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Abstract

Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become

widely used sources for applications such as gas spectroscopy, free-space communications

or optical countermeasures. Applying external perturbations such as optical feedback or

optical injection leads to a strong modification of the quantum cascade laser properties.

Optical feedback impacts the static properties of mid-infrared Fabry-Perot and distributed

feedback quantum cascade lasers, inducing power increase, threshold reduction, modification

of the optical spectrum, which can become either single- or multimode, and enhanced beam

quality of broad-area transverse multimode lasers. It also leads to a di�erent dynamical be-

havior, and a quantum cascade laser subject to optical feedback can oscillate periodically or

even become chaotic: this work provides the very first analysis of optical instabilities in the

mid-infrared range. A numerical study of optical injection furthermore proves that quantum

cascade lasers can injection-lock over a few gigahertz, where they should experience enhanced

stability and especially improved modulation bandwidth. Furthermore, some promising dy-

namics appear outside the locking range with periodic oscillations at a tunable frequency

or high-intensity events. A quantum cascade laser under external control could therefore be

a source with enhanced properties for the usual mid-infrared applications, but could also

address new applications such as tunable photonic oscillators, extreme events generators,

chaotic LIDAR, chaos-based secured communications or unpredictable countermeasures.
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Résumé

Les lasers à cascade quantique émettant dans le moyen-infrarouge sont des lasers semi-

conducteurs unipolaires qui sont devenus des sources couramment utilisées pour des appli-

cations telles que la spectroscopie de gaz, les communications en espace libre ou les contre-

mesures optiques. Appliquer une perturbation externe, typiquement une contre-réaction

optique ou de l’injection optique, entraîne une forte modification des propriétés d’émission

du laser à cascade quantique. La contre-réaction optique influe sur les propriétés statiques

du laser Fabry-Perot ou à contre-réaction répartie, conduisant à une augmentation de la

puissance, à une diminution du seuil, à une modification du spectre optique qui peut devenir

monomode ou multimode, et à une amélioration de la qualité de faisceau dans les lasers

à ruban large fortement multimode transverses. Cela induit également un comportement

dynamique di�érent, et un laser à cascade quantique soumis à de la contre-réaction peut

osciller périodiquement ou même devenir chaotique : ce travail présente la toute première

observation d’instabilités optiques dans le moyen-infrarouge. De plus, une étude numérique

de l’injection optique montre que les lasers à cascade quantique peuvent se verrouiller op-

tiquement sur une plage de plusieurs gigahertz, sur laquelle leur stabilité devrait être accrue

et leur bande passante de modulation significativement augmentée. Une dynamique promet-

teuse apparaît également en dehors de la zone de verrouillage, avec l’apparition d’oscillations

périodiques à une fréquence accordable ainsi que des événements isolés de forte intensité. Un

laser à cascade quantique soumis à un contrôle externe peut donc être une source très perfor-

mante pour les applications moyen-infrarouges usuelles, mais pourrait aussi en adresser de

nouvelles, telles que des oscillateurs photoniques accordables, des générateurs d’événements

rares, des LIDAR chaotiques, des communications sécurisées par chaos ou des contre-mesures

imprévisibles.
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Foreword

Quantum cascade lasers are unipolar semiconductor lasers o�ering access to wavelengths

from the mid-infrared to the terahertz domain and promising impact on various applications

such as free-space communications, high-resolution spectroscopy, LIDAR remote sensing

or optical countermeasures. Unlike bipolar semiconductor lasers, stimulated emission in

quantum cascade lasers is obtained via electronic transitions between discrete energy states

inside the conduction band. Recent technological progress has led to quantum cascade lasers

operating in pulsed or continuous-wave mode, at room temperature in single- or multi-mode

operation, with high powers up to a few watts for mid-infrared devices.

Mid-infrared applications require sources with extremely high performances, in terms

of output power, modulation bandwidth, single-mode emission or narrow linewidth. In in-

terband laser diodes, these properties can usually be significantly improved using external

control, either optical injection or optical feedback. The former consists in injecting the light

emitted by a first master laser into a second slave laser, whereas in the latter configuration,

the light from a single laser is reinjected in its own active region. In the case of optical feed-

back, depending on the external cavity length and the feedback ratio, i.e. the ratio between

reinjected and emitted light, the emission characteristics can either be greatly improved or

significantly deteriorated. The dynamical behavior of the laser will also be impacted, leading

to stable, periodic or chaotic emission. Furthermore, optical feedback can reduce the complex

spatial nonlinearities occurring in broad-area lasers, such as beam steering or filamentation.

The carrier lifetime of quantum cascade lasers is three orders of magnitude faster than in

interband lasers, and the –-factor is expected to be much smaller, the dynamical response

of these structures to optical feedback would therefore be di�erent from that of laser diodes.

However, this phenomenon has almost never been studied in quantum cascade lasers, and
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it is worth verifying whether optical feedback can improve the emission properties of such

devices. Furthermore, since parasitic optical feedback may arise from the experimental

setups, it is also of prime importance to see whether a quantum cascade laser can destabilize

and eventually become chaotic when subjected to this e�ect. Finally, optical injection might

be able to improve the laser properties much more than optical feedback.

Therefore, the objective of this thesis is to study the nonlinear dynamics of quantum

cascade lasers subject to optical feedback or optical injection. This work is a collaboration

between Télécom ParisTech, mirSense and the Direction Générale de l’Armement (DGA),

to make the most of the expertise of each structure.
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Chapter 1

Introduction

This introduction chapter will present the general context of this study, i.e. the applications

at mid-infrared wavelengths and the existing sources. The organization of the dissertation

will furthermore be described.

1.1 The need for mid-infrared sources

Band 1 Band 2 Band 3

Figure 1.1: Atmospheric optical windows.

The atmosphere is transparent in three ranges of wavelengths, as depicted in Figure 1.1:

from 400 nm to about 2.5 µm, i.e. in the visible and near-infrared range, and in the mid-

infrared (IR), from 3 to 5 µm and from 8 to 14 µm. Many light sources exist in the first

atmospheric window, but some applications are optimized at mid-infrared wavelengths, hence

the need to develop sources in this wavelength range.
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1.1.1 Applications at mid-infrared wavelengths

The very first application in the mid-IR range is molecular spectroscopy. Due to their

vibrations in the medium, most molecules will absorb light at one specific wavelength, that is

a characteristic of the molecule. The presence of a given molecule can therefore be measured

by illuminating the medium and detecting either directly the optical transmission spectrum,

showing absorption peaks at the molecule vibrational frequencies, or through photo-acoustic

detection, consisting in measuring with loudspeakers the vibration frequency of the molecule,

which will be modified due to heating in case of absorption of optical light [1]. Furthermore,

the amplitude of the absorption peak or of the acoustic signal is directly related to the

quantity of the specific molecule in the studied medium, and molecular spectroscopy can

be used to monitor toxic or polluting gases for industrial control, to detect explosives or

drugs for safety applications or to monitor glucose in blood in the medical domain. The

fundamental vibrational mode of most of these molecules of interest is located in the mid-IR

range, as shown in Figure 7.2. It is therefore strategic to illuminate the medium in this range

of wavelengths, instead of using the harmonics in the near-IR, where the spectroscopy would

be 2 to 3 orders of magnitude less e�cient.

Figure 1.2: Absorption wavelength of a few molecules of interest.

Another important application at mid-IR wavelength is free-space optical communica-

tions [2]. Communications networks need to transport always more information at higher

bit-rate. In order to increase the bit-rate, increasing the carrier frequency is a good solution:

radio frequency (RF) communications shifted from the 3 - 30 GHz range (microwaves) to

the 30 - 300 GHz range (millimeter waves), and it seems logical to shift to optical wave-
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lengths to achieve even higher carrier frequencies. Free-space optical communications are

being developed for military purposes, since the RF network is saturated and directional

laser beams would be harder to intercept than RF waves. However, one can also imagine

free-space optical communications for general public applications as a complement to the

optical fibers, which are expensive to install and repair, and are on the verge of becoming

saturated. Furthermore, free-space optical communications would be a solution to ensure

high bit-rate down to the end user, instead of using WIFI shared by many users for the

last few meters. The principle of operation of free-space optical communications is similar

to fibered communications: the laser carrier is modulated and propagates through the at-

mosphere. Afterwards, the signal is collected on a photodetector and processed to retrieve

the information. However, atmospheric turbulence on the propagation path will significantly

deteriorate the optical signal causing e.g. beam spreading, beam wandering, scintillation or

loss of spatial coherence. In this case, the scintillation will be the predominant phenomenon,

corresponding to intensity fluctuations of the propagated beam. This e�ect evolves as a

function of ⁄≠7/6, it will therefore be less significant at higher wavelength [2], hence the

advantage of mid-IR waves for free-space optical communications.

a) b) c)

Figure 1.3: Scenario of optical countermeasure. a) A missile is detected while tracking the plane
heat signature. b) A strong mid-infrared signal is sent from the plane to jam the missile. c) The
missile trajectory is deviated.

Finally, the third main application for mid-IR sources are optical countermeasures. Mis-
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siles with infrared-based guiding systems, that identify and follow their target based on its

heat signature, have caused many casualties to both military and civil aircrafts. Depending

on the technology, these missiles will operate in the 0.5 - 2.5 µm range to follow very hot

sources such as airplane nozzles, in the 3 - 5 µm range to follow targets emitting between

300 and 1000 K, or in the 8 - 14 µm range to follow cold sources such as naval vessels. Two

solutions exist to counter these threats from the airplane: they can be decoyed by sending

objects with a heat signature close to the airplane, or they can be jammed, i.e. they can be

blinded by a powerful modulated mid-IR beam, as shown in Figure 7.3. For this application,

it is therefore necessary to use a compact, low-consumption, powerful mid-IR source that

can be loaded on the airplane.

1.1.2 Available mid-infrared sources

Di�erent sorts of mid-IR sources have been developed to be exploited in the aforementioned

applications, as presented in Figure 1.4.

Figure 1.4: Main infrared sources and their emission range.

Mid-IR gas lasers are often used in the manufacturing industry for their high output

powers. For instance, CO2 lasers [3] can emit over 100 W in continuous-wave operation

in the range between 9.6 and 10.6 µm, with electrical to optical conversion e�ciency over

20%. Similarly, CO lasers produce high energies in the range 5 to 8 µm when operated on
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the fundamental roto-vibrational mode and in the range 2.5 to 4 µm on the first harmonic.

However, these devices are cumbersome, especially due to their cooling systems.

�2(ω)

�2(ω)

ω1
ω2

ω3

ωp
ωs

ωi

a)

b)

Figure 1.5: a) Di�erence frequency generation, with Ê3 = Ê1≠Ê2. b) Optical parametric oscillator,
with Ê

s

= Ê

p

≠ Ê

i

.

By exploiting the second order nonlinearities of some crystals, mid-IR optical waves can

be also obtained from waves at visible or near-IR wavelengths. Two nonlinear e�ects can

be used: di�erence frequency generation in crystals such as LiNbO3 converts two waves at

angular frequencies Ê1 and Ê2 in a single wave at frequency Ê3 = Ê1 ≠ Ê2 (see Figure 1.5 a

and [4]). On the other hand, one can also obtain a signal wave at Ê
s

and an idler wave at Ê
i

from a single pump wave at Ê
p

, with Ê
s

= Ê
p

≠ Ê
i

(see Figure 1.5 b). This is the principle of

optical parametric oscillators (OPOs), based on crystals such as periodically poled lithium

niobate (PPLN) [5]. In these crystals, the orientation of the lithium niobate is alternatively

switched, in order to ensure quasi-phase matching: all photons will propagate with the same

phase and constructive interferences will therefore appear in the crystal, leading to strong

optical powers at the output. Furthermore, the period of the PPLN crystal will determine the

emission wavelength, and strong tunability can be achieved with OPOs by using multi-period

PPLN crystals. These mid-IR sources based on nonlinear crystals are performant and can

operate easily at room temperature, but the need for optical pumping leads to cumbersome

devices, and the alignment of the crystal is very sensitive, di�culties may therefore appear

when using OPOs outside of the lab.
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Another type of mid-IR laser source are lead-salt lasers. These semiconductor lasers

based on PbSe, PbTe or PnS have a direct bandgap, but the transition does not occur

at the � point (i.e. at the center of the Brillouin zone), but at one of the four L points,

corresponding to o�-centered band minima. Furthermore, the e�ective mass of the electrons

and holes are similar, and there are therefore only few Auger recombinations, leading to a

possible population inversion and laser e�ect. The achievable wavelength ranges from 3 to

30 µm depending on the addition of Cd, Sn, Eu or Yb [6, 7]. These lasers emit typically

a few hundreds of µW, but continuous-wave operation can only be reached at cryogenic

temperatures, which is not practical. Furthermore the performances of such devices are

strongly unstable with a small temperature fluctuation.

Antimony-based semiconductor lasers can also emit up to 4 µm, for instance AlGaIn/AsSb

below 3 µm [8] or GaInSb/InAs between 3 and 4 µm [9]. There are however no solutions

based on antimony to reach longer wavelengths, and these sources do not deliver very high

powers.

Figure 1.6: Schematic of the first ICL (courtesy of [10]).

To improve the performances of the mid-IR laser diodes, in particular those based on

antimony, a cascading design has been proposed by Yang [11]. Interband cascade lasers

(ICLs) are constituted of a succession of interband active areas in order to increase the

wall-plug e�ciency of the device. The first realization of an ICL was performed by Lin et

al. [10], as shown in Figure 1.6. Since then, the performances of ICLs improved significantly
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and they have become suitable sources for spectroscopic applications [12]. However, these

structures are very complex to design, the achievable wavelengths remain limited and the

maximum output power is relatively low.

Finally, quantum cascade lasers (QCLs) are also based on a cascading structure, but

the optical transition occurs between two subbands of the conduction band, leading to

a large range of accessible wavelengths from 3 to 250 µm [13]. These performant de-

vices, that can emit up to a few watts at room-temperature with thermo-electrical cooling,

in continuous-wave or pulsed mode, have become privileged mid-IR sources for the three

previously-mentioned applications.

1.2 Organization of the dissertation

The principle of operation of the QCLs will be explained in the next chapter. Some theo-

retical elements will be given in order to fully understand these devices, and the importance

of the linewidth enhancement factor will be detailed. Furthermore, a specific QCL structure

providing both Fabry-Perot and distributed feedback lasers around 5.6 µm will be character-

ized both numerically to obtain the complete set of internal parameters and experimentally

to measure for instance the L-I-V characteristic curves, gain curves or optical spectra of

several devices.

Optical feedback will be described in the third chapter. This phenomenon consists in

reinjecting part of the emitted light back into the laser, it can be voluntary after reflection

on a mirror or parasitic when the reflection occurs on a fiber tip or on an optical component of

the experimental setup. Optical feedback has been widely studied in interband laser diodes,

where it can either improve or deteriorate the laser properties depending on the two main

parameters that are the external cavity length, or feedback delay, and the feedback ratio,

defined as the ratio between reinjected and emitted powers. An overview of the influence

of optical feedback on the static and dynamical properties of a laser diode will be given

in chapter three, including reduction of the laser threshold, increase of the output power,

modification of the optical spectra and of the laser linewidth and chaotic operation.

In order to improve the QCL performances in terms of linewidth or emitted power, optical
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feedback can turn out useful. On the other hand, it is important to know if parasitic optical

feedback can make a single-mode QCL multimode or chaotic. There have however been

very few studies on the impact of optical feedback on a mid-infrared QCL. Chapter four

proposes a detailed study of the static and dynamical properties of a QCL subject to optical

feedback, both experimentally and numerically, in comparison to the typical response of a

laser diode to this external perturbation. The amount of optical feedback originating from

a mid-infrared chalcogenide fiber is also estimated, in order to verify that fibered QCLs will

present satisfactory performances. In this chapter, the linewidth enhancement factor of a

mid-infrared QCL structure is furthermore derived from two measurement techniques based

on optical feedback.

In interband lasers, optical feedback can also significantly impact the emission proper-

ties of broad-area lasers, in terms of filamentation or mode control. However, broad-area

diode lasers have few applications and are not widely developed whereas in QCL structures,

broad-area devices will lead to high output powers, which is crucial for e.g. optical coun-

termeasures. The use of these broad-area QCLs remains limited because these lasers are

transverse multimode or subject to beam steering. In the fifth chapter, optical feedback is

applied on 40 µm-, 14 µm- or 32 µm-wide QCLs emitting around 4.6 µm, in order to suppress

the beam steering or to make a transverse multimode laser single-mode by modifying the

near-field mode pattern.

To go further, optical injection, consisting in injecting the light from a first laser, called

master laser, into a second laser, or slave laser, can be even more e�cient than optical

feedback to improve the slave laser performances. When the master and the slave frequencies

are identical, optical injection is similar to optical feedback, but with much higher injection

strength, hence a higher impact. The detuning, i.e. the frequency di�erence between master

and slave is also important and induces a more complex nonlinear response. The influence

of optical injection on a Fabry-Perot QCL emitting around 5.6 µm is studied theoretically

in chapter six.

Finally, the last chapter will draw the conclusions of this work and propose some per-

spectives for a future work.
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Chapter 2

Quantum cascade lasers: performant
mid-infrared sources

A superlattice is an artificial semiconductor material consisting of a large number of peri-

ods, with each time at least two layers of di�erent materials presenting di�erent gap energies

but similar lattice constants. Kazarinov and Suris [14] predicted in 1971 the possibility for

a semiconductor superlattice to amplify light using intersubband transitions. However, the

first quantum cascade lasers (QCLs) were reported by Faist et al [15] only in 1994, after

significant improvement of the epitaxial growth and development of molecular beam epi-

taxy (MBE) and metal-organic chemical vapor deposition (MOCVD). After this first QCL

in AlInAs/GaInAs emitting up to 8.5 mW peak power around 4.6 µm, in pulsed mode and

at 88 K, this technology rapidly developed. Mid-infrared QCLs now exist in several III-V

semiconductors, they can operate both in pulsed and continuous-wave (CW) mode, at room-

temperature in single- or multi-mode regime, with high powers up to a few watts [16, 17, 18].

QCLs emitting in the terahertz (THz) have also been realized [20], i.e. in the wavelength

range from 30 µm to 1 mm, although they do not operate at room-temperature yet, be-

cause of the appearance of thermal relaxation mechanisms between upper and lower laser

levels through optical phonons preventing from population inversion when increasing the

temperature. Some solutions exist to operate THz QCLs at room temperature, such as the

application of a strong magnetic field above 16 T, in order to suppress the inter-Landau-level

non-radiative scattering [21]. Another technique based on di�erence frequency generation in

a mid-IR QCL to obtain room-temperature monolithic THz devices has been proposed [22]

and has led to the best output power performances at these wavelengths.
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Figure 2.1: QCL performances reported in the literature, as a function of wavelength and oper-
ating temperature (courtesy of [19]).

Figure 2.1 presents the QCL performances reported in the literature, over the mid-

infrared and THz ranges from 3 to 250 µm and their operating temperature. The graph

shows the existence of a wavelength range from 28 to 50 µm where no QCLs were real-

ized: it corresponds to the Restrahlen band, where the III-V materials are absorbant due

to optical phonon absorption. In the following, we will focus on mid-infrared QCLs, since

room-temperature operation is more convenient for experimental work.

This chapter will present the principle of operation and theory of QCLs. The –-factor,

key parameter of semiconductor lasers but not well-known in QCLs, will then be defined,

before studying in details a specific QCL structure, from which both Fabry-Perot (FP) and

distributed feedback (DFB) devices emitting around 5.6 µm were fabricated.

2.1 Principle of operation

In interband laser diodes, the laser transition occurs between the conduction band and the

valence band of the semiconductor material, and the laser frequency ‹ is determined by the

energy gap E
g

between these two bands, with the relation E
g

Æ h‹ Æ F
c

≠F
v

, with F
c

and F
v

the quasi-Fermi levels associated with the conduction and valence bands, respectively. The

laser diode wavelengths are therefore limited below 2 µm, because the energy gaps of the III-
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V materials are in this range. On the other hand, QCL operation is based on intersubband

transitions within the conduction band of the III-V semiconductor, as shown in Figure 7.1.

Therefore, the emission wavelength is no longer limited by the gap of the material but by

the energy spacing between the subbands, which is determined by quantum engineering of

the active area. The only limitation in wavelength is the thickness of the quantum well

where the laser transition takes place, which rules the spacing between the subbands: if

the quantum well is too narrow, the upper subband will be too close to the continuum, the

electron will no longer be confined and no photon will be emitted. There are therefore no

QCLs emitting below 3 µm at room temperature, and the ones emitting between 3 and 4 µm

are mostly based on newly developed structures containing antimony [23]. On the contrary, if

the quantum well is too wide, the subbands will be very close from one another and thermal

relaxation will compete with the radiative transitions, hence limiting the operation of THz

QCLs to cryogenic temperatures.

A cascading e�ect is added to the structure in order to improve the e�ciency, as shown

in Figure 7.1. Each electron will cascade through several active regions and will each time

produce a photon. A QCL is typically constituted of 20 to 40 periods and the electrons

transfer from one active region to the other through tunneling e�ect.

!"#$%&'("#)*+#$

,+-.#&.)*+#$

/+#$0+1

!"#$%&'("#)*+#$

!+2&+$.).33.&'
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EV
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Figure 2.2: Intersubband transitions and cascade e�ect.

As shown in Figure 2.3, the actual design of a QCL structure is much more complex

than previously described. The laser transition indeed occurs in a multi-quantum well active

region that is a 3-level laser [24]: the photon is emitted during the transition from an upper
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level |3Í to a lower level |2Í. Then the electron relaxes through an optical phonon in level |1Í,

from which it will tunnel into a injector region, i.e. a succession of narrow quantum wells

called minibands that will lead the electron to the upper level |3Í of the next active region.

Figure 2.3: Schematic of a QCL structure, including the wave funtions in the active area (courtesy
of [24]).

2.2 Theory

2.2.1 Heterostructure

The active region of a QCL is a heterostructure, which allows to confine the electrons along

the growth direction. This one-direction confinement leads to discrete energy levels. In

the slowly varying envelope approximation, the eigenstates of the heterostructure can be

expressed as [25]:

Â(r) =
ÿ

m

Ï
m

(r)u
m,k=0(r) (2.1)

where m is one of the band taken into account for the calculation, u
m,k=0(r) is the Bloch

function and Ï
m

(r) is a slowly varying envelope. The Bloch functions are assumed to be
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similar in all the layers of the heterostructure. Therefore, due to the translation invariance

in the plane of the layers:

Ï
m

(r) = 1Ô
A

eikÎrÎ‰
m

(z) (2.2)

with A the area of the laser, kÎrÎ = k
x

x + k
y

y and ‰
m

an envelope function for the band m.

The conduction band component ‰
c

(z) of this equation has to satisfy the Schrödinger-like

equation [26]: C

≠~2

2
d

dz

A
1

mú(E, z)
d

dz

B

+ E
c

(z)
D

‰
c

(z) = E‰
c

(z) (2.3)

where mú(E) = mú(E
c

)
Ë
1 + E≠E

c

E

G

È
is the e�ective mass, that is a function of the energy to

express the band non-parabolicity.

When assuming kÎ = 0 and a constant e�ective mass m
eff

, ie. parabolic bands, the

energies E
k

of the band k are given by:

E
k

=
A

~2fi2

2m
eff

l2

B

k2 (2.4)

with l the quantum well width. The energy of the produced photon E
phot

= h‹, ‹ being

the frequency, corresponds to the energy di�erence between two consecutive subbands of the

conduction band. For instance, for k = 2:

E
phot

= E2 ≠ E1 = 3~2fi2

2m
eff

l2 (2.5)

2.2.2 Spontaneous emission and material gain calculation

The electromagnetic wave at frequency ‹ will interact with the two subbands i and f of the

conduction band. The stimulated emission rate W st

iæf

can be expressed as a function of the

spontaneous emission rate W sp

iæf

as [27]:

1
· st

if

= W st

iæf

= W sp

iæf

3c2

8fih‹3n2 E(‹) (2.6)

where c is the light velocity, E(‹) the energy density of the wave at frequency ‹ and n the

refractive index.
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Figure 2.4: Comparison between interband laser (a) and QCL (b). The upper curves represent
the place where the lasing transition takes place, and the lower ones show the energy density E(‹).

The energy density can be written as E(‹) = L(‹)I(‹) with I(‹) the light intensity

propagating in the structure and L(‹) the lineshape function of the energy, corresponding

to the width of the energy level due to the electron lifetime. In a QCL, the broadening

of the energy level is homogeneous, and L(‹) has the shape of a lorentzian, as shown in

Figure 2.4 b:

L(‹) = 2
fi

“
if

(‹ ≠ ‹0)2 + “2
if

(2.7)

The optical power can be expressed both as a function of the electron density multiplied

by the photon energy and as the product between the material gain and the intensity,

following Beer-Lambert’s law. Therefore:

P
opt

= (N
i

W st

iæf

≠ N
f

W st

fæi

)h‹ = �NW st

iæf

h‹ = g(‹)I(‹) (2.8)

with N
i

and N
f

the carrier density of levels i and f , �N = N
i

≠ N
f

.
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This lead to the following expression for the material gain:

g(‹) = W sp

iæf

3c2

8fi‹2n2 �NL(‹) (2.9)

Furthermore, the rate of spontaneous emission can be expressed by applying Fermi’s

golden rule to the electric dipole hamiltonian H
DE

= ≠qE · r [26]:

1
·

sp

= W sp

iæf

= q2n

3fic3‘0~4 (h‹)3|z
if

|2 (2.10)

where q is the elementary electron charge, ‘0 the vacuum permittivity and |z
if

| the dipole

matrix element, which is inversely proportional to ‹ [26, 13]. Therefore, the material gain is

directly proportional to L(‹) and can be written as:

g(‹) = 2fi2q2

‘0nhc
‹|z

if

|2�NL(‹) (2.11)

The gain of a QCL has therefore the shape of a lorentzian, centered around a value ‹0

that depends on the active region materials and on the dimensions of the quantum wells.

2.2.3 QCL rate equations

In a QCL, each active region is a 3-level laser. Assuming that all active regions are identical,

the rate equations for carriers and photons in active region j can be expressed as [28]:

dN j

3
dt

= ÷
Ij

in

q
≠ N j

3
·32

≠ N j

3
·31

≠ G0�N jSj (2.12)

dN j

2
dt

= N j

3
·32

≠ N j

2
·21

+ G0�N jSj (2.13)

dN j

1
dt

= N j

3
·31

+ N j

2
·21

≠ Ij

out

q
(2.14)

dSj

dt
=

A

G0�N j ≠ 1
·

p

B

Sj + —
N j

3
·

sp

(2.15)

where N j

k

is the carrier density of level k, �N j = N j

3 ≠N j

2 . Ij is the bias current entering the

active region j. ÷ is the conversion e�ciency, ·
kl

corresponds to the carrier lifetime from level
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k to level l, ·
sp

is the spontaneous emission lifetime, ·
p

is the photon lifetime inside the laser

cavity and — the spontaneous emission factor, which represents the fraction of spontaneous

emission coupled into the lasing mode. G0 corresponds to the net modal gain over one period

normalized by the group velocity v
g

, expressed in s≠1, and can be defined as [28]:

G0 = �
opt

v
g

g

�N jA
(2.16)

with �
opt

the confinement factor, v
g

the group velocity, g the gain in cm≠1 and A the area of

the laser cavity. Let us stress that the rate equations 2.12 to 2.15 correspond to the single-

mode scenario. In case of multimode operation, the photon rate equation for each mode can

be obtained by adding to the single-mode photon density a term S
m

, corresponding to the

photon population for the mth longitudinal mode oscillating at the frequency Ê
m

[29].

In eq. 2.12 to 2.15, the electron will escape from level N j

1 to enter level N j+1
3 . Therefore:

Ij

out

q
= N j

1
·

out

(2.17)

Ij

in

q
= N j≠1

1
·

out

(2.18)

where ·
out

is the characteristic time for the electron to tunnel into the injector.

This complete QCL model leads to complicated resolution, since 4◊N
pd

have to be taken

into account, with N
pd

the number of periods. Therefore, the QCL is often considered as a

global virtual 3-level system ruled by:

dN3
dt

= ÷
I

q
≠ N3

·32
≠ N3

·31
≠ G0�NS (2.19)

dN2
dt

= N3
·32

≠ N2
·21

+ G0�NS (2.20)

dN1
dt

= N3
·31

+ N2
·21

≠ N1
·

out

(2.21)

dS

dt
=

A

N
pd

G0�N ≠ 1
·

p

B

S + —
N3
·

sp

(2.22)
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Figure 2.5: Comparison between complete set of equations in green, and simplified model in red
(courtesy of [28]).

This simplified model is most of the time su�cient and gives accurate results, as shown

in Figure 2.5. However, for some calculations such as small-signal analysis, it is better

to consider the full model, since key parameters such as the time for the electrons to pass

through the successive active regions and injectors are not taken into account in the simplified

model.

2.2.4 QCL modulation response

A small-signal analysis of the QCL is realized, by considering small variations around the

steady-state values N j

i

= N j

i,st

+ ”N j, where i = 1, 2, 3 and j the period number, and

S = S
st

+ ”S. Under external perturbation I = I0 + ”i, using the full set of rate equations,

the modulation response of a QCL can be written as [30]:

H(jÊ) = Ê2
r

Ê2
r

≠ Ê2 + jÊ� (2.23)
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with:

Ê2
r

=
1

·

p

·

st

1
1 + ·21

·31

2

1 + ·21
·31

+ ·21
·32

+ ·

in

·3
+ ·21

·

st

1
2 + ·

in

·3

2 (2.24)

� =
1

·

st

1
1 + ·21

·31

2
+ 1

·31
+ 1

·32
+ ·21

·

p

·

st

1
2 + ·

in

·3

2

1 + ·21
·31

+ ·21
·32

+ ·

in

·3
+ ·21

·

st

1
2 + ·

in

·3

2 (2.25)

where 1/·3 = 1/·31 + 1/·32, ·
in

is the characteristic time for the electron to tunnel from the

injector into the upper level and ·
st

is the di�erential lifetime associated with stimulated and

spontaneous photon emission [30].

Figure 2.6: a) Numerical modulation response (courtesy of [30]). b) Experimental modulation
response (courtesy of [31]).

The eigenvalues that drive the damping of perturbations applied to the laser steady-states

can be written as:

f± = ≠� ±
Ò

�2 ≠ f 2
r

(2.26)

where f
r

= Ê
r

/2fi is a characteristic frequency, typically called relaxation oscillation fre-

quency in interband lasers, and � is the damping rate, which is much higher than the

characteristic frequency in a QCL. The eigenvalues are therefore real since the term un-
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der the square root remains always positive. Hence, no relaxation oscillations appear on

the modulation response of a QCL, both numerically and experimentally [31], as shown in

Figure 2.6.

