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Résumé

Cette thèse vise à étudier les principaux mécanismes impliqués dans les écoulements de type canal

autour de la transition vers la turbulence. Plus particulièrement, il existe une gamme de nombres

de Reynolds pour laquelle la turbulence reste localisée sous la forme de bandes obliques turbulentes

plongées dans un écoulement laminaire. Dans cette thèse, les principaux mécanismes à l’origine et re-

sponsables de l’évolution de ces bandes turbulentes sont étudiés au travers de techniques d’optimisation

linéaires et non linéaires. Tout d’abord, dans un canal de grande dimension, il a été démontré que la

perturbation d’énergie minimale capable de générer des bandes turbulentes est localisée et caractérisée

par des structures à petite et grande échelles. Selon le nombre de Reynolds, ce minimal seed évolue

dans le temps avec deux mécanismes différents : pour Re . 1200 une bande oblique isolée est créée ;

alors que pour Re & 1200, une évolution symétrique dans la direction transverse est observée, donnant

lieu à deux bandes distinctes. Ensuite, en réduisant la complexité du problème à un domaine incliné,

on constate que deux éléments principaux sont nécessaires pour induire la transition vers des bandes

turbulentes : i) un mécanisme linéaire de type lift-up est nécessaire à la génération des streaks à

l’intérieur des bandes turbulentes ; ii) des tourbillons à grande échelle assurant la localisation spatiale.

Dans la dernière partie de cette thèse, afin d’étudier les structures cohérentes habituellement observées

dans les écoulements turbulents, la méthode d’optimisation non linéaire est étendue aux écoulements

de canal turbulent et une ’nouvelle’ méthode mathématique pour le calcul des solutions cohérentes

invariantes est proposées. Dans ces deux méthodes, les équations instationnaires de Navier-Stokes sont

écrites en moyenne de Reynolds et sous une forme perturbative autour du champ moyen turbulent ;

des solutions en termes de structures à différentes échelles turbulentes sont trouvées.

Mots clés : bandes turbulentes, transition sous-critique, optimisation non-linéaire, écoulement turbu-

lent, structures cohérentes, système dynamique.
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Abstract

This thesis aims at studying the main mechanisms involved in transitional and turbulent chan-

nel flows. Concerning the transitional channel flow, there is a range of Reynolds numbers for which

turbulent oblique bands within the laminar flow are observed. In this thesis, the main mechanisms

involved in the origin and growth of these turbulent bands are investigated using linear and non-

linear optimization techniques. First, in a large-sized channel, it is shown that the minimal-energy

perturbation able to generate turbulent bands has a spot-like structure characterized by small- and

large-scale structures. Depending on the Reynolds number, this minimal seed evolves in time with

two different mechanisms: for Re . 1200 an isolated oblique band is created; whereas, for Re & 1200,

a quasi spanwise-symmetric evolution is observed, giving rise to two distinct bands. Then, reducing

the problem complexity to a tilted domain, it is found that two main elements are necessary to induce

transition towards turbulent bands: i) a linear energy growth mechanism such as the lift-up for gen-

erating streaks inside the turbulent bands; ii) large-scale vortices ensuring spatial localisation.

In the last part of this thesis, in order to investigate the coherent structures usually observed in

turbulent flows, the nonlinear optimization technique is extended to the turbulent channel flow and

a ’new’ mathematical framework for the computation of statistically-invariant coherent solutions is

proposed. In both techniques, the unsteady Reynolds-Averaged Navier-Stokes equations written in a

perturbative form with respect to the turbulent mean flow are used and solutions with structures at

multiple turbulent scales are found.

Keywords: turbulent bands, subcritical transition, nonlinear optimization, turbulent flows, coherent

structures, dynamical system.
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Summary

It is well known since the experiment of Reynolds (1883) that, in shear flows, turbulence can be

triggered for Reynolds number lower than the critical one found via linear stability analysis, so transi-

tion to turbulence may arise subcritically. Moreover, in the pipe, plane Couette, and plane Poiseuille

flow, there is a range of Reynolds numbers for which, in certain flow conditions, turbulent localised

regions coexist with the laminar flow when the statistically-steady turbulent state is reached. Some

examples are the puffs in the case of pipe flow or the oblique turbulent bands in the case of plane

Couette and Poiseuille flows.

In plane Poiseuille flow, Tsukahara et al. (2005) for the first time observed numerically oblique turbu-

lent bands tilted in the streamwise direction and plunged in the laminar flow. In the first part of this

Ph.D. work, we are interested in investigating the generation of turbulent bands and understanding

the main mechanism involved in the origin and growth of turbulent bands. In the literature, two

distinct methodologies have been used to trigger these laminar-turbulent patterns: decreasing the

Reynolds number until the statistically-steady turbulent-laminar pattern is reached (Tsukahara et al.,

2005; Tuckerman et al., 2014; Kashyap et al., 2020); or perturbing the laminar flow with localised dis-

turbances with enough energy to trigger localised turbulent regions (Duguet et al., 2010; Aida et al.,

2010; Tao & Xiong, 2013; Xiong et al., 2015). To find a suitable initial perturbation able to trigger

turbulence in the form of a laminar-turbulent pattern, we have investigated the generation of turbu-

lent bands via nonlinear optimization, first used by Cherubini et al. (2010a) and Pringle & Kerswell

(2010), searching for the first time the minimal seed in a very large channel flow. Moreover, we have

investigated the Reynolds number influence on the optimal growth of perturbations and analysed the

mechanism of creation of turbulent bands. In particular, these turbulent bands present a small-scale

flow, characterised by streaks and vortices, and are surrounded by a large-scale flow. For this reason,

different hypotheses are suggested in the literature concerning their origin linked with these two flow
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scales. Some authors conjectured that the streaks constituting the small-scale flow are generated via

an inflectional spanwise instability (Xiao & Song, 2020) and these structures at the head of the turbu-

lent bands are responsible for the turbulent band growth and self-sustaining (Shimizu & Manneville,

2019; Song & Xiao, 2020). Conversely, others authors speculate that the large scale flow is responsible

for the turbulent band sustaining (Duguet & Schlatter, 2013; Tao et al., 2018). However, the main

mechanisms at the origin of the turbulent bands are still not completely clear, especially concerning

streaks nucleation. To elucidate this point, in the first part of this work, we search for a possible

relation between the optimal energy growth of streaks at the head of the turbulent band and the

bands’ generation and sustaining. Moreover, we investigate the energy growth mechanism in a tilted

domain searching for linear and nonlinear optimal perturbations in tilted and non-tilted domain.

In the second part of this work, the dynamic of a fully turbulent channel flow is analysed. Coherent

structures found in turbulent flow are mostly elongated oscillating structures, called streaks; notably,

two scales of motions are identified, small scale structures in the near-wall region characterised by a

spanwise streaks spacing of λ+ ≈ 100 and a large scale flow in the outer region with an average span-

wise length comparable to the channel half-width. In the near-wall region the small scale structures,

characterised by streaks and vortices, are continuously generated through the self-sustained process

(SPP) (Hamilton et al., 1995; Waleffe, 1997), which is autonomous and does not requires the pres-

ence of large scale structures. The study of this self-sustained process lead to the research of exact

coherent structures, which are invariant solutions of the Navier-Stokes equations, mostly characterised

by near-wall structures (Kawahara & Kida, 2001). At the same time, it was observed that the large

scale structures populating the turbulent flow in the outer region have the form of large scale oscillat-

ing streaks (Tomkins & Adrian, 2003) or packets of hairpin vortices (Adrian, 2007). To analyse if a

self-sustained process exists (and is autonomous) also for these large-scale structures, Hwang & Cossu

(2010b) have performed Large-Eddy Simulations (LES) with an over-filtered Smagorinsky method,

finding large scale streaky structures that remain self-sustained even when the small-scale motion is

quenched. Using the same approach, Rawat et al. (2015) found large-scale exact coherent solutions

that exist even in the absence of small-scale oscillations.

Likewise, Farano et al. (2017, 2018), searching for nonlinear optimal solutions around the mean flow,

have found perturbations able to reproduce extreme events. These optimal perturbations present

small- and large-scale structures depending on the friction Reynolds number and on the target time.
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For low friction Reynolds numbers, the optimal perturbation exhibits hairpin vortices originated by

the breakup of the near-wall streaks; whereas, for higher values of Reτ , it is mostly composed of

large-scale streaks. Following the formulation used by Farano et al. (2017), in an attempt for reaching

values of Reτ for which an autonomous self-sustained process at large scale exists, we have tried to

extend the nonlinear optimization problem to turbulent flows at larger values of Re for different tar-

get times. However, due to the nonconvex nature of the nonlinear Navier-Stokes equations, different

local optima are found for a given set of initial energy and target time, undermining the robustness

of such approach for finding a preferential energy growth mechanism at high Re for fully turbulent

flows. For this reason, we have chosen to follow a different approach attempting to found invariant

solutions able to describe the turbulent motions for high values of the Reynolds number. Thus, in

the last part of this work we have provided a ’new’ mathematical framework for the computation of

statistically-invariant coherent solutions of the unsteady Reynolds-averaged Navier-Stokes equations

written in a perturbative form with respect to the turbulent mean flow, using a suitable approxima-

tion of the Reynolds stress tensor. With this set of equations, solutions with structures at multiple

scales are found, without any filtering of small-scale structures, allowing the direct and inverse cascade

mechanisms by which energy is transmitted scale-by-scale.

0.1 Organization of the manuscript

In Chapter 1, the context of the work is provided. First, an analysis of the state of the art

concerning subcritical transition to turbulence and patterned turbulence in channel flow is provided.

Secondly, fundamental notions about optimal perturbation and minimal seed are introduced. Finally,

an introduction on the dynamical system approach in fluid dynamics is provided.

Chapter 2 presents the governing equations and numerical methods used in this thesis.

Chapter 3 is dedicated to the research of minimal seed to generate oblique turbulent bands; the numer-

ical strategy and the main results are reported. In Chapter 4, via linear and nonlinear optimizations

the main mechanisms allowing the generation of the turbulent bands in tilted domains are presented.

Some results on nonlinear optimal perturbation in turbulent channel flow are shown in chapter 5. In

Chapter 6, a new strategy to search invariant solutions at high Reynolds numbers is presented and

the major results are reported.

Finally, general conclusions and perspectives are provided in Chapter 7.
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Chapter 1

Context

Contents

1.1 Subcritical transition to turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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1.1 Subcritical transition to turbulence

There are several open questions in fluid dynamics regarding the transition to turbulence in shear

flows. The Reynolds number, defined as Re = Uh/ν, represents the control parameter to characterize

the state of the flow. The linear stability analysis allows to establish a critical value Rec, the critical

Reynolds number. Above this value (Re > Rec), the flow is asymptotically unstable and small per-

turbations are able to trigger turbulence in the flow, via a linear mechanism; instead, for Re < Rec

the flow is linearly stable. However, since the experiment by Reynolds (1883), who first observed

subcritical transition to turbulence in a wall bounded shear flow, it is known that turbulence may

arise for Reynolds numbers smaller than the critical one. Indeed, for some shear flows, such as pipe

flow and plane Couette flow, the linear stability analysis predicts linear stability at all Re although,

27



1.1. SUBCRITICAL TRANSITION TO TURBULENCE

in some conditions, these flows exhibit transition to turbulence and sustained turbulent flow regime.

Otherwise, there are flows, such as plane Poiseuille or boundary layer flows, for which linear stability

analysis predicts a much higher critical Reynolds number compared to the value for which transition

to turbulence is actually observed.

Therefore, in such flows, another critical Reynolds number is introduced, the global Reynolds number

or energy Reynolds number (Reg). This quantity defines the threshold value of Re below which all

the perturbations decay to the laminar flow, and thus the flow is unconditionally stable. Conversely,

for Re > Reg the flow is defined conditionally stable, i.e. the flow becomes unstable only in certain

conditions, depending on the perturbation spatial distribution and/or energy. For these reasons, in

such flows, transition to turbulence occurs subcritically.

In figure 1.1 the bifurcation diagram representing subcritical transition considering as control pa-

Figure 1.1: Bifurcation diagram for subcritical transition to turbulence in shear flows, as plane
Poiseuille flow.

rameter the Reynolds number is shown. If Re < Reg, the flow appears only in its laminar state.

Conversely, for Re > Rec the turbulent state is triggered even by infinitesimal perturbations. On the

other hand, in the range Reg < Re < Rec the laminar and turbulent states are both achievable, de-

pending on the amplitude and shape of the perturbations affecting the laminar state. For example, in

the case of the plane Poiseuille flow, linear stability analysis predicts a critical Reynolds number equal

to Rec = 5772.2 (Orszag, 1971). This value is much larger compared to the approximate threshold

for turbulent transition found experimentally at Re ≈ 1000, above which turbulent spots are observed

and travel into the laminar flow without decaying (Carlson et al., 1982).
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1.1.1 Localised turbulence in shear flows

In the range of Reynolds numbers Reg < Re < Rec, when the flow departs from the laminar state,

two different behaviours may be identified: the flow can be transitional, or characterised by a fully

developed turbulent regime. In transitional flows, turbulence does not arise at the same time in the

whole domain, being preceded by the formation of localised flow structures that grow in amplitude

and spread in space. Transition via localised turbulence is definitely realistic, because, in real flow

configuration, turbulence is triggered by localised imperfection of the wall surface, acoustic waves, or

other spatially compact environmental disturbances.

The first of these localized flow features to be observed were turbulent spots, which have been inves-

tigated by many researchers in the past. Emmons (1951) was the first to experimentally show that

turbulent spots may trigger turbulence; later, this was confirmed experimentally and numerically in

plane channel flow (Carlson et al., 1982; Henningson & Kim, 1991; Klingmann, 1992; Aida et al., 2010,

2011; Lemoult et al., 2013, 2014) and in boundary layer flow (Cantwell et al., 1978; Henningson et al.,

1987; Levin & Henningson, 2007) analysing the spots characteristics. In pipe flows, rather, other

localized flow structures dubbed puffs are observed both numerically and experimentally (Eckhardt

et al., 2007; Avila et al., 2011). Puffs are localised, downstream-travelling flow structures within a

laminar field, sustained by the energy provided by the neighbouring laminar motion at the upstream

end of the puff. They can decay, split or merge, filling the laminar flow with turbulent fluctuations.

More recently, Duguet et al. (2010) have shown that locally perturbing the plane Couette flow, the

fully turbulent state is preceded by the formation of turbulent bands. The same behaviour was ob-

served by Tao & Xiong (2013) and Xiong et al. (2015), where it was observed that, after injecting

a localised perturbation, turbulent bands grow obliquely in the domain until decay or breakdown to

turbulence. In the latter case, it was determined that the turbulent bands lifetime is longer than that

of turbulent spots. Besides having a crucial role in the turbulent transition, oblique turbulent bands

characterise also the (transiently) turbulent state in shear flows at low Reynolds numbers, as shown

by Tsukahara et al. (2005). In fact, in the pipe, plane Couette, and plane Poiseuille flow, there is a

range of moderate Reynolds numbers for which experiments and numerical simulations have shown

that turbulence is not homogeneous in space, since spatially-localized regions characterised by laminar

and turbulent behaviour coexist when the statistically-steady turbulent state is reached.

Indeed, elongated oblique self-sustained turbulent bands located in a laminar flow appear in plane
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(a) (b)

(c) (d)

Figure 1.2: Localised turbulence in shear flow. (a) Puff evolution in round pipe flow at Re = 2000
(from Song et al. (2017)). (b) Turbulent-laminar bands in Coeutte flow at Re = 330 (from Duguet
et al. (2010)). (c) Turbulent bands in plane channel flow (from Tsukahara et al. (2005)). (d) Localised
helical turbulence in annular Couette flow (from Kunii et al. (2019)).

Couette flow at Re > 290 (Prigent et al., 2002; Barkley & Tuckerman, 2005; Duguet et al., 2010; Tuck-

erman & Barkley, 2011) and in plane Poiseuille flow for Re ≥ 1000 (Tsukahara et al., 2014; Tuckerman

et al., 2014; Tao et al., 2018; Shimizu & Manneville, 2019; Kashyap et al., 2020). In particular, due

to the symmetry in the streamwise direction, in the Couette flow the turbulent bands are stationary;

while, in the plane Poiseuille flow are free to travel in the streamwise direction.

This turbulent laminar pattern is also observed in the form of a helically-shaped turbulent patch in

counter-rotating Taylor Couette flow by Coles & Van Atta (1966) and in annular Couette flow for a

particular ratio of the two coaxial cylinders by Kunii et al. (2019). Turbulent bands are also found in

a channel with heat transfer (Tsukahara et al., 2006). Furthermore, Deusebio et al. (2015) extended

the analysis of intermittent flows in stratified Couette flow, identifying the region of existence varying

the Reynolds and Richardson numbers. Turbulent bands in channel flow exhibit a magnetic field are

found by Zikanov et al. (2014). A more detailed analysis of turbulent-laminar patterns in shear flows

is tackled in review of Tuckerman et al. (2020).
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1.1.2 Turbulent bands in channel flow

As previously mentioned, in plane Poiseuille flow turbulent-laminar oblique patterns were observed

experimentally for Re = 1000 by Carlson et al. (1982). Tsukahara et al. (2005) numerically observed

localised turbulent bands tilted in the streamwise direction within in a laminar flow. Numerical

simulations were able to reproduce these patterns also at lower Reynolds numbers (Xiong et al.,

2015; Tao & Xiong, 2017; Kashyap et al., 2020), estimating a threshold value for turbulent bands

at Re ≈ 660, according to Tao et al. (2018). Moreover, Song & Xiao (2020) recently reported the

onset of turbulent bands even at Reynolds number as low as Re = 500, generated by forcing the

flow with a local perturbation with a sufficiently strong spanwise inflection. They showed that this

forcing method allows to generate bands at very low values of the Reynolds number, for which bands

previously appeared to be not sustained. This procedure was motivated by the work of Xiao & Song

(2020), where the authors performed a linear stability analysis of the mean velocity profile extracted

in a small domain at the head of the turbulent band. Employing stability analysis, it was suggested

that spanwise inflectional instability may be the mechanism involved in the growth and self-sustaining

process of turbulent bands.

1.1.2.1 Domain size influence on turbulent bands dynamics

In addition to the Reynolds number, the domain size plays an important role in the growth and

self-interaction of turbulent bands. When the domain considered is sufficiently large, turbulent bands

can grow for longer times, avoiding the probability of interaction with themselves or other bands. For

this reason, several works were performed to study the influence of the domain extension on the onset

of turbulent bands. Further, in a large domain, it is possible to analyse the competition between angle

and wavelength. In fact, in channel flow, varying the Reynolds number it was observed that turbulent

bands may arise with different angles in the range 24◦−40◦ (Xiong et al., 2015; Kashyap et al., 2020).

In order to reduce the computational cost, some numerical studies cleverly considered computational

domains tilted in the direction of the bands, as done for the plane Couette flow by Barkley & Tuckerman

(2005) and for the plane Poiseuille flow by Tuckerman et al. (2014). Although very interesting for

studying the dynamics of a single band, using the tilted domain constrains the turbulent bands to

develop at a fixed angle and avoids (or reduces) the interactions with other bands, resulting in a

consequently less rich dynamics.
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1.1.2.2 Generating turbulent bands in channel flow

In the literature, two strategies are typically used to obtain laminar-turbulent bands. The first

one consists in starting from a spatially-homogeneous statistically-steady turbulent state, and slowly

decreasing the Reynolds number until patterned laminar regions in the initially turbulent flow begins

to be observed (Tsukahara et al., 2005; Tuckerman et al., 2014; Kashyap et al., 2020). This method

usually leads to the formation of statistically-steady laminar-turbulent patterns. The figure 1.3 shows

the spanwise velocity evolution corresponding to a direct numerical simulation in which the Reynolds

number is decreased in decrements of 100. For Re = 2300, turbulence is statistically uniform in the

whole domain. For 1900 < Re < 1400, turbulent bands appear in the domain. Further decreasing the

Reynolds number, the flow complexity is reduced until a single band is identified in the flow.

Another possible method to obtain the turbulent bands consists in perturbing the laminar flow

Figure 1.3: Spanwise velocity evolution corresponding to a simulation in which the Reynolds number is
decreased in decrements of 100. The visualization shows the transition from a fully developed turbulent
flow to the laminar-turbulent pattern at low Reynolds numbers (from Tuckerman et al. (2014)).

with suitable localised disturbances having enough energy to trigger localized regions of turbulence

eventually evolving into oblique stripes (Duguet et al. (2010), Aida et al. (2010), Aida et al. (2011),

Tao & Xiong (2013), Xiong et al. (2015)).

When focusing on the second method, the amplitude, the shape and the localization of these initial

perturbations should be carefully chosen to ensure their growth towards oblique bands. Depending

on their shape, perturbations with higher amplitude may decay, while weaker perturbations may lead

the flow to transition.
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1.1.2.3 Turbulent bands origin and growth

Recently, many works have focused on the origin and growth of turbulent bands. In a large domain,

Shimizu & Manneville (2019) observed that streaks are generated at the head of the turbulent band

and suggest that streaks generation could be the origin of the self-sustaining process of a single turbu-

lent band. According to this hypothesis, investigating a small domain at the head of the band, Xiao

& Song (2020) have performed a linear stability analysis of the mean flow computed in three different

regions at the head of the band. They have notably found that an inflectional spanwise instability

generates streaks structures similar to those found at the head of a turbulent band, and they have

proposed that this instability can be at the origin of the growth of the turbulent band. Based on this

hypothesis, Song & Xiao (2020) have searched for a forcing that induces inflectional instability in the

flow, able to trigger turbulence in the form of turbulent bands in a large domain. On the other hand,

using a nonlinear approach Paranjape et al. (2020) have searched for an edge state in a tilted domain

and they have found a localised nonlinear travelling wave solution that shows properties very similar

to those of turbulent bands in a tilted domain.

Conversely, Tao et al. (2018) suggest that, for triggering and sustaining a turbulent band, a large-scale
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Figure 1.4: Isocontours of the crossflow energy with the normalized y-integrated large scale flow
(vectors) obtained with a DNS at Re = 700.

flow is necessary. In fact, as shown in figure 1.4, all turbulent bands are characterized by a small-scale

flow inside the turbulent region, characterised by streaks and vortices, surrounded by large-scale vor-

tices, parallel to the turbulent bands and having opposite directions on their two sides. In particular,

Duguet & Schlatter (2013) have argued that the validity of the continuity equation for this large-scale
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flow is responsible for the turbulent band oblique evolution.

Shimizu & Manneville (2019) observed that turbulent bands are sustained by an active streak gener-

ation at the head of the bands, while streaks decay is found in the tail. Moreover, Tao et al. (2018)

reported a strong increase of the total disturbance kinetic energy corresponding with the creation of

turbulent bands. This energy increase follows an almost algebraic growth, instead of an exponential

behaviour, as should be expected in the case of asymptotic instability as that reported by Xiao &

Song (2020).

1.2 Optimal perturbation in shear flows

How explained previously, small perturbation theory (i.e. linear stability analysis) predicts that

the primary instability arising in shear flows is characterised by two-dimensional perturbations such

as Tollmien-Schlichting waves, found in the case of plane channel or boundary layer flows. However,

Kendall (1985) and Matsubara & Alfredsson (2001) have experimentally observed streaks in the transi-

tional regime, linking this coherent structures to secondary instability and bypass transition. Notably,

it was also proposed that the growth of the streaky structures may be linked to transient growth

theory. From a mathematical point of view, Landahl (1980) and Trefethen et al. (1993) showed that

the non-normality of the linearised Navier-Stokes equations can be responsible for linear transient

amplification of the perturbations. In this case, perturbations having an initially small amplitude can

reach in a finite time a very large energy, being able to trigger nonlinear effects bringing the flow

to transition at Reynolds numbers lower than the critical one. Butler & Farrell (1992) and Reddy

& Henningson (1993) suggested that non-modal growth can arise from the interaction of damped

eigenmodes, which are nearly anti-parallel. In order to investigate the potential amplification that

non normality can provide to the flow, one can search numerically, in a linear framework, for the

perturbations causing the maximum possible transient energy amplification, called optimal perturba-

tions. These optimal flow structures exhibit the maximum possible growth in a given finite time. In

particular, Farrell (1988) have shown that in channel flow the linear optimal perturbation is always

characterised by streamwise-independent structures of alternating high- and low- momentum, called

streaks (see figure 1.5). Particularly, for plane channel and boundary layer flows, it has been found that

an algebraic kinetic energy growth of perturbations is induced when weak counter-rotating vortices

generate high-amplitude streaky structures through a linear mechanism, labelled lift-up mechanism.
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Figure 1.5: Three-dimensional representation of streaks and counter-rotating vortices for Poiseuille
flow at Re = 1000, α = 0 and β = 2.05.

These two flow structures, which are easily retrieved by optimal transient growth analysis (Luchini,

2000), are two of the fundamental elements of the self-sustaining process which supports turbulence

in shear flows (Hamilton et al., 1995; Waleffe, 1997), together with secondary instability of the streaks

which is linked to the creation of inflectional points in the velocity profiles.

