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FOREWARD 
 

 

 

This thesis is supported by the Higher Education Commission (HEC) Pakistan in 

collaboration with Campus France under the student file number 904180K. The duration of the 

thesis was from February-2018 to January-2021. The thesis took more time to complete due to 

the emergence and spread of the novel COVID-19 pandemic. The domain of this research falls 

in Industrial Engineering with a focus on manufacturing systems. The topic of research is “The 

analysis of quality in a Reconfigurable Manufacturing Systems” by using operation research 

techniques.  

The Reconfigurable Manufacturing System is an advanced field of research that offers 

a quick changeability and enhanced level of functionalities. Unlike its predecessors i.e., 

dedicated lines and flexible manufacturing systems, it can produce a variety of products with a 

high level of throughput. Thus, it has thus revolutionized industrial and manufacturing 

practices. Although it has contributed to the industrial and research arena; however, it involves 

multiple facets of configurations, tools, and modules to perform different operations. This has 

led to complexity in the design and implementation of the reconfigurable manufacturing 

systems. Due to this complexity, it becomes difficult to analyse its quality of production as it 

offers numerous production routes to perform the same operation.  

This research is designed to analyse the impact of different defects and machine 

disruption on the quality of production in a reconfigurable manufacturing system. The different 

manufacturing defects are considered by investigating the functional requirements and design 

parameters of a manufacturing system. The goal is to understand how the process planning 

efforts in a reconfigurable manufacturing system are affected by the variation in quality and 

defects. To do so, a multi-objective model involving the novel objectives of cost, quality decay 

index, and modularity efforts is proposed. A hybrid version of two powerful meta-heuristic is 

proposed to implement the model. To help managers understand and compare the effect of 

quality variation, the process planning in reconfigurable manufacturing systems is carried out 

with and without any variation in quality and associated defects. The models and solution 

approaches are implemented in two industrial case studies.  
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This research is a first attempt towards investigating the quality aspects of 

reconfigurable manufacturing systems. Several recommendations and perspectives are 

proposed for both practitioners and researchers to advance this field of research. These 

recommendations will offer an enabling environment to closely analyse the different sources 

of defects and quality variation and how they can influence the profitability, cost, modularity, 

and responsiveness of a reconfigurable manufacturing system.  
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CHAPTER 1 

INTRODUCTION 
 

The modern markets require cost-effective products with an adequate level of 

durability. The durability aspect of a product is primarily defined by its quality and 

conformance to design standards. Thus, the analysis of product quality lies at the heart of the 

manufacturing system design. Further, the analysis of quality-related issues is advantageous 

for a manufacturing system from a profit and sustainability point of view. To be more 

sustainable towards the quality protocols; it is imperative to identify the root causes of quality 

variation and defects in a manufacturing system. This chapter discusses quality aspects in the 

Reconfigurable Manufacturing System (RMS). RMS is an advanced field of manufacturing that 

is cost-effective, changeable, and responsive. A brief background of RMS and process planning 

is provided at first and then the research statement, objectives, and thesis outline are presented. 

In more detail, this chapter is designed as following. Section 1.1 offers the background of RMS 

by comparing it with other manufacturing systems. Section 1.2 describes the RMS 

characteristics and the selection of characteristics for this study. Section 1.3 highlights the role 

of quality in a reconfigurable manufacturing system. Section 1.4 discusses the process planning 

in RMS and explains the different trade-offs between the choice of solutions during process 

planning and how quality can impact such trade-offs. Section 1.5 explains the Manufacturing 

System Design Decomposition (MSDD) which helps in dividing a complex system into different 

levels/sub-systems. Section 1.6 briefly discusses the statement of undertaken research problem 

related to the analysis of cost, time, and modularity. Section 1.7 provides the objectives of this 

research. Section 1.8 discusses the scope and limitations of this research. Lastly, Section 1.9 

outlines and briefly explains the chapter-wise organization of the thesis.  
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1.1. Background of Reconfigurable Manufacturing System 
 

Modern manufacturing systems are facing different challenges due to the dynamics of 

customer demands. These challenges can take the form of changing trends of product 

requirement and functionality, product mix, cost-effectiveness, and responsiveness, etc. The 

traditional manufacturing systems such as Dedicated Manufacturing Lines (DML) and Flexible 

Manufacturing Systems (FMS) are unable to cost-effectively address such challenges. For 

example, DMLs are suitable for mass production while they lack product mix and variety. On 

the other hand, FMSs can accommodate the product variety; however, they are not 

appropriately designed for high throughput of production. Further, they offer an overwhelmed 

amount of flexibility in their system design which is underutilized and thus they can prove to 

be a costly manufacturing system. To cope with such issues, a novel manufacturing system 

called Reconfigurable Manufacturing System (RMS) was introduced. RMS is defined as “a 

changeable system designed at its outset to respond to changing market by offering 

functionality and capacity needed when needed” [1]. The changeability and functionality 

aspects of RMS can be explained with the help of an example given in Figure 1. An initial 

configuration called original configuration is available which processes a product by using a 

set of tools. The modified forms i.e., configurations A, B, and C are obtained by using a 

different worker/tools/product. Thus, the functionality of the existing configuration can be 

adapted to the changeability requirements. This makes RMS a novel production taxonomy and 

enhances its flexibility to accommodate different changes.  

RMS can accommodate diverse production requirements by using a novel 

Reconfigurable Manufacturing Tool (RMT) to produce a variety of products in their required 

demand. RMT helps the RMS to perform a variety of operations by changing between its 

respective configurations. To change between these configurations, RMS needs two types of 

modules i.e., basic, and auxiliary modules. The basic modules are fixed in nature, and they 

form the foundational basis of the RMS design. On the other hand, the auxiliary modules are 

changeable, and they support the abrupt changes brought into the system. Besides these 

modules, an RMS offers the distinguished characteristics of Modularity, Integrability, 

Customization, Convertibility, Scalability, and Diagnosability [2]. These characteristics play 

an essential role in the architectural design of RMS and its functionality over the period of its 

use. The RMS characteristics are discussed in the below sub-section. 
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Figure 1. Changeable functionality of RMS 

 

1.2. RMS Characteristics 
 

RMS offers different characteristics which distinguish it from other manufacturing 

systems. These characteristics are Modularity, Integrability, Customization, Convertibility, 

Scalability, and Diagnosability. The description of each characteristic is provided in the 

following sub-sections.  

1.2.1. Modularity 

RMS uses different tools which link the operations with feasible machines and their 

respective modules. An RMS can be adapted to perform various operations by using different 

combinations of tools, machine configurations, and modules. This characteristic of RMS is 

called modularity. It enables the RMS to perform a variety of operations by using a single 

machine which enhances the overall usefulness of the reconfigurable systems.  
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1.2.2. Integrability 

This characteristic is used to integrate the product-process mix in RMS, i.e., by 

considering the cluster of product features and relating them with the process capabilities. In 

addition, controls and process units are also designed to be integrated into the overall system.  

1.2.3. Customization  

Customization helps in designing a reconfigurable system around a part family instead 

of a single product. Thus, minimum effort is needed to produce different parts from the same 

family of products. Compared to a flexible manufacturing system, which offers a generalized 

level of flexibility, RMS offers customized flexibility in manufacturing which makes it more 

cost-efficient. In other words, RMS uses the extent of flexibility needed, when needed by using 

the customization characteristic. RMS is expensive manufacturing, and it needs higher initial 

investments. Customization enables the RMS to produce a variety of products to justify the 

higher investments.  

1.2.4. Convertibility 

A manufacturing system needs to be flexible enough to adapt to the different product 

needs. RMS uses the convertibility characteristic to adapt to such product/operational needs. It 

is converted from its current state to a modified state to assist in the production requirements 

of different operations, e.g., a spindle might be added, or multiple other functions can be 

involved. 

1.2.5. Scalability  

As the level of demand fluctuates, a manufacturing system needs to adjust its 

production accordingly. In a contrary situation, the level of production will be either more than 

what is needed which will result in excessive product units/extra cost or it will be less than the 

required demand, resulting in an opportunity loss. Thus, a scalable manufacturing system will 

assist in avoiding both extra cost and opportunity loss. The level of production in RMS can be 

scaled up/down by adding/removing reconfigurable machines, both in series as well as in 

parallel.  
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1.2.6. Diagnosability  

A production system may not always perform at its optimal working condition and can 

undergo certain problems. These problems can be due to the failure of the machine, tooling 

error, or other issues. It is imperative to detect the potential sources of machine failures and to 

identify the causes of bad quality production. The inability to do so can affect the level of 

acceptable production and loss in profit. RMS uses its diagnosability characteristic to perform 

system diagnostic by using statistical techniques and signal processing procedures. Figure 2 

describes different RMS characteristics. 

This research considers the modularity characteristic in the design of RMS process 

planning. An index is defined for modularity which considers the modular efforts wasted 

during reconfiguration as well as the modular effort wasted due to bad quality production. 

Certain modular efforts are needed to produce each product unit and the failure of a product 

unit means that this effort is also wasted. Further, this research also considers diagnosability in 

the sense that the proposed model considers the failure and disruption of the machine as well 

as the analysis of multiple causes of quality variation and defects. These causes of variation 

result in failed product units which are covered in the discussion of the Manufacturing System 

Design Decomposition (MSDD) framework.  

 

Figure 2. Description of RMS characteristics (Adapted from [10]) 
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1.3. Quality aspects in Reconfigurable Manufacturing System  
 

One of the important aspects of any manufacturing system is its ability to adapt and 

adjust to quality variation and malfunctions. The quality of products and processes is 

influenced by many factors such as the nature of defects, disruption of machines, etc. In 

addition, a system becomes complex when there are a higher number of ways to connect 

machines in its production system. RMS is a complex manufacturing system as it uses gantries 

and conveyers to connect the reconfigurable machines. Such arrangement multiplies the 

number of possibilities to link the machines. Thus, it becomes harder to analyse its quality of 

production.  

This ability of RMS to offer many production routes results in two quality-related 

problems [3]. Firstly, the variation in product dimensional quality increases as the product 

passes through different configurations. Secondly, if there is a problematic machine, it is hard 

to trace it merely by inspecting the quality of products. In other words, thanks to the enhanced 

capabilities of RMS, a product may pass through one of the several designated routes. For 

example, for 20 RMS production stages, each containing 6 machines, there are as many as 3.6 

x 1015 ways to connect the machines [4]. This makes it complicated, even impossible, to analyse 

the product quality in each route.  

In addition, every aspect of a product cannot be analysed by a manufacturing system. 

Thus, a system only considers certain aspects of a product called Key Characteristics (KC’s). 

KC accounts for most of the quality variation and disruption of a product. In other words, the 

overall quality of a product can be improved by enhancing the quality of its key characteristics 

[5]. The dimensions, precision, and tolerances are some of the examples related to KC.   

KCs identify the crucial aspects of a manufacturing system that can influence the 

performance variables such as cost, quality, responsiveness, etc. Due to technological and time 

constraints, managers find it difficult to analyse and improve each characteristic. Thus, the 

identification of key characteristics helps managers in devoting their efforts to a set of 

minimum characteristics which can substantially improve the efficiency of a manufacturing 

system. For example, from the product point of view, the possible key characteristics can be 

tolerances, surface finish, and conformance to design parameters. Once the list of key 

characteristics is formulated, the next task is to identify the assignable causes in a 

manufacturing system that can influence the behaviour of these characteristics. For example, 
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machining and process precisions are some of the assignable causes that can influence these 

KCs. Such assignable causes are responsible for the variation in the quality of Key 

Characteristics (KC). Variation in this context is defined as “the deviation from standard 

specifications”. As established earlier, since RMS is a complex manufacturing system, thus the 

role of KCs and the synthesis of quality variation is even more prominent in analysing its 

performance.  

To analyse the quality performance of RMS, a set of KCs can be defined which are 

central in impacting the overall efficiency. These KCs can either be identified by consulting 

the managers or by analysing the established literature on RMS and the quality performance 

indicators. The identification and the modelling of such KCs highlight the role of quality in 

assigning configurations to different operations (also called process planning). The 

identification of KC and their related discussion is covered in Section 1.5 by using the 

Manufacturing System Design Decomposition (MSDD) framework. To summarise, this 

research aims to address the following questions:  

• What is the impact of quality variation on the performance of RMS process planning? i.e., 

the evaluation of process plans in terms of the number of conforming and failed operations. 

• How a Manufacturing System Design Decomposition (MSDD) framework can be applied 

to RMS and what are the prominent assignable causes of variation which influence the 

overall product quality in RMS? 

• What is the trade-off between quality, cost, and modularity in the context of RMS? The 

modularity index is defined in relation to quality, and it considers the proportion of lost 

effort in producing failed operation units.  

The concept of manufacturing system design decomposition and modularity will be 

discussed in the forthcoming sections. The above questions, if addressed appropriately, will 

enable managers to assign machine configurations to operations with a minimum impact on 

the product quality. Furthermore, it will help in the synthesis of modular efforts needed for 

completing the overall set of operations, also called process planning. The section below 

discusses process planning in RMS and the impact of different objectives on the process 

planning decisions.  
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1.4. Process planning in RMS 
 

Process planning is a pertinent issue in RMS, and it assists in the logical flow of a 

reconfiguration. Musharavati and Hamouda [6] defined process planning as “the process of 

facilitating the logical reconfiguration in a manufacturing system designed to be 

reconfigurable, to achieve cost efficiency”. The ability to logically reconfigure a manufacturing 

system is dependent on the reconfigurability and flexibility inherited in a system.  

 Process planning is not a standalone decision, rather it depends on the knowledge of 

operation sequence and routing in a manufacturing system. For a multi-part or multi-feature 

RMS, the sequence of operations in the respective part/feature will follow its route in terms of 

the use of machine configurations, modules, and tools. This information will be used by the 

process planning to assign configurations to operations to optimize the efforts of cost, time, 

etc. A typical process planning decision considers the matrix of machines, configurations, 

modules, and tools as an input to assign them to the operations of respective features. An 

example of a process plan is given in Table 1. It can be read column by column such as machine 

1 (M1) with 3rd configuration (C3) uses the modules (A1, A7) and tool T3 for 2nd operation (O2) 

of the first feature (F1).  

Table 1. An example of a typical process plan 

Machines M1 M2 M1 M3 M2 M1 M1 
Configurations C3 C5 C2 C4 C6 C1 C1 
Modules A1, A7 A4 A2, A8 A5 A4, A3 A6 A8, A9 
Tools T3 T5 T2 T6 T4 T3, T1 T1 
Operations O2 O6 O1 O4 O5 O7 O3 
Features F1 F2 F1 F2 F2 F2 F1 

 

Different process plans will result in different solutions. If cost and time are the ultimate 

objectives to be optimized, a particular process plan may perform well on the dimension of 

cost, however, it may take more time to complete. Although subjective in its nature, a manager 

can still select a sub-optimal feasible solution by selecting a process plan concerning the 

optimal value of cost or time. This will impact the solution offered by the other objective 

function. One objective that is always in conflict with production time and cost is the quality 

of production. For example, a quality product needs precision, process knowledge, defect-free 

production, and conformance to standards which all come at an additional investment and 

production time. In the modern era, it is worthless to say that we have produced x quantity of 
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products in a period instead of b period (a<b) if either the shortened time impacts the product 

quality, or the product quality analysis is not considered at all.  

It thus becomes a bigger challenge to analyse the product quality in RMS due to:  

i) The complexity inherited by RMS in offering a high number of production routes makes 

it difficult to analyse the quality through each route. 

ii) The quality-based solutions can potentially impact the solutions of cost, time, etc. For 

better understanding, we consider the following example.  

As shown in Figure 3, there are six reconfigurable machines available, each containing two 

configurations, to perform Feature 1 (F1). The state of quality of each configuration can be 

read by using the rubric given in the figure. The feasible paths to process this feature are a, b, 

c, d, and e, and the corresponding process plans used in each path are provided in Figure 4. The 

objective is to assess the cost, time, and quality of each path. 

 

Figure 3. Configuration layout with paths and quality of production 

 

Figure 4. Process plans for different paths. 
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The solutions offered by a and b will be better concerning the cost and the time as they 

use a smaller number of configurations (3 in each case). However, path b will be compromised 

concerning the quality as it contains a defective machine configuration. The defective nature 

of the machine can be attributed to variation in quality due to maintenance issues, poor tooling, 

or any other assignable cause of quality variation. If we compare the process plan of paths c, 

d, and e; all of them use the same number of configurations (4 in each case). In fact, between 

paths d and e, there is only one difference of configuration while the remaining types of 

configurations are the same for both. The results of these paths might indicate that all of them 

differ in all three objective function values. Path e may perform low on the quality dimension 

as it uses a defective configuration (42) while path d will perform well in terms of quality, 

however, it may offer sub-optimal solutions of cost and time. To analyze or optimize the cost 

or/and the time of a process plan or a reconfigurable process plan, a simple directed acyclic 

graph is used to model the operations and the anteriority. To analyze or optimize the product 

quality of a process plan or a reconfigurable process plan, a non-oriented graph is used to model 

the operations, the structure of the manufacturing system, and the fixtures (capability process 

assessment for each tolerance). Therefore, the difference in modeling impacts the complexity 

of the quality assessment of a process plan or a reconfigurable process plan. A discussion on 

the directed graph and non-oriented graph and their relationship with quality is provided in 

Appendix A.   

 

Although the same number of configurations have been used in the latter three paths, the 

difference in solutions is because each configuration:  

a) has a different machine exploitation and operation cost.  

b) needs different time values for adding, subtracting, and re-adjusting the modules according 

to the operational requirements which results in time differences. 

c) operates in a different state of quality which can impact the process planning decision.  

 It is understood that such analysis of the process plan will be helpful for managers in 

evaluating the impact of different paths on the solution efficiency of various objective 

functions, especially quality. Once this understanding is developed, future research can aim at 

analysing the impact of the position of a defective configuration on the quality of production. 

For example, a question can be asked such as “what is the difference in the quality of production 

if a defective configuration operates in the start or towards the end of a process plan?” For a 
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complex system such as RMS, it is advantageous to examine its quality by dividing the system 

into different levels. This can be accomplished by using a Manufacturing System Design 

Decomposition (MSDD) framework which is discussed in the below section.        

1.5. Manufacturing System Design Decomposition 
 

The performance of a complex manufacturing system can be easily analysed by 

decomposing it into modules and elements. It is thoughtful to do so as manufacturing systems 

are a complex phenomenon and they involve the interaction between several elements, making 

it very difficult to analyse the impact of low-level issues and in response, change the 

architecture of the manufacturing system [7]. The literature contains certain approaches 

towards the decomposition of a manufacturing system. For example, Spearman and Hopp [8] 

offered a reductionist perspective that divides a major system into small components to make 

it easier for analysing the behaviour of each component.   

 Once the manufacturing system is decomposed, its components can be classified into 

different levels according to their functionalities. Furthermore, the performance of the 

components at each level can be analysed and their impact on the top-level components can be 

investigated. Each manufacturing system is designed to optimize some criteria of objective 

functions such as cost, time, responsiveness, quality, etc. which rests at the top level of the 

decomposed structure. Thus, decomposition helps in relating low-level activities and tasks to 

higher-level objectives and functional requirements. It also helps in analysing and interpreting 

the relationship among the components of a system design.  

 The above discussion aims to introduce the Manufacturing System Design 

Decomposition (MSDD) framework and its application to the reconfigurable manufacturing 

system. The MSDD decomposes the overall objectives of a manufacturing system into 

measurable sub-components. The effective control of these sub-components demonstrates how 

well MS has achieved its designed objectives. The decomposition of objectives of MS is 

performed by using the Functional Requirements (FR) and the Design Parameters (DP). MS 

defines certain FRs to help answer “what to achieve?”. Once the “what” question is answered, 

DPs are used to address “how to achieve the FRs?”. In other words, DP constitutes the physical 

implementation of the FR. The decomposition of a manufacturing system into functional 

requirements and design parameters can help managers to understand the operational needs of 

a manufacturing system.  
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Confusion is normally found in the manufacturing system regarding the objectives and 

their means. An objective can be minimizing the manufacturing cost and the means to do so 

may involve activities such as optimal machining, removing redundant activities, and 

thoughtful deployment of personnel. The machining, removing redundant activities, and 

personnel-related tasks are not the ultimate objectives; however, they are the means to support 

and realize the main objective. The same difference is true between functional requirements 

and design parameters. The design parameters are the operational details to achieve the goals 

set by the functional requirements. The application of the MSDD framework to RMS can serve 

the following purposes: 

▪ Compared to other manufacturing systems, an RMS can be easily decomposed into sub-

components and modules thanks to its modular structure. This is under the working 

principle of MSDD which divides a system into modules and sub-components. It will be 

interesting to analyse the modular RMS from a system design decomposition perspective.  

▪ The application of MSDD to RMS will identify the different sources of variation and their 

impacts on the overall performance of the system. In Chapter 3, MSDD will be adapted to 

identify the different sources of variation that impact the product quality in RMS. The 

managers will be able to perform diagnostics of such variation to improve the quality of 

production.   

▪ A manufacturing system can be analysed concerning several criteria. Different sets of 

criteria can be found in the literature with equal applicability and less consensus. In Figure 

5, Cochran et al. [7] defined the list of seven criteria for a stable manufacturing system. 

These are design, quality, problem solution, output predictability, on-time production, 

analysis of operational cost, and investment. In the literature review section, it will be 

established that RMS has been analysed from different aspects; however, the existing 

literature lacks in analzsing the quality of production in RMS. Thus, the application of 

MSDD will support in analysing the quality of a reconfigurable manufacturing system.  
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Figure 5. Key requirements for a stable manufacturing system (Adapted from [7]) 

 

1.6. Thesis research statement 
 

This thesis simultaneously examines the quality, modularity, and cost in a 

reconfigurable manufacturing system. The impact of variation in quality on the performance 

of RMS process planning is examined. A novel Quality Decay Index (QDI) is proposed that 

calculates the number of failed units and conforming units delivered by a process plan. In 

addition, the analysis is performed by integrating the modularity characteristic of RMS. 

Modularity enables the RMS to perform a variety of tasks by using its features of basic and 

auxiliary modules. Shaik et al. [8] proposed to include modularity during the design phase as 

it influences the overall flexibility and quality. This research considers modularity as an 

integral aspect of the RMS design and the aim is not only to analyse the impact of quality 

variation on the performance of RMS but also, how does the modularity of the overall system 

get affected. An index is defined for modularity which considers the wasted modular effort 

during reconfiguration and in the presence of quality variation.  

1.7. Research objectives 
 

This research is carried out to meet the following objectives: 

• To study the objective functions of the Total Cost (TC), the Quality Decay Index (QDI), 

and the Modularity Effort (ME) in RMS process planning. The aim is to analyse how these 

objective functions are influenced by the quality-related variation. The proposed QDI 

quantifies the number of conforming and failed units produced by a process plan.  
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• To highlight and compare the impact of quality variation by using two models. Model 1 

performs the analysis by using all three objective functions i.e., TC, QDI, and ME. Model 

2 performs the analysis without using the index of quality. In this way, a comparison can 

be drawn. 

• To study the impacts of quality variation on the modularity of RMS i.e., the number of 

modules used with and without the variation in quality.  

• To analyse a complex RMS problem involving cost, time, and modularity by using a hybrid 

meta-heuristic. It combines the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and 

Multi-Objective Particle Swarm Optimization (MOPSO) to take advantage of their 

exploration and exploitation behaviour.  

• To implement the model on two case studies which vary in terms of complexity.  

 

1.8. Research scope and limitations 
 

The scope and limitations of this research can be described as: 

• The MSDD contains certain other functional requirements besides quality. Since the focus 

of current research is on quality, it does not fulfil the needs of other functional requirements.  

• The causes of quality variation can be classified into in-production variation and out-of-

production variation. This research only considers the in-production variation caused in 

quality during the production.  

• The presented mathematical model analyses reconfigurable manufacturing system. It is by 

far one of the complex manufacturing systems and the proposed model can be adapted to 

simpler manufacturing systems (for example, FMS) by modifying it to a certain extent.  

• The Quality decay Index (QDI) is calculated for the worst configuration (pessimistic 

configuration), therefore, only a simple directed acyclic graph is required. 

• The presented model is deterministic; hence, it is not designed to encompass the fuzziness 

and stochastic behaviour of manufacturing systems. Modern manufacturing systems are 

more dynamic and uncertain, and they contain stochastic characteristics. Since the model 

contains certain novelty, it can be considered as the basis and additional aspects of 

stochasticity can be added to it.  
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• Lastly, the proposed analysis is designed for a single period and single product; however, 

it can be extended towards the analysis of multi-product and multi-period RMS design.  

1.9. Thesis outline 

 

This thesis is organized into 5 chapters. Chapter 2 provides a review related to cost, 

modularity, and quality performance assessment in the associated literature. The established 

literature is surveyed regarding the use of qualitative and quantitative approaches for quality 

assessment. Following this, the existing focus on quality assessment in flexible manufacturing 

systems and reconfigurable manufacturing systems is presented. Furthermore, the functional 

requirements and design parameters are discussed to identify the quality characteristics and 

their associated assignable causes of variation. A detailed summary of the literature is presented 

for identifying the existing gaps. This chapter concludes by providing the problem statement 

to analyse the cost, quality, and modularity of a reconfigurable manufacturing system.  

Chapter 3 describes the proposed mathematical models. Two models are developed to 

analyse the process planning performance with and without quality aspects. Three objective 

functions are thus defined: the total cost, the quality decay index, and the modular effort. The 

chapter also provides the model assumptions and constraints.  

Chapter 4 includes the solution approaches and their application to case studies. It starts 

by reviewing the applications of meta-heuristics in the RMS design problems. A hybrid version 

of the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Particle 

Swarm Optimization (MOPSO) is introduced, and its four phases are discussed. Two metrics 

and two termination criteria are introduced for comparing the performance of different solution 

approaches. The results are discussed for two different case studies in terms of non-dominated 

solutions and their detailed process plans. Furthermore, the impact of quality variation is 

analysed on the modular efforts and cost-efficiency of RMS.  

Chapter 5 provides the conclusions of the research work, and it offers implications for 

practitioners and future researchers. A discussion is presented on the impact created by quality 

variation on the process planning decisions.  
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CHAPTER 2 

LITERATURE REVIEW 
 

 

 

 

This chapter presents the literature review related to the considered problem. The 

literature is analysed according to different classifications by describing the state-of-the-art 

and positioning the contributions offered by this research. This chapter is structured as follows. 

Section 2.1 offers the literature related to modularity and discusses the modularity issues in 

RMS design. Different contributions and modelling approaches are surveyed to understand the 

modularity aspects. In Section 2.2, the literature related to the analysis of cost is presented. It 

helps in understanding the aspects of cost considered in the established literature for assessing 

the RMS performance. Section 2.3 discusses the literature related to qualitative and 

quantitative approaches for assessing the quality of production. Following this, quality issues 

in Flexible Manufacturing System (FMS) and Reconfigurable Manufacturing System (RMS) 

are discussed in Section 2.4 and Section 2.5, respectively. The assignable causes of quality 

variation and Manufacturing System Design Decomposition (MSDD) are discussed in Section 

2.6. Section 2.7 provides a detailed summary of the literature review where different research 

gaps are identified. Finally, the chapter is concluded by discussing the research problem in 

Section 2.8.  
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2.1. Modularity analysis in RMS 
 

Modularity is an important RMS characteristic, and it can be better understood by 

drawing an analogy with the workforce assignment. The AAMA, a short form of the American 

Apparel Manufacturers Association, defined modularity as “a continued and manageable work 

unit of 5-17 workers performing a measurable task” [11]. The workers can be interchanged 

among the assigned tasks to the possible extent and their incentive is dependent on the quality 

and efficiency of products. The same mechanism is true for the modules and their interactions. 

A set of modules are available in RMS which can be interchanged according to the production 

requirement and to achieve a maximum level of efficiency. As there are two types of modules 

(i.e., basic, and auxiliary modules), the interchangeability function is performed by using the 

auxiliary modules. An effective level of modularity can assist in reducing the life cycle cost. 