2.3 Linewidth enhancement factor

2.3.1 Definition

Also called linewidth broadening factor or –-factor, the linewidth enhancement factor (LEF)

is an important parameter for semiconductor lasers. It quantifies the coupling between the

real and imaginary parts of the nonlinear susceptibility, i.e. between the di�erential gain

and the refractive index, or equivalently the coupling between the amplitude and the phase

of the electric field in the laser cavity.

– = ≠d [Ÿ(‰(N))] /dN

d [⁄(‰(N))] /dN
= ≠4fi

⁄

dn/dN

dg/dN
… d„/dt

dI/dt
= –

2I
(2.27)

The –-factor quantifies the minimum linewidth that can be achieved for a semiconductor

laser: compared to the intrinsic linewidth limit defined by Schawlow and Townes [32], the

limit linewidth for a semiconductor laser is broadened by a factor (1 + –2), hence the name

given to this parameter. It was first introduced simultaneously in May 1967 by Lax [33] and

Haug and Haken [34]. Using either a classical approach based on density matrix calculations

or a semi-classical approach based on quantum mechanics, they both introduced a term

(1 + –2) in the theoretical expression of the noise-induced phase fluctuations, that also

appears in the linewidth expression. However, the former did not further exploit the obtained

linewidth expression, whereas the latter assumed that the LEF was very small compared to 1

and neglected it. In 1982, Henry [35] reintroduced the –-factor and compared his theoretical

linewidth expression with several experimental linewidth measurements, resulting in LEF

values around 2 to 5 for interband semiconductor lasers.

The –-factor also impacts many important aspects of the semiconductor lasers, such as

brightness, modulation properties or filamentation in broad-area semiconductor lasers [36].

Furthermore the LEF significantly influences the nonlinear dynamics of a semiconductor
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laser subject to optical injection or optical feedback, and nonlinear dynamics can only be

observed in lasers for which – > 0 [37].

2.3.2 Measurements methods

As seen in the previous paragraph, the –-factor can be retrieved directly from linewidth

measurements. However, this method can be complex to implement, and other measurements

techniques have been proposed.

The most common method to measure the linewidth broadening factor was developed

by Hakki and Paoli [38] and Henning [39]. It is based on the analysis of the sub-threshold

spontaneous emission spectrum, as illustrated in Figure 2.7. The gain and wavelength evo-

lution of this amplified spontaneous emission spectrum with the bias current directly gives

the –-factor since:
d⁄

⁄
= dn

n
(2.28)

For this method, one must however be careful to consider solely the wavelength shift

due to the carrier density evolution and not that due to the heating of the structure when

increasing the bias current even below threshold.

Figure 2.7: Illustration of the Hakki-Paoli method for a quantum dot laser. a) Gain shift as a
function of the sub-threshold bias current. b) Deduced –-factor. (Courtesy of [40]).

However, studies have shown that, above threshold, some additional e�ects such as gain

compression significantly impact the –-factor. For instance, LEF values between 0.1 and 0.7

have been reported in InAs quantum-dot lasers far below threshold, before the appearance
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of gain saturation [41]. Therefore, several other methods have been developed to measure

the above-threshold, room-temperature linewidth broadening factor [42]. For instance, it

can be retrieved from the FM-AM ratio of the laser under modulation, as illustrated by

Figure 2.8 a. At high modulation frequency f
m

∫ f
c

, where f
c

is the corner frequency, by

defining — and m the modulation indices in frequency and amplitude, respectively, the 2—/m

coe�cient reaches a plateau where:

2—

m
= –

ı̂ıÙ1 +
A

f
c

f
m

B2

æ – (2.29)

a) b)

Figure 2.8: a) Measurement of the –-factor using FM-AM ratio (courtesy of [42]). b) Minimum
of the Hopf bifurcation of a laser under optical injection, giving a LEF of 3.2 (courtesy of [43]).

As shown in Figure 2.8 b, the LEF can also be retrieved from the minimum point of the

Hopf bifurcation Ê
min

of the semiconductor laser under optical injection, i.e. the limit curve

between stable and unstable locking, since [43]:

Ê
min

¥ ≠
Û

(–2 ≠ 1)3

32–2 (2.30)

This method gives an e�ective –-factor, which value depends on the operating conditions of

the device. However, in the limit case where the laser is operated just above threshold, this

e�ective LEF should be equal to the material LEF obtained with other techniques.

Recently, a new technique has been proposed by Wang et al. [44], also based on optical

injection. By injecting far from the maximum gain mode of a Fabry-Perot laser, and studying

23



the evolution of the residual side-mode under stable injection locking when modifying the

master laser frequency, the –-factor can be retrieved from the expression:

– = ≠ 2fi

L”⁄

d⁄/d⁄
m

dG
net

/d⁄
m

(2.31)

where ⁄
m

is the master laser wavelength. Although the measurements are performed above

threshold, this method is insensitive to thermal e�ects, bias current or choice of injection-

locked mode and gives the material sub-threshold –-factor.

Typically, the LEF values reported for quantum well lasers range from 1 to 3, whereas

for more complex structures, such as quantum dot lasers, the –-factor is higher, between 3

and 10 [45]. A record value as high as – = 57 in InAs quantum dot lasers emitting both on

ground state and excited state has even been reported [46].

2.3.3 –-factor of QCLs

An estimation of the –-factor can be obtained based on the gain asymmetry. As shown

previously, the gain of a QCL has the shape of a lorentzian and is almost symmetrical (see

Figure 2.9), the linewidth broadening factor of a QCL was therefore expected to be almost

zero.

Figure 2.9: Experimental gain curve of a QCL, showing good symmetry (courtesy of [47]).

Based on the lorentzian lineshape of the QCLs, another theoretical expression can be
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deduced from the linewidth equation [13]:

–
QCL

(‹) = ≠
A

‹ ≠ ‹32
“32

B

(2.32)

with ‹32 the center frequency of the gain spectrum and “32 its half-width at half-maximum.

This expression leads to a theoretical zero linewidth broadening factor at the center fre-

quency, and to very small values around the peak for DFB QCLs.

Typically for mid-infrared QCLs, the measured sub-threshold –-factor using this Hakki-

Paoli technique varies between ≠0.6 and 0.3 [47, 48, 49]. This value is low, but definitely

non-zero. It is also important to point out, that most of these measurements were performed

at cryogenic temperature. When increasing the temperature up to 300 K, thermal agitation

of phonons will lead to broader linewidth, and hence to higher linewidth broadening factor

values.

Furthermore, the spatial hole burning is very large in QCLs compared to laser diodes [50]

and the above-threshold –-factor is expected to be significantly di�erent from that measured

below threshold. There are very few reports of above-threshold linewidth broadening factor

measurements at room temperature for a mid-infrared QCL. Using the fit of the L-I curves

while controlling the internal laser temperature, Hangauer et al. [51] reported values between

0.167 and 0.483 close to threshold. Moreover, von Staden et al. [52] deduced the –-factor from

the self-mixing interferometers and obtained values between 0.26 and 2.4, strongly increasing

with the bias current. One measurement of the FM-AM ratio using optical heterodyning led

to –-factor values of 0.02 ± 0.2 at 243 K [53]. This measurement has the advantage at high

frequency to be independent of the thermal e�ects, but it might lead to some issues when

considering structures with complex carrier dynamics, such as quantum dot lasers or QCLs.

It would be interesting to apply techniques such as optical injection far from the maximum

gain mode to measure the LEF of a QCL, to obtain temperature independent values.
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2.4 Detailed study of a QCL design

In this thesis, we will focus mainly on a specific QCL structure that produced performant

lasers, both Fabry-Perot and DFB, emitting around 5.6 µm.

2.4.1 Fabrication of QCL devices

The active area follows a custom design inspired by [54] and consists of 30 periods of AlI-

nAs/GaInAs grown by molecular beam epitaxy on a low-doped (1017 cm-3) InP cladding.

The upper InP cladding is then grown by metal organic chemical vapor epitaxy. In the

case of the DFB QCL, the upper cladding was designed following [55] to enable single-mode

emission. A top metal grating was added, with a coupling e�ciency of Ÿ ¥ 4 cm-1, leading

to a ŸL is close to unity. Contrary to buried gratings or conventional top gratings with a

highly doped dielectric layer between the cladding and the grating, which are based on gain-

guiding, this technology is based on index-guiding. The modulation of the refractive index

originates from the coupling between the guided modes in the active region and the surface

mode, also called plasmon-polariton, which is confined at the interface between metal and

upper cladding, two materials with permittivities of opposite signs [27].

Figure 2.10: a) Schematic and b) SEM picture of the DBF QCL under study. The active region,
labeled ’AR’ in a), appears in b) in lighter gray.

The wafer is then processed using double-trench technology, in order to reduce the lateral
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current spreading in the device, and therefore to reduce the self-heating of the laser [56, 13].

To improve the performances, a high-reflectivity (HR) coating (R>95%) on the back facet

reduces mirror losses, while the front facet is leaved as cleaved (R = 0.3). Finally, for e�cient

heat extraction, the QCL is most of the time episide-down mounted with gold-tin soldering

on AlN submount. Figure 7.4 shows a schematic and a scanning electron microscopy (SEM)

picture of the DFB device under study.

2.4.2 QCL internal parameters
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Figure 2.11: a) Wave functions of the QCL structure under study, simulated with METIS. In
red, levels |3Í of two consecutive periods, in violet level |2Í, in blue level |1Í split into two phonon
states, in green injector state. b) Fondamental mode TM0 simulation using COMSOL. c) TM1
simulation.

Most internal parameters of the laser are properties of the active area design and can

be retrieved using a homemade heterostructure simulation software named METIS. It is

based on semi-classical Boltzmann-like equations with thermalized subbands and takes into

account coherent tunneling through the barrier, optical and acoustic longitudinal phonons,

absorption of photons, roughness scattering and spontaneous and stimulated emission. The

potential, energy states, wave functions and electronic scattering times can be calculated,

with very good agreement between simulation and experiment [57]. The active area design
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and wave-functions of the studied QCL are represented in Figure 7.6 a.

Furthermore, the repartition of the modes inside the QCL can be simulated using COM-

SOL, as shown in Figure 7.6 b and c, presenting the simulations of the fondamental mode

TM0 and first order mode TM1, respectively. The group refractive index and the confinement

factor can be retrieved.

All the simulated parameters of the specific structure under study are summarized in

Table 7.1. The missing values are the conversion e�ciency ÷, ratio between the optical and

electrical powers, which depends on each device and will be retrieved from the L-I charac-

teristic curves, as well as the –-factor, which measurement will be developed later on.

Parameter Value Parameter Value
Carrier lifetime 3-2 ·32 2.27 ps Group index n

g

3.2
Carrier lifetime 3-1 ·31 2.30 ps Confinement factor �

opt

68%
Carrier lifetime 2-1 ·21 0.37 ps Net modal gain G0 1.2◊104 s-1

Carrier escape time ·
out

0.54 ps Photon lifetime ·
p

4.74 ps

Table 2.1: Laser parameters

2.4.3 Laser static properties

For the following experiments, it is necessary to know precisely the characteristics and per-

formances of the QCLs under study in free-running operation, i.e. without any external

perturbations. These lasers are based on the active region previously described.

The DFB QCLs are 2 mm long and 9 µm wide, there are epi-side down mounted with a

high-reflectivity coating on the back facet. The lasers can be operated both in continuous-

wave and pulsed mode. The L-I-V characteristic curves of such a QCL in continuous-wave

operation at 10¶, 20¶, 30¶ and 40¶C are represented in Figure 2.12 a. For instance, at 20¶C,

the laser threshold is at 421 mA (current density of J
th

= 2.34 kA/cm2), and 9.22 V and

the maximum emitted power is 140.4 mW, but these characteristics may slightly vary from

one laser to the other and depending on the current source and detection optics used in
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the experimental setup. The dip that appears sometimes in the L-I curves, for instance at

581 mA at 10¶C, is a measurement artifact due to the strong water absorption on the path

between laser and detector at this wavelength.

As shown in Figure 2.12 b, the DFB QCLs are perfectly single-mode all along the L-I

curve, and the wavelength red-shifts from 1769.5 cm≠1 (5.651 µm) to 1764.4 cm≠1 (5.668 µm)

when increasing the bias current. Finally, the far-field of the DFB QCL is drawn in Fig-

ure 2.12 c, presenting a relatively round beam. The full width at half maximum of the

far-field is 47¶ horizontally and 59¶ vertically.

Figure 2.12 d presents the electroluminescence spectra of the DFB QCL, measured in

pulsed mode, with a pulse length of 300 ns and a repetition rate of 100 kHz, using a lock-in

amplifier and sensitive mercury-cadmium-telluride (MCT) photodetector at cryogenic tem-

perature. The red curve corresponds to a measurement far below threshold, where the elec-

troluminescence spectrum follows the gain shape. It is centered around 1782 cm≠1 (5.61 µm)

and it full width at half maximum (FWHM) is 138 cm≠1 (FWHM = 44 µm expressed in

wavelength). Furthermore, it is worth noticing that the spectrum is not perfectly symmetri-

cal, which suggests a non-symmetrical gain, and hence a non-zero –-factor. The blue curve

was measured just below threshold. In this case, the electroluminescence spectrum is much

narrower, with a FWHM of 15 cm≠1 (FWHM = 5 µm in terms of wavelength), showing clear

gain saturation.

Several Fabry-Perot QCLs are used depending on the performances needed for the exper-

iments. One of them is epi-side up mounted and cleaved on both facets, with a 3 mm-long

and 6 µm-wide active region. The others are epi-side down mounted with a high-reflectivity

coating on the back facet, their dimensions are 3 mm ◊ 6 µm, 4 mm ◊ 6 µm and 4 mm

◊ 12 µm, respectively. The thermal management of the epi-up QCL is less e�cient, and

therefore the laser can only be operated in pulsed mode. Figure 2.12 e shows the L-I-V

curves of this laser at several temperatures. At 20¶C, with pulses of 300 ns and a repetition

rate of 100 kHz, the threshold is around 499 mA (J
th

= 2.77 kA/cm2) and 9.87 V, and the

maximum emitted power is around 13 mW. From the threshold measurements at di�erent
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Figure 2.12: a) L-I-V characteristic curves of a 2 mm◊ 9 µm epi-down DFB QCL operated in
continuous-wave at di�erent temperatures. b) Corresponding optical spectra at 20¶C for several
bias current, showing the wavelength red-shift with active area heating. c) Far-field of the DFB
QCL. d) Electroluminescence spectra of the DFB QCL far from threshold (in red) and just below
threshold (in blue). e) L-I-V characteristic curves of a 3 mm ◊ 6 µm epi-up FP QCL operated in
pulsed mode (100 kHz, 300 ns) at di�erent temperatures. f) Optical spectra of the same laser at
300 ns, 50 kHz and 15¶C for several bias current, showing the broadening of the FP spectrum.
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temperatures between 10¶C and 50¶C, the T0 of the laser can be extracted, with:

I(T ) = I0e
T/T0 (2.33)

For this structure, the extracted value is T0 = 184 K between 10¶C and 50¶C, which is of

the order of magnitude of the usual values in QCL structures [13]. The epi-down lasers have

better thermal management and can therefore achieve higher optical powers. The 3 mm ◊

6 µm QCL threshold is located at 591 mA (J
th

= 3.28 kA/cm2) and 9.50 V and the laser

emits up to 72 mW in continuous-wave mode at 20¶C. The 4 mm ◊ 6 µm QCL starts to lase

at 843 mA (J
th

= 3.51 kA/cm2) and 9.85 V and the laser emits up to 50 mW. Finally, the

4 mm ◊ 12 µm QCL has its threshold at 1.20 A (J
th

= 2.5 kA/cm2) and 8.87 V and can

emit up to 255 mW.

The optical spectra of the epi-up FP QCL at 15¶C, with pulses of 300 ns and a repetition

rate of 50 kHz, are represented in Figure 2.12 f for several bias currents, clearly showing the

broadening of the gain and hence of the FP spectrum when increasing the pump current. In

this case, the center frequency is around 1820 cm≠1 (5.45 µm), but it can vary depending

on the laser geometry.

2.4.4 QCL gain measurements

The gain of the QCL structure can be measured using the method proposed by Benveniste et

al. [58]. It consists in injecting the light emitted by a DFB QCL into a Fabry-Perot QCL

operated below threshold, as depicted in Figure 2.13. In our case, the DFB QCL is 2 mm

long and 9 µm wide and runs in continuous-wave, whereas the Fabry-Perot laser is 3 mm

long and 6 µm wide, cleaved on both facets and operated in pulsed mode.

FPMCT DFB

Figure 2.13: Experimental setup for the below threshold gain measurements.

The temporal chirp during the pulse will lead to the appearance of fringes in the optical
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power time traces, which can be fitted with Airy function when expressed as a function of the

chirp or refractive index variations, as shown in Figure 2.14 a. The gain of the Fabry-Perot

QCL can then be retrieved from:

G ≠ –
M

≠ –
ISB

≠ –
W

= 1
L

ln

A
k ≠ 1
k + 1

B

(2.34)

with L the laser length and k =
Ò

I
max

/I
min

, where I
max

and I
min

are two consecutive

maximum and minimum of the DFB optical power transmitted through the Fabry-Perot

laser. The mirror losses are –
M

= 4 cm≠1. The waveguide losses –
W

can be estimated by

studying the transverse electrical (TE) transmission of the DFB through the Fabry-Perot.

However, it was not possible in our setup to rotate the Fabry-Perot QCL, and the value was

taken at –
W

¥ 10 cm≠1, as measured in a previous work for a similar DFB QCL. However,

this value varies significantly from one device to the other, especially with the laser length,

and must therefore be considered carefully. Finally, the intersubband losses –
ISB

could be

extracted from a measurement far below threshold, where the gain is negligible. However,

no signal was detected at such a low bias current, and these losses could not be extracted for

this QCL. The evolution of G≠–
ISB

≠–
W

with the Fabry-Perot current density is presented

in Figure 2.14 b, when the DFB QCL is operated at 589 mA and 9.8 V.
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Figure 2.14: a) DFB transmitted intensity as a function of the FP refractive index, for a current
density in the Fabry-Perot laser of 3.35 kA/cm2. b) Fabry-Perot QCL modal gain evolution as a
function of the bias current below threshold, at constant DFB laser operating conditions 589 mA
and 9.8 V.
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The last point of Figure 2.14 b was measured just below threshold. However, at threshold

we expect G ≠ –
M

≠ –
ISB

≠ –
W

= 0, which is not the case in our measurement. This could

be explained by the existence of a shift between the maximum gain peak and the DFB

wavelength, leading to gain measurement that does not correspond to the maximum gain

equal to the total losses at threshold [58]. Indeed, from the electroluminescence spectrum

(Figure 2.12 d), we deduce that the laser hits the gain at about 92% of its maximum and we

expect a maximum gain of G
max

= 0.92 ◊ (–
m

+ –
W

+ –
ISB

), although it can not be verified

here.

2.4.5 Intensity noise measurements

For a given intensity emitted by the laser I
laser

(t) = I
laser

+ i(t), the linear relative intensity

noise (RIN) is defined as :

RIN = i2

I
laser

2 = ‡2
i laser

I
laser

2 (2.35)

where I
laser

is the average flux intensity and i(t) the temporal fluctuations of the emitted

signal, and ‡2
i laser

the variance of the laser noise, as described in Figure 2.15.

Intensity

Time t

Ilaser

!i laser
2

Figure 2.15: Definition of the RIN.

This laser noise originates mainly from the beating between stimulated and spontaneous
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emissions [59]. The existence of spontaneous emission indeed leads to photons with random

polarization, direction and phase, that will compete with the coherent light from stimulated

emission and generate noise.

A good knowledge of the RIN is important for spectroscopic applications. The signal to

noise ratio (SNR), quantifying the sensitivity of the detector, indeed depends on the detected

signal I
signal

, directly proportional to the flux intensity emitted by the laser I
laser

and on the

noise standard deviation, ‡
i total

, which takes into account all noises including laser noise,

background noise and detection noise (detector thermal and photon noise and preamplifier

noise):

SNR = I
signal

‡
i total

(2.36)

Therefore, the SNR depends on the RIN. In the case of optical spectroscopy, the detected

signal intensity is directly proportional to the light intensity emitted by the laser and to the

absorbance –
abs

, with I
signal

= –
abs

I
laser

. Therefore, the SNR can be expressed as:

SNR =
Û

t

RIN
–

abs

(2.37)

with t the integration time.

In this paragraph, the RIN of a DFB QCL is measured both in continuous-wave and

pulsed operation, in order to conclude whether the studied QCL structure can be used for

spectroscopic applications.

The RIN can be retrieved from the signal detected on a photodiode, here a MCT detector

operating at cryogenic temperature. After a preamplifier with a gain coe�cient V = 100,

the electrical signal is analyzed simultaneously on a real-time scope and on an electrical

spectrum analyzer (ESA). The average DC signal U
DC

is measured on the scope and the AC

signal corresponding to the mean value of the electrical spectrum at a given frequency ‹,

Sp(‹), is measured for a given resolution bandwidth B of the ESA, here 200 Hz. The center

frequency ‹ can be taken in the frequency range of the detector, by carefully avoiding the

range where the signal is dominated by the 1/f noise of the detector, in our case between
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10 kHz and 1 MHz. The RIN at a given frequency can be expressed as :

RIN(‹) = Sp(‹)R
ESA

U2
DC

BV
(2.38)

where R
ESA

is the input resistance of the ESA. The usual unity of a RIN is dB/Hz. The

uncertainty of the RIN obtained with this method is 2 dB/Hz, calculated over 10 measure-

ments.

The RIN of the DFB QCL operated in continuous-wave was measured at TU Darmstadt

with two di�erent sources : a commercial one, ILX, and a homemade low-noise battery. The

RIN at 400 kHz is plotted in Figure 2.16 as a function of the normalized pump parameter

a = I/I
th

≠1, showing an exponential decrease of the RIN when increasing the pump current,

with values ranging from ≠110 and ≠155 dB/Hz.
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Figure 2.16: Continuous-wave RIN values for two di�erent sources at 400 kHz.

The RIN of the laser using the ARMEXEL source at a repetition rate of 100 kHz is

measured under several operating conditions. In pulsed mode, the RIN does not decrease

exponentially with the bias current as in continuous-wave operation, but oscillates around

≠110 dB/Hz after a short decrease for low bias currents. Figure 2.17 a presents the RIN at

di�erent center frequencies within the detector range, showing little dependence of the RIN

with the measurement frequency. However, the study of the RIN evolution with the pulse

width at a fixed center frequency of 20 kHz shows that a longer pulse duration results in a
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Figure 2.17: a) ARMEXEL RIN evolution with current for 300 ns pulses at 100 kHz at several
measurement frequencies. b) ARMEXEL RIN evolution with current at a repetition rate of 100
kHz measured at 20 kHz for several pulse widths. c) PICOLAS RIN evolution with current for
300 ns pulses at 100 kHz at several measurement frequencies. d) PICOLAS RIN evolution with
current at a repetition rate of 100 kHz measured at 20 kHz for several pulse widths.

lower RIN (figure 2.17 b).

The RIN measurements are repeated with the PICOLAS source at a repetition rate

of 100 kHz. The RIN evolution with the bias current has the same tendency as with the

ARMEXEL source, and oscillates around the same value of -110 dB/Hz after a short decrease

for low bias currents. The study of the RIN at di�erent center frequencies (Figure 2.17 c)

shows that this source is optimized at higher frequency, with a RIN decreasing as the mea-

surement frequency increases. However, the RIN remains almost constant with the pulse

duration at a center frequency of 20 kHz (Figure 2.17 d).

The laser noise, characterized by the RIN, is therefore stronger in pulsed operation than

in continuous wave. The intensity fluctuations in pulsed mode originate from the temporal
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variations of the pulse duration and period, as well as from amplitude fluctuations between

two consecutive pulses.

The measured RIN values are higher than the typical ones for single-mode interband

laser diodes (around ≠160 dB/Hz, see [59]), but are consistent with other measurements

realized on QCLs [60]. Typical RIN values acceptable for spectroscopic applications are

below ≠150 dB/Hz. The QCL under study can therefore be used for spectroscopy easily in

continuous-wave, but also in pulsed mode by averaging over a longer acquisition time t, since

the key parameter remains the SNR, which is proportional to
Ô

t. This can be a drawback

for some applications, but several techniques can be implemented to improve the SNR, such

as matched filter, synchronous detection or use of a reference path.

2.5 Conclusions

In this chapter, the QCL technology has been studied. Thanks to their intersubband transi-

tions, the QCLs can operate from 3 µm up to 250 µm, depending on the active region design.

They are compact sources with high output power, and have therefore become favored lasers

sources for mid-infrared applications.

The specific QCL design that will be used in the following chapters has been characterized

in details. Both Fabry-Perot and DFB QCLs emitting around 5.6 µm are available, with

output power as high as 255 mW in continuous wave operation at 20¶C.
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Chapter 3

Optical feedback in interband lasers

Optical feedback consists in reinjecting part of the emitted light of a laser into the laser

cavity. This phenomenon can originate from parasitic reflections in the experimental setups,

either on an optical component or on a fiber extremity. Therefore, optical feedback has been

deeply studied in interband semiconductor lasers since the early seventies [61, 62].

Laser

Figure 3.1: Principle of optical feedback.

This chapter aims to give an overview of the response of an interband laser to conventional

optical feedback in static and dynamic regimes, both experimentally and numerically. Other

phenomena such as filtered optical feedback, consisting in adding a spectral filter on the

feedback path, or phase-conjugate optical feedback will not be described in this study. The

latter consists in reinjecting light after reflection on a phase conjugator, resulting in reverse

propagation direction but also reversed phase of each plane wave component of the optical

beam. An extensive study of all sorts of optical feedback can be found e.g. in Ref. [63].

Furthermore, we will describe the dynamical behavior of class A gas lasers subject to

optical feedback. Shortly after the laser invention, Maiman et al. [64] indeed observed

that they can destabilize under some conditions. Furthermore, according to the Poincaré-
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Bendison theorem, a dynamical system requires at least three degrees of freedom in order

to destabilize and exhibit deterministic chaos [65]. There are three rate equations governing

the behavior of a laser [66]:

dN

dt
= f(N, E, P ) (3.1)

dE

dt
= g(N, E, P ) (3.2)

dP

dt
= h(N, E, P ) (3.3)

where N is the carrier density, E the electric field and P the polarization. Arecchi et

al. [67] proposed a laser classification based on the photon, carrier and polarization lifetimes,

·
p

, ·
c

and ·
pol

, respectively. In class C lasers, ·
p

, ·
c

and ·
pol

are of the same order of

magnitude. This is the case for instance for NH3 lasers: the system is described by three

rate equations, and the laser can become chaotic on its own [68]. Semiconductor laser diodes

are class B lasers, meaning that ·
c

Ø ·
p

∫ ·
pol

. Since the polarization responds quickly to

changes of carrier density or electrical field, the third equation governing the polarization

can be replaced by its steady-state solution. With only two degrees of freedom, the laser

can not destabilize by itself, an additional degree of freedom is required, induced e.g. by

Q-switching [69] or by external control such as optical injection or optical feedback. It has

recently been demonstrated that vertical cavity surface emitting lasers (VCSELs) can become

chaotic without any external perturbation, and the additional degree of freedom comes from

the dual polarization of such structures [70]. Finally, in class A lasers, ·
p

∫ ·
c

≥ ·
pol

.

In that case, for instance for gas lasers, both the carrier density and the polarization can

be adiabatically eliminated and replaced by their steady-state values. In order to become

chaotic, such laser would need two additional degrees of freedom [71].

3.1 Analysis of the optical spectrum of a laser diode
under optical feedback

The first observation of the impact of optical feedback on a laser diode was the feedback-

induced evolution of the optical spectrum. Depending on the feedback conditions, the
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spectrum can either become single-mode with a narrow linewidth (see ref. [72], where the

linewidth decreases from 6 MHz down to 30 kHz), or become strongly multimode [73].

In 1986, Tkach and Chraplyvy [74] realized a systematic experimental study and drew the

cartography of a DFB quantum well laser under optical feedback, representing the spectral

behavior of the laser as a function of the two feedback parameters that are the feedback ratio,

defined as the ratio between reinjected and emitted powers, and the external cavity length.

They identified five distinct feedback regimes that appear successively when increasing the

feedback ratio at a fixed external cavity length (see Figure 3.2).

Figure 3.2: Cartography of optical feedback in a DFB quantum well laser (courtesy of [74]).

At very low feedback ratios, the first regime is stable and single-mode, and the laser

linewidth as well as output power depend on the feedback phase. Then, the laser enters

the second regime, characterized by a bistability: the laser remains single-mode, but jumps

from the DFB mode to the mode with the smallest linewidth and vice versa. On the op-

tical spectra both peaks appear simultaneously due to the integration time, but the ratio

between the amplitudes of the two peaks depends on the feedback phase. Furthermore, the

feedback ratio at which the transition between the first and second regimes occurs, depends
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on the external cavity length: the laser becomes more sensitive to optical feedback for longer

external cavities.

When further increasing the feedback ratio, the laser enters a third regime where the

laser is single-mode on the mode with the smallest linewidth. After this narrow regime the

laser enters the coherence collapse regime, characterized by a drastic decrease of the coher-

ence length, a strong linewidth broadening, an increase of the spectrum pedestal and an

enhancement of the side-modes. Finally, for very high feedback ratios, the laser is stable

and single-mode again, with very high output power. It is important to point out that an

anti-reflection coating had to be added on the laser facet to achieve high enough feedback

ratios. This regime corresponds to the extended cavity regime, where the laser operates as

a small gain medium in a long cavity.

Figure 3.3: Example of optical spectra for a VCSEL at di�erent feedback ratios, representative
of the regimes (courtesy of [75]). a) Free-running laser. b) and c) Regime I, at f

ext

= ≠72 dB for
several phase conditions. d) Regime II, at f

ext

= ≠52 dB. e) Regime III, at f

ext

= ≠38 dB. f)
Regime IV, at f

ext

= ≠23 dB.

This cartography remains valid for all single-mode semiconductor lasers so far, for which

the influence of optical feedback has been studied (see for instance Figure 3.3 in the case

of an vertical cavity surface emitting laser, or VCSEL). The feedback ratios at which the
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transitions between regimes occur remain of the same order of magnitude, although the

third regime can sometimes become very narrow and di�cult to locate, especially in the

case of quantum dot lasers [63]. Over the years, this cartography has been complemented,

especially to describe sub-regimes of the coherence collapse [76] or to address the small-cavity

regime [77], defined when f
r

·
ext

< 1, with f
r

the relaxation oscillation frequency and ·
ext

the

external cavity roundtrip time.