1.2.1 Optimal perturbations in the nonlinear framework

However, these streamwise-invariant, spatially elongated structures are different from perturbations

that are usually observed in real flows during transition. Indeed, as introduced in the previous sections,

in real flow transition to turbulence is observed in the form of localised structures as puffs, spots and

turbulent bands, whereas linear optimal disturbance are virtually extended in the whole domain. The

formation of turbulent spots from localized perturbations for Reg < Re < Rec has been investigated in

channel and boundary layer flows (Henningson et al., 1993; Levin & Henningson, 2007). Perturbations

with ”simple” shapes such as pulses, jets (Singer & Joslin, 1994) or localized pairs of alternated

vortices (Levin & Henningson, 2007) have been often used to study the spot formation, since they are

usually easy to reproduce experimentally. However, in these studies, the initial perturbation does not

guarantee an energy growth as large as that induced by optimal perturbations, so these perturbations

usually require a large initial amplitude to trigger turbulence within the flow. Whereas, extending

the research of the optimal perturbation to a nonlinear framework have shown that nonlinear optimal

perturbations are more efficient in term of energy growth compared to the linear ones. These nonlinear

optimal perturbations are characterised by wavy streaks and vortices, but, compared to the linear
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perturbations, are strongly localised in the domain, so they are able to induce transition with a much

smaller energy then their linear counterpart.

The methodology to find these perturbations is based on nonlinear variational optimization, which

has been performed for pipe flow by Pringle & Kerswell (2010) and Pringle et al. (2012), for boundary

layer flow by Cherubini et al. (2010a), Cherubini et al. (2011), Cherubini et al. (2015) and Vavaliaris

et al. (2020), and for plane Couette flow by Monokrousos et al. (2011), Rabin et al. (2012), Duguet

et al. (2013) and Cherubini & De Palma (2013). These authors optimize a functional linked to the

turbulent dynamics, namely the perturbation kinetic energy (see Pringle & Kerswell (2010); Pringle

et al. (2012); Rabin et al. (2012); Cherubini & De Palma (2013)) or the time-averaged dissipation (see

Monokrousos et al. (2011); Duguet et al. (2013)), including nonlinear terms into the optimization and

thus following the evolution of the perturbation until transition is initiated. The whole procedure is

explained in detail in Chapter 2.2, while results on the plane Poiseuille flow are provided in Chapters

3-4.

1.3 Self-sustaining process in wall-bounded flow

As previously mentioned, both linear and nonlinear optimal perturbations are characterized by

streamwise streaks and vortices, indicating that these structures are linked to a robust energy-production

mechanism typical of shear flows. In fact, streaks are the most typical example of coherent motion

in turbulent flows, first observed by Kline et al. (1967) as ”surprisingly well-organized spatially and

temporally dependent motions”. These elongated structures are continuously generated by the lift-up

mechanism, as introduced by Landahl (1980), which is one of the building blocks of the self-sustained

cycle theorized in the nineties by Hamilton et al. (1995) and Waleffe (1997). When the streaks, pro-

duced from streamwise vortices via the lift-up mechanism, reach a sufficiently large amplitude they

become unstable via an inflectional instability (Waleffe, 1995; Reddy et al., 1998), which leads to their

breakdown. Via a nonlinear mechanism, the streaks breakdown regenerates the streamwise vorticity,

that creates the streamwise vortices. Notably, for some values of Reynolds numbers, and for some

streamwise and spanwise wavelengths, this process is self-sustained. In particular, this self-sustained

process (SSP) consists of three steps, as sketched in the schematic representation in figure 1.6: i)

streaks generation via streamwise vortices thanks to the non modal lift-up mechanism; ii) streaks

breakdown due to nonlinear saturation and secondary instability; iii) nonlinear interactions recreating
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Figure 1.6: Schematic representation of the self-sustaining process (from Hamilton et al. (1995)).

the streamwise vorticity, leading back to the first step.

It is important to notice that the streaky motion is not only observed in the transitional regime, but

also in the fully turbulent flows. In the latter case, streaky structures having different scales char-

acterise the fully turbulent flow, ranging from the inner scale, characterising the coherent structures

populating the near wall region, to the outer scale, typical of much larger structures observed in the

outer region. Kline et al. (1967) have indicated that the spanwise spacing of streaks observed in the

near wall region of a boundary layer, is approximately λ+ ≈ 100, in wall units (i.e. normalized using

uτ and the viscous length scale δν = ν/uτ ). This spanwise spacing is found for other shear flows, and

is invariant with the Reynolds number, as noticed by Smith & Metzler (1983). Conversely, the outer

region is constituted by large-scale coherent structures in the form of large-scale oscillating streaks

(Tomkins & Adrian, 2003) or packets of hairpin vortices (Adrian, 2007) with average spanwise length

λ ≈ O(h), with h the outer length scale (i.e. the channel half width or the boundary layer thickness).

Namely, these structures present typical streamwise and spanwise size of λx ≈ 2−3h and λz ≈ 1−1.5h,

respectively.

Although the self-sustained process was initially observed in the inner layer region (Hamilton et al.,

1995; Waleffe, 1997; Jiménez & Pinelli, 1999), a growing body of evidence has recently indicated that

equivalent, mutually independent regeneration cycles are active in the logarithmic and outer regions

as well (Hwang & Cossu, 2010a,b, 2011; Hwang, 2015; Hwang et al., 2016a; Cossu & Hwang, 2017),

giving rise to large- and very-large-scale motion with average streamwise wavelength λx ≈ O(10h)

(Kovasznay et al., 1970; Komminaho et al., 1996; Kim & Adrian, 1999; del Alamo & Jiménez, 2003;
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Hutchins & Marusic, 2007). The statistical and dynamical features of these self-sustaining motions as-

sociated with streaks and quasi-streamwise vortices at different scales are consistent with the attached

eddy hypothesis introduced by Townsend (1980).

1.3.1 Self-sustaining process at large scale

Concerning the origin and dynamics of the large scale structures, a diffused hypothesis is that their

formation is linked to a mechanism similar to the self-sustaining process of the transitional flows. In

plane channel and boundary layer flows, del Álamo & Jiménez (2006); Pujals et al. (2009) and Cossu

et al. (2009) have performed a linear transient growth analysis of perturbations of a mean velocity

profile of a fully turbulent flow, modelling the small coherent motion with an eddy viscosity. By means

of this analysis, they have confirmed the previously mentioned conjecture, concluding that a coherent

lift-up mechanism and a consequent self-sustained process are detected also for large-scale structures.

In particular, in the case of plane channel flow, for large Reynolds numbers the optimal gain presents

two peaks at two optimal spanwise wavelengths (del Álamo & Jiménez, 2006; Pujals et al., 2009),

one scaling in outer units with an optimal wavelength λz ≈ 4h, and the second scaling in inner units

with λ+
z ≈ 100, consistent with the spanwise spacing of the near-wall streaks. Moreover, according to

experimental evidence, the maximum energy growth of the optimal perturbation associated with the

outer scales increases with the Reynolds number; conversely, the energy growth at the inner scale is

smaller and invariant to the Reynolds number (see figure 1.7).

In turbulent shear flows, the large-scale motions interact with the structures at small scales. In order

(a) (b)

Figure 1.7: Maximum growth Gmax evolution in function of the spanwise wavenumber for different
Reynolds numbers. Representation: (a) in outer units with an optimal spanwise wavelength λz ≈ 4h;
(b) in inner units with an optimal spanwise wavelength λ+

z ≈ 92 (from Pujals et al. (2009)).
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to establish whether the large scale self-sustaining process is independent of the near-wall process,

Hwang & Cossu (2010a) have performed Large-Eddy Simulations (LES) in both channel and Couette

flow filtering and artificially increasing the Smagorinsky constant CS , i.e. the cut-off characteristic

length, to suppress the small scale motion. Even in this artificially quenched case, they still observed

large-scale streaky structures. This result have clearly demonstrated that the large-scale motion can

be self-sustained, since it survives when smaller-scale active motions in the near-wall and in the

logarithmic regions are artificially quenched and replaced by purely dissipative structures. Hwang &

Cossu (2011) extended this method to intermediate flow units finding self-sustained streaky structures

with length characteristic of the logarithmic layer motion.

However, this over-filtered approach does not allow the investigation of the nature of the energy

transfer between structures of different scales. Despite the motion at large scales can be sustained

even when the wall cycle is quenched, in high-Reynolds-number turbulent flows multiple and non-trivial

interactions exist between structures at different scales (Cimarelli et al., 2016; Cho et al., 2018). In a

very recent work, Doohan et al. (2021) have shown that wall-normal energy is transferred from large

to small scales inducing energy production at the wall via the Orr mechanism. While, a non-negligible

amount of energy is transferred from small to large scales Cho et al. (2018), possibly due to small-

scale sinuous streak instability as conjectured by Doohan et al. (2021). Thus, coherent structures at

different scales are intimately connected by direct and inverse cascade mechanisms by which energy is

transmitted scale-by-scale among different regions of the flow Cimarelli et al. (2016).

Using the perturbative Reynolds-Averaged Navier-Stokes equations (PRANS), Farano et al. (2017,

2018) have found nonlinear optimal perturbations characterised by hairpin vortices originated by the

breakup of the near-wall streaks for low values of friction Reynolds number; and, at higher friction

Reynolds numbers, the nonlinear optimal perturbation consists in large-scale and small-scale streaks.

Moreover, these nonlinear optimal perturbations may reproduce high-energetic events, such as ejections

and sweeps, recurrently observed in wall-bounded turbulent flows (Farano et al., 2017). These optimal

perturbations can provide crucial information about the interaction of energetic structures at different

scales, and the related mechanisms of energy exchange and production. The whole optimization

procedure is explained in detail in the next chapter, while some results on the plane Poiseuille flow

are provided in Chapter 5.
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1.4 Dynamical system view in fluid dynamics

In an effort to model the dynamics of turbulent shear flow, Hopf (1948) conjectured that a chaotic

saddle composed of invariant solutions of the Navier-Stokes equations sustains transient turbulence

in shear flows. The first nontrivial fixed point of the Navier-Stokes equations was found by Nagata

(1990) in plane Couette flow and later recovered by Waleffe (1998). Starting from this solution, Wal-

effe (2001) extended the research of invariant solutions also in plane Poiseuille flow, via a homotopy

continuation from the plane Couette to the plane Poiseuille flow. The invariant solution found by

Waleffe (2001) showed the same features of the near-wall structures, i.e. streaks flanked by streamwise

vortices. For these reasons he decided to call these structures exact coherent structures. Furthermore,

the periodic orbit found by Kawahara & Kida (2001) in the plane Couette flow was found to show

similar near-wall structures, exhibiting all the phases of the self-sustaining process (see figure 1.8).

The same three fundamental mechanisms that compose the regeneration cycle of wall turbulence

Figure 1.8: Periodic orbit found by Kawahara & Kida (2001) exhibiting the self-sustaining process.

have been found to sustain several invariant solutions of the Navier-Stokes equations in the form of

equilibria, travelling waves or (relative) periodic orbits (Faisst & Eckhardt, 2003; Hof et al., 2004;
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Figure 1.9: Schematic visualization of a transient trajectory in the phase space (from Kreilos (2014)).

Wedin & Kerswell, 2004; Eckhardt et al., 2007; Duguet et al., 2008; Gibson et al., 2009; Schneider

et al., 2010; Willis et al., 2013; Deguchi et al., 2013; Gibson & Brand, 2014; Zammert & Eckhardt,

2014; Park & Graham, 2015; Barnett et al., 2017; Budanur et al., 2017).

Performing the stability analysis on these solutions, one or more eigenvalues exhibiting asymptotic

growth are found, which implies the unstable nature of the coherent exact solutions. Thus, as sketched

in figure 1.9, the chaotic saddle consists of a series of invariant solutions and, being these solutions

unstable, trajectories in the state space may approach one of these solutions, remain in their neigh-

borhood for a finite time before being pushed away along one of the unstable directions to approach

other solutions through heteroclinic orbits (Farano et al., 2019), resulting in a chaotic walk in the state

space.

Typical coherent structures populating transitional and turbulent flows, such as streaks and stream-

wise vortices, have been successfully captured by these fully nonlinear, dynamically unstable solutions

of the Navier-Stokes equations which populate state space and support turbulent dynamics with their

entangled stable and unstable manifolds.

Many efforts have been done for deriving low-order models based on these invariant solutions, allowing

to accurately describe the statistical properties of a turbulent flow (Cvitanović, 2013). Recently, Chan-

dler & Kerswell (2013) successfully applied the periodic orbit theory to the case of a two-dimensional

Kolmogorov flow at a moderate Reynolds number. However, a low-order model of a fully developed

three-dimensional turbulent flow is yet to be achieved, and would probably require the discovery of

many new invariant solutions at sufficiently high Reynolds number. Unfortunately, the computation

of such invariant solutions at large Reynolds numbers is a hard challenge, due to the multiple bifurca-
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tions they typically undergo. In the case of fully turbulent flows at high friction Reynolds number, a

valuable approach for computing invariant solutions is resorting to Large-Eddy Simulations (LES), as

proposed by Hwang & Cossu (2010b, 2011). In particular, choosing filtering widths larger than those

typically used for reproducing results of Direct Numerical Simulations (DNS), allows one to filter out

a large range of scales that could not be resolved within the chosen numerical grid. This approach,

relying on ”over-filtered” LES, with the Smagorinsky constant CS controlling the strength of the fil-

tering, is well suited for investigating the self-sustained nature of coherent large-scale motion, as done

at first for the plane channel flow by Hwang & Cossu (2010b, 2011) and Rawat et al. (2016), and for

the plane Couette flow by Rawat et al. (2015) at relatively low Reynolds numbers and for the channel

and asymptotic suction boundary layer flow at large friction Reynolds numbers Hwang et al. (2016b);

Azimi et al. (2020). However, this overfiltered approach does not allow to investigate the nature of

the energy transfer between coherent structures of different scales. A deeper understanding of the

energetic bond connecting small- and large-scale structure in turbulent flows can be achieved by the

computation of statistically-invariant coherent states which characterise the multiple-scale, coherent

part of the motion around the turbulent mean flow, without any filtering of small-scale structures, as

proposed in Chapter 6.

1.4.1 Edge of chaos

In the phase space, it is possible to identify a boundary that delimits the basin of attraction of the

laminar state. This boundary separates the initial conditions that decay to the laminar fixed point to

the perturbations that visit the chaotic saddle. The concept of the laminar-turbulent separatrix was

introduced by Itano & Toh (2001) and later called edge of chaos by Skufca et al. (2006).

The invariant solutions that lay on this hyper-surface are called edge states. These solutions are

relative attractors, i.e., they are attractive for initial conditions on the edge of chaos but repelling for

perturbations having a component transverse to this hypersurface. The edge states can be multiple

and made by equilibrium points (Schneider et al., 2008), nonlinear travelling waves (Viswanath, 2008;

Rawat et al., 2016; Paranjape et al., 2020), periodic or relative periodic orbits (Itano & Toh, 2001;

Kreilos et al., 2013; Rawat et al., 2014).

According to the theorems on the uniqueness of the solution of differential equations (Coddington &

Levinson (1995), Chapter 1) every initial condition presents only one possible trajectory that might
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Figure 1.10: Schematic visualization of the phase space (from Itano & Toh (2001)).

decay towards the laminar state or diverge in the turbulent attractor. However, in the cases under

consideration, turbulence is not due to the presence of a turbulent attractor, but to a chaotic saddle, on

which perturbations walk for a limited (long) time before decaying to the laminar fixed point. Thus,

in order to identify the perturbations that characterise the surface between laminar and turbulent

behavior we should evaluate the lifetime of perturbations. The lifetime of an initial condition is

defined as the time it takes the trajectory to approach the neighborhood of the laminar fixed point.

Following this definition, perturbations characterised by a finite lifetime are in the basin of attraction

of the laminar solution; on the contrary, perturbations with infinite lifetime pertain to the edge of

chaos. To compute the states on the edge of chaos, it is necessary to use an edge-tracking technique.

As introduced by Itano & Toh (2001) and Toh & Itano (2003), it is possible to constrain the solution to

remain in a neighbourhood of the edge of chaos by a one-parameter bisection technique, this method

is labelled ”shooting method”. This procedure is described in detail in Chapter 2.3.1.

1.4.2 Minimal seeds for turbulent transition

From a state-space point of view, the problem of finding perturbations eventually leading to tur-

bulence consists in placing the starting point of the trajectory outside the boundary of the basin of
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attraction of the laminar solution. Notably, the most relevant point of this boundary is its energy

Figure 1.11: Schematic view of the energy minimum. O is the (stable) laminar state with is basin of
attraction B(O). M is the minimal perturbation able to trigger transition to the turbulent state and
S is the edge state(from Duguet et al. (2013)).

minimum, since it represents the minimal (in energy norm) perturbation of the laminar state that can

lead the flow to transition. This point in the phase space has been dubbed, by Rabin et al. (2012),

minimal seed for turbulent transition. Looking at the figure 1.11, the point O is the stable laminar

flow (fixed point) with its basin of attraction B(O) delimited by the hypersurface Σ. On this surface,

it is possible to identify the minimal seed in M, i.e. the point having the minimal distance from O,

representing the minimal energy required for escaping from the laminar attractor. This energy mini-

mum has been assessed for several shear flows, allowing to find minimal thresholds for transition. The

determination of these energy thresholds is of primary importance for control purposes, since passive

or active control methods such as boundary manipulation (Rabin et al., 2014) or profile flattening

(Marensi et al., 2019) able to increase this minimal energy would render these flows less prone to

transition.

To find these minimal perturbations, the nonlinear optimization detailed in Chapter 2 is coupled with

an energy bisection as introduced by Rabin et al. (2012) for plane Couette flow, and than carried

out by Duguet et al. (2013) for plane Couette flow and by Cherubini et al. (2015); Vavaliaris et al.

(2020) for boundary layer flow. In all these studies, the kinetic energy was considered as the objective

function of the optimization and the optimal perturbations associated with the minimal input energy

were spatially localised. Similar behaviour was found in Couette flow by Monokrousos et al. (2011)
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maximizing the time integral of the entropy production. A detailed review of these methods is reported

in Kerswell et al. (2014); Kerswell (2018).

The minimal seeds obtained using the optimization-and-bisect method are found to change with the

Reynolds number, presenting a power-law scaling of the initial energy E0min ∝ Re−γ . In particular,

in plane Couette flows, a minimal energy threshold varying with the Reynolds number as Re−2.7 has

been found by Duguet et al. (2013), in quantitative agreement with experimental estimates for pipe

flows. Whereas, for the asymptotic-suction boundary layer Cherubini et al. (2015) found a scaling law

of this energy threshold of Re−2. However, to the authors knowledge, the minimal seed computation

has never been carried out for the channel flow. Moreover, all the minimal seed computations reported

in the literature have been carried out in small domains, not allowing to observe laminar-turbulent

patterned flow states. In large domains, where laminar-turbulent oblique bands exist, the minimal

transition thresholds can be potentially different from that obtained in small domains. Moreover, the

analysis of these minimal perturbations and of their evolution towards oblique bands can potentially

unveil the main mechanisms leading to the formation and sustainment of these laminar-turbulent pat-

terns. To investigate these points, we compute minimal seeds for triggering turbulent bands in plane

Poiseuille flow, as will be discussed in detail in Chapter 3.
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2.1 Problem formulation

The incompressible flow dynamics in shear flows is governed by the Navier-Stokes equations:∇ · u = 0
∂u

∂t
= −(u · ∇)u−∇p+ 1

Re
∇2u

(2.1)

where u(x, t) is the velocity field, p(x, t) is the pressure and Re = Uh/ν is the Reynolds number,

defined with the maximum velocity of the laminar Poiseuille flow U , the half channel height h and the

kinematic viscosity ν.
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2.1.1 Perturbative Navier-Stokes equations

The instantaneous field is decomposed into the sum of a base flow Q0 = [U0, 0, 0, P0]T and a

perturbation q′ = [u′, v′, w′, p′], in the following way:

q(x, y, z, t) = Q0(y) + q′(x, y, z, t),

where the base state Q0 represents the time-independent part of the solution, i.e. the fixed point of

the problem; while, q′ is the unknown of the problem and it is time-dependent. The magnitude of

the perturbation is considered of the same order of that of the base state, and for this reason, it is

not possible to introduce the linear hypothesis and then, the perturbative Navier-Stokes equations in

nonlinear formulation are obtained:∇ · u
′ = 0

∂u′

∂t
= −(u′ · ∇)u′ − (u′ · ∇)U0 − (U0 · ∇)u′ −∇p′ + 1

Re
∇2u′

(2.2)

with U0(y) = 1− y2, the laminar Poiseuille velocity profile.

2.1.2 Perturbative Reynolds-Averaged Navier-Stokes

When studying the dynamics of perturbations characterising the turbulent flow, it can be appro-

priate to move the point of view to the vicinity of the turbulent mean flow. This is achieved by using

a Reynolds decomposition approach similar to that used by Eitel-Amor et al. (2015) and Farano et al.

(2017), where the flow vector is expressed as the sum of a mean flow Q = [U, P ]T = [U, 0, 0, P ]T

(where • denotes long-time and space averaging along the streamwise and spanwise directions) and

a fluctuation q̃ = [ũ, p̃]T , comprising the coherent and incoherent part of the perturbations of the

mean flow. Time- and space- averaging along the wall-parallel directions the Navier-Stokes equations,

and subtracting these averaged equations from the Navier-Stokes equations leads to the Perturba-

tive Reynolds-Averaged Navier-Stokes (PRANS) equations, which describe in a statistical way the

nonlinear evolution of fluctuations of the mean turbulent flow as:∇ · ũ = 0
∂ũ

∂t
= −(ũ · ∇)ũ− (ũ · ∇)U− (U · ∇)ũ− ∇̃p+ 1

Re
∇2ũ +∇ · ũũ,

(2.3)

where the term ũũ is the Reynolds stress tensor τ . Notice that steady solutions of the PRANS

equations, as well as the mean flow itself, are sustained by the Reynolds stress term, which is in
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turn sustained by the coherent and incoherent part of the fluctuations. The mean velocity profile for

channel flow is well approximated by the analytical expression proposed by Reynolds & Tiederman

(1967):

dU
+

dy
= − Reτy

ν+
T (y)

, (2.4)

U
+ = U/uτ and Reτ = uτh/ν since it is the friction Reynolds number based on the friction velocity

uτ =
√
τw/ρ, where τw is the wall shear stress, and ν+

T = νT /ν is the ratio between the total viscosity

νT = ν + νt and the kinematic viscosity ν, νt being the turbulent eddy viscosity. The derivation of

this analytical formulation for the mean turbulent velocity profile is reported in the appendix B. The

total eddy viscosity is modeled using the analytic approximation proposed by Cess (1958), as assumed

in previous works (Reynolds & Hussain, 1972; del Álamo & Jiménez, 2006; Hwang, 2016).

Since this mean velocity profile is not a solution of the Navier-Stokes equations, in order to close the

problem, the divergence of the Reynolds stress tensor τ in equation (2.3) needs to be modelled. A

common way to write this term is using the Boussinesq’s Eddy Viscosity hypothesis τij = −ũiũj =

νtSij (Pope, 2001), where S is the shear stress tensor. Considering a fully developed channel flow

whose statistics are averaged in the streamwise and spanwise direction, the divergence of the Reynolds

stress tensor has only two non-zero components, i.e., dτ12(y)/dy and dτ22(y)/dy (notice that the latter

term cannot be incorporated in the pressure term since the other isotropic components have derivative

equal to zero).

The former term is approximated using the above mentioned eddy viscosity hypothesis, while the

latter is modelled by using the rescaling proposed by Chen et al. (2018), as:

ũṽ = −νt
dU

dy
and ṽṽ

+ = ũṽ
+
(
l+22
l+12

)2

, (2.5)

l+12, l
+
22 being the Reynolds stress lengths defined as:

l+i2 = ci2y
+ i+2

2

(
1 +

(
y+

y+
sub

)4
) 1

8
(

1 +
(

y+

y+
buf

)4
)− 1+i

8
1−r4

4(1−r)

(
1 +

( rcorei2
r

)2) i4 , (2.6)

where i = 1, 2, r = 1 − y is the distance from the centerline, y+
sub = 9.7 is the sub-layer thickness,

y+
buf = 41 is the buffer layer thickness, rcore12 = 0.27 and rcore22 = 0.3 are the central core layers, and

the parameters c12, c22 are function of these quantities. The parameter c12 is define as:

c12 = l0

y
+3/2
sub Zcore

, l0 = κy+2
sub

y+
buf

, Zcore = (1 + r2
core)1/4.
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Figure 2.1: Schematic visualization of the continuation procedure from the Perturbative Navier-Stokes
equations (ε = 0) to the Perturbative Unsteady Reynolds-Averaged Navier-Stokes equations (ε = 1).

with the parameter κ = 0.45. While, the parameter c22 is:

c22 = κy
+1/2
sub√

y+3
buf

(
1 + r2

22core
) ,

where the parameter κ = 0.52, but for moderate friction Reynolds number (Reτ < 300) κ = 0.5.

This analytical formulation has been validated by comparing the mean turbulent flow and the Reynolds

stress tensor components with those obtained by DNS at Re = 3300 (Reτ = 180) by Kim et al. (1987)

and at Re = 12450 (Reτ = 590) by Moser et al. (1999) (see appendix C).
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2.1.2.1 Continuation from the PNS to the PRANS framework

As discussed in the Context Chapter, a deeper understanding of the energetic bond connecting

small- and large-scale structure in turbulent flows can be achieved by the computation of statistically-

invariant coherent states which characterise the coherent part of the motion around the turbulent

mean flow, without any filtering of small-scale structures. Towards this aim, we use the PRANS

mathematical framework for the computation of travelling waves characterising the motion of tur-

bulent fluctuations around the mean flow. In fact, this set of equations has been found efficient for

characterising extreme events having an energy spectrum very similar to that of the fully turbulent

flow Farano et al. (2017, 2018). Continuing in this statistical framework known invariant solutions

of the Navier-Stokes equations at high friction Reynolds numbers, statistically-invariant motions con-

taining both large- and small-scale coherent structures such as streaks and streamwise vortices, might

be obtained, that represent the main motion of turbulent flows.