Further, it is beneficial to integrate modularity in the early stages of system design for a higher 

reduction in life cycle cost [12]. A typical configuration layout of RMS is provided in Figure 

6. This illustration demonstrates the use of auxiliary modules in different operations. Two 

reconfigurable machines with two subsequent configurations are arranged in four stages to 

perform six operations of a product. The first and last production stages perform the first and 

last operations of the product while each of the second and third production stages performs 

two operations.  

In this section, the literature related to the modelling of the modularity characteristic is 

provided. Successful execution of RMS lies in the appropriate selection of a set of modules. It 

means that, from the available modules, a distinct number and types of modules are to be 

selected which can ensure an optimal performance against the objective functions. Chen et al. 

[13] proposed a feature-based approach for selecting the optimal number of modules required 

to produce part family by using reconfigurable machines. A minimum and sufficient set of 

modules were selected by using an algorithm approach. The functional requirement and design 

parameters were used to distinguish between geometric features of parts and modules of 

machines. The geometric features were regarded as the functional requirements whereas the 

design parameters were defined in terms of modules. The goal was to select appropriate design 

parameters in the completion of functional requirements.  
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Figure 6. An illustration of modular reconfiguration 

 

Modularity serves as a tool for linking different interfaces of a system. It becomes a 

challenge to assess the modularity when a system comprises of the higher number of interfaces, 

such as in the case of RMS. To demonstrate this, Farid [14] calculated two measures of 

modularity to support the ease in reconfiguration. It was argued that interface complexity 

influences the modularity of a system. Following this, a quantitative measure of modularity 

was proposed which was based on the axiomatic design knowledge and design structure matrix. 

This measure was used for understanding the number of interfaces in a manufacturing system. 

Haddou benderbal et al. [15] proposed a multi-objective model comprising system modularity 

and time to assess the performance of process planning in RMS. The objective of modularity 

analysed the interfaces from various viewpoints such as communality, diversity of operations, 

and the number of shared and common modules between several machine configurations. The 

model was applied to a case study by using the Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) to obtain non-dominated solutions. These solutions were further ranked based on 

the Technique of Order Preferences by Similarity to Ideal Solutions (TOPSIS). The results 

showed that the number and types of modules changed across different solutions based on the 

selection of different machine configurations.  
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Massimi et al. [16] have recently proposed a sustainable reconfigurable manufacturing 

system by using the concept of energy consumption. The aim was to select a modular RMS 

that warranted the minimum value of energy consumption. The model considered two RMS 

characteristics: modularity and integrability. The energy consumption in modularity considered 

the energy used in processing, changing configurations, adding, and subtracting auxiliary 

modules and energy used by basic modules. An exhaustive search heuristic approach has been 

used for implementing the model. Based on different scenarios, it was reported that the level 

of energy consumption is strongly dependent on using the type of machine configurations and 

basic and auxiliary modules.  

The core idea of modularity is to divide a complex RMS into a set of elements that can 

be executed independently and can later be plugged together. Lameche et al. [17] offered the 

definitions of modularity from design and user perspectives and outlined its different 

advantages from engineering and system viewpoints. The authors argued that modularity can 

manage a complex system, improve configuration, minimize the associated risks, and is 

important in economic decisions. They proposed a design structure method for analysing a 

modular architecture-based RMS.  

 Though several contributions have been offered to analyse the modularity; however, 

its relationship with the quality of production has not been explored. For instance, some issues 

could be addressed:  what is the impact on modularity if there is variation in the quality of 

production? In other words, how do quality and disruption affect the modular efforts?  To do 

so, this research links quality with modularity, i.e., the effect of quality variation is studied on 

the modular efforts and changes in configurations during the process planning. This aspect is 

further explained in Section 3.5 and an index of modularity efforts is proposed. 

2.2. The analysis of cost in RMS 

 

Cost is an important indicator that is used to assess the performance of a manufacturing 

system. The analysis of cost has been performed in RMS on several occasions. Single cost 

function, as well as the amalgamation of different cost functions, have been considered to 

assess the performance of RMS. The most opted cost functions for designing the RMS are the 

capital cost and the production cost. This section reviews different cost functions used for 

modelling the RMS process planning problems. Youssef and Elmaraghy [18] considered the 

RMS configuration selection problem in two phases. In the first phase, non-dominated 
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solutions for different demand scenarios were obtained by genetic algorithm and tabu search. 

The second phase used the same algorithms to derive alternatives from the non-dominated 

solutions obtained in the first phase for optimizing the transition smoothness. The selection 

criterion was based on the optimal cost of capital in establishing a configuration. Battaia et al. 

[19] studied the RMS flowline for batch production by using an optimal cost-based criterion. 

The main objective was to optimize the equipment cost in meeting demand by fulfilling the 

constraints. The constraints were related to the design of turrets and modules, the location of 

parts, and the operations procedure. A MIP (Mixed Integer Programming) model was 

developed and implemented on an industrial case study. Moghaddam et al. [20] studied the 

capital expansion cost for scalable configuration design in RMS. A mathematical model was 

presented to analyse the cases of single production flowline and part family designs.  

Deif et al. [21] defined the cost function for RMS which is comprised of two 

components. The first component was related to the physical capacity cost for scaling the 

system while the second component was associated with the system reconfiguration. Dou et al. 

[22] studied an integrated configuration selection and scheduling problem in a reconfigurable 

flowline. A mixed integer programming model, which included cost and time as objectives, 

was proposed. The cost function contained the components of reconfiguration and capital cost. 

The model was deterministically validated and then implemented through NSGA-II. In another 

study [23], NSGA-II was used for solving the machine selection problem. More specifically, a 

machine was selected from the set of machines to perform operations with different 

characteristics. The selection was made based on the minimum cost which comprised of costs 

related to production, reconfiguration, tool use, and tool change.  

Goyal et al. [24] proposed the objectives of cost, reconfigurability, and operational 

capacity where the objective of the cost was modelled in terms of configuration cost. A Genetic 

Algorithm (GA) and Shannon entropy approach were used for the identification of non-

dominated solutions and their subsequent ranking, respectively. Bensmaine et al. [25] proposed 

a multi-objective model to design a process plan for multiple units of a single product. The 

model included the objectives of the total cost and total time. The function of the cost was 

defined in terms of costs of using machine and tool, changing configuration and tool, and 

transportation cost.  

Zhao et al. [26] proposed a 0-1 programming approach for the cost-effective 

improvement of reliability of RMS. The objectives were the minimization of reconfiguration 
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cost and the maximization of system reliability. A course-grained GA method was used to solve 

the model by defining the problem as a single objective function using a novel fitness function. 

Several test runs and sensitivity analyses were performed to validate the model. Chaube et al. 

[27] studied a dynamic process planning problem. The proposed approach assessed the 

compatibility between product requirements and manufacturing functionalities. A feasible 

process plan was generated if the production was compatible, otherwise, a functionality error 

was prompted. The goal was to optimize the values of cost and time. Saxena and Jain [28] 

analysed the costs of investment, reconfiguration, operation, and salvage value for the RMS 

configuration design problem. The model was applied to different case studies by using the 

Loerch algorithm. Benderbal et al. [15] performed the analysis of modularity in RMS by using 

an Archived Multi-Objective Simulated Annealing (AMOSA) approach. The objectives of 

cost, time, and system modularity were analysed. The objective of the cost was based on 

configurations, modules, and machine exploitation costs. In another study, Dou et al. [29] 

developed a mixed-integer linear programming model to optimize the cost and the tardiness of 

RMS. The objective function of cost contained capital cost and reconfiguration cost of a 

reconfigurable flow line. An exact solution approach was used to validate the model by using 

benchmark instances.  

Touzout et al. [30] studied a sustainable process planning problem by using the 

objectives of production cost, time, and Greenhouse Gases (GHG). The cost components were 

related to the cost of changing machine configuration and tool and the processing cost. 

Different algorithms were applied, and their performances were compared through different 

solutions. More recently, Khezri et al. [31] designed a multi-objective model for addressing 

sustainability concerns in RMS. The objective function considered the costs related to the 

production and disposal of waste and Greenhouse Gases (GHG).  

To summarize, the costs related to capital, production, configurations, modules, 

transportation, installation, and energy consumption have been analysed in the RMS process 

planning problems. All these cost factors are important in considering various decisions. These 

decisions are related to optimal resource allocation, selection of a process plan, and changing 

between respective configurations. To date, the concerned literature lacks in analysing the costs 

related to variation in quality. RMS is prone to defects due to variation in quality just like any 

other manufacturing system. For a manufacturing system to perform cost-effectively, it is 

important to control the costs related to variation against improved quality [32]. In other words, 

a balance needs to be warranted between cost-quality trade-off by performing a combined 
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assessment of both. The analysis of variation in quality can help a manufacturing system to 

identify the sources of variability and ensure a smaller number of defects and lower cost. The 

costs related to variation in quality can be expressed in the form of repair, warranty claims, 

scrap, inspection, disruption, under-utilized manufacturing capabilities, etc. [33]. Besides other 

cost factors, this study analyses the costs related to scrap, re-work, and disruptive performance 

of the machine in the selection of a process plan. In this way, an integration between cost and 

quality can be ensured. The next section discusses the literature related to quality performance 

assessment to identify the potential research gaps.  

2.3. Quality Performance Assessment in Manufacturing 

Systems 

 

A manufacturing system can be assessed based on certain performance measurement 

criteria. The feasible list of acceptable performance measures for any business comprises 

functionality, cost, time, sustainability, adaptability, productivity, and quality. This section 

focuses on the performance measure of quality assessment. The ease of measurement of quality 

in a manufacturing system depends on many factors. These factors comprise of identification 

of Key Characteristics (KCs) responsible for variation, the importance of KCs in a 

manufacturing system, and the complexity of a system. The identification and selection of KC 

are pertinent as it significantly and negatively affects the performance of a product. The 

literature contains various qualitative and quantitative approaches to analyse the variation in 

the quality of manufacturing systems. These approaches are discussed in the following sub-

sections.  

2.3.1. Qualitative approaches towards the assessment of quality  
 

Qualitative approaches aim to accumulate the engineering knowledge available in a 

manufacturing system. This knowledge helps in brainstorming towards the causes of variation 

and implementing the remedial actions. There are different qualitative approaches in the form 

of Failure Mode and Effect Analysis (FMEA) and Root Cause Analysis (RCA). These 

approaches logically link the variation and failures with their respective causes/sources [34, 

35]. As a result, a tree of the cause-and-effect diagram is built to highlight the KCs and their 

impacts on the product’s usefulness. Compared to the qualitative approaches, this research 

offers a quantitative measure for the assessment of quality to help in the selection of a process 
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plan. As a result of the detailed process plan, points can be identified where more effort is 

needed. Further, the proposed quality index helps in changing the architecture, manufacturing 

processes, and resources to achieve better results.  

 

2.3.2. Quantitative approaches towards the assessment of quality  
 

The literature contains various indices for variation in quality analysis which have been 

quantitatively analysed by using different tools. For example, Quality Loss Function (QLF), 

Quality Function Deployment (QFD), Stream of Variation Analysis (SOVA), and Statistical 

Process Control (SPC), etc. have been used [36, 37]. The variation in quality can also be 

analysed by using maximum deviation, root mean square deviation, the fraction of non-

conforming items, and/or based on a metric outlining the customer expectations [37]. A 

noteworthy contribution towards the assessment of quality variation is Taguchi’s Quality Loss 

Function (QLF). It focuses on achieving a specific target value. However, the costs in QLF 

may not be accurately estimated due to intangible cost factors such as customer dissatisfaction 

[38]. Another approach to measuring the variation in quality is the traditional Process 

Capability Index (CPI) given by 𝑐𝑝 = 𝑇
6𝜎⁄ . It measures the ratio of dispersion to tolerance. 

Though it helps in comparing and selecting a process plan, it lacks more in-depth knowledge 

(e.g., the impact of different defects, number of conforming, and failed units).  

In the literature, a focus has been given to the identification of causes of variation as 

opposed to offering indices for measuring its impact on the system’s performance. For 

example, Loose et al. [39] presented a variation source identification methodology to identify 

the causes of variation. In some cases, raw sensitivity is used to analyse the cause of variation, 

i.e., by taking the partial derivative of effect variables concerning variables that cause variation. 

This helps in identifying the variables/characteristics which are critical in the performance of 

a product. Design of Experiments (DOE), Monte Carlo simulation, Variation Resource 

Management (VRM), and Pareto analysis are some of the analysis tools which have been used 

to identify the causes of variation [40]. Further, there are certain contributions to analyse the 

effects of variation on the performance of the system, prioritizing KCs and analysing the cost 

of variation [41, 42]. An important approach is the Stream of Variation Analysis (SOVA) for 

predicting the performance of multi-stage manufacturing systems. The SOVA uses a state-

space model for representing a KC [36].  
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Though different contributions have been offered towards the variation in quality analysis, 

a focus has been given to the identification of KC. On the contrary, this research assesses the 

impact of variation in KC on the performance of RMS. The section below presents a more 

targeted review on the analysis of quality in RMS and Flexible Manufacturing System (FMS). 

The latter has been selected due to its resemblance with RMS, in terms of flexibility and 

responsiveness.  

2.4. The analysis of quality in FMS 

 

The FMS dedicated literature contains qualitative and quantitative approaches for the 

assessment of quality. For instance, Hsu and Tapiero [43] introduced process quality control 

and considered various cost components. An important assumption was that all the defective 

items were scrapped and hence, the re-work of such items was not considered. In another study 

[44], a fuzzy multi-objective approach was presented to assist in the selection of FMS. The 

objective of quality was defined in terms of qualitative measures i.e., weak, fair, and good 

quality. In another study, Li and Huang [45] analysed the probability of good parts in FMS by 

using a discrete Markov chain approach. It was shown that the quality of FMS is dependent on 

the quality efficiency during the transition to different products. Souier et al. [46] studied the 

real-time part routing problem in FMS. They analysed the objectives of workload balancing 

and reliability. The study did not quantify the number of failed units due to reliability issues or 

the costs related to the sub-optimal performance of the system. It can be argued that quality in 

FMS has been defined either in terms of cost or in terms of a qualitative measure (weak, fair, 

good quality or probability of good parts). From the managerial viewpoint, it is beneficial to 

know the quantitative impact of variation in quality such as the number of conforming and 

failed units, which is the aim of current research. This index can be readily applied to the FMS 

systems as well.  

 

2.5. The analysis of quality in RMS 

 

A manufacturing system is designed to accomplish the goals of low-cost, improved 

quality of production, and responsiveness. The established literature on RMS focuses on 

achieving the goal of responsiveness through timely production at a low cost. However, it still 
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needs the support mechanism to accomplish the goal of high-quality production, as, without 

the emphasis on quality, a responsive and low-cost production will not help in enhancing the 

customer base and attaining a competitive edge. Besides, compromised quality of production 

will result in an inefficient use of resources.  

RMS is distinguished from other manufacturing systems due to its responsiveness. It enables 

the RMS to effectively respond to changes in the market, customer needs, environmental 

legislations, and coping with manufacturing system failures.  

⎯ The market changes may take the form of fluctuation in demand, dynamics of current 

product evolution, and/or launching an entirely new product.  

⎯ The customer needs may encapsulate the product mix, customized features in the product, 

Engineer-To-Order (EOT) and Make-To-Order product (MOT), etc. Thus, a customer may 

actively participate in the design process which necessitates a manufacturing line-up that 

can accommodate changes.  

⎯ Environmental legislations require the manufacturing enterprises to carry out the 

production in a way that results in a minimum impact on the environment, in terms of 

emissions. In this regard, sustainable reconfigurable manufacturing systems are gaining 

popularity and recently, a trend has been observed in which different models have been 

proposed to analyse RMS from an environmental perspective such as, Greenhouse Gases 

(GHG) and wastes [30, 31]. 

⎯ The manufacturing systems are subject to failures, and in such events, the emphasis of 

manufacturing systems should be to analyse the impacts of these failures on the product 

quality and the performance of the system. Although RMS literature studies the impact of 

failure on its productivity; however, there is a dearth of literature focusing on studying the 

impact of failures on product quality.  

A manufacturer selects certain manufacturing resources and evaluates their impact on 

the product KCs. These resources are changed if improvement in the quality is needed, and the 

analysis is repeated. The process of selection of resources is not cumbersome for a relatively 

less complex manufacturing system. RMS involves the selection of machines, configurations, 

modular features, tools, and Tool Approach Directions (TADs), along with the greater number 

of possible production routes. Thus, it becomes more difficult to analyse the impact of each 

resource on KC’s performance.  
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To some extent, the notion of quality has been discussed in the RMS literature. A 

theoretical perspective on different performance measures in RMS namely cost, reliability, 

utilization, and quality were provided in [47]. The measure of quality was defined as an average 

of utilization and reliability. The study did not provide a model or solution regarding quality 

assessment and its associated variation. More recently, Koren et al. [4] compared different 

manufacturing systems including Serial-Line-in-Parallel (SLP) and RMS. The comparison was 

carried out based on cost, responsiveness, and quality. It called for a more attentive focus on 

the assessment of quality in RMS due to its complex structure. There are six (6) key 

requirements for a stable system such as design, quality, delivery, cost, etc. [48]. The quality 

requirement needs the production to be completed within defined tolerances which can be 

achieved by eliminating the assignable causes of variation. Although RMS literature fulfils the 

requirements of design, cost, etc. it still lacks in analysing the causes of variation to comply 

with the quality requirement. 

This research translates the quality variation into the efficiency of Process Elements (PE) 

using failure rates. A PE is the characteristic of the manufacturing system which affects the 

KC. It comprises machining, tooling, production schemes, cutting condition, etc. PE defines 

the “assignable” causes responsible for variation in the quality of KC. The assignable causes 

selected in this study are disruption of machines, tolerance-related issues, and tooling errors. 

To this end, a quantitative index for the assessment of quality in RMS is proposed. This index 

enables the Decision Maker (DM) in selecting a process plan with minimum variation and 

defects.  

2.6. Assignable causes of quality variation  
 

The causes of variation of PE are explained with the help of a Manufacturing System 

Design Decomposition (MSDD) tree. Figure 7 that is adopted from the work of depicts Cochran 

et al. [49] depicts the selection of causes of variation. The Functional Requirements (FRs) and 

Design Parameters (DPs) in the given MSDD are divided into different levels for ease of 

understanding. At level 1, the objective is to maximize revenue or to minimize the cost which 

is achieved through customer satisfaction (DP). FRs at the second level are manufacture 

products to target design specification and deliver products on time. Since the current analysis 

is based on quality and not time, we focus on the left side of the MSDD tree. The production 

can be performed within the design specifications by warranting minimal variation in the 
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processes (DP). At level 3, the FR is the process stabilization that can be achieved by 

eliminating the assignable causes of variation (DP). Lastly, at the 4th level, the goal is to 

eliminate the assignable causes related to machines, operators, methods/processes, and 

materials. The former three are related to production processes while the latter is concerned 

with pre-production (acquiring raw material). Thus, we focus on eliminating the assignable 

causes of the first three factors. We posit that by controlling these causes, the ultimate objective 

of a Manufacturing System (MS), i.e., to minimize cost (or to enhance quality) can be achieved.  

The causes of variation are related to the Process Elements (PE) of machine, process, and 

tooling. The variation in quality due to these causes results in defects, as discussed below: 

• The cause of the machine-based defects is inadequate maintenance which results in the 

disruptive performance of the machine. Each machine works perfectly in the start of 

production, called the control state, and produces optimal quality operation units. However, 

due to inadequate maintenance, a disruption is observed in its performance. Due to it, the 

machine goes into an out-of-control state, resulting in variation in quality. Thus, it produces 

a mix of good quality operation units and failed operation units.  

• The cause of process-based defects is a miss-match of tolerances between an operation and 

a machine. Each operation is specified by the required level of tolerance which needs to be 

less than or equal to the tolerances offered by a machine. In a contrary situation, a tolerance-

related variation occurs that can also result in a failed operation unit.  

• The last cause of defects is tooling error which is resulted due to poor finish, wear, and tear, 

etc. Each operation is specified by a quality characteristic k. The variation in quality occurs 

when k acquires a defect at the level of the tool due to an operator error.  
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Figure 7 Manufacturing system design decomposition tree (MSDD) for assignable causes of quality 

variation (adapted from [49]) 

2.7. Literature summary and gap analysis 
 

The above aspects of the RMS literature review have been summarised and provided in 

Table 2. The literature has been analysed and arranged according to the following 

considerations: 

⎯ Objective functions: Some objectives functions were considered, dealing with the 

problems of cost, time, Responsiveness (R), and Quality (Q). The components of cost 

include Production Cost (PC), Configuration Cost (CC), and Quality-Cost (QC). Similarly, 

the components of time are Production Time (PT), Configuration Time (CT), and Quality-

Time (QT).  
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⎯ Decomposition Analysis (D A): An analysis of the application of decomposition analysis 

which breakdowns a complex system into different levels for understanding the quality and 

variation-related aspects, was performed.  

⎯ Solution approaches: The literature was surveyed according to the application of different 

solution approaches. These approaches comprised of exact approaches (linear 

programming in CPLEX and LINGO etc.,) for deterministic solutions and meta-heuristics 

for obtaining non-dominated solutions.  

⎯ Modularity (M): The applications of modularity characteristic of RMS were analysed to 

understand the system’ modelling in the existing works.  

⎯ Focuses of studies: To highlight the focuses and main contributions of different reviewed 

works. 

It can be observed from Table 2 that the production cost, configuration cost and 

configuration time have been frequently analysed; however, there is a dearth of research that 

uses the objectives of quality-cost, quality-time, and quality. Thus, to fill this gap, the proposed 

model offers the quality-cost objectives in the form of scrap and re-work costs. Similarly, 

quality-time is analysed in the objective of Modularity Efforts. In addition, a dedicated index 

for quality assessment is also offered in the proposed model.  

The Decomposition Analysis (D A) is a micro-level approach for assessing different 

parameters which can impact the higher-level objectives such as the quality of production. The 

existing literature does not discuss such decomposition in the case of RMS (Table. 2). To 

overcome the issue, this research divides the manufacturing functionalities at different levels 

to examine the variation in quality.   

Several solution approaches have been applied to optimize the performance of RMS. It 

can be observed from Table. 2 that exact solution approaches, heuristics, and multi-heuristic 

approaches have been applied when dealing with RMS problems; however, there is a dearth of 

application of hybrid heuristics. Hybrid heuristics combine two or more heuristics into a single 

framework to reinforce and take advantage of the powerful aspects of each heuristic. This 

research combines the powerful heuristics of Multi-Objective Particle Swarm Optimization 

(MOPSO) and Non-Dominated Sorting Genetic Algorithm (NSGA-II) in a single hybrid meta-

heuristic to improve the exploration-exploitation of the search space.  

The modularity characteristic has been modelled in the literature with a focus on 

scheduling, machine capabilities, reconfigurability, and selection of modules. This research 
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model modularity to understand how it is impacted by the variation in quality, i.e., when there 

is a variation in the quality and the failed production, what is the impact on the number of 

machine configurations and the number of changes in a configuration? 

Figure 8 presents the growth and trend of RMS literature over the years. It can be 

observed that this field is continuously growing ever since its inception. Thus, it is worthwhile 

to inspect its performance under the quality-related variation. As cost and time have frequently 

been analysed in the relevant literature, the analysis of quality will strengthen the cost, quality, 

and time pyramid in the RMS literature. Figure 9 presents the distribution of accumulated 

literature according to different journals and scientific databases. It can be observed that RMS-

related literature is published in reputed journals.  
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Table 2. Literature summary of the reconfigurable manufacturing system 

Ref. 

  

  

Objective functions 

 

D.A 

Solution approaches 

M 

  

  

Focus 

  

  

Cost Time R Other Q 

Exact 

  

Heuristic 

  

Multi-  

Heuristic 

  

Other 

  

Hybrid 

Heuristic 

  PC CC QC PT CT QT       

19 ✔                   MILP/SOLVER           Investment cost analysis 

50   ✔     ✔           e-constraint   

MOPSO/ 

NSGA-II       Design and scheduling 

51         ✔                       Reconfiguration 

52   ✔     ✔           e-constraint           

Configuration design and 

scheduling 

53             ✔                   Service level 

26   ✔           Reliability         

Coarse-grained 

GA       Reliability analysis 

54   ✔           Equipment cost           Simulation     Facility layout  

55 ✔ ✔   ✔ ✔             GA         

Configuration selection and 

sequencing 

56 ✔ ✔                           ✔ Scheduling 

57             ✔         MOGA       ✔ Optimum machine capabilities 

58 ✔ ✔   ✔ ✔             GA         Process planning 

59       ✔ ✔             GA         Maximizing throughput  

60       ✔ ✔             GA         Analysis of machine selection 

61               Optimal layout           

Search 

heuristic     Layout analysis 

25 ✔ ✔   ✔ ✔             NSGA-II         Process planning 

23 ✔ ✔   ✔ ✔             NSGA-II         Process planning 

62         ✔                 

IPPS 

heuristic     

Integrated process planning and 

scheduling 

18              ✔ 
Reconfiguration 

smoothness         GA, TS       Reconfiguration analysis 

123 ✔     ✔         ✔           

PSO and 

SA   Holonic RMS 

PC= Production Cost, CC= Configuration Cost, QC= Quality Cost, PT= Production Time, CT= Configuration Time, QT= Quality Time, R= Reconfigurability, Q= Quality, D. A= 

Decomposition Analysis, M= Modularity 
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Table 2. Continue 

Ref. 