3.2 Analytical approach of optical feedback

3.2.1 Rate equations of a laser diode under optical feedback

The formalism of a semiconductor laser under optical feedback was originally proposed by

Lang and Kobayashi [78]. In this case, only one roundtrip in the external cavity is considered,

which suggests a relatively small amount of feedback. If E is the slowly varying envelop of the

complex electric field and N the carrier density of the upper laser state, the rate equations

of the laser subject to optical feedback are expressed as:

dN

dt
= I

q
≠ N

·
c

≠ G(N)|E|2 (3.4)

dE

dt
= 1 + i–

2

A

G(N) ≠ 1
·

p

B

E + kE(t ≠ ·
ext

)e≠iÊ0·

ext (3.5)

where I is the bias current, q the electron charge, ·
c

the carrier lifetime, ·
p

the photon

lifetime, G(N) the gain per unit time, – the linewidth enhancement factor and Ê0 the free-

running laser angular frequency. The feedback appears in the last term of equation 3.5, with

·
ext

the external cavity roundtrip time and k the feedback coe�cient:

k = 1
·

in

2C
l

Ò
f

ext

(3.6)

where ·
in

is the internal cavity roundtrip time and C
l

is an external coupling coe�cient that

can be expressed for a FP laser as:

C
l

= 1 ≠ R2

2
Ô

R2
(3.7)
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with R2 the reflection coe�cient of the laser front facet subjected to the reinjection. In the

case of a DFB laser, the expression of C
l

becomes much more complex and depends on the

complex reflectivity at both laser facets [79]:

C
l

= 2(1 ≠ |fl
l

|2)e≠iÏ

l(q2 + Ÿ2)L2

iŸL(1 + fl2
l

) ≠ 2fl
l

qL

1

2qL ≠
ÿ

k=l,r

(1 ≠ fl2
k

)ŸL

2iqLfl
k

+ ŸL(1 + fl2
k

)

(3.8)

In this equation, fl
k

= |fl
k

|eiÏ

k with k = l, r, is the complex reflectivity at the left or

right facet, respectively (the right facet being the one towards the external cavity). L is

the laser length, Ÿ the coupling coe�cient of the DFB grating and q can be expressed as

q = –
tot

+ i”0 with –
tot

the total internal losses and ”0 the Bragg detuning, defined as the

deviation between the lasing and the Bragg wavenumbers.

By writing E =
Ô

Sei„, two rate equations can be deduced from eq. 3.5 for the amplitude

and phase of the electric field:

dS

dt
=

A

G(N) ≠ 1
·

p

B

S + 2k
Ò

S(t ≠ ·
ext

)
Ò

S(t) cos(Ê0·ext

+ „(t) ≠ „(t ≠ ·
ext

)) (3.9)

d„

dt
= –

2

A

G(N) ≠ 1
·

p

B

≠ k

ı̂ıÙS(t ≠ ·
ext

)
S(t) sin(Ê0·ext

+ „(t) ≠ „(t ≠ ·
ext

)) (3.10)

3.2.2 Feedback-induced frequency shift

Under steady state, the photon density S
s

is constant S
s

= S
s

(t) = S
s

(t ≠ ·
ext

). Therefore,

the term in the cosine Ê0·ext

+„
s

(t)≠„
s

(t≠·
ext

) must be time insensitive and the steady-state

phase „
s

can be written without loss of generality as „
s

= (Ê
s

≠ Ê0)t.

Eq. 3.10 under steady-state gives [80]:

Ê
s

≠ Ê0 = ≠k [– cos(Ê
s

·
ext

) + sin(Ê
s

·
ext

)] (3.11)

This leads to several solutions for Ê
s

, that are the angular frequencies of the external

cavity modes, or fixed points. Among these frequencies, the laser will tend to operate on the
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mode with minimum linewidth, corresponding to the best phase stability [81].

3.2.3 Threshold reduction due to optical feedback

The steady-state equation resulting from eq. 3.9 gives:

G(N) ≠ 1
·

p

+ 2 k cos(Ê
s

·
ext

) = 0 (3.12)

where Ê
s

is the solution of eq. 3.11 that has the minimum linewidth.

Therefore, optical feedback has an influence on the threshold gain and hence on the

threshold current of the laser, compared to the free-running. Osmundsen and Gade [82]

derived the expression of the threshold current by considering multiple roundtrips in the

external cavity. In the limit case of small feedback ratios (f
ext

π 1), they obtained:

I
th

= I0 (1 ≠ 2 k cos(Ê
s

·
ext

)) (3.13)

This equation fits really well the experimental results, as shown in Figure 3.4.

Figure 3.4: Threshold reduction with optical feedback, experimentally and numerically. The
transmittance in x-axis is proportional to the feedback ratio. Courtesy of [82].
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3.2.4 Linewidth evolution with optical feedback

The linewidth of a semiconductor laser is due to the existence of spontaneous emission and to

phase-amplitude coupling, leading to phase fluctuations that result in a frequency noise [83].

In order to characterize the laser linewidth, Langevin noise terms, F
S

, F
„

and F
N

respectively,

as well as the spontaneous emission rate R
sp

must be added to the rate equations 3.4, 3.9

and 3.10 [59]. By defining the phase fluctuation as �„ = Ê0·ext

+ „(t) ≠ „(t ≠ ·
ext

), the rate

equations can be expressed as:

dS

dt
=

A

G(N) ≠ 1
·

p

B

S + R
sp

+ 2k
Ò

S(t ≠ ·
ext

)S(t) cos(�„) + F
S

(t) (3.14)

d„

dt
= –

2

A

G(N) ≠ 1
·

p

B

≠ k

ı̂ıÙS(t ≠ ·
ext

)
S(t) sin(�„) + F

„

(t) (3.15)

dN

dt
= I

q
≠ N

·
c

≠ G(N)S + F
N

(t) (3.16)

These rate equations can be solved by considering a small fluctuation around the steady-

state results and assuming slow variations of the phase and intensity of the electric field.

Considering the power spectrum then leads to [83]:

�‹ = �‹0
Ë
1 + k·

ext

Ô
1 + –2 cos(Ê

s

·
ext

+ atan(–))
È2 (3.17)

with �‹0 the linewidth of the free-running laser [35]:

�‹0 =
(1 + –2)v2

g

h‹0Gn
sp

–
m

8fiP
opt

(3.18)

where v
g

is the group velocity, h the Planck constant, ‹ the emission frequency, G the gain,

n
sp

= R
sp

/v
g

G the so-called spontaneous emission factor and P
opt

the optical power.

Schunk and Petermann [85] linked the phase condition 3.11 and the linewidth equa-

tion 3.17 to the di�erent feedback regimes observed experimentally on the optical spectra.

By defining a feedback parameter C = k·
ext

Ô
1 + –2, they re-defined the first regime as the

regime where eq. 3.11 has only one solution, i.e. the case C < 1. As shown in Figure 3.5 a
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Figure 3.5: Evolution of the laser linewidth as a function of the feedback ratio, for several initial
phase conditions (courtesy of [84]).

for an output power of 5 mW and a 5 ns delay, the linewidth can however vary depend-

ing on the initial phase Ê0·ext

. The second regime appears for C > 1, where the phase

condition 3.11 has several solutions. The solutions of equation 3.11, that gives the laser

wavelength as a function of the feedback parameters, lie on an ellipse in the �G - �Ê space,

with �Ê = Ê
s

≠ Ê0 = ≠k [– cos(Ê
s

·
ext

) + sin(Ê
s

·
ext

)] and �G = G
N

�N = ≠2k cos(Ê
s

·
ext

)

the gain change induced by optical feedback [86]:

(2�Ê ≠ –�G)2 + (�G)2 = 4k2 (3.19)

The stable solutions are the modes of the external cavity (fixed points) and are located

on the lower half of the ellipse (blue circles in Figure 3.6), whereas the unstable solutions,

called antimodes, appear on the upper half of the ellipse (red circles in Figure 3.6). Levine et

al. [87] proved that, although the most stable mode is the mode with maximum gain (also

the mode with minimum threshold, corresponding to the external cavity mode closest to

lowest point of the ellipse given by Ê
s

·
ext

= 0), the laser subject to optical feedback will tend

to stabilize on the mode with minimum linewidth, which is the closer one to the free-running

46



∆G

∆ω

free-running mode

minimum linewidth mode
maximum gain mode

0

Figure 3.6: Ellipse of the feedback modes and anti-modes. In blue circles, stable external cavity
modes, and in red circles, unstable antimodes.

state, as illustrated in Figure 3.6. This corresponds to the third feedback regime. However,

these two modes will enter in competition and the coherence collapse regime occurs.

This term coherence collapse was introduced by Lenstra et al. [88], by realizing that the

feedback terms in the amplitude and the phase of the Lang and Kobayashi equations 3.14

and 3.15 were interfering in the case of relatively strong optical feedback and therefore

that these equations could no longer be linearized. By considering this inter-dependence

of amplitude and phase, a drastic linewidth broadening as well as a strong decrease of the

coherence length compared to the free-running case were obtained numerically, that are in

good agreement with the experimental results.

3.2.5 Undulations on the L-I curves

As shown is Figure 3.7, some undulations appear in the light-current characteristic curve

of a laser under optical feedback, as well as hysteresis. This phenomenon, explained in [78]
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and [89], is due to a competition between the internal cavity modes (or to the laser frequency

in the case of a DFB) and the external cavity modes.

Figure 3.7: Experimental L-I curves of a laser diode with and without optical feedback. The
feedback case presents undulations and hysteresis (courtesy of [78]).

At a given bias current, these two di�erent sets of modes can interfere either construc-

tively, leading to a maximum output power, or destructively, resulting in a decrease of the

power, as explained in Figure 3.8. When increasing the bias current, the heating of the

active area induces an increase of the refractive index and of the e�ective internal cavity

length, and therefore a reduction of the laser free spectral range (or a wavelength shift for

DFB lasers). When the external cavity length is an integer multiple of the e�ective internal

cavity length, the interferences are constructive, whereas they are destructive when the ex-

ternal cavity length is an half-integer multiple of the e�ective internal cavity length, hence

the undulations in the L-I curves.

Furthermore, since this phenomenon is due to a heating of the active area, a strong

hysteresis appears between an increase and a decrease of the bias current.

These interferences are however only visible for relatively short external cavities, where

the free spectral ranges of the external and internal cavities are of the same order of mag-
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Figure 3.8: Schematic to understand the appearance of undulations in the L-I curves of a laser
under optical feedback.

nitude. For very long external cavity of several meters (typically in fibered systems), too

many modes exist in the external cavity and no undulations are observed on the L-I curves.

3.3 Dynamical properties of a laser diode under optical
feedback

3.3.1 Dimensionless rate equations with optical feedback

The dynamics of a laser diode subject to optical feedback is usually studied using dimen-

sionless parameters [90], that can be extracted from the complex rate equations 3.4 and 3.5.

In these equations, the above threshold gain per unit time can be expressed as :

G(N) = 1
·

p

+ G
N

(N ≠ N
th

) (3.20)

where N
th

is the carrier density at threshold and G
N

is the di�erential gain.

Then, by normalizing the rate equations with respect to the photon lifetime ·
p

, with s =

t/·
p

the normalized time, and defining the new set of variables (Y ,Z), with Y the normalized
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complex electric field and Z the normalized carrier density, by:

Y =
Û

·
c

G
N

2 E (3.21)

Z =
3

·
p

G
N

2

4
(N ≠ N

th

) (3.22)

The normalized rate equations can therefore be written as:

dY

ds
= (1 + i–)ZY + ÷e≠i�◊Y (s ≠ ◊) (3.23)

T
dZ

ds
= P ≠ Z ≠ (1 + 2Z)|Y |2 (3.24)

with ÷ = k·
p

the normalized feedback ratio, � = Ê0·p

the normalized free-running frequency,

◊ = ·
ext

/·
p

the normalized external cavity roundtrip time, T = ·
c

/·
p

the carrier to photon

lifetime ratio and P the pump parameter, defined as:

P = ·
p

G
N

N
th

2

3
I

I
th

≠ 1
4

(3.25)

In this last equation, the threshold current I
th

and the carrier density at threshold N
th

are linked by I
th

= N
th

q/·
c

with q the electron charge.

3.3.2 Bifurcation diagram representing the laser dynamics

The rate equations 3.23 and 3.24 are solved by using the Runge-Kutta method (RK4). For

a given set of initial conditions, including a given feedback ratio, the numerical time trace

of the laser under optical feedback is built by iterations. The final point of the time trace

will then be used as the initial condition for the next feedback ratio value. In this work, all

simulations were realized in collaboration with CentraleSupelec Metz.

A bifurcation diagram [65] is then built that represents the intensity extrema, extracted

from the time series when excluding the transient part of the trace, as a function of the

feedback ratio. Figure 3.9 a presents an example of such diagram, for a typical interband

laser in typical operating conditions, with a carrier to photon lifetime ratio T = 1700 and

an –-factor of 3, biased at P = 0.5, and for an external cavity length of 30 cm. The diagram
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shows a succession of stable and unstable behaviors when increasing the feedback ratio.

Figure 3.9: a) Numerical bifurcation diagram for T = 1700, P = 0.5, ◊ = 500 (L
ext

¥ 30 cm) and
– = 3. b) Corresponding time trace for ÷ = 0.001. c) Time trace for ÷ = 0.0027. d) Time trace
for ÷ = 0.0042.

For very low levels of feedback, the laser emission is stable, there is only one line on

the bifurcation diagram and the only perturbation that appears on the time trace is due to

noise. At a critical feedback level, here ÷ ¥ 0.0008, the minimum and maximum of intensity

split significantly. This particular point is called Hopf bifurcation (or Hopf point), and it

corresponds in the appearance in the time trace of a periodic oscillation at the relaxation

oscillation frequency (see Figure 3.9 b). This regime is also called period 1 (P1). For higher

feedback ratios, the diagram splits again as another oscillation frequency appears, that is

superimposed on the first one (Figure 3.9 c). More and more frequencies are involved, until

the oscillations become totally aperiodic (Figure 3.9 d). These random pulsations do not

correspond to noise, since they strongly depend on the initial conditions and are purely

deterministic, i.e. they can be fully anticipated by using a complete numerical model: the

laser has a chaotic behavior.

When further increasing the feedback ratio, the laser restabilizes on an external cav-
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ity mode, and the cycle starts again. Sometimes, although this was not observed in this

particular example, for very strong feedback, the periodic oscillations occur at the external

cavity frequency, but the first oscillations just after the first Hopf point always occur at the

relaxation oscillation frequency.

These results are consistent with experiments conducted on several interband lasers [91]

and with other numerical analyses in the literature [92, 93]. The nonlinear dynamics de-

scribed here are called quasi-periodic route to chaos [94].

3.3.3 Influence of the bias current, the external cavity length and
the –-factor on the bifurcation diagram

The evolution of the laser dynamical behavior under optical feedback as a function of

the bias current is depicted in Figure 3.10 a, b and c, corresponding to T = 1700, – = 3,

◊ = 500 and P = 0.02, P = 0.5 and P = 1 respectively. It can be seen that the first chaotic

area strongly expends with the pump parameter. Furthermore, the feedback ratio at which

the first Hopf bifurcation occurs increases with the bias current. When the laser is operated

just above threshold, the dynamics is di�erent from the one explained before. After the Hopf

bifurcation, the laser does enter the period 1 regime and oscillates at the relaxation oscillation

frequency (Figure 3.11 a), but the destabilization towards chaos occurs through period-

doubling, i.e. the second frequency that appears is exactly twice the relaxation oscillation

frequency. This dynamical regime is called period 2 or P2 (see Figure 3.11 b). Afterwards,

the period keeps on doubling until reaching the chaotic region [95].

Figure 3.10 d, e and f represent the evolution of the bifurcation diagram when increasing

the external cavity length, i.e. ◊ = 50, ◊ = 500 and ◊ = 1000 respectively, at fixed T = 1700,

– = 3 and pump parameter P = 0.5. The position of the first Hopf point does not change

significantly with the external cavity length, which is in agreement with the cartography of

optical feedback (Figure 3.2). However, the extent of the chaotic zone increases significantly

with the external cavity length. For the shortest cavity in this example, the time trace

remains much longer in period 1, and the chaos occurs only at very high feedback ratios

(please note the larger x-scale of Figure 3.10 d compared to the others). The limit case, as

observed in the literature, is the disappearance of chaos for ultra-short cavities [96, 97, 98].
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Figure 3.10: Evolution of the bifurcation diagram, calculated by increasing the feedback ratio for
T = 1700, as a function of the main parameters. First row: evolution with the pump current, for
– = 3 and ◊ = 500. a) P = 0.02. b) P = 0.5. c) P = 1. Second row: evolution with the external
cavity length, for – = 3 and P = 0.5. d) ◊ = 50 (L

ext

¥ 3 cm). e) ◊ = 500 (L
ext

¥ 30 cm). f)
◊ = 1000 (L

ext

¥ 60 cm). Third row: evolution with the –-factor, for P = 0.5 and ◊ = 500. a)
– = 1. b) – = 3. c) – = 5.
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This occurs in the short-cavity regime, i.e. when the external cavity roundtrip time verifies

f
r

·
ext

< 1, where f
r

is the relaxation oscillation frequency.
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Figure 3.11: Time traces corresponding to Figure 3.10 a. a) Period 1, for ÷ = 2◊10≠4. b) Period
2, for ÷ = 8 ◊ 10≠4.

Finally, Figure 3.10 g, h and i show the influence of the –-factor on the bifurcation

diagram, with – = 1, – = 3 and – = 5 respectively, which correspond to typical values for

laser diodes, at given T = 1700, P = 0.5 and ◊ = 500. Increasing the –-factor results in

decreasing the feedback ratio at which the first Hopf bifurcation occurs, as well as extending

the chaotic area. Furthermore, for very small – values, the shape of the Hopf bifurcation

di�ers significantly from the higher – case [99]. The bifurcation occurs on an external

cavity antimode, this is called subcritical Hopf bifurcation. Supercritical Hopf bifurcations

are the most common scenario in interband lasers under optical feedback, and correspond

to bifurcations leading to stable periodic solutions, whereas subcritical bifurcations lead to

unstable periodic solutions, and occur mainly in the short-cavity regime [99]. For extremely

low –-factors, no chaos appears, and the dynamics correspond to a cascade of supercritical

and subcritical Hopf bifurcations.

It is important to stress that, contrary to the two previous parameters, the –-factor is

not a degree of freedom during the experiment. However, the analysis of the influence of

this parameter on the bifurcation diagram allows explaining the di�erence in behavior that

has been observed from one structure to another when subject to optical feedback.

54



3.3.4 Phase diagrams

Another representation of the laser dynamics consists in plotting the phase diagrams, cor-

responding to the carrier number versus optical power curves. When the emitted power

remains constant, i.e. when the laser is under steady-state, it operates on an external cavity

mode at an angular frequency Ê
s

, as shown in Section 1.2.2. On the phase diagram, it is

represented by a single point (see the first curve of Figure 3.12). Figure 3.12 a represents

period 1 operation and the phase diagram is a circle around the steady-state point. Period 2

corresponds to the appearance of a second circle of di�erent radius (Figure 3.12 b), whereas

chaos involves many frequencies, represented on the phase diagram by multiple concentric

trajectories of various radii (Figure 3.12 c).

All these phase diagrams are centered on the steady-state point. Therefore, the external

cavity modes are also called fixed points, or attractors.

Figure 3.12: Numerical time traces and associated phase diagrams (a,b and c are courtesy
of [100]).

3.3.5 Coherence collapse and chaos

The chaos predicted numerically from the Lang and Kobayashi equations was also observed

experimentally, and was proven to coincide with the coherence collapse regime.
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The first hint of the appearance of chaos within the coherence collapse regime originated

from the analysis of the experimental electrical spectra of a laser, which was shown to match

the power spectral density derived from the numerical time traces [101]. A few years later,

the time resolution of the photodiodes became su�cient to observe directly the experimental

time series and experimental phase diagrams [94] (see Figure 3.13). The two predicted

routes to chaos, quasi-periodic or through period-doubling, were observed experimentally,

the occurrence of one scenario or the other depending on the laser intrinsic characteristics

and on the initial conditions.

Figure 3.13: Experimental phase diagrams showing the route to chaos (courtesy of [94]).

A careful sweep of the feedback ratio in the experiment sometimes enables to observe

the whole route to chaos on the optical spectra, as shown in Figure 3.14 from measurements

performed at Telecom ParisTech on a DFB quantum well laser. While the optical spectrum

is broadening, some peaks may appear on the spectrum corresponding to the relaxation

oscillation frequency, as verified on the electrical spectrum. Then these peaks disappear,

leaving a very broad spectrum both in the wavelength and frequency domains.

The critical feedback level f
ext,c

corresponding to the onset of coherence collapse, that

was defined from the maximum frequency shift with respect to the free-running. It therefore

corresponds to the occurrence of an unstable behavior in the laser, and can be considered

as the maximum parasitic feedback ratio that can be tolerated for stable operation. Several
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Figure 3.14: Optical and electrical spectra of a DFB quantum well laser under optical feedback,
presenting the progressive appearance of coherence collapse.

approximated expressions exist in the literature, such as [102]:

f
ext,c

=
3

� ·
in

4C
l

42 1 + –2

–4 (3.26)

where � is the damping rate associated to the relaxation oscillation frequency.

3.3.6 Low frequency fluctuations

Another form of chaos may appear, di�erent from the aperiodic pulsations described above.

It is usually observed just above threshold and takes the form of random power drop-outs fol-

lowed by a progressive recovery, or build-up, as illustrated in Figure 3.15. This phenomenon

is called low frequency fluctuations (LFF).

Many attempts have been made to explain the origin of such power drop-outs. Henry and

Kazarinov [86], followed by Mørk et al. [104], attributed the LFF to a bistability between the

mode with maximum gain and the mode with lower linewidth, and to the switching between

the two modes due to noise and spontaneous emission. With this potentiel model, they were

able to reproduce qualitatively one deterministic power drop-out and the associated recovery.
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Figure 3.15: Experimental observation of LFF (courtesy of [103]).

However, this model can not explain the existence of more than one drop-out.

The satisfying explanation was given by Sano [105] by studying the feedback ellipse

representing the modes and anti-modes. A schematic representation is given in Figure 3.16.

∆G

∆ω

collision

mode switching

crisis

frequency shift

restabilization

maximum  
gain mode

Figure 3.16: Schematic of the scenario leading to LFF. In blue circles, stable external cavity
modes, and in red circles, unstable antimodes.

During LFF, the build-up process comes from mode switching towards the mode with

maximum gain, located at the lower extremity of the ellipse (purple arrows in Figure 3.16).

However, a so-called crisis [105] occurs during the process, corresponding to a collision be-

58



tween a quasi-attractor, i.e. an external cavity mode that temporarily looses its stability

due to the occurrence of chaos, and the associated antimode. Due to the crisis, the �G

value will increase, and in order to restabilize, the laser frequency will shift until it meets

the ellipse again on an antimode, and the stabilization then occurs on the corresponding

low-power external cavity mode (green process in Figure 3.16).

This explanation allows to understand the origin of LFF, and also to conclude that the

presence of LFF in the dynamics of a laser under optical feedback is a manifestation of

deterministic chaos.

(b)

Figure 3.17: Statistics of the period between two consecutive drop-outs. a) ·

ext

= 10 ns and
P = 1.28. b) ·

ext

= 1 ns and P = 3.31. (P1 = 1) (courtesy of [106]).

Many di�erent phenomena can lead to slow fluctuations in a laser diode under opti-

cal feedback, such as a misaligned optical cavity [107]. To recognize LFF among these

fluctuations, the study of the statistics of the period between two consecutive drop-outs is

necessary [106, 108, 109]. As shown in Figure 3.17, the statistics of the LFF is characterized

by a minimum period of typically 10◊·
ext

below which no events occur. Furthermore, it has

the shape of a decaying exponential at low bias current, and a second maximum appears for

higher bias current. Such statistical distribution is typical of the LFF and therefore of the

presence of chaotic behavior in a laser under optical feedback.

In most cases, the LFF appear very close to threshold, but it has also been observed

at higher bias currents, where LFF and coherence collapse may coexist, until the fully-

developped coherence collapse regime takes over at high bias current or high feedback ratios.

LFF can even coexist with stable emission close to threshold at very high feedback ratios
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(see Figure 3.18 and Ref [103]).

Figure 3.18: Mapping of the appearance of LFF as a function of the feedback ratio and the bias
current (courtesy of [103]).

3.3.7 Extension to the dynamics of a class-A laser under optical
feedback

Until now, the whole study was centered on laser diodes, that are class B semiconductor

lasers, i.e. ·
p

Æ ·
c

. All class B lasers follow a dynamical scenario based on the relaxation

oscillations, as described in the previous section (see for instance [110] for the case of VCSEL).

Another scenario exists, where the periodic oscillations arising from the first Hopf bifurcation

are directly at the external cavity frequency. As a reminder, this frequency may occur in

class B dynamical scenarios, but only for very high feedback ratios, after several chaotic

areas (Figure 3.9).

This bifurcation at the external cavity frequency has been reported by Kuwashima et

al. [111, 112] in He-Ne lasers subject to optical feedback, that are class A lasers since ·
p

∫ ·
c

.

Furthermore, chaotic operation of such lasers was observed experimentally, characterized by

the appearance of LFF. It was obtained using a periodic fluctuation of the tilt of the feedback

mirror to induce the third degree of freedom necessary for chaos to appear. However, these
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LFF have the opposite trend compared to the one described in the previous paragraph, since

here the power decay is progressive and the recovery is really fast. This might be due to the

very fast carrier dynamics. The dynamics of the class A laser is depicted in Figure 3.19.

Figure 3.19: a) Experimental time traces of a class A laser for several feedback parameters a
(equivalent to k) showing the appearance of LFF (courtesy of [111]). b) Numerical time traces
of a class A for several feedback parameters showing oscillations at the external cavity frequency
followed by LFF (courtesy of [112]).

This class A-like scenario can be retrieved for a class B laser by studying limit cases of

the Lang and Kobayashi equations 3.4 and 3.5. The first condition for which oscillations at

the external cavity were obtained numerically is the zero-bias case, leading to a relaxation

oscillation frequency equal to zero, but this presents little interest in practice. The second

case that was studied by Pieroux and Mandel [113] is the long external cavity limit, focusing

on ◊◊·
p

æ Œ. In this configuration, they also obtained numerically a class A scenario, with

periodic oscillations at the external cavity length, followed by a quasi-periodic route to chaos,

itself characterized by LFF with fast recovery time. Finally, the last limit case leading to a

class A-like scenario is the strong damping scenario. Especially for quantum dot lasers, that
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present stronger damping compared to quantum well lasers, around 10 GHz [45], theoretical

studies showed that their dynamics tend to resemble the one of class A lasers when subject

to optical feedback [114, 115]. However, there has been no experimental evidence of a class

A dynamical scenario in quantum dot lasers under optical feedback so far.

3.3.8 Chaotic laser diodes and applications

While the appearance of chaos in the emission of a laser diode subject to optical feedback

rapidly becomes a hinder for the usual applications, leading for instance to a strong increase

of noise in fiber communications [116], a chaotic laser diode can be used for a wide range of

new applications [117, 118].

Figure 3.20: a) Experimental setup of a chaotic LIDAR. In this case, the chaos is obtained from
optical injection. b) Experimental result, showing a precise measurement of the 50 cm separated
targets, with a range resolution of 3 cm (courtesy of [119]).

Lin and Liu [119] proposed a chaotic-based LIDAR (or CLIDAR). There are two cate-

gories of LIDARs, one based on lasers with ultra-short pulses and the second one based on

modulated CW lasers. For the latter, the information on the target are recovered from the

correlation between the signal back-reflected on the target and the delayed emitted signal.

The advantage of this technique is its low price, since a simple laser diode can be used

rather than an expensive laser delivering ultra-short pulses. However, high-performance sig-

nal generation algorithms are required to ensure that the modulation does not repeat itself,
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which would lead to the measurement of a false delay time. Chaotic lasers diodes o�er a

signal with high bandwidth, easy to generate and to amplify, leading to very high resolutions

better than the ones obtained with the two conventional techniques, down to 1 cm range

resolution for targets separated by 50 cm at 2 m distance, limited by the bandwidth of the

oscilloscope. Furthermore, the chaotic behavior of the laser guaranties that the signal will

not repeat itself, leading to systems with higher performances. Figure 3.20 represents the

typical experimental setup of such CLIDAR, here with chaos obtained from optical injection.

Similarly, the chaotic signal emitted by a semiconductor laser under external perturba-

tion can be collected on a photodetector and converted into a chaotic microwave signal, that

can be exploited for chaotic RADAR (CRADAR) detection [120]. Generating chaotic light

is indeed much easier than directly modulating a microwave source. A high range resolution

of 9 cm was obtained experimentally, once again limited by the bandwidth of the antennas

and the oscilloscope and not by the chaos bandwidth. Furthermore, the use of chaotic signal

instead of modulated wave leads to RADARs resistant to noise and jamming.

Chaotic lasers can also be used for chaos communications [118]. By injecting the light

emitted by a chaotic laser in a second similar laser, under strong injection and locking con-

ditions, the second laser will become chaotic and reproduce the chaos of the first laser, as

shown in Figure 3.21 a and b: this is called chaos synchronization. Using this technique with

chaos-based message encryption methods, such as chaos masking or chaos modulation [121],

a secured message can be transmitted from a transmitter to a receiver. Figure 3.21 c de-

scribes this process: the emitters sends a chaotic encrypted message to a receiver as well as a

key, consisting of information on the static properties of the laser. The receiver will analyze

the message twice: the encrypted message will be detected, and the chaotic carrier will be

retrieved using chaos synchronization on a laser similar to the one used for the emission. By

substracting the two signals, the message can be securely obtained, as shown in Figure 3.21 d.

Moreover, some applications such as authentification protocols, online gaming or Monte-

Carlo simulations require the generation of random bit sequences. Various methods exist

to provide such sequences, but they are based on pseudo-random bit generation, meaning
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Figure 3.21: Chaos-based communications. a) Setup for chaos synchronization. b) Experimental
results showing synchronization and anti-synchronization. c) Principle of chaos-encrypted commu-
nications. d) Example of chaos-based communications. (a, b and d are courtesy of [118])

that they are vulnerable if the starting point can be guessed. Chaotic semiconductor lasers

o�er pseudo-random bit generation with extremely high bit-rate, using strongly diverging

trajectories, with a starting point almost impossible to recover once the optical signal has

been converted to digital signal [122, 117, 123].

