted φ and/or received ψ angles. Therefore, spatial information on the
traveled paths are kept along the process, which is a key feature in order to produce
a 2D map of the medium SoS based. Based on this concept, Kondo et al. (1990)[74]
developed and implemented on clinical device the crossed beam method which is strongly
linked to the virtual detector method. More than twenty years later, Jaeger et. al.
(2015) [75] introduced the Computed Ultrasound Tomography in Echo Mode method
or CUTE. By illuminating each resolution cell with different transmitted angles, while
keeping the received beamforming process constant, this first version investigates the
aberrations in the transmitted mode along transmitted traveled path. As the received
part [Fig. I.25(b,d)] remains unchanged from one transmitted angle to the other, phase
delays are only due to input aberrations [Fig. I.25(a,c)]. The latter one are extracted
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Fig. I.24 Principle of the virtual detector method. (a) received time-of-flight
τRX are first estimated for each virtual detector V D based on confocal focusing.
(b) transmitted time-of-flight ∆τT X between two virtual detectors embedded
within the medium are estimated based on a diverging wave, whose source is
aligned with the two chosen virtual detectors. This give access to the average
speed of sound of the medium between the two virtual detectors. Figures are
inspired from [73].

by studying the spatial correlation of the wave-field in reflection (similarly to the recent
work done by Bendjador et al. [66]). More recently, this technique has been improved
by investigation correlations between realigned signals that share the same common-mid-
angle γ = 1/2(φ+ψ) [76] [Fig. I.25(e)]. It also corrects for potential errors on the location
of each scatterer leading to one of the first in-vivo SoS map obtained with a conventional
US probe that combine both resolution and accuracy.

I.3.2 Multiple scattering quantification

In ultrasound imaging, the equivalence between the time-of-flight of a back-scattered
echo and the location of the scatterer is ensured by the single-scattering assumption
(first Born approximation). However, there is no such thing as a purely single scattering
medium. Back-scattered signals always contain a multiple scattering contribution, albeit
negligible (or assumed as negligible) compared to the single scattering one in soft tissues.
For conventional imaging purposes, only the single scattering contribution is of interest.
Multiply-scattered ones act as an incoherent source of noise that degrades the image
contrast. From an other point of view, these undesired echoes enlarges the isochronous
volume associated with each signal. Indeed, multiple scattered paths may arise with the
same time-of-flight. To overcome this issue, some techniques have been developed to re-
duce the influence of multiply-scattered echoes. To this end, the coherent summations,
which occurs during the beamforming process, drastically enhances the single scattering
contribution thanks to constructive interference. The multiply-scattered echoes are inco-
herent from one realigned signal to the other. Therefore, beamformed signals shows an
improvement of the ratio of single scattered intensity over the multiple one compared to
the RF signals. Nonetheless, there is still a need for new techniques to overcome and filter
multiply-scattered echoes that are often referred to as clutter in ultrasound imaging.
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Fig. I.25 Principle of the CUTE method. (a-d) By investigating the spatial
correlation of the realigned signals associated with each resolution cell as a func-
tion of the transmitted φ and received angle ψ, aberrations are studied along
travelled path to produce phase shift maps. (e) Phase shift map of a 15 m/s SoS
contrast inclusion obtained by correlating the signals with the same common-
mid-angles. A numerical inversion is then performed to compute the local speed
of sound map. (f,g) US image of an in-vivo liver and its associated local SoS
map. Figures are from [75, 76].

From another point-of-view, even though multiply-scattered echoes are considered as
the "enemy" of classical imaging techniques, they contain additional information on the
micro-architecture of the medium. Indeed, the capacity of a medium to generate multiply-
scattered echoes is strongly linked to the density of scatterers, their scattering strength
and their potential resonances. More precisely, a wave propagating in a highly scattering
medium can be thought of as a random walker that undergoes multiple scattering events,
with two essential parameters: the elastic mean-free-path le, which defines the mean dis-
tance between two scattering events and the diffusion constant D (expressed in m2/s),
which characterizes the growth rate of the diffusive halo [77]. For strongly scattering
media, meaning that the thickness L of the medium is much higher than the medium
mean-free-path L ≫ le, multiple scattered paths are too complex to be analyzed indi-
vidually. This phenomenon is then studied via a statistical approach based on multiple
realizations of disorder that are generally replaced by spatial and/or frequency averages.
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It has been shown that for strongly scattering media, the temporal propagation of the
incoherent energy, which results from the contribution of multiply-scattered echoes, obeys
a diffusion equation. In the field of ultrasound, multiple scattering has been extensively
studied, first in the 1990s and in a transmission configuration, where a slab of strongly
disordered media is placed between a source and one or multiple receivers. By investi-
gating the spatial-temporal evolution of the average coherent or incoherent intensity, the
group led by John Page in Manitoba (Canada) studied the wave transport parameters D,
le, ve (the energy transport velocity) that characterize wave transport through multiple
scattering media [78, 79, 80, 81, 82].

At the same time, experiments in reflection have been conducted first by Bayer and
Niedderdränk in (1993) [83], then by Tourin et al. at the LOA (predecessor of Insti-
tute Langevin) [84, 13, 85], who investigated the multiply-scattered intensity in a dy-
namic regime to investigate the coherent-back scattering process [See following para-
graph]. These fundamental studies lead to the PhD work of Aubry who developed (i) a
new measurement of a local diffusion constant D(r) thanks to transmitted and received
Gaussian beam [86, 87] and (ii) a new filter to extract or remove multiple scattering
contributions from RF signals [88, 89, 35] both in weakly and strongly scattering media.
This filter enables to distinguish between absorption and scattering losses [Par: I.1.3.4].

In the two following paragraphs, some properties of each contribution of the back-
scattered signals are first highlighted, i.e. (i) the single-scattering contribution, (ii) the
multiple scattering contribution and (iii) and the electronic noise. Then we highlight how
each contribution can be individually studied or filtered.

I.3.2.1 Separation of single and multiple scattering contributions

In order to characterize the wave propagation properties with one of the above-mentioned
techniques, the multiply-scattered intensity needs to be isolated or, at least, its relative
ratio compared to the total back-scattered intensity needs to be established. However, in
weakly scattering media the analysis of multiple scattering parameters is challenged by the
predominance of singly-scattered echoes. To overcome this issue, the techniques developed
by Aubry et. al. are based on the properties of each contribution in a matrix approach of
the reflection matrix. To describe the back-scattered signals, we base our description on
the single transducer illumination. This insonification sequence corresponds to the case
where the medium is probed successively by one transducer, while the back-scattered
echoes are measured by all the other transducers. These impulse responses constitute a
3D reflection matrix that depends on the location of the transmitting uin and receiving
uout transducers and on the time-of-flight of the echoes: Ruu(t) = [R(uout, uin, t)]. Also
named Full Matrix Capture (mainly in non-destructive testing), this matrix contains all
the available information on the medium [Par. II.1].

On the hand one, Aubry et al. show that even if the scatterers d are randomly dis-
tributed and characterized by their own complex reflectivity Ad, the single scattering
component exhibits long-scale correlations along its anti-diagonals [Fig. I.26(a)]. These
correlations are a consequence of the memory effect induced by the single scattering pro-
cess. Mathematically, the single scattering component of the reflection matrix measured
at time-of-flight t and frequency f (obtained experimentally by a Fourier transform of a
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time-gated reflection matrix) can be expressed as:

R(uin, uout, z, f) ∝
1

zd

Nd∑

d=1

Ad
︸︷︷︸

scattering

exp

(

jk
√

(uin − xd)2) + z2
d

)

︸ ︷︷ ︸

transmission

exp

(

jk
√
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d

)

︸ ︷︷ ︸

reception

(I.36)

where {xd, zd} are the coordinates of the Nd scatterers located at depth zd = tc/2. In a
paraxial approximation, which assumes that zd ≫ |uin − xd| and zd ≫ |uout − xd|, this
equation can be approached by:

R(uin, uout, z, f) ∝
exp (j2kzd)
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2

4zd

)

︸ ︷︷ ︸

deterministic term

Nd∑

d=1

Ad exp
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4zd

)

︸ ︷︷ ︸

random term

(I.37)

This equation highlights a deterministic part that only depends on the distance |uout−uin|
and is responsible for the long-scale correlations of the reflection matrix. The second term
is random as it depends explicitly on the locations of the scatterers. This term implies
that a deterministic phase relation should appear along the anti-diagonal of the reflection
matrix.

On the other hand, the multiply-scattered echoes results from the constructive and
destructive interferences of the wavelets generated by each multiple scattered path p
[Fig. I.27(e)]. It implies that the multiple scattering component exhibits a random pattern
with no long-term correlations [Fig. I.26(b)]. It is nonetheless a symmetric component
due to the reciprocity of the wave propagation.

Based on the memory effect of the single scattering component, Aubry and Derode [89]
proposed a method to separate the single and multiple scattering contributions. It consists
in projecting the reflection matrix on a subspace that is defined from the deterministic
term of the single scattering component [Eq. I.37]. This single scattering subspace depends
both on the frequency (k = 2πf/c) and the time-of-flight (zd = cTd/2). To performed
this projection, the reflection matrix Ruu(t) is first time-gated by a moving time-window
that selects back-scattered echoes generated by scatterers located around the plane zd.
A Fourier transformed is then applied to perform a frequency dependent analysis on
the resulting matrix Ruu(Td, f). The projection on the single scattering space enables
the extraction of single scattering signals that fulfilled the par-axial approximation, but
also a residual part of the multiple scattering component as the filter is not orthogonal
to the multiple scattering contribution. In addition, this filter is extremely sensitive to
aberrations that can alter the coherence along the anti-diagonals of Ruu(z, f), Aubry
et Derode [35] proposed an improved version of this technique where the separation of
the single and multiple components is no longer defined by a theoretical deterministic
relation, but results from a singular value decomposition (SVD). The SVD decomposes
a matrix into two subspaces: a signal subspace (a matrix characterized by an important
correlation between its lines and/or columns) and a noise subspace (a random matrix
without any correlations between its entries). Here, the SVD is applied to a rotated
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Fig. I.26 Real part of the reflection matrices acquired with a single transducer
illumination at two different time. (a) At short time, when the single scatter-
ing contribution is dominating (b) At long time, when the multiple scattering
contribution is dominating. Figures are from [90]

matrix that contains all the anti-diagonals alongs its columns. The single scattering
contribution emerges along the signal subspace (largest singular values) while most of
the random multiple scattering background should lie into the noise subspace (smalles
singular values))

The major challenge then lies in the determination of the rank of the single scatter-
ing subspace. This issue is overcame thanks to random matrix theory. Based on the
single/multiple scattering separation two applications have been proposed:

- an estimation of the ratio γ of single scattering intensity compared to the total back
scattered intensity. A breast in-vivo experiment reports that γ = 30% at 30 mm
depth [Fig. I.18].

- an estimation of the attenuation length la, mean free path le and extinction length
lext. These parameters are deduced from the evolution of the global, single and
multiple back-scattered intensity. These estimations has been performed in weakly
scattered signals where double scattering dominates the multiple scattering process
(and for which the derived model is exact).

I.3.2.2 Estimation of the local diffusion constant via a dynamic analysis

The advance filtering method described in the previous paragraph does not require any
assumption on the disordered medium under investigation and can be applied to both
strongly and weakly scattering media. While, this technique characterizes the multiple
scattered intensity as a whole, complementary techniques are required to measure locally
the transport parameters.

As depicted at the beginning of this paragraph, information on the wave properties can
be extracted by investigating the statistics of the multiple scattering process. Therefore,
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Fig. I.27 Sketch of multiple back-scattered paths that occur in reflection. (a)
Coherent multiple scattered paths, (b) incoherent scattered paths whose con-
tribution vanish by average process across multiple realizations of disorder. (c)
Coherent and reciprocal path that contribute to the factor 2 at exact backscat-
tering. (e,f) One realization and average back-scattered intensity at a given
time-of-flight respectively. Figures are inspired from [90].

the back-scattered intensity < I(∆u, t) > is averaged over multiple realizations of disorder
as a function of the distance ∆u = uout − uin, the distance between the emitter and the
sensor and time-of-flight. Experimentally this average can be replaced by moving the
source-detector couple along the surface of the sample while keeping their distance ∆u
constant. Since the scatterers are randomly distributed from one realization of disorder
to the other with the same statistical properties, we expect that the averaging process
erases any fluctuation of < I(∆u, t) > to produce a plateau that is independent of ∆u
for each time-of-flight. Experiments show that indeed, a plateau < I >∆ 6=0 is reached for
∆u > 0. However, a narrow, steep peak is observed in the vicinity of the source location at
∆u = 0 [Fig. I.27(f)], whose amplitude is two times the one of the plateau: < I >∆ 6=0=
2 < I >∆>0. This well-known phenomenon named coherent back-scattering (CBS) is
generated by the interference of waves with their reciprocal counterparts [Fig. I.27(c)]. It
results in an enhancement (of around two) in intensity at exact back-scattering. Originally
discovered in the plane-wave basis [91, 92, 93, 94], this phenomenon has also been observed
in a point-to-point basis, whether the points be real sensors [83, 84, 95] or created via
focused beamforming [86, 87, 69].

The origin of CBS, which is also known as weak localization can be explain using a
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simple model. Each back scattered signal can be modeled as the sum of all the contribu-
tions of the multiple scattered path p, which individually create a complex pressure field
on the surface of the transducer. The intensity of the back-scattered signal then results
from the ensemble of the interference term between two partial waves. These interferences
fall into three configurations:

- the incoherent sum of the intensity associated with each partial wave. These con-
tributions form the incoherent intensity plateau < I >∆u 6=0 as no privileged back-
scattered direction are observed.

- the interferences between partial waves that follow different paths, e.g. p and
q [Fig. I.27(b)]. As these paths are not correlated, the resulting contribution disap-
pear when averaging over disorder.

- At exact back-scattering, each wave that travels along the path p+ can interacts
with the one that follow the exact same path but in a reverse order p− [Fig. I.27(c)].
These interferences between reciprocal paths form the coherent intensity observed
at ∆u = 0, whose intensity level matches the one of the incoherent intensity.

To sum up, the multiple scattering component of the reflection matrix displays a random
feature. Its elements are random variables but they are not fully independently dis-
tributed because of spatial reciprocity that implies a symmetric reflection matrix. They
are neither identically distributed because the CBS implies that the diagonal coefficients
of the reflection matrix exhibit a double variance compared to its off-diagonal elements
[96].

To measure the diffusion constant in reception, the idea consists in measuring the time
evolution of the diffusive “halo” either in a far-field configuration via the analysis of the
CBS peak or in a near-field one via the analysis of the incoherent intensity.

The temporal evolution of the CBS pic exhibits a behavior that depends on the ob-
serving basis. In the far-field, i.e. in the configuration where the average back-scattered
intensity is measured between couple of incident and back-scattered plane wave, the inco-
herent background is constant and the peak width ∆θcoh reduces with the time-of-flight
as [84]:

∆θcoh(t) ∝ λc√
Dt

, (I.38)

where λc is the central wavelength. An estimation of D is thus possible from the analysis
of this behavior.

In a near-field configuration, the CBS peak remains constant and equal to λc/2. The
coherent intensity no longer contains information on the growth of the diffusive halo. In
this case, this information is carried out by the incoherent intensity. In strongly scattering
media, this growth is ruled by a diffusion equation that can be written as [13]

Iinc(uin,∆u, T ) ∝ 1√
4πDT

exp

(

− ∆u2

4DT

)

, (I.39)

Nonetheless, the analysis of incoherent intensity of the back-scattered echoes in the trans-
ducer plane only provides a global estimation of the diffusion constant. To measure locally
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this parameter, Aubry et. al. (2007) [86] developed a matrix approach based on trans-
mitted and received focus Gaussian beams to characterize the growth of the incoherent
energy between virtual transducers located within the medium. This work goes beyond
the concept of confocal imaging and show many similarities with the one developed dur-
ing this thesis [Chap. 2]. Gaussian beamforming at emission creates a virtual source at
rin = {xin, zr}, whose dimension and directivity are fully characterized by the diffraction
theory of the incident beam. Gaussian beamforming in the received mode are then per-
formed around this virtual source in the same imaging plane to create virtual sensors that
are identified by their position at rout = {xout, zr} [Fig. I.28(a)]. By inserting an addi-
tional delay T between the transmitted and received time-of-flight [∆t in Eq. I.8], these
virtual sensors are able to probe the energy spreading I(rin,∆x, T ) along the imaging
plane after the virtual source insonified the medium. [gray curve of Fig. I.28(b)]. By av-
eraging this intensity profile over multiple adjacent virtual source and multiple frequency
band, the diffusive constant D is locally measured based on equation I.39.

Nonetheless, in these experiments a particular attention must payed to the electronic
noise. Indeed, noise consists in a fully random contribution that decreases the contrast
of an ultrasound image in the same way as multiply-scattered echoes. It contributes to a
roughly constant background level that may vary with the time-of-flight of the echoes due
to potential non-linear post processing such as hardware TGC. Therefore, if the averaging
process does not take into account enough realization of independent realization of disor-
der, this artifact may skew the estimation diffusive constant. It should not be neglected
when one tries to quantify multiple scattering. The key to separate this contribution
to the multiple scattering one is to investigate the spatial reciprocity or the coherent
back-scattering effect that, unlike noise, are both exhibited by the multiple scattering
contribution.

This technique has been used experimentally to probe the diffusion constant of the
trabecular bone [87]. More recently, the group of Marie Muller have shown that the
diffusion constant can be used as a biomarker for the diagnosis of some diseases. For
instance, it can be applied to:

- the detection of pulmonary edema within the lung parenchyma [97]. Healthy lung
constitutes a strongly scattering media characterized by a low diffusion constant
due to the numerous interfaces between air and soft tissues. However, in the case
of pulmonary edema, which characterizes the accumulation of fluid within the lung
alveoli, the scattering strength is drastically reduced, which implies an improvement
of the diffusion constant.

- the detection of tumor when combining with contrast agent. Micro-bubbles are res-
onant scatterers that are used as contrast agents in ultrasound imaging for vascular
diagnosis. Most solid tumors are characterized by highly dense, isotropic vessel
networks. Therefore, the scattering strength of such structures is deeply enhanced
compared to healthy tissues when adding bubbles. This difference is then captured
by the evaluation of the diffusion constant.
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Fig. I.28 Estimation of the diffusion constant in strongly disordered media. (a)
The medium is emerged in water and insonified by Gaussian beams at rin, while
Gaussian beamforming is performed in receive at rout, both focal spots are lo-
cated at the surface of the medium. (b) Estimation of the spatial extentW (rin, T )
of the incoherent intensity Iinc(xin,∆x, T ) from the average back-scattered inten-
sity obtained from standard Gaussian beamforming I(∆x, T ) (gray curve). The
black curved corresponds to an "anti-symmetric" beamforming used to reduce
the impact of the noise level on the determination of W (rin, T ). (c) Evolution of
the incoherent intensity. The intensity is normalized with its maximum at each
time. Figures are adapted from [86]
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I.3.3 Characterization of the scatterer anisotropy

During the image formation process, we generally assumed that the medium is composed
of unresolved scatterers that isotropically radiate energy towards the probe. In this case,
the measured signals are angularly limited by the radiation pattern of the transducers and
only the one located above the point of interest are used during the beamforming process
[Fig.I.5]. However, this assumption is not always valid for imaging soft tissues that contain
many specular structures. These reflectors are characterized by the fact that at least one
of their dimensions is larger than the resolution cell. As stated in paragraph I.1.3.1], for a
given incident beam, these structures radiate energy only in a privileged direction. Figure
I.29(a) shows a sketch of an incident plane wave θin that is reflected by a plane interface
of angle η compared to the probe surface. The main direction of the back-scattered wave
θout can be easily deduced from the Snell-Descartes laws. Therefore, for this given plane
wave, only the transducers located along and around this particular direction should be
used for the beamforming process. If additional received angles are used (meaning other
received transducers), the image quality associated with this scatterer may decreases as
the beamforming process mixes echoes that have been generated by other scatterers.
For instance, figure I.29 shows the conventional ultrasound image of a biopsy needle
inserted within a pork tissue. Even if the biopsy needle constitutes a strong reflector, the
beamforming process failed to image this structure.

As a result, knowledge of the local scatterer anistropy could strongly enhance the
image quality. This is especially the case for the subfield of ultrasound musculoskeletal
imaging that consists in imaging bones, joints and muscle tissues, which are mainly com-
posed of specular structures. For instance, muscle tissues are composed of an ensemble of
aligned fibers. They can be seen either as unresolved scatterer if the probe is orthogonally
placed compared to the fibers or as specular reflectors if the probe is aligned with them.
This phenomenon can be seen on figure I.30 that shows the in-vivo ultrasound images of
a human calf of a healthy volunteer associated with these two configurations.

In addition, in the case of anisotropic media such as muscle tissues, all the mechanical
properties vary with the orientation of the anisotropy. Therefore, any quantitative imag-
ing technique such as elastography or the speed of sound measurement should take into
account the local scatterer anisotropy to accurately characterize the propagation medium.
Finally, the scatterer anisotropy itself can be used as a biomarker for the diagnoses of
anisotropic injured tissues [98, 99]. Figure I.31 shows examples of injured muscle and
tendon. In both cases, we observe that a loss of the characteristic anisotropic aspect of
the ultrasound image of these structures.

To our knowledge, two approaches has been followed to probe locally the scatterer
anisotropy. The first technique is based on the maximization of the spatial coherence of
the back-scattered signals generated by fibrous media. Derode and Fink (1993) [100] ini-
tially studied this spatial coherence as a function of the angle formed between the linear
ultrasound array and the medium fiber [Fig.I.32](a). If the probe is placed orthogonally to
the medium fibers, they appear as unresolved scatterer. Therefore, the focal spot induced
by a focused insonication acts as a random source that generates backscattered signals
whose spatial coherence is predicted by the Van Cittert Zernike theorem (1994) [11]. By
aligning the probe with the fiber orientation, the coherence of the source formed by the
focal spot increases as the spatial coherence of the back-scattered echoes [Fig.I.32](b).
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(c) 

(a) (b) 

(d) (e) DAS Specular beamformer

Fig. I.29 Specular beamforming based on plane wave illumination. (a) Sketch
of the experiment. If a planar reflector of angle η is found at point r, (b)
it induces strong echoes for realigned signals that fulfill the conditions given
in equation I.40. In the plane wave basis, these particular signals are located
along one of the anti-diagonal of R̆(θout, θin, r). the coherent sum of these echoes
leads to the specular beamformed signal at optimal common-mid-angle, while
the angle η(r) can be deduced from the distance from the main anti-diagonal 2η.
(c,d,e) Conventional US image, specular beamformed image and optimal fiber
orientation of a biopsy needle inserted within a pork tissue, respectively.

This early work was performed on anisotropic composite solid materials. More recently,
Papadacci et al. applied this concept to the characterization of muscle tissues, first with
a conventional linear array [101] then with a 2D array[102]. Based on this technique, they
managed to build 3D orientation maps of the myocard at various time of a cardiac cycle
[Fig. I.32]. Nonetheless, as this technique probes the transverse spatial correlation, it is
only able to characterize the projection of the fibers on the focal plane. The characteri-
zation of the fiber orientation is not complete as no information on the projection along
the axial direction is available. This drawback limits the efficiency of this technique as
the fibers may not be contained within the focal plane, which reduces the accuracy of the
transverse measurement.

The second approach is dedicated to the imaging of specular objects. It is based on
the Snell-Descartes law, which states that an incident plane wave of angle θin is reflected
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(a)

(b) (c)

Fig. I.31 (a) US image of a muscle contusion: Axial image of rectus femoris
in a 24-year-old rugby player after a direct blow to the leg. The contusion is
characterized by a loss of normal internal muscle striation because of microhem-
orrhage dissecting between muscle fibers with resultant inflammation and edema.
(b,c) US images of both an intact and lacerated hand flexor tendon, respectively.
Figures are extracted from [98, 99].

is measured from the angular extension of the intensity peak [Fig. I.29(d)]. This process
enables to accurately detect, image and characterized the location of the biopsy needle in
the pork tissue. Even if this technique has been developed for planar reflector, it would
be interesting to see its capacity to measure the fiber orientation in fibrous medium.

Finally, we observe that these techniques aim to quantify the anisotropy of scatterer
via the spatial analysis of the back-scattered signals generated by each resolution cell. It
can be seen as the characterization of the radiation pattern associated with each virtual
source. The same physical phenomenon is used in chapter 3 [Par. III.1]. By removing
unwanted specular angles that share the same common-mid-angle, it is possible to remove
some reverberation artifacts induced by multiple reflection. Finally, based on a matrix
formalism, we exploit the correlations between echoes generated by adjacent focal spots
to measure the orientation of muscle fibers within the imaging plane [Par. IV.3].

I.4 Conclusion

For the past decades, the field of medical ultrasound has known an exponential growth, to
become one nowadays of the most widely used modality for clinical imaging and diagnosis.
It is indeed a very efficient and harmless tool, easy to use and without need of additional
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Fig. I.32 Maximization of the spatial coherence of back-scattered signal to probe
the orientation of fiber within the focal plane. (a,b) The spatial coherence of
an anisotropic composite material is probe by rotation of a linear array. (c)
3D Maps of in-vivo myocardial fiber orientation in the human heart measured
during the diastole and systole by means of a 2D array. Figures are extracted
from [100, 102].

equipment nor impact on the patient.
Numerous techniques have been developed to either improve the image quality or

better characterize soft tissues, improving thus the diagnostics qualitys. The above-
mentioned techniques constitute a state-of-the-art description of the main techniques
and physical phenomenon used for either adaptive beamforming or the quantification
of the speed-of-sound and multiply-scattered echoes. The main objective of this thesis
is to propose a new formalism, based on a matrix approach, that can be applied to
any applications and or configuration encountered in medical ultrasound imaging. More
generally, this work fits into a larger picture elaborated by the team of Alexandre Aubry
at Institute Langevin. It consists in developing new tools around a common matrix
formalism that can be applied to any type of waves where multiple sources and multiple
sensors are used to shape incident wavefronts and analyze reflected ones. This thesis
then constitutes the ultrasound part of this picture and has been inspired by the work of
Amaury Badon, Victor Barolle and Thibault Blondel in the field of optics and seismology.

The next chapter [Chap. 2] is dedicated to the matrix formalism in ultrasound. It
is the core of this work as it contains all the first building blocks that are then used for
aberration correction via an adaptive imaging technique [Chap. 3] and for quantitative
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imaging of speed of sound, multiple scattering and scatterer anisotropy [Chap. 4].
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II.1 A brief history of the matrix approach of the wave propagation 62

In the first chapter, we reviewed some fundamental bases of ultrasound imaging from a
purely acoustical point-of-view. This angle is generally the one that is chosen by medical
ultrasound books [1]. Simultaneously to the development of ultrasound imaging, a matrix
approach of the wave propagation has been developed for the past 30 years. This concept
was initially developed in a reflection configuration in acoustic via the pioneering work of
Fink on the time-reversal process [39, 103], followed by the one of Fink and Prada [104,
105, 106] on the DORT method. In wave physics, a matrix formalism is particularly
appropriate when the wavefield can be controlled by transmission or reception arrays
of N independent elements. This powerful approach has brought new insights for the
coherent control of wave-front through complex media, e.g. (i) selective focusing in multi-
target media [104, 105, 106], (ii) optimal focusing through scattering media [107, 108],
(iii) optimize multiple input - multiple output communations through complex media
[109, 110]. It also provides a new tool for for revisiting and going beyond conventional
imaging techniques [111, 69].

The present chapter is divided as follow: we first explicit the notion of matrix approach
of wave propagation and propose a brief review of the major milestones of this promising
research field. We then adapt the recent development made in optics during the PhD
of Amaury Badon [112], to the field of acoustics. Generally, an image of a medium in
reflection is built by focusing waves, either physically or numerically, on a single point at
emission and reception. An image is then obtained by scanning simultaneously the input
and output focusing beams. This is the principle of ultrasound imaging, phase array
and confocal microscopy or optical coherence tomography in optics. Here, the location
of the transmitted and received focal spots are split. It enables the construction of the
focused reflection matrix that contains the medium responses between arrays of virtual
sensors located at the same focal plane within the medium. Finally, we extended this
matrix approach to virtual sources and sensors located at different depths and beyond
the ballistic time. This idea leads to the concept of numerical time-reversal experiments.

All the matrices and post-processing developed in the last two sections of this chapter
constitute the building block of a new range of techniques that are encompassed under
the concept of matrix imaging. Besides describing all the current ultrasound imaging
methods under a common matrix formalism, the matrix imaging is able to take up several
challenges that will be studied in this chapter and in the following ones: (i) quantify and
enhance the ultrasound image quality via a local focusing criterion [Chap. 2] and a matrix
aberration correction [Chap. 3]; (ii) develop novel quantitative imaging modes by building
maps of the speed-of-sound and of a multiple-scattering-rate that may constitute relevant
biomarkers for ultrasound diagnosis [Chap. 4]; (iii) characterize locally the nature and
anisotropy of the scatterers via their frequency response and radiation pattern [Chap. 4].

II.1 A brief history of the matrix approach of the wave

propagation

The matrix approach is based on the idea that the whole system can be analyzed as a
linear and time-invariant process. This whole system encompasses all the required steps
to obtain digital signals of the backscattered or transmitted echoes, i.e. (i) the wave
propagation within the medium, (ii) its interaction with the medium via the scattering
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process, (iii) the transducer behavior that is modeled by the transducer impulse response
and (iv) the electronic of the ultrasound system, which contains at least an analogic-digital
convertissor and an electronic amplifier. In other words, we assume that all phenomena
obey the laws of linear acoustics. This process can thus be seen as a black-box with
multiple inputs and multiple outputs, and whose output signals linearly depends on the
input ones. Such system is fully characterized by the inter-element impulse response
matrix. In wave physics, this matrix is also called either reflection matrix R, if the sources
and sensors are located on the same side of the medium, e.g. in ultrasound imaging; or
transmission matrix T if the medium is located between the sources and the sensors. Note
that if sources and sensors are located on both sides, the inter-element impulse matrix is
called the scattering matrix S that contains both the transmission and reflection matrices.
These matrices are used to link the received signals to the transmitted ones. In ultrasound,
the reflection matrix is generally acquired experimentally by means of a single transducer
insonification (one transducer emits successively a short pulse. Back-scattered signals are
then generated and measured by all transducers). Thanks to the linearity of the system,
once this matrix has been acquired, the output signals Eout can directly be determined
from any combination of incident waves Ein(uin, t) via the following equation:

Eout(uout, t) =
∑

uin

R(uout, uin, t)
t
⊛ Ein(uin, t), (II.1)

where
t
⊛ denotes a convolution product over the variable on top of the symbol (here

the time). For instance, this process can be used to determined numerically in post-
processing the backscattered echoes generated by a focused insonification. In that case,
Ein(uin, t) just contained appropriate time delayed signals: Ein(uin, t) = E0 δ(t − τex),
where τex is defined by equation I.6. In the frequency domain (accessible experimentally
via a temporal Fourier transform), this equation becomes:

Eout, (uout, f) =
∑

uin

R(uout, uin, f) Ein(uin, f). (II.2)

Under a matrix formalism, this equation can be expressed as:

Eout(f) = Ruu(f) × Ein(f), (II.3)

where × denotes a matrix product. Therefore, the back-scattered signals generated by
any incident wave can be simulated in post-processing by means of simple matrix product
involving the reflection matrix. This matrix then contains all the available information
on the medium that can be acquired with this array. The recent developments of this
approach consist in finding optimal techniques to extract specific information or properties
of this medium.

