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Abstract

High Dynamic Range (HDR) imaging enables to capture a wider dynamic range and color

gamut, thus enabling us to draw on subtle, yet discriminating details present both in

the extremely dark and bright areas of a scene. Such property is of potential interest for

computer vision algorithms where performance degrades substantially when the scenes are

captured using traditional low dynamic range (LDR) imagery. While such algorithms have

been exhaustively designed using traditional LDR images, little work has been done so

far in context of HDR content. In this thesis, we present the quantitative and qualitative

analysis of HDR imagery for such task-specific algorithms.

This thesis begins by identifying the most natural and important questions of using

HDR content for low-level feature extraction task, which is of fundamental importance

for many high-level applications such as stereo vision, localization, matching and retrieval.

By conducting a performance evaluation study, we demonstrate how different HDR-based

modalities enhance algorithms performance with respect to LDR on a proposed dataset.

However, we observe that none of them can optimally to do so across all the scenes.

To examine this sub-optimality, we investigate the importance of task-specific objectives

for designing optimal modalities through an experimental study. Based on the insights,

we attempt to surpass this sub-optimality by designing task-specific HDR tone-mapping

operators (TMOs).

In this thesis, we propose three learning based methodologies aimed at optimal mapping

of HDR content to enhance the efficiency of local features extraction at each stage namely,

detection, description and final matching. By spatial adaptation of a given filter using a

regression based approach, we showcase our three models learn to adaptively map the HDR

content by bringing invariance to luminance transformations at all the aforementioned

stages. We evaluate the performance of all the learning-based models on a proposed HDR

dataset of 8 (indoor/outdoor) real scenes where it outperforms existing mapping functions

across different feature extraction algorithms.

Finally, this thesis presents three end-to-end deep learning based generic tone mapping

(DeepTMOs) designs which cater to desired task-specific characteristics over a wide spectrum

of linear input HDR images. With the goal of avoiding any specific filtering dependency

with a differentiable design as required in previously proposed models, our DeepTMOs

serves as a baseline which can be fine-tuned for any computer vision specific task at hand.
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Abstract

L’imagerie Haute Gamme Dynamique (HDR) permet de capturer une plage dynamique et

une gamme de couleurs plus larges, ce qui nous permet de tirer parti des détails subtils, mais

néanmoins distinctifs, prèsents à la fois dans les zones extremement sombres et lumineuses

d’une scène. Une telle propriété peut présenter un intérêt potentiel pour les algorithmes

de vision par ordinateur lorsque la performance se dégrade considérablement en raison de

la perte d’information lorsque les scènes sont capturées à l’aide d’images traditionnelles

à faible plage dynamique (LDR). Bien que ces algorithmes aient été conçus de manière

exhaustive pour les images LDR traditionnelles, peu de travail a été fait jusqu’ à présent

dans le contexte du contenu HDR. Dans cette thèse, nous présentons l’analyse quantitative

et qualitative de l’imagerie HDR pour de tels algorithmes.

Cette thèse débute par l’identification des questions les plus naturelles et les plus im-

portantes de l’utilisation du contenu HDR pour des tâches d’extraction de caractéristiques

de bas niveau, ce qui est d’une importance fondamentale pour de nombreuses applications

de haut niveau telles que la vision stéréoscopique, la localisation, l’appariement et la

récupération. En réalisant une étude d’évaluation de la performance, nous démontrons

comment différentes modalités fondées sur le HDR améliorent la performance des algo-

rithmes par rapport au LDR sur un ensemble de données proposé. Cependant, aucun

d’entre eux ne peut le faire de manière optimale dans toutes les scènes. Pour examiner

cette sous-optimalité, nous étudions l’importance des objectifs propres à chaque tâche pour

concevoir les modalités optimales au moyen d’une étude expérimentale. Sur la base de ces

observations, nous tentons de dépasser cette sous-optimalité en concevant des opérateurs

de cartographie des tonalités (HDR) spécifiques à chaque tâche.

Dans cette thèse, nous proposons trois méthodologies basées sur l’apprentissage visant à

une cartographie optimale du contenu du HDR pour améliorer l’efficacité de l’extraction des

caractéristiques locales à chaque étape, à savoir la détection, la description et l’appariement

final. Par l’adaptation spatiale d’un filtre donné à l’aide d’une approche par régression, nous

présentons nos trois modèles qui apprennent à cartographier de manière adaptative le con-

tenu HDR en apportant une invariance aux transformations de luminance à toutes les étapes

susmentionnées. Nous évaluons la performance de tous les modèles basés sur l’apprentissage

sur un ensemble de données HDR proposé de 8 scènes réelles (intérieures/extérieures)

oú il surpasse les fonctions de cartographie existantes à travers différents algorithmes
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d’extraction de caractéristiques.

Enfin, cette thèse présente trois modèles génériques de cartographie tonale (DeepTMO)

basés sur l’apprentissage approfondi de bout en bout qui répondent aux caractéristiques

spécifiques à la tâche recherchée sur un large spectre d’images HDR d’entrée linéaires. Dans

le but d’éviter toute dépendance de filtrage spécifique avec une conception différenciable,

comme le requièrent les TMOs proposés précédemment, nos DeepTMOs servent de modèle

de base qui peut être affiné pour n’importe quelle tâche spécifique de vision par ordinateur.

Mots clés: HDR, Caractéristiques locales, Vision par ordinateur, Apprentissage ap-

profondi, GAN.
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de différents endroits intérieurs et extérieurs. . . . . . . . . . . . . . . . . . 135



8.7 Repeated Keypoints. Row I: 2 images HDR de la scène Invalides prises à

différentes heures du jour. Les images HDR sont affichées après la mise à
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formés alternativement, d’abord une étape de regression du discriminateur
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Chapter 1

Introduction

High Dynamic Range (HDR) technology has gained immense popularity for its ability to

represent a wide range of colors and luminous intensities present in real-world environ-

ments [28, 68]. In a sense, these images enable us to draw on subtle, yet discriminating

details present both in the extremely dark and bright areas of a scene, which would other-

wise get lost in traditional low dynamic range (LDR) imagery. With recent advancements

in artificial intelligence, be it in the form of self-driving cars or automated surveillance

devices, such high-contrast preserving HDR property is quintessential for the proficiency

of underlying computer vision algorithms. In other words, these algorithms should be

able to analyze effectively, each and every region in a scene without much uncertainty.

Though such algorithms are exhaustively customized for LDR images captured under

different conditions, they fail miserably in high-contrast scenes having high or low lumi-

nescence [44, 110, 117, 119]. Since high-contrast scenes are extremely common in the real

world, it becomes quite critical in cases like automated vehicles where human lives are

involved. Thus, it necessitates the application of HDR technology for viability of computer

vision algorithms. While several algorithms have been exhaustively designed for interpreting

over or under exposed scenes using LDR images, little work has been done so far in context

of HDR content.

This thesis is focused on the analysis of ‘enriched’ HDR images for the benefit of

low-level visual features correspondence problem, which is the bedrock for many other

high-level computer vision algorithms including, registration and stereo vision, motion

estimation and localization, matching, retrieval and recognition of objects and actions.

More specifically, the thesis investigates the fundamental challenges involved in using HDR

imaging and derives the optimal ways of using HDR content for enhancing the robustness

of such tasks.
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(a) Day-Night Matching Example

(b) Repeatability Rate of detection of Keypoints

Figure 1.1 – (a) shows an example case from [119], where matching of salient points (common in both) is
shown using blue lines between two images of same scene taken at different hours of the day.
(b) shows the efficiency measure Repeatability rate RR over a large dataset of LDR day/night
images using the state-of-the-art techniques. The crest and the troughs in the curves illustrates
that image captured during the daylight matches well with only other day-time images and
not with the ones captured in the dark.

1.1 Context and Objectives

The robustness of computer vision applications can be construed from a three-level feature

hierarchy namely, low-level, mid-level and high-level. Since the latter two levels build heavily

from the former, the efficacy in low-level analysis has been considered quintessential [116].

Generally, the low-level analysis is defined and evaluated in terms of ‘visual features corre-

spondence’ problem [96]. The problem is formulated by drawing correspondence between

images using visual features extraction algorithms. Visual features are the discriminative

signatures that contain local information from the salient locations in the images. The

correspondence between these features defines the ‘match-ability’ between the two contents.

An example from [119] is shown in Figure 1.1 (a), depicting the correspondence between a

day and night scene using LDR images.

Several attempts including local [44, 103, 112], global [97] normalization models and

learning-based method [110, 116], have been made to ensure better luminance invariant

designs in LDR imagery. However, these techniques are practically inefficient to completely

compensate the loss of information or comprehend the change in spatial configurations of

objects present in a scene. Consequently, these algorithms fail to find true correspondences

between similar objects and result in sharp decline in performance. An example [119] of

day/night matching is shown in Figure 1.1, where in the performance scores of state-of-the-
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art feature detection algorithms drops significantly in day/night lighting variations.

HDR imaging on the other hand, can partially overcome such limitations by capturing

a wide range of radiance and luminosity while preserving fine details in both ‘dark and

overly bright’ regions. Hence, owing to its extended capabilities, use of HDR imagery in

local feature extraction is essential.

Local feature extraction algorithms have been extensively explored in the computer

vision literature. All these algorithms have been designed and optimized with respect

to LDR images. These images store gamma-encoded values [0,255] and are generally

represented using an 8-bit integer representation. On the contrary, HDR pixels are real

valued and proportional to the physical luminance of the scene, expressed in cd/m2 and

can vary up to 105cd/m2 on a sunshine day [91]. Consequently, HDR images have largely

varying pixel intensities. Hence, it raises a natural question of how to begin with the HDR

image analysis for feature extraction algorithms. In simple words, it is not clear whether

HDR images can be directly used with such algorithms.

One alternative would be to optimize each feature extraction pipeline for HDR images.

But it would be quite impractical and cumbersome specifically for existing learning-based

pipelines which would require a large amount of geometrically-calibrated HDR dataset.

Not to mention, it might complicate the direct plug-in possibilities with existing mid-level

and high-level computer vision pipelines.

In this thesis, we hence opt for other solution. We concentrate on the HDR images on

the input side and explore which is the best way to employ such images in LDR-optimized

feature extraction algorithms.

Some HDR based studies [2, 11] have recently investigated the impact of using HDR im-

ages on features detection performance. Since the algorithms are LDR-optimized, they first

convert the HDR content into an LDR image using some Tone-Mapping Operators( TMOs)

and then apply feature detection techniques. These studies however, do not explore other

modes of using HDR (such as linear) and also lacks the impact of using different varieties

of existing TMOs.

Research in HDR imagery has always been addressed from a perceptual perspective

point of view. Therefore, all modes of using HDR, referred as ‘modalities’ in this thesis,

have been accustomed to human-vision attributes [13] e.g. preserving image aesthetics,

contrast etc. One common way of assessing the HDR content is via tone mapping. By

definition, TMOs are the models aiming to map HDR content in a suitable 8-bit LDR

representation for displaying content on standard display screens. For instance, a popular

technique involves the compression of estimated luminance e.g., using edge preserving filters

such as bilateral [29] from HDR scenes in order to produce a visually pleasing tone-mapped

output.

Conceptually, perceptual objectives are quite unrelated to the task-specific performance

criteria such as precision score for feature correspondence. Unlike visual perception, the

feature extraction pipelines follow strict designs to develop invariance in sparsely located
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pixel-level information such as histogram of gradient orientations. Therefore, even though

tone mapped images are LDR images with better contrast, it is rather questionable if they

are optimal to extract robust visual features.

Therefore, it remains unclear which is the best way to employ HDR; linear HDR images,

some other form of encoded HDR or quantizing the information somehow into another

LDR representation e.g.using the TMOs ?

Based upon these considerations, this thesis begins to explore the naturally raised

questions from scratch, since it has not yet been investigated in literature: 1) what specific

advantages can HDR images bring to the existing feature extraction pipelines

quantitatively and qualitatively, compared to the existing LDR approaches? 2)

what are the best possible ways of using HDR content ?

Attempting to answer the aforementioned questions, in this thesis we proceed with the

following step-wise methodology:

1. We first investigate the HDR and its several corresponding modalities using state-

of-the-art feature extraction approaches subject to their covariance and invariance

under drastic lighting variations. By proposing a geometrically calibrated dataset,

the analysis of various forms of HDR inputs is based on an elaborated study of their

performance on two key feature stability stages: (i) keypoint detection, (ii) descriptor

extraction.

2. Based on state-of-the-art techniques of local feature extraction, we design the optimal

methodologies to use HDR content aiming at facilitating stable and efficient corre-

spondences between grayscale images in real-world luminance conditions, which are

quite challenging for traditional LDR images. These luminance conditions comprise

of substantial changes in terms of day-night lighting variations in outdoor scenes and

changes in position of strong reflectors resulting in highly saturated regions in indoor

scenes.

3. We evaluate the performance of the proposed optimal methodologies of using HDR

content and compare them to the state-of-the-art approaches in image matching

scenarios together with a standard repeatability and feature distinctiveness measures.

1.2 Contributions

The following contributions, mainly to the field of HDR image analysis, are presented in

this thesis. The published articles are reported in List of Publications in Section 7.2.

1. We investigate how much gains can HDR bring over LDR for the keypoint detection

task, and which are the best modalities of using HDR to obtain it. To this end, we

additionally capture a dataset with two scenes having a wide range of illumination

conditions. This contribution is has been presented in the following article:
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A. Rana and G. Valenzise and F. Dufaux, “Evaluation of Feature Detection in HDR

Based Imaging Under Changes in Illumination Conditions”, IEEE International

Symposium on Multimedia (ISM), Miami,USA, December, 2015.

2. We evaluate the performance of various HDR and LDR modalities for full feature

extraction pipeline, including detection and description individually. We show that

since the two step are independent, HDR representations that work best for keypoint

detection are not necessarily optimal when full feature extraction is taken into account.

The following paper details this work:

A. Rana and G. Valenzise and F. Dufaux, “An Evaluation of HDR Image Match-

ing under Extreme Illumination Changes”, The International Conference on Visual

Communications and Image Processing (VCIP), Chengdu, China, 2015.

3. We discuss the sub-optimality of existing TMOs and what is needed to design a

keypoint-optimized TMO. To that end, we draw comparison between the optimization

of existing TMO parameters with respect to: a) task-specific measure i.e. Repeatability

Rate RR and b) statistical correlation coefficient CC between pairs of tone-mapped

images of the same scene with lighting variations. CC measures the statistical similarity

between a pair of tone-mapped images. This is presented in the following paper:

A. Rana and G. Valenzise and F. Dufaux, “Optimizing Tone Mapping Operators for

Keypoint Detection under Illumination Changes”, 2016 IEEE Workshop on Multimedia

Signal Processing (MMSP 2016), Montréal, Canada, 2016.

4. We design a learning-based adaptive tone mapping framework which aims at enhanc-

ing keypoint stability by design a pixel-wise adaptive TMO. The regression based

model is driven by Support Vector Regression (SVR) using keypoint characteristics.

Additionally, we propose a simple detection-similarity-maximization model to gen-

erate appropriate training samples. We present this contribution in the following

paper:

A. Rana and G. Valenzise and F. Dufaux, “Learning-based Adaptive Tone Mapping

for Keypoint Detection”, The International Conference on Visual Communications

and Image Processing(ICME), Hong Kong, China, 2017.

5. We propose to optimally tone-map a high dynamic range (HDR) content for invariant

descriptor extraction under drastic illumination variations. We employ a learned

model to predict optimal modulation maps that help to locally alter the intrinsic

characteristics (such as shape, size) of the tone mapping function. The detail of this

work is available in the following paper:

A. Rana and G. Valenzise and F. Dufaux, “Learning-based Tone Mapping Operator for

Image Matching”, IEEE International Conference on Image Processing (ICIP’2017),

Beijing, China 2017.
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6. We address the sub-optimality of TMOs by collectively addressing both stages of

keypoint detection and descriptor extraction in the feature matching framework.

We develop a two-step framework, consisting of: a) a luminance-invariant guidance

model based upon a Support Vector Regressor (SVR) to optimally adapt the tone

mapping function for image matching; and b) an energy maximization model to

generate appropriate training samples considering each independent proxy function.

The article describing this work is currently under revision:

A. Rana and G. Valenzise and F. Dufaux, “Learning-based tone mapping operator for

efficient image matching”, IEEE Transaction of Multimedia(TMM), 2017 accepted

7. We propose a deep learning based Tone mapping operator which predicts high quality

tone mapped outputs over a wide spectrum of linear HDR images. The proposed

model is designed for perceptual objectives. However, this is the first end-to-end

learnable TMO which can be fine-tuned for any computer vision specific task such as

image matching. The following article describing this work is submitted:

A. Rana*, P. Singh*, G. Valenzise, F. Dufaux and N. Komodakis. “Deep Tone

Mapping Operator for High Dynamic Range Imagery”, ACM SIGGRAPH, 2018

submitted.

1.3 Structure of the thesis

This thesis is structured into 7 chapters

• Chapter 2 discusses the background of HDR imagery using conventional acquisition-

generation-display approaches and brief history of HDR imagery for computer vision

applications. The chapter provides details about benchmark studies on fundamental

visual feature extraction algorithms. The quantitative evaluation metrics for accessing

the feature extraction and HDR imaging, used in following chapters, is revisited in

detail.

• Technical contributions of the thesis begin in Chapter 3, by addressing the performance

evaluation of the different HDR formats for two stage of local feature extraction,

which is the keypoint detection and description. We propose a geometrically calibrated

HDR luminance change dataset. In this chapter, we investigate how different HDR

formats can impact the keypoint detection and descriptor performance and if there is

any format which yields stable keypoints across these scenes. Specifically, we compare

11 image formats and test the keypoint detection and full feature extraction efficiency

on them using two different detectors.

• Based on preceding observations, in Chapter 8 we propose a learning based adaptive

tone mapping framework for HDR images which results in stable and efficient keypoint
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detection. In this chapter, we initially present an experimental study showing what

it takes to optimize a tone mapping function for a metric task such as keypoint

detection. Later, we present a regression based guidance model to predict the desired

pixel-wise modulation maps by using the linear HDR content from scenes captured

with varying lighting conditions.

• After addressing the keypoint detection, in Chapter 5, we move to full feature

extraction. To this end, the chapter first proposes a descriptor-optimal TMO design

which solely aims at the extraction of invariant (as much as possible) descriptors

from high-contrast areas of the scenes. Later, an optimal TMO OpTMO for full

feature extraction chain (including both detectors and descriptors) is introduced

which simultaneously enhances the detection rates and matching of features by

inculcating proxy cost functions; to fuse the relevant information from independent

design objectives.

• In Chapter 6, we design the first end-to-end deep learning based TMO. Being trained

with a perceptual objective in its primal stage, the GAN based network defines a

universally applicable tone mapping function which yields most natural images. The

proposed model can be simple fined tuned with any desired objective such as image

matching and eradicates the need of designing any proxy cost functions. Instead, it

provides a baseline architecture to explore HDR imagery for several other domain

specific analysis tasks such as medical image analysis or high resolution remote sensing

tasks.

• Finally, in Chapter 7, we present concluding remarks and briefly describes future

work perspectives.
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Chapter 2

Background and State of the Art

High Dynamic Range (HDR) imaging has been a subject of interest in graphics community

over the past decades, inspiring to capture and reproduce a wide range of colors and

luminous intensities of real world on a digital canvas. Primarily, the research in this domain

started with problems in generation, acquisition and display. An excellent brief overview can

be found in [14, 68]. A simple method of HDR capture involves multiple exposure images

of the same scene taken at different time-exposure settings. To display such scenes on

standard display screen, a variety of Tone Mapping Operators (TMOs) have been designed,

promising the most honest representation of real world luminosity and color gamut. Several

processing methodologies such as de-ghosting [24] have also been addressed to provide a

refined and artifact-free HDR representation. However, HDR imagery has not been fully

explored for computer vision problems such as feature extraction.

In this chapter, we first briefly describe the classical way of handling HDR content,

where and how it has been used in the computer vision applications. Then, we provide the

details of feature extraction techniques which have been addressed throughout the thesis.

2.1 HDR Imaging

Our real-world scenes are much more brighter and colorful, and contains higher contrast

than what is reproduced in 8-bit LDR images. Unlike these traditional technologies, HDR

imaging is a technology which represents the wide range of colors and luminosities available

in real world scenes in the form of digital images and videos. The luminance information

in HDR images is generally represented using floating point formats that can use up to

32 bits, differently from traditional 8-bit LDR formats that store gamma-encoded values

(approximately linear to perception). As a consequence, HDR images stores vast range of

information in the dark as well as bright regions of the scene.

One most commonly adopted method to generate HDR images is by capturing multiple

LDR pictures of a scene at different exposure times, in order to estimate a signal proportional

to the physical luminance of the scene [24, 73] as shown in Fig 2.1. After computing a
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Figure 2.1 – Taken from [24]. Multiple exposures of a Church scene along with final Radience Map.

camera response curve and normalizing by the exposure change, we obtain a single HDR

image by weighted averaging of pixel values across these different exposures. While various

weighting strategies have been proposed in the literature, we adopted the setting proposed

in [24] for capturing our dataset.

2.1.1 HDR imaging for Display

Conventional display technology assume that the input image is LDR. In order to compress

the dynamic range of an HDR image to LDR, a great variety of TMOs addressing different

perceptual objectives have been proposed in the past years.

Tone mapping operators have been classified into several categories principally based

upon how they handle the contrast, color and luminosity in a given HDR scene [7]. Overall,

these algorithms have been classified into global and local approaches. The global methods

such as [27, 58, 95] apply the same compression function to all the pixels of an image. For

the local techniques such as [21, 79, 105], a tone-mapped pixel depends on the values of

neighboring pixels. Even though global approaches are faster to compute, their resulting

LDR outputs do not maintain adequate contrast in the images and thus the scene appears

somewhat washed out. The local tone mapping functions, conversely do not face these

issues and are generally capable of handling contrast ratios, meanwhile preserving the

details. However, these operators result in some prominent ‘halo’ effects around the high

frequency edges, thereby giving unnatural artifacts in the scenes. Another kind of function

is a perceptual mapping operator [29, 35, 67] which, inspired from the human visual system,

models attributes such as adaptation with time, discrimination at high contrast stimuli and

gradient sensitivities. Although these methods yield detailed outputs at high computational

cost, the aesthetic appeal of generated images is questionable. All these tone mapping

methods have aimed to produce images which are quite close to what an individual would

perceive in reality. The performance evaluation of these TMOs have been widely studied

only from a perceptual point of view [13, 59] and TMOs, generally, has been used only for

display applications.

Fine tuning of parameters to enhance the perceived visual quality of tone mapped

image has been previously explored in the TMO literature [7, 91]. Mostly, such parameters
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were tuned either by a trial-test or grid-search based approach to yield favorable outputs

for a wide variety of scenes [21, 29, 67, 90]. Although some works even propose to automate

the parameter selection [89], the tuned values are applied globally over the scene.

2.1.2 HDR Imaging for Computer Vision Applications

Literature of HDR imaging applied to computer vision problems is not very vast. It is

only recently that HDR imaging has been considered in the computer vision applications

such as local feature analysis [12, 55], video surveillance [9, 49] and photogrammetric

applications [101]. In the following, we briefly describe various applicative scenarios where

HDR imagery has been proposed to enhance the task specific performances.

1. Local features: Considering both detection and description stages, in [19, 20],

the added value of using HDR video has been studied in the context of matching

in outdoor locations, as well as pedestrian and vehicle tracking. In [20], authors

compared the feature matching performance of SURF and SIFT descriptors using a

dataset of both indoor and outdoor HDR (16-bit) images. Another interesting work

has been carried out by Pribyl et al. [11], where authors presented an evaluation

of the repeatability of state-of-the-art keypoint detectors on images under different

transformations (lighting, viewpoint, distance) for different LDR/HDR modalities,

including simple global and local TMO’s but not the original HDR values. Only based

on description assessment, [22] presented a normalization approach, where TMO is

used to remove lighting-dependent information from an HDR picture, and leaving

only the object’s texture. In [22], results are shown in terms of SIFT descriptors

matching performance, on a limited dataset of two images, in comparison to two

popular TMO’s.

2. Tracking and Video Surveillance: HDR imaging has attracted interest in the

field of video surveillance. Early work on analyzing TMO for surveillance applications

was carried out by [9], who propose to combine the properties of local and global

TMO’s for object detection and tracking. However, that work lacks the comparison

in terms of detection accuracy with other TMO’s. In [2], an interesting scenario of

enhanced people detection and tracking in indoor HDR scenes is presented using only

one sequence.

3. Photogrammetric Applications: Suma et al. [101] presented the added value of

using HDR imagery and evaluated the performance of different TMOs in the context

of photogrammetric applications by estimating the enhanced count of features in

different TMOs over LDR. [55] made similar investigation with the enhanced number

of local invariant features on detailed architectural scenes in HDR over LDR images.

Note that the number of detected feature points is not itself a sufficient indicator of

detection performance.
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4. Face detection: In [56], authors evaluated TMOs for face recognition applications

based on the subjective and the objective evaluation metrics. [69] investigated the

power of high contrast tone mapped images for automatic face recognition using

sparse representation techniques.

5. Privacy Protection: Rerabek et al. [92] considered the implications of having HDR

content on privacy protection; a subject of great practical interest in surveillance

scenarios.

One commonality amongst all these studies is the use of existing perception-based

TMOs. These techniques have been directly used to convert HDR images to LDR. It is

difficult to contemplate whether the adopted procedure is optimal or not. In Chapter 3,

we discuss this question with experimental evaluations for feature extraction algorithms.

Additionally, most of the studies were tested on small sets of 1 or 2 scenes.

2.2 Local Visual Features

Feature extraction algorithms play a critical role in several computer vision pipelines.

As discussed in Chapter 1, most of these algorithms are optimized for LDR imagery.

Literature confining these algorithms is immense but essentially revolves around its two

stages, namely keypoint detection and descriptor extraction. Keypoint detection methods

look for covariant salient locations in a scene that can be repeatedly detected when the

scene is undergoing drastic geometrical and photometric transformations [45, 64, 96]. Later,

descriptor extraction algorithms are applied to extract discriminative invariant signatures

from these selected keypoint locations [64, 70, 116].

Over the past couple of decades, these algorithms have shifted the course from hand-

crafted to learning based mechanisms, but the competitiveness of some classical methods

such as SIFT, SURF can be observed over the vast range of transformations [119]. In the

following, we discuss various detection and descriptor extraction algorithms which we have

adopted to design the evaluation framework throughout the thesis.

2.2.1 Keypoint Detection

Algorithms for keypoint detection, in general, have been categorized in corner [45, 110] and

blob detectors [70]. We discus the principles in designing the corner and blob detectors, in

the following.

The concept of corner-like keypoint detection methods has gained popularity for low-

latency vision tasks due to high speed, less computational complexity and competitive

accuracy [107]. By definition, corners exhibit low correlation with neighboring pixels in all

directions. The most basic and widely adopted corner detectors [36, 45, 104] localize the

extrema primarily in an image I by computing the per pixel autocorrelation matrix or the
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structural matrix given as

M =

[
I2x Ixy

Iyx I2y

]
, (2.1)

where each component represent the directional derivative. Thereafter, different methods

are proposed in the literature to localize the extrema ‘keypoint’ [96]. [45] describes the

response R point score for each pixel x by computing the associated eigenvector and the

directional intensity variation, given as:

R(x) = det{M(x)} − k · tr{M(x)}2, (2.2)

where k is tuned empirically. This method is not only efficient in practice for real-time

corner detection, but also optimal for locating center of junctions and circular symmetric

structures [45]. For [104], the algorithm relies on the same aforementioned second moment

matrix M , but explicitly computes its eigenvalues different from the previous Harris detector

using the following function

R = min(λ1, λ2). (2.3)

Although this enhances the computational requirements, the feature points detected are

better localized.

Although the corner detectors are computationally fast and robust to variations such

as translation and rotation, their designs are weak to handle scale variations. Additionally,

since most of them are located on the object boundaries, corner points are prone to failure

with scene content changing its spatial configuration such in lighting variations. To address

this, blob detection methods have been designed to detect regions. Blob detectors have

been discussed in details in [70]. In this thesis, we have mainly focused on widely adopted

SIFT and SURF methods to evaluate our models.

SIFT [64] is one of the first and most commonly used blob detectors which is based on

the principles of Laplacian of the Gaussian (LoG) (L). The algorithm is considered invariant

to scale, rotation, illumination and viewpoint. For a given image I, the convolution take

place at different scales t using the Gaussian kernel given as

G(x, t) =
1

2πt
exp

−‖x‖2
2t (2.4)

and then, the multi-scale image Gaussian pyramid is obtained. Since LoG is computationally

expensive, one simple method to approximate it, is by computing the difference of two

close levels at each given scale level of multi-scale pyramid. The proofs are described in [64].