As sketched in figure 2.1, a homotopy procedure is used for continuously passing from equations (2.2)

to (2.3), which have an almost identical structure, except for the steady flow used as reference and

for the presence of the Reynolds stress tensor. Since these quantities depend directly on the turbulent

eddy viscosity, the continuation is performed by continuously increasing this quantity from zero to

its characteristic turbulent value expressed by the Cess model (Cess, 1958). Toward this purpose, we

define an effective turbulent eddy viscosity, ενt, where ε is a real positive number in the range [0, 1],

and νt is expressed as:

νt = ν

2

{
1 +

(
κ2Re2

τ

9

)(
2η̂ − η̂2

)2 (
3− 4η̂ + 2η̂2

)2
{

1− exp
[(|η̂ − 1| − 1)Reτ

A

]}2} 1
2

− 1
2 . (2.7)

with η̂ = η + 1 defined in the domain [0, 2], κ = 0.426 and A = 25.4, as assumed in previous works

(del Álamo & Jiménez, 2006; Pujals et al., 2009; Hwang, 2016).

Continuation from the PNS to the PRANS equations is achieved by increasing the coefficient ε from 0

to 1, and using the effective turbulent eddy viscosity ενt in the analytical expression of the Reynolds

stress tensor components τ11, τ12 in equation (2.5) and in the mean flow profile in equation (2.4), where

ν+
T = 1 + ενt/ν.

The procedure consists in selecting a known travelling wave solution of the Navier-Stokes equations,

subtracting the laminar flow solution for defining the corresponding perturbation, which is a travelling
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wave solution of equations (2.2) , and continuing it in ε using the following equations:

∇ · ũ = 0

−C ∂ũ

∂x
= −(ũ · ∇)ũ− (ũ · ∇)U− (U · ∇)ũ− ∇̃p+ 1

Re
∇2ũ−∇ · ενtS(U)

U(y) =
[
1−

∫
Re2

τy

Re(1 + ενtν )dy, 0, 0
]T (2.8)

where C is the phase velocity of the Galilean frame in which the solution is steady.

When ε = 0, Re2
τ = 2Re and one recovers U = 1 − y2 = U , the Reynolds-stress tensor components

being null. In this limit, the equations (2.8) coincide with the PNS equations (2.2) and consequently

ũ coincides with u′. When ε = 1, one obtains the turbulent expression of νt given in equation (2.7), so

that the turbulent mean velocity profile and the Reynolds stress tensor components in equations (2.5)

are obtained. Notice that, similarly to a homotopy procedure, the solutions obtained for ε =]0, 1[ have

no physical sense. Moreover, for ε 6= 1, ũ can have a non-zero mean, since U represents the mean flow

only in turbulent flow conditions, which are achieved only for ε = 1. The whole procedure, which is

sketched in figure 2.1, is implemented within the open-source software Channelflow (channelflow.ch)

(Gibson et al., 2021).

Continuation from the PNS to the PRANS equations is performed enforcing a constant volume flux

and consequently fixing the bulk velocity Ub =
∫ 1
−1 U(y)dy. Thus, while ε increases from 0 to 1, the

friction Reynolds number grows from the laminar (ReLτ ) towards the turbulent (ReTτ ) value as:

Reτ = (1− ε)ReLτ + εReTτ = [(1− ε)uLτ + εuTτ ]h
ν
, (2.9)

where uLτ =
√

3Ubν/h is the friction velocity of the laminar flow and uTτ is the friction velocity of the

turbulent flow, which, using Dean’s approximation for the skin friction in fully turbulent flow (Dean,

1978), can be expressed as:

uTτ =

√
0.073

2 U2
b

(2Ubh
ν

)−0.025
. (2.10)

The results of this continuation procedure are provided in Chapter 6.

2.2 Optimization problem formulation

As mentioned in the previous Chapter, at subcritical values of the Reynolds number, the non-

normality of the linearised Navier-Stokes equations can be responsible for linear transient amplification

of the perturbations. In this case, perturbations having an initially small amplitude can reach in a
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finite time a very large energy being able to trigger nonlinear effects bringing the flow to transition

at Reynolds numbers lower than the critical one. In order to investigate the potential amplification

that non normality can provide to the flow, one can search numerically for the perturbations causing

the maximum possible transient energy amplification in a given finite time. These flow structures

are called optimal perturbations, and can be recovered using a variational optimization in a linearized

or nonlinear framework. The optimization problem consists of searching the perturbation u′ that

maximises the objective function, in this case, the energy gain, and verifies the following constraints:

• it must be a solution of the Navier-Stokes equations;

• it must be divergence free;

• it must have initial energy equal to a given one, E0.

Then, the Lagrangian functional is defined as:

L(u′i, p′, u
†
i , p
†, u′i(0), u′i(T ), λ) = E(T )

E(0)

−
∫ T

0

∫
V
u†i

(
∂u′i
∂t

+
∂(u′iu′j)
∂xj

+
∂(Uiu′j)
∂xj

+ ∂(u′iUj)
∂xj

+ ∂p

∂xi
− 1
Re

∂2u′i
∂xj

)
dV dt

−
∫ T

0

∫
V
p†
∂u′i
∂xi

dV dt− λ
(
E0
E(0) − 1

)
.

(2.11)

where:

E(T ) = 1
2V

∫
V
u′i(T )u′i(T )dV and E(0) = 1

2V

∫
V
u′i(0)u′i(0)dV

are the energy at the target time T and the energy of the initial perturbation, respectively. Moreover,

u†i , p
† and λ are the Lagrangian multipliers (or adjoint variables).

To find the maximum of the optimization function L, one has to impose that its variations with respect

to every independent variable are equal to zero,

δL =
(
∂L
∂u′i

, δu′i

)
+
(
∂L
∂u†i

, δu†i

)
+
(
∂L
∂λ

)
δλ+

(
∂L
∂p†

)
δp† +

(
∂L
∂p′

)
δp′ = 0,
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giving the following equations that set up the optimization problem:

∂L
∂λ

:= E(0) = E0 (2.12a)

∂L
∂u†i

:= ∂u′i
∂t

+ u′j
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ Uj
∂u′i
∂xj

+ ∂p

∂xi
− 1
Re

∂2u′i
∂xj

= 0 (2.12b)

∂L
∂p†

:= ∂u′i
∂xi

= 0 (2.12c)

∂L
∂u′i

:= ∂u†i
∂t
− u†j

∂u′i
∂xj

+ u′j
u†i
∂xj
− u†j

∂Ui
∂xj

+ Uj
∂u†i
∂xj

+ ∂p†

∂xi
− 1
Re

∂2u†i
∂xj

= 0 (2.12d)

∂L
∂p′

:= ∂u†i
∂xi

= 0 (2.12e)

∂L
∂u′i(T ) := u′i(T )− u†i (T ) = 0 (2.12f)

∂L
∂u′i(0) := u†i (0)− λu′i(0) (2.12g)

Equations (2.12a), (2.12b) and (2.12c) are the constraints imposed on the optimization problem and

equations (2.12d) and (2.12e) are the adjoint Navier-Stokes equations. Furthermore, the equation

(2.12f) represents the compatibility condition, while, the equation (2.12g) is the update condition.

2.2.1 Derivation of direct and adjoint equations

The equations (2.12a)-(2.12c) are obtained directly differentiating the Lagrangian functional (2.11)

with respect to the Lagrangian multipliers.

For equation (2.12b):

∂L
∂u†k

= 0 =⇒
∫ T

0

∫
V

∂u†i

∂u†k

(
∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ ∂p′

∂xi
− 1
Re

∂2u′i
∂x2

j

+ u′j
∂u′i
∂xj

)
dV dt = 0,

∫ T

0

∫
V
δik

(
∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ ∂p′

∂xi
− 1
Re

∂2u′i
∂x2

j

+ u′j
∂u′i
∂xj

)
dV dt = 0.

There is not dependence between direct variables and adjoint variables, that is ∂qi/∂q
†
k = 0 and

∂q†i /∂qk = 0, too. δik = ∂u†i/∂u
†
k is the Knoneker delta and remembering its propriety that qiδik = qk,

one has∫ T

0

∫
V

(
∂(u′iδik)
∂t

+ Uj
∂(u′iδik)
∂xj

+ u′j
∂(Uiδik)
∂xj

+ ∂p′

∂xi
δik −

1
Re

∂2(u′iδik)
∂x2

j

+ u′j
∂(u′iδik)
∂xj

)
dV dt = 0,

∫ T

0

∫
V

(
∂u′k
∂t

+ Uj
∂u′k
∂xj

+ u′j
∂Uk
∂xj

+ ∂p′

∂xk
− 1
Re

∂2u′k
∂x2

j

+ u′j
∂u′k
∂xj

)
dV dt = 0.
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Imposing that the integral has to be null, being the integrated functional equal to zero in all the

domain and at each time step, the equation (2.12b) is obtained.

In the same way, it is obtained the equation (2.12c):

∂L
∂p†

= 0 =⇒ −
∫ T

0

∫
V

∂ui
∂xi

dV dt = 0 =⇒ ∂ui
∂xi

= 0.

To obtain the equations (2.12d)-(2.12e) one has to integrate by part each term of the Lagrangian

functional (2.11).

L(u′i, p′, u
†
i , p
†, u′i(0), u′i(T ), λ) = E(T )

E(0) +

−
∫ T

0

∫
V

(
u†i
∂u′i
∂t︸ ︷︷ ︸
1

+u†i
∂(u′iUj)
∂xj︸ ︷︷ ︸
2

+u†i
∂(Uiu′j)
∂xj︸ ︷︷ ︸
3

+u†i
∂p′

∂xi︸ ︷︷ ︸
4

− 1
Re

u†i
∂2u′i
∂x2

j︸ ︷︷ ︸
5

+u†i
∂(u′iu′j)
∂xj︸ ︷︷ ︸
6

)
dV dt +

−
∫ T

0

∫
V
p†
∂u′i
∂xi︸ ︷︷ ︸
7

dV dt− λ
(
E0
E(0) − 1

)
.

Then, integrating by part each term:

1 :
∫ T

0

∫
V
u†i
∂u′i
∂t

dV dt =
��������∫ T

0

[
u†iu
′
i

]
∂V
dt −

∫ T

0

∫
V
u′i
∂u†i
∂t

dV dt = −
∫ T

0

∫
V
u′i
∂u†i
∂t

dV dt

where the first integral on the RHS is null due to the boundary conditions imposition on the direct

and adjoint perturbation, i.e. the direct and adjoint perturbations are equal to zero on the domain

boundaries (u′i = u†i = 0);

2 :
∫ T

0

∫
V
u†i
∂(u′iUj)
∂xj

dV dt =
���������∫ T

0

[
u†iu
′
iUj
]
∂V
dt −

∫ T

0

∫
V
u′iUj

∂u†i
∂xj

dV dt = −
∫ T

0

∫
V
u′iUj

∂u†i
∂xj

dV dt;

3 :
∫ T

0

∫
V
u†i
∂(Uiu′j)
∂xj

dV dt =
∫ T

0

∫
V
u†i

(
u′j
∂Ui
∂xj

+
�

�
��

Ui
∂u′j
∂xj

)
dV dt =

∫ T

0

∫
V
u†iu
′
j

∂Ui
∂xj

dV dt,

with ∂u′j/∂xj = 0 due to the mass conservation;

4 :
∫ T

0

∫
V
u†i
∂p′

∂xi
dV dt =

��������∫ T

0

[
u†ip
′
]
∂V
dt −

∫ T

0

∫
V
p′
∂u†i
∂xi

dV dt = −
∫ T

0

∫
V
p′
∂u†i
∂xi

dV dt;

5 :
∫ T

0

∫
V

1
Re

u†i
∂2u′i
∂x2

j

dV dt =
�����������∫ T

0

[
1
Re

u†i
∂u′i
∂xj

]
∂V

dt −
∫ T

0

∫
V

1
Re

∂u†i
∂xj

∂u′i
∂xj

dV dt =

= −
∫ T

0

∫
V

1
Re

∂u†i
∂xj

∂u′i
∂xj

dV dt =
������������

−
∫ T

0

[
1
Re

∂u†i
∂xj

u′i

]
∂V

dt +
∫ T

0

∫
V

1
Re

u′i
∂2u†i
∂x2

j

dV dt =

=
∫ T

0

∫
V

1
Re

u′i
∂2u†i
∂x2

j

dV dt;
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6 :
∫ T

0

∫
V
u†i
∂(u′iu′j)
∂xj

dV dt =
∫ T

0

∫
V
u†i

(
u′j
∂u′i
∂xj

+
�

�
��

u′i
∂u′j
∂xj

)
dV dt =

∫ T

0

∫
V
u†iu
′
j

∂u′i
∂xj

dV dt;

7 :
∫ T

0

∫
V
p†
∂u′i
∂xi

dV dt =
��������∫ T

0

[
p†u′i

]
∂V
dt −

∫ T

0

∫
V
u′i
∂p†

∂xi
dV dt = −

∫ T

0

∫
V
u′i
∂p†

∂xi
dV dt.

After integration by part, the Lagrangian functional becomes:

L(u′i, p′, u
†
i , p
†, u′i(0), u′i(T ), λ) = E(T )

E(0) +

+
∫ T

0

∫
V

(
u′i
∂u†i
∂t

+ u′iUj
∂u†i
∂xj
− u†iu

′
j

∂Ui
∂xj

+ p′
∂u†i
∂xi
− 1
Re

u′i
∂2u†i
∂x2

j

− u†iu
′
j

∂u′i
∂xj

)
dV dt+

+
∫ T

0

∫
V
u′i
∂p†

∂xi
dV dt− λ (E0 − E(0))

Deriving this equation with respect to p′, one obtains the equation (2.12e):

∂L
∂p′

= 0 =⇒
∫ T

0

∫
V

∂u†i
∂xi

dV dt = 0 =⇒ ∂u†i
∂xi

= 0.

Furthermore, deriving the last expression of the Lagrangian functional with respect to the variable u′k,

one has:

∂L
∂u′k

= 0 =⇒ ∂

∂u′k

∫ T

0

∫
V

(
u′i
∂u†i
∂t

+ u′iUj
∂u†i
∂xj
− u†iu

′
j

∂Ui
∂xj
− 1
Re

u′i
∂2u†i
∂x2

j

− u†iu
′
j

∂u′i
∂xj

+ u′i
∂p†

∂xi

)
dV dt = 0

∫ T

0

∫
V

(
∂u′i
∂u′k

∂u†i
∂t

+Uj
∂u′i
∂u′k

∂u†i
∂xj
−u†i

∂u′j
∂u′k

∂Ui
∂xj
− 1
Re

∂u′i
∂u′k

∂2u†i
∂x2

j

−u†i
∂u′j
∂u′k

∂u′i
∂xj
−u†iu

′
j

∂

∂u′k

(
∂u′i
∂xj

)
+ ∂u′i
∂u′k

∂p†

∂xi

)
dV dt = 0

∫ T

0

∫
V

(
δik
∂u†i
∂t

+Ujδik
∂u†i
∂xj
−u†iδjk

∂Ui
∂xj
− 1
Re

δik
∂2u†i
∂x2

j

−u†iδjk
∂u′i
∂xj
−u†iu

′
j

∂

∂u′k

(
∂u′i
∂xj

)
+δik

∂p†

∂xi

)
dV dt = 0

∫ T

0

∫
V

(
∂(u†iδik)
∂t

+Uj
∂(u†iδik)
∂xj

−u†i
∂Ui
∂xj

δjk−
1
Re

∂2(u†iδik)
∂x2

j

−u†i
∂u′i
∂xj

δjk−u†iu
′
j

∂

∂u′k

(
∂u′i
∂xj

)
+∂p†

∂xi
δik

)
dV dt = 0

∫ T

0

∫
V

(
∂u†k
∂t

+ Uj
∂u†k
∂xj
− u†i

∂Ui
∂xk
− 1
Re

∂2u†k
∂x2

j

− u†i
∂u′i
∂xk
− u†iu

′
j

∂

∂u′k

(
∂u′i
∂xj

)
︸ ︷︷ ︸

I

+ ∂p†

∂xk

)
dV dt = 0.

Term I needs further development.

I :
∫ T

0

∫
V
u†iu
′
j

∂

∂u′k

(
∂u′i
∂xj

)
dV dt =

�������������∫ T

0

∫
V

[
u†iu
′
j

∂u′i
∂u′k

]
∂V

dV dt −
∫ T

0

∫
V

∂u′i
∂u′k

∂(u†iu′j)
∂xj

dV dt =

= −
∫ T

0

∫
V
δik
∂(u†iu′j)
∂xj

dV dt = −
∫ T

0

∫
V

∂(u†iδiku′j)
∂xj

= −
∫ T

0

∫
V

∂(u†ku′j)
∂xj

dV dt.
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Figure 2.2: Direct-adjoint looping alghoritm scheme.

In this way, the last equation becomes:

∫ T

0

∫
V

(
∂u†k
∂t

+ ∂(Uju†k)
∂xj

− u†i
∂Ui
∂xk
− 1
Re

∂2u†k
∂x2

j

− u†i
∂u′i
∂xk

+
∂(u†ku′j)
∂xj

+ ∂p†

∂xk

)
dV dt = 0.

Imposing that the integral has to vanish, finally one gets the adjoint equations (2.12d)

∂u†k
∂t

+ ∂(Uju†k)
∂xj

− u†i
∂Ui
∂xk
− 1
Re

∂2u†k
∂x2

j

− u†i
∂u′i
∂xk

+
∂(u†ku′j)
∂xj

+ ∂p†

∂xk
= 0.

2.2.2 Direct-adjoint algorithm

The optimization algorithm is solved using a direct-adjoint looping algorithm sketched in figure 2.2.

During one cycle, the direct Navier-Stokes equations are integrated in time from 0 to a given target

time T using a given initial condition. At time t = T, a terminal condition for the direct problem is

converted in a terminal condition for the adjoint equations via the compatibility equation (2.12f). The

adjoint equations are integrated backward in time and a new initial condition is computed to restart

the whole optimization problem.

The initial condition update is carried out with a gradient rotation algorithm as previously done

by Foures et al. (2013); Farano et al. (2016, 2017). Taking into account the gradient in the equation
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(2.12g):
∂L

∂u′i(0) := u′i(0)− λ−1u†j(0). (2.13)

As can be seen, the current expression of the gradient depends on the Lagrange multiplier λ whose

value is unknown at present. One can however write down a mathematical expression of this gradient

orthogonalised with respect to u′i:

∂L
∂u′i(0)

⊥
= ∂L
∂u′i(0) −

〈 ∂L
∂u′i(0) , u

′
i〉

〈u′i, u′i〉
u′i. (2.14)

Introducing the analytical expression of the gradient (2.12g), the orthogonalised gradient can be ex-

pressed as:

∂L
∂u′i(0)

⊥
= (u†i − λu

′
i)−

〈(u†i − λu′i), u′i〉
〈u′i, u′i〉

u′i

= u†i − λu
′
i −
〈u†i , u′i〉
〈u′i, u′i〉

u′i + λ
〈u′i, u′i〉
〈u′i, u′i〉

u′i.

(2.15)

After simplifications, the orthogonalised gradient finally reads:

∂L
∂u′i(0)

⊥
= u†i −

〈u†i , u′i〉
〈u′i, u′i〉

u′i. (2.16)

Then, the expression of the orthogonalised gradient (2.16) depends only on the direct variable u′i and

the adjoint u†i , while the dependence on the unknown Lagrange multiplier λ has been completely

removed from the optimisation problem. Normalising this new gradient such that:

Gn =
√√√√ E0

〈 ∂L
∂u′i(0)

⊥
, ∂L
∂u′i(0)

⊥〉
∂L

∂u′i(0)

⊥
(2.17)

now allows us to look for the update u′n+1
i as a simple linear combination of u′ni and Gn given by:

u′n+1
i = cos(α)u′ni + sin(α)Gn. (2.18)

Since u′ni and Gn form an orthonormal set of vectors, this update u′n+1
i now fulfills, directly by

construction, the constraint on the initial energy (2.12a).

Due to the presence of several sub-optima in the nonlinear regime, to ensure the convergence of the

method to the maximum of the functional, a check needs to be put on the value of the angle α used for

the update of the solution. In this work, every calculation has been started with α = π/4. However,

if the gain λn+1(T ) computed at iteration n+ 1th is smaller than the gain λn(T ) at the previous one,
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then the update un+1
i is re-updated with a different value of α, typically α = α/2, until the condition

λn+1(T ) > λn(T ) is achieved.

In the appendix A, some validations of the nonlinear optimization are shown.

2.2.3 Checkpointing technique

In the nonlinear form of the adjoint equations (2.12d), the term u′j∂u
†
i/∂xj establishes a coupling

between direct and adjoint variables. This term in the nonlinear optimization framework makes dif-

ficult the numerical resolution of the problem in terms of memory, especially for larger domains and

for optimization at high target times, since it is required the storage of the direct flow field u′j at each

time step. To reduce the storage required for the computation, a checkpointing technique is used,

similar to that used by Griewank & Walther (2000) and Hinze et al. (2006).

In figure 2.3 the checkpointing technique scheme is reported, in which with red cross symbols are spec-

ified the N checkpoint steps chosen, so that the target time is divided into N steps. The checkpointing

technique consists in the following steps:

1. the direct equations are solved from 0 to TN−1 and the direct flow fields are stored at each N

checkpoint steps (T1,T2...,TN );

2. the direct equations are solved in the last step (from TN−1 to TN ) storing the direct solutions at

each time steps; thus, the adjoint equations are solved backward in time;

3. the previous procedure is repeated for all the checkpoint steps advancing from the end up to

t = 0.

Therefore, this technique reduces the memory storage, resulting in an increase in terms of computa-

tional cost due to the repetition of the resolution of the direct problem.

2.3 Channelflow code

In this work, the Channelflow (channelflow.ch) (Gibson et al. (2021)) open source code developed

initially by J.F Gibson (Gibson et al. (2008)) is used for all the calculations.

In Channelflow code are implemented the perturbative Navier-Stokes equations (2.2) for a known

laminar velocity profile U = [U(y), 0, 0] associated to the base pressure gradient dP/dx.
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Figure 2.3: Checkpointing technique scheme. The red ”X” symbols indicate the chosen checkpointing
times.

For the equations is used a spectral discretisation in spatial directions (Fourier× Chebyshev× Fourier),

then the velocity vector presents the following mathematical form:

u(x) =
Nx/2∑

kx=−Nx/2+1

Ny−1∑
ny=0

Nz/2∑
kz=−Nz/2+1

ˆ̃ukx,ny ,kzTny(y)e2πi(kxx/Lx+kzz/Lz) (2.19)

where x = (x, y, z) and Tn is the nth Chebyshev polynomial. With (Nx, Ny, Nz) are indicating the

grid points in the domain Lx × Ly × Lz. A third-order semi-implicit backward difference scheme is

used for the time integration. An influence matrix method with Chebyshev tau correction was used

to enforce no-slip boundary condition at the walls.

Channelflow has its own subroutines to perform the edge tracking and the parameter continuation.

In the appendix D, some test cases performed with Channelflow code are shown.

2.3.1 Edge-tracking

The edge tracking technique implemented in Channelflow code requires a suitable initial condition

u′0 that is premultiplied by a parameter λ

u0 = λu′0.

Furthermore, it is necessary to choose two values λL, for which the initial perturbation decays to the

laminar solution, and λT , for which the solution evolves to the chaotic state.

This edge-tracking technique consists of three steps: first a bisection step, then the solution found

with the bisection is advanced in time and at the end, a new solution is chosen for the bisection. In
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Figure 2.4: Schematic visualization of the initial condition approximation method. Initially, a pair of
initial conditions are chosen: red filled circle on the turbulent side, green open box on the opposite
laminar side. After a certain time, the approximation is refined by choosing a new pair of approximat-
ing trajectories. The new pair of initial conditions is constructed by taking the state of the previous
trajectory that finally turns turbulent (red open circle) and rescaling its amplitude (From Schneider
(2007)).

the first step, a standard bisection is performed within the imposed initial solutions, uL = λLu′0 for

the laminar initial condition and uT = λTu′0 for the turbulent ones. Then, at each bisection step, it is

verified if the parameter λ = (λL + λT )/2 corresponds to a solution in the laminar or turbulent basin

of attraction. In figure 2.4 a scheme of this bisection method is presented. The bisection is stopped

when the distance between uL and uT is smaller than a threshold εB:

‖uT − uL‖
‖uT ‖+ ‖uL‖

< εB. (2.20)

Tolerance as low as εB = 10−10 can be used to found the solution that lie on the edge of chaos for a

long time. In the figure 2.5, the energy traces of trajectories bounding the edge of chaos are shown.

In the second step, the solution found with the bisection is advanced in time until it is on the edge.

If during this second phase, the perturbation decays to the laminar state or diverges to the turbulent

attractor, it is ‘pushed back’ into the edge by rescaling its amplitude for initializing the next bisection

step. In the third step, new values for λL and λT are chosen and the edge tracking method is repeated

until the initial solution stays in the edge for the chosen target time.
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0 2000 4000 6000 8000
t

0.00

0.02

0.04

0.06

0.08

0.10

E ′

Figure 2.5: Energy traces of trajectories bounding the edge of chaos. The lines show initial conditions
that swing up to the turbulent flow and belong to the upper end of the intervals. And also decaying
trajectories from the lower end of the interval are presented. The bisection is stopped when the initial
relative difference in amplitude of the solution is about 10−10.