II.1.1 Early developments: the time-reversal concept and DORT method

This approach has first been successfully applied to the concept of time-reversal pro-
cess [39], which exploits the reciprocity of the wave propagation. Figure II.1 illustrates
this concept in a pulse-echo configuration for aberration correction. (a) One transducer
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Fig. II.1 Time-reversal process in pulse-echo configuration, application to aber-
ration correction. (a) One transducer insonified a complex medium composed by
a single scatterer. (b) The backscattered echoes are recorded by the transducers.
(c) These echoes are time-reversed, and used as a new incident waveform that
propagates inside the medium exactly in a reverse order than the back-scattered
one. Figures are inspired from [39].

insonified a heterogeneous medium composed by a single scatterer and (b) the back-
scattered echoes are recorded by the transducers. (c) These echoes are time-reversed i.e.
the end becomes the beginning and vice-versa, and used as a new excitation. The trans-
ducers then act as time-reversal mirror to create new incident waves, which propagates
inside the medium in a reverse order compared to the back-scattered one. Thanks to
both time reversal invariance and spatial reciprocity of the wave propagation, this new
incident wave focuses on the scatterer that had originally been excited. As a consequence,
the aberrations initially undergone by the reflected wave-front are perfectly corrected. For
optimal focusing in the case of multiple scatterer, this process required to be iterated to
correct for the transmitted aberrations as well. In this case, the process converges towards
the optimal focusing law that is associated with the most echogenic scatterer.

In the monochromatic regime, the time-reversal operation is equivalent to a phase
conjugation. The experiment depicted on figure II.1 is then easily modeled by means
of a matrix formalism. By noting Ein and E

(0)
out the initial input and output signals
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[Fig. II.1(a)], the output signals obtained after one and n iterations are:

E1
out = Ruu × E

(0)
out

∗
= [Ruu × R∗

uu] × E∗
in, (II.4a)

En
out = Ruu × E

(n−1)
out

∗
= [Ruu × R∗

uu)n] × E∗
in; (II.4b)

where Ein and E
(0)
out are the initial input and output signals. We recall that × and ∗ are the

matrix product and conjugate operator. For sake of simplicity, note that the frequency
dependence is implicit. This operation reveals the time-reversal operator [Ruu × R∗

uu].
Thanks to the reciprocity of the wave propagation, the reflection matrix is symmetric.
This operator is equal to

[

Ruu × R†
uu

]

, which can be diagonalized. † is the transpose
conjugate operator. Its eigenvectors are orthogonal and its eigenvalues are positives.
Prada and Fink [105] have shown that the phase of the first eigenvector of this matrix
contains the ideal wave-front that focuses on the target. This wave-front then consti-
tutes an invariant of this operator. To understand this property, we observe that if we
send the perfect wave-front that adaptively focus on the target, the reciprocity of the
wave propagation implies that the back-scattered signal will be the exact reverse wave-
front, which is exactly the definition of an invariant vector. Moreover, the authors have
shown that if the medium is composed by N point-like targets, the decomposition of the
time-reversal operator (or DORT in French) highlights N significant eigenvalues, whose
associated eigenvectors contain the ideal wave-front to focus on each one of them. Even
more interesting, the eigenvalues are directly ranked by the reflectivity of their associated
scatterer [106]. Note that these results are valid only for configurations where the targets
are unresolved scatterers and well resolved by the imaging system, i.e. the minimum
distance between each scatterer is higher than the optimal resolution cell of the imaging
system [113]. This condition can be understood by the fact that the eigenvectors are by
definition orthogonal. This property is then valid only if the imaging system is able to
fully distinguish between each scatterer and thus, being able to excite one without excit-
ing another. This condition is not fulfilled for specular reflectors that have at least one
of their dimensions that is higher than the resolution cell. It implies that various inputs
Ein are able to produce an optimal focusing on such scatterer. In this case, multiple
eigenvectors are associated with a single scatterer [114] and the first one (characterized
by the highest eigenvalue) maximizes the back-scattered energy by focusing on a part or
several parts of this scatterer [115].

This fundamental work mostly performed by Prada and Fink can be applied to any
type of waves and brought new perspectives and ideas for various applications based either
on the reflection or on the transmission matrix: (i) Aberration correction [116, 117, 118,
108]; (ii) Target detection in complex media where multiple reverberation may hide the
presence of such scatterer, e.g. Flaw detection in solid for non-destructive testing [119]
or objects detection in shallow water for underwater acoustic; (iii) optimized wireless
communications. [107, 120, 110].

However, the DORT method contains three fundamental drawbacks that limits its
application to the particular case of medical ultrasound imaging:

- It has been developed for monochromatic signals, while ultrasound imaging is based
on broadband ones. It is nonetheless possible to extract the impulse Green’s func-
tion of the medium that links a target to the transducer array by (i) applying the
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DORT method at each frequencies of the back-scattered signals; (ii) picking the
eigenvector associated with this given target for each frequency, and (iii) perform-
ing an inverse Fourier transform to obtain a temporal signal [121]. However, the
second step is difficult in practice as the scatterers reflectivity generally varies with
frequency. Therefore, the first eigenvector is not necessarily associated with the
exact same target across the entire frequency band. Figure II.2 illustrates one ex-
ample of experiment demonstrating the DORT method in the time domain. An
ultrasound probe is used to insonify a medium composed by submerged rods that
are made of various materials and characterized by various diameters. The DORT
method is then applied at each frequency and the resulting normalized eigenvalues
are shown on figure II.2(b). Monochromatic singular vectors are combined based on
their eigenvalue [red circles on figures II.2(b)] in order to create broadband signals.
Finally, an inverse Fourier transforms are performed to obtain optimal pulses that
focuses on each target. These signals constitute an estimation of the medium im-
pulse Green’s functions that link each scatterer to the transducer plane. We observe
that an eigenvalue is not always associated with the same scatterer [dark dotted el-
lipses]. Therefore, some attention must be paid to the selection of the eigenvectors,
which makes the implementation of this technique more complex.

- Its formalism and most outstanding results have been performed in the case where
the scatterers or targets of interest are well resolved. More importantly, this tech-
nique requires that the number of scatters is lower than the number of transducers.
Soft tissues are composed by a countless number of unresolved scatterers with no
point-like bright star that could have been used as beacon.

- It is based on both the time-reversal invariance and the spatial reciprocity of the
wave propagation. However time reversal invariance can be broken in dissipative
media such as the skull bone. This principle can be broken by some phenomena
such as the medium attenuation or the limited aperture of a time-reversal mirror.
Tanter et al. [52] illustrated this drawback by demonstrating that skull bone induced
aberrations are better corrected when the time-reversal process is coupling to an
amplitude compensation in order to tackle the attenuation loss.

II.1.2 Analysis of the transmission matrix

These observations encouraged the pursuit of optimal focusing by analyzing the time-
reversal process via the transmission matrix [Fig. II.3]. By means of a single transducer
insonification, the transmission matrix T is acquired. This matrix contains all the avail-
able information on the wave propagation between an array of sources and an array of
sensors. Similarly to the reflection case, the output signals induced by any input one
can be deduced in post-processing from the transmission matrix thanks to the linear and
time-invariant assumptions of the wave propagation:

Eout(f) = T(f) × Ein(f) (II.5)

Again, the spatial reciprocity of the wave propagation, implies that the transpose of
the transmission matrix tT corresponds to the propagation matrix from the array of
sensors and to the array elements. In particular, a focusing process can be performed by

Confidential – Need to know only



67 Chapter II. Matrix approach of ultrasound imaging

3.5 4 4.5 5 5.5

Frequency (MHz)

3.5 4 4.5 5 5.5

Frequency (MHz)Frequency (MHz)

3.5
0

1

4 4.5 5 5.5

(a)

(b
1
) (b

2
) (b

3
)

(c
1
) (c

2
) (c

3
)

Brass, Ø= 0.16 mm

Alum, Ø= 0.16 mm

Nylon, Ø= 0.3 mm

Steel, Ø= 0.2 mm

Nylon, Ø= 0.1 mm

T
ra

n
sd

u
ce

rs

Time Time Time

Normalized eignevalues

Fig. II.2 Extraction of the impulse Green’s functions between bright point like
targets and an array of transducers based on the DORT method. (a)Sketch of
the experiment. The reflection matrix is acquired and the DORT method is
performed at each frequency. (b) The normalized eigenvalues are used to create
broadband eigenvectors in the Fourier domain (red circles). (c) Temporal pulses
are then calculated by means of inverse Fourier transform. Courtesy of Claire
Prada.

numerically time-reversing the signal that would have come from a particular point of the
sensor array:

ETR
out(f) = T ×

(

T⊤ × E0
out

)∗
=
[

T × T†
]

× E0∗
out, (II.6)

where ⊤ is the transpose operator and E0
out is the expected pressure field to generate in

the sensor plane, e.g. E0
out can be a Dirac function or more reasonably the expected focal

spot obtained in an homogeneous medium. These simple equations highlight once again
the time-reversal operator

[

T × T†
]

. The reciprocity of the wave propagation is the only
assumption on the medium. Therefore, this concept also holds for complex configurations
where multiple scattering appears, e.g. in disordered media [122] or in wave-guide [123].
In the time domain, it is easy to visualize that for such scattering medium, the impulse-
responses are characterized by long time signals that account for all the potential multiple
scattered paths. Therefore, the complexity of such medium is captured and stored as a
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Fig. II.3 Sketch of the transmission matrix acquisition. Inspired from [116]

temporal information within the transmission matrix. Note that an optimal focusing is
still possible in strongly scattering media if the entire impulse responses are measured and
time-reversed [122]. More strikingly, it has been shown that the time-reversal process can
benefit from multiple scattering process to improve the focusing quality. The medium
behaves as a scattering lens characterized by a larger numerical aperture than in free
space and that time-compressed the long time-reversed signals [109, 120].

The time-reversal process can be seen as a spatio-temporal matched filter. It provides
the optimal linear solution for maximizing the amplitude at the focal point, even in the
presence of noise. However, such filter does not guaranty a low side lobe level. To solve
this problem, Tanter et al. [117, 118] introduced the inverse filter based on the following
observation. For aberration correction, the ultimate goal is to find the signal to transmit
Einv

in that produces the optimal focusing E0
out in the focal plane. Mathematically, this

vector can be found by the inversion of the propagation matrix:

Einv
in = T−1 × E0

out (II.7)

As is the case of all inverse problems, the inversion of the propagation matrix T is ill-
conditioned. Numerically, the solution to the inversion does not depend continuously
on the data, but rather, small errors in these data produce very large errors in the re-
constructed results. Many regularization techniques have been proposed to overcome
this issue. The idea consists in finding a filtered matrix T̂, whose inversion process is
constrained. For instance, Tanter et al. [117, 118] proposed to perform a singular value
decomposition (SVD) of T and to inverse only the signal subspace T̂ that is composed
of the combination of singular vectors associated with the highest singular values. The
lowest considered eigenvector is chosen based on the diffraction theory and noise level.
This new matrix is then used to compute the optimal input signals Einv

in that generates a
close to desired output:

Einv
out = T × Einv

in =
[

T × T̂−1
]

× E0
out (II.8)
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this equation highlights the inverse-filter operator (T × T̂−1). By performing this oper-
ation at each frequency, the authors construct a spatio-temporal inverse-filter. Even if
T−1 and T̂−1 are not strictly identical, leading to some difference between Einv

out and E0
out,

it has been shown that in dissipative media, such spatio-temporal inverse-filter strongly
improves the focusing quality compared to time-reversal beamforming.

Similar works have known a great success in the field of optics with the pioneer ex-
periment of Vellekoop and Mosk (2007) [124]. The authors demonstrated that, by means
of a Spatial Light Modulator (SLM), an incident wave-front can be shaped to image
through opaque scattering layers. Popoff et al. (2011) [108, 107] then experimentally
demonstrated the proprieties of the time-reversal operator to focus through scattering
media by simple means of a pseudo-inversion of the transmission matrix [Eq. II.6]. These
works open new perspectives for MIMO (Multiple-Input-Multiple-Output) communica-
tions [125, 126]. More recently, Del Hougne et. al. (2019) [127] have shown that the
effective rank of the transmission matrix can be used as a figure of merits for optimiz-
ing the Shannon capacity of the communication channel in a microwave experiment, i.e.
they optimized the disorder of the medium by modifying the boundary condition of a
reverberating cavity by means of tunable meta-surfaces. As the Shannon capacity is a
direct indicator of the number of independent propagation channels of the medium, this
optimization drastically improves the amount of information that can be simultaneously
transmitted from the emitters to the receivers.

In the meantime, fundamental work on the optimal transport of the wave energy has
been performed over the past decade. Experiments in the field of ultrasound and optics
(2014) [128, 110], have shown that open and closed channels can be excited based on the
analysis of the transmission matrix. Predicted by Dorkhov in solid state physics more
than thirty years go [129], these particular channels are associated with particular incident
wave-front whose energy is totally transmitted or reflected by the medium, respectively.

We finally evoke the work done by the group of Stephan Rotter on the scattering
matrix, which encompasses both the transmission and reflection matrix and corresponds
to the configurations where sources and sensors are located on both side of the medium.
By means of the Wigner-Smith operator, this group has been able to isolate particle like
wave packets that follow either a direct path or a multiple scattered one based on their
time of arrival [130, 131], but also detect the modification of a single scatterer (position
or scattering strength) within a disordered medium [132].

This short overview of the matrix approach in waves physics enables to better define
this concept and resulting applications. Regarding the field of optics, more information
are gathered in the review of Rotter and Gigan (2017) [133]. At the end of the day, we note
that one of the major strengths of the above-mentioned techniques is that they require
no a priori information on the propagating medium. For instance, the medium speed
of sound is not required to apply the time-reversal beamforming of the DORT method.
In the following, we explicit the recent development done in reflection configuration for
imaging and quantification and we show how conventional state-of-the-art ultrasound
imaging can be interpreted under the scope of the matrix approach.
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II.1.3 State-of-the-art of matrix imaging

Inspired by experiments in underwater acoustics for SONAR and in electro-magnetism for
RADAR, the reflection matrix has been used in ultrasound for more than 40 years, via the
concept of synthetic beamforming [23, 24]. These techniques are based on the combination
of back-scattered signals generated by multiple insonifications. This combination only
requires time delays and coherent summation. It is thus also based on the assumption of
a linear and time-invariant process.

Nonetheless, the ultrasound image contains less information on the medium than the
reflection matrix. For instance, once the beamformed image has been computed, it is not
possible to numerically simulate the back-scattered signals obtained for another incident
wave [Par. II.1.1]. By injecting additional knowledge on the medium via the assumed
sound-speed model and the single scattering hypothesis, the ultrasound image is able to
extract some local features on the medium, e.g. its reflectivity. In paragraph II.2 we show
how to combine both approaches, i.e. how to make use of all the available information
contained in the reflection matrix to locally probe and characterize the medium.

II.1.3.1 The insonification sequence, a choice of input basis

In the field of ultrasound, all the above-mentioned ultrasound matrix techniques, e.g. the
DORT method, are based on the single transducer insonification. Even if this transmis-
sion sequence enables to capture all the available information on the medium, it suffers
from two drawbacks for in-vivo imaging. First the number of required transmitted event
is equal to the number of transducers, which generally goes up to 256 for state-of-the-art
medical probe. This condition drastically reduces the acquisition frame-rate, which in-
creases the probability of movement during the insonification sequence. Such phenomenon
damages the time-invariant assumption, which impacts the results provided by the matrix
approach. Second, as the medium is insonified by a single transducer, the energy of the
incident wave is quite low and the back-scattered signal level is further reduced. Due
to attenuation, it limits the maximal depth that can be imaged. Any signal level that
drops below the sensitivity threshold of the transducers breaks reciprocity and linearity
of the acquisition process. To overcome the SNR issue, two solutions have been devel-
oped. Gammelmark et al. proposed to use long encoded sequences [134], i.e. instead of
sending short pulses, each transducer successively sends encoded signals such as chirp.
As the wave propagation is linear, the signal back-scattered by a single scatterer is also
a chirp weighted by the scatterer reflectivity. The reflection matrix is then deduced from
the back-scattered signals by using a pulse-compression technique. Such techniques are
generally based on the convolution of the backscattered signals by the transmitted en-
coded signal. It time-compresses all the transmitted energy to numerically simulate a
short pulse. However, this signal processing tool is computationally intensive and highly
sensitive to any phenomena that distort the incident waves, for instance the attenuation
modifies the frequency content of the incident wave as it propagates within the medium.
The other technique consists in using multiple transducers for a given transmitted event.
Such option requires to modify the definition of the reflection matrix and is studied in
the following paragraphs.

Transducer vs plane wave insonifications
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To tackle those issues, synthetic beamforming is usually based on a plane wave insonifi-
cation I.1.4.1. Single and plane wave insonifications are closely linked as the latter one
can be viewed as the spatial Fourier transform of the first one. To better illustrate this
observation, we remind the reader, that based on the conventional reflection matrix Ruu,
the backscattered signals generated by any insonification can be simulated. More pre-
cisely, by combining equations II.3 and I.25, this concept applies to any incident plane
wave characterized by its incident angle θin or transverse wave-number at frequency f ,
kx

in = 2πf/c0 · sin(θin):

R(uout, θin, f) =
∑

uin

R(uout, uin, f)e−jkx
inuin . (II.9)

For sake of simplicity, in the following, the transverse wave-number kx
in will simply be

noted kin or referred by its associated angle θin. This equation directly simply corresponds
to a spatial Fourier transform. Therefore, single and plane wave insonifications can be
seen as two relevant input bases of the reflection matrix. Matrix-wisely, this change of
basis can be expressed as:

Ruθ = Ruu × T⊤
0 , (II.10)

where T0 is the Fourier transform operator, whose elements link any transverse wave
number kx in the Fourier space to the transverse coordinate x of any point of the supposed
homogeneous medium:

T0(kx, x) = exp (ikxx). (II.11)

As in any Fourier transform, Ruk and Ruu contain the same amount of information and
one matrix can be deduced from the other if and only if a Shannon criterion is fulfilled.
Mathematically, this criterion links the angular step δθ (or wavenumber step δk) and
the angles of maximal amplitude θmax

in (or wave number max kmax
in ) to the size of the

transducer array Lx = pNp and to the probe pitch p:

δkin

2π
<

1

2Lx
and

kmax
in

2π
<

1

2p
. (II.12)

From a physical point-of-view, the second equation exactly highlights the limiting angles
of the transducer radiation pattern predicted by the diffraction theory. The use of higher
incident angles will generate grating lobes [Par: I.1.1.2]. For a conventional linear probe
defined by fc = 7.5 MHz, p = 0.2 mm andNp = 256, equations II.12 leads to δθin < 0.1 deg
and θmax

in < 30.9 deg, which unsurprisingly leads to nearly 256 transmitted plane waves.
However, we discuss in paragraph I.1.4.2 that roughly the same image quality can be
achieved with fewer transmitted plane waves. This observation can be explained by the
spatial coherence of the backscattered wave-field that induces some redundant information
in the measured signals. Therefore, reducing the number of transmitted plane waves (by
increasing the angular step δθ) can be viewed as a compressed sensing operation, which
occurs in the spatial Fourier domain. However, we insist on the fact that the capacity of
reducing the number of insonifications relies on the medium properties that govern the
spatial coherence of the back-scattered wavefield and more precisely the spatial coherence
of the realigned signals. It thus depends on the nature of the scatterers, specular or
speckle regime, but also on the accuracy of the speed of sound model. In addition, we
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observe that in the presence of aberration, it is precisely those redundancies that are able
to first determine the aberration laws and then to correct for them [Par. I.2.2.3].

The focusing process: a change of basis towards virtual transducers
Focused insonifications are the most widely used transmitted sequences for B-mode imag-
ing. The idea of combining multiple focused insonifications to enhance the image quality
has been used for more than a decade via the so-called synthetic focused beamform-
ing [135, 136, 32]. This technique enables to numerically simulate a transmit focusing
at each point of the medium associated with each pixel of the image [Par. I.1.4.3]. This
confocal imaging technique leads to the useful concept of virtual source. To illustrate this
idea, we first take a closer look at the propagation of an incident beam that focuses at rin.
This propagation can be split in three steps, which are separated by the transmit time of
flight tin = zin/c0. At a time of flight t < tin, one observes a converging wave [Fig. II.4(a)].
As the wave gets closer to rin, the lateral extension of the wave front reduces. At time
tin = zin/c0, the wave front is at rin, most of the energy is concentrated in a diffraction
limited area (in absence of aberrations). The wave-front does not stop at rin, and one
then observes a diverging wave that propagates outward at t > tin [Fig. II.4(b)]. This
focused wave then illuminates all the scatterers located within a cone, whose aperture is
the maximum angle of illumination βin that is governed by the transmitted f-number F#

in

[Par. I.1.2]. Passman and Ermert (1996) [137] demonstrated in simulation that for an
observer located at point r2 (located below the focal point, z2 > zin), the incident wave
looks like it originates from a virtual source located at point rin. This virtual source is
characterized by a radiation pattern that matches the aperture of the insonifying cone
[Fig. II.4(c)], and its size is delimited by the spatial extension of the transmit focal spot
[Par. I.1.2.1]. Similarly, an observer located at r1 (above the focal point z1 < zin) wit-
nesses an incident wave that is identical to the time-reversed one produced by the virtual
source located at rin. In other words, the back-scattered signals induced by a focused
insonification can be interpreted as the one produced by a virtual source located within
the medium at the focal spot.

A sequence of transmitted focused beams can thus be seen as another input basis of
the reflection matrix. In this case, the reflection matrix is noted Rur(t) and contains the
impulse response of the medium between an array of virtual sources at the input and the
array of transducers at the output. While the first two bases, i.e. the transducer and
plane wave bases do not require any a priori knowledge on the medium, this focused basis
requires a hypothesis on the medium speed of sound. This additional assumption enables
to extract a more local information on the medium. Based on this reflection matrix,
Robert and Fink (2008-2009) [61, 49] developed the fDORT method. This technique is
the enhanced version of the DORT method for focused insonifications. Based on the
location of the virtual source, this technique is able to analyze back-scattered aberrated
wave-fronts that originate from a precise region of the medium. This local information
enables to correct for multiple isoplanatic patches within a single image.

Note, we derived the notion of virtual source for focused insonification. However,
based on the matrix approach, the back-scattered signals generated by a focused wave
can be numerically simulated from other input bases such as transducer or plane wave
bases, or even from focused insonification in order to create a virtual source at each point
of the medium. The focusing step can thus be seen as a change of basis that is either
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Fig. II.4 Principle of the virtual source. The pressure field generated by a
focused transmitted beam is analogue to the one generated by a virtual source
located at the transmit focal spot rin. Inspired from [61].

performed physically by using focused beams or numerically via a synthetic beamforming.
Finally, we describe the concept of virtual sources located within the medium. How-

ever, this concept can apply to virtual sources located behind the medium. In that case,
multiple transducers are used to generate diverging waves, whose wave-front curvature
depends on the distance between the virtual source and the array of transducers. This
illumination is widely used for phased array probes as it enables large field-of-views (still
limited by the transducer radiation pattern). In addition, as multiple transducers are
used in transmission, the energy of the incident wave is more intense than the diverging
wave created by a single transducer illumination. By moving the virtual source away
from the transducers, the curvature of the diverging wave is reduced, which limits the
field-of-view. Following this concept, a plane wave illumination can be viewed as the
extreme case where the virtual source is located at infinity (either behind or below the
probe), hence the term far-field illumination commonly used in optics (thanks to optical
lens).

II.1.3.2 Taking advantage of the reciprocity: the virtual sensor

In the previous paragraph we developed the concept of virtual source that is accessible
via a focusing step. Based on the reciprocity of wave propagation, a similar concept i.e. a
virtual sensor can be derived from a received beamforming process. To better understand
the nature of the virtual sensor, we can rely on the principle of the isochronous volume
developed in paragraph I.1.3.2. The coherent summation of echoes, whose associated
isochronous volume contains a common region, enables to select echoes that have been
generated by this received focal spot, called virtual sensor. Similarly to the virtual source,
the virtual sensor is characterized by a radiation pattern that depends on the received
aperture used during the beamforming process and more precisely on the maximum angle
of collection βout(rout). Its spatial dimension corresponds to the size of the output focal
spot.
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By means of a double focusing both in transmission and in reception, a change of
basis is performed to probe the medium responses between an array of virtual sources
and an array of virtual sensors embedded within the medium. These responses form the
so-called focused reflection matrix Rrr, that will be intensively described in the following
section. In other words, the echoes of this matrix are obtained by splitting the location of
the transmitted and received focal spots. The first traces of this matrix can be found in
the PhD work of Aubry (2008) [138], where Gaussian beamforming in transmission and
reflection where used to create virtual sources and virtual sensors at the surface of a sub-
merged medium [114, 86]. Additional time delays ∆t were used during the beamforming
process Rrr(∆t) to measure the growth of the diffusive halo in order to map the diffu-
sion constant of the scattering medium [Par. I.3.2.2]. This matrix has then been more
intensively studied by the group of Aubry at Institut Langevin (Paris) at the ballistic
time i.e. ∆t = 0. First during the PhD of Badon [112] in the field of optics, where the
focused reflection matrix is directly acquired by a so called smart-OCT technique [139].
It has then been briefly investigated in the field of ultrasound by Camille Trottier [140]
during his PhD work for NDT applications. Finally, these works lead to the PhD work
of Barolle [141], Blondel [142] and mine in the field of optics, seismology and ultrasound
respectively.

II.2 The focused reflection matrix

We now show how all of the aforementioned imaging steps can be rewritten under a
matrix formalism. The reflection matrix contains the medium responses between one
or two mathematical bases. The bases implicated in this work are: (i) the recording
basis which here corresponds to the transducer array, (ii) the illumination basis which is
composed of the incident plane waves, and (iii) the focused basis in which the ultrasound
image is built.

In the following, two experiments are used to illustrate our analysis of the reflection
matrix: (i) a conventional phantom experiment without aberration and (ii) an in-vivo
experiment on the calf of a healthy volunteer. Their respective experimental configura-
tions are described in the annex II.A. For each experiment, we acquire the plane wave
reflection matrix Ruθ(t) ≡ [R(uout, θin, t)].

II.2.1 Monochromatic focused reflection matrix

Following the work of Badon et al. [112], we performed the beamforming process in
the frequency domain. In this case, simple matrix products allow ultrasonic data to be
easily projected from the illuminating and recording bases to the focused basis where local
information on the medium properties can be extracted.

Consequently, a temporal Fourier transform should be first applied to the experimen-
tally acquired reflection matrix Ruθ(t):

Ruθ(f) =

∫

dt Ruθ(t) e−j2πft. (II.13)

with f the temporal frequency. To perform the transmitted and received beamforming,
i.e. to project the reflection matrix in the focused basis, transmission matrices should be
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defined beforehand to model wave propagation from the plane wave or transducer bases
to any focusing point r = (x, z) in the medium. Assuming an homogeneous medium of
constant speed-of-sound c0, free-space transmission matrices, P0(f) and G0(f), are con-
sidered. Their elements correspond to plane waves or 2D Green’s functions [9] propagating
in a fictive homogeneous medium:

P0 (θ, r, f) = exp − (ik · r) (II.14a)

= exp − [ik0 (z cos θ + x sin θ)],

G0 (r,u, f) = − i

4
H(1)

0 (−k0|r − u|) . (II.14b)

with k0 = 2πf/c0 the wave number. Those transmission matrices are then used to
beamform the reflection matrix in transmission and reception:

Rrr(f) = G∗
0 (f) × Ruθ(z) × P†

0 (f) , (II.15)

where the symbols ∗, † and × stand for phase conjugate, transpose conjugate and matrix
product, respectively. Each row of P†

0 = [P ∗
0 (θin, rin)]T defines the combination of plane

waves that should be applied to focus on each input focusing point rin = {xin, zin} at a
desired frequency. Similarly, each column of G∗

0 = [G∗
0(uout, rout)] contains the amplitude

and phase that should be applied to the signal received by each transducer uout in order
to sum coherently the echoes coming from the output focusing point rout = {xout, zout}.
Fig. II.5 illustrates the matrix focusing process. For sake of clarity, the input focusing
operation is represented by means of a cylindrical wave-front instead of a coherent combi-
nation of plane waves. This is justified by the fact that plane wave synthetic beamforming
numerically mimics focused excitations [26].

While, in standard synthetic ultrasound imaging, the input and output focusing points
coincide, they are here decoupled. At emission, the incident energy is concentrated at
the focusing point rin. This point can then be seen as a virtual source. Similarly, in
reception, a virtual sensor is synthesized by selecting echoes coming from the focusing
point rout. Therefore, each coefficient R(rout, rin, f) of Rrr contains the monochromatic
responses of the medium between a set of virtual transducers corresponding to each pixel
of the ultrasound image. In other words, one line of this matrix contains the pressure
field probed by the various virtual sensors located at rout when a transmitted focusing
is set to focus the incident wave at rin at the focusing time, i.e. at the time where the
incident wave is set to be focused.

Figure II.6(a2) shows the x-projection Rxx(z, f) of Rrr(f) at z = 18 mm and frequency
f = 5 MHz in the phantom experiment. First, note that the coefficients R(rout, rin, f)
associated with a transverse distance |xout − xin| larger than a superior bound ∆xmax

are not displayed. ∆xmax is actually fixed to avoid the spatial aliasing induced by the
incompleteness of the plane wave illumination basis: ∆xmax is inversely proportional
to the angular step δθ of the plane wave illumination basis: ∆xmax ∼ λmax/(2δθ) (see
Appendix II.B), with λ the wavelength.