  

Objective functions 

 

D.A 

Solution approaches 

M 
Focus 

  Cost Time R Other Q Exact Heuristic 

Multi-  

Heuristic Other 

Hybrid 

Heuristic 

PC CC QC PT CT QT                 

63       ✔                         Scheduling 

64                       GA         Line balancing 

65               Part family                    

66 ✔ ✔                   GA         Scalability 

27 ✔ ✔   ✔ ✔             NSGA-II         Process planning 

67       ✔       Energy                  Environmental analysis  

68             ✔                 ✔ Reconfigurability 

69 ✔ ✔         ✔         NSGA-II         Machine selection 

21 ✔           ✔         GA         Scalability and scheduling 

70   ✔         ✔         

Greedy 

GRASP          Transfer lines 

71 ✔                       GA/PSO       Configuration analysis 

22 ✔ ✔   ✔               NSGA-II         Scheduling 

34         ✔             PSO         Reconfiguration 

96             ✔         

WGA, 

NSGA-II         Process planning 

73 ✔                         Taguchi     Scalability 

74               

Product 

similarity           AHP/AL     Part family  

24 ✔           ✔         NSGA-II   TOPSIS     Configuration selection 

75 ✔           ✔                   Responsiveness  

76 ✔ ✔                   MOPSO   MAT     RMS flow line 

77               

Material 

handling       REM         Layout analysis 
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Table 2. Continue 

S.N 

 

Objective functions 

 

D.A 

Solution approaches 

M 

  

Focus 

 

Cost Time R Other Q 

Exact 

  

Heuristic 

  

Multi-  

Heuristic 

  

Other 

  

Hybrid 

Heuristic 

  PC CC QC PT CT QT       

78   ✔         ✔ Similarity           

K-means 

algorithm     Part family  

79   ✔           

Convertibility, 

capacity       AHP         Configuration selection 

80       ✔ ✔     Robustness index       NSGA-II         Machine unavailability 

81       ✔ ✔     Flexibility       NSGA-II         Machine unavailability 

82               Machine utilization                 Layout analysis 

15 ✔ ✔   ✔ ✔     System modularity       AMOSA   TOPSIS       

83               

Product evolution, 

machine layout       AMOSA         Layout analysis 

84               Expected benefit                 Configuration selection 

85             ✔ Service level                 Multi-part RMS 

86   ✔   ✔       

Reliability, 

capability       GA         Configuration selection 

87               Production rate       Bowl         Scalability analysis 

88               Productivity                 Production planning 

89               

Configuration 

selection             

Genetic 

algorithm  

Petri nets   Configuration selection 

90     ✔         Inventory analysis                 Delayed RMS 

91               Similarity analysis           

Netting 

clustering      Part family  

92 ✔           ✔ 
Productivity and 

several other criteria                 Performance analysis 

93 ✔ ✔   ✔ ✔     Hazardous wastes           

Goal 

programming     Environmental analysis  

94               

Throughput 

maximization       GA         Scalability analysis 

95 ✔             Production rate           

Markov 

models     Random failures 
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Table 2. Continue 

S.N 

  

  

Objective functions 

 

D.A 

Solution approaches 

M 

  

  

Focus 

  

  

Cost Time R Other Q 

Exact 

  

Heuristic 

  

Multi-  

Heuristic 

  

Other 

  

Hybrid 

Heuristic 

  PC CC QC PT CT QT       

97              ✔ 
Delivery date, 

assembly balancing       SOMA         Scheduling 

98               Layout optimization       PSO         Layout analysis 

99               

Lead time 

Minimization                 Scheduling  

100 ✔           ✔ Process accuracy       PSO         Design optimization 

101   ✔     ✔           e-constraint MOSA 

NSGA-

II/MOSA       Energy analysis 

102 ✔             

System reliability, 

productivity           

System 

engineering, 

Boolean, 

statistics     Configuration selection 

103               Capital cost        ACO         Configuration selection 

16               Energy consumption           

Hybrid 

heuristic     Energy consumption 

104               

Cost, reliability, 

utilization, quality                 Performance assessment 

105   ✔         ✔                   Configuration selection 

106       ✔               SA         Scheduling 

107   ✔                 

MILP 

implemented 

in GAMS           Configuration design 

20   ✔                 

MILP 

implemented 

in GAMS           Configuration design 

108 ✔ ✔                   SA         Process planning 

109 ✔                     SA         Process planning 

110 ✔             Production rate           

Markov 

models     Random failures 

 



35 
 

Table 2. Continue 

S.N 

  

  

Objective functions 

 

D.A 

Solution approaches 

M 

  

  

Focus 

  

  

Cost Time R Other Q 

Exact 

  

Heuristic 

  

Multi-  

Heuristic 

  

Other 

  

Hybrid 

Heuristic 

  PC CC QC PT CT QT       

111       ✔       

Profit 

maximization       SA   DES     

Production planning 

and resource allocation 

112               

Workload 

balancing           Game theory       

113               

Synthesis of 

modularity           

Semi-

algorithmic 

tool   ✔ Modular analysis 

30 ✔ ✔   ✔ ✔     

Greenhouse 

Gases (GHG)     I-MOILP   

AMOSA, 

NSGA-II       Sustainability 

114 ✔ ✔   ✔ ✔     

Machine 

exploitation time       NSGA-II     

RSUPP, 

LSSUPP, 

ABILS    Sustainability 

115               

Minimizing the 

number of 

machines       GA         Scalability analysis 

116               

Quantitative 

indices for RMS 

characteristics           

PROMETHEE, 

AHP   ✔ 
Evaluation of RMS 

characteristics 

117               

Layout 

optimization       

Chaotic 

GA         

Facility layout analysis  

of RMS 

118               Profit, orders           

Stochastic 

approach     

Modeling and analysis  

of RMS 

119               

Minimizing the 

distance       PSO         Process planning 

120   ✔             ✔   MILP/LINGO         ✔ 
Optimizing modular  

products 

121   ✔             ✔   MILP/LINGO         ✔ Selection of modules 

122             ✔ Smoothness                 Reconfiguration analysis 

This 

Work ✔ ✔ ✔ ✔ ✔    ✔ ✔ e-constraint  
NSGA-II, 

MOPSO  

NSGA-II-

MOPSO ✔ 
Cost, Quality and 

Modularity 
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Figure 8. The trend of RMS publications over the years 

 

 

Figure 9. Distribution of RMS literature according to journals and databases 
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2.8. Research Problem  
 

This section describes the research problem of the thesis which involves the analysis of 

cost, quality, and modularity. An RMS is analysed where different production stages are 

designed in series. Each production stage contains one machine configuration which can 

perform one or more operations. A perfect quality-based RMS works well and converts all 

input operation units into usable output. This means that the number of input units is equal to 

the number of output units. However, in the presence of variation and defects, the quality of 

operations is impacted. Thus, part of the operation units is discarded as scrap due to poor quality 

while remaining units are re-worked to make them conform. As shown in Figure 10, raw 

material units (
𝑖𝑜

) are initially processed on machine configuration i to perform operation o. 

The configuration i exhibits quality variation which results in failed units of operations. After 

discarding the failed units as scrap, the remaining units are reworked, and then fed to the 

subsequent machine configuration and so on. The failed operation units are produced between 

every two successive configurations, and these are removed, and the remaining are re-worked 

after each machine configuration. It can be observed from the curve given in Figure 10 that 

each configuration keeps on decreasing the number of conforming products due to different 

defects. At the end of the process plan, part of the products entering the RMS is conforming 

while the remaining is discarded as scrap. The goal is to select a process plan which warrants 

a higher number of conforming products along with minimum cost and minimum modular 

effort.  

The research aims to select a process plan that will ensure a least total cost solution, a 

minimum variation in quality and failed units, and a minimum modular effort. Since these 

objectives are conflicting, the analysis will help to attain different non-dominated solutions and 

practitioners will be able to select a particular process plan according to their preferences. Some 

of the objectives might reinforce each other, such as, the least total cost solution might indicate 

minimum scrap and re-work cost which can be taken as an indication that the solution will 

contain less quantity of failed units and improved quality.  
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Figure 10 Process flow of the considered RMS 

 

To conclude, this chapter examined various aspects of literature to identify the existing 

gaps. An in-depth analysis of the existing focus on modularity was presented. It was argued 

that modularity has been frequently analysed in RMS literature. However, to the best of our 

knowledge, it has never been examined subject to quality variation and defective performance 

of a reconfigurable manufacturing system. In the next sub-section, the existing focus on cost 

analysis was surveyed. A linkage was built between the cost-quality relationship. Like 

modularity, the cost has never been analysed in the presence of quality variation of a 

reconfigurable manufacturing system. Costs related to quality such as scrap cost, re-work cost 

can be modelled to examine the performance of RMS.  

The next section presented the focus on quality in quality management literature, RMS, 

and FMS literature. A gap was identified in the literature regarding the absence of a quantitative 

measure of quality. A quantitative measure can help practitioners to identify the number of 

conforming and failed products delivered by a manufacturing system. To summarize, the 
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proposed model is novel, and it has never been considered and studied in the reconfigurable 

manufacturing system literature.  

 

 

 

 

 

 

 

 

 

 

 



40 
 

CHAPTER 3 

MATHEMATICAL MODEL 
 

 

 

 

 

This chapter presents the mathematical model assessing the Total Cost, the Quality 

Decay Index, and the Modularity Effort in RMS process planning. Section 3.1 briefly 

describes the two models (Model 1 and Model 2) that are considered for analysing and 

comparing the effect of quality variation. This section concludes with the notations, indices, 

parameters, and decision variables involved in the mathematical model. Section 3.2 provides 

the list of assumptions and hypotheses considered in the mathematical formulations. Section 

3.3 discusses the definition of the concept of quality decay index where a brief description of 

the key characteristics and the assignable causes is given. It highlights the advantage offered 

by the proposed index for practitioners in assessing the impact created by variation in quality 

on decisions such as conforming units, failed units, etc. Section 3.4 focuses on the cost model 

where different components such as production cost, machine exploitation cost, 

reconfiguration cost, scrap cost, and re-work cost are discussed. In addition, the difference 

between the two models concerning the different components of cost is discussed. Section 3.5 

contains the objective function of modularity effort and its relationship with the overall quality 

of production is analysed.  
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 3.1. Models  
 

The analysis is carried out by using two models. Both models are compared to 

understand the impact of quality on the process plan selection. Model 1 considers the variation 

in quality and different defects while model 2 is based on a perfectly working RMS. This can 

be explained with the help of Figure 11.  

 

Figure 11. RMS flow line for Model 1 and Model 2 

Several production stages (k) are designed in serial where raw material enters the 1st 

production stage (k=1), and the finished products are delivered through the last production 

stage. Figure 11 (a) describes the behaviour of Model 1 which is based on variation in quality. 

Due to such variation, a portion of the operation units are failed, and they are scrapped while 

the conforming units are fed to the subsequent production stage (also known as configuration). 

As there are scrapped units between two successive production stages, the delivered quantity 

of units always decreases after the first production stage. On the other hand, the behaviour of 

Model 2 is explained in Figure 11 (b) where there is no variation in quality and a perfectly 

working RMS is examined. Due to it, the same quantity of operation units is processed by each 

production stage which is equal to the number of delivered units of operations. Though it may  
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Figure 12. The relationship between the proposed index and the number of failed and conforming 

operations 

 

seem simple, the variation in quality has far-reaching implications. These implications can be 

better understood with the help of Figure 12-14. This discussion is provided in the below sub-

sections for Model 1 and Model 2, respectively.  

3.1.1. Model 1  
 

Model 1 is based on quality defects and variation, and it considers the Quality Decay 

Index (QDI) in its formulation. This section explains the behaviour of Model 1 by using Figure 

12-14. These figures are for illustration purposes only as they are not based on mathematical 

formulations. Figure 12 is related to Model 1 only as it is based on variation in quality. It relates 

the proposed index of quality (QDI) with the number of failed and conforming units of 

operations. Two process plans (1 and 2) are considered, and a linear relationship is assumed 

between the quality of production and the number of failed units as well as between the quality 

of production and the number of conforming units. As can be observed, there is a direct 

relationship between the number of failed units and decay in quality while an in-direct 

relationship exists between the number of conforming units and decay in quality. In other 

words, a process plan with a higher number of conforming operation units will have fewer 

quality issues or a smaller value of the QDI index. On the contrary, a process plan with a higher 

number of failed operation units will mean that it has more variation in quality and a higher 

value of the QDI index. If these two process plans are compared, the one with the higher 
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number of failed units will have a lower number of conforming units. This is because the total 

number of operation units is equal to the sum of conforming and failed operation units. For 

example, process plan 1 has a higher number of failed units and it offers a lower number of 

conforming units. It means that it has a higher decay in quality (QDI) value compared to 

process plan 2. The goal is not only to select process plan 2 but also to analyse it thoroughly 

for ways and means to further minimize its quality decay value. Since process plan 1 exhibits 

more decay in quality, for a fixed capacity of the machine, it will need a higher Number of 

Machines (NM) to complete the required demand, as shown on the right-side plot of Figure 13. 

  

3.1.2. Model 2 
 

A hypothetical comparison between Model 1 and Model 2 is provided in Figure 13. 

Model 2 will require a smaller number of machines for the required demand of ‘d’ units of 

conforming products. (Please refer to Figure 11(b) for representation of Model 2). This is 

because Model 2 is in the state of “perfect quality condition” where there are no disruptions 

associated with the performance of machines. It means that the machine configurations in 

Model 2 can convert all input units into usable output units. On the other hand, Model 1 will 

need a higher number of machines due to variation in quality, and disruptive performance of 

machines and part of the product units is scrapped due to such variation. Thus, more machines 

will be needed to complete the production. It is to be noted that each machine configuration 

has a fixed capacity of production, hence the requirement of extra machines.  

Figure 13. The relationship between i) number of machines and conforming units and ii) number of 

machines and the proposed index of quality 
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Figure 14 presents a relationship between the number of accepted units and the total 

operation time of the RMS flowline. Let us consider that the flowline is designed to produce 

‘d1’ number of conforming units. Model 2 will produce d1 units in t1 time (point A). On the 

contrary, in the same period, Model 1 will only produce d2 units of conforming products while 

d1-d2 will be scrapped (point B). An extra amount of time (t2-t1) will be needed if the manager 

wants to produce d1 units using Model 1. Thus, variation in quality and defects will either 

compromise the level of production or the time needed to complete the required demand. In 

other words, either less quantity of products will be delivered, or extra time will be taken by 

the production system to meet the level of demand. This, however, is a hypothetical discussion 

and a model is presented in the below section for scientific observations, starting with the 

model notations.  

 

 

Figure 14. The relationship between production time and quantity of accepted (conforming) units. 
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3.1.3. Model Notations 
 

The parameters, decision variables and objective functions related to the process 

planning problem are given below: 

 

Indexes 

i, i´ index for machine configuration; i, i´= {1,2 …I}  

F index for product features; f= {1,2 …F}  

o, o´ index for operations; o, o´= {1,2 …O}  

T index for tools; t= {1,2 …T}  

m, m´ index for modules; m, m´= {1, 2...M} 

K index for quality characteristic; k= {1, 2...K} 

 

Parameters 

frkt The failure rate of quality characteristic k due to tooling error  

toi The failure rate of operation o on machine i due to tolerance error 

xkko 1, if quality characteristic k belongs to operation o; else 0 


0
 quantity of operations o entering the RMS  

𝑐𝑎𝑖𝑜 production rate of machine i for operation o 

𝑒𝑐𝑖 exploitation cost of machine i 

λi The failure rate of operation due to machine disruption 

f1 conforming fraction of operations passed through inspection 

1- f1 non-conforming fraction of operations passed through inspection   

Ψ probability of type I error due to inspection 

dxoo´ 1, if operation o and o´ are dependent; else 0 

pco processing cost of operation o 

rcpii´ reconfiguration cost between machines i and i´ 

sco scrap cost of defective operation o 

rwco re-work cost of conforming operation 

rnco re-work cost of non-conforming operation 

𝑡𝑓
𝑜            The processing time of operation o of feature f 

𝑓𝑡𝑡 total processing time of feature f 
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𝑎𝑡𝑜
𝑚,𝑖

 module addition time of m on machine i for operation o 

𝑠𝑡
𝑜,𝑜′
𝑚,𝑚′,𝑖

 needed time to change from module m to 𝑚′ on machine i between ops 

𝑟𝑡
𝑜,𝑜′
𝑚,𝑖

 needed time to adjust module m on machine i from op o to 𝑜′ 

TAD[i] matrix of tool approach directions offered by machines  

TAD[o] matrix of tool approach directions needed by operations 

do required level of operation o (d1= d2= do=d) 

 

Decision variables 

XMio  1, if operation o is assigned to machine i; else 0   


𝑖𝑜

 number of operation units entering machine i 

ωio number of failed operation units of o on machine i 

𝜔 total number of failed operation units at the end of the process plan  

𝑃𝑁𝑖𝑜 number of conforming units of operation o on machine i 

𝑃𝑁 total number of conforming operations at the end of the process plan 

𝑁𝑀 number of machine configurations required for production 

𝑥𝑜𝑜𝑜′
𝑖  1, if operations o and o´ are performed on same machine i; else 0 

𝑦
𝑜,𝑜′
𝑚,𝑖  1, if machine i requires module m for operation o (𝑜′), else 0 

𝑐𝑦
𝑜,𝑜′
𝑚,𝑚′,𝑖 1, if between op o and 𝑜′, there is a change of module from m to 𝑚′, else 0 

 

 3.2. Assumptions and model hypotheses 
 

The following assumptions have been considered to simplify the model. 

• The production rate of different machine triplets is pre-defined, and it has a fixed value per 

triplet.  

• The foundational base of all triplets is the same i.e., all of them have the same basic 

modules. They differ in terms of auxiliary modules. Thus, any two selected triplets can be 

interchanged by replacing and re-adjusting the auxiliary modules which require 

reconfiguration cost.  

• The Quality decay Index (QDI) is calculated for the worst configuration (pessimistic 

configuration), therefore, only a simple directed acyclic graph is required. 
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• The failure rate due to machine disruption has the same value for all triplets (i.e., λ=λi). 

• Inspection is performed after each triplet as each triplet produces failed and non-

conforming units. Furthermore, the cost of the inspection is negligible. 

• The rejection rate of conforming units (Type I error) has the same value throughout the 

process plan.  

• All the defects are modelled as failure rates (function of time). The operation time has been 

used to analyse the total number of failed units in the entire process plan.  

 

The following hypotheses have been considered in formulating the mathematical 

model. 

• The total cost solution will be higher when there are more quality variation and defects. In 

addition, there is a trade-off between cost, quality, and modularity. A process plan based 

on minimum quality variations can affect the solutions of cost and modularity.  

• Less modular efforts will be needed by a process plan when there are fewer or no quality 

variation and defects. On the other hand, more modular efforts will be needed by a process 

plan where there are higher quality concerns. Both models will perform differently in terms 

of modular needs and the number of configurations. 

• In the presence of capacitated machines, a higher number of machines (NM) will be used 

by a process plan where there are more defects.  

• The presence of quality variations will result in a different process plan as opposed to a 

manufacturing system that does not contain any quality variations.  

 

3.3. Quality Decay Index 
 

As discussed in the literature review section, managers are more interested in measuring 

the quality which can enable informing the number of conforming and the failed units of 

production. It was further established that such quality assessment measure is lacking in the 

literature related to product quality analysis. The measure of quality proposed for the analysis 

of RMS can be adapted for analysing the performance of other manufacturing systems.  

The proposed quality index considers different assignable causes of variation by using 

the Manufacturing System Design Decomposition (MSDD) framework. The MSDD and 
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assignable causes have been discussed in Section 2.6. The considered assignable causes are 

related to machine, process, and tooling.  

To assess the quality of production in RMS, a unique index called Quality Decay Index 

(QDI) is introduced in (1). It is defined as the ratio of failed operation units to the conforming 

operation units.  

𝑄𝐷𝐼 =
𝜔

𝑃𝑁
 (1) 

As process plans are subject to variation, the production system will produce a mix of good 

and bad quality products. The objective of the QDI index is to ensure a minimum value of 

defects and failed products. The different values of the QDI index can be interpreted by 

managers. For instance, a value of QDI<1 means that the number of failed units is less than 

the number of conforming units. A value of QDI=1 means that the number of failed units is 

equal to the number of conforming units. Finally, QDI>1 indicates that the number of failed 

units is higher than the number of conforming units. The total number of failed operations 

produced by a process plan is calculated using (2). The total number of conforming operations 

is given in (3). The expressions for the number of failed and conforming operations are given 

in (4) and (8), respectively.   

𝜔 = ∑ ∑ 𝜔𝑖𝑜

𝐼

𝑖=1

𝑂

𝑜=1

 (2) 

𝑃𝑁 = ∑ ∑ 𝑃𝑁𝑖𝑜   

𝐼

𝑖=1

𝑂

𝑜=1

 (3) 

𝜔𝑖𝑜 = 𝐹𝑂𝑖 + 𝐹𝑂𝑝 + 𝐹𝑂𝑡;     ∀𝑖 = {1,2, … 𝐼}; ∀𝑜 = {1,2, . . 𝑂};  λ𝑖 = 𝜆 (4) 

Equation (4) sums the failed operations respectively due to machine (𝐹𝑂𝑖), tolerance (𝐹𝑂𝑝), 

and tooling-based defects ( 𝐹𝑂𝑡 ). Since the sources of defects are different, one of the 

assumptions of our model is that these defects are independents of each other. In line with this 

assumption, the failed operations due to these defects are separately calculated (5-7). Eq. 5 

calculates the number of failed operation units due to machine disruption. Eq. 6 calculates the 

number of failed operation units due to tolerance error. Eq. 7 calculates the number of failed 

operation units due to tooling errors. Eq. 8 calculates the number of conforming operation units 

which is the difference in the number of operation units entering a production stage and failed 

operation units. It is to be noted that Eq. 8 calculates the number of conforming operation units 
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on a particular machine triplet. The total number of conforming operation units of the entire 

process plan is provided by eq. (4).  

𝐹𝑂𝑚 = 𝑋𝑀𝑖𝑜 × λ𝑖 × 
𝑖𝑜

× 𝑡𝑓
𝑜;   ∀𝑖 = {1,2, … 𝐼};    ∀𝑜 = {1,2, . . 𝑂};   λ𝑖 = 𝜆 (5) 

𝐹𝑂𝑝 = 𝑋𝑀𝑖𝑜 × 𝑡𝑜𝑖 × 
𝑖𝑜

× 𝑡𝑓
𝑜;          ∀𝑖 = {1,2, … 𝐼};   ∀𝑜 = {1,2, . . 𝑂}; (6) 

𝐹𝑂𝑡 = 𝑋𝑀𝑖𝑜 × 𝑓𝑟𝑘𝑡 × 𝑥𝑘𝑘𝑜 × 
𝑖𝑜

× 𝑡𝑓
𝑜; ∀𝑖 = {1,2, … 𝐼};   ∀𝑜 = {1,2, . . 𝑂}; (7) 

𝑃𝑁𝑖𝑜 = 𝑋𝑀𝑖𝑜 × (
𝑖𝑜

− 𝜔𝑖𝑜);                   ∀𝑖 = {1,2, … 𝐼};   ∀𝑜 = {1,2, . . 𝑂} (8) 

  

3.4. Total Cost 
 

To highlight the effect of defects and the quality decay on the selection of a process 

plan, we perform the analysis by using two models. In Model 1, the decay in quality is 

acknowledged and three objective functions, i.e., the Total Cost (TC), the Quality Decay Index 

(QDI), and the Modularity Effort (ME) are used as evaluation criteria. Model 2 does not 

consider any decay in quality and a perfectly working RMS is examined by using the objective 

functions of TC and ME.  

The relationship of TC for Model 1 is given in (9). It contains the Production Cost (PC), the 

Total Machine exploitation Cost (TMC), the Scrap Cost (SC), the re-work cost (TR), and the 

Reconfiguration Cost (RC).  

𝑇𝐶 = 𝑃𝐶 + 𝑇𝑀𝐶 + 𝑆𝐶 + 𝑇𝑅 + 𝑅𝐶 (9) 

The respective relationships for PC, TMC, SC, TR, and RC are provided in equations 10-14.  

𝑃𝐶 =  ∑ ∑ 𝑋𝑀𝑖𝑜 × 
𝑖𝑜

× 𝑝𝑐𝑜

𝑂

𝑜=1

𝐼

𝑖=1

 (10) 

𝑇𝑀𝐶 =  ∑ ∑ 𝑋𝑀𝑖𝑜 × 𝑒𝑐𝑖 × 𝑁𝑀                                                        

𝑂

𝑜=1

𝐼

𝑖=1

 (11) 

𝑆𝐶 =  ∑ ∑ 𝑠𝑐𝑜 × 𝜔𝑖𝑜

𝑂

𝑜=1

𝐼

𝑖=1

 (12) 
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𝑇𝑅 =  ∑ ∑ 𝑋𝑀𝑖𝑜

𝑂

𝑜=1

𝐼

𝑖=1

× 𝑓1 × (1 − 𝛹) × 𝑟𝑤𝑐𝑜 × (
𝑖𝑜

− 𝜔𝑖𝑜)

+ ∑ ∑ 𝑋𝑀𝑖𝑜

𝑂

𝑜=1

𝐼

𝑖=1

× (1 − 𝑓1) × (1 + 𝛹) × 𝑟𝑛𝑐𝑜 × (
𝑖𝑜

− 𝜔𝑖𝑜) 

(13) 

𝑅𝐶 =  ∑ ∑ 𝑟𝑐𝑝𝑖𝑖′ × (1 − 𝑥𝑜𝑜𝑜′
𝑖 )

𝐼

𝑖,𝑖′=1

;

𝑂

𝑜,𝑜′=1

                 𝑜 < 𝑜′ < 𝑂;  𝑖 < 𝑖′ < 𝐼 (14) 

The PC relationship calculates the total production cost of the process plan by 

considering the number of units of operation o entering the machine configuration i. TMC 

calculates the cost related to the number of machines in use. SC calculates the total scrap cost 

of the process plan. All the non-scrapped operation units are inspected and reworked to bring 

them to an optimal quality level. Moreover, some operation units need little re-work 

(conforming to a higher extent) while others are of bad quality and need an extensive amount 

of re-work (non-conforming units). Due to this, the re-work cost (TR) expression considers the 

costs of re-work of conforming and non-conforming operation units. Furthermore, a portion of 

such operation units are relatively of improved quality, yet they are extensively reworked, due 

to Type-I inspection error. It means that some of the conforming operation units are allocated 

to the non-conforming operation units due to misjudgement. Lastly, the RC considers the 

involved cost if reconfiguration is required between the respective triplets.  

Model 2 examines the process planning problem without any decay in quality. Thus, it 

considers the objective functions of TC and ME (the last term of ME is discarded as it refers 

to the failed operation units). In the absence of quality-related issues, the TC relationship 

considers only PC, TMC, and RC (15). 

𝑇𝐶 = 𝑃𝐶 + 𝑇𝑀𝐶 + 𝑅𝐶 (15) 

For Model 2, the TMC and RC relationships remain the same as given in (11) and (14), 

respectively. For the calculation of PC, an equal number of operation units are processed by 

each machine configuration as there are no defects in this case.  
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3.5. Modularity Effort 
 

Unlike the traditional manufacturing systems, RMS can perform various operations by 

using the same machine. This is done by reconfiguring the existing modules in RMS according 

to the requirements of an operation. The process of reconfiguration from the existing machine 

configuration to a new configuration requires modular effort (such as the time needed for 

changing modules). For instance, a tool/module needs to be added/removed/re-adjusted 

according to the operational needs of a product. We argue that this time is a non-productive 

part of the overall processing time and thus it should be minimized. This is because module 

addition/subtraction/re-adjustment time does not add value to the product and is only part of 

the operational needs. Since part of the operation units is discarded due to quality variation, the 

effort of using modules in processing such operation units is wasted. This is because the 

discarded products are not delivered to customers, and they do not generate any profit. Thus, 

though modules are used in processing such operations, they are not part of the final demand. 

To encapsulate such behaviour, we propose an index called Modularity Effort (ME) in (16). 

It combines the non-productive effort (proportion of time) to change (add, subtract, and re-

adjust) the auxiliary modules and the proportion of effort wasted due to failed operations. A 

process plan with a minimum value of ME will be preferred. This minimum value can be 

ensured by selecting a process plan which uses less addition/subtraction/re-adjustment of 

modules and/or contains less lost modular effort in producing failed products. In this way, the 

ME value can be improved by minimizing the number of failed operations produced by a 

process plan. As can be seen in (16), ME is the addition of four components and all of them 

are valid in the case of Model 1. These components are module addition effort, module 

subtraction effort, module re-adjustment effort, and lost modular effort due to failed products. 