Generally, the approximation is given as

∇2L(x, t) ≈ t

δt
(L(x, t− δt)− L(x, t)) (2.5)

where x is the pixel location. It often referred to as DoG (Difference of Gaussians) operator
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which looks for distinctive blobs or regions. Later, to locate the maxima and minima for

keypoint localization a simple min-max suppression technique is applied iteratively through

each pixel while checking all neighbor pixels.

Although, DoG has been introduced for reducing the computational complexity, the

practicality of SIFT has always been questioned for real-time tasks such as tracking.

Therefore, the SURF detector has been introduced in [8] to compensate the computational

requirement. It uses an integer approximation of the determinant of Hessian which is

computed on different layers of a multi-scale representation. Different from SIFT, the SURF

detectors rely on bi-directional Gaussian filtering to reduce the time-complexity.

Another category of detector include FAST [94] and BRISK [61]. The basic strategy for

both methods is inspired from corner like detectors, however, the underneath principle is

entirely different. In FAST, a pixel is considered a keypoint if its N (value is 16) contiguous

surrounding pixels (on a circle) are either brighter or darker then its intensity value. This

detection method is considered to be the first learning based method, even though learning

techniques have been used simply to speedup the localization process. BRISK on the other

hand is a an extension detection scheme satisfying the covariance to scale and rotation by

using a multi-scale image representation.

These methods are computationally fast and are widely used for real time applications

such as object localization and tracking.

2.2.2 Descriptor Extraction

The descriptor extraction algorithms have gone hand-in-hand with the keypoint detection

literature and have been thoroughly studied (see, e.g., [70]). The main goal is to represent

the visual information present in a local image patch in the form of a unique invariant

signature which can help to find its true correspondence in other images. In this thesis,

we consider the following four widely accepted feature extraction schemes as namely:

BRISK [61] and FREAK [77] (corner based), SIFT [64] and SURF [8] (blob based) to

evaluate the performances of our models.

BRISK [61] is a computationally efficient scheme which is made up of a fast multi-scale

detector and a binary descriptor. Its detection module is an extension of corner-based

detectors such as FAST or Harris as explained in the Keypoint detection section. The

BRISK descriptor is a binary string computed by brightness comparisons on circular

sampling patterns around the detected regions. These descriptors are binary in nature

and have low storage costs. To compute the distances between the descriptors, Hamming

distance metrics are used which is faster than the Euclidean distance metric.

Another binary feature extraction scheme employed for evaluation in this thesis is

FREAK [77]. It is composed of a Harris corner detector and a binary descriptor. Similar to

BRISK descriptor, FREAK also uses a concentric rings arrangement, but the sampling grid

is non-uniform as inner circular rings have exponentially more points. Hamming distance
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metric is used to compute the distances between the descriptors.

The third feature extraction scheme is SIFT [64] which is a classical algorithm consisting

of a blob keypoint detector (based on difference of Gaussians) and a gradient-based

descriptor. Its DoG based detector is detailed in the keypoint detection section. The

descriptor part is a 128-dimensional histogram which is formed by concatenation of the

image gradients computed on 4× 4 grid spatial neighborhood around the detected keypoint.

The mathematical notations regarding the SIFT descriptors are detailed in Chapter 5.

Lastly, we discuss about the SURF [8] feature extraction scheme. It is composed

of a computationally efficient blob type detector mainly based on the Hessian matrix

approximation as discussed in keypoint detection section. Its descriptor is computed as

the sum of the Haar wavelet response around the point of interest. To compute the SURF

descriptor, firstly the region of interest is structured into 4x4 grids. Then, the Haar wavelet

responses are computed from 5x5 sampled points for each grid, with a spatial Gaussian

weighting.

2.2.3 Performance Evaluation Metrics

Keypoint detection and descriptor extraction performance on the LDR images are measured

using the standard criteria of Repeatability Rate (RR) and Matching Score (MS) respec-

tively, as detailed in [70, 71]. Whereas for the evaluation of the full image matching, the

mean average precision (mAP) scores [70] are usually computed. In this thesis, we compare

our proposed models with the tone-mapping models by computing their performances using

these feature extraction metrics. In the following, we detail RR, MS and mAP metric.

• Keypoint accuracy measure: RR is the most common and widely used measure of

detector efficiency. In mathematical notations, it is defined as

rref (ε)

min(nref , ntest)
, (2.6)

where rref is the number of keypoints detected in the reference image which are

repeated in the test image, and nref and ntest are the number of detected keypoints

in the reference and test image, respectively. A keypoint is considered to be repeated

in the test image if: a) it is detected as a keypoint in the test image, and b) it lies in

a circle of radius ε centered on the projection of the reference keypoint onto the test

image. Generally, the number of detected keypoints in images vary at large which

might lead to a bias in the final RR. Therefore, in our evaluation framework, we

select the strongest N number of keypoints to avoid any form of numerical bias.

• Descriptor Matching : The match-ability of a decriptor is measured using the MS. It

is defined as the fraction of correct matches to the total number of correspondences

in the image pair. A match has been defined using three different matching strategies
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in [70] namely threshold based matching, nearest neighbor (NN) matching and nearest

neighbor distance ratio (NNDR). In threshold-based matching two descriptors are

said to have a match if the distance between them is below a certain threshold. As a

descriptor can have several matches, this strategy is error-prone and is seldom used.

In nearest neighbor (NN) matching, a descriptor A finds its match B only if A is

the nearest neighbor to B and if the distance between them is below a threshold.

Nearest neighbor distance ratio (NNDR) extends NN by introducing a threshold to

the ratio of the distance descriptors. More precisely, a descriptor finds a good match

if the ratio between its distance from the first closest match and its distance from

the second closest match is less than a given threshold th. These distances depend

on the descriptor type, i.e.Hamming distance metric is used for binary descriptors

and Euclidean distance is used for non-binary descriptors.

To define a correct match, feature location is taken into account. Two descriptors

yield a true positive match if they correspond to two keypoints/regions which are

repeated [70] in the reference and query images. Similarly, a match is labeled as a

false positive if the corresponding keypoints are not repeated.

In summary, only nearest neighbor (NN) and nearest neighbor distance ratio (NNDR)

can reduce the possibility of one-to-many matching scenarios of the descriptors. In

most of our evaluation frameworks, we employed the NNDR matching strategy to

compare the performance of our TMO with other techniques.

• Feature Matching Efficiency : MS gives only the estimate of correct matches, while

in practice, many incorrect matches may occur. Therefore, for completeness, the

performance of feature extraction algorithms is computed using mAP score. To this

end, first a Precision-Recall (P-R) curve is generated by varying the matching strategy

parameter th from 0 to 1. Recall is defined as the fraction of true positives over

total correspondences and precision is given as the ratio of true positives to the

total number of matches. Once the P-R curves are generated for each scene, we then

compute the mAP scores by determining the area under the curves.



Chapter 3

Local Feature extraction in HDR

Imagery under Drastic Lighting

Variations

Drago Chiu Fattal LDR

Figure 3.1 – Harris corner detection in a lighting setup from Project Room (Row-1) and Light-Room
(Row-2) datasets with local, global TMOs and best exposures LDR.

3.1 Overview

Adverse lightening conditions can significantly deteriorate the performance of keypoint

detectors and descriptors in conventional LDR imagery. Several local and global normaliza-

tion models [44, 103] have been designed to obtain better luminance invariant features. But

these techniques are somewhat inefficient in practice. Poor performance of these algorithms
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mainly accounts to the loss or change in the spatial configurations of the details present in

a scene [110, 118].

HDR imagery brings potential to surpass these limitations and consequently enhance

the feature extractor’s output as accounted in [11, 19]; thanks to its wider dynamic range

which enables to capture details in both dark and bright regions. However, it is not clear

which are the best methods of employing HDR and weather these gains are significant on

a real dataset.

This chapter investigates the potential of HDR for feature extraction stages i.e.keypoint

detection and description, and in particular, addresses the following research questions:

1. is HDR capable to achieve substantial quantitative gains in terms of feature stability

to luminance changes compared to LDR? are these gains consistent?

2. which is the best way to use such HDR images, i.e., direct real-valued luminance, or

HDR converted to LDR format through a tone mapping operator (TMO) in order to

be compatible with standard feature extraction techniques?

To answer these questions, an evaluation framework is provided in this chapter. Initially,

we build a dataset of HDR and LDR images, consisting of two setups, each one illuminated

with seven and eight different lighting conditions, respectively. The dataset is challenging

in terms of texture reflectance of objects, presence of shadows and variety of illumination

sources. For each lighting scene, we then consider a number of image encoding formats,

including linear or perceptually encoded HDR values, the subjectively best LDR exposure,

and several local or global tone-mapped pictures. Next, we detect features from each

lighting scene, and we compute the standard repeatability of detected interest points in all

the other illumination settings, in order to estimate the average feature stability. This is

accomplished using two popular corner point (Harris [45]) and blob detectors (SURF [8]).

Some previous frameworks for evaluating the detectors and the descriptors have been

proposed in the literature as discussed in Section 2. [55] and [20] framework report an

increase in the number of detected feature points using HDR based modalities over LDR.

However, the number of detected feature points is not itself a sufficient indicator of detection

performance. Additionally, based on their results, it is difficult to draw precise conclusions

on what makes certain HDR modalities perform better than others. Pribyl et al. [11]

presents an evaluation of the repeatability on simple images under different transformations

(lighting, viewpoint, distance) for a few LDR/HDR modalities but not the original HDR

values. Aforementioned studies, mainly focused on evaluating detector performance only,

with one or more different HDR representations [12, 82]. [19] evaluated the full feature

extraction pipeline but with only a single HDR representation.

In this chapter, we focus on standard measures of feature stability under illumination

changes along with analyzing the performance of many popular tone-mapping approaches

which have been evaluated thoroughly from a perceptual point of view, but whose effec-

tiveness in feature extraction has not been investigated so far. Additionally, we explicitly
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compare direct feature extraction stages on HDR images with a tonemap-then-extract

approach [55].

In a nutshell, three major contributions in this chapter are:

1. HDR Luminance Change Dataset,

2. Evaluation of Keypoint Detectors in HDR imagery,

3. Evaluation of full features extraction pipelines in HDR imagery.

3.2 HDR Luminance Change Dataset

Accuracy measurement of feature detection and matching is based on RR criterion and

mAP, which relies on the precise localization of key-points in both reference and test

images, so that correspondences between detected features points can be unequivocally

assessed [96]. Unfortunately, the great majority of existing HDR image and video datasets

are not adapted to this end, as images are not geometrically calibrated. The only such

existing HDR dataset adequate for a confined low-level evaluation has been proposed in [11]

(we refer to it as 2D and 3D Lighting Dataset in the rest of this chapter), where a scene

with controlled lighting conditions has been captured. However, the number of lighting

conditions is quite limited.

In this chapter, we propose two different lighting setups: Project Room and Light Room

(Figure 3.1), focusing mainly on lighting changes and variation in dynamic range of the

scenes, which are recognized to be some of the most critical points in LDR feature detection,

and are those for which HDR technology could bring most benefits.

Project Room (PR). The setup is composed of 8 different lighting scenes created by

blocking light coming from a projector with the help of different objects. For each case,

images with varying exposure time were captured using a Nikon D3100 digital camera. The

setup is composed of several bright and dark colored objects arranged so as to create sharp

shadows and overexposures in detailed areas. Created shadows hide the minute details for,

e.g., bottom prints on memento, web-cam box printings etc.

Light room (LR). The dataset is composed of 7 different natural lighting conditions

built by changes in global lighting due to opening and closing of window blinds, room

ambient illumination and a diffused lighting from a tungsten lamp. For each condition, 6

images with different exposure time were shot using a Canon EOS 600D. This setup is also

composed of dark and light objects with different type of object surfaces.

Both datasets, as shown in 3.1, are calibrated to the true physical luminance using the

Minolta LS-100 Luminance meter, and can be downloaded from http://webpages.l2s.

centralesupelec.fr/perso/giuseppe.valenzise/sw/\ac{hdr}%20Scenes.zip. In Fig-

ure 3.2, the variation in dynamic range of each scenes is provided. Image key [3] takes

values on [0, 1] and gives a measure of the overall brightness of the scene. Dynamic range

http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/sw/\ac {hdr}%20Scenes.zip
http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/sw/\ac {hdr}%20Scenes.zip
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Figure 3.2 – Dynamic Range Vs Image-Key plots for (a) Light-Room(LR). (b) Project-Room. (c) Lighting
2D. (d) Lighting 3D [11].

is defined as log10(Lmax/Lmin), where Lmin and Lmax are the minimum and maximum

HDR brightness values, respectively. Both properties give an indication of the variety of

illumination conditions contained in the dataset.

3.3 Evaluation of Keypoint Detectors in HDR imagery

3.3.1 Keypoint Detectors

Feature extraction has been studied in vast details in computer vision literature where

several techniques have been proposed and evaluated as detailed in Section 2.2, taking into

account different challenging transformations. In this section, we focus on the two most

widely used interest point detection schemes, i.e., corner and blob detectors, which are

often used in several real time applications. In spite of several existing schemes for these

approaches, we select two common detectors that have been used in similar evaluations for

LDR content [12, 20].

For corner interest point detector, we employ the popular Harris corner point (Harris)

detector [45], which is based on the autocorrelation score computed from local intensity

change in an image. For blob detection, the experiments are carried out with the highly

robust SURF [8] detector.

3.3.2 Considered LDR/HDR modalities

For each illumination change dataset, we consider the following LDR and HDR modalities:

• LDR best exposed image: we take the subjectively best LDR exposure shot for each

illumination setup, i.e., the one that a human surveillance operator would select

based on large details with smallest area of over- or under-exposed pixels;
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Abbreviations Description L/G
D | Drago An Adaptive logarithmic mapping [27] G
W | Ward Mapping based on histogram adjustment [58] G

A | Ashikhmin Gradient based mapping algorithm [4] L
C | Chiu Spatially non-uniform scaling algorithm [21] L

M | Mantiuk Perceptual method for contrast processing [67] L
F | Fattal Gradient domain HDR compression [35] L

P | Pattnaik Adaptive gain control for HDR [79] L
R | Reinhard Photographic tone reproduction method [90] L
S | Schlick Quantization techniques for visualization[95] L

Table 3.1 – Local(L) and Global(G) TMOs.

• Tone-mapped image: we consider two global (GTM) and seven local (LTM) TMO’s

(see Table 3.1) to convert HDR pictures to 8-bit LDR, which are representative of the

most popular tone mapping techniques for rendering HDR on LDR displays proposed

in the literature [13];

• HDR linear values (HDR-Lin), i.e., photometric luminance values stored in the

HDR file;

• HDR perceptually encoded values: we consider a simple logarithmic (HDR-Log)

encoding, according to Weber-Fechner’s law; or the perceptually uniform encoding

(HDR-PU) proposed in [5], which accounts for the drop of sensitivity at lower

luminance levels. Notice that PU encoding needs photometrically calibrated HDR

pixels as input. Both Log and PU values are rescaled in [0, 1].

In total, 13 different image formats are thus considered for each lighting condition. We

stress the difference between HDR encoded values and GTM pixel values: the former are

the result of a simple transfer function and encoded using floating point values; the latter,

instead, are the result of a content-dependent operation, and are encoded on 8-bit, integer

precision.

3.3.3 Experimental Results and Discussion

Experiments are carried out on proposed datasets (LR,PR) and lighting dataset (2D,3D)

of [11]. The only measure of accuracy considered in this chapter is the repeatability rate

(R-score) as discussed in Section 2.2. For this evaluation, we used ε = 35px, which is less

than 1% the image size, similar to [11]. Also the evaluation scheme is confined to the

strongest 200 key-points in marked RoI’s (Region of Interests). This not only limits the

feature point detection in pertinent areas, but also helps to ensure a fair comparison of

the blob or corner key-point detection on diverse datasets, as different detectors result in

varying number of keypoints which can bias the R-score.

The experimental study is conducted in two phases. In the first phase, for each dataset,

one scene is selected as a reference image, and the repeatability is computed with the other

scenes (test images). Relative gains are recorded for all best HDR based modalities (GTM,
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Figure 3.3 – Relative gains by best LTM, GTM (abbreviated using Table 3.1), Linear, Log and Pu HDR
encodings with respect to LDR for different test datasets (scenes indicated by progressive
numbers on x-axis). The dotted line shows the absolute R-scores of LDR.
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Figure 3.4 – Scatter plots for HDR based formats (TMOs abbreviated using Table 3.1) with respect to
LDR on proposed dataset using detector: Harris and SURF

LTM, and HDR encoded formats) with respect to LDR, by subtracting the LDR R-score

from each individual format as shown in Figure 3.3. The black dotted line depicts the

absolute LDR R-score for each test image pair. For each dataset and using either detector,

we observe high relative gains by HDR based modalities (especially by HDR-PU), but still,

they are not positive everywhere (e.g., scene 0(ref) – 7 of Project Room dataset and scene

0(ref) – 6 of 2D-Lighting dataset test pairs from Figure 3.3).

In the second phase of the experiments, in order to determine more concrete quantitative

information about all such possible cases, we expand our experimental test bench by

involving all the possible images pairs for both LR and PR dataset, i.e., each condition is

in turn the reference and the others are the test images. In this phase, we firstly determine

the relative performance of the best performing HDR based formats, i.e., encoded HDR,

LTMs and GTMs, with respect to the traditional LDR, producing the scatter plots shown

in Figure 3.4 and 3.5. Each scatter plot shows the relative gain with respect to a compared

format, while the dashed line is the 45◦ line: points lying above this line shows higher

performance and points lying below are performing lower than the compared format. The

distribution of points of tone mapped and encoded HDR based formats above the line,

implies that these formats are capable to capture wider range of information from the

images than the respective LDR format as shown in Figure 3.4. However, this is not true for

HDR-linear format which shows the worst overall performance. On the other side, we also
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Figure 3.5 – Scatter plots for best performing GTM and LTM (abbreviated using Table 3.1) with respect
to HDR-Pu encoding on proposed dataset using detector: Harris and SURF

investigate the relative performance of the tone mapping and best HDR encoded format in

Figure 3.5. The results obtained suggests that in many cases, applying a TMO entails a

loss of detected keypoints.

In addition, the averages and standard deviations of the gains in R-score of all HDR

modalities over LDR are shown in Figure 3.6. These are obtained by subtracting the R-score

of the individual format from the absolute LDR R-score. In the following, we comment on

the performance of the different HDR and LDR modalities for feature point detection.

HDR versus LDR. In all conditions and for both key-point detectors, average values

show significant gains of HDR or tone-mapped images over single LDR exposure. This is

consistent with what has been found in [19]. However, based on the results from scatter

plots in Figure 3.4, we observe that there are some scenarios where best LDR records

higher performance than the rest of the HDR based formats. We believe that this is mainly

due to significant illumination differences in pertinent regions of image pairs.

HDR encodings. The best average repeatability scores are in general obtained with

PU-HDR encoded values. This is not surprising, as HDR formats store most of the pertinent

information in the scene, and it is therefore promising to research towards application of

feature extraction on these modalities. From results, it is also clear that these encodings give

significantly better results than photometric HDR-Lin. This is a non-obvious conclusion

of this work, i.e., that HDR-Lin is not appropriate to be used for feature extraction
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Figure 3.6 – Average gain recorded by different formats over the LDR.

algorithms, especially by observing huge variation in its behavior. This seems to suggest

that feature extraction algorithms designed and optimized for LDR content somehow

require the optimally scaled pixel values. Also for such algorithms, even the parameter

tuning is not an option as the range of photometric luminance value can largely vary with

the content.

HDR versus TMO’s. Average R-scores gains over LDR by tone mapping techniques

are either comparable or lower than those of HDR encoding formats. However better

performances recorded by some TMO’s draws significant attention, such as Drago [27],

Chiu [21] and Fattal [35]. In addition to the performance evaluation for LTMs’, it is

interesting that the gradient-based local techniques, i.e., Fattal and Chiu TMO’s, have

shown comparable gains than other LTM techniques, in specific scenarios. This is inverse

to observations in perceptual applications [13], where these two LTMs’ are deemed as worst

performers. This further establishes that there is less congruency between visually pleasing

tone mappings and vision-task-based optimal mapping technique. Another important point

to note here is that these tone mappings perform better with blob detectors than corner

point, and it is consistent with the observations in the literature comparing detectors [96].

In addition to all the observations, it is also worth mentioning that there is no unanimous

winner amongst these tone mapping techniques using either detection criterion.
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Abbreviations Description
LDR Best exposure LDR image of the scene

RNG(G) A global scaled mapping operator [90]
DR(G) An Adaptive logarithmic mapping [27]
RN(L) A local dodging-and-burning operator [90]
MA(L) Perceptual method for contrast processing [67]
FA(L) Gradient domain HDR compression [35]
CH(L) Spatially non-uniform scaling algorithm [21]
DU(L) A fast bilateral filtering technique [29]

HDRLog Logarithmic encoding in accordance to Weber-Fechner’s law
HDRLin Linear photometric luminance values stored in the HDR file

Table 3.2 – Different image modalities for feature extraction.

3.4 Evaluation of full Features Extraction Pipelines in HDR

imagery

3.4.1 Considered LDR/HDR modalities

We consider a total of 10 different image modalities (listed in Table 3.2) including the

standard 8-bit LDR, 2 floating point HDR representations (HDRlog and HDRlin) and 7

different 8-bit TMO HDR representations. These consist of 2 global and 5 local TMOs. In

this chapter, we have considered a subset of the TMOs introduced in Table 3.1. The choice

has been entirely based on trade-off between their performance in keypoint detection task

in Chapter 3 and perception based tasks in [13]. Additionally, note that we do not include

PU encoded HDR. This is mainly due to the absence of luminance-based calibrated scenes

from 2D and 3D lighting dataset.

3.4.2 Feature extraction

In this section, following 4 popular feature extraction schemes are assessed. Both gradient-

based histograms and computationally fast binary descriptors are employed for the evalua-

tion.

• SIFT [64]. This classic scheme is constituted of a blob keypoint detector (based on

difference of Gaussians) and a gradient-based descriptor. The SIFT descriptor is a

128-dimensional histogram formed by concatenation of the image gradients computed

on 4x4 grid spatial neighborhood around the detected keypoint.

• SURF [8]. SURF scheme is composed of a computationally efficient blob type detector

mainly based on the Hessian matrix approximation along with a descriptor computed

as the sum of the Haar wavelet response around the point of interest.

• BRISK [61]. With major focus on computational efficiency, the BRISK feature

extraction is made up of a fast multi-scale detector and a binary descriptor. The

detection module is an extension of corner-based detectors like AGAST and FAST.

The descriptor is a binary string computed by brightness comparisons on circular

sampling patterns around the detected regions.
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Project Room Light Room 2D Lighting 3D Lighting

Figure 3.7 – Example images from the datasets.

• FREAK [77]. Similar to BRISK scheme, it has the same BRISK detector along with

a binary descriptor called FREAK. Similar to BRISK descriptor, FREAK also uses a

concentric rings arrangement, but the sampling grid is non uniform as inner circular

rings have exponentially more points.

3.4.3 Experimental Results and Discussion

Our test setup comprises a total of 29 images (8 Project Room + 7 Light Room + 7 2D-

Lighting + 7 3D-Lighting) for each image representation. In the first part of experimental

validation, we look at the overall feature extraction performance, by computing the mAP

over all datasets. To this end, we evaluate matching using a test bench of 182 image pairs

(56 Project Room + 42 Light Room + 42 2D-Lighting + 42 3D-Lighting). Following the

detection protocol from [11, 82], we first select 400 keypoints with the strongest detector

response and measure the keypoint stability using the RR. Then, for the descriptor part, we

compute standard precision-recall (P-R) curves [70] for measuring the accuracy of matching.

For each image pair, we compute the PR curve by varying th from 0.0 to 1.0 and record the

average precision value. After this, for each format and either feature extraction scheme, a

mAP score is obtained by averaging the average precision calculated on such 182 image

pairs (see Table 3.3). Both metrics RR and mAP are defined in Section 2.2.3.

Furthermore, to understand how detector and descriptor contribute to the overall

performance, we expand our analysis to individual datasets and compute mAP and RR.

In Figure 3.8, we report side-by-side the mAP and RR for each extraction scheme for

all datasets, respectively. It is evident that in most of the cases higher RR entails higher

mAP scores, i.e., having more stable keypoints strongly influences the overall matching

performance. Nevertheless, there are few exceptions, e.g. RN and FA in 3D-Lighting dataset,

discussed later in this Section. In the following, we examine in detail the main conclusions

obtained from our results.

HDRLin versus all. The results in Table 3.3 show that HDRLin representation is

consistently the worst performing using all extraction schemes. This is coherent with the
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Figure 3.8 – Mean average precision (mAP) and mean repeatability rate (mRR) over the four
considered datasets and feature schemes. mAP and mRR are computed on 56 image
pairs, for the Project Room dataset, and over 42 image pairs for Light Room, 2D and
3D Lighting datasets.
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Repr.
Feature Extraction Schemes

Avg/Repr.
SIFT SURF BRISK FREAK

LDR 55 62 60 61 59.5

RNG 69 70 71 65 67.5
DR 72 72 71 73 72

RN 72 70 73 72 72

MA 74 75 62 62 68.3
FA 68 67 62 66 65.8
CH 68 71 64 66 67.3
DU 64 72 68 71 68.8

HDRLog 75 66 67 68 69
HDRLin 44 30 50 41 41.5

Avg/Schemes 66.8 65.6 65.5 65

Table 3.3 – Mean Average Precision (mAP %) scores for the 10 considered representations using 4 fea-
ture extraction schemes. Scores are averaged over 4 lighting change datasets. Highest mAP
score for each scheme is shown in bold. Best Avg/Formats and Avg/Schemes scores are
double underlined.

(a) Feature Matching - FA

(b) Feature Matching - RN

Figure 3.9 – An example of image matching for two TMOs. The true positive and false positive
matches are shown with green and red lines respectively. The TM in (a) achieves a
higher repeatability (24 %) than that in (b); however, most of the matches in (a) are
false positives, thus the AP for (b) is higher than in (a) (95 % vs. 87 %, respectively).
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previous findings in [12, 82], and is mainly due to the low keypoint repeatability, which

increases the probability of false positives. This leads to the first conclusion of this work,

i.e., HDRLin is not appropriate to be used for feature extraction algorithms, for both

detector and descriptor.

HDRLog/TMO versus LDR. On average, all HDR formats show significant gains of

(at least) 8% mAP over single LDR exposure (see Avg/Formats in Table 3.3). This partially

accounts to having more false matches in LDR due to loss in local textural information

in lighting transformations. Another reason which is evident from Figure 3.8, is the low

repeatability rate which reduces the number of true positives.

HDRLog versus TMO’s. mAP scores obtained from HDRLog and different TMOs

are relatively comparable. This implies that there are not significant advantages in using

a floating-point HDR representation over 8-bit TMs. Alternative HDR encodings could

improve further mAP scores, such as the PU encoding [5], as reported for keypoint

repeatability in [82]. However, those representations require photometrically calibrated

HDR pictures, which might not be available in practice.

Comparison with previous studies. Previous studies [12, 82] have reported that

local TMO approaches such as Fattal or Chiu consistently provide more stable keypoints (in

terms of repeatability) under illumination changes, compared to TMOs which are generally

considered good from a perceptual perspective, such as Reinhard. The results of this

work show that those trends are less evident when the overall feature extraction pipeline

is considered. For instance, from Figure 3.8 we observe that some TMOs achieve better

repeatability rates but lower overall mAP scores compared to others formats, e.g., this is the

case for RN and FA tone mappings in Project Room and Light Room dataset using BRISK

and FREAK, or for RN and FA in 3D Lighting dataset using SIFT. We deduce that in those

cases, although the fraction of repeated keypoints is lower, the corresponding descriptors

are more discriminative, i.e., they yield a lower rate of false positives, or equivalently, a

higher portion of matches are true. Figure 3.9 shows an example of image matching for the

Project room dataset, using RN and FA tone mappings and BRISK features. It is clear

that, although the number of matches is lower in RN, they are “better quality”, in the sense

that most of them are true positives. Conversely, in FA, although the basis of possible

matches is larger, most matches are indeed false, which reduces the average precision as

reported by the mAP scores in Figure 3.8.

Another important point to note is that these tone mappings perform well with all

feature extraction scheme for different lighting transformations, with marginal gains for

SIFT. In addition to all the observations, it is also worth mentioning that there is no

unanimous winner amongst these tone mapping techniques for all extraction criterion.
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3.5 Conclusion

In this chapter, we presented a comprehensive evaluation of different HDR and LDR

based modalities for visual feature detection and matching, under changes in illumination

conditions. The analysis based on the RR and mAP scores on different scenes confirms the

potential of HDR techniques over single LDR exposures. For both detection and matching,

our results confirms that the linear HDR values are inappropriate to be used for visual

recognition tasks. Furthermore, we observe that local TMO’s producing very appealing

results in terms of rendering quality are not necessarily the best option for image analysis.