2.3.2 Parameter continuation

Continuation methods are used to determine the evolution of a solution of a dynamical system,

such as

ẋ = f(x, µ), (2.21)

subject to the variation of various parameters like the domain size, the Reynolds number etc., denoted

by a certain parameter µ.

Let x = x0 be the solution of a nonlinear function

f(x, µ) = 0, (2.22)

when µ = µ0.

Then, considering the implicit function theorem, if the Jacobian matrix J (x0, µ0) is not singular and

the equation (2.22) is satisfied, a solution around the point (x0, µ0) can be found, such that, for each µ,

the system (2.22) presents a unique solution x. This solution can be found by differentiating implicitly

the dynamical system (2.21):

J (xi, λ) · ∂xi = −f(xi, µ) with xi+1 = xi + ∂xi.
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However, since the Jacobian matrix is singular in the bifurcation points, the implicit function theorem

fails for these points, and it is available only away from turning points.

In Channelflow code two different continuation methods are implemented: the first is a predictor-

corrector method with a quadratic extrapolation step, which may fail around saddle node bifurcations.

The second one is an arclength continuation that allows better continuation around saddle nodes and

turning points.

2.3.2.1 Quadratic predictor-corrector method

With this method, instead of parametrizing the solution of the nonlinear function by the parameter

µ, both the solution x and the parameter µ are parametrized as a function of an arclength parameter

s:

f(x(s), µ(s)) = 0.

First, it is necessary to advance the solution in arclength parameter space from s0 to s1, then the

arclength condition is introduced ∥∥∥∥∂x

∂s

∥∥∥∥2
+
∥∥∥∥∂µ∂s

∥∥∥∥2
= 1,

to compute a small increment ds =
√
‖dx‖2 + ‖dµ‖2 along the solution curve. Then, the new arc-

length parameter is computed snew = s0 + ds.

To use the quadratic predictor, three initial solutions are necessary to start the continuation. These

three initial solutions are obtained for three different but close values of the parameter µ. At this point,

Neville’s algorithm is used for polynomial interpolation, which, with three different initial guesses,

gives a unique polynomial of degree two. This polynomial can interpolate or extrapolate the solution

along the solution branch. Then, the next point xnew in the solution branch with the corresponding

parameter µnew are computed as follows

xnew = x0(snew − s1)− x1(snew − s0)
s0 − s1

µnew = µ0(snew − s1)− µ1(snew − s0)
s0 − s1

(2.23)

Once the predictor step is completed, the correction phase is performed with the Newton-Krylov

subspace method. This method does not calculate the tangent vector along the branch and if started
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at some distance from the singular point it can easily pass through the singular points to capture other

branches.

2.3.2.2 Arclength continuation

The arclength continuation method is based on the pseudo-arclength continuation method (Keller,

1987; Nayfeh & Balachandran, 2008), and as for the previous continuation method, the solution x and

the parameter µ are both function of the arclength parameter s. Then, differentiation of the nonlinear

function f(x, µ) = 0 with respect of s gives:

∂f

∂x

∂x

∂s
+ ∂f

∂µ

∂µ

∂s
= 0.

Also in this case, it is necessary to introduce a constraint for the arclength parameter as

Figure 2.6: Illustration for pseudo-arclength continuation scheme. N plane intersect the continuation
cuve Γ(s) in the point (u1, λ1) and is perpendicular to the tangent (u̇0,λ̇0) (From Keller (1987)).

∥∥∥∥∂x

∂s

∥∥∥∥2
+
∥∥∥∥∂µ∂s

∥∥∥∥2
= 1,

which when linearized brings to the equation of a plane

N ≡ (x(s)− x(s0)) · ẋ(s0) + (µ(s)− µ(s0)) · µ̇(s0)−∆s = 0.

This formulation implies that the N plane is perpendicular to the tangent (ẋ(s0), µ̇(s0)) at a distance

∆s from the solution (x(s0), µ(s0)). Moreover, the plane N intersects the continuation curve C(s) if it

presents a not large curvature and the new arclength parameter does not differ enough to the previous.
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In figure 2.6 is reported a sketch of the arclength continuation scheme.

At each iteration, with the Newton’s method the following linear system is solved:

[h]
(

fx fµ
ẋ(s0) µ̇(s0)

)(
∆x
∆µ

)
= −

(
f(x, µ)

(x(s)− x(s0)) · ẋ(s0) + (µ(s)− µ(s0)) · µ̇(s0)−∆s

)
.

In this case, the continuation parameter µ is added to the vector of unknowns. Then, when the conver-

gence is reached with Newton’s method, the new solution xnew, with the corresponding continuation

parameter µnew are found on the branch. After (x, µ) is determined on the branch, we move on to

determine another point on the branch. The step size ∆s =
√
‖dx‖2 + ‖dµ‖2 can be reduced if the

convergence is slow and increased if the convergence is rapid.

This method is found to be the most effective, as it manages to pass smoothly through the singular

points.
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Chapter 3

Minimal seeds for turbulent bands in
channel flow
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As introduced previously, two methodologies are used in the literature to trigger turbulence in the

form of laminar-turbulent bands. The first one consists in starting from a statistically-steady turbulent

flow in the whole domain and decreasing the Reynolds number to a value at which turbulent bands

are observed (Tsukahara et al., 2005; Kashyap et al., 2020). Conversely, the second strategy consists

in perturbing the field with a suitable localised perturbation with enough energy to trigger oblique

turbulent bands (Duguet et al., 2010; Tao & Xiong, 2013; Xiong et al., 2015). Thus, for this second

methodology the amplitude, the shape, and the localization of the perturbation should be carefully

chosen.

In this chapter we are looking for the minimal seed able to generate turbulent bands in channel flow,

i.e. we seek for the nonlinear optimal perturbation with the minimal initial energy able to trigger

turbulence. The methodology to find these perturbations is based on the nonlinear variational opti-

mization coupled with the energy bisection. The nonlinear optimisation is carried out in large domains

allowing the creation of laminar-turbulent patterns such as oblique stripes. The kinetic energy is used
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as the objective function of the nonlinear optimization, which appears an appropriate choice since

many literature studies report peaks of kinetic energy during the development of turbulent bands

(Tao et al., 2018).

3.1 Problem formulation

The flow considered is a plane channel flow at Reynolds number Re = UcH/ν, with Uc being

the centreline velocity of the laminar Poiseuille flow, H being the half width of the channel and ν

the kinematic viscosity. The Reynolds number is varied by changing the pressure gradient, while the

volume flux remains constant, with bulk velocity Ub = 3/2. The dynamics of this flow is studied by

decomposing the instantaneous velocity field, u = [u, v, w]T , into the laminar base flow U = [U(y), 0, 0]

and a perturbation u′ = [u′, v′, w′]T . The dynamics of the perturbations of the laminar base flow is

computed by solving the perturbative nonlinear incompressible Navier-Stokes equations:
∂u′i
∂xi

= 0,
∂u′i
∂t

+ u′j
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ Uj
∂u′i
∂xj

= − ∂p
′

∂xi
+ 1
Re

∂2u′i
∂xj

,
(3.1)

with U = [U(y), 0, 0], U(y) = 1 − y2 being the laminar streamwise velocity profile, p′ the pressure

perturbation, while xi is the Cartesian reference frame having components x, y, z, for the streamwise,

wall-normal and spanwise directions, respectively. No-slip boundary conditions are imposed at the

walls for the three velocity components, while periodicity is fixed in the streamwise and spanwise

directions.

In order to find the minimal seed for the considered flow, we first search for the optimal perturbation u′

at t = 0, providing the maximum value of the objective function at target time T . Following previous

works (Cherubini et al., 2010a; Pringle & Kerswell, 2010), we choose as objective function the energy

gain G(T ) = E(T )/E(0), where:

E(t) = 1
2V

∫
V

(u′(t)2 + v′(t)2 + w′(t)2)dV (3.2)

is the kinetic energy at time t and V is the volume of the computational domain. In order to find the

initial perturbation u′(0) having given initial energy E(0) = E0, providing the largest possible energy

E(T ) at the target time, an optimization loop is set using the Lagrange multiplier technique (Zuccher
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et al. (2004), Pringle & Kerswell (2010), Cherubini et al. (2011)). A Lagrangian functional is defined

by augmenting the objective function with the following constraints: i) the optimal perturbation u′(t)

must be solution of the Navier-Stokes equations at all times t ∈]0, T [; ii) it must be divergence free at

all times t ∈ [0, T ]; and iii) it must have energy norm equal to a given value E0 at t = 0. With these

constraints, the Lagrangian functional reads:

L(u′k, p′, u
†
k, p
†, u′k(0), u′k(T ), λ) = E(T )

E(0)

−
∫ T

0

∫
V
u†i

(
∂u′i
∂t

+
∂(u′iu′j)
∂xj

+
∂(Uiu′j)
∂xj

+ ∂(u′iUj)
∂xj

+ ∂p

∂xi
− 1
Re

∂2u′i
∂xj

)
dV dt

−
∫ T

0

∫
V
p†
∂u′i
∂xi

dV dt− E†
(
E0
E(0) − 1

)
.

(3.3)

with u†, p† and E† being the Lagrangian multipliers (or adjoint variables).

To maximise the augmented functional L we evaluate its variation with respect to the direct and

adjoint variables and set it to zero. The variation of the Lagrangian functional with respect to the

direct variables u′, p′, provides the following adjoint equations:
∂u†i
∂xi

= 0,

∂u†i
∂t
− u†j

∂u′i
∂xj

+ u′j
∂u†i
∂xj
− u†j

∂Ui
∂xj

+ Uj
∂u†i
∂xj

= −∂p
†

∂xi
+ 1
Re

∂2u†i
∂xj

.

(3.4)

The optimization problem is then solved using a direct-adjoint looping algorithm (as done in previous

works by Pringle & Kerswell (2010), Cherubini et al. (2010a), among others), which consists in inte-

grating iteratively in time the direct and adjoint equations between 0 and T to evaluate the gradient of

L with respect to u′(0), which is then used to update the initial perturbation using a gradient rotation

algorithm (Foures et al., 2013; Farano et al., 2016, 2017). Convergence is attained when the variation

of the gain between two successively iterations is smaller then a chosen threshold, ε = 5× 10−8 (some

details about the optimization problem and the direct-adjoint algorithm are reported in the section

2.2).

For computing the minimal seed, the variational optimization is coupled with an energy-bisection pro-

cedure. Two different optimizations are initialised with a random divergence-free perturbation for low

T , with a value of E0 sufficiently high (low) to induce transition (relaminarization) at longer times.

The energy is bisected and the optimization repeated, using the results of the previous optimisation

as initial guess. Energy-bisection is at first carried out for a low (O(10)) target time in order to have a
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very rough (but computationally cheap) upper estimate of the initial minimal energy threshold E0min .

Then, the target time is increased at O(100) and the energy bisection is repeated, allowing to converge

towards E0min .

The optimization algorithm is implemented within the open source code Channelflow (channelflow.ch)

(Gibson et al. (2021)). Both direct and adjoint equations are solved using a Fourier-Chebychev dis-

cretization in space and a third-order semi-implicit backward difference scheme for the time integration.

An influence matrix method with Chebyshev tau correction was used to enforce no-slip boundary con-

dition at the walls.

The domain size in the streamwise, normal and spanwise directions is Lx × Ly × Lz = 250× 2× 125,

while the number of grid points in the same directions are Nx × Ny × Nz = 1024 × 65 × 1024. This

results in a numerical resolution comparable with those used by Shimizu & Manneville (2019) and

Kashyap et al. (2020) for the same range of Reynolds numbers. Finally, it should be noticed that the

fact that optimizations are performed in a large domain involves challenging computations in terms

of memory, especially for the highest considered target time, T = 150. In fact, the direct-adjoint al-

gorithm requires storage of the flow field snapshots u′ at each time step, in order to evaluate the term

coupling direct and adjoint variables in the adjoint equations. For alleviating the storage requirement,

a checkpointing technique is used, similar to that used in Griewank & Walther (2000) and Hinze et al.

(2006).

3.2 Results

Nonlinear optimizations are performed for four values of Re = 1000, 1150, 1250, 1568, chosen in

the range of Reynolds numbers for which the plane Poiseuille flow is linearly stable and the turbulent

state appears in the form of turbulent-laminar patterns (Tao et al. (2018), Kashyap et al. (2020)).

As reported by Xiong et al. (2015), the onset of bands does not lead to sustained turbulence for

Re < 1000. In contrast, for Re ≥ 1000, the bands can split, providing a mechanism for turbulence

spreading leading to the coexistence of laminar regions with inclined turbulent bands, which persist

up to Re > 3900, for which only featureless turbulence is present. Figure 3.1 (a) provides the influence

of the target time on the optimal energy gain for Re = 1150 and given input energy E0 = 1.1× 10−7.

The energy gain grows with the target time following a quasi exponential trend for T < 40 and for

T > 50, reaching an amplification of three orders of magnitude for T > 80. No saturation of the
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Figure 3.1: (a) Optimal energy gain versus target time T for Re = 1150 and E0 = 1.1 × 10−7. (b)
Minimal energy threshold E0min for transition to turbulence (red dots) and upper estimate obtained
for T = 10 (black dots). The black and red lines represent the power-law for low (O(10)) and high
(O(100)) target times, respectively, for Re > 1000.

final energy is observed for T ≤ 100, since very long (i.e., O(103)) times would be needed to fill the

entire domain with turbulent bands, as it will be shown in subsection 3.2.3. As mentioned before,

the procedure of bisection of the initial energy is at first carried out for T = 10, in order to have a

computationally cheap upper bound for the computation of E0min, which will be then carried out for

T = 100 or T = 150, depending on the Reynolds number. For Re < 1568, the estimate of E0min was

obtained for T = 100, since we have verified that increasing the target time from T = 100 to T = 150

leads to slight changes of the minimal energy, namely, from 5.5 × 10−7 to 5.6 × 10−7 for Re = 1000.

In contrast, at Re = 1568 it has been necessary to increase the target time to T = 150 to achieve a

sufficiently good approximation of the threshold energy for generating bands. Figure 3.1 (b) provides

the minimal input energy able to induce transition towards the turbulent bands, E0min (red dots),

together with its upper estimate obtained for T = 10 (black dots), for the four considered values of the

Reynolds number. In the range of Re analysed, we tried to fit the minimal input energy with a power

law of the type E0min ∝ Re−γ , but we obtained a satisfactory fit only by restraining the power law to

the minimal seeds in the range Re > 1000 (red dashed line, obtained for γ ≈ 8.5). A similar behaviour

is observed for the upper estimate of E0min obtained for T = 10 (black dashed line), although the

associated value of γ is much lower. Incidentally, we observe that as expected, larger threshold initial

energies are obtained for the lower target time T = 10 (black line). The fact that the minimal-seed

energy obtained for Re = 1000 appears not to be aligned with the fitting line recovered for larger
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Figure 3.2: Nonlinear optimal perturbation at time t = 0 for different Reynolds numbers with Ubulk =
3/2 obtained at target time T = 10 with the input energy reported in figure 3.1 by the black dots.
Isosurface of the streamwise velocity (light grey for positive and black for negative values, u = ±0.003).

values of Re might have been anticipated. As reported by Xiong et al. (2015), Re = 1000 is exactly

the limit value of the Reynolds number for which band splitting begins to be observed. Thus, at this

threshold value of Re the flow dynamics may present a transitional behaviour between two different

regimes, not fitting with that observed at larger values of Re. Finally, we note that the exponent

of the power law approximating the minimal-energy threshold is much higher than those reported in

previous works. For the plane Couette flow, a minimal seed energy varying as Re−2.7 was reported by

Duguet & Schlatter (2013); for the asymptotic suction boundary layer, a scaling of Re−2 was found

by Cherubini et al. (2015). This discrepancy may be more likely linked to the much larger domain

considered in the present study, rather than to the different type of flow.

3.2.1 Nonlinear optimal perturbations

The initial optimal solutions obtained for the target time T = 10 at the threshold energy able to trigger

turbulence are shown in figure 3.2 for the four Re considered. In all cases, the optimal perturbation is

spatially localised in a small region of the domain, with a shape similar to that of a spot, which is com-

posed of alternating positive and negative finite-size streamwise streaks. Despite the fact that spatial
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Figure 3.3: Nonlinear optimal perturbations at time t = T for different Reynolds numbers with
Ubulk = 3/2 obtained at target time T = 10 with the input energy reported in figure 3.1 by the
black dots. Isosurface of the streamwise velocity (light grey for positive and black for negative values
u = ±0.02).

localization has been already observed in nonlinear optimizations (for instance, see Cherubini et al.

(2011), Monokrousos et al. (2011), Pringle et al. (2012)), the structure of this optimal perturbation

is rather different from that of previously computed nonlinear optimal perturbations. In contrast, it

closely resembles the optimal wave packet recovered by linear optimization and windowing, obtained

for the boundary layer flow by Cherubini et al. (2010b). This is probably due to the low target time

and initial energy used for this computations, which partially hinders the development of nonlinear

effects. At t = 0, all the optimal perturbations shown in figure 3.2 present vortical structures inclined

in the opposite direction from the shear (see the x − y planes in the right bottom of each frame).

Whereas, at the target time, the perturbations reverse their inclination, pointing in the same direction

of the shear flow, as shown in figure 3.3. This streamwise tilting is a common feature of optimal

perturbations in shear flows (Cherubini et al., 2010a; Pringle & Kerswell, 2010; Duguet & Schlatter,

2013), and suggests that the Orr mechanism is a fundamental mechanism involved in the early stage of

transition to turbulence, with characteristic time approximately equal to 10 (Orr, 1907). One can also

notice that, for T = 10, the shape of the optimal perturbations does not change much while evolving
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(a) t = 0 (b) t = T

Figure 3.4: Shaded isocontours of the crossflow energy Ecf together with the normalized y-integrated
large-scale flow (vectors) characterizing the nonlinear optimal for Re = 1150, E0 = 1.1×10−7, T = 10:
(a) initial optimal solution, (b) optimal solution at the target time.

from t = 0 to the target time, as shown in figure 3.3, remaining characterized by alternating positive

and negative streaks localised in a spot-like region.

Duguet & Schlatter (2013) show that oblique bands arise as a result of advection of newly nucleated

streaks in the direction of a large-scale flow, which is oblique with respect to the streamwise direction.

The local orientation of the large-scale flow is thus responsible for the obliqueness of the laminar-

turbulent interface of growing incipient spots as well as for maintaining turbulent stripes (Duguet &

Schlatter, 2013). To ascertain whether the computed nonlinear optimal perturbations contain the seed

for the development of turbulent bands, we compute the large-scale flow related to the optimal dis-

turbances by averaging the instantaneous velocity field in the wall normal direction as ui =
∫ 1
−1 uidy.

Notice that u is zero where the flow is laminar, close to zero where the flow is turbulent, but it is

non zero at the laminar-turbulent interfaces, due to a mismatch of the streamwise flow rates across

them, linked to the presence of overhang regions. In figure 3.4, we have reported the isocontours of

the cross-flow energy Ecf = (1/2)
∫

(v2 + w2)dy, surrounded by the large-scale field (u,w), for the

initial optimal perturbation at Re = 1150, E0 = 1.1 × 10−7. The optimal flow field is characterized

by two different scales: a small-scale flow embedded within the spot-like structure and a large-scale

flow in the form of large vortices filling the whole domain. The latter is characterised by a stream-

wise flow entering the spot and a spanwise flow exiting from it, constituting a quadrupolar structure.

Quadrupolar large-scale flow around spots or laminar-turbulent bands has been observed in plane

Couette flow (Schumacher & Eckhardt (2001); Lagha & Manneville (2007)) and plane Poiseuille flow

(Lemoult et al., 2014), due to the shearing of the streamwise velocity and the breaking of the spanwise

homogeneity (Wang et al., 2020). Notice that this large-scale flow, which is not associated with the
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presence of overhang regions, remains almost unchanged from t = 0 to t = T (compare figures 3.4 (a)

and (b)).

Increasing the target time to T = 100 for Re = 1150, while keeping E0 = 1.1× 10−7, we obtain the

x

z

x

y

(a) t = 0

x

z

x

y

(b) t = T

Figure 3.5: Optimal perturbation for Re = 1150, Ubulk = 3/2, T = 100 and E0 = 1.1 × 10−7 at (a)
t = 0 and (b) t = T : isosurface of the streamwise velocity (light grey for positive and black for negative
values, u = ±0.003 (a) and u = ±0.12 (b)).

optimal solution shown in figure 3.5 (a), which presents a localised structure similar to that computed

for lower target times, despite being not perfectly symmetric and having thicker streaks compared to

those at lower target time. The optimal solution at the target time, shown in figure 3.5(b), is very

similar to that of a turbulent spot, now clearly presenting an overhang region.

Moreover, it is characterized by a quadrupolar large-scale flow surrounding the spot-like small-scale

disturbances (not shown). Starting from this optimal (but yet not minimal) solution, the optimize-

and-bisect procedure is carried out at T = 100 for Re = 1150. The same procedure is carried out for

all the considered values of Re, for obtaining the minimal seeds whose energy is reported in figure 3.1

(b).

3.2.2 Minimal seed at different Reynolds

The minimal seed for turbulent bands obtained at Re = 1150 for E0min = 4.7 × 10−8 is reported in

figure 3.6 (a). Noticeably, it does not present significant differences compared to that at the same

target time with a higher input energy, provided in figure 3.5 (a). A three-dimensional visualization,

provided in figure 3.7 (b) shows the streamwise and spanwise alternance of finite-size streaks together

with spanwise-inclined vortical structures closer to the wall. As shown in figure 3.6 (b-c), these finite-

size streaks increase their streamwise length, and the initial wave packet turns at t = 25 into four

pairs of elongated streamwise streaks. At t = 50, some wiggling of the streaks can be recovered in
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Figure 3.6: Minimal seed for Re = 1150, T = 100 and E0 = 4.7 × 10−8 at (a) t = 0, (b) t = 25, (c)
t = 50, (d) t = T : isosurface of the streamwise velocity (light grey for positive and black for negative
values, u = ±0.003 (a), u = ±0.02 (b-c) and u = ±0.08 (d).

(a) Re = 1000, E0 = 5.5× 10−7 (b) Re = 1150, E0 = 4.7× 10−8

(c) Re = 1250, E0 = 2.9× 10−8 (d) Re = 1568, E0 = 3.6× 10−9

Figure 3.7: Minimal seed at different Reynolds numbers: isosurface of negative streamwise velocity
(u = −0.0025, light grey) and Q-criterion (Q = 0.003) coloured by the streamwise vorticity (positive
red, negative blue).
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(a) Re = 1000, E0 = 5.5× 10−7 (b) Re = 1150, E0 = 4.7× 10−8

(c) Re = 1250, E0 = 2.9× 10−8 (d) Re = 1568, E0 = 3.6× 10−9

Figure 3.8: Minimal seed at target time t = T for different Reynolds numbers: isosurface of negative
streamwise velocity (u = −0.03, light grey) and Q-criterion (Q = 0.005) coloured by the streamwise
vorticity (positive red, negative blue).

the center of the wave packet, which turns at target time into an arrow-shaped packet (figure 3.6

(d)), as also shown in the three-dimensional view of figure 3.8 (b). Comparing figure 3.5 (b) with

figure 3.6(d), one can also notice that, at target time, the minimal perturbation differs from that

computed for E0 > E0min, having completely lost symmetry along the z axis. A clear overhang

region is present as well, and the structure in the x− y plane recalls that experimentally observed in

turbulent spots by Lemoult et al. (2013). Moreover, the large-scale flow, shown in figure 3.9, maintains

the previously observed quadrupolar structure, presenting large-scale vortices almost symmetric in

the spanwise direction. The same large-scale quadrupolar structure surrounding the minimal-energy

wakepacket is observed also for the other considered Reynolds numbers (not shown). Whereas, the

small-scale minimal perturbations are found to considerably change with the Reynolds numbers, as

shown in figure 3.7. In particular, a further localization of the initial wavepacket is observed for

increasing Re, leading to a minimal structure at Re = 1568 which closely resembles that found

for the plane Couette and the asymptotic suction boundary-layer flow in small domains (Duguet &

Schlatter, 2013; Rabin et al., 2012; Cherubini et al., 2015). Apart from the spatial localization, the main

structures observed within the minimal-seed wavepackets are essentially the same, namely, finite-size
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(a) t = 0 (b) t = 0

Figure 3.9: Isocontours of the crossflow energy Ecf with the normalized y-integrated large scale flow
(vectors) for Re = 1150, E0 = 4.7× 10−8, T = 100: (a) initial optimal solution, (b) optimal solution
at the target time.

streaks flanking upstream-tilted elongated vortices. As a result of the discrepancies recovered at initial

time, the minimal seeds obtained at different Re evolve differently in time, presenting an increasing

localization for larger values of Re, as provided in figure 3.8. However, all of the wavepackets present

an arrow-shaped structure, with the downstream region essentially characterized by low-speed streaks,

and the core region filled with small-scale vortices together with some coherent streamwise streaks.

Moreover, the large-scale quadrupolar structure observed at t = 0 is maintained at target time for all

the considered values of Re, as shown in figure 3.9 (b) for Re = 1150.