The relationship in (16) considers the non-productive time of modular changes concerning the 

operation time of a particular operation. Similarly, the non-productive time of modular efforts 

on failed operation units is considered concerning the operation time of the entire product 

feature. Since Model 2 considers a perfect RMS, it does not consider the last component of ME 

which is the lost effort in producing failed operation units.  
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𝑀𝐸 = ∑ ∑ ∑ 𝑦
𝑜,𝑜′
𝑚,𝑖

𝑂

𝑜.𝑜′=1

×
𝑎𝑡𝑜

𝑚,𝑖

𝑡𝑓
𝑜

𝑀

𝑚=1

𝐹

𝑓=1

+ ∑ ∑ ∑ 𝑐𝑦
𝑜,𝑜′
𝑚,𝑚′,𝑖

𝑂

𝑜.𝑜′=1

×
𝑠𝑡

𝑜,𝑜′
𝑚,𝑚′,𝑖

𝑡𝑓
𝑜

𝑀

𝑚,𝑚′=1

𝐹

𝑓=1

+ ∑ ∑ ∑ 𝑦
𝑜,𝑜′
𝑚,𝑖

𝑂

𝑜.𝑜′=1

×
𝑟𝑡

𝑜,𝑜′
𝑚,𝑖

𝑡𝑓
𝑜

𝑀

𝑚=1

𝐹

𝑓=1

+ ∑ ∑ ∑ 𝑋𝑀𝑖𝑜

𝑂

𝑜=1

× 𝜔𝑖𝑜 ×
𝑡𝑓

𝑜

𝑡𝑓

𝐼

𝑖=1

𝐹

𝑓=1

 

(16) 

 

𝑠. 𝑡 


𝑖1

= 
0
 (17) 

(𝑖+1)𝑜′
= 

𝑖𝑜
−  𝜔𝑖𝑜;                                             𝑜 <  𝑜′ < 𝑂, ∀𝑖 = 𝐼 (18) 


𝑖𝑜

= 
0

                                                                   ∀𝑜 = 𝑂, ∀𝑖 = 𝐼 (19) 

𝑁𝑀 ≥
𝑑𝑜

𝑋𝑀𝑖𝑜 × (𝑐𝑎𝑖𝑜 − 𝜔𝑖𝑜)
;                              ∀𝑖 = 𝐼, ∀𝑜 = 𝑂, 𝑑𝑜 = 𝑑 (20) 

𝑁𝑀 ≥
𝑑𝑜

𝑋𝑀𝑖𝑜 × 𝑐𝑎𝑖𝑜

;                                              ∀𝑖 = 𝐼, ∀𝑜 = 𝑂, 𝑑𝑜 = 𝑑 (21) 

∑ 𝑥𝑘𝑘𝑜

𝑂

𝑜=1

= 1;                                                          𝑘 = {1,2, … 𝐾} (22) 

∑ 𝑋𝑀𝑖𝑜

𝐼

𝑖=1

= 1;                                                         𝑜 = {1,2, … 𝑂} (23) 

𝑑𝑥𝑜𝑜´ × 𝑃𝑟𝑒𝑐[𝑂𝑜][𝑂𝑜′] = 1;                                𝑜 < 𝑜′ < 𝑂 (24) 

𝑇𝐴𝐷[𝑖] × 𝑇𝐴𝐷[𝑜] = 1;                                        ∀𝑖 = 𝐼, ∀𝑜 = 𝑂 (25) 

𝑁𝑀 ∈ ℤ+ (26) 

𝑇𝐶, 𝑃𝐶, 𝑆𝐶, 𝑅𝐶, 𝑇𝑅, 𝑇𝑀𝐶, 𝑄𝐷𝐼,
𝑖𝑜

, 𝜔𝑖𝑜 , 𝜔, 𝑃𝑁𝑖𝑜 , 𝑃𝑁 ≥ 0   (27) 

𝑋𝑀𝑖𝑜 , 𝑥𝑜𝑜𝑜′
𝑖 ∈ {0,1}∀𝑜, 𝑜′ = 𝑂, ∀𝑖 = 𝐼 (28) 

 

The set of constraints is provided by equations 17-28. Some of these constraints are specific to 

either Model 1 or Model 2 while the remaining are equally applicable to both models. Eqs. (17) 

and (18) are respectively dedicated to the number of units entering the first and successive 

triplets in Model 1. Since there are no defects in the case of Model 2, hence, same numbers of 

units are fed to each triplet. This is equal to the number of units entering the RMS (19). Eqs. 

(20) and (21) calculate the Number of Machines (NM) needed to produce the required level of 
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demand for Model 1 and Model 2, respectively. Its value is obtained as the ratio of demand to 

production rate. Eq. (22) designates a particular quality characteristic to one operation (Model 

1 specific).  

The remaining constraints (23-28) apply to both models. Eq. (23) ensures that a 

particular operation is to be performed by one triplet. Eq. (24) is to respect the precedence 

order. Eq. (25) requires the Tool Approach Direction (TAD) compatibility between a triplet 

and an operation. The number of machines can only take integer values (eq. 26). Lastly, the 

domain constraints of non-negativity and binary variables are provided respectively by eq. (27) 

and eq. (28).  

The presented model is non-linear as it contains the product of an integer and 

continuous variables (e.g., Eq. 1, 8, 15, 21, and 22). It is converted into a linear model by using 

the linear approximation technique. The general form of linearization is provided in Table 3. It 

contains a non-linear product of variables B and C which is linearized by using an auxiliary 

variable A and a big number Z. As an illustration, the linearization of non-linear product 

𝑋𝑀𝑖𝑜 .
𝑖𝑜

 (Eq. 10) is also provided.  

 

Table 3. Linearization of non-linear products. 

General form Eq. 10 
𝐴 = 𝐵. 𝐶 𝑋𝑁𝑇 = 𝑋𝑀𝑖𝑜 .

𝑖𝑜
 

𝐴 ≤ 𝐵 𝑋𝑁𝑇 ≤ 𝑋𝑀𝑖𝑜 
𝐴 ≤ 𝑍. 𝐶 𝑋𝑁𝑇 ≤ 𝑍.

𝑖𝑜
  

𝐴 ≥ 𝐵 − 𝑍(1 − 𝐶) 𝑋𝑁𝑇 ≥ 𝑋𝑀𝑖𝑜 − 𝑍(1 − 
𝑖𝑜

) 

 

To conclude, this chapter presented a novel mathematical model. It comprised of the 

objectives of the Total Cost, the Quality Decay Index, and the Modularity Effort. The total cost 

was defined in terms of production cost, machine exploitation cost, scrap cost, reconfiguration 

cost and rework cost. The objective of quality (QDI) was defined as a ratio of the number of 

failed and conforming products produced by a process plan. The objective of the Modularity 

Effort was defined as the sum of lost modular effort in reconfiguration and the lost modular 

effort due to failed production. A set of constraints and assumptions were provided to adapt the 

proposed model to favourable settings. This model will assist practitioners in understanding 

the trade-off between cost, quality, and modularity and the importance of integrating quality in 

RMS process planning.  
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CHAPTER 4 

 

SOLUTION APPROACHES AND 

RESULTS 
 

 

This chapter discusses the solution approaches adapted for solving the multi-objective model 

of the Total Cost (TC), the Quality Decay Index (QDI), and the Modularity Effort (ME). In 

Section 4.1, a review of the existing solution approaches in RMS literature i.e., the exact 

solution approaches, the meta-heuristic solution approaches, and the hybrid solution 

approaches is provided. Section 4.2 discusses the complexity of the proposed model and the 

justification to apply the non-exact (meta-heuristic and hybrid-heuristic) solution approaches. 

Section 4.3 describes the proposed solution approaches that comprise an e-constraint solution 

approach and a hybrid meta-heuristic solution approach. The hybrid meta-heuristic combines 

the strength of two powerful meta-heuristics i.e., Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO). This section further 

discusses the termination criteria for refining the non-dominated solutions. Section 4.4 

discusses two performance metrics for assessing the efficiency of various solution approaches. 

Section 4.5 discusses the results and the analysis related to the model verification and 

validation. For the verification, the efficiency of various solution approaches is assessed by 

using small and large size problems. In model validation, the proposed model and solution 

approaches are applied to two case studies. Both case studies vary in terms of operational 

requirements and complexity. The results are discussed, and implications are drawn for 

practitioners.  
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4.1 Review of Solution approaches 
 

RMS problems have been analysed in the existing literature by using different solution 

approaches. These approaches have been adapted to solve the process planning problems [6], 

scalable production systems [20, 66], and part family analysis problems [78, 91]. The 

application of the solution approaches can be classified according to the complexity of the 

problems. For example, exact solution approaches could be applied to simpler and small-size 

problems. As the problem size increases, exact approaches are exceptionally time-consuming. 

For such problems, non-exact solution approaches e.g., meta-heuristics are more appropriate 

to provide a solution in adequate time. The non-exact solution approaches can be classified into 

meta-heuristic approaches, multi-heuristics approaches, and hybrid approaches. Meta-heuristic 

refers to a single solution approach; multi-heuristics refer to the application of more than one 

approach while hybrid approaches combine two or more approaches into a single framework. 

The following sub-sections review the application of these solution approaches to the RMS 

optimization problems.  

  

4.1.1. Exact solution approaches 

Exact solution approaches are generally adapted techniques for small problems where high 

computation is not required. Such approaches can yield good results in less computation time. 

Several exact solution approaches have been applied to solve the RMS problems involving 

sustainable reconfigurable manufacturing system design, configuration design and scheduling, 

and environmentally hazardous waste. The exact solution approaches used in such cases are 𝜖-

constraint, weighted goal programming, and augmented 𝜖  -constraint method [16, 29, 93]. 

Exact solution approaches have the drawback of not providing accurate results when the 

problem complexity increases. For such problems, non-exact solution approaches (meta-

heuristics and artificial intelligence techniques) are preferred techniques due to their high 

computational power. Figure 15 provides the distribution of RMS literature according to the 

applications of exact/non-exact approaches. It can be observed that most studies (60%) have 

used non-exact approaches as compared to the exact approaches which have been used in 33% 

of studies. This is justified due to the complex nature of a reconfigurable manufacturing system 

which can be analysed adequately by using non-exact techniques.  
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Figure 15. The distribution of application of solution approaches to RMS problems into exact and 

non-exact approaches 

 

The exact approaches can be adapted to solve single as well as multi-objective-based 

optimization problems. An optimal solution can be readily attained for single objective-based 

problems (involving the objective of configuration cost, production time, etc.); however, multi-

objective problems cannot be solved to attain a single global solution. In such cases, a set of 

solutions are attained which are non-dominated to each other. A solution may offer an optimal 

value against one objective and a sub-optimal value for another objective. In other words, a 

solution of one objective function cannot be improved without reducing the solution of another 

objective function [124]. These problems are called Pareto-based optimization problems and 

the attained solutions are called Pareto Fronts (PFs). The principles used for the selection of 

PFs are explained below [125].  

i. Non domination: A decision vector of 𝑥 ∈ 𝑅𝑛 is non-dominated of there is no 𝑥° ∈ 𝑅𝑛 

such that 𝑓(𝑥°)𝑖 ≤ 𝑓(𝑥)𝑖 and ∃𝑖 ∈ {1,2, … , 𝑡}, 𝑓(𝑥°)𝑖. 

ii. Pareto-Fronts (PFs): For a multi-objective optimization problem, Pareto front 𝑃𝐹̈ 

defined by 𝑃𝐹̈ = {𝑥 ∈ 𝜔|¬∃𝑥° ∈ 𝜔, 𝑓(𝑥° < 𝑓(𝑥)} is a Pareto optimal solution set.   

 

4.1.2. Meta-heuristic approaches 

Meta-heuristics are prominent non-exact approaches that have demonstrated their 

effectiveness in solving process planning problems. They belong to the evolutionary set of 

approaches. This sub-section provides the distribution of literature according to the 

applications of heuristics, multi-heuristics, and hybrid approaches. Heuristic refers to a single 
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evolutionary approach, multi-heuristic refers to the use of more than one approach and hybrid 

heuristic means that two (or more) heuristics are combined in a single framework.  

Figure 16 shows the application frequency of heuristics, hybrid heuristics, and multi-

heuristics. Most studies (73% studies) have used single heuristics for solving the process 

planning problems followed by multi-heuristics which have been used in 20% of studies. A 

trend can be observed in the application of heuristics, such as, studies that have used a single 

heuristic are more focused on the in-depth analysis of various aspects of process planning. On 

the other hand, multi-heuristics and hybrid heuristics-based studies have provided a thorough 

comparison between different heuristics. More recently, Khezri et al. [31] studied a sustainable 

process plan generation problem by using exact and evolutionary solution approaches. The 

evolutionary approaches of Non-Dominated Sorting Genetic Algorithm (NSGA-II) and 

Strength Pareto Evolutionary Algorithm (SPEA-II) were compared and tested against a set of 

problems by using the performance metrics of spacing, mean ideal distance, and diversity. 

Interestingly, few studies (7%) have used hybrid heuristics for addressing the process planning 

problems. Since hybrid heuristics combine two or more heuristics into a single framework, the 

goal is to take advantage of the positive aspects of each heuristic. Single heuristics have certain 

shortcomings, such as NSGA-II may offer solutions based on pre-mature convergence and 

MOPSO can trap in a local optimum solution [126]. Thus, a hybrid heuristic can help the 

heuristics to reinforce each other and help in avoiding their shortcomings. 

 

 

Figure 16. The distribution of application of meta-heuristics to RMS problems into single heuristics, 

hybrid heuristics, and multi-heuristic approaches 
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The application frequency of various solution approaches to RMS problems (cost, time, 

modularity, responsiveness, etc.) is provided in Figure 17. There are fewer applications of exact 

solution approaches ( 𝜀 -constraint, AUGECON, WGO) to the RMS problems. It can be 

observed that among the non-exact solution approaches, the Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) and Genetic Algorithm (GA) have the highest number of applications to 

the RMS problems. There are three possible reasons for the high number of applications of 

genetic algorithms. Firstly, it uses an elitism selection approach, crowded comparison operator, 

and solution ranking which enhances its effectiveness [23]. Secondly, the genetic algorithm 

belongs to the relatively older family of meta-heuristics, and its repetitive applications to RMS 

problems are based on its history of applications to relevant problems [127]. It means that 

recent publications have adopted such an approach because there is a pattern of its use in RMS-

related articles published in the past. Thirdly, it has proved to be a better solution approach 

when compared to other approaches. Khan et al. [128] analysed an RMS problem using the 

solution approaches of Non- Dominated Sorting Genetic Algorithm (NSGA-II) and Multi-

Objective Particle Swarm Optimization (MOPSO). The performance of both approaches was 

assessed by using the metrics of computational time and the number of Pareto solutions. The 

results indicated that NSGA-II was more efficient approach, especially for large-scale 

problems. In another study [134], the authors analysed the quality variation-based RMS 

problem by using a hybrid version of NSGA-II and MOPSO. Compared to genetic algorithms, 

there are other solution approaches that are efficient and their applications to RMS problems 

can be increased. For instance, Simulated Annealing (SA) has relatively fewer applications to 

the relevant problems. SA is a probabilistic approach, and it is computationally efficient, can 

deal with large size problems, can avoid the trap of local optima, and is easier to implement. 

There are other recent genetic algorithm-based approaches in the form of Non-Dominated 

Ranked Genetic Algorithm (NRGA) and NSGA-II; however, the selection of NSGA-II is based 

on its extensive use in the published RMS studies and the advantages that have been listed 

earlier.   
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Figure 17. The frequency of different solution approaches to RMS problems. 

 

A recent trend is being observed in the RMS literature where a new heuristic is used 

that is conducive to the considered problem. The applications of new heuristics can be found 

in [15, 16, 60, 61, 80, 81, 83]. To some extent, the RMS literature contains the simultaneous 

use of both exact and non-exact approaches. From Figure 15, 7% of studies have used both 

approaches simultaneously. Such analysis is advantageous in comparing different approaches 

to small and large-sized problems. It is important to note that exact solution approaches cannot 

be directly applied to the non-linear (MINLP) models. In such cases, either such models are 

first linearized, or their convexity is proved.  

As established earlier in the literature summary (Table 2), there is a dearth of 

application of hybrid heuristics to solve the process planning problems. Since RMS problems 

are non-polynomial hard, it is opportune to solve such complex problems by using powerful 

hybrid meta-heuristics. The hybrid meta-heuristic approach combines two (or more) heuristics 

into a single framework, thereby reinforcing the positive aspects of each heuristic. To this end, 

this research uses an exact solution approach, two meta-heuristic approaches, and a hybrid 

meta-heuristic solution approach for solving the considered problem. The presented MINLP 

model has already been linearized for the application of an exact solution approach.  
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4.2. Complexity of the model 
 

The RMS process planning is a complex problem, and it belongs to the non-Polynomial 

hard (NP-hard) set of problems. The complexity of RMS is due to the combination of machines, 

configurations, tools, modules, and Tool Approach Directions (TADs) to operate a feature. The 

resulting graph is an acyclic graph which can be seen in the case study diagram (Figure. 28). 

Further, the problem can be converted into a Traveling Salesman Problem (TSP) if the 

complexity of machines, configurations, and tools to operate is removed. Thus, exact solution 

approaches are not ideal techniques to solve such problems, especially when the problem is 

large. To understand the behaviour of different solution approaches, this study considers the 

application of 𝜀 -constraint as an exact technique, Non- Dominated Sorting Genetic Algorithm 

(NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and hybrid NSGA-II-

MOPSO as evolutionary techniques. Furthermore, the performances of different approaches 

are assessed by using two metrics and two termination criteria.  

4.3. Proposed solution approaches. 
 

This section discusses the exact and hybrid meta-heuristic approaches to solve the RMS 

problem involving cost, quality, and modularity. The four phases of implementing the hybrid 

meta-heuristic and the termination criteria are discussed in detail.  

4.3.1. The 𝜀-constraint solution approach  

This approach converts a multi-objective model into a single/mono-objective model by 

considering all objectives (except one) as constraints. This approach was applied to Model 1. 

The objective of TC is given an utmost priority, as it constitutes an integral part of the process 

planning decision. The remaining objectives of QDI and ME are converted into 𝜀-constraints. 

The additional set of equations and constraints are given as: 

min 𝑇𝐶                                                                                                                                                                   (30) 

𝑄𝐷𝐼 ≤ 𝜀1                                                                                                                                                               (31) 

(𝑄𝐷𝐼)𝑚𝑖𝑛 ≤ 𝜀1 ≤ (𝑄𝐷𝐼)𝑚𝑎𝑥                                                                                                                           (32) 

𝑀𝐸 ≤ 𝜀2                                                                                                                                                                (33) 

(𝑀𝐸)𝑚𝑖𝑛 ≤ 𝜀2 ≤ (𝑀𝐸)𝑚𝑎𝑥                                                                                                                              (34) 
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The pseudocode of adapted 𝜀-constraint is given in Algo. 1. ∆𝑄𝐷𝐼  is the difference of 

quality decay index values between the current and previous steps. Similarly, ∆𝑀𝐸  is based 

on the difference of modularity effort values between steps of an 𝜀-constraint method. A 

distinct number of solutions are generated until the threshold defined by 𝜀 -constraints is 

reached.  

Algo. 1 Pseudocode of adapted 𝜀-constraint 

1:   Input: data 
2:   Implement Model 1 in CPLEX for upper and lower bounds of QDI and ME. 

3:   Use (32) and (34) to adjust 𝜀1 and 𝜀2 between respective upper and lower bounds. 
4:   While 𝜀1< QDI and 𝜀2< ME do 
5:            Use GA to obtain non-dominated solutions of mono-objective TC.  
6:            Archive the non-dominated solutions. 
7:            Set 𝜀1 = 𝜀1

° − ∆𝑄𝐷𝐼 and 𝜀2 = 𝜀2
° − ∆𝑀𝐸 (where 𝜀1

° > 𝜀1 and 𝜀2
° > 𝜀2). 

8:   End While 
9:   Display the non-dominated solutions. 
10: Stop 

 

4.3.2. Hybrid NSGA-II-MOPSO 

This sub-section introduces the hybrid meta-heuristic which combines the strengths of 

two power full meta-heuristics i.e., Multi-Objective Particle Swarm Optimization (MOPSO) 

and Non- Dominated Sorting Genetic Algorithm (NSGA-II). These approaches have been 

separately applied to different RMS problems such as process planning, scalability analysis, 

etc. For additional information, the application of MOPSO and NSGA-II can be consulted in 

[50, 76] and [27, 69], respectively. Since each algorithm offers certain advantages in 

computation, the aim is to reinforce the positive aspects of each approach by combining them. 

For this purpose, the hybrid approach works in a way that NSGA-II is used for exploration 

while MOPSO performs the task of exploitation.  

The Particle Swarm Optimization (PSO) was proposed by Eberhart and Kennedy [129] 

as a single objective-based optimization algorithm. PSO is inspired by the behaviour of birds 

flocking and fish schooling. A bird is represented by a particle for a single solution and the set 

of birds is represented by a swarm. During the flight, each particle can be defined in terms of 

its position (𝑥𝑖𝑗
𝑡 ) and velocity (𝑣𝑖𝑗

𝑡 ) which are updated in each iteration of the algorithm. Coello 

et al. [130] formally introduced MOPSO by incorporating the Pareto dominance and a novel 

mutation operator. An important aspect of MOPSO implementation is the selection of the 

global best position. In this regard, the same roulette wheel mechanism has been used in the 

current study as in [76, 130]. It selects the global best position (gbest) based on Crowding 
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Distance (CD). CD computes the closeness of a particular solution to other solutions, and it is 

based on an average value of the distance from two neighbouring solutions. In other words, 

CD offers the density of solutions around a particular solution. 

The Non- Dominated Sorting Genetic Algorithm (NSGA-II) is a non-domination-based 

technique that is used for multi-objective analysis. It was proposed by Deb [131] and it 

represents an evolutionary class of algorithms. The advantages offered by NSGA-II are the 

improved sorting, the no-apriori requirement of sharing parameter, and the inclusion of an 

elitism approach. It is based on five operators: initializing, sorting, crossover, mutation, and 

elitist comparison.  

Both algorithms use different search mechanisms. For instance, the genetic algorithm 

uses elitism and crowding distance sorting to ensure diversity of solutions. On the other hand, 

MOPSO uses a global best particle to guide the movement of corresponding particles. These 

particles update their speeds and velocities for searching the solution space. MOPSO has the 

drawback of getting trapped in local optima. To avoid the local optima, hybrid NSGA-II-

MOPSO divides the search space into exploration and exploitation zones. The exploration task 

is performed by NSGA-II by considering half of the population. This half is improved by the 

algorithm by using the ranking of non-dominated solutions. The remaining half of the 

population is used by MOPSO for exploitation. It searches for improved solutions in the 

neighbour by guiding the lower-ranked solutions towards the global optimal solutions. The 

flowchart of the hybrid algorithm is provided in Figure 18. The overall procedure of hybrid 

NSGA-II-MOPSO can be divided into 4 phases, as discussed below.  

 



63 
 

 

 

Figure 18. Flowchart of 4-phases of hybrid NSGA-II-MOPSO 
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Phase 1 of hybrid meta-heuristic 

It concerns the input information of RMS and meta-heuristics. This phase evaluates the 

Number of Machines (NM) of each configuration which is later used by phases 2 and 3. The 

associated pseudocode is given in Algo. 2. An operation is randomly selected, and all feasible 

configurations are identified by using the machine-operation matrix. The concerned failed 

operations and configuration capacities are used to calculate the NM values by using eq. 20 

and 21 and all values are archived. These values are used in phases 2 and 3 during the 

calculation of Objective Function Values (OBV). During this process, respective 

configurations and their NM are selected to ensure optimal OBV values.  

 

Algo. 2 Phase 1: Procedure for NM calculation 
1:  Initialize the number of operations (o) 
2:  For (op) o ∈O do 
3:       employ the machine operation matrix to identify the feasible machine configurations 
4:       while i≤ I 
5:             If (Prod. Feas.)io=0, (Prec.)o, o’’=0 then 
6:                      i=i+1 
7:             End If       
8:             randomly select (op) o based on precedence 
9:             input the disruption information of machine i for (op) o  
10:           identify the number of failed units (𝜔𝑖𝑜) 
11:           evaluation of the number of machine configurations (eq. 20, 21)   
12:           i=i+1 
13:      End while 
14:      archive the number of machine configurations 
15: End For 

 

 

Phase 2 and Phase 3 of hybrid meta-heuristic 

The application of phases 2 and 3 is performed by using MOPSO and NSGA-II, 

respectively. NSGA-II serves the purpose of exploration while MOPSO performs the task of 

exploitation. NSGA-II selects the upper half of the population to create offspring. It uses a 

single-point crossover and a mutation operator to result in a fresh pair of child chromosomes. 

Encoding is an important aspect of the application of operators. The encoding matrix of five 

rows and n columns (machine, modules, features, operations, and quality characteristic) is used, 

and an example is provided in Table 4. For instance, machine configuration 1 uses two auxiliary 

modules (A11 and A15) to perform operation 1 (O1) of feature (F1) which has the quality 

characteristic (k3), and so on. To avoid non-feasible solutions causing the penalty, only 

continuous values between [0,1] are assigned to each cell. The encoding and decoding schemes 
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are described in the Appendix. Following this, the objective functions of TC, QDI, and ME are 

computed by using the archived information of the Number of Machines (NM). In the next 

step, the parent and child populations are combined to perform non-dominated sorting and 

crowding distance based on the non-domination of solutions. The solutions are sorted in an 

ascending order. Lastly, the non-dominated solutions are stored in external archive. The 

remaining half of the population is used by MOPSO for exploitation. It acquires the non-

dominated solutions which are stored in the repository. The detailed procedure is provided in 

Algo. 3.  

Table 4. Example of matrix used for encoding scheme. 

Machine M1 M3 M2 M1 M3 M3 M2 M1 M1 

Module A11, A15 A31 A43 A16, A12 A32 A34 A21 A13 A13, A16 

Feature F1 F1 F2 F3 F2 F1 F1 F3 F2 

Operation O1 O2 O9 O14 O10 O4 O3 O16 O12 

Quality characteristic k3 k2 k5 k1 k6 k4 k8 k7 k9 
 

 

Algo. 3 Phase 2: Pseudocode of MOPSO 
1:  select the remaining half of the population 
2:  store pbest values 
3:  initiate ext. repository and create the grid 
4:  While g<gmax do 
5:        For p=1-P do 
6:               select global best from rep. and update speed 
7:               evaluate the fitness of OBV values 
8:               use MOPSO mutation and perform domination 
9:               store pbest 
10:      End For 
11:      add non-dominated solutions to rep. 
12:      discard the dominated solutions 
13:      update grid and change inertia 
14:    g=g+1 
15: End While 

 

Phase 4 of hybrid meta-heuristic 

This phase combines the results of NSGA-II and MOPSO obtained from phases 2 and 

3. It takes the population of both algorithms and combines them to be stored in the archive of 

NSGA-II. The ranking of stored solutions takes place based on the non-domination of 

solutions. Only a predefined number of non-dominated solutions are stored, and the remaining 

are discarded. The loop continuous until the optimal solutions are found, or the stopping criteria 
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are met. Two stopping criteria are discussed in section 5.4. The pseudocode for merging the 

population of both meta-heuristics is given in Algo. 4.  

The input parameters of the hybrid algorithm were fine-tuned by using a set of 

experiments. Each experiment was defined by configurations_operations (such as 3_5 means 

3 configurations and 5 operations). A partially mapped crossover and random mutation was 

used in the execution of NSGA-II. These genetic parameters are described in the Appendix. 

The optimal parameters were based on the following values: population size= 150, maximum 

iterations= 500, crossover probability= 0.6, mutation probability= 0.3, c1=c2=2, size of external 

archive in MOPSO= 150, maximum inertia= 0.7 and minimum inertia=0.3.  

 

Algo. 4 Phase 4: Merging the population 
1:    For g=1 to gmax, do 
2:         create a set of particles half the pop. (npop/2) 
3:         add non-dominated solutions to the repository 
4:         add. pop. NSGA-II with particles of MOPSO 
5:         conduct non-dominated sorting 
6:         crowding distance calculation 
7:         population ranking based on non-domination  
8:         divide the population into two groups 
9:         g=g+1 
10:  End For 
11:  display the non-dominated solutions 

 

4.3.5. Stopping criteria 

A meta-heuristic keeps on refining the solutions up until the threshold criteria are met. 

The stopping criteria can be defined based on a limit on the computation time or based on the 

number of generations/iterations. On the other hand, this research uses two termination criteria 

based on First Improvement (FI) and Best Improvement (BI). FI returns the solutions when the 

first improvement in the results is found whereas BI returns the solutions when the best 

improvement in results is found. The performance of solution approaches is assessed by using 

each stopping criteria.  

4.4. Performance metrics  
The results of the 𝜀 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 method and hybrid algorithm were compared to the 

results of NSGA-II and MOPSO. This comparison was carried out on small and large problem 

sizes by using two performance metrics i.e., Inverted Generational Distance (IGD) and Hyper 
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Volume (HV). Although there are several performance metrics available in the literature, the 

IGD and HV values provide an opinion on the conflicting/trade-off nature of the pareto-optimal 

solutions. The IGD calculates the average distance of non-dominated solutions from a true 

Pareto Front (PF), and it represents the convergence of solutions. The HV calculates the 

covered space and a maximum value of HV refers to higher diversity of solutions. These 

metrics are further discussed below.  

i. The IGD works on improving the quality and uniformity of Approximate Pareto 

solutions (AP). It considers the distance between a Real Pareto Solution (RS) and 

an Approximate Pareto solution (AP). The equation of IGD is given in (35) where 

d(RS(a), AP)= Euclidean distance between RS and AP.  