More interestingly, we have also observed that local TMOs with very high repeatability rate

for feature detection are not necessarily the best option when the full feature extraction

pipeline is considered. Although we measured a consistent gain in the average repeatability

scores when using direct HDR pixel values over tone-mapping, it does not hold true for the

test pairs individually. Hence, it is difficult to comment what is better before extracting the

features, a) to encode the HDR pixel approximatively linear to perception, or b) directly

tone map.

This study further strengthens our argument that there might be quite a large room

for improvement in feature extraction performance at detection and description stages

by designing optimal tone mapping schemes for HDR, which can ensure high average

precision as well as repeatability rates, and that can be easily fused with current recognition

algorithms.

Consequently, in the following chapter, we will primarily investigate the key criteria for

designing the optimal TMO, starting with the keypoint detection. Then, we will further

approach to designing a corresponding optimal TMO which aims at enhancing the efficiency

in keypoint detection.

The work presented in this chapter has resulted in the following publications:

1. A. Rana and G. Valenzise and F. Dufaux, “Evaluation of Feature Detection in HDR

Based Imaging Under Changes in Illumination Conditions”, IEEE International

Symposium on Multimedia (ISM), Miami,USA, December, 2015.

2. A. Rana and G. Valenzise and F. Dufaux, “An Evaluation of HDR Image Matching

under Extreme Illumination Changes”, The International Conference on Visual

Communications and Image Processing (VCIP), Chengdu, China, 2015.
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Chapter 4

Tone Mapping Operator for

Efficient Keypoint Detection

4.1 Overview

TMOs have traditionally been designed to display HDR pictures in a perceptually favor-

able way and mainly preserve the human-vision attributes such as image aesthetics and

perceptual contrast. However, when such tone-mapped images are to be used for computer

vision tasks such as keypoint detection, these design approaches are suboptimal [11, 82, 83]

and needs to be re-calibrated. No related work exists in the literature, which aims at

designing a detection-optimized tone mapping technique or comprehending the related

criteria involved.

In this chapter, we address the problem of optimal TMO design for keypoint detection

task. Specifically, we investigate the following questions a) what are the factors to be

considered in the TMO design when targeting keypoint detection tasks ?, and b) how can

we optimize a TMO for such tasks under drastic illumination variations.

To answer the aforementioned questions, this chapter initially discusses the sub-

optimality of existing TMOs and derives guidelines to design a keypoint-optimized TMO.

To that end, a comparison is drawn between the optimization of existing TMO parameters

with respect to: a) Repeatability Rate RR and b) correlation coefficient CC between

tone-mapped images of the same scene with lighting variations. CC measures the statis-

tical similarity between a pair of tone-mapped images. The goal here is to find whether

optimizing a TMO with respect to RR leads to higher keypoint stability over the per-pixel

similarity (using CC) between the tone-mapped images.

Building upon the observations from optimality study, in this chapter, we introduce a

novel learning based adaptive TMO for robust keypoint detection. Our proposed framework

aims at enhancing the repeated detection of sparse keypoint locations (e.g. corners) in

high-contrast areas of scenes undergoing complex real-world illumination transitions such

as day/night change. To this end, we initially introduce an adaptive TMO which can be
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locally modulated, i.e. its parameters can vary pixel-wise. Then, the per pixel modulation

is derived by means of a learned illumination invariant model. In this context, we train

a Support Vector Regressor (SVR) to predict the desired pixel-wise modulation maps by

using the linear HDR content from scenes captured with varying lighting conditions.

Learning-based models have been seldom pursued for designing keypoint-optimized

TMOs. As a consequence, there is no standard dataset to train or test any model in

this context. In this chapter, we overcome this difficulty by proposing a simple detection-

similarity-maximization model to generate appropriate training samples. Additionally, we

propose an HDR dataset of 8 image scenes taken in indoor and outdoor locations with

different lighting variations.

In nutshell, there are three major contributions in this chapter,

1. Factor for optimizing a TMO for Keypoint detection,

2. Learning based adaptive tone mapping model for efficient keypoint detection,

3. A Luminance change HDR dataset.

4.2 Optimizing a TMO for Keypoint detection

In this section, we present a study on the parametric optimization of TMOs using two

factors: CC and RR, aiming at enhancing the keypoint detection performance under drastic

lighting change scenarios. Our main aim is to find out what factor could be the most

interesting to define an optimized TMO.

RR is a conventional performance measure of keypoint detection algorithms and is

computed on repeated occurrences of detected keypoints in test and reference images.

Hence, optimization of TMOs with respect to RR could estimate the optimal detection

performance gains.

On the other hand, the CC computes the statistical similarity between distribution of

images. Theoretically, a CC-optimized TMO should improve keypoint detection performance.

This is mainly because as a high statistical similarity of tone mapped images should increase

the probability of detection of similar keypoints. Such scenarios in return could be highly

interesting for optimizing a potential class of TMOs which are based on illumination

normalization such as [21, 29]. In simple words, what if a substantial improvement in

keypoint detection performance can be achieved just by estimating the ideal reflectance

maps from the HDR images using TMOs such as [21, 29].

In the following, we first detail the considered TMO. Next, we briefly discuss the feature

detection methods, followed by metrics and dataset selection. Finally, we describe the

optimization strategies of considered models.
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(a) Original (I) (b) Gaussian (Lg) (c) Bilateral (Lb)

(d) Gaussian Reflectance(Rg) (e) Bilateral Reflectance(Rb)

Figure 4.1 – Reflectance images Rg and Rb from original image I using the Gaussian and Bilateral
luminance maps Lg and Lb respectively.

4.2.1 Considered TMO

In this study, we employ two well-known Retinex inspired approaches using: a) Gaussian

model [21] and b) Bilateral model [104] for tone mapping. We choose these TMOs as they

are promising to bring illumination invariant (as much as possible) reflectance maps; an

ideal case for efficient keypoint detection.

According to Retinex theory of physical image modeling, we assume that I, the HDR

image to be tone mapped, is the product of the luminance L of the scene (which varies

with different illumination conditions) and of the reflectance R characterizing objects of

the scene, i.e., I = R ·L. The luminance L is generally assumed to be spatially smooth [42],

while reflectance contains fine-grained details, texture and edges which are relevant for

detection [70, 96]. Once L is estimated, the final reflectance image is given by R = I/L.

In the following, we briefly describe the aforementioned luminance estimation TMO:

a). Gaussian tone mapping (GTM) model gives the reflectance image Rg as Rg =

I/Lg where

Lg = I ∗Gσ, (4.1)

where Gσ is a Gaussian filter where the parameter σ depends on image size [m× n], i.e.

σ = α ·max(m,n). When targeting visual perception, the parameter σ is tuned so as to

reduce visual artifacts like halos observed around detected edges. This model with a ingle

parameter is simple and computationally very fast.

b). Bilateral tone mapping (BTM) model is a a precise, non-linear and edge pre-

serving filter where Rb is computed as Rb = I/Lb. The luminance estimation Lb(x) is given

as:

Lb(x) =
1

N

∑
y∈S

Gσs(‖x− y‖) ·Gσr(‖Ix − Iy‖)Iy, (4.2)

where x and y are pixel locations, S is the set of neighborhood locations, Gσr and Gσs
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are Gaussian filters with variances σr and σs referred to as range and spatial parameter

respectively. N is a normalization factor term :

N =
∑
y∈S

Gσs(‖x− y‖)Gσr(‖Ix − Iy‖). (4.3)

It is important to note that when the range parameter increases, the model gradually

approaches Gaussian convolution. This is mainly because the Gaussian Gσr widens and

flattens, and essentially, it becomes nearly constant over the intensity interval of the image.

Conversely, when the spatial parameter increases, larger details like edges get smoothened

in the image.

An example of luminance estimation with their corresponding reflectance image is

shown in Figure 4.1.

4.2.2 Keypoint point detection

Keypoint detection has been widely studied in computer vision literature where several

techniques have been proposed and evaluated [96] taking into account different challenging

transformations. In this study, we focus on the two most widely used keypoint detection

schemes, i.e., corner and blob detectors. We select two common detectors that have been

used in previous HDR imagery based evaluations [11, 82] and are often used in several

real-time applications. For corner interest point detector, we employ the popular Harris

corner point detector [45], which is based on the autocorrelation score computed from local

intensity change in an image. For blob detection, we carried out experiments with the

highly robust SURF [8] detector.

4.2.3 Metrics

In this study, we build our framework using following metrics.

• RR (see Section 2.2) is a standardized method detailed in [96] to measure the detector

accuracy. It is given as the fraction of keypoints detected in the reference image which

are repeated in the test image to the minimum of a total number of detected points

in test or reference image. A keypoint is considered to be repeated in the test image

if: a) it is detected as a keypoint in the test image, and b) it lies in a circle of radius ε

centered on the projection of the reference keypoint onto the test image. ε determines

the keypoint detection error rate. RR is given as Ri(ε)
min(nr,ni)

, where Ri(ε) is the number

of keypoints detected in the reference image which are repeated in the test image,

nr, ni is the number of detected keypoints in reference and test image respectively.

• Correlation Coefficient (CC) is well-known to quantify the strength of a linear

relationship between two variables. In this study, we have used this metric to measure

the correlation between two image maps. Values close to 1 indicate that there is a
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Figure 4.2 – Parameters vs Correlation Coefficient (CC) for Project Room dataset. (a) σ vs CC
for Gaussian tone mapping (GTM) model. (b) σr and σs contours for Bilateral tone
mapping (BTM) model with color magnitudes showing average CC scores.
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Figure 4.3 – Parameters vs Repeatability Rate (RR) for Project Room dataset. (a) σ vs RR for both
SURF and Harris detector for repeatability rate Gaussian TMO (RRGTM). (b) σr
and σs contours for Harris detector and (c) for SURF detector for repeatability rate
Bilateral TMO (RRBTM) with color magnitudes showing RR scores.

positive linear relationship whereas 0 points no linear relationship between image

maps.

4.2.4 Datasets

We considered the HDR dataset with substantial illumination changes proposed in the

previous chapter [82]. It is composed of 2 parts: Project-Room with 8 lighting conditions

and Light-Room with 7 lighting conditions.

4.2.5 Optimization of TMOs

Let I1(x) and I2(x) be two images of the same scene, illuminated by two different illu-

mination maps L1(x) and L2(x). According to Retinex theory I1(x) = L1(x) ·R1(x) and

I2(x) = L2(x) · R2(x). An ideal Retinex algorithm estimates L1(x) and L2(x) such that

two ideal reflectance maps are equal R1(x) = R2(x). In such an ideal scenario, keypoint

detection performance should be enhanced considerably as the keypoints in reflectance

maps would be identical.
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However, Retinex is a mathematically ill-posed problem [50]. In practice, it often implies

that R1 6= R2. Besides this, all perceptually optimized Retinex based models aim at finding

the best luminance estimation for a given scene such as I1 = L1 ·R1, rather than optimizing

on aforementioned image pairs like (R1, R2) which is the classical way of measuring keypoint

detection performance.

Therefore, we firstly investigate the maximization of the correlation between reflectance

images pair. The main motivation is that highly correlated reflectance maps should re-

sult in detected keypoints that are alike, thereby, enhancing the keypoint repeatability.

Alternatively, we also investigate the optimization of considered models with respect to re-

peatability rate which will help to analyze the maximum gains achievable with conventional

TMO.

In summary, we optimize the considered Retinex based GTM and BTM models in

two ways: 1) with respect to correlation of reflectance maps of image pairs and, 2) with

respect to detector repeatability. For the first method, we iteratively optimize the GTM

and BTM models parameters with respect to CC on both datasets using each detector.

More specifically, we iteratively tune the parameter σ for GTM and σs, σr for BTM with

the aim of maximizing the overall CC using each detector.

Correlation based parameter tuning for Project Room dataset in illustrated in Figure 4.2

(a). It depicts that for GTM, a higher σ, i.e. high variance Gaussian blur, minimizes the

absolute differences between the reflectance image pairs. The same observation also holds

for range and spatial parameters of BTM model as shown in Figure 4.2 (b). Thereafter,

using these correlation based optimized models, we generate the tone mapped images

as correlation-coefficient-Gaussian-tone-mapping (CCGTM) and correlation-coefficient-

Bilateral-tone-mapping (CCBTM) for both datasets.

For the second method of optimization with respect to detector repeatability, we tune

the GTM and BTM parameters with the aim of maximizing the overall repeatability rate

(RR) of keypoints using both Harris and SURF detector. Corresponding results are shown in

Figure 4.3 (a) for the Gaussian model, and in Figure 4.3 (b) and (c) for the Bilateral model.

Similarly, we generate the tone mapped images, repeatability-rate-Gaussian-tone-mapping

(RRGTM) and repeatability-rate-Bilateral-tone-mapping (RRBTM), for both datasets and

using each detector.

4.2.6 Experimental Results and Discussion

We evaluate the CCGTM, CCBTM, RRGTM, RRBTM optimized tone mappings models

for keypoint detection using Harris and SURF detectors in Figure 4.4(a),(b). Additionally,

we compare 5 different local and global high performing TMOs [21, 27, 29, 67, 90] with

our RRGTM and RRBTM tone mapping models as shown in Figure 4.4(c),(d).

For each TMO, we measure the overall keypoint detection accuracy using the RR

performance metrics. Initially, we compute the individual RR using a particular detector
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Figure 4.4 – Row 1. (a) and (b) Average repeatability score and standard deviation for the both
correlation and response based optimized approaches using Harris and SURF detector
respectively. Row 2. (c) and (d) Average repeatability score and standard deviation for
the reflectance models (GTM and BTM) and other commonly used TMs on Project
Room and Light Room dataset

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation Coefficient

R
ep

ea
ta

bi
lit

y 
R

at
e

(a) Reflectance map

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

Correlation Coefficient

R
ep

ea
ta

bi
lit

y 
R

at
e

(b) Response Map

Figure 4.5 – Scatter plots. (a) correlation coefficients of reflectance maps CC(Ri, Rj) vs corre-
sponding repeatability rate RR(Ri, Rj), (b) correlation coefficients of response maps
CC(Respm, Respn) vs corresponding repeatability rate RR(Rm, Rn) for HDR log-
encoded Project room dataset.

(a) Image (b) Response Map

Figure 4.6 – An example showing (a) image and its corresponding (b) Harris response map.
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over all the possible images pairs for each scene (Light Room and Project Room), i.e., each

lighting condition of a scene is, in turn, the reference and the other conditions of that scene

are the test images. Thereafter, we compute the average of RR over all such possible image

pairs (52 pairs for Project Room and 42 pairs for Light Room) for a particular scene. Similar

to [12, 82], our keypoint detection scheme is confined to the strongest 1000 keypoints. This

is mainly to ensure a fair comparison of the blob or corner keypoint detection, as different

detectors result in a highly different number of keypoints. We use a fixed detection error

rate, i.e. ε = 3px, which is .03% of image size (see section 5.4.5).

CC vs RR based optimization. We observe from Figure 4.4(a),(b) that CCGTM

and CCBTM records substantial gap in performance with respect to RRGTM and RRBTM

using both Harris and SURF detectors. We can conclude that high correlation between

reflectance image pairs does not directly guarantee the stability of keypoint detection.

However, this can be explained as follows. Keypoints are localized using non-max suppression

technique as explained in [64]. The magnitude per pixel depicts the probability of that

pixel to be detected as a keypoint which generally rely on second order derivatives. An

example of response map using Harris detector [45] is shown in Figure 4.6, where high

pixel values indicate higher likelihood to be considered as keypoint. As a consequence, local

keypoints are in general sparingly distributed in detailed areas of an image. This process is

much more complex than a simple statistical correlation computed at the pixel level. This

is further illustrated in Figure 4.5. It can be observed that correlation of response maps

are linearly proportional to RR whereas in contrast the correlation of the reflectance image

maps shows scattered behavior. Therefore, this leads to the major conclusion of this study.

In order to design a keypoint-detection-optimal tone mapping, the traditional Retinex

based approaches need to take into account the detector response maps while estimating

the reflectance images for a given scene.

Comparison with Traditional TMOs. From Figure 4.4(c),(d), we show that opti-

mizing the traditional models in Eqs (4.1) and (4.2), RRGTM and RRBTM respectively,

lead to large performance gains in terms of RR when compared to existing local and global

TMOs. It shows the necessity to optimize the tone mapping operators with respect to

detection tasks.

Finally, we also observe that the performance gains are significantly larger for Project

Room than Light Room. This is mainly due to the fact that lighting transformations are

much tamer for Light Room dataset, which entails smaller performance variations in RR

when comparing different TMOs.

4.3 Learning a TMO for Efficient Keypoint Detection

The experimental study in the previous section concludes that optimizing TMO parameters

with respect to RR leads to higher keypoint stability over the per-pixel similarity between

the tone-mapped images. Though this study points to the parametric sensitivity in TMOs,
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it does not provide any keypoint-detection-optimized TMO model. Therefore, the problem

of designing an optimal TMO for the keypoint detection task remains open.

In this section, we therefore develop a novel learning-based adaptive tone mapping oper-

ator, referred as DetTMO, aims at enhancing keypoint stability under drastic illumination

variations. To this end, we design a pixel-wise adaptive TMO which is modulated based on a

model derived by Support Vector Regression (SVR) using local higher order characteristics.

Our idea is mainly motivated by the conclusions of our previous study in Section 4.2 where

optimizing tone mapping parameters for keypoint detection is shown to yield significant

gains in RR. However, in that study optimal TMO parameters are computed globally on

the whole image using grid search and, more importantly, for a given scene. Here, instead,

we propose to learn TMO parameters based on the local features of the scene. Specifically,

since keypoints are sparsely detected and depend on their neighborhood properties, we

argue that local parametric modulations in TMOs can enhance the keypoint detection

probability by adaptively mapping pixels based on their local higher-order characteristics.

To predict such optimal modulations in this context, we are inspired by the success of

regression-based “task-optimization” models. In the literature, regression-based models have

been explored for several image processing problems [53, 75, 102]. Here, we employ SVR,

which has been successfully used, e.g. in image super-resolution [75], and which enables to

cope with large variability in the input training samples compared with low-dimensionality

approaches using explicit functions such as polynomial regression.

Additionally, we propose a simple detection-similarity-maximization model to generate

appropriate training samples for the SVR. We initially consider several HDR image pairs

which are taken with the same viewpoint with different lighting variations. Then, we define

our objective function to find optimal modulation maps for such scenes so that the similarity

of the detector response maps is maximized. For the defined objectives, the optimization is

carried out using stochastic gradient descent (SGD) [10] by deriving the required partial

derivative architecture.

In the following, we initially provide the details of our learning-based adaptive TMO

approach, the similarity maximization model for generation of training set, the SVR training

and proposed dataset. Later, we present the experimental results and analysis.

4.3.1 General Framework

Let ϕ be a tone mapping function which maps the linear-valued HDR content of an image

I to an output LDR I ′. In general, for a pixel x, TMO operates as: I ′(x) = ϕ(I(x),θ),

where I(x) ∈ <, I ′(x) ∈ [0, 255] and θ represents a vector of parameters.

For several existing TMOs [21, 27, 67, 90], parameter θ serves diverse objective such

as filter shape and size, brightness control, but all motivated for visual perception. Such

parameter is often set as globally for an image and further chosen by trial and test

procedures. For example, θ serves as variance in ChiuTMO [21], sharpening constant in
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Figure 4.7 – Learning based DetTMO.

ReinhardTMO [90] and range and spatial variance in bilateral filtering based TMO [84].

Based on these observations, we assume function ϕ as an extension of existing tone

mapping functions which can be modulated spatially by adapting their vector of parameters.

The idea here is to facilitate the local adaption of function ϕ at sparse keypoint locations

to further ease their identification and detection. In this chapter, we call the corresponding

vector of parameters as modulation maps so as to distinguish their purpose of modulating

the TMO locally from global parametric tuning. The modulation maps are given as

θ(x) = {θ1(x), θ2(x).., } and our proposed TMO operates as: I ′(x) = ϕ(I(x),θ(x)).

To predict the modulations maps, we propose to learn a model by employing SVR [99]

while complying with the following two constraints: (a) To distinguish the keypoint and its

neighborhood locations, (b) To bring invariance (as much as possible) to the non-affine

lighting variations in the physical world scenes.

By using the radial basis kernel mapping, our SVR minimizes the non-linear problem of

predicting modulation maps θ by linearly separating the input samples in high-dimensional

space. We refer the reader to [99] for more details about kernel-based SVR optimization

model. Fig. 4.7 outlines the general framework of our proposed keypoint optimal TMO.

4.3.2 Adaptive Tone Mapping Operator

Many tone mapping approaches aim at separating scene illumination, which can display

large dynamic range variations, from the reflectance of objects, which instead has lower

dynamic range characteristics [21, 84]. Following this idea, our tone mapping function ϕ is

expressed as: ϕ = I ·L−1, where the illumination component L is estimated by an adaptive

version of bilateral filtering [104] and is given as:

L(x,θ) =
1

W
·
∑
y∈Ω

Gθ1(x)(‖x− y‖) ·Gθ2(x)(‖I(x)− I(y)‖)I(y), (4.4)

where G is a Gaussian kernel. Here, modulation vector θ has two components: θ1 and θ2, also

known as spatial and range variance. For each pixel location x, y is a pixel in neighborhood

set Ω and the normalization factor W =
∑

y∈ΩGθ1(x)(‖x− y‖) ·Gθ2(x)(‖I(x)− I(y)‖).
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It is important to note that we have built our model using the bilateral filtering, mainly

because its proposed adaptive formulation facilitates the integration of local modulation in

the proposed TMO. Moreover, it has been previously studied in the context of keypoint

detection in HDR imaging in varying lighting conditions as discussed in Section 4.2. However,

any other tone mapping techniques with parametric formulations such as [21, 90] could be

used as well with our proposed framework.

4.3.3 Generation of Training Set: Detection Similarity Maximization

Model

Suppose we are given a set of HDR scenes where each scene has images captured from the

same viewpoint but with different lighting conditions. To train the SVR for our proposed

model, we need to compute the “ideal” modulation maps (θ1, θ2 in our case) for a scene

which ensures high keypoint stability. In other words, for a scene undergoing lighting

variations, we need to estimate the modulations ensuring maximum keypoint repeatability.

To this end, one solution is to design an optimization model which maximizes the RR of

multiple images of a given sequence.

RR is a measure of detector efficiency, as defined in the previous section. Since RR

is a non-smooth and non-differentiable function, it cannot be directly used to define the

similarity objective of our optimization model. Therefore, we instead propose an alternative

solution to use differentiable detector response maps R and design a model that maximizes

the similarity between these response maps of image pairs drawn from a given sequence. R
is a score map which determines a pixel’s strength to be a keypoint and it mainly depends

on the choice of keypoint detection algorithm.

Our response map R is generated by a Harris corner detector [45]. It is based on the

autocorrelation scores computed per pixel using the second-order moment matrix, and is

given as:

R
(
ϕ(x,θ)

)
= det{M

(
ϕ(x,θ)

)
} − k · tr{M

(
ϕ(x,θ)

)
}2 (4.5)

where M is the second order moment matrix as detailed in [45]. k is the sensitivity factor

(k = 0.04). Here, we have focused on the corner-based detectors as they are computationally

inexpensive and highly used for real time applications, e.g. tracking, wide-view panorama

creations, etc. However, the model could be extended to region or blob-based detectors as

well.

Objective: Let S be a scene consisting of N HDR images with lighting variations as

shown in Fig. 4.8 (a). Let P =
{

(1, 2), (2, 3)..,
}

be the set of K =
(
N
2

)
pair combinations

of N images. Our aim is to maximize the response similarity by minimizing the following

objective function:

F(θ) =
1

K

∑
{i,j}∈P

Φ(Ri(θ),Rj(θ)), (4.6)

and obtain the resulting modulation maps θ = {θ1, θ2} as shown in Fig. 4.8 (b) and (c).
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(a) HDR Images (b) Modulation (θ1) (c) Modulation (θ2)

Figure 4.8 – Generation of training set. The samples images undergoing different lighting variations
shown in (a) are used to generate the θ1 and θ2 modulation maps in (b) and (c)
respectively, using the detection similarity maximization model.

Inspired by max-margin formulations for image retrieval tasks [87], we define function Φ

using the logistic penalty

Φ(Ri,Rj) = log(1 + exp(ε−
〈
Ri · Rj

〉
). (4.7)

where ε is a penalty control factor, Ri and Rj are the response maps corresponding to the

images i, j ∈ S, and 〈·〉 denotes the scalar product.

Optimization using SGD. We optimize the objective function in Eq. (4.6) using

Stochastic Gradient Descent (SGD) [10]. To do so, we build the partial derivative architec-

ture required for the SGD implementation as follows.

To estimate θ maps at each iteration t, SGD update rule is given as:

θt+1 = θt − γt · ∇Φ{i,j}t(θt), (4.8)

where γt is a learning rate that can be made to decay with t as γt = γ0/(t+ 1) and the

gradient for the objective function in Eq. (4.6) is replaced (as detailed in [10]) with the

gradient of a randomly chosen sample pair {i, j} at time t, i.e.

∇Φ{i,j}(θt) ,
∂Φ(Ri,Rj)

∂θ

∣∣∣∣
θt

. (4.9)

We computed the gradient required in Eq. (4.8) using the chain rule as follows,

∇Φ{i,j}(θ) =
{ ∂Φ

∂Ri
· ∂R
∂ϕi
· ∂ϕi
∂θ

,
∂Φ

∂Rj
· ∂R
∂ϕj
· ∂ϕj
∂θ

}
(4.10)

4.3.4 Support Vector Regressor Training for DetTMO

An illustration for SVR training is shown in Fig 4.9. Let’s assume that a scene with

multiple images captured under different lighting variations is given for training. Further,
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Figure 4.9 – Training an SVR. The sample pixel (red) with s× s neighborhood (blue) is chosen to
extract the features maps (F1, F2, F3) using response scores, gradients and intensity
patterns respectively.

Poster Invalides
Project-
Room Light-Room Notre-Dame Camroom

Grande-
Arche Louvre

Figure 4.10 – Sample images from HDR dataset. The HDR Dataset is composed of 8 scene from
different indoor/outdoor locations.
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assume that the optimal modulation maps for the same scene are also given as described

in Section 4.3.3.

To train an SVR model invariant to illumination variations, we first select random

samples from keypoint and neighborhood locations across all the given images with varying

lighting conditions. For each sample, we then consider a local patch of size s× s centered at

that pixel. Next, we compute a feature vector which includes: a) the second-order detector

response scores F1, b) the gradient magnitudes F2 and c) the local intensity patterns F3.

The second-order response scores are based on the choice of the keypoint detector.

Therefore, our response score feature for each pixel x in patch s× s is given as: F1(x) =

det{M(x)} − k · tr{M(x)}2. The gradient magnitudes for each pixel in the local patch is

computed as: F2(x) =
√
G2
x(x) +G2

y(x), where Gx and Gy are the gradients in horizontal

and vertical directions. The local intensity patterns for each patch is recorded by subtracting

the value of centered pixel from other pixels and given as: F3(x) = I(x)− I(c), where c is

the pixel at center location.

These individual features are normalized and concatenated to form the final feature

vector {F1, F2, F3} of dimension 3s2 representing a training sample.

4.3.5 Luminance change HDR dataset

We propose an HDR dataset with 8 different HDR scenes as shown in Fig. 4.10. The Light

Room, Project Room and Poster are the publicly available datasets and have been used for

evaluating HDR for keypoint detection problems [11, 82]. However, these 3 scenes have been

captured in indoor locations and hence, they are less challenging in terms of physical-world

illumination transformations such as day/light change. Therefore, we captured 5 additional

scenes including 1 indoor Camroom and 4 famous outdoor locations in Paris: Notre-Dame,

Louvre, Invalides and Grande Arche. The Camroom scene is shot with a Canon Mark III

camera in the presence of powerful 2K Watt reflectors. All the other outdoor HDR scenes

are captured with Canon 700D camera at different times of the day. To create the HDR

images, LDR images have been fused using the algorithm in [24]. Note that all scenes are

geometrically calibrated.

4.3.6 Experimental Setup

We test our proposed model for keypoint detection task on 8 HDR scenes. We initially

compare our DetTMO with the non-adaptive bilateral filtering based tone mappings BTMO

and its globally optimized version BTMO(opt) as discussed in Section 4.2. Similar to our

tone mapping function, both these TMOs are based on illumination normalization where

the luminance L is estimated using bilateral filter. However, both these TMOs use global

range and spatial variances. Moreover, BTMO(opt) is a variant of BTMO with an additional

step of global parameter optimization, and approximates the maximum possible RR that

can be achieved with BTMO model.
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Then, we compare our model with state-of-the-art perception based TMOs: Chi-

uTMO [21], DragoTMO [27], ReinhardTMO [90] and MantiukTMO [67]. We considered

these TMOs as they have been previously applied for HDR evaluation studies [101] for

similar keypoint detection task.