Finally, another application of chaotic semiconductor lasers is chaos masking in reservoir

computing [124, 125]. Reservoir computing is a neural network where the input signal

is mapped into a high dimensional space, which facilitates classification and time series

prediction. The connections between this high dimension input layer and the network (or

reservoir), as well as inside the network are then determined randomly, but kept fixed.

Compared to other neural networks, the learning algorithm is simpler and requires small

calculation power. In reservoir computing, consistency is really important, i.e. the same
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output signal must be observed when repeating the same input signal, which is determined

by a temporal mask applied on the input signal. If the input signal is the signal emitted

by a laser diode, the temporal mask can be based on chaos, and the light emitted by the

chaotic laser is then injected in the reservoir, which is based on the dynamical response of a

second laser diode subject to optical feedback. Recent numerical predictions by Nakayama

et al. [126] show that chaos masking leads to a normalized mean-square error between the

input and output signals 8 times smaller than for a binary mask, which is the one usually

used in laser-based reservoir computing, meaning that the consistency using chaos masking

is very high.

3.4 Conclusions

In this chapter, the impact of optical feedback, induced by a reflection on a fiber extremity

or on a mirror, on the static and dynamical properties of a laser diode has been reviewed.

Depending on the two parameters that are the external cavity length and the feedback

ratio, optical feedback will either increase the laser stability, leading to single-mode emission

with extremely narrow linewidth, or destabilize the laser, with very broad optical emission

spectrum.

From a dynamical viewpoint, when increasing the feedback ratio the laser diode will

first oscillate at the relaxation oscillation frequency, and then will have a transition towards

chaos either through period-doubling or through quasi-periodic fluctuations. The chaos itself

takes the form of aperiodic oscillations or of low-frequency fluctuations, consisting in power

drop-outs followed by a progressive recovery. Another route to chaos exists, where the laser

starts to oscillate at the external cavity frequency directly after the first Hopf bifurcation,

but it has only been observed in class A gas lasers so far, even though it can numerically be

achieved in limit cases of the Lang and Kobayashi equations.

Finally, although parasitic optical feedback is a hinder in most cases and especially in

fibered configurations, hence requiring the integration of optical isolators in packaged lasers,

a controlled amount of optical feedback can improve the laser emission properties, and even

chaotic laser diodes can be used for a number of applications ranging from the chaotic LIDAR
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to chaos-based communications.

66



Chapter 4

Impact of optical feedback on
quantum cascade lasers

As mentioned in the previous chapter, optical feedback can either significantly improve

laser properties such as linewidth or output power, or completely destabilize the laser, ren-

dering its emission chaotic. Furthermore, optical feedback can appear through any parasitic

reflection in the experimental setup. It is therefore important to fully characterize the laser

response to this phenomenon in order to control its stability.

In quantum cascade lasers, there have been very few comprehensive studies on optical

feedback. In this chapter, we propose to study both experimentally and numerically the

impact of optical feedback on the static and dynamical properties of a QCL. In particular,

the birth of optical instabilities leading to temporal chaos is reported for the first time.

4.1 Previous studies

Optical feedback is regularly used in external-cavity QCLs: by reflecting the emitted light

from a Fabry-Perot QCL on a grating and re-injecting only one wavelength, the laser becomes

single-mode and a widely tunable source is obtained, where the wavelength is shifted by

changing the incident angle on the grating, as shown in Figure 4.1. [127].

Some experimental studies have also shown that optical feedback strongly reduces the

relative intensity noise of a QCL, up to a 9.5 dB reduction when optimizing the feedback

conditions, as illustrated in Figure 4.2 [128, 129].

Moreover, a theoretical study pointed out the expected high stability for a QCL subject

to optical feedback [130, 131], with the appearance of mode switching when increasing the
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Figure 4.1: a,b) External-cavity QCL in di�erent configurations. c) Achievable wavelengths by
tilting the grating. (Courtesy of [127]).

Figure 4.2: Evolution of the relative intensity noise as a function of the feedback parameters
(courtesy of [128]).

Figure 4.3: a) Critical feedback level for a THz QCL, which becomes very high when the –-factor
becomes small (courtesy of [130]). b) Numerical evolution when increasing the feedback coe�cient
k, showing mode switching (courtesy of [131]).
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feedback ratio but no chaos (see Figure 4.3). However, this study is based on the assumption

that the linewidth enhancement factor of a QCL is almost zero, hypothesis that will be

discussed in a following section.

Finally, chaotic operation has been observed before in QCL-based structures. Gmachl et

al. [132] demonstrated spatial chaos in a micro-cylinder laser based on an external resonator

with a QCL active region. Furthermore, Bonilla and Grahn [133] showed that a super-

lattice under external control presents nonlinear dynamics and chaos, and predicted that

QCLs should be sensitive to external control and may present temporal chaos. However, no

temporal chaos has been observed in QCLs so far.

4.2 Experimental setup

In order to characterize the QCL behavior under optical feedback, the laser is inserted in the

experimental setup described in Figure 7.5. The emitted light is collimated at the output

of the laser using a lens with a very short focal length (f = 1.87 mm), a high numerical

aperture (NA = 0.87) and an 80% transmission at 5.6 µm. The beam is then split into a

feedback path and a detection path using a 60/40 beam splitter.

Figure 4.4: Schematic of the experimental setup for optical feedback in QCLs.

On the feedback path, part of the light is re-injected in the laser after reflection on a

mirror. Two important feedback parameters that will determine the feedback impact appear
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here. The first one is the external cavity length L
ext

, that corresponds to the distance

between the laser front facet and the mirror, or equivalently the external cavity roundtrip

time ·
ext

= 2L
ext

/c, c being the light velocity. With this setup, the external cavity length can

be tuned between 12 cm and 1 m. The second parameter is the feedback ratio f
ext

, defined

as the ratio between reinjected and emitted power. This ratio is tuned using a polarizer

inserted in the feedback external cavity and monitored in real-time with a power meter.

The polarizer induces parasitic reflections into the laser, and is therefore tilted so that these

reflections do not enter the laser cavity.

QCL

TM

Polarizer, angle !
!

Emitted wave
Reinjected wave!

!TM
!

Power 
meter

Detection
Beam splitter

Mirror

Figure 4.5: Polarization evolution during the propagation.

Since the QCL is polarized in TM, only the projection of the returning light on the TM

polarization axis can be coupled back into the cavity. Therefore, when the polarizer angle

◊ = 90¶ (TE polarization), the feedback is completely turned o�. On the other hand, when

◊ = 0¶, the totality of the light that arrives back at the laser facet is coupled into the cavity.

The attenuation comes mainly from the beam splitter and lens transmission of 80%: the

transmission of the polarizer being over 99%, these losses are neglected. For an arbitrary

polarization angle ◊, the light intensity is attenuated by a factor 0.8 ◊ cos4(◊). As shown

in Figure 4.5, a first factor cos2(◊) indeed appears when the light first crosses the polarizer

on the path from the laser to the mirror (in red), due to a shift of ◊ of the polarization
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angle. The light is then reflected, with a change of sign of the polarization, which becomes

≠◊. Therefore, the beam crosses again the polarizer without additional losses. However, a

second factor cos2(◊) on the intensity is added when the reinjected light couples back into

the TM laser cavity, since only the intensity projected on the TM axis must be considered

(in blue).

In this setup, the reinjected power used to calculate the feedback ratio is measured with

a power-meter facing the mirror but on the other side of the beam-splitter, as shown in

Figure 4.6. Therefore, the first cos2(◊) originating from the two crossings of the polarizer is

already included in the measurement, and only a factor 0.8 ◊ cos2(◊) is added on the power

in order to evaluate the reinjected power. The maximum feedback ratio was measured to be

27% with the DFB QCL and 36% with the Fabry-Perot QCL.

Figure 4.6: Experimental setup for optical feedback in QCLs.

The properties of the laser beam are analyzed on the detection path, either using a power-

meter, a fast MCT photodiode to retrieve the time traces or electrical spectra or a Fourier

transform infrared (FTIR) spectrometer to obtain the optical spectra with a resolution of

0.125 cm≠1.
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4.3 Numerical model

Similarly to the Lang and Kobayashi equations, if the complex electrical field is defined as

E =
Ô

Sei„, the QCL under optical feedback is characterized by the following rate equations:

dN3
dt

= ÷
I

q
≠ N3

·32
≠ N3

·31
≠ G0�NS (4.1)

dN2
dt

= N3
·32

≠ N2
·21

+ G0�NS (4.2)

dN1
dt

= N3
·31

+ N2
·21

≠ N1
·

out

(4.3)

dS

dt
=

A

N
pd

G0�N ≠ 1
·

p

B

S + —N
pd

N3
·

sp

+ 2k
Ò

S(t)S(t ≠ ·
ext

) cos(�„) (4.4)

d„

dt
= –

2

A

N
pd

G0�N ≠ 1
·

p

B

≠ k

ı̂ıÙS(t ≠ ·
ext

)
S(t) sin(�„) (4.5)

In equations 7.1 to 7.5, N
j

is the carrier density of level j, with �N = N3 ≠ N2, ÷ is the

conversion e�ciency, I is the bias current. ·
ij

corresponds to the carrier lifetime from level

i to level j, ·
out

is the characteristic time for the electron to tunnel into the injector, ·
sp

is the spontaneous emission lifetime, ·
p

is the photon lifetime inside the laser cavity. G0

corresponds to the net modal gain for one period, N
pd

to the number of periods, – to the

linewidth enhancement factor and — to the spontaneous emission factor. �„ is defined as

�„ = Ê0·ext

+ „(t) ≠ „(t ≠ ·
ext

), with ·
ext

the external cavity roundtrip time. Finally, k is

the feedback coe�cient, defined as:

k = 1
·

in

2C
l

Ò
f

ext

(4.6)

where ·
in

is the internal cavity roundtrip time and C
l

is the external coupling coe�cient as

defined in interband lasers (see Eq. 7.7 and 3.8).

In the previous equations, we can neglect the spontaneous emission term, since its char-

acteristic time is three orders of magnitude slower than other lifetimes.

The steady-state solutions of these rate equations give the external cavity modes Ê
s
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verifying:

N3 = ·31·21
·31 + ·21

C

÷
I

q
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N
pd

G0·21
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s
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)
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N2 = ·31·21
·31 + ·21

C

÷
I

q
≠ 1

N
pd

G0·31

A
1
·

p

≠ 2k cos(Ê
s

·
ext

)
BD

(4.8)
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„(t) = (Ê
s

≠ Ê0)t (4.11)

From equation 7.5, we can furthermore deduce:

Ê
s

≠ Ê0 = ≠k [– cos(Ê
s

·
ext

) + sin(Ê
s

·
ext

)] (4.12)

The wavelength of the QCL under optical feedback will therefore evolve with the feedback

conditions. However, eq. 4.12 is only valid under steady-state, and in the feedback conditions

where eq. 7.1 to 7.5 can apply, i.e. for low feedback ratios.

4.4 Linewidth enhancement factor measurement

In this section, we present two methods based on optical feedback to obtain experimentally

the above-threshold room temperature –-factor of a mid-infrared QCL. The first method is

based on the wavelength evolution of a Fabry-Perot spectrum with optical feedback, and the

second one on self-mixing interferometry.

4.4.1 Wavelength shift with optical feedback

When a QCL is subject to optical feedback, its wavelength will slightly shift following 4.12.

This shift can well be observed for Fabry-Perot QCLs subject to low feedback ratios, whereas

the wavelength of DFB lasers remains controlled by the grating. By tracking the wavelength
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evolution with optical feedback, one can obtain the –-factor from:

– = Ê0 ≠ Ê
s

k cos(Ê
s

·
ext

) ≠ tan(Ê
s

·
ext

) (4.13)

This method is applied to a Fabry-Perot QCL emitting a 5.6 µm operated at 10¶C close

to threshold, at 614 mA . The laser is 3 mm long and 6 µm wide and the external cavity

length under study here is 15 cm. For better precision, a gaussian fit was applied to the

optical spectra in order to determine the wavelength as precisely as possible. The obtained

linewidth enhancement factor was – = 1.3 ± 0.5.

a) b)

Figure 4.7: Wavelength evolution of the QCL under optical feedback. a) Optical spectra and
gaussian fits without feedback and with low feedback f

ext

= 2.1%. b) Experimental wavelength
shift as a function of the feedback ratio.

This value is consistent with other above-threshold room temperature –-factor for mid-

infrared QCLs reported in the literature. However, the uncertainty remains relatively high on

this measurement. The value of 40% uncertainty was obtained by iterating the measurement.

It originates from the limited FTIR resolution of 0.125 cm≠1 that is not totally compensated

by the curve fitting, from the uncertainty on the external cavity length around 0.1 cm and

from the uncertainty on the feedback ratio, related to the uncertainty on the measured power,

estimated around 10≠4 W.

This result does not depend on the feedback ratio, as long as it remains low enough,
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or external cavity length, hence being consistent with the literature on interband lasers.

Furthermore, results of the same order of magnitude were obtained for a 4 mm-long FP

QCL with the same active area, for which the LEF was measured to be – = 0.9 close to

threshold.

4.4.2 Self-mixing interferometry

When the light reinjected in a laser under optical feedback is modulated, typically through

a sine motion applied to the feedback mirror, interferences appear in the emission time

traces [134, 135]. This so-called self-mixing interferogram gives some information on experi-

mental parameters such as velocity, distance or vibrations. As shown by Yu et al. [136], the

linewidth enhancement factor of a DFB laser can be retrieved from the self-mixing inter-

ferogram. This method cannot be applied to Fabry-Perot lasers, due to the appearance of

multiple wavelength interferences rendering the interferogram too complex to be exploited.

Φmin

Φmax

ΦZ1 ΦZ2

T

Figure 4.8: Self-mixing interferometer of the QCL under study.

The –-factor calculation is based on the extraction of remarkable points on the interfer-

ometer that exist only for high feedback ratios. The self-mixing interferometry technique

was therefore adapted to QCLs and low feedback ratios by von Staden et al. [52]. As shown

in Figure 7.8, the linewidth enhancement factor can be calculated from the position of two

consecutive zeros �
Z1 and �

Z2, a minimum �
min

and a maximum �
max

, as well as from the
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period T of the interferogram:

– = �
max

≠ �
min

≠ 0.5T

�
Z2 ≠ �

Z1 ≠ 0.5T
(4.14)

The linewidth enhancement factor measurements based on self-mixing were performed at

TU Darmstadt. The experimental setup relies on the same principle as the one described at

the beginning of the chapter. However, the feedback ratio is controlled with optical densities,

and the feedback mirror is placed on a piezo-electrical actuator with a sinusoidal motion in

order to obtain the interferogram, that is then measured with a MCT photodiode.

The –-factor of a DFB QCL is calculated with this method. To compare to the results

obtained with the first method, although self-mixing interferometry can not be applied to

Fabry-Perot QCLs, the laser under study has the same e�ective area as the Fabry-Perot

laser previously tested with the wavelength shift technique and its dimensions are 2 mm

over 9 µm. Measurements were performed at 10¶C for several bias currents, with a feedback

coe�cient around k = 3 ◊ 108 s≠1 and an external cavity length around 30 cm.

The results are presented in Figure 7.9 a as a function of the normalized bias current

with respect to threshold a, with:

a =
3

I

I
th

≠ 1
4

(4.15)

As already stressed in interband lasers, this experiment reveals a significant increase

of the linewidth broadening factor with the bias current, from 0.8 to 2.9. It is furthermore

interesting to point out that the measurements with the two methods are perfectly consistent

since the first result using the wavelength shift corresponds to – = 1.3 at a ¥ 0.03 for the

3 mm-long laser and – = 0.9 at a ¥ 0.01 for the 4 mm-long QCL.

These two linewidth enhancement factor measurements led to values that are slightly

higher than typical values reported in the literature. However, the –-factor measured here

can be considered as an e�ective –, which is di�erent from the pure material – extracted from

the Hakki-Paoli method or from the dynamic – measured with high-frequency modulation

techniques (FM/AM). However, this e�ective – was extracted directly from the Lang and

Kobayashi equations and can therefore legitimately be re-injected in these equations for op-

tical feedback studies. In the following, the –-factor will be considered as a fitting parameter
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Figure 4.9: a) –-factor evolution as a function of the normalized current and comparison between
the two methods at 10¶C. b) –-factor evolution as a function of the emitted power for the DFB
QCL.

in the simulation, taking values between 1 and 3 depending on the pump conditions.

4.4.3 Gain compression coe�cient

Gain compression in interband semiconductor lasers corresponds to the decrease of the gain

coe�cient with optical intensity [137]. This phenomenon must not be mistaken for gain

saturation, which corresponds to an equilibrium between the stimulated emission and the

refill of the upper lasing level by the pump (see Figure 4.10 a). As shown in Figure 4.10 b,

gain compression corresponds to a depletion of the gain in the upper level.

It originates from gain nonlinearities caused by processes such as carrier heating, spatial or

spectral hole burning [138]. Spectral hole burning appears from the fast stimulated emission

lifetime, which will lead to a carrier depletion in the upper level if it is faster than the

intraband relaxation time of the carrier, and hence to a reduction of the gain around the

lasing wavelength. On the other hand, spatial hole burning comes from the existence of

two contra-propagating waves in the cavity and leads to an inhomogeneous gain distribution

along the cavity. Finally, the carrier heating e�ect is due to the stimulated emission and to

the free-carrier absorption, which result in gain reduction, since the gain is dependent on
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Figure 4.10: Gain saturation (a) versus gain compression (b).

the carrier temperature.

Gain compression limits the modulation dynamics of directly modulated transmitters

through adiabatic chirp and is also responsible for the bending of the light-current charac-

teristic curves [139]. It is quantified by the gain compression coe�cient ‘
S

associated with

the photon density S through the following adiabatically-corrected gain expression [137]:

G = G0
1 + ‘

S

S
(4.16)

with G0 the linear gain. A more rigorous solution can be retrieved from a approximation on

the density of state functions, leading to G Ã (1 ≠ ‘
S

S)≠1/2.

The gain compression coe�cient can also be expressed as a function of the emitted power,

and the conversion from ‘
S

to ‘
P

is straightforward, as ‘
S

S = ‘
P

P
opt

. Moreover, the photon

density S can be expressed as a function of the output power P
opt

as:

P
opt

= h‹V v
g

–
m

S (4.17)

with h the Planck constant, ‹ the laser frequency, V the volume of the active area, v
g

the

group velocity and –
m

the mirror losses of the laser cavity.

In a homogeneously-broadened gain medium, the carrier density di�erence between upper

and lower lasing levels is clamped at threshold, and the change of the e�ective –-factor
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is mostly due to the decrease of the di�erential gain from gain compression. Indeed, by

definition:

– = ≠ dn/dN

dG/dN
(4.18)

Furthermore, G0 = 1/·
p

+ G
N

(N ≠ N
th

) and eq. 7.13 can be approximated as G =

[1/·
p

+ G
N

(N ≠ N
th

)] (1 ≠ ‘
P

P ), leading to:

dG

dN
= G

N

(1 ≠ ‘
P

P
opt

) (4.19)

and:

– = ≠ dn/dN

G
N

(1 ≠ ‘
P

P
opt

) (4.20)

Therefore, the e�ective –-factor which evolves with the optical power can be expressed

as:

– = –0(1 + ‘
P

P
opt

) (4.21)

where –0 is the linewidth enhancement factor at threshold. Since the carrier distribution is

clamped, –0 itself does not change as the output power increases.

In interband lasers, the gain compression coe�cient ‘
S

is typically around 10≠17 cm3

for quantum well lasers and 10≠16 to 10≠15 cm3 for quantum dot lasers [138, 140]. The

stronger gain compression in quantum dot lasers leads to a much more pronounced increase

of the damping rate and –-factor with the pump current compared to quantum well lasers,

as observed experimentally. In QCLs, the gain compression is not yet well characterized,

and there are very few values of gain compression coe�cient. One can mention the work of

Hangauer et al [51], reporting an experimental saturation power, defined as the inverse of ‘
P

,

of P
sat

= 85 mW for a QCL emitting at 9.6 µm. Furthermore, the origin of gain compression

in QCLs is not fully understood yet. It would come from the carrier heating, as in interband

lasers, but also from the upper level depletion due to the time necessary for the electrons to

tunnel through the injector and from the fixed number of electrons available in the active

region, which will lead to a saturation at high bias currents. Finally the spatial hole burning

is very strong in QCLs, due to an extremely fast gain grating lifetime linked to the upper
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state lifetime of few picoseconds [50].

In QCLs, the strong increase of the –-factor with the bias current also corresponds to an

increase with the laser output power, as shown in Figure 7.9 b. The linewidth enhancement

factor values measured on the DFB QCL (blue circles) are fitted linearly using eq. 7.12 (blue

line), leading to a threshold value of – = 0.42, consistent with sub-threshold measurements

in QCLs at room temperature. Furthermore, the fit gives a value of P
sat

= 5.4 mW, corre-

sponding to ‘
S

= 4.5 ◊ 10≠15 cm3. Such a high value would explain the very high damping

rate in QCLs, as well as the strong dependency of the –-factor on the bias current, and

therefore the di�erence between the –-factor measured below and above threshold in QCLs.

4.5 Influence of the optical feedback on the QCL L-I
characteristic curves

4.5.1 Case of the DFB QCL
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Figure 4.11: Impact of optical feedback on the DFB QCL L-I curves. a) L-I characteristic curves
for several feedback ratios, with an external cavity length of 15 cm. b) Appearance of hysteresis at
high feedback ratios f

ext

= 0.18.

The measurement of the light versus current (L-I) characteristic curves of the DFB QCL

at 10¶C for an external cavity length of 15 cm and several feedback ratios, presented in

Figure 4.11, clearly shows the influence of optical feedback on the laser emission. First
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there is a significant power increase, associated with a diminution of the laser threshold from

433 mA down to 416 mA.

Furthermore, some undulations appear on the L-I characteristic curves for high feedback

ratios, as well as hysteresis. These undulations have the same origin as in interband lasers,

corresponding to alternatively constructive and destructive interferences between the internal

and external cavity modes, as discussed previously.

4.5.2 Case of the Fabry-Perot QCL

Optical feedback has a similar e�ect on the 4 mm ◊ 6 µm Fabry-Perot QCL L-I characteristic

curves, here plotted for an external cavity length of 13 cm. The output power increases, the

threshold decreases and undulations appear for high feedback ratios, as shown in Figure 7.10

a. However, it is worth noting that the maximum power is not obtained for the higher

feedback strength but for a rather low feedback ratio.

b)

Figure 4.12: Impact of optical feedback on the 4 mm ◊ 6 µm FP QCL L-I curves. a) L-
I characteristic curves for several feedback ratios, with an external cavity length of 13 cm. b)
Experimental and numerical threshold reduction as a function of the feedback ratio.

In the case of Fabry-Perot lasers, since the wavelength is not determined by a Bragg

grating, it is possible to calculate the wavelength of the laser as a function of the feedback

ratio from eq. 4.12. Out of all possible solutions, the lasing wavelength is the one for which

the linewidth reaches a minimum. Once the laser wavelength is known, the threshold current

can be extracted by solving S = 0 in eq. 4.10, resulting in:
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÷

·32 + ·31
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pd

G0

C
1
·

p

≠ 2k cos(Ê
s

·
ext

)
D

(4.22)

By considering – = 1.3 and adjusting ÷ to match the free-running threshold, the simula-

tion fits really well the experimental threshold reduction (see Figure 7.10 b).

4.5.3 Optical feedback from a mid-infrared fiber

Recently, mid-infrared fibers have been developed, that could be used in QCL experiments

for instance for distant gas analysis, where the laser and detection cell would be operated

far from the medium under study and where the light would be guided to and from the

medium using an optical fiber. Since conventional silica fibers do not guide mid-infrared

wavelengths, new glasses have been studied. Université Rennes I and SelenOptics are de-

veloping new chalcogenide glasses to produce microstructured optical fibers optimized in

the mid-infrared [141, 142]. These fibers are currently vertically cleaved, hence the optical

feedback on the QCL from these fibers should not be negligible and could influence the laser

emission.

Figure 4.13: Attenuation of the fiber core as a function of the wavelength. Inset: cross-section of
the chalcogenide microstructured optical fiber.

The 1 m-long optical fiber used for the experiments is fabricated from the chalcogenide
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glass As38Se62. Before drawing, the preform has been elaborated by a molding method as

described in [141]. This method consists in heating up the chalcogenide glass rod and in

letting it flow into a silica mold, whose design corresponds to the negative shape of the

final preform. Then the perform is placed in a silica enclosure under helium flowing and

heated thanks to an annular electrical furnace. During fiber drawing, the hole diameters

are controlled by applying an inert gas (He) pressure in the holes of the preform. The inset

in Figure 4.13 presents a section of the fiber. It is a microstructured fiber constituted of

36 holes with an outer diameter of 120 µm and a central solid core of 12 µm. Besides, its

attenuation is below 1 dB/m from 3 to 9.6 µm, except an absorption peak around 4.6 µm

corresponding to the Se-H band, as shown in Figure 4.13.

Based on eq. 7.14, the amount of optical feedback originating from reflections on the fiber

can be obtained by measuring the threshold reduction of a QCL coupled to the fiber. In this

case, the QCL under study is a 3 mm-long Fabry Perot laser, with a free-running threshold

at 20¶C of 668 mA and 9.64 V. The threshold of the laser under feedback is obtained by

recording the L-I curve after optimization of the coupling through maximization of the output

power after the fiber. The external cavity length was estimated around 200 µm between the

QCL facet and the fiber tip.
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Figure 4.14: Threshold reduction due to optical feedback on the fiber for the two sets of mea-
surements, in red and blue respectively, and associated feedback ratios obtained by following the
simulation curve in black.
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A first set of measurements (red dots on Figure 7.11) led to a threshold of 649 ± 1 mA,

the uncertainty being obtained by iterating the fiber alignment. This corresponds to a feed-

back ratio of f
ext

= 11 ± 1%. A second set of measurements was performed after a cleaner

cleavage of the fiber, i.e. a di�erent cleavage leading to an optimized coupling of the QCL

in the fiber, and hence to a higher output power. The threshold was measured at 646 mA

(blue dot on Figure 7.11), resulting in a feedback ratio of f
ext

= 15 ± 1%.

This amount of optical feedback is significant. Feedback ratios between 11 and 15% could

impact the stability and the emission properties of a QCL coupled to a fiber. Theoretically,

one could reach feedback ratios as high as 22% depending on the beam divergence and

distance between the QCL facet and the fiber, since the reflective index of the fiber is around

2.77, i.e. twice that of near-infrared fibers. However, this measurement does not enable

to determine whether the totality of the feedback comes from the fiber tip, or if internal

backscattering along the fiber also contributes. The simulated threshold obtained from

eq. 7.14 indeed shows little variation when changing the external cavity length. Therefore,

further studies are required to better understand the origin of the optical feedback from a

chalcogenide fiber and see its impact on the QCL behavior. Some studies on the fiber itself

are moreover currently on-going in order to limit the amount of optical feedback, either by

adding an anti-reflective coating of the fiber tip, or by applying a tilt during the cleavage.

4.6 Feedback regimes in a mid-infrared QCL

4.6.1 Optical spectra of a QCL under optical feedback

The analysis of the optical spectra of the DFB QCL reveals five feedback regimes appearing

successively when increasing the feedback ratio at a given external cavity length of 15 cm

and a fixed bias current of 435 mA. The first feedback regime is stable and single-mode,

emitting at the free-running wavelength, but with an increased and phase-dependent output

power. For slightly higher feedback ratios, a beating between two modes occurs, one of them

being the free-running wavelength and the other one an external cavity mode. Moreover,
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in this second regime, the intensity of each mode also depends on the feedback phase. The

third regime appears for intermediate feedback ratios, the laser is stable and single-mode

again, but it emits on the adjacent mode identified in the second regime. The fourth regime

is unstable, the spectral pedestal and the intensity of the side-modes, that are otherwise

well-suppressed, increases significantly. Finally, the fifth regime for very high feedback ratios

is a stable single-mode regime on an external cavity mode with high output power. It

corresponds to the extended cavity regime, where the laser is equivalent to a small active

area in a long cavity, one of the cavity mirrors being the feedback mirror. This is also the

regime used in the fabrication of external-cavity QCLs.

a) b)

Figure 4.15: Feedback regimes of QCLs under optical feedback. a) DFB QCL, with an external
cavity length of 15 cm. a0: Free-running case. a1: Regime I, f

ext

= 9.1 ◊ 10≠4. a2: Regime II,
f

ext

= 5.1 ◊ 10≠3. a3: Regime III, f

ext

= 3.2 ◊ 10≠2. a4: Regime IV, f

ext

= 0.13. a5: Regime
V, f

ext

= 0.25. b) FP QCL, with an external cavity length of 13 cm. b0: Free-running case. b1:
Regime I, f

ext

= 1.4 ◊ 10≠3. b2: Regime II, f

ext

= 1.7 ◊ 10≠2. b3: Regime III, f

ext

= 0.14. b4:
Regime IV, f

ext

= 0.18. b5: Regime V, f

ext

= 0.25.

These five regimes are very similar to the ones observed in interband lasers, as described

in the previous chapter. Using the FTIR, the laser linewidth can unfortunately not be

measured, it is impossible to conclude whether the third regime has very low linewidth or

whether the linewidth is phase-dependent in regimes I and II. The absence of clear spectral

broadening in the fourth regime does not enable any conclusion on whether this regime cor-

responds to the coherence collapse as defined in interband lasers, some further measurements
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will be necessary.

In the case of the 3 mm ◊ 6 µm Fabry-Perot QCL under optical feedback, five simi-

lar regimes were also observed based on the optical spectra when increasing the feedback

strength. However, as observed in interband lasers, the wavelength varies much more since

it is not fixed by the DFB grating. Furthermore, the side-mode suppression ratio in the

single-mode regimes is not as good as in the case of the DFB laser.

4.6.2 Feedback cartography of the DFB QCL

By recording the optical spectra of the DFB QCL for di�erent feedback conditions, one

can identify for a given external cavity length the feedback ratios at which the transitions

between the five previously-described feedback regimes occur. Thanks to the high stability

and reproducibility of the measurements, iterating this method for several external cavity

lengths allows to draw the feedback cartography of the DFB QCL. The estimated uncertainty

on the transitions position is about 20%.