The premultiplied energy spectra of the minimal seed obtained at Re = 1150 are reported in

figure 3.10 by the coloured contours. The streamwise perturbation energy peaks for λz ≈ 2.45 and

λx ≈ 3.78, whereas the wall-normal and spanwise perturbation energy have largest amplitude at

λz ≈ 1, λx ≈ 4 with a secondary peak for λz ≈ 2 and λx ≈ 25. The lowest of these wavelengths are

close to those reported by Lemoult et al. (2014) during the development of turbulent spots at similar

Reynolds numbers, and are linked to the finite size of the streaks. Whereas, the largest wavelengths

are directly linked to the streamwise and spanwise size of the wavepacket. Very similar spectra are

found to characterize the nonlinear optimal perturbations at higher initial energy (solid contours in

figure 3.10). The premultiplied energy spectra of the minimal seeds obtained for the other values of

Re are reported in figure 3.11 by the shaded contours (Re = 1000) and the dashed lines (black for

Re = 1150, blue for Re = 1250, green for Re = 1568). As a consequence of the increased spatial

localization, the overall distribution of the energy spectra is displaced towards higher values of λx, λz

when Re increases. This effect is coupled with a narrowing and displacement of the spectra towards

higher values of y, which is a consequence of an increased localization also in the wall-normal direction.
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The primary and secondary peak values, reported in table 3.1 are also considerably influenced by the

Reynolds number.

(a) kxEuu(kx) (b) kxEvv(kx) (c) kxEww(kx)

(d) kzEuu(kz) (e) kzEvv(kz) (f) kzEww(kz)

Figure 3.10: Logarithm of the premultiplied spectral energy versus the wall-normal distance y+ for
the initial optimal solution at Re = 1150 and T = 100 for E0 = 1.1 × 10−7 (coloured contours) and
E0 = 4.7× 10−8 (black contours). The white dots indicate the energy peaks.

3.2.3 Minimal seed evolution in time

In this section, we analyse the time evolution of the minimal seeds towards the turbulent bands.

In figure 3.12 (a), the time evolution of the kinetic energy obtained from direct numerical simulations

initialised with the minimal seeds, is reported. In all cases, the kinetic energy strongly increases in time

until saturating towards a statistically constant value. For the lowest considered Reynolds numbers,

we observe a rapid initial increase of the kinetic energy, followed by a slow phase of saturation of the

energy. Whereas, for larger Re, the initial growth is slower and leads to lower values of the kinetic

energy at small time. One can notice once again that at Re = 1000 the flow appears to behave rather

differently from what observed at larger Reynolds numbers. However, the minimal seeds at larger Re,

despite having lower initial energy, tend towards higher values of the kinetic energy at large times,

suggesting that for larger Reynolds numbers, turbulence eventually occupies a larger portion of the
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(a) kxEuu(kx) (b) kxEvv(kx) (c) kxEww(kx)

(d) kzEuu(kz) (e) kzEvv(kz) (f) kzEww(kz)

Figure 3.11: Logarithm of the premultiplied spectral energy versus the wall-normal distance y+ for
the initial optimal solution at different Reynolds numbers at T = 100: Re = 1000 for E0 = 5.5× 10−7

(coloured contours), Re = 1150 for E0 = 4.7× 10−8 (black contours), Re = 1250 for E0 = 2.9× 10−8

(blue contours) and Re = 1568 for E0 = 5.8× 10−9 (green contours). The symbols indicate the peaks
of the energy, also reported in table 3.1.

Re (λx)u (λz)u (λx)v (λz)v (λx)w (λz)w
1000 4.897 (2.390) 2.117 (3.307) 4.995 (38.45) 1.049 (2.198) 4.995 (36.34) 2.080 (1.042)
1150 3.784 (1.618) 2.449 (1.093) 4.163 (25.56) 1.105 (2.049) 4.028 (25.56) 1.125 (2.218)
1250 1.287 (2.236) 2.153 (2.114) 24.98 (4.991) 1.049 (0.508) 4.625 (24.16) 1.105 (2.639)
1568 3.244 (1.916) 2.838 (1.217) 3.518 (18.75) 0.790 (1.992) 3.6421 (20.12) 1.759 (0.958)

Table 3.1: Streamwise and spanwise wavelengths λx,z associated with the primary and secondary
(in brackets) peaks of the premultiplied energy spectra of u, v, w, shown in figure (3.11) for different
Reynolds numbers.
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Figure 3.12: Time evolution of the kinetic energy for the minimal seeds obtained for Re = 1150 for
the two initial energy E0 = [1.4× 10−7], 4.7× 10−8.

domain.

This can be verified by analysing the time evolution of the crossflow energy and y-averaged

flow fields for the minimal seeds at different Reynolds numbers. For Re = 1150, figure 3.13 shows

that, as previously noticed (see also figure 3.6), the localised minimal solution breaks rapidly its

symmetry along the spanwise direction, presenting a clearly asymmetric (but still spatially compact)

structure at t = 500, as shown in figure 3.13 (b). This asymmetric wavepacket evolves via nucleation

of new streaky structures (see Parente et al. (2021b) concerning the mechanism of creation of the

streaks) in the direction of the inclined laminar-turbulent interface, clearly forming a singular turbulent

band, as it can be observed for t = 900. The newly-formed turbulent band continues growing in an

oblique direction with angle ≈ 28◦ until reaching the periodic boundaries, where it interacts with

itself (t = 1500). This triggers splitting of the previously isolated band (t = 2500), which saturates

reaching a laminar-turbulent pattern filling the whole domain at t = 4000. The same behaviour has

been observed by Tao & Xiong (2013) and Xiong et al. (2015) by injecting in a plane Poiseuille flow

a ”seed” of the turbulent bands, similar in shape to the instantaneous field at t = 500 in figure 3.13.

Analysing the large-scale flow, we can observe the formation of a small recirculation zone upstream of

the spot during its evolution. Moreover, when the bands are formed, the large-scale flow is found to

turn clockwise around bands with positive angle and anti-clockwise around bands with negative angle.

In fact, all the bands are formed in correspondence with the shear layer which divides the different

vortices. A rather similar behaviour is observed at Re = 1000, as shown in figure 3.14. Despite at
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(a) t = 200 (b) t = 500 (c) t = 900

(d) t = 1500 (e) t = 2500 (f) t = 4000

Figure 3.13: Isocontours of the crossflow energy Ecf together with the normalized y-integrated large
scale flow (vectors) for several instantaneous fields (Re = 1150, E0 = 4.7× 10−8, T = 100).

(a) t = 150 (b) t = 500 (c) t = 900

(d) t = 1500 (e) t = 2500 (f) t = 3000

Figure 3.14: Isocontour of the crossflow energy Ecf together with the normalized y-integrated large
scale flow for several instantaneous fields (Re = 1000, E0 = 5.5× 10−7, T = 100).
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(a) t = 200 (b) t = 500 (c) t = 900

(d) t = 1200 (e) t = 1500 (f) t = 3000

Figure 3.15: Isocontour of the crossflow energy Ecf together with the normalized y-integrated large
scale flow for several instantaneous fields (Re = 1250, E0 = 2.9× 10−8, T = 100).

(a) t = 200 (b) t = 300 (c) t = 350

(d) t = 500 (e) t = 600 (f) t = 900

Figure 3.16: Isocontour of the crossflow energy Ecf together with the normalized y-integrated large
scale flow for several instantaneous fields (Re = 1568, E0 = 3.6× 10−9, T = 150).
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small times (t = 150) the minimal seed has evolved into an almost symmetric V-shaped spot, one of

its two legs weakens in time (t = 500) and completely disappears at t = 900, evolving into a single

band as observed for Re = 1150. Whereas, looking at the evolution in time for the cases at higher

Reynolds number, the flow presents the same behaviour observed experimentally and numerically

when turbulence is triggered by a spot (Carlson et al. (1982), Henningson & Kim (1991), Aida et al.

(2010), Aida et al. (2011)). In fact, the localised perturbation initially evolves in the domain forming

a turbulent spot (see figure 3.5), turning into a V-shape at t = 500, as shown in figure 3.15. At this

time, two distinct fronts of the spots can be observed, which evolve in two symmetric bands with angle

≈ ±45◦ growing obliquely in the domain, as shown at t = 900. At t = 1200, they start to interact which

each other, forming a spatio-temporally complex final state composed by a coexistence of turbulent

and laminar patterns (t = 3000). Qualitatively the same behaviour is observed at Re = 1568, as shown

in figure 3.16, although the spatial spreading of the bands appears to be more rapid than at lower

Re, despite the initial energy of the perturbation is lower. Also in these cases, the bands are found to

form right in the mixing layer between two large-scale counter-rotating vortices. Notice also that the

same quasi-symmetric behaviour can be observed at lower Re, for a larger initial energy. In fact, the

nonlinear optimal perturbation computed for Re = 1150 and E0 = 4.7× 10−8 > E0min evolves in two

distinct bands, showing a time evolution corresponding to that of the minimal seed at largest Re (not

shown).

An explanation of this behaviour can be attempted by recalling that, in the channel flow, turbulent

stripes have a probability of decay that increases with time, and that decreases with the Reynolds

number (Paranjape, 2019). Thus, as all minimal seeds present an almost spanwise-symmetric structure,

two proto-bands begin to be created at the edges of the large-scale vortices characterising the minimal

seed. However, the probability of decay of these bands is higher for low Reynolds number, and increases

in time, so when Re is sufficiently low one of these bands rapidly dies out, leading to the development

of one isolated band. Increasing Re, the probability of decay of an initial band is lower, while the

probability of splitting increases. Thus, both oblique bands originated at the sides of the minimal

seed survive longer in time, until they split and interact, rapidly leading to the establishment of a

spatio-temporally complex final state. Notice that injecting more initial energy at low value of Re has

the same effect of increasing Re. In fact, an optimal perturbation with E0 > E0min is less spatially

localized, and is able to reach a much larger kinetic energy at T = 100, leading to more spatially-
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Figure 3.17: Spanwise distribution of the production (P , red line) and dissipation (−ε, black line) terms
integrated in x−y planes for different instantaneous fields obtained evolving in time the minimal seed
for Re = 1150, E0 = 4.7× 10−8, T = 100.
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Figure 3.18: Spanwise distribution of the production (P , red line) and dissipation (−ε, black line) terms
integrated in x−y planes for different instantaneous fields obtained evolving in time the minimal seed
for Re = 1250, E0 = 2.9× 10−8, T = 100.

extended and energetic proto-bands, which allows their sustainment for a longer time.

To corroborate this conjecture, we make use the Reynolds-Orr equation to evaluate the production

and dissipation of kinetic energy as, respectively:

P = −u′iu′j
∂Ui
∂xj

, ε = 2
Re

s′ijs
′
ij with s′ij = 1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
, (3.5)

where the Einstein summation convention has been used. One can compare the time evolution of the

production and dissipation terms, integrated in x− y planes, for the minimal seeds at Re = 1150 and

Re = 1250, provided in figure 3.17 and 3.18. For both Reynolds numbers, at t = 0 the production

presents one single peak almost in the center of the spot (z ≈ 70), which is found to exceed dissipation

of almost an order of magnitude. Production of kinetic energy leads to a slight increase of the spanwise

size of the wavepacket (t = 100), together with a further increase of the kinetic-energy production,

probably due to the nucleation of new streaks which produce kinetic energy thanks to the lift-up effect.

Due to the breakdown of the structures inside the spot, dissipation increases as well, reaching almost

the same value than the production term. Notice also that a weak secondary peak begins to be visible
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in the production term. At t = 500, the spot has strongly increased its size in the spanwise direction,

presenting an almost symmetric shape with two peaks at z ≈ 55 − 60 and z ≈ 80 − 85. However, at

t = 900, the evolution of the production and dissipation terms begins to strongly differ between the

two considered Reynolds numbers. For Re = 1250, the spanwise distribution of the dissipation and

production terms remains almost spanwise symmetric, centered at z ≈ 70, with two distinct laminar-

turbulent fronts at z ≈ 20 and z ≈ 110 (see figure 3.18). Whereas, for Re = 1150, the left-most part

of the packet has almost faded away, while the right-most one has expanded up to z ≈ 110, as shown

in figure 3.17. The analysis of the production and dissipation terms clearly indicates that the minimal

seed for turbulent bands leads to the generation of two almost symmetric regions of high production

and dissipation, which can be seen as two distinct proto-bands. However, when the Reynolds number

is lower, the weaker of these two proto-bands rapidly decays, leading to the development of an isolated

band. Whereas, at larger Reynolds number, both bands survive for a sufficiently long amount of time

to begin interacting between themselves.

3.3 Conclusion

In this Chapter, we have sought for the minimal-energy perturbations generating turbulent bands

in plane Poiseuille flow. A nonlinear optimization maximising the kinetic energy at a given target

time, coupled with initial energy bisection, has been used. The optimization was performed in very

large domains, for a range of Reynolds number for which turbulent bands are sustained and lead to

a spatio-temporally complex turbulent-laminar final state, namely Re = 1000, 1150, 1250, 1568 (the

lowest value representing the threshold Re for which bands splitting and turbulence spreading can be

observed).

The influence of the Reynolds number on the minimal energy threshold for generating turbulent bands

(E0min), is analysed. According to previous works carried out on other shear flows in small domains,

the minimal seed has been found to scale with Re following a power-law E0min ∝ Re−γ , although a

sufficiently good fit is found only by restraining the analysis to Re > 1000. However, the value of γ

recovered in the present work (≈ 8.5) is approximately fourth times larger than the values reported

in previous works (γ ≈ 2.7 in Duguet et al. (2013), γ ≈ 2 in Cherubini et al. (2015)), probably due to

the much larger size of the considered domain.

For all values of the Reynolds numbers analysed, the minimal-energy perturbation able to generate
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turbulent bands is a spatially localised spot-like structure composed of finite-size streaks and elongated

vortices. A more marked localization of the minimal seed is found when Re increases. As previously

reported for the channel flow in the presence of spatially-localised spots, a large-scale flow having a

quadrupolar structure has been found to surround the small-scale localised minimal perturbations.

These minimal perturbations have dominant wavelengths ≈ 4 and ≈ 1 in the streamwise and span-

wise directions, respectively. Nonlinear optimal perturbations with energy higher than minimal, are

characterized by similar shapes and wavenumbers.

The evolution of the minimal seeds towards the turbulent bands has been investigated. For Re < 1250,

the minimal seeds evolve in time creating an isolated oblique band. Whereas, for Re ≥ 1250, it gives

rise to two distinct bands which grow quasi symmetrically in the spanwise direction. This quasi sym-

metrical evolution is observed also at lower Re for non-minimal optimal perturbations.

An analysis of the production and dissipation of kinetic energy integrated over the streamwise and

wall-normal directions shows that in all cases the initial spot-like perturbation evolves in a quasi sym-

metric fashion, giving rise to two proto-bands at the edges of the large-scale flow characterizing the

minimal seeds. However, since the probability of decay of the bands increases in time and is higher

for low Reynolds number, when Re is sufficiently low one of these bands rapidly dies out, leading to

the development of one isolated band. Whereas, for larger values of Re, the probability of decay of an

initial band is lower, while the probability of splitting increases. Thus, both oblique bands originating

at the sides of the minimal seed survive for a longer time, until they split and interact, rapidly leading

to the establishment of a spatio-temporally complex final state. Injecting more initial energy at low

value of Re has the same effect of increasing Re, since a more spatially-extended disturbance with

higher kinetic energy is reached at a small time, leading to longer and more energetic proto-bands,

able to be sustained for a longer time.

This work elucidates two (apparently distinct) minimal-energy mechanisms for the generation of tur-

bulent bands in channel flow. It appears that both the initial and the final states are very sensitive to

the energy and Reynolds numbers characterising the flow, highlighting the complexity of the laminar-

turbulent patterned state and its initial seed. The selection of one of these two mechanisms appears

to be affected by the probability of decay of the newly-created stripe, which increases with time but

decreases with the Reynolds number. These analyses suggest that the turbulent band formation is a

complex phenomenon, very sensitive to the initial flow conditions. The mechanisms involved in the
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origin of these bands are still not sufficiently clear, and deserve to be analysed in detail in a simplified

configuration. For this reason, in the next chapter, we investigate the energy growth mechanism in

a tilted domain allowing the growth of a single inclined band. The goal is to investigate a possible

link between linear and nonlinear optimal growth mechanisms in the tilted domain and the origin of

turbulent bands in channel flow.
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In the previous chapter, we have sought the perturbations with the minimal energy able to generate

turbulent bands; now we search for the main mechanisms at the origin of the turbulent bands and we

aim to elucidate the possible link between transient energy growth mechanisms and the generation and

sustaining of turbulent bands in channel flow. We search for linear and nonlinear optimal perturbations

to unveil the main mechanisms allowing the creation of a turbulent band in a channel flow. To reduce

the problem complexity the analysis is restrained to a tilted domain allowing the generation of a single

localised turbulent band, as previously done in direct numerical simulations by Tuckerman et al.

(2014).

A common assumption regarding the origin and growth of the turbulent band is that the oblique

streak generation at the head of the turbulent band is responsible for the self-sustaining process of

a single turbulent band (Shimizu & Manneville, 2019), and Xiao & Song (2020) confirmed that an

inflectional spanwise instability is found at the head of the turbulent band. On the other hand, some

authors suggest that a large-scale flow is necessary to sustain the turbulent band (Tao et al., 2018)

and is responsible for the turbulent band oblique evolution (Duguet & Schlatter, 2013).

In this part of the thesis work, we will demonstrate that, in order to trigger turbulence in the form of
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turbulent bands in a tilted domain, two main elements are needed: a linear energy growth mechanism

such as the lift-up for generating large-amplitude flow structures which produce inflection points;

large-scale vortices ensuring spatial localisation due to nonlinear effects.

4.1 Problem formulation

For reducing the problem complexity and the computational cost, a tilted domain is considered for

analysing oblique turbulent bands in plane Poiseuille flow, as previously done by Barkley & Tuckerman

(2005, 2007) for plane Couette flow and by Tuckerman et al. (2014) for plane Poiseuille flow. Starting

from the classical plane Poiseuille flow, UP = [UP (y), 0, 0]T , with UP (y) = 1 − y2, defined in the

coordinate system x′ = (x′, y′, z′)T , where x′ indicates the direction of the flow UP , the tilted domain

is obtained by applying the following change of reference:

êx = cosθêx′ − sinθêz′ , êy = êy′ , êz = −sinθêx′ + cosθêz′ ,

x = (x, y, z)T being the tilted domain coordinate system, and θ being the angle of the new coordinates

system, corresponding to the angle of a turbulent band free to evolve in the non-tilted domain.

The dynamics of the turbulent bands in the tilted domain can be described by decomposing the

instantaneous field into a perturbation u′ = [u′, v′, w′]T and a laminar base flow U = [U(y), 0,W (y)]T ,

with U(y) = UP (y)cosθ and W (y) = UP (y)sinθ. The perturbation dynamics is governed by the

Navier-Stokes equations for incompressible flows, written in a perturbative form with respect to the

base flow:
∂u′i
∂xi

= 0, ∂u′i
∂t

+ u′j
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ Uj
∂u′i
∂xj

= − ∂p
′

∂xi
+ 1
Re

∂2u′i
∂xj

, (4.1)

with p′ the pressure perturbation and Re = Uch/ν the Reynolds number defined using the centreline

velocity of the laminar Poiseuille flow, Uc, the half width of the channel, h, and the kinematic viscosity

ν.

In order to find the optimal solution able to trigger turbulent bands in the tilted domain, we have

computed linear and nonlinear optimal perturbations (Cherubini et al., 2010a; Pringle et al., 2012).

In both cases, we choose as objective function the energy gain G(T ) = E(T )/E(0), where E(t) =

1/(2V )
∫
u2
i (t)dV , E(T ) and E(0) being the kinetic energy at the chosen target time and at the initial

time, respectively. Thus, we search for the initial perturbation u′(0) providing the largest possible

energy at fixed target time with an optimization loop based on the Lagrange multiplier technique
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Figure 4.1: (a) Isosurface of negative streamwise velocity (u = −0.16, yellow) and Q-criterion (Q =
0.05) coloured by the streamwise vorticity (positive red, negative blue) of a turbulent-laminar pattern
at Re = 1000 in a domain tilted with θ = 35◦. (b-c) Logarithm of the premultiplied spectral energy
versus the wall-normal distance y for the instantaneous field in (a). The white ’X’ symbols indicate
the energy peaks.

(Cherubini et al., 2011). Linear optimization is carried out using an in-house Matlab code, whereas

nonlinear optimization is implemented within the open source code Channelflow (channelflow.ch)

(Gibson et al. (2021)).

For all the simulations the volume flux is kept constant imposing the bulk velocity equal to Ubulk = 2/3.

The same domain size and spatial discretization used by Tuckerman et al. (2014) is adopted, namely

Lx × Ly × Lz = 10 × 2 × 40 discretized on Nx × Ny × Nz = 128 × 65 × 512 grid. All computations

are performed at Re = 1000, for which Tuckerman et al. (2014) have reported a persisting turbulent-

laminar patter in the form of a single band. The angle of the tilted domain, θ, is chosen equal to 35◦

in accordance with that numerically observed at Re = 1000 by Kashyap et al. (2020) in large domains.

4.2 Results

At first, a Direct Numerical Simulation (DNS) is performed at Re = 1000 in the tilted domain. In

figure 4.1a, a snapshot of the perturbation field is shown. As previously done by other authors, the

DNS is initialised with a Reynolds number for which turbulence occupies the whole domain. Then, the

Reynolds number is reduced slowly until Re = 1000, reaching the laminar-turbulent pattern shown

in figure 4.1a. As already discussed by Tuckerman et al. (2014) for a tilted domain with the same

size and Reynolds number, the turbulent state appears in the form of one turbulent band. In the

instantaneous field, oblique wave-like structures such as alternating low- and high-speed streaks, are

observed within the turbulent band and at its head. As expected, these structures present an angle
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Figure 4.2: (a) Contours of the optimal gain G as a function of the streamwise (kx) and spanwise
(kz) wavenumbers, for Re = 1000 in the domain tilted with angle θ = 35◦. The red cross indicates
the optimal growth Gopt. (b) Streamwise velocity component of the initial optimal perturbation for
T = Topt = 73.11, kx = 1.2, kz = −1.75.

with respect to the streamwise direction comparable to that of the base flow, and resemble the streaks

observed at the head of a turbulent band in large (non-tilted) domains (Shimizu & Manneville, 2019;

Liu et al., 2020). Inspecting the premultiplied energy spectra of the streamwise instantaneous velocity

provided in figure 4.1b, 4.1c, we found an energy peak at kx ≈ ±1.27, kz ≈ ±1.6. Thus, as discussed

above, the flow is dominated by oblique structures with angle ≈ arctan(kx/kz) ≈ ±38◦.

In order to understand the origin of these oblique structures and the main mechanisms responsible

for the generation of a turbulent band, a linear optimization of perturbations in the tilted domain is

first performed. Since the base flow varies only in the wall-normal direction, the kinetic energy of the

perturbations, constrained by equations (4.1) linearized with respect to the base flow, is optimized

using a local approach, where the perturbation is assumed to be sinusoidal in the streamwise and

spanwise direction, with given wavenumbers kx and kz, respectively. The linear optimization problem

was solved at Re = 1000 for streamwise and spanwise wavenumbers in the range 0 < kx < 2, −3 <

kz < 3. In figure 4.2a, is provided the variation of the optimal gain with the spanwise and streamwise

wavenumbers. The maximum growth is achieved at the optimal target time Topt = 74.6, for kx = 1.19

and kz = −1.71, leading to an optimal gain Gopt = 196.07. As should be expected, the optimal gain,

time and wavenumbers are very close to those found by Reddy & Henningson (1993) for the plane

Poiseuille flow, once reported to a tilted domain. Notice also that similar values of streamwise and

spanwise wavenumbers are found by Xiao & Song (2020) performing a linear stability analysis around
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Figure 4.3: Velocity profiles of the optimal disturbances (continuous lines). (a-b) Linear optimal for
kx = 1.19, kz = −1.71 at (a) t = 0 and (b) Topt = 74.6. The dashed line represents the streamwise
velocity profile recovered at x = 0, z = 10 by evolving to t = 5 by DNS the localized initial optimal
perturbation of figure 4.6. (c-d) Nonlinear optimal at the minimal energy able to trigger turbulence,
E0 = 2.1× 10−5 at (c) t = 0 and (b) T = 10.

the mean flow of a region at the head of the turbulent band. Moreover, the optimal streamwise and

spanwise wavenumbers are very close to the ones for which the premultiplied energy spectra in figure

4.1b, 4.1c peak. Thus, these optimal perturbations can be linked to the oblique waves observed at

the head of the turbulent band. As shown in figure 4.2b, the linear optimal perturbation is oblique

with angle arctan(kx/kz) ≈ −34.5◦, and modulated in both streamwise and spanwise directions. This

had to be expected since the base flow presents a spanwise component, in analogy with the shear flow

developing on a swept-wing, whose unstable modes and optimal perturbations are characterised by

cross-flow vortices, namely three dimensional oblique vortical perturbations with negative spanwise

wavenumber. As shown in figure 4.3a, at t = 0 the optimal perturbation presents counter-rotating

vortices with a large wall-normal component, which decreases in time towards the target time (see

figure 4.3b), while the streamwise and spanwise ones strongly increase creating oblique streaks. The

mechanism creating these oblique energetic structures is based on the transport of the wall-normal

shear of both streamwise and spanwise component of the base flow, which may be seen as a tilted

counterpart of the lift-up effect.