As shown by Fig. II.6(a2), most of the signal in Rrr(f) is concentrated around its
diagonal. This indicates that single scattering dominates at these depths [69], since a
singly-scattered wave-field can only originate from a virtual detector in the vicinity of
the virtual source. In fact, the elements of Rrr which obey rin = rout hold the informa-
tion which would be obtained via multi-focus (or confocal) imaging in which transmit
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This last equation confirms that the diagonal coefficients of Rrr(f) form the confocal
image at frequency f . For these particular signals (rin = rout), equation II.21 consists in
a spatial convolution between the sample reflectivity γ(r) and an imaging PSF, H, which
corresponds to the product of the input and output PSFs: H = Hin ×Hout.

The resolution of such a confocal image is thus dictated by the support of Hin and
Hout that define the characteristic size of each virtual source at rin and virtual sensor at
rout. In absence of aberration, the transverse and axial dimensions of these focal spots,
δx0(r) and δz0(r), are only limited by diffraction [8]:

δx0(r) =
λ

2 sin[β(r)]
, δz0(r) =

2λ

sin2[β(r)]
, (II.22)

with β(r) the maximum angle under which each focal point is illuminated or seen by the
array of transducers. The virtual transducers display a characteristic elongated shape in
the z−direction (δx0 << δz0 ), which accounts for the bad axial resolution exhibited by
the monochromatic image in Fig. II.6(a1). Notably, while no bright targets are located
at z = 25 mm in the phantom experiment, the focused reflection matrix Rxx highlights
Fresnel rings that are induced by a target located above(at z = 20 mm) or below (at
z = 30 mm) [See the broadband US image (b1) that is analyzed below]. This phenomenon
is often observed in optics due to a defocus.

II.2.1.1 Quantification of the focusing quality, the common-mid-point frame.

The off-diagonal points in Rrr(f) can be exploited for assessing the local focusing quality
of the ultrasound image. To that aim, the relevant observable is the intensity profile along
each anti-diagonal of Rrr(f) [69]:

I(rm,∆r) = |R(rm + ∆r/2, rm − ∆r/2)|2 . (II.23)

All signals located on a given anti-diagonal have the same mid-point rm = (rout + rin)/2
, but different spacing ∆r = (rout − rin). In the following, I(r,∆r) is thus referred to as
the common-mid-point (CMP) intensity matrix.

To express theoretically this quantity, the first approximation consists in making, in
the vicinity of each common mid-point, the isoplanatic hypothesis. In other words, we
assume that all virtual transducers are impacted by the exact same aberrations. The
input and output PSF are then locally spatially invariant, such that

Hin/out(r, rin/out) = Hin/out(r − rin/out, rm). (II.24)

In order to assess the local resolution of the medium regardless of the medium reflectiv-
ity, while keeping a satisfactory spatial resolution, a spatial average over a few resolution
cells is required. To do so, a spatially averaged intensity profile Iav(r,∆r) is computed at
each point r, such that

Iav(rm,∆r) = 〈WL(r − rm)I(r,∆r)〉r (II.25)

where the symbol 〈..〉r denotes the spatial average and WL(r) is a spatial window function,
such that

WL(r) =

{

1 for |r| < L/2
0 otherwise.

(II.26)
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Note that L is arbitrarily chosen and will govern the spatial resolution of the estimation
of the local image resolution. Iav(rm,∆r) is an estimation of the spatially-dependent
intensity response to an impulse at rm. This means that whatever the scattering properties
of the sample, Iav(r,∆x) allows an estimation of the input-output PSFs. However, its
theoretical expression differs slightly depending on the characteristic length scale lγ of the
reflectivity γ(r) compared to the typical width δx of the input and output focal spots.
Two regimes can be distinguished, the specular regime (lγ ≫ δx) and the speckle one
(lγ ≪ δx).

CMP intensity profile in the speckle scattering regime In this regime (lγ ≪ δx),
the medium is composed of a random distribution of unresolved scatterers that can be
modelled by a random reflectivity I.1.3.2:

〈γ(r1)γ∗(r2)〉 = 〈|γ|2〉δ(r2 − r1), (II.27)

where 〈· · · 〉 denotes an ensemble average and δ is the Dirac distribution. By injecting
Eqs. II.21, II.24 and II.27 into Eq. II.23, the following expression can be found for each
common mid-point intensity:

I(rm,∆r) =

∫

dr|Hout (r − ∆r/2, rm) |2|Hin (r + ∆r/2, rm) |2 × |γ(r + rm)|2. (II.28)

Finally, the spatial average [Eq. II.25] enables to replace |γ(r)|2 in the last equation by
its ensemble average 〈|γ|2〉. Iav(r,∆r) then directly provides the convolution between the
incoherent input and output PSFs, |Hin|2 and |Hout|2:

Iav(rm,∆r) = 〈|γ|2〉
(

|Hin|2
r
⊛ |Hout|2

)

(∆r, rm). (II.29)

where the symbol
r
⊛ stands for a spatial convolution.

CMP intensity profile in the specular scattering regime In the specular scat-
tering regime, the characteristic size lγ of reflectors is much larger than the width of the
focal spot δx (lγ ≫ δx). γ(r) can thus be assumed as invariant over the input and output
focal spots. Equation II.21 then becomes:

R(r,∆r) = γ(r) ×
(

Hin

r
⊛Hout

)

(∆r). (II.30)

The injection of Eq. II.30 into Eq. II.23 yields the following expression of the average
CMP intensity profile:

Iav(r,∆r) = |γ(r)|2 ×
(∣
∣
∣
∣Hin

r
⊛Hout

∣
∣
∣
∣

2
)

(∆r). (II.31)

We observe that in the specular regime, Iav is directly proportional to the convolution
between the coherent input and output PSFs, Hin and Hout.

In any case, the averaged CMP intensity profile Iav(rm,∆r) is a direct indicator of
the focusing quality at each point rm of the medium as it measures the overlap between
each virtual source and detector.
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focal spots constructively interfere [Eq. II.15]. A coherent sum over the overall bandwidth
∆f can then be performed to build a broadband focused reflection matrix:

Rrr(∆f) =

∫ f+

f−

df Rrr(f). (II.34)

with f± = fc ± ∆f/2 and fc the central frequency of the RF signal bandwidth. In our
experiment, fc = 7.5 MHz and ∆f = 5 MHz. One row of the broadband FR matrix
corresponds to the situation where the transmit focusing is set to deposit energy at rin

while the virtual detector probes the spatial spreading of this incident waves across the
focal plane at the same time (t = 0 in the focused basis) [Fig. II.5].

On the contrary, the second matrix is built from the combination of all frequencies.
While, we describe a temporal frequency-domain beamforming, this broadband FR matrix
can be built based on a time-domain beamforming. To this aim, we simply adapt the
focusing law used in conventional plane wave imaging [Eq. I.26]:

τ(uout, θin, rout, rin) =
xin sin(θin) + zin cos(θin)

c0
︸ ︷︷ ︸

= τin(θin,rin)

+

√

(xout − uout)2 + z2
out

c0
︸ ︷︷ ︸

= τout(uout,rout)

. (II.35)

The broadband focused reflection matrix finally results from the transmitted and received
beamforming.

By summing the monochromatic FR matrix over the whole frequency bandwidth, the
axial resolution of the virtual transducers should be drastically improved [Fig. II.5]. To
prove this assertion, one can express theoretically the broadband FR matrix. For sake
of simplicity and analytical tractability, the par-axial and isoplanatic approximations are
made. It consists in decomposing the monochromatic PSFs as follows:

Hin/out(r, r
′, f) = H in/out(r − r′, f)ej2πf(z−z′)/c (II.36)

where H in/out represents the envelope of the PSF. Injecting Eqs. II.21 and II.36 into
Eq. II.34 leads to the following expression for the coefficients of Rrr(∆f) (see Appendix II.C):

R(rout, rin,∆f) = ej2πfc(2z−zin−zout)/c

∫

dr sinc
(
π∆f

c
(2z − zin − zout)

)

Hout(r − rout) γ(r) H in(r − rin). (II.37)

where we have assumed, in first approximation, that H in/out is constant over the frequency
bandwidth. The occurrence of the sinc factor in the integrand of the last equation shows
that, in the broadband regime, the axial resolution δz0 is dictated by the frequency
bandwidth, such that

δz0 ∼ c

2∆f
. (II.38)

This gain in axial resolution is clearly visible on the ultrasound image I(r,∆f) built from
the diagonal of Rrr(∆f) (Eq. II.16). While the original monochromatic images II.6(a1)
and II.7(a1) display an elongated speckle grain, the coherent sum of Eq. II.34 drastically
improves the axial resolution and the contrast of the image [Fig. II.6(a2) and II.7(a2)]. In
the calf experiment, the whole micro-architecture of the muscle is revealed.
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Figures II.6(b2) and II.7(b2) show the section Rxx(∆f, z) of the broadband FR ma-
trix Rrr(∆f) at depth z = 25 mm and z = 18 mm, in the phantom and calf experiment,
respectively [dotted white line on corresponding US image]. Compared to its monochro-
matic counterpart [Fig. (a2)], the single scattering contribution along the diagonal of Rrr

is enhanced compared to the off-diagonal coefficients. The coherent sum of FR matrices
over the whole frequency bandwidth provides an optimized time-gating to select back-
scattered echoes generated by scatterers located at the chosen depth. The contribution
of reflectors that sit ahead and back of the focal plane is eliminated. The singly-scattered
echoes are now concentrated in the vicinity of the diagonal of Rrr. Note that, similarly,
the multiply-scattered echoes whose time-of-flight differs from the ballistic time are also
removed in the same proportion. The single-to-multiple scattering ratio is thus preserved
through the time-gating operation. We observe that the ratio between the intensity of
confocal signals compared to the intensity of off-diagonal signals seems to be lower in
the calf experiment. It suggests that the single-to-multiple scattering ratio is lower in
this case. This observation is not surprising, as the calf is composed of many echogenic
scattering structures that can generate multiple scattering events. A quantitative method
is proposed in chapter 4 to measure this ratio [Par. IV.2].

The transverse resolution improvement is also highlighted by the bi-dimensional broad-
band CMP intensity profile displayed in figure. II.8(c). The blue curve of figure II.9 shows
its transverse cross-section. Compared to the monochromatic regime [Fig. II.8(b) and II.9
red curve], it now shows a clear feature: a confocal, steep peak on top of a flat multiple
scattering background. Surprisingly, although we are in a broadband regime, the 2D fo-
cal spot in Fig. II.8(c) still exhibits a cigar-like shape. To understand the reason for this
observation, the broadband CMP intensity profile can be expressed using the paraxial
approximation [Eq. II.36], see Appendix II.C.

Iav(r,∆r) = C

∫

df

[

|H in|2
∆r
⊛ |Hout|2

]

(∆r, f). (II.39)

with C a constant. In the broadband regime, the CMP intensity profile corresponds to the

sum over the frequency bandwidth of the incoherent input-output PSF |H in|2
∆r
⊛ |Hout|2.

This explains why it does not exhibit the time-gating process undergone by the broadband
FR matrix (Eq. II.37). Nevertheless, the broadband CMP intensity profile remains a
relevant observable to estimate the transverse resolution of an imaging PSF averaged
over the frequency bandwidth. Similarly to the monochromatic study, the full width at
maximum height (FWMH) of Iav(r,∆r) is denoted as the broadband transverse input-
output resolution wx(r). On the focused reflection matrix Rxx(z), we can see that wx(r)
probes the average spatial extension of the halo of single-scattered signals along the anti-
diagonals of this matrix [Fig. II.6(b2) and II.7(b2)]. The red curve of figure II.9(a) shows
Iav(r,∆r) measured in the calf experiment and laterally averaged over common-mid-
points located at z = 18 mm. It shows that the input-output resolution, and thus the
image resolution is far from being optimal: wx(∆f) ∼ 0.5 mm ≫ δx0(fc) ∼ 0.25 mm.
It suggests that the assumed speed of sound model does not exactly match the medium
speed of sound, which decreases the focusing quality.

In paragraph II.2.4, we will define a quantitative parameter to assess the focusing
quality at any pixel of the ultrasound image. This observable will consider the broadband
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diffraction-limited resolution δx0(∆f) as a reference. To make our measurement quanti-
tative, the theoretical prediction of δx0(∆f) should be as accurate as possible. To that
aim, a time-frequency analysis of the focused reflection matrix should be performed. This
is the aim of the next section.

Lastly, we described the monochromatic and broadband focused reflection matrix.
While the first one contains a frequency dependent information on the back-scattered
signals, it is characterized by a very poor axial resolution that limits its use. On the
contrary, the second matrix is built from the combination of all frequencies to improve
the axial resolution. An in-between configuration is studied in the following paragraph.

II.2.3 Time-frequency analysis of the focused reflection matrix

A time-frequency analysis of the focused reflection matrix is required to investigate the
evolution of absorption and scattering as a function of frequency. To do so, the coherent
sum of the monochromatic FR matrices [Eq. II.34] is performed over a sub-frequency
band, centered on a given frequency f and characterized by a smaller bandwidth δf :

Rrr(f, δf) =

∫ f+δf/2

f−δf/2
df Rrr(f) (II.40)

As derived in Eq.II.38, the axial dimension δz0 of the virtual transducers is inversely
proportional to the frequency bandwidth δf . A compromise has thus to be made between
the spectral and axial resolutions. Here, the following choice has been made: δf = 0.5
MHz and δz0 = 3 mm.

Figures II.10(a1,b1,b1) show the ultrasound images associated with the calf experi-
ment, over three different frequency bandwidths: 5 − 5.5 MHz, 7.25 − 7.75 MHz, 9.5 −
10 MHz. The axial resolution in each ultrasound image is of course deteriorated com-
pared to the broadband image [Figure II.7(b1)]. Yet, the time-frequency analysis of the
FR matrices yields the evolution of the SNR versus depth and frequency. At z = 18 mm,
for instance, the FR matrix at f = 9.75MHz exhibits a tiny confocal enhancement on
top of a predominant noise background (SNR∼3dB). On the contrary, the FR matrices
at f = 5.25 and 7.5 MHz exhibit a CMP intensity profile close to its broadband coun-
terpart. This weak SNR at 9.75 MHz can be partially explained by the finite bandwidth
of the transducers (5 − 10 MHz). However, absorption losses undergone by ultrasonic
waves in soft tissues have also a strong impact on the ultrasound image. Figure II.10(d)
illustrates the effect of absorption by displaying the normalized spectrum of the confocal
signal,

〈

I(r, f)
〉

x
, as a function of depth. This spectrum is shown to shift towards low

frequencies as a function of depth. This frequency shift is characteristic of absorption
losses, the attenuation coefficient exhibiting a linear dependence with frequency in soft
tissues [14].

Beyond absorption, the time-frequency analysis of the FR matrix also shows that the
ultrasound image I(r, f, δf) can fluctuate as a function of frequency. For instance, while
a bright scatterer [white arrow in Figure II.10(b1)] is clearly visible in the broadband
or low frequency FR matrix around x = 12.5 mm and z = 18 mm, its presence is not
revealed by the FR matrices at higher frequencies. A time-frequency analysis can thus be
of interest for characterization purposes: The frequency response of bright scatterers can
indeed reveal their size and nature.
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width wx of the CMP intensity profile can yield an unambiguous answer. In the speckle
regime, the CMP intensity profile actually yields the convolution between the incoherent
input-output PSF averaged over the frequency bandwidth (Eq. II.39). Admittedly, this
PSF is not equal to the confocal imaging PSF,

(

H inHout

)

(∆r) (Eq. II.37). Nevertheless,
the incoherent input-output PSF fully captures the impact of transverse aberrations. It
thus constitutes a relevant observable for assessing the focusing quality.

The width δx of the imaging PSFs is dictated by two distinct phenomena, namely
diffraction and aberration. In the ideal case (i.e no aberrations), the image resolution δx
is only impacted by diffraction and, more precisely, dictated by the angular aperture β(r)
(Eq. II.22). The latter one tends to decrease with depth and on the edge of the image.
In presence of aberrations, diffraction and wave-front distortions both alter the imaging
PSF. In order to provide an indicator that is only sensitive to aberrations, the estimator
wx of the image resolution should be compared to its ideal value w0(r) computed at each
focal point. We then defined a local focusing criterion F (r) as:

F (r) = w0(r)/wx(r). (II.41)

To estimate this parameter, the major challenge lies in the determination of the ideal
resolution w0(r) for broadband signals. Two techniques have been developed that both
take into account the frequency spectrum of the ultrasound image. For each point r,
I(r, f) is an estimation of the frequency spectrum of echoes generated by each focal point
and measured by the probe [Fig. II.10(d)].

II.2.4.1 Construction of the focusing criterion

The first technique consists in an extension of equation II.22, which rules the transverse
resolution of monochromatic focused beam to the case of broadband signals. To that aim,
I(r, f) is used as a weighting factor. The expected lateral resolution is then given by:

δx0(r)(1) =

〈

WL(r′ − r)

∫ f+

f−

df I(r′, f) δx0(f, r′)
∫ f+

f−

df I(r′, f)

〉

r′

. (II.42)

By using δx0 as an estimation of w0(r), the focusing criterion, F (1)(r), can be computed
from equation II.41. Figure II.11(b) displays this first focusing criterion superimposed
to the US image in a phantom experiment without aberration. We observe that F (1) is
close to 1 and relatively constant over the entire field of view. Its average and standard
deviation are 〈F (1)〉 = 0.84±0.09, which confirms that the assumed speed of sound model
accurately describes the medium speed of sound. Nonetheless, this criterion is slightly
lower than one, and we can see some edge effects due to the diffraction phenomena that
are not perfectly well modeled. If no aberration appears in this experiment, meaning that
wx is the optimal input-output experimental resolution, therefore, the ideal resolution
δx0(r)(1) is overestimated (meaning smaller length). Two phenomena can account for
these observations. First the broadband aspect of the backscattered echoes is simply taken
into account via I(r, f). This method does not separate singly-scattered echoes from noise
and multiply-scattered echoes. The signal-to-noise ratio decreases with frequency due
to attenuation (See the spectrogram of the calf experiment [Fig .II.10(d)]). Therefore,
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Once again, we build this reflectivity upon I(r, f). In addition, we demonstrated in
paragraph II.2.1.1 that the theoretical expression of the CMP intensity profiles relies
on the nature of the medium reflectivity, speckle or specular regime. To that aim, we
distinguish the two regimes:

The specular regime In this regime, the medium reflectivity varies slowly compared to
the characteristic sizes of the input and output PSF (lγ ≫ δx). Therefore, the frequency-
dependent confocal signals constitute an accurate estimation of the medium reflectivity
and

γ0(r, f) =
I(r, f)

∫ f+

f−

df I(r, f)
. (II.44)

The speckle regime In this regime, the random reflectivity of the medium is not
captured by the frequency dependent ultrasound images (due to the spatial extension of
the product of the two PSFs). To simulate this behavior, the amplitude of the ultrasound
image is modulated by a random term ξ(r, f). Its modulus is defined by the normal
probability distribution and its phase by the uniform distribution on the interval [0, 2π].
The medium reflectivity is thus given by:

γ0(r, f) =
I(r, f)

∫ f+

f−

df I(r, f)
ξ(r, f). (II.45)

Figure II.11(c) displays the second focusing criterion F (2) superimposed to the US
image in a phantom experiment without aberration. We observe that compared to F (1), its
mean value is closer to one, 〈F (2)〉 = 0.96±0.10, meaning that F (2) perfectly characterizes
the absence of aberration in this experiment. In addition, no longer long-scale fluctuations
are observed, meaning that the diffraction phenomena are perfectly modeled. However,
to achieve this result, the computational cost is heavy. Indeed it requires to fully simulate
back-scattered echoes based on an ideal propagation model. The relevance of this method
is thus discussed after the analysis of an in-vivo example.

Figure II.12 displays the first focusing criterion F (1)(r) superimposed to the conven-
tional B-mode image of the human calf. The extension of the spatial window L has been
set to 7λc, with λc ≈ 0.21 mm, the central wavelength defined at fc = 7.5 MHz. While
high values of F (F ∼ 1, blue areas testify of a good image quality, low values of F
(F < 0.3, yellow areas) indicate a poor quality of focus and gray areas point out areas
associated with a low SNR. Those areas seem to be blurred on the ultrasound image
[Fig. II.12a]. Indeed, these areas correspond to the situation where the estimation of
the image resolution has failed, meaning that there is no intensity enhancement of the
close-diagonal coefficients in Rxx(z,∆f). Two complementary reasons can explain this
behavior. Either the single scattering contribution is drowned into a much predominant
background noise (caused by multiple scattering process and electronic noise), or the
aberrations are so intense that the confocal spot spreads over an extended imaging PSF,
thereby pushing the single scattering intensity at focus below the noise level. Not sur-
prisingly this situation appears at large depth and in areas where the medium reflectivity
is weak. In any case, parts of the ultrasound image associated with these areas should be
carefully interpreted in case of a medical diagnosis.
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II.2.4.2 The focusing criterion, a robust and local indicator of the image
quality

The results presented above provide new insights in the construction of the focused reflec-
tion matrix and the focusing criterion based on the in-vivo example of human calf imaging.
This medium is representative of in-vivo ultrasound imaging where the medium under in-
vestigation is heterogeneous and composed by different kinds of tissues. It includes both
highly and weakly scattering areas, associated with unresolved scatterers and specular re-
flectors. In chapter 4 we use the parameter F as a virtual guide star for adaptive focusing
techniques, as it is done in literature with the coherence factor C [62, 143, 144]. In chap-
ter 3 we will use the local resolution of the image at each step of the matrix aberration
correction process to monitor the improvement of the image quality.

Admittedly, F (r) shows similarities with the coherence factor C [11, 145] but there is
a main difference. On the one hand, the coherence factor C investigates the spatial coher-
ence of the reflected wave-field based on the Van Cittert Zernike theorem. It enables to
probe the incoherent input PSF |H in/out|2. On the other hand, the focusing parameter F
directly provides the incoherent input-output PSF |H in|2 ⊛ |Hout|2. The latter parameter
is thus more sensitive to aberrations since it accumulates in one shot the wave-distortions
undergone by the incident and reflected waves. A second advantage of the F−parameter
lies in its spatial resolution. The resolution of the F and C-maps are actually dictated
by the PSF of the corresponding ultrasound images. While the F-parameter relies on a
confocal image, whose PSF scales as H in × Hout, the C−map is based on a single-sided
focused image of PSF H in. The F−parameter thus benefits from a confocal gain in terms
of resolution. Depending on the nature of the PSF, this gain can vary between 1 (window
PSF) and 2.

Last but not least, the parameter F enables a local measurement of the focusing qual-
ity almost independent of the local reflectivity. This property results from the choice of
analyzing the backscattered intensity between couples of virtual transducers sharing the
same common mid-point [Fig. II.13(b1,b2)]. Indeed, for various distance ∆x = xout −xin,
signals along a given CMP profile results from the combination of echoes generated by
roughly the same scatterers (yellow scatterer on the sketches). Differently the C−factor
investigates the pressure field generated by a single virtual source that results from a
focused insonification. This pressure field corresponds to the realigned signal associated
with R̆(uout, rin, rin,∆τ = 0) [Eq. I.9]. While the initial method probes the spatial corre-
lation in the transducer basis, this signal can be analyzed in the focused basis. In this case
it corresponds to one row of the focused reflection matrix (associated with rin), i.e. a vir-
tual detector probing the energy around a fixed input focusing point rin [Fig. II.13(c1,c2)].
For various distance ∆x the signals associated with the same row does not result from
the exact same scatterers. To compare the two approaches, we then measure vx(r) the
FWMH of each row. Figure II.13(b3,c3) show the map of wx(r) (CMP) and vx(r) asso-
ciated with a phantom experiment. The US image is displayed on figure II.13(a). For
each parameter, the corresponding intensity profiles have been averaged over a spatial
window WL of size L = λc = 0.21 mm (Eq. II.26). This tiny window is chosen to reveal
the fluctuations of vx(r) and wx(r) with respect to the local reflectivity. Both quantities
exhibit a similar averaged value of 0.31 mm close to the diffraction-limited resolution δx0.
However, their standard deviation σ is pretty different: σv = 0.16 mm vs σw = 0.14 mm.
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investigated. This time-frequency study of the focused reflection matrix paves the way
towards a quantitative characterization. Some promising routes are studied in chapter
4 for the quantification of the medium attenuation or the characterization of the nature
of the scatterer. In chapter 3, the broadband focused reflection will be used as the first
building block of matrix imaging for a local aberration correction. Related to this issue, a
focusing criterion has been defined from the focused reflection matrix in order to quantify
locally the impact of aberrations on each pixel of the ultrasound image. Compared to
the coherence factor generally used in the literature [11, 145], our focusing parameter is
shown to be more sensitive since it gathers the aberrations undergone by both the incident
and reflected waves during their travel through the medium. The spatial resolution of
its mapping is also better because of the confocal gain provided by the focused reflection
matrix. This focusing parameter will be used in chapter 4 as a figure of merit for the
estimation of the medium speed of sound.

Finally, in this section we analyzed the reflection matrix in a focal basis at the focal
time, i.e. at the required time for an incident wave to travel from the probe to the virtual
source and for a back-scattered wave generated at the virtual sensor to come back to the
probe.

II.3 The time-focused reflection matrix

This content is confidential – please contact the author for more information.

Conclusion

This chapter is dedicated to a matrix analysis of the ultrasound reflection matrix that
contains all the available information on the medium. This matrix corresponds to the
inter-element impulse matrix of the entire system. It links any input signals i.e. insonifi-
cations to any output one i.e. measured signals. Based on the linearity and reciprocity of
the wave propagation, this matrix approach uses matrix operation to extract information
on the medium.

We first review some of the major milestones that have contributed to the success of
this approach. We observed that the first techniques, i.e. time-reversal method and the
DORT method, directly analyze the reflection matrix in the transducer basis Ruu. These
techniques enable to learn how to focus inside a complex and sparse medium without any
a priori information. Based on a speed of sound hypothesis and on the useful concept
of virtual source, a more recent work produced by Robert and Fink [61] investigates
the reflection matrix in a dual basis Rur. This matrix contains the medium responses
generated by virtual sources embedded within the medium and measured by the probe
transducer. The author has demonstrated that the analysis of this matrix enables to
measure and correct for receive aberrations. While this matrix is acquired from focused
insonification, we extend this analysis in chapter 3.

We then illustrated how all the current insonification sequences i.e. plane waves, di-
verging waves and converging waves, can be described via a common matrix formalism
as various input bases of the reflection matrix. In this case, the beamforming process
constitutes a change of basis between a far-field basis and a focused basis made of vir-
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tual transducers located within the medium. This analogy leads to the focused reflection
matrix that contains the medium responses between arrays of virtual sources and sensors
at the focusing time, meaning at the time where the incident wave is set to be located
around its focal point. We first performed a frequency-dependent analysis of this matrix,
which enables to quantify locally the frequency content of echoes generated by each multi-
frequency resolution cell. In chapter 4 we build upon this analysis to point out promising
perspectives for characterization of the scatterer and the estimation of the medium at-
tenuation. We then turned our attention to the broadband focused reflection matrix Rrr

and introduced the concept of common-mid-point frame. This configuration is used to
provide a local measurement of the medium input-output resolution that is independent
of the medium reflectivity. By comparing this local resolution with an ideal one, we built
the focusing criterion that is able to probe the focusing quality of the ultrasound image.
This new indicator will be used in chapter 3 to quantify the benefits of a new aberration
correction technique and in chapter 4, as a figure of merit for the determination of the
medium speed of sound.

Finally, we studied the time focused reflection matrix Rrr(∆τ), which contains the
temporal responses of the medium between arrays of virtual transducers. This matrix
enables to study the reflection matrix outside the particular ballistic time (associated
with the US image) and focusing time (associated with the broadband focused reflection
matrix). In particular, we first studied this matrix in the virtual source frame, or virtual
sensor frame and demonstrated experimentally that the ultrasound image results from a
numerical time-reversal experiment. We then investigated the wave-front frame and the
wave-front matrix Rw that fully described the pressure field generated by a given virtual
source and seen from the probe. Rw will be extensively used in chapter 4 for the medium
characterization. Finally, we pointed out that the time-focused reflection matrix is able
to describe conventional beamforming technique through a matrix approach.

In this chapter we introduced the time focused reflection matrix that is able to describe
all focusing imaging technique via a common matrix formalism. In the following chapter,
we will use this matrix (or the focused reflection matrix) as a first building block for
aberration correction (chapter 3) and multiple characterization technique (chapter 4).
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Appendices

II.A Experimental acquisitions

Phantom experiment: The acquisitions were performed using a medical ultrafast ultra-
sound scanner (Aixplorer, Supersonic Imagine, Aix-en-Provence, France) driving a 4 − 15
MHz array composed of 256 transducer elements with a pitch p = 0.2 (SL15-4, Supersonic
Imagine). The ultrasound sequence consists in transmitting 41 steering angles spanning
from −20o to 20o, according to a hypothesis on the tissue speed of sound c0 = 1540
m/s [14]. The pulse repetition frequency is set at 1000 Hz. The emitted signal is a sinu-
soidal burst that lasts for three half periods of the central frequency fc = 7.5 MHz. For
each excitation, the back-scattered signal is recorded by the 192 transducers of the probe
over a time length ∆τ = 80 µs at a sampling frequency fs = 30 MHz.

Human calf experiment: The acquisition was performed using a medical ultrafast
ultrasound scanner (Aixplorer Mach-30, Supersonic Imagine, Aix-en-Provence, France)
driving a 5 − 18 MHz array composed of 192 transducer elements with a pitch p = 0.2
(SL18-5, Supersonic Imagine). The ultrasound sequence consists in transmitting 101
steering angles spanning from −25o to 25o, according to a hypothesis on the tissue speed
of sound c0 = 1580 m/s [14]. The pulse repetition frequency is set at 1000 Hz. The
emitted signal is a sinusoidal burst that lasts for three half periods of the central frequency
fc = 7.5 MHz. For each excitation, the back-scattered signal is recorded by the 192
transducers of the probe over a time length ∆τ = 80 µs at a sampling frequency fs = 40
MHz.

II.B Truncated focused reflection matrix

This first appendix provides a theoretical explanation of the maximal lateral distance
∆Xmax between the two virtual transducers. Performing a change of basis between the
focused basis and the plane wave basis can be analyzed as a spatial Fourier transform. To
avoid aliasing, a Shannon criterion should be respected. As stated in section II.2.1, the
focused reflection matrix is the result of the convolution of the input and output focusing
matrices with the medium reflectivity [Eq. II.18]. In absence of aberration, Hin can be
written:

Hin = P0 × P0
†, (II.46)

and in term of coefficients:

H(rin, r, f) =
∑

θ

exp

[

i
2π

λ
(xin − x) sin(θ)

]

. (II.47)

This equation is a spatial Fourier transform that requires the following condition:

∆xmax =
λ

2δθin
, (II.48)

with ∆xmax the maximal transverse distance between the two virtual transducers and
δθin is the angle step fixed by the ultrasound sequence used to insonified the medium.
A similar criterion also exists in receive for Hout, however, the ultrasound probes are
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generally designed with a pitch p ∝ λ or p ∝ λ/2. The transmit condition is then
generally the limiting one for plane wave imaging modes.