Figure 4.16: Feedback cartography of the di�erent regimes of the DFB QCL as a function of the
external cavity length and the feedback ratio, measured at 10¶C for a bias current of 435 mA.
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This cartography can be compared with the one realized by Tkach and Chraplyvy [74]

for a quantum-well DFB laser emitting at 1.55 µm (see Figure 3.2). Despite the fact that the

transitions occur for much higher feedback ratios in the case of the QCL, the cartographies

look very similar, except for the fourth regime. This regime is indeed much narrower in the

QCL case, thus comforting the prediction that these structures are much more resistant to

optical feedback than conventional laser diodes. Furthermore, instead of a transition between

regimes IV and V at constant feedback ratio for all external cavity lengths, the width of the

fourth regime appears to decrease when increasing the external cavity length. For the last

measurement point at L
ext

= 95 cm, no unstable regime was found.

The enhanced stability of QCLs subject to optical feedback is also underlined by the fact

that the three stable regimes (I, III and V) are much broader than in the case of interband

lasers. The third regime is for instance relatively broad, whereas it does not always appear in

conventional laser diodes, depending on the structure. Moreover, the fifth regime can easily

be reached in QCLs, whereas for the cartography of a quantum-well laser, it was necessary

to add an anti-reflective coating on the front facet to obtain high-enough reflectivities and

reach stable emission again.

All these arguments confirm that the QCLs are more resistant to optical feedback than

their interband counterparts. However, the fourth unstable regime is worth studying, and

further experiments are necessary to conclude whether it does correspond to coherence col-

lapse or not.

4.7 Nonlinear dynamics and chaos in a QCL under op-
tical feedback

4.7.1 Time series and electrical spectra

In order to study in more details the fourth regime identified through the optical spectra

analysis, the time series and electrical spectra of the DFB QCL were recorded for several

feedback ratios and several external cavity lengths. To this end, the emitted signal was

collected on an ultra-fast MCT photodiode. The need of high speed and high bandwidth,

here around 500 MHz, led to the use of an MCT photodiode with an integrated high-pass

87



preamplifier, thus requiring the QCL to be operated in pulsed mode.
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Figure 4.17: Example of time traces used for the analysis, with L

ext

= 35 cm, P = 0.02 and
f

ext

= 2.7%, considering the last 2.5 µs of several pulses.

To achieve temperature stability and a quasi continuous-wave regime, several pulse

lengths were considered. For pulses shorter than 2 µs, the transient regime that appears

at the beginning of the pulse due to the internal heating of the structure was still dominant

and the pulse generator distorted long pulses, therefore a pulse duration of 5 µs was chosen

as the best compromise. A hundred time traces were recorded for each operation point, and

only the end of these pulses were taken into account, as depicted in Figure 4.17. The signal

collected on the photodiode was then analyzed simultaneously on a 10 gigasample-per-second

real-time oscilloscope and an electrical spectrum analyzer.

In this experiment, the aim was to observe instabilities and if possible chaos. Therefore,

the laser was operated close to threshold, where these e�ects are supposedly enhanced, i.e.

the pump parameter P was very small. As a reminder, P is defined according to:

P = ·
p

G
N

N
th

2

3
I

I
th

≠ 1
4

(4.23)

with, in the case of a QCL, G
N

= N
pd

G0.

The time trace and electrical spectrum of the DFB QCL under optical feedback with

f
ext

= 3.13%, L
ext

= 45 cm and P = 0.02 are represented in Figure 7.14. Two oscillation

frequencies can be identified on these plots: slow oscillations appear that are modulated by

faster oscillations. From the analysis of the electrical spectrum, the fast oscillations occur
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Figure 4.18: Typical experimental results, for P = 0.02, L

ext

= 45 cm and f

ext

= 3.13%. a)
Time trace with slow fluctuations. b) Zoom on one slow period, a faster fluctuation appears at the
external cavity frequency (in red), comparison with the free-running case (in blue). c) Electrical
spectra that confirms the appearance of the external cavity frequency and of a slower frequency (in
red), comparison with the free-running case (in blue).
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Figure 4.19: Experimental electrical spectral at f

ext

= 3.1% and P = 0.02 for several external
cavity lengths, showing both the external cavity frequency and a low frequency corresponding to
LFF. a) L

ext

= 25 cm. b) L

ext

= 35 cm. c) L

ext

= 45 cm.
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at the external cavity roundtrip frequency, here 0.33 GHz for 45 cm. This observation was

confirmed by varying the external cavity length: the fast oscillations remain at the external

cavity frequency (see Figure 4.19). The origin of the slower fluctuations is not as easy to

understand, it does not correspond to any cavity of the experimental setup. It could however

be low frequency fluctuations, and therefore could correspond to the appearance of chaotic

dynamics in the QCL under optical feedback.

4.7.2 Low frequency fluctuations

Oscillations at low frequency as observed in the QCL under optical feedback can have various

origins. In order to confirm that these are actual low frequency fluctuations (LFF), the

statistics of the period between two consecutive drop-outs are studied at L
ext

= 35 cm for

two bias currents and two associated feedback ratios: close to threshold with P = 0.02 and

f
ext

= 3.5%, and for P = 0.10 and f
ext

= 11%, as shown in Figure 4.20. The result is then

compared with the statistics typically obtained for LFF in an interband laser diode.
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Figure 4.20: Statistical distributions of the slow fluctuations, for L

ext

= 35 cm. a) P = 0.02 and
f

ext

= 3.5%. b) P = 0.10 and f

ext

= 0.11. In both cases, the red line indicates the average value.

The histograms evidence the appearance of a forbidden period, ranging from 0 to a few

tens of the external cavity roundtrip time, where no oscillations separated by such periods

were observed. Furthermore, the histogram for P = 0.02 takes the shape of a decreasing

exponential, and a second peak appears on the decreasing exponential for P = 0.10. More-

over, both the minimum and the average time between two drop-outs become smaller when
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increasing the bias current. All these observations enable to conclude that the oscillations

at low frequency occurring in the QCL under precise feedback conditions do correspond to

LFF, thus confirming the appearance of chaos in a QCL.

4.7.3 Experimental bifurcation diagram

Figure 4.21: Experimental bifurcation diagram for P = 0.02 and L

ext

= 35 cm, and associated
time series. a) Experimental bifurcation diagram, the white dashed lines correspond to the feedback
ratios at which the time series were recorded. b) Time trace for f

ext

= 0.11%, showing stable signal.
c) Time trace for f

ext

= 1.58%, showing oscillations at the external cavity frequency. d) Time trace
for f

ext

= 2.66%, showing both LFF and oscillations at the external cavity frequency.

A careful sweep of the feedback ratio at fixed external cavity length L
ext

= 35 cm and

fixed bias current P = 0.02 allows the mapping of the bifurcation diagram of the QCL

under optical feedback. In particular, the Hopf bifurcation at which the laser starts to

oscillate is measured at f
ext

= 0.59%. The study of the time traces before and after the Hopf

bifurcation presents a route to chaos di�erent to that commonly observed in semiconductor

lasers. For very low feedback ratios, the QCL is stable, the only fluctuations in the time traces

originate from noise. At the Hopf bifurcation, the laser starts to oscillate at the external
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cavity frequency. Afterwards, for f
ext

Ø 2.66%, the LFF superimpose on the external cavity

frequency oscillations, the QCL enters into a chaotic regime. Finally, around f
ext

= 4%,

the laser re-stabilizes and remains on this stable external cavity mode up to the highest

achievable feedback ratios.

When increasing the external cavity length from 25 to 35 to 45 cm at a fixed bias P = 0.02,

the feedback ratio at which the Hopf bifurcation occurs remains constant with an oscillation

frequency changing according to the cavity length, whereas the LFF area appears earlier,

at 3.18%, 2.66% and 2.40% respectively. This tendency is in qualitative agreement with the

cartography previously measured by studying the optical spectra, although the values can

not be directly compared due to the di�erent operating points. Furthermore, for a fixed

cavity length of 25 cm, the Hopf bifurcation and appearance of LFF occur at 0.59% and

3.18% respectively at a bias of P = 0.02, and it rapidly varies with the pump. For P = 0.10,

these two remarkable points occur at feedback ratios as high as 7.1% and 11.1%, respectively.

This route to chaos is unusual for a semiconductor laser. First, no oscillations at the

relaxation oscillation frequency appear in the dynamics. However, as already mentioned in

the first chapter, there are no relaxation oscillations in QCLs due to the very high damping.

This point therefore does not prove an atypical behavior of the QCL under optical feedback.

Thus, the main argument for an unusual route to chaos for the QCL is the appearance of

oscillations at the external cavity frequency before the chaotic area. In interband semicon-

ductor lasers, the external cavity frequency does appear but only for feedback ratios above

the limits of the bubble of chaos. On the contrary, for class A gas lasers subject to optical

feedback, the route to chaos is exactly the one described here, with first oscillations at the

external cavity frequency and then chaos. Furthermore, the shape of the LFF for the QCL,

i.e. a progressive power drop-out followed by a fast recovery as shown in Figure 4.19 a and

b, resembles the one in gas lasers rather than the one in other semiconductor lasers, where

the power drop-out is sudden and the recovery progressive. All these arguments are in favor

of a class A-like behavior of the QCLs under optical feedback.

Moreover, the strong similarities between the consecutive time traces as shown in Fig-

ure 7.14 suggest a low sensitivity of the chaotic trajectories to changes in the initial condi-
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tions, and therefore a low-dimension chaos. However, a careful analysis of the chaos complex-

ity and the calculation of the Lyapunov exponents [65], defined as the deviation with respect

to the initial condition, which is positive in case of chaos, would be necessary to conclude on

this point, which is not feasible here due to the limited resolution of the experimental time

traces.

4.7.4 Numerical bifurcation diagram

To confirm the experimental observations and verify whether the absence of the relaxation

oscillations in the experimental bifurcation diagram of QCLs under feedback really is a

property of such devices or is only due to a lack of available high-bandwidth detectors, the

numerical bifurcation diagram is calculated. Due to the complex resolution of the di�erential

delayed equations composing the rate equations of the QCL under optical feedback, it was

decided to base the study on the classical rate equations of a semiconductor laser under

optical feedback as defined by Lang and Kobayashi, for which resolution algorithms are

already implemented and e�cient, but inserting the parameters that correspond to the QCL

case.

dY

ds
= (1 + i–) Z Y + ÷ exp(≠i�0◊) Y (s ≠ ◊) (4.24)

T
dZ

ds
= P ≠ Z ≠ (1 + 2Z) |Y |2 (4.25)

In the Lang and Kobayashi equations recalled above, the carrier to photon lifetime ratio

is T = 0.265, the normalized bias current is P = 0.02, the normalized cavity roundtrip time

is ◊ = 492 and the linewidth enhancement factor is – = 1.7, value that best fits the experi-

mental results. The feedback phase �0◊ = ≠atan(–) is chosen to an arbitrary value. Noise

is integrated in the resolution by adding a random less than unity term multiplied by a noise

coe�cient, at each iteration both on the real and imaginary parts of the complex field. This

noise coe�cient was varied between 10≠14 (no noise) and 10≠7 (noisy experiment) without

any significant change in the bifurcation diagram.
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The characteristic frequency and damping rate from the laser modulation response can

be obtained from the Lang and Kobayashi equations without optical feedback. Indeed, by

writing Y =
Ô

Aei„, eq. 7.16 in the absence of feedback can be written as:

dY

ds
= 1

2
1Ô
A

dA

ds
ei„ + i

Ô
Aei„

d„

ds
= (1 + i–) Z

Ô
Aei„ (4.26)

And therefore, by separating real and imaginary part, the normalized rate equations in

absence of feedback become:

dA

ds
= 2ZA (4.27)

d„

ds
= –ZA (4.28)

T
dZ

ds
= P ≠ Z ≠ (1 + 2Z) A (4.29)

The steady-state of eq. 4.27 to 4.29, are given by:

0 = 2Z
s

A
s

(4.30)

0 = P ≠ Z
s

≠ (1 + 2Z
s

) A
s

(4.31)

and since the laser is on under steady-state (A
s

”= 0), this leads to Z
s

= 0 and A
s

= P . The

small-signal analysis consists in considering perturbed steady-states with A = A
s

+ ”A and

Z = Z
s

+ ”Z. Eq. 4.27 becomes:

d”A

ds
= 2(Z

s

+ ”Z)(A
s

+ ”A) = 2P ”Z (4.32)

T
d”Z

ds
= P ≠ Z

s

≠ ”Z ≠ (1 + 2Z
s

+ 2”Z)(A
s

+ ”A) = ≠(1 + 2P )”Z ≠ ”A (4.33)

The Jacobian matrix M of this system can be written from:

Q

ca
”A

”Z

R

db =

Q

ca
0 2P

≠ 1
T

≠1+2P

T

R

db

Q

ca
”A

”Z

R

db (4.34)

Solving the equation det(M ≠ ⁄I) = 0 leads to the eigenvalues of the perturbed sytem
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⁄± = ≠�
norm

±
Ò

�2
norm

≠ �2 with:

� =
Û

2P

T
(4.35)

�
norm

= 1 + 2P

2T
(4.36)

which, after de-normalization gives the characteristic frequency and damping rate of the

laser:

f
r

=
Û

2P

T

1
2fi·

p

(4.37)

� = 1 + 2P

2T

1
·

p

(4.38)

Very close to threshold with P = 0.02, these parameters take values as high as f
r

= 13 GHz

and � = 419 GHz, the latter being about thirty times higher than the characteristic frequency,

thus confirming the absence of relaxation oscillations in the studied QCL.

The numerical bifurcation diagram is in good agreement with the experimental one. The

stable solution appearing for low feedback ratios destabilizes at the Hopf point f
ext

= 2.14%

and the route to chaos does not involve any oscillations at the characteristic frequency,

only oscillations at the external cavity frequency. The bubble of chaos that occurs between

f
ext

= 2.69% and f
ext

= 2.91% takes the form of LFF that are superimposed on the external

cavity frequency oscillations. Finally, at high feedback ratios, the QCL is stable again

on a di�erent external cavity mode with larger output power. Running the simulation by

decreasing the feedback ratio instead of increasing it gives another solution of successive

stable external cavity modes, which coexist with the periodic and chaotic solution found

previously. This multistability is di�cult to observe experimentally since it requires a very

fine tuning of the feedback ratio. Moreover, since the basin of attraction of the LFF dynamics

is large, as shown numerically, it captures most of the system trajectories in phase space.

The numerical bifurcation diagram therefore confirms the class A-like scenario in the

QCL under optical feedback, without any oscillations at the laser characteristic frequency.
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Figure 4.22: Numerical bifurcation diagram for P = 0.02 and L

ext

= 35 cm, and associated time
series. a) Numerical bifurcation diagram. b) Time trace for f

ext

= 0.11%, showing stable signal. c)
Time trace for f

ext

= 2.14%, showing oscillations at the external cavity frequency. d) Time trace
for f

ext

= 2.59%, showing both LFF and oscillations at the external cavity frequency.

The value – = 1.7 was determined to best fit the experimental results within the range

of values measured previously in CW operation. Although the dynamical response of the

laser to optical feedback is equivalent to a modulation, which can lead to a change in the

LEF value due to e.g. thermal e�ects or gain compression, the –-factor can be considered

as quasi-static in this case. The typical frequency above which the modulation response

of a QCL reaches a plateau corresponding to a quasi-static LEF is indeed below 100 MHz

close to threshold [143], well below the external cavity frequency which arise in the system

under optical feedback. Furthermore, the occurrence of LFF and chaos can no longer be

analyzed using the small-signal modulation approximation, and the dependency of the –-

factor on the modulation frequency no longer applies. Therefore, the LEF can be considered

as quasi-static for the whole set of feedback conditions, and the choice of – = 1.7 is justified.

As shown in Figure 4.23, the destabilization of the QCL under optical feedback still oc-

curs for lower values of –-factor, and the bifurcation scenario remains the same, involving
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Figure 4.23: Influence of the –-factor on the bifurcation diagram for P = 0.02 and L

ext

= 35 cm.
a) Numerical bifurcation diagram for – = 1. b) Numerical bifurcation diagram for – = 1.5. c)
Numerical bifurcation diagram for – = 2. d) Evolution of the Hopf point (in blue) and of the lower
and upper limits of the LFF area (in red) as a function of the –-factor.

Figure 4.24: Influence of the bias parameter P on the bifurcation diagram for L

ext

= 35 cm and
– = 1.7. a) Numerical bifurcation diagram for P = 0.02. b) Numerical bifurcation diagram for
P = 0.10.
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oscillations at the external cavity frequency and low frequency fluctuations. However, the

feedback ratio at which the first Hopf bifurcation occurs increases drastically for smaller

LEF, and the amplitude of the LFF area is strongly reduced. For instance, when – = 1,

with the same parameters P = 0.02 and L
ext

= 35 cm, the Hopf bifurcation takes place at

f
ext

= 75% and the LFF, which appear around f
ext

= 80%, disappear after an increase in

feedback ratio of only 0.05%. Such high values of feedback ratios are obviously unreachable

experimentally. In THz QCLs, for which –-factor values much lower that 1 were reported,

there will probably be no occurrence of chaos.

As expected from the study in interband lasers, the appearance of LFF depends strongly

on the bias current, and they are rapidly displaced towards high feedback ratios as the pump

parameter P increases. For L
ext

= 35 cm and – = 1.7, the first Hopf bifurcation occurs at

f
ext

= 2.14% at P = 0.02 and at f
ext

= 26.44% for P = 0.10, whereas the LFF appear at

f
ext

= 2.69% and f
ext

= 29.34% respectively, as shown in Figure 4.24.
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Figure 4.25: Influence of the external cavity length L

ext

on the bifurcation diagram for P = 0.02
and – = 1.7. In blue circles, occurence of the first Hopf bifurcation. In red diamonds, appearance
of the LFF. In yellow squares, restabilization.

The evolution of the bifurcation diagram with the external cavity length follows the same

trend as the one observed experimentally. As presented in Figure 4.25, the feedback ratio at

which the Hopf point occurs shows only a small variation when increasing the external cavity
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length from 25 to 55 cm (blue circles), whereas the LFF begin at a significantly lower feedback

ratio (2.15% for 55 cm instead of 2.76% for 25 cm, red diamonds), and the amplitude of the

LFF area also decreases (yellow squares representing the limit of restabilization). This trend

is also similar to that obtained from the analysis of the optical spectra, where the extend

of the fourth regime, which is supposed to correspond to instabilities and chaos, decreases

rapidly with the external cavity length, although its starting point remains roughly the same.

Finally, for some configurations, a second destabilization was observed numerically for

high feedback ratios (higher that what is experimentally achievable), resulting in periodic

or multi-periodic oscillations. However, no second chaotic bubble was obtained with the

considered parameters.

The same conclusions on the class A-like dynamics of QCLs subject to optical feedback,

with chaos that may appear very close to threshold, have been recently obtained by analytic

resolution of the full set of equations of a QCL under optical feedback [144].

4.7.5 Consequences of the possible chaotic operation of a QCL

This first observation of temporal chaos in a QCL under optical feedback have several con-

sequences for the everyday use of the QCLs. Parasitic feedback must indeed be avoided in

experimental setups. It is therefore necessary to develop compact and low-cost mid-infrared

optical isolators, that could be integrated in QCL packages. Until now, although some

companies such as Thorlabs, for wavelengths below 5 µm, or Innvation Photonics o�er mid-

infrared isolators, they remain custom-made, cumbersome, expensive and not suitable for

systematic use. Furthermore, the fabrication of mid-infrared optical fibers must be carefully

controlled to limit parasitic reflections and Rayleigh backscattering, similarly to near-infrared

fibers.

On the other hand, a chaotic light source at mid-infrared wavelength could lead to new

applications of QCLs, as for interband laser diodes. Chaotic QCLs could be e�cient for

optical countermeasures as they o�er unpredictable sources. One could also imagine chaotic

mid-infrared LIDAR that would provide high-resolution and jamming-resistant sensors. For

cryptography in the mid-infrared range, chaotic QCLs could provide random bit generation
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or secured communications using chaos modulation for the message encryption and synchro-

nized chaos for the message transmission.

4.8 Conclusion

Both static and dynamical studies have shown that quantum cascade lasers are sensitive to

optical feedback, although they are more resistant than interband laser diodes. Five feedback

regimes either stable, bistable or chaotic appear depending on the feedback ratio, resembling

to what happens in class B semiconductor lasers. However, the transition between stable

and chaotic behaviors occurs through oscillations at the external cavity frequency, without

involving the relaxation oscillations, a route to chaos similar to that observed in class A gas

lasers.
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Chapter 5

Beam shaping in broad-area quantum
cascade lasers using optical feedback

QCLs with extremely high power and luminance are required to address demanding applica-

tions such as very high precision spectroscopy, selective surgery or infrared countermeasures,

A straightforward idea to increase the power of a laser diode is to enlarge the active region,

and especially the laser width. Hence, QCLs as broad as 400 µm have shown record-breaking

output peak powers as high as 120 W [145].

5.1 Motivations

Broad-area (BA) QCLs are strongly a�ected by both thermal and optical issues hence show-

ing rather poor beam quality performance. Indeed, even if the thermal resistance decreases

with the ridge width, the thermal load becomes too important to be dissipated e�ciently.

Then, the laser needs to be operated with very short pulses to avoid thermally degraded per-

formances, and even device destruction, which limits the mean optical power. Furthermore, a

larger cavity will support numerous transverse modes. Thereby, the lasing transverse mode is

no longer the fundamental mode and the far-field pattern is typically bi-lobe. In this respect,

several solutions have been proposed to improve the beam quality of BA devices. QCLs with

photonic cristals etched on top of the active region with di�raction-limited single-lobe far-

field have been studied [146] and reported at 4.36 µm [147], 4.75 µm [148] and 7.8 µm [149].

Moreover, architectures with a tilted facet have shown an improved far-field [150, 151, 152].

Likewise, even if they present a smaller gain region compared to BA QCLs, tapered QCLs
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are an interesting trade-o� between large e�ective active region, high power, and good beam

quality [153, 154]. Another approach to solve both thermal and optical drawbacks of BA

QCLs is to split the ridge into an array of micro-stripes optically coupled to each other to

achieve a stable optical supermode. The far-field is typically two-lobed in the case of evanes-

cent coupling [155, 156], but single-lobe emission has been achieved by coupling the stripes

by antiguiding [157].

Nevertheless, all these solutions require monolithic integration, and are therefore highly

depending on the fabrication steps repeatability and quality, lacking flexibility and requiring

costly additional processes such as electronic lithography or semiconductor regrowth.

In interband semiconductor BA lasers, inducing external perturbations such as optical

feedback or optical injection is an e�cient technique to control the beam quality and dy-

namical stability, without resorting to integrated solutions [36, 158, 159, 160]. For instance,

applying optical feedback enhances the beam quality by reducing substantially the filamen-

tation, which is one of the main issues of BA laser diodes. The latter corresponds to fast

spatio-temporal oscillations, due to di�raction of light, self-focusing and spatial hole-burning,

whose position along the laser cavity fluctuates with time. Even though the origin of fila-

mentation is not fully understood yet, it leads to the excitation of higher spatial modes, with

di�erent phase velocities, hence deteriorating significantly the laser coherence and the beam

quality. Moreover, the appearance of filamentation in a BA laser is related to the linewidth

enhancement factor (LEF) value of the device [161]. The higher the LEF, the more the laser

beam quality will be impacted by filamentation. Optical feedback can be used to counter

the filamentation-induced drawbacks, without altering other performance of the laser. Fur-

thermore, the dynamics ruling a BA semiconductor laser are complex, originating from the

competition between the many transverse modes that coexist in the cavity. Strong instabil-

ities or even chaos may appear in the emitted signal of a free-running BA laser diode, which

can also be compensated using optical feedback.

The impact of optical feedback on the near-field profile and dynamical behavior of a

BA semiconductor laser is ruled by three main parameters. The first one is the sign of the

population-inversion induced index change, i.e. whether the laser design is based on gain-
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guiding (positive index variation) or index-guiding (negative index variation). Studies have

shown that total stabilization of the emission pattern, where optical feedback forces the laser

to operate on the fundamental transverse mode, can only be achieved in the case of negative

population-induced index change [162]. Furthermore, the two other key parameters are the

feedback conditions: depending on the feedback ratio and the external cavity length, higher

spatial modes will be either excited or suppressed [159, 160]. As the number of excited

modes increases, the dynamical behavior will switch from stable emission, to pulse package

fluctuations and finally to fully developed chaotic state [158].

Spatially-filtered optical feedback can further improve the near-field profile of the laser

emission. Reinjecting only the central part of the emitted beam will indeed favor the lower

order modes, leading to a high quality beam profile close to the single-transverse mode

behavior [160].

As shown previously, QCLs have a low linewidth enhancement factor, hence reducing the

risk for filamentation. However, applying optical feedback could improve the beam quality

of BA QCLs and make them suitable sources for high power mid-infrared applications.

In this chapter, after a preliminary study that underlines the importance of the mirror

angle control when studying the response of a BA QCL to optical feedback, conventional

and spatially-filtered optical feedback will be applied to a 32 µm-wide QCL. The high per-

formances of this QCL emitting around 4.6 µm will first be detailed. In particular, we will

report that this laser presents high mean and peak powers, e�cient heat dissipation allowing

operation at high duty cycle, as well as high quality far-field over the whole range of opera-

tion. In a second part, the impact of optical feedback on the laser near-field as a function of

the feedback mirror angle will be studied, showing significant modification of the near-field

pattern. Strong amelioration of the profile is achieved in the case of centered feedback using

spatial filtering. Furthermore, the response of a QCL with poor far-field quality to feedback

will be investigated, as well as the influence of the laser width by comparing to 14 µm-wide

devices.
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5.2 Preliminary study

A preliminary study was realized in collaboration with the US Air Force Research Labora-

tories, on BA QCLs grown at Northwestern University. The lasers are 40 µm wide, 3 mm

long, with a threshold current of 1.7 A and emitting around 4.6 µm.

5.2.1 Experimental setup

In order to characterize the QCL behavior under external optical feedback, we consider the

experimental setup described in Figure 5.1. The emitted light is collected at the output of

the laser and split into a feedback path and a detection path using a 60/40 beam splitter. On

the feedback path, part of the light is reinjected into the laser after reflection on a rotating

mirror, with an external cavity length of about 24 cm. On the detection path, the very short

focal length f = 1.87 mm of the lens enables imaging the near-field of the QCL on a camera.

Figure 5.1: Experimental setup for BA-QCLs.

5.2.2 Beam shaping with optical feedback

As shown in Figure 5.2, when varying the angle of the feedback mirror, the shape of the QCL

near-field is significantly impacted by optical feedback. In each configuration, the profile is

calculated by summing the intensities on each pixel column, and the inset presents directly

the near-field recorded on the camera. Compared to the free-running case, an intensity

peak can appear either centered or o�-centered on the beam profile, or the near-field can be

completely evened.
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Figure 5.2: Near-field at the laser facet for several feedback angle. Plots in inset correspond to
the near-field recorded on the camera.

The dependency of the near-field depending on the feedback mirror can be understood

by considering the rate equations of the BA QCL under optical feedback. The equation

governing the complex electric field of the QCL subject to optical feedback is indeed given

by [159]:

ˆE(x, t)
ˆt

= ific2

Ê0n2
eff

ˆ2E(x, t)
ˆx2 + 1 + i–

2

A

N
pd

G0�N(x, t) ≠ 1
·

p

B

E(x, t)

+ kE(x ≠ �x, t ≠ ·
ext

) exp(≠iÊ0·ext

)
(5.1)

where c is the light velocity, Ê0 the free-running angular frequency, n
eff

the e�ective refractive

index, ·
p

the photon lifetime inside the laser cavity. G0 corresponds to the net modal gain

for one period, N
pd

to the number of periods, – to the linewidth enhancement factor and

·
ext

to the external cavity roundtrip time. �N is the carrier density di�erence between the

upper and the lower lasing states. Finally, k is the feedback coe�cient, defined in the case

of Fabry-Perot lasers as:

k = 1
·

in

1 ≠ R2Ô
R2

Ò
f

ext

(5.2)

with ·
in

the internal cavity roundtrip time, R2 the front facet reflectivity (here R2 = 0.3)

and f
ext

the feedback ratio, i.e. the ratio between reinjected and emitted light.
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In BA lasers, the dependency of the field and carrier densities on the spatial variable

x becomes very important, as underlined by the di�raction term in the complex field rate

equation 7.4. A di�usion term D
n

furthermore exists in the carrier rate equation, and for

an interband laser under optical feedback, it can be written as [163],:

ˆN(x, t)
ˆt

= D
n

ˆ2N(x, t)
ˆx2 + I

q
≠ N(x, t)

·
c

≠ G(N(x, t))|E|2 (5.3)

In a QCL, several di�usion coe�cients corresponding to the several carrier rate equations

have to be considered. Moreover, when applying optical feedback, the reinjected mode is not

necessarily superimposed on the corresponding emitted mode, it can be shifted by a quantity

�x. It will therefore be crucial to control precisely the angle of the mirror when applying

optical feedback to BA QCLs.

5.2.3 Temporal evolution with optical feedback

Replacing the camera with a fast MCT detector in the experimental setup enables to observe

the e�ect of optical feedback on the temporal response of the QCL.

As shown in Figure 5.3, varying the feedback mirror angle also impacts the temporal

response of the laser. Compared to the free-running scenario, an increase or decrease of the

power may appear, either on the totality or on only part of the temporal peak power during

the pulse. Since no precise position was recorded during the near-field measurement, it is not

at this stage possible to link these temporal response with a mirror position and near-field

profile. Qualitatively, the maximum peak power is obtained for centered optical feedback,

with an intensity peak at the center of the beam profile.

Furthermore, some oscillations seem to appear for some angles of the feedback mirror, but

the measurements here are limited by the resolution of the oscilloscope, and no period could

be extracted. It would be necessary to repeat these measurements with higher resolution

equipment, to conclude on whether these oscillations occur at the external cavity frequency,

as in the case of narrow-ridge QCLs.
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Figure 5.3: Temporal power evolution with optical feedback. a) Free-running scenario. b) De-
crease of the power. c) Increase of the power. d) Appearance of oscillations.

5.3 Case of a high-performance 32 µm-wide QCL

The experiment is repeated with a high-performance 32 µm-wide QCL from mirSense, in

order to further investigate the impact of optical feedback on the near-field beam profile.

5.3.1 Design and processing

A 2.5 µm thick n-doped InP layer (n = 1017 cm≠3), acting as the bottom optical cladding

layer, is grown by MBE, followed by a 200 nm Ga0.47In0.53As layer (n = 6◊1016 cm≠3), which

plays the role of a large optical cavity (LOC). Finally, we grow the 30 period active region

and another similar LOC. The QCL active region design is derived from the shallow-well

structure previously published [18], and adapted to have a gain centered around 4.6 µm.