The linear optimal perturbation computed for Topt is then injected onto the laminar flow in the

tilted domain with different values of the initial energy E(0), in order to verify whether such a linear

transient-growth mechanism could induce transition in the form of turbulent bands. In figure 4.4,

the energy evolution in time is reported for the linear optimal perturbations with different initial

energies (black lines). The perturbation with unitary energy norm is the only one able to induce the
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Figure 4.4: Kinetic energy time evolution for the linear optimal perturbation with E0 = 0.01.0.1, 1
(black lines) and for the nonlinear one (red line) for E0 = 2.1× 10−5.

formation of the turbulent band, while the others lead to relaminarisation. However, it is observed that

turbulence is at first triggered in the whole domain and successively localises in a band. This is mostly

probably due to the fact that the linear optimal disturbance is not spatially localized but occupies

the whole domain, which also explains the large amount of energy needed for triggering turbulence by

means of this optimal mechanism. To provide spatial localization of the optimal perturbation, aiming

at triggering the turbulent band, we extended the optimization to the fully nonlinear equations, which

usually provide a consistent spatial localization (Kerswell, 2018; Cherubini et al., 2010a; Farano et al.,

2015). Notice that the nonlinear optimization is performed in a fully three-dimensional framework,

without any hypothesis on the perturbation wavenumbers.

Nonlinear optimization has been performed in the tilted domain for several initial energies and target

time T = 10, which is close to the characteristic eddy turnover time of structures in the buffer layer,

for which optimal streaks having the typical spanwise spacing of approximately 100 wall units were

recovered by Butler & Farrell (1993). For this target time, the nonlinear optimal perturbation triggers

localised turbulence already for E0 ≥ 2.1× 10−5. The nonlinear optimal perturbation at the minimal

input energy able to trigger turbulence is shown in figure 4.5 (a-b). As expected from previous works

(Cherubini et al., 2011; Monokrousos et al., 2011; Pringle et al., 2012), it is localised in the longitudinal

direction. Furthermore, it presents remarkable similarities with the edge state found by Paranjape et al.

(2020) in a tilted domain for Re = 760. In figure 4.5a the isocontours of the wall-normal perturbation

are reported, together with the normalised y-integrated large-scale flow ui =
∫ 1
−1 uidy. One can observe

a small-scale flow within a localised region, where the turbulent band will be generated, together with

two larger-scale vortices surrounding this region, having opposite direction upstream and downstream
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(a) 2D, t = 0 (b) 3D, t = 0 (c) 3D, t = 600

Figure 4.5: Nonlinear optimal perturbation for Re = 1000, E0 = 2.1 × 10−5, T = 10. (a) Shaded
isocontours of the wall-normal perturbation and vectors of the y-integrated flow in the y = 0.25 plane
at t = 0. (b-c) Isosurface of negative streamwise velocity (yellow) and Q-criterion coloured by the
streamwise vorticity (positive red, negative blue) for (b) t = 0, u = −0.01, Q = 0.02; (c) t = 600,
u = −0.16, Q = 0.05.

of the localised perturbation. A large-scale vortical flow surrounding the region developing into a

turbulent spot has been previously reported by several authors in both tilted and non-tilted domains.

The three-dimensional visualization in figure 4.5b shows that the small-scale flow is constituted by

oblique streaks flanked by counter-rotating vortices. The streaks are aligned with the base flow,

presenting an angle of approximately 35◦ with respect to the streamwise direction, in accordance with

the angle of the linear optimal perturbation. As expected, this localised optimal perturbation evolves in

time towards a turbulent band, as shown in figure 4.5c. Notice that the nonlinear optimal perturbation

induces transition for an initial energy five orders of magnitude lower than that of the linear optimal

one; this cannot be exclusively due to its spatial localisation. In fact, the wall-normal velocity profiles

provided in figure 4.3c present strong differences with respect to their linear counterpart shown in

figure 4.3a. In particular, as typically observed in nonlinear optimal perturbations (Cherubini et al.,

2011), the streamwise velocity component is now of the same order of magnitude than the other ones,

and the wall-normal component strongly changes. At target time (figure 4.3d) deformed streaks are

obtained, presenting inflection points which might be linked to the inflectional instability discussed in

Song & Xiao (2020).

To isolate the effect of spatial localisation from the strong changes in the velocity profiles induced

by the nonlinear effects, we enforced localisation in the z direction on the three-dimensional linear
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(a) t = 0 (b) t = 20 (c) t = 50 (d) t = 80 (e) t = 100 (f) t = 150

Figure 4.6: Time evolution of the localised linear optimal perturbation at different times: shaded
contours of the wall-normal velocity at y = 0.25.

optimal solution shown in figure 4.2b. This is achieved by multiplying the velocity components for a

normal distribution having the form:

f(z) = e−
1
2

(z−z0)2

σ2 ,

where z0 = 10 represents the value at which the perturbation should be centered, and σ = 2.5 is its

standard deviation.

This localised perturbation is injected in the DNS with different initial energies. Its time evolution

for the minimal initial energy able to induce turbulent bands, i.e., E0 = 3.3×10−3, is reported in figure

4.6. At first, the oblique streaks increase their amplitude (t = 20) and start to saturate nonlinearly,

until secondary instability arises (t = 50) and triggers turbulence in a localised zone within the laminar

flow (t = 80 − 100). At t = 150, the flow presents the same configuration shown in figure 4.1 for a

turbulent band generated by decreasing the Reynolds number starting from a fully turbulent velocity

field. Notably, inflection points similar to those observed in figure 4.3d, are observed at small time

in the velocity profiles (see the dashed line on figure 4.3b). Thus, it appears that for triggering a

turbulent band in the tilted domain, starting from a rather weak perturbation, two main elements are

needed: small-scale oblique streaks aligned with the baseflow, that saturate creating inflection points,

and a large-scale vortical flow ensuring spatial localisation in the z direction. The transition at the
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small-scale is due to the classical lift-up mechanism, followed by secondary instability of the saturated

streaks, which triggers the self-sustained cycle supporting turbulence (Hamilton et al., 1995; Waleffe,

1997). However, in the absence of a large-scale flow ensuring localisation and maintaining the band,

these mechanisms are not sufficient to generate localised turbulence. Of course the initial phase of

growth due to the lift-up mechanism can be skipped by directly feeding the flow with inflection points,

as done by Song & Xiao (2020), but at the cost of a larger amplitude disturbance, which can be more

difficult and expensive to obtain in an experimental setup.

Finally, we should verify whether this artificially-localised perturbation able to optimally produce

streaks, can generate turbulent bands also in large, non-tilted domains, where no angle is imposed a

priori. Thus, we have reported the artificially-localised linear optimal perturbation computed in the

tilted domain, in a very large (non-tilted) domain of size Lx′ × Ly′ × Lz′ = 250 × 2 × 125, and let it

evolve freely by a DNS.

As shown in figure 4.7, despite the fact that at t = 0 a large-scale flow is present only in the vicinity

of the perturbation, at t = 100 a clear quadrupolar large-scale vortical structure, filling the whole

domain, is observed. Notice that, as discussed in Wang et al. (2020), a quadrupolar structure arises in

the presence of a negative spanwise vorticity generated near the walls inside a spot, as a consequence

of the shearing of the streamwise velocity and the breaking of the spanwise homogeneity. New streaky

structures, generated by the self-sustained process triggered by the optimal counter-rotating vortices

and streaks, are then created following the shear layer between two of the previously observed large-

scale vortices (t = 300), finally creating a clear turbulent band (t = 800). Despite not being optimal

for this large, non-tilted domain, this perturbation is able to generate a large-scale flow that promotes

the formation of small-scale streaks in an oblique direction, consequently inducing the band formation.

The optimization of perturbations in this large non-tilted domain is beyond the scope of the present

work, and is treated in detail in Parente et al. (2021a), where the minimal-energy optimal perturbations

able to generate turbulent bands are computed and discussed for different values of Re.

4.3 Conclusion

In this chapter, we have investigated the energy growth mechanisms involved in the laminar-

turbulent transition in the form of turbulent bands using linear and nonlinear optimization. We have

considered a plane Poiseuille flow at Re = 1000 in a tilted domain with angle θ = 35◦ that ex-
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(a) t = 0 (b) t = 100

(c) t = 300 (d) t = 800

Figure 4.7: Time evolution of the localised linear optimal perturbation reported in a large domain:
contours of the wall-normal velocity and vectors of the large-scale flow (u,w).

hibits a single turbulent band. Linear optimizations have reported that the optimal perturbation is

three-dimensional and aligned with the oblique baseflow, in the form of low- and high-speed streaks

modulated in the streamwise and spanwise directions with kx = 1.2 and kz = −1.75. Similar wavenum-

bers are found at the same Reynolds number by direct numerical simulation and by linear stability

analysis at the head of the turbulent band, where an angle comparable to that of the optimal streaks

is observed.

However, the linear optimal perturbation needs a very large initial energy to trigger turbulence, which

spreads in the whole domain. Using nonlinear optimization, a localized turbulent band is triggered for

an initial energy five orders of magnitude weaker, E0 = 2.1×10−5. The nonlinear optimal perturbation

is characterised by a localised small-scale flow and a large-scale flow surrounding it. The small-scale

flow is composed of oblique counter-rotating vortices and streaks with an angle comparable to that

found via linear optimization, which develops inflection points at the target time.

To isolate the influence of large-scale flow and localization from that of the small-scale structures, we

have constructed a localized perturbation by artificially confining the linear optimal to a localized re-
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gion in the spanwise direction and injected it on the laminar flow both in the tilted and in a non-tilted,

very large domain. In both domains, a turbulent band is created.

These results suggest that transition to a turbulent band might arise due to the optimal lift-up mech-

anism when coupled with a large-scale vortical flow intimately linked to the spatial localisation of

the disturbance. This energy growth mechanism provides high-amplitude streaks developing inflec-

tion points when saturating nonlinearly, but since the optimal streaks are aligned with the base flow,

they cannot generate a turbulent band by themselves. However, the large-scale flow generated by the

spatial localisation of the perturbation provides the preferential direction of spreading of the streaks

generated by the lift-up mechanism and is thus necessary to trigger turbulence in the form of turbulent

bands.
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In the previous Chapter, we have shown that nonlinear optimal perturbations are able to provide

the main mechanisms leading to the formation of turbulent bands in plane Poiseuille flow. When

considering fully-developed (non-patterned) turbulent flows, nonlinear optimal perturbations might

provide crucial information about the interaction of energetic structures at different scales, and the

related mechanisms of energy exchange and production, as previously shown by Farano et al. (2017,

2018). Using the perturbative Reynolds-Averaged Navier-Stokes equations (PRANS), Farano et al.

(2017, 2018) have found nonlinear optimal perturbations characterised by hairpin vortices originated

by the breakup of the near-wall streaks for low values of friction Reynolds number. While, at slightly

higher friction Reynolds numbers, the nonlinear optimal perturbation mostly consists in large-scale

and small-scale streaks. Moreover, these nonlinear optimal perturbations may reproduce high-energetic

events, such as ejections and sweeps, recurrently observed in wall-bounded turbulent flows (Farano

et al., 2017). Following these works, with the aim of characterising the turbulent motions at even higher

Reynolds number, we extend in this Chapter the nonlinear optimization problem used in the previous

Chapters to the perturbative Reynolds-Averaged Navier-Stokes (PRANS) equations (eq (2.3)). Per-

forming nonlinear turbulent optimizations at short target times (typical of the eddy turnover time
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of small-scale coherent structures), Farano et al. (2017, 2018) have found that the optimal solutions

presents the characteristic of the wall motion. In contrast, when the optimizations are carried out

for a time scale associated with the eddy turnover time of large-scale motions, the nonlinear opti-

mal perturbations appear to be characterized by large-scale structures. In particular, for low friction

Reynolds number, the nonlinear optimal perturbation is represented by hairpin vortices originated by

the breakup of the near-wall streaks; whereas, at higher friction Reynolds number, large-scale streaks

are observed. In this chapter, we have reproduced the results reported by Farano et al. (2017) at

Reτ = 180 and we have further analysed the influence of the target time on the nonlinear optimal

perturbation.

5.1 Problem formulation

The flow considered is a fully turbulent channel flow at Reτ = 180. The dynamics of this flow

is studied by using the Reynolds decomposition, i.e. decomposing the instantaneous velocity field,

u = [u, v, w]T , into the mean flow U = [U(y), 0, 0] and a fluctuation = [ũ, ṽ, w̃]T . The dynamics of the

fluctuation of the mean turbulent flow is computed by solving the perturbative Reynolds-Averaged

Navier-Stokes (PRANS) equations:∇ · ũ = 0
∂ũ

∂t
= −(ũ · ∇)ũ− (ũ · ∇)U− (U · ∇)ũ− ∇̃p+ 1

Re
∇2ũ +∇ · ũũ,

(5.1)

where the mean flow and the Reynolds stress tensor ũũ are approximated with an analytical expression

for mean flow and Reynolds stress tensor given by the PRANS equations, reported in the section 2.1.2.

The aim of this chapter is to find the nonlinear optimal perturbation in turbulent channel, i.e. we

search for the initial perturbation ũ(0) that provides the maximum value of the objective function

at the chosen target time T . The chosen objective function is the energy gain G(T ) = E(T )/E(0),

where:

E(t) = 1
2

∫
V

(u′(t)2 + v′(t)2 + w′(t)2)dV (5.2)

is the kinetic energy at time t and V is the volume of the computational domain. In order to find the

initial perturbation ũ(0) having given initial energy E(0) = E0, providing the largest possible energy

E(T ) at the target time, an optimization loop is set using the Lagrange multiplier technique. The

Lagrangian functional is defined imposing the following constraints: i) the optimal perturbation ũ(t)
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must be solution of the perturbative Reynolds-Averaged Navier-Stokes equations at all times t ∈]0, T [;

ii) it must be divergence free at all times t ∈ [0, T ]; and iii) it must have energy norm equal to a given

value E0 at t = 0. With these constraints, the Lagrangian functional reads:

L(ũk, p̃, u†k, p
†, ũk(0), ũk(T ), λ) = E(T )

E(0)

−
∫ T

0

∫
V
u†i

(
∂ũi
∂t

+ ∂(ũiũj)
∂xj

+ ∂(U iũj)
∂xj

+ ∂(ũiU j)
∂xj

+ ∂p̃

∂xi
− 1
Re

∂2ũi
∂xj

− ∂ũiũi
∂xj

)
dV dt

−
∫ T

0

∫
V
p†
∂ũi
∂xi

dV dt− E†
(
E0
E(0) − 1

)
.

(5.3)

with u†, p† and E† being the Lagrangian multipliers (or adjoint variables). To maximise the augmented

functional L we evaluate its variation with respect to the direct and adjoint variables and nullify it.

The variation of the Lagrangian functional with respect to the direct variables u′, p′, provides the

same adjoint equations found for the laminar flow 2.12d and 2.12e. The optimization problem is then

solved using a direct-adjoint looping algorithm explained in section 2.2.

First, we have reproduced the results reported by Farano et al. (2017) at Reτ = 180 for two target

times: T = 8.16 corresponding to one eddy turnover time evaluated in the buffer layer (inner op-

timization time T+
in = 80) and T = 31.12, corresponding to one eddy turnover time at the center

of the channel (outer optimization time T+
out). Secondly, the optimization procedure is performed at

different target time to analyse the influence of the time on the structures of the nonlinear optimal

perturbation.

The optimization problem is performed maximising the kinetic energy with fixed input energy equal to

E0 = 10−2. The domain size in the streamwise, wall-normal and spanwise directions is Lx×Ly×Lz =

4π×2×2π, while the number of grid points in the same directions are Nx×Ny×Nz = 192×129×160.

This results in a numerical resolution comparable with those used by Kim et al. (1987). Further, the

computations are performed at Re = 3300 and at constant flow rate with bulk velocity Ub = 0.8485,

which results in the friction Reynolds number Reτ = 180.

5.2 Results

In figure 5.1, the initial optimal perturbation obtained for the outer target time T+
out = 305 is

shown together with its evolution. As in the reference work (Farano et al., 2017), the initial optimal

perturbation presents localised patches of streamwise velocity perturbation in the outer region and
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(a) t+ = 0 (b) t+ = T+
out

Figure 5.1: Shape of the optimal perturbation for T+
out = 305 and E0 = 10−2 at (a) t+ = 0 and (b)

t+ = T+
out. Isosurfaces of negative streamwise velocity (yellow, (a) u = −0.016, (b) u = −0.3). and

Q-criterion coloured by the value of the streamwise velocity (positive blue, negative red).

(a) t+ = 0 (b) t+ = T+
in (c) t+ = 0

(d) t+ = T+
in (e) t+ = T+

in (f) t+ = T+
in

Figure 5.2: Logarithm of the premultiplied power energy spectrum versus the wall-normal distance
y+ for the DNS (shaded contours) and the outer optimal solution (black isolines) at target time
T = T+

out = 305. The black dots indicate the maximum values for the outer peak.
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(a) t+ = 0 (b) t+ = T+
in

(c) t+ = 0 (d) t+ = T+
in

Figure 5.3: Shape of the optimal perturbation for T+
in = 80 and E0 = 10−2 at (a-c) t+ = 0 and (b-d)

t+ = T+
in. Isosurfaces of negative streamwise velocity (yellow, (a-c) u = −0.025, (b-d) u = −0.18) and

Q-criterion coloured by the value of the streamwise velocity (positive blue, negative red).

streamwise vortices at the wall. At target time, the perturbation presents a much more complex struc-

ture composed of highly oscillating streamwise streaks and packets of hairpin vortices, which originate

from the merging of the streamwise vortical structures flanking two neighboring low-speed streaks.

To investigate the size and the main wavelengths characterising this optimal perturbation, the stream-

wise and spanwise premultiplied energy density spectra for the nonlinear optimal solution at T = T+
out

are reported in figure 5.2 and compared to the same spectra extracted from the DNS. The black dots

mark the peak values of the energy density spectra for the outer optimal structures. The shape of the

outer optimal energy spectra is very close to that of the DNS and presents peaks at a large wavelength

in streamwise and spanwise directions. This indicates that the optimal perturbation computed for the

outer target time is representative of the turbulent motions.

Searching for the optimal solution at the inner time and perturbing with different initial conditions,

we have found two nonlinear optimal perturbations (see figure 5.3) with a very close energy gain

listed in table 5.1. Both optimizations are stopped when the residual value fall below 5 × 10−7. The

solution in figure 5.3a is similar to those reported by Farano et al. (2017) and is found initialising

the optimization procedure with an optimal perturbation at lower target time (T ≈ 2). While the
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T Gopt

Solution 5.3(a) 8.16 59.75
Solution 5.3(c) 8.16 59.10

Table 5.1: Energy gain values for the two solutions shown in figure 5.3.

(a) t+ = 0 (b) t+ = T+
in (c) t+ = 0

(d) t+ = T+
in (e) t+ = T+

in (f) t+ = T+
in

Figure 5.4: Logarithm of the premultiplied power energy spectrum versus the wall-normal distance
y+ for the DNS (shaded contours), the inner optimal solution with wall vortices (black isolines) and
the inner optimal solution with hairpin vortices (green isolines) at target time T = T+

in = 80. The dot
and ’X’ symbols indicate the maximum values for the inner peak.
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(a) t+ = 39 (b) t+ = 68

(c) t+ = 147 (d) t+ = 196

Figure 5.5: Shape of the optimal perturbation at different target time and E0 = 10−2. Isosurfaces of
negative streamwise velocity (yellow) and Q-criterion coloured by the value of the streamwise velocity
(positive blue, negative red).

solution in figure 5.3c is found initialising with different random solutions. This behaviour is linked to

the nonlinear nature of the Navier-Stokes equations, that results in a nonconvex optimization problem

for which multiple solutions, such as local maxima associated to very similar values of the gain, may

emerge.

The initial optimal fluctuations in figure 5.3a and 5.3c present a similar shape with localised region

of streamwise velocity flunked by inclined streamwise vortices, and at the target time, both solutions

present modulated streaks with a spanwise wavelength of λz ≈ 100. However, much more differences

are identified in the streamwise vortices, in fact, the optimal perturbation in figure 5.3b presents in-

clined positive and negative streamwise vortices; whereas, the other perturbation presents packets of

hairpin vortices.

Comparing the two optimal perturbations in terms of energy density, the recovered spectra appear to

be similar (see figure 5.4). They present an energy peak at λz = 110 close to the wall, reproducing the

typical spanwise streaks spacing (Kline et al., 1967). Concerning the streamwise wavelength, a peak

is identified at λ ≈ 270. It is worth noticing that comparing, the spectra of the optimal perturbations

computed for the two target times, the peaks move to higher values of y+, indicating that the struc-
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tures move to the center of the channel when the target time increases.

In order to analyse the influence of the target time on the nonlinear optimal solutions, we have per-

formed the nonlinear optimal perturbations for four target times T+ = [39, 68, 147, 196]. Figure 5.5

shows the optimal solutions at these target times. The optimal perturbations have similar charac-

teristics to those presented previously. In particular, for the low target time (T+ = 39) the optimal

perturbation presents a shape similar to the optimal perturbation in figure 5.3a, i.e. low velocity

streaks at the wall flanked by alternating vortices. Instead, for high target times T+ > 68, highly

modulated streaks with hairpin vortices are observed, which move towards the center of the channel

when the target time increases.

5.3 Conclusion

The nonlinear optimal perturbations in turbulent channel at Reτ = 180 were investigated. In

the first part, the results found by Farano et al. (2017) are reproduced and then, the analysis is

extended to different target times. In particular, at this friction Reynolds number, two shapes of

nonlinear optimal perturbation are identified: one with low velocity streaks at the wall flanked by

oblique alternating vortices, and the other characterised by highly oscillating low velocity streaks

with packets of hairpin vortices. Moreover, varying the target time, we have identified that the first

solution presents a high ”probability” to emerge at low target time; whereas, the latter is found for high

target times. For an intermediate range of target time, both solutions may emerge. Further analysis

needs to be performed initialising with different initial conditions and it is necessary to extend this

analysis at higher friction Reynolds number to confirm this behaviour. However, despite the fact

that the objective was to investigate the turbulent motions a high friction Reynolds numbers via

nonlinear optimal perturbations, due to the multiple solutions found and the strong influence of the

initial condition, we have chosen to follow a different approach, and try to characterise the turbulence

coherent motion searching for statistically-steady coherent solutions. In the next chapter, we present a

”new” mathematical framework to seek invariant solutions of the mean turbulent flow at high friction

Reynolds number, without any filtering of small-scale structures.
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As introduced previously, the chaotic saddle which sustains turbulence consists of a variety of

invariant solutions. However, to derive low-order models able to describe a fully developed three-

dimensional turbulent flow, a large number of these solutions is necessary. The investigation of these

solutions is usually carried out by searching for invariant solutions of the Navier-Stokes equations

using Direct Numerical Simulations (DNS), but at high Reynolds numbers, the search of such invariant

solutions becomes difficult, due to the multiple bifurcations that these solutions undergo.

Recently, in order to compute invariant solutions in turbulent Couette flow, Rawat et al. (2015)

extended the research of invariant solutions to over-damped Large-Eddy Simulations (LES) with the

Smagorinsky model. This approach was subsequently used by Hwang et al. (2016b) to search invariant

solutions characterised by large- and very large-scale motions at high friction Reynolds number up to

Reτ = 1000 in turbulent channel flow. This is done by controlling the strength of the filter with the

Smagorinsky constant to quench the small-scale motion. This approach is well suited for investigating

the self-sustained nature of coherent large-scale motion, as was first done for the channel Hwang &

Cossu (2010b, 2011) and Couette Rawat et al. (2015, 2016) flows at relatively low Reynolds numbers

and for the channel and asymptotic suction boundary layer flow at large friction Reynolds numbers
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Hwang et al. (2016b); Azimi et al. (2020). However, this overfiltered approach does not help in

investigating the nature of the energy transfer between coherent structures of different scales. Despite

the fact that the motion at large scales can be sustained even when the wall cycle is quenched, in

high-Reynolds-number turbulent flows multiple and non-trivial interactions exist between coherent

structures at different scales Cimarelli et al. (2016); Cho et al. (2018). The understanding of these

energetic bonds connecting structures of different scales in turbulent flows can be achieved by the

computation of statistically-invariant coherent states which characterise the multiple-scale, coherent

part of the motion around the turbulent mean flow, without any filtering of small-scale structures.

Towards this aim, in this chapter is provided a new mathematical framework for the computation of

statistically invariant equilibria, travelling waves, or (relative) periodic orbits characterising the motion

of turbulent fluctuations around the mean flow. This is achieved by seeking statistically invariant

coherent solutions of the unsteady Reynolds-averaged Navier-Stokes (PRANS) equations written in

a perturbative form with respect to the turbulent mean flow, using a suitable approximation of the

Reynolds stress tensor. Unlike the classical invariant solutions of the Navier-Stokes equations, these

solutions are sustained only in the presence of the Reynolds stress tensor, and are representative of

the statistically coherent motion of turbulence. This set of equations has been found to be efficient for

characterising extreme events having an energy spectrum very similar to that of the fully turbulent flow

Farano et al. (2017, 2018). These solutions are found by setting up a continuation procedure of known

solutions of the perturbative Navier-Stokes equations, based on the continuous increase of the turbulent

eddy viscosity towards its turbulent value. For small friction Reynolds number and/or domain size, the

statistically invariant motion is almost identical to the corresponding invariant solution of the Navier-

Stokes equations. In contrast, for sufficiently large friction Reynolds numbers and/or domain size, it

considerably departs from the starting invariant solution of the Navier-Stokes equations, presenting

spatial structures such as streaks and streamwise vortices, main wavelengths, and scaling very close

to those characterising both large- and small-scale motion of turbulent channel flows.