II.C Derivation of the incoherent input-output PSF in the

broadband regime

This content is confidential – please contact the author for more information.

II.D Extraction of the coherent wave from multiple propa-

gation movie in a speckle regime

This content is confidential – please contact the author for more information.
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In the previous chapters, we have seen that the image formation process requires an
hypothesis on the medium speed of sound. A mismatch between this model and the
medium speed of sound induces some errors on the estimation of the echoes round-trip
time-of-flight, which degrades the focusing quality. In transmission, the incident waves
are no longer confined within a diffraction limited focal spot, while in reception, the
beamforming process selects echoes that arise from a larger areas. The transmitted and
received PSFs are thus enlarged, which degrade the image quality.

Inspired by the pioneer work of Robert et al. [49], we develop in this chapter a new
matrix approach of aberration correction based on the distortion matrix concept. Whereas
the reflection matrix R holds the wave fronts that are reflected from the medium, the
distortion matrix D contains the deviations from an ideal reflected wave front that would
be obtained in the absence of inhomogeneities. This matrix is expressed within a dual basis
that links any virtual transducer embedded within the medium, to the aberration that any
incident or reflected wave undergo through its propagation within the medium. Despite
the random reflectivity of the medium (in the speckle regime), this matrix exhibits long-
range correlations. Such spatial correlations can be taken advantage of to decompose the
field-of-view into a set of isoplanatic modes and their corresponding wavefront distortions
in the far-field.

In this chapter, we develop the distortion matrix approach for acoustic imaging. In
view of medical ultrasound applications, we show that this method could tackle the case
of both specular and speckle regime. This new technique uses the broadband focused
reflection matrix Rrr as a first building block. Two experiments are used to illustrate this
chapter, (i) an in-vitro experiment where a tissue-mimicking phantom is imaged through
a thick layer of plexiglass; and (ii) an in-vivo experiment on the calf of a healthy patient.
This second experiment has already been studied in the previous chapter. We recall that
an extensive review of the major techniques of aberration correction is provide in the first
chapter [see Par. I.2].

This chapter is divided in four parts. We first demonstrate how projecting the reflec-
tion matrix into the far-field allows the suppression of specular reflections and multiple
reverberations (clutter noise). By means of the plexiglas experiment, we then tackle the
case of transverse aberration correction in the case of a single isoplanatic patch. The last
two sections are dedicated to the more challenging configuration where the field of view
is composed of multiple isoplanatic patches. Two strategies have been developed. The
first method is inspired from the DORT method, that demonstrates that under certain
conditions there is a one-to-one association between each eigenstate of the reflection ma-
trix and each point-like target in the medium. Similarly, the analysis of the distortion
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matrix reveals a one-to-one association between each isoplanatic patch p and each eigen-
state of this matrix. Its effective rank H then constitutes an estimation on the number of
isoplanatic patches in the field-of-view (FOV). The minimization of H, enables a quanti-
tative measurement of the local speed of sound of the medium in the FOV. The second
approach consists in a local analysis of the distortion matrix. Even if some assumptions
are required on the spatial extent of the medium isoplanatic patch, this method provides
an estimation of the medium propagation matrices that link any focal point embedded
within the medium to the transducer or plane wave basis.

In this chapter we restrain ourselves to the particular configuration were the two
virtual transducers are located at the same depth. The following techniques use the
broadband focused reflection matrix Rxx(z) developed in chapter 2 as a first building
block.

We first consider the in-vitro experiment were a 15 mm-thick layer of plexiglass is
placed between the probe and a tissue-mimicking phantom [Fig. 1B ]. This experiments
mimics strong aberration induced by a thick layer located at shallow depth, such as a
transcranial experiment. Figure 1B displays the associated plane wave US image I(r).
We recall that this image contains all the confocal signals of the broadband focused
reflection (FR) matrix, i.e. the diagonal signals of Rxx(z) at each focal depth z [see
Par. II.2.2]. These matrices are obtained by means of the propagation matrices P0 and
G0 [Eqs. II.14a and II.14b], which are defined based on an assumption of a homogeneous
medium, with a speed of sound of c = 1540 m/s. Unsurprisingly the US image in Fig. 1B
is strongly degraded by the plexiglass layer for two reasons. First, the plexiglass speed of
sound is around cplexi ∼ 2750 m/s [146]. The medium (composed of the plexiglas layer and
phantom) is thus far from being homogeneous and a huge error is made on the hypothesis
of speed of sound. It leads to a poor resolution of the image that is highlighted by the
bright point like scatterers. Second, multiple reverberations between the plexiglass walls
and the probe induce strong horizontal specular echoes. In the following, we show that
a matrix approach to wave imaging is particularly appropriate to correct for these two
issues.

III.1 Removing Multiple Reverberations with the Far-Field

Reflection Matrix

Reverberation signals are a common problem in medical ultrasound imaging, often origi-
nating from multiple reflections at tissue interfaces or between bones in the human body.
Here, we observe strong horizontal artifacts at shallow depths of the image (Fig. 1B),
which are due to waves which have undergone multiple reflections – often called rever-
berations in the literature – between the parallel walls of the plexiglass layer. In the
following, we show that these signals can be isolated and suppressed using the reflection
matrix.

To project the reflection matrix into the far-field, we define a free-space transmission
matrix, T0, which corresponds to the Fourier transform operator. Its elements link any
transverse wave number kx in the Fourier space to the transverse coordinate x of any
point r in a supposed homogeneous medium:

T0 (kx, x) = exp − (ikxx). (III.1)
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In appendix, III.A a theoretical expression of Rkk is derived in the single scattering
regime under an isoplanatic hypothesis. Interestingly, the norm-square of its coefficients
R(kout, kin, z) is shown to be independent of aberrations. It directly yields the spatial
frequency spectrum of the scattering medium at depth z:

∣
∣
∣R(kout, kin, z)

∣
∣
∣

2
= |γ̃(kout + kin, z)|2 , (III.4)

where γ̃(kx, z) =
∫
dxγ(x, z) exp(−ikxx) is the 1D Fourier transform of the sample reflec-

tivity γ(x, z). In the single scattering regime, the matrix Rkk displays a deterministic
coherence along its anti-diagonals [89, 147] that can be seen as a manifestation of the
memory effect in reflection [148]. Each anti-diagonal (kin + kout = constant) encodes
one spatial frequency of the sample reflectivity. For the system under study here, reflec-
tions occurring between the parallel surfaces of the plexiglass obey kin + kout = k0 sin θ0,
where k0 = ω0/c is the wave number at the central frequency and θ0 is the angle between
the top face of the plexiglass and the transducer array (Fig. 2(d). Hence, signatures of
such reflections should arise along the main anti-diagonal (kin + kout = 0) of Rkk. We
can take advantage of this sparse feature in Rkk to filter out signals from reverberation,
independently of aberrations induced by the plexiglass.

To this aim, we developed a multiple reflection filter that consists in applying an
adaptive Gaussian filter to remove the specular contribution that lies along the main
anti-diagonal of Rkk, such that:

R
′
(kout, kin) = R(kout, kin)

[

1 − αe−|kout+kin|2/δk2
]

. (III.5)

The width δk of the Gaussian filter scales as the inverse of the transverse dimension ∆x
of the field of view: δk = ∆x−1. The parameter α defines the strength of the filter:

αkk =
〈|R(kout, kin)|〉∆k>δk

〈|R(kout, kin)|〉∆k<δk

− 1, (III.6)

where the symbol 〈· · · 〉 denotes an average over the couples (kout, kin) separated by a
distance ∆k = |kout + kin| smaller or larger than δk. When the specular component
dominates, the parameter αkk tends to 1 and the Gaussian filter is fully applied: The
main anti-diagonal of Rkk is then set to zero [Fig.2(f)]. When there is no peculiar specular
contribution, the parameter αkk tends to 0 and the Gaussian filter is not applied: The
main anti-diagonal of Rkk remains unchanged.

Then, the inverse operation of Eq. III.2 can be applied to the filtered matrix R
′
kk to

obtain a filtered focused reflection matrix:

R
′
xx(z) = T†

0(z) × R
′
kk(z) × T∗

0(z). (III.7)

Fig. 2(e) shows an example of R
′
xx(z). Comparison with the original matrix in Fig. 2(c)

shows that the low spatial frequency components of the reflected wavefield have been
removed from the diagonal of Rxx(z). The resulting R

′
xx(z) now exhibits solely random

coefficients – a characteristic of ultrasonic speckle. However the halo of single scattering
is difficult to perceive due to the very poor transverse resolution.

Finally, figure 1(c) shows the filtered US image I ′
r calculated from R′

xx (Eq. II.16).
The removal of multiple reflections has enabled the discovery of previously hidden bright
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targets at shallow depths. However, as confirmed by the observation of the focused
reflection matrix, the confocal image still suffers from severe aberrations.

This specular filter is adapted to this particular experiment. To generalize the follow-
ing equation, no distinction will be done between R

′
xx(z) and Rxx.

III.2 The distortion matrix concept, fundamental bases

In the field of optic, Badon et al.[149] have introduced the distortion matrix concept for
optical imaging of extended specular reflectors in a strong aberration regime. Here, we
show how this approach can be extended to the speckle regime to correct for aberrations.
Based on the plexiglas/phantom system, we first investigate the case of a single isoplanatic
patch in the field of view. By changing the speed of sound hypothesis, we then move to
a more complex situation where the field of view is decomposed into multiple isoplanatic
patch. To help the reader, figure 3 displays a global flowchart of the aberration correction
process that summarizes the key steps.

To begin, we first base our demonstration on the above mentioned experiment of the
plexiglass/phantom system imaged at c0 = 1540 m/s. The aberrating layer (plexiglas)
is invariant by lateral translation. Consequently, a given plane wave of incident angle
θin that travels through this layer is only delayed. As the hypothesis of speed of sound
matches the one of the second medium, the wave suffers no further aberrations. Therefore
all the focal points located within the phantom are impacted by the aberration resulting
in a unique isoplanatic patch in the field of view. This experiment is thus ideal to validate
the basis of our aberration correction.

Figure 2(e) shows the filtered broadband focused reflection matrix R
′
xx. In chapter 2

II.2.2 we showed that this matrix is characterized by a halo of high intensity located along
the diagonal that comes from single scattering process. More precisely, it appears when
the two virtual transducers are overlapping with each other. However, in figure 2(e), this
halo nearly disappears due to the huge broadening of the broadband input and output
PSFs, Hin and Hout, induced by the aberrations. Mathematically, this phenomenon can
be described by Eq. II.37. As we only investigate transverse aberration in this chapter,
this equation is approached by the following one:

R(xout, xin, z) =

∫

dxHout(x, xout, z)γ(x, z)H in(x, xin, z). (III.8)

By means of a matrix formalism, this equation can be written as:

Rxx(z) = Hout(z) × Γ(z) × H
⊤
in(z), (III.9)

This approximation simply consists in assuming that the reflection matrix contains
the medium temporal Dirac impulse responses. This approximation is similar to the one
used in the annex ??. In this case, the axial resolution is point-like, which drastically
simplifies the following theoretical study.

To isolate and correct for these aberration effects, we will build upon the memory
effect [See Par. I.2.1.2]. This phenomenon describes the fact all focal points that belong
to the same isoplanatic patch are impacted by the same aberration. Thus, their input
and output PSFs are spatially invariant. For aberration correction, our strategy is the
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Fig. 3 Schematic flowchart of the decomposition of the field-of-view into mul-
tiple isoplanatic patches along the green path (top dashed lines), reverberation
suppression is performed. Along the orange path loops, the distortion matrix
approach is applied to extract aberration laws, and to use them to update the
estimation of the propagation matrix T̂p.

following: (i) highlight these spatial correlations by building a dual-basis matrix (the
distortion matrix) that connects any input focal point in the medium with the distortion
exhibited by the corresponding reflected wavefront in a correcting plane, e.g. the far-
field plane [149], and (ii) take advantage of these correlations to accurately estimate the
aberration.

III.2.1 Projection in the far-field

In adaptive focusing, the aberrating layer is often modeled as a random phase screen. For
an optimal correction, ultrasonic data should be back-propagated to the plane contain-
ing the aberrating layer. Indeed, from this plane, the aberration is spatially-invariant.
By applying the phase conjugate of the aberration phase law, aberrations can be fully
compensated at any point of the medium. However, in real life, speed-of-sound inhomo-
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geneities are distributed over the whole medium and aberrations can take place every-
where. In that case, the strategy is to back-propagate ultrasound data in several planes
from which the aberration phase law should be estimated and then compensated. The
correction planes should be chosen according to the following criterion: Maximizing the
size of isoplanatic patches. In the present case of a multi-layered media, a far-field plane
is the most adequate since plane waves are the propagation invariants in this geometry.
We will see in the calf experiment that the probe plane is a good choice for aberrations
induced by the skin or fat layers.

To isolate the effects of aberration in the reflection matrix, R
′
xx(z) is first projected

into the Fourier basis in reception by using the free-space transmission matrix T0:

Rkx(z) = T0 × R
′
xx(z). (III.10)

Rkx(z) contains the set of far-field aberrated wave-fronts generated by each virtual source
rin. Figure 4(A) shows the phase of Rkx(z) obtained at z = 30 mm. We recall that by
using the central frequency fc as a reference frequency, the transverse wave number can
be associated with a plane wave of angle θ̇, such that kx = kc sin(θ̇), with kc = 2πfc/c the
wave number at the central frequency. Expressing the far-field projection as a plane wave
decomposition is useful to define the boundaries of this basis. The maximum transverse
wave number is indeed related to β the maximum angle of wave illumination (in transmit
mode) or collection (in receive mode) by the array [white dashed lines on Figure 4(A)].
The matrix Rkx(z) will be used to tackle the aberrations in the receive plane-wave basis
(i.e. received far-field basis).

We might expect to observe correlations between the columns of matrices Rkx(z)
displayed in Figs. 4(a). Neighbor virtual sources rin belong a priori to the same isoplanatic
patch. The associated wave-fronts in the transducer plane or in the far-field should
thus be, in principle, strongly correlated since they travel through the same area of the
aberrating layer. However, such correlations are not obvious by eye in Figs. 4(a). In the
following, we show how to reveal those hidden correlations by introducing the distortion
matrix.

III.2.2 The distortion matrix

To reveal the isoplanaticity of the reflected wave-field, each aberrated wave-front [Fig.
4(d)] contained in the reflection matrix Rkx(z) should be decomposed into two compo-
nents: (i) a geometric component described by T0(z) [Fig. 4(e)], which contains the ideal
wave-front induced by the virtual source rin that would be obtained in the homogeneous
medium used to model the wave propagation [Fig. 4(e)]; (ii) a distorted component due
to the mismatch between the propagation model and reality [Fig. 4(f)]. A key idea is to
isolate the latter contribution by subtracting, from the experimentally measured wave-
front, its ideal counterpart. Mathematically, this operation can be done by means of an
Hadamard product between Rkx(z) and T∗

0(z):

Dkx(z) = Rkx(z) ◦ T∗
0(z). (III.11)

Dkr = Dkx(z) = [D(kout, {xin, z})] is called the distortion matrix. By injecting Eq. III.10
in Eq. III.11, the coefficient of the distortion matrix can be expressed as:

D(kout, rin) =
∑

xout

R(∆xout, xin, z) exp [ikout∆xout] . (III.12)
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correlations [Fig. 4(c)]. While the original reflected wavefronts display a different tilt for
each focal point rin, their distorted component displays an almost invariant aberration
phase law over all rin.

To support our identification of spatial correlations in Dkx with isoplanatic patches,
Dkx is now expressed mathematically. We begin with the simplest case of an isoplanatic
aberration which implies, by definition, a spatially-invariant input focal spot: H in(x, xin, z) =
H in(x−xin). As stated above, the plexiglas/phantom experiment imaged at c0 = 1540 m/s,
corresponds exactly to this situation. Under this hypothesis, the injection of Eqs. III.9
and III.10 into Eq.III.11 gives the following expression for Dkx [see appendix III.C)]:

Dkx(z) = T × S(z), (III.14)

where the matrix S is the set of incoherent virtual sources re-centered at the origin such
that

S(x′, xin, z) = γ(x′ + xin, z)H in(x′). (III.15)

x′ = x − xin represents a new coordinate system centered around the input focusing
point. These virtual sources are spatially incoherent due to the random reflectivity of
the medium, and their size is governed by the spatial extension of the input focal spot.
This random reflectivity leads to the short-scale phase-shifts that are observed between
the lines of Dkr [Fig. 4]. The physical meaning of Eqs. III.14 and III.15 is the following:
Removing the geometrical component of the reflected wavefield in the far-field as done in
Eq.III.11 is equivalent to shifting each virtual source to the central point xin = 0 of the
imaging plane. Dkx is still a type of reflection matrix, but one which contains different
realizations of virtual sources all located at the origin [Fig. 5(c,right)]. This superposition
of the input focal spots will enable the unscrambling of the propagation and scattering
components in the reflected wavefield.

Within a given isoplanatic patch, the spatial invariance of the PSFs, injecting Eq. III.8
into Eq. III.12

D(kout, xin, z) = H̃out(kout)

∫

dxγ(x+ xin, z)Hin(x)eikoutx (III.16)

The physical meaning of this last equation is the following: the aberrations can be mod-
elled by a transmittance H̃out(kout). This transmittance is directly the Fourier transform
of the output PSF Hout(x):

H̃out(kout) =
∑

x

Hout(x)e−ikoutx (III.17)

The aberration matrix H̃out directly provides the true transmission matrix T between the
transducers and any point of the medium:

T = H̃out ◦ T0 (III.18)

This transmission matrix T is the holy grail for ultrasound imaging since its phase con-
jugate directly provides the focusing laws that need to be applied in the received plane
wave basis to optimally focus on each point of the medium.
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III.2.3 Time reversal analysis of the distortion matrix

The next step is to extract and exploit the correlations of Dkx for imaging. In the
specular scattering regime, Dkx is dominated by spatial correlations in the input focal
plane [149]. This is due to the long-range coherence of the sample reflectivity for specular
reflectors. Conversely, in the speckle scattering regime, the sample reflectivity γ(r) is
random: 〈γ(r)γ∗(r′)〉 = 〈|γ|2〉δ(r − r′), where δ is the Dirac distribution and the symbol
〈· · · 〉 denotes an ensemble average. In this case, correlations in the Fourier plane dominate.
To extract them, the correlation matrix Ckk = N−1DkxD†

kx is an excellent tool. The
coefficients of Ckk are obtained by averaging the angular correlations of the distorted
wave-field D(kout, rin) over the N input focusing points rin = (xin, z):

C(kx, k
′
x) = N−1

∑

rin

D(kx, rin)D∗(k′
x, rin). (III.19)

Ckk can be decomposed as the sum of a covariance matrix 〈Ckk〉 and a perturbation term
δCkk:

Ckk = 〈Ckk〉 + δCkk. (III.20)

Ckk will converge towards 〈Ckk〉 if the incoherent source term S of Eq. III.14 is averaged
over enough independent realizations of disorder, i.e. if the perturbation term δCkk tends
towards zero. In fact, the intensity of δCkk scales as the inverse number M of resolution
cells in the FOV [150]. In the present case, M = LxLz/(δxδz) ∼ 10000, where (Lx, Lz) is
the spatial extent of the overall FOV and (δx, δz) is the spatial extent of each resolution
cell [Fig. 2(A)]. In the following, we will thus assume a convergence of Ckk towards its
covariance matrix 〈Ckk〉 due to disorder self-averaging.

Let us now express the covariance matrix 〈Ckk〉 theoretically. This allows 〈Ckk〉 to be
written as [see appendix III.D]:

〈Ckk〉 = T × ΓH × T†, (III.21)

where ΓH is diagonal and its coefficients are directly proportional to |Hin(x)|2. ΓH is
equivalent to a scattering matrix associated with a virtual coherent reflector whose scat-
tering distribution corresponds to the input focal spot intensity |Hin(x)|2 (Fig. 5(d)).
Expressed in the form of Eq. III.21, 〈Ckk〉 is analogous to a reflection matrix associated
with a single scatterer of reflectivity |Hin(x)|2.

For such an experimental configuration, it has been shown that an iterative time
reversal process converges towards a wavefront that focuses perfectly through the hetero-
geneous medium onto this scatterer [105, 106]. Interestingly, this time-reversal invariant
can also be deduced from the eigenvalue decomposition of the time-reversal operator
RR† [105, 106, 113] [See paragraph II.1.1 on the time reversal and DORT methods]. The
same decomposition could thus be applied to Ckk in order to retrieve the wavefront that
would perfectly compensate for aberrations and optimally focus on the virtual reflector.
This effect is illustrated in Fig. 5(d). It is important to emphasize, however, that the
induced focal spot is enlarged compared to the diffraction limit [114, 151]. For the goal of
diffraction-limited imaging, the size of this focal spot should be reduced. In the following,
we express this situation mathematically, and show how to resolve it.

Confidential – Need to know only



III.2 The distortion matrix concept, fundamental bases 110

Based on the Van Cittert-Zernike theorem [11], we show that the correlation coeffi-
cients C(k′

x, kx) can be expressed as:

C(kout, k
′
out) ∝ 〈|γ|2〉H̃out(kout)H̃

∗
out(kout, rp)

[

H̃in ∗ H̃in

]

(kout − k′
out). (III.22)

These coefficients are directly proportional to the Fourier transform of the scattering
distribution |Hin(x)|2 [see appendix III.D]. To reduce the size of the virtual reflector, one
can equalize the Fourier spectrum of its scattering distribution. Interestingly, this can be
done by normalizing the correlation matrix coefficients as follows

Ĉ(k′
x, kx) = C(k′

x, kx)/|C(k′
x, kx)|. (III.23)

This operation is illustrated by Fig. 5(e). The normalized correlation matrix Ĉkk =
[

Ĉ(k′
x, kx)

]

can be expressed as:

Ĉkk = T × Γδ × T†. (III.24)

In contrast to the operator ΓH of Eq. III.21, Γδ is a scattering matrix associated with
a point-like (diffraction-limited) reflector at the origin [Fig 5(e)]. A reflection matrix
associated with such a point-like reflector is of rank 1 [105, 106]; this property should
also hold for the normalized correlation matrix Ĉkk in the case of spatially-invariant
aberrations. As we will see, the first eigenvector of Ĉkk yields the distorted component of
the wavefront, and its phase conjugation enables compensation for aberration, resulting
in optimal focusing within the corresponding isoplanatic patch.

Although the operation of Equation III.23 tends to make the size of the focal spot
point-like, it also increases the noise level. Indeed, correlation coefficients associated with
large angle differences are more likely to be noisy. In Ckk these signals are initially
characterized by a low intensity. The normalization process then enhances these signals.
While, in the phantom experiment, the SNR is quite high, it is not necessary the case for
the calf experiment. This aspect will be discused later.

Beyond the isoplanatic case, the eigenvalue decomposition of Ĉkk can be written as
follows:

Ĉkk = UΣU†. (III.25)

Σ is a diagonal matrix containing the eigenvalues σi in descending order: σ1 > σ2 >
.. > σN . U is a unitary matrix that contains the orthonormal set of eigenvectors Ui.
In a conventional iterative time reversal experiment [105, 105], there is a one-to-one
association between each eigenstate of the reflection matrix and each point-like target in
the medium. The corresponding eigenvalue σi is related to the scatterer reflectivity and
the eigenvector Ui yields the transmitted wavefront that focuses on the corresponding
reflector. In this work, iterative time reversal is applied to Ĉkk. Each isoplanatic patch in
the FOI gives rise to a virtual reflector at the origin associated with a different aberration
phase law. We thus expect a one-to-one association between each isoplanatic patch p
and each eigenstate of Ĉkk: for each isoplanatic patch, the eigenvector Up = [Up(kx)]
should yield the corresponding distorted wavefront in Fourier space, and the eigenvalue
σp should provide an indicator of the focusing quality in that patch.

Figure 6(D) displays the normalized eigenvalues σ̂i = σi/
∑N

j=1 σj of the correlation
matrix Ĉkk associated with the plexiglas/phantom system imaged at c0 = 1540 m/s. We
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clearly observe the predominance of a single eigenvector, which confirms the hypothesis
of a single isoplanatic patch. Figure 6(E) shows its phase expressed in the received plane
wave basis and constitutes an estimation of the receive aberration H̃out(kout). It displays
a concave shape that is characterized of a speed of sound mismatch. Indeed, in the case
of a wrong speed of sound hypothesis, the time-of-flight and thus the error is minimal for
the angle θout = 0.

III.2.4 Aberration correction in a single isoplanatic patch

Now that the first eigenstate is known, an estimator T̂p of the transmission matrix can
now be calculated by combining the free-space T0 matrix and the normalized eigenvector
Ûp = [Up(kx)/|Up(kx)|]:

T̂p = Ûp ◦ T0. (III.26)

In the present example, only the first singular vector is studied, thus p = 1. The normal-
ization of Up ensures an equal contribution of each spatial frequency in T̂p. It is thus a
phase aberration correction. This point will be discussed later. Then, the transmission
matrices T̂p can be used to project the reflection matrix into the focused basis, i.e. in
the basis where the aberration has been estimated:

R
p
xx = T̂†

p × Rkk × T̂∗
p. (III.27)

(We recall that in the present experiment, we correct for the filtered reflection matrix
R

′
kk). Note that, T̂p has been estimated via the analysis of the aberration in reception.

Thanks to the reciprocity of the wave propagation, we use the same aberration correction
in transmission. This aspect will be discussed later.

Figures 2(e) and (g) illustrate the benefit of our matrix approach at depth z = 19 mm.
While the original matrix R

′
xx exhibits a significant spreading of the backscattered energy

over its off-diagonal elements [Fig. 2(e)], the corrected reflection matrix R
1
xx (Eq. III.27)

is almost diagonal [Fig. 2(g)]. This feature demonstrates that the input and output focal
spots are now close to be diffraction-limited and that aberrations have been almost fully
corrected by the transmission matrix T1 at depth z = 19 mm.

The diagonal elements of this corrected reflection matrix R
1
xx yield the confocal im-

age I1(r) displayed in Fig. 6F. We observe a well-resolved and contrasted image of the
phantom, meaning that T1 perfectly corrects for aberration over the entire FOV.

The corresponding Strehl ratio map S1 is shown in Fig. 6G. The clarity of the ultra-
sound image compared to the initial (Fig. 6A) and intermediate (Fig. 6B) ones, and the
marked improvement in S1 compared to that of Fig. 6C demonstrate the effectiveness of
this transmission matrix approach. A satisfying Strehl ratio S1 ∼ 0.4 is reached over the
entire field of view, and a factor of five improvement is observed at shallow and large
depths where the impact of the aberrating layer is the strongest. Such an improvement
of the focusing quality is far from being negligible as it translates to a gain of 14 dB in
image contrast.

While we developed the focusing criterion in chapter 2, we show here that the gain in
image quality can directly be quantified from the distortion matrix via the Strehl ratio,
S [152]. Initially introduced in the context of optics, S is defined as the ratio of the peak
intensity of the imaging system point spread function with aberration to that without.
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Equivalently, it can also be defined in the far-field as the squared magnitude of the mean
aberration phase factor:

S(rin) =
∣
∣
∣〈D(kout, rin)〉kout

∣
∣
∣

2
, (III.28)

where the symbol 〈· · · 〉 denotes an average over the variable in the subscript (which here is
the output transverse wave number kout). The Strehl ratio ranges from 0 for a completely
degraded focal spot to 1 for a perfect focusing and enables an estimation of the focus
quality at each point of the image. S is directly proportional to the focusing parameter
introduced by Mallart and Fink in the context of ultrasound imaging [11]. As pointed
out in paragraph, II.2.4.2 this criterion is more dependent on the medium reflectivity. To
assess the focusing quality of the corrected image Sp, we compute corrected distortion
matrix associated with the corrected focused reflection matrix R

p
rr.

Compared to the initial value S displayed in Fig. 6(c), S1 show an improvement of the
focusing quality by a factor five over the entire field of view [6(g)]. Such an improvement
of the focusing quality is far from being negligible as it translates to a gain of 14 dB in
image. contrast.

This proof of concept experiment opens a number of additional questions. First,
despite our best efforts, the measured Strehl ratio SF does not approach the ideal value
of one. Several reasons can account for this: 1) a part of the reflected wave field has
been lost at shallow depth when specular reflections and clutter noise have been removed;
2) experimental noise and multiple scattering events taking place upstream of the focal
plane could hamper our measure of the Strehl ratio, especially at large depths; and 3) the
same correction applies to the whole frequency bandwidth, while the aberrations are likely
to be dispersive (although for the phantom/plexiglass system considered here, dispersion
should not be very strong). Second, this first experiment only involves a single isoplanatic
patch over the entire field of view. Based on the same system but image with a different
speed of sound hypothesis, we now show in the following paragraph that eigenvectors
associated with a higher rank can be used to correct simultaneously for aberration laws
associated to multiple isoplanatic patches.

III.3 Isoplanatic patch decomposition and Shannon Entropy.

In the previous study, we analyzed the plexiglas/phantom system at c0 = 1540 m/s. We
have shown that this particular speed of sound hypothesis is interesting, as it creates
a single isoplanatic patch in the field of view. However, this speed of sound is not the
one that minimizes the image aberration. Figure 8(a) shows the same system imaged
at c0 = 1800 m/s, i.e. at an intermediate speed of sound between the phantom and
the plexiglas one. Compared to the first experiment image obtained at c0 = 1540 m/s
[Fig. 6A], this second experiment produces an ultrasound image that is characterized by a
higher image quality. However, we show in this paragraph, that even if these aberrations
are less intense, they induce multiple isoplanatic patch.

III.3.0.1 FOV decomposition into isoplanatic patches

The above described process is applied to this new experiment. By means of propagation
matrices P0 and G0 defined at c0 = 1800 m/s, a broadband focused reflection matrix
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Rxx(z) is computed. By removing the multiple reverberations, we construct the filtered
reflection matrix R

′
xx(z) [Eq. III.7], whose diagonal signals contains the filtered US image

I ′
r [Fig. 8(b)]. This matrix is then expressed in a dual basis to create Rkx(z) [Eq. III.10].

This matrix links the aberrated wave-front generated by each virtual source and measured
in the output plane wave (or far-field) basis. By comparing with the ideal reflection
matrix, we compute the distortion matrix Dkr that contains the aberrated component
of each aberrated wave-front [Eq. III.12]. Finally we perform a SVD of its normalized
correlation matrix Ĉkk [Eq. III.25]. We recall that figure 3 displays a global flowchart of
the aberration correction process.