The specificity of this structure is the InP:Fe regrowth by low pressure hydride vapor phase

epitaxy (HVPE) on the sides of the ridges. The studied device is 4 µm-long, gold HR-coated
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on the back facet and mounted epi-side down onto an AlN submount. The mounted device

is shown on Figure 5.4.

Figure 5.4: SEM picture of the device facet mounted epi-side down. The 32 µm active region (in
lighter gray) is surrounded by InP:Fe and sandwiched between two n-doped InP cladding layers.

5.3.2 Laser performances

Standard voltage vs current and power vs current (L-I-V) curves are measured at temper-

atures ranging from 10¶C to 40¶C. The laser submount is set on a copper heat sink which

temperature is controlled with a Peltier cooler. The duty cycle is 3%, the pulses lasting

600 ns. The mean power is measured behind an aspherical lens (f = 1.87 mm, NA = 0.87).

The collection factor was evaluated to be 0.8 by comparing the maximum optical power with

this setup with the one read from a second power-meter with high aperture angle placed

right after the laser facet. Results are shown in Figure 5.5 a. The threshold current density

is 1.51 kA/cm2 at 10¶C, and 1.69 kA/cm2 at 40¶C, which yields a characteristic temperature

of T0 = 266 K in the temperature range 10¶ to 40¶C. This value is in accordance with pre-

viously published results for QCLs with the same design [18]. The low values of the current

densities show that the current leakage through the InP:Fe is negligible, and thus the quality

of the HVPE regrowth. At 10¶C, the mean power is 254 mW and the peak power is 11.5 W.

Furthermore, the evolution of the mean power with the duty cycle was measured, as

represented in Figure 5.5 b. Our current source was limited to 26% of duty cycle, which

was below the thermal roll-over both at 20¶C and 40¶C. It shows the heat load is e�ciently
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Figure 5.5: a) LIV curves at 3% duty cycle for temperatures from 10¶C to 40¶C. b) Evolution of
the mean power with duty cycle at 20¶C and 40¶C

dissipated through the laser top contact and the InP:Fe on its sides. At a duty cycle of 26%,

the maximum mean power exceeds 1.6 W.

We measure the far-field by placing the power-meter on an automated two-axis rotating

stage. The scanning speed is around 0.6 degree per second. We use the same current source

and average power-meter as for the PIV experiments. A background scan is performed with

the laser turned o� to suppress the thermal background. Both horizontal and vertical far-

fields are shown in Figure 5.6. As for typical QCL, the vertical divergence is large [13],

the full-width at half-maximum (FWHM) is 45.5¶ at 14 V, but is weakly depending on the

operating point. However, the horizontal far-field remains single-lobed up to a 12 V bias and

is only a�ected by a shoulder afterwards, whereas BA QCLs usually experience multi-lobed

far-fields significantly degrading with increasing current.
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Figure 5.6: Horizontal and vertical far-fields at di�erent bias currents.

109



The transverse optical modes that can exist in the cavity have been estimated by solving

Maxwell’s equations using a 2D solver. For the simulation, the refractive indices are chosen

to be 3.19 for the active region, 1 for the SiO2 forming the passivation layer, 3.09 for the

InP:Fe. The LOCs and the cladding layers are modeled by Drude model with a high frequency

permittivity of ‘Œ = 9.61, an e�ective electron mass to free electron mass ratio of mı/m0 =

0.08 and an electron scattering time of ·
scat

= 0.1 ps. Resulting fundamental and highest

order modes, TM0 and TM5, are shown in Figure 5.7.

a) b)

Figure 5.7: Simulated TM0 (a) and TM5 (b) electric field intensities.

Mode Overlap with the E�ective
order active region (%) refractive index
TM0 58.58 3.1305
TM1 58.38 3.1284
TM2 58.03 3.1248
TM3 57.51 3.1199
TM4 56.73 3.1136
TM5 55.51 3.1059

Table 5.1: Model parameters for InP substrate, SiO2, Si3N4, TiO2.

The overlaps of the modes with the active region and their calculated e�ective refractive

index are summarized in Table 5.1. The higher the mode order, the more it spills into

the InP:Fe spacers. In comparison, in the case of a standard double trench (DT) device,

the overlap di�erence is lower between the modes as they are all strongly confined by the

dielectric layer [56]. In the case of the studied device, the overlap di�erence between TM0

and TM5 is �� = 3.1% whereas it is only ��
DT

= 0.87% for a 32 µm DT device. Thus, the

InP:Fe spacers are acting as a high-order mode filter.
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In addition, the e�ective refractive index of TM0 is 3.1305, which is below the active re-

gion refractive index. Therefore, the refractive index variation is negative, and in accordance

with the results in near-IR mentioned previously we expect to be able to change the energy

distribution between the modes in order to favor the fundamental one, by using optical

feedback.

5.3.3 Beam steering e�ect

In the far-field of Figure 5.7, the measured horizontal FWHM increases with the bias current,

ranging from 11¶ to 13.1¶. As the bias is increasing, the peak horizontal emission is right-

shifted from 0.5¶ to 3.2¶ and a shoulder appears on one side of the far-field profile. This

evolution of the far-field with the bias current is due to beam steering. It is attributed to

beating between the lowest order transverse modes, their e�ective refractive indices being

close to each other, as shown in Table 5.1.

Generally speaking, beam steering is due to the large nonlinear susceptibility ‰(3) in

QCLs [164], which induces nonlinear coupling between the transverse modes and leads to

four-wave mixing interactions and phase coherence [165], as depicted in Figure 5.8 a and b.

The electric field is indeed expressed as:

E(x) =
ÿ

i

–
i

E
i

(x) (5.4)

where E
i

(x) is the complex electric field of the ith transverse mode and –
i

a coupling coe�-

cient.

When considering only the two lowest-order transverse modes, the beam steering only

results in an o�-axis far-field, depending on the phase di�erence between the complex elec-

tric fields of the two modes (see Figure 5.8 c and [166]). However, when more modes are

interacting, the far-field is often significantly deteriorated, as shown in Figure 5.8 b: when

increasing the bias current, more and more modes are involved and the far-field profile is

degraded.
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Figure 5.8: a) SEM picture of the laser facet and simulated TM0, TM1 and TM2. b) Measured
(black dots) and fitted (red lines) far-fields at di�erent bias currents. Courtesy of [165]. c) Simu-
lated far-field in case of equal power coupling between TM0 and TM1 for various phase di�erence
(courtesy of [166]).

5.3.4 Modifications on the optical feedback experimental setup

This laser is inserted in a similar setup as described in Figure 5.1, but this time the feedback

mirror is mounted on a precision rotation stage with vernier scale to control the angle of

feedback. Furthermore, the external cavity length is carefully chosen: the camera is at the

same distance from the laser as the feedback mirror. The beam is therefore focused at the

same time on the camera and on the mirror, and what is reinjected into the QCL is an image

of its near-field. The external cavity length is chosen to be L
ext

= 29 cm, but longer cavities

were also considered and led to similar results, as long as the laser beam remains focused on

the feedback mirror.

With the described experimental setup, it is not possible to measure exactly this feedback

ratio. However, the observed threshold fluctuations of less than ± 1% suggest that only a

small amount of light is reinjected into the cavity, corresponding to feedback ratios of less

than 5%. This small quantity of optical feedback should however lead to an amelioration

of the beam profile, whereas higher amount of reinjection would tend to destabilize the

laser [158].

In this section, the influence of the spatial position of the reinjected beam will be studied,

and the angle of the feedback mirror ◊ can therefore be adjusted in order to sweep the
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feedback over the whole active area. Furthermore, a shutter on the feedback path enables

spatial filtering of the reinjection, by choosing which part of the beam is fed-back into the

laser cavity.

5.3.5 Conventional optical feedback

Figure 7.17 presents the near-field profiles of the QCL previously described operated close to

threshold (at 11.19 V with a 3% duty cycle) when subjected to conventional optical feedback.

The nine curves correspond to di�erent feedback mirror angles, as indicated above the plots.

The first and last curves are the free-running cases, where the reinjected beam does not enter

the laser cavity. When changing the feedback angle, the impact of optical feedback is shown

to be perfectly symmetrical with respect to the central position, corresponding to �x = 0.

Figure 5.9: Near-field at the laser facet for di�erent feedback angle, expressed both in arc-minute
and in displacement on the laser facet with respect to the central position. The shutter is open
and has no impact on the feedback. Figures in inset correspond to the near-field recorded on the
camera.

Under free-running operation (◊ = ≠34Õ and +33Õ), the QCL near-field is not completely

symmetric, there is more power on the left-hand side of the profile. This originates from

beam steering e�ect, which has been often observed in BA QCLs [166]. This beam steering
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can be compensated by reinjecting a small amount of optical feedback on one side of the

cavity. In that case, the power distribution becomes almost homogeneous over the near-

field profile (◊ = ≠25Õ and +19Õ). Afterwards, when directing the feedback closer to the

center of the cavity, a peak appears on the near-field profiles, corresponding to the position

where the light is reinjected, and this peak is shifted continuously along the near-field when

changing the mirror angle (from ◊ = ≠16Õ to +10Õ). In particular, the transverse mode

with three maxima TM2 becomes preponderant for centered optical feedback (◊ = 0Õ). It

is however important to stress that, although the power distribution between the several

modes is strongly modified by optical feedback, the total emitted power is hardly a�ected,

whatever the position of the reinjected beam.

5.3.6 Spatially-filtered optical feedback

On this central position where the TM2 mode is predominant, a shutter is added on the

feedback path close to the beam-splitter in order to spatially filter the central peak of the

reinjected mode. As shown in Figure 7.18, when the shutter is fully open, the TM2 mode

appears, where the less pronounced peaks can be explained by a di�erent contrast on the

camera. Finally, when the shutter is partially closed to let through only the central peak, a

spatial profile closer to the fundamental transverse mode TM0 is obtained. This is consistent

with studies of optical feedback on BA laser diodes, that have shown that spatial filtering of

the feedback will lead to the excitation of lower order transverse modes [160].

Figure 5.10: Near-fields at the laser facet with centered optical feedback and two shutter aper-
tures. The shutter is fully open (a) and partially closed to filter the central lobe (b).
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5.3.7 Feedback response of a QCL with multi-lobe far-field

A second QCL is considered, which has the same design and same width as the first one.

Although the power performances are similar, the horizontal far-field shows many lobes even

at low bias voltage, as represented in Figure 5.11 b. These deteriorated performances can be

understood by observing the facet, as shown in Figure 5.11 a. A crack is indeed observed on

the right-hand side of the facet. This defect breaks the symmetry of the device, which leads

to an inhomogeneous gain. Some nonlinear e�ects will be enhanced, such as strong spatial

hole burning, which is responsible for the multi-lobe far-field.

Figure 5.11: a) SEM picture of the laser with a defect facet. b) Horizontal far-field at 11 V.

When subjecting this QCL to optical feedback, a response very di�erent from the previous

laser is observed, as depicted in Fig. 5.12. The near-field patterns are no longer symmetrical

with respect to the centered feedback case, and here only the most interesting half of the

way is shown, from the free-running to the case where �x = 0. When changing the feedback

angle towards the center of the cavity, more and more transverse modes are excited. The

succession of TM1 (◊ = +19Õ), TM2 (◊ = +15Õ), TM3 (◊ = +11Õ) and TM4 (◊ = +7Õ)

are observed. Finally, for centered optical feedback, TM5 is excited (◊ = 0Õ), although the

extinction between the lobes is not very clear. These observations are consistent with the

conducted simulations showing that a maximum of six transverse modes can co-exist in the

32 µm cavity.

Furthermore, these near-field patterns where higher order transverse modes appear in the

case of optical feedback resemble the situation described in BA laser diode very sensitive to

spatial hole burning [159]. This might suggest the appearance of filamentation in this BA

QCL presenting a defect on the facet, although a temporal study would be necessary in order
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Figure 5.12: Near-field at the facet for the 32 µm-wide QCL presenting a defect, for di�erent
feedback angle.

to conclude on this point. Similar field distributions and response to optical feedback should

be expected in the case of any BA QCL presenting an asymmetry or an inhomogeneous gain,

leading to a multi-lobe far-fied.

5.3.8 Comparison with a 14 µm-wide laser

In order to evaluate the impact of the QCL width on its response to optical feedback, an

additional measurement was performed on a 14 µm-wide QCL. This laser has the same active

region design as the one described previously, and was processed using a standard double-

trench technique. According to the simulations, three modes can exist in this cavity, but the

beam profile of the free-running laser is gaussian, as shown in the first plot of Figure 5.13.

This QCL can no longer be considered as a BA laser, and its response to centered optical

feedback is indeed the one of a narrow-ridge laser, with an increase of the output power and

a narrowing of the near-field profile.

However, when rotating the feedback angle, the higher order mode TM1 can be excited

116



Figure 5.13: Near-field at the facet for the 14 µm QCL based on the previously described design,
for di�erent feedback angle.

(◊ = ≠9Õ and ≠5Õ), as depicted in Figure 5.13. We observe the same tendency as in the case

of BA QCL under feedback, with a limited displacement of the feedback peak due to the

smaller width of the cavity and the limited number of modes that can get excited. Therefore,

this study on a 14 µm QCL can be considered as the limit case where the spatial dimension

x of optical feedback must be taken into account.

5.4 Beam steering suppression with optical feedback
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Figure 5.14: a) Evolution of the near-field profile with the bias voltage of a 14 µm QCL based
on a di�erent design, evidencing strong beam steering. b) Deteriorated far-field of the laser at high
bias current.

Some 14 µm-wide QCLs based on a di�erent design are already sensitive to multimode
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interactions within the laser cavity, which results for instance in strong beam steering of the

free-running laser. This is the case for the QCL studied in this section, also emitting around

4.6 µm. As depicted in Figure 5.14, the near-field profile of this laser indeed becomes more

and more distorted when increasing the bias voltage.

As shown in Figure 7.19, when applying o�-centered optical feedback on this laser, two

well-separated maxima appear on the near-field profile, corresponding to a predominant first

order transverse mode TM1. However, when the feedback beam is reinjected in the center of

the laser cavity, the beam steering is totally suppressed, and the obtained near-field profile

is perfectly single-lobe, corresponding to TM0.

Figure 5.15: Impact of optical feedback on a 14 µm QCL based on a di�erent design presenting
strong beam steering.

5.5 Conclusions

This study shows the possibility to engineer the emission pattern of BA QCLs using a non-

linear external control with and without spatial filtering. Tailoring the near-field emission
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pattern becomes possible, even with a small amount of o�-centered reinjected light which

avoids complex monolithic integration and is therefore much easier to implement. It can be

changed either to a more homogeneous distribution or to a near-field that presents an inten-

sity peak following the mirror displacement for a QCL emitting on a single lobe. Spatially-

filtered optical feedback is used to further enhance the near-field profile quality. In the case

of a BA QCL with a multi-lobe far-field, all the cavity transverse modes are sequentially

excited while changing the feedback mirror angle. The comparison with a narrower device

points out the impact of the number of cavity modes on the feedback response. Moreover,

even for smaller cavities, optical feedback can e�ciently be used in order to suppress the

beam steering that may occur.

Further works will investigate the dynamical behavior of QCLs under optical feedback.

As a matter of fact, depending on the QCL structure quality, strong spatial hole burning

can arise, which might lead to filamentation. Optical feedback can be used as an e�cient

solution to stabilize the QCL dynamics, as for BA near-infrared laser diodes. Furthermore,

the design of the spatial filters should be optimized to reach a better control of the reinjected

beam, and therefore, on the device far-field pattern. In addition, further experiments will be

performed in order to explore the impact the optical feedback has on BA devices of several

hundreds of microns. Such QCLs are indeed of interest because they produce extremely high

output powers but, due to the existence of many transverse modes in the cavity, they present

very poor beam quality, which should be improved by applying optical feedback.

119



Chapter 6

Impact of optical injection on
quantum cascade lasers

Optical injection consists in injecting part of the light emitted by a first laser, or master

laser, into a second laser, called slave laser. It can improve the emission properties of the

slave laser, similarly to optical feedback, but the impact of optical injection is much more

significant.
Injection optique

Laser 1 Laser 2

Figure 6.1: Principle of optical injection.

When injecting light into the laser and increasing progressively the injected power at fixed

master laser wavelength, the wavelength of the slave laser will be pushed away from that of

the master laser (Figure 6.2 a). On the other hand when increasing progressively the master

wavelength at fixed injected power, the wavelength of the slave laser will be pulled towards

that of the master laser (Figure 6.2 b). In the particular case when the frequency of the

master laser is close enough to the slave laser frequency and the master laser power is high

enough, the slave laser will operate at the master laser frequency. This phenomenon, called

injection locking, is well-known in physical systems. In the 17th century, Huygens observed

that two pendulums of clocks mounted on the same wall would synchronize and oscillate at

the same frequency, due to the propagation of vibrations through the wall. Injection locking

was later applied to electrical oscillators [167], to lasers under electrical injection [168] and
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finally to lasers subject to optical injection [169].
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Figure 6.2: Schematic of injection locking. a) Evolution of the slave wavelength ⁄

SL

as a function
of the injected power. b) Evolution of the slave wavelength ⁄

SL

as a function of the master
wavelength ⁄

ML

.

In the optical injection experimental setup, an optical isolator between the master and

slave lasers is a key element to avoid optical feedback of the master after reflection on the

slave facet, or optical injection of the slave inside the master. Without isolator, the two

lasers impact each other, it corresponds to mutually coupled lasers, which also experience

complex dynamics [170, 171], but will not be studied here.

After a brief review of the e�ects of optical injection on a laser diode both in and outside

the locking range, this chapter will present a overview of the state of the art on optical

injection in QCLs, as well as a numerical study applied to the QCL structure described in

the second chapter.

6.1 Impact of optical injection on interband laser diodes

Optical injection in interband semiconductor lasers has been studied since the early eighties,

both experimentally and numerically.
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6.1.1 Locking map

The rate equations of a laser diode under an electric field E =
Ô

Sei„0 subject to optical

injection E
inj

=
Ò

S
inj

can be expressed as [172, 173]:

dN

dt
= I

q
≠ N

·
c

≠ G(N)S (6.1)

dS

dt
=

A

G(N) ≠ 1
·

p

B

S + 2k
Ò

S
inj

S cos(„0) (6.2)

d„

dt
= –

2

A

G(N) ≠ 1
·

p

B

≠ k

Û
S

inj

S
sin(„0) ≠ �Ê (6.3)

where N is the carrier density of the slave laser, I is the slave bias current, q the electron

charge, ·
c

the slave carrier lifetime, ·
p

the slave photon lifetime, G(N) the slave gain per

unit time and – the slave linewidth enhancement factor. The frequency detuning is defined

as �Ê = Ê
ML

≠ Ê
SL

, with Ê
ML

and Ê
SL

the frequencies of the master and slave lasers,

respectively. Finally, the injection coupling coe�cient k can be written as:

k = 1
·

in

2C
l

(6.4)

with ·
in

the slave internal cavity roundtrip time and C
l

the external coupling coe�cient

defined as in the case of optical feedback (see eq. 7.7 for a Fabry-Perot laser and eq. 3.8 for

a DFB laser).

The analytical conditions for stable injection locking in a laser diode have been given

by Morgensen et al. [174]. Under steady-state, with G(N) = 1/·
p

+ G
N

(N ≠ N
th

) and

N ≠ N
th

= �N , eq. 6.1 to 6.3 indeed lead to [175]:

�Ê = ≠k
Ô

1 + –2
Ô

K sin(„0 + atan –) (6.5)

�N = 2
G

N

k cos(„0)
Ô

K (6.6)

with K = S
inj

/S the injection ratio. Since ≠1 Æ sin(„0 + atan –) Æ 1, eq. 6.5 gives the
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boundaries of the locking range:

≠ k
Ô

K
Ô

1 + –2 < �Ê < k
Ô

K
Ô

1 + –2 (6.7)

∆"

K0

Figure 6.3: Typical locking map of a laser diode. In blue, Saddle-Node bifurcations. In red, Hopf
bifurcation. In dashed gray, stable locking region.

These boundaries correspond to Saddle-Node bifurcations, represented in blue in Fig-

ure 6.3. Another stability boundary was given later by Gavrielides et al. [176], which can be

expressed as [43]: A
�Ê

Ê
r

B2

= K2(2K2 + 1 ≠ –2)2

–2 + (2K2 + 1) (6.8)

with Ê
r

the relaxation oscillation angular frequency. It corresponds to a Hopf bifurcation,

leading to an unstable locking at zero detuning for small injection ratios, as represented

in red in Figure 6.3. The stable locking area is located between the Hopf curve and the

Saddle-Node at negative detuning, as shown in dashed gray in Figure 6.3.
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6.1.2 Improved laser properties in the stable locking region

In the stable locking region, the emission properties of the slave laser are ameliorated. By

definition, the injection locked slave laser will operate at the master laser frequency, with a

strong suppression of the Fabry-Perot side-modes when increasing the injection ratio [172],

as shown in Figure 6.4. Furthermore, the optical linewidth of the slave laser under stable

injection locking is strongly reduced. Typically, Morgensen et al. [177] demonstrated an

injection-locked linewidth of 5.84 MHz when the free-running linewidth was 87.5 MHz, based

on FM noise calculations.

Figure 6.4: Optical spectra of a laser diode as a function of the injected power (courtesy of [172]).
a) Free-running case. b) P

inj

= ≠ 49.5 dBm. c) P

inj

= ≠ 42.5 dBm. d) P

inj

= ≠ 39.5 dBm. e)
P

inj

= ≠ 29.5 dBm. f) P

inj

= ≠ 22.5 dBm.

a) b)

Figure 6.5: a) Voltage evolution with the detuning, showing the locking range. b) Influence of
the detuning on the optical power at constant injection strength. (Courtesy of [178]).
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Stable injection locking also impacts the voltage and output power of the slave laser [178,

179, 180]. As shown in Figure 6.5 a, the bias voltage will increase linearly in the locking range

when increasing the detuning. From this voltage variation compared to free-running versus

detuning curve, van Exter et al. [179] proposed a new technique to measure the –-factor. If

‹0 is the detuning at which the bias voltage is equal to the free-running value, and ‹
m

is the

half-width of the locking range, the LEF can be written as:

– =
Û3

‹
m

‹0

42
≠ 1 (6.9)

The optical power also increases significantly when the laser in under stable injection locking,

as depicted in Figure 6.5 b. Furthermore, a strong bistability appears on the measurement

depending on whether the detuning is increased or increased.

Spano et al. [181] studied the evolution of the intensity and frequency noise of a semi-

conductor laser under optical injection. They proved numerically and experimentally that

the slave laser noise will tend to reproduce the master laser noise when the detuning is close

enough to 0, both for intensity and frequency noise. Therefore, if the purity of the master

laser is high, the noise of the slave laser will be significantly reduced.

Figure 6.6: a) Improvement of the modulation bandwidth with optical injection, compared to the
free-running case in black (courtesy of [182]). b) Chirp reduction with optical injection, compared
to the free-running represented by circles (courtesy of [183]).

The modulation response of a laser diode under stable injection locking is also drasti-

cally improved. As shown in Figure 6.6 a, the ≠3 dB modulation bandwidth of a VCSEL
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can be enhanced when increasing the injection ratio, and values over 80 GHz have been

reported [182].

Furthermore, the low frequency chirp is also reduced, as depicted in Figure 6.6 b. Under

optical injection, the chirp to power ratio (CPR), defined as the ratio between frequency and

power deviations CPR = �‹/�P
opt

, keeps decreasing linearly when decreasing the modula-

tion frequency, whereas the free-running CPR reaches a plateau at low frequency [183]. A

laser with no chirp was even reported, by zeroing the –-factor through optical injection [184].

Under stable injection locking, the slave laser diode properties are therefore significantly

enhanced, and tend to reproduce the characteristics of the master laser.

6.1.3 Instabilities and chaos outside the stable locking region

On the other hand, when the laser is injected outside the stable locking range, complex

dynamical behaviors may appear [185, 186]. Similarly to the case of optical feedback, period

1, period 2, higher harmonics and chaos will arise. However, at zero detuning, the laser

is not always stable at low injection ratio [187]: depending on the slave parameters, when

increasing the injection ratio, the laser may start stable, become periodic and restabilize, or

it may first be chaotic, then enter period 2, period 1 and finally stabilize (see Figure 6.7).

Figure 6.7: Examples of bifurcation diagrams depending on the slave laser parameters. Here the
normalized parameters have the same definition as for optical feedback (courtesy of [187]).
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Figure 6.8: Experimental locking map, presenting the complex dynamics of a laser subject to
optical injection. The dashed area in a) is represented in b) (courtesy of [188]).

Figure 6.8 a presents an example of the complete locking map of a semiconductor laser

under optical injection [188]. The stable injection locking region is marked by ’S’, and the

unlocked region by ’U’. ’OM’ indicates that the laser operates on other longitudinal modes.

A zoom on the unstable locking region is presented in Figure 6.8 b. In this area, the laser

dynamics are very complex. Three islands of chaos can be observed, marked with ’C’. Some

periodic oscillations appear, they are marked with a number on the graph (’1’ for period 1, ’2’

for period 2, etc.). Bubbles of periodic oscillations even occur within a chaotic island. Finally,

the region labelled ’P’ corresponds to frequency pulling, where the slave laser frequency is

pulled towards the master frequency, but the injection ratio is not high enough, and the laser

does not lock.

The dynamics that occur in a laser diode outside the stable locking range are therefore

very complex, and depend both on the intrinsic parameters of the slave laser and on the

injection conditions.

6.2 Previous studies of optical injection in quantum
cascade lasers

Taubman et al. [189] were the first to report injection locking of a DFB QCL into a second
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DFB QCL. By gradually increasing the master laser power, they observed an increase of the

locking range, up to ± 500 MHz for the maximum achievable injection ratio of 3%.

Figure 6.9: Heterodyne beating between the master QCL and the slave QCL. a) Case of injection
locking. b) Free-running slave laser. (Courtesy of [189]).

Furthermore, an asymmetry appeared on the locking map, which was attributed to a

non-zero –-factor: the extracted LEF was – = 0.26 ± 0.1. By studying the heterodyne

beating between the slave and master lasers, a clear reduction of the slave linewidth was

also observed, as shown in Figure 6.9. Finally, optical injection locking was used to suppress

residual amplitude modulation (RAM). Direct modulation of the bias current of a QCL

indeed produces both frequency (FM) and amplitude modulations (AM), the latter being a

source of noise in the case of FM spectroscopy. Under optical injection locking, the RAM was

reduced by 49 dB and can even be totally suppressed by applying an additional modulation

on the slave bias current, out of phase with the one applied on the master laser. The RAM

reduction using optical injection was also studied numerically by Yong et al. [190].

Optical injection locking can also be exploited to reduce the noise of a QCL. By injecting

a DFB QCL into another one, the RIN at low frequency can be reduced by 20 dB/Hz [191],

as shown in Figure 6.10 a. Experimentally, under the same conditions, a maximum RIN

decrease of around 10 dB/Hz was observed [60]. As presented in Figure 6.10 b, when tuning

the master laser frequency over the whole slave laser range, the otherwise well-suppressed

side-modes of the slave QCL will lock successively, inducing RIN reduction and output power

increase. However, the e�ciency and locking range will depend on the enhanced side-mode, it
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Figure 6.10: a) Numerical RIN reduction with optical injection (courtesy of [191]). b) Experi-
mental RIN and power evolution with the frequency detuning: when one of the slave laser mode is
locked on the master frequency, the RIN is reduced and the power increased (courtesy of [60]).

reaches a maximum range of 8 GHz on the central mode. By injecting a frequency comb into

a Fabry-Perot QCL, the low-frequency frequency noise was also significantly reduced [192].

Up to 100 kHz, the slave QCL will reproduce the behavior of the master, and therefore

decrease its frequency noise by 3 to 4 orders of magnitude. As a consequence, the linewidth

of the laser is also reduced from a few MHz down to 20 kHz.

A few theoretical studies based on the QCL rate equations, also focused on the modula-

tion properties of a QCL under optical injection [193, 194]. For instance, Wang et al. [195]

demonstrated an increase up to 30 GHz of the ≠3 dB modulation bandwidth. Furthermore,

all these studies concluded that no unstable locking region would exist in QCLs, due to the

ultra-fast carrier lifetime. However, no experimental studies on the modulation of a QCL

under optical injection locking have been performed so far to verify these predictions, al-

though the modulation bandwidth has been significantly improved up to 14 GHz in a QCL

under radio-frequency (RF) injection locking [196].
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6.3 Numerical analysis of injection locking in quantum
cascade lasers

6.3.1 Rate equations under optical injection

Similarly to the case of optical feedback, when neglecting spontaneous emission, if the slave

QCL is under an electric field E =
Ô

Sei„eiÊ

SL

t and E
inj

=
Ò

S
inj

eiÊ

ML

t is the electric field of

the master laser, the rate equations of the QCL subject to optical injection can be written

as:

dN3
dt

= ÷
I

q
≠ N3

·32
≠ N3

·31
≠ G0�NS (6.10)

dN2
dt

= N3
·32

≠ N2
·21

+ G0�NS (6.11)

dN1
dt

= N3
·31

+ N2
·21

≠ N1
·

out

(6.12)

dS

dt
=

A

N
pd

G0�N ≠ 1
·

p

B

S + 2k
Ò

S
inj

S cos(„) (6.13)

d„

dt
= –

2

A

N
pd

G0�N ≠ 1
·

p

B

≠ �Ê ≠ k

Û
S

inj

S
sin(„) (6.14)

where N
j

is the carrier density of level j, with �N = N3 ≠ N2, ÷ is the conversion e�ciency,

I is the bias current. ·
ij

corresponds to the carrier lifetime from level i to level j, ·
out

is the

characteristic time for the electron to tunnel into the injector, ·
p

is the photon lifetime inside

the laser cavity. G0 corresponds to the net modal gain for one period, N
pd

to the number of

periods and – to the linewidth enhancement factor. �Ê is the frequency detuning, defined

as �Ê = Ê
ML

≠ Ê
SL

. Finally, k is the injection coe�cient, defined as:

k = 1
·

in

2C
l

(6.15)

where ·
in

is the internal cavity roundtrip time and C
l

is the external coupling coe�cient as

defined in Eq. 7.7 or 3.8.
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6.3.2 Analytical model

From eq. 7.18 to 7.22, the analytical model for a QCL under optical injection has been

developed by Erneux et al. [197].