6.1 Problem formulation

The incompressible flow in a channel is governed by the Navier-Stokes equations, which describe

the dynamics of the instantaneous state variables q = [u, p]T , where u(x, t) is the velocity field and

p(x, t) is the pressure. When studying the flow dynamics in the vicinity of the laminar state, the state
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variables can be decomposed as a sum of the laminar base flow Q = [U, 0, 0, P ]T and a perturbation

q′ = [u′, v′, w′, p′], leading to the Perturbative Navier-Stokes (PNS) equations:∇ · u
′ = 0

∂u′

∂t
= −(u′ · ∇)u′ − (u′ · ∇)U− (U · ∇)u′ −∇p′ + 1

Re
∇2u′,

(6.1)

where Re = 3Ub
2

h
ν is the Reynolds number, defined on the basis of the bulk velocity Ub =

∫ 1
−1 U(y)dy

(where 3Ub
2 corresponds to the value at the centerline of the parabolic laminar flow with mean velocity

Ub) , the half channel height h and the kinematic viscosity ν. Several invariant solutions of these

equations, such as (relative) equilibria or periodic orbits, have been computed in the past decades

(Nagata, 1990; Waleffe, 1998; Kawahara & Kida, 2001; Waleffe, 2001; Faisst & Eckhardt, 2003; Hof

et al., 2004; Wedin & Kerswell, 2004; Eckhardt et al., 2007; Duguet et al., 2008; Gibson et al., 2009;

Schneider et al., 2010; Willis et al., 2013; Deguchi et al., 2013; Gibson & Brand, 2014; Zammert &

Eckhardt, 2014; Park & Graham, 2015; Barnett et al., 2017; Budanur et al., 2017).

Conversely, when studying the dynamics of coherent structures characterising the turbulent flow,

it can be appropriate to move the point of view to the vicinity of the turbulent mean flow. This

is achieved by using a Reynolds decomposition approach similar to that used by Eitel-Amor et al.

(2015) and Farano et al. (2017), where the flow vector is expressed as the sum of a mean flow Q =

[U, P ]T = [U, 0, 0, P ]T (where • denotes long-time and space averaging along the streamwise and

spanwise directions) and a fluctuation q̃ = [ũ, p̃]T , comprising the coherent and incoherent part of

the perturbations of the mean flow. Time- and space- averaging along the wall-parallel directions the

Navier-Stokes equations, and subtracting these averaged equations from the Navier-Stokes equations

leads to the Perturbative Reynolds-Averaged Navier-Stokes (PRANS) equations, which describe in a

statistical way the nonlinear evolution of fluctuations of the mean turbulent flow as:∇ · ũ = 0
∂ũ

∂t
= −(ũ · ∇)ũ− (ũ · ∇)U− (U · ∇)ũ− ∇̃p+ 1

Re
∇2ũ +∇ · ũũ,

(6.2)

where the term ũũ is the Reynolds stress tensor τ . The mean velocity profile and the Reynolds stress

tensor are approximated with the analytical expression reported in section 2.1.2.

In this section, statistically invariant travelling wave solutions of the PRANS equations are sought

by continuation of known invariant solutions of the PNS equations. In particular, the homotopy
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procedure introduced in section 2.1.2.1 is used for continuously passing from equations (2.2) to (2.3),

which have an almost identical structure, except for the steady flow used as reference and for the

presence of the Reynolds stress tensor. Since these quantities depend directly on the turbulent eddy

viscosity, the continuation is performed by continuously increasing this quantity from zero to its

characteristic turbulent value expressed by the Cess model (Cess, 1958). Thus, statistically invariant

travelling waves are obtained by continuing the ε parameter from travelling wave solutions of equations

(2.2) using the equations 2.8. Furthermore, the continuation from the PNS to the PRANS equations is

performed enforcing a constant volume flux and consequently fixing the bulk velocity Ub =
∫ 1
−1 U(y)dy.

Thus, while ε increases from 0 to 1, the friction Reynolds number grows from the laminar (ReLτ ) towards

the turbulent (ReTτ ).

The analytical formulation presented in section 2.1.2 is validated for Reτ = 180 and Reτ = 590

comparing with the DNS (see appendix C). The results obtained are computed in this range of Reynolds

numbers, for which turbulence is fully developed (not spatially patterned) and both the mean flow

and the Reynolds stress are accurately described by the chosen analytical approximation.

6.2 Results

As a first attempt at validating the approach, we take as a starting point for the continuation

procedure the traveling wave solution TW2 obtained by Gibson & Brand (2014) in a small domain

at low Reynolds number. This invariant solution of the NS equations is computed at Re = 2300 in a

domain of extension 2π × 2× π, with 32× 97× 64 points in the streamwise (x), wall-normal (y) and

spanwise (z) direction, respectively. As shown in figure 6.1 (a), the TW2 solution is continued with

respect to the Reynolds number up to Re = 3800, which is sufficiently high to display featureless (not

patterned) turbulence. As shown in figure 6.2 (a), the TW2 solution at this value of Re consists of

two layers of counter-rotating vortices and slightly modulated streaks along the lower wall, and one

layer of counter-rotating vortices along the upper wall (not shown). This solution is continued to the

PRANS formulation by increasing the eddy viscosity as explained in section (2.1.2.1). Continuation is

performed at fixed Reynolds number Re = 3800, enforcing a constant volume flux with bulk velocity

Ub = 0.522. The variation of the streamwise velocity norm during this continuation procedure is shown

in figure 6.1 (b). After an initial drop, the streamwise velocity norm increases with ε, reaching for

ε = 1 a value about 60% larger than the initial value. Moreover, when ε = 1, the friction Reynolds
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Figure 6.1: Continuation diagram of the streamwise velocity norm of TW2 with respect to Re (left)
for ε = 0 , and with respect to ε for Re = 3800 (right).

(a) ε = 0 (b) ε = 1

Figure 6.2: Invariant TW2 solution for ε = 0 (a) and ε = 1 (b) for Re = 3800: isosurfaces of negative
streamwise velocity ((a) u′ = −0.11, (b) ũ = −0.15, yellow) and Q-criterion (Q = 0.1) coloured by the
streamwise vorticity (red for positive, blue for negative).

number reaches Reτ = 134.521, and the statistically invariant solution TW2T , shown in figure 6.2 (b),

is obtained. Notice that this friction Reynolds number is rather low for a fully developed turbulent

flow, we thus expect the solution to slightly change when continued towards the PRANS framework.

Comparing this statistically steady solution with the starting travelling wave, one can observe that

the quasi-streamwise vortices (blue and red isosurfaces) are almost unchanged, while strong differences

can be noticed on the velocity streaks, which are less fragmented, more streamwise-aligned and shifted

towards the wall.

This shift of the streaks towards the wall can presumably be due to the wall-normal variation of the

eddy viscosity used in the PRANS equations. As discussed in Hwang (2016), since in the near-wall
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region and lower part of the logarithmic region, the eddy viscosity grows linearly with y, coherent

structures are allowed to reach larger amplitudes, so they protrude towards the wall. In contrast, they

weaken in the upper part of the logarithmic region and outer region, due to the large value of νt.

Moreover, the streaks considerably increase their size in the spanwise direction, and show a peculiar

triangular shape. This peculiar shape compares very well with the streaky mean flow obtained by

optimally forcing a turbulent channel flow, while the vortical structures recall closely the most energetic

DMD mode recovered on top of this streaky flow by de Giovanetti et al. (2017). The streaks reach

down towards the wall, where they are almost streamwise aligned, while they present some wiggles

close to the streamwise vortices. Moreover, their structures becomes almost identical on the two walls,

despite the fact that in the upper wall much weaker vortices are found (not shown).

These unexpected differences with respect to the starting TW2 solution might arise from the fact

(a) ũ (b) uTW2T
− uTW2

Figure 6.3: (a) Stastically steady travelling wave solution TW2T , for Re = 3800 and Lx = 9.544:
isosurfaces of negative streamwise velocity (ũ = −0.15, yellow) and Q-criterion (Q = 0.08) coloured
by the streamwise vorticity (red for positive, blue for negative). (b) Difference of the instantaneous
flow fields of TW2 and TW2T (shaded contours) and streamwise velocity perturbation associated to
the traveling wave solution TW2 (black line for negative, white line for positive) for Re = 3800 and
Lx = 9.544.

that, when continuing the PNS equations (2.2) towards the PRANS ones (2.3), invariant perturbations

of the laminar base flow transform into statistically-coherent fluctuations of the mean flow. Thus, the

observed structural change of the travelling wave solution can be simply due to the change of reference

from the base to the mean flow, rather than to an intrinsic modification of the coherent motion. An

answer to this important point can be found by directly comparing the instantaneous flow fields of

114



6.2. RESULTS

TW2 and TW2T , obtained by summing up the perturbations (fluctuations) provided in the left (right)

frame of figure 6.2 to the base (mean) flow, respectively. The difference between these two flow fields is

found to be of O(10−4), three orders of magnitude smaller than the perturbation maximum amplitude,

thus validating our procedure at such a low friction Reynolds, for which the dynamics of fluctuations

of the mean flow should not strongly differ from that of perturbations of the base flow after a mere

change of reference.

Once our approach has been validated, we attempt to increase the friction Reynolds number for reach

values typical of fully turbulent flows. First, we tried to continue the TW2T solution further in Re,

but the convergence of higher-Re solutions was very slow and time-consuming. Conjecturing that

the domain might be too small for capture statistically-steady coherent structures typical of higher-

Reynolds number flows, we have continued TW2T in the streamwise direction up to Lx = 9.54, while

keeping Ubulk fixed. This solution, provided in figure 6.3 (a), is very similar to that previously shown,

showing coherent, large-scale streaks with smaller vortices on top of them. One can again notice

the strong resemblance of this solution with the main energetic structures found in a forced DNS of

turbulent channel flow by de Giovanetti et al. (2017). However, this solution is again characterized by

a rather low Reτ = 134.5, thus the difference between the relative instantaneous flow fields, shown in

figure 6.3 (b), is again very small. This TW is then continued in Reynolds number up to Re = 5945,

corresponding to Reτ = 199.0, which is only slightly higher than that characterising the TW2T solution

at Re = 3800. Further continuation of this invariant solution of the PRANS equation with respect to

Re was again very slow and time-consuming.

Motivated by these results, we have chosen a new starting point of the continuation procedure,

(a) ε = 0, Reτ = 99.5 (b) ε = 1, Reτ = 210.0

Figure 6.4: Traveling wave solution TW2− 1 for ε = 0 (a) and ε = 1 (b) for Re = 3300 and Ubulk = 1:
isosurfaces of negative streamwise velocity (yellow for (a) u′ = −0.25, (b) ũ = −0.46) and Q-criterion
(Q = 0.1) coloured by the streamwise vorticity (red for positive, blue for negative).

namely, a spanwise-localized travelling wave solution called TW2− 1 (Gibson & Brand, 2014), whose
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similarity to flow structures characterizing the near-wall cycle has been reported in the literature.

This travelling wave solution, which has been obtained by continuation of TW2 after windowing on a

larger spanwise domain (Gibson & Brand, 2014), is similar in structure to TW2, although though it is

mostly concentrated towards one wall. We have first obtained the TW2− 1 solution at Re = 3300 in

the domain of size 2π× 2× 6π, with 32× 97× 324 points in the streamwise, wall-normal and spanwise

direction, respectively. The TW2 − 1 solution is continued at first with respect to the bulk velocity,

up to Ubulk = 1, in order to increase its friction Reynolds number. The resulting travelling wave is

shown in figure 6.4 (a) for Re = 3300. This spanwise-localized solution consists of slightly modulated

streaks flanked by streamwise-inclined vortices, which are weaker on the upper wall, where only one

streak pair is observed, and stronger on the bottom wall, where two pairs of streaks are recovered.

This TW2− 1 solution is then continued to the PRANS equations varying the parameter ε from 0 to
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Figure 6.5: Continuation diagram for the traveling wave solution TW2 − 1 versus Re for Ubulk = 1:
norm of the streamwise velocity (left) and of the wall-normal velocity (right).

1, at fixed Re = 3300 and Ubulk = 1. Figure 6.4 (b) provides this solution at Re = 3300, corresponding

to Reτ = 210. The lateral streaks on the bottom wall and that on the upper wall considerably increase

their size in the spanwise direction, reaching a width which appears to be close to that typical of Large

Scale Motion, λz ≈ 1.5h (Lee et al., 2014). For reach higher values of Reτ , continuation with respect to

Re of TW2−1 is performed, keeping Ubulk fixed. The variation of the norm of the streamwise velocity

of TW2−1 during the Re-continuation is found in figure 6.5 (a), showing a continuous increase of this

quantity, while the wall-normal velocity considerably decreases with Re (not shown). Several solutions

at increasing values of Re have been then continued in ε towards the PRANS framework, as shown

in figure 6.5 (b). The left column of figure 6.6 provides the TW2 − 1T solutions at different values
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of the Reynolds number up to 6500 (corresponding to Reτ = 380.03). The whole structure of the

travelling wave remains similar to that recovered at Re = 3300, although the streaks become stronger

while the counter-rotating vortices slightly weaken. More importantly, as shown in the right column

of figure 6.6, the difference between the instantaneous flow fields of the corresponding TW solutions

of the PNS and PRANS equations consistently increases, now reaching the same order of magnitude

of the perturbation itself. This means that the structural modifications of TW2− 1T with respect to

TW2−1 at high Reτ do not depend only on the change of reference from the laminar base flow to the

mean turbulent flow, but on an intrinsic difference in the coherent disturbances dynamics. The right

column of figure 6.6 shows a cross-section of the low- and high-speed streaks of TW2-1 (black and

white curves) at different Reynolds numbers, together with the difference between the instantaneous

flow fields of TW2−1 and TW2−1T at the same values of Re (shaded contours). One can notice that

the largest modifications are observed on the lateral low-speed streaks, which increase their spanwise

size and move towards the wall, and on the high-speed ones at the wall, which appear to change their

spanwise size too (not shown). However, while the streamwise velocity is modified in a large part of

the domain, the counter-rotating vortices change exclusively in a very narrow zone between the low-

and high-speed streaks. The result of these modifications is a consistent increase of the spanwise size

of most of the streaks, which reach a length comparable to the channel half-height, typical of Large

Scale Motion (del Alamo & Jiménez, 2003; Hwang, 2015; Lee et al., 2014). A smaller-size streak is

observed as well, with spanwise size O(100) (in inner units), close to that typical of wall streaks.

However, this smaller-scale coherent structure does not appear directly linked to the wall cycle, since,

as shown in figure 6.7 (a), its streamwise-averaged velocity profile extracted at z = 9 and scaled with

respect to the inner units, appears not to be independent of Reτ , as one would expect for wall-cycle

related structures. In particular, its peak scales approximately with Re
1/2
τ , as one would expect for

large-scale structures (Hwang, 2016). It is worth noticing that the same scaling with respect to Reτ

characterises the lateral large-scale streaks, whose inner-scaled velocity profiles are shown in figure

6.8(a). However, comparing figures 6.7 (b) and 6.8 (b), one can also notice that, while the lateral

streaks present a robust outer scaling, confirming their large-scale nature, for the small-scale central

streak the velocity profiles at different Reτ do not collapse at large values of y. Thus, the small-scale

central streak cannot be related directly with the wall cycle, but neither can the large-scale structures,

probably being linked to the secondary motion induced by the vortical structures placed at the center
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(a) Re = 4500, ũ (b) Re = 4500, uTW2−1T
− uTW2−1

(c) Re = 5500, ũ (d) Re = 5500, uTW2−1T
− uTW2−1

(e) Re = 6500, ũ (f) Re = 6500, uTW2−1T
− uTW2−1

Figure 6.6: (Left) Traveling wave solution TW2 − 1T at different Reynolds numbers: isosurfaces of
negative streamwise velocity (ũ = −0.55, yellow) and Q-criterion (Q = 0.1) coloured by the streamwise
vorticity (positive red, negative blue). (Right) Solid velocity and vorticity contours associated to the
traveling wave solution TW2− 1 obtained with ε = 0 (black line for negative, white line for positive),
and difference between the two instantaneous solutions uTW2−1T − uTW2−1 (shaded contours for the
streamwise velocity and vorticity, see legend).
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of the domain.

These counter rotating vortices located in the region between the large-scale streaks, reaching much
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Figure 6.7: Streamwise-averaged velocity profile of the TW2 − 1T extracted at the z location where
the central small-scale streak present their maximum value, scaled in inner (left) and outer (right)
units.
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Figure 6.8: Streamwise-averaged velocity profile of the TW2 − 1T extracted at the z location where
the lateral large-scale streaks present their maximum value, scaled in inner and outer units.

higher distances from the wall, similar to the typical vortical structures recovered in large-scale motion

(also called bulges).

A quantitative analysis of the main spanwise wavelengths of TW2 − 1T has been carried out by

computing the premultiplied energy spectra of the streamwise, wall-normal and spanwise velocities of

this solution at Re = 4500 (corresponding to Reτ = 275.47), which are shown in figure 6.9 (a), (b),

(c), respectively. Concerning the streamwise velocity, the lowest-wavenumber peak (k+
z = 0.00127, or
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kz = 0.35 in outer units) corresponds to the size of the TW envelope, since it is close to the spanwise

domain size. Two other peaks are recovered for k+
z = 0.0065 and k+

z = 0.0155, corresponding to

wavelengths λz = 3.5 and λz = 1.47 in outer units, respectively, which lie in the range of the typical

spanwise size of Large-Scale Motion (reported to be λz = 1 − 3 in outer units). A higher-frequency,

weaker peak is found for k+
z = 0.047, corresponding to λ+

z = 135, which is rather close to the typical

spanwise size of wall-streaks. In contrast, the wall-normal and spanwise spectra are both characterized

by one peak only, at k+
z = 0.048 (corresponding to λ+

z = 130.08) and k+
z = 0.026 (λ+

z = 235.32),

respectively. Notice that these wavelengths are much lower than the dominant ones of the streamwise

velocity spectra, being closer to those typical of the wall cycle. Very similar spectra are recovered at

Re = 5500 and Re = 6500 (corresponding to Reτ = 328.35 and Reτ = 380.03, respectively), indicating

that the structure of TW2 − 1T remains robust when the Reynolds number increases. Moreover, it

is interesting to evaluate the scaling of the relevant structures of these solutions with respect to

those of the single self-sustaining attached eddy (Hwang, 2015), which is composed of a long streaky

motion reaching the near-wall region, self-similar along y = 0.1λz and a shorter vortical structure

carrying all the velocity components, self-similar along y = 0.5−0.7λz. A very similar scaling is found

in the TW2− 1T solution, with the two dominant peaks in the streamwise velocity spectrum having

y ≈ 0.1−0.15λz while a scaling of y ≈ 0.58λz, y ≈ λz is found in the spanwise and wall-normal spectra,

respectively. The statistically steady solution presented here, composed of large streaky structures and

short vortical ones carrying all velocity components, is thus similar in shape and wavelengths to the

self-sustaining structures of the attached eddy theory (Hwang, 2015). However, in this solution, large-

and small-scale structures are not torn apart, but tied together in a non trivial way, representing one

potential first brick for the development of a low-order model of turbulence dynamics.

6.3 Conclusion

A new mathematical framework for characterising the coherent motion of turbulent fluctuations

around the mean flow in a turbulent channel was proposed, using a statistical point of view. In

particular, we search for statistically invariant coherent solutions of the unsteady Reynolds-averaged

Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow, using

a suitable approximation of the Reynolds stress tensor. To do so, we set up a continuation procedure
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Figure 6.9: Premultiplied one-dimensional spanwise spectra of the streamwise (left), wall-normal (mid-
dle) and spanwise velocity (right) of TW2− 1T at Re = 4500.

of known invariant solutions of the perturbative Navier-Stokes equations, based on the continuous

increase of the eddy viscosity towards its turbulent value. The recovered solutions are sustained only

in the presence of the Reynolds stress, thus being representative of the coherent motion of turbulent

flows.

The travelling wave TW2 has been first used as a starting point of the continuation procedure and

continued to the turbulent framework up to friction Reynolds number Reτ ≈ 134.52. Although struc-

tural changes are found in the solution when regards to instantaneous quantities the statistically

invariant motion turns out to be only marginally different from the corresponding invariant solution

of the Navier-Stokes equations. This was expected since turbulence is not fully sustained at such low

values of the friction Reynolds number so that the dynamics of statistically coherent motion of fully

turbulent flows remains close to that of transient turbulence and transition. However, by taking the

spanwise-localized solution TW2 − 1 as a new starting point, and continuing it to the statistically

turbulent framework at sufficiently large friction Reynolds number (Reτ ≈ 380.03), the statistically

invariant motion considerably departs from the starting solution. This solution is characterized by

large-scale and small-scale streaks reaching the wall, accompanied by rather small vortical structures

further from the wall. These structures, as well as the main wavelengths and scaling of this statistically

invariant solution, are very close to those typical of the coherent motion in turbulent channel flows. In

particular, the dominant wavelengths of the streamwise velocity premultiplied energy spectrum cor-

respond to the typical spanwise size of large-scale structures (1.5− 3.5 times the half channel height)

and are characterized by a scaling y ≈ 0.1− 0.15λz, consistent with the attached eddy hypothesis. In

contrast, spanwise lengths typical of the wall cycle and a scaling of y ≈ 0.58λz, y ≈ λz are found in the
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spanwise and wall-normal spectra, respectively. Thus, the statistically steady solution presented here,

constituted by large streaky structures and short vortical ones carrying all velocity components, is

similar in shape and wavelengths to the self-sustaining structures of the attached eddy theory Hwang

(2015), although composed of large- and small-scale structures tied together in a non trivial way. This

statistically-invariant solution may potentially represent one brick for the development of a low-order

model of turbulence dynamics.

It should be remarked that the comparison of the main wavelengths and scaling of this statistically

Figure 6.10: Traveling wave solution obtained starting from the optimal solution obtained ad Reτ =
180 with the initial energy E0 = 10−2 at the target time T = 10. Isosurfaces of negative streamwise
velocity (yellow) an Q-criterion coloured by the streamwise vorticity.

invariant solution with those of the attached eddy has been limited to the spanwise direction since

the present solution has been obtained in a rather small streamwise domain. Future work will aim at

continuing this or other solutions towards larger streamwise domains, as well as towards much higher

friction Reynolds numbers. Moreover, new statistically invariant solutions might be obtained using

as a starting point filtered snapshots of the turbulent flows, instead of continuing known invariant

solutions of the Navier-Stokes equations. In particular, the turbulent nonlinear optimal perturbations

computed in Chapter 5, might be used as a starting point for this search, since they are solutions

of the same set of equations, and characterising energetic coherent structures within the turbulent

flow. In the context of the NS equations, Olvera & Kerswell (2017) have demonstrated that nonlinear

optimal perturbations might be a good starting point for the search of invariant solutions, and this
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might be true also for the PRANS equations. Thus, we have attempted this search using the optimal

perturbation computed for Reτ = 180 at the target time T = 10 and with an initial energy E0 = 10−2.

As one can see in figure 6.10, the flow exhibits a shape similar to the statistically-invariant solu-

tions previously shown. In particular, low velocity streaks are localised near the wall, while vortical

structures migrate toward the center of the channel. This indicates a possible strategy for computing

invariant solutions at high friction Reynolds number, while avoiding the computationally expensive

continuation of known solutions of the NS equations.

Finally, statistically-periodic solutions can be recovered as well, providing relevant information about

the temporal dynamics of the coherent part of the fluctuations in the considered statistical frame-

work. This might be a considerable step forward towards the development of reduced-order models of

turbulent flows.
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Chapter 7

Conclusion and perspectives
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7.1 Conclusion

In this thesis, we have studied the dynamics of a plane channel flow; in particular, the first part of

this work was devoted to the subcritical transition; whereas, in the second part, the coherent structures

characterising the fully-developed turbulence are investigated.

In the first part, an analysis of turbulent bands located in the laminar channel flow is carried out,

searching for the main mechanisms involved in the origin and growth of these turbulent bands. In

chapter 3, the analysis is performed in a large domain, while in chapter 4 the complexity of the problem

is reduced by using a much smaller tilted domain.

In chapter 3, for the first time, the minimal seed able to trigger turbulence in the form of a laminar-

turbulent pattern in a large-sized channel flow, has been investigated. This structure has a spot-like

shape with a quadrupolar large-scale flow surrounding it. The relation between the minimal input

energy able to trigger turbulence and the Reynolds number was investigated and a scaling law of

the type Re−γ , with γ ≈ 8.5 (fourth times that found in the literature) was found. Looking at

the minimal perturbation evolution in time, two different minimal-energy paths for the generation of

turbulent bands have been observed, depending on the Reynolds number: for Re > 1200 the spot

evolves symmetrically in two bands, whereas, for Re < 1200 only one band is created. An analysis of
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the production and dissipation of kinetic energy shows that in both cases, two proto-bands are initially

created at the edges of the large-scale flow surrounding the minimal seeds. Since the probability of

decay of the bands increases in time and is higher for low Reynolds number, when Re is sufficiently

low one of these bands rapidly dies out, leading to the development of one isolated band. In contrast,

for larger values of Re, both oblique bands originated at the sides of the minimal seed survive for a

longer time, until they split and interact, rapidly leading to the establishment of a spatio-temporally

complex final state.

The early mechanisms of formation of these proto-bands are further investigated by restraining the

investigation to a much smaller, tilted domain. Performing linear optimization in such a small tilted

domain at Re = 1000, in which only one turbulent band is observed, a three-dimensional optimal

structure characterised by streaks aligned with the tilted baseflow was found. In particular, these

streaks are similar to those observed at the head of turbulent bands and present streamwise and

spanwise wavenumbers very close to those found in the energy spectra of a DNS performed in the

same domain. However, we have found that transition to a turbulent band arises due to this optimal

lift-up mechanism only when coupled with a large-scale vortical flow linked to the spatial localisation of

the disturbance. Thus, a nonlinear mechanism is necessary to generate a large-scale flow that provides

the preferential spreading direction of the streaks generated by the lift-up mechanism.

In order to investigate the coherent structures usually observed in turbulent flows and characterise the

turbulent motion, in chapter 5, we have extended the nonlinear optimisation to turbulent channel flow.