We evaluate all these TMOs using popular and widely used corner detection schemes:

Harris [45], Shi-Tom [104], FAST [94] BRISK [61]. In addition, even if our formulation is

optimized for corner detection, we also test our TMO with respect to blob detectors such

as SURF [8] and SIFT [64]. Since our model is designed for one image scale, we employed

single-scale implementation for all keypoint detection schemes to ensure a fair comparison.

The detection performance is measured in terms of RR (as discussed in Section 4.3.3)

with an error rate of 5 pixels. Namely, a keypoint is considered to be repeated in the test

image if it lies in a circle of radius 5 centered on the projection of the reference keypoint

onto the test image.

Training and Implementation details

For each test scene, we build the training set with 10,000 samples and use it to train

and validate the SVR model. This training set is drawn from other scenes excluding

the corresponding test scene. For instance, to test the Project Room scene, we build

the training set by randomly selecting the samples from all other 7 scenes. For each

training sample, we compute feature on a small patch size of 5 × 5 while following the

feature extraction procedure from Section 4.3.4. Higher patch-size is not advisable as pixel

correlation diminishes with increasing distance. Conversely smaller patch-size may extract

insufficient information.

Implementation. We use the SVR implementation of LibSVM [15] using the Radial

Basis Function (RBF) kernel. To obtain the optimal values of SVR parameters, the

regularization cost and epsilon-SVR are tuned by 5-fold cross validation from the range of

[2−5, 215] and = [2−10, 25], respectively.

We use the HDR Toolbox [7] for the implementation of the considered TMOs. Moreover,

we use the Matlab’s Computer Vision toolbox for Harris, Shi-Tom, FAST, BRISK and

SURF, and Vlfeat for SIFT. Similar to previous keypoint evaluation studies [11, 82], we

selected the strongest 500 keypoints from each test image.

4.3.7 Evaluation Results

Quantitative Results: We perform a thorough evaluation of our proposed DetTMO in

quantitative terms as shown in Fig. 4.11 and Fig. 4.12. We basically evaluate the performance

of our method over all test scenes using the Harris corner detector. In Fig. 4.11, we compare

our model with the other variants of bilateral filtering based TMOs: BTMO and BTMO(opt)

(in Section 4.2). These results clearly show that local modulation of bilateral filtering based
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Figure 4.11 – Quantitative Results I : Repeatability Rates (RR) computed using DetTMO,
BTMO(opt) and BTMO for each test scene using Harris keypoint detector. Note
that while testing DetTMO for a particular scene we assured that the training for
DetTMO is done on all other scenes.

tone mapping function using the proposed learned model significantly improves the keypoint

stability across both the indoor and outdoor scenes.

Comparison with popular TMOs. We evaluate the performance of our method

across different keypoint detection schemes including both corner and blobs. In Fig. 4.12,

we initially compute the RR for all scenes for each considered TMO and then average them

to compute the Average Repeatability Rate (AvgRR). We observe that for either detector

(corner or blob) our proposed model outperforms all the other TMOs (perception based

or keypoint-based). Further, the lower standard deviations observed with our proposed

TMO shows higher stability of keypoints than other perception-based TMOs. Although

our algorithm has been optimized for corners, it gives comparable or better performance

with respect to other methods on blob detectors. This is partially due to the single scale

implementation of the blob detectors used in this evaluation. However, the performance

may differ when the multi-scale blob detection is taken into account.

We compare our DetTMO with popular and visually pleasing Reinhard TMO [90] and

MantiukTMO [67]. In Fig. 4.13, we show that our method produces the highest number of

repeated keypoints, even though both Reinhard TMO [90] and MantiukTMO [67] produce

more visually appealing images.
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Figure 4.12 – Quantitative Results II : Average Repeatability Rates (AvgRR) computed on different
TMOs using various keypoint detection schemes. The average is calculated over all
test scenes.

Figure 4.13 – Repeated Keypoints. Row I: 2 HDR images from Invalides scene taken at different day-
time. HDR images are displayed after log scaling[27]. Row II: the repeated keypoints
using our proposed DetTMO (66 repeated keypoints out of strongest 200 keypoints).
Row III: the repeated keypoints using Reinhard TMO (7 repeated keypoints out of
strongest 200 keypoints). Row IV: the repeated keypoints using MantiukTMO (5
repeated keypoints out of strongest 200 keypoints).
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4.4 Conclusions

In this chapter, we first investigate the impact of two factors for the optimization of tone

mappings models. Build on its observations, later, we propose a new learning based adaptive

tone mapping framework aiming at enhancing the keypoint detection performance under

drastic lighting change scenarios. To that end, we train a Support Vector Regressor using

local characteristic features to learn a model which spatially modulates the proposed pixel-

wise adaptive TMO. Further, we introduce a simple and effective method for generating the

training set to learn the SVR for the given problem. We evaluate our model on our proposed

HDR benchmark dataset of indoor/outdoor scenes. Our model significantly outperforms

state-of-the-art TMOs on the HDR dataset and also achieve state-of-the-art results across

different keypoint detection algorithms.

Our current tone mapping model is designed for keypoint detection only. In the

following, we plan to design a descriptor based tone mapping framework optimal for

invariant descriptor extraction.

The work presented in this chapter has resulted in the following publications:

1. A. Rana and G. Valenzise and F. Dufaux, “Optimizing Tone Mapping Operators

for Keypoint Detection under Illumination Changes”, 2016 IEEE Workshop on

Multimedia Signal Processing (MMSP 2016), Montréal, Canada, 2016.

2. A. Rana and G. Valenzise and F. Dufaux, “Learning-based Adaptive Tone Mapping

for Keypoint Detection”, The International Conference on Visual Communications

and Image Processing (ICME), Hong Kong, China, 2017.



Chapter 5

Learning a Tone Mapping

Operator for Efficient Image

Matching

5.1 Overview

Conventional TMOs have found to be sub-optimal for the feature extraction task, which

includes a detection and a description stage. So far, we leveraged on learning the keypoint

characteristics to design an optimal TMO for a stable detection only. In this chapter, we

address the full feature extraction pipeline, including the description stage, to design an

optimal TMO for efficient image matching.

More specifically, the goal of this chapter to find an optimal TMO which can enhance the

extraction of stable features for scenes under complex real-world illumination transitions,

such as day/night change. To this end, the chapter first proposes a descriptor-optimal

TMO design, referred to as DesTMO, which solely aims at the extraction of invariant (as

much as possible) descriptors from high-contrast areas of the scenes. Later, we introduce

an optimal TMO, OpTMO, for full feature extraction chain (including both detectors and

descriptors) which simultaneously enhances the detection rates and matching of features

extracted from HDR scenes. Both the proposed task optimal TMOs namely, DesTMO and

OpTMO, follow a learning based paradigm similar to the DetTMO in Chapter 4, but with

entirely different design objectives.

Altogether, this chapter proposes

• a descriptor-optimal DesTMO which facilitates the extraction of luminance invariant

descriptors.

• a locally adaptive, image-matching-optimal OpTMO which collectively address the

detection and description stages of the feature extraction pipelines.
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• an efficient method for generating appropriate training samples to circumvent the diffi-

culty to train SVR in the context of DesTMO and OpTMO respectively. Additionally,

we propose their differentiable surrogate objective functions.

• an evaluation of DesTMO and OpTMO against state-of-the-art methodologies. Fur-

thermore, we show an applicative scenario of object localization.

5.2 Descriptor Optimal Tone Mapping Operator (DesTMO)

Our design idea is motivated by the detector optimal TMO of the previous chapter where

significant gains in Repeatability Rate [70] were observed when optimal TMO parameters

(controlling TMO’s shape and size) were learned pixel-wise. However, we mainly focused

on designing a tone mapping model for corner-like keypoint detection task, while here we

consider a different problem, i.e., an optimal TMO for the extraction of discriminative

descriptors.

To design DesTMO, initially a tone mapping function is introduced, which can be

locally modulated by spatially varying its parameters. Its parameter maps are predicted by

means of a learned illumination-invariant guidance model. Our guidance model is driven

by the SVR and relies on the gradient orientation-based features that are extracted from

densely sampled patches from the HDR content.

Unlike corner detection, descriptor extraction depends on the large set of neighborhood

pixel-set (or patch) which are processed altogether to formulate the discriminative unique

signature. Hence, we propose to learn the TMO parameters locally but based on patch-level

information from the scenes. Specifically, since each descriptor is restricted to a patch size

such as 16× 16 in SIFT and SURF, we learn the TMO parameters on patches of the same

size.

Since there is no standard dataset to train or test any model for DesTMO, we propose

a simple ‘descriptor similarity-maximization’ approach to generate appropriate training

samples. The objective function aims to maximize the similarities of descriptors if they are

extracted from images from the same location but with lighting variations.

5.2.1 Proposed Model

Fig. 5.1 outlines the framework of our proposed algorithm. It primarily consists of a tone

mapping function ϕ which maps the linear-valued HDR content of an image I to an output

LDR I ′. Similar to Chapter 4, it is expressed as

I ′(x) = ϕ(I(x),θ), (5.1)

where I ∈ <m×n, I ′ is of size m×n with pixel values in the [0, 255] range, and θ represents a

vector of modulation maps, θ = {θ1, θ2}, where θk is of size m×n. Secondly, the framework
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consists of a guidance model where an SVR predicts the optimal values of these modulation

maps θ by using the densely extracted local features from the HDR content. To this end,

initially, the HDR image is densely sampled into patches of size s× s and from each such

patch a SIFT feature f is extracted. Then, these features are fed to the regressor which in

turn predicts parameter values for modulation map θ1, θ2. Note that the regressor output

for each feature is applied over the size s× s in these modulation maps, corresponding to

exact location of the sampled patch from which the feature is extracted. Such patch level

tuned vector parameters θ1, θ2 are later used by ϕ to obtain the tone mapped image I ′.

5.2.2 Tone Mapping Function

Inspired by illumination normalization TMOs [21, 29, 84] and similar to Chapter 4, our

tone mapping function ϕ in Eq. (5.1) is expressed as: ϕ = I · L−1, where the illumination

component L is estimated by a variant of bilateral filtering [104] and is given as:

L(x,θ) =
1

W
·
∑
y∈Ω

Gθ1(x)(‖x− y‖) · Gθ2(x)(‖I(x)− I(y)‖)I(y), (5.2)

where G is a Gaussian kernel and for each pixel location x, the pixel y is in the neighborhood

set Ω. The normalization factor W is equal to
∑

y∈Ω Gθ1(x)(‖x− y‖) · Gθ2(x)(‖I(x)− I(y)‖).
Here, the modulation vector θ has two components: θ1 and θ2. They are often globally

referred to as spatial and range variance respectively and control the behavior of function ϕ.

For example, if θ2 is predicted higher at a patch location, its corresponding Gaussian kernel

widens and flattens behaving like a Gaussian blur [104], and finally, a blurred luminance

L is estimated. In such condition, the final tone mapped pixels, which are obtained by

normalizing the estimated L for the corresponding patch, will preserve the structures such

as gradients.

Notice that we opted for bilateral filtering because its proposed formulation facilitates

the integration of the core concept of local modulation. However, any other tone mapping

function with parametric formulations such as [21, 90] could be used.

Figure 5.1 – DesTMO. The architecture of our proposed TMO.
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Figure 5.2 – Training Pipeline

5.2.3 Guidance Model based on SVR for DesTMO

We consider a training set {(f1, o1), ..(fn, on)}, where fi is the feature sample and oi

represents its corresponding observation (scalar or vector), i = 1...n. A classical linear

regressor would solve the problem of fitting a prediction function as: r(fi) = (ωT fi + b),

where ω, b are estimated by minimizing the mean square error. However, such function

is often incapable of separating the non-linearly sampled data, like our case where fi is

the SIFT feature with size 128, and o(i) = θk(i), where k = 1, 2. Therefore, with such

given inputs, we use the non-linear SVR [99] which maps the input vector fi into high

dimensional space using the kernel ψ where data becomes linearly separable and is given as

r(fi) = (ωTψ(fi) + b). To fit the desired non-linear SVR prediction function, the following

optimization problem is solved:

min
ω,b,ξ,ξ∗

1

2
‖ω2‖+ C

n∑
i=1

(ξi + ξ∗i )

subject to:

θk(i) − (ωTψ(fi) + b) ≤ χ+ ξi,

(ωTψ(fi) + b)− θk(i) ≤ χ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1..n

where ξ, ξ∗ are the slack variables, C represents the cost which is imposed for samples

that exceed the error χ. For further understanding of the non-linear SVR optimization

problem, we refer the reader to [99].

5.2.4 Generation of Samples

To train the SVR, we need to find appropriate training features and their corresponding

supervised observations θ1, θ2 as shown in Fig. 8.9. To this end, we propose a two step

solution. First, we identify key locations in a scene, where we can extract meaningful

descriptor features. Second, we build a model to find the optimal θ1 and θ2 that maximize
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the similarity between those descriptors which are captured from the same key locations of

the scene.

To identify key locations, we first detect keypoints independently in each log-scaled

HDR image of the scene using the DoG [64] detector. We then iteratively check, for each

detected keypoint, whether it is found at about the same location in other images of the

same scene, taken under different illumination conditions. If it is detected in the majority of

these images, we call it a key location. As we just want to collect ‘meaningful’ key locations

with majority occurrence under lighting variations, any other format could also be used

instead of log-HDR.

From each key location, we use SIFT [64] as training feature, extracted from linear HDR

content. More specifically, it is given as concatenation of 16 unnormalized cells i.e.[x1, ...x16]

where each cell can be compactly defined as [25, 109]:

h(Θ|p)[x] =

∫
Gδ(Θ− ∠∇p(y))Gσ̂(y − x)‖∇p(y)‖d(y) (5.3)

where x is the center location of the cell in the restricted square patch p of size 16×16. The

independent variable Θ represents the gradient orientation ranging from [0, 2π]. Moreover,

G represents the Gaussian kernel with standard deviation σ̂ and an angular dispersion

parameter δ.

Similarity model: We assume a scene S consisting of n HDR images with lighting

variations as shown in Fig. 8.9. We consider P =
{

(1, 2), (2, 3)..,
}

to be the set of K =
(
N
2

)
pair combinations of N descriptors extracted from a key location. Our aim is to minimize

the following objective function:

F(θ) =
1

K

∑
{i,j}∈P

Φ(hi(θ),hj(θ)). (5.4)

We define function Φ using the logistic penalty (similar to max-margin formulations in [87]),

Φ(hi,hj) = log(1 + exp(ε− hTi hj). (5.5)

We optimize the objective function in Eq. (5.4) using a robust optimization technique,

Stochastic Gradient Descent (SGD) [10]. SGD update rule to estimate θ maps at each

iteration t is given as: θt+1 = θt − γt · ∇Φ{i,j}t(θt), where γt is a learning rate which

decays with t as γt = γ0/(t+ 1) and the gradient for the objective in Eq. (5.6) is replaced

(as detailed in [10]) with the gradient of a randomly chosen sample pair {i, j} at time t,

i.e.∇Φ{i,j}(θt) ,
∂Φ(hi,hj)

∂θ

∣∣∣
θt

.
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Figure 5.3 – Scenes from HDR luminance dataset. The dataset is composed of 8 scene from different
indoor/outdoor locations.

5.3 Results and Discussion

5.3.1 Experimental Setup

We build the test setup for image matching using the HDR luminance dataset shown

in Fig. 5.3 which consists of 4 indoor and 4 outdoor scenes as detailed in Chapter 4. We

compare our proposed DesTMO with the classical perception based TMOs: BTMO [84],

ChiuTMO [21], DragoTMO [27], ReinhardTMO [90] and MantiukTMO [67].

The BTMO in [84] and ChiuTMO [21] are also based on normalizing the estimated

luminance L but use global parametric settings. DragoTMO [27] maps the HDR content

based on adaptive logarithmic scaling. ReinhardTMO [90] and MantiukTMO [67] are well

known tone mapping techniques for high visual quality outputs with appealing brightness

and contrast. We considered these TMOs as they have been previously applied for HDR

evaluation studies [84, 101] for the related task of feature detection.

To effectively evaluate the impact of descriptor extraction scheme, we selected the

strongest 500 keypoints using the DoG detector [64] for each tone mapped image. Then,

we use four popular and widely used SURF [8] and SIFT [64] descriptor schemes as well as

the FREAK[77] and BRISK [61] binary descriptors.

Metrics: We evaluate the descriptor performance using the standard measures of

Matching Score and mAP rates as detailed in Section 2.2.3. To define a match, we use the

standard nearest neighbor distance ratio (NNDR) matching strategy.

Training and Implementation details

For each test scene, we build the training set with 5000 training samples and use it to train

and validate the SVR model. Given a test scene from our dataset Fig. 5.3, the training set

is drawn from the other 7 scenes. For each training sample, we compute the SIFT feature

on a patch size of 16× 16.

Implementation. We use the SVR implementation of LibSVM [15] using the Radial Basis

Function (RBF) kernel. To obtain the optimal values of SVR parameters, the regularization

cost and epsilon-SVR are tuned by 10-fold cross validation from the range of [2−5, 215]

and [2−10, 25], respectively. We use the HDR Toolbox [7] for the implementation of the

considered TMOs, Matlab’s Computer Vision toolbox for SURF, FREAK, BRISK and
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Figure 5.4 – Matching Score computed using DesTMO, BTMO and LDR for each test scene
using SURF descriptor.
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Figure 5.5 – Average Matching Scores computed on different TMOs using SURF, SIFT,
FREAK, BRISK descriptor extraction schemes. The average is calculated over all test
scenes.

Vlfeat [109] for SIFT.

5.3.2 Evaluation Results

We perform a thorough evaluation of our proposed DesTMO quantitatively using the

matching score and mAP. We initially show in Fig. 5.4 the performance of our method

over all test scenes using the SURF descriptor, where we compare our algorithm with

BTMO [84] and the best exposure LDR. Our results clearly show that predicted local

modulation of the bilateral filtering helps in preserving the invariance of the local gradient

and hence, boosts the average number of correct matches in both the indoor and outdoor

scenes. However, we observe small gains in outdoor scenes such as Invalides. This can be

explained by strong lighting transitions and is partially due to increased false matches due

to repetitive structures in the images as shown in Fig. 5.7. Note that, we use threshold

th = 0.2 to avoid ambiguous matches and to improve the readability of descriptor matching
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Figure 5.6 – Mean Average Precision (mAP) rates computed on different TMOs using SURF,
SIFT, FREAK, BRISK descriptor extraction schemes. The average is calculated over
all test scenes.

Figure 5.7 – Day/Night matching using SURF. Row I: 2 HDR images from Invalides scene are displayed
after log scaling[27]. Correct and incorrect matches are shown with yellow and red lines
respectively. Green lines represent the special case of mismatch due to repetitive structure.
Row II: the feature matching using our proposed DesTMO (11 correct and 3 incorrect
matches). Row III: using Reinhard TMO (3 correct and 11 incorrect matches). Row IV: using
MantiukTMO (4 incorrect and 3 correct matches).

in Fig. 5.7.

Comparison with popular TMOs. We evaluate the performance of our method

across different descriptor extraction schemes including both gradient based and binary

descriptors. In terms of average matching score, we observe that for every extraction scheme,
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our DesTMO yields a higher number of correct matches, as shown in Fig. 8.6. Furthermore,

in Fig. 5.6, we compute the mAP rates by averaging the area-under-the-curve of PR curves

of the complete dataset. We observe that for every descriptor extraction scheme, our

proposed model outperforms all the other TMOs. Additionally, we compare our proposed

TMO with popular and visually pleasing Reinhard TMO [90] and MantiukTMO [67]

in Fig. 5.7, where we show that our method produces a higher number of correct matches

in difficult day/night matching.

5.4 Optimal Tone Mapping Operator for Image Matching

In the previous Chapter, we designed a detector-optimal DetTMO, controlled by a guid-

ance model which is learned to understand the keypoint’s locally extremal and covariant

characteristics. Similarly, we introduced a descriptor-optimal DesTMO where the guidance

model is mainly trained to facilitate the invariant densely-sampled descriptor extraction.

However, both these TMOs only handle one aspect at a time, namely, keypoint detection

or descriptor extraction. This is inefficient in practice for the image matching task, e.g., a

poor detector degrades descriptor matching [70].

Notice that optimizing a TMO considering keypoint detection and description con-

currently is not trivial, as the corresponding design objectives are generally different

and somehow contrasting. For instance, an optimal TMO for detection aims to produce

covariant feature points, while a TMO optimal for description should guarantee some

form of invariance to transformations over a local neighborhood. In addition, optimal

detection requires an accurate localization of keypoint position, while optimal description

is a patch-level process. In Chapter 3 [83], we have showed that TMOs that are optimal

for detection are not necessarily so when the full matching chain is considered.

In this section, we introduce an optimal tone mapping operator (OpTMO) to enhance

the detection and matching of features extracted from HDR scenes captured under complex

real-world illumination transitions. For OpTMO, we initially introduce a tone mapping

function similar to DetTMO, which can be locally modulated by varying spatially (pixel-

wise) its parameters as a function of the HDR content characteristics. Afterwards, we

propose a guidance model to map HDR-based local characteristics features (detection and

description-based) to a low-dimensional TMO parameter space, by means of a support

vector regressor (SVR) [99].

For OpTMO, we obtain per pixel ground-truth TMO parameters by solving an optimiza-

tion problem which simultaneously ensures: 1) stable keypoint detection; and 2) keypoint

description robust to illumination changes. Since these two objectives are, in general, non

differentiable, we also propose the proxy cost functions which enables to compute the

required derivatives and obtain an optimal solution. In the following, we detail each step.
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Figure 5.8 – Optimal Tone Mapping Design. The tone mapping function is modulated by the SVR-
based guidance model, which predicts optimal parameter maps using the characteristic
features.

5.4.1 Optimal Tone Mapping for Image Matching

Fig. 8.4 outlines the general framework of our proposed optimal TMO for image matching. It

primarily consists of a tone mapping function ϕ which maps the linear-valued HDR content

of an input image I to an output LDR I ′. Our choice of the tone mapping function is same

as described in 5.2.2. Secondly, the framework consists of a guidance model where a learned

SVR predicts an optimal parameter map θ based on local HDR content characteristics. In

the following subsections, we discuss the design of our proposed framework and how to

generate training data for the SVR.

5.4.2 Generation of Training Set

In this section, we address the problem of generating an adequate ground truth set for

training the SVR-based model. We aim to find such ground truth parameter maps θ, which

result in efficient image matching (i.e. mAP score) for a scene which undergoes drastic

lighting variations, as shown in Figure 5.9. In this section, we, therefore, formulate an

objective function f , which we minimize over the θ to yield the optimal parameter maps.

The proposed total energy f represents the difference in the image matching pairs. We

quantify this difference in terms of both keypoint detection and descriptor extraction stages,

depicted as ‘Detection Response’ and ‘Description’, respectively, in Figure 5.9. Finally, we

propose to optimize the objective using the SGD based optimization method to obtain the

optimal θ.

In the following, we first discuss the formulation of the objective function f . Then, we

detail the considerations with respect to image matching components in view of designing

the objective function f . Finally, we detail the SGD-based method to optimize the objective

to obtain the optimal θ.
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Objective Function

We aim to optimize θ to tone map an image for the full feature extraction pipeline.

Therefore, the objective function should consolidate each stage of the feature extraction

pipeline i.e. to locate and extract the feature. Henceforth, we introduce two energy terms

dedicated to keypoint localization (Edet) and descriptor extraction (Edes), respectively and

define a combined objective function as:

minimize
θ

f(θ) = Edet(θ) + Edes(θ). (5.6)

where each energy term is computed over a scene consisting of N HDR images with

lighting variations as shown in Fig. 5.9 (a). Let P =
{

(1, 2), (2, 3), . . .
}

is the set of

K =
(
N
2

)
pair combinations of N images. The Edet term aims to ensure the covariance of

the corner response maps. Conversely, the Edes term helps in retaining the invariance of

the discriminative patterns around the key locations in the image pairs when undergoing

drastic transformations. Both terms are detailed as follows:

The Energy term Edet

To ensure efficient matching, we observe that it is important to enforce the similarity

in detection response maps [84]. This is mainly because high similarity response maps

increases the probability of detection of keypoints at similar locations and thereby enhances

the probability of correct matches.

We define the detection similarity term Edet, by summing the penalty computed from

each pair in the set K, as:

Edet =
λdet
K

∑
{i,j}∈P

C1(Ri(θ),Rj(θ)). (5.7)

For each sample pair {i, j} ∈ P , we penalize the response maps dissimilarity by a logistic

cost function given as:

C1(i, j) = log(1 + exp(εc −
〈
Ri · Rj

〉
), (5.8)

where εc is the penalty control factor, Ri and Rj are the response maps corresponding to

the images i, j which belongs to a scene, and 〈·〉 denotes the scalar product. The selection

of R is detailed later in this section.

Inspired by the max-margin formulations applied to retrieval [87] or classification

tasks [98], we use the logistic function as the penalty in our detection term. It is a smooth

differential operator and ideally penalizes less if there is high similarity and vice-versa.

Note that the term Edet is somewhat similar to the one we proposed in detector optimal

TMO in Chapter 4. But, in this work, we include an additional factor λdet which weights
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the penalization corresponding to detection.

Selection of Response : From handcrafted [96] to deep-learning [116] era, the concept

of corner-like keypoint detection methods has gained popularity for low-latency vision tasks

due to high speed, less computational complexity and competitive accuracy. By definition,

corners exhibit low correlation with neighboring pixels in all directions. The most basic and

widely adopted corner detectors [36, 45, 104] localize the extrema primarily by computing

the per pixel gradient autocorrelation matrix, given as:

M =

[
I2
x Ixy

Iyx I2
y

]
, (5.9)

where each component represent the directional derivative. Thereafter, different methods

are proposed in the literature to localize the extrema “keypoints” [96]. In this work, we

use [45] which describes the response for each pixel x without directly computing the

eigenvectors of M as:

R(x) = det{M(x)} − k · tr{M(x)}2, (5.10)

where k is tuned empirically.

Similar to the baseline as discussed in Section 4.3.3, we employ the detector response

in Eq. (5.10) mainly because it is based on the popular structural matrix M , which is

simpler to differentiate than alternative approaches, thus aiding in backpropagation. Note

that alternate detection methods could also be used, but our choice has been made entirely

based on the computation complexity and ease of use in backpropagation.

The Energy term Edes

The energy term Edes aims to penalize the dissimilarity of the descriptors extracted from the

tone-mapped images. Previously in DesTMO, we proposed a densely sampled patch-based

method where a model is learned to predict global parametric values for an individual

patch. Hence, not only the method optimized θ for a patch globally, but it also lacked the

consideration of keypoint localization. In contrast, the image matching pipeline additionally

relies on the localization of the descriptors. Hence, here we argue that it is important to

compute the gradient orientation impact per pixel and to focus on its locations prior to

designing a descriptor-based penalty function. It not only helps in preserving the salient

locations but also avoids any “look-alike” redundant matches [86]. Therefore, we propose to

constraint the penalization to the dissimilarity of those descriptors that belong to some

potential keypoint region. We define Edes as:

Edes =
λdes
K

∑
{i,j}∈P

C2(Di(θ)−Dj(θ)), (5.11)
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where C2 is the Euclidean distance and λdes is a weighting factor. To apply the constraint

in practice, we compute the descriptor D after the keypoint localization which is obtained

by applying the softargmax operation S [16] on the resulting response map. In general

terms, S is given as

S =
∑
i

exp(βzi)∑
j exp(βzj)

· i (5.12)

where zi is the pixel location and β is a hyper-parameter for defining the shape parameter.

The softargmax operation is a differentiable function to obtain local optima and helps in

avoiding the cluttering in response maps. Cluttering refers to a phenomenon when several

keypoints are located close to each other [86].

To compute an accurate keypoint localization, we define the final gradient orientation

around each pixel location computation as follows:

D =

h(ν|p), if S(R) ≥ Λ

0, otherwise
(5.13)

where h(ν|p) is the gradient orientation feature map explained later in Eq. (5.14) and Λ is

the maximum softargmax value in a 16× 16 neighborhood window of the considered pixel.

It simply means that if the softargmax response score for the considered pixel location is

maximum in its neighborhood window, only then the gradient orientation map is taken

into account to contribute in the final descriptor-based penalty term in Eq. (5.11).

Selection of h : A common image matching approach relies on the similarity of features

extracted from patches corresponding to detected keypoint locations. One widely used

descriptor extraction algorithm is the Scale Invariant Feature Transform (SIFT) [64] which

is a concatenation of 16 unnormalized cells i.e. [c1, ...c16], where each cell can be compactly

defined as [25, 109]:

h(ν|p)[c] =

∫
Gδ(ν − ∠∇p(y))Gσ̂(y − c)‖∇p(y)‖d(y), (5.14)

where c is the center location of the cell in the restricted square patch p of size 16× 16.