The rate equations are normalized with respect to the photon lifetime ·
p

, with s = t/·
p

the normalized time, and defining the new set of variables (Y , Y
inj

, Z, V ), with Y and Y
inj

the normalized amplitude of the slave and master laser electric fields, respectively, Z the

normalized carrier density di�erence, and V the normalized carrier density of level |2Í, by:

Y = G0·32S

Y
inj

= G0·32Sinj

�N = 1 + 2Z

N
pd

G0·p

N2 = 1
N

pd

G0·p

1 + V
·32
·21

≠ 1

Other parameters, such as the normalized lifetimes “1, “2, “3 and “4, the normalized bias

current P , the normalized injected power “ and the normalized detuning � are expressed as:

“1 = ·
p

·32

“2 =
3

·32
·21

≠ 1
4

·
p

·32

“3 =
3

·32
2·21

≠ 1 ≠ ·32
2·31

4 1
·32
·21

≠ 1

“4 = 2
3

1 + ·32
2·31

4

P = N
pd

G0·p

·32
2

÷(I ≠ I
th

)
q

“ = k·
p

Ò
Y

inj

� = �Ê·
p

It is worth noting that the conversion e�ciency ÷ was not included in the normalized

pump parameter P in the work of [197], but impacts significantly the resulting locking map.

Injecting these normalized parameters into the rate equations 7.18 to 7.22 leads to (the
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detailed calculation can be found in Ref. [197]):

dZ

ds
= “1 [P + “3V ≠ “4Z ≠ (1 + 2Z)Y ] (6.16)

dV

ds
= “2 [2Z ≠ V + (1 + 2Z)Y ] (6.17)

dY

ds
= 2Y Z + 2“

Ô
Y cos(„) (6.18)

d„

ds
= –Z ≠ � ≠ “

Û
1
Y

sin(„) (6.19)

At this stage, an approximation can be made: the values for “2 extracted from the

literature suggest to eliminate adiabatically V using V = 2Z + (1 + 2Z)Y , i.e. the steady-

state value of eq. 6.17. By writing “41 = “4 ≠ 1, the rate equations 6.16 to 6.19 become:

dZ

ds
= “1

5
P ≠ “41Z ≠ (1 + 2Z)Y

2

6
(6.20)

dY

ds
= 2Y Z + 2“

Ô
Y cos(„) (6.21)

d„

ds
= –Z ≠ � ≠ “

Û
1
Y

sin(„) (6.22)

Under steady-state, the parametric equations expressing Y and the injection strength “

as a function of Z, with ≠1/2 < Z < P/“41, are given by:

Y = 2(P ≠ “41Z)
1 + 2Z

(6.23)

“2 =
Ë
Z2 + (–Z ≠ �)2

È 2(P ≠ “41Z)
1 + 2Z

(6.24)

The stability boundaries of the QCL under optical injection can be extracted from the

Jacobian matrix resulting from eq. 6.20 to 6.22 (see Ref. [197] for the detailed calculation).

The Saddle-Node bifurcation, corresponding to the locking condition with one zero root, is

obtained by solving:

≠ “41 + 2P

1 + 2Z

Ë
Z2 + (–Z ≠ �)2

È
+ 2(P ≠ “41Z) [Z + –(–Z ≠ �)] = 0 (6.25)
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The two Hopf bifurcations, with two purely imaginary roots, verify:

2Z
5
≠2“1

“41 + 2P

1 + 2Z
+ Z2 + (–Z ≠ �)2

6
≠ 2“2

1
“41 + 2P

1 + 2Z

5
≠“41 + 2P

1 + 2Z
Z + P ≠ “41Z

6

≠2“1(P ≠ “41Z) [Z + –(–Z ≠ �)] = 0
(6.26)

2“1
“41 + 2P

1 + 2Z
Z + 2“1(P ≠ “41Z) + Z2 + (–Z ≠ �)2 > 0 (6.27)

Figure 7.20 presents the analytical locking maps obtained from eq. 6.25 to 6.27 for di�er-

ent –-factors and bias currents. The other parameters of the simulation correspond to the

4 mm ◊ 12 µm Fabry-Perot QCL described in the second chapter, with a threshold current

of 1.2 A. On the graph, the blue curve corresponds to the Saddle-Node solution, and the two

red curves to the Hopf solutions.

Figure 6.11: Analytical simulations of the 12 µm Fabry-Perot QCL subject to optical injection.
First row: constant bias current I = 1.5 A with a) – = 0, b) – = 1.5 and c) – = 3. Second row:
fixed – = 1.5 and d) I = 1.25 A, e) I = 1.5 A, f) I = 2 A.

The shape of the QCL locking map is very di�erent from the one usually observed in

interband lasers, for instance represented in Figures 6.3 and 6.8. However, it resembles the

one typically obtained for class A lasers [198] or numerically for highly damped class B lasers
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such as quantum dot lasers [199], although it was never observed experimentally in this last

case. The main di�erence is that in QCLs and class A lasers, the laser will always be locked

at zero detuning, even for low injection ratios. Furthermore, no unstable locking region will

appear in a QCL, and hence no chaos. Destabilization of the slave laser will only occur in

the upper left and lower right parts of the curves, beyond the Hopf lines but within the

limits of the Saddle-Node region. In this range, the QCL should experience phase-locked

bistability [199], either between two stable solutions or between a stable and a periodic

solution [198].

In Figure 7.20, the first row corresponds to a fixed bias current I = 1.5 A, but three

values of the linewidth enhancement factor. On each plot, the scales are modified in order

to observe the complete locking map. When – = 0, the Saddle-Node and Hopf curves are

perfectly symmetrical with respect to the zero detuning case. When increasing progressively

the –-factor, an asymmetry arises: the locking region at negative detuning becomes larger

than the locking range at positive detuning. Furthermore, both the locking range and the

bistable region between the Hopf bifurcation and the upper Saddle-Node curve also increase

with the LEF.

The second row of Figure 7.20 presents the evolution of the locking map with the bias

current, at constant LEF – = 1.5. It shows that the locking range increases with the bias

current. Very close to threshold, the Hopf bifurcation will moreover arise for lower injection

strength, but the bistable region is narrower compared to the high bias scenario.

6.3.3 Numerical locking map

The second simulation method is also based on the rate equations of the QCL under optical

injection (eq. 7.18 to 7.22). In this case, the perturbed electric field of the slave laser is

calculated for each point of the locking map, and the locking range corresponds to the

situation where the slave response is stable. In presence of injected light outside the stable

locking range, both the amplitude and phase of the slave electric field will indeed oscillate

due to the cos(„) and sin(„) terms in eq. 7.21 and 7.22, also inducing an oscillation on the

carriers.

The starting point of the numerical simulations are the rate equations of the laser with-
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out optical injection. In order to obtain the free-running characteristics, the spontaneous

emission term —N3/·
sp

is added to the rate equations on N2 and S, and substracted to the

equation on N3, where — is the spontaneous emission coe�cient and ·
sp

the spontaneous

emission lifetime. Since the spontaneous emission is very weak in QCLs, values as low as

— = 10≠6 [45] and as fast as ·
sp

= 1 ns were considered. Varying these values does not impact

significantly the laser behavior, as long as ·
sp

∫ ·32. However, it is necessary to consider

even a small amount of spontaneous emission to start the stimulated emission.
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Figure 6.12: Simulated carrier and photon densities of the free-running QCL as a function of the
bias current.

Figure 6.12 shows the carrier and photon densities as a function of the bias current. The

coe�cient ÷ of eq. 7.18 was determined in order to correspond to the 12 µm-wide Fabry-

Perot QCL, which threshold is located at I = 1.2 A. A value of ÷ = 0.082 fits well to this

laser, and the simulated threshold on the photon density curve is indeed at I = 1.2 A. Fur-

thermore, it is interesting to note on the carrier densities plot that, contrary to the case of

interband laser diodes, the carrier densities are not clamped above threshold. Only the gain,

and therefore the carrier density di�erence �N = N3 ≠ N2 is clamped, which is consistent

with all numerical studies in QCLs (see e.g. [52]).

Figure 7.21 presents the numerical simulations of the 12 µm Fabry-Perot QCL. The

locking map is obtained by plotting the di�erence between the intensity extrema of the

135



Figure 6.13: Numerical simulations of the signal intensity as a function of the injection ratio
and detuning, superimposed on the analytical solutions (red for Saddle-Node and yellow for Hopf
curves) for the 12 µm Fabry-Perot QCL subject to optical injection. First row: – = 0 with a)
I = 1.25 A, b) I = 1.5 A, c) I = 2 A. Second row: – = 1.5 with d) I = 1.25 A, e) I = 1.5 A, f)
I = 2 A. Third row: – = 3 with g) I = 1.25 A, h) I = 1.5 A, i) I = 2 A.
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temporal response as a function of the injection ratio and detuning. The results are analyzed

for several –-factors and bias currents, superimposed with the analytical results. Both

simulations give the same results in the case – = 0 (first row). However, when increasing

the –-factor, the two simulations slightly diverge from one another. This is probably linked

to the approximations made for the analytical calculations (see Ref. [197]). As expected, the

QCL is nevertheless always locked at zero detuning.

Furthermore, some interesting behaviors occur close to threshold, as shown in the first

column of Figure 7.21, with I = 1.25 A. At this bias, the Hopf curves from the analytical

simulations appear in a range of parameters reasonably achievable in the experiments. In the

numerical simulations, it corresponds to the occurrence of new dynamics. Beyond the Hopf

bifurcation, sinusoidal oscillations appear. These period one dynamics occur for instance

on both sides for – = 0 (Figure 7.21 a), and in the case of positive detuning for – = 1.5

(Figure 7.21 d) and – = 3 (Figure 7.21 g), with a period depending on injection parameters.

Moreover, still considering the case very close to threshold, some high-intensity events

appear punctually along the limit of the locking region when the Hopf bifurcation is located

beyond the Saddle-Node curve (see on both sides of Figures 7.21 a and d, and for positive

detuning of Figure 7.21 g). The nature of these events remains unclear, but QCLs subject

to optical injection could potentially be used as extreme events generators [200].
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Figure 6.14: Influence of ÷ on the locking map for the 12 µm QCL with I = 1.25 A and – = 1.5.
The conversion e�ciency is taken into account in the numerical calculation but taken to ÷ = 1 in
the analytial curves.
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These new dynamics are clearly linked to the existence of the Hopf curve within a rea-

sonable range of parameters. If considering ÷ = 1 in the analytical model, as is the case

in Ref [197] and as shown in Figure 6.14, no Hopf curve should appear, and the dynamics

outside the locking range should resemble that at higher bias currents, which is obviously

not the case, as obtained from the numerical simulation.

Figure 6.15: Measurement points (in dashed lines) for the numerical time traces of the 12µm
QCL under optical injection represented in Figure 7.22 for – = 1.5 and I = 1.25 A.

Figure 7.22 shows the evolution of the photon density time traces with the injection ratio

K at several detuning values, calculated using the numerical simulations for – = 1.5 and

I = 1.25 A (see Figure 6.15, where the dashed lines indicates the measurement points). The

–-factor value of 1.5 was chosen to best correspond to the QCLs, as measured previously

and the bias current was set to observe the richest dynamics, present both Saddle-Node and

Hopf curves at positive detuning and Saddle-Node curve with extreme events at negative

detuning.

For all the measurement points located inside the locking range (Figures 7.22 c, f, i and

l), the laser remains stable, with constant intensity after a short transient regime. There

is therefore no unstable locking region, which is consistent with the previous analytical

simulations.

Furthermore, the first row of Figure 7.22, corresponding to �f = +1.05 GHz, describes
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Figure 6.16: Numerical time traces of the photon density for the 12 µm Fabry-Perot QCL subject
to optical injection, with – = 1.5 and I = 1.25 A . First row: �f = +1.05 GHz with a) K = ≠14 dB,
b) K = ≠13 dB, c) K = ≠6 dB. Second row: �f = +0.2 GHz with d) K = ≠30 dB, e) K = ≠27 dB,
f) K = ≠15 dB. Third row: �f = ≠0.2 GHz with g) K = ≠29 dB, h) K = ≠26 dB, i) K = ≠12 dB.
Fourth row: �f = ≠1.2 GHz with j) K = ≠15 dB, k) K = ≠8 dB, l) K = ≠2 dB.

139



the behavior along the Hopf curve: the unlocking of the laser occurs through the undamping

of periodic sinusoidal oscillations at the detuning frequency (Figure 7.22 a). By adjusting

the detuning in this case, it should therefore be possible to adjust the oscillation frequency,

and QCLs under optical injection at low bias current and high positive detuning could thus

be used as tunable photonic oscillators in the mid-infrared range.

On the other hand, for all other detuning values, the limit of the locking range corresponds

to a Saddle-Node bifurcation. The second row corresponds to �f = +0.2 GHz, the third

row to �f = ≠0.2 GHz and the last one to �f = ≠1.2 GHz. In these cases, the unlocking

is characterized by the appearance of small-amplitude periodic fluctuation, whose shape

depends on the detuning and injection ratio. For very small injection ratios, these oscillations

are sinusoidal, but closer to the limit of the locking range they are peaked on one side,

depending on the detuning sign (see e.g. Figure 7.22 e for positive detuning compared

to Figure 7.22 h for negative detuning). Moreover, the frequency of the oscillations also

depends on the injection parameters since it corresponds to the detuning frequency. The

extreme events appearing on this side of the present the same shape and frequency, but with

very high intensity and minima close to zero (see Figure 7.22 k).

6.4 Conclusions

According to the numerical simulations and analytical expressions, QCLs can exhibit rich

nonlinear dynamics when subjected to optical injection. Furthermore, the dynamical state

can be precisely controled by adjusting the laser and injection parameters. It would be

interesting to verify these predictions experimentally. Within the locking range, e�ects

similar to that observed in interband lasers are expected, such as sharp linewidth, noise

reduction or increase of the modulation bandwidth. However, the master and slave QCLs

should be chosen carefully since the locking range is relatively narrow: ± 3 GHz as obtained

typically around K = ≠5 dB corresponds only to ± 0.1 cm≠1.

Furthermore, some period 1 oscillations appear outside the locking range for positive

detuning at very low bias currents. These oscillations occur at the detuning frequency,

and QCLs under optical injection could therefore be used as tunable photonic oscillators.
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Extreme event generation also seem to occur close to the limit of the locking range at low

bias current.

Further investigations will conclude on whether a certain range of parameters exists

for which some specific microwave oscillations points can be insensitive to the detuning

frequency. This has been already proved to be of great importance in diode laser systems

where these oscillations points can stabilize the microwave frequency against fluctuations in

the detuning frequency. [201, 202].
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Chapter 7

Conclusions and perspectives

The studies presented in this thesis have shown that QCLs are sensitive to external

perturbations such as optical feedback. As in interband lasers, depending on the external

cavity length and the feedback ratio, the output power of both Fabry-Perot and DFB QCLs

emitting around 5.6 µm can be increased and the threshold current significantly reduced.

Furthermore, when increasing the feedback ratio at fixed external cavity length, the QCL

undergoes five regimes characterized by their optical spectra: the QCL emission will evolve

from stable and single-mode to a beating between two modes, and then to a single-mode

regime again but where the QCL operates on a mode di�erent from the free-running one.

Afterwards, the QCL enters an unstable regime, recognized on the optical spectra by an

strong increase of the pedestal and a rise of the side-modes. Finally, at very high feedback

ratios, the QCL is stable and single-mode again. These regimes are similar to that observed

in laser diodes, but they appear at much higher feedback ratios, and the fourth unstable

regime is narrower, the QCLs are therefore much more resistant to optical feedback.

From a dynamical viewpoint, both the experimental bifurcation diagram and the numeri-

cal verification using the Lang and Kobayashi rate equations prove that the QCL can oscillate

periodically at the external cavity frequency and even become chaotic under some feedback

conditions. The observed chaos, which takes the shape of low-frequency fluctuations, and

the absence of dynamical features at the relaxation oscillation frequency, consistent with the

absence of such oscillations in the modulation response of QCLs, leads to the conclusion that

the QCLs experience a class A-like dynamical scenario when subjected to optical feedback,

i.e. a scenario that was only observed in gas lasers before.
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Although these low frequency fluctuations can only be observed close above threshold

at reasonable feedback ratios that can be achieved experimentally, the fact that chaos may

occur in QCLs under optical feedback furthermore proves that the above-threshold room-

temperature –-factor of mid-infrared QCLs is not zero, contrary to what was predicted

theoretically. This important parameter was measured using two techniques based on op-

tical feedback, self-mixing interferometry and wavelength evolution at low feedback ratios,

resulting in values ranging from 0.8 to 2.9 strongly dependent on the bias current. Values

of –-factor around 1.5 relatively close to threshold result in an excellent agreement between

experiments and simulations. These e�ective –-factor values are consistent with other mea-

surements realized above threshold and at room temperature, and the threshold limit of

–0 = 0.4 is consistent with the material –-factor measurements performed with other meth-

ods on similar structures. The strong dependence with the bias current moreover leads

to a very high value of the gain compression coe�cient for the studied QCL structure of

‘
S

= 4.5 ◊ 10≠15 cm3, which would be consistent with the very high spatial hole burning

reported in mid-infrared QCLs but needs to be confirmed by other methods.

Optical feedback was also applied to 32 µm-wide BA QCLs emitting around 4.6 µm,

which present excellent performances in terms of both output power and heat-load dissi-

pation. In this case, the position of the reinjected beam along the laser facet becomes an

important parameter. Depending on the feedback mirror angle, the beam profile of the laser

can be strongly improved, in particular with the suppression of spatial nonlinear e�ects such

as beam steering and a tendency to operate on the fundamental transverse mode, enhanced

by the use of spatial filtering. On the other hand, optical feedback can also excite higher

order modes, suggesting the appearance of filamentation in QCLs with lower quality of fab-

rication. However, a dynamical study remains necessary in order to fully understand the

impact of optical feedback on BA QCLs.

The consequences of the sensitivity of QCLs to optical feedback is twofold. First, un-

wanted optical feedback originating from parasitic reflections on the experimental setup can

deteriorate the emission purity and must be avoided, especially for applications such as gas

spectroscopy. In particular, it has been shown that vertically-cleaved mid-infrared chalco-
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genide fibers can result in feedback ratios as high as 15%. To prevent this parasitic optical

feedback, the development of low-cost and compact mid-infrared optical isolators that could

be included in QCL packages is necessary.

However, studying optical feedback can lead to a better understanding of the QCLs.

Applying optical feedback indeed enables to extract key laser parameters such as the –-

factor or the gain compression coe�cient ‘
S

. In order to fully validate these measurements,

it would be important to retrieve the –-factor of one single laser using all possible methods

(Hakki-Paoli, FM-AM ratio...). A collaboration recently started with the Materials and

Engineering Research Institute of She�eld Hallam University to model the –-factor of QCLs

by calculating the Green functions, in order to better understand its non-zero value. For

the gain compression coe�cient, finding another method, either experimental or numerical,

would be necessary to validate the obtained value, which could not be verified.

Furthermore, the next step in this work will be to study the impact of optical feedback

on other mid-infrared QCL structures. According to previous experiments realized on inter-

band lasers, the response of the laser to optical feedback varies significantly with the device

parameters, such as design, wavelength, dimensions, DFB grating parameters... The impact

of optical feedback on the QCL linewidth and modulation response will also be investigated,

where a significant linewidth reduction in regimes I and III, as well as increase of the cut-o�

frequency of the QCL under modulation are expected. This study will lead to a better un-

derstanding of optical feedback, but also of the QCLs themselves, and eventually will lead

to selection rules for designing feedback-resistant QCLs.

Afterwards, when this phenomenon is fully understood, QCLs under optical feedback

could be used for practical applications. It has been shown that a controlled use of optical

feedback can greatly improve the QCL properties and for instance, BA QCLs with good

beam quality would be of interest for applications requiring high output power. Future work

on this topic would include dynamical studies of BA QCLs under optical feedback, far-field

measurements, as well as shaping of the spatial filter in order to further optimize the beam

profile.

Using Fourier or Talbot cavities, with optical feedback originating from partial reflection

of the light emitted by a laser array on either a lens or a tilted mirror, has proven useful
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to phase-lock the lasers, and achieve coherent light emission from a laser array, with good

beam quality and very high output power [203]. This technique could be applied to QCL

arrays in order to obtain high performances at mid-infrared wavelength.

The possibility of chaotic operation in QCLs furthermore suggests new applications for

these devices, such as chaotic LIDAR, unpredictable optical countermeasures or secured

free-space communications. For the latter, the possibility of chaos synchronization will first

have to be demonstrated, before applying it to secured transmission of information. Further

development would also include integrated solutions where a QCL and a feedback mirror will

be aligned in a single package, or even monolithic sources with careful control of the feed-

back ratio, to provide performant mid-infrared sources ready to be used in these applications.

It would moreover be interesting to investigate experimentally the impact of optical

injection on QCLs. According to the simulations, mid-infrared QCLs are sensitive to optical

injection as well, and can be locked over a wide range of frequencies. In the locking range, if

the response of QCLs to optical injection is similar to that of near-infrared laser diodes, which

should be the case, the slave QCL properties should be significantly enhanced. In particular,

a tremendous increase of the modulation bandwidth would be expected. Furthermore, the

dynamics predicted outside the locking range, with periodic oscillations whose frequency

can be controlled by adjusting the injection parameters, and high intensity events occurring

alongside the Hopf bifurcation, would lead to new QCL applications. For instance, one can

imagine a tunable photonic oscillator in the mid-infrared based on a periodically oscillating

QCL, or extreme events generation. A preliminary study equivalent to that described in this

thesis for optical feedback should therefore be performed in the case QCLs of subjected to

optical injection.

Furthermore, optical injection can be used to generate four-wave mixing in laser diodes [40].

Since the third-order nonlinear susceptibility is large in QCLs (typically ‰(3) ≥ 10≠16 cm2/V2

in [164]), the four-wave mixing mechanism occurs over a wide range of wavelengths, and can

be used for phase locking or ultra-fast wavelength conversion.

Optical injection can also be used to control the pulses and limit the temporal jitter in

mode-locked semiconductor lasers [204]. The interest for mode-locked QCLs is growing [205],
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for applications such as stable ultra-fast pulses or frequency comb generation, and optical

injection could be of interest for these structures as well.

Moreover, mutually-coupled QCLs could lead to complex dynamics, and might result to

similar behaviors as optical injection. Although this coupling of both lasers into one another

is di�cult to model and to fully understand, it is much easier to implement experimentally,

since no optical isolator is required.

Finally, THz QCLs present a faster upper-state lifetime and a lower –-factor, resulting in

dynamics di�erent from the ones observed in mid-infrared structures, such as modelocking or

ultrafast pulse generation [206]. Furthermore, novel QCL-based devices have recently been

proposed, with the first demonstration of QCL on silicon [207] for monolithic integration, or

with numerical studies on quantum-dot QCLs, which would present much lower threshold

current densities [208] or would lead to THz QCLs operating at room-temperature [209].

These structures may lead to new dynamics when subjected to optical feedback or optical

injection, that do not appear in standard mid-infrared QCL devices, and result in novel

applications.
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Annex A: Résumé en français

Introduction

Les lasers à cascade quantique

Les lasers à cascade quantiques (LCQ) sont des sources semi-conductrices basées sur des

transitions inter-sous-bandes au sein de la bande de conduction [13]. Contrairement aux

diodes lasers, dans lesquelles la transition radiative a lieu entre la bande de conduction et la

bande de valence, la longueur d’onde d’émission des LCQ n’est pas fixée par le gap intrin-

sèque au matériau utilisé. Selon l’ingénierie quantique de la zone active, la longueur d’onde

d’émission peut aller du moyen infrarouge (3 ≠ 12 µm) au domaine terahertz (50 ≠ 250 µm),

selon la largeur des puits quantiques. De plus, un e�et de cascade, où chaque électron va

traverser plusieurs zones actives et fournir plusieurs photons, permet d’obtenir un meilleur

rendement, comme représenté sur la Figure 7.1.
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Figure 7.1: Transitions inter-sous-bande et e�et de cascade dans les lasers à cascade quantique.
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Depuis leur invention en 1994 [15], la technologie des LCQ moyen infrarouges a rapide-

ment progressé, et ceux-ci fonctionnent désormais en impulsionnel ou en continu, en régime

multimode ou monomode, et peuvent émettre jusqu’à quelques watts à température ambiante

avec uniquement un refroidissement thermo-électrique.

Applications moyen infra-rouges

Grâce à leurs excellentes performances, les LCQ sont devenues des sources privilégiées pour

de nombreuses applications moyen infrarouges.

Tout d’abord, la spectroscopie de gaz exploite principalement le moyen infrarouge car

la plupart des molécules d’intérêt (drogues, explosifs, polluants, glucose...) absorbent à ces

longueurs d’onde, comme présenté en Figure 7.2. Pour détecter et quantifier la présence d’un

molécule dans un milieu, on l’illumine avec une source moyen-infrarouge et on analyse soit

directement le spectre d’absorption en sortie du milieu, soit les vibrations du milieu à l’aide

d’un haut-parleur : il s’agit alors de détection photo-acoustique [1].

Figure 7.2: Longueur d’onde d’absorption de quelques molécules d’intérêt.

Une seconde application des sources moyen infrarouges sont les communications en espace

libre [2]. En complément des fibres optiques, qui sont presque saturées, ou en remplacement

des ondes radios, pour augmenter le débit en augmentant la fréquence de la porteuse, les

ondes moyen-infrarouges permettent un transport e�cace de l’information, tout en étant

beaucoup moins sensibles aux e�ets de la turbulence lors de la propagation dans l’atmosphère.

Enfin, les contre-mesures optiques nécessitent également une source moyen infrarouge

de forte puissance et avec des bonnes propriétés de modulation. L’objectif est en e�et

de brouiller un missile à tête chercheuse dans le moyen infrarouge, qui suit la signature
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thermique d’un avion. Comme expliqué en Figure 7.3, l’avion peut dévier le missile en

émettant un fort signal moyen infrarouge modulé, qui va brouiller le détecteur.

a) b) c)

Figure 7.3: Scénario de contre-mesure optique. a) Un missile qui traque le point chaud d’un avion
est détecté. b) Un fort signal moyen infrarouge est émis depuis l’avion pour brouiller le missile. c)
La trajectoire du missile est déviée.

Objectifs de la thèse

L’objectif de cette thèse est d’améliorer les propriétés d’émission de LCQ émettant dans

le moyen infrarouge en appliquant de l’injection ou de la réinjection optiques, c’est à dire

en injectant dans la zone active la lumière émise par un seconde laser ou une partie de la

lumière émise par le laser après réflexion sur un miroir. Ces contrôles externes optiques ont

été étudiés en détails dans les diodes lasers proches infrarouges, et permettent d’améliorer

sensiblement un certain nombre de propriétés, telles que la puissance émise, la largeur de

raie, la qualité du spectre optique, le bruit ou la bande passante de modulation.

Cependant, ces phénomènes peuvent aussi déstabiliser le laser, voire le rendre chaotique.

Comme la réinjection optique peut provenir de réflexions parasites sur des éléments du

montage expérimental, il est important de savoir si un LCQ soumis à de la réinjection peut

avoir un comportement instable ou chaotique, pour mieux contrôler les performances du

laser.
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Réinjection optique dans les lasers à cascade quantique

LCQ étudiés

Dans cette section, les LCQ étudiés sont des laser Fabry-Perot ou à contre-réaction distribuée

(DFB) émettant autour de 5.6 µm. La zone active est inspirée de [54] et constituée de 30

périodes d’AlInAs/GaInAs crûes par épitaxie à jet moléculaire (MBE) sur un cladding en

InP faiblement dopé (1017 cm-3). Le cladding supérieur en InP est ensuite recrû par épitaxie

en phase vapeur aux organométalliques (MOCVD).

Dans le cas du LCQ DFB, le cladding supérieur est conçu suivant [55] pour obtenir

une émission monomode. On ajoute un réseau métallique de surface, avec une e�cacité de

couplage Ÿ ¥ 4 cm-1, résultant en un ŸL proche de 1.

Figure 7.4: a) Schéma et b) image MEB du LCQ DFB étudié. La région active, indiquée ’AR’
sur a), apparaît en gris clair sur b).

Enfin, le laser est fabriqué avec un procédé double tranché standard et un traitement

haute-réflectivité (R>95%) est appliqué sur la facette arrière. Le LCQ est monté epi-side

down pour une meilleure extraction de la chaleur. Figure 7.4 présente un schéma et une

image par microscopie électronique (MEB) à balayage de la structure étudiée.
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Montage expérimental

Le LCQ étudié est inséré dans le montage expérimental décrit en Figure 7.5. La lumière

émise par le laser est collimatée par une lentille de très courte focale (f = 1.87 mm) et de

grande ouverture numérique (ON = 0.87), puis divisée en deux fois par une lame séparatrice

40/60.

Une partie de la lumière est réfléchie sur un miroir pour être réinjectée dans le laser. La

longueur de cavité externe L
ext

est soigneusement contrôlée, ainsi que le taux de réinjection

f
ext

, défini comme le rapport entre puissance émise et puissance réinjectée, qui peut être

variée en tournant l’angle d’un polariseur.

L’autre voie sert à la détection, et le signal est envoyé sur un puissance-mètre, un spec-

tromètre à transformée de Fourier (FTIR) pour mesurer les spectres optiques ou une photo-

diode rapide en tellurure de mercure-cadmium (MCT).

Figure 7.5: Schéma du montage expérimental de réinjection dans les LCQ.

Etude numérique de la réinjection

Rigoureusement, chaque zone active du LCQ correspond à un laser à 3 niveaux, il faudrait

donc considérer 5 ◊ N
pd

équations, où N
pd

est le nombre de périodes. En pratique, on

utilise un modèle à trois niveaux globaux. Lorsque le laser est soumis à un champ électrique
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complexe E =
Ô

Sei„, les équations de taux du LCQ sous réinjection optique peuvent s’écrire:

dN3
dt

= ÷
I

q
≠ N3

·32
≠ N3

·31
≠ G0�NS (7.1)

dN2
dt

= N3
·32

≠ N2
·21

+ G0�NS (7.2)

dN1
dt

= N3
·31

+ N2
·21

≠ N1
·

out

(7.3)

dS

dt
=

A

N
pd

G0�N ≠ 1
·

p

B

S + —N
pd

N3
·

sp

+ 2k
Ò

S(t)S(t ≠ ·
ext

) cos(�„) (7.4)

d„

dt
= –

2

A

N
pd

G0�N ≠ 1
·

p

B

≠ k

ı̂ıÙS(t ≠ ·
ext

)
S(t) sin(�„) (7.5)

où N
j

est la densité de porteurs du niveau j, avec �N = N3 ≠N2, ÷ l’e�cacité de conversion,

I le courant de pompe. ·
ij

correspond au temps de vie des porteurs entre les niveaux i et

j, ·
out

est le temps caractéristique que met l’électron pour aller dans l’injecteur par e�et

tunnel, ·
sp

est le temps de vie d’émission spontanée, ·
p

est le temps de vie des photons

dans la cavité laser. G0 correspond au gain modal net sur une période, – est le facteur

de couplage phase-amplitude and — le facteur d’émission spontané. �„ est défini comme

�„ = Ê0·ext

+ „(t) ≠ „(t ≠ ·
ext

), avec ·
ext

le temps aller-retour dans la cavité externe. Enfin,

k est le coe�cient de feedback, défini selon :

k = 1
·

in

2C
l

Ò
f

ext

(7.6)

où ·
in

est le temps aller-retour dans la cavité interne et C
l

le coe�cient de couplage externe.