However, due to the nonconvex form of the nonlinear Navier-Stokes equations multiple solutions are

found for a given set of initial conditions and target times. Thus, we have chosen to follow a different

approach, and try to characterise the turbulence coherent motion searching for statistically-steady

coherent solutions. For this reason, in chapter 6, we have proposed a ’new’ mathematical framework

for seeking travelling-wave solutions characterising the motion of turbulent fluctuations around the

mean flow. This was achieved by searching for statistically-invariant coherent solutions of the unsteady

perturbative Reynolds-averaged Navier-Stokes (PRANS) equations written in a perturbative form with

respect to a suitable analytical approximation of the turbulent mean flow and the Reynolds stress

tensor. Moreover, in chapter 6, a homotopy method has been proposed to continue invariant solutions

of the perturbative Navier-Stokes (PNS) equations to the PRANS equation via the continuous increase

of the turbulent eddy viscosity towards its turbulent value. At small friction Reynolds numbers,
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slight differences have been found between the invariant solutions found using the PNS equations

and the statistically invariant solutions. Whereas, for larger friction Reynolds numbers and domain

size, major differences have been identified. Furthermore, the statistically-invariant solutions of the

PRANS equations are characterized by streaks and streamwise vortices with wavelengths and scaling

close to those found for small- and large-scale structures in turbulent channel flow.

7.2 Perspectives

The results produced in this work of thesis are not entirely conclusive. They nonetheless provide

several insights and raise numerous questions that need an answer about transitional flows and fully

turbulent flows, such as:

1. The minimal input energy able to trigger turbulence in large channel flow scales with the

Reynolds number with a power-law, but as already highlighted in chapter 3 the power-law

exponent is four times larger than the value reported in the literature; we have suggested that

this discrepancy can be linked to the much larger domain size considered. To clarify this point,

it is necessary to investigate the scaling of the minimal input energy with the Reynolds number

searching for the minimal seed in plane channel flow with a small domain size comparable to

those used in the literature for other flows.

2. In this work, the seed for the turbulent bands is found via nonlinear optimization; thus, this

method can be extended to other flows in the range of Reynolds numbers in which the localised

turbulence is observed, as for turbulent bands in plane Couette flow or turbulent puffs in pipe

flow. Furthermore, in the chapter 4, we have investigated the main mechanism involved in

the origin and evolution of turbulent bands, however many questions remain unanswered, for

instance the reason why the turbulent bands evolve with a particular angle that changes with

the Reynolds number.

3. Since the laminar-turbulent pattern is also observed in channel flow with a thermal stratification

or with a magnetic field, the analysis performed in the chapter 3 and 4 may be extended to

identify the influence of the temperature or the magnetic field on the optimal perturbation and

the main mechanisms involved in the origin of turbulent bands.
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4. In chapter 5, starting from the works of Farano et al. (2017, 2018), we have searched for nonlinear

optimal fluctuations around the mean flow at different target times and, we have observed that

increasing the target time more and more large-scale structures appear. Moreover, the nonlinear

optimization can be extended to high friction Reynolds number to investigate for very large-scale

motions, which appear when there is enough spatial separation between the inner and the outer

regions.

5. In chapter 5, at Reτ = 180 two main nonlinear optimal perturbations are found, one with

structures close to the wall and the second with structures that move to the center of the

channel. The former is found mostly for very low target time, whereas the latter for higher ones.

Moreover, there is an intermediate range of target times in which both optimal solutions can be

found, according to the initial condition. Then, a further analysis at different friction Reynolds

numbers needs to be carried out to confirm this behaviour. Moreover, the characteristics and

the role in the dynamics of these nonlinear optimal perturbation worth to be investigated.

6. The solutions reported in chapter 6 are found from invariant solutions known in the literature,

which are solutions of the NS equations, thus require a lengthy continuation towards the PRANS

framework. On the other hand, coherent structures that are solutions of the PRANS equations,

might be used for initialising the search for statistically invariant solutions. In particular, the

nonlinear optimal perturbations shown in chapter 5 may be used as a starting point to collect

other statistically invariant solutions directly in the PRANS equation. This has been attempted

with success at Reτ = 180, and current works are attempting at computing nonlinear optimal

perturbations at higher values of Reτ , which can be used as starting point for the search of

statistically-invariant solutions.

7. In this thesis, we have searched only for travelling-wave solutions of the PRANS equations.

Statistically-periodic solutions of this set of equations may provide relevant information about

the temporal dynamics of the coherent part of the fluctuations in the considered statistical

framework. This might be a considerable step forward towards the development of reduced-

order models of turbulent flows. However, the extension to the periodic orbit implies some

considerations on the chosen mean flow averaged in time, thus more theoretical work must be

done before trying to compute them.
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Appendix A

Optimization problem validation

A.1 Test cases

In this section, the validation of the direct-adjoint algorithm is presented via some results for

nonlinear optimal perturbations in plane Poiseuille flow.

A.1.1 Nonlinear optimal perturbations in Poiseuille flow
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Figure A.1: Energy gain comparison with the reference work (Farano et al., 2015).

The nonlinear optimal perturbation is computed for plane Poiseuille flow, comparing the results to

those obtained by Farano et al. (2015). The optimizations are performed for four subcritical Reynolds

numbers (Re = 2000, 3000, 4000, 5000) for the target time T = 10, the characteristic time of the Orr

mechanism (Orr, 1907). The simulations are performed in a domain with dimensions 2π, 2 and π in

the streamwise, wall-normal and spanwise directions, respectively.
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(a) u (b) v (c) w

(d) u (e) v (f) w

Figure A.2: Isosurfaces of the three velocity components (light grey for positive and black for negative
values, u, v, w = ±0.01) of the nonlinear optimal perturbation for Topt = 10, E0 = 1 × 10−5 and
Re = 2000. (Top) Farano et al. (2015) results. (Bottom) Present work results.

The chosen objective function is the kinetic energy:

(a) u (b) v (c) w

(d) u (e) v (f) w

Figure A.3: Isosurfaces of the three velocity components (light grey for positive and black for negative
values, u, v, w = ±0.01) of the nonlinear optimal perturbation for Topt = 10, E0 = 2 × 10−6 and
Re = 4000. (Top) Farano et al. (2015) results. (Bottom) Present work results.

E(t) = 1
2V

∫
V

(u2 + v2 + w2)dV.

The values of the input energy E0 are those reported by Farano et al. (2015) in figure 1(a).
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(a) t = 0 (b) t = 10

(c) t = 0 (d) t = 10

Figure A.4: Isosurfaces of the Q-criterion coloured with the streamwise vorticity of the nonlinear
optimal perturbation for Topt = 10, E0 = 2× 10−6 and Re = 4000. (Top) Farano et al. (2015) results.
(Bottom) Present work results.

The energy gain at the target time for all the considered Reynolds is reported in figure A.1. Notably,

it is found a good agreement with the reference results.

In figures A.2 and A.3 are shown the optimal perturbations found for Re = 2000 with E0 = 1× 10−5

and for Re = 4000 with E0 = 2 × 10−6, respectively; these solutions present a similarly shape with

different amplitude, higher for the case at Re = 2000. A good agreement with the results reported in

literature is shown.

It is worth noticing that compared to linear optimal perturbations many differences are found: in

particular, these solutions are strongly localised in the domain and are characterised by a smaller

wavelength in the spanwise direction. Furthermore, at small target time, symmetry in the spanwise

direction is observed, unlike other flows as plane Couette flow. Notably, in figure A.2 and A.3 the

symmetry of the streamwise and wall-normal velocity components is observable, whereas the spanwise

velocity component is antisymmetric.

The nonlinear optimal perturbation for Re = 4000 and E0 = 2× 10−6 is shown in figure A.4 at t = 0

and at the target time, represented with the Q-criterion coloured with the streamwise vorticity. The

optimal perturbation presents a localised shape in the form of three thin tubes of counter-rotating

vorticity alternated in the spanwise direction. When these structures evolve in time, an interaction of
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the inner vortices coupled with tilting in the streamwise direction leads to the formation of a hairpin

vortex at target time t = 10.
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Appendix B

Derivation of the mean turbulent velocity
equation

In this appendix, the derivation of the mean turbulent velocity analytical expression (2.4) proposed

by Reynolds & Tiederman (1967) are reported.

Being the channel turbulent flow statistically stationary and homogeneous along the streamwise x and

spanwise z directions, the momentum equations from the perturbative Navier-Stokes equations of the

mean turbulent flow (2.2) along x-axis and y-axis are reduced to:

du′v′

dy
= −∂P

∂x
+ 1
Re

d2U

dy2 (B.1)

dv′2

dy
= −dP

dy
. (B.2)

Integrating the equation (B.2) along the y-axis, it is found that the streamwise pressure gradient is

independent from the normal direction y, i.e. it is constant across the flow. Then, the equation (B.1)

becomes:

dP

dx
= 1
Re

d

dy

[
dU

dy

(
− dy
dU

Reu′v′ + 1
)]

. (B.3)

Then, from the Prandtl’s mixing length model:

u′v′ = −νt
dU

dy
,

and considering that the normalised total eddy viscosity can be expressed with ν+
T = νT /nu = (ν +

νt)/ν:

dy

dU
Reu′v′ = ν+

T − 1.
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In this way, the equation (B.2) reads:

dP

dx
= 1
Re

d

dy

(
dU

dy
ν+
T

)
,

and integrating along y-axis:
dP

dx
y = ν+

T

Re

dU

dy
.

And finally, considering that U = U
+
Reτ/Re and the pressure gradient dP/dx = (Reτ/Re)2, the

mean turbulent velocity profile equation is obtained:

dU
+

dy
= Reτy

ν+
T

. (B.4)
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Appendix C

Validation of the mean turbulent flow
formulation

In this appendix, the validation of the analytical formulation introduced in the section 6.1 for the

mean turbulent flow and the Reynolds stress tensor, is presented.

The validation is performed for two friction Reynolds number, such as Reτ = (180, 590). The results

obtained for Reτ = 180 are compared with those obtained by Kim et al. (1987) and for Reτ = 590 are

compared with the results obtained by Moser et al. (1999).

The results of the direct numerical simulation performed in Channelflow and the analytical profiles

are obtained at fixed Reynolds number Re = 3300 and enforcing the constant volume flux with the

bulk velocity Ub = 0.8485 for Reτ = 180 and at fixed Re = 12450 and Ub = 0.8632 for Reτ = 590.

In figure C.1 and in figure C.2, the mean turbulent flow and the Reynolds stress validation are reported

for Reτ = 180 (top frames) and for Reτ = 590 (bottom frames), respectively. In these figures, we show

the mean turbulent flow and the Reynolds stress obtained with the DNS carried out in Channelflow,

the analytical solutions obtained from the equations presented in the section 6.1.

Furthermore, the mean velocity and the Reynolds stress profiles obtained with the perturbative RANS

equations forced with the analytical statistics (left frames) and with the statistics obtained with the

direct numerical simulation (right frames), are shown.

135



ANNEXE C

100 101 102

y+
0

5

10

15

20

U+

analytical solution

PRANS with an. RS
DNSKMM

(a)

100 101 102

y+
0

5

10

15

20

U+

PRANS with DNS RS

DNSChannelf low

DNSKMM

(b)

100 101 102 103

y+
0

5

10

15

20

25

U+

analytical solution

PRANS with an. RS
DNSMKM

(c)

100 101 102 103

y+
0

5

10

15

20

25

U+

PRANS with DNS RS

DNSChannelf low

DNSMKM

(d)

Figure C.1: (a-c) Mean velocity profile obtained with the PRANS equations (red solid line) with the
analytical mean velocity profile (black dashed line) compared with literature results (black dots). (b-
d) Mean velocity profile obtained with the PRANS equations (red solid line) with the mean velocity
profile obtained by DNS (black dashed line) compared with literature results (black dots). Top and
bottom frames correspond to Reτ = 180 (reference case Kim et al. (1987)) and Reτ = 590 (reference
case Moser et al. (1999)), respectively.
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Figure C.2: (a-c) Reynolds stress profile obtained with the PRANS equations (red solid line) with the
analytical Reynolds stress profile (black dashed line) compared with literature results (black dots). (b-
d) Reynolds stress profile obtained with the PRANS equations (red solid line) with the Reynolds stress
profile obtained by DNS (black dashed line) compared with literature results (black dots). Top and
bottom frames correspond to Reτ = 180 (reference case Kim et al. (1987)) and Reτ = 590 (reference
case Moser et al. (1999)), respectively.
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Appendix D

Test cases for the continuation method

D.1 Test cases

As a first step, to understand how the edge-tracking technique and the continuation method work,

the periodic orbit and the travelling waves found in the channel flow by Rawat et al. (2014, 2016) are

searched.

D.1.1 Relative periodic orbit solution

In the previous edge-tracking section 2.3.1 it is reported that to find an edge state a suitable initial

guess sufficiently close to the edge is necessary. As introduced by Waleffe (2003) the flow can be

artificially forced by streamwise vortices which induce unstable streamwise streaks at a critical forcing

amplitude. This is an opportune perturbation when looking for an edge state since it is a lower-branch

solution, often characterized by streaky structures.

Following the procedure adopted by Rawat et al. (2014), the edge-tracking is performed perturbing

the laminar Poiseuille flow with a pair of streamwise uniform counter-rotating vortices of amplitude

A1 and a sinuous perturbation of the spanwise velocity with amplitude A2:

u0 = A1

{
0, ∂ψ0

∂z
,−∂ψ0

∂y

}
+A2 {0, 0, ωsin} , (D.1)

where ψ0(y, z) = (1−y2)sin(πy)sin (2πz/Lz) is the stream-function associated to streamwise uniform

vortices, and ωsin(x, y) = (1− y2)sin (2πz/Lz) represents the sinuous perturbation.

In addition, the bisection is performed enforcing the mid-plane reflection symmetry (u, v, w(x, y, z) =

u,−v, w(x,−y, z)) and the amplitude of the counter rotating vortices A1 is chosen as the bifurcation
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parameter, with A2/A1 = 1/10 fixed.

The Reynolds number is fixed at 3000, imposing a constant volume flux during the simulations. The

results are obtained with 32× 65× 32 points in the streamwise, wall-normal, and spanwise directions,

respectively and it is chosen a periodic domain of streamwise and spanwise direction with Lx = 2π

and Lz = 2.416. Following Waleffe (2003), this domain size is chosen because is possible to find the

nonlinear traveling wave at the lowest Reynolds number.

In figure D.1 the comparison between the edge tracking performed in this work and that performed

0 1000 2000 3000 4000 5000 6000
t

0.00

0.05

0.10

0.15

E ′

(a) (b)

Figure D.1: Kinetic energy traces for different initial conditions: there are initial conditions that
grow to reach the turbulent basin of attraction and other initial conditions that decay to the laminar
solution. (Left) Edge tracking performed in the present work. (Right) Edge tracking performed by
Rawat et al. (2014).

by Rawat et al. (2014) is reported. The calculations performed in this work present a good agreement

with those of the reference, and both the calculations end up in a relative periodic orbit.

The relative periodic orbit compared with that of Rawat et al. (2014) is reported in figure D.2 in

the plane ‖v′‖ − ‖u′‖, where: ‖u′‖ = 1
V

∫
V u
′dV is the streamwise perturbation velocity norm and it

is representative of the amplitude of streamwise streaks. While, ‖v′‖ = 1
V

∫
V v
′dV is the wall-normal

perturbation velocity norm, that represents the amplitude of the quasi-streamwise vortices.

Following the counter-clocking rotation of the relative periodic orbit (see figure D.2) and starting from

a point on the lower-right of the orbit, where the amplitude of the vortices is maximum and that of

the streaks is at the minimum, we can find the main mechanisms that occur during the periodic orbit.

In the first part of the cycle, the lift-up mechanism is the main mechanism that characterises the

dynamics of the flow, because the amplitude of the vortices decays and the amplitude of the streaks
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Figure D.2: Relative periodic orbit visualization in the ‖u′‖-‖v′‖ plane, with ‖u′‖ the norm of the
streamwise perturbation velocity and ‖v′‖ the norm of the wall-normal perturbation velocity.

increases. Then, when the streaks reach their maximum amplitude, they are subject to a breakdown

in which their amplitude decays fast, and the vortices are regenerated. Notably, the breakdown of the

streaks is faster with respect to the growth of the streamwise velocity norm, i.e. the formation of the

streak. This process is the well known self-sustained process, which describes the interaction between

streaks and quasi streamwise vortices (Hamilton et al., 1995; Waleffe, 1997).

D.1.2 Traveling wave solution

In the previous section, the relative periodic orbit solution is computed with the perturbative

Navier-Stokes equations of the laminar Poiseuille flow (2.2), presenting a good agreement with the

results found by Rawat et al. (2014).

In this section, the edge state found by Rawat et al. (2016) in the form of travelling wave is computed.

A converged traveling wave is found using the same initial condition used in the previous section for

the relative periodic orbit with the Reynolds number Re = 2000, imposing a constant volume flux

during the simulation and with a periodic domain of streamwise size Lx = 2π. The spanwise size is

fixed at Lz = 3.55 because in the work of Rawat et al. (2016) with this dimension the edge tracking

algorithm converges to a traveling wave solution and not on a relative periodic orbit.

Furthermore, they have found that continuing the relative periodic orbit and increasing the spanwise
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Figure D.3: Continuation diagram for traveling wave solutions in respect of the spanwise domain size
Lz. The red × symbol represents the saddle-node bifurcation, where the upper and lower branch start.
Comparison of the present work validation (left) with Rawat et al. (2016) (right).

dimension, this relative periodic orbit is bifurcating into an upper and a lower branch of traveling

waves via a saddle-node bifurcation at Lz = 3.55. In figure D.3 the bifurcation diagram is reported

representing with a red × the bifurcation point. As for the previous case, the mid-plane reflection

symmetry is imposed and the solution is found with 32×65×32 points in the streamwise, wall-normal

and spanwise directions, respectively.

In figure D.4, the traveling wave at the bifurcation point with Lz = 3.55 is reported. This edge-state

solution is a lower branch solution and it is characterised, as is well know, by a low-speed streak (green

surface in figure) surrounded by a pair of quasi streamwise vortices (red and blue surfaces corresponding

to the positive and negative streamwise vorticity, respectively). Moreover, the converged traveling wave

solution presents the shift and reflect symmetry

{u, v, w}(x, y, z) = {u, v,−w}
(
x+ Lx

2 , y,−z
)
,

not enforced on the initial condition, for which was enforced only the midplane reflection symmetry.

The root mean square profiles of the three velocity component of the traveling wave found are

computed and are compared with those found by Rawat et al. (2016). In figure D.5 it is shown the

good agreement between our results and reference ones.

Following the paper of Rawat et al. (2016), the edge state found is continued increasing the spanwise

domain size Lz, as it can be seen in figure D.3, and the two branches of traveling waves are found.

The comparison between the upper and lower branch solutions at fixed spanwise size Lz = 4.5 is
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Figure D.4: Flow field associated to the traveling wave solution corresponding to the edge state al
Lz = 3.55 (red × symbol in figure D.3). The green iso-surfaces represents u+ = −2, while red and
blue surfaces represent the positive and negative streamwise vorticity at ωx = ±0.7max(ωx).
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Figure D.5: Root mean square profiles of the three velocity components of the traveling wave at the
saddle node with Lz = 3.55 and Re = 2000.
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(a) (b)

Figure D.6: Flow field associated to the traveling wave solution at Lz = 4.5 corresponding to a
lower branch solution (left) and an upper branch solution (right). The green isosurfaces represent
u+ = −2, while red and blue surfaces represent the positive and negative streamwise vorticity at
ωx = ±0.7max(ωx).
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shown in figure D.6. As one can see, the lower branch solution is characterised by a shape similar

to those of the edge state. The solution is defined by only one low-velocity streaky structure always

localised in the middle of the spanwise direction and consequently, the solution presents an increased

unperturbed domain region when increasing the domain spanwise size Lz. Conversely, the upper

branch solution at the same spanwise domain size presents three low-speed streaky structures flanked

each by a pair of streamwise vortices.

D.1.3 Turbulent eddy viscosity continuation

The lower branch and the upper branch solutions found in the previous section are continued to the

Perturbative Reynold-Averaged Navier-Stokes equations (2.3) increasing the turbulent eddy viscosity

as explained in section 2.1.2.1.

The results are obtained at fixed Reynolds number Re = 2000 and enforcing the constant volume

flux with the bulk velocity Ub = 2/3; when the fully turbulent flow is reached the friction Reynolds

number is ReτT = 95.025. Further, the solutions are found in the domain of extension 2π × 2 × 4.5,

with 32×65×32 points in the streamwise, wall-normal and spanwise direction, respectively. Moreover,

in the continuation is imposed the symmetry that characterises the traveling wave solution, i.e. the

shift and reflect symmetry.

The solutions obtained for ε = 1, computed with the turbulent eddy viscosity of the fully developed

turbulent flow, are shown in figure D.7. Comparing these solutions with those found around the

laminar Poiseuille baseflow, it is notable that the perturbations around the mean flow present the

same quasi streamwise vortices. As far as the low velocity streaks, in this case, the lower branch

solution presents only one streaky structure, instead, the upper branch solution is characterised by

an increased number of streaks. Furthermore, it is notable that the low velocity streaks present a

changed shape. They are more diffused since the viscosity is increased adding the turbulent eddy

viscosity term, and they have moved towards the walls because increasing the turbulent viscosity the

mean flow is increasingly distorted.

D.1.4 Travelling wave solution at Reτ = 180

In this section, a travelling-wave solution found initialising with an optimal perturbation found at

Reτ with Re = 3300 and Ubulk = 0.848484 is shown.
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(a) (b)

Figure D.7: Flow field associated to the traveling wave solution at Lz = 4.5 corresponding to a lower
branch solution (left) and an upper branch solution (right) around the mean turbulent fully developed
flow. The green isosurfaces represents u+ = −8, while red and blue surfaces represent the positive and
negative streamwise vorticity at ωx = ±0.7max(ωx).
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Enza PARENTE

Sustaining turbulent bands and fully-developed
turbulence in channel flow

Résumé : Cette thèse vise à étudier les principaux mécanismes impliqués dans les écoulements de type canal autour de
la transition vers la turbulence. Plus particulièrement, il existe une gamme de nombres de Reynolds pour laquelle la
turbulence reste localisée sous la forme de bandes obliques turbulentes plongées dans un écoulement laminaire. Dans
cette thèse, les principaux mécanismes à l’origine et responsables de l’évolution de ces bandes turbulentes sont étudiés
au travers de techniques d’optimisation linéaires et non linéaires. Tout d’abord, dans un canal de grande dimension, il
a été démontré que la perturbation d’énergie minimale capable de générer des bandes turbulentes est localisée et car-
actérisée par des structures à petite et grande échelles. Selon le nombre de Reynolds, ce minimal seed évolue dans le
temps avec deux mécanismes différents : pour Re . 1200 une bande oblique isolée est créée ; alors que pour Re & 1200,
une évolution symétrique dans la direction transverse est observée, donnant lieu à deux bandes distinctes. Ensuite, en
réduisant la complexité du problème à un domaine incliné, on constate que deux éléments principaux sont nécessaires
pour induire la transition vers des bandes turbulentes : i) un mécanisme linéaire de type lift-up est nécessaire à la
génération des streaks à l’intérieur des bandes turbulentes ; ii) des tourbillons à grande échelle assurant la localisation
spatiale.
Dans la dernière partie de cette thèse, afin d’étudier les structures cohérentes habituellement observées dans les écoule-
ments turbulents, la méthode d’optimisation non linéaire est étendue aux écoulements de canal turbulent et une ’nou-
velle’ méthode mathématique pour le calcul des solutions cohérentes invariantes est proposées. Dans ces deux méthodes,
les équations instationnaires de Navier-Stokes sont écrites en moyenne de Reynolds et sous une forme perturbative au-
tour du champ moyen turbulent ; des solutions en termes de structures à différentes échelles turbulentes sont trouvées.

Mots clés : bandes turbulentes, transition sous-critique, optimisation non-linéaire, écoulement turbulent, structures
cohérentes, système dynamique.

Abstract : This thesis aims at studying the main mechanisms involved in transitional and turbulent channel flows. Con-
cerning the transitional channel flow, there is a range of Reynolds numbers for which turbulent oblique bands plunged in
the laminar flow are observed. In this thesis, the main mechanisms involved in the origin and growth of these turbulent
bands are investigated using linear and nonlinear optimization techniques. First, in a large-sized channel, it is shown
that the minimal-energy perturbation able to generate turbulent bands has a spot-like structure characterized by small-
and large-scale structures. Depending on the Reynolds number, this minimal seed evolves in time with two different
mechanisms: for Re . 1200 an isolated oblique band is created; whereas, for Re & 1200, a quasi spanwise-symmetric
evolution is observed, giving rise to two distinct bands. Then, reducing the problem complexity to a tilted domain, it
is found that two main elements are necessary to induce transition towards turbulent bands: i) a linear energy growth
mechanism such as the lift-up for generating streaks inside the turbulent bands; ii) large-scale vortices ensuring spatial
localisation.
In the last part of this thesis, in order to investigate the coherent structures usually observed in turbulent flows, the
nonlinear optimization technique is extended to the turbulent channel flow and a ’new’ mathematical framework for
the computation of statistically-invariant coherent solutions is proposed. In both techniques, the unsteady Reynolds-
Averaged Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow are used and
solutions with structures at multiple turbulent scales are found.

Keywords: turbulent bands, subcritical transition, nonlinear optimization, turbulent flows, coherent structure, dynam-
ical system.
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