          𝐼𝐺𝐷(𝐴𝑃, 𝑅𝑆) = ∑ 𝑑(𝑅𝑆(𝑎), 𝐴𝑃) |𝑅𝑆|⁄

𝑎∈𝐹

 (35) 

ii. The Hyper Volume (HV) calculates the covered space size between AP and a 

reference point r. The equation to calculate HV is provided in (36) where  𝑟∗ =

(𝑟1
∗, 𝑟2

∗ … 𝑟s
∗) is the set of reference points values, s= number of objective functions 

and V= Lebesgue measure.  

         𝐻𝑉(𝐴𝑃) = 𝑉(𝑈𝑎∈𝐴𝐹[𝑓1(𝑎), 𝑟1
∗] × [𝑓2(𝑎), 𝑟2

∗] × … … × [𝑓𝑠(𝑎), 𝑟𝑠
∗] (36) 

A solution with minimum IGD and maximum HV values will ensure an excellent 

convergence and higher diversity of solutions.  

 

4.5. Results and analysis 

4.5.1. Model verification 

Model 1 was used for comparing the efficiency of different solution approaches. The 

solution approaches were performed by MATLAB 2016a on a 2.6 GHZ Core i5 system and 8 

GB RAM. The results were obtained for small and large-sized problems by using FI and BI 

stopping criteria. The problem size was defined by i_o (where i=machine configuration and 

o=operation). The respective results are provided in Figures 19-22. It can be observed that the 

𝜀 -constraint offers better results for small size problems; however, its solutions are less in 

number compared to other approaches. As the problem size gets bigger, 𝜀 -constraint does not 

provide feasible results (Figures 21 and 22). Hybrid NSGA-II-MOPSO performs well 
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compared to NSGA-II and MOPSO and it has the highest number of non-dominated solutions. 

In other words, the solutions offered by the hybrid heuristic are part of the non-dominated 

solutions. Moreover, as TC, QDI, and ME objectives are to be minimized, a solution closer to 

the origin (intersection of TC, QDI, and ME) will be preferred. From Figures 19-22, among 

the meta-heuristics, the solutions offered by the hybrid approach are closer to the origin. 

Similarly, the solutions of the hybrid approach are uniformly distributed as compared to other 

approaches. The reason behind this improved performance of hybrid NSGA-II-MOPSO is due 

to the division of population between NAGA-II and MOPSO, and the merger of storage 

capacities i.e., the external archive of NSGA-II with the repository of MOPSO. Once the 

population is divided between NSGA-II and MOPSO, it becomes easier to refine the solutions 

to obtain a higher number of Pareto (non-dominated) solutions. In addition, the merger of the 

external archive of NSGA-II with the repository of MOPSO helps in avoiding a premature 

convergence.  

 

 

Figure 19. Non-dominated solutions of small-sized problems using FI (Model 1) 
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Figure 20. Non-dominated solutions of small-sized problems using BI (Model 1) 

 

 

Figure 21. Non-dominated solutions of large-sized problems using FI (Model 1) 

 

Figure 22. Non-dominated solutions of large-sized problems using BI (Model 1) 
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Though the 𝜀 − constraint offers feasible solutions for some problems, it is not viable 

as it takes a higher computation time. As an illustration, Figure 23 provides the computation 

time (CPU) of solution approaches against the different size of problems. It can be observed 

that as the problem size increases, the CPU of 𝜀 −constraint increases non-linearly. On the 

other hand, HYB (FI) (hybrid with the first improvement) performs better, and it takes less 

time in returning the results. Further, the FI of a particular approach works well compared to 

BI in terms of computation. It is because BI is a more exhaustive stopping criterion that aims 

to identify the best solution and hence takes more time in offering Pareto optimal solutions.  

From Figures 19-22, MOPSO performs non-satisfactory compared to other solution 

approaches. The reasons behind its non-satisfactory performance are twofold. Firstly, the 

repository of MOPSO is pre-defined with a fixed limit. If the number of solutions exceeds the 

limit, the repository discards some of the existing solutions which can affect the quality of 

returned solutions. Secondly, its non-satisfactory performance can be due to an inappropriate 

selection of mutation operators. Particle swarm optimization uses mutation to perform 

exploitation on a portion of the population. The selection of mutation operator is pertinent as it 

can impact the population and convergence of solutions. As an illustration, different mutation 

values were selected to understand their impact on the solutions. Figure 24 provides the 

respective results of percentage convergence of different problem sizes against three mutation 

values. It can be observed that mutation impacts the convergence of solutions; however, an 

improved convergence can be ensured by selecting a higher rate of mutation. Further, the 

mutation affects the population up to a certain number of iterations. As shown, mutation rates 

of 0.4, 0.5, and 0.6 affect the population up until 45, 80, and 140 iterations, respectively, and 

stability in solutions is attained afterward. Thus, a higher rate of mutation is advantageous in 

obtaining higher convergence and a lower rate of mutation is beneficial for minimum impact 

on the population.    
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Figure 23. CPU time of solution approaches against different problem sizes 

 

Figure 24. The effect of mutation rate on convergence and population 
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The results of small and large sets of problems by using the termination criteria of FI 

and BI are provided in Figure 25 and Figure 26, respectively. It can be observed that hybrid 

NSGA-II-MOPSO has the standout scores of IGD and HV for both small and large sets of 

problems. Further, all solution approaches perform well under the BI stopping criteria and 

MOPSO performs non-satisfactory compared to other approaches. These findings reinforce the 

earlier presented analysis. It can be concluded that the hybrid approach ensures higher 

convergence, as well as diversity of solutions and hybrid NSGA-II-MOPSO (BI), is the best 

solution approach; however, it takes more time in returning solutions.  

Figure 25. HV and IGD scores of medium and large size problems using FI stopping criteria. 

 

Due to its higher efficiency, the case study analysis is presented by using a hybrid 

approach with BI criteria.  
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Figure 26. HV and IGD scores of medium and large size problems using BI stopping criteria. 

 

4.5.2. Model validation- Case study 1 

The mathematical models can be applied to many industrial parts if the features and 

operational details of such parts are available. The proposed solution approaches are powerful 

enough to solve complex real-life problems. For instance, process planning can be carried out 

for the cylinder head [115], reconfigurable integrated manufacturing systems and 

reconfigurable assembly systems [3], real industrial parts [57], and products with complex 

features [15] by using the proposed approaches.   
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Figure. 27 The product and its operational details-Case study 1 

 

Figure. 28 The precedence order of operations of different features-Case study 1 

 

Without the loss of generality, one case study was used for implementing the models. 

The detailed part and precedence order of the case study is provided in Figures 27 and 28, 

respectively. The product needs the completion of 17 operations by using thirteen candidate 

machine configurations. The data related to TADs, modules, processing time, and cost of 

operations is given in Table 5. The data of Tool Approach Directions (TADs), modules, and 

exploitation cost of machine configurations are provided in Table 6. Table 7 provides the 

addition, subtraction, and re-adjustment time of different modules. The production feasibility 
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and production rate of machine configurations for different operations are provided in Table 8. 

A value in the corresponding cell means that a configuration is eligible to perform the 

associated operation. For example, machine configuration 1 can perform operation 2 with a 

production rate of 45 units/machine. The matrix of reconfiguration cost between different 

machine configurations is provided in Table 9. The production is to be carried out for a product 

demand of 250 units.  

 

 

Table 5. Operations, TADs, modules, operation time and cost associated with different product features-

Case study 1 

Feature Operations TADs Modules 𝑡𝑓
𝑜 

(mins) 

𝑓𝑡𝑡 

(mins) 

pco 

(USD) 

F1 O1 +x, -z A11, A13, A31, A32 3.5 39.5 07 

 O2 +y A22, A34 05  10 

 O3 -y, +z A11, A21, A22, A24 07  11 

 O4 -x, -y, -

z 

A12, A16 12  15 

 O5 +y, -z A14, A16 04  06 

 O6 -y A15, A23, A33 08  10 

 O7 -y, +z A12, A21, A31 04  09 

F2 O8 +x, +z A16, A25, A34 4.5 35.5 07 

 O9 -y, -z A14, A24 03  09 

 O10 -y, +z A15, A22, A32 05  10 

 O11 -y A11, A13, A25, A32, A33 10  12 

 O12 -y, -z A23, A33, A34 13  18 

F3 O13 +x A16, A23, A31 3.5 25.5 07 

 O14 -y, -z A13, A24, A32 04  06 

  O15 -y A15, A16, A21 05  09 

 O16 -y, -z A12, A31, A34 09  12 

 O17 -x, +z A21, A33 04  08 
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Table 6. TADs, modules, and exploitation cost of different machine configurations-Case study 1 

Machine Configuration TADs Modules eci (USD) 

M1 1 +x, +y, -y, +z, -z A11, A14 350 

 2 +x, -x, +y, -y, +z, -z A12, A14, A16 380 

 3 +x, -y, +z, -z A11, A13, A15 440 

 4 +x, -y, +z, -z A13, A15 330 

 5 +x, -x, +y, -y, +z, -z A12, A14, A15, A16 475 

M2 6 +x, -x, -y, +z, -z A23, A24, A25 420 

 7 -x, +y, -y, +z, -z A21, A22, A24, A25 580 

 8 +x, -x, +y, -y, +z, -z A22, A23, A25 450 

 9 -x, -y, +z, -z A21, A24 350 

M3 10 +x, -x, -y, +z, -z A32, A33 365 

 11 +x, +y, -y, +z, -z A31, A32, A34 410 

 12 +x, -x, +y, -y, +z, -z A33, A34 380 

 13 +x, -x, -y, +z, -z A31, A33 350 
 

 

 

 

 

Table 7. Module addition, subtraction, and re-adjustment time for different auxiliary modules-Case 

study 1 

Module Associated time (min) 
Addition  Subtraction Re-adjustment 

A11 2.7 2.3 1.5 
A12 3.0 2.5 2.0 
A13 2.5 2.0 1.5 
A14 5.0 4.5 2.5 
A15 4.0 3.0 2.0 
A16 5.0 4.0 3.0 
A21 4.2 3.5 2.5 
A22 3.5 2.8 1.8 
A23 5.0 4.0 2.5 
A24 3.0 2.0 1.4 
A25 4.5 2.0 1.1 
A31 2.8 2.4 2.0 
A32 4.2 2.5 1.5 
A33 5.2 3.8 3.0 
A34 5.5 4.0 2.6 
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Table 8. Feasibility and production rate of configurations for different operations-Case study 1 

Conf. Operation 

 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 

1 -- 45 -- 75 55 70 -- -- 50 -- 45 -- 45 40 -- -- 60 

2 75 55 -- -- -- 60 -- 60 -- -- 65 45 -- -- 55 -- -- 

3 -- -- 60 60 -- -- 55 -- 60 65 -- 55 60 -- 60 45 -- 

4 65 -- 80 -- 65 -- 50 -- 70 -- 60 -- -- 55 -- -- 65 

5 -- 50 67 65 -- 70 -- 55 -- -- 75 -- 55 -- 70 45 -- 

6 60 -- -- 55 60 55 65 -- 75 70 -- 48 -- 65 -- 55 55 

7 -- 60 60 -- 70 -- 65 -- 60 -- 65 -- 45 60 -- 65 -- 

8 55 -- 70 -- -- 75 -- 50 -- 55 60 -- 50 -- 45 -- 45 

9 -- 45 -- 70 -- 65 -- 70 55 -- -- 53 -- 70 75 60 -- 

10 -- 55 50 -- 65 -- 70 -- 60 50 50 -- 60 -- -- -- -- 

11 60 -- 55 75 -- 60 -- 65 -- 70 -- 45 -- 55 -- -- 50 

12 -- 50 -- -- 60 -- 65 55 -- -- 63 -- 65 -- 65 70 -- 

13 70 -- 75 -- -- 50 -- -- 77 -- -- -- 60 -- 60 -- 60 

 

 

 

Table 9. Configuration change cost between different machine configurations-Case study 1 

Conf. Configurations 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

1  185 165 150 190         

2   145 170 140         

3    175 180         

4     130         

5              

6       155 175 140     

7        150 180     

8         160     

9              

10           145 180 165 

11            165 190 

12             155 

13              
 

The top 17 non-dominated solutions of both models are provided in Table 10. Model 1 

gives a minimum cost value of 9904 USD (s#15) compared to Model 2 which has a minimum 

cost value of 8235 USD (s#15). Similarly, ME has a minimum value of 23.85 (s#7) and 19.03 

(s#3) for Model 1 and Model 2, respectively. If we compare the values of TC (Model 1) and 

TC (Model 2), it can be concluded that all TC values of Model 2 are less than the minimum 

TC value of Model 1 (9904 USD). On the other hand, the average ME value of all solutions of 

Model 1 is 33.25 and it is 25.79 for all solutions of Model 2. Thus, on average, 22% less 

modularity effort is needed in Model 2. It means that if the practitioner selects a random 
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solution of Model 2, it will have less cost than the minimum TC-based solution of Model 1 and 

will need less average modular effort in completing the process plan. This highlights the role 

of quality variations in selecting a minimum cost and minimum modularity efforts-based 

process plan.  

It can be argued that the higher cost and modularity effort values of Model 1 are due to 

the quality disruptions and failed operations. Due to it, a modular effort has been invested in 

some operations which are discarded due to poor quality. The quality decay index (QDI) has a 

minimum value of 0.1511 (s#11) which means that the process plan has almost 15% failed 

operations compared to conforming operations. Since quality is only analysed through Model 

1, we can see that the minimum solutions of TC, QDI, and ME contain 23.71%, 15.11%, and 

22.65% failed operation units which correspond to 60, 38 and 57 units of failed products, 

respectively. There is a trade-off involved in selecting a particular process plan. Some plans 

can offer less cost with higher quality decay index and modular effort and vice versa. For 

example, in some cases, as the QDI value increases, the corresponding ME value increases as 

well. It means that: i) variation in quality necessitates a higher modular effort to complete the 

required level of conforming operations, and ii) higher QDI value means more failed operations 

and hence an increase in the lost modularity effort.  

Table 10. The non-dominated solutions of Model 1 and Model 2-Case study 1 

S. No 

Model 1 Model 2 

TC QDI ME TC ME 

1 11300 0.2196 34.71 8804 24.22 

2 10435 0.2235 30.51 8566 25.69 

3 10362 0.2465 24.39 8989 19.03 

4 11402 0.1799 24.39 8963 19.84 

5 10402 0.2019 47.53 8555 25.83 

6 10403 0.1843 34.92 8528 26.15 

7 10531 0.2265 23.85 8824 19.94 

8 10407 0.1776 40.61 8407 36.22 

9 10470 0.1841 36.34 8514 31.54 

10 11012 0.1705 35.48 8818 24.12 

11 10530 0.1511 38.34 8525 26.19 

12 11540 0.1797 29.49 8598 24.88 

13 10414 0.2035 34.87 8572 25.43 

14 11059 0.2229 34.82 8802 24.28 

15 9904 0.2371 29.12 8235 36.24 

16 10923 0.2234 31.08 8742 24.86 

17 10818 0.2031 34.86 8819 24.08 

Sum 565.31  438.54 

Average value 33.25  25.79 
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The detailed process plans against different objective functions are provided in Table 

11. They can be interpreted column by column. For example, operation 1 (O1) can be performed 

by the 11th configuration for a minimum value of TC (M1), QDI (M1) and TC (M2). Similarly, 

we can use the 8th and 2nd configurations for operation 1 (O1) to attain a minimum value of 

modular effort in Model 1 and Model 2, respectively.  

 

Table 11. Detailed process plans of optimal objective functions-based solutions-Case study 1 

S.#  O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 

15 TC (M1) 11 7 5 9 1 9 4 8 4 10 2 6 10 6 9 12 11 

11 QDI (M1) 11 1 5 9 10 13 10 2 6 6 12 6 8 11 5 5 11 

7 ME (M1) 8 10 7 3 7 2 3 11 13 6 7 3 5 7 5 12 11 

15 TC (M2) 11 7 5 9 1 9 4 8 4 10 2 6 10 6 9 12 11 

3 ME (M2) 2 1 10 1 10 2 10 11 10 3 10 11 12 9 8 7 11 
 

The cost breakdown of minimum cost solutions of both models is presented in Figure 

29. Both models have the same Reconfiguration Cost (RC) as they provide a minimum cost 

solution against the same process plan (s#15). Similarly, Model 1 includes the values of scrap 

and re-work costs due to different defects and failed operations. The TMC value of model 1 is 

higher as it uses a higher number of machine configurations in the presence of variation in 

quality (eq. 21).  

 

Figure. 29 Cost breakdowns of Model 1 and Model 2 
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A detailed analysis of modularity is presented in Figure 30. These values are based on 

different components of ME (Eqs. 15 and 16). The total cost solution of Model 1 uses higher 

addition, subtraction, and re-adjustment of modules as compared to the total cost solution of 

Model 2. The same is true for the comparison of modules in the objective function of ME of 

both models. RMS is known for its cost-efficiency which can be achieved by performing more 

operations using fewer changes between configurations. This can be ensured if there are no 

quality-related problems and if a less modular effort is needed. For example, in Figure 30, we 

can see that the minimum number of configuration changes occurs when a minimum ME 

solution of Model 2 is used (144 configuration changes). Besides this, the solutions of Model 

1 relatively undergo a higher number of configuration changes. If we compare the number of 

machine configurations used by minimum ME solutions of Model 1 and Model 2, interestingly, 

both solutions use the same number of configurations (i.e., 36). However, the minimum 

ME(M1) based process plan has a value of 23.85 which is higher than the minimum ME(M2) 

based process plan value of 19.03. The reasons behind using the same number of configurations 

and a higher difference of modularity effort values are two-fold. Firstly, from Table 10, we can 

see that ME(M2) process plan uses configurations more repetitively as compared to ME(M1) 

solution (e.g., it uses configuration 10 five times) which results in relatively less need for 

modular reconfiguration. This is reflected by the different sets of modules (added, subtracted, 

re-adjusted) used in ME(M1) (361, 253, 90) and ME(M2) (163, 218, 37). Secondly, ME(M1) 

is based on quality issues and hence it contains an extra proportion of lost modular effort due 

to failed and scrapped operations. Thus, quality aspects are not only important from cost and 

number of failed operations viewpoints, but they also impact the modularity of a reconfigurable 

manufacturing system.  

 



81 
 

 

Figure. 30 Comparison of modular features of different models  

 

4.5.2. Model validation- Case study 2 

One complex case study was used to generalize the findings. The schematic of the part 

and its corresponding features are provided in Figure 31. The details of operations within 

different features and their precedence orders are provided in Figure 32. Table 12 provides the 

TADs, modules, operation time, time needed to produce a feature, and production costs of 

different operations. Table 13 contains the configuration, TADs, modules, and machine 

exploitation cost of different machine configurations. The information of time needed for 

adding, subtracting, and re-adjusting different modules is given in Table 14. Tables 15 and 16 

provide the feasibility and production rate of configurations for different operations. The costs 

of changing between configurations of the same machine are given in Table 17.  

 

 



82 
 

 
Figure 31. The product and its operational details- Case study 2. 
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Figure 32. The precedence order of operations of different features-Case study 2 
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Table 12. Operations, TADs, modules, operation time and cost associated with different product features-Case study 2 

`Features Ops. TADs 

𝒕𝒇
𝒐 

(mins) 

𝒇𝒕𝒕 

(mins) 

pco 

(USD) Features Ops. TADs 

𝒕𝒇
𝒐 

(mins) 

𝒇𝒕𝒕 

(mins) 

pco 

(USD) 

F1 O11 +x, +y  2.0  06  09 F5 O54  +x, +y, +z  4.3    16 

  O12  +x, -y, -z  1.8    08   O55  -x, +y  6.1    20 

  O13  -x, +y  1.2    10   O56  +x, +y, -z  3.7    15 

  O14  +y, +z  1.0    07   O57  -z  7.5    18 

F2 O21  -x, +y, -z  6.2  23  13   O58  -x, -y  5.3    14 

  O22  -x   8.5    11   O59  +x, -z  5.1    17 

  O23  +x, +y  4.7    14 F6 O61  +x, -z  3.4  11  07 

  O24  -x, +y  3.6    15   O62  +y  2.3    09 

F3 O31 +y, +z  8.4  36  18   O63  -x, -y, +z  1.1    10 

  O32  +x, +y +z  7.2    14   O64  -y, -z  4.2    06 

  O33  -x, -y  5.6    16 F7 O71  +y, -z  2.2  13  09 

  O34  -x, +y, -z  6.3    13   O72  +x, -y  3.1    11 

  O35  +x, -z  4.9    15   O73  -y, -z  1.8    10 

  O36  -x, -y, -z  3.6    13   O74  +x, +y, -z  2.6    12 

F4 O41  +y, +z  6.0  30  11   O75  +x, -z  3.3    08 

  O42  -x, -y, +z  5.3    14 F8 O81  +x, -y  6.4  40  17 

  O43  -x, -y  6.7    10   O82  -z  5.7    15 

  O44  +x, +y, +z   7.5    15   O83  -x, -z  7.4    18 

  O45  -x, +y   4.5    13   O84  -x, -y, -z  3.5    14 

F5 O51  +x, -y, +z  7.2  50  15   O85  +y, -z  4.0    13 

  O52  +x, +y  6.3    18   O86  +x, +y, +z  5.8    14 

  O53  -y, -z  4.5    19   O87  -x, +y,   7.2    16 
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Table 13. TADs, modules, and exploitation cost of different machine configurations-Case study 2 

Machine Configurations TADs Modules 

eci 

(USD) Machine Configurations TADs Modules 

eci 

(USD) 

M1 1 +x, -x, +y, -y, +z, -z A11, A12, A15, A16  460 M4 13 +x, -x, +y, -y, +z, -z A42, A43, A45, A47, A49  840 

  2 +x, -x, +y, -y, +z, -z A12, A14, A15, A16  480   14 +x, -x, +y, -y, +z, -z A42, A44, A47, A48   750 

  3 +x, -x, +y, -y, +z, -z A11, A12, A13, A14, A16   430   15 +x, -x, +y, -y, +z, -z A43, A45, A46, A49  700 

M2 4 +x, -x, +y, -y, +z, -z A22, A23, A25, A26  560 M5 16 +x, -x, +y, -y, +z, -z A52, A54, A56  650 

  5 +x, -x, +y, -y, +z, -z A21, A22, A24, A25, A27  510   17 +x, -x, +y, -y, +z, -z A51, A52, A55, A56   680 

  6 +x, -x, +y, -y, +z, -z A23, A24, A25, A26, A28  615   18 +x, -x, +y, -y, +z, -z A53, A54, A55   730 

  7 +x, -x, +y, -y, +z, -z A21, A22, A24, A27, A28  490   19 +x, -x, +y, -y, +z, -z  A51, A52, A54, A56  770 

M3 8 +x, -x, +y, -y, +z, -z A31, A33, A34, A35  670 M6 20 +x, -x, +y, -y, +z, -z  A62, A63, A64, A65  810 

  9 +x, -x, +y, -y, +z, -z A32, A34, A35, A36  690   21 +x, -x, +y, -y, +z, -z  A61, A62, A63, A65  830 

  10 +x, -x, +y, -y, +z, -z A31, A33, A35, A36  720   22 +x, -x, +y, -y, +z, -z  A62, A63, A64  775 

M4 11 +x, -x, +y, -y, +z, -z A41, A43, A46, A49   810 M7 23 +x, -x, +y, -y, +z, -z  A72, A73, A74  480 

  12 +x, -x, +y, -y, +z, -z A41, A42, A44, A46, A48  770   24 +x, -x, +y, -y, +z, -z  A71, A72, A73  430 
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Table 14. Module addition, subtraction, and re-adjustment time for different auxiliary modules-Case study 2 

Modules 

Associated time 

Modules 

Associated time 

Addition Subtraction Re-adjustment Addition Subtraction Re-adjustment 

A11  4.5  3.8 3.2 A44  5.1  4.1  3.2 

A12  4.1  3.4 2.7 A45  6.3  5.2  4.1 

A13  3.2  2.6 2.0 A46  6.0  4.8  3.2 

A14  5.8  4.4 3.5 A47  4.7  3.5  2.7 

A15  3.2  2.5 2.1 A48  4.2  3.1  2.6 

A16  4.4  3.2 2.5 A49  4.8  3.6  2.8 

A21  3.8  2.8 2.0 A51  5.6  4.4  3.2 

A22  5.5  4.3 3.4 A52  6.5  5.3  3.8 

A23  4.8  4.0 3.1 A53  6.2  4.1  3.0 

A24  5.9  5.2 4.0 A54  5.1  3.7  2.7 

A25  6.2  4.8 3.6 A55  4.7  3.6  2.6 

A26  3.5  2.7 1.8 A56  4.2  3.2  2.2 

A27  3.7  3.1 2.3 A61  4.9  3.7  2.4 

A28  4.7  3.6 2.7 A62  5.6  4.2  3.0 

A31  5.3  4.2 3.2 A63  5.3  4.3  3.2 

A32  5.8  4.8 3.3 A64  6.8  5.3  3.7 

A33  4.5  3.7 2.8 A65  6.1  4.7  3.4 

A34  3.6  2.8 1.9 A71  5.2  4.0  2.8 

A35  3.5  2.5 1.7 A72  4.3  3.4  2.6 

A41  3.8  3.0 2.0 A73  4.7  3.6  2.7 

A42  4.9  4.1 3.2 A74  4.9  3.9  2.8 

A43  5.7  4.4 3.3    5.7  4.3  3.1 
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Table 15. Feasibility and production rate of configurations for different operations-Case study 2 

Confs. 

Operations 

O11 O12 O13 O14 O21 O22 O23 O24 O31 O32 O33 O34 O35 O36 O41 O42 O43 O44 O45 O51 O52 O53 

1 -- 45 60 -- 75 -- 50 65 55 -- -- 70 55 -- 45 55 -- -- -- 70 50 -- 

2 55 -- 65 70 -- 60 -- 45 -- 75 50 -- 70 50 -- 45 -- 50 80 -- -- 65 

3 65 55 -- -- -- 50 55 -- 60 -- -- -- 45 -- 65 -- -- -- -- 60 55 -- 

4 -- -- 60 55 -- 55 70 50 -- 50 65 -- -- 55 -- 75 45 -- -- 50 75 -- 

5 -- 65 50 -- 70 65 60 -- 45 -- -- 55 -- 60 45 -- 50 -- 65 -- 50 -- 

6 40 -- 55 50 -- 75 -- 65 55 -- 45 -- 60 -- -- 65 -- 60 -- 55 -- 45 

7 75 -- -- 45 60 -- 50 -- -- 65 -- 55 70 40 -- -- 65 55 -- -- -- 70 

8 60 -- 65 50 -- 50 60 -- 45 65 -- 70 -- 55 -- 65 -- 50 -- 65 45 -- 

9 -- 70 60 50 -- 65 -- 55 -- 80 40 -- 55 -- 55 -- -- 75 50 -- 55 -- 

10 50 60 -- -- 65 -- 55 70 -- -- 60 -- 50 55 -- -- 50 -- 60 -- -- 70 

11 55 -- 55 65 -- 45 75 -- 50 -- 60 -- 45 -- 60 50 -- 65 -- 55 65 -- 

12 45 55 -- -- 70 50 -- 60 -- 60 -- 50 -- 75 -- 50 -- 45 65 -- -- 75 

13 -- -- 45 60 55 -- -- 50 70 -- -- 45 55 -- 65 -- 80 -- 40 -- 60 -- 

14 -- 65 50 -- 75 55 -- 60 -- 45 70 -- -- -- 55 -- 50 -- 50 -- 45 55 

15 70 60 -- 50 -- 60 75 -- 55 -- 50 65 -- 55 -- 45 -- -- 65 50 -- -- 

16 65 -- 70 -- 55 60 -- 45 75 -- 40 -- 60 65 -- 55 -- 50 -- -- 65 -- 

17 75 55 -- 70 50 -- 65 -- 50 -- 60 -- -- -- 45 -- 55 -- 65 55 -- 60 

18 -- 60 -- 60 45 -- 70 -- 65 55 -- 50 -- 75 -- 70 -- -- 50 -- 60 70 

19 -- -- 50 60 -- 70 -- 55 -- 65 -- -- 50 45 -- -- 70 -- -- 45 75 -- 

20 45 -- 60 50 -- 65 -- 70 50 -- 70 55 -- 65 50 -- 75 -- 45 -- 55 -- 

21 -- 70 60 -- 45 65 -- 55 -- 75 -- -- 45 -- 55 -- -- 70 -- 70 -- 45 

22 65 75 -- 55 45 -- 60 -- 70 50 -- 65 55 75 -- -- -- 60 -- 55 -- 60 

23 55 -- 55 65 -- 70 -- 60 50 -- -- -- 65 -- -- 45 -- 55 50 -- 70 -- 

24 -- 60 45 -- 70 50 65 -- -- -- 55 75 -- -- 65 -- 45 50 -- 40 60 50 
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Table 16. Feasibility and production rate of configurations for different operations-Case study 2 

Confs. 