Pour une laser Fabry-Perot, il est s’exprime comme :

C
l

= 1 ≠ R2

2
Ô

R2
(7.7)

avec R2 le coe�cient de réflexion de la facette orientée vers la cavité externe. Dans le cas d’un

laser DFB, l’expression du coe�cient C
l

est bien plus compliquée, et dépend des réflectivités

complexes aux deux facettes [79].
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Paramètres des LCQ étudiés

Les paramètres internes de la structure étudiée sont calculés à partir d’un logiciel de sim-

ulation d’hétérostructures appelé METIS. Il permet d’obtenir les fonctions d’onde, comme

représenté en Figure 7.6 a, ainsi que les temps de vie caractéristiques. De plus, la simulation

thermique des modes de la cavité avec COMSOL permet d’extraire l’indice de groupe et le

facteur de recouvrement de la structur (Figure 7.6 b). Tous ces paramètres sont résumés

dans le Tableau 7.1.
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Figure 7.6: a) Fonctions d’onde de la structure LCQ étudiée, simulées avec METIS. En rouge,
niveau |3Í de deux périodes consécutives, en violet niveau |2Í, en bleu niveau |1Í, divisé en deux
états phonons, en vert état de l’injecteur. b) Simulation de modes au premier ordre avec COMSOL.
c) Simulation de modes au second ordre.

Parameter Value Parameter Value
Temps de vie des porteurs 3-2 ·32 2.27 ps Indice de groupe n

g

3.2
Temps de vie des porteurs 3-1 ·31 2.30 ps Facteur de confinement �

opt

68%
Temps de vie des porteurs 2-1 ·21 0.37 ps Gain modal net G0 1.2◊104 s-1

Temps de fuite des porteurs ·
out

0.54 ps Temps de vie des photons ·
p

4.74 ps

Table 7.1: Laser parameters
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Facteur – et compression de gain

Les simulations décrites précédemment ne permettent pas d’extraire l’e�cacité de conversion

÷, qui sera extrait des courbes puissance-courant-tension (PIV) de chaque laser, ni le facteur

–. Ce dernier quantifie le couplage entre les parties réelles et imaginaires de la susceptibilité

non-linéaire [37], c’est à dire entre le gain di�érentiel et l’indice ou, de manière équivalente,

le couplage entre la phase et l’amplitude du champ dans la cavité laser:

– = ≠d [Ÿ(‰(N))] /dN

d [⁄(‰(N))] /dN
= ≠4fi

⁄

dn/dN

dg/dN
… d„/dt

dI/dt
= –

2I
(7.8)

Ce paramètre est crucial à connaître pour un laser semi-conducteur car il régit la largeur

de raie, la réponse du laser sous modulation, les propriétés dynamiques du laser, ainsi que

la filamentation dans les lasers à large zone active.

a) b)

Figure 7.7: Evolution de la longueur d’onde du LCQ sous réinjection optique. a) Spectres optiques
et fits gaussiens du LCQ sans réinjection et avec faible réinjection f

ext

=2.1%. b) Décalage en
longueur d’onde en fonction du taux de réinjection.

Pour la structure LCQ étudiée, le facteur – est mesuré à partir de deux méthodes dif-

férentes basées sur la réinjection optique. La première technique consiste à suivre la longueur

du LCQ Fabry-Perot quand il est soumis à une faible réinjection (voir Figure 7.7). En e�et,
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l’équation 7.5 en état stationnaire donne:

– = Ê0 ≠ Ê
s

k cos(Ê
s

·
ext

) ≠ tan(Ê
s

·
ext

) (7.9)

où Ê0 est la fréquence angulaire du laser solitaire, et Ê
s

la fréquence angulaire du laser

réinjecté. Pour le laser Fabry-Perot de dimensions 3 mm ◊ 6 µm, à 10¶C et proche du seuil,

la valeur extraite est : – = 1.3 ± 0.5.

La seconde méthode consiste à mesurer l’interférogramme obtenu par auto-mélange. Il

s’agit encore une fois de réinjection optique, mais le miroir est monté sur un actuateur piezo-

électrique et décrit un mouvement sinusoïdal. A partir des points remarquables, indiqués sur

la Figure 7.8, que sont deux zéros consécutifs �
Z1 et �

Z2, un minimum �
min

et un maximum

�
max

, et de la période T de l’interférogramme, on peut en déduire le facteur – [52] :

– = �
max

≠ �
min

≠ 0.5T

�
Z2 ≠ �

Z1 ≠ 0.5T
(7.10)

Φmin

Φmax

ΦZ1 ΦZ2

T

Figure 7.8: Self-mixing interferometer of the QCL under study.

Les résultats pour un LCQ DFB de dimensions 2 mm ◊ 9 µm sont présentés en Figure 7.9

a en fonction du courant normalisé par rapport au seuil:

a =
3

I

I
th

≠ 1
4

(7.11)

On observe une forte dépendance du facteur – en fonction du courant de pompe, avec
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des valeurs allant de 0.8 à 2.9. De plus, les résultats obtenus avec les deux méthodes sont

parfaitement cohérents.
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Figure 7.9: a) Evolution du facteur – en fonction du courant de pompe normalisé, et comparaison
entre les deux méthodes à 10¶C. b) Evolution du facteur – en fonction de la puissance optique émise
par le LCQ DFB.

Suivre l’évolution du facteur – en fonction de la puissance optique P
opt

émise par le LCQ

permet d’obtenir le coe�cient de compression de gain ‘
P

, puisque :

– = –0(1 + ‘
P

P
opt

) (7.12)

où –0 est le facteur – au seuil. La compression de gain correspond à une diminution de

la valeur de gain lorsque le courant de pompe augmente [137]. Cela est dû à des non-

linéarités sur le gain induites par l’échau�ement des porteurs ou par du hole burning spatial

ou spectral [138], et le gain s’exprime comme :

G = G0
1 + ‘

S

S
(7.13)

avec G0 le gain linéaire, S la densité de photons et ‘
S

le coe�cient de compression de gain

exprimé en densité de photons. De plus, on a : ‘
S

S = ‘
P

P
opt

, on en déduit –0 = 0.4 et

‘
S

= 4.5 ◊ 10≠15 cm3 pour le LCQ étudié. Cette valeur est plus élevée que dans les lasers à
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puits ou à boîtes quantiques, mais serait cohérente avec le fort hole burning spatial démontré

dans les LCQ.

Impact de la réinjection sur les propriétés statiques du LCQ

Lorsqu’on soumet un LCQ Fabry-Perot à de la réinjection optique, sa caractéristique courant-

puissance P (I) est modifiée. On observe une réduction du seuil, ainsi qu’une augmentation

de la puissance optique, comme le montre la Figure 7.10 a. De plus, à fort taux de réinjection,

des ondulations apparaissent sur la P (I). Elles sont dues à des interférences alternativement

constructives et destructives entre les modes de la cavité externe et ceux de la cavité interne,

dont l’intervalle spectral libre varie avec le courant à cause de l’échau�ement de la zone

active.

b)

Figure 7.10: E�et de la réinjection optique sur la P(I) du LCQ Fabry-Perot de 4 mm ◊ 6 µm.
a) P (I) à di�érents taux de réinjection, avec une cavité externe de 15 cm. b) Diminution du seuil
expérimentale et numérique en fonction du taux de réinjection.

De plus, on peut suivre numériquement la réduction du seuil en fonction du taux de

réinjection, puisque :

I
th

= q

÷

·32 + ·31
·31(·32 ≠ ·21)

1
N

pd

G0

C
1
·

p

≠ 2k cos(Ê
s

·
ext

)
D

(7.14)

où Ê
s

est le mode de cavité externe pour lequel la largeur de raie est minimale. Comme le

montre la Figure 7.10 b, il y a un excellent accord entre la simulation et l’expérience, ce qui
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permet de valider la valeur – = 1.3.

Cette dépendance du seuil en fonction du taux de réinjection optique permet de mesurer la

quantité de réinjection parasite provenant d’une fibre optique microstructurée en chalcogénure.

Comme le montre la Figure 7.11, pour deux clivages de l’extrémité de la fibre, on obtient des

taux de réinjection de 11% et 15%, ce qui est très élevé, et pourrait empêcher l’utilisation

de fibre moyen infrarouges pour des applications nécessitant une grande stabilité et pureté

spectrale du LCQ. Pour compenser cette réinjection, il faudrait appliquer un traitement

anti-réflexions sur la fibre ou la cliver en biais, comme c’est le cas pour les fibres proche

infrarouges, ou utiliser systématiquement un isolateur optique en sortie du LCQ.
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Figure 7.11: Réduction du seuil d’un LCQ due à de la réinjection optique après réflexions sur
une fibre pour deux séries de mesures, en rouge et en bleu respectivement, et extraction du taux
de réinjection associé.

De plus, l’étude des spectres optiques du LCQ DFB permet d’identifier cinq régimes de

réinjection (voir Figure 7.12 a) similaires à ceux observés dans les lasers interbandes [74]. A

très faible taux de réinjection, le laser est stable et monomode, et la puissance émise dépend

de la phase de l’onde réinjectée. En augmentant progressivement le taux de réinjection,

le LCQ passe par un régime qui correspond à un battement entre deux modes, puis par

un régime monomode sur un mode qui n’est plus le mode d’émission du laser solitaire.

Le quatrième régime correspond à une déstabilisation du laser, caractérisée par une forte
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remontée des modes adjacents et une augmentation du bruit. Enfin, à très fort taux de

réinjection, l’émission du LCQ est à nouveau stable, avec une très forte puissance. Il s’agit

du régime de cavité étendue, où le laser devient une petite zone active dans une cavité longue,

dont l’une des extrémités est le miroir de réinjection.

a) b)

Figure 7.12: Régimes de réinjection des LCQ étudiés. a) LCQ DB, avec une longueur de cavité
externe de 15 cm. a0: Laser solitaire. a1: Régime I, f

ext

= 9.1 ◊ 10≠4. a2: Régime II, f

ext

=
5.1 ◊ 10≠3. a3: Régime III, f

ext

= 3.2 ◊ 10≠2. a4: Régime IV, f

ext

= 0.13. a5: Régime V,
f

ext

= 0.25. b) LCQ Fabry-Perot, avec une longueur de cavité externe de 13 cm. b0: Laser
solitaire. b1: Régime I, f

ext

= 1.4 ◊ 10≠3. b2: Régime II, f

ext

= 1.7 ◊ 10≠2. b3: Régime III,
f

ext

= 0.14. b4: Régime IV, f

ext

= 0.18. b5: Régime V, f

ext

= 0.25.

On retrouve les mêmes régimes dans le cas du LCQ Fabry-Perot (voir Figure 7.12 b),

sauf que les modes adjacents sont moins éteints, et que la longueur d’onde d’émission varie

beaucoup plus car elle n’est pas fixée par le réseau DFB.

En mesurant les taux de réinjection limites des di�érents régimes en fonction de la

longueur de cavité externe, on peut tracer la cartographie de réinjection du LCQ DFB,

comme le montre la Figure 7.13. En comparant avec celle tracée pour les lasers interban-

des [74], on observe que les LCQ sont beaucoup plus résistants à la réinjection, car les régimes

I, III et V, qui correspondent à une émission stable, sont beaucoup plus étendus, et que la

frontière entre les régimes I et II, qui marque la première déstabilisation dues à la réinjection,

apparaît à un taux de réinjection beaucoup plus élevé que dans les diodes lasers.
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Figure 7.13: Cartographie de réinjection des di�érents régimes du LCQ DFB, en fonction de la
longueur de cavité externe et du taux de réinjection, mesuré à 10¶C pour un courant de pompe de
435 mA.

Le régime IV, qui correspond à du chaos dans les diodes lasers, est d’amplitude très

réduite dans les LCQ mais est bien présent, on peut donc se demander s’il s’agit également

de chaos dans ces structures.

Impact sur les propriétés dynamiques du LCQ

Pour conclure sur l’éventuelle apparition de chaos dans les LCQ moyen infrarouges soumis

à de la réinjection optique, on étudie la trace temporelle. On se place à très faible courant,

car c’est là que le chaos est le plus susceptible d’apparaître. On choisit P = 0.02, avec:

P = ·
p

G
N

N
th

2

3
I

I
th

≠ 1
4

(7.15)

et G
N

= N
pd

G0.

A certains paramètres de réinjection, les traces temporelles, représentées en Figure 7.14,

font apparaître la superposition de deux périodes, une rapide à la fréquence de la cavité
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externe et une lente de quelques dizaines de MHz.
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Figure 7.14: Trace temporelle typique pour P = 0.02, L

ext

= 45 cm et f

ext

= 3.13%. a) Trace
temporelle montrant des fluctuations lentes. b) Zoom sur une période des fluctuations lentes, des
oscillations à la fréquence de la cavité externe apparaissent (en rouge), par rapport au laser solitaire
(en bleu). c) Spectres électriques qui confirment l’apparition de deux fréquences d’oscillations, une
lente et une rapide pour le laser soumis à de la réinjection (en rouge) par rapport au laser solitaire
(en bleu).

L’étude de la statistique de la période entre deux oscillations lentes successives donne

un histogramme en exponentielle décroissante, avec une zone interdite pour des faibles péri-

odes [106]. On en conclut qu’il s’agit de fluctuations basses fréquences (LFF) qui sont une

signature de chaos. Il y a donc bien apparition de chaos dans un LCQ soumis à de la

réinjection pour certains paramètres.

En augmentant progressivement le taux de réinjection, on peut tracer le diagramme de

bifurcation expérimental du LCQ DFB sous réinjection, qui représente les extrema d’intensité

en fonction du taux de réinjection (voir Figure 7.15). A faible taux de réinjection, le signal
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émis est stable, et l’on ne voit que du bruit sur les traces temporelles. Au-delà de la première

bifurcation de Hopf, qui a lieu à f
ext

= 0.59%, le laser commence à osciller à la fréquence de

la cavité externe, puis des LFF viennent se superposer à partir de f
ext

Ø 2.66%. Enfin, vers

f
ext

= 4%, le laser se restabilise.

Figure 7.15: Diagramme de bifurcation expérimental pour P = 0.02 et L

ext

= 35 cm, et traces
temporelles associées. a) Diagramme de bifurcation expériemental, avec en blanc les points où sont
enregistrées les traces temporelles. b) Trace temporelle pour f

ext

= 0.11%, montrant un signal
stable. c) Trace temporelle pour f

ext

= 1.58%, montrant des oscillations à la fréquence de cavité
externe. d) Trace temporelle pour f

ext

= 2.66%, montrant des oscillations à la fréquence de cavité
externe et des LFF.

Ce diagramme de bifurcation avec une première bifurcation de Hopf à la fréquence de

cavité externe est typique de ceux observés pour les lasers à gaz classe A [111], alors que

dans les lasers semiconducteurs classe B, la dynamique est gouvernée par les oscillations de

relaxation. Cette observation de dynamique classe A dans les LCQ soumis à de la réin-

jection peut s’expliquer par l’absence d’oscillation de relaxation dans les LCQ à cause du

très fort facteur d’amortissement, et est confirmée par l’étude numérique du diagramme de
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bifurcation, où l’on étudie les équations de Lang et Kobayashi [78]:

dY

ds
= (1 + i–) Z Y + ÷ exp(≠i�0◊) Y (s ≠ ◊) (7.16)

T
dZ

ds
= P ≠ Z ≠ (1 + 2Z) |Y |2 (7.17)

mais avec les paramètres correspondant aux LCQ, notamment un rapport entre temps de vie

des porteurs et temps de vie des photons T = 0.265. Le diagramme de bifurcation numérique,

montré en Figure 7.16, confirme les observations expérimentale, la dynamique classe A et

l’apparition de chaos.

Figure 7.16: Diagramme de bifurcation numérique pour P = 0.02 et L

ext

= 35 cm, et traces
temporelles associées. a) Diagramme de bifurcation numérique. b) Trace temporelle pour f

ext

=
0.11%, montrant un signal stable. c) Trace temporelle pour f

ext

= 2.14%, montrant des oscillations
à la fréquence de cavité externe. d) Trace temporelle pour f

ext

= 2.59%, montrant des oscillations
à la fréquence de cavité externe et des LFF.

Les LCQ chaotiques pourraient servir de sources pour de nouvelles applications, telles

que des LIDAR chaotiques moyen infrarouges, des contre-mesures imprévisibles ou des com-

munications en espace libre sécurisée par chaos.
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E�et sur les LCQ à large zone active

Les LCQ à large zone active sont des sources intéressantes pour des applications telles que

les contre-mesures optiques ou la spectroscopie de haute précision car ils délivrent de fortes

puissances optiques [145]. Cependant, les propriétés spatiales de ces lasers sont souvent

détériorées à cause d’e�ets thermiques et optiques, dus à l’existence de plusieurs modes

transverses dans la cavité, ce qui engendre du beam steering ou du hole burning spatial.

Le LCQ ne fonctionne plus sur le mode fondamental et le champ lointain est typiquement

bi-lobe, ce qui limite l’usage de ces lasers pour des applications où la pureté spatiale est très

importante.

En appliquant de la contre-réaction optique sur ces structures, on peut compenser ces

e�ets dus aux modes transverses d’ordres supérieurs. Par exemple, la Figure 7.17 présente

l’évolution du champ proche d’un LCQ de 32 µm de large en fonction du taux de réinjection,

par rapport au laser solitaire représenté sur la première courbe, et en fonction de l’angle du

miroir de réinjection.

Figure 7.17: Profils de champs proches à la facette du LCQ pour di�érents angles de réinjection,
exprimés à la fois en minutes d’arc et en déplacement sur la facette en fonction de la position
centrale. Les courbes en insert correspondent aux champs proches enregistrés sur la caméra.
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De plus, réaliser un filtrage spatial en plaçant un diaphragme dans la cavité externe

permet de sélectionner uniquement la partie centrale du faisceau à réinjecter et de favoriser

le mode fondamental, comme illustré sur la Figure 7.18.

Figure 7.18: Champs proches à la facette du laser pour une réinjection centrée et deux ouvertures
du diaphragme. Le diagramme est complètement ouvert (a) et partiellement fermé pour transmettre
uniquement le lobe central (b).

Sur un laser moins large, de 14 µm, mais présentant un fort beam steering, correspondant

à une non-uniformité du gain dû à un champ électrique qui est une combinaison linéaire des

champs des di�érents modes transverses, on parvient avec une réinjection centrée à com-

penser complètement ce beam steering, et le laser émet parfaitement sur le mode fondamen-

tal, comme le montre la Figure 7.19.

Comme sur le LCQ à zone active plus étroite, la réinjection optique peut également

modifier les propriétés dynamiques des lasers à large zone active, elle pourrait notamment

faire apparaître de la filamentation dans les LCQ. Une étude dynamique sera donc nécessaire

pour compléter ces observations sur les propriétés spatiales.

Injection optique dans les lasers à cascade quantique

Comme la réinjection optique, l’injection optique, qui consiste à envoyer la lumière d’un

premier laser maître dans un second laser esclave permet de modifier significativement les

propriétés d’émission du laser esclave. On dit que ce dernier est verrouillé lorsque sa longueur

d’onde se calque sur celle du maître. Dans la zone de verrouillage, les propriétés de l’esclave

sont améliorées, notamment en terme de finesse spectrale, de bande passante de modulation

ou de bruit d’intensité.

En négligeant l’émission spontanée, quand l’esclave est soumis à un champ électrique

E =
Ô

Sei„eiÊ

SL

t et le maître à un champ E
inj

=
Ò

S
inj

eiÊ

ML

t, les équations de taux du LCQ
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Figure 7.19: E�et de la réinjection optique sur un LCQ de 14 µm de large qui présente un fort
beam steering.

soumis à de l’injection sont :

dN3
dt

= ÷
I

q
≠ N3

·32
≠ N3

·31
≠ G0�NS (7.18)

dN2
dt

= N3
·32

≠ N2
·21

+ G0�NS (7.19)

dN1
dt

= N3
·31

+ N2
·21

≠ N1
·

out

(7.20)

dS

dt
=

A

N
pd

G0�N ≠ 1
·

p

B

S + 2k
Ò

S
inj

S cos(„) (7.21)

d„

dt
= –

2

A

N
pd

G0�N ≠ 1
·

p

B

≠ �Ê ≠ k

Û
S

inj

S
sin(„) (7.22)

où N
j

est la densité de porteurs du niveau j, avec �N = N3 ≠ N2, ÷ est l’e�cacité de

conversion, I est le courant de pompe. ·
ij

correspond au temps de vie des porteurs entre les

niveaux i et j, ·
out

est le temps de fuite de l’électron à travers l’injecteur, ·
p

est le temps de

vie des photons dans la cavité. G0 correspond au gain modal net sur une période, N
pd

au

nombre de périodes et – au couplage phase-amplitude. �Ê est le désaccord de fréquence,
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défini par �Ê = Ê
ML

≠ Ê
SL

. Enfin, k est le coe�cient d’injection:

k = 1
·

in

2C
l

(7.23)

avec ·
in

le temps aller-retour dans la cavité laser et C
l

le coe�cient de couplage externe,

défini comme dans le cas de la réinjection.

L’analyse analytique de ces équations de taux [197] donne les limites de la zone de ver-

rouillage, comme représenté en Figure 7.20 pour di�érents jeux de paramètres. Ici encore,

le LCQ a une réponse de type classe A à l’injection optique. En e�et, le laser esclave est

toujours verrouillé pour un désaccord de fréquence nul, et il n’y a pas de zone de chaos ni

de verrouillage instable, uniquement des zones de bistabilités entre deux solutions stables

ou entre une solution stable et une solution stable et une solution périodique. Ces zones de

bistabilités sont situées entre la courbe de Saddle-Node (en bleu) et les courbes de bifurcation

de Hopf (en rouge).

Figure 7.20: Simulations analytiques pour un LCQ Fabry-Perot soumis à de l’injection optique.
Première ligne: courant de pompe constant I = 1.5 A et a) – = 0, b) – = 1.5 and c) – = 3.
Deuxième ligne: – = 1.5 fixé et d) I = 1.25 A, e) I = 1.5 A, f) I = 2 A.

Une autre méthode pour obtenir la carte de verrouillage d’un LCQ sous injection optique
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Figure 7.21: Simulations numériques superposées aux résultats analytiques (rouge pour Saddle-
Node et jaune pour Hopf) pour le LCQ Fabry-Perot soumis à de l’injection optique. Première ligne
: – = 0 et a) I = 1.25 A, b) I = 1.5 A, c) I = 2 A. Deuxième ligne : – = 1.5 et d) I = 1.25 A, e)
I = 1.5 A, f) I = 2 A. Troisième ligne : – = 3 et g) I = 1.25 A, h) I = 1.5 A, i) I = 2 A.

est de résoudre numériquement les équations de taux en chaque point (K,�f), avec K =
Ò

S
inj

/S le taux d’injection et �f le désaccord de fréquence entre le maître et l’esclave.

Cette méthode de simulation numérique donne non seulement accès aux limites de la zone

de verrouillage, mais également au comportement du LCQ en dehors de cette zone, comme

illustré sur la Figure 7.21 où la carte d’injection est tracée pour di�érents jeux de paramètres.

Les limites de verrouillage à fort courant coïncident bien avec les courbes de Saddle-Node

obtenues par simulation analytique. Le très léger décalage entre les deux courbes peut

s’expliquer par les approximations réalisées dans le cas analytique.

De plus, hors de la zone de verrouillage on obtient des oscillations périodiques, qui ne sont
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Figure 7.22: Traces temporelles numériques pour le LCQ Fabry-Perot soumis à de l’injection
optique, avec – = 1.5 and I = 1.25 A . Première ligne : �f = +1.05 GHz et a) K = ≠14 dB,
b) K = ≠13 dB, c) K = ≠6 dB. Deuxième ligne : �f = +0.2 GHz et d) K = ≠30 dB, e)
K = ≠27 dB, f) K = ≠15 dB. Troisième ligne : �f = ≠0.2 GHz et d) K = ≠29 dB, e)
K = ≠26 dB, f) K = ≠12 dB. Quatrième ligne : �f = ≠1.2 GHz et d) K = ≠15 dB, e)
K = ≠8 dB, f) K = ≠2 dB.
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pas parfaitement sinusoïdales et dont la forme dépend du désaccord et du taux d’injection,

comme illustré en Figure 7.22. Au contraire, à faible courant juste au-dessus du seuil,

la bifurcation de Hopf de la simulation analytique apparaît dans une gamme raisonnable

de paramètres, et cela correspond sur les traces temporelles numériques à des oscillations

périodiques sinusoïdales à la fréquence du désaccord entre le maître et l’esclave. On observe

également ponctuellement des oscillations de très forte amplitude. Opéré très proche du seuil,

un LCQ soumis à de l’injection optique pourrait donc servir de source pour un oscillateur

photonique accordable en variant le désaccord ou comme générateur d’ondes scélérates.

Cependant, des mesures expérimentales restent nécessaires pour vérifier que toutes ces

dynamiques ont e�ectivement lieu dans un LCQ soumis à de l’injection optique.

Conclusions et perspectives

Cette thèse a donc montré que la réinjection optique peut grandement améliorer les propriétés

d’émission des LCQ en terme de puissance optique, de courant de seuil ou de pureté spectrale.

De plus, la réinjection permet d’améliorer la qualité spatiale de faisceau des LCQ à large zone

active, qui fournissent des sources de forte puissance. En ce sens, un LCQ sous réinjection

optique devient une source moyen infrarouge à hautes performances pour des applications

comme les contre-mesures optiques, la spectroscopie de gaz ou les communications en espace

libre.

Cependant, la réinjection optique peut aussi induire une déstabilisation du LCQ, avec une

émission multimode, voire chaotique, qu’il faut éviter pour les applications citées précédem-

ment. Notamment, une fibre optique moyen infrarouge en chalcogénure peut générer jusqu’à

15% de réinjection parasite. Il est donc crucial de généraliser l’utilisation des isolateurs

optiques moyen infrarouge pour empêcher une réinjection non contrôlée. Au contraire, un

LCQ chaotique peut être une source pour de nouvelles applications, telles que du LIDAR

chaotique moyen infrarouge, des communications en espace libre sécurisées par chaos ou des

contre-mesures imprévisibles.

D’après les simulations réalisées, l’injection optique pourrait également être exploitée

dans les LCQ pour améliorer les propriétés d’émission, et notamment la bande passante de
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modulation, dans la zone de verrouillage. De plus, de nouvelles dynamiques apparaissent hors

de la zone de verrouillage, avec une émission périodique à faible courant dont la fréquence

est celle du désaccord entre le maître et l’esclave. Un LCQ sous injection optique non-

verrouillé pourrait donc servir de sources à d’autres applications, comme un générateur

d’ondes scélérates ou un oscillateur photonique accordable.
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Photonique non-linéaire dans les lasers à cascade quantique
moyen infrarouges

Louise JUMPERTZ

RESUME : Les lasers à cascade quantique émettant dans le moyen-infrarouge sont des lasers semi-
conducteurs unipolaires qui sont devenus des sources couramment utilisées pour des applications telles que
la spectroscopie de gaz, les communications en espace libre ou les contre-mesures optiques. Appliquer une
perturbation externe, typiquement une contre-réaction optique ou de l’injection optique, entraîne une forte
modification des propriétés d’émission du laser à cascade quantique. La contre-réaction optique influe sur
les propriétés statiques du laser Fabry-Perot ou à contre-réaction répartie, conduisant à une augmentation de
la puissance, à une diminution du seuil, à une modification du spectre optique qui peut devenir monomode ou
multimode, et à une amélioration de la qualité de faisceau dans les lasers à ruban large fortement multimode
transverses. Cela induit également un comportement dynamique différent, et un laser à cascade quantique
soumis à de la contre-réaction peut osciller périodiquement ou même devenir chaotique : ce travail présente
la toute première observation d’instabilités optiques dans le moyen-infrarouge. De plus, une étude numérique
de l’injection optique montre que les lasers à cascade quantique peuvent se verrouiller optiquement sur une
plage de plusieurs gigahertz, sur laquelle leur stabilité devrait être accrue et leur bande passante de modu-
lation significativement augmentée. Une dynamique prometteuse apparaît également en dehors de la zone
de verrouillage, avec l’apparition d’oscillations périodiques à une fréquence accordable ainsi que des événe-
ments isolés de forte intensité. Un laser à cascade quantique soumis à un contrôle externe peut donc être
une source très performante pour les applications moyen-infrarouges usuelles, mais pourrait aussi en adres-
ser de nouvelles, telles que des oscillateurs photoniques accordables, des générateurs d’événements rares,
des LIDAR chaotiques, des communications sécurisées par chaos ou des contre-mesures imprévisibles.

MOTS-CLEFS : laser à cascade quantique, réinjection optique, dynamique non-linéaire

ABSTRACT : Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which
have become widely used sources for applications such as gas spectroscopy, free-space commu-
nications or optical countermeasures. Applying external perturbations such as optical feedback
or optical injection leads to a strong modification of the quantum cascade laser properties. Op-
tical feedback impacts the static properties of mid-infrared Fabry-Perot and distributed feedback
quantum cascade lasers, inducing power increase, threshold reduction, modification of the optical
spectrum, which can become either single- or multimode, and enhanced beam quality of broad-
area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum
cascade laser subject to optical feedback can oscillate periodically or even become chaotic : this
work provides the first analysis of optical instabilities in the mid-infrared range. A numerical study
of optical injection furthermore proves that quantum cascade lasers can injection-lock over a few
gigahertz, where they should experience enhanced stability and especially improved modulation
bandwidth. Furthermore, some promising dynamics appear outside the locking range with perio-
dic oscillations at a tunable frequency or high-intensity events. A quantum cascade laser under
external control could therefore be a source with enhanced properties for the usual mid-infrared
applications, but could also address new applications such as tunable photonic oscillators, ex-
treme events generators, chaotic LIDAR, chaos-based secured communications or unpredictable
countermeasures.

KEY-WORDS : quantum cascade laser, optical feedback, nonlinear dynamics
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