Figure 7(a) displays the normalized eigenvalues σ̂i = σi/
∑N

j=1 σj of the correlation
matrix Ĉkk. If the convergence towards the covariance matrix were complete, i.e. if the
number of independent realization of aberrated component is large enough, the rank of
Ĉkk should yield the number of isoplanatic patches in the ultrasound image. In Fig. 7(a),
a few eigenvalues seem to dominate, but it is not clear how many are significantly above
the noise background. To solve this problem, we consider the Shannon entropy H of the
eigenvalues σ̂i [153, 154]:

H(σ̂i) = −
N∑

i=1

σ̂i log2 (σ̂i) . (III.29)

Shannon entropy yields the least biased estimate possible for the information available,
i.e. the data set with the least artifact for a given signal-to-noise ratio. This number can
be seen as an effective rank of the correlation matrix. It can thus be used as an indicator
of how many eigenstates are required to create an adequate ultrasound image (without
being affected by the perturbation term in Eq.III.20 [149]), i.e. how many isoplanatic
patches in the field of view.

In this second experiment, the eigenvalues of Fig. 7(a) have an entropy of H ≃ 2.85
[Fig. 7(c)]). Hence, only the three first eigenstates should be required to construct an un-
aberrated image of the medium. Figure 7B shows the phase of the three first eigenvectors
Up. U1 is almost flat and exhibits a phase standard deviation of 0.28 radians, indicating
that no correction for aberration (or a very minimal one) is required for optimal focusing
in the isoplanatic patch associated with that vector. U2 and U3 display a phase standard
deviation of 1.36 and 1.62 radians, respectively.

Based on these three aberration law, we create three updated propagation matrices Tp.
Each one of them provide a corrected reflection matrix R

p
rr [Eq. III.27]. We finally extract

three corrected US images Ip(r) that are displayed on figures 7(d,f,h). We observe that
each estimator T̂p of the transmission matrix reveals a well-resolved and contrasted image
of the phantom over distinct isoplanatic patches. U1 is associated with an isoplanatic
patch at mid-depth (z ≃ 45−55 mm). As previously anticipated, correction by U1 leaves
the image almost unchanged (compare Fig 8(a) to Fig 7(d)). This isoplanatic patch does
not require aberration correction because the model wave velocity c = 1800 m/s is already
close to the integrated speed of sound value at mid-depth. However, the phases of U2

and U3 exhibit curved shapes which indicate an incorrect model for the speed of sound
c0 (Fig 7B). While the convex shape of U2 suggests an underestimation of c0, the concave
shape of U3 indicates overestimation. Correction with the phase of each eigenvector
compensates for the associated distortion effect: the confocal images show an optimized
contrast and resolution at large depths (z > 70 mm) for P̂2 [Fig. 7(f)] and shallow depths
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issue, we will perform a local analysis of the distortion matrix.

III.3.0.2 Shannon entropy minimization, a local indicator of the medium
speed of sound

The information held in the distortion matrix can be used very flexibly, enabling multiple
routes towards aberration-free full-field imaging. Here, we propose a novel approach to
measure locally the medium the speed of sound via a minimization of the Shannon entropy.

This technique is based on two observations. First, we demonstrated that in the
previous paragraphs there is a direct relation between the Shannon entropy H(σi) of the
normalized correlation matrix Ĉkk and the number Np of isoplanatic patches contained in
the region of interest. Second, we observe that if the assume speed of sound c0 matches the
local speed of sound of the medium in the region of interest (ROI) c; then, the aberrated
wave-front generated by each virtual source of this ROI occur between the top of this
ROI and the probe. In the case of a stratified medium and for this particular speed of
sound, these aberrations then induce a single isoplanatic patch in the ROI that can be
corrected only by the first singular vector.

Therefore, by correcting the ultrasound image by means of the first eigenvector U1,
the Shannon entropy associated with a corrected distortion matrix probes the ability of
U1 to correct for all the aberrations in the ROI. This corrected Shanon entropy is then
minimal when the ROI is composed of a single isoplanatic patch, and thus when the
assumed speed of sound matches the medium one.

Figure 7(c) provides a first proof-of-concept of this idea. It shows the entropy H(σi) as
a function of the speed of sound c0 used to model the propagation of ultrasonic waves in
the FOI considered (here, the phantom down to z = 80 mm). H(σi) exhibits a minimum
around c = 1550 m/s, which is close to the speed of sound cp in the phantom.

Note that while the entropy H1(σi) displays a minimum, it does not reach the ideal
value of 1. A first reason for this is the perturbation term in Eq. III.20: experimental
noise and an insufficient number of input focal points can hinder perfect smoothing of
the fluctuations caused by the random sample reflectivity. Another potential reason is
that imperfections in the probe or plexiglass layer could induce lateral variations of the
aberrations upstream of the ROI.

III.3.1 Conclusion

The distortion matrix approach described in the previous two sections provides a powerful
tool for imaging inside a heterogeneous medium with a priori unknown characteristics.
Aberrations can be corrected without any guide stars or prior knowledge of the speed
of sound distribution in the medium. While our method is inspired by previous works
in ultrasound imaging [47, 11, 38, 61, 62], and is built on the recent introduction of the
distortion matrix in optics [149], it features several distinct and important advances. The
first is its primary building block: the broadband focused reflection matrix that precisely
selects the echoes originating from a single scattering event at each depth. This operation
is decisive in terms of signal-to-noise ratio since it drastically reduces the detrimental con-
tribution of out-of-focus and multiply-scattered echoes. Equally importantly, this matrix
captures all of the input-output spatial correlations of these singly-scattered echoes.
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The approach presented here also introduces the projection of the reflection matrix in
the far-field. This enables the elimination of artifacts from multiple reflections between
parallel surfaces, revealing previously hidden parts of the image. Here, we have only
examined reflections from surfaces which are parallel to the ultrasound array, which is
more relevant for imaging layered materials than it is for imaging human tissue. While
signatures of other flat surfaces should be identifiable as correlations in off-antidiagonal
lines of Rkk or in other mathematical bases [155], reverberations from uneven or curved
surfaces can not, at present, be addressed with this method.

For aberration correction, projection of the reflection matrix into a dual basis allows
the isolation of the distorted component. Then, all of the input focal spots can be super-
imposed onto the same (virtual) location. The normalized correlation of these distorted
wave-fields, and an average over disorder, then enables the synthesis of a virtual coherent
reflector. Unlike related works in acoustics [38, 61, 62], this virtual scatterer is point-
like, i.e. not limited by the size of the aberrated focal spot. Here, we demonstrate how
the randomness of a scattering medium can be leveraged to identify multiple isoplanatic
patches at the same time and correct for associated aberrations both input and output.

By means of a two layer medium, we have first tackled the case of a single isoplanatic
patch in the field of view. The analysis of the distortion matrix enables to extract an
aberration law that perfectly corrects for aberration over the entire region. By modifying
the hypothesis of speed of sound, we have then turned our attention to a more complex
configuration where the medium under investigation is composed of multiple isoplanatic
patches. We demonstrate how the randomness of a scattering medium can be leveraged
to identify multiple isoplanatic patches at the same time and correct for associated aber-
rations both input and output.

While this elegant approach does not requires any assumption on the number of iso-
planatic patches, the drawback here lies in the fact that corrections over each isoplanatic
patch are difficult to combine. To address this issue, we will perform a local analysis of
the distortion matrix called matrix aberration correction. In addition, we only investigate
aberrations in reception. To tackle the case of laterally varying aberrations, we will also
study the aberrations in transmission.

Finally, figure 8(d) shows the results of this matrix aberration correction of aberration
correction. We observe that this technique enables to produce an optimal ultrasound
image despite of multiple isoplanatic patches.

III.4 Matrix imaging for local aberration correction

In the previous section, we introduced the concept of distortion matrix. Based on the
plexiglas/phantom system, we show how to perform an isoplanatic patch decomposition
that enables to (i) estimate the number of isoplanatic patches in the field of view, (ii)
estimate simultaneously the aberration laws associated with each one of these patches
(iii) perfectly and individually correct for aberration. To perform this analysis we used
a simple stratified medium. In this case, we demonstrated that aberration are better
corrected in the plane wave basis and the entire analysis was performed in the received
plane wave basis. Transmitted aberration have been estimated based on the reciprocity
of the wave propagation. This first route requires any assumption on the aberrations

Confidential – Need to know only





119 Chapter III. Matrix approach of aberration correction

Broadband

Focusing

Confocal filtering

Realign virtual sources

Spatial Fourier transform

Time reversal 

analysis (SVD)

Re-shift aberration law

k

k

k

k

Updating propagating

matrices

(1)

Correction in Recieve 

transducer basis

Correction in Transmit

plane wave basis

Q T

Spatial window filter 

arround  r
p
 

Loop 

over

Fig. 9 Workchart of the first iteration of the aberration correction process. The
transmitted and received correcting basis are the plane wave and transducer
basis, respectively. The blue steps of the process refer to the estimation of the
aberration phase laws, while the green steps refer to the aberration correction.
The gray rectangle symbolizes a loop over all the spatial window centered on rp.
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III.4.1 Filtering multiple scattering and noise

As stated above, the first step consists in computing the broadband focused reflection
matrix Rxx(z) [Eq. II.34] by means of P0 and G0 [Eqs. II.14a and II.14b]. In the matrix
Rxx, we recall that the singly-scattered echoes are concentrated along the diagonal of the
matrix, while multiply-scattered echoes spread over all the coefficients of the reflection
matrix [69]. The spatial extension of this halo along the anti-diagonals of this matrix
highlights the input-output PSF II.2.4.

For US imaging, only the singly-scattered echoes are of interest. The multiply-
scattered echoes can be partly removed by means of an adaptive confocal filter [156, 139].
It consists in weighting the coefficients R(xin, xout, z) of the focused reflection matrix as
a function of the distance |xout − xin| between the virtual transducers, such that:

R̂(xout, xin) = R(xout, xin) exp

[

−| xout − xin |2
2lc(r)2

]

. (III.30)

The chosen filter has a Gaussian-shaped with a characteristic size lc(r) that matches the
input-output resolution w(r). For areas where the estimation of w(r) fails, lc is arbitrarily
set to 5δx0.

Figures 10(b,c) show the original broadband focused reflection matrix Rxx and the

filtered one R̂xx respectively, computed at z = 28 mm [white continuous line on figure
12(d)]. By applying this confocal filter, a part of the multiple scattering contribution found

in Rxx is removed. However, R̂xx still contains a residual multiple scattering component
since the latter one also occurs along close diagonal coefficients. Note that this filter has
no impact on the raw ultrasound image since the confocal signals are unaffected. However,
it constitutes a necessary step for the determination of the aberration law as it greatly
improves the SNR.

III.4.2 Projection of the reflection matrix in the correction basis

In adaptive focusing, the aberrating layer is often modeled as a random phase screen. For
an optimal correction, ultrasonic data should be back-propagated to the plane containing
the aberrating layer. Indeed, from this plane, the aberration is spatially-invariant. By ap-
plying the phase conjugate of the aberration phase law, aberrations can be fully compen-
sated at any point of the medium. However, in real life, speed-of-sound inhomogeneities
are distributed over the whole medium and aberrations can take place everywhere. In that
case, the strategy is to back-propagate ultrasound data in several planes from which the
aberration phase law should be estimated and then compensated. The correction planes
should be chosen according to the following criterion: Maximizing the size of isoplanatic
patches. For multi-layered media, a far-field plane is the most adequate since plane waves
are the propagation invariants in this geometry. For aberrations induced by the skin or fat
layers, the probe plane is a good choice. In this section, the aberration correction will be
performed in these two planes as they coincide also to the emission and reception bases
used to record the reflection matrix. However, note that, in practice, other correction
planes can be chosen according to the imaging problem.
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III.4.2.1 Projection in the far-field

As described in paragraph III.2.1, to project the reflected wave-field in the far-field, a
spatial Fourier transform should be applied to the outpout of R̂xx(z):

R̂kx(z) = T0 × R̂xx(z). (III.31)

where T0 is the Fourier transform operator,

T0(kx, x) = exp (ikxx), (III.32)

and kx the transverse wave number. R̂kx(z) contains the set of far-field aberrated wave-

fronts generated by each virtual source rin. Figure 11(a) shows the phase of R̂kx(z)
obtained at z = 18 mm [dashed white line on figure 12(a)]. Using the central frequency fc

as a reference frequency, the transverse wave number can be associated with a plane wave
of angle θ̇, such that kx = kc sin(θ̇), with kc = 2πfc/c the wave number at the central
frequency. Expressing the far-field projection as a plane wave decomposition is useful
to define the boundaries of this basis. The maximum transverse wave number is indeed
related to β the maximum angle of wave illumination (in transmit mode) or collection (in

receive mode) by the array [white dashed lines on Figure 11(a)]. The matrix R̂kx(z) will
be used to tackle the aberrations in the receive plane wave basis.

A reciprocal projection can also be performed at the input of Rxx(z):

R̂xk(z) = R̂xx(z) × T0
⊤. (III.33)

The coefficients R̂(xout, kin, z) correspond to the wave-field probed by the virtual trans-
ducer at rout if a plane wave of transverse wave number kin illuminated the medium.
Figure 11(d) shows the phase of R̂kx(z) obtained at z = 18 mm. This matrix will be used
to investigate the aberrations in the transmit plane wave basis.

III.4.2.2 Projection in the transducer basis

Similarly, to analyze aberrations in the transducer plane, we consider the free-space trans-
mission matrix Q0 defined between the focused and the transducer bases at the central
frequency fc:

Q0 = T−1
0 × (Pz ◦ T0) , (III.34)

where the symbol ◦ stands for the Hadamard product and Pz = [Pz(kx, z)] is the plane
wave propagator at the central frequency:

Pz(kx, z) = ei
√

k2
c −k2

xz. (III.35)

The elements of Q0 link any point r in the focal plane to any transducer u:

Q0(x, z, u) =
∑

kx

ei(kx(x−u)+
√

k2
c −k2

xz). (III.36)

The operator Q0 can be given a physical interpretation by reading the terms of Eq. III.34
from right to left: (i) a spatial Fourier transform using the operator T0 to project the
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wave-field in the plane wave basis; (ii) the plane wave propagation modeled by the prop-
agator Pz between the focal and transducers’ planes over a distance z; (iii) an inverse
Fourier transformation T−1

0 that finally projects the wave-field in the transducer basis.
To enlighten the physical meaning of this operator, its coefficients can be expressed under
the Fresnel approximation as follows:

Q0(r, u) ≈ eikczeikcx2/(2z)eiku(u−x), (III.37)

where ku = kcu/z can be seen as a transverse wave number. Using this operator Q0, the

matrix R̂xx can be projected in the transducer basis either at input,

R̂xu(z) = R̂xx(z) × Q0
⊤ (III.38)

or output,

R̂ux(z) = Q0 × R̂xx(z), (III.39)

Each column of R̂xu(z)= [R̂(xout, uin, z)] is the wave-field received by the virtual trans-
ducer at rout for an incident wave-field emitted from a transducer at uin. Reciprocally,
each row of R̂ux(z) = [R(uout, xin, z)] contains the wave-front recorded by the transducers

for a virtual source in the focal plane at rin. Figure 11(d) shows the phase of R̂ux(z)
obtained at z = 18 mm [dashed white line on Fig. 12(d)]. Similarly to the plane wave
basis, the spatial extension of the reflected wave-field in the transducer basis coincides
with the physical aperture of the array used to collect the echoes coming from a depth z
[white dashed lines on Figure 11(d)].

III.4.2.3 Discussion

We might expect to observe correlations between the columns of matrices R̂kx(z) and

R̂ux(z) displayed in Figs. 11(a) and (d). Neighbor virtual sources rin belong a priori
to the same isoplanatic patch. The associated wave-fronts in the transducer plane or in
the far-field should thus be, in principle, strongly correlated since they travel through
the same area of the aberrating layer. However, such correlations are not obvious by
eye in Figs. 11(a) and (d). This phenomenon is caused by the random reflectivity of the
medium. Similarly to the previous section, we show how the distortion matrix is able to
reveal those hidden correlations. Here, we will mostly consider the transducer basis as
the far-field case has already been tackled in in paragraph III.2.2

III.4.3 The distortion matrix

To reveal the isoplanaticity of the reflected wave-field, each aberrated wave-front [Fig.

11(g)] contained in the reflection matrix R̂ux(z) should be decomposed into two compo-
nents: (i) a geometric component described by Q0(z) [Fig. 11(e)], which contains the ideal
wave-front induced by the virtual source rin that would be obtained in the homogeneous
medium used to model the wave propagation [Fig. 11(h)]; (ii) a distorted component
due to the mismatch between the propagation model and reality [Fig. 11(i)]. A key idea
is to isolate the latter contribution by subtracting, from the experimentally measured
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wavefront, its ideal counterpart. Mathematically, this operation can be done by means of
an Hadamard product between R̂ux(z) and Q∗

0(z):

Dux(z) = R̂ux(z) ◦ Q∗
0(z). (III.40)

Dur = Dux(z) = [D(uout, {xin, z})] is called the distortion matrix. It connects any input
focal point rin to the distorted component of the reflected wavefield in the transducer
basis. Using Eq. III.37, the coefficients of the distortion matrix can be written as follows
under the Fresnel approximation:

D(uout, {xin, z}) =
∑

xout

R̂(xout, xin, z) exp

[

i
kc

2z
(x2

out − x2
in)

]

exp

[

i
kc

z
uout(xout − xin)

]

,

(III.41)
For (xin + xout) << λcz/δx, the parabolic phase term can be neglected. In that case,
Eq. III.41 becomes:

D(uout, {xin, z}) =
∑

δx

R̂(xin + δx, xin, z) exp

[

i
kc

z
uout δx

]

, (III.42)

with δx = xout−xin. Mathematically, each row of D is the Fourier transform of the focused
wave-field re-centered around each focusing point rin. Again, the distortion matrix D can
thus be seen as a reflection matrix for different realizations of virtual sources, all shifted
at the origin of the focal plane (xin = 0) [Figs. 14(a,b)]. The co-location of the virtual
sources at the same point accounts for the much larger correlation degree between the
columns of Dux [Fig. 11(f)] than for the reflection matrix R̂ux [Fig. 11(d)].

Note that equivalent distortion matrices, Dxu, Dkx and Dxk can be built from the other
reflection matrices previously defined, R̂xu, R̂kx and R̂xk. For Dxu, the same reasoning as
above can be used by exchanging input and output. For the far-field distortion matrices,
Dkx and Dxk, the demonstration has already been done in a previous work [40]. The

comparison between the phase of R̂kx [Fig. 11(a)] and Dkx [Fig. 11(c)] highlights the high
correlation degree of the distorted wave-fields in the far-field thanks to the virtual shift
of all the input focal spots at the origin.

——————————————————————————

III.4.3.1 Local distortion matrices

Virtual sources, that belong to the same isoplanatic patch, should give rise to strongly cor-
related distorted wave-fronts despite the random reflectivity of the medium [Fig. 11(c,f)].
To correct for multiple isoplanatic patches in the field-of-view, we first show in the previous
section III.2 [40, 149] that the distortion matrix can be analyzed over the whole field-of-
view. Its effective rank is then equal to the number of isoplanatic patches contained in
this field-of-view, while its singular vectors yield the corresponding aberration phase laws.
The proof-of-concept of this fundamental result has first been demonstrated in optics for
specular reflectors [149], then in ultrasound speckle for multi-layered media [40].

For ultrasound in-vivo imaging, the fluctuations of the speed-of-sound occur both
in the lateral and axial directions. For instance, the strong fluctuations of the F -map
displayed in Fig. 12(a) illustrate the complexity of the speed-of-sound distribution in the
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with W∆r a spatial window function:

W∆r(r) = W∆x,∆z(r) =







1 for |x| < ∆x
and |z| < ∆z

0 otherwise

Ideally, each sub-distortion matrix should gather a set of focusing points rin belonging
to the same isoplanatic patch. In reality, the isoplanicity condition is never completely
fulfilled. A delicate compromise has thus to be made on the size ∆r of the window
function: sufficiently small to approach the isoplanatic condition, sufficiently large to
have access to enough independent realizations of disorder [see appendix III.E]. This last
point will be discussed at the end of paragraph. III.4.4 and the strategy developed for the
choice of ∆r will be tackled in paragraph III.4.8.

III.4.3.2 Isoplanicity

For sake of analytical tractability, the isoplanatic condition is assumed to be fulfilled over
each region of size ∆r. This hypothesis implies that the broadband PSFs H in and Hout are
invariant by translation in each region: H in/out(x

′, x, z) = H in/out(x
′ −x, z, rp). Injecting

Eq. III.8 into Eq. III.42 leads to the following expression for the D-matrix coefficients:

D(uout, rin, rp) = H̃out(uout, rp)

∫

dxγ(x+ xin, z)H in(x, rp)ei kc
2z

uoutx (III.44)

The physical meaning of this last equation is the following: Around each point rp, the
aberrations can be modelled by a transmittance H̃out(uout, rp). This transmittance is
directly the Fourier transform of the output PSF Hout(x, rp):

H̃out(uout, rp) =
∑

x

Hout(x, rp)e−i kc
2z

uoutx (III.45)

The aberration matrix H̃out directly provides the true transmission matrix Q between
the transducers and any point rp of the medium:

Q = H̃out ◦ Q0 (III.46)

This transmission matrix Q is the holy grail for ultrasound imaging since its phase con-
jugate directly provides the focusing laws that need to be applied on each transducer to
optimally focus on each point rp of the medium.

III.4.3.3 Singular value decomposition

To extract the aberration phase law H̃out(uout, rp) from each local distortion matrix, we
can notice from Eq. III.44 that each line of Dur(rp) is the product between H̃out(uout, rp)
and a random term associated with each virtual source. This explains the strong cor-
relations exhibited by Dur(rp) in Fig. 11(f). To unscramble the deterministic term
H̃out(uout, rp) from the random virtual source term in Eq. III.44, the singular value de-
composition (SVD) of D(rp) is an adequate tool. It writes as follows

Dur(rp) = U(rp) × Σ(rp) × V†(rp), (III.47)
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or, in terms of matrix coefficients,

D(uout, rin, rp) =
∑

i

Ui(uout, rp)Σ(rp)V ∗
i (rin, rp).

Σ is a diagonal matrix containing the singular value σi(rp) in descending order: σ1 >
σ2 > .. > σN . U(rp) and V(rp) are unitary matrices that contain the orthonormal set
of output and input eigenvectors, Ui(rp) = [Ui(uout, rp)] and Vi(rp) = [Vi(rin, rp)]. To
intuit the result of this SVD, one can consider the asymptotic case of a point-like input
focusing beam [Hin(x) = δ(x)]. In this ideal case, Eq. III.44 becomes D(uout, rin, rp) =
H̃out(uout, rp)γ(rin). The comparison with Eq. III.47, shows that the matrix Dur(rp) is
then of rank 1. The first output singular vector U1(rp) yields the aberration transmittance
H̃out(rp) while the first input eigenvector V1(rp) directly provides the medium reflectivity.
In reality, the input PSF Hin is of course far from being point-like but one can expect
that the first output singular vector will still constitute a reliable estimator of H̃out(rp).
To check this intuition, the SVD of Dur(rp) should be predicted theoretically.

III.4.4 Correlation matrix

To do so, a study of the correlation matrix Cuu(rp) in the transducer basis is needed:

Cuu(rp) =
1

Nin
D′

ur(rp) × D′†
ur(rp), (III.48)

with Nin the number of virtual sources contained in each spatial window W∆r. The SVD
of D(rp) is indeed equivalent to the eigenvalue decomposition of Cuu(rp):

Cuu(rp) = U(rp) × Σ2(rp) × U†(rp). (III.49)

or, in terms of matrix coefficients,

Cuu(rp) =
∑

i

σ2
i (rp)Ui(uout, rp)U∗

i (uout, rp). (III.50)

The eigenvalues σ2
i of Cuu(rp) are the square of the singular values of Dur(rp). The

eigenvectors Ui(rp) of Cuu(rp) are the output singular vectors of Dur(rp). The study
of Cuu(rp) should thus lead to the prediction of the singular vectors Ui(rp). The
coefficients of Cuu can be seen as an average over rin of the spatial correlation of each
distorted wave-field:

C(u, u′, rp) =
1

Nin

∑

rin

D(u, rin, rp) D∗(u′, rin, rp). (III.51)

To be efficient, the average requires a large enough number of independent focal spot.
Mathematically, it means that the correlation matrix Cuu converges towards its covariance
matrix 〈Cuu〉. It allows to approach the random reflectivity by its average 〈γ(r)γ∗(r′)〉 =
〈|γ|2〉δ(r − r′). In the following, we will thus assume that this convergence condition is
fulfilled. Under this assumption, injecting Eq. III.44 into Eq. III.51 leads to:

C(uout, u
′
out, rp) ∝ 〈|γ|2〉H̃out(uout, rp)H̃∗

out(u
′
out, rp)

[

H̃in ∗ H̃in

] (
uout − u′

out, rp
)
, (III.52)
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where the symbol ∗ stands for a correlation product. This equation is the equivalent in
the transducer basis of the one presented in the previous section [Eq. III.22] for the plane
wave basis. A more rigourous description is provided in paragraphIII.2.3 and appendix
III.D for the case of plane wave basis.

The correlation term, H̃in ⊛ H̃in, results from the Fourier transform of the input PSF
intensity |Hin|2. Equation III.52 is reminiscent of the Van Cittert-Zernike theorem for an
aberrating layer [11, 49]. This theorem states that the spatial correlation of a random
wavefield generated by an incoherent source is equal to the Fourier transform of the
intensity distribution of this source (here the input aberrated focal spots).

By confronting Eq. III.52 with Eq. III.50, one can show that the eigenvectors Up of the
correlation matrix Cuu will be proportional to the aberration transmittance H̃out(uout, rp).
However, their amplitude is also modulated by the eigenvectors Wi of the correlation
matrix H̃in ⊛ H̃in, such that

Ui(rp) ∝ H̃out(rp) ◦ Wi(rp). (III.53)

The eigenvectors Wi can be derived by solving a second order Fredholm equation with
Hermitian kernel [151, 157]. An analytical solution can be found for certain analytical
form of the correlation function H̃in ⊛ H̃in. In absence of aberration [H̃in(uin) = 1],
the correlation function H̃in ⊛ H̃in should be equal to a triangle function that spreads
over the whole correlation matrix [49]. In presence of aberrations, a significant drop
of δuin, the spatial correlation length of H̃in ⊛ H̃in measured in the transducer basis
is expected. δuin is actually inversely proportional to the spatial extent δxin of the
input PSF H in: δuin ∼ λz/δxin [11]. Figure 13 (a) illustrates that fact by showing the
modulus of the correlation matrix Cuu(rp) computed over the area A2 in Fig. 12(d). If we
assume that the aberrations only induce phase shift (corresponding to a temporal delay)
(|H̃out(uout, rp)| = 1), the modulus of Cuu is actually a direct estimator of H̃in ⊛ H̃in. As
shown by Fig. 13 (a), the correlation function H̃in ⊛ H̃in is far from having a triangular
shape and it decreases rapidly with the distance |uout − u′

out|.
The shape of the corresponding eigenvectors Wi(rp) depends on the exact form of

the correlation function. For instance, a sinc correlation function implies 3D prolate
spheroidal eigenfunctions[151]; a Gaussian covariance function leads to Hermite-Gaussian
eigenmodes[114]. As the correlation function H̃in ⊛ H̃in is, in first approximation, real
and positive, a general trend is that the first eigenvector W1(rp) shows a nearly constant
phase. This is a very important property since it means that the phase of the first
eigenvector U1(rp) is a direct estimator of H̃out(rp) [blue dashed line in Fig. 13(c)]. The
modulus of U1(rp), i.e W1(rp), generally exhibits a single lobe around uout = 0. Its
typical width is the correlation length δuin. The higher rank eigenvectors Wi(rp) are
more complex and exhibit a number of lobes that scales with their rank i. The blue and
black lines in Figure 13(d) show the modulus of the first two eigenvectors of the matrix
Cuu displayed in Fig. 13(a). We recognize the typical signature of the two first eigenmodes
with one and two lobes respectively.

Note that to insure the validity of the theoretical prediction of Eq. III.53, we show in
appendix III.E that The number Nin of independent input focusing points in each region
should be at least four times larger than the number Mδ = δx/δx0 of transverse resolution
cells δx mapping the aberrated focal spot δx0.

Nin > 4Mδ. (III.54)
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This condition is decisive for the choice of the area ∆r over which each local distortion
matrix can be investigated. Because Mδ decreases after each iteration of the aberration
correction process, the spatial window can be reduced accordingly, allowing an access
with a better spatial resolution to the aberration matrix H̃out.

To sum up this paragraph, we have shown that the phase of the first singular vector
U1 of the output distortion matrix Dur(rp) is an estimation of the output aberration
phase law. However, this estimation is degraded by the aberrations in transmit. The
support of U1 actually scales as the correlation width δuin of aberrations in the transducer
basis. For aberration correction, it is thus important to consider the normalized vector
Û1 = [U1(uout)/|U1(uout)] that only implies a phase shift and not the full amplitude of
U1 as it is however done in Ref. [66]. In the latter case, the bounded support of U1 would
limit the probe aperture to the correlation width δuin. For a strong level of aberrations,
it can deeply degrade the resolution of the corrected image.

In the next paragraph, a time reversal picture of the correlation matrix is given to
interpret physically the different theoretical results: (i) Give a physical interpretation of
the SVD process; (ii) Explain and solve a potential artifact that consists in a lateral shift
of the corrected PSF.

III.4.5 Time reversal picture

The previous paragraph has shown that the aberration phase law can be extracted from
the SVD of the distortion matrix Dur(rp). This operation can be actually seen as a
fictive time reversal experiment. Expressed in the form of Eq. III.52, Cuu is analogous to
a reflection matrix R associated with a single scatterer of reflectivity |Hin(x)|2 [Fig. 14c].