Operations 

O54 O55 O56 O57 O58 O59 O61 O62 O63 O64 O71 O72 O73 O74 O75 O81 O82 O83 O84 O85 O86 O87 

1 -- 65 -- 70 -- 45 -- -- 60 50 75 -- -- 55 70 -- -- 50 -- 55 45 -- 

2 -- 55 45 -- 60 50 -- 65 55 -- 40 -- -- 65 55 -- 60 45 -- -- 50 -- 

3 50 -- 60 50 -- -- 65 -- 45 -- 55 75 60 -- -- -- 65 -- 45 65 -- 55 

4 -- -- 70 -- -- 60 75 45 -- -- 60 -- -- 75 45 -- -- 50 -- 60 -- 50 

5 55 -- -- 65 -- 55 45 50 -- -- 60 -- 50 60 55 -- -- 55 65 -- 60 -- 

6 -- 75 50 -- -- 45 50 -- -- 65 -- 80 45 40 50 60 -- -- 60 50 -- 75 

7 -- 45 55 -- 80 -- -- 60 -- 50 -- -- -- 55 65 -- 45 75 -- -- 80 65 

8 70 -- -- 75 55 -- -- 65 -- 75 -- 50 65 -- 80 -- -- 65 -- 55 -- -- 

9 -- -- 65 50 -- -- 60 -- 75 -- -- 45 55 75 -- 65 -- -- 50 60 50 -- 

10 -- -- 45 -- -- 70 60 -- 65 40 75 -- -- 65 45 -- -- 55 -- -- 60 50 

11 -- 50 -- 65 -- 55 -- -- 75 -- 50 45 -- 55 50 -- 65 -- 45 55 -- -- 

12 65 55 -- -- 60 60 -- -- 65 50 55 65 50 -- -- 45 -- 50 -- -- 75 55 

13 45 60 -- -- 50 45 -- -- 55 40 -- 75 65 45 -- 55 -- -- 65 55 -- 45 

14 -- -- 65 -- 65 -- 70 -- 45 75 -- 50 55 -- -- 65 -- 45 -- -- 65 70 

15 50 -- -- 45 -- -- 55 70 -- 65 -- 45 60 40 55 -- -- 50 -- 75 -- -- 

16 -- -- 70 55 75 -- 60 -- 70 -- 65 -- -- 60 55 -- 75 -- 55 -- 50 -- 

17 60 -- 55 -- 50 65 40 -- 60 -- 55 75 70 -- -- 45 70 -- 55 80 -- 60 

18 -- 75 -- 55 -- 70 -- 45 -- 60 50 -- -- 55 45 -- -- 65 45 -- 60 70 

19 -- 55 -- 45 60 -- 50 -- 70 80 -- 50 65 -- -- 55 45 -- -- 55 75 -- 

20 70 -- 65 75 65 -- 55 -- 45 -- -- 50 55 -- -- 50 -- 75 -- -- 60 50 

21 45 60 -- -- 70 -- 65 75 -- 55 45 -- -- 75 65 80 -- -- 65 50 -- 45 

22 55 65 -- -- 65 55 -- 45 -- 55 70 -- -- 60 55 -- 65 80 -- -- 75 -- 

23 -- -- 75 45 55 -- -- 50 -- 65 60 40 -- 50 40 -- -- 55 -- -- 55 -- 

24 -- -- 45 -- 50 40 -- 60 55 -- 65 -- -- 45 -- 65 70 -- 50 60 -- 75 
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Table 17. Configuration change cost between different machine configurations-Case study 2 

Confs. 

Configurations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1   180  190                                            

2      210                                           

3                                                 

4         220  180  200                                    

5           210  190                                    

6             200                                    

7                                                 

8                 190  230                              

9                    215                             

10                                                 

11                       240  220  200  190                    

12                          200 180  230                    

13                            200 210                    

14                             250                    

15                                                 

16                                  200 180  220            

17                                    230 260            

18                                     190            

19                                                 

20                                         210  230      

21                                           190      

22                                                 

23                                               260  

24                                                 
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Table 18. The non-dominated solutions of Model 1 and Model 2-Case study 2 

S. No 

Model 1 Model 2 

TC QDI ME TC ME 

1 16870 0.2043 51.46 11704 34.89 

2 17210 0.2105 49.27 10874 55.64 

3 16997 0.1836 75.29 11210 44.36 

4 18585 0.1902 55.47 10580 63.37 

5 18210 0.1953 58.96 10890 52.34 

6 17950 0.1886 63.85 11375 41.55 

7 17355 0.2098 61.29 11025 45.83 

8 15680 0.2207 66.23 10865 57.83 

9 16245 0.2035 68.02 11376 39.35 

10 13400 0.2673 63.16 10733 60.23 

11 14767 0.2586 57.69 12264 31.43 

12 16375 0.2036 65.42 10982 47.53 

13 15636 0.2243 50.56 10684 62.78 

14 17635 0.1922 48.39 11555 36.75 

15 15500 0.2362 56.74 10800 58.56 

16 16890 0.1989 70.21 11267 43.73 

17 17355 0.2059 52.37 10935 49.22 

18 13984 0.2637 59.27 11430 38.13 

19 14268 0.2612 67.78 10708 60.42 

20 16437 0.2008 60.24 12034 33.63 

Sum 1201.67  957.57 

Average value 60.0835  47.879 

 

 



91 
 

Table 18 contains the top 20 non-dominated solutions of Model 1 and Model 2. In 

Model 1, process plans s#10, 03, and 14 provide the minimum value of the Total Cost (TC), 

the Quality Decay Index (QDI), and the Modularity Efforts (ME), respectively. On the other 

hand, process plans s#04 and 11 provide the minimum values of TC and ME (Model 2), 

respectively. It can be observed that all TC values of Model 2 are less than the minimum TC 

value of Model 1 (13400 USD). The average ME value of Model 1 is 60.0835 whereas the 

average ME value of Model 2 is 47.879. In addition, an increase in the QDI value impacts the 

cost solutions in most cases. It means that quality and cost need to be analysed together for 

improving the performance of a process plan. Tables 19 and 20 provide the detailed process 

plans against all non-dominated solutions. As the previous results, these findings can be 

interpreted column-wise. For example, as observed in Table 18, process plan 10 provides the 

minimum Total Cost value (Model 1). Accordingly, Table 19 shows that the four operations of 

the first feature i.e., O11, O12, O13, and O14 can be performed by the sixth, tenth, eleventh and 

fourth configuration, respectively. This can assist the practitioners in selecting a process plan 

according to the choice of a particular objective function. Tables 21 and 22 provide the detailed 

process plans against the optimal objective function values. These findings summarize the 

detailed process plans according to the choice of different objective functions of both models. 

Starting from the first operation (O11) till the last operation (O87), managers can assign machine 

configurations to operations for achieving multiple goals (i.e., cost, quality, modularity). In 

addition, it can be inferred from Table 21 and Table 22 that the TC solution of Model 1 repeats 

14 configurations in its process plan. The sum of repeatedly used configurations is 36. On the 

other hand, the ME solution of Model 1 repeats 15 configurations in its process plan which 

amounts to a total number of 40 configurations repeatedly used. Due to the high number of 

repetitions of machine configurations in its process plan, the ME-based solution needs 

relatively less modular adjustment and hence a minimum value of modularity effort.   
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Table 19. The detailed process plans of top-non-dominated solutions-Case study 2. 

 S# O11 O12 O13 O14 O21 O22 O23 O24 O31 O32 O33 O34 O35 O36 O41 O42 O43 O44 O45 O51 O52 O53 

1 06 10 02 09 10 05 11 10 05 21 06 24 03 08 09 08 20 09 13 04 09 12 

2 10 12 05 17 05 16 11 14 11 18 09 07 10 16 17 15 14 02 13 15 14 22 

3 11 14 09 02 17 23 22 21 18 07 15 15 16 04 03 02 10 22 02 19 19 06 

4 17 15 08 06 01 03 03 02 23 02 20 05 02 05 09 01 04 12 09 04 01 02 

5 03 21 13 07 07 05 15 06 01 14 17 05 03 02 14 12 07 08 12 03 04 02 

6 02 09 19 15 01 09 10 01 06 19 04 01 23 02 20 23 24 24 23 17 01 10 

7 12 03 21 19 16 12 07 02 15 22 02 20 21 20 09 18 24 02 05 22 01 24 

8 23 24 02 23 22 02 08 14 22 04 10 13 16 19 01 11 07 23 17 01 05 07 

9 12 05 06 20 05 02 03 19 20 08 17 08 09 15 14 06 04 08 20 01 09 10 

10 06 10 11 04 18 20 01 23 16 14 24 22 06 10 24 08 17 06 09 08 08 14 

11 02 15 09 23 22 23 24 13 05 12 11 07 07 07 11 01 19 02 02 11 14 17 

12 07 21 24 11 14 03 18 10 01 12 14 01 19 04 05 01 07 12 05 19 16 18 

13 08 18 21 19 24 08 05 02 17 08 09 18 19 05 09 12 10 12 12 21 24 21 

14 17 17 19 17 05 15 03 09 23 02 02 08 09 19 21 18 04 16 15 22 03 06 

15 20 05 04 11 07 19 18 23 18 09 06 05 03 22 13 15 19 22 15 01 13 02 

16 23 10 06 06 01 04 22 21 06 21 24 24 01 04 05 06 24 24 18 04 23 07 

17 10 01 01 09 16 06 05 12 06 08 04 12 01 16 03 02 05 07 20 11 13 10 

18 02 03 11 23 14 24 01 13 01 04 11 01 22 07 24 11 13 02 02 24 11 14 

19 06 01 20 18 18 21 08 04 05 14 15 18 18 22 17 01 20 21 09 08 09 18 

20 23 22 05 02 12 12 18 09 22 07 17 15 23 12 24 01 07 11 05 04 04 24 
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Table 20. The detailed process plans of top-non-dominated solutions-Case study 2. 

 S# O54 O55 O56 O57 O58 O59 O61 O62 O63 O64 O71 O72 O73 O74 O75 O81 O82 O83 O84 O85 O86 O87 

1 12 13 03 05 12 11 05 24 14 22 23 06 13 07 07 12 11 20 17 21 20 07 

2 21 19 09 11 02 18 16 07 03 15 04 08 19 10 11 09 17 07 18 04 23 12 

3 05 02 10 16 23 24 14 02 12 07 11 11 03 15 18 17 22 10 21 09 05 18 

4 08 07 02 19 07 04 10 15 19 01 16 15 08 18 02 20 03 02 09 13 09 03 

5 15 11 06 19 13 06 04 21 01 10 18 19 12 22 04 24 07 05 11 19 12 07 

6 13 19 14 23 17 10 03 08 01 12 22 08 15 02 22 09 02 18 03 24 16 13 

7 17 22 23 05 24 13 20 05 12 15 24 09 20 06 21 12 22 23 17 01 18 21 

8 20 06 20 08 19 01 17 02 16 19 04 08 06 09 10 17 24 20 21 04 02 24 

9 03 01 16 01 08 05 10 21 24 22 04 03 03 15 06 20 16 08 05 13 20 12 

10 03 01 10 15 02 12 06 23 19 14 02 14 13 21 08 19 11 12 06 17 23 06 

11 08 12 04 18 13 10 20 08 20 07 17 19 15 16 01 06 11 14 13 19 01 03 

12 20 18 06 23 14 22 19 05 09 06 22 23 17 18 04 24 07 22 03 04 09 13 

13 22 21 03 03 21 17 15 04 12 14 24 20 20 24 08 13 03 01 03 01 07 21 

14 13 02 24 09 23 24 06 18 03 23 05 03 03 01 11 09 22 01 17 08 14 18 

15 05 11 02 16 07 05 04 22 09 18 11 13 06 01 16 12 17 05 21 13 18 12 

16 17 13 23 19 02 02 10 22 17 10 21 17 14 07 18 19 19 10 06 17 20 04 

17 21 18 04 05 14 04 16 07 24 08 21 15 17 05 22 24 07 14 16 21 05 07 

18 15 22 02 20 24 12 20 05 14 01 03 06 05 13 06 13 03 18 11 06 12 10 

19 05 01 14 23 19 11 17 02 03 07 10 08 09 15 02 09 24 20 09 08 18 14 

20 22 07 16 08 07 22 09 24 10 22 01 09 03 23 08 12 19 04 17 13 22 10 
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Table 21. Detailed process plans of optimal objective functions-based solutions-Case study 2. 

S. No  Operations 

O11 O12 O13 O14 O21 O22 O23 O24 O31 O32 O33 O34 O35 O36 O41 O42 O43 O44 O45 O51 O52 O53 

10 TC (M1) 06 10 11 04 18 20 01 23 16 14 24 22 06 10 24 08 17 06 09 08 08 14 

03 QDI (M1) 11 14 09 02 17 23 22 21 18 07 15 15 16 04 03 02 10 22 02 19 19 06 

14 ME (M1) 17 17 19 17 05 15 03 09 23 02 02 08 09 19 21 18 04 16 15 22 03 06 

04 TC (M2) 17 15 08 06 01 03 03 02 23 02 20 05 02 05 09 01 04 12 09 04 01 02 

11 ME (M2) 02 15 09 23 22 23 24 13 05 12 11 07 07 07 11 01 19 02 02 11 14 17 

 

 

 

Table 22. Detailed process plans of optimal objective functions-based solutions-Case study 2. 

S. No  Operations 

O54 O55 O56 O57 O58 O59 O61 O62 O63 O64 O71 O72 O73 O74 O75 O81 O82 O83 O84 O85 O86 O87 

10 TC (M1) 03 01 10 15 02 12 06 23 19 14 02 14 13 21 08 19 11 12 06 17 23 06 

03 QDI (M1) 05 02 10 16 23 24 14 02 12 07 11 11 03 15 18 17 22 10 21 09 05 18 

14 ME (M1) 13 02 24 09 23 24 06 18 03 23 05 03 03 01 11 09 22 01 17 08 14 18 

04 TC (M2) 08 07 02 19 07 04 10 15 19 01 16 15 08 18 02 20 03 02 09 13 09 03 

11 ME (M2) 08 12 04 18 13 10 20 08 20 07 17 19 15 16 01 06 11 14 13 19 01 03 
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This chapter reviewed the different solution approaches used for solving the RMS 

process planning problems (cost, time optimization, etc.). An emphasis was given to the need 

of using hybrid solution approaches. RMS is an advanced subject, and its process planning is 

Non-Polynomial (NP) hard. Thus, hybrid approaches can more effectively solve such complex 

problems. Hybrid heuristic combines multiple meta-heuristics into a single framework. The 

combined meta-heuristics reinforce the positive aspects of each other. A hybrid version of the 

Non- Dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Particle Swarm 

Optimization (MOPSO) was presented to solve the mathematical model comprising the Total 

Cost, the Quality Decay Index, and the Modularity Effort. An exact solution approach was also 

adapted to solve small-sized problems.  

The mathematical models and solution approaches were implemented to two case 

studies. The first case study comprised three features and seventeen operations. The second 

case study was more complex, and it comprised eight features and forty-four operations. The 

findings suggested a trade-off among the objectives of the Total Cost, the Quality Decay Index, 

and the Modularity Index. It means that a process plan performing well on the dimension of 

quality may offer a compromised result w.r.t cost or modularity. In addition, the Total Cost 

value of any process plan of Model 2 was less than the minimum Total Cost value of Model 1. 

This indicates the effect of quality variation on the cost efficiency of a process plan. In addition, 

the average Modularity Effort value needed by all process plans of Model 2 was less than the 

average Modularity Effort value of all process plans of Model 1. This reinforces the idea that 

the quality variation and defects impact the modularity and ease of reconfiguration of a 

reconfigurable manufacturing system. Among other results, detailed process plans were 

provided against the choice of different objective functions. Industrial managers/practitioners 

can select a process plan according to their preferences.    

These findings can be generalized to multiple contexts. Practitioners need to know at 

the outset the number and types of modules they will be used for production. In the presence 

of variations and defects, the comparative analysis provides the details of extra modules and 

their dynamics (addition, subtraction, and re-adjustment) due to such defects. These findings 

will help in calculating the number of modules added, subtracted, and re-adjusted in the 

presence and absence of defects and quality variations. In addition, productivity can be 

enhanced (or production time can be minimized) by reducing the number of ‘reconfigurations’ 

between different processes. A smaller number of reconfigurations is achieved in the case of 

the minimum modularity effort solution in the absence of quality variations (Modularity effort 
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(Model 2)). Thus, more focus should be given to simultaneously control the quality variations 

and minimizing the modularity efforts to enhance the productivity of a reconfigurable 

manufacturing system. Lastly, the impact of multiple sources of quality variations was studied 

on the cost, quality, and modularity performance of a reconfigurable manufacturing system. 

These findings can be compared with the real-time behaviour of such sources of quality 

variations and defects. The real-time behaviour of different defects can be analysed by using a 

Reconfigurable Integrated Manufacturing System (RIMS). RIMS can inspect and detect 

different sources of defects. Thus, the robustness of presented approaches and the accuracy of 

RIMS can be validated by comparing their respective findings.  
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CHAPTER 5 

 

 

CONCLUSIONS 

AND RECOMMENDATIONS 

 

 

 

 
This chapter provides the concluding remarks and directions for future research. Section 5.1 

contains the conclusion of the undertaken research problem involving cost, quality, and 

modularity. The conclusions are drawn in comparison to published literature on RMS process 

planning. In addition, both theoretical and practical contributions to the existing literature are 

presented. Section 5.2 offers a list of recommendations for future research and implications 

for practitioners. Since RMS is a complex subject, the recommendations will assist in 

highlighting the role of quality issues and variation on the performance of a manufacturing 

system. Thus, managers will readily be able to understand how quality impacts the overall 

process planning and the ways to reduce such variation. An emphasis has been given to design 

the RMS process planning in the context of the overall supply chain. This will enable an 

outward-looking approach by integrating different components of a business related to the 

manufacturing system.   
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5.1. Conclusions 
 

Reconfigurable manufacturing system has been in research focus for more than two 

decades. It offers the advantages of high throughput, product variety, and cost-optimal 

production. Thus, it has surpassed the efficiency of other manufacturing systems due to such 

advantages. This subject area has received an overwhelmed amount of research contributions 

in recent times. These contributions have helped in advancing the scope and applicability of 

reconfigurable manufacturing systems. For example, it has been safeguarded against cost-

inefficiency, unnecessary downtime, extra production time, and the excess need for 

reconfiguration effort. However, an RMS has not been designed keeping in view the quality 

requirements. Compared to other manufacturing systems, it is more difficult to assess the 

quality of RMS due to its complex nature. The complexity of reconfigurable manufacturing 

systems can be attributed to the following reasons: 

• RMS is a result of the combination of machines, modules, configurations, Tool Approach 

Directions (TADs), and tools which makes it a complex manufacturing system. As shown 

in Figure 33, to change from the existing RMS production setup to a modified production 

setup, TADs, modules, tools, and configuration might need a change. Thus, it becomes 

difficult to analyse the impact of different aspects on the quality performance of production 

in RMS.  

 

 

 

Figure 33. Changing needs from the current production setup to a modified production setup. 
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• The same operation can be performed by different candidate reconfigurable machines. In 

other words, a product or an operation can follow different production routes. This makes 

it difficult to analyse the product quality through each production route. In addition, 

reconfigurable machines can be designed in serial, parallel, or a combination of series and 

parallel which further enhances the complexity of RMS design.  

The complex nature of RMS makes it difficult to analyse its quality of production 

compared to other manufacturing systems. An important problem addressed in the field of 

RMS is process planning which assigns configurations to different operations by optimizing 

certain objective functions such as cost, time, responsiveness, etc. Though the existing RMS 

process planning literature focuses on analysing the cost, time, modularity, etc. there is a 

dearth of research that considers the quality, variation, and defect-based performance of 

a reconfigurable manufacturing system.  

This study analysed the impact of quality variation on the performance of process 

planning in a reconfigurable manufacturing system. A multi-objective model containing 

the Total Cost, the Quality Decay Index, and the Modular Effort was presented. All these 

objective functions were defined keeping in view the quality and variation of a reconfigurable 

manufacturing system. For instance, the objective function of Total Cost contained the costs 

related to quality such as scrap and re-work costs. In addition, the Quality Decay Index was 

defined in terms of conforming and failed products delivered by a process plan. Lastly, the 

Modularity Effort was based on the efforts lost during the modular reconfiguration and the 

efforts lost due to the production of failed operation units.  

A hybrid version of NSGA-II-MOPSO was used for implementing the model. The 

hybridization of both heuristics ensured a positive reinforcement of each algorithm in 

enhancing the overall performance of the solution approach. To avoid the local optima, hybrid 

NSGA-II-MOPSO divided the search space into exploration and exploitation zones. The 

exploration task was performed by NSGA-II by considering half of the population. This half 

was improved by the algorithm by using the ranking of non-dominated solutions. The 

remaining half of the population was used by MOPSO for exploitation. It searched for 

improved solutions in the neighbourhood by guiding the lower-ranked solutions towards the 

global optimal solutions. A set of experiments revealed the higher efficiency of the hybrid 

solution approach. The findings suggested controlling quality variations and defects as it 

impacted different aspects of decision making. The key findings of this research are 

reported as: 
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o Although RMS is known for its cost-efficiency, it seems that the variation in quality 

and failed operation units impact the performance of RMS. Thus, it is imperative to 

safeguard it against different sources of variation to perform cost-optimally.  

 

o A solution selected based on quality variation impacts the selection of solutions 

based on other objective functions. This means that quality plays an active role in 

designing a process plan which was otherwise selected based on cost, time 

modularity, etc. The findings suggest a trade-off between the objectives of cost, 

quality, and modularity. A process plan based on minimum quality variation affects 

the solutions of cost and modularity. This offers an opportunity as well as a 

challenge for the practitioner to balance the trade-off between the choice of different 

objective functions.  

 

o The presence of quality variation results in a different process plan as opposed to a 

manufacturing system that does not contain any quality variation. Both models 

performed quite differently in terms of modular needs and the number of 

configurations.  

 

o The results of the proposed models 1 and 2 indicate that both models result in 

different process plans. In addition, the Total Cost values of all solutions in Model 

2 were less than the minimum Total Cost value of Model 1. This indicates that 

quality variation and defects can be very costly if not removed from a 

manufacturing system. Further, on average, fewer Modularity Effort scores were 

used by model 2 compared to Model 1. Thus, more modules will be added, 

subtracted, and re-adjusted if there are quality variation and defects. An oversized 

manufacturing system with extra resources will be thus needed owing to the issues 

related to quality. This highlights the role of quality variation in the selection of a 

process plan based on minimum cost and minimum modular effort.  

 

o Practitioners are interested in enhancing the productivity of RMS by minimizing 

the ‘reconfiguration’ between different operations. The findings suggest that 

modular efforts and quality variation need to be simultaneously analysed to enhance 

the overall productivity and efficiency of a process plan.  
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o As variation and defects are inevitable in a real manufacturing setup, it is opportune 

to know the extra modular efforts needed due to such variation. This will enable a 

practitioner to decide at the outset, the number of extra modules 

added/subtracted/re-adjusted in the presence of variation. The findings of this paper 

apply to any real-life RMS system to calculate the extra modular needs in the 

presence of variation and defects. 

 

o The proposed models and solution approaches are general, and they can be applied 

to multiple real-life RMS systems. For this, the acyclic graph, and operational 

details of the considered products will be required.  

 

o The hybrid meta-heuristic approach was efficient compared to the stand-alone 

application of meta-heuristics. It resulted in uniformly distributed and dominant 

solutions due to the merger of solution storage capacities of both meta-heuristics. 

Further, the best improvement criterion works well; however, it takes more time in 

returning the solutions.    

 

o The impact of multiple sources of variation was mathematically studied on the 

overall cost, quality, and modularity efficiency of process planning. The robustness 

of presented approaches and the accuracy of the Reconfigurable Integrated 

Manufacturing System (RIMS) can be validated by comparing their respective 

findings. RIMS can be used to obtain the real-time behaviour of RMS under quality 

variation and defects. This real-time behaviour can be compared with the results 

proposed by the presented mathematical model. In this way, the mathematical 

model can provide a theoretical insight on the performance of RMS subject to 

different quality-related issues. 

 

To summarize, these findings highlight the role of quality variation in the selection of process 

planning. Though cost and modularity have been analysed in the published literature; however, 

none of the existing research relates both objective functions to the quality variation and defects 

in a reconfigurable manufacturing system. To this end, this research considered novel aspects 

of quality in the cost and modularity-based RMS process planning design. The objective 

function of cost contained novel components of scrap cost, re-work cost, and disruptive 

performance of machines related to quality issues. Similarly, the modularity objective function 
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was defined keeping in view the lost effort due to the production of failed operation units. This 

analysis can be further extended by analysing the costs related to machine downtime, worker 

error, scheduled and unscheduled maintenance. In addition to the modularity RMS 

characteristic, future research can embed other RMS characteristics such as scalability, 

diagnosability, customization, etc. in the presence of variation in quality. For example, the 

efficiency of scalability in RMS process planning can be analysed by addressing questions such 

as how difficultly or easily an RMS can be scaled up/down in the presence of variation in 

quality and defects?  

5.2. Recommendations and Perspectives 
 

To extend the scope of RMS process planning in future endeavours, some 

recommendations can act as a guideline to advance the rigor of process planning by 

undertaking more cutting-edge research requirements. These recommendations and 

perspectives are given as follows:  

 

o The model was implemented for the case of a single product unit. The analysis can 

be extended and applied to multiple product process planning. RMS is an expensive 

manufacturing system, and it requires a heavy initial investment. Thus, it can be 

advantageous to carry out the process planning for multiple products to justify the 

investment in a reconfigurable manufacturing system.  

 

o This research was based on apriori information of different aspects of the 

mathematical model. A deterministic model concerning production capacities, 

disruption, and failure rates was used. Future research can relax this assumption by 

considering stochastic parameters in the model. This will offer an opportunity to 

model the real-time behaviour of changing production capacities, dynamic 

disruption profiles, and stochastic failure rates. In this regard, fuzzy mathematical 

models and Markov chains can be used to capture the stochastic aspects.   

 

o A pessimistic approach was adapted for the evaluation of different defects. In this 

regard, the Quality decay Index (QDI) was calculated for the worst configuration 

(pessimistic configuration), therefore, only a simple directed acyclic graph was 

required. Future research can calculate the decay in quality for all possible 
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configurations. This will require a thorough analysis of the overall causes of quality 

variation, disruption, and defects.  