The independent variable ν represents the gradient orientation ranging in [0, 2π]. Moreover,

G represents the Gaussian kernel with standard deviation σ̂ and an angular dispersion

parameter δ. Once histograms are computed, they are normalized and concatenated into a

single 128-dimensional descriptor.

SGD Implementation Details

We optimize the objective function in Eq. (5.6) using stochastic gradient descent (SGD) [10].

It is a fast and robust optimization technique to estimate the incremental gradient descent

by its stochastic approximation using a randomly chosen sample from the initial set. To
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Figure 5.9 – Generation of Training Set. Ground-truth parameter maps are generated by minimizing
the total energy determined from a set of images of the same scene, undergoing lighting
variations, using the procedure in Section 5.4.2.

implement the SGD based optimization, we follow the backpropagation procedure. We

initially build the required partial derivative framework with the objective given in Eq. (5.6).

It is more formally expressed as

∇C{i,j}(θ) =
{ ∂C1

∂Rl
· ∂Rl
∂ϕl
· ∂ϕl
∂θ

+
∂C2

∂Rl
· ∂Rl
∂ϕl
· ∂ϕl
∂θ

}∣∣∣∣
l=i,j

(5.15)

Then, following the SGD rule, we iteratively estimate θ by randomly selecting sample

(i, j) from the set P . Finally, we compute the gradient of the objective in Eq. (5.6), that is:

∂f

∂θ

∣∣∣∣
θt

=
1

K

∑
{i,j}∈P

∂C
∂θ

∣∣∣∣
θt

(5.16)

where

C = λdet · C1(Ri,Rj) + λdes · C2(Di,Dj), (5.17)

with the single (i, j) selected image pair. Thereafter, at each iteration t, SGD update rule

is given as:

θt+1 = θt − γt · ∇C{i,j}t(θt), (5.18)

where γt is a learning rate is made to decay with t as γt = γ0/(t+ 1), and the gradient for

the objective function in Eq. (5.6) is replaced by the gradient of a randomly chosen sample
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pair {i, j} at time t, i.e.

∇C{it,jt}(θt) ,
∂C(Rit ,Rjt ,Dit ,Djt)

∂θ

∣∣∣∣
θt

. (5.19)

For SGD based optimization, we start from a randomly initialized set of θ which are

updated iteratively using the update rule in Eq. (5.18). In total, the model comprises 3

hyper-parameters: γ0, λdet, λdes. To estimate these hyperparameters, we follow the standard

approach used in [110] and take a small set of pairs from P and perform a simple cross-

validation using the grid search method in the log scale. For the SGD related optimization

and convergence proofs along with the aysmptotic analysis, we refer the reader to [10].

This proposed mechanism for finding the optimal parameters θ for a function ϕ using

SGD is generic, i.e. one can easily tune the parameter maps of any TMOs that can be

expressed as Eq.(5.1).

5.4.3 Support Vector Regressor Training for OpTMO

Consider the sample set of characteristic features F = {f1, . . . ,fn} and the corresponding

output denoted by Y = {θk(1), . . . , θk(n)} where k = 1, 2 in our case. To build our predictor

model, we want feature samples which capture distinctive information for both descriptor

and detector. To that end, we build our feature sample fi by concatenating two parts: a)

the gradient-based SIFT pattern [64] (64 dimensional feature); and b) the 5× 5 grid-based

detector response feature [85] (25 dimensional feature). This forms a total dimension of 89.

The features fk are computed from the original HDR linear values, without any processing.

This is not contradictory with the need to perform a TMO as, locally, HDR images generally

display limited dynamic range [12]. Finally, for each training sample, we get the following

input-output corresponding pairs {(f1, θk(1)), ..., (fn, θk(n))} and formulate our prediction

problem using SVR. To fit the desired nonlinear SVR prediction function, the corresponding

optimization problem is solved using the dual maximization approach.

5.4.4 Experimental Results and Discussion

Dataset : We consider the HDR dataset presented in our previous designs of DetTMO

and DesTMO, which is composed of 8 different HDR scenes as shown in Fig. 5.3.

5.4.5 Evaluation Metrics

We evaluate the keypoint detection and descriptor extraction performance on the tone

mapped images using the standard measures of Repeatability Rate (RR) and Matching

Score (MS) respectively, as detailed in Section 2.2.3. For the evaluation of the full image

matching, we compute the mean average precision (mAP) scores [70].
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Figure 5.10 – Repeatability Rates (RR) computed for OpTMO using a corner (Harris) and a blob
(SURF) keypoint detector.
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Figure 5.11 – Keypoint Detection I: Average Repeatability Rates (AvgRR) computed on differ-
ent TMOs using various keypoint detection schemes. The average is calculated over
all test scenes.

5.4.6 Evaluation Setup

We test our proposed OpTMO for image matching task on 8 HDR scenes at detection and

description levels and compare with state-of-the-art TMOs. The HDR dataset is composed

of a total of 52 images. For detection and description stage, we formulated a total of 280

test image pairs respectively from the 8 scenes.

We compare the proposed OpTMO with classical perception-based TMOs, including:

BTMO [29], ChiuTMO [21], DragoTMO [27], ReinhardTMO [90] and MantiukTMO [67].

In addition, we also consider our previously proposed DetTMO [85] and DesTMO [86],

which are optimized methods for detection and description only, respectively.

SVR Training and Implementation We use the SVR implementation of LibSVM [15]

using the Radial Basis Function (RBF) kernel. The optimal values of SVR parameters, the

regularization cost and epsilon, are obtained by 10-fold cross validation from the range of

[2−5, 215] and [2−10, 25], respectively.

To train and validate the SVR model, we build the training set with 5000 sample

feature set for each test scene. This training set is drawn from other scenes excluding

the corresponding test scene. For instance, to test the Project Room scene, we build the

training set by randomly selecting samples from all other 7 scenes. For each training sample,

we randomly select a pixel location and compute characteristic features around the selected
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location, while following the feature extraction procedure described in Section 5.4.3. A

window of 16× 16 is selected around the pixel location for computing the gradient based

SIFT pattern part of the feature fi. Whereas a 5× 5 grid based detector response is used

for the second part of the fi.

5.4.7 Keypoint Detection

We evaluate all the considered TMOs using Harris [45], FAST [94], BRISK [61], SURF [8]

and SIFT [64] (as detailed in Section 2.2). We selected these detection methods based on

the state-of-the-art studies in evaluating the performance of TMOs [11, 19, 82, 86] and

also due to their popularity in real time applications [107].

RR [70] is sensitive to the number of detected keypoints and the error rate ε. For

instance, large variations in the number of keypoints across different scenes might lead to

biased average scores. Therefore, we fix the keypoint detection to the strongest N keypoints

as suggested in prior TMO evaluation studies [12, 82, 83]. The impact of N and ε over

average RR score is shown in Fig. 5.10. Overall increase in number of keypoints leads to

an increase in average RR but the growth slows down after a certain number, partially

due to the detection of cluttered keypoints. On the other hand, increase in the average RR

with the increasing ε is in coherence with the findings of [96]. Here, we choose the values

N = 500 and ε = 10.

Implementation We use the HDR Toolbox [7] for the implementation of the considered

TMOs. Moreover, we use the Matlab’s Computer Vision toolbox for Harris, FAST, BRISK

and SURF, and Vlfeat for SIFT.

Comparison We perform a thorough evaluation of our proposed OpTMO quantitatively

using the RR measure. In Fig. 8.12, we initially show the performance of our OpTMO and

other state-of-the-art TMOs in terms of RR averaged over all test scenes. For the sake

of completeness, we also report the average RR obtained using HDR linear photometric

values (HDRLin), without any tone mapping. Our results clearly show that the proposed

OpTMO outperforms all the perception-based TMOs. In addition, the significant drop in

performance with HDRlin demonstrates that HDR linear values are highly sub-optimal for

keypoint detection task, similar to what is found in previous studies [82, 83].

In Fig. 5.12, we expand our experimental test bench for each scene and compare the

performance of our OpTMO with the globally optimized BTMO [84] and our previously

proposed detector-optimal DetTMO [85]. The per scene gains of OpTMO over BTMO

prove that local modulation of parameters significantly improves the keypoint stability. In

addition, we observe that the gain in performance between local and global optimization

depends significantly on content characteristics. Especially for indoor scenes, which have

been acquired by varying locally the illumination and introducing stark shadows, local
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parameter tuning enables to obtain important RR gains. We also notice that OpTMO

achieves similar (within 2-4% per scene) RR as DetTMO, which is optimized for keypoint

detection only and thus provides an upper bound in the achievable repeatability.

In order to further confirm these observations, we report a head-to-head comparison of

OpTMO versus BTMO and DetTMO, respectively, in Fig. 5.13, for two different detectors:

Harris (corner) and SURF (blob). OpTMO has higher RR whenever a point (representing

a specific scene and illumination condition) is above the 45◦ line. As expected, we observe

that this is often the case for BTMO, while for DetTMO the two methods have very similar

performance. As mentioned above, the loss in keypoint repeatability compared to DetTMO

is expected, and is mainly due to two reasons. On one hand, the additional descriptor-level

cost term in Eq. (5.11) changes the objective function with respect to detector repeatability

only (as in DetTMO). On the other hand, the use of the softargmax localization measure

in Eq. (5.12) reduces cluttering of keypoints in our OpTMO. This is illustrated on a detail

of the “Project-Room” scene in Fig. 5.14. For instance, cluttered keypoints are detected

near the beaver’s eyes in DetTMO, whereas OpTMO handles such detections efficiently.

Interestingly, the composite objective function in Eq. (5.6) enables to achieve RR almost as

good as DetTMO, but with a significantly improved descriptor matching and thus overall

image matching performance, as shown in the next section.

Finally, we observe from Fig. 5.13 that these conclusions are valid for both Harris and

SURF detectors, in spite of the fact that OpTMO is trained with respect to a classical

corner response function (Eq. (5.10)). This demonstrates experimentally that images tone

mapped with the proposed approach lead to increased detection performance even when

the actual used detector is different from the specific response characteristics captured by

the proxy cost function used for training. This is mainly because our models preserves the

local neighborhood surrounding the ‘extrema’ which stabilizes the localization of keypoints

by other detectors as well.
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Figure 5.12 – Keypoint Detection II: Average Repeatability Rates (RR) computed using
BTMO [84], DetTMO [85] and the proposed OpTMO for each test scene using
Harris keypoint detector.
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Figure 5.14 – Keypoint Detection IV. Harris corner keypoints on the DetTMO and proposed
OpTMO. The cluttered keypoints in DetTMO are highlighted using the red squares.

5.4.8 Descriptor Matching

We perform a thorough evaluation of our proposed OpTMO for descriptor matching using

BRISK [61], FREAK [77], SIFT [64] and SURF [8] descriptors. We use the matching score

(MS) as performance measure considering the NNDR matching criteria with a threshold

value th = 0.5.

Implementation We use the Matlab’s Computer Vision toolbox for FREAK, BRISK

and SURF, and Vlfeat for SIFT, with their default parameter settings.

Comparison In Fig. 5.15, we compare the average OpTMO MS with respect to state-

of-the-art TMOs. Overall, we attain significant gains in terms of MS using all feature

extraction methods. With th = 0.5 (default value [64, 70]), the gains are considerable for

gradient-based features schemes such as SIFT and SURF, which is expected by design

given the definition of the descriptor signature in Eq. (5.13).

To further analyze these results quantitatively, in Fig. 5.16 we report per scene com-

parison between the competing TMOs that are observed from Fig. 5.15. We observe that
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Figure 5.15 – Descriptor Matching I computed on different TMOs using SURF, SIFT, FREAK,
BRISK descriptor extraction schemes. The average is calculated over all test scenes.

for each scene (indoor or outdoor) our OpTMO outperforms all the other TMOs. As in

Section 5.4.7, we observe considerable gains with respect to traditional BTMO, confirming

the potential of local parameter optimization. In comparison to DetTMO, we observe

that gains are not as high as what are obtained with BTMO. This can be explained by

the higher RR of the DetTMO (Fig. 5.12) which improves the probability of the correct

matches. Interestingly, we also observe that in many scenes DetTMO and DesTMO perform

equally well, e.g., Invalides and Project-Room scenes. This is mainly because DesTMO is

not optimal for detection, which entails a higher number of false matches.

Finally, we show the per image-pair analysis in Fig. 5.17 to further analyze the behavior

of individual test pairs. We observe that our OpTMO improves the MS over DesTMO across

the whole dataset (i.e., the gains are not concentrated on specific image pairs). In fact,

there is not a single case where there is a significant drop in OpTMO’s performance against

the descriptor-optimal DesTMO, which again confirms the advantages of simultaneously

optimizing the TMO for keypoint detection and description. In addition, the OpTMO

produces consistent gains even if a binary descriptor such as FREAK is employed, in spite

of the use of a gradient-based cost function in Eq. (5.13).

Note that MS is sensitive to the choice of th. Therefore, in the following section, we

perform a global image matching evaluation using mAP to overcome the impact of the

threshold.

5.4.9 Image Matching

We evaluate the full image matching chain by computing mean average precision (mAP)

scores over the complete dataset. We obtain the mAP rates by averaging the area-under-

the-curve of PR curves [70]. The results per TMO are reported in Fig. 5.18. We observe

that for every descriptor extraction scheme our proposed model outperforms all the other

TMOs. High mAP scores imply that our model obtains more correct matches and reduce

the probability of false matches. An illustration of matching results is given in Fig. 8.14,

showing that the proposed full-chain optimal tone mapping improves the matching efficiency

in drastic lighting variations. Notice that ReinhardTMO and MantiukTMO provide poor

image matching results compared with the proposed approach, although they provide
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better visually looking images. From Fig. 8.14, we observe that optimizing only for detector

response (DetTMO) might produce a higher number of false matches. On the other hand,

optimizing with respect to descriptor matching only (DesTMO) cannot ensure high matching

efficiency due to the lower keypoint repeatability. Instead, efficient image matching can

only be ensured by optimizing the TMO with respect to the full feature extraction chain,

as in the proposed OpTMO.
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Figure 5.16 – Descriptor Matching II. Matching Score comparison between BTMO [84], OpTMO,
DetTMO [85] and DesTMO [86] over all the scenes in the HDR dataset using SURF
feature extraction scheme.
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OpTMO over all the scenes in HDR dataset. The points represented using o corre-
sponds to FREAK feature detection scheme and 2 corresponds to SURF scheme.

5.4.10 Applications

Localization of objects is a high-precision and pivotal task in many computer vision appli-

cations, e.g.to find region of interest for fine-grained recognition challenges. For localization,

first a homography matrix is computed by finding the best matching correspondences
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between the target and the test image. Then, the desired object is localized based on the

estimated geometric relationship. In Fig. 5.20 and Fig. 5.21, we show a similar applicative

scenario of localization of selected objects such as structures in images undergoing both

lighting and rotational transformations. We compare the performance of our proposed

image-matching optimal TMO and the widely used ReinhardTMO over three scenes,

namely Louvre, ProjectRoom and Notre Dame. In Fig. 5.20, we first find the corresponding

matches between the two scenes using the SURF scheme for each TMO. Then, based on

those resulting matches, we estimate the homography as proposed in [46]. We observe

that our model gives more correct corresponding matches in all three scenes as compared

to ReinhardTMO. In challenging outdoor scene such as Louvre where there is a direct

impact of sunshine, we observe that ReinhardTMO results in all incorrect matches, mainly

concentrated in the brightest regions. In Fig. 5.21, we overlay the results on the test

tone-mapped images to show where exactly our desired object should be located based

on the obtained correspondences. In Louvre and ProjectRoom scenes, we observe that

tone-mapped images using our proposed model result in correct localization of the desired

object in the test image, as compared to ReinhardTMO. In the Notre Dame scene, the

impact of illumination on the target region is smaller, and we are able to find correct

overlaying results using both tone mappings.

58 60 62 64 66 68 70 72 74 76 78 80 82 84 86
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Figure 5.18 – Image Matching I. mAP % scores for the 9 different LDR modalities using 4 feature
extraction schemes. Scores are averaged over 8 lighting change datasets.
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Figure 5.19 – Image Matching II. Day/Night matching using SURF. Row I: 2 HDR images from
Invalides scene are displayed after log scaling [27]. Correct and incorrect matches
are shown with yellow and red lines, respectively. Green lines represent the special
case of mismatch due to repetitive structure. Row II: the feature matching using our
proposed OpTMO (21 correct and 3 incorrect matches). Row III: using DetTMO (13
correct and 6 incorrect matches). Row IV: using DesTMOusing (11 correct and 3
incorrect matches). Row V using Reinhard TMO (3 correct and 11 incorrect matches).
Row VI: using MantiukTMO (3 correct and 4 incorrect matches).

Computation Time: In Fig 5.22, we compare the execution time (i.e. to tone map an

HDR image) of the most competing state-of-the-art TMOs namely, BTMO, DetTMO,

DesTMO and OpTMO. The computational time of our proposed method is not very far

from the DesTMO. Note that the current implementation has been carried on a Intel Xeon
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Figure 5.20 – (Match & Locate) Row I: Pair of HDR images from Louvre, ProjectRoom and
Notredame scenes, with one reference and other being a selected region undergone
lighting change and rotation. Row II: the feature matching using our proposed
OpTMO. Row III: using Reinhard TMO.

(a) OpTMO (b) ReinhTMO (c) OpTMO (d) ReinhTMO (e) OpTMO (f) ReinhTMO

Figure 5.21 – (Match & Locate) Final patch localization results shown by overlaying the matched
area for each scene using OpTMO and Reinhard TMO

CPU 4 cores processor, 16 Gb RAM windows 7 machine and has not been parallelized. An

efficient parallelized implementation can further sped up the execution.

HDRPU
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Figure 5.22 – Computation time in sec (log scale). The time is computed by running all TMOs
for an image size (512× 512) on a Intel Xeon CPU 4 cores processor, 16 Gb RAM
windows 7 machine.

5.5 Conclusions

We propose a novel task optimal TMOs to improve the descriptor discriminability and

image matching efficiency under drastic changes of lighting conditions. To this end, we first

generated training samples by proposing a objective function capturing both the detection

and description stages of the feature extraction pipeline. Later, we trained a Support Vector

Regressor using local characteristics to learn a model which predicts spatially varying TMO

parameters. We evaluate the proposed OpTMO on a HDR dataset of indoor/outdoor scenes

where it outperforms state-of-the-art TMOs across different image matching algorithms.

Finally, we demonstrated the performance of our method over other TMOs in a simple

localization based application scenario. Our proposed task-optimal TMO can be applied to
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different detection/description approaches and can be directly fused with any local feature

based applications such as structure from stereo, scene reconstruction, object tracking,

recognition and photogrammetric applications.

So far, we build our optimal TMO model by proposing the variants of existing tone

mapping functions and learning their parameter maps. Although we obtained gains on

image matching task over the state-of-the-art, the proposed models are bounded by the

limited functionalities of these exiting tone mapping functions. Hence, in the following,

instead of learning the tone mapping parameters, we will focus on directly learning a tone

mapping function.

The work presented in this chapter has resulted in the following publications:

1. A. Rana and G. Valenzise and F. Dufaux,“Learning-based Tone Mapping Operator for

Image Matching”, IEEE International Conference on Image Processing (ICIP’2017),

Beijing, China 2017.

2. A. Rana and G. Valenzise and F. Dufaux, “Learning-based tone mapping operator for

efficient image matching”, IEEE Transaction of Multimedia(TMM), 2017 submitted,

currently under revision.
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Chapter 6

Deep Tone Mapping Opeartor for

HDR Imaging

6.1 Overview

With a given task-based objective, so far we proposed models by relying on specific

characteristics of a given tone mapping function. In fact, a variant of Bilateral filtering

has been adopted to showcase model’s learning ability. However, not all the TMOs are

differentiable and consequently, difficult to be learned using the proposed methods. Moreover,

an individual TMO addresses only some specific characteristics which might be desired

based on the content. This raises a natural question whether a more general tone mapping

function can be formulated which can be easily trained for any given task and adapt itself

for all the real world scenes.

In this chapter, we address this question by designing a generic end-to-end TMO which

adapts itself for all the real world scenes considering the desired task-specific characteristics.

Leveraging on large HDR dataset for perceptual objectives, we propose the first deep

learning based tone mapping (DeepTMO) architectural designs for converting a linear

HDR content into a high resolution tone mapped LDR output. The current implementation

of our models are trained for a perceptual task i.e. to give the most realistic and high

quality output without any visible damage to its content. Since a large amount of labeled

HDR image dataset is absent for designing a task-optimal deep-learning based TMO, the

proposed architecture can additionally serve as a baseline for HDR based analysis. In future,

this could be explored by fine tuning the proposed model with an in-line cascaded task

specific deep learning model e.g. for image matching, face detection, video surveillance etc.

This chapter presents 3 distinctive deep learning based tone mapping networks namely

DeepTMO-R, DeepTMO-S and DeepTMO-HD. Based upon conditional generative ad-

versarial networks (cGAN) [43, 72], each of the proposed model directly takes in linear

HDR content and reproduces a realistic looking image aiming to mimic the original HDR

content with pixel values in the range [0-255]. Unlike conventional convolution neural
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networks (CNNs) explored in previous HDR related works [30, 32, 41], our architecture

avoids the requirement of explicitly defining a task specific loss function. This happens

mainly because our networks are trained to model by themselves, loss functions adapted

from the underlying training data.

To train these proposed models, we accumulate data from available HDR image sources.

However, a major challenge while training the models arise from the absence of any publicly

available training dataset. Selecting ground truth through a subjective evaluation over a

large dataset is a highly tedious tasks. Thus, it necessitates the requirement of an objective

quality assessment metric which can quantify the tone mapping performance of each TMO

for any possible scene. For our task, we select a well known metrics namely Tone Mapped

Image Quality Index (TMQI), which is used to rank 13 widely used tone mapping operators.

Using this, for each HDR input, we select the one which ranks topmost on this objective

metric score as our ground truth tone mapped output.

Finally, our DeepTMO implicitly learns the best characteristic of all available global,

local and perceptually based TMOs over a wide variety of scenes. In a sense, both through

its architectural design and the underlying dataset, it is conditioned to preserve global

features (such as overall structures, contrasts and luminance) as well as local finer details

(such as local texture patterns) thus yielding high quality visually pleasing tone mapped

outputs.

In a nutshell,

1. We propose the first deep learning based tone mapping operator, which can generate

visually pleasing realistic tone mapped outputs for a wide variety of HDR inputs.

2. We fully explore and compare 3 different cGAN architectures designed specifically for

generating high resolution LDR tone-mapping outputs preserving overall structural

information as well as local fine-grained details.

3. We overcome the challenge of unavailability of ground truth tone mapped images

for our HDR dataset by utilizing an objective metric to quantify and rank various

TMOs.

4. We provide an extensive comparison of our proposed methodology with thirteen

different tone mapped operators over large dataset of 105 images.

5. Our proposed model can be explored for future deep learning based task-optimal

TMO designs.

6.2 Deep Learning for HDR Image Analysis

Recently, deep Convolutional neural networks (CNNs) have been utilized extensively for

multiple high dynamic range imaging tasks such as reconstructing HDR using a single
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exposure LDR [30], predicting and merging various high and low exposure images for

HDR reconstruction [32] or yielding HDR outputs from dynamic LDR inputs [52]. CNNs

have also been modeled to learn an input-output mapping as done for de-mosaicking and

de-noising by [40] or learning an efficient bilateral grid for image enhancement [17]. [41]

have recently proposed a deep bilateral tone mapper, but it works only for 16-bit linear

images and not the conventional 32-bit HDR images. A major drawback of all these past

techniques is that, although the learning process is completely automated, one still needs

to explicitly specify an effective loss function that the CNN learns to minimize. Thus the

quality of resulting output is dependent a lot on the choice of our loss function. Formulating

a loss function that constrains the CNN to yield sharp tone-mapped LDR from their

corresponding linear-valued HDR is complex and an ill posed problem. Although authors

in [30] formulated the inverse tone mapping task by formulating the problem in log domain,

but in our case, we rather work in linear domain to avoid any form of information loss.

6.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [43] have attended lot of attention owing to their

capability to model the underlying target distribution by forcing the predicted outputs to

be as indistinguishable from the target images as possible. Through this, they implicitly

learns an appropriate loss function, eliminating the requirement of hand crafting one by an

expert. This property has enabled them to be utilized for a wide variety of image processing

tasks such as super-resolution [60], photo-realistic style-transfer [51] as well as semantic

image in-painting [115].

For our task, we employ GANs under a conditional setting, or better called as conditional

GANs (cGANs) [72], where the generated output is conditioned on the input image. One

distinctive feature of cGAN framework is that they learn a structured loss where each

output pixel is conditionally dependent on one or more neighboring pixels in the output

image. Thus, this effectively constrains the network by penalizing any possible structure

that differs between output and target. This property is quite useful for the task of tone-

mapping where we only want to compress the dynamic range of an HDR image, keeping

the structure of output similar to our desired target. For this specific reason, cGANs have

been quite popular for the task of image-to-image translation, where one representation

of a scene is automatically converted into another, given enough training pairs [48] or in

an unsupervised setting [63, 106, 120]. However, a major limitation of using cGANs is

that it is quite hard to generate high resolution images due to training instability and

other optimization issues. The generated images are either blurry or contain noisy artifacts.

In [18], motivated from perceptual loss [51], a direct regression loss is derived to generate

high resolution 2048× 1024 images, but this method fails on preserving fine-details and

textures. In [111] significant improvement have recently been shown on the quality of

high-resolution generated outputs through a multi-scale generator as well as discriminator.
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Figure 6.1 – We illustrate here the training pipeline of our Deep Tone Mapping Operator (Deep
TMO). Training dataset consists of input HDRs and their corresponding best-TMQI
ranked tone mapped outputs. Both the discriminator and generator are trained alterna-
tively, first a gradient step of discriminator then of generator. While the discriminator
is trained to discriminate between real and fake image pairs, the generator learns to
fool the discriminator by producing synthetic tone mapped images. By doing this,
the generator effectively models the underlying distribution of real ground-truth tone
mapped images, thus yielding high quality results once completely trained.

6.3 Proposed Methodology

Figure 8.15 presents an overview of our training algorithm. We train 3 deep learning

based models in order to reconstruct tone-mapped LDR images from HDR images. This is

effectively done by generating LDR images (fake pair in Figure 8.15) which are identical or

even better than the ground-truth (GT) tone mapped images (real pair in Figure 8.15).

All our cGAN based tone mapping architectures have two basic modules, namely a

generator and discriminator, both of which are conditioned on the linear HDR input.

Both the generator and the discriminator compete with each other, the generator trying

to fool the discriminator by producing high quality real looking tone mapped images

for the given input HDR, while the discriminator trying to discriminate between real

and synthetically generated HDR-LDR image pairs. Our basic discriminator architecture

is similar to a PatchGAN [60, 62] which classifies patches over the entire image and

averages over all of them. Similarly, the basic generator architecture comprises of an

encoder-decoder network where the input HDR is given first to an encoder to yield a

compressed representation which is then passed to the decoder finally resulting in a tone

mapped image. Our three subsequent architectures are variants of this basic framework

where DeepTMO-R is a baseline. DeepTMO-S adds skip connections between the encoder

and decoder, thus effectively shuttling low level information at the time of prediction. And

DeepTMO-HD constructs a multi-scale generator discriminator network, which helps in

predicting tone mapped images which are both structurally consistent with the input HDR
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(a) Generator Architecture with and without skip connections.

(b) Discriminator Architecture.

(c) Residual Blocks

Figure 6.2 – Here we show detailed architecture of both the discriminator and generator of
DeepTMO-R and DeepTMO-S. The only difference for DeepTMO-S is the addi-
tion of skipped connections in the case of generator. The generator is framed as an
encoder-decoder architecture, where the input HDR image is first passed to an encoder,
which subsequently down-samples it to a compact representation. This representation
is then forwarded through the decoder which up-samples it to the size of the input
HDR. While the encoder consists of Convolution front end component G(F ) and first
five residual blocks G(R), the decoder is composed of next four residual blocks G(R) and
a deconvolution component G(B). Residual Blocks consist of two sequential convolution
layers applied to the input, producing a residual correction that is in turn added to
the input to yield the final output. Discriminator consists of a patchGAN [48, 60, 62]
architecture which is applied patch wise on the concatenated input HDR and tone
mapped LDR pairs. The final prediction is an average of all the patches over the image.
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(a) Generator Architecture for DeepTMO-HD is modified version of the Generator architecture
of DeepTMO-R as shown in Figure 8.17a. DeepTMO-HD generator is basically a form of
coarse-to-fine generator. While the finer Generator G2 has original image as its input, input
to G1 is a 2× down sampled version. This down sampled image is then effectively passed

through subsequent components G
(F )
1 , G

(R)
1 and G

(B)
1 which are similar to that of generator in

DeepTMO-R. The final prediction from the back end GB
1 is then concatenated with the front

end output of the finer-scale generator G2. This is then passed through the back end component

G
(B)
2 to yield a tone mapped output. Thus effectively our model utilizes both the coarser and

finer scale information to make a prediction which results in better retaining of overall structure
and minute low level details. Our discriminator architecture has identical architecture only that
we give to it two different scales of input, the original and its 2× down sampled version. This
forces the coarse-to-fine generator to take care of both global and local details.
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and at the same time preserves fine grained information recovered at different scales over

the entire image.

To build our GT dataset, we provide the details in Section 6.6. All our model architec-

tures are based upon cGAN [72] which implicitly learns a mapping from observed HDR

image x and random noise vector z, to tone mapped LDR image y, given as: G : x, z −→ y.

In the following, we discuss all the 3 different architectural models in details.

6.3.1 DeepTMO-R

Inspired from [48], our first architecture is composed of two fundamental building blocks

namely a discriminator (D) and a generator (G). As shown in Figure 8.17a, input to G

consists of an H ×W × C size luminance channel of an HDR image normalized between

[0,1] where C = 1. While during training we set H = W = 512, inference can be performed

with any larger size input. The output from G is a tone mapped image of similar size as

the input. D on the other hand, takes as input pairs of luminance channels of HDR and

tone mapped LDR images, and predicts whether they are real tone mapped images or

fake. Thus in a way, both G and D compete with each other, G trying hard to produce

outputs which cannot be distinguished from real image pairs, while the adversary D trying

to detect ‘fake’ image pairs produced by G. Next, we discuss the architectures for both

G and D which are our adaptation from [51, 120] which show impressive results for style

transfer and super-resolution tasks.

Generator Architecture Our Generator is formulated as an encoder-decoder archi-

tecture as shown in Figure. 8.17a. Overall, it consists of a sequence of 3 components:

convolution front end G(F ), a set of residual blocks G(R) and deconvolution back end G(B).

G(F ) consists of 3 different convolution layers which perform subsequent down-sampling

operation on their respective inputs. G(R) is composed of 9 different residual blocks each

having 2 convolution layers, while G(B) consists of 3 convolution layers each of which

up-samples its input by a factor of 2. For subsequent details, please see 6.4.1.

Discriminator Architecture As shown in Figure 8.17b, our discriminator architecture

resembles a 70× 70 PatchGAN [48, 60, 62] model, which aims to predict whether 70× 70

overlapping image patches are real or fake. Such a patch-level GAN discriminator, models

the high-frequency information by simply restricting its focus upon the structure in local

image regions. Moreover, it contains smaller number of parameters compared to a full-image

size discriminator, and hence can be easily used for any-size images in a fully convolutional

manner. This discriminator is run across the entire image, and all the responses over various

patches are averaged out to yield the final prediction. Further details can be found in 6.4.2

Although the generator architecture in this case yields high quality results however it

still lacks the ability to reconstruct precisely local low level information as is highlighted
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in Figure 6.4. Thus based upon the assumption that the underlying structure between an

HDR and Tone mapped LDR image remains intact, we try to improve upon the current

architecture by shuttling directly the low level information from the encoder layers to the

decoder layer outputs.

6.3.2 DeepTMO-S

Various past HDR reconstruction methods, have used skip connections [93] for generating

HDR scenes from single exposure [30] or multi-exposure [32] LDR images. The basic idea

had been that since, both LDR and HDR scenes are different renderings of the same

underlying structure, at a particular scale, their structures are also more or less aligned.

Hence, it is possible to effectively transmit low level details from input to output scenes,

circumventing the bottleneck of the encoder-decoder architecture. As shown in Figure

8.17a, we modify the generator, by adding skip connections between each layer i and layer

n-i, n being the total number of encoder-decoder layers, which as a result concatenates all

the channels at layer i with layer n-i.

As seen in Figure 6.4, Skip connections are quite helpful in retaining fine structural

details and preserve contrast better, thus yielding high-quality results. However in certain

cases, the quality of generated images are still unsatisfactory with certain checkerboard

artifacts (see Figure 6.5). This necessitates a generator and discriminator architecture that

caters to both the finer details as well as the high level semantics to generate the final

tone-mapped image.

6.3.3 DeepTMO-HD

While generating high resolution tone-mapped images, it is quite evident that we need to

pay attention to both low level finer details as well as high level semantic information. To

this end, motivated from [111], we propose a new architecture that outlines a coarse-to-fine

generator and a multi-scale discriminator in the algorithmic pipeline. We next propose

further details regarding both of these architectures.

Coarse-to-Fine Generator As shown in Figure 8.18a, our Coarse-to-Fine Generator

consists of two sub-architectures, namely, a Global Generator network G1 and a local

enhancer network G2.

The architecture for G1 is similar to G with the components, convolutional front

end, set of residual blocks and convolutional back end being represented respectively as:

G
(F )
1 , G

(R)
1 , G

(B)
1 . Only difference is in the number of convolution layers and their output

channels for each of the components which are clearly represented in the Figure 8.18a. G2

is also composed of similar three components given by: G
(F )
2 , G

(R)
2 and G

(B)
2 (refer to ??

for additional details).



6.3. Proposed Methodology 105

As illustrated in Figure 8.18a, at the time of inference, while the input to a local enhancer

network is a high resolution HDR image (2048× 1024), the global generator receives a 2×
down sampled version of the same input. The local enhancer network, effectively makes

tone-mapped predictions, paying attention to local fine-grained details (due to its limited

receptive field on a high resolution HDR input). At the same time, it also imbibes from

the global generator, a more coarser prediction (as its receptive field has much broader

view). Thus the final generated output from G
(B)
2 encompasses local low-level information

and global structured details together in the same tone-mapped output. Hence we get a

much more structurally preserved and finely refined output as can be visualized in Figures

6.4 and 6.5.

Multi-scale Discriminator Classifying the high resolution tone-mapped output as

being real or fake is a big hurdle for the discriminator too. This can be easily solved by

using larger receptive field (with a deeper network) or larger convolution kernels. However

it would in turn require higher memory demand, which is already a constrain while training

high resolution HDR images. We basically retain the same network architecture for the

discriminator as used previously, but apply it on two different scales of input calling it

a Multi-scale Discriminator. We hereafter refer these two discriminators as D1 and D2.

Inputs to the discriminators D1 and D2 are the original outputs generated from G
(B)
2 and

a 2× down sampled version respectively. The discriminators are then trained together to

discriminate between real and synthetically generated images. D2, through working on a

coarser scale of image, has a larger receptive field thus having a global view of the image.

This feature aids the Generator to generate more globally consistent images. D1 on the

other hand, operating at a finer scale, aids in generating more precise finer details.

6.3.4 Tone-Mapping Objective Function

The ultimate goal of our generator G is to convert high resolution HDR inputs to tone

mapped LDR images, while the discriminatorD aims to distinguish real tone-mapped images

from the ones synthesized by the generator. We train the entire generator-discriminator

architecture in a fully supervised setting. For training, we give a set of pairs of corresponding

images {(xi, yi)}, where xi is the luminance channel of HDR input image while yi is the

luminance output of the corresponding tone-mapped LDR image. Note that to obtain the

final color output we use the used the simple ratios as used in all the previous TMO [35, 90].

Underneath we define the objective functions to train DeepTMO-R and DeepTMO-S as

well as a modified variant for DeepTMO-HD.
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DeepTMO-R and DeepTMO-S

The basic principle behind Conditional-GANs [72] is to model the conditional distribution

of real tone-mapped images given an input HDR via the following objective:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (6.1)

where G and D compete with each other; G trying to minimize this objective against

its adversary D, which tries to maximize it, i.e. G∗ = arg minG maxD LcGAN (G,D).

In order for G to make predicted tone-mapped output being closer to real tone-mapped

images, we additionally add a regularization term in the form of L1 distance between them

which is given as:

LL1(G) = Ex,y,z[||y −G(x, z)||1] (6.2)

Thus the final objective function for both DeepTMO-R and DeepTMO-S can be defined

as:

G∗ = arg min
G

max
D
LcGAN (G,D) + λLL1(G) (6.3)

where λ is a regularization coefficient set to 100.

DeepTMO-HD

Since our DeepTMO-HD consists of two discriminator networks D1 and D2, our objective

for the DeepTMO-HD architecture is:

G∗ = arg min
G

max
D1,D2

∑
k=1,2

LcGAN (G,Dk) (6.4)

In order to stabilize the Generator training and constrain it to yield natural image

statistics at multiple scales, we append to the existing cGAN loss, an additional feature

matching loss LFM (G,Dk) (similar to perceptual loss [26, 39, 51]),given by:

LFM (G,Dk) = E(x,y)

T∑
i=1

1

Ni
[||D(i)

k (x, y)−Di
k(x,G(x))||1], (6.5)

where Di
k is the ith layer feature extractor of discriminator Dk (from input to the ith

layer of Dk), T is the total number of layers and Ni denotes the number of elements in each

layer. In short, we extract features from different layers of each of the discriminator and

match these intermediate representations from real and generated images. Apart from this

we also append a perceptual loss LP as is used in [51] to our objective which has shown to
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further improve the results:

LLP
(G) =

N∑
i=1

1

Mi
[||F (i)(y)− F (i)(G(x))||1] (6.6)

where F (i) denotes the ith layer with Mi elements of the VGG network [98].

Henceforth, our final objective function for a DeepTMO-HD can be written as:

G∗ = arg min
G

max
D1,D2

∑
k=1,2

LcGAN (G,D) + β
∑
k=1,2

LFM (G,Dk) +B (6.7)

where B = γLLP
(G). β and γ controls the importance of LFM and LLP

with respect

to LcGAN and both are set to 10.

6.4 DeepTMO-R Architecture

In this section we specify, detailed architectural details of DeepTMO-R including the

generator and discriminator.

6.4.1 Generator Architecture

G(F ) has first a convolution layer consisting of 64 filters kernels (or output channels) each

of size 7× 7 applied with a stride of (1,1) and padding (0,0). Next two convolution layers

with 128 and 256 filter kernels respectively and each with a size 3 × 3 and stride (2,2)

and padding (1,1). Each of these three layers are followed by batch norm with batch

size = 1 (also called instance normalization [108]) and Relu [74]. Following this, we have

G(R) which is a set of 9 residual blocks (as shown in figure 6.2c, each of which contains

two 3 × 3 convolutional layers, both with 256 filter kernels. Next, for G(B) we have two

de-convolutional or transposed convolution layers with 128 and 64 filter kernels, each having

a filter size of 3× 3 and fraction strides of 1
2 . Both the layers have instance normalization

and Relu added after the convolution. Finally we have another convolution layer of size

7× 7 and stride 1 followed by a tanh activation function at the end. We additionally add

some noise to the generator by putting dropout [100] layers in each of the residual blocks.

6.4.2 Discriminator Architecture

Discriminator architecture consists of 4 convolution layers of sizes 4× 4 and stride (2,2).

From first to the last, the number of filter kernels is 64, 128, 256 and 512 respectively.

Each of the convolutional layer is appended with an instance normalization (except the

first layer) and then leaky ReLU [66] activation function (with slope 0.2). Finally we apply

a convolutional layer at the end to yield a 1 dimensional output which is followed by a

sigmoid function.
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6.5 Training and Implementation Details

The training paradigm for DeepTMO is inspired by the conventional GAN approach[43],

where alternate stochastic gradient descent (SGD) steps are taken for discriminator (D)

followed by the Generator (G). For both D and G, all the weights corresponding to

convolution layers are initialized using zero mean Gaussian noise with a standard deviation

of 0.02 while the biases are set to 0. Drawing from the efficacy of instance normalization

over image generation tasks [108], we apply batch normalization [47] using a batch size

equal to 1. All the instance normalization layers are initialized using gaussian noise with

mean 1 and 0.02 standard deviation.

All our training experiments are performed using Pytorch [78] deep learning library

with mini-batch stochastic gradient descent (SGD) where batch size is set to 4. We utilize

an ADAM solver [54] whose initial learning rate is fixed at 2× 10−4 for first 100 epochs

and then, allowed to decay linearly to 0 until the final epoch. Momentum term β1 is fixed

at 0.5 for all the epochs. To add noise z to different layer in the generator, we apply a

dropout [100] of 50 % for each convolution layer.

We also employ random jitters by first resizing the original image to 700× 1100 and

then randomly cropping to size 512× 512. An additional mirroring is also performed before

passing it through the network. All our networks are trained from scratch. Training is done

on a 12 Gb NVIDIA Titan-X GPU for 1000 epochs and takes roughly 1-3 days depending

upon the architecture. Inference is performed on test images of size 1024× 2048 and takes

less than a second.

For all the other handcrafted TMOs, we used the MATLAB-based HDR Toolbox [7]

and Luminance HDR software 1. For each tone mapping operator, we enable the default

parametric setting as suggested by the respective authors.

6.6 Building HDR Dataset

In order to design a deep CNN based TMO, it is essential to obtain a large amount of dataset

with a wide diversity of real-world scenes and cameras. We overcome this challenge by

gathering several publicly available HDR datasets. For training the network, a total of 698

images are collected from various different sources [1, 6, 23, 24, 33, 37, 57, 80, 81, 88, 113].

From the HDR video datasets from aforementioned sources, we select the frames manually

so that no two chosen HDR images are similar. All these HDR images have been captured

from diverse sources which is beneficial for our objective i.e., learning a general TMO. To

further strengthen the training, we apply several data augmentation techniques such as

random cropping and flipping. We consider 105 images from [34] for testing purposes.

1http://qtpfsgui.sourceforge.net/
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Target Tone Mapped Images Different TMOs results in different output tone mapped

images, and consequently, this raises an essential question about which is the best tone

mapped image for the input HDR scene. Several subjective studies [7] built on different

hypothesis attempt to answer this question on small database of maximum 15-20 scenes.

However, these solutions are impractical for large scale learning tasks. For training our Deep

TMO models, a best tone mapped image is required as a target for each HDR scene. Due

to unavailability of such GT images, we build the target set by using an objective Metric

TMQI [114]. TMQI is a state-of-the-art objective metric which assess the quality of images

on 1) structural fidelity which is a multi scale analysis of the signals, and 2) naturalness,

which is derived using the natural image statistics. To find the GT for each training image,

13 classical TMO are considered [7] which includes [4, 21, 27, 29, 35, 58, 67, 79, 90, 95, 105]

and gamma and log mappings [7]. Then, based on the TMQI scores, the best tone mapped

output for an individual scene is selected. The selection of these tone mappings is inspired

from the following subjective evaluation studies [13, 59] which highlight the distinctive

characteristics of mapping functions, which we aim to inculcate in the learning of our Deep

TMOs.

6.7 Results and Evaluation

In this section, we present an overview of our tone mapping models in terms of visual quality

and quantitative performance. We first discuss the specific characteristics of three proposed

models, including their adaptation to display, scene content, and sharpness in rendering

high-resolution tone mapped outputs. Later we compare the performance of our best quality

results with several handcrafted tone mapping methods [4, 21, 27, 29, 67, 79, 90, 95] on

105 images of test dataset [34]. Note that these scenes are different from training set and

have not been seen by any of the architectures while training.

6.7.1 Comparison of the Three Architectures

We compare our three architectures in Figures 6.4 and 6.5, where in each column we

showcase the full tone-mapped image for each of the architectures together with a cropped

inset. In Figure 6.4, all the architectures give over all good quality LDR results with

some subtle differences. From the cropped insets in second row, both DeepTMO-S and

DeepTMO-HD retain the texture on background wall, while DeepTMO-R slightly blurs

them out. Same goes for the bottommost window panels. This is quite evident, due to

the lack of skip connections in its architecture (Figure 8.17), that help in transferring

information from encoder to the decoder layers for better reproduction of output. While

comparing between DeepTMO-HD and DeepTMO-S, we see DeepTMO-HD is able to

better preserve very minute details such as frames in lower window in the inset. This is

largely due to the presence of its two scale generator which caters to both finer details and
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coarser structures from the high-contrast linear HDR maps while generating tone-mapped

image.

Next, in Figure 6.5 we show another interesting high-contrast natural scene where the

three architecture provide similar contrast images but with some prominent visible effects.

From the cropped insets, we see that DeepTMO-R results in blurry effect on the textured

bark of tree, similar to previous example. DeepTMO-S on the other hand, doesn’t produce

any blurriness, but instead, we notice pronounced repetitive checkerboard artifacts. Such

artifacts have been recently discussed in deep-learning based image rendering problems [38,

76] and are mainly caused due to no direct relationship among intermediate feature maps

generated in de-convolutional layers. Nevertheless, it is still an open problem. DeepTMO-

HD, on the other hand, gives us sharper and checkerboard free images while preserving

the fine-details too. One possible reasoning behind this can be that the discriminator part

working at the finer scale, effectively distinguishes a fake image through these artifacts,

and thus forces the generator to subsequently generate checkerboard free images.

Overall, we observe that the result produced by our models are aesthetically pleasing

images with a good balance of color contrast and details. Even though we selected GT

images based on TMQI which is a color blind metric, our generator could develop an

implicit understanding of contrast and saturation through the underlying data distribution

and reproduce such impressive colors in the output images. Unlike past CNN based HDR

techniques, which target to minimize Euclidean distance between the GT and output, our

model adapts the cost based upon the target dataset and is effectively able to hallucinate

high quality tone mapped results. Amongst the three models, our DeepTMO-HD successfully

maps the linear-input HDR content in the most refined manner, preserving the minute

details and the overall structural content. We henceforth use DeepTMO-HD for all the

subsequent comparisons.

6.7.2 Comparison with TMOs

We begin the comparison of DeepTMO model against the Best Ranked Tone Mapper

(BRTM) test scenes to assess the overall generalization capability. To obtain the best

ranking tone mapped test scene, we follow a similar paradigm as provided in Section 6.6.

Later, one-to-one comparison are drawn between the existing TMOs and the proposed tone

mapping model.

Comparison with Best Ranked Tone Mapped Scenes Figure 6.6 demonstrates a

set of HDR images from the test dataset that have been mapped using the DeepTMO-HD

and corresponding BRTMs. These sample scenes depict the exemplary mapping of the

linear HDR content using DeepTMO-HD where it successfully generalizes over variety of

scenes and even outperforms the respective BTRM in terms of overall quality of contrast

preservation and visual appeal. In the first row, while the BRTM which is DurandTMO in



6.7. Results and Evaluation 111

DeepTMO-R DeepTMO-S DeepTMO-HD

Figure 6.4 – Compared between the three proposed architecture DeepTMO-R, DeepTMO-S,
DeepTMO-HD (I). From the insets, DeepTMO-R suffers from blurriness issues in the
wall and lowermost window panels. DeepTMO-HD and DeepTMO-S both are able to
preserve the finer details, though the window panels are much more clearly visible in
case of DeepTMO-HD

(a) DeepTMO-R (b) DeepTMO-S (c) DeepTMO-HD

Figure 6.5 – Comparisons between three architectures (II). As seen in the inset, while DeepTMO-R
simply results in blurred outputs in the bark of tree, DeepTMO-S tries to refine them
but is faced by checkerboard artifacts [38, 76]. The DeepTMO-HD provides best results
amongst the three methods while preserving the fine details, contrast and sharpness in
the image.
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Figure 6.6 – Comparison of our method with the respective BestTMOs based on the TMQI scores
with the highlighted zones for scene: The Canadian Falls (row I), The Grotto (row II)
and the Bar Harbor Sunrise (row III). Zoom-ins for each scene highlights mapping
outputs for DeepTMO-HD and the respective BestTMO for the corresponding HDR-
linear input. We notice that our model has no saturation effect in waterfall (row I),
preserves finer details in sky (row II) and effectively balances luminance for the house
(row III). The TMQI scores for each scene are provided alongside each TMO.
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this case fails to recover the overly saturated regions, our model successfully preserves the

fine details in the sky along with the waterfall and mountains in the background. Similarly

in row 2, while SchlickTMO fails to preserve saturated regions in sky, our model is able to

preserve both textures of the clouds as well as the bird in sky. We additionally are able

to retain textures of the leaves which again for Schlick get partly saturated. Same goes

for a dark scene in third row, where our trained DeepTMO-HD generator compensates

the lighting and preserves the overall contrast of the generated scene which isn’t the

case for MantiukTMO. Hence we see that, learned with different mapping characteristics,

our multi-scale generator network accordingly adapts for each scene to provide an image

of convincing quality, which was missing in all the existing hand-crafted tone mapping

methods.

To further demonstrate the generalization capability of DeepTMO models on all the

105 real world scenes, in Figure 8.19, we show a distribution plot of the number of scenes

against the TMQI Scores. For completeness, we also add scores achieved by BRTMs. The

curves clearly show that the generated tone mapped images for all models compete closely

with the best available tone mapped images on the TMQI metrics with DeepTMO-H fairing

the best among all. Hence, consolidating our main motivation of using this TMO.

Comparison with TMOs We first provide quantitative analysis in Table 8.2, to compare

the performance of our proposed model with the existing approaches. For each method,

the TMQI scores are averaged over 105 scenes of the test dataset. Final averaged results

show that all our three proposed tone mapping model outperform all the existing methods,

hence proving their generalization capability over the rest. Moreover, while all three

proposed models compete closely, our DeepTMO-HD model performs slightly worse than

the DeepTMO-S. This is perhaps because the skip-connections provide marginal gains in

some of the scenes. However, we believe that multi-scale DeepTMO-HD architecture is

slightly more stable and produces visually pleasing results, and hence, we use it in the rest

of the paper for comparisons.

Next, in Figure 8.20, we demonstrate qualitative comparisons of our model with four

existing methods namely, Mantiuk [67], Reinhard [90], Fattal [35] and Durand [29] over

5 real world scenes from the test dataset. For clarity of results, we choose only top four

methods based on the scores in Table 8.2. From all the five scenes, we observe that our

proposed tone mapping adapts to the content and preserves the contrast and fine details

in the most convincing way in comparison to all the other local and perceptual TMOs.

While perceptual methods such as [67] gives well balanced fine detailed information about

the scenes, the resulting outputs are somewhat washed out in terms of overall perceptual

brightness and visual appeal. Same goes for [29] for scene 1 and scene 2. The approach

in [90] loose on preserving details in the overly saturated regions e.g., clouds in scene 1.

Although in these five scenes, approach in [35] provides better quality results as compared

to other hand-crafted methods, in scene 1 and 5 it slightly lags behind our DeepTMO-HD
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and provides darker results. Altogether, we observe that our DeepTMO-HD addresses

the generality concept and adapts to a variety of HDR content. Based on its high level

understanding of the content in the scene, it efficiently recovers convincing colors, structure

and the finer details of the scene.
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Figure 6.7 – Quantitative performance comparison of DeepTMO-R, DeepTMO-S and DeepTMO-
HD with the BestTMOs.

6.7.3 Limitations

Though our model successfully demonstrates generality in addressing wide variety of scenes,

its expressive power is limited by the amount of available training data and quality of its

corresponding ground truths. Due to unavailability of subjectively annotated ‘best tone

mapped images’ for the HDR training dataset, we resort to an objective TMQI metrics to

build the corresponding ground truth LDR. However, the metric itself is not as perfect as

the human visual system. We illustrate this point in figure 6.9. The images ranked lower

by TMQI metric in column 3 and 4 are somehow more interesting than their best-ranked

counterpart in column 2. For e.g., in row 1, while the best ranked TMO outputs bursty

effects near the lamp and doesn’t effectively preserves the textual details in the book,

TMOs in column 3 and 4 preserves better structural details and naturalness. Similarly in

row2 for the best TMO, we can visualize some overall hazy effects as well as some noisy

artifacts on the front board, which isn’t the case in other two TMO’s.

Such samples can eventually restricts the generation power of our model for darker

scenes, specifically in high illumination regions such as lamps or bulbs. The discriminator

no longer forces the generator to eradicate such bursty effects as the underlying ground

truth samples, with which it is trained, are noisy. To overcome these challenges we provide
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Figure 6.8 – Qualitative Results. Five sample scenes from Fairchild HDR dataset, taken with
different natural lighting variations.

Table 6.1 – Quantitative Results. mean TMQI scores on the test-set of 105 images from Fairchild
HDR database.

TMOs TMQI

Ward [58] TMO 0.71 ±0.07
Pattnaik [79] TMO 0.78 ±0.04

Log [7] TMO 0.72 ±0.09
Gamma [7] TMO 0.76 ±0.07
Ashikh [4] TMO 0.70 ±0.06

Durand [29] TMO 0.81 ±0.10
Tumblin [105] TMO 0.69 ±0.06

Drago [27] TMO 0.81 ±0.06
Schlick [95] TMO 0.79 ±0.09
Reinh [90] TMO 0.84 ±0.07
Fattal [35] TMO 0.81 ±0.07
Chiu [21] TMO 0.70 ±0.05

Mantiuk [67] TMO 0.84 ±0.06
DeepTMO-HD TMO 0.87 ±0.06
DeepTMO-S TMO 0.88 ±0.07
DeepTMO-R TMO 0.86 ±0.08
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DeepTMO-HD BRTM BRTM-Rank2 BRTM-Rank3

Figure 6.9 – Sample cases where top scoring TMQI’s TMO shows not-so-visually desirable outputs.
In column I, we have tone mapped outputs from DeepTMO-H, in column II for BRTM
, while in column III and column IV we provide results for two other top ranking
TMO’s.

some possibilities in Chapter 7.
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6.8 Conclusion

In this chapter, we have presented three different deep tone mapping architectures for

a perceptual objective. Tailored in a generative-discriminative framework, the proposed

models are trained to output realistic looking tone-mapped images, that duly encompass all

the various distinctive properties of the available tone mapping operators. For completeness,

we provide an extensive comparison among the three proposed frameworks highlighting

the role that each design variation plays in their respective reproduced outputs.

Our deep tone mapping models also overcome the frequently addressed blurry or tiling

effects in recent HDR related works [31, 32], a problem of significant interest for several

high-quality learning-based graphic rendering applications as highlighted in [31]. By simply

learning an HDR-to-LDR specific cost function, the proposed models successfully preserve

desired output characteristics such as underlying contrast, lighting and minute details

present in the input HDR at the finest scale. Lastly we validate the versatility of our

methodology through a detailed quantitative and qualitative comparisons with existing

tone mapping techniques.

The work presented in this chapter has been submitted to SIGGRAPH’18.
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Chapter 7

Conclusions

7.1 Summary

This thesis presents the quantitative and qualitative analysis of HDR imagery for specific

task measures. More specifically, this thesis explores advantages of HDR content for specific

tasks and timely addresses the corresponding limitations and challenges. In the following

three major aspects, we highlight the contributions made in this thesis.

Firstly, based on the limited state-of-the-art studies, we primarily identify the most

natural and important questions in this direction. We begin with a performance evaluation

study on what specific advantages can HDR images bring over LDR for a given feature

extraction task. To this end, we propose a geometrically calibrated dataset with wide

range of illumination condition. We then observe how different HDR modalities can impact

feature extraction performance. Since no modality performs best across all scenes, we

address the need of an optimal design to use HDR information and further, investigate the

factors influencing the design essential for optimal modalities through a small experimental

study.

Secondly, considering our findings from evaluation study, we propose three in-line

methodologies to optimally use the HDR information to enhance the efficiency of local

features extraction. By adapting a variant of Bilateral filtering, we showcase models’ learning

capability by brining invariance to luminance change at three levels, namely, keypoint

detection, description and final matching. Finally, we evaluate the performance of all the

learning-based models on a proposed HDR dataset of 8 indoor/outdoor scenes where it

outperforms state-of-the-art TMOs across different feature extraction algorithms.

Thirdly, to handle a large variety of HDR real-world images, we present three end-to-end

deep learning based generic tone mapping designs which caters to desired task-specific

characteristics. Our previously proposed TMOs essentially requires a specific filtering

design which need to be differentiable. Since not all the TMOs can satisfy this criteria,

DeepTMOs overcome these drawbacks and learn from a variety of filtering characteristics

while following an easy differentiability. Furthermore, DeepTMOs can serve as a baseline
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for future task-optimal HDR designs as they can be fine tuned for any specific task by

simple cascading.

In the following, we expand the above mentioned aspects in correspondence to chapters

of the thesis.

• We investigate how much gains can HDR bring over LDR for the feature extraction

stages and which are the best modalities of using HDR to obtain it. To this end, we

prepared the framework with 11 HDR based modalities, 2 keypoint detection and 4

full feature extraction schemes. Additionally, we propose a geometrically calibrated

HDR luminance change dataset with a variety of lighting variations.

The analysis based on quantitative performance measures of keypoint detection and

feature matching scores on different scenes confirms the potential of HDR techniques

over single LDR exposures. For both detection and matching, we observe the linear

HDR values are inappropriate to be used for LDR optimized visual recognition tasks.

In case of TMOs, we observe that their performance varies with the type of scene,

exhibiting their nature of content-dependence. Furthermore, we observe that all the

local TMOs producing very appealing results are not necessarily the best option for

image analysis tasks. More interestingly, we have also observed that local TMOs

with very high repeatability rate for feature detection are not necessarily the best

option when the full feature extraction pipeline is considered. For individual test

pairs cases, we find no modality which is absolutely outperforming. Hence, it remains

unclear whether HDR pixels should be encoded approximatively linear to perception

or directly tone map using existing functions. Therefore, a more optimal means of

modality needs to be designed. (Refer to Chapter 3)

• We develop a learning based adaptive tone mapping framework for HDR images which

results in stable and efficient keypoint detection. To this end, we initially conduct an

experimental study investigating what it takes to optimize a tone mapping function

for a specific task such as keypoint detection. Build on the observations, we propose

a new learning-based adaptive tone mapping framework which aims at enhancing

keypoint stability under drastic illumination variations. To this end, we design a

pixel-wise adaptive TMO which is modulated based on a model derived by Support

Vector Regression (SVR) using local higher order characteristics. To circumvent the

difficulty to train SVR in this context, we further propose a simple detection-similarity-

maximization model to generate appropriate training samples using multiple images

undergoing illumination transformations.

We evaluate the performance of our proposed framework in terms of keypoint re-

peatability for state-of-the-art keypoint detectors. Our experimental results showcase

the efficiency of our proposed learning-based adaptive TMO which yields higher

keypoint stability when compared to existing perceptually-driven state-of-the-art
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TMOs. (Refer to Chapter 8)

• The keypoint detection and description designs are independent in nature. After

optimizing the TMO for keypoint detection, we address tone-mapping optimality for

full feature extraction algorithms. To this end, we first propose a descriptor-optimal

TMO design which solely aims at the extraction of invariant (as much as possible)

descriptors from high-contrast areas of the scenes. Then, we collectively address

both stages of keypoint detection and descriptor extraction in the feature matching

framework. To this end, we first propose an energy maximization model to generate

appropriate training samples by subsequently addressing the detection and description

costs. Then, by locally altering the intrinsic characteristics of tone mapping function,

guidance model is learned to predict optimal parameter-maps.

We evaluate both proposed TMOs on a HDR dataset of indoor/outdoor scenes where

they outperforms state-of-the-art TMOs across different image matching algorithms.

Our proposed task-optimal TMOs showcase their versatility when applied to different

detection/description approaches and hence, can be directly plugged into various

local feature based applications. (Refer to Chapter 5)

• We propose deep learning based TMOs which predict high quality tone mapped

outputs over a wide spectrum of linear HDR images. Currently, the end-to-end

deep learning based TMOs are trained with a perceptual objective to yield most

natural images, thanks to the large availability of HDR images. Due to ease in

backpropagation, the proposed model can be simply fined tuned with any desired

objective such as image matching. Therefore, it eradicates the need of designing any

proxy cost functions. Additionally, these models can serve as a baseline architecture

to explore HDR imagery for several other domain specific analysis tasks such as

medical image analysis or high resolution remote sensing tasks.

Based on conditional generative adversarial network (cGAN), our proposed architec-

tures learn to adapt to a wide variety of content and tackle HDR-specific challenges

such as contrast, brightness and luminance, while preserving fine details. Aiming for

high quality LDR, we address some prominent issues like blurring, tiling patterns

and saturation artifacts encountered in past HDR related deep learning methods.

To this end, we propose an additional high resolution prediction mechanism which

caters to such finer details. To further leverage on the large availability of unlabeled

high dynamic range data to train our network, we rely on an objective HDR quality

metrics called Tone Mapping Image quality Index or TMQI. Finally, we demonstrate

that our proposed deep tone mapping models generate high quality realistic output

images and outperform all other classical tone mappings to generalize well over a

larger spectrum of real-world scenes.(Refer to Chapter 6)
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7.2 Future Research Directions

Wide scale availability of HDR images and videos databases have opened up new analytical

perspectives for future research. In this concluding section, we discuss several possible

extensions of this thesis.

Investigation of HDR imagery for Dynamic Scenes

As evident from the results from Figures 4.13, 8.14, information preserved by HDR images

facilitates the extraction of highly stable and luminance invariant local features. The tested

scenarios consider HDR images that are taken from a static scenes. However, real-time

scenarios can be dynamic and consequently more challenging. This is mainly due to different

combinations of physical transformations such as geometric (rotation, viewpoint change),

deformational variations and due to sensor noise. One practical scenario includes lighting +

viewpoint changes with mobile platforms such as drones.

The presented learned models theoretically should adapt in accordance to the invariance

property of the feature extraction algorithms, as shown in Figure 5.20 for in planar rotation.

However, for out-of-the plane rotation problems that are specific for a mobile capturing

platform, our models need to be practically re-calibrated. Note that no state-of-the-art

local feature extraction algorithms is best under all transformations [116, 119]. Therefore,

instead of simply learning the regressor models with basic corner and descriptor based

features, multiple characteristics from feature extraction algorithms, e.g. the ones evaluated

in [119], needs to be infused. Additionally, it requires a proper geometrically calibrated

dataset which needs to be created.

Perception Vs Vision

In Chapter 6, we proposed the deep learning based tone mapping methods for perceptual

tasks. As already mentioned in Section 6.1, one possible extension is to design a task-optimal

deep-learning based TMO by fine tuning the DeepTMO model. This could help us to

compare the results obtained from deep networks learned from two different objectives

(perceptual and computer vision) over an HDR dataset. Since HDR technology gives

representation of real-world scenes closer to human eyes, the comparison between the two

models will further open up the possibilities of research in deeper understanding of these

networks, finding their technical explanations about inspirations drawn from human brain.

HDR Analysis in Temporal domain

A majority of this thesis explores the versatility of high dynamic range imagery in enhancing

the stability of local features in RGB images. However, one natural extension is to upgrade

the analysis for HDR videos. Information in temporal domain has far more potential

for real-time computer vision applications such as surveillance tasks. A vast amount of
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information that are lost in low-contrast scenes can be reconstructed using predictive

modelling using an additional temporal dimension of the HDR videos. This could boost the

performance in several video based tasks such surveillance applications, real-time tracking,

analysis of gestures and actions.

Deep Learning in HDR Imagery with small datasets

In comparison with millions of LDR annotated images, publicly available HDR dataset

are very small, which in turn limits the exportability of HDR technology. Though an

optimal solution would be to create a large HDR dataset with subjectively evaluated

ground truths, this would be quite a cumbersome and tedious task. A work around can be

reverse engineering the training dataset by reconstructing their corresponding HDR using

recent deep learning based inverse tone mapping models [30, 32].

Another alternative future work can be to rely on limited amount of samples, augmented

with some noisy samples and then, utilizing a weakly supervised learning paradigm [65].

For tasks such as HDR-to-LDR mapping, completely unsupervised learning is also possible

without giving any input-output pairs [120]. The intuition is to allow the network to decide

by itself which is the best possible tone-mapped output simply by independently modeling

the underlying distribution of input HDR and output tone mapped images.
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Chapter 8

Résumé de thèse

8.1 Résumé

La technologie HDR (High Dynamic Range) a acquis une immense popularité pour sa

capacité à représenter une large gamme de couleurs et d’intensités lumineuses présentes dans

des environnements réels [28, 68]. Dans un sens, ces images nous permettent de dessiner des

détails subtils, mais discriminants, présents à la fois dans les zones extrêmement sombres

et claires d’une scène, qui autrement se perdraient dans l’imagerie traditionnelle à gamme

dynamique basse (LDR). Avec les récents progrès de l’intelligence artificielle, que ce soit

sous la forme de voiture autonaume ou de dispositifs de surveillance automatisés, un tel

contraste préservant les propriétés HDR est essentiel pour la compétence des algorithmes

de vision par ordinateur sous-jacents. En d’autres termes, ces algorithmes devraient être

capables d’analyser efficacement chaque région d’une scène sans trop d’incertitude.

Bien que ces algorithmes soient entièrement personnalisés pour les images LDR capturées

dans des conditions différentes, ils échouent lamentablement dans les scènes à contraste

élevé ayant une luminance élevée ou faible [44, 110, 117, 119]. Puisque les scènes à contraste

élevé sont extrêmement courantes dans le monde réel, cela devient très critique dans des

cas comme les véhicules automatisés où des vies humaines sont en danger impliqués. Ainsi,

l’utilisation de la technologie HDR est néceéssaire pour la viabilité des algorithmes de

vision par ordinateur. Bien qu’un grand nombre d’algorithmes aient été concus pour pour

interpréter des scènes surexposées ou sous-exposées à l’aide d’images LDR, peu de travail a

été fait jusqu’à présent dans le contexte du contenu HDR.

Cette thèse est centrée sur l’analyse d’images HDR “enrichies” au profit d’un problème

de correspondance des caractéristiques visuelles de bas niveau, qui est la base de nombreux

autres algorithmes de vision par ordinateur de haut niveau, y compris l’enregistrement

et la vision stéréoscopique, le mouvement l’estimation et la localisation, l’appariement,

la récupération et la reconnaissance d’objets et d’actions. Plus spécifiquement, la thèse

examine les défis fondamentaux liés à l’utilisation du HDR et en déduit les moyens optimaux

d’utiliser le contenu HDR pour améliorer la robustesse de telles tâches.
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Cette thèse présente l’analyse quantitative et qualitative de l’imagerie HDR pour des

tâches spécifiques. Cette thèse explore tout d’abord les avantages du HDR pour des tâches

spécifiques, ensuite, aborde en temps opportun les limites et les défis propres à chaque

tâche.

Dans cette thèse, nous soulignons les contributions apportées dans les trois aspects

majeurs qui suivent.

Dans le premier aspect, nous identifions les questions les plus naturelles et les plus

importantes sur la base des études limitées de l’état de l’art dans cette direction. Nous

commençons par une étude d’évaluation des performances sur les avantages spécifiques que

les images HDR peuvent apporter par rapport aux images LDR pour une tâche donnée

d’extraction de features. A cette fin, nous proposons un jeu de données géométriquement

calibré avec un large éventail de conditions d’éclairage. Nous observons ensuite comment les

différentes modalités du HDR peuvent avoir un impact sur les performances d’extraction

des features. Puisqu’aucune modalité n’est la plus performante sur toutes les scènes, nous

devons répondre au besoin d’une conception optimale qui utilise l’information du HDR.

Nous étudions plus en détail les facteurs qui influencent la conception essentielle pour des

modalités optimales par le biais d’une étude expérimentale.

Deuxièmement, nous proposons trois méthodologies spécifiques tout en tenant compte

des résultats de l’étude d’évaluation. Nous proposons d’utiliser de manière optimale les

informations HDR pour améliorer l’efficacité de l’extraction des caractéristiques locales.

En adaptant une variante du filtrage bilatéral, nous mettons en évidence la capacité

d’apprentissage des modèles. Nous proposons d’apporter l’invariance au changement de

luminance à trois niveaux : (1) la détection des points clés, (2) la description et (3) la

mise en correspondance des images. Enfin, nous évaluons la performance de tous les

modèles proposés en fonction de l’apprentissage, sur la base d’un ensemble de données

HDR proposé de 8 scènes intérieures/extérieures. Nous montrons en outre comment notre

modèle surpasse les Opertateur de Tone mapping (TMOs) les plus perfectionnés à travers

différents algorithmes d’extraction de caractéristiques.

Troisièmement, pour traiter une grande variété d’images HDR du monde réel, nous

présentons trois modèles génériques de cartographie tonale basés sur l’apprentissage profond

‘end-to-end’ qui répondent aux caractéristiques spécifiques des tâches souhaitées.

Les TMOs que nous avons proposés précédemment exigent essentiellement une concep-

tion de filtrage spécifique qui doit être différentiable. Comme tous les TMO ne peuvent

pas satisfaire ces critères, DeepTMOs surmonte ces inconvénients et apprend d’une variété

de caractéristiques de filtrage et qui est facilement différentiable. De plus, les DeepTMOs

peuvent servir de référence pour les futures conceptions HDR optimales des tâches, car

elles peuvent être affinées pour n’importe quelle tâche spécifique en simple cascade.
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(a) Exemple d’appariement Jour-Nuit

(b) Taux de répétabilité de détection des points clés

Figure 8.1 – En (a), nous montrons un exemple de [119], où l’appariement des points saillants
(communs aux deux images) est représenté par des lignes bleues entre deux images
de la même scène prises à des heures différentes de la journée. En (b), nous montrons
le taux de répétabilité de la mesure d’efficacité sur un grand ensemble de données
d’images LDR jour/nuit en utilisant les techniques de pointe. La crête et les creux
dans les courbes illustrent que l’image capturée pendant le jour correspond bien avec
seulement d’autres images de jour et non avec celles capturées dans l’obscurité.
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8.1.1 Context

La robustesse des applications de vision par ordinateur peut être interprétée à partir d’une

hiérarchie à trois niveaux : bas, moyen et haut niveau. Puisque ces deux derniers niveaux

se construisent à partir du premier, l’efficacité dans l’analyse de bas niveau est essentielle

[116].

En général, l’analyse de bas niveau est définie et évaluée en fonction du problème de

“correspondance visuelle” [96]. Le problème est formulé en dessinant la correspondance

entre les images à l’aide d’algorithmes d’extraction des caractéristiques visuelles. Les

caractéristiques visuelles sont les signatures discriminantes qui contiennent des informations

locales provenant des emplacements saillants des images. La correspondance entre ces

caractéristiques définit la “compatibilité ” entre les deux contenus.

Un exemple provenant de la référence [119] est présenté en Figure 8.1 (a), illustrant

la correspondance entre une scène de jour et une scène de nuit à l’aide d’images LDR.

Plusieurs tentatives, y compris des modèles locaux [44, 103, 112], des modèles de normal-

isation globale[97] et des méthodes basées sur l’apprentissage [110, 116], ont été faites

pour assurer une meilleure conception des invariants de luminance dans l’imagerie LDR.

Cependant, ces techniques sont pratiquement inefficaces pour compenser complètement

la perte d’information ou comprendre le changement dans la configuration spatiale des

objets présents dans la scène. Par conséquent, ces algorithmes ne parviennent pas à trouver

de vraies correspondances entre des objets similaires et entrâınent une forte baisse de

performance. Dans l’exemple d’appariement jour/nuit de la Figure 8.1, la performance

de plusieurs algorithmes perfectionnés de détection de caractéristiques diminue de façon

significative dans les variations d’éclairage jour/nuit.

L’imagerie HDR, d’autre part, peut partiellement surmonter ces limitations en capturant

une large gamme d’éclat et de luminosité tout en préservant les détails fins dans à la fois

dans les régions sombres et les région très lumineuses. Par conséquent, en raison de ces

capacités étendues, l’utilisation de l’imagerie HDR dans l’extraction d’entités locales est

essentielle.

Les algorithmes d’extraction d’entités locales ont été largement explorés dans la lit-

térature sur la vision par ordinateur. Tous ces algorithmes ont été conçus et optimisés par

rapport aux images LDR. Ces images stockent des valeurs gamma-encodées [0,255] et sont

généralement représentées par un nombre entier de 8 bits. Au contraire, les pixels HDR

sont représentés par des valeurs réelles proportionnelles à et proportionnels à la luminance

physique de la scène, exprimée en cd/m 2 et en et pouvant varier jusqu’à 105 cd/m 2 par

jour ensoleillé[91]. Par conséquent, les images HDR ont en grande partie des intensités de

pixels variables. Il soulève donc naturellement la question de savoir comment ceffectuer une

analyse d’images HDR pour les algorithmes HDR l’analyse d’images pour les algorithmes

d’extraction de caractéristiques. En d’autres termes simples, il n’est pas clair si les images

HDR peuvent être utilisées directement avec de tels algorithmes.
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Une alternative serait d’optimiser chaque méthode d’extraction de caractéristiques

pour les images HDR. Mais il serait tout à fait impraticable et encombrant, en particulier

pour les programmes d’apprentissage existants qui nécessiteraient une grande quantité de

données HDR calibrées géométriquement. Sans compter que cela pourrait rendre difficile

leur intégration dans des méthodes de vision par ordinateur de niveau intermédiaire et

de haut niveau. Dans cette thèse, nous optons donc pour une autre solution. Nous nous

concentrons sur les images HDR en entrée et explorons quelle est la meilleure façon d’utiliser

de telles images dans des algorithmes d’extraction de caractéristiques optimisés pour le

LDR.

Certaines études fondées sur le HDR[2, 11] ont récemment étudié l’impact de l’utilisation

d’images HDR sur la performance de détection des caractéristiques. Puisque les algorithmes

sont optimisés en LDR, ils faut d’abord convertir le contenu HDR en une image LDR à

l’aide de certains opérateurs de Tone Mapping (“TMOs”) et ensuite appliquer des techniques

de détection de caractéristiques. Ces études, cependant, n’explorent pas d’autres modalité

de l’utilisation du HDR (linéaire, par exemple) et n’étudient pas non plus l’impact de

l’utilisation de différentes types des TMO existants.

La recherche en imagerie HDR a toujours été abordée d’un point de vue perceptuel.

Par conséquent, tous les modes d’utilisation du HDR, appelés “modalités” dans cette thèse,

ont été adaptés aux attributs de la vision humaine[13], par exemple la préservation de

l’esthétique de l’image, contraste etc. Une façon courante d’évaluer le contenu du HDR

est le tone mapping. Par définition, les TMO sont les modèles visant à cartographier le

contenu HDR dans une représentation LDR 8 bits appropriée pour l’affichage du contenu

sur des écrans des écrans standards. Par exemple, une technique populaire implique la

compression de la luminance estimée, par exemple, en utilisant des filtres de préservation

des bords tels que les filtres bilatéraux [29] à partir de scènes HDR afin de produire un

résultat de tone-mapping visuellement agréable.

Sur le plan conceptuel, les objectifs perceptuels ne sont pas liés aux critères de rendement

propres à la vision par ordinateur, comme la note de précision pour la correspondance

des caractéristiques. Contrairement à la perception visuelle, les méthode d’extraction

de caractéristiques suivent des conceptions strictes pour développer l’invariance dans les

informations au niveau des pixels peu localisés, comme l’histogramme des orientations de

gradient. Par conséquent, même si les images cartographiées sont des images LDR avec un

meilleur contraste sont optimales pour extraire des caractéristiques visuelles robustes.

Par conséquent, il n’est pas clair quelle est la meilleure façon d’utiliser les images

HDR ; les images HDR linéaires, une autre forme de HDR codé ou la quantification de

l’information ou encore en passant par une représentation LDR, par exemple en utilisant

les TMO ?

Dans ce qui suit, nous développons les aspects mentionnés ci-dessus en correspondance

avec les chapitres de la thèse.
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8.1.2 Chapitre 3

Des conditions d’éclairage défavorables peuvent détériorer considérablement le rendement

des détecteurs et des descripteurs de points clés dans l’imagerie LDR conventionnelle.

Plusieurs modèles de normalisation locale et globale ont été conçus pour obtenir de

meilleures caractéristiques invariantes de luminance. Mais ces techniques sont quelque

peu inefficaces dans la pratique. La mauvaise performance de ces algorithmes s’explique

principalement par la perte ou le changement dans les configurations spatiales des détails

présents dans une scène. L’imagerie HDR permet de dépasser ces limites et, par conséquent,

d’améliorer le rendement de l’extracteur de caractéristiques grâce à sa plage dynamique

plus large qui permet de capturer des détails dans les régions sombres et claires. Cependant,

il n’est pas clair quelles sont les meilleures méthodes pour employer le HDR et ces gains

sont significatifs sur un ensemble de données réelles.

Dans le chapitre 3, nous examinons le potentiel du HDR pour les étapes d’extraction des

caractéristiques, c’est-à-dire la détection et la description des points clés, et en particulier,

nous abordons les questions de recherche suivantes:

1. le HDR est-il capable de réaliser des gains quantitatifs substantiels en termes de

stabilité des caractéristiques ? aux changements de luminance par rapport aux LDR

? ces gains sont-ils cohérents ?

2. quelle est la meilleure façon d’utiliser de telles images HDR, c’est-à-dire la luminance

réelle directe ou la luminance réelle directe. HDR converti au format LDR par

l’intermédiaire d’un opérateur de tone mapping (TMO) afin d’être compatible avec les

techniques d’extraction de caractéristiques standard ? Pour répondre à ces questions,

un cadre d’évaluation est fourni dans ce chapitre.

Initialement, nous construisons un ensemble de données d’images HDR et LDR, composé

de deux configurations, chacune éclairée avec sept et huit conditions d’éclairage différentes,

respectivement. L’ensemble de données constitue un défi de taille en termes de réflexion

de la texture des objets, de présence d’ombres et de variété d’éclairages sources. Pour

chaque scène d’éclairage, nous considérons ensuite un certain nombre de formats de codage

d’image, y compris les valeurs HDR linéaires ou codées perceptuellement, la meilleure

exposition LDR subjectivement, et plusieurs images locales ou globales cartographiées

en tons. Ensuite, nous détectons les caractéristiques de chaque scène d’éclairage et nous

calculons la répétabilité standard des points d’intérêt détectés dans tous les autres réglages

d’éclairage, afin d’estimer la stabilité moyenne des caractéristiques. Voici accompli en

utilisant deux points d’angle populaires (Harris) et des détecteurs de taches (SURF).

Certains cadres antérieurs pour l’évaluation des détecteurs et des descripteurs ont été

proposés dans la littérature, comme nous l’avons vu à la section 2. Les études sur les

receveurs font état d’un augmentation du nombre de points de caractéristiques détectés à

l’aide de modalités fondées sur le HDR plutôt que sur le LDR. Cependant, le nombre de
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Figure 8.2 – RR moyen enregistré par différents formats sur le LDR.

points de caractéristiques détectés n’est pas en soi un indicateur suffisant de détection la

performance. En outre, sur la base de leurs résultats, il est difficile de tirer des conclusions

précises sur ce qui fait que certaines modalités de HDR fonctionnent mieux que d’autres.

Le chapitre 3 met l’accent sur les mesures standard de la stabilité des caractéristiques

sous éclairage variable et sur l’analyse de la performance de nombreuses approches populaires

de cartographie tonale qui ont été évaluées à fond d’un point de vue perceptuel, mais dont

l’efficacité dans l’extraction des caractéristiques n’a pas été étudiée jusqu’à présent. De

plus, nous comparons explicitement les étapes d’extraction directe de caractéristiques sur

les images HDR avec un tonemap-then-extract l’approche.

L’analyse fondée sur des mesures quantitatives du rendement de la détection des points

clés et de la détection des points clés. Dans la figure 8.2 et la table 8.1, l’appariement

des scores sur différentes scènes confirme le potentiel des techniques HDR sur une seule

exposition LDR. Pour la détection et l’appariement, nous observons les valeurs linéaires.

Les valeurs HDR sont inappropriées pour être utilisées pour des tâches de reconnaissance

visuelle optimisées LDR. Dans le cas des TMO, nous observons que leur performance varie

selon le type de scène, en montrant la nature de leur dépendance à l’égard du contenu. De

plus, nous constatons que toutes les les TMOs locales produisant des résultats très attractifs

ne sont pas nécessairement la meilleure option pour les tâches d’analyse d’images. Plus
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Repr.
Feature Extraction Schemes

Avg/Repr.
SIFT SURF BRISK FREAK

LDR 55 62 60 61 59.5

RNG 69 70 71 65 67.5
DR 72 72 71 73 72

RN 72 70 73 72 72

MA 74 75 62 62 68.3
FA 68 67 62 66 65.8
CH 68 71 64 66 67.3
DU 64 72 68 71 68.8

HDRLog 75 66 67 68 69
HDRLin 44 30 50 41 41.5

Avg/Schemes 66.8 65.6 65.5 65

Table 8.1 – Mean Average Precision (mAP %) scores pour les 10 représentations considérées en
utilisant 4 schémas d’extraction de caractéristiques. La moyenne des notes est calculée
sur 4 ensembles de données de changement d’éclairage. Le score mAP le plus élevé pour
chaque schéma est indiqué en gras.

intéressant encore, nous avons également observé que les TMOs locales. avec un taux de

répétabilité très élevé pour la détection des caractéristiques ne sont pas nécessairement les

meilleurs. lorsque le pipeline d’extraction de toutes les caractéristiques est pris en compte.

Pour un test individuel Dans les cas de paires, nous ne trouvons aucune modalité qui est

absolument surperformante. Il reste donc il n’est pas clair si les pixels HDR doivent être

codés de manière approximativement linéaire par rapport à la perception. ou directement

à l’aide des fonctions existantes. Par conséquent, un moyen plus optimal de modalité doit

être conçue. (Voir le chapitre 3)

8.1.3 Chapitre 4

Les TMO ont traditionnellement été conçus pour afficher les images HDR d’une manière

perceptiblement favorable et surtout pour préserver les attributs de la vision humaine

tels que l’esthétique de l’image et le contraste perceptuel. Cependant, lorsque ces images

cartographiées par ton doivent être utilisées pour des tâches de vision par ordinateur telles

que la détection de points clés, ces approches de conception sont sous-optimales. et doit

être recalibré. Il n’existe pas de travaux connexes dans la littérature, qui visent à concevoir

une technique de cartographie des tons optimisée pour la détection ou à comprendre les

critères qui s’y rattachent.

Dans ce chapitre, nous abordons le problème de la conception optimale des TMO pour

la détection des points clés. tâche. Plus précisément, nous examinons les questions suivantes

:

1. quels sont les facteurs à prendre en compte dans la conception de la TMO lors du

ciblage des tâches de détection des points clés ? et
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Project−Room Light−Room
0

5

10

15

20

25

30

35

40

Harris 

R
ep

ea
ta

bi
lit

y 
R

at
e

 

(a)

Project−Room Light−Room
0
5

10
15
20
25
30
35
40

SURF 

R
ep

ea
ta

bi
lit

y 
R

at
e

 

 

(b)

Harris SURF
0

10

20

30

40

Project Room

R
ep

ea
ta

bi
lit

y 
R

at
e

 

(c)

Harris SURF
0

10

20

30

40

Light Room

R
ep

ea
ta

bi
lit

y 
R

at
e

 

 

(d)

Figure 8.3 – Average RR et standard deviation pour les approches optimisées basées sur la cor-
rélation et la réponse en utilisant respectivement un détecteur Harris et un détecteur
SURF. Rangée 2. (c) et (d) Score moyen de répétabilité et écart-type pour les modèles
de réflectance (GTM et BTM) et autres TMs couramment utilisés pour Project Room
et Light Room dataset

2. comment peut-on nous optimisons un TMO pour de telles tâches sous des variations

d’éclairage drastiques.

Pour répondre aux questions susmentionnées, ce chapitre traite dans un premier temps

de la sous-optimalité des TMOs existantes et en déduit des lignes directrices pour concevoir

un TMO optimisé au niveau des points clés.

A cette fin, premièrement, une comparaison est faite entre l’optimisation des paramètres

TMO existants en ce qui concerne : a) le taux de répétabilité RR et b) le coefficient de

corrélation CC entre le taux de répétabilité RR et le coefficient de corrélation CC entre

des images cartographiées de la même scène avec des variations d’éclairage. CC mesure la

statistiquetique entre une paire d’images ton sur ton. L’objectif ici est de déterminer si

l’optimisation d’un TMO par rapport à RR conduit à une plus grande stabilité des points

clés par rapport à la similarité par pixel (en utilisant CC) entre les images cartographiées

par ton. Les résultats sont indiqués dans Figure 8.3.

En nous basant sur les observations de l’étude de l’optimalité, nous présentons dans ce

chapitre une nouveau TMO adaptatif basé sur l’apprentissage pour une détection robuste

des points clés, nommé DetTMO. La méthodologie globale de DetTMO est illustrée dans

Figure 8.4. Le cadre que nous proposons vise à améliorer la détection répétée d’emplacements

de points clés clairsemés (p. ex. les coins) dans des zones à contraste élevé de scènes subissant
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Figure 8.4 – Learning based DetTMO.

des transitions complexes d’éclairage du monde réel, comme le changement jour/nuit. Pour

ce faire, nous introduisons d’abord un TMO adaptatif qui peut être odulé localement,

c’est-à-dire que ses paramètres peuvent varier en pixels.

Ensuite, la modulation par pixel est dérivé au moyen d’un modèle invariant d’illumination

appris. Dans ce contexte, nous formons un régisseur de vecteur de support (SVR) pour

prédire les cartes de modulation par pixel désirées en en utilisant le contenu HDR linéaire à

partir de scènes capturées dans des conditions d’éclairage variables. Les modèles fondés sur

l’apprentissage ont rarement été utilisés pour concevoir des modèles optimisés en fonction

des points clés. TMOs. Par conséquent, il n’y a pas d’ensemble de données standard pour

former ou tester n’importe quel modèle dans le cadre de l ce contexte. Dans ce chapitre,

nous surmontons cette difficulté en proposant une détection simple-modèle de maximisation

des similitudes pour générer des échantillons de formation appropriés tique entre une paire

d’images ton sur ton. L’objectif ici est de déterminer si l’optimisation d’un TMO par

rapport à RR conduit à une plus grande stabilité des points clés par rapport à la similarité

par pixel (en utilisant CC) entre les images cartographiées par ton.