For such an experimental configuration, it has been shown that an iterative time
reversal process converges towards a wavefront that focuses perfectly through the hetero-
geneous medium onto this scatterer [105, 106]. Interestingly, this time-reversal invariant
can also be deduced from the eigenvalue decomposition of the time-reversal operator
RR† [105, 106, 113]. The same decomposition could thus be applied to C in order to
retrieve the wavefront that would perfectly compensate for aberrations and optimally
focus on the virtual reflector. This effect is illustrated in Fig. 14c. It is important to
emphasize, however, that the coherent reflector is enlarged compared to the diffraction
limit. As seen before (Eq. III.53), a set of eigenmodes Ui are thus obtained and focus
on different parts of the virtual reflector [114][151]. Generally, the first eigenvector U1

focuses on the center of the virtual reflector since it maximizes the back-scattered energy.
Its phase thus directly maps onto the aberration transmittance. However, it might not
be the case if the scattering distribution |H in(x)|2 is too complex. U1 then focuses on the
brightest spot of the input PSF |H in(x)|2. The phase of U1 may display a linear phase
ramp compared to the aberration phase law (Fig. 13c). It results in a lateral shift of the
imaging PSF (Fig. 13e) that can generate artifacts on the final corrected image [38]. In
Appendix III.F, we show how to compensate this linear phase ramp, resulting in a better
estimation of the aberration law Û1.
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III.4.6 Transmission matrix imaging

Now that an estimator Û1 of the aberration phase law H̃out has been established, its
phase conjugate can be used as a focusing law to compensate for aberrations. To do so,
the first step consists in back-propagating the broadband focused reflection matrix Rxx(z)
[Eq. II.34] towards the correction basis (here the output transducer plane):

Rux(z) = Q0 × Rxx(z). (III.55)

Note that this equation is similar to Eq. III.38, except that the filtered focused reflection
matrix R̂xx(z) is here replaced by the raw focused reflection matrix Rxx(z). In that way,
we make sure that no single-scattered echo is removed during the aberration correction
process.

An estimator of the transmission matrix Q1 at point rp is then deduced from the
free space transmission matrix Q0 and the phase conjugate of the aberration phase law
estimator Û ′

1(u, rp):
Q1(u, rp) = Q1(u, rp)Û ′∗

1 (u, rp). (III.56)

The correction at reception is then performed by re-focusing the reflection matrix at
output by means of the estimator Q1 of the transmission matrix:

R
(1,out)
xx (z) = Q†

1 × R̂ux(z). (III.57)

where the index 1 in upper script stands for the first iteration of the aberration correction
process and the symbol ‘out’ stands for an aberration correction only performed at output.

Figure 9 sums up all the key steps of the aberration correction process. The aberration
correction in the receive mode corresponds to the left wing of this scheme. To complete
this aberration correction process, the aberrations should now be corrected in the transmit
mode (right wing of the scheme). Thanks to the spatial reciprocity of wave propagation,
similar operations can be performed in the transmit mode by exchanging virtual sources
and sensors. Note also that the correction basis can differ at input and output. At
emission, the focused reflection matrix R

(1,out)
xx (z) can, for instance, be projected in the

plane wave basis [40] instead of the transducer basis.
The result of this first iteration of the aberration correction process is a new focused

reflection matrix R
(1)
xx (z) that has been corrected both at emission and reception. This

process can then be iterated. We will refer to the focused reflection matrix obtained after
the nth iteration step as R

(n)
xx (z). The iteration of the aberration process is useful since the

quality of focus is improved at each step. It results in better resolved virtual transducers
that, in return, provides a better estimation of the aberration phase law (in particular at
large angles in the plane wave basis or on the edge of the array in the transducer basis).
This virtuous cercle is reinforced by an estimation to the transmission matrix that can be
performed at a higher resolution. Indeed, as the size of the virtual transducers decreases,
the number of resolution cells contained in each focal spot, M (n)

δ = δx(n)/δx0, decreases
as well. The extension ∆r of the spatial window function W∆r can thus be reduced while
still ensuring a satisfying estimation of the aberration phase law (Eq. III.54). A gradual
reduction of the spatial window ∆r leads to an estimation of the transmission matrix Q
at a higher resolution.

Finally, we describe in the following paragraph how to accelerate this convergence
process by making the virtual reflector artificially point-like.
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III.4.7 Normalized correlation matrix

At the nth iteration of the process, the correlation matrix C
(n)
uu can be written as follows

(Eq. III.52),

C(n)(uout, u
′
out, rp) ∝ 〈|γ|2〉H̃(n)

out(uout, rp)H̃
(n)∗
out (u′

out, rp)
[

H̃
(n)
in ⊛ H̃

(n)
in

] (
uout − u′

out, rp
)
, (III.58)

where H̃(n)
out and H̃

(n)
in accounts for the residual aberration transmittance at output and

input, respectively, at the beginning of the nth iteration.
In this section we have shown that the first singular vector of Cuu can be used to

estimate the aberration law in reception. However, this estimation is damaged by the
correlation term

[

H̃
(n)
in ⊛H̃

(n)
in

]

, which modulates the singular vector Ui by an envelop
function Wi.

As said before, the correlation function
[

H̃
(n)
in ⊛H̃

(n)
in

]

accounts for the finite size of
the virtual reflector in Eq. III.58 [Fig. 14D]. To make this virtual reflector point-like, we
propose in the previous section [see III.2.3] to consider the normalized correlation matrix
Ĉ

(n)
uu (rp):

Ĉ(n)(uout, u
′
out, rp) = C(n)(uout, u

′
out, rp)/|C(n)(uout, u

′
out, rp)|. (III.59)

This normalization process equalizes the Fourier spectrum of the virtual reflector. In-
deed, if the aberrating structures in the medium are only inducing phase distortions
[|H̃(n)(uout)| = 1], injecting Eq. III.52 into Eq. III.59 the normalized correlation matrix
coefficients Ĉ(n)(uout, u

′
out, rp) can actually be expressed as follows:

Ĉ(n)(uout, u
′
out, rp) = H̃out(uout, rp)H̃∗

out(u
′
out, rp) (III.60)

where H̃out(uout, rp) is expressed in this form, the normalized correlation matrix Ĉ
(n)
uu is

analogous to a reflection matrix R associated with a single point-like scatterer [Fig. 14d].
As in an iterative time-reversal experiment with a point-like target[105], Ĉuu is of rank
one and its eigenvector U

′(n)
1 (rp) directly provides the residual aberration phase law:

U′(n)
1 (rp) = H̃

(n)
out(uout, rp) (III.61)

Figure 13 illustrates the benefit of the normalization of C
(n)
uu by considering the ex-

ample of the region A2 in Fig. 10(a). Figure 13(b) shows the modulus correlation matrix
C

(2)
uu at the beginning of the 2nd step. The comparison with its initial value [Fig. 13(a)]

already shows the drastic flattening of the correlation function
[

H̃
(n)
in ⊛ H̃

(n)
in

]

after the
first iteration of the aberration correction process. This flattening is a direct indicator
of the gain in focusing quality at input. It also makes possible the normalization of C

(2)
uu

as the SNR is drastically improved over the off-diagonal elements of Cuu. Figure 13(d)
shows the modulus of U′(3)

1 (rp) (red curve). Compared to the modulus of U
(1)
1 (rp) (blue

line), we observe that the signature of the first Hermito-Gaussian mode W1 has been
suppressed. The red curve in 13(c) displays the accumulated phase of the aberration
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choice of the correcting basis does not modify the wavefront distortions. However, the
spatial extension of the associated isoplanatic patches is deeply affected by this choice,
impacting the results of the aberration correction process. Depending on the location
of the aberrator and/or its spatial dimension, one basis is more suitable than the other
to extract the aberration law. For instance, a local perturbation of the medium speed
of sound located at shallow depth, will deeply impact the transducers that are directly
located above. Capturing this fluctuation in the plane wave basis is much more difficult
as it results in slight modifications of each plane wave, which may just emerge from the
noise. On the contrary, let’s consider a stratified medium that is invariant by lateral
translation. A plane wave that propagates through such medium is only tilted without
additional distortion. The distortion then only depends on the angle of the plane wave
and not on the location of the virtual transducer, resulting in a single isoplanatic patch
for each stratification. For in-vivo application, both kind of heterogeneities appear. The
organs under study are generally separated from the probe by multiple layers of skin,
adipose and/or muscle tissues. This kind of heterogeneities are thus better corrected in
the plane wave basis. In addition, the waves may travel through local heterogeneities such
as superficial veins that are better captured in the transducer basis. In the present case, no
information on the shape of the aberrator is available a priori. We thus propose to correct
successively in the transducer basis and in the plane wave basis, both in transmit and
in receive. We arbitrarily choose to begin the correction process by the correcting bases
that match the ones used for the acquisition: plane wave basis in transmit, transducer
basis in receive. We start by correcting the transmit aberrations as this process may also
correct for unwanted movement of the medium that occurred during the acquisition.

To provide an aberration correction for the entire image in the complex situation where
multiple isoplanatic patches are contained in the field of view, an effective strategy consists
in using a moving spatial window W∆r [section III.4.4] and to compute an aberration law
for each image sector [40, 66, 65]. The dimension of the spatial window is a key parameter
as it impacts the accuracy and the spatial resolution of the aberration law estimation. On
the one hand, if the spatial window is larger than the isoplanatic patch, the hypothesis of
partially-invariant aberrations is not valid and the region of interest contains more than
one isoplanatic patch. The correction process will then provide an average aberration
that may not perfectly focus on any patch. On the other hand, if the window function is
too small, the hypothesis of invariant aberration in the field-of-illumination is maintained,
but the number of independent virtual transducers is too small, preventing the correlation
matrix to converge toward the covariance matrix, which degrades the resulting aberration
law [40]. To bypass this issue, we propose to perform a four-iterative correction for which
W∆r is reduced at each iteration. After each iteration, the previous correction improves
the quality of focus and thus reduces the size of the virtual sources. It enhances the
SNR and decreases the number of resolution cells within the aberrated focal spot. It
thus reduces the minimal size of the field-of-illumination, allowing to correct for smaller
isoplanatic patches. The four colored straight rectangles of figure 10(a) reflect the size
of the spatial window used to correct the image. The dimensions of the spatial window
[dx, dz] are given in table 1. To avoid edge effects, a 75% overlapping is applied to correct
for each field-of-illumination.

The confocal filter [Par. III.4.1] also needs to be carefully set. To be efficient, the
characteristic size of the confocal filter lc(r) should match the input-output resolution
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Table 1 – Parameters used for the entire aberration correction process. For each iteration,
a confocal filter of maximum caracteristic length Nw0(r) is first applied to Rrr. Then a
moving windows of size [dx, dz] select a field of illumination. The correction is applied in
transmit and in receive, either in the transducer basis u̇ or in the spatial Fourier basis θ̇

Correction iteration 1 2 3 4

N 10 10 8 6

dx (mm) 10 7.5 5 3

dz (mm) 20 15 10 7.5

Transmit basis θ̇in u̇in θ̇in u̇in

Receive basis u̇out θ̇out u̇out θ̇out

First Side in out in out

SVD type C C Ĉ Ĉ

w(r) in order to select all the singly-scattered echoes and to remove the maximum of
multiple-scattered echoes. If lc(r) is too large or if no filter is applied, the multiple-
scattered echoes increases the noise level associated with incoherent signal. In Equation
III.20, this level is characterized by δC. The convergence of the correlation matrix towards
its covariance matrix is thus more difficult and requires more realizations of independent
aberrated components. If lc(r) is too small, some singly-scattered echoes are removed.
This filter then acts as a Hanning window that smooths out the resulting aberration phase
law. lc(r) is then defined by the measurement of w(r). For areas where this estimation
has failed [gray area on Fig. 12(d)], lc(r) is set to Nw0(r) with N an integer. As the
local resolution of the image improves with the successive iteration, the confocal filter is
thus more and more selective, which improved its efficiency to remove multiple-scattered
echoes and electronic noise.

Finally, we introduced two types of time reversal analysis based on the SVD of C or
Ĉ. The first one is more robust and less sensitive to the noise level, but also less accurate
at large angles of illumination or collection. It is then used for the first two iterative
corrections while the last two corrections are based on Ĉ.

Figures 10 (b,d) display the original and corrected focused reflection matrices, com-
puted at depth z = 18 mm [straight white line on Fig. 10(d)]. The single scattered signals
that are initially spread around the diagonal are now re-centered on a thinner diagonal,
meaning that the local input-output resolution has improved. Figure 10(e) shows the
common-midpoint intensity profiles averaged over the area A1 for each iteration. The
average input-output resolutions computed at −3 dB are displayed in table 2. After the
fourth correction, this average resolution is equal to 〈w(4)〉 = 0.21 mm. Compared to
the average theoretical resolution, which is equal to w0 = 0.19 mm, the fourth correction
nearly reaches the optimal resolution defined by the diffraction limit. By comparing the
initial input-output resolution w with the corrected one w4, we define an improving factor
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Table 2 – -3 db input-output resolution averaged over the area A2 [Fig. 12(d)]. Theoretical
resolution w0 = 0.19 mm

Correction iteration 0 1 2 3 4
〈w〉-3 dB (mm) 0.57 0.57 0.28 0.24 0.21

of the input-output resolution:

ǫ =

〈 |w4(r) − w(r)|
w(r)

〉

r̂

, (III.62)

where 〈...〉r̂ denotes a spatial average over focusing points. For the area A1, this factor is
equal to ǫ = 40 %.

Figures 12(b,c) display the original ultrasound image of the human calf with the
corrected one. The two images are normalized by their mean intensity and are displayed
using the same dynamic. We see a significant improvement of the image quality. The
probe is set perpendicular to the muscle fibers. Therefore, those fibers appear as strong
point-like scatterers in the ultrasound image. The aberration correction reveals some
of those fibers and the ones that are already visible on the original image appear more
brighter (left part of the image, around the vein located at [x, z] = [−3, 32] mm), which
testified about the improvement of the image resolution. The boundaries between each
type of soft tissue are better defined and display a better continuity. Figures 12(e,f) are a
zoom of the ultrasound images. The aberration correction reveals some structures that are
completely blurred on the original image. To validate those qualitative observations, the
focusing criterion associated with the original F (r) and corrected one F (4)(r) are displayed
on figures 12(a,d). Most of the aberrations have been corrected and the focusing criterion
is now close to 1 for a large part of the image, meaning that the focusing quality is
optimal. However, according this criterion, the aberration correction process fails for two
areas (gray areas on the image). The first one is located at the bottom left part of the
image and corresponds to the fibula (bone). Echoes associated with this area mainly come
from multiple scattered paths, an effect that we do not attempt to treat in this article.
On the top right part of the image, the focusing criterion reveals a circular area that is
not well reconstructed. Two reasons could explain this result. First, plane wave imaging
supposes that the medium is not moving during the entire acquisition process. Here, the
ultrasound sequence is quite long (101 firings at 1000 Hz) and the existence of a vein at
shallow depth could disrupt this hypothesis. Secondly, the signal to noise ratio associated
with this area is quite low, the estimation of the aberration law is thus more difficult.
Note that at least, the focusing criterion can now be better estimated which means that
some aberrations have been corrected. The entire image shows an average improvement
factor of the resolution ǫ = 36%. Note that this factor underestimates the improvement
of the image resolution as only focal points for which the estimation of F and F (4) have
succeed. It means that areas that are initially too degraded due to aberrations and that
are well reconstructed after the aberration correction process are not taken into account.
To quantify the contrast enhancement induced by the aberration correction process, the
average signal level within the vein (located at [x, z] = [−3, 32] mm) is compared to the
one measured on the bright area located just below the vein. Compared to the original
image, the corrected image shows a contrast improvement of 2.0 dB
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III.4.9 Discussion

The results presented above validate the matrix approach of aberration correction for
in-vivo measurement in the complex case of human calf imaging. This medium is rep-
resentative of in-vivo ultrasound imaging where the medium under investigation is het-
erogeneous and composed of different kind of tissues. It includes both highly and weakly
scattering areas, which can be tricky for aberration correction techniques. The back-
scattered signals are generated either by unresolved scatterers (speckle regime), bright
point-like scatterers (muscle fibers) and specular objects that are bigger than the image
resolution (for example, skin tissue at shallow depth around z = 5 mm). Previous works
have shown that the concept of the distortion matrix can be applied both to the specular
regime [149] and to the speckle regime [40, 158]. The present article provides additional
insights in the aberration correction that are essential for applying this technique to in-
vivo case where both regimes are found. For each kind of reflector, the image resolution
is improved.

To be efficient, the aberration correction process requires that the focused reflection
matrix fully describes the aberrated focal spot. In other word, the maximal distance
∆x between the input and output focal spot needs to be larger than the input-output
resolutions w. It means that the number of degrees of freedom available to control the
wavefront needs to be higher than the number of resolution cells within the aberrated
focal spot. Therefore, there is a link between the aberration complexity and the number
of required excitations to perfectly correct for aberrations. Consequently, as long as the
aberrated focal spots are smaller than the maximal distance ∆x, the matrix approach of
aberration correction can be applied to data sets that contain fewer transmit excitations
such as the one used for ultrafast imaging modes.

Figure 15 shows the spatial distribution of aberration laws accumulated over the four
iterations and computed in the plane wave and transducer bases, both at the input and
output. Aberrations are shown to be strongly position-dependent and to display short-
scale fluctuations. Some aberration laws corresponding to adjacent areas [Fig. 15 B,
D, C] are highly correlated, both in the plane wave or transducer bases, meaning that
their associated rectangle areas belong to the same isoplanatic patch. Figures (A1, B1,
C1, D1) display a concave curvature shape in the plane wave basis, meaning that the
assumed speed-of-sound used to beamform the image is under-estimated [40]. In most
cases, the estimated aberrations laws in transmit are highly correlated to the receive ones,
both in transmit and in receive. This behavior stems from the reciprocity of the wave
propagation. In other words, the transmit and back-scattered waves travel through the
same heterogeneities, resulting in the nearly same aberrations. Some adaptive techniques
[61, 65, 66] use this phenomenon to correct both at the emission and reception by the
same aberration law estimated either in transmit or in receive. However, for some areas,
the transmit and receive aberration laws are definitely not identical [Fig. B1, C1, E1,
F2,...]. This non-reciprocity of the aberration laws stems from the differences between
the transmit basis, e.g. the plane wave basis, and the receive one e.g. the transducer
basis. Therefore, for acquisitions that do not use the same transmit and receive basis,
correcting for aberration with the same phase law both in transmit and receive does
not provide an optimal focusing quality [61, 66]. The truncated aspect of some of the
aberration laws (e.g. Figs. A2 and D2) results from the maximal angles of illumination
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or phase arrays, without increasing the complexity.

III.5 Conclusion and perspectives

In summary, we successfully applied the concept of matrix approach of aberration cor-
rection ([40]) to the complex case of in-vivo human calf imaging. In this chapter, we
provide a mathematical and physical description of the aberration correction mechanism.
It provides a new point of view on the challenging topic of adaptive imaging.

By focusing at distinct points in emission and reception, one can build a focused
reflection matrix that contains the impulse responses between a set of virtual transducers
mapping the entire medium. By projecting the reflection matrix toward a dual basis, we
extract a new distortion matrix that essentially connects any focal point inside the medium
with the distortion that a wavefront, emitted or recorded from that point, experiences due
to heterogeneities. A time-reversal analysis of the distortion matrix enables the estimation
of the transmission matrix that links each sensor and image voxel. The distortion matrix
provides a powerful tool for imaging inside a heterogeneous medium with a priori unknown
characteristics. Aberrations can be corrected without any guide stars or exact knowledge
of the speed of sound distribution in the medium. By using the high flexibility of the
matrix approach, aberrations are successively corrected in transmit and in receive with
separate aberration phase laws that are expressed both in the plane wave and transducer
basis. This aberration correction process provides an optimal focusing quality.

Unexplored but promising perspectives for this work include the analyze of frequency-
dependent aberrations to extend the distortion matrix to the case of dispersive heteroge-
neous media. Aberration correction would then consist in a time reversal of the aberrated
wavefront rather than the simple phase conjugation presented in this paper [62].
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Appendices

III.A Reflection matrix in the far-field basis

As stated in the accompanying paper (Eq. 6), the far-field reflection matrix Rkk can be
expressed as follows:

Rkk(z) = T(z) × Γ(z) × T⊤(z). (III.63)

where Γ(z) = [Γ(x, x′, z)] describes the scattering processes inside the medium. In the
isoplanatic limit, the aberrations can be modeled by a far-field phase screen of transmit-
tance H̃ = [H̃(kx)], where H̃(kx) =

∫
dx H(x) exp(−ikxx) is the 1D Fourier transform

of the input or output point spread function, H(x), which is defined in Eq. 9 of the ac-
companying paper. The transmission matrix T can then be expressed as an Hadamard
product between H̃ and T0, the free-space transmission matrix,

T = H̃ ◦ T0. (III.64)

The injection of this last equation into Eq. III.3 yields the following expression for the
far-field reflection matrix coefficients

R(kout, kin, z) = H̃(kin)γ̃(kin + kout, z)H̃(kout), (III.65)

where γ̃(kx, z) =
∫
dx γ(x, z) exp(−ikxx) is the 1D Fourier transform of the sample reflec-

tivity γ(x, z). Assuming the aberration as a phase screen (|H̃(kx)| = 1), the norm-square
of the coefficients of Rkk(z) (Eq. III.65) are given by

|R(kout, kin, z)|2 = |γ̃(kout + kin, z)|2 . (III.66)

Each antidiagonal of Rkk (where kin + kout = constant) encodes one spatial frequency of
the sample reflectivity.

III.B Reflection matrix in the dual basis

The dual reflection matrix Rkr = Rkx(z) is obtained by projecting Rkk into the focused
basis in emission:

Rkx(z) = Rkk(z) × T∗
0. (III.67)

Injecting Eq. III.3 into this last equation leads to the following expression for Rkx(z):

Rkx(z) = T × Γ(z) × H
⊤
in, (III.68)

where H = T†
0T is the focusing matrix whose columns corresponds to the input focal

spots H(x, xin). In the isoplanatic limit, H in(x, xin) = H in(x− xin). The elements of Rkr

can then be expressed as

R(kout, rin) =

∫

dx T (kout, x)γ(x, z)H in(x− xin). (III.69)
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To investigate the far-field correlations of the reflected wavefield, the spatial correlation
matrix Bkk = RkrR

†
kr should be considered. Bkk can be decomposed as the sum of a

covariance matrix 〈Bkk〉 and a perturbation term δBkk:

Bkk = 〈Bkk〉 + δBkk, (III.70)

where the symbol 〈· · · 〉 denotes an ensemble average.
In the speckle regime, the random nature of the sample reflectivity γ(r) means that

〈γ(r)γ∗(r′)〉 = 〈|γ|2〉δ(r − r′), where δ is the Dirac distribution. The correlation matrix
should converge towards the covariance matrix 〈Bkk〉 for a large number of independent re-
alizations. More precisely, the intensity of the perturbation term in Eq.III.70, |δB(k, k′)|,
should scale as the inverse of M , the number of independent resolution cells contained in
the field of view [150, 159, 160].

Assuming the convergence of Bkk towards 〈Bkk〉 in the speckle regime, the correlation
coefficients B(kout, k

′
out) can be expressed as follows

B(kout, k
′
out) = 〈|γ|2〉

∫

x T (kout, x)γR(x)T ∗(k′
out, x) (III.71)

where

γR(x) =

∫

drin Ω(xin, z)
∣
∣
∣H in(x− xin)

∣
∣
∣

2
. (III.72)

The function Ω(r) denotes the spatial domain occupied by the field of view:

Ω(r) =

{

1 for r inside the field of view
0 otherwise.

Equation III.71 can be rewritten as the following matrix product

Bkk ∝ T × ΓR × T†, (III.73)

where ΓR is a diagonal scattering matrix associated with a virtual object. Its coefficients
γR(x) correspond to the convolution of the input focal spot intensity |H in(x)|2 with the
whole field of view Ω(x). Its spatial extent thus spans the entire field of view (Fig. III.B.1).

Expressed in the form of Eq. III.73, Bkk is analogous to the time-reversal operator
obtained for a single scatterer of reflectivity γR(x) [38, 61]. If this virtual scatterer were
point-like, Bkk would be of rank 1 and its eigenvector would correspond to the wavefront
that focuses perfectly through the heterogeneous medium onto the virtual scatterer, even
in presence of strong aberrations [105, 106]. Here, however, this is far from being the case.
The eigenvalue decomposition of Bkk yields a set of eigenmodes which focus on different
parts of the same virtual scatterer over restricted angular domains [114, 151]. One solution
to this degeneracy is to limit the field of view in order to reduce the size of the virtual
reflector and increase the angular aperture of the eigenwavefronts. However, a restricted
field of view means a lack of averaging over disorder. The perturbation term in Eq. III.70
would no longer be negligible and iterative time reversal would not converge towards the
optimal aberration phase law. As we will see in the next section, the distortion matrix
concept avoids this impossible compromise.

Confidential – Need to know only





III.D Normalized correlation matrix 144

for a single scatterer of reflectivity γD(x) [38, 61]. The unscrambling of input focal spots
which is made possible by Dkx allows the size of the virtual reflector to be reduced to
δx, the dimension of the aberrated focal spot (see Fig. 4D of the accompanying paper).
This is an important improvement over what is offered by Bkk, the correlation matrix
constructed from reflection matrix R.

III.D Normalized correlation matrix

As we will see now, this virtual reflector can even be made point-like by considering a
normalized correlation matrix (Eq. 18 of the accompanying paper). To demonstrate this
assertion, Eq.III.78 is rewritten with the help of Eq. III.64:

C(kout, k
′
out) ∝ 〈|γ|2〉H̃out(kout)H̃

∗
out(k

′
out)

[

H̃in ⊛ H̃in

]

(kout − k′
out), (III.79)

where the symbol ⊛ stands for a correlation product. This correlation term in Eq. III.79
results from the Fourier transform of the input focal spot |H in(x)|2 in Eq.III.78. This
formulation is reminiscent of the Van Cittert Zernicke theorem for an aberrating layer,
which links the spatial correlation of a wavefield to the Fourier transform of the intensity
distribution from an incoherent source (here the input focal spots) [11]. In other words,
the support of the coherence function

[

H̃in⊛H̃in

]

(kout − k′
out) scales as the inverse of the

input focal spot size δx.
The approach for reducing the size of this virtual scatterer is to render the autocor-

relation term flat. Since |H in(kx)| = 1, this can be done by considering the normalized
correlation matrix Ĉkk (Eq. 17) whose coefficients are given by

Ĉ(kout, k
′
out) ∝ 〈|γ|2〉Ĥout(kout)Ĥ

∗
out(k

′
out). (III.80)

This last equation is valid if the convergence of Ckk towards the covariance matrix 〈Ckk〉
is achieved, i.e. if a large enough number N of input focusing points is considered.
Equation III.80 can be rewritten as the following matrix product

Ckk ∝ T × Γδ × T†, (III.81)

where Γδ is a diagonal scattering matrix associated with a point-like scatterer centered
at the origin, such that γδ(x) = δ(x) (see Fig. 4E of the accompanying paper).

Expressed in the form of Eq. III.81, Ĉkk is analogous to the time-reversal operator
obtained for a point-like scatterer. Equation III.80 confirms that Ĉkk is of rank 1 and the
corresponding eigenvector U1 directly provides the aberration phase law:

U1 ≡ [H̃out(kout)]. (III.82)

An estimator T̄ of the transmission matrix can then be deduced (Eq.22 of the accompa-
nying paper).

III.E Convergence of the matrix approach

Until now, for sake of simplicity, we have assumed that Ĉkk converges towards the
covariance matrix 〈Ĉkk〉. However, this is not always the case for restricted fields-of-
illumination. Even if this convergence is not achieved, the covariance matrix 〈Ĉkk〉 can
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145 Chapter III. Matrix approach of aberration correction

still be retrieved by means of the eigenvalue decomposition of Ĉkk. In the isoplanatic
limit, the covariance matrix 〈Ĉkk〉 is indeed of rank 1 (Eq. III.80). We expect the aber-
ration transmittance Ĥ(kout) to be contained in first eigenvector Û1 of Ĉkk. To derive a
necessary condition for this, the matrix Ĉkk should be written as a sum of the covariance
matrix

〈

Ĉkk

〉

and a perturbation term δĈkk:

Ĉkk =
〈

Ĉkk

〉

+ δĈkk. (III.83)

The matrix 〈Ĉkk〉 is of rank 1 and associated with a single eigenvalue σ̂1. The matrix δĈkk

can be considered as a correlated random matrix. Its rank is equal to the number Mδ

of independent speckle grains in the far-field. In first approximation, the eigenvalues of
δĈkk can be assumed to follow the eigenvalue distribution of a Hermitian random matrix
of size Mδ. 〈Ĉkk〉 will emerge along the first eigenstate of Ĉkk if [96]

σ̂2
1

〈
∑Mδ

i=1 σ
2
i

〉 >
4

Mδ
. (III.84)

The factor 4 comes from the superior bound of the Marcenko-Pastur law [161]– the dis-
tribution that the normalized squared eigenvalues of δĈkk are supposed to follow. To
make this last inequality more explicit, we express the first eigenvalue σ̂1 of the covari-
ance matrix and the mean sum of the squared eigenvalues of Ckk,

〈
∑Mδ

i=1 σ
2
i

〉

. On one

hand, because 〈Ĉkk〉 is of rank 1, the square of its eigenvalue σ̂2
1 is equal to the trace of

〈Ĉkk〉〈Ĉkk〉†:

σ̂2
1 =

∑

kout

∑

k′

out

|〈Ĉ〉(kout, k
′
out)|2 = N2

k , (III.85)

where Nk is the dimension of the matrix Ckk. On the other hand, the mean sum of the
squared eigenvalues σ2

i is equal to the trace of CkkC†
kk:

〈
Mδ∑

i=1

σ2
i

〉

=

〈
∑

kout

∑

k′

out

|Ĉ(kout, k
′
out)|2

〉

. (III.86)

Injecting Eq. III.83 into the last equation yields

〈
Mδ∑

i=1

σ2
i

〉

=
∑

kout

∑

k′

out

|〈Ĉ〉(kout, k
′
out)|2 +

∑

kout

∑

k′

out

〈|δĈ(kout, k
′
out)|2〉

= N2
k +

∑

kout

∑

k′

out

〈|δĈ(kout, k
′
out)|2〉. (III.87)

Since the coefficients Ĉ(kout, k
′
out) are of modulus 1, their variance is directly given by

their phase fluctuations:

〈∣
∣
∣δĈ(kout, k

′
out)

∣
∣
∣

2
〉

=

〈∣
∣
∣arg

{

Ĉ(kout, k
′
out)

}∣
∣
∣

2
.