 

o The causes of quality variation i.e., machine, process, and tooling-related causes 

were calculated in isolation (Eqs. 5-7). This assumption can be modified by 

considering the interaction between different defects at the level of machine, 

process, and tool. In addition, the scope of process planning can be strengthened by 

simultaneously analysing different levels i.e., management, production, and 

machine level of a complex reconfigurable manufacturing system.  

 

o In this work, the Non- Dominated Sorting Genetic Algorithm (NSGA-II), Multi-

Objective Particle Swarm Optimization (MOPSO), and their hybrid form i.e., 

NSGA-II-MOPSO were used. The findings can be compared with other 

evolutionary approaches such as Whale Optimization Algorithm (WOA) and 

Strength Pareto Evolutionary Algorithm (SPEA-II). This practice can further 

highlight the computation power and solution efficiency of the proposed hybrid 

meta-heuristic.  

 

o The input parameters of Multi-Objective Particle Swarm Optimization (MOPSO) 

were tuned by using a set of experiments. The tuning is an important phase as it 

ensures the optimal performance of a meta-heuristic. In future research, a self-

adaptation approach for the refinement of input parameters of MOPSO which is a 

popular research technique may be adapted. 

 

o In the implemented 𝜀 -constraint approach, the loop is completed when the epsilon 

values related to either Quality Decay Index (QDI) or Modularity Effort (ME) 

cannot be reduced anymore. This was done by using an ‘and’ operator between both 

epsilons. Future research can use an ‘or’ operator so that the epsilon values of both 

constraints can be saturated. This might result in improved solutions for a different 

set of problems. 

 

o The presented analysis focused on the causes of variations during production. The 

pre-production cause of variation i.e., deficiency in the quality of raw materials can 

be modelled in future research. In this way, process planning can be carried out in 



104 
 

the context of the supply chain by analysing the quality of raw materials and 

supplier evaluation. 

 

o This research compared the efficiency of different solution approaches by using the 

performance metrics of Inverted Generational Distance (IGD) and Hyper Volume 

(HV). Other performance metrics such as Spacing Metric (SM) and Diversity 

Metric (DM) can be used to further analyse the performance efficiency of various 

solution approaches.  

 

o A meta-heuristic re-iterates to refine the non-dominated solutions up until the 

stopping criteria are reached. This research used two stopping criteria i.e., First 

Improvement (FI) and Best Improvement (BI). These criteria can be compared to 

the traditional criteria of the maximum number of iterations and computation (CPU) 

time to ascertain the robustness of the used stopping criteria.  

 

o Sustainability is gaining increased attention in the process planning literature. It 

analyses the process planning by considering the greenhouse gases (GHG), liquid 

and solid wastes, etc. As such aspects are also related to the overall quality of 

manufacturing, there is an active opportunity to propose a model which 

simultaneously considers the quality and sustainability in RMS process planning. 

 

o The process planning literature lacks in analysing the role of the supply chain. A 

manufacturing system operates in close collaboration with the supply chain 

partners. As shown in Figure 34, on the one hand, it deals with the supplier for 

acquiring raw material while on the other hand, it provides finished products to the 

distribution points and customers. Thus, it is important to design a manufacturing 

system in the context of the supply chain. This kind of analysis is well established 

in the literature of other manufacturing systems. As an illustration, in [133], the 

authors analysed the impact of machine disruption on the performance of cost and 

emission in a supply chain network. The results indicated that the selection of 

different production machines impacted the values of objective functions and the 

performance of the supply chain. The existing process planning literature focuses 

on an inward-looking approach where the impact of different configurations, 

modules, tools, etc. is analysed on the performance efficiency of a reconfigurable 

manufacturing system. Future research can adopt an outward-looking approach 
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where the process planning is carried out keeping in view its impact on the 

efficiency of the overall supply chain. Further, to enhance the scope of sustainable 

practices in the process planning, recollection, and remanufacturing of end-of-life 

products can also be considered. Thus, quality and supply chain issues can be linked 

in the process planning.  

 

Figure 34. A typical supply chain of the production system (adapted from [27])  

 

o More studies need to model the role of the human operator, as the assignment of a 

human operator to different machines can impact the quality of process planning. 

Further, more research focus is needed to enhance the performance of process 

planning subject to random errors, machine downtime, etc. This can be done by 

considering the diagnosability characteristic of a reconfigurable manufacturing 

system.  

 

o The RMS process planning literature shows that genetic algorithms have been 

frequently applied to process planning problems. Compared to genetic algorithms, 

there are other solution approaches that are efficient, and their applications to 

process planning problems can be increased. For instance, Simulated Annealing 

(SA) has relatively fewer applications in the process planning problems. SA is a 

probabilistic approach, and it is computationally efficient, can deal with large size 
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problems, can avoid the trap of local optima, and is easier to implement. 

Furthermore, an increased application of hybrid heuristics to process planning 

problems can provide improved solutions. 
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Appendix A 

 

 

The role of the directed and non-oriented graphs in modeling quality: 

 

As discussed earlier, the difference in modeling impacts the complexity of the quality 

assessment of a process plan or a reconfigurable process plan. The quality of the manufacturing 

system can be understood by analyzing the cause and effect (also known as causality) between 

different components of a manufacturing system. The quality of a particular product aspect can 

be affected by more than one variable. For instance, as shown in Figure A1, there are multiple 

product/part Key Characteristics (KCs) and multiple process Key Characteristics (KCs). It can 

be observed that y1 can be affected (or its quality varies) by variation in either the change in 

cause variable(s) x1 or/and x2. In such a case, it becomes difficult to establish the causal 

mechanism between different variables due to confounding and exogenous effect of variables. 

Thus, a causal mechanism can only be established by carefully designing a controlled 

environment where only limited/defined independent variables can cause variation in the 

variables of interest [132]. In the presented analysis, the quality variable i.e., Quality decay 

Index (QDI) is calculated for the worst configuration (pessimistic configuration), therefore, 

only a simple directed acyclic graph is required. 

 

 

Figure A1. Causality between different KCs (adapted from [132]) 
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The encoding and decoding schemes: 

An encoding scheme is used for coding the input information prior to the execution of the 

algorithm. The input and output information in this research is at the level of machine, module, 

feature, operation, and its quality characteristic. Thus, a 5-by-n matrix is constructed for the 

purpose of encoding the problem where rows=5 and columns=n (n is the number of operations 

to be assigned). In addition, a unique quality characteristic is assigned to an operation. The 

description of encoding process is provided in Figure A2. We assume that the gene value of 

0.31 and quality characteristic value of 0.34 corresponds to operation 1. From Table 8, there 

are six candidate configurations to perform operation 1 (feature 1). Thus, the gene value of 

0.31 is multiplied by 6 and the resulting value is rounded off to 2. This helps in deciding the 

position of configuration (M4) that will perform operation 1. Accordingly, all remaining 

information is decoded for all operations of a feature, as shown at the bottom of Figure A2.  

 

 

 

Figure A2. Encoding and decoding schemes 
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The description of genetic operators: 

 

This research used a Partially Mapped Crossover (PMX) and a random mutation operator for 

generating the offspring. The PMX selects two random parent strings and applies two cut points 

in each string. The sub-strings within the cut bound are exchanged and the mapping relationship 

is identified, as shown in Figure A3. The step-by-step execution of PMX is described in Algo. 

A1. Step 6 decides the position of a configuration based on its presence in offspring 1. The 

random mutation operator selects a random continuous number between 0 and 1 and multiples 

it with the gene values of the elements of a chromosome. Thus, a random seed/offspring is 

produced. 

 

 

Figure A3. Partially Mapped Crossover (PMX) 

 

Algo. A1      Steps of Partially Mapped Crossover (PMX) 

Step 1 Randomly select two parent strings 

Step 2 Randomly select two cut points in each string 

Step 3 Exchange/Swap the sub-strings within the bound of cut points 

Step 4 Identify the mapping relationship 

Step 5 Copy the elements in the remaining places of the string 

Step 6 If a configuration is already present in offspring 1 while copying from string 2, its 

position is decided, and replacement is made based on the mapped relationship 
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Les systèmes de fabrication modernes sont confrontés à différents défis en raison de la dynamique 

des demandes des clients. Ces défis peuvent prendre la forme de tendances changeantes en matière 

d’exigences et de fonctionnalités de produits, de combinaison de produits, de rentabilité et de 

réactivité, etc. Les systèmes de fabrication traditionnels tels que les lignes de fabrication dédiées 

(DML) et les systèmes de fabrication flexibles (FMS) ne sont pas en mesure de relever de tels défis de 

manière rentable. Par exemple, les DML conviennent à la production de masse alors qu’elles 

manquent de mélange de produits et de variété. D’autre part, les FMS peuvent s’adapter à la variété 

de produits ; cependant, ils ne sont pas conçus de manière appropriée pour un débit de production 

élevé. En outre, ils offrent une flexibilité débordante dans la conception de leur système qui est sous-

utilisée et ils peuvent donc s’avérer être un système de fabrication coûteux. Pour faire face à ces 

problèmes, un nouveau système de fabrication appelé Reconfigurable Manufacturing System (RMS) a 

été introduit. 

RMS est défini comme ‘un système modifiable conçu dès le départ pour répondre à l’évolution 

du marché en offrant les fonctionnalités et la capacité nécessaires en cas de besoin’ [1]. RMS peut 

répondre à diverses exigences de production en utilisant un nouvel outil de fabrication reconfigurable 

(RMT) pour produire une variété de produits à la demande requise. RMT aide le RMS à effectuer 

diverses opérations en changeant entre ses configurations respectives. Pour passer d’une 

configuration à l’autre, RMS a besoin de deux types de modules, à dire des modules de base et des 

modules auxiliaires. Les modules de base sont de nature fixe et constituent la base fondamentale de 

la conception du RMS. D’autre part, les modules auxiliaires sont modifiables et prennent en charge les 

changements brusques apportés au système. Outre ces modules, un RMS offre les caractéristiques 

distinguées de modularité, intégrabilité, personnalisation, convertibilité, évolutivité et 

diagnostiquabilité [2]. Ces caractéristiques jouent un rôle essentiel dans la conception architecturale 

de RMS et sa fonctionnalité sur la période de son utilisation. 

Cette recherche prend en compte la caractéristique de modularité dans la conception de la 

planification des processus RMS. Un indice est défini pour la modularité qui prend en compte les 

efforts modulaires gaspillés lors de la reconfiguration ainsi que l’effort modulaire gaspillé en raison 

d’une production de mauvaise qualité. Certains efforts modulaires sont nécessaires pour produire 

chaque unité de produit et la défaillance d’une unité de produit signifie que cet effort est également 

gaspillé. En outre, cette recherche prend également en compte la diagnostiquabilité dans le sens où 

le modèle proposé prend en compte la défaillance et la perturbation de la machine ainsi que l’analyse 

de multiples causes de variation de qualité et de défauts. Ces causes de variation entraînent des unités 

de produit défaillantes qui sont abordées dans la discussion sur le cadre de décomposition de 

conception du système de fabrication (MSDD). 
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1.1. Aspects de qualité dans un système de fabrication reconfigurable 

 

L’un des aspects importants de tout système de fabrication est sa capacité à s’adapter et à 

s’adapter aux variations de qualité et aux dysfonctionnements. La qualité des produits et des 

processus est influencée par de nombreux facteurs tels que la nature des défauts, la perturbation 

des machines, etc. En outre, un système devient complexe lorsqu’il existe un plus grand nombre 

de façons de connecter des machines dans son système de production. RMS est un système de 

fabrication complexe car il utilise des portiques et des convoyeurs pour connecter les machines 

reconfigurables. Une telle disposition multiplie le nombre de possibilités de liaison des machines. 

Ainsi, il devient plus difficile d’analyser sa qualité de production. 

Cette capacité de RMS à offrir de nombreuses voies de production entraîne deux problèmes 

liés à la qualité [3]. Tout d’abord, la variation de la qualité dimensionnelle du produit augmente à 

mesure que le produit passe par différentes configurations. Deuxièmement, s’il y a une machine 

problématique, il est difficile de la retracer simplement en inspectant la qualité des produits. En 

d’autres termes, grâce aux capacités améliorées de RMS, un produit peut passer par l’une des 

nombreuses routes désignées. Par exemple, pour 20 étapes de production RMS, chacune 

contenant 6 machines, il existe jusqu’à 3,6 x 1015 façons de connecter les machines [4]. Il est donc 

compliqué, voire impossible, d’analyser la qualité du produit dans chaque itinéraire. 

De plus, chaque aspect d’un produit ne peut pas être analysé par un système de fabrication. 

Ainsi, un système ne prend en compte que certains aspects d’un produit appelés caractéristiques 

clés (KC). KC explique la majeure partie de la variation de qualité et de la perturbation d’un 

produit. En d’autres termes, la qualité globale d’un produit peut être améliorée en améliorant la 

qualité de ses caractéristiques clés [5]. Les dimensions, la précision et les tolérances sont 

quelques-uns des exemples liés à KC.  

Les KCs identifient les aspects cruciaux d’un système de fabrication qui peuvent influencer les 

variables de performance telles que le coût, la qualité, la réactivité, etc. En raison de contraintes 

technologiques et de temps, les gestionnaires ont du mal à analyser et à améliorer chaque 

caractéristique. Ainsi, l’identification des caractéristiques clés aide les gestionnaires à consacrer 

leurs efforts à un ensemble de caractéristiques minimales qui peuvent améliorer 

considérablement l’efficacité d’un système de fabrication. Par exemple, du point de vue du 

produit, les caractéristiques clés possibles peuvent être les tolérances, l’état de surface et la 

conformité aux paramètres de conception. Une fois la liste des caractéristiques clés formulée, la 

tâche suivante consiste à identifier les causes assignables dans un système de fabrication qui 

peuvent influencer le comportement de ces caractéristiques. Par exemple, l’usinage et la 
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précision des processus sont quelques-unes des causes assignables qui peuvent influencer ces KC. 

Ces causes assignables sont responsables de la variation de la qualité des caractéristiques clés 

(KC). La variation dans ce contexte est définie comme ‘l’écart par rapport aux spécifications 

standard’. Comme établi précédemment, étant donné que RMS est un système de fabrication 

complexe, le rôle des PRINCIPAUX et la synthèse de la variation de la qualité sont donc encore 

plus importants dans l’analyse de ses performances. 

Pour analyser les performances de qualité de RMS, il est possible de définir un ensemble de 

KCs qui sont essentiels pour avoir un impact sur l’efficacité globale. Ces KC peuvent être identifiés 

soit en consultant les gestionnaires, soit en analysant la littérature établie sur les RMS et les 

indicateurs de performance de la qualité. L’identification et la modélisation de ces KC mettent en 

évidence le rôle de la qualité dans l’attribution de configurations à différentes opérations 

(également appelée planification des processus). Pour résumer, cette recherche vise à répondre 

aux questions suivantes : 

 

• Quel est l’impact de la variation de la qualité sur la performance de la planification des processus 

RMS ? l’évaluation des plans de processus en fonction du nombre d’opérations conformes et 

échouées. 

• Comment un cadre de décomposition de conception de système de fabrication (MSDD) peut-il 

être appliqué à RMS et quelles sont les principales causes assignables de variation qui influencent 

la qualité globale du produit dans RMS ? 

• Quel est le compromis entre la qualité, le coût et la modularité dans le contexte de RMS ? 

L’indice de modularité est défini par rapport à la qualité et tient compte de la proportion d’efforts 

perdus dans la production d’unités de fonctionnement défaillantes. 

 

Le concept de décomposition et de modularité de la conception des systèmes de fabrication sera 

discuté dans les sections à venir. Les questions ci-dessus, si elles sont traitées de manière 

appropriée, permettront aux responsables d’affecter des configurations de machine à des 

opérations ayant un impact minimal sur la qualité du produit. En outre, il aidera à la synthèse des 

efforts modulaires nécessaires à l’achèvement de l’ensemble des opérations, également appelé 

planification des processus. La section ci-dessous traite de la planification des processus dans RMS 

et de l’impact des différents objectifs sur les décisions de planification des processus. 
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1.2. Planification des processus dans RMS 

La planification des processus est une question pertinente dans RMS, et elle aide au flux logique 

d’une reconfiguration. Musharavati et Hamouda [6] ont défini la planification des processus 

comme « le processus de facilitation de la reconfiguration logique dans un système de fabrication 

conçu pour être reconfigurable, pour atteindre la rentabilité ». La possibilité de reconfigurer 

logiquement un système de fabrication dépend de la reconfigurabilité et de la flexibilité héritée 

d’un système.  

La planification des processus n’est pas une décision autonome, elle dépend plutôt de la 

connaissance de la séquence d’opération et du routage dans un système de fabrication. Pour un 

RMS multi-pièces ou multi-fonctionnalités, la séquence des opérations dans la 

pièce/fonctionnalité respective suivra son itinéraire en termes d’utilisation des configurations de 

machine, des modules et des outils. Ces informations seront utilisées par la planification des 

processus pour attribuer des configurations aux opérations afin d’optimiser les efforts de coût, de 

temps, etc. Une décision typique de planification de processus considère la matrice de machines, 

de configurations, de modules et d’outils comme une entrée pour les affecter aux opérations des 

fonctionnalités respectives. 

Différents plans de processus se tradseront par des solutions différentes. Si le coût et le temps 

sont les objectifs ultimes à optimiser, un plan de processus particulier peut bien fonctionner sur 

la dimension du coût, cependant, cela peut prendre plus de temps à compléter. Bien que de 

nature subjective, un gestionnaire peut toujours choisir une solution réalisable sous-optimale en 

sélectionnant un plan de processus concernant la valeur optimale du coût ou du temps. Cela aura 

un impact sur la solution offerte par l’autre fonction objective. Un objectif qui est toujours en 

conflit avec le temps et le coût de production est la qualité de la production. Par exemple, un 

produit de qualité a besoin de précision, de connaissance des processus, d’une production sans 

défaut et de la conformité aux normes qui nécessitent toutes un investissement et un temps de 

production supplémentaires. À l’ère moderne, il est inutile de dire que nous avons produit x 

quantité de produits dans une période au lieu de b période (a<b) si soit le temps raccourci a un 

impact sur la qualité du produit, soit l’analyse de la qualité du produit n’est pas prise en compte 

du tout. 

 

Il devient donc plus difficile d’analyser la qualité du produit dans RMS en raison de :  

i) La complexité héritée par RMS en offrant un grand nombre de voies de production rend difficile 

l’analyse de la qualité à travers chaque voie. 
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ii) Les solutions basées sur la qualité peuvent potentiellement avoir un impact sur les solutions de 

coût, de temps, etc. Pour une meilleure compréhension, nous considérons l’exemple suivant. 

 

Comme le montre la figure 1, six machines reconfigurables sont disponibles, chacune contenant 

deux configurations, pour exécuter la fonctionnalité 1 (F1). L’état de qualité de chaque 

configuration peut être lu à l’aide de la rubrique donnée dans la figure. Les chemins possibles pour 

traiter cette fonction sont a, b, c, d et e, et les plans de processus correspondants utilisés dans 

chaque chemin sont fournis à la figure 2. L’objectif est d’évaluer le coût, le temps et la qualité de 

chaque parcours. 

 

 

 

figure 1. Disposition de la configuration avec chemins et qualité de la production

 

figure 2. Plans de processus pour différents chemins 

 

Les solutions proposées par a et b seront meilleures en ce qui concerne le coût et le temps car 

elles utilisent un plus petit nombre de configurations (3 dans chaque cas). Cependant, le chemin 
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b sera compromis en ce qui concerne la qualité car il contient une configuration de machine 

défectueuse. La nature défectueuse de la machine peut être attribuée à une variation de qualité 

due à des problèmes de maintenance, à un mauvais outillage ou à toute autre cause assignable 

de variation de qualité. Si nous comparons le plan de processus des chemins c, d et e ; tous 

utilisent le même nombre de configurations (4 dans chaque cas). En fait, entre les chemins d et e, 

il n’y a qu’une seule différence de configuration alors que les autres types de configurations sont 

les mêmes pour les deux. Les résultats de ces chemins peuvent indiquer qu’ils diffèrent tous dans 

les trois valeurs de fonction objective. Le chemin e peut fonctionner de manière faible sur la 

dimension de qualité car il utilise une configuration défectueuse (42) tandis que le chemin d 

fonctionnera bien en termes de qualité, mais il peut offrir des solutions sous-optimales de coût et 

de temps. Pour analyser ou optimiser le coût et/ou le temps d’un process plan ou d’un process 

plan reconfigurable, un simple graphe acyclique dirigé est utilisé pour modéliser les opérations et 

l’antériorité. Pour analyser ou optimiser la qualité du produit d’un plan de processus ou d’un plan 

de processus reconfigurable, un graphique non orienté est utilisé pour modéliser les opérations, 

la structure du système de fabrication et les fixations (évaluation de la capacité du processus pour 

chaque tolérance). Par conséquent, la différence de modélisation a un impact sur la complexité 

de l’évaluation de la qualité d’un plan de processus ou d’un plan de processus reconfigurable. 

Bien que le même nombre de configurations ait été utilisé dans les trois derniers chemins, la 

différence de solutions réside dans le fait que chaque configuration :  

 

a) A un coût d’exploitation et d’exploitation de la machine différent. 

b) A besoin de valeurs de temps différentes pour ajouter, soustraire et réajuster les modules en 

fonction des exigences opérationnelles, ce qui entraîne des décalages horaires. 

c) Fonctionne dans un état de qualité différent, ce qui peut avoir une incidence sur la décision 

de planification du processus. 

Il est entendu qu’une telle analyse du plan de processus sera utile aux gestionnaires pour évaluer 

l’impact des différents chemins sur l’efficacité de la solution de diverses fonctions objectives, en 

particulier la qualité. Une fois cette compréhension développée, les recherches futures pour pourrait 

viser à analyser l’impact de la position d’une configuration défectueuse sur la qualité de la production.  

Par exemple, une question peut être posée telle que « quelle est la différence dans la qualité de la 

production si une configuration défectueuse fonctionne au début ou vers la fin d’un plan de processus 

? » Pour un système complexe tel que RMS, il est avantageux d’examiner sa qualité en divisant le 

système en différents niveaux. Cela peut être accompli en utilisant un cadre de décomposition de 

conception de système de fabrication (MSDD) qui est discuté dans la section ci-dessous. 
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1.3. Décomposition de la conception du système de fabrication 

Les performances d’un système de fabrication complexe peuvent être facilement analysées en le 

décomposant en modules et en éléments. Il est judicieux de le faire car les systèmes de fabrication 

sont un phénomène complexe et ils impliquent l’interaction entre plusieurs éléments, ce qui rend très 

difficile l’analyse de l’impact des problèmes de bas niveau et, en réponse, la modification de 

l’architecture du système de fabrication [7]. La littérature contient certaines approches de la 

décomposition d’un système de fabrication. Par exemple, Spearman et Hopp [8] ont proposé une 

perspective réductionniste qui divise un système majeur en petits composants pour faciliter l’analyse 

du comportement de chaque composant.  

Une fois le système de fabrication décomposé, ses composants peuvent être classés en 

différents niveaux en fonction de leurs fonctionnalités. En outre, les performances des composants à 

chaque niveau peuvent être analysées et leur impact sur les composants de niveau supérieur peut 

être étudié. Chaque système de fabrication est conçu pour optimiser certains critères de fonctions 

objectives telles que le coût, le temps, la réactivité, la qualité, etc. qui reposent au niveau supérieur 

de la structure décomposée. Ainsi, la décomposition aide à relier les activités et les tâches de bas 

niveau aux objectifs et aux exigences fonctionnelles de niveau supérieur. Il aide également à analyser 

et à interpréter la relation entre les composants d’une conception de système. 

La discussion ci-dessus vise à présenter le cadre de décomposition de conception du système 

de fabrication (MSDD) et son application au système de fabrication reconfigurable. La MSDD 

décompose les objectifs globaux d’un système de fabrication en sous-composantes mesurables. Le 

contrôle efficace de ces sous-composantes démontre dans quelle mesure la MS a atteint les objectifs 

qu’elle avait fixés. La décomposition des objectifs de la MS s’effectue à l’aide des exigences 

fonctionnelles (FR) et des paramètres de conception (DP). Les États membres définissent certains FR 

pour aider à répondre à la question « que faire ? ». Une fois que la question « quoi » est répondue, les 

DP sont utilisés pour aborder « comment atteindre les FR ? ». En d’autres termes, le DP constitue la 

mise en œuvre physique du FR. La décomposition d’un système de fabrication en exigences 

fonctionnelles et en paramètres de conception peut aider les gestionnaires à comprendre les besoins 

opérationnels d’un système de fabrication. 

La confusion se trouve normalement dans le système de fabrication en ce qui concerne les 

objectifs et leurs moyens. Un objectif peut être de minimiser les coûts de fabrication et les moyens de 

le faire peuvent impliquer des activités telles que l’usinage optimal, la suppression des activités 

redondantes et le déploiement réfléchi du personnel. L’usinage, l’élimination des activités 

redondantes et les tâches liées au personnel ne sont pas les objectifs ultimes ; cependant, ils sont le 
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moyen de soutenir et de réaliser l’objectif principal. La même différence est vraie entre les exigences 

fonctionnelles et les paramètres de conception. Les paramètres de conception sont les détails 

opérationnels pour atteindre les objectifs fixés par les exigences fonctionnelles. L’application du cadre 

des MSDD aux RMS peut servir aux fins suivantes : 

• Par rapport à d’autres systèmes de fabrication, un RMS peut être facilement décomposé en 

sous-composants et modules grâce à sa structure modulaire. Ceci est sous le principe de 

fonctionnement de MSDD qui divise un système en modules et sous-composants. Il sera 

intéressant d’analyser le RMS modulaire du point de vue de la décomposition de la conception 

du système.  

• L’application de la MSDD aux RMS permettra d’identifier les différentes sources de variation 

et leurs impacts sur la performance globale du système. 

• Un système de fabrication peut être analysé en ce qui concerne plusieurs critères. Différents 

ensembles de critères peuvent être trouvés dans la littérature avec une applicabilité égale et 

moins de consensus. RMS a été analysée sous différents aspects ; cependant, la littérature 

existante manque d’analyse de la qualité de la production dans les RMS. Ainsi, l’application 

de la MSDD aidera à analyser la qualité d’un système de fabrication reconfigurable. 

 

1.4. Énoncé de recherche de thèse 

Cette thèse examine simultanément la qualité, la modularité et le coût d’un système de fabrication 

reconfigurable. L’impact de la variation de la qualité sur le rendement de la planification des processus 

RMS est examiné. Un nouvel indice de décroissance de la qualité (QDI) est proposé pour calculer le 

nombre d’unités défaillantes et d’unités conformes fournies par un plan de processus. En outre, 

l’analyse est réalisée en intégrant la caractéristique de modularité du RMS. La modularité permet au 

RMS d’effectuer une variété de tâches en utilisant ses fonctionnalités de modules de base et 

auxiliaires. Shaik et coll. [8] ont proposé d’inclure la modularité pendant la phase de conception, car 

elle influence la flexibilité et la qualité globales. Cette recherche considère la modularité comme un 

aspect intégral de la conception du RMS et l’objectif n’est pas seulement d’analyser l’impact de la 

variation de qualité sur les performances du RMS, mais aussi comment la modularité du système 

global est affectée. Un indice est défini pour la modularité qui prend en compte l’effort modulaire 

gaspillé lors de la reconfiguration et en présence de variation de qualité.  
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1.5. Objectifs de la recherche 

Cette recherche est réalisée pour répondre aux objectifs suivants : 

• Étudier les fonctions objectives du coût total (TC), de l’indice de décroissance de la qualité (QDI) et 

de l’effort de modularité (ME) dans la planification des processus RMS. L’objectif est d’analyser 

comment ces fonctions objectives sont influencées par la variation liée à la qualité. L’QDI proposée 

quantifie le nombre d’unités conformes et défaillantes produites par un plan de processus. 

• Mettre en évidence et comparer l’impact de la variation de qualité en utilisant deux modèles. Le 

modèle 1 effectue l’analyse en utilisant les trois fonctions objectives, c’est-à-dire TC, QDI et ME. Le 

modèle 2 effectue l’analyse sans utiliser l’indice de qualité. De cette façon, une comparaison peut être 

établie. 

• Étudier les impacts de la variation de qualité sur la modularité de RMS, c’est-à-dire le nombre de 

modules utilisés avec et sans la variation de qualité.  

• Analyser un problème RMS complexe impliquant le coût, le temps et la modularité à l’aide d’une 

méta-heuristique hybride. Il combine l’algorithme génétique de tri non dominé (NSGA-II) et 

l’optimisation multi-objectifs de l’essaim de particules (MOPSO) pour tirer parti de leur comportement 

d’exploration et d’exploitation. 

• Mettre en œuvre le modèle sur deux études de cas qui varient en termes de complexité. 

1.6. Portée et limites de la recherche 

La portée et les limites de cette recherche peuvent être décrites comme : 

• La MSDD contient certaines autres exigences fonctionnelles en plus de la qualité. Étant donné que 

la recherche actuelle est axée sur la qualité, elle ne répond pas aux besoins d’autres exigences 

fonctionnelles.  

• Les causes de la variation de la qualité peuvent être classées en variation en production et variation 

hors production. Cette recherche ne prend en compte que la variation de qualité en production causée 

pendant la production.  

• Le modèle mathématique présenté analyse le système de fabrication reconfigurable. C’est de loin 

l’un des systèmes de fabrication complexes et le modèle proposé peut être adapté à des systèmes de 

fabrication plus simples (par exemple, FMS) en le modifiant dans une certaine mesure.  
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• L’indice de désintégration de la qualité (QDI) est calculé pour la pire configuration (configuration 

pessimiste), par conséquent, seul un simple graphique acyclique dirigé est nécessaire. 

• Le modèle présenté est déterministe ; par conséquent, il n’est pas conçu pour englober le flou et le 

comportement stochastique des systèmes de fabrication. Les systèmes de fabrication modernes sont 

plus dynamiques et incertains, et ils contiennent des caractéristiques stochastiques. Étant donné que 

le modèle contient une certaine nouveauté, il peut être considéré comme la base et des aspects 

supplémentaires de la stochasticité peuvent y être ajoutés.  

• Enfin, l’analyse proposée est conçue pour une seule période et un seul produit ; cependant, il peut 

être étendu à l’analyse de la conception de RMS multi-produits et multi-périodes.  

 

2.1. Analyse de modularité dans RMS 

La modularité sert d’outil pour relier différentes interfaces d’un système. Il devient difficile d’évaluer 

la modularité lorsqu’un système comprend le plus grand nombre d’interfaces, comme dans le cas de 

RMS. Pour le démontrer, Farid [9] a calculé deux mesures de modularité pour soutenir la facilité de 

reconfiguration. Il a été avancé que la complexité de l’interface influe sur la modularité d’un système. 

Par la suite, une mesure quantitative de la modularité a été proposée, basée sur les connaissances 

axiomatiques en matière de conception et la matrice de structure de conception. Cette mesure a été 

utilisée pour comprendre le nombre d’interfaces dans un système de fabrication. Haddou benderbal 

et al. [10] ont proposé un modèle multi-objectifs comprenant la modularité du système et le temps 

pour évaluer la performance de la planification des processus dans RMS. L’objectif de modularité a 

analysé les interfaces sous différents angles tels que la communauté, la diversité des opérations et le 

nombre de modules partagés et communs entre plusieurs configurations de machines. Le modèle a 

été appliqué à une étude de cas en utilisant l’algorithme génétique de tri non dominé (NSGA-II) pour 

obtenir des solutions non dominées. Ces solutions ont ensuite été classées en fonction de la technique 

des préférences de commande par similitude avec les solutions idéales (TOPSIS). Les résultats ont 

montré que le nombre et les types de modules changeaient entre différentes solutions en fonction de 

la sélection de différentes configurations de machines. 

Massimi et al. [11] ont récemment proposé un système de fabrication durable reconfigurable 

en utilisant le concept de consommation d’énergie. L’objectif était de sélectionner un RMS modulaire 

qui garantissait la valeur minimale de consommation d’énergie. Le modèle a pris en compte deux 

caractéristiques RMS : la modularité et l’intégrabilité. La consommation d’énergie en modularité 

considérait l’énergie utilisée dans le traitement, la modification des configurations, l’ajout et la 
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soustraction de modules auxiliaires et l’énergie utilisée par les modules de base. Une approche 

heuristique de recherche exhaustive a été utilisée pour mettre en œuvre le modèle. Sur la base de 

différents scénarios, il a été rapporté que le niveau de consommation d’énergie dépend fortement de 

l’utilisation du type de configurations de machines et de modules de base et auxiliaires. 

Bien que plusieurs contributions aient été proposées pour analyser la modularité ; cependant, 

sa relation avec la qualité de la production n’a pas été explorée. Par exemple, certaines questions 

pourraient être abordées : quel est l’impact sur la modularité s’il y a des variations dans la qualité de 

la production ? En d’autres termes, comment la qualité et la perturbation affectent-elles les efforts 

modulaires ? Pour ce faire, cette recherche lie la qualité à la modularité, c’est-à-dire que l’effet de la 

variation de la qualité est étudié sur les efforts modulaires et les changements de configuration au 

cours de la planification du processus. 

2.2. L’analyse des coûts dans RMS 

Le coût est un indicateur important utilisé pour évaluer la performance d’un système de fabrication. 

L’analyse des coûts a été effectuée à plusieurs reprises dans le RMS. La fonction de coût unique, ainsi 

que la fusion de différentes fonctions de coût, ont été prises en compte pour évaluer le rendement de 

RMS. Les fonctions de coût les plus choisies pour la conception du RMS sont le coût en capital et le 

coût de production. Cette section passe en revue les différentes fonctions de coût utilisées pour 

modéliser les problèmes de planification des processus RMS. Youssef et Elmaraghy [12] ont examiné 

le problème de sélection de la configuration RMS en deux phases. Au cours de la première phase, des 

solutions non dominées pour différents scénarios de demande ont été obtenues par algorithme 

génétique et recherche tabu. La deuxième phase a utilisé les mêmes algorithmes pour dériver des 

alternatives à partir des solutions non dominées obtenues dans la première phase pour optimiser la 

fluidité de la transition. Le critère de sélection était basé sur le coût optimal du capital dans 

l’établissement d’une configuration. Battaia et al. [13] ont étudié la ligne d’écoulement RMS pour la 

production par lots en utilisant un critère optimal basé sur les coûts. L’objectif principal était 

d’optimiser le coût de l’équipement pour répondre à la demande en respectant les contraintes. Les 

contraintes étaient liées à la conception des tourelles et des modules, à l’emplacement des pièces et 

à la procédure d’exploitation. Un modèle MIP (Mixed Integer Programming) a été développé et mis 

en œuvre sur une étude de cas industrielle. Moghaddam et al. [14] ont étudié le coût d’expansion du 

capital pour la conception de configuration évolutive dans RMS. Un modèle mathématique a été 

présenté pour analyser les cas de conceptions de lignes de flux de production unique et de familles de 

pièces.  
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Deif et coll. [15] ont défini la fonction de coût pour RMS, qui comprend deux composantes. Le 

premier composant était lié au coût de la capacité physique pour la mise à l’échelle du système, tandis 

que le second composant était associé à la reconfiguration du système. Dou et al. [16] ont étudié un 

problème de sélection et de planification de la configuration intégrée dans une flowline 

reconfigurable. Un modèle de programmation d’entiers mixtes, qui incluait le coût et le temps comme 

objectifs, a été proposé. La fonction de coût contenait les composantes de la reconfiguration et du 

coût en capital. Le modèle a été validé de manière déterministe, puis mis en œuvre par le biais de la 

NSGA-II. Dans une autre étude [17], NSGA-II a été utilisé pour résoudre le problème de sélection de la 

machine. Plus précisément, une machine a été sélectionnée parmi l’ensemble des machines pour 

effectuer des opérations avec des caractéristiques différentes. La sélection a été faite en fonction du 

coût minimum qui comprenait les coûts liés à la production, à la reconfiguration, à l’utilisation des 

outils et au changement d’outil.   

Pour résumer, les coûts liés au capital, à la production, aux configurations, aux modules, au 

transport, à l’installation et à la consommation d’énergie ont été analysés dans les problèmes de 

planification des processus RMS. Tous ces facteurs de coût sont importants dans l’examen de diverses 

décisions. Ces décisions sont liées à l’allocation optimale des ressources, à la sélection d’un plan de 

processus et à la modification des configurations respectives. À ce jour, la littérature concernée 

manque d’analyse des coûts liés à la variation de la qualité. RMS est sujet aux défauts dus à la variation 

de qualité, comme tout autre système de fabrication. Pour qu’un système de fabrication fonctionne 

de manière rentable, il est important de contrôler les coûts liés à la variation par rapport à 

l’amélioration de la qualité [18]. En d’autres termes, un équilibre doit être justifié entre le compromis 

coût-qualité en effectuant une évaluation combinée des deux. L’analyse de la variation de la qualité 

peut aider un système de fabrication à identifier les sources de variabilité et à assurer un plus petit 

nombre de défauts et un coût inférieur. Les coûts liés à la variation de la qualité peuvent être exprimés 

sous forme de réparation, de réclamations de garantie, de rebut, d’inspection, de perturbation, de 

capacités de fabrication sous-utilisées, etc. [19]. Outre d’autres facteurs de coût, cette étude analyse 

les coûts liés à la mise au rebut, au remanyage et aux performances perturbatrices de la machine dans 

le choix d’un plan de processus. De cette façon, une intégration entre le coût et la qualité peut être 

assurée.    

2.3. L’analyse de la qualité dans RMS       

Un système de fabrication est conçu pour atteindre les objectifs de faible coût, d’amélioration de la 

qualité de la production et de réactivité. La littérature établie sur les RMS met l’accent sur l’atteinte 

de l’objectif de réactivité grâce à une production en temps opportun à faible coût. Cependant, il a 
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encore besoin du mécanisme de soutien pour atteindre l’objectif d’une production de haute qualité, 

car, sans l’accent mis sur la qualité, une production réactive et à faible coût n’aidera pas à améliorer 

la clientèle et à obtenir un avantage concurrentiel. En outre, une qualité de production compromise 

entraînera une utilisation inefficace des ressources. 

Un fabricant sélectionne certaines ressources de fabrication et évalue leur impact sur le 

produit KCs. Ces ressources sont modifiées si une amélioration de la qualité est nécessaire et que 

l’analyse est répétée. Le processus de sélection des ressources n’est pas fastidieux pour un système 

de fabrication relativement moins complexe. RMS implique la sélection de machines, de 

configurations, de fonctionnalités modulaires, d’outils et de directions d’approche d’outils (TADs), 

ainsi que le plus grand nombre d’itinéraires de production possibles. Ainsi, il devient plus difficile 

d’analyser l’impact de chaque ressource sur les performances de KC. 

Dans une certaine mesure, la notion de qualité a été discutée dans la littérature RMS. Une 

perspective théorique sur les différentes mesures du rendement dans les RMS, à savoir le coût, la 

fiabilité, l’utilisation et la qualité, a été fournie dans [20]. La mesure de la qualité a été définie comme 

une moyenne d’utilisation et de fiabilité. L’étude n’a pas fourni de modèle ou de solution concernant 

l’évaluation de la qualité et sa variation associée. Plus récemment, Koren et al. [4] ont comparé 

différents systèmes de fabrication, y compris Serial-Line-in-Parallel (SLP) et RMS. La comparaison a été 

effectuée en fonction du coût, de la réactivité et de la qualité. Il a appelé à mettre davantage l’accent 

sur l’évaluation de la qualité dans les RMS en raison de sa structure complexe. Il y a six (6) exigences 

clés pour un système stable telles que la conception, la qualité, la livraison, le coût, etc. [21]. L’exigence 

de qualité nécessite que la production soit achevée dans des tolérances définies qui peuvent être 

obtenues en éliminant les causes assignables de variation. Bien que la littérature RMS réponde aux 

exigences de conception, de coût, etc., elle manque encore d’analyse des causes de variation pour se 

conformer à l’exigence de qualité. 

Cette recherche traduit la variation de la qualité en efficacité des éléments de processus (PE) 

en utilisant des taux de défaillance. Un PE est la caractéristique du système de fabrication qui affecte 

le KC. Il comprend l’usinage, l’outillage, les schémas de production, l’état de coupe, etc. PE définit les 

causes « assignables » responsables de la variation de la qualité du KC. Les causes assignables 

sélectionnées dans cette étude sont la perturbation des machines, les problèmes liés à la tolérance et 

les erreurs d’outillage. À cette fin, un indice quantitatif pour l’évaluation de la qualité dans les RMS 

est proposé. Cet indice permet au décideur (DM) de sélectionner un plan de processus avec un 

minimum de variation et de défauts. 
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2.4. Problème de recherche 

Cette section décrit le problème de recherche de la thèse qui implique l’analyse du coût, de la qualité 

et de la modularité. Un RMS est analysé lorsque différentes étapes de production sont conçues en 

série. Chaque étape de production contient une configuration de machine qui peut effectuer une ou 

plusieurs opérations. Un RMS parfait basé sur la qualité fonctionne bien et convertit toutes les unités 

d’opération d’entrée en sortie utilisable. Cela signifie que le nombre d’unités d’entrée est égal au 

nombre d’unités de sortie. Cependant, en présence de variations et de défauts, la qualité des 

opérations est impactée. Ainsi, une partie des unités d’exploitation est jetée comme ferraille en raison 

de la mauvaise qualité tandis que les unités restantes sont retravaillées pour les rendre conformes. 

Comme le montre la figure 3, les unités de matières premières (
𝑖𝑜

)) sont initialement traitées sur la 

configuration de la machine i pour effectuer l’opération o. La configuration i présente une variation 

de qualité qui entraîne l’échec des unités d’opérations. Après avoir jeté les unités défectueuses en 

tant que rebuts, les unités restantes sont retravaillées, puis transmises à la configuration de la machine 

suivante, etc. Les unités d’opération défaillantes sont produites entre deux configurations successives, 

et celles-ci sont supprimées, et le reste est retravayé après chaque configuration de machine. On peut 

observer à partir de la courbe donnée à la figure 3 que chaque configuration continue de diminuer le 

nombre de produits conformes en raison de différents défauts. À la fin de la gamme de processus, une 

partie des produits entrant dans l’RMS est conforme tandis que le reste est jeté comme rebut. 

L’objectif est de sélectionner un plan de processus qui garantit un plus grand nombre de produits 

conformes ainsi qu’un coût minimal et un minimum d’effort modulaire.  

La recherche vise à sélectionner un plan de processus qui garantira une solution au coût total le 

plus bas, une variation minimale de la qualité et des unités défaillantes, et un effort modulaire 

minimal. Étant donné que ces objectifs sont contradictoires, l’analyse aidera à atteindre différentes 

solutions non dominées et les praticiens seront en mesure de sélectionner un plan de processus 

particulier en fonction de leurs préférences. Certains des objectifs pourraient se renforcer 

mutuellement, par exemple, la solution au coût total le plus bas pourrait indiquer un coût minimal de 

rebut et de remise en état, ce qui peut être considéré comme une indication que la solution contiendra 

moins d’unités défaillantes et une meilleure qualité. 
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figure 3 Flux de processus de l’RMS considéré 

 

3.1. Conclusions 

• Bien que RMS soit connu pour sa rentabilité, il semble que la variation de la qualité et les unités 

d’exploitation défaillantes aient un impact sur les performances de RMS. Ainsi, il est impératif de le 

protéger contre différentes sources de variation pour fonctionner de manière optimale en fonction 

des coûts. 

• Une solution sélectionnée en fonction de la variation de la qualité a un impact sur la sélection de 

solutions basées sur d’autres fonctions objectives. Cela signifie que la qualité joue un rôle actif 

dans la conception d’un plan de processus qui a été choisi en fonction du coût, de la modularité 

du temps, etc. Les résultats suggèrent un compromis entre les objectifs de coût, de qualité et de 

modularité. Un plan de processus basé sur une variation de qualité minimale affecte les solutions 

de coût et de modularité. Cela offre une opportunité ainsi qu’un défi pour le praticien d’équilibrer 

le compromis entre le choix de différentes fonctions objectives. 

• La présence d’une variation de qualité entraîne des plans de processus différents par rapport à un 

système de fabrication qui ne contient aucune variation de qualité. Les deux modèles ont obtenu 

des performances très différentes en termes de besoins modulaires et de nombre de 

configurations. 

• Les résultats des modèles proposés 1 et 2 indiquent que les deux modèles donnent lieu à des plans 

de processus différents. De plus, les valeurs du coût total de toutes les solutions du modèle 2 

étaient inférieures à la valeur minimale du coût total du modèle 1. Cela indique que la variation 

de qualité et les défauts peuvent être très coûteux s’ils ne sont pas supprimés d’un système de 
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fabrication. De plus, en moyenne, moins de scores d’effort de modularité ont été utilisés par le 

modèle 2 par rapport au modèle 1. Ainsi, d’autres modules seront ajoutés, soustraits et réajustés 

s’il y a des variations de qualité et des défauts. Un système de fabrication surdimensionné avec 

des ressources supplémentaires sera donc nécessaire en raison des problèmes liés à la qualité. 

Cela met en évidence le rôle de la variation de la qualité dans la sélection d’un plan de processus 

basé sur un coût minimum et un effort modulaire minimal. 

• Les praticiens sont intéressés à améliorer la productivité de RMS en minimisant la 

« reconfiguration » entre les différentes opérations. Les résultats suggèrent que les efforts 

modulaires et la variation de la qualité doivent être analysés simultanément pour améliorer la 

productivité et l’efficacité globales d’un plan de processus.    

• Comme la variation et les défauts sont inévitables dans une configuration de fabrication réelle, il 

est opportun de connaître les efforts modulaires supplémentaires nécessaires en raison de cette 

variation. Cela permettra à un praticien de décider dès le départ, du nombre de modules 

supplémentaires ajoutés/soustraits/réajustés en présence de variation. Les résultats de cet article 

s’appliquent à tout système RMS réel pour calculer les besoins modulaires supplémentaires en 

présence de variations et de défauts.  

• Les modèles et les approches de solution proposés sont généraux et peuvent être appliqués à 

plusieurs systèmes RMS réels. Pour cela, le graphique acyclique et les détails opérationnels des 

produits considérés seront nécessaires. 

• L’approche méta-heuristique hybride était efficace par rapport à l’application autonome de la 

méta-heuristique. Il en a résulté des solutions uniformément distribuées et dominantes en raison 

de la fusion des capacités de stockage de solutions des deux méta-heuristiques. De plus, le critère 

de la meilleure amélioration fonctionne bien ; cependant, il faut plus de temps pour renvoyer les 

solutions. 

• L’impact de multiples sources de variation a été étudié mathématiquement sur le coût global, la 

qualité et l’efficacité de la modularité de la planification des processus. La robustesse des 

approches présentées et la précision du système de fabrication intégré reconfigurable (RIMS) 

peuvent être validées en comparant leurs résultats respectifs. RIMS peut être utilisé pour obtenir 

le comportement en temps réel de RMS sous variation de qualité et défauts. Ce comportement 

en temps réel peut être comparé aux résultats proposés par le modèle mathématique présenté. 

De cette façon, le modèle mathématique peut fournir un aperçu théorique de la performance de 

RMS sous réserve de différents problèmes liés à la qualité. 

Pour résumer, ces résultats soulignent le rôle de la variation de la qualité dans le choix de la 

planification des processus. Bien que le coût et la modularité aient été analysés dans la littérature 
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publiée ; toutefois, aucune des recherches existantes ne relie à la fois les fonctions objectives à la 

variation de la qualité et les défauts d’un système de fabrication reconfigurable. À cette fin, cette 

recherche a pris en compte de nouveaux aspects de la qualité dans la conception de la planification 

des processus RMS basée sur les coûts et la modularité. La fonction objective du coût contenait de 

nouveaux composants du coût de la ferraille, du coût de reprise et de la performance perturbatrice 

des machines liées aux problèmes de qualité. De même, la fonction d’objectif de modularité a été 

définie en tenant compte de l’effort perdu en raison de la production d’unités d’exploitation 

défaillantes. Cette analyse peut être étendue en analysant les coûts liés aux temps d’arrêt des 

machines, aux erreurs des travailleurs, à la maintenance planifiée et non planifiée. En plus de la 

caractéristique de modularité RMS, les recherches futures peuvent intégrer d’autres caractéristiques 

RMS telles que l’évolutivité, le diagnostic, la personnalisation, etc. en présence de variations de 

qualité. Par exemple, l’efficacité de l’évolutivité dans la planification des processus RMS peut être 

analysée en répondant à des questions telles que la difficulté ou la facilité avec laquelle un RMS peut 

être mis à l’échelle vers le haut / vers le bas en présence de variations de qualité et de défauts ? 

3.2. Recommandations et perspectives 

Afin d’étendre la portée de la planification des processus RMS dans les entreprises futures, certaines 

recommandations peuvent servir de ligne directrice pour faire progresser la rigueur de la planification 

des processus en entreprenant des exigences de recherche plus avancées. Ces recommandations et 

perspectives sont données comme suit : 

• Le modèle a été mis en œuvre pour le cas d’une seule unité de produit. L’analyse peut être étendue 

et appliquée à la planification de plusieurs processus de produits. RMS est un système de fabrication 

coûteux et nécessite un investissement initial lourd. Ainsi, il peut être avantageux d’effectuer la 

planification du processus pour plusieurs produits afin de justifier l’investissement dans un système 

de fabrication reconfigurable. 

• Cette recherche était basée sur des informations apriori de différents aspects du modèle 

mathématique. Un modèle déterministe concernant les capacités de production, les perturbations et 

les taux de défaillance a été utilisé. Les recherches futures peuvent assouplir cette hypothèse en 

tenant compte des paramètres stochastiques dans le modèle. Cela offrira l’occasion de modéliser le 

comportement en temps réel de l’évolution des capacités de production, des profils de perturbation 

dynamique et des taux de défaillance stochastiques. À cet égard, des modèles mathématiques flous 

et des chaînes de Markov peuvent être utilisés pour capturer les aspects stochastiques. 
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• Une approche pessimiste a été adaptée pour l’évaluation des différents défauts. À cet égard, l’indice 

de désintégration de la qualité (QDI) a été calculé pour la pire configuration (configuration pessimiste), 

par conséquent, seul un simple graphique acyclique dirigé était nécessaire. Les recherches futures 

permettent de calculer la dégradation de la qualité pour toutes les configurations possibles. Cela 

nécessitera une analyse approfondie des causes globales de la variation de la qualité, des 

perturbations et des défauts. 

• Les causes de la variation de la qualité, c’est-à-dire les causes liées à la machine, au processus et à 

l’outillage, ont été calculées isolément. Cette hypothèse peut être modifiée en considérant 

l’interaction entre différents défauts au niveau de la machine, du processus et de l’outil. En outre, la 

portée de la planification des processus peut être renforcée en analysant simultanément différents 

niveaux, c’est-à-dire la gestion, la production et le niveau de la machine d’un système de fabrication 

reconfigurable complexe. 

• Dans ce travail, l’algorithme génétique de tri non dominé (NSGA-II), l’optimisation de l’essaim de 

particules multi-objectifs (MOPSO) et leur forme hybride, c’est-à-dire NSGA-II-MOPSO, ont été utilisés. 

Les résultats peuvent être comparés à d’autres approches évolutives telles que l’algorithme 

d’optimisation des baleines (WOA) et l’algorithme évolutif de Pareto de force (SPEA-II). Cette pratique 

peut également mettre en évidence la puissance de calcul et l’efficacité de la solution de la méta-

heuristique hybride proposée. 

• Les paramètres d’entrée de l’optimisation de l’essaim de particules multi-objectifs (MOPSO) ont été 

réglés à l’aide d’un ensemble d’expériences. Le réglage est une phase importante car il assure les 

performances optimales d’une méta-heuristique. Dans les recherches futures, une approche d’auto-

adaptation pour le raffinement des paramètres d’entrée de MOPSO qui est une technique de 

recherche populaire peut être adaptée.  

Dans l’approche ε-contrainte implémentée, la boucle est terminée lorsque les valeurs epsilon liées à 

l’indice de désintégration de la qualité (QDI) ou à l’effort de modularité (ME) ne peuvent plus être 

réduites. Cela a été fait en utilisant un opérateur 'et' entre les deux epsilons. Les recherches futures 

peuvent utiliser un opérateur « ou » afin que les valeurs epsilon des deux contraintes puissent être 

saturées. Cela pourrait se traduire par des solutions améliorées pour un ensemble différent de 

problèmes. 

• L’analyse présentée s’est concentrée sur les causes des variations au cours de la production. La cause 

de la variation avant la production, c’est-à-dire la déficience dans la qualité des matières premières, 

peut être modélisée dans les recherches futures. De cette façon, la planification des processus peut 
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être effectuée dans le contexte de la chaîne d’approvisionnement en analysant la qualité des matières 

premières et l’évaluation des fournisseurs. 

• Davantage d’études doivent modéliser le rôle de l’opérateur humain, car l’affectation d’un 

opérateur humain à différentes machines peut avoir un impact sur la qualité de la planification des 

processus. En outre, il est nécessaire de se concentrer davantage sur la recherche pour améliorer les 

performances de la planification des processus sous réserve d’erreurs aléatoires, de temps d’arrêt des 

machines, etc. Cela peut être fait en tenant compte de la caractéristique de diagnostic d’un système 

de fabrication reconfigurable. 
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L’analyse de la qualité dans un système de fabrication reconfigurable 

Cette recherche visait à analyser la qualité de la planification des processus dans un système 

de fabrication reconfigurable (RMS). RMS est un système de fabrication complexe qui rend 

difficile l’analyse de la qualité des produits. S’appuyant sur la décomposition de la conception 

du système de fabrication, un modèle multi-objectifs a été proposé qui comprenait les fonctions 

objectives du coût total, de l’indice de dégradation de la qualité et de l’effort de modularité. 

Chaque fonction objective a été modélisée en tenant compte de la qualité du produit. Le modèle 

a été implémenté en utilisant une version hybride de deux méta-heuristiques puissantes et de 

deux critères de terminaison. De plus, deux études de cas industriels ont été utilisées pour 

analyser la performance du modèle. Les résultats ont mis en évidence le compromis entre les 

trois fonctions objectives et l’importance d’analyser simultanément la qualité et la modularité 

pour une performance optimale d’un système de fabrication. Cette recherche a également 

examiné l’ensemble des connaissances dans la planification des processus de RMS en utilisant 

plusieurs aspects théoriques et de mise en œuvre.  

Mots-clés: Système de fabrication reconfigurable, planification des processus, qualité, 

modularité, optimisation, méta-heuristique hybride. 

 

 

Quality analysis in a reconfigurable manufacturing system  

This research aimed to analyse the quality of process planning in a reconfigurable 

manufacturing system (RMS). RMS is a complex manufacturing system that makes it difficult 

to analyse product quality. Drawing upon manufacturing system design decomposition, a 

multi-objective model was proposed that comprised the objective functions of the total cost, 

the quality decay index, and the modularity effort. Each objective function was modelled 

keeping in view the product quality. The model was implemented by using a hybrid version of 

two powerful meta-heuristics and two termination criteria. In addition, two industrial case 

studies were used to analyse the performance of the model. The findings highlighted the trade-

off among the three objective functions and the importance of simultaneously analysing the 

quality and the modularity for optimal performance of a manufacturing system. This research 

also reviewed the body of knowledge in the process planning of RMS by using several 

theoretical and implementation aspects. 
 

Keywords: Reconfigurable manufacturing system, process planning, quality, modularity, 

optimization, hybrid meta-heuristics. 

 

 