De plus, nous proposons un ensemble de données HDR de 8 scènes d’images prises à

l’intérieur et à l’extérieur avec différentes variations d’éclairage, illustrée dans Figure 8.5
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Figure 8.6 – Average Repeatability Rates (AvgRR) calculée sur différents TMOs en utilisant divers
schémas de détection de points clés. La moyenne est calculée sur toutes les scènes de
test.

Poster Invalides
Project-
Room Light-Room Notre-Dame Camroom

Grande-
Arche Louvre

Figure 8.5 – Exemples d’images de HDR dataset. HDR Dataset est composé de 8 scènes de différents
endroits intérieurs et extérieurs.

Nous évaluons la performance du cadre proposé en termes de répétabilité des points clés

pour les détecteurs de pointe. Dans Figure 8.6, nous calculons d’abord le RR de toutes les

scènes pour chaque TMO considéré et ensuite la moyenne pour calculer le taux de Average

Repeatability Rate (AvgRR). Nous observons que pour l’un ou l’autre détecteur (coin ou

blob), notre modèle proposé surpasse tous les autres TMOs (basés sur la perception ou

sur les points-clés). De plus, les écarts-types plus faibles observés avec notre proposition

de TMO montrent une plus grande stabilité des points clés que d’autres TMO basés sur

la perception. Bien que notre algorithme ait été optimisé pour les coins, il donne des

performances comparables ou meilleures par rapport à d’autres méthodes sur les détecteurs

de taches. Cela s’explique en partie par la mise en Åuvre à l’échelle unique des détecteurs à

goutte utilisés dans cette évaluation. Cependant, les performances peuvent différer lorsque

la détection de blob multi-échelle est prise en compte.

Nos résultats expérimentaux démontrent l’efficacité de notre proposition de TMO
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Figure 8.7 – Repeated Keypoints. Row I: 2 images HDR de la scène Invalides prises à différentes
heures du jour. Les images HDR sont affichées après la mise à l’échelle du journal
[27]. Row II: les points clés répétés en utilisant notre DetTMO proposé (66 points clés
répétés sur les 200 points clés les plus forts). Row III: les points clés répétés à l’aide
de Reinhard TMO (7 points clés répétés sur les 200 points clés les plus forts). Row
IV: les points clés répétés à l’aide de MantiukTMO (5 points clés répétés sur les 200
points clés les plus forts).

adaptatif basé sur l’apprentissage, qui offre une plus grande stabilité des points clés par

rapport aux TMO de pointe basés sur la perception illustrée dans Figure 8.7. (Voir le

chapitre 4).

8.1.4 Chapitre 5

Les TMO conventionnels se sont révélés sous-optimaux pour la tâche d’extraction de

caractéristiques, qui comprend une étape de détection. Jusqu’à présent, nous avons tiré

parti de l’apprentissage des points clé pour concevoir un TMO optimal uniquement pour une

détection stable. Dans ce chapitre, nous avons traiter de l’ensemble du pipeline d’extraction

d’entités, y compris l’étape de description, afin de concevoir un TMO optimal pour une

adaptation efficace de l’image. Plus spécifiquement, l’objectif de ce chapitre est de trouver
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un TMO optimal qui peut améliorer l’extraction de caractéristiques stables pour des

scènes avec contenant des transitions complexes d’illumination du monde réel, comme le

changement jour/nuit. Dans ce but, le chapitre propose d’abord une conception TMO

descripteur-optimale, appelée DesTMO, qui vise à uniquement l’extraction de descripteurs

invariants (autant que possible) à partir de zones à fort contraste des scènes. Plus tard,

nous introduisons un TMO optimal, OpTMO, pour une châıne complète d’extraction de

caractéristiques (comprenant à la fois des détecteurs et des descripteurs) qui améliore

simultanément les taux de détection et la correspondance des caractéristiques extraites

des scènes HDR. Les deux tâches proposées, à savoir DesTMO et OpTMO, suivent un

paradigme basé sur l’apprentissage similaire à celui de DetTMO dans le chapitre 4, mais

avec des objectifs de conception entièrement différents.

En résumé, ce chapitre présente,

1. descripteur-optimal DesTMO qui facilite l’extraction des descripteurs invariants de

luminance.

2. une OpTMO adaptative locale, optimisée pour l’appariement d’images, qui traite

collectivement les étapes de détection et de description des pipelines d’extraction

d’entités.

3. une méthode efficace pour générer des échantillons de formation appropriés afin de

contourner la difficulté de former les SVR dans le contexte de DesTMO et OpTMO

respectivement. En outre, nous proposons leurs fonctions objectives de substitution

différentiables.

4. une évaluation de DesTMO et OpTMO par rapport aux méthodologies l’état de l’art.

De plus, nous montrons un scénario applicatif de localisation d’objets.

La conception de DesTMO est motivée par le TMO optimal du détecteur du chapitre

précédent où des gains significatifs en taux de répétabilité [70] ont été observés lorsque les

paramètres TMO optimaux (contrôlant la forme et la taille de TMO) ont été appris en

pixels. Cependant, nous nous sommes principalement concentrés sur la conception d’un

modèle de cartographie des tons pour les tâches de détection de points-clés en coin. Alors

qu’ici, nous nous sommes concentrés sur la conception d’un modèle de cartographie des

tons par considérer un problème différent, c’est-à-dire une TMO optimale pour l’extraction

de descripteurs discriminatoires.

Pour concevoir DesTMO, on introduit d’abord une fonction de cartographie des tons,

qui peut être modulée localement en variant spatialement ses paramètres. La méthodologie

globale de DesTMO est illustrée dans Figure 8.8. Ses cartes de paramètres sont prédites au

moyen d’un modèle de guidage à illumination invariante. Notre modèle de guidage est piloté

par le SVR et s’appuie sur les caractéristiques basées sur l’orientation des gradients qui sont

extraits des patchs densément échantillonnés du contenu HDR. Contrairement à la détection
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Figure 8.8 – L’architecture de DesTMO.

Figure 8.9 – Apprentissage DesTMO
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Figure 8.10 – L’architecture de OpTMO.

d’angle, l’extraction de descripteur dépend du grand ensemble des pixels du voisinage (ou

patch) qui sont traités ensemble pour formuler la signature unique discriminante. C’est

pourquoi nous proposons d’apprendre les paramètres TMO localement, mais en nous basant

sur les informations au niveau des patch des scènes. Plus précisément, puisque chaque

descripteur est limité à une taille de patch. Comme 16 × 16 dans SIFT et SURF, nous

apprenons les paramètres TMO sur des patchs de même taille.

Puisqu’il n’y a pas d’ensemble de données standard pour former ou tester un modèle

pour DesTMO, nous proposons une approche simple de descripteur de maximisation de

similarité pour générer des échantillons de formation appropriés. La fonction objective vise

à maximiser les similitudes des descripteurs s’ils sont extraits d’images du même endroit

mais avec des variations d’éclairage. La filière de formation utilisant l’approche par paires

est illustrée dans le Figure 8.9.

DesTMO et DetTMO ne traitent qu’un seul aspect à la fois, à savoir la détection des

points-clés ou l’extraction de descripteurs. Ceci n’est pas efficace dans la pratique pour la

tâche d’appariement d’images, par e.g., un mauvais détecteur dégrade la correspondance

des descripteurs. Notez que l’optimisation d’un TMO en tenant compte simultanément

de la détection et de la description des points clés n’est pas trivial, car les objectifs de

conception correspondants sont généralement différents et contradictoires.

Par exemple, un TMO optimal pour la détection vise à produire des points de car-

actéristiques covariantes, alors qu’un TMO optimal pour la description devrait garantir

une certaine forme d’invariance des transformations sur un quartier local. De plus, une

détection optimale nécessite une localisation précise de la position du point clé, tandis
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Figure 8.11 – Apprentissage OpTMO.

qu’une description optimale est un processus au niveau du patch. Dans le chapitre 3,

nous avons montré que les TMOs qui sont optimales pour la détection ne le sont pas

nécessairement lorsque la châıne complète d’appariement est considérée. Dans ce chapitre,

nous présentons un opérateur de cartographie sonore optimale (OpTMO) pour améliorer la

détection et l’adaptation des caractéristiques extraites de scènes HDR capturées sous des

transitions d’illumination du monde réel complexes. La méthodologie globale de OpTMO

est illustrée dans Figure 8.10. Pour OpTMO, nous introduisons d’abord une fonction de tone

mapping similaire à DetTMO, qui peut être modulée localement en variant spatialement

(en pixels) ses paramètres en fonction des caractéristiques du contenu HDR. Ensuite, nous

proposons un modèle d’orientation pour cartographier les caractéristiques locales basées

sur le HDR (détection et détection et description) à une faible dimension description à un

faible encombrement. La filière de formation utilisant l’approche par paires est illustrée

dans le Figure 8.11. Un mauvais détecteur dégrade la correspondance des descripteurs.

Notez que l’optimisation d’un TMO en tenant compte simultanément de la détection et de

la description des points clés n’est pas trivial, car les objectifs de conception correspondants

sont généralement différents et contradictoires.

Enfin, dans Figure 8.12 and 8.13, nous évaluons les deux TMOs proposés sur un

ensemble de données HDR de scènes intérieures/extérieures où ils surpassent les TMOs

de pointe à travers différents algorithmes d’appariement d’images. Dans Figure 8.14, nous

observons que l’optimisation uniquement pour la réponse du détecteur (DetTMO) pourrait
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Figure 8.12 – Average RR calculée sur différents TMOs en utilisant divers schémas de détection de
points clés. La moyenne est calculée sur toutes les scènes de test.

Figure 8.13 – Average Matching Score (MS) calculés sur différents TMOs en utilisant les schémas
d’extraction des descripteurs SURF, SIFT, FREAK, BRISK, BRISK. La moyenne
est calculée sur toutes les scènes de test.
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produire un plus grand nombre de fausses correspondances. D’autre part, l’optimisation en

ce qui concerne uniquement l’appariement des descripteurs (DesTMO) ne peut pas assurer

une efficacité d’appariement élevée en raison de la faible répétabilité des points-clés. Au lieu

de cela, une adaptation efficace de l’image ne peut être assurée qu’en optimisant le TMO

par rapport à la châıne complète d’extraction des caractéristiques, comme dans l’OpTMO

proposé.

Nos TMOs optimisés pour les tâches proposées démontrent leur polyvalence lorsqu’ils

sont appliqués à différentes approches de détection/description et peuvent donc être

directement connectés à diverses applications locales basées sur des fonctionnalités. (Voir

le chapitre 5).

8.1.5 Chapitre 6

Avec un objectif donné basé sur les tâches, nous avons jusqu’à présent proposé des modèles

en nous appuyant sur des modèles spécifiques caractéristiques d’une fonction de cartographie

tonale donnée. En fait, une variante du filtrage bilatéral a été adoptée pour mettre en valeur

la capacité d’apprentissage du modèle. Toutefois, tous les TMOs ne sont pas différentiables

et, par conséquent, difficiles à apprendre en utilisant les méthodes proposées. De plus, un

TMO individuel n’aborde que certaines caractéristiques spécifiques qui pourraient être

souhaitées en fonction du contenu. Cela soulève naturellement la question à savoir si pour

une cartographie tonale plus générale la fonction peut être formulée de manière à pouvoir

être facilement entrâınée pour n’importe quelle tâche donnée et à s’adapter pour toutes les

scènes du monde réel.

Dans ce chapitre, nous abordons cette question en concevant un TMO générique

de bout en bout qui s’adapte à toutes les scènes du monde réel en tenant compte des

caractéristiques spécifiques aux tâches souhaitées. Tirant parti d’un large ensemble de

données HDR pour des objectifs perceptuels, nous proposons les premières conceptions

architecturales DeepTMO (DeepTMO) pour convertir un contenu HDR linéaire en une

sortie LDR à haute résolution. Dans la mise en ouvre actuelle nos modèles sont formés pour

une tâche perceptuelle, c’est à dire pour donner la sortie la plus réaliste et de haute qualité

sans aucun dommage visible à son contenu. Étant l’absence donné qu’une grande quantité

de le jeu de données d’images HDR pour la conception d’un TMO basé sur l’apprentissage

profond, l’architecture proposée peut également servir de référence pour l’analyse basée sur

le HDR. A l’avenir, cela pourrait être exploré en peaufinant le modèle proposé avec un

modèle d’apprentissage en cascade spécifique aux tâches en profondeur, par exemple pour

l’appariement d’images, la détection des visages, la vidéosurveillance, etc.

Ce chapitre présente 3 réseaux distincts de cartographie tonal basée sur l’apprentissage

profond, à savoir DeepTMO-R, DeepTMO-S et DeepTMO-HD. Basé sur des réseaux condi-

tional generative adversarial network (cGAN) [43, 72] comme illustrée dans le Figure 8.15,

chacun des modèles proposés prend directement le contenu HDR linéaire et reproduit une



8.1. Résumé 145

Figure 8.14 – Image Matching II. Correspondance jour/nuit à l’aide de SURF. Row I : 2 images
HDR de la scène Invalides sont affichées après la mise à l’échelle du journal. Les
correspondances correctes et incorrectes sont indiquées par des lignes jaunes et rouges,
respectivement. Les lignes vertes représentent le cas particulier d’inadéquation due
à une structure répétitive. Row II : l’appariement des caractéristiques à l’aide de
notre proposition OpTMO (21 correspondances correctes et 3 incorrectes). Rangée III
: en utilisant DetTMO (13 correspondances correctes et 6 incorrectes). Row IV :
utiliser DesTMO (11 correspondances correctes et 3 incorrectes). Ligne V en utilisant
Reinhard TMO (3 correspondances correctes et 11 incorrectes). Row VI : utiliser
MantiukTMO (3 correspondances correctes et 4 incorrectes).

image réaliste visant à imiter le contenu HDR original avec des valeurs de pixels dans la

plage[0-255]. Contrairement aux réseaux de convolutional neural network (CNN) explorés

dans des travaux antérieurs liés au HDR [30, 32, 41], notre architecture évite l’exigence de
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Figure 8.15 – Pipeline de formation de Deep Tone Mapping Operator (Deep TMO) basé sur les
GANs. L’ensemble de données apprentisage se compose des HDR d’entrée et de
leurs sorties correspondantes les mieux classées en fonction de l’TMQI et de l’indice
de qualité du ton. Le discriminateur et le générateur sont formés alternativement,
d’abord une étape de regression du discriminateur puis du générateur. Tandis que
le discriminateur est formé pour distinguer les paires d’images réelles des fausses, le
générateur apprend à tromper le discriminateur en produisant des images en tons
synthétiques. Ce faisant, le générateur modélise efficacement la distribution sous-
jacente des images réelles de la tonalité de vérité au sol, ce qui donne des résultats de
haute qualité une fois l’entrâınement terminé.

Figure 8.16 – Nous proposons un TMO basé sur l’apprentissage profond (appelé DeepTMO) qui
donne des résultats de haute qualité subjective sur un large éventail d’images HDR à
valeur linéaire. Notre variante proposée de cGANs est une architecture multi-échelle
qui donne des résultats d’apparence naturelle et sans artefacts en haute résolution.
Alors que les TMOs classiques sont sensibles à l’accord des paramètres pour une
sortie souhaitée, notre modèle apprend à traiter efficacement une plus large gamme
de contenus HDR en modélisant la distribution sous-jacente de toutes les sorties de
cartographie des tons cibles disponibles. En concurrence avec les meilleurs résultats
des cartes tonales subjectives de qualité supérieure sur 3 types de scènes différentes :
claires, nuageuses et sombres, nous montrons surtout la polyvalence de notre méthode
qui préserve efficacement les textures, les détails des structures et le contraste. Les
résultats détaillés sont présentés aux sections 6 et 7 de chapitre 6. Enfin, notre modèle
DeepTMO est assez rapide et prend en moyenne 0,02 seconde pour le tone mapping
d’une image HDR de taille 1024× 2048.
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définir explicitement une fonction de perte spécifique à une tâche. Cela se produit princi-

palement parce que nos réseaux sont formés pour modéliser par eux-mêmes les fonctions de

coût adaptées à partir des données de formation sous-jacentes. Nous fournissons les détails

architecturaux des trois réseaux dans la Figure 8.17 and 8.18a.

Pour former ces modèles proposés, nous accumulons des données à partir des sources

d’images HDR disponibles. Cependant, un défi majeur lors de la formation des modèles

découle de l’absence de tout modèle public l’ensemble des données disponibles sur la

formation. Sélectionner la vérité terrain par une évaluation subjective plutôt qu’un grand

ensemble de données est une tâche très fastidieuse. Elle nécessite donc l’exigence d’un

objectif métrique d’évaluation de la qualité qui permet de quantifier les performances de

cartographie tonale de chaque TMO pour n’importe quelle scène possible. Pour notre tâche,

nous sélectionnons une métrique bien connue, à savoir le Tone Mapped Image Quality

Index (TMQI), qui est utilisé pour classer 13 TMOs largement utilisés. En utilisant ceci,

pour chaque entrée HDR, nous sélectionnons celui qui se classe le plus haut sur ce score

métrique objectif TMQI.

Les résultats visuels produits par nos modèles DeepTMO dans différentes scènes

sont illustrés dans le Figure 8.15. Notre DeepTMO apprend implicitement la meilleure

caractéristique de tous les TMOs globales, locaux et perceptifs disponibles sur une grande

variété de scènes. En un sens, tant par sa conception architecturale que par l’ensemble des

données sous-jacentes, il est conditionné pour préserver les données globales (telles que les

structures globales, les contrastes et la luminance) ainsi que les détails locaux plus fins (tels

que les motifs de texture locale), ce qui permet d’obtenir des résultats de haute qualité

visuellement agréables.

Nos modèles de TMO profonds permettent également de surmonter les effets de flou

ou de carrelage fréquemment étudiés dans les travaux récents liés au HDR [31, 32], un

problème d’intérêt significatif pour plusieurs applications de rendu graphique basé sur

l’apprentissage de haute qualité, comme souligné dans[31]. En apprenant simplement une

fonction de coût spécifique HDR-to-LDR, les modèles proposés préservent avec succès les

caractéristiques de sortie souhaitées telles que le contraste sous-jacent, l’éclairage et les

détails minuscules présents dans le HDR d’entrée à l’échelle la plus fine.

Enfin, nous validons la polyvalence de notre méthodologie par une comparaison quanti-

tative et qualitative détaillée avec les TMOs existantes. Nous comparons les performances

quantitatives de DeepTMO-R, DeepTMO-S et DeepTMO-HD avec celles des BestTMO

dans le Figure 8.19 et la Table 8.2. Nous démontrons que les TMOs profonds que nous

proposons génèrent des images de sortie réalistes de haute qualité et surpassent tous les

autres TMOs classiques pour bien généraliser sur un plus large spectre de scènes du monde

réel (dans le Figure 8.20).

En un mot,

1. Nous proposons le premier opérateur de tone mapping basée sur l’apprentissage en
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(a) Architecture de générateur avec et sans ‘skip-connections’.

(b) Architecture de discriminateur.

Figure 8.17 – Nous présentons l’architecture détaillée du discriminateur et du générateur de
DeepTMO-R et DeepTMO-S. La seule différence pour DeepTMO-S est l’ajout de
connexions sautées dans le cas d’un générateur. Le générateur est encadré comme
une architecture codeur-décodeur, où l’image HDR d’entrée est d’abord transmise à
un codeur, qui la sous-échantillonne ensuite en une représentation compacte. Cette
représentation est ensuite transmise par le décodeur qui l’échantillonne à la taille du
HDR d’entrée. Alors que le codeur se compose du composant frontal Convolution G(F )

et des cinq premiers blocs résiduels G(R), le décodeur se compose des quatre blocs
résiduels suivants G(R) et du composant déconvolution G(B). La discriminateur se
compose d’une architecture patchGAN qui est appliquée à chaque patch sur les paires
HDR d’entrée concaténées et les paires LDR de tonalités mappées. La prédiction
finale est une moyenne de tous les patchs sur l’image.
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(a) L’architecture du générateur pour DeepTMO-HD est une version modifiée de l’architecture du
générateur de DeepTMO-R comme le montre la Figure 8.17a. Le générateur DeepTMO-HD
est essentiellement une forme de générateur grossier à fin. Tandis que le générateur plus fin
G2 a l’image originale en entrée, l’entrée G1 est une version échantillonnée 2×. Cette image

échantillonnée est ensuite effectivement passée à travers les composants suivants G
(F )
1 , G

(R)
1

et G
(B)
1 qui sont similaires à ceux du générateur dans DeepTMO-R. La prédiction finale de

l’extrémité arrière GB
1 est ensuite concaténée avec la sortie de l’extrémité avant du générateur à

plus petite échelle G2. Ceci est ensuite passé à travers le composant G
(B)
2 pour produire une

sortie avec correspondance des tonalités. Ainsi, notre modèle utilise efficacement l’information à
l’échelle plus grossière et à l’échelle plus fine pour faire une prédiction qui permet de mieux retenir
la structure globale et les moindres détails des bas niveaux. L’architecture du discriminateur a
une architecture identique mais nous lui donnons deux échelles d’entrée différentes, l’original et
sa version échantillonnée 2×. Cela oblige le générateur à s’occuper à la fois des détails globaux
et locaux.
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Figure 8.19 – Nous comparons les performances quantitatives de DeepTMO-R, DeepTMO-S et
DeepTMO-HD avec celles des BestTMO.

profondeur, qui peut générer des sorties visuellement agréables et réalistes pour une

grande variété d’entrées HDR.

2. Nous explorons et comparons 3 architectures cGAN différentes conçues spécifiquement

pour générer des sorties LDR à haute résolution pour la cartographie des tonale en

préservant les informations structurelles globales ainsi que les détails locaux à grain

fin.

3. Nous surmontons le défi de l’indisponibilité des images cartographiées de la tonalité

de vérité terrain pour notre ensemble de données HDR en utilisant une métrique

objective pour quantifier et classer les divers TMOs.

4. Nous fournissons une comparaison détaillée de la méthodologie que nous proposons

avec treize TMOs différents sur un large ensemble de données de 105 images.

5. Notre modèle proposé peut être exploré pour de futures conceptions de TMO opti-

malaux basé sur l’apprentissage en profond.

(Voir le chapitre 6)
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Table 8.2 – Résultats quantitatifs. résultats moyens Ã l’TMQI sur un ensemble de 105 images.

TMOs TMQI

Ward TMO 0.71 ±0.07
Pattnaik TMO 0.78 ±0.04

Log TMO 0.72 ±0.09
Gamma TMO 0.76 ±0.07
Ashikh TMO 0.70 ±0.06
Durand TMO 0.81 ±0.10
Tumblin TMO 0.69 ±0.06
Drago TMO 0.81 ±0.06
Schlick TMO 0.79 ±0.09
Reinh TMO 0.84 ±0.07
Fattal TMO 0.81 ±0.07
Chiu TMO 0.70 ±0.05

Mantiuk TMO 0.84 ±0.06
DeepTMO-HD TMO 0.87 ±0.06
DeepTMO-S TMO 0.88 ±0.07
DeepTMO-R TMO 0.86 ±0.08
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Figure 8.20 – Resultat Qualitatif de DeepTMO-HD.
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8.1.6 Orientations futures de la recherche

La disponibilité à grande échelle des bases de données d’images et de vidéos du HDR a

ouvert la voie à de nouvelles analyses, les perspectives d’avenir de la recherche. Dans cette

section, nous discutons de plusieurs extensions possibles de cette thèse.

• Investigation de l’imagerie HDR pour les scènes dynamiques. Comme le montrent

les résultats des Figures 4.13 et 5.19, l’information préservée par les images HDR

facilite l’extraction de caractéristiques locales très stables et invariantes de luminance.

Les scénarios prennent en compte les images HDR qui sont prises à partir de scènes

statiques. Cependant, Les scénarios peuvent être dynamiques et, par conséquent,

plus difficiles. Cela s’explique principalement par le fait qu’il n’y a pas la même

chose. Les combinaisons de transformations physiques telles que les transformations

géométriques (rotation, changement de point de vue), des variations déformatrices et

dues au bruit des capteurs. Un scénario pratique comprend l’éclairage + l’éclairage

des changements de points de vue avec des plates-formes mobiles telles que les drones.

Les modèles présentés doivent théoriquement s’adapter en fonction de l’invariance

des algorithmes d’extraction d’entités, tel qu’illustré à la figure 5.20 pour la rotation

planaire. Cependant, pour les problèmes de rotation hors plan qui sont spécifiques à

une capture mobile. nos modèles ont besoin d’être recalibrés de manière. Il est à noter

qu’il n’y a pas d’équipement de létat les algorithmes d’extraction de caractéristiques

locales sont meilleurs sous toutes les transformations [116, 119].

Par conséquent, au lieu d’apprendre simplement les modèles régresseurs avec un coin de

référence et un descripteur basé sur le coin et le descripteur caractéristiques multiples,

caractéristiques multiples à partir d’algorithmes d’extraction de caractéristiques, par

exemple celles qui ont été évaluées. dans[119], a besoin d’être infusé. De plus, il

nécessite un calibrage géométrique approprié qui doit être créé.

• Perception Vs Vision. Au chapitre 6, nous avons proposé les TMOs basés sur

l’apprentissage profond pour les TMOs perceptuels. Comme nous l’avons déjà men-

tionné à la section 6.1, l’une des extensions possibles est la conception d’une tâche

optimale. TMO basé sur l’apprentissage profond en affinant le modèle DeepTMO.

Cela pourrait nous aider à comparer les résultats obtenus à partir de réseaux profonds

tirés de deux objectifs différents (vision perceptuelle et vision par ordinateur) sur un

ensemble de données HDR. Puisque la technologie HDR donne une représentation

de scènes du monde réel plus proche de l’oeil humain, la comparaison entre les deux

modèles ouvrira davantage les possibilités de recherche dans la compréhension plus

profonde de ces réseaux. Il motivera en outre la recherche d’explications techniques

inspirées par le cerveau humain.

• Analyse HDR dans le domaine temporel. Une grande partie de cette thèse explore
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la polyvalence de l’imagerie à gamme dynamique élevée pour améliorer la stabilité

des caractéristiques locales dans les images RVB. Cependant, l’une des extensions

naturelles est la mise à niveau de l’analyse pour les vidéos HDR. L’information dans

le domaine temporel a beaucoup plus de potentiel pour les applications de vision par

ordinateur en temps réel telles que les tâches de surveillance. Une grande quantité

d’informations perdues dans des scènes à faible contraste peut être reconstruite à l’aide

d’une modélisation prédictive en utilisant une dimension temporelle supplémentaire

des vidéos HDR. Cela pourrait améliorer les performances dans plusieurs tâches vidéo

telles que les applications de surveillance, le suivi en temps réel, l’analyse des gestes

et des actions.

• Apprentissage approfondi de l’imagerie HDR avec de petits ensembles de données.

En comparaison avec des millions d’images annotées LDR, les ensembles de données

HDR accessibles au public sont très petits. Cela limite à son tour l’exportabilité de

la technologie HDR. Bien qu’une solution optimale serait de créer un grand ensemble

de données HDR avec une évaluation subjective, Si l’on se fie aux vérités du terrain,

ce serait une tâche fastidieuse. Une solution alternative peut être l’ingénierie inverse

de l’ensemble de données de formation en reconstruisant leur HDR correspondant

à l’aide du HDR des modèles récents de TMO inverses basés sur l’apprentissage

profond[30, 32]. Une autre alternative pour les travaux futurs peut être de s’appuyer

sur la quantité limitée d’échantillons, augmentés de avec des échantillons bruités

et ensuite un paradigme d’apprentissage faiblement supervisé[65]. Pour des tâches

telles que le mappage HDR vers LDR, un apprentissage totalement non supervisé

est également possible, sans donner de paires d’entrées-sorties[120]. L’intuition est

de laisser au réseau le soin de décider, par lui-même qui est la meilleure sortie tone-

mapping possible simplement en modélisant de manière indépendante la distribution

sous-jacente des images HDR d’entrée et des tonalités de sortie.
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Abbreviations

BRISK Binary Robust Invariant Scalable Keypoints

CC Correlation Coefficient

cGAN Conditional Generative Adversarial networks

CNNs Convolutional Neural Networks

DeepTMO Deep Learning based Tone mapping operator

DesTMO Descriptor Optimal Tone Mapping Operator

DetTMO Detector Optimal Tone Mapping Operator

FAST Features from Accelerated Segment Test

FREAK Fast Retina Keypoint

Harris Harris Corner Detector

HDR High Dynamic Range

LDR Low Dynamic Range

mAP Mean Average Precision

OpTMO Optimal Tone Mapping Operator for Image Matching

P-R Precision-Recall

RR Repeatability Rate

SIFT Scale-invariant feature transform

SURF Speeded-Up Robust Features

SVR Support Vector Regressor

TMO Tone Mapping Operator
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