〉

(III.88)
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For a large number N of input focusing points, the variance
〈∣
∣
∣δĈ(kout, k

′
out)

∣
∣
∣

2
〉

of the

normalized correlation matrix coefficients can be expressed as follows [159, 150]

〈∣
∣
∣arg

{

Ĉ(kout, k
′
out)

}∣
∣
∣

2
〉

≃ N−1
(

|C(kout, k
′
out)|−2 − 1

)

. (III.89)

Injecting Eqs. III.88 and III.89 into Eq. III.87 leads to

〈
Mδ∑

i=1

σ2
i

〉

≃ N−1
∑

kout

∑

k′

out

|C(kout, k
′
out)|−2. (III.90)

For analytical tractability, we will replace |C(kout, k
′
out)| by its average over all pairs

(kout, k
′
out). Interestingly, this mean correlation value scales directly as the inverse of Mδ,

where Mδ is the number of independent speckle grains in the far-field [149]. The previous
equation can then be simplified as follows:

〈
Mδ∑

i=1

σ2
i

〉

∼ N2
kM

2
δ /N. (III.91)

Injecting Eqs. III.85 and III.91 into Eq. III.84 yields our final expression of the success
condition:

N > 4Mδ. (III.92)

The number N of input focusing points in the field-of-illumination should be large com-
pared to the number Mδ of independent speckle grains in the far-field. The latter quantity
is equal to the ratio between the support ∆k of the distorted wavefield in the spatial fre-
quency domain, and its correlation width δk:

Mδ = ∆k/δk. (III.93)

Each distorted wavefield is produced by a virtual incoherent source in the focal plane
whose size is given by the extension δx of the input focal spot. By the van Cittert Zernike
theorem, the correlation width δk scales as the inverse of δx. Reciprocally, the spatial
frequency support ∆k scales as the inverse of the coherence length of the wavefield in the
focal plane, i.e the resolution cell δx0. Mδ is thus equal to the number of resolution cells
δx0 mapping the aberrated focal spot:

Mδ = δx/δx0. (III.94)

The condition of Eq. III.92 can thus be translated as follows: the number N of input
focusing points forming the field-of-illumination should be one order of magnitude larger
than the number of resolution cells mapping the aberrated focal spot. This result is
fundamental since it governs our strategy for full-field imaging. An iterative procedure
is employed and consists in progressively correcting aberrations over smaller and smaller
fields-of-illumination.
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147 Chapter III. Matrix approach of aberration correction

III.F Linear phase ramp artifact

Generally, the first eigenvector U1 focuses on the center of the virtual reflector since it
maximizes the back-scattered energy. However, it might not be the case if the scattering
distribution |Hin|2 is too complex. In that case, the phase of U1 can display a linear phase
ramp that results in a lateral shift of the imaging PSF. If no effort is made to remove
this shift, each selected area defined by the spatial window function (Eq. III.43) could
suffer from arbitrary lateral shifts compared to the original image. This artifact can be
suppressed by removing the linear component of the phase of U1 [60]. One way to do it
consists in reversing Eq. III.45 to estimate the lateral extension of the PSF H1 associated
with the estimated aberration phase law Û1:

H1(x, rp) =
∑

uout

Û1(uout)e
i kc

2z
uoutx (III.95)

If this PSF H1(x) is not centered on the origin (x = 0), the offset δ is computed by
measuring the auto-convolution function [|H1| ⊛ |H1|]. The maximum of this function
actually indicates the barycenter of the PSF energy [Fig. 13e]. The auto-convolution
peak is obtained for x = 2δ. A corrected aberration phase law Û ′

1(uout, rp) is finally
computed by translating the PSF H1(x) of a distance −δ and by back-propagating the
shifted PSF towards to the transducer basis:

Û ′
1(uout, rp) =

∑

x

H1(x− δ, rp)e−i kc
2z

uoutx (III.96)

By combining Eqs. III.95 and III.96, the articfact correction can be seen as a compensation
of a linear phase ramp in U1(rp):

Û ′
1(uout, rp) = Û1(uout, rp)e−i kc

2z
δ(uout−x)/z (III.97)

Fig. 13(c) illustrates this linear ramp compensation by comparing the phases of Û1 and
Û′

1 computed for the area A2 in Fig. 12(a). The vector Û′
1 is the final estimator of the

aberration phase transmittance H̃out. It is also important to note that an aberrating
layer with a particular shape such as wedges will introduce a linear phase ramp in their
associated aberration phase law. For such a particular case, there is an uncertainty on
the origin of the offset. The removal of a linear phase ramp should thus be used with
caution as it could cancel the benefits of the aberration correction process.
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A disease generally modifies some of the mechanical properties of the medium. Any
indirect indicator that is based on such properties then becomes a relevant bio-indicator
for assessing, monitoring and detecting the stage of this disease. For instance, transient
elastography [26] is one of the most accurate non-invasive bio-marker for the diagnostic of
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IV.1 Speed of sound measurement 150

malignant tumors. More precisely, this technique enables the distinction between benign
or malignant breast tumors. It is based on the estimation of the tissues’ Young modulus
that is assumed to be directly linked to the shear wave velocity.

In this chapter we build upon the focused reflection matrix and the time-focused re-
flection matrix to provide new techniques to (i) estimate the medium speed of sound,
(ii) quantify the multiple-scattering-rate in the back-scattered echoes, and (iii) charac-
terize locally the nature and anisotropy of the scatterers via their radiation pattern and
frequency response. Note that the last section of chapter 1 provides a non-exhaustive re-
view of the major state-of-the-art techniques associated with each topic [Par. I.3]. These
techniques fall into the concept of matrix imaging and constitutes only examples of the
wide range of applications that can be tackled by this elegant matrix formalism.

IV.1 Speed of sound measurement

As stated in paragraph I.3.1, speed of sound measurement techniques mainly fall in two
categories. The first kind probes the medium integrated speed of sound, which corre-
sponds to an average estimation of the medium speed of sound (SoS) over the round-trip
paths, i.e. the average speed of sound between the probe and the point under investiga-
tion. These techniques provide an accurate measurement of the medium speed of sound
in the case of homogeneous tissues. Their bias is generally less than 1% (corresponding
to less than 10 m/s). However, by construction, they are not suitable to in-vivo ultra-
sound imaging where the medium is generally heterogeneous. For instance, in the case of
liver imaging, the probe is placed between the patient ribs and the waves travel through
multiple layers of skin, fat, and muscle tissues before reaching the organ to study. The
second type of techniques provides a local measurement of the medium speed of sound.
This information is generally extracted from an analysis of the realigned signals. Indeed,
this matrix contains information on the errors of time-of-flight induced by an incorrect
SoS model, for specific transmitted and received path. The local SoS measurement then
results from the resolution of an inverse problem that links the local slowness of the
medium (inverse speed of sound) to the cumulative error along each path.

In this section we first show how the focusing criterion can be used as a robust figure
of merit of an iterative process that converges towards the best speed of sound model.
Both homogeneous and stratified SoS model are investigated to work towards a local
measurement of the medium speed of sound. A second promising technique is then de-
veloped based on the analysis of the time-focused reflection matrix and wave-front frame.
It achieves to combine a high spatial resolution of 2D integrated SoS maps with a low
computational burden. It then constitutes a promising technique for 2D SoS maps at
quasi real-time.

IV.1.1 Analysis of the focusing criterion, a robust figure of merit for

optimal focusing

IV.1.1.1 Calibration experiment, analysis of a homogeneous medium

The focusing criterion quantifies locally the quality of focus. As stated in paragraph
II.2.4, it is built upon the measurement of the lateral input-output resolution. We recall
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151 Chapter IV. Matrix approach of quantitative ultrasound imaging

that this resolution is measured by means of the focused reflection matrix expressed in the
common-mid-point frame, at the focusing time (∆τ = 0). Here we only study the lateral
extension of the broadband input-output PSF. It thus corresponds to the configuration
where the two virtual transducers are located at the same depth. We recall that the
broadband focused reflection matrix is then noted rxx(z) [Par. II.2.2].

This lateral resolution is sensitive to the cumulative impact of transmitted and received
aberrations, which stem from an incorrect SoS model. The quality of focus and thus the
focusing criterion is then optimal when the speed of sound model c0(r) matches the speed
of sound of the medium ct(r). This focusing criterion can thus be used as a figure of
merit of an iterative process in order to converge towards the best SoS model. To this
end, synthetic beamforming techniques based on unfocused illumination, e.g. plane waves
or diverging waves, are particularly well suited. No assumption on the medium speed of
sound is required for these insonifications and the beamforming process is performed
numerically. Therefore, only a single insonification sequence is required to build focused
reflection matrices according to various speed of sound models.

In the following, we study the case of a plane plane wave illumination sequence. We
remind the fact that each plane wave can be analyzed as a lateral spatial frequency that
is linked to the incident angle via the relation kx

in = 2πf/ct sin(θin). While this spatial
frequency is independent of the speed of sound model, it is not the case of the incident
angle. This phenomenon requires to be compensated in the iterative process based on the
Snell-Descartes laws:

sin θc

c
= constant. (IV.1)

Across the iterative process, various assumptions on the medium SoS are performed.
A special attention must be paid on the fact that the axial component of the ultrasound
image is actually a time axis. It is translated into a spatial axis thanks to the SoS model.
Therefore, a change of the SoS model, implies an axial translation of the resulting image.
To be efficient, the iterative algorithm should compare the focusing quality of echoes
associated with the exact same region, which will be imaged based on various SoS model
c(r). This phenomenon is overcome by working at a constant time-of-flight, meaning that
the scatterers are designated based on their focused time τ . As it is more practical to
consider the axial axis as a spatial axis, this method is equivalent to study the reflection
matrix by means of a homogeneous speed of sound of reference c0. Therefore, a scatterer
located at z0 in the SoS model of reference, will be find at depth z in a stratified medium
c(z), such as:

τ =
z0

c0
=

∫ z

0

dz

c(z)
. (IV.2)

This speed of sound is arbitrary chosen as c0 = 1540 m/s. Note that in the following, we
only investigate stratified medium. In the case of a 2D SoS model, a lateral compensation
should also be performed.

To begin, we study the case of a homogeneous medium with an unknown speed of
sound ct, e.g. a conventional phantom experiment [Fig. 1(a)]. In this case, we assess
the focusing quality at location r0 = {x, z0}, (defined at c0) for various speed of sound
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hypotheses c, by means of the following propagation matrices:

P1 (r0, k
x, c, f) = exp

[

i2πf

(
sin θ0

c0
x+

z0

c0
cos θc

)]

, (IV.3a)

G1 (r0, u, c, f) =
∑

kx

P1 (r0, k
x, c, f) exp [−ikx u], (IV.3b)

where
θc = asin

(
c

c0
sin θ0

)

. (IV.4)

We observe that P1 (r0, k
x, c, f) = P0 (r, kx, c, f) therefore, this propagation matrix simply

performs an additional axial shift to find the exact same echoes at a given depth indepen-
dently of the SoS hypothesis. Note that to maintain the diffraction phenomenon identical
from one speed of sound model to the other, we derived the propagation matrix G1(c, f)
from P1(c, f). Consequently, to focus inside the medium, the transducer basis u is first
converted into a plane wave basis kx by means of the spatial Fourier operator T. In a
matrix formalism, equation IV.3 can be written as:

G1(c, f) = P1(c, f) × T∗(f). (IV.5)

This operation allows to use the exact same lateral wave number in reception. In addition,
this operation will be quite useful to tackle the case of stratified SoS models.

To sum up, the focusing criterion F (r0, c) is computed for all focal spots r and an
ensemble of speed of sound hypotheses c. Due to the speckle regime, a spatial averaging
is required to smooth out the medium reflectivity. Mathematically, this spatial average
consists in using a spatial moving window Wlx,lz (r0, c). The speed of sound ĉ1(rp) finally
corresponds to the speed of sound model that maximizes the average focusing criterion
associated with the spatial window centered on rp:

ĉ1(rp) = max
c

[

〈F (r, c) Wlx,lz (r0 − rp, c)〉r0

]

, (IV.6)

with

Wlx,lz (r) =

{

1 , for |x| < lx
c
c0

and |z| < lz,

0 , otherwise.
(IV.7)

{lx, lz} are the spatial dimensions of the spatial window set at c0. Note that, to main-
tain constant the number of lateral resolution cells within the selected area, the lateral
dimension of the spatial window depends on the hypothesis of speed of sound c. This
correction is not necessary for lz as the axial shift is already compensated. In the follow-
ing experiments, the spatial window has been arbitrarily defined as {lx, lz} = {24, 2} mm
[white rectangle on Fig. 1]. As a result, only an axial profile ĉ1(z) is estimated. As we
only assumed homogeneous SoS model, ĉ1 estimates the medium speed of sound averaged
over the entire crossed section. It is thus an integrated speed of sound measurement:

1

ĉ1(zp)
=

∫ zp

0
dz

1

ct(z)
. (IV.8)

Note that figure [Fig. 2(e)] shows an example of the maximization process used to estimate
the medium’s integrated speed of sound [Eq. IV.6]. More details are provided later.
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Fig. 1 Calibration experiment based on homogeneous phantom. (a) Ultrasound
image. The white rectangle corresponds to the spatial window used to measure
the integrated SoS. (b) Integrated SoS profiles ĉ1(z) and ĉ2(z), obtained from
the optimization of homogeneous speed of sound models (green curve) and two-
layer models (blue curve), respectively. The first layer of the two-layers model
corresponds to the probe lens. Its properties are determined via an optimization
process, whose figure of merit is the global curvature of ĉ2(z). Reference phantom
speed of sound cphantom = 1542 ± 10 m/s (dark dotted curve). (c) lateral zoom
of figure b

The green curve of figure [Fig. 1] shows the resulting profile ĉ1(zp) in a homogeneous
phantom. The manufacturer’s specification is cphantom = 1542 ± 10 m/s. Unfortunately,
a huge bias is observed especially at shallow depth (∆c ∼ 20 m/s at z = 15 mm).
Furthermore, to the contrary of the expected result, ĉ1(zp) is not a constant function
and increases with depth. It seems to converge toward the phantom speed of sound.
This bias is likely due to the aberrations induced by both the probe lens and matching
layers. Indeed, this structure is characterized by an average speed of sound and thickness
around c1 ∼ 1000 m/s and h1 ∼ 1 mm, respectively. (The exact manufacturer’s values are
classified information). As a result, the medium under investigation is a two-layer medium
composed of the probe lens and the phantom. In this case, ĉ1 measures the average speed
of sound of these two layers. Note that the relative error on the time-of-flight induced
by the probe lens compared to the total time of flight decreases with the focal plane. At
large depth, the medium can then be seen as quasi-homogeneous, thus the convergence of
cl towards cphantom. For imaging purposes, the aberrations induced by the probe lens are
weak and mainly concern shallow depths. Usually these areas do not constitute a region
of interest. Therefore, the interest of correcting for these aberrations is quite low for US
imaging. However, in the case of speed of sound measurement, the impact of the probe
lens is huge and needs to be corrected. To this end we modify the propagation matrix to
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consider a two-layer SoS model

P2 (r0, k
x, c0, f) = exp









i2πf









sin θ0

c0
x +

h1

c1
cos θ1

︸ ︷︷ ︸

1st layer at cl

+

(
z0

c0
− h1

c1

)

cos θc

︸ ︷︷ ︸

2nd layer at c

















. (IV.9)

For a given lens thickness h1 and speed of sound c1, the focusing criterion is computed
as a function of the second medium speed of sound c. In this case, the optimal focusing
criterion enables to estimate the integrated speed of sound in the second layer:

1

ĉ2(zp)
=

∫ zp

h
dz

1

ct(z)
. (IV.10)

The analysis of ĉ2(zp) is used to calibrate the lens feature. Indeed, equation IV.10 is
unbiased, i.e. ĉ2(zp) ∼ cphantom, only if the lens parameters are accurate. We then
perform an iterative process in order to find these parameters that maximizes this figure
of merit. However, the manufacturer’s specification of the phantom SoS is not accurate
enough to be used as an efficient figure of merit (±10 m/s). To overcome this issue,
we search for the lens parameters that produce a constant integrated speed of sound
profile ĉ2(zp). Mathematically, we minimize the standard deviation of ĉ2(zp). Note that
as the speed of sound measurement is mainly based on the estimation of the optimal times-
of-flight, only the ratio h1/c1 can be determined. Experimentally, we arbitrarily choose to
fix cl according to the manufacturer’s specification and to optimize the lens thickness h1.
Blue curves of figures 1(b,c) show the integrated SoS profile ĉ2(zp) that results from the
optimization process. The average and standard deviation of the integrated speed of
sound profile is 〈ĉ(zp)〉zp = 1542.8 ± 0.5 m/s, which is in excellent agreement with the
manufacturer’s specification.

IV.1.1.2 Towards a local speed of sound profile, the case of stratified medium

Based on this calibration, we study a more complicated configuration where the medium
is assumed as stratified. The idea simply consists in estimating the integrated speed of
sound at shallow depth and take advantage of this measurement to update the stratified
propagation matrices to probe the medium SoS at larger depth. The proposed algorithm
can be seen as an iterative process, whose each step is used to characterize a precise
layer i. As the first layer of the medium corresponds to the probe lens, the initialization
of this process has already been described and the speed of sound in the second layer
can be measured based on ĉ2. We denote z(i)

0 the depth of the interface (defined at the
reference speed of sound c0) between the ith-layer and the (i + 1)th-layer. Ingeniously,
these layers are defined so that they match the apparent structure of the medium that
are observed by means of an US image computed at c0. We denote ci and hi the speed of
sound and thickness of the ith-layer.

We then describe the ith-step that consists in estimating the thickness and speed of
sound of the ith-layer based on the results of the (i− 1)-first steps. In order to create the
focused reflection matrix at the focal plane z0, such as z(i−1)

0 < z0 < z
(i)
0 we defined the
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propagation matrices (Gi and Pi) associated with a i-SoS layer model:

Pi (r0, k
x, c, f) =

exp










i2πf










sin θ0

c0
x +

(

z0

c0
−

i−1∑

n=1

hn

cn

)

cos θc

︸ ︷︷ ︸

ith layer at c

+
n=i−1∑

n=1

hn

cn
cos θn

︸ ︷︷ ︸

(i−1) first layers



















, (IV.11)

The optimization process of the focusing criterion enables to measure ĉi the integrated
speed of sound in the ith-layer. We observe that only the speed of sound in the ith-layer
is optimized. By assuming that the previous steps accurately characterize the (i − 1)
first layers, ĉi(zp) becomes a local estimation of the medium speed of sound and can be
expressed as:

1

ĉi(zp)
=

∫ zp

zi−1
0

dz0
1

ct(z0)
(IV.12)

The estimation of ĉi(z
(i)
0 ) at depth z

(i)
0 , which corresponds to the interface between the

layer i and (i+ 1), gives access to the average speed of sound ci in ith-layer,

ci = ĉi(z
(i)
0 ). (IV.13)

Finally, this speed of sound is used to measure the thickness hi of the ith-layer. Indeed,
the round-trip time of flight of the echoes is the same for the homogeneous model defined
at c0 or for the stratified model. hi can then be expressed as:

hi = ci

[

z
(i)
0

c0
−

n=i−1∑

n=1

hn

cn

]

. (IV.14)

This process is then iterated to characterized the (i+ 1)th-layer. Finally, an entire profile
of wave velocity throughout the medium is constructed by combining the integrated speed
of sound profiles associated with each layer:

ĉ(zp) = ĉi(zp), for z(i−1)
0 < z0 < z

(i)
0 . (IV.15)

Last but not least, note that the integrated speed of sound profile maximizes the image
quality. Therefore, it is possible to construct an optimal ultrasound image by selecting
the diagonal of the focused reflection matrices computed at each depth with the optimized
speed of sound model. This technique enables to correct only for the lateral aberration.
In addition, a first order axial aberration correction can finally be performed. As stated in
paragraph I.1.5 this correction simply consists in modifying the axial axis of the ultrasound
image to take into account the optimized stratified model. Similarly to equation IV.14
the scatterer located within the ith-layer at depth z0 in the homogeneous model should
appear at depth ẑ defined by:

ẑ = ci

[

z0

c0
−

n=i−1∑

n=1

hn

cn
.

]

. (IV.16)

Based on this equation, the axial correction can be performed by means of an interpolation
technique from the laterally corrected image. Unfortunately, this correction as not been
performed in the following example.
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IV.1.1.3 Experimental measurement of a quasi-local speed of sound profile

We apply this algorithm on two configurations: (i) an in-vitro experiment where the
medium under investigation is composed of a 18.4-mm thick layer of bovine tissue placed
on top of the previously studied phantom [Fig. 2]; and (ii) an in-vivo experiment that
probes the liver of a healthy volunteer [Fig. 4](a). The first experiment mimics the case
of liver imaging. Indeed, in such in-vivo experiment, the liver is separated from the probe
by multiple layers of skin, fat and muscle tissues. We first rely on the in-vitro experiment
to assess the accuracy of our approach as no reference speed of sound values are available
for the analysis of the in-vivo experiment.

1st experiment, the bovine tissue/phantom system Figure 2 shows the results
of the in-vitro experiment. Figure (d) displays the ultrasound image computed in the
homogeneous model (at c0). The interface z(2)

0 between the bovine tissue and the phantom
is easily identifiable. For z0 < z(2), the integrated speed of sound ĉ2 is determined in the
bovine tissue based on the two-layer model described in the calibration [blue curve on
Fig. 2(f)]. This sub-SoS profile is quite constant csteak = 1570 m/s and agrees well with
the commonly cited value of cmuscle = 1576 ± 1.1 m/s [162]. Figure (b) Shows the focused
reflection matrix at the interface. As stated in paragraph II.2.4, to accurately model the
input-output resolution, the nature of the scatterer should be determined. The interface
is definitely a specular scatterer as at least one of its dimensions is higher than the
wavelength. This characteristic is visible on figure (b). Indeed, the correlation length of
confocal signals (diagonal signals) is clearly higher than the resolution cell. Based on this
assumption, the focusing criterion is computed for various hypothesis of speed of sound c
associated with the second layer (bovine tissue) [blue curve of Fig. 2(e)]. The optimal
focusing criterion is close to one, meaning that a quasi-perfect focusing quality is reached.
This maximum is obtained for c2 ≈ 1573 m/s. This value will now be used in order to
focus inside the phantom via a three-layer model. The red curve of figure (e) shows the
optimization process at z0 = [29 : 31] mm. In this case, the speckle assumption is used
for the focusing criterion. The optimal configuration is reached for ĉ3(z0) = 1544 m/s,
which is close to the estimated speed of sound that results from the calibration step.
The red curve of figure (f) shows the sub-SoS profile obtained in the phantom layer ĉ3

with an average value of 〈cp〉 = 1547 m/s (z > 30 mm). Compared to the calibration
experiment, we observe a bias of 4 m/s. As stated in the first chapter [Par. I.3.1], this
accuracy is quite reasonable for clinical applications. Note that, at depths just below the
interface between the bovine tissue and phantom layer, a bias is observed. This effect
can be explained by the fact that the measurement error ∆cp/cp on the wave velocity
scales as the inverse of zp, the depth of the focal plane from the phantom surface [see
Appendix IV.A, Eq. IV.43]:

(

∆cp

cp

)2

∼ 1

(kpzp)2

sin β

arctanh(sin β) − β2/ sin β

∆F

F
, (IV.17)

with kp = 2πfc/cp. As the precision with which the focusing criterion F can be measured
is ∆F/F ∼ 5 × 10−4 [see Fig. 2(e)], a precision of ∆cp ∼ 5 m/s for the wave velocity in
the second layer (the phantom) will only be reached for zp >∼ 10 mm. This value is in
qualitative agreement with the axial resolution of the wave velocity profile displayed in
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Fig. 2(d). In addition, as in any inverse problem, a small error on the SoS of the first
layer impacts the determination of the speed of sound in the second medium just below
the interface.

Figure2(d,i) display the ultrasound images computed with the initial two-layer model
(probe lens + medium, c0 = 1540 m/s) and with the optimized three-layer model, re-
spectively. It can be seen by eye that the optimized model slightly improves the imaging
of bright targets, but that there is no clear difference in areas of speckle. Figure(b,g)
show their respective focused reflection matrices rxx(z) computed at the specular inter-
face bovine tissue/phantom z0 = 18.4 mm and (c,h) inside a speckle region of the phantom
at z0 = 30 mm. A striking improvement of the input-output resolution w(r) (measured
along the anti-diagonal of rxx(z)) is observed at both depths. This observation is con-
firmed by their respective map of focusing criterion in figure 3. The initial two-layer
model induces a poor quality of focus over a large part of the image. It can be attributed
to the fact that the presence of the bovine tissue layer was not taken into account in
the initial two-layer model. The optimized three-layer is finally able to correct for these
aberrations. However, as the chosen spatial window is quite large to efficiently smooth
out the fluctuations of the speckle reflectivity, some local aberrations can still be visible
at {x, z} = {10, 25} mm. These aberrations may be induced by the bubbles located within
the bovine tissue (that has not been degassed) [white arrows on Fig. 2(d,i)]. Note that
the second algorithm that measures the integrated SoS overcomes this limitation as its
required spatial average is deeply reduced [Par. IV.1.2]. The significance of this result is
that, in regions of speckle, F (r) is far more sensitive than image brightness to the quality
of focus and speed of sound. As many integrated speed of sound measurements are based
on image brightness [163, 164, 165], F (r) thus constitutes an important new metric for
speed of sound measurement in heterogeneous media.

2nd experiment, the in-vivo liver experiment The results of the in-vivo liver imag-
ing of the healthy volunteer are shown on Figure 4. On the ultrasound image (a), four
distinct tissue layers can be identified: skin, fat, muscle, and liver tissue. In this case, the
medium under investigation is decomposed in five layers (the four above mentioned and
the probe lens). Figure 4(b) shows the estimated speed of sound profile ĉ(zp) plotted as
a function of depth and constructed based on the combination of each sub-profile ĉi(zp).
We are thus able to estimate the speed of sound for each tissue layer. In the skin, previ-
ous authors have reported speed of sound values in the range of cskin ≈ 1500 − 1750 m/s,
with an average value of cskin ∼ 1625 [166]. The wide range of values for cskin is most
likely due to the significant sensitivity of this parameter on skin hydration, as well as
variations in temperature, age of the cadaver skin examined, and region of the body from
which the skin was extracted. Thus, more accurate approaches for this measurement
would be valuable. Our method gives an estimate of cskin ≈ 1651 m/s, which to our
knowledge constitutes the first in vivo measurement of cskin in this frequency range. In-
deed, as the skin is located at shallow depth, higher frequencies are generally used to
benefit from a higher resolution without SNR issue due to attenuation. In the fat layer,
we find an average value of cfat = 1413 ± 6 m/s. (The standard deviation of the values
in this layer is used as an estimate of the experimental uncertainty.) Our result agrees
with previously reported results of cfat = 1427 ± 12.7 m/s [167]. In the muscle layer,
our measured average value of cmuscle = 1582 ± 9 m/s agrees with the commonly cited
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x (mm) x (mm)

Fig. 3 Maps of local focusing parameter F (r) for the bovine tissue/phantom
experiment, superimposed over the US image of Fig. 2(c). (a) The homogeneous
model with a two-layer model (c1 = cl and c2 = c0 = 1540 m/s) results in a
poor quality of focus in some areas. (b) The optimized three-layer model used
to construct Rxx(z) results in close to ideal focus quality throughout the image.

value of cmuscle = 1576 ± 1.1 m/s [162]. Finally, we find an average speed of sound in the
liver of cliver = 1559 ± 8 m/s, consistent with previous measurements in healthy human
liver [168, 169, 64, 76]. Overall, this approach enables the simultaneous measurement of c
in four human tissue layers using one experimental data set, with no dependence on the
initial guess for c0. It thus constitutes a significant advance over state of the art methods
for speed of sound measurement in human tissue (c.f. Refs [64, 72, 76]).

Finally, we emphasize that we have concentrated here only on the relationship between
virtual transducers located in the same focal planes at the ballistic time. Moreover, this
approach has been applied to a medium which can be modeled by a stack of various hor-
izontal layers. However, it is equally possible to consider responses between, for example,
angled or curved focal planes, which could simplify similar quantitative imaging in organs
such as the brain.

IV.1.2 A more local integrated speed of sound measurement

This content is confidential – please contact the author for more information.
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of finding the best propagation matrices that minimizes the aberrations, this second
approach consists in finding the best local speed of sound distribution that matches some
indicators, e.g. common-mid-angle realigned signals in the case of the CUTE method, or
the integrated speed of sound map in our case.

We recall that the CUTE method investigates the correlation of the realigned signals to
compute an estimation of the medium local speed of sound via an inversion of the problem.
Beside this delicate inversion which is not done here, there is a great difference between
the CUTE method and the above described algorithm. Indeed, to our understanding,
the new CUTE method correlates realigned signals associated with the same common-
mid-angles. This technique investigates the memory effect to produce time-of-flight error
maps that are associated with each common-mid angle. This approach enables to keep
an information on the wave traveled path. Our approach uses all the transmitted and
received angles for beamforming process. Nonetheless, we induce some flexibility by
splitting the location of the transmitted and received focal spot. The resulting integrated
speed of sound map may be more accurate than the time-of-flight error maps. However,
it does not contains any information on the traveled path that could be used to invert
the problem. An in-between technique could be to compute for each associated virtual
transducer, multiple wave-front images based on transmitted or received sub-aperture
aperture. In this case, the impact of reduced aperture should be carefully studied.

Finally, all this study was performed by means of broadband signals. However, this
work can be extended to the analysis of frequency dependent 2D-common-mid-point ma-
trices and 2D-wave-front matrices. This additional information may be relevant either
to enhance the measurement of the integrated speed of sound, or to tackle the case of
dispersive media (varying speed of sound with frequency). As always, as it implies as
lower frequency bandwidth, a trade off must be found between additional information,
spatial resolution and accuracy.

IV.2 Multiple scattering quantification

So far, we have used the matrix formalism to analyze the impacts of the speed of sound
hypothesis on the image formation process. We proposed new techniques to either improve
this assumption or correct for aberrations. However, these techniques only investigate the
single scattered echoes. Therefore, even is the SoS hypothesis is not valid, the time-of-
flight of these echoes are still assumed to be linked to the location of the scatterer. In this
section, we go beyond the limited case of single scattered echoes and turn our attention
towards multiple scattered one. These signals have traditionally been seen as a nightmare
for classical wave imaging, as it presents as an incoherent background which can greatly
degrade image contrast. Because they are extremely sensitive to the micro-architecture
of the medium, multiply scattered waves can be a valuable tool for the characterization of
scattering media. Note that a brief review of the multiple scattering process is provided
in the first chapter [Par. I.3.2]. We notably describe some of the major studies that
characterize this phenomenon both in a transmission or in a reception configuration, for
strongly or weakly scattering media. For medical ultrasound image, the soft tissues are
usually weakly scattering media that are imaged in a reflection configuration. In this case,
most of the state-of-the-art technique that investigate the multiple scattering process has
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been developed by A. Aubry during his PhD at Institut Langevin [90].
In this section, we analyze the focused reflection matrix at the focal time. We limit

ourselves to the configuration where zin = zout = z. The focused reflection matrix is
then denoted rxx(z). To study the multiple scattering process, we turn our attention
to points that are associated with a low single scattering contribution. In this focused
reflection matrix rxx(z), these signals correspond to off-diagonal signals such as xout−xin >
w(r). Figure 5 (b) shows rxx(z) at z = 45 mm in a phantom experiment [white line on
figure 6(a)]. At points far from the diagonal, signal can still be observed and show
long-scale fluctuation of their intensity. Because each matrix rxx(z) is investigated at the
ballistic time (t = 2z/c), the only possible physical origin of echoes between distant virtual
transducers is the existence of multiple scattering paths occurring at depths shallower than
the focal depth, as sketched in figure 5(a).

In this section, we propose two methods to measure the ratio of multiple scattered
intensity in the ultrasound image. The first technique analyzes the spatial reciprocity of
this matrix in the common-mid-point frame, while the second investigates the enhance-
ment factor of the coherent back-scattering pick in the plane wave basis. We illustrate
our arguments with the homogeneous phantom experiment and the bovine/phantom one.
We finally applied our technique to the liver in-vivo experiment of a healthy volunteer.
We will see that a significant amount of multiple scattering takes place in the three in-
vestigated ultrasound experiments.

IV.2.1 Multiple scattering in the focused basis

As stated in paragraph I.3, the reflection matrix is composed of three contributions: (i) the
single scattering component, (ii) the multiple-scattering component, (iii) the electronic
noise. In the first chapter we describe these components in the transducer basis, i.e. in
the matrix Ruu. In order to provide a more local analysis, we study the intensity of each
contribution in the focused basis, and more precisely in the common-mid-point frame. We
recall that I(r,∆x) denotes the intensity profile associated with the common-mid-point r
[Eq. II.23]:

I(r,∆x) = |R(x+ ∆x/2, x− ∆x/2, z)|2 , (IV.18)

As previously observed, to study the multiple scattering process, an ensemble average is
required, which is replaced by a spatial average. Once again, we rely on a moving spatial
window to mathematically describe this spatial average [Eq. IV.7]:

Iav(rp,∆x) = 〈I(r,∆x) Wlx,lz (r − rp)〉
r
. (IV.19)

We then investigate the three component intensities in an average common-mid-point
intensity profile:

1. The single scattering component, IS(r). Signals from single scattering mainly lie
along the near-confocal elements of rxx(z) [∆r < w(r)]. This contribution is used
to quantify and correct for aberrations and to measure the medium speed of sound.

2. The multiple scattering component, IM (r). This contribution can be split into two
terms: An incoherent part which corresponds to interferences between waves tak-
ing different paths through the medium, and a coherent part which corresponds to
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Fig. 5 Observation of multiple scattered signals in a phantom experiment. (a)
Sketch of multiple scattering paths (red or blue path) involved in the matrix
rxx(z). The constructive interference between reciprocal paths occurs only when
|rout − rin| < δx (CBS). (b,c) Amplitude of rxx(z) and R̄xx(z) computed at
z = 45 mm [6(a)]. They are analyzed to measure the multiple scattering rates
in the focal or plane wave bases, respectively. The white dotted circle highlights
multiple scattered echoes. (d,e) Normalized mean intensity profiles measured in
the focused basis Iav(r,∆x) and (b) the far-field Iav(r,∆θ). They are associated
with areas of same color on Fig. 6.
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the interference of waves with their reciprocal counterparts [see the blue and red
paths in figure 5(a). Referred to as coherent backscattering (CBS), this interfer-
ence phenomenon results in an enhancement (of around two) in intensity at exact
backscattering, i.e. at ∆r = 0 [Par. I.3].

3. Electronic noise, IN . This contribution can decrease the contrast of an ultrasound
image in the same way as IM (r). Noise contributes to a roughly constant background
level to the backscattered intensity profiles Iav(r,∆x).

To estimate the level of each contribution, the relevant indicators are the mean confocal
intensity Ion(r) and off-diagonal intensity Ioff(r) of rxx(z). The confocal intensity Ion(r)
is given by

Ion(r) = Iav(r,∆x = 0) = IS(r) + 2IM (r) + IN , (IV.20)

where the factor of 2 accounts for the CBS enhancement of the multiple scattering in-
tensity at the source location. Ioff(r) is the sum of the multiple scattering incoherent
background and of the additive noise component:

Ioff(r) = 〈Iav(r,∆x)〉∆x>w(r) = IM (r) + IN , (IV.21)

where 〈· · · 〉∆x>w(r) indicates an average over off-diagonal elements of rxx(z), which obey ∆x >
w(r). This average constitutes an average over several realizations of disorder, which is
necessary to suppress the fluctuations from constructive and destructive interference be-
tween the various possible multiple scattering paths through the sample.

Figure 5(d) shows two examples of normalized intensity profiles obtained in the homo-
geneous phantom experiment Iav(r,∆x)/Iav(r,∆x = 0). Each profile has been averaged
over a different zone of the ultrasound image [Fig. 6(a)]. Blue and red curves (solid and
dotted rectangles) correspond to zones located respectively above and below the bright
speckle disk. It is clear that the incoherent background Ioff is higher in the deeper (red)
zone, suggesting that either the multiple scattering component or the noise is greatly
enhanced behind the reflective object. The focused reflection matrix rxx(z) displayed
on figure 5(b) is computed for signals located just below the bright disk. We observe
an intensity enhancement of off-diagonal signals that are associated with virtual trans-
ducers, whose lateral location matches the one of the bright disk. As the noise level is
approximately constant, this intensity enhancement is then induced by multiple scattered
echoes.

Figure 7(a) shows the average common-mid-point intensity profile associated with
three regions of the medium [Fig. 7(c)], in the bovine tissue/phantom experiment. The
same observation can be made for the two areas located above (blue curves) and below (red
curves) the bright disk. Nonetheless, the contrast of incoherent background between these
two areas is weaker than in the homogeneous phantom experiment. This phenomenon is
probably caused by the lower SNR in this second experiment. Indeed, these regions are
located at larger depth compared to the first experiment, and the attenuation phenomenon
in the bovine tissue is probably more intense. Surprisingly, the incoherent background Ioff

is far from being negligible in the red zone at shallower depths (dashed line rectangle).
To investigate these phenomena further, we define two new indicators: (1) the multiple-

to-single scattering ratio:

ρ(r) ≡ IM

IS
, (IV.22)
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Fig. 6 (a) US image of the homogeneous phantom experiment. (b, c) Maps
of multiple scattering rates superimposed over the ultrasound image, ρ(r)
[Eq. IV.26] and (c) ǫ(r) [Eq. IV.27], respectively.

and (2) the multiple scattering-to-noise ratio,

ǫ(r) ≡ IM

IN
. (IV.23)

To calculate these quantities, it is necessary to be able to distinguish between IM , IN , and
IS . However, only two indicators have been studied so far Ion and Ioff. A third property
is thus required for the differentiation. Experimentally, the noise level can be estimated
by means of a dedicated acquisition. It simply consists in recording signals without any
excitation. By applying the exact same post-processing,e.g. synthetic beamforming, the
electronic noise level is measured in each point of the US image. Here, we propose to
investigate the spatial reciprocity of the wave propagation. Indeed, while the single and
multiple scattering components of reciprocal signals are identical, the noise component
is incoherent from one signal to the other. More precisely, two signals are reciprocal if
the location of their virtual source and sensor are exactly exchange i.e. R(rin, rout) and
R(rout, rin). In the common-mid-frame this configuration corresponds to R(r,∆x/2) and
R(r,−∆x/2). As a result, this observation enables to separate the multiple scattering
contribution from the noise level by the analysis of off-axis signals. Note that, to be
valid, this assumption requires that the entire process is reciprocal, meaning that the
transmitted and received beamforming parameters are identical, as well as the transmitted
and received basis. If this condition is not fulfilled, it leads to an underestimation of the
multiple scattering component as some multiple scattered echoes will be considered as
noise.
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To this end, we defined the coefficient of symmetry α, which probes the average
correlation between each couple of reciprocal point of the focused reflection matrix in the
common-mid-point frame:

α(rp) =

〈〈
Re [R(r,∆x) R∗(r,−∆x)]

|R(r,∆x)| |R(r,−∆x)|

〉

∆x>w(r)

Wlx,lz (r − rp)

〉

r

(IV.24)

Note that to discriminate IM from IN , only the signals outside the single scattered halo
are considered. Again, a spatial average is required to smooth out the fluctuation of the
pressure field. Ioff can then be decomposed as a symmetrical contribution i.e. IM and an
anti-symmetrical one IN [Eq. IV.21], such as:

IM (r) = α(r) Ioff(r) and IN (r) = (1 − α(r)) Ioff(r) (IV.25)

By combining equation IV.25 and IV.20 the contribution on single scattering can be
determined. Finally, Maps of multiple scattering rates can be expressed as:

ρ(r) =
α(r) Ioff(r)

Ion(r) − (α(r) + 1) Ioff(r)
, (IV.26)

and

ǫ(r) =
α(r)

1 − α(r)
. (IV.27)

Before analyzing the results of these multiple scattering ratio, we show that these two
ratios can also be estimated in the plane wave basis.

IV.2.2 Coherent back-scattering as a direct probe of spatial reciprocity

An elegant approach to probe spatial reciprocity is the measurement of the CBS effect
in the plane-wave basis (the far-field). The CBS effect can be observed by measuring the
average backscattered intensity as a function of the angle ∆θ ≡ θin − θout between the
incident and reflected waves. In the presence of multiple scattering, this profile displays
a flat plateau (the incoherent background), on top of which sits a CBS cone centered
around the exact back-scattering angle ∆θ = 0. The cone is solely due to constructive
interference from waves following reciprocal paths inside the sample [Fig. 7(b)]. Thus,
CBS in the far-field is a direct probe of spatial reciprocity in the focused basis [86, 87].

To quantify the CBS effect we first need to eliminate contributions from single scat-
tering. To this end, the reflection matrices rxx(z) are first normalized such that their
diagonal at each depth exhibits a constant mean intensity:

Ṙ(r,∆x) =
R(r,∆x)
√

Iav(r,∆x)
. (IV.28)

Each common-mid-point pressure field is normalized by the common-mid-point intensity
profile measured in a surrounding region by means of the spatial window. This operation
eliminates the dominant contribution to intensity from diagonal elements in rxx(z), which
is equivalent to drastically reduce the single scattering component. Figures 5(b,c) com-
pare the focused reflection matrix before rxx(z) and after the normalization Ṙxx(z) at

Confidential – Need to know only



167 Chapter IV. Matrix approach of quantitative ultrasound imaging

(c)

x (mm)

(d)

x (mm)

(e)

x (mm)

∆r (mm)

0

0.2

0.4

0.6

0.8

1

-4 0 4

(a)

F
o

cu
se

d
 i

n
te

n
si

ty
 p

ro
fi

le
θ θ

-5 0 5
0

0.2

0.4

0.6

0.8

1
(b)

 

∆

∆

θ
 
(deg)

F
ar

-f
ie

ld
 i

n
te

n
si

ty
 p

ro
fi

le

∆

0.40.5 0.3 0.2 0.1 0.00-4-7-11-14-18

Fig. 7 Normalized mean intensity profiles are displayed for (a) the focused basis
Iav(r,∆x) and (b) the far-field Iav(r,∆θ), are displayed for the different areas
highlighted in (c) the corresponding ultrasound image based on an optimized
speed of sound model [Par. IV.1] . Maps of multiple scattering rates (d) ρ(r)
[Eq. IV.26] and (e) ǫ(r) [Eq. IV.27] are shown, superimposed on the ultrasound
image.

depth z = 45 mm in the phantom experiment. As the intensity halo of single scattering
induced by the beamforming process disappears, we better observe the enhancement of
the multiple scattered intensity induced by the bright disk, located above the focal plane
under study in the phantom experiment.

To perform a local analysis of the normalized focused reflection matrix, we select only
a subspace of Ṙxx(z) by means of a spatial window matrix, whose non-zero coefficients
are associated with common-mid-points signals r′ = (rin + rout)/2 belonging to the area
A surrounding r:

M(xout, xin, z, r) =

{

Ṙ(xout, xin, z) for (r′ − r)inA
0 elsewhere.

We then analyze this set of sub-matrices Mxx(z, r) in the far-field to probe the far-
field CBS. Similarly to the work done in chapter 3 for aberration correction, the matrix
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formalism makes it easy to project Mxx(z, r) into the plane-wave basis. More precisely, we
use the free-space transmission matrix, P0 [Eq. II.14a]. It enables to project the focused
reflection matrix into the far-field basis that contains the spatial frequencies kin and kout.
At the central frequency and for a given speed of sound, this basis can be seen as a plane
wave basis:

Mθθ(z, r) = T⊤
0 (z, fc) × Mxx(z, r) × T0 (z, fc) .

Mθθ(z, r) contains the normalized reflection coefficients in the θout direction for an angle
of incidence θin induced by scatterers contained in the area A centered around r. An
average far-field mean intensity can now be calculated as a function of the reflection angle
∆θ:

Iav(r,∆θ) =
〈

|M(θ + ∆θ/2, θ − ∆θ/2, z, r)|2
〉

θ,z
,

where the symbol 〈..〉 denotes an average over the variables in the subscript, i.e. all angles
which obey θ = (θin + θout)/2 and the thickness z of the area A.

The normalized intensity profiles Iav(r,∆θ)/Iav(r,∆θ = 0) that correspond to the
selected areas in the homogeneous phantom experiment and in the bovine tissue/phantom
one, are shown in figures 6(e) and 7(b), respectively. For each area, a CBS cone is
clearly visible, showing that the experimental data do contain contributions from multiple
scattering. Just as with the CBS peak in the focused basis, the area located below the
bright disk (red curves) is characterized by a higher amount of multiple scattering than
the one located above this structure (blue curves).

To estimate the relative weight of the noise and multiple scattering contributions, we
examine the mean intensity for two cases: (1) at exact back-scattering:

Iav(r,∆θ = 0) = 2IM (r) + IN (r), (IV.29)

and (2) at angles away from the CBS peak:

〈Iav(r,∆θ)〉∆θ>θc
= IM (r) + IN (r), (IV.30)

where θc is the width of the CBS peak and 〈· · · 〉∆θ>θc
indicates an average over all angles

∆θ which obey ∆θ > θc.
Note that in the plane wave basis, 〈Iav(r,∆θ)〉∆θ>θc

and Iav(r,∆θ = 0) are the two
indirect indicators used to extract the multiple scattering contribution from the noise. As
the single scattering component has been suppressed in this approach, only two indicators
are required.

We finally defined the enhancement factor of the CBS peak by:

χ(r) =
Iav(r,∆θ = 0)

〈Iav(r,∆θ)〉∆θ>θc

. (IV.31)

χ(r′) can have values ranging from 1 to 2; it is at a minimum when IM = 0 and at a
maximum when all backscattered echoes originate from multiple scattering.

The multiple scattering-to-noise ratio ǫ(r) [Eq. IV.27] can be expressed as a function
of the enhancement factor χ(r) by injecting Eqs. IV.29 and IV.30 into Eq. IV.31:

ǫ(r) =
χ(r) − 1

2 − χ(r)
. (IV.32)
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The multiple-to-single scattering ratio ρ(r) [Eq. IV.22] can be derived by injecting the
last equation into Eqs. IV.20 and IV.21:

ρ(r) =
[χ(r) − 1] · Ioff(r)

Ion(r) − χ(r) · Ioff(r)
. (IV.33)

The comparison between the multiple scattering rates obtained either in the plane
wave basis [Eq. IV.33 and IV.32] or in the focused basis [Eq. IV.27 and IV.26] confirms
the link between the enhancement factor of the CBS and the reciprocity of the wave
propagation, i.e. the symmetry of the focused matrix:

α(r) = χ(r) − 1. (IV.34)

IV.2.3 Maps of multiple scattering rates

Figures 6(b,c), 7(d,e) and 8 (b,c) show the maps of ρ(r) and ǫ(r) for the three experiments.
These maps have been computed in the focused basis. We will observe that they help to
provide an overall assessment of the factors impacting image quality.

We first analyze the homogeneous phantom experiment [Fig. 6]. We observe that the
two MS rates ρ(r) and ǫ(r) are characterized by high values just below the bright disk
around z = 45 mm. These halos of high amplitude are the signature of multiple scattered
echoes that has been generated by the above structure. Indeed, this structure is a cylinder
made of a higher density of unresolved scatterer, which reduces the mean free-path. As
stated at the beginning of this part, these MS echoes appear below the location where
they have been generated. This phenomenon is inherent to the construction of the focused
reflection matrix, which selects echoes at the ballistic time.

Figure 7 shows maps of MS rates associated with the in-vivo liver experiment. Note
that they are computed based on the optimized two-layer model developed for SoS mea-
surement [Par. IV.1]. We observed that compared to the homogeneous case, the presence
of the bovine tissue drastically modifies the two maps of MS rates. High values within
and below the bovine tissue suggests that multiple scattering process does occur inside
the first layer. In particular, the top right area highlighted by the dashed line seems to
be impacted by a significant amount of multiple scattering that may arise from the bright
scatterers located within the bovine tissue (white arrows). These scatterers are likely res-
onating bubbles, which creates the observed "tail" of multiple scattering at larger depths.
Interestingly, the focusing criterion associated with this image reveals an apparent poor
focusing quality [3(b)], even with the optimized speed of sound model. The compensation
for an incorrect hypothesis for c does not compensate for the effect of multiple scattering
or reflections. The solid lines outline the image area that suffers from artifacts due to
the double reflection event between the probe and the bovine tissue-phantom interface.
Interestingly we observe just below the bovine tissue on the left part of the maps, around
{x, z} = {−25, 25} mm that the two rates show a different behavior. A significant en-
hancement of ρ(r) is observed that is not visible on the map of ǫ(r). To analyze this
phenomenon, we observe that the ultrasound image shows a relatively low brightness.
It then means that this area is characterized by a low single scattered intensity while
the multiple scattered one may not present any significant enhancement. In addition,
discrete areas in which ǫ(r) is very high (> 0 dB) are indicative of artifacts caused by
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important.

IV.2.4 Conclusion

In this section we have shown that the focused reflection matrix measured in the focal
plane enables a local examination of multiple-scattering processes deep inside weakly scat-
tered media in a reflection configuration. We have demonstrated the effectiveness of using
fundamental interference phenomena such as coherent back-scattering, a hallmark of mul-
tiple scattering processes, to discriminate between multiple scattering and measurement
noise. Based on this initial result, additional matrix operation of the focused reflection
matrix finally quantifies the contribution of singly scattered echoes in the ultrasound
image. A novel imaging method is proposed based on the multiple-scattering contrast.
In this early work we have analyzed two multiple scattering rates ρ(r) = IM (r)/IS(r)
and ǫ(r) = IM (r)/IN (r). To our knowledge, such 2D maps have never before been
demonstrated, and current state-of-the-art methods cannot produce such well-resolved
local information about acoustic multiple scattering. Unexplored but promising perspec-
tive of this work will be to extract from ρ(r) quantitative maps of scattering parameters
such as the elastic mean free path or the absorption length [148, 35], and transport
parameters such as the transport mean free path [83, 171, 172] or the diffusion coeffi-
cient [83, 84, 173]. While diffuse tomography in transmission only provides a macroscopic
measurement of such parameters, preliminary studies have demonstrated how a reflec-
tion matrix recorded at the surface can provide transverse measurements of transport
parameters [86, 87, 139, 97].

On the other hand, it will be interesting (and is immediately possible) to create maps of
ρ(r) and ǫ(r) in scattering media such as breast, lung and bone. Recent work such as that
by Mohanty et al. [174] suggests that such maps may be better at imaging heterogeneous
scattering media than conventional ultrasound ultrasound. However, for bone and flat
layers of tissue such as muscle, a current limitation is the coexistence of multiple scattering
and artifacts from reverberant echoes or reflections caused by interfaces between tissues
with different acoustic impedances. The separation of these effects will be the subject of
future work.

Finally, this analysis can be drastically enhanced by investigating the time focused
reflection matrix. For instance, in the case of weakly scattering medium, the multiple
scattering contribution essentially results from a double scattering process. By probing
all the potential configurations at the exact time of double scattering, the time-focused
reflection matrix can be used to highlight this contribution. However, one of the major
challenges will lie in the separation of the double scattering contribution and the single
one. This drawback can be avoided by studying echoes outside the single scattering
cone. Note that this is the approach used in this section where off diagonal signals are
investigated.

IV.3 Anisotropy of scatterer

This content is confidential – please contact the author for more information.
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IV.4 Temporal and spectral responses of virtual transducers

This content is confidential – please contact the author for more information.

IV.5 Conclusion

In this chapter we have shown that the focused matrix and time-focused matrix can be
used to characterize various properties of the propagation medium. Compared to state-
of-the art techniques, these methods analyze propagation phenomena in the focal basis
and not in a far-field basis (transducer or plane wave basis). This main feature results in
a more local information on the medium to study.

We first accurately measure the medium integrated speed of sound via either the
maximization of the focusing criterion or the determination of the focal spot location in
the wave-front matrices. We have also demonstrated that a more local speed of sound can
be measured by considering stratified speed of sound models that are built from shallow
depth to deep depth. We have then shown that the focused reflection matrix enables a
local examination of the multiple-scattering process deep inside the medium. Based on
the reciprocity of the wave propagation, this phenomenon can be directly probed in the
focal basis by measuring the symmetry of the focused reflection matrix or in the plane
wave basis via the analysis of the coherent back-scattering process. This study led to
the construction of new maps that quantify the level of the multiple scattered intensity
compared to the single scattered intensity and noise level. We have then turned our
attention to the characterization of the local anisotropy of scatterer in fibrous media.
The fiber orientation is measured based on the determination of a main direction of back-
scattered intensity by means of the coherent wave-front matrices. Finally, we have shown
that the confocal matrix probes locally the frequency spectrum of echoes generated by
each resolution cell. It can thus be used as a first building block for (i) the determination
of frequency dependent parameters that govern the wave propagation, e.g. the attenuation
length and (ii) the local characterization of the nature of scatterers. It can notably be
applied to the particular case of resonant structures.

While all these techniques are not at the same stage of maturity, they all rely on a
matrix formalism of the wave propagation. They illustrate the wide range of techniques
that fall under the concept of matrix imaging.
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Appendices

IV.A Measurement errors on the focusing criterion and the

speed of sound

In this work, we have defined the focusing parameter F as the ratio between the width w0

of the ideal diffraction-limited PSF and the width w of the experimentally measured
PSF. In optics, the Strehl S ratio is generally used to quantify aberration [152]. It is
defined as the ratio between the maximum of the PSF intensity, I, and that in the ideal
diffraction-limited case, I0. Due to energy conservation, we have I0 × w0 = I × w. The
focusing criterion and Strehl ratio, as well as their relative measurement errors, are thus
equivalent:

F ≡ S (IV.35)

and
∆F

F
≡ ∆S

S
. (IV.36)

S can also be expressed as the square magnitude of the averaged aberration transmit-
tance eiφ(sin θ) [152]:

S =
∣
∣
∣

〈

eiφ(sin θ)
〉

sin θ

∣
∣
∣

2
, (IV.37)

where φ(sin θ) is the far-field phase delay induced by the mismatch between the propaga-
tion model and the real medium in direction θ.

In Fig. 2, a two-layer medium is used to model the bovine tissue/phantom system.
Assuming that the wave velocity ct is properly estimated in the first layer (bovine tissue),
the phase φ(sin θ) accumulated in the phantom is given by

φ(sin θ) = kpzp cos(θp), (IV.38)

where kp = ω/cp is the wavenumber in the phantom and θp is the refraction angle in the
phantom, obeying sin θp/cp = sin θ/ct . If a wrong value of cp is used to model sound
propagation in the phantom, the resulting phase distortion is given by

∆φ(sin θ) = − kpzp

cos θp
η, (IV.39)

where η = ∆cp/cp is the relative error of the speed of sound hypothesis in the phantom.
For the sake of simplicity, we will assume in the following that cos θ ∼ cos θp . This approx-
imation is justified by the small relative difference between cp and ct. Assuming relatively
weak aberrations (∆φ(sin θ) << π ), the transmittance aberration function ei∆φ(sin θ) can
be expanded as

ei∆φ(sin θ) ∼ 1 − i
kpzp

cos θ
η − 1

2

(
kpzp

cos θ

)2

η2

+O
(

η3
)

. (IV.40)
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The angular average of eiφ(sin θ) is then deduced

〈

ei∆φ(sin θ)
〉

sin θ
=

1

sin β

∫ sin β

0
ei∆φ(sin θ)d(sin θ)

∼ 1 − ikpzpη
β

sin β

−1

2
(kpzpη)2 arctanh(sin β)

sin β

+O
(

η3
)

. (IV.41)

Injecting the last expression into Eq. IV.37 leads to the following expression of the Strehl
ratio :

S ∼ 1 − (kpzpη)2

sin β

[

arctanh(sin β) − β2

sin β

]

+ O
(

η3
)

. (IV.42)

For weak aberrations (F, S ∼ 1), the relative error ∆F/F [Eq. IV.36] of the focusing
criterion can then be directly deduced from the previous expansion of the Strehl ratio:

∆F

F
=

(kpzpη)2

sin β

[

arctanh(sin β) − β2

sin β

]

. (IV.43)

IV.B Determination of the medium speed of sound in the

wave-front frame
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General conclusion and outlook

Throughout this thesis we developed a new matrix formalism for ultrasound imaging.
While this method could describe all the current state-of-the-art imaging techniques, it
is able to extract new information on the medium under investigation. This capacity
is based on three major assets. First, the separation of the transmitted and received
focal spots enables to measure the impulse responses between virtual transducers located
within the medium at each pixel location. Second, a time-frequency analysis of these
responses provides unprecedented characterizations of the medium reflectivity and wave
propagation. Third, the flexibility of the matrix formalism allows the analysis of the
reflection matrix from various configurations. It enables to take full advantage of the
reciprocity of the wave propagation, and then to selectively extract relevant information
on the medium for a given problem. To sum up, we review the major results of this thesis
for each configuration.

We first studied the reflection matrix in the focused basis, i.e. between arrays of
virtual transducers located within the medium. In front of the wealth of information
provided by this matrix, we analyzed multiple subsets that allowed us to extract local
information on the medium. The first studied configuration is the confocal frame that
corresponds to the particular case where two virtual transducers are located at the exact
same location. We review that the confocal ultrasound image exactly corresponds to
this configuration at the focusing time, i.e. at the time where the incident wave has
reached the focusing point. A temporal or frequency analysis of the reflection matrix
in this frame enables the measurement of temporal and frequency response of scatterers
embedded within each resolution cell [chap. 2]. This study shows promising routes for a
local characterization of scatterers and for the quantification of the medium attenuation
[chap.4].

We then considered the common-mid-point frame at the focusing time, which selects
responses between virtual transducers that share the same common-mid-point. In this
frame, we first proposed a new method to probe locally the transverse resolution of the
ultrasound image, and thus to assess the quality of focus. It has been shown that the
resulting focusing criterion is quasi-independent of the medium reflectivity and provides a
better spatial resolution than state-of-the-art techniques [chap. 2]. This focusing criterion
has then been used as a figure of merit to provide a robust and highly-resolved mapping
of the medium speed of sound [chap. 4]. Independently, we proposed a novel imaging
method based on the multiple-scattering contrast in the ultrasound image (chap.4). This
technique is based on the reciprocity of the wave propagation. To our knowledge, such 2D
maps have never before been demonstrated, and current state-of-the-art methods cannot
produce such well-resolved local information about acoustic multiple scattering.
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The virtual transducer frame (source or sensor) selects responses associated with a
given virtual source or virtual sensor. Via a temporal analysis of the reflection matrix in
this particular frame, we demonstrated experimentally that the ultrasound image results
from a numerical time-reversal experiment. Each pixel of the ultrasound image cor-
responds to selected back-scattered echoes that are time-reversed and back-propagated
toward their origin [chap. 2]. By following the back-scattered time-reversed wave within
the medium, we introduced the wave-front frame associated with each virtual transducer.
In this spatio-temporal frame, we were able to probe locally the pressure field generated
(or collected) by each virtual transducer [chap. 2]. This unprecedented result provides
relevant and local information on the wave propagation and on the nature of the asso-
ciated scatterers. Based on this outcome, we proposed a second method to quantify the
medium speed of sound and a new characterization of the anisotropy of scatterers with
an improved spatial resolution [chap. 4].

The focused reflection matrix also allowed us to locally select echoes that have been
generated by a given area. The analysis of these echoes in the far-field basis highlights
particular correlations induced by two physical phenomena. First, we demonstrated that,
based on the memory effect, specular reflections arise along echoes that share the same
common-mid-angles. We took advantages of this effect to filter multiple reverberation
artifacts caused by a plexiglass layer in an in-vitro experiment [chap. 3]. Second, we
benefited from fundamental interference phenomena via the coherent back-scattering, a
hallmark of multiple scattering processes, to discriminate between multiple scattering and
measurement noise [chap. 4].

Last but not least, we successfully developed and applied the concept of matrix ap-
proach for aberration correction to in-vivo experiments [chap. 3]. To this aim we studied
the reflection matrix in a dual basis. It contains the medium responses between two
different planes. We introduce a novel operator, the so-called distortion matrix, a new
distortion matrix that essentially connects any focal point inside the medium with the
distortion that a wavefront, emitted or recorded from that point, experiences due to het-
erogeneities. A time-reversal analysis of the distortion matrix enables the estimation of
the transmission matrix that links each sensor and image voxel. It leads to an optimal
focusing quality for all pixels of the image.

All these above-mentioned techniques open new routes for ultrasound imaging and
quantification. Promising perspectives associated with each technique have been pointed
out throughout the thesis. It implies the characterization of propagation parameters such
as the diffusion constant D, the absorption length and the mean free path le. It also
concerns the medium scattering properties via a measurement of an effective density of
scatterers or the detection and characterization of resonant scatterers such as bubbles.

While, we analyzed each of the above-mention phenomena independently, the effi-
ciency of these techniques could be improved by combining these methods. Indeed, the
medium characterization benefits from any improvement of the focusing quality, which
provides more accurate information on the medium, which in turn could be taken into
account to adapt the focusing process. While we have only investigated easy-to-image
configurations, such process may be required to tackle the case of more difficult-to-image
experiments such as transcranial or cardiac imaging.

More generally, we observe that all these results are based on a single plane wave
insonification sequence. It could thus be interesting to apply the matrix formalism to an
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ensemble of insonifications to extract new information on the medium temporal fluctua-
tions by means of other matrix operators such as the Wigner smith operator.

Last but not least, the ability of these new methods to be used in real-time for clinical
exam should now be assessed. It is an entirely different challenge from the work I have
done in this thesis. I will actively take part in this second phase of development as I will
continue to work for Supersonic Imagine after my thesis